Addressing Air Quality Problems with
Genetic Algorithms: A Detailed Analysis
of Source Characterization

Sue Ellen Haupt, Christopher T. Allen, and George S. Young

14.1 Introduction

14.1.1 Fitting the Model to the Purpose

The purposes for modeling air contaminants have
evolved, and the models themselves have co-evolved to
meet the changing needs of society. The original need
for air contaminant models was to track the path of
pollutants emitted from known sources. Therefore, the
initial purpose of the models was to track and estimate
the downwind transport and dispersion (T&D). Since
dispersion results from turbulent diffusion, which is
best modeled as a stochastic process, most models for
the dispersion portion are based on a Gaussian spread.

Because many environmental problems have their
sources in a region that is far from the impact, there
came a need to identify remote sources of pollution.
For instance, the acid rain problem that was highly
studied in the 1980s was widely thought to be caused
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by upwind polluters. Power plant emissions in the
Ohio Valley were blamed for acid rain in New York
and New England. To test this conjecture, receptor
models were developed. This type of model begins
with monitored pollution concentrations and back cal-
culates the sources. Some models of this type were
based on a backward trajectory analysis while oth-
ers separated out the mix of chemical species present
in the sample and computed likely sources given
knowledge of the species composition of the potential
sources. These models pointed to the Ohio Valley for
the source of the acid rain precursors. Receptor mod-
els are still popular for attributing pollutants to their
sources.

A more recent application analyzes the impact that
a toxic release of chemical, biological, radiological, or
nuclear (CBRN) material might have on a nearby pop-
ulation. Such a release could be due to an accident at a
nearby plant or in transit, intentional release by a ter-
rorist, or enemy action in a military situation. In such
cases, there is often a need for a full spectrum of mod-
eling, beginning with characterizing the likely source,
then estimating contaminant transport and dispersion
as well as their uncertainty, and finally estimating the
impact on nearby populations and facilities for the pur-
pose of deciding how best to respond to the situation.
Such scenarios require rapid models for source char-
acterization, T&D, and human effects (mortality rates,
casualty rates, etc.); so including the full physics and
dynamics is computationally prohibitive. Therefore,
faster artificial intelligence techniques may become
competitive. But such techniques are only as good as
the dynamics-based models on which they are built.
We show here how a genetic algorithm has proven
useful for coupling backward looking receptor models
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with the forward T&D models to leverage the strengths
of each in addressing the source characterization prob-
lem. We demonstrate here how to characterize the
strength, location, height, time, and meteorological
conditions of a release given field data. We begin by
demonstrating the GA-based technique using synthetic
data and a very basic T&D model and progress toward
incorporating a realistic advanced applications T&D
model and validating the techniques with field experi-
ment data.

14.1.2 The Problem of Turbulent
Dispersion and Real Data

Pollutant released into a turbulent atmospheric bound-
ary layer is subject to chaotic motions on a variety of
scales in both time and space. Thus, we cannot defin-
itively predict an exact concentration for a specific
location at an instant in time. As a result, predictive
T&D models typically compute an ensemble average
by solving a diffusion equation to yield a Gaussian
spread. We must remember what such a model can
and cannot do. It can predict an expected ensemble
mean concentration and its standard deviation. It can-
not, however, predict the expected concentration for a
specific realization (Wyngaard 1992).

In contrast, concentration measurements represent a
specific realization of turbulent dispersion. Currently,
there is not a good evaluation method for comparing
the single realization of a field experiment with the
ensemble average statistics from model output (NRC
2003).

In addition to this stochastic variability of time
averages, the pollutant emission rates are often
poorly characterized; therefore, the dispersion prob-
lem appears intractable. Here we detail a method that
uses artificial intelligence to directly treat the problem
of inherent uncertainty through coupling a dispersion
model to a receptor model. The goal is to blend the
predictions of the T&D models with the monitored
data, which are grounded in reality. Since blending
these two disparate models becomes a complex opti-
mization problem, the genetic algorithm (GA) is an
appropriate tool to couple the field measurements to
the dynamically based T&D model.

The GA-coupled model described here has evolved
in parallel with the focus of the application. The initial

formulation was for characterizing sources of air pol-
lution by using the GA to link a forward T&D model
with a backward looking receptor model. That model
is described in detail in Section 14.2. Two applications
with synthetic data are presented in Section 14.3: the
first is in an artificial simple geometry and a second is
in a realistic geometry. Although the model is shown
to perform well, we immediately notice some cases
for which the model is ill-posed. A statistical analysis
of model performance appears in Section 14.4, which
also describes model performance in the presence of
random noise. In these initial sections, our goal is to
apportion the fraction of monitored pollutant to each
of a list of pre-identified sources. In Section 14.5,
we begin to address the issues that are relevant for
homeland security: what if we don’t have a list of
candidate sources and what if the local meteorolog-
ical conditions aren’t known? In this case, we apply
the GA directly to identify the location, strength, and
time of the release as well as to determine the direc-
tion of the wind that is transporting the contaminant.
To accomplish this feat requires multiple receptors,
each monitoring concentrations as a function of time.
Section 14.6 is devoted to making the GA coupled
model more realistic by incorporating a highly refined
T&D model, SCIPUFF. This refinement requires refor-
mulating the model to minimize calls to SCIPUFF
and to optimize GA performance. With this refine-
ment, we are able to examine model performance
on actual field-monitored data, also presented in
Section 14.6.

This problem of source characterization and charac-
terizing the meteorological conditions is a very practi-
cal one that several government agencies are address-
ing. The application of the genetic algorithm to this
problem demonstrates the real world applicability of
artificial intelligence to such problems.

14.2 Coupled Model Formulation

The purpose of the coupled model is to assimilate
field monitored data and back calculate the source
characteristics of the emission. Several previous inves-
tigators used information on dispersion or chemical
transport in computing source apportionment. Qin and
Oduyemi (2003) apportioned particulate matter to its
sources by using a receptor model and incorporating
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dispersion model predictions from vehicle emission
sources. Cartwright and Harris (1993) used a GA
to apportion sources to pollutant data monitored at
receptors. Loughlin et al. (2000) also used a GA to
couple an air quality model with a receptor model.
They minimized the total cost of controlling emission
rates at over 1,000 sources in order to design cost
effective control strategies to meet attainment of the
ozone standard. Kumer et al. (2004) estimated appor-
tionment factors that match monitored data by com-
bining factor analysis-multiple regression with disper-
sion modeling. We describe here how we have built
on these prior studies to couple a Gaussian plume
model with a receptor model via a genetic algorithm
to compute the source calibration factors necessary
to best match the measured pollutant (Haupt and
Haupt 2004; Haupt 2005; Haupt et al. 2006; Allen
et al. 2006, 2007). Camelli and Lohner (2004) com-
puted the location of a source that would cause the
maximum amount of damage using a GA and a com-
putational fluid dynamics model. Note that all the
works mentioned here use Artificial Intelligence (AI)
techniques to solve a difficult problem of blending two
types of models.

14.2.1 Model Formulation

One method to apportion monitored concentrations to
the expected sources is with a chemical mass bal-
ance (CMB) receptor model. Such a model starts with
receptor data consisting of different monitored chemi-
cal species and a list of the emission fractions for each
of those species for the potential sources in the locale.
Mathematically:

Conr 'Sn =Ry, (141)

where C,,,, is the source concentration profile matrix
denoting the fractional emission from source n; R,
is the concentration of each species measured at a
receptor r, and S, is the apportionment vector, also
called calibration factors, to be computed. Subscript
n denotes the source number, m the species index, and
r the receptor number. The monitored data provides
the R,,, matrix denoting the amount of each chemical
species present at receptor r. If the chemical compo-
sition of the emissions from each source is known,
a fit to the data produces the fractional contribution

from each source, S,. Although our coupled model
is inspired by the CMB model, we do not assume
mass fractions of different species, but rather substitute
varying meteorological periods. That is, m denotes the
meteorological period for our reconfigured model. In
the coupled model framework, the emission fractions
in Cy,,, are replaced with pollutant concentrations pre-
dicted by a T&D model at each receptor for each mete-
orological period. The receptor data R,,, matches the
same meteorological periods. The vector, S,, appor-
tions or calibrates the expected transport model dis-
persed emissions to match actual concentrations mea-
sured at the receptor.

