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11.1 Introduction

The past several decades revealed a well pronounced
trend in geosciences. This trend marks a transi-
tion from investigating simpler linear or weakly
nonlinear single-disciplinary systems like simplified
atmospheric or oceanic systems that include a limited
description of the physical processes, to studying com-
plex nonlinear multidisciplinary systems like coupled
atmospheric-oceanic climate systems that take into
account atmospheric physics, chemistry, land-surface
interactions, etc. The most important property of a
complex interdisciplinary system is that it consists of
subsystems that, by themselves, are complex systems.
Accordingly, the scientific and practical significance of
interdisciplinary complex geophysical/environmental
numerical models has increased tremendously during
the last few decades, due to improvements in their
quality via developments in numerical modeling and
computing capabilities.

Traditional complex environmental numerical mod-
els (ENM) are deterministic models based on “first
principle” equations. For example, general circula-
tion models (GCM) a.k.a. global climate models are
numerical atmospheric and oceanic models for climate
simulation and weather prediction that are based on
solving time-dependent 3-D geophysical fluid dynam-
ics equations on a sphere. The governing equations of
these models can be written symbolically as,

∂ψ

∂t
+ D(ψ,x) = P(ψ,x) (11.1)
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where ψ are 3-D prognostic or dependent variable
or set of variables (e.g., temperature, wind, pres-
sure, moisture); x is a 3-D independent variable
(e.g., latitude, longitude, and pressure or height);
D is the model dynamics (the set of 3-D partial dif-
ferential equations of motion, thermodynamics, etc.,
approximated with a spectral or grid-point numerical
scheme); and P is the model physics and chemistry
(e.g., the long- and short-wave atmospheric radiation,
turbulence, convection and large scale precipitation
processes, clouds, interactions with land and ocean
processes, etc., and the constituency transport, chem-
ical reactions, etc., respectively). These environmen-
tal models are either fully coupled atmosphere-ocean-
land/biosphere-chemistry models or partially coupled
models (e.g., with the chemistry component calcu-
lated off-line, driven by the flow simulated by an
atmosphere-ocean-land model).

Another example of a complex ENM is an ocean
wind wave model developed for simulation and fore-
cast purposes (Tolman 2002). It is based on a form of
the spectral energy or action balance equation

DF

Dt
= Sin + Snl + Sds + Ssw (11.2)

where F is the 2-D Fourier spectrum of the ocean
surface waves, Sin is the input source term, Snl is the
nonlinear wave-wave interaction source term, Sds is
the dissipation or “whitecapping” source term, and Ssw

represents additional shallow water source terms.
It is important to emphasize that the subsystems of a

complex climate (or weather, or ocean) system, such as
physical, chemical, and other processes, are so compli-
cated that it is currently possible to include them into
GCMs only as 1-D (in the vertical direction) simplified
or parameterized versions (a.k.a. parameterizations).
These parameterizations constitute the right hand side
forcing for the dynamics equations (11.1, 11.2). Some
of these parameterizations are still the most time con-
suming components of ENMs (see examples in the
next subsection).

Thus the parameterizations have a very compli-
cated internal structure, are formulated using rel-
evant first principles and observational data, and
are usually based on solving deterministic equations
(like radiation equations) and some secondary empir-
ical components based on traditional statistical tech-
niques like regression. Accordingly, for widely used
state-of-the-art GCMs all major model components

(subsystems) are predominantly deterministic; namely,
not only model dynamics but the model physics and
chemistry are also based on solving deterministic first
principle physical or chemical equations.

In the next section, we discuss the concepts of
hybrid parameterization (HP) and hybrid environmen-
tal models (HEM). HEMs are based on a synergetic
combination of deterministic numerical modeling (first
principle equations) with NN emulations of some
model physics components. We discuss the concep-
tual and practical possibilities of developing a hybrid
GCM (HGCM) and HEM; namely, the possibility of
combining accurate and fast NN emulations of model
physics components with the deterministic model
dynamics of a GCM or ENM, which are the types
of complex environmental models used for modern
atmospheric and ocean climate modeling and weather
prediction.

