Neural Networks for Characterization
and Forecasting in the Boundary Layer

via Radon Data

Antonello Pasini

13.1 Introduction

The complexity of air-pollution physical-chemical
processes in the boundary layer (BL) is well known:
see, for instance, Stull (1988) and Seinfeld and Pan-
dis (1998). In this framework, we do not make any
attempt at reviewing the manifold use of neural net-
works (NNs) for air-pollution assessments and fore-
casting. Instead, we focus just on the (complex)
physics of the BL and discuss the coupled use of an
original index of the BL properties (radon concentra-
tion) and of NN modeling in order to obtain interesting
results for characterizing and/or forecasting important
variables in the BL, like the concentration of a danger-
ous primary pollutant (benzene) and the 2-h evolution
of stable layer depth. In this scenario, the particular
strategies for applying a NN model are described,
showing how they lead to important original results,
for grasping the BL physical behavior. In doing so, one
can discover the usefulness of an empirical Al data-
driven approach to investigating a complex system that
is very difficult to deal with in terms of dynamical
models.

In the next section, a brief introduction to funda-
mentals of radon detection will be presented and the
qualitative and quantitative relevance of radon concen-
tration for summarizing the physical state of the BL
will be discussed. In particular, we will present the
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structure of a box model (based on radon data) for
estimating the nocturnal stable layer depth.

In Section 13.3, after having introduced simple lin-
ear indices that characterize days and nights in terms
of meteorological predisposition to a primary pollution
event, generalized nonlinear indices are built up by a
NN model: they show the ability of NNs at capturing
nonlinearities in the data and achieving better model-
ing results.

In Section 13.4, by applying NN modeling and a
particular preprocessing activity, we will show how
we are able to achieve reliable short-range forecasts
of radon concentration and stable layer depth in an
urban environment. These forecasts represent funda-
mental information for assessing dispersion properties
and their related influence on pollutant concentrations.

Finally, in the last section, brief conclusions will
be drawn and prospects of future developments in this
field will be envisaged.

13.2 Relevance of Radon in Studies
of the Boundary Layer

As well known, radon is an important factor that
can lead to lung cancer (see www.epa.gov for fur-
ther information). Due to this fact, many epidemio-
logical studies on radon have been performed during
the last decades, especially in indoor environments.
Less known is the role of radon as a “tracer” of the
physical characteristic features of the lower layers of
the atmosphere.

Despite this fact, it is worthwhile to stress that the
first studies on the role of radon in characterizing BL
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dispersion properties dated back to the late 1970s,
when French researchers began to consider this noble
gas, which undergoes no chemical reaction, as a per-
fect tracer of the BL dilution features. They found
that counts of beta radioactivity, coming from the
decay of short-lived radon daughters, represent a sim-
ple index of the stability state of the BL (see Guedalia
et al. 1980, and references therein).

In general, the search for an index which is able
to summarize the characteristic features of a system is
seen merely as a simplification (sometimes used for
working out a conceptual model of the behavior of the
system) that is unnecessary and can be overcome by a
dynamical description of the system itself. Neverthe-
less, in a highly nonlinear system, the knowledge of
a suitable index whose time development mimics the
behavior of some intrinsic property of the system itself
gives us key information, certainly in a qualitative way
and, hopefully, also in a more quantitative manner.

13.2.1 Semi-quantitative Information
by Estimating an Equivalent
Mixing Height

Without discussing the instrumentation for detect-
ing beta counts from the decay of short-lived radon
progeny, we just stress that the fraction attached to
particulate matter is usually detected (see Allegrini
et al. 1994, for details). As shown in Fig. 13.1, the
typical time patterns of beta counts are maxima dur-
ing the night in conditions of nocturnal stability and
minima during the day when the mixed layer is well
developed (the more enhanced is the stability of the
nocturnal stable layer, then the higher are the maxima
in radioactivity counts). Otherwise, low quasi-constant
values are found in advective situations characterized
by mechanical turbulence. This qualitative analysis
suggests that, in general, the number of beta counts can
be inversely proportional to the “degree” of stability of
the lower layers.

Especially interesting cases are nocturnal stable
situations over towns, when anticyclones at synoptic
scale and local physiographic and emissive features
can create conditions for the development of strong
stable layers and peak events of primary pollution.
In these cases, rain is absent, relative humidity and

pressure are quite constant and the spacetime interval
to be analyzed is limited (a night and a town). Thus,
if we limit our study to these situations, then radon
exhalation from the ground can be considered constant
in time and spatially homogeneous, the attached frac-
tion of radon daughters also constant and the radon
concentration directly proportional to the number of
beta counts detected.