14.2.2 The Solution Method - A
Continuous Genetic Algorithm

While one might begin to solve (14.1) with stan-
dard matrix inversion methods, one would quickly
discover that the matrix is usually poorly conditioned
and not easily inverted. This poor conditioning results
because the meteorological periods are seldom inde-
pendent. Therefore, we pose it as an optimization prob-
lem. Traditional optimization methods such as least
squares and conjugate gradient perform poorly (Haupt
et al. 2006). We did find, however, that other iterative
methods such as the Moore-Penrose pseudoinverse
(Penrose 1955) can produce an accurate solution for
some of the simpler problems solved here. When we
tried that method with more complex configurations,
it did not produce a viable solution (Haupt 2005). In
addition, we aim toward optimizing more than just
the source calibration factors (see Section 14.5), so
we expect the optimization problem to progress well
beyond a matrix solution. Thus, we require a very
robust optimization method that can solve this difficult
matrix problem while simultaneously estimating other
unknown parameters. We achieve this by using a GA
as the coupling mechanism that minimizes the differ-
ence between the monitored concentrations and the
predicted concentrations. The GA was introduced in
Chapter 5 of Part I. The continuous GA is appropriate
for application to this problem since all parameters are
real continuous numbers.

The cost function used here measures the root mean
square difference between the left-hand side of (14.1)
and the right-hand side, summed over the total number
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of meteorological periods considered and normalized.
This normalized residual is:

M R
Z Z (Cmnr : Sn - Rmr)2

m=1r=1

M R
2. 2 RE,
m=1r=1

where M is the total number of meteorological periods
and R is the total number of receptors. We assume that
R, are monitored data. Thurs, the crux of the model
is now to use an appropriate transport and dispersion
model to estimate C,,,,,.

Cost = (14.2)

14.3 A First Validation

There are many ways to estimate the dispersed emis-
sions that form C,,,,. The first validation problem uses
Gaussian plume dispersion:

Omn ex _y,%m ex —(zr — He)2
U002 P 207 P 20}

+ ex _(Zr + He)2
P 202

where: C,,,, = concentration of emissions from source
n over time period m at a receptor location

Cmn =

(14.3)

(x,y,z,) = Cartesian coordinates of the receptor
in the downwind direction from the source

Q.,.n = emission rate from source n over time period
m

u = wind speed for meteorological period m

H, = effective height of the plume centerline above
ground

oy, 0, = dispersion coefficients in the y and z direc-
tions, respectively

The dispersion coefficients are computed from
Beychok (1994).

o =exp {1 + J [In(x) + K (In(x)1?} (14.4)

where x is the downwind distance (in km) and 1,
J, and K are empirical coefficients dependent on the
Pasquill Stability Class, in turn dependent on wind
speed, direction, and solar radiation. The coefficients
can then be looked up in tables (Beychok 1994).

Initially, we consider data from a single receptor
but allow for multiple potential sources of the pollu-
tant to be apportioned. Thus, the receptor index, 1, in
(14.3) collapses to 1.0 and no longer needs included
for this first problem. The pollutant predicted by the
forward model form C,,, of (14.3) and the monitored
data become the right hand side, R,,, that is, the mon-
itored data for the same meteorological periods. The
meteorological periods are common to those metrics.
The remaining vector, S,, is thus the source calibration
factor, which is tuned to optimize agreement between
the model predicted concentrations and the receptor
observations. If we had perfect world knowledge (of
source characteristics, dispersion processes, meteoro-
logical conditions, turbulence, and monitored concen-
trations), S,, would be composed of all 1.0s. Therefore,
the difference of this factor from 1.0 can be interpreted
as an error or uncertainty in the modeling process in
comparison to the monitored data.

Figure 14.1 summarizes the coupled model process.
Given assumed geometry, meteorology, and emis-
sions concentrations, we compute each source’s dis-
persion plume. Then we estimate the contribution
of each plume to the total concentration at the
monitor with the forward model, which fill the con-
centration matrix. The monitor has recorded actual
concentrations, R,,, for the same meteorological peri-
ods. The computed calibration factors then assign the
portion to each source. Total emissions from a source
can then be computed by multiplying the originally
assumed emission rate by the source calibration factor.

14.3.1 Synthetic Data on a Circle

The coupled receptor/dispersion model technique was
first validated in a simple geometry. A receptor was
sited at the origin of a circle and 16 sources were
spaced every 22.5° at a distance of 500 m. Receptor
data were generated using the same dispersion model
to be used for the coupled model optimization (equa-
tions (14.3) and (14.4)). This approach is sometimes
called an identical twin experiment (Daley 1991). To
estimate the calibration factors for 16 sources requires
at least 16 independent meteorological periods. This
independence was achieved by using wind directions
from 16 points of the wind rose and representative
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Fig. 14.1 Schematic of the GA coupled model. The monitored receptor data appears in matrix R, the concentration estimates in
matrix C, and the GA computes the apportionment vector S to identify sources

wind speeds. Neutral stability was assumed for ease of
comparison. The dispersion model was run using 1h
averaging over the meteorological data and specifying
calibration factors, S, that we hoped to match with the
coupled model.

The coupled receptor/dispersion model was then
tested with this synthetically generated data. The first
tests set calibration factors to 0.0 except for a single
source that was set to a 1.0 to simulate identifying
which single source might cause a contaminant event.
The genetic algorithm, when run with a sufficient num-
ber of iterations, successfully evolved the correct solu-
tion. For this problem, the number of iterations deter-
mines the smallness of the cost function. Figure 14.2
shows the GA convergence over 200,000 iterations,
much more than would be used in a typical run. The
decrease in the residual is monotonic. So how many
iterations are actually necessary or useful to get an

acceptably small residual with a reasonable amount
of computer time? Table 14.1 shows the results of
a sensitivity study of residuals versus the number of
iterations. Since the GA randomly generates the initial
set of solutions, a different residual is expected for
each run. Thus, for this table, each configuration was
run five times and the mean and standard deviation
of the residuals is listed. The results of Fig. 14.2 are
confirmed: more iterations result in a smaller mean
residual. The standard deviation also decreases with
the number of iterations. Thus we expect this method
to produce reliable results with a moderate number of
iterations. If we are able to average multiple runs or
to use a large number of iterations, the GA is even
more likely to converge to a reliable solution. We now
have confidence in our approach. Similar results hold
for other configurations with two or more sources con-
tributing.
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14.3.2 Actual Emission Configuration
with Synthetic Meteorological
Data

A second identical twin experiment used an actual
emission configuration for Cache Valley, Utah. The
source locations were obtained from the state of Utah
emission inventory and source heights were estimated.
Each source was assigned the same artificial emission
rate. The receptor location is the actual monitor located
on Main Street in Logan, Utah. Table 14.2 details the
source data relative to the monitor. For verification pur-
poses, the meteorological data were produced synthet-
ically to systematically sample the range of possible
winds. Source apportionment factors were assumed,
once again assigning a factor of 0.0 to all except those
chosen for a synthetic emission.

Table 14.1 Residual size as a function of the number of GA
iterations for the circular source configuration. Statistics for all
but the last row are based on five separate runs

Iterations Best residual Mean residual Standard deviation
500 0.179 0.269 0.096
1,000 0.155 0.191 0.030
2,000 0.052 0.077 0.034
5,000 0.034 0.052 0.020
50,000 536 x 1074

Based on a single run.

1 1.5 2
generation x 10°

Using a real source configuration is a much more
difficult problem than placing sources in a concen-
tric circle. For instance, consider the case where two
sources lie at the same angle from the receptor but at
different distances. If the wind speed was not variable,
it would be impossible to distinguish between the con-
tributions from those two sources and so the problem
would be ill-posed. Thus, we use a variety of meteo-
rological conditions to produce a correct allocation of
source apportionment factors.

Table 14.2 Source configuration for Cache Valley, UT

Source Distance from Angle from monitor
number monitor (m) (° from north)
1 1,492 26.4
2 25,031 8
3 8,550 176
4 25,096 8
5 25,700 9
6 4,789 350
7 13,854 5
8 6,030 178
9 2,227 171
10 9,998 4
11 11,540 245
12 23,285 5
13 2,328 55
14 13,802 4
15 17,994 152
16 569 71
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Fig. 14.3 Source apportionment for a single source (source 1) for the Cache Valley, UT configuration

The first validation example had only one source
factor of 1.0 so only a single source contributed to
the observed concentration. The source chosen was
1.5km west of the receptor, a direction with no other
sources. As seen in Fig. 14.3, the algorithm identified
the correct source in less than 10,000 iterations. Some
spurious contribution was attributed to source 4; but
since that source is 25 km away, its contribution would
be well dispersed by the time it reached the receptor.
The normalized residual for this run was quite small:
0.0047604.