11.2 Concepts of a Hybrid Model
Component and a Hybrid Model

One of the main problems in the development
and implementation of modern high-quality high-
resolution environmental models is the complexity of
the physical, chemical, and other processes involved.
Here we will discuss NN emulations for model
physics, keeping in mind that the approach is applica-
ble to other model components (chemical, hydrolog-
ical and other processes) as well. Parameterizations of
model physics are approximate schemes, adjusted to
model resolution and computer resources, and based
on simplified physical process equations and empirical
data and relationships. The parameterizations are still
so time-consuming, even for the most powerful
modern supercomputers, that some of the parameter-
izations have to be calculated less frequently than the
model dynamics. Also, different physical parameteri-
zations are calculated at different frequencies inversely
proportional to their computational complexity. This
may negatively affect the accuracy of climate and
other environmental simulations and predictions.

For example, in the case of a complex GCM, calcu-
lation of a physics package (including the atmospheric
and land physics) at typical (a few degrees) resolution
as in the National Center for Atmospheric Research
(NCAR) Community Atmospheric Model (CAM)
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takes about 70% of the total model computations. This
is despite the fact that while the model dynamics is
calculated every 20 min, some computationally expen-
sive parts of the model physics (e.g., short wave radi-
ation) are calculated every hour. The most time con-
suming calculations of the model atmospheric physics,
full long wave radiation including calculation of opti-
cal properties, are done only once every 12 h while
the heating rates and radiative fluxes are calculated
every hour. More frequent model physics calculations,
desirable for temporal consistency with model dynam-
ics, and the future introduction of more sophisticated
model physics parameterizations will result in a further
increase in the computational time spent calculating
model physics.

In the wind wave model (11.2), the calculation of
the source term, Snl requires roughly 103 to 104 times
more computational effort than all other aspects of the
wave model combined. Present operational constraints
require that the computational effort for the estimation
of Snl should be of the same order of magnitude as for
the remainder of the wave model.

This situation is a generic and important motivation
in looking for alternative, faster, and most importantly
very accurate ways of calculating model physics,
chemistry, hydrology and other processes. During the
last decade, a new statistical learning approach based
on NN approximations or emulations was applied for
the accurate and fast calculation of atmospheric radia-
tive processes (e.g., Krasnopolsky (1997); Chevallier
et al. (1998)) and for emulations of model physics
parameterizations in ocean and atmospheric numerical
models (Krasnopolsky et al. 2000, 2002, 2005a, b). In
these works, the calculation of model physics com-
ponents has been accelerated by 10 to 105 times as
compared to the time needed for calculating the cor-
responding original parameterizations of the model
physics.

Approaches formulated by Chevallier et al. (1998,
2000) and Krasnopolsky et al. (2000, 2002, 2005) rep-
resent two different ways of introducing a hybridiza-
tion of first principle and NN components in the
physics parameterizations as well as in complex
ENMs. These approaches introduce hybridization at
two different system levels, at the level of the sub-
system (a single parameterization) and at the level
of the entire system (ENM). These two approaches
lead to the concepts of a hybrid parameterization
(HP) (Chevallier et al. 1998, 2000) and a hybrid

environmental model (HEM) or hybrid GCM (HGCM)
(Krasnopolsky et al. 2000, 2002, 2005; Krasnopolsky
and Fox-Rabinovitz 2006a, b). These two concepts are
discussed in the following sections.

11.3 Hybrid Parameterizations
of Physics

Chevallier et al. (1998, 2000) considered a com-
ponent of the complex GCM (the ECMWF global
atmospheric model) – the long wave radiation (LWR)
parameterization. Putting it in terms of the system lev-
els, this single parameterization is considered to be the
system and its constituents, with the blocks calculating
fluxes, the blocks calculating cloudiness, etc., as the
subsystems. The hybridization of first principle com-
ponents with NN emulations is introduced on the level
of these constituents and inside the system, which in
this case is the LWR parameterization. A generic LWR
parameterization can be represented as a mapping (see
Chapter 9, Section 9.1.2),

Y = M(X) (11.3)

in this particular case the input vector X =
(S,T ,V ,C), where the vector S represents surface
variables, T is a vector (profile) of atmospheric tem-
peratures, C is a profile of cloud variables, and the
vector V includes all other variables (humidity profile,
different gas mixing ratio profiles, etc.). The output
of the LWR parameterization, vector Y , is composed
of two vectors Q and f , Y = (Q, f ). Here Q is a
profile of cooling rates Q = (C1

r , C2
r , . . . , C L

r ), where
C j

r is the cooling rate at the j-th vertical model level,
and f is a vector of auxiliary fluxes computed by the
LWR parameterization. Because of the presence of the
cloud variable C , the mapping (11.3) may have finite
discontinuities, that is, it is almost continuous.