Further evidence (see Lopez et al. 1974, for pio-
neering work and Vinod Kumar et al. 1999, for more
recent results) shows that radon and radon daughters’
concentrations are approximately homogeneous with
altitude in the nocturnal stable layer and that they
undergo a rapid transition to background values above
the mixing height in the so-called residual layer. This
fact induced Guedalia et al. (1980) to use a box model
of the nocturnal stable layer endowed with a homoge-
neous radon concentration in the vertical. The top of
this box, named equivalent mixing height %,, has been
found to be a good index of the dispersion properties
of this layer in a semi-quantitative way, because low
(high) values of &, are related to low (high) dispersion
power and high (low) concentrations of primary pollu-
tants.

In Guedalia et al. (1980) the calculation of the top of
the box has been performed by means of the following
equation:

DAt
-G
Here & is the radon flux at the surface, At is the time
interval from the start of accumulation, C(¢) is the

radon concentration at time ¢ and Cy is the radon con-
centration at the beginning of accumulation (evening).

ho(t) = (13.1)

13.2.2 A Physical Interpretation of the
Equivalent Mixing Height

Guedalia et al. (1980) wondered what %, should rep-
resent from a physical point of view. They correctly
asserted that it is different from the inversion layer
thickness, and that instead, it should be identified with
the base of the inversion, although even this option
is not the precise one (in particular, for ground-based
inversions, the box model is no longer applicable).
The correct solution to this puzzle has been given
by Allegrini et al. (1994). They show that A, can be
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Fig. 13.1 A typical time series of beta counts: the first three maxima refer to stable nights and then one must appreciate a transition

to conditions of moderate advection

identified with the height at which a parcel of air
coming from the ground halts its free convection, at
least in nocturnal stable situations dominated by the
thermal factor. They confined their research to some
experimental campaigns in a town and used the funda-
mental phenomenon of the urban heat island that, even
in the presence of ground inversions in suburban sites,
permits the creation of a shallow mixed layer where
convection is not suppressed.

In order to quantify the nocturnal stable layer
depth over a town, they used a thermal profile from
a radiosonde station in the suburbs and the surface
air temperature at the radon detection site inside the
town. With a potential temperature method or, equiv-
alently, by means of a simple graphical representa-
tion (see Fig. 13.2), they were able to estimate an
urban mixing height, 4,, from meteorological data.
A statistical analysis show that &, and h, are highly
correlated, so inducing to think that the box model
output represents a correct estimation of the urban
mixing height, at least in situations of high nocturnal
stability.

In general, we must be aware that /4, and 4, can
differ from the real value of the stable layer depth,
the equality being valid at the limit of null mechanical
turbulence, when the physical features of the BL are
completely driven by the vertical thermal state of the
atmosphere. Furthermore, while /, has no chance to
be sensitive to nonthermal factors, h, represents an

hy

Tr Tr T

Fig. 13.2 Estimation of the urban mixing height: Tr is the tem-
perature at the radiosonde station, Tt is the temperature inside
the town, I'p is a dry adiabat drawn from Tt that intercepts the
vertical profile

index whose value is determined by all the factors that
influence the dilution properties of the BL.

As a final remark, we note that, if direct measure-
ments of ® are not available, its value can be estimated
by inverting equation (13.1) in which we substitute %,
with its meteorological estimation %, at a certain hour
in the evening, at the beginning of accumulation.

13.2.3 AnImproved Box Model

Thus, in strong stable situations during the night, we
are able to monitor the height of the stable layer
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over a town by means of radon detection and the
application of a simple box model. This estimation fur-
nishes important physical information about the vol-
ume available for the dilution of pollutants emitted
at the ground. In particular, this method allowed us
to explain critical peak events of primary pollution
during the night due to negative fluctuations (reduc-
tions) of the stable layer depth. Sometimes, however,
the nocturnal fluctuations in 4., shown by the box
model, assume wide unphysical values: then, in order
to achieve more realistic modeling of the nocturnal BL
behavior and to avoid these problems, a new version of
the model has been recently worked out and prelimi-
narily presented in Pasini et al. (2002).

As a matter of fact, the structure of the box model
described above is too simple for at least two rea-
sons: first, radon decay is neglected; secondly, entrain-
ment of air with different radon concentrations is not
allowed from the top of the box (this is critical just
in situations characterized by nocturnal fluctuations
of the stable layer depth). A new model structure,
which includes these elements, is briefly presented
here.

In Fig. 13.3 “compressions” are the situations
in which the stable layer depth decreases (i = 1,
2, 3, 6) and “expansions” are the cases when #,
increases (i = 4, 5). In what follows, A represents
the decay constant of radon, Af is our sampling
rate (usually 2 h), C“ is the calculated concentra-
tion in the residual layer and we adopt the symbolic
form Ah,(n, m) = h,(n) — h.(m) for the difference
between equivalent mixing heights at time n and m,
respectively.