A second example was intentionally made more dif-
ficult to solve by setting an apportionment factor of 1.0
for three sources while the rest were assigned 0.0. The
apportionment factors were optimized by the coupled
model using 64 meteorological periods and 10,000
iterations. The results appear in Fig. 14.4. The three
sources that were given 1.0s were well captured. An
additional four sources were spuriously assigned large
apportionment factors, in spite of the relatively small
residual of 0.070144. Three of those, sources 2, 4, and
5, are located 23-25 km away from the receptor. Thus,
their contribution was likely to disperse to a nearly
zero concentration by the time it reached the receptor
using the Gaussian plume model. Their apportionment

factors, when multiplied by near zero, have little
impact on the residual and are meaningless. Source 12
is 8.5 km away and therefore more likely to contribute,
but it is in the same direction as the three sources that
are making a real contribution. The lack of directional
distinction makes it difficult to correctly identify only
those sources that contribute to receptor pollutant con-
centration with the current configuration of the cou-
pled model. The problem is depicted in Fig. 14.5. If a
source that is 2 km from the receptor is much stronger
than one that is only 1km from the receptor, either
could produce an equivalent concentration.

14.3.3 Model Sensitivity to Cost
Function Formulation

Would a different formulation of the cost function
produce different results? A cost function with a
higher power on the difference than the root mean
square (RMS) value in (14.2) would weight the outliers
more heavily. To evaluate how this might impact the
results, we look at alternate formulations for the cost
function.
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Fig. 14.4 Source apportionment for three sources (sources 7, 10, and 14) for the Logan, UT configuration
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Fig. 14.5 Schematic of plume from two different sources at the same wind angle
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Table 14.3 Evaluation of Case & Metric ~ RMS SqRoot  AbsVal  FourthRoot EighthRoot RMSAbs

different cost function

formulations for a circular RMS 0.050919  0.048137  0.044658  0.056269  0.063798  0.049764

geometry Max 1.02305 1.02045 1.02457 1.02503 1.0352 1.02443
Min 0.97063 0.9727 0.97757 0.97215 0.97195 0.97546
In 0.01 10.5 11.2 11.3 8.0 9.8 11.2

The normalization method makes no difference
since the GA mating function used here is based on
ranking rather than absolute difference. The formula-
tion of the cost function’s numerator, however, could
make a difference in the results or in the convergence
properties of the model. We showed in Fig. 14.2 that,
for this problem, the more GA iterations performed,
the lower the cost function. We choose to lump accu-
racy and convergence properties into a single issue by
holding the number of iterations in each GA coupled
model run to 20,000.

Five additional cost function formulations are con-
sidered:

m=1

SqRoot = " 5 (14.5)
(£ vim)
m=1
M
> IC-S—R|
AbsVal = 2= — (14.6)
> IR|
m=1
M
{3 (C-S—R*
FourthRoot = 1~ (14.7)
M
m=1
M
1> (C-S—R?
EighthRoot = =" (14.8)
M
8§ (R)S
m=1
RMSAbs = RMS + AbsVal (14.9)

Table 14.3 summarizes the results for the circular
geometry with all sources assigned a calibration factor
of 1.0. The results reported there are for the average of
six coupled model runs of 20,000 iterations each. The
four different metrics used are:

1. RMS: The RMS difference from the calibration fac-
tor that was used to create the synthetic data. We
hope to see this minimized.

2. Max: The maximum calibration factor for each
run, averaged over the six runs. We hope to see
this as close to the actual as possible (1.0 for the
circle).

3. Min: The minimum calibration factor each run,
averaged over the six runs. We again hope to see
this as close to the actual (1.0) as possible.

4. In 0.01: The number of sources calibrated within
1% of actual. A higher value for this metric implies
a better result. For the circle case that includes 0.0
apportionment factors, this means within 1% of 1.0.

As seen in the table, there is no clear winner among
the cost functions, although the higher power cost
functions perform somewhat worse than the SqRoot,
AbsVal, RMS, and RMSAbs. For the circular con-
figuration, the AbsVal function works best, closely
followed by the SqRoot. For a different geometry
the results were somewhat different, but performance
differences between the cost functions are relatively
small.

A few runs of the GA coupled model with 200,000
iterations for the RMS and AbsVal cost functions con-
firmed the results of Table 14.3. Thus, although genetic
algorithm results can be sensitive to formulation of
the cost function, for this problem, any of the cost
functions described above will give similar results. We
conclude that our original choice of an RMS cost func-
tion was reasonable and easy to compare with other
methods that are based on RMS differences (Haupt
et al. 2006).

14.3.4 Tuning the GA to the Problem

We saw that for both a simple geometry and for a
more realistic geometry, the coupled model is able to
correctly apportion concentrations to sources in spite
of a few spurious apportionments for the most difficult
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Fig. 14.6 The number of cost function evaluations required to reach a tolerance of 0.01 as a function of population size and

mutation rate, averaged over 10 runs

situations. Now we wish to analyze which combina-
tions of GA parameters optimize model performance.
When we move to more refined dispersion models
(Section 14.6 below), we expect the computation of
the dispersion matrix to be computationally expensive,
so we wish to determine the best combinations of pop-
ulation size and mutation rate to minimize the number
of calls to the cost function, similar to the analysis
given in Chapter 5. We noted that for this problem, the
GA convergence depends on the number of iterations.
Since the solution is known for these identical twin
experiments, we can stop the GA when the error has
reached a pre-specified tolerance level, in this case
0.01. We wish to explore a wide range of parameter
combinations. The goal is to minimize the number of
cost function evaluations required to reach this level
in an effort to minimize the CPU time. Mutation rates
examined are 0.001, 0.005, 0.01, 0.05, 0.075, 0.1,
0.125, 0.15, 0.175, 0.2, 0., and 0.25. Population sizes
are 4, 8, 12, 16, 20, 32, 40, 48, 56, 64, 72, 80, 88, and
96. We run the GA for each combination of population
size and mutation rate and count the total number of
calls to the cost function to achieve convergence (pop-
ulation size times the number of generations, reduced
by the number of members that have not changed from

one generation to the next). Since the convergence
of the GA progresses differently with each random
initialization, we average ten separate runs for each
mutation rate/population size combination to produce
the results in Fig. 14.6. It shows that for this problem,
there are various ways to combine population size
with mutation rate to produce fast convergence. One
way is to use relatively small mutation rates (order of
0.01). The other is to use moderately small population
sizes (8-20), even with larger mutation rates (0.15 to
0.2) such as we did in the previous runs. The lowest
average number of function evaluations occurred when
the mutation rate was 0.05 and the population size
was 12. Such a configuration for running the GA is
sometimes referred to as a micro-GA due the small
population size. These results are similar to those of
Chapter 5. Parameter ranges such as these tend to
emphasize the impact of mutation and are preferred
when there are multiple closely spaced local min-
ima. When such parameter combinations are used, the
emphasis is on finding the single best solution rather
than evolving the entire population. This is why the
mean residual in Fig. 14.2 remained relatively constant
in spite of the rapid decrease for the best solution. Note
that using elitism, which maintains the best individual
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in the population unchanged, is essential for such
applications.

The analysis presented here has assumed a serial
computer. The analysis would be quite different if a
large number of parallel processors were available and
the GA was coded to take advantage of them as dis-
cussed in Chapter 5.

14.4 Statistical Analysis of Model
Performance

14.4.1 The Monte Carlo Approach

This statistical analysis revisits the circular geometry
consisting of a single receptor surrounded by 16 poten-
tial sources at a radius of 500 m. As discussed above, a
single run of a GA coupled model is typically sufficient
to estimate the actual calibration factor to within two
significant digits for this case.

To analyze confidence in the ability of the GA-
optimized coupled model methodology to match a
known solution, a Monte Carlo technique is used.
The GA is run on the same problem 100 times with

different initial random seeds. From the resulting sam-
ple of solutions we are able to estimate the mean,
median, and error bars. Figure 14.7 depicts the mean
calibration factor at each source as found by the GA
along with the corresponding error bars. The inner
error bars represent one standard deviation. The outer
bars denote the 90% confidence interval; that is, 5%
of the solutions are above the highest bar and 5% are
below the lowest. We see that we are 90% confident
that solutions range between 0.97 and 1.03 for each
source, closely bracketing the true solution of 1.0.
The mean of the 100 cases ranges between 0.9976 for
source number 1 through 1.003 for source 11. Thus,
the mean value computed from 100 runs is even more
reliable than the already good solutions from a sin-
gle GA coupled model run. Therefore, a single GA-
optimized coupled model run is accurate to within 3%
and the mean of 100 runs accurate to 0.3%.