The ECMWF LWR parameterization considered
by Chevallier et al. (1998, 2000) is based on the
Washington and Williamson (1977) approach which
allows separate cloud variables C . In this parameter-
ization, level fluxes are calculated as,

F(S, T, V, C) =
∑

i

αi (C)Fi (S, T, V ) (11.4)

where each partial or individual flux Fi (S, T, V )

is a continuous mapping and all discontinuities
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related to the cloudiness are included in αi (C). In
their hybrid parameterization “NeuroFlux”, Cheval-
lier et al. (1998, 2000) combined calculations of
cloudiness functions αi (C) based on first princi-
ple equations with NN approximations for a par-
tial or individual flux Fi (S, T, V ). Thus, the flux at
each level (11.4) is a linear combination of approx-
imating NNs and cloud physics coefficients αi (C).
As the result, the “NeuroFlux” hybrid LWR para-
meterization developed by Chevallier et al. (1998,
2000) is a battery of about 40 NNs (two NNs –
one for the upward and another one for the down-
ward radiation fluxes – for each of vertical level
where clouds are possible). To calculate “NeuroFlux”
outputs, namely the cooling rates Cr s, linear com-
binations of the individual approximating NNs F
(equation 11.4) are differentiated at each vertical
level,

Cr (P) = ∂ F(P)

∂ P
, (11.5)

where P is atmospheric pressure.
The “NeuroFlux” has a very good accuracy; its

bias is about 0.05 K/day and RMS error is about
0.1 K/day compared to the LWR parameterization by
Washington and Williamson (1977). It is eight times
faster than the parameterization by Washington and
Williamson (1977). This HP approach has already
led to the successful operational implementation of
“NeuroFlux” in the ECMWF 4-DVar data assimilation
system.

As for limitations of the HP approach, the main
one stems from a basic feature of the HP approach;
it is based on the analysis of the internal structure
of a particular parameterization. The final design of
HP is based on and follows this internal structure.
Because all parameterizations have different internal
structures, the approach and design of a HP developed
for one parameterization usually cannot be used, with-
out significant modifications, for another parameteri-
zation. For example, the approach used by Chevallier
et al. (1998, 2000) and the design of the HP “Neu-
roFlux” is completely based on the possibility of sepa-
rating the dependence on the cloudiness (see equation
11.4). Many other LWR parameterizations, like the
NCAR CAM LWR parameterization (Collins 2001;
Collins et al. 2002) or the LWR parameterization
developed by Chou et al. (2001), do not allow for
such separation of variables. Thus, for these LWR

parameterizations as well as the short wave radiation
(SWR) and the moisture model physics block parame-
terizations, the HP approach developed by Chevallier
et al. (1998, 2000) cannot be applied directly; it should
be significantly modified or redesigned for each partic-
ular new parameterization.

11.4 Hybrid Numerical Models:
Accurate and Fast NN Emulations
for Parameterizations of Model
Physics

A new concept of a complex hybrid environmental
model (HEM) has been formulated and developed
by Krasnopolsky et al. (2000, 2002, 2005a) and by
Krasnopolsky and Fox-Rabinovitz (2006a, b). The
hybrid modeling approach considers the whole GCM
or ENM as a system. Dynamics and parameteriza-
tions of physics, chemistry, etc., are considered to be
the components of the system. Hybridization in this
case is introduced at the level of components inside
the system (ENM). For example, the entire LWR (or
SWR) parameterization is emulated by a single NN as
a single/elementary object or block. The NN emulation
approach is based on the general fact that any para-
meterization of model physics can be considered as a
continuous or almost continuous mapping (11.3) (see
Chapter 9, Section 3.1.2).