200
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Fig. 13.3 Time evolution of the nocturnal stable layer (gray
box). The white area above represents the residual layer

In compression cases the generalization of equation
(13.1) reads as follows:

h.(i) =

® 1 —exp(—rAr
= exp(—+A1) (13.2)

C;—Ci exp(—AAt)

The concentration left in the residual layer after the ith
compression is:

c* =
1
C  exp(—AAD-Ahe (0, i—1)+Ci—1 exp(—AAL)-Ah,(i—1, i)
Al (0, i)

(13.3)

If the stable layer depth increases and overlying air is
included in the box, i.e. in cases of expansions, the
equivalent mixing height can be calculated as:

he(i) =
(®/2)[1— exp(—1. AN +he(i—1)(Ci—1—CE_ ) exp(=1 A1)

C; — Cf_| exp(—AAL)
(13.4)

and the concentration over the top of the box is of
course

Cé = C_ exp (—AAD) (13.5)

This enhanced structure of the box model, tested on
past results, leads to a little increase (about 1%) in
the value of the linear correlation coefficient between
the total set of &, estimated by the new model and the
total set of /,,. The actual, relevant and statistically sig-
nificant improvement is obtained in critical situations
such as nocturnal fluctuations of the stable layer depth,
when the application of equations 13.2—13.5 prevents
the estimation of wide unphysical oscillations.

Thus, data from radon progeny measurements well
represent (in a synthetic way) the dilution properties
of the lower layers of the atmosphere and the analysis
performed here has led to characterizing these features
both qualitatively and quantitatively. In the next sec-
tion, after having presented another useful application
of radon data to primary pollution characterization in
an urban environment, we will begin to “handle” these
data with a NN model.
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13.3 Linear Stability Indices and Their
Nonlinear Generalization by NNs

As we have seen, knowledge of radon concentration,
or simply of the beta counts coming from the decay
of short-lived radon daughters, gives us information
about the physical state of the BL. If we consider the
so-called primary pollutants, their concentration in the
lowest layers of the atmosphere is driven by two main
factors: the emission flux and the mixing properties
of the BL. In this situation, our knowledge of these
physical properties can lead to studying the role of the
BL in the accumulation of these pollutants.

13.3.1 Linear Stability Indices

Some years ago, Italian researchers (Perrino
et al. 2001) developed stability indices based on
radon data in order to characterize days and nights
(in every season) in terms of their meteorological
predisposition to a primary pollution event.

Substantially, these indices are scalars: they are
the results of equations (coming from multiple linear
regressions) that aim at reconstructing the mean con-
centration of benzene on a 12-h interval. The multi-
ple linear regression considered 2-h beta count data
and their time derivatives as predictors and benzene
concentration during night or day as predictand. For
these calculations the year has been divided in three
periods, according to different duration and inten-
sity of the solar radiation (winter period: October to
February; summer period: May to July; intermediate
period: March, April, August, September). A total of
six indices has been therefore obtained.

The correlation between the values of these indices
and the concentration of benzene is generally good,
but it must be highlighted that these indices take into
account only one of the two driving forces in deter-
mining primary pollutant concentration (the mixing
properties of the BL), so that a one-to-one correlation
could be possible only in the theoretical case of a con-
stant emission flux. Thus, the scope of indices deter-
mination must not be estimating the correct value of
observed benzene concentrations, but, more properly,
these indices can become a tool for uncoupling the
roles of meteorology and emissions for determining
the concentration of a primary pollutant.

In fact, these indices allow us to estimate the con-
centration of a primary pollutant uniquely due to the
contribution of the meteorological factor. Therefore,
the environmental applications of these indices are
especially important in the study of the differences
between this estimation and the primary pollutant
concentration actually observed. This is of help in
identifying days when the atmospheric pollution is
heavier (lighter) than predictable on the basis of the
atmospheric mixing and allows us to evaluate, for
example, the real effect of traffic restriction measures.
Also, at a longer range, we are able to understand if a
decrease in the air concentration of a given primary
pollutant from one year to another is due to a real
improvement of the air quality or, instead, only to a
lighter meteorological situation.

For further details on the calculation of these linear
indices and their application, see Perrino et al. (2001).

13.3.2 Nonlinear Stability Indices
via NN Modeling

As stated in the previous subsection, the aim in using
the stability indices is not the accurate reconstruc-
tion of benzene values in every situation, since these
indices take only the BL dilution factor into account
and neglect the contribution of emission variations
to benzene concentration. With a change of perspec-
tive, we recently asked if this meteorological contribu-
tion to benzene behavior is correctly modeled (Pasini
et al. 2003c). In fact, if we consider that the linear
stability indices are obviously not able to fully capture
the complex nonlinear relationships among different
variables in the BL, we can suggest the use of a more
complex nonlinear regression method and hope that its
use can lead to an increase of the amount of variance
explained by the linear regression. Therefore, after a
preliminary statistical analysis of the data available,
in order to discover nonlinearities hidden therein, a
NN model is applied to the problem of reconstructing
benzene concentrations by means of radon data, even
in cases not included in the training set.