Our prior work confirmed that these results are
not unique to this prescribed configuration — either
the specific calibration factors or the geometry (Haupt
et al. 2006). When a spiral geometry, ranging in
source-receptor distance of 250-1,750m, was used
instead, the results showed that the GA coupled model
can correctly apportion the sources and that using the
mean of the 100 Monte Carlo runs reduced the error.
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14.4.2 Analysis Including Noise

Real-world data do not have the pure signal avail-
able in our synthetically constructed data. Typical sit-
uations involve errors and uncertainties in both the
emission and receptor data as well as the meteorolog-
ical data. In addition, there is an inherent mismatch
between the ensemble average nature of the model

predictions and the single realizations yielded by the
monitor measurements. In our analysis here, we simu-
late the aggregate uncertainty by incorporating white
noise into the data, and then using the GA coupled
model to optimize the calibration factor. No assump-
tion is made of the source of this noise. It represents
errors in both the monitored data and in the modeling
process (ranging from uncertainty in source strength,
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meteorological data, numerical error, and model-
ing simplifications, including the ensemble averaging
assumption).

We again consider the circular geometry (see Sec-
tion 14.3.1) with meteorological data representing 16
points of the wind rose. The Monte Carlo analysis uses
assumed source calibration factors of all ones to create
the receptor data. In this case, however, two separate
methods of including white noise with an amplitude

equal to that of the signal are used to simulate errors
and uncertainties in the modeling process. First, white
noise with mean amplitude of 1.0 is added to the
dispersion model when creating the synthetic receptor
data. The second analysis uses white noise to multiply
the signal. Thus, the receptor data that goes into R, in
equation (14.1) includes as much noise as signal. The
GA coupled model is then used to compute the optimal
calibration factors.
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Figure 14.8 shows the mean, standard deviation,
and 90% confidence interval for 100 runs of the GA
coupled model. Figure 14.8a depicts additive noise
while Fig. 14.8b depicts the multiplicative noise. In
both cases, the curves depicting the error span a much
wider range than for the case with no noise shown in
Fig. 14.7. Aggregating the full 1,600 source cases (16
sources all with actual apportionment value of 1.0 over
100 runs) is equivalent to having 1,600 runs for a sin-
gle source. Such an aggregation produces a mean value
of 1.0066 for additive noise, quite close to the actual
value of 1.0. The mean standard deviation of the aggre-
gated 16 sources is 0.02595, an order of magnitude
larger than for the case without noise (0.0015109) but
still sufficiently small to provide confidence in model
performance with imperfect information. Figure 14.8b
indicates that the spread of the standard deviation and
90% confidence interval curves is greater for the mul-
tiplicative noise than for additive noise. In this case,
the standard deviation for the multiplicative noise is
0.07449, which is greater because variability is pro-
portional to the data itself.

Figure 14.9 depicts the performance of the coupled
model over a range of signal to noise ratios (SNRs) for
the additive and multiplicative noise cases. This plot
aggregates the data over all 16 sources. We see that as
long as log(SNR) > 1, the solutions are quite close to
the actual solution of 1.0 and the scatter is quite small.
As noise becomes greater than the signal (log(SNR)
< 0), however, the computed solution diverges from
the actual and the scatter becomes wider. Note that
the mean of the solutions is still 1.0. At log(SNR) =
0 the noise equals the signal and we have the case pre-
sented in Fig. 14.8 above. As expected, when the noise
becomes much larger than the signal, as on the left side
of the plot, the coupled model no longer reconstructs
the solution reliably. In fact, the mean solution tends
to 2.5, which is the center of the range allowed in
the optimization routine. The standard deviation and
90% confidence lines approach the limits of the range.
For multiplicative noise, the variability increases with
decrease in SNR more rapidly than for the additive
noise.

Haupt et al. (2006) report results for SNR analysis
of other source configurations. The results described
above generally hold and can be summarized as: (1)
when multiple runs are averaged, confidence in the
results is higher and (2) the GA coupled model run in
Monte Carlo mode can apportion the sources correctly

in the presence of noise of the same order of magnitude
as the signal.

14.5 Tuning Meteorological Data

Accurate transport and dispersion modeling of pollu-
tant releases requires accurate meteorological data —in
particular, an accurate wind field. For most dispersion
modeling applications, we don’t have the meteorolog-
ical fields at the preferred resolution, making precise
computation of atmospheric dispersion quite difficult.
Moreover, available wind data are not always accurate
or representative. Thus, accurate source characteriza-
tion can be difficult.

Here we present a new GA-based method that
addresses the uncertainty associated with meteorolog-
ical data by using a GA to tune the surface wind
direction in addition to pollutant source characteristics.
This method is an extension of the GA-coupled model
described in Section 14.2. This extended method has
an advantage over the original GA-coupled model in
that it is far less sensitive to the uncertainty in meteo-
rological data.

14.5.1 Architecture

Because this problem is different than the sim-
pler source characterization problem presented earlier,
changes must be made in the model architecture. As
discussed in Section 14.2, the coupled model consid-
ers an array of candidate source locations, and the
GA optimizes the strength of each candidate source
by comparing dispersion model predictions with mon-
itored receptor data. The source(s) with non-zero
strengths are then assumed to be the actual emitters
of the pollutant. In the method presented in this sec-
tion, however, potential source locations are not known
a priori. Neither is the wind direction. Instead, the
source location comprises two of the GA-tunable para-
meters (x and y location) so that the model is free
to choose any location within the domain. The wind
direction can be any number between 0° and 360°.
Thus, the performance of the method is not depen-
dent on the appropriateness of a pre-defined candidate
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source array or the presumed wind direction. Those are  of all data values over all receptors:
now free parameters, as is the source strength.
—1 1 14.11
a=max | ——, (14.11)

14.5.1.1 Forward Model

The disadvantage of this new architecture is that
because the source locations and wind directions
change as the GA evolves the population, the model
must recalculate the pollutant dispersion from all can-
didate solutions at each iteration, thereby increasing
the required CPU time. We use the Gaussian plume
model (14.3) to test the method. This method uses
concentration forecasts for each trial solution created
using equation (14.3), receptor data for an arbitrary
number of sites, and the GA to find the combination of
source location, strength, and surface wind direction
that provides the best match between the monitored
receptor data and the expected concentrations.

14.5.1.2 Cost Function

The cost function used by the GA to evaluate each
candidate solution is the root mean square difference
between concentrations predicted by (14.2) and recep-
tor data values, summed over all receptors. The cost
function is similar to (14.2), except for changes in
notation associated with the context of the current
problem. Specifically, the cost function is defined as:

TR
3" (logyo (aC, + 1) —log,y (@R, + 1))’
Cost = =

TR 5
> (logyo @R, + 1))

r=1

(14.10)
where C, is downwind concentration at receptor r as
calculated by (14.3), R, is the receptor data value at
receptor r, TR is the total number of receptors, and a
is a constant. It is necessary to add 1.0 to the concentra-
tions because the logarithm of zero is undefined. Doing
this has the beneficial side effect of minimizing the
contribution from the weakest concentrations values
whose magnitudes are many orders of magnitude less
than 1.0. The data must therefore be scaled since many
of the C, and R, values are several orders of magnitude
less than 1.0. The scaling factor, @, depends on the sum

SR,
r=1

If the receptor data sums to a value greater than 1.0,
then a is 1.0. Otherwise, a is greater than 1.0, so that
at least some values are comparable in magnitude to
1.0. Scaling the concentration values allows the cost
function to retain sensitivity to signal while still reduc-
ing sensitivity to noise via the logarithm.

14.5.1.3 Mating Scheme

In prior sections, the GA used a continuous version
of single point crossover discussed in Chapter 5. For
this reformulated problem, we obtain better GA per-
formance by using a uniform crossover mating scheme
that blends all parameters rather than just a single
parameter. The uniform crossover method improves
the average skill score (see Appendix for the definition
of skill scores — lower skill scores are better) across six
runs from 0.613 to 0.061, a remarkable improvement.
The superiority of this uniform crossover scheme
to single-point crossover used in the models is most
likely due to correlations between the effects of differ-
ent parameters, specifically the dependence of plume
structure on both wind direction and source location.
Each wind direction has a unique optimal source loca-
tion resulting in the best match to the receptor data. If
the GA finds this location for a particular wind direc-
tion, and the wind direction is modified, the location is
no longer optimal. Single-point crossover tends to con-
verge to one of these “optimal” locations while failing
to progressively improve the wind direction. Blending
all parameters ensures that both the wind direction and
source location are modified simultaneously, allowing
both parameters to be progressively improved through
the GA and decreasing the likelihood of premature
convergence. Because of the correlations described
above, the changes resulting from simultaneous modi-
fication of the wind direction and source location must
complement each other. In a general sense, effects of
parameters that are highly correlated in other applica-
tions are expected to exhibit similar behavior here.
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14.5.1.4 GA Parameters

With the all-blending mating scheme, we have chosen
to alter the GA parameters toward larger population
sizes and smaller mutation rates. With a population
size of 1,200, the GA can find the solution in a single
run with 100 iterations or less. Larger population sizes
than 1,200 and longer runs than 100 iterations result
in slightly better performance, but the improvement is
not significant when compared to the extra computing
time. Smaller population sizes often converged too
quickly to an incorrect solution, even when using a
high mutation rate. Here, we use a mutation rate of
0.01 and a crossover rate of 0.5 for this problem of
finding source location and wind direction in addition
to source strength.