Here we use the NCAR CAM (see Journal of Cli-
mate (1998) for the description of the model), a widely
recognized state-of-the-art GCM used by a large mod-
eling community for climate predictions, and the state-
of-the-art NCEP wind wave model (Tolman 2002) as
examples of a complex GCM and ENM. After apply-
ing the hybridization approach to the first principle
based components of these models by developing NN
emulations of model physics parameterizations, these
models become the examples of an HGCM and HEM,
correspondingly.

Krasnopolsky and Fox-Rabinovitz (2006a, b) for-
mulated a developmental framework and test criteria
that can be recommended for developing and testing
the statistical learning components of HGCM, i.e., NN
emulations of model physics components. The devel-
opmental process consists of three major steps:
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1. Problem analysis or analysis of the model com-
ponent (i.e., the original parameterization) to be
approximated to determine the optimal structure
and configuration of the NN emulations – the num-
ber of inputs and outputs and the first guess of
the functional complexity of the original parame-
terization that determines an initial number of hid-
den neurons in one hidden layer of (see Chapter 9,
Eqs. 9.2, 9.3).

2. Generation of representative data sets for training,
validation, and testing. This is achieved by using
data for NN training that are simulated by running
an original GCM, i.e., a GCM with the original
parameterization. When creating a representative
data set, the original GCM must be run long enough
to produce all possible atmospheric model simu-
lated states, phenomena, etc. Here, due to the use
of simulated data, it is not a problem to generate
the sufficiently representative (and even redundant)
data sets required to create high quality NN emula-
tions. Using model-simulated data for NN training
allows a high accuracy of emulation to be achieved
because simulated data are almost free of the prob-
lems typical in empirical data (like a high level
of observational noise, sparse spatial and temporal
coverage, poor representation of extreme events,
etc.).

3. Training the NN. Several different versions of NNs
with different architectures, initialization, and train-
ing algorithms should be trained and validated. As
for the NN architecture, the number of hidden neu-
rons k should be kept to the minimum number that
provides a sufficient emulation accuracy to create
the high quality NN emulations required.

Testing the HGCM that uses the trained NN emulation
consists of two major steps. The first step is testing the
accuracy of the NN approximation against the original
parameterization using the independent test data set.
In the context of the hybrid approach, the accuracy
and improved computational performance of NN emu-
lations, and eventually the HGCM is always measured
against the corresponding controls, namely the original
parameterization and its original GCM. Both the orig-
inal parameterization and its NN emulation are com-
plicated multidimensional mappings. Many different
statistical metrics of the emulation accuracy should
be calculated to assure that a sufficiently complete
evaluation of the emulation accuracy is obtained. For

example, total, level, and profile statistics have to be
evaluated (see Section 11.5.1). The second test step
consists of a comprehensive comparison and analysis
of parallel HGCM and GCM runs. For the parallel
model simulations all relevant model prognostic (i.e.,
time-dependent model variables) and diagnostic fields
should be analyzed and carefully compared to assure
that the integrity of the original GCM and its para-
meterization, with all its details and characteristic fea-
tures, is precisely preserved when using a HGCM with
NN emulation (see Section 11.5). This test step involv-
ing model simulations is crucially important. GCMs
are essentially nonlinear complex systems; in such
systems, small systematic, and even random, approxi-
mation errors can accumulate over time and produce a
significant impact on the quality of the model results.
Therefore, the development and application frame-
work of the new hybrid approach should be focused
on obtaining a high accuracy in both NN emulations
and HGCM simulations.

11.5 Atmospheric Applications: NN
Emulation Components and HGCM

The NCAR CAM and NASA NSIPP (Natural
Seasonal-to-Interannual Predictability Program) GCM
are used in this section as examples of GCMs. The
NCAR CAM is a spectral model that has 42 spectral
components (or approximately 3◦ × 3.5◦ horizontal
resolution) and 26 vertical levels. The NSIPP model is
a grid point GCM that has 2◦ × 2.5◦ latitude × longi-
tude horizontal resolution and 40 vertical levels. Note
that the model vertical levels are distributed between
the surface and upper stratosphere, which is at approx-
imately 60–80 km. NN emulations were developed for
the two most time consuming components of model
physics, LWR and short wave radiation (SWR). The
NCAR and NSIPP models have different LWR and
SWR parameterizations. The complete description of
the NCAR CAM atmospheric LWR is presented by
Collins (2001) and Collins et al. (2002), and the NSIPP
LWR by