As far as the neural model is concerned, the NN
development environment briefly described at Sub-
section 12.3.3 of the previous chapter is used even
in this case study. We briefly remind that our NNs
are multi-layer perceptrons endowed with one hidden
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layer and backpropagation training. Furthermore, it
is worthwhile to stress that some specific tools are
present in our development environment in order to
handle historical data and to train NNs starting from
quite short time series. We have seen a first example
of these training tools in Chapter 12 of this book and
we will meet another example in the next section,
where a sketch of our normalized sigmoids will be also
be presented, together with a discussion of their
influence on the model structure.

The application of a nonlinear NN model is sug-
gested by the results of an a priori bivariate statis-
tical analysis that is able to estimate linear and non-
linear correlations between each predictor/input (a 2-h
radon detection or its time derivatives) and the predic-
tand/target (mean benzene concentration during day
or night). By this analysis we compare values of the
linear correlation coefficient R and values of the so-
called correlation ratio, a nonlinear generalization of
R (see Pasini et al. 2001, 2003a for technical details on
the fundamentals of such an analysis). Differences are
found between linear and nonlinear correlation values
for the same input-target sets and, sometimes, inputs
showing low linear correlation with the target assume
high nonlinear correlation values. In short, even if the
correlation ratio does not measure all types of non-
linearity, for our problem it allows us to understand
that some nonlinearities are hidden in the relationships
among the variables. In particular, as a consequence
of this statistical analysis, the inputs considered for an
optimal nonlinear regression can be generally different
from the variables chosen for an optimal linear regres-
sion.

As in the development of linear stability indices,
we consider six records of cases (diurnal and noc-
turnal situations for winter, summer and intermediate
periods). Each record is divided into three sets: the
first months represent the training set and include the
validation set (useful in order to establish the threshold
for early stopping and chosen as 15 random days inside
these first months), the last month of each record is the
test set on which we assess the networks’ ability to
generalize. When comparing linear and NN models’
performance on the test set, we obtain a statistically
significant improvement in “simulating” the behavior
of day and night mean benzene concentrations: our
NN model explains 77% of the variance in benzene
data, while the linear model achieves a performance
of 68%.

Table 13.1 Performance in
concentrations on the test sets

the modeling of benzene

Period Linear model Neural model
Winter — morning 0.786 0.809 £ 0.038
Winter — evening 0.740 0.812 £ 0.020
Summer — morning 0.558 0.576 £ 0.037
Summer — evening 0.639 0.725 £ 0.031
Intermediate — morning 0.664 0.877 £0.012
Intermediate — evening 0.698 0.795 £ 0.038

Source: Adapted from Pasini et al. (2003c). With kind permis-
sion of Societa Italiana di Fisica.

More specifically, the values of several indices
of performance have been calculated and consistent
results are obtained on the test sets in the six cases
cited above. In Table 13.1 the results of both the linear
model and the NN model are shown in terms of the
linear correlation coefficient (detected vs. modeled).
Here, as in applications described in the previous chap-
ter, the error bars associated with the NN performance
come from ensemble runs of the model with different
initial random weights, so that each network is able to
widely explore the landscape of its cost function, and
represent 2 standard deviations.

As one can see, the majority of improvements
obtained by the application of the fully nonlinear NN
model is statistically significant. Furthermore, the cal-
culation of the bias allows us to appreciate that, even
in the few cases when the statistical significance of
performance improvement is not sure, the systematic
error in the results of the NN model is lower than that
of the linear model: this gives us more reliable results.

In short, the application of NNs to this problem
leads to better modeling the meteorological contribu-
tion to the behavior of mean benzene concentration
over days and nights in distinct periods of the year, if
compared with a multiple linear regression.

13.4 Neural Forecasting of the Radon
Concentration and Short-Range
Estimation of the Nocturnal Stable
Layer Depth

Once the ability of a NN model for characterizing the
meteorological-induced behavior of a primary pollu-
tant is shown, it would be interesting to test this model
in forecasting BL physical features. In this framework,
using the knowledge of radon behavior and applying
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the box model previously developed, we concentrate
on stable nocturnal situations in the BL.

As a preliminary remark, it is worthwhile to note
that the physics of the nocturnal stable layer has been
recognized as very complex and modeling in this
domain represents a major challenge for physicists of
the atmosphere (see, for instance, Mahrt 1998). Thus,
once again, an Al empirical data-based method (NN
modeling) could help in a framework where dynamical
modeling shows drawbacks.

In what follows, several forecasting strategies will
be considered and particular attention will be paid
to didactical aspects rather than technical details: see
Pasini and Ameli (2003), Pasini et al. (2003a, b) for a
more detailed treatment.

13.4.1 A Time Series Approach: Black Box
vs. Preprocessing

The Institute of Atmospheric Pollution of the Ital-
ian National Research Council has sponsored several
extended duration monitoring campaigns to detect beta
counts from radon progeny decay. Thus, long time
series at the time resolution of 2 h are available: here,
we analyze data from the entire year 1997, detected in
a site near Rome, Italy.