14.5.2 Demonstration

To demonstrate and validate the method of tuning
meteorological data and source characteristics, we use
synthetic data produced by (14.3) as receptor data.
We place the receptors on a grid surrounding a single
source with 2,000 m separating each receptor, and the
source located in the center of the receptor domain
at the point defined as the origin (0,0). To determine
the dependence of model performance on the quan-
tity of receptor data available, model runs are per-
formed using 2-by-2, 4-by-4, 8-by-8, 16-by-16, and
32-by-32 grids of receptors. Synthetic data is produced
for each receptor configuration for two different wind
directions, 180° and 225°. These two wind directions
represent opposite scenarios: a wind direction of 180°
places the plume centerline directly between receptors,
and a wind direction of 225° places the plume center-
line directly over the receptors located along the x = y

Table 14.4 GA-produced wind directions, source strengths,
source locations, and skill scores for six synthetic configurations
using a population size of 1,200, mutation rate of 0.01, after 100
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Fig. 14.10 The synthetic setup for a 4-by-4 grid of receptors.
The black dot in the center represents the source and the X’s
are the receptors, each separated by 2,000 m. The dashed lines
represent the plume centerline for the two wind directions con-
sidered in the synthetic data sets, and the shaded area represents
a sample plume for the 225° wind direction

diagonal in the northeast quadrant of the domain. Fig-
ure 14.10 shows the source and receptor setup for a 4-
by-4 grid of receptors, where the black dot in the center
is the source, the Xs are the receptors, and the dashed
lines are the plume centerlines for the 180° and 225°
wind directions. Model runs are performed for these
five receptor configurations and two wind directions.
Table 14.4 shows the results for six different setups
(receptor grids of 8-by-8, 16-by-16, and 32-by-32, for
each of two wind directions) using a population size
of 1,200 and 100 iterations. All GA runs produced a
solution close to the actual, and some a tolerance of
0.01° in wind direction, 1% of source strength, and
1.0 m in source location. It may be puzzling at first that
one of the 32-by-32 runs returned a worse result than

iterations, for a single GA run. The correct solution is 0 = (180°
or 225°), strength = 1.00, and (x, y) = (0, 0). Appendix describe
skill scores

Configuration [% Strength (X,y) (in m) Skill score
8-by-8, 6 = 180° 184.12° 2.96 —417, 1,346 1.4581
8-by-8, 6 = 225° 223.95° 1.06 —26, — 56 0.1952

16-by-16, 6 = 180° 180.01° 1.00 -1,0 0.0029

16-by-16, 6 = 225° 225.01° 1.00 -1, 1 0.0019

32-by-32, 0 = 180° 180.00° 1.00 0,0 0.0000

32-by-32, 6 = 225° 220.27° 1.12 —123, 519 0.6870




14 Genetic Algorithms in Air Quality

285

either of the 16-by-16 runs, but this occurred because
each GA run begins with a random initialization, and
the results in Table 14.4 reflect a single “test” run, not
an average over many runs. The 32-by-32, 225° test
run was just not as fortunate in its initialization. In
general, runs with a 32-by-32 receptor grid perform at
least as well as runs with fewer receptors.

14.5.2.1 Refinement

The solution after the 100th GA iteration is often
close to, but not exactly at the global minimum of
the cost function. Increasing the number of iterations
above 100 does not greatly improve the solution for
this reformulated problem. Therefore, we investigate
whether a hybrid GA incorporating a traditional gra-
dient descent method such as the Nelder-Mead Down-
hill Simplex NMDS method (Nelder and Mead 1965)
could further improve the solution more efficiently
than a GA does after the 100th iteration. The NMDS
starts from a previously chosen point on a multi-
dimensional surface (i.e. the cost function) and finds a
local minimum in the vicinity of the starting point. For
our application, we use the best GA-produced solution
after 100 iterations as the starting point for the NMDS
method. Gradient descent methods such as the NMDS
are ineffective alone, however, as the it can only find
the global minimum if the first guess is in the correct
valley.

The NMDS method was run using each solution
from Table 14.4. Each time, the NMDS returned a
solution within our close tolerance limits, even for GA-
generated starting points that were not “close enough”.
This improvement suggests that even though some of
the specific values in the solutions from Table 14.4
are not within the tolerances, they are within the same
cost function basin as the true solution. Under these
circumstances, the NMDS can be used effectively to
further improve the accuracy of the solution after the
termination of the GA. The procedure as a whole is
often called a hybrid GA, where a GA first is used
to locate the basin of the global minimum of the cost
function, and then the more traditional NMDS method
is used to fine-tune the minimum. This hybrid GA pro-
duces a consistently good solution, better than either
the GA or the NMDS method alone, in less computa-
tion time than the GA alone.

Table 14.5 Number of runs (out of six) that produced a solution
within tolerance for the given combination of population size
and number of iterations. The rows are different population
sizes, and the columns are different numbers of iterations

Iter =50 Iter =100 Iter =150 Iter =200
Pop =400 3 4 4 5
Pop = 800 4 4 4 5
Pop = 1,200 5 6 6 6
Pop = 1,600 5 6 6 6

Running the GA beyond the 100th iteration does
continue to improve the solution, but not as efficiently
as the NMDS algorithm. Thus, we wish to run the GA
just long enough to get to a solution that is an in-basin
starting point for the simplex method. To determine
where we should stop the GA, we ran the hybrid GA
using 16 combinations of population size and number
of iterations (each of which is proportional to comput-
ing time) to determine how much computing time is
necessary to obtain an in-basin starting point.

Table 14.5 shows how many of six runs returned a
solution within the tolerance after application of the
NMDS method for each combination of population
size and number of GA iterations. The combination
of population size of 1,200 and 100 iterations was
the most efficient to achieve this level of accuracy for
all six runs made with the least computing time, the
reason we use these values here.

Since the NMDS method is fairly efficient, could
we just randomly generate initial guesses and still con-
verge to the solution? Has the GA added any value?
To answer these questions, we make multiple NMDS
runs originating with random starting points within
the solution domain. Table 14.6 indicates the num-
ber of function calls (a uniform unit of computing
time) required by the GA and the random initialization
NMDS method to find a solution within tolerance. The
results were averaged over two runs for each receptor
and wind direction configuration, for a total of 12 runs.
The number of function calls required in any individ-
ual run using the NMDS varies greatly because the
success of the NMDS method depends on the starting
point, and the total number of function calls required
is simply a function of how long it takes to produce
an in-basin first guess. Because these first guesses are
random in this experiment, it is not surprising that in
some instances, the NMDS method found the solu-
tion faster than the GA. The performance of the GA,
however, is far more consistent than NMDS over the
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Table 14.6 Number of cost function evaluations required to
find the solution for the GA and the Nelder-Mead downhill
simplex, averaged over two runs for each configuration. Each
configuration consists of an n-by-n receptor grid and a wind
direction of either 180° or 225°

GA function Nelder-Mead

Configuration calls function calls
8-by-8, 6 = 180° 19,200 17,180
8-by-8, 6 = 225° 1,200 123,225
16-by-16, 6 = 180° 13,800 60,874
16-by-16, 6 = 225° 3,600 121,035
32-by-32, 0 = 180° 10,200 16,996
32-by-32, 0 = 225° 23,400 133,034

12 runs performed, because it is able to overcome
an unfortunate starting population and find the basin
of the global minimum. Averaged across all six con-
figurations tested, the GA took an average of 11,900
function calls to find a solution within tolerance, while
the NMDS method took an average of 78,725 function
calls. Thus, running the simplex from random starting
points until the solution is found is inefficient com-
pared to the GA, and particularly to the GA-NMDS
hybrid. Moreover, if we did not know the correct
solution a priori, the hybrid GA would assure us of
convergence, particularly with multiple runs while the
NMDS method alone would not.