Since the development of the model of multi-layer
perceptron, NNs have shown their ability to forecast
time series data for some steps in the future and they
often beat other methods in intercomparison studies:
see, for instance, Weigend and Gershenfeld (1993).
Therefore, it is natural to apply NNs to a short-range
forecast of beta-count time series in order to obtain
accurate estimations for the values of this index of the
BL dilution capacity.

Usually, when the global dynamics of the system
under study is unknown, a NN is used as a black box
that outputs future values of the time series, given
input of a sequence of its past values. Of course, we
can follow this approach even in the treatment of our
forecasting problem in the BL: as we will see, this has
actually been done with quite good results. Neverthe-
less, here a part of the dynamics is known: for instance,
the influence of a day-night cycle is very clear in sit-
uations characterized by nocturnal stability and well
developed diurnal mixed layers (look at the first 3 days
in Fig. 13.1). Furthermore, a 24-h periodicity and its
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Fig. 13.4 Fourier spectrum of our time series of beta counts

sub-harmonics are evident in a Fourier spectrum of
our time series (see Fig. 13.4). In this situation, this
part of dynamics can be modeled or, at least, sim-
ply described, leading to using this knowledge before
applying a NN for studying the system.

In practice, we chose to preprocess our data. We
filtered out the known periodicities (by means of the
so-called Seasonal Differencing (SD) method!), sub-
tracted this signal from the detected data and modeled
the residuals with NNs. In this manner we left the
network model the hidden (unknown) dynamics. Of
course, the forecasting results of the neural modeling
must be added to the preprocessing function in order
to obtain final forecasts of the original time series.

The NN tool cited above and briefly described in the
previous chapter has also been used in this case study.
The choice of inputs is widely discussed in Pasini and
Ameli (2003) and the reader can refer to that paper for
details. Here we just stress that a particular training-
test iterative procedure has been applied. Due to the
recognition of a negative effect of old data on forecast-
ing results, we fix a “50-day memory” of training cases
and update it for every new forecast, thus limiting the
training to the same “season” of any forecast case.
Figure 13.5 shows this “moving window” strategy:
the window is the 50-day memory (training set), it
is updated every 2 h by inserting the latest detected

'In our application, SD consists in subtracting from the time
series a replica of the series itself delayed by a 24-h time lag. In
doing so, we obtain a residual series that is practically lacking
in those periodicities shown by the original data.
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Fig. 13.5 The “moving window” procedure for training and
test (forecast) of historical data

data and discarding the oldest ones, then allowing new
training and a new forecast.

Once our data is preprocessed by SD, we obtain a
residual time series that looks like noise, so that a man-
made analysis does not allow us to glean additional
clear dynamics in these data. In this situation, the
application of a NN model to forecasting this residual
time series and to evaluating its forecasting perfor-
mance could lead to determining whether nonlinear
dynamics is hidden in these data, or rather, if they are
actually random.

As a matter of fact, we found quite good perfor-
mance on the test set of residuals when forecasts were
extended to 2, 4 and 6 h after the most recent data
in the time series. In particular, we calculated the
linear correlation coefficient (modeled vs. detected)
and obtain R(# + 2) = 0.675 £ 0.006, R(1p +4) =
0.500 £ 0.008 and R(# + 6) = 0.431 £ 0.009. Even
if these values are not very high (remember that
the time series looks like noise), they still indicate
a clear signal of nonlinear dynamics hidden in the
residuals. In this way the NNs show their ability in
capturing this dynamics and can add information to
modeling the system. In particular, they allow us to
improve our forecasting performance on the system
itself.

Furthermore, a black box strategy and a preprocess-
ing one can be compared in NN modeling on this
case study. Table 13.2 shows the performance of the
direct application of NNs to forecasting the original
time series (TS) and of the joint application of SD and
NN forecasting of the residuals (SD-TS): the SD-TS
approach outperforms the black box one in all cases
and the increment in performance is particularly high
at the longer ranges.

Table 13.2 Performance on the test set for the black box
(TS) and the preprocessed (SD-TS) strategies in a time series
approach

Period R(to +2) R(to +4) R(to + 6)
TS 0.8124+0.010  0.735+0.017  0.672 £ 0.017
SD-TS  0.894 +0.004  0.870 £0.004  0.861 £ 0.005

In general, the shape of the signal for beta detec-
tions/radon concentrations is well forecasted by SD-
TS on all the 24-h interval (nights, days, intermediate
periods). In particular, SD-TS prevents the forecast-
ing of counter-tendency behaviors in radon evolution
(e.g., increasing beta counts for situations of a detected
decrease of beta counts), which are quite often present
in the TS forecasts.

If we concentrate on nights with stable conditions
in the lower layers, we can apply the box model cited
above and obtain forecasts for the depth of the noc-
turnal stable layer. In Fig. 13.6 an example of /., 2-h
forecasts is presented for three nights: one can recog-
nize the very good results obtained by the joint appli-
cation of preprocessing and NN model (SD-TS). Due
to the very impact of nocturnal BL depth fluctuations
on primary pollutants’ behavior, a useful feature of this
approach is that it generally leads to a correct forecast
for the sign of derivatives in &, records, while the
black box approach often presents counter-tendency
derivatives in its forecasts.

13.4.2 A Synchronous Pattern Approach
with Meteorological Data

In the previous subsection a typical time series
approach has been adopted for NN application by
using delayed values of beta counts data as input.
When the behavior of an index-variable (here beta
counts) is influenced by the state of a physical system
(here the BL), however, it is a good idea to estimate
this state at a time fy through the values of certain
critical variables and to search for a relationship link-
ing this estimation at time #y with future values of the
index-variable by means of NNs.

An estimation of the state of the BL can be given
through monitoring performed by a standard weather
station in situ. In our case study, 1-h weather parame-
ters were available from the local meteorological sta-
tion, so that we considered the following synchronous
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pattern of variables which describes the BL state at
time fy: hour of the day (expressed in two inputs
as [sin(r¢/12) 4+ 1]/2 and [cos(wt/12) 4 1]/2), beta
counts, time derivatives of beta counts with respect
to 2 h before, sky covering and height of the lowest
cloud layer, temperature, dew point, pressure, horizon-
tal wind speed, and visibility.

Thus, the first attempt can be to apply this approach
and to analyze the related NN forecasting perfor-
mance. Linear and nonlinear statistical bivariate analy-
ses between any test set of a single input variable and
the set of detected beta counts at ty + 2, ty + 4 and
to + 6 h, however, show that some inputs are poorly
correlated with the output. This induces prune some
of the inputs.

Pruning is a consolidated technique and the descrip-
tion of its advantages can be easily found in the lit-
erature. Here we just stress that, as cited in Sub-
section 12.3.3 of the previous chapter, the transfer
functions in our tool are sigmoids in which the argu-
ments of the exponential function are normalized
with respect to the number of connections converging
to a single neuron of the hidden and output layer,
respectively. For the hidden layer, for instance, we
have:

(13.6)

s (1) = ;)

1+exp(—m

where ny; is the number of connections converging to
a single neuron of the hidden layer.

Time

Figure 13.7 shows the consequences of this normal-
ization on the shape of sigmoids: in practice, it leads to
transfer functions which are less nonlinear when one
moves from networks with few connections to bigger
ones. In short, this leads to different models for differ-
ent networks, with more nonlinear transfer functions
for small NNs: this could even lead to an increase in
forecasting performance when pruning is applied in a
strongly nonlinear system.

The best performance with a pruned network came
from considering: the hour of the day (two inputs), the
horizontal wind speed, beta counts, and time deriva-
tive of beta counts. Thus two networks with 11 and
5 inputs, respectively, have been applied to this fore-
casting activity. The performance results are shown in

0.2+

O
=2

-10 -5 0 5 10

weighted sum

Fig. 13.7 Form of sigmoids in our NN tool for different num-
bers n of connections converging to a single neuron of the hidden
or output layer: solid curve, n = 3; heavy dashed curve, n = §;
shaded curve, n = 20; shaded dashed curve, n = 50 Source:
Pasini et al. (2001). Copyright AGU
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Table 13.3 Performance on the test set in a synchronous pattern
approach for the full set of inputs (SP) and in the pruned case
(SP-PR)

Period R(to +2) R(tp +4) R(to + 6)
Sp 0.849 £+ 0.003 0.821 4 0.005 0.788 £+ 0.006
SP-PR  0.854 + 0.002 0.820 % 0.005 0.773 £ 0.007

Table 13.4 Contingency table at a fixed threshold distinguish-
ing between events and nonevents

DET\FOR No Yes Sum
No a b g
Yes c d h
Sum e f n

Table 13.3 in terms of the linear correlation coeffi-
cient between modeled (forecasted) and detected beta
counts.

A comparison of these results with those presented
in Table 13.2 for the time series approach allows us
to recognize that the synchronous pattern approach
always outperforms the original time series approach
(TS) in a statistically significant way. This bears wit-
ness to the relevance of meteorological information
to better characterize the BL state for short range
forecasting. Pruning leads to a little improvement at
to + 2h, while the results at 7y +4 and 7y + 6h are
comparable and worse, respectively, with respect to the
runs without pruning.

On the other hand, the recognizing periodicities and
preprocessing the time series (SD-TS in Table 13.2)
leads to even better performance results, especially
at tp+4 and fy+ 6h. This bears witness to the
importance of using dynamical information when
available.

In Subsection 13.4.4 we will combine the strong
points of these two approaches in order to build a
hybrid approach that allows us to obtain better fore-
casting performance. Now, we would like to briefly
analyze performance through indices calculated on
contingency tables.

13.4.3 Some Measures of Performance

As discussed in Chapter 3 of this book, the problem of
performance assessment is manifold. Here we do not
enter into details of which index is more appropriate to
“measure” the performance in our case. Nevertheless,
we show that useful information comes from calcu-
lating some indices on contingency tables of events
and nonevents related to detected and forecasted beta
counts.