14.5.2.2 Receptor Grid

How much receptor data is necessary to determine
both wind direction and the source characteristics? The
reason Tables 14.4 and 14.6 do not give results for the
2-by-2 and 4-by-4 receptor grids is that correct solu-
tions could only be found consistently when using at
least an 8-by-8 grid of receptors. For a 2-by-2 receptor
grid, solutions were nearly random. For a 4-by-4 grid,
solutions were somewhat better, but not nearly as good
as the 8-by-8 grid solutions. This result suggests that
a 4-by-4 grid of receptors does not provide enough
receptor data to distinguish the effects of wind direc-
tion from those of source location and source strength.
It does not imply that more than 16 total receptors are
needed, as only two or three of the receptors in a 4-by-
4 grid provide useful data (the others are outside the
plume or nearly so). Because there are four parameters
to be tuned (wind direction, source strength, and two
for source location), having fewer than four data values
does not provide enough information to resolve all the

unknowns. In contrast, for an 8-by-8 grid, the number
of receptors inside the plume exceeds the number of
unknowns, so the hybrid GA is successful.

14.5.2.3 Noisy Observations

The success of the synthetic data runs is partly due
to the exact match between the synthetic receptor
data and the expected concentrations calculated by
(14.3). This was also the case with synthetic data in
Section 14.3 with the GA-coupled model. Therefore,
we again contaminate our synthetic data with white
noise to simulate the variability and errors present in
monitored receptor data in order to gauge our new
hybrid GA’s performance when faced with inexact
receptor data.

Twelve model runs are performed for each combi-
nation of receptor grid size and signal-to-noise ratio
(SNR). Six SNRs are tested: infinity (no noise), 100,
10, 1, 0.1, and 0.01. Analyses are made for wind direc-
tions of both 180° and 225°. It is expected that runs
with more receptors are less sensitive to noise than
runs with fewer receptors. While an 8-by-8 receptor
grid provides sufficient information to produce the
solution with no noise, it may not provide enough
information when degraded by noise.

Figure 14.11 shows median skill scores across
twelve runs for each combination of SNR and n-by-
n receptor grid. Recall that lower skill scores denote
better solutions as described in Appendix. The median
is used instead of the mean, because the median is
less sensitive to outliers and is more indicative of
what to expect in a single run. Figure 14.11 shows
the results for multiplicative noise; results for additive
noise are similar. The figure shows that the ability
of the model to compute the correct solution is not
significantly affected as long as the magnitude of the
signal is greater than the magnitude of the noise (i.e.
SNR > 1). For SNR = 1 where the signal and noise are
of equal magnitude, the model performs slightly better
with more data beyond an 8-by-8 grid. Performance
at this point has deteriorated, however, as indicated
by the sharp skill score gradient between SNR = 10
and SNR = 1. For runs with more noise than signal
(SNR < 1), the GA is unable to compute the solution
to any acceptable degree of accuracy.

Recall that in the synthetic data runs with no
noise, the NMDS algorithm can further improve the
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Fig. 14.11 Contour plot of
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solution found after the 100th GA iteration. In the runs
with noise, however, application of the NMDS algo-
rithm after the 100th GA iteration did not appreciably
improve the solution. The average skill score of the
GA-produced solutions across all SNRs and receptor
grids was 1.578, while the average skill score after
the application of the Nelder-Mead downhill simplex
was 1.582, which is slightly worse. This result is not
surprising, because after the receptor data is contam-
inated with noise, the solution corresponding to the
lowest cost function value is usually not the correct
solution. While the NMDS method may find a lower
cost function value than the GA, the objective skill
score does not consider the cost function value, only
the specific values of each parameter.

14.5.3 A Parting Look

To help cope with the uncertainty in meteorological
data, we have described a method that tunes wind
direction and contaminant source characterization

simultaneously by using a GA. The model works
extremely well for synthetic data given a grid of at
least 8-by-8 receptors. A smaller set of receptors, such
as a 4-by-4 grid, does not provide enough data to
distinguish wind direction from source characteristics.
Using synthetic data contaminated with white noise,
as long as the magnitude of the noise does not exceed
the magnitude of the signal, the GA can still find the
wind direction, source location, and source strength
fairly well. Increasing the quantity of available data
increases the amount of noise the GA can cope with
in determining the approximate solution.

For demonstration purposes, the meteorological
tuning experiments presented here use a Gaussian
plume equation to calculate expected downwind con-
centrations in order to reduce the computational com-
plexity. For a real data application, a more sophisti-
cated dispersion model can provide a closer match to
the receptor data than the Gaussian plume equation.
The current model configuration, however, requires a
new set of dispersion calculations in each GA iteration,
so the direct use of a more complex model would
impose substantial computational cost.
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14.6 Incorporating Realism: SCIPUFF
and Field Test Data

We have shown that the GA-coupled model can deter-
mine the source characteristics for pollutant emissions
using synthetic data produced by the Gaussian plume
equation. We now wish to use the coupled model as
a source characterization tool in the context of an
operational dispersion model and real data. Thus, we
replace the Gaussian plume equation (14.3) with a
more sophisticated dispersion model, SCIPUFF. This
new coupled model can then be tested with real con-
taminant data. If successful, such a coupled model
could be useful in determining the source character-
istics for those hazardous release events where mon-
itored contaminant concentrations are available. For
this section, we also assume that the meteorological
data are known. The general architecture of the GA
coupled model of this section returns to that described
in Section 14.2.

14.6.1 Adding SCIPUFF as the
Dispersion Model

The primary upgrade to the GA coupled model of
Section 14.2 is the replacement of the Gaussian
plume equation (14.3) with the much more sophisti-
cated SCIPUFF dispersion model (Sykes et al. 1998).
As the forward component of the coupled model,
SCIPUFF calculates the contributions from each
potential source. These contributions are represented
by matrix C in (14.1).

SCIPUFF, the Second-order Closure Integrated
PUFF model, is an ensemble average transport and
dispersion model that computes the field of expected
concentrations resulting from one or more sources
at multiple times. The model solves the transport
equations using a second-order closure scheme, and
treats releases as a collection of Gaussian puffs (Sykes
et al. 1986; Sykes and Gabruk 1997). SCIPUFF can
be used for dispersion applications requiring expected
concentrations of source material. SCIPUFF is a suit-
able choice for insertion in our GA coupled model
because of its ability to compute expected concen-
trations over predefined time periods for any number
of sources, and the ease in integrating its output into
matrix C of (14.1).

SCIPUFF is run once for each potential source con-
sidered by the coupled model. The output from each
SCIPUFF run corresponds to a particular column in
the C matrix. This use of SCIPUFF does not impose
substantial computational cost, because the SCIPUFF
runs only need to be executed once prior to the GA
initialization and not in every GA iteration.

The parameters of the GA return to those of Sec-
tion 14.2, with a population size of 8, mutation rate of
0.2, crossover rate of 0.5, and the same cost function
(14.2).

14.6.1.1 Validation with SCIPUFF

To gauge the impact of upgrading the GA coupled
model’s forward component, the validation technique
performed in Section 14.4 using the Gaussian plume
equation is repeated for the coupled model incorporat-
ing SCIPUFF. The validation consists of model runs
using synthetic data produced by SCIPUFF. Subse-
quent tests, including validation with real data, can
then be performed with confidence that any issues
encountered are not related to incorporating SCIPUFF
into the coupled model.

For the validation phase, SCIPUFF was used to
create synthetic receptor data, representing matrix
R in (14.1). The synthetic receptor data are instan-
taneous contaminant concentrations at a previously
defined receptor location 5 m above the surface, with
each time-dependent observation corresponding to one
value of R. Sets of synthetic data corresponding to
particular source configurations were created using a
synthetic two-dimensional wind field using the same
circular geometry used in Section 14.3.1, with 32
independent meteorological periods (here, hours) and
16 potential sources. The validation runs also use
the same synthetic meteorological data as in Sec-
tion 14.3.1. The validation uses a 100-run Monte Carlo
simulation for each set of synthetic data as done in Sec-
tion 14.4. Three source configurations were analyzed
with similar results; this section focuses on a spiral
configuration with varying source strength (S = [0, 1,
2,3, ...,0, 1,2, 317). Allen et al. (2006) provides
results for the other source configurations along with
more detailed analysis.

Table 14.7 shows the means and standard deviations
for 4 of the 16 sources, each corresponding to a differ-
ent S value (0, 1, 2, or 3). All of the means are very
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Table 14.7 Means and standard deviations for four sources in
the spiral configuration setup across 100 Monte Carlo runs

Source 1 Source 6 Source 11 Source 16

Calibration factor 0 1 2 3
Mean 0.0142  0.9996 2.0004 2.9998
Std Dev 0.0145 0.0142 0.0193 0.0167

close to the known solutions (with the slight exception
of source 1), and all of the standard deviations are less
than 0.02. The mean for source 1 is further from the
solution than for the other sources because the GA
imposes a lower bound of 0 on the solutions. Overall,
the GA does an exceptional job of approaching the
solution, not just in terms of the mean across all 100
Monte Carlo runs, but also for single runs, as shown
by the small values of the standard deviations.