As usual in analyzing forecasting performance,
we divide detections and forecasts into classes, build
contingency tables and assess performance in a

dichotomic form. By limiting ourselves to the analy-
sis of the ¢ + 2 forecasting performance, we choose
100 equidistant thresholds and divide our range in 100
classes, so obtaining 100 contingency tables. Our nota-
tions are referred to Table 13.4, where a = number
of nonevents predicted as nonevents, b = number of
nonevents predicted as events, ¢ = number of events
predicted as nonevents, d = number of events pre-
dicted as events. For each threshold we calculated the
following indices:

BIAS = f/ h;

POD (Probability Of Detection) = d/ h;

FAR (False Alarm Ratio) = b/f;

HR (Hit Rate) = (a + d)/n;

EFF (EFFiciency) = (a/g) x (d/h);

CSI (Critical Success Index) = d /(b + h);

HSS (Heidke’s Skill Statistics) = [2(ad — bc)]/
(gf + he).

Once the values of these indices for each thresh-
old are calculated, one can plot them on graphs
built with the value of the threshold as abscissa and
the value of the index as ordinate, thus obtaining
pictures of global performance for every range of
data. This can be done for every forecasting strat-
egy adopted in our case study. Due to the fact that
the performance of the synchronous pattern approach
with and without pruning are very similar, just SP-
PR, TS and SD-TS are considered in these graphs
in order to make them more clearly readable. Fur-
thermore, calculations of FAR, HR and CSI reveal
that the differences in performance among these
three modeling strategies are nearly absent in these
indices, so that the related graphs are not shown
here. In Fig. 13.8 the results for BIAS, POD, EFF
and HSS are shown: they imply some considera-
tions.

The high values of the SD-TS curves for the first
low thresholds in BIAS and POD plots account for
an overestimation of the low values of beta counts
detected. This is primarily due to the transition peri-
ods from situations driven by the thermal cycle to
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Threshold (counts x 260)
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Threshold (counts x 260)
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Fig. 13.8 Forecasting performance on the test set of beta counts
for the black box time series approach (TS: black curves), the
preprocessed time series approach (SD-TS: dashed curves) and

advective situations when the SD modulation leads to
very low final forecast values. Of course, this repre-
sents a negative feature of this preprocessing method
and suggests adopting some different preprocessing
methods during these transition periods.

The graph of EFF (Fig. 13.8c) indicates that the
two time series approaches outperform SP-PR at high
thresholds. The difference between SD-TS and SP-PR
above abscissa 30 (in threshold units) is particularly
large.

Undoubtedly, the most interesting results come
from analyzing the graph related to HSS (Fig. 13.8d).
First of all, HSS is a very good measure of perfor-
mance (see, for instance, the discussion in Chapter 3

(b)

1.0
08 [ .

0.6

POD

0.4

0.2

1 10 19 28 37 46 55 64 73

Threshold (counts x 260)

82 91 100

(d)

0.8

0.6

HSS

0.4

0.2 |

0.0
19 28 37 46 55 64 73 82 91

Threshold (counts x 260)

17 10 100

the synchronous approach with pruning (SP-PR: gray curves).
The four plates refer to BIAS (a), POD (b), EFF (c) and
HSS (d)

and in Marzban 1998). Furthermore, Fig. 13.8d shows
that the time series approach reveals very good features
for high thresholds; in particular, SD-TS is always bet-
ter than other approaches for thresholds >23 abscissa
units (about 6,000 beta counts). On the other hand,
SP-PR outperforms TS until a threshold of about 46
abscissa units. Finally, we stress that all the approaches
lead to a maximum of performance for a threshold
around 19 abscissa units (about 5,000 beta counts):
this is very important for us, because this value can
be considered as the threshold that allows us to distin-
guish between advective situations and maxima due to
the presence of nocturnal stable layers driven by the
vertical thermal state of the lower atmosphere.
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13.4.4 A Hybrid Approach and Its
Forecasting Results

The results discussed above showed that the using a
synchronous pattern of meteorological parameters as
inputs to the neural model leads to better results than
a standard (non-preprocessed) time series approach.
This bears witness to the importance of having infor-
mation about the initial physical state of the BL. On
the other hand, using our a priori knowledge of day-
night periodicities, and the consequent preprocess-
ing activity via SD, outperforms both TS and SP
strategies.

Taking these results into account, we now wish to
explore the possibility that meteorological conditions
could give improvements in capturing nonlinearities
when periodic contributions to the BL dynamics are
subtracted by SD. Therefore, once we recognize that
the day-night cycle affects the radon time series as
well as time series of meteorological parameters, even
if sometimes at a different degree, we apply SD pre-
processing to available meteorological data, as well.

Therefore, first we apply SD to the time series of
beta counts and to the records of meteorological para-
meters. Then we concentrate on the following three
different choices of inputs for the networks to be
trained on the residual series:

— SD-MET: The inputs are the residuals coming from
the application of SD to several meteorological
variables (wind speed, pressure, temperature, dew
point, sky covering and height of the lowest cloud
layer, meteorological visibility) and to values of beta
counts and the time derivative of beta counts at 7.

— SD-TS + V: The inputs are the residuals coming
from the application of SD to both the delayed val-
ues of the time series and the wind speed. Wind is
considered very important because it characterizes
the mechanical turbulence in the BL and, in particu-
lar, the situations of advection, when the periodicity
in the time series (essentially due to the day-night
cycle) is broken.

— SD-TS + MET: The inputs are the residuals coming
from the application of SD on both the delayed val-
ues of the time series and the same meteorological
variables considered also in SD-MET.

In this subsection our aim is to compare these
approaches with the SD-TS approach previously dis-
cussed in order to see if the insertion of residuals of

Table 13.5 Forecasting performance on the residual series
when SD is applied also to records of meteorological variables

Method Ry +2h)

SD-TS 0.675 £ 0.006
SD-MET 0.571 £ 0.008
SD-TS+V 0.687 £ 0.004
SD-TS+MET 0.679 £ 0.005
Method R(tg +4h)

SD-TS 0.500 £ 0.008
SD-MET 0.297 £ 0.006
SD-TS+V 0.528 £ 0.007
SD-TS+MET 0.544 £+ 0.006
Method R(ty + 6 h)

SD-TS 0.431 £ 0.009
SD-MET 0.151 £0.012
SD-TS+V 0.456 £ 0.008
SD-TS+MET 0.496 £ 0.007

Source: Pasini et al. (2003b). Copyright IEEE.

meteorological variables into the input layer leads to
better results. In doing so, we compare the ability of
the distinct networks in capturing the hidden dynamics
on just the residual series.

The results on the test set are presented in a con-
cise form in Table 13.5, where the calculation of the
linear correlation coefficient between targets and out-
puts is reported. Note that, contrary to Tables 13.2
and 13.3, here the forecasting results refer to the NN
performance on only the residual series, without any a
posteriori composition with the SD signals.

A brief analysis of these results indicates that the
information on the meteorological parameters alone in
the SD-MET approach (even if data on beta counts
and its derivatives is included) is not able to capture a
satisfying hidden dynamics or to improve forecasting
results on the residual series. On the other hand, the
same meteorological parameters contribute (in a sta-
tistically significant manner) to improving the results
of the SD-TS approach when inserted into the input
layer together with data on the time series itself. In
a certain sense, one could say that the meteorological
parameters act as second-order correctors to the fore-
cast obtained by the SD-TS approach. Nevertheless,
we must stress again that in a non-linear system we
are not able to accurately separate the contributions of
each “influence factor” to the final result.

The increase in performance obtained through
application of the SD-TS + V and SD-TS + MET
approaches is more evident at the longest ranges, so
that we can envisage a shift of the predictability hori-
zon for forecasting radon from observations beyond 6
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h. Furthermore, we want to stress that networks fed
with TS and all the meteorological parameters in the
input layer are obviously larger than networks with TS
and wind only. The particular structure of our sigmoids
allows us to obtain better results in the very short-range
with a little network and wind only, which is corre-
lated (linearly and non-linearly) quite well with the
target. When, at the following time steps, this correla-
tion decreases, other meteorological inputs become so
important to invert the situation of performance scores
between SD-TS + V and SD-TS + MET.

13.5 Conclusions and Prospects

In this chapter, the role of NNs has been analyzed
for modeling some features of a complex system such
as the BL, whose dynamical modeling is very critical
(especially in nocturnal stable situations) due to the
many interactions and feedbacks that occur therein.
In doing so, the BL physical dispersion properties
have been summarized by means of a suitable index,
the beta counts coming from the decay of short-lived
radon progeny. Once this index is identified as a
critical variable for describing BL behavior, several
approaches have been presented for NN processing its
data, with the aim of both BL diagnostic characteriza-
tion and forecasting.

In this framework, interesting goals have been
achieved: we stress the improved forecasting results
from jointly applying our knowledge of the day-night
cycle’s periodicities via SD and the NN forecasting of
the residual series. Here, in particular, NNs are able
to find a hidden dynamics in what appears as a noise
signal, leading to a substantial improvement in fore-
casting performance when compared with a black box
NN application. Furthermore, the results of the hybrid
approach described in the last subsection appear quite
promising.

Once more, the applications described in this paper
imply that, at present, the identification of key vari-
ables in a complex system and its data-driven modeling
by NNs can represent a valid alternative to dynamical
modeling.

Of course, although these investigations are prelim-
inary, the scope of this paper was merely to introduce
the reader to specific applications of NN modeling in
another complex system, the BL, after the previous

chapter dedicated to climate. This preliminary research
leaves several open questions and directions for further
development, considering that, for instance, only very
standard NNs have been used and a very simple kind
of preprocessing has been adopted. Nevertheless, in
an introductory book to techniques and applications,
I believe that this is not a fault, but rather a spur for the
reader to further research this field.
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