As in Section 14.4, additional Monte Carlo sim-
ulations were run using synthetic data contaminated
with noise. The noise simulates the impact of impre-
cise monitoring data, errors in the meteorological data,
and the disparity between the ensemble average nature
of the model as compared to data from a specific

Source 1

Calibration Factor

1 (%] ELN (o]

> 0 2
log(snr)
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Calibration Factor

1 QO M NLN o

2 0 2
log{snr)
Fig. 14.12 Calibration factor as a function of the signal-to-

noise ratio (SNR) for the spiral source configuration using multi-
plicative noise. Four sources with different S values are shown:

realization. Figure 14.12 summarizes the results for the
spiral configuration using multiplicative noise. The fig-
ure shows the GA-computed S for 4 of the 16 sources
as a function of the logarithm of the signal-to-noise
ratio. These four sources are representative of each of
the four different solutions. Dashed error bars signify
plus and minus one standard deviation from the mean,
and the dotted error bars represent the 90% confidence
interval. A detailed discussion of the results can be
found in Allen et al. (2007).

The graphs and results from other source config-
urations (not shown) are quite similar. This suggests
that the choice of dispersion model used within the
coupled model does not affect the performance of the
GA in obtaining the optimal solution, allowing mod-
els of increasing complexity to be used in the cou-
pled model with no performance-related side effects.
Computing time depends more on the GA than the
dispersion model, because the dispersion model is only
run once for each source, further supporting the use of
a dispersion model of any level of complexity within
the coupled model. Of course, this does not mean
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Source 1 (S = 0), Source 6 (S = 1), Source 11 (S = 2), and
Source 16 (S = 3). Mean (solid), standard deviation (dashed),
and 90% confidence interval (dotted) are shown
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incorporating SCIPUFF into the coupled model does
not upgrade the performance in a general sense, but
only that it does not increase the programming com-
plexity or hinder the performance of the GA.

14.6.2 Verification with Monitored Data

Now that we have validated the GA coupled model
incorporating SCIPUFF, we can conduct coupled
model runs using real data — specifically, neutrally
buoyant tracer concentration data from the Dipole
Pride 26 (DP26) field tests. These runs are used to
demonstrate the model’s ability to characterize pollu-
tant sources correctly despite the stochastic scatter of
realizations around the forecast ensemble mean.

The DP26 field experiments took place in Novem-
ber 1996 at the Nevada Test Site (Biltoft 1998). The
tests released sulfur hexafluoride (SF6), a passive
tracer, at locations nearby a domain of 90 receptors.
Seventeen different field tests were carried out during
the DP26 experiments. Our study only used data from
14 of these tests due to missing data in the other three
tests. Figure 14.13 shows the test domain and the ori-
entation of sources and receptors. N2, N3, S2, and S3
are the source locations, and the thick black lines show
the approximate receptor locations. Further details on
these field experiments can be found in Biltoft (1998)
and Watson et al. (1998).

Chang et al. (2003) used the DP26 data to vali-
date various dispersion models, including SCIPUFF.
While SCIPUFF performed as well as the other disper-
sion models they tested, about 50-60% of SCIPUFF-
predicted concentrations came within a factor of two
of the observations. Most large errors occurred when
the modeled puff missed the receptors altogether due
to errors in the wind field. To alleviate the effects of
these large errors and other issues associated with real
data, several changes need to be made to the coupled
model architecture.

In order to use data from all 90 receptors, the C
and R matrices in (14.1) are expanded so that r > 1.
Because the purpose of the GA-coupled model is to
find a single source apportionment vector, S providing
the best fit across all receptors, the calibration vector
S remains a one dimensional vector. If the model
matches the data perfectly, a single S vector would be
all 1.0s.
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Fig. 14.13 Dipole Pride 26 test domain as represented in cou-
pled model. N2, N3, S2, and S3 are the emission source loca-
tions. The thick black lines represent the approximate loca-
tions of the receptors (30 along each line). The thin black
lines represent terrain contours, corresponding to heights of
1,000-1,519 m. Source: Modeled after similar figures in
Biltoft (1998) and Chang et al. (2003).

Two modifications also must be made to the cost
function (14.2) — due to the large errors in contaminant
magnitude often found in real data applications. First,
the cost function incorporates the natural logarithm of
the squares of differences as in Section 14.5.

RMS =

90 M R
> 3 (10810 Counr - Su + 1) = logig (Rur + 1))
m=1

r=I1

90 M

> [ (logg (R + 1D)°

r=1 Y\ m=1

(14.12)

Second, it is necessary to add 1.0 to the concen-
tration values before taking the logarithm because
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the logarithm of zero is undefined. For this appli-
cation, the concentration values are typically several
orders of magnitude greater than 1.0, so the values
are not dwarfed. Section 14.5 discusses a scheme for
applications where most concentration values are less
than 1.0.

Allen et al. (2007) shows that the logarithmic cost
function (14.12) is more effective in determining the
source characteristics than the linear cost function
(14.2), particularly for finding the source location and
emission time of an instantaneous release. This loga-
rithmic variable transformation acts to ameliorate the
order of magnitude differences that often arise in con-
centration data. This behavior is desired because the
primary issue in source identification is not strictly
the magnitude, but rather the non-zero nature of each
source’s contribution (i.e. whether or not a source’s
puff passes over a particular receptor at all). For exam-
ple, if the receptor data value is 200 parts per tril-
lion (ppt), but the model’s predicted concentration is
2,000 ppt, a logarithmic cost function rates the value
of 2,000 ppt more highly than a value near 0.0 ppt.

Haupt et al. (2006) and Section 14.3.3 above show
that the RMS cost function produced the most effi-
cient convergence. Therefore, all cost functions con-
sidered here involve some form of a squared differ-
ence. The two normalization schemes discussed here
affect model performance, but the specific normaliza-
tion values used are arbitrary, because the GA mating
mechanism is based on ranking rather than absolute
difference.

One more issue with real data applications such as
DP2 is that it is difficult to characterize non-emitting
sources whose potential plumes disperse completely
outside the receptor domain. For instance, some poten-
tial source may be downwind of the receptors. We
deal with this issue by introducing a scale factor that
adjusts each source’s maximum allowed magnitude.
This scale factor sums each column in the C matrix
representing the pollutant contribution of each source
n, and normalizes that sum by the maximum contri-
bution from any source to produce a number ranging
from 0.0 to 1.0.

ﬁl nr

mnr)

scale(n) = (14.13)

e
90_
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The scale factor (14.13) is then multiplied by a prede-
fined upper limit to give the maximum source strength
allowed by the GA for each source. Sources that can-
not emit into the domain have scale factors of 0.0,
forcing the GA to limit these sources’ S, values to
0.0. This method does not assume any prior knowl-
edge regarding which sources are potential emitters,
but does provide objective estimates of each source’s
potential contribution to the domain. This process
eliminates the 50% of the candidate sources that are
downwind of the receptor for the Dipole Pride data
set.

A possible side effect of using the scale factor is
limiting the maximum allowable strength for the cor-
rect sources below their actual strengths. To account
for this side effect, the range of strengths allowed by
the GA should be set beyond the expected range of
possible strengths. The range should not be made too
large, however, since the run-to-run variability in solu-
tions is proportional to this range. Thus, S values are
set to range from O to 10, increased beyond the original
range of 0 to 5.

Several initial runs were made with the GA cou-
pled model using the DP26 data and these coupled
model modifications. The goal of these runs was to
characterize the emission locations and times (strength
characterization is the focus of subsequent sections).
These runs used the four emission locations (N2,
N3, S2, S3) at two times each, for a total of eight
sources. S, should be equal to 1.0 at the emitting
sources (one or two sources in each field test), and
0.0 for all non-emitters, if all else is perfect. In other
words, it should detect which source was the actual
emitter for each field. In the initial runs, the correct
source and time of emission were identified 64% of the
time.

14.6.3 Performance Optimization

Now we seek to optimize the performance of the
coupled model with the DP26 data set by perform-
ing various tests, each designed to determine the
impact of different parameters. While the optimiza-
tion is specific to DP26, many of the results can be
applied to the coupled model in general for other data
sets.
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Fig. 14.14 Minimum cost function value as a function of iteration number for the GA (dashed) versus a random search method

(solid), carried out to 20,000 iterations

14.6.3.1 GA vs. Random Search

The first test determines if solving the matrix problem
requires the GA at all. The GA’s performance is com-
pared to the performance of the random search method
in Fig. 14.14, which shows the minimum cost for one
of the DP26 tests, as found by the GA (dashed) and the
random search (solid), averaged over five runs, each
with 20,000 iterations. While the “number of itera-
tions” is specific to the GA, the corresponding comput-
ing time for the random search method is normalized
to be equivalent to the number of GA iterations, so
that the graph provides a fair comparison. The random
search clearly took much longer to find a solution with
a sufficiently low cost function value. In fact, out to
20,000 iterations, the random search never caught up
to the GA while the GA converged to the optimal
solution in about 7,000 iterations. This result shows
that a random search is inefficient, and that a more
sophisticated optimization method such as a GA is
required.

14.6.3.2 Population Sizes and Mutation Rates

Section 14.3.4 presented a sensitivity study on GA
population sizes and mutation rates using synthetic
data and found that two combinations of sizes and rates
were most efficient in converging to the solution: high
population sizes coupled with relatively low muta-
tion rates, and low population sizes coupled with high
mutation rates. To determine if the same conclusion
applies to a real-data application, a similar sensitivity
study is made using the DP26 data set using 5 of the
14 field tests. The goal is to determine which combi-
nation of population size and mutation rate minimizes
the number of cost function evaluations required for
convergence to a correct solution.

Figure 14.15 shows the number of cost function
calls required for 80 combinations of population sizes
and mutation rates, averaged across five runs for each
field test. The optimal mutation rate was 0.15, and
the optimal population size was in the range of 4 to
12, similar to the results in Section 14.3.4. Unlike the
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case in Section 14.3.4, however, a high population
size coupled with a low mutation rate was not efficient
in finding the solution. A possible reason for this
difference is that these runs were conducted with a
candidate source array of size 8 (N2, N3, S2, and S3
at two times each). The scale factor eliminates four of
the sources, leaving four. With only four significant
GA parameters in the chromosome, mating is less
effective than mutation for finding progressively better
solutions. Therefore, a relatively high mutation rate
coupled with a rather small population size works well
for this specific application.

14.6.3.3 Other Studies and Multi-stage Process

Other sensitivity studies were performed, resulting in
the following conclusions, which are elaborated on in
Allen et al. (2007) and Allen (2006):

e The DP26 data set provides receptor data every
15 min. SCIPUFF can also output values every
15 min; however, the DP26 receptor data are
not instantaneous concentrations, but rather time-
integrated averages. Shortening the output interval

mutation rate

in SCIPUFF to 5 min and then averaging back up to
15 min improves the GA’s performance; shortening
the output interval beyond 5 min did not further
improve solution accuracy.

e It is necessary to include all 90 receptors in the
analysis to have the best solution accuracy. Using
fewer than 90 receptors improves computing time,
but at the expense of less accurate solutions.

e DP26 includes upper-air meteorological data, but
the upper-air data was found to have little effect
on the source characterizations that are based on
surface data only.

e The run-to-run variability in solutions is propor-
tional to the range of values allowed by the GA.
As discussed earlier, this range should be larger
than the range of all possible strengths because of
the scale factor. Because correct sources had scale
factors as low as 0.1 in some instances, the range
of values allowed by the GA should be an order
of magnitude larger than the range of presupposed
possible strengths.

* In atypical model run, the source strength is under-
estimated because the GA attributes small amounts
of pollutant to non-emitting sources, thus decreas-
ing the calculated strength at the correct source.
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Fig. 14.16 Illustration of the steps in the multi-stage process for source characterization

A more accurate source strength is obtained in a
model run by including only the correct source(s)
in the candidate source array, thus forcing the GA to
attribute all pollutant to only the correct source(s).

These observations helped us to produce an automated
multi-stage process that best characterizes the location,
time, and strength of the pollutant source(s) assuming
as little a priori information about the sources as possi-
ble. Figure 14.16 provides an outline of the multi-stage
process. The first stage uses a coarse grid designed to
estimate the number of emission sources and time of
each emission. The second stage performs a separate
coupled model run for each emission time found in
the first iteration. The third stage pinpoints the most
probable emission time for each release by running
the coupled model once for each emission with the
locations found in the second stage in the source array.
The final stage then calculates the strength of each
emission. The final result is a list of emission locations,
times, and strengths.

14.7 Summary and Prospects

This chapter has followed the development of an Al
technique to solve a real world problem. We are
attempting to identify and characterize a source of
contaminant in spite of imprecise knowledge of source
location, emission rate, and time of release; uncer-
tain and changing meteorological conditions; monitor-
ing errors; and the inherent uncertainty of turbulent

transport and dispersion. In spite of these formidable
problems, our GA coupled model is shown to work
rather well. It was developed and tested using synthetic
identical twin experiments and contrived geometries to
test the limits and tune the method (Section 14.3.1).
A realistic geometry (Section 14.3.2) revealed some
additional limitations along with the successes. We
saw that certain geometries could produce ill-posed
problems for that model formulation. We also studied
GA performance by varying the GA parameters of
population size and mutation rate. For this complicated
cost surface, the mutation operator is critical for GA
convergence.

Next, a statistical analysis of model performance
using Monte Carlo runs revealed that the average of
multiple runs produces an even better solution. In
spite of applying either additive or multiplication white
noise to simulate the highly uncertain model envi-
ronment, the GA coupled model is successful in the
Monte Carlo framework, even when the noise level is
of the same magnitude as the signal. As noise over-
shadows the signal, however, confidence in the solu-
tion degrades.

What about situations where either no meteorologi-
cal data are available or the wind data are not represen-
tative of local conditions? Section 14.5 demonstrates
an extended GA model to simultaneously search for
source location, emission rate, and wind direction. A
different mating scheme is required for this applica-
tion, which leads to quite different choices for GA
parameters of population size and mutation rate. This
GA application combined with a more traditional



14 Genetic Algorithms in Air Quality

295

NMDS method speeds convergence once the GA
has found the correct solution basin for the simplex
starting point. Note that this traditional gradient-based
method did not work well without the GA to provide
that first guess.

These initial demonstrations were done in the con-
text of a very basic Gaussian plume T&D model. To
incorporate more realism into the dispersion process,
Section 14.6.1 replaced the Gaussian plume with the
refined SCIPUFF model. The GA coupled model can
be validated much the same as the original version.
The most realistic test was accomplished on data from
the Dipole Pride 26 field test with all its inherent errors
and uncertainties. Note that prior modeling studies had
difficulty matching the T&D for these data. The GA
model still showed success on some of the trials.

Subsequent work has used similar techniques to
back-calculate up to seven modeling parameters: two-
dimension location, emission height, source strength,
time of release, wind direction, and wind speed (Long
et al. 2008; Long 2007). A mixed integer genetic
algorithm is able to characterize atmospheric stability
(Haupt et al. 2008).

The GA coupled model is not perfect. Neither is any
other model attempting to solve this difficult source
characterization problem. The exercise does demon-
strate, however, that an Al-based technique is compet-
itive for solving a real world environmental problem.
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Appendix: Skill Scores

For the evaluation of results in the simultaneous tuning
of surface wind direction and source characterization,
an objective skill score is required to evaluate the
proximity of solutions to the actual solution. The skill
score used here is designed to weight the error in wind
direction, source strength, and source location equally.
The errors in each parameter are normalized to a [0,1]
scale, with a score of 0 given to exact solution, and
a score of 1 when inaccuracy exceeds a predefined
upper bound. These scores are then added up to give
a final score from O to 3, with a score of O for an exact
solution.

The formulas for the three skill score components
are:

Swind = 10 (18G4 — Ouctl + 1) /5.199 (14.14)

S, — max ((L _ 1) , (S_ _ 1))
4%S,;, 4 4% Sga 4
(14.15)
Sioe = 1.0746 % (— exp (—dist /1500) + 1)
(14.16)

where 0,4 is the wind direction found by the GA, 6,
is the actual wind direction, Sg4 is the source strength
found by the GA, S, is the actual source strength,
and dist is the distance from the GA-computed source
location to the actual source location in meters.

The constants in these equations were computed to
give the desired scores for various solutions — specif-
ically, to give a score of O for an exact solution, and
a score of 1 for a solution at or above a predefined
threshold (180° for wind direction, a factor of 5 for the
source strength, and 4,000 m for the source location).
For example, in the wind direction equation (14.14),
In(181) is approximately equal to 5.199, so the con-
stant 5.199 results in a score of 1 for the highest pos-
sible error of 180°. For each equation, if the computed
value exceeds 1, the value is truncated to 1. The final
skill score is Sying + Ssir + Sioe, Where O is a perfect
score, and 3 is the worst possible score.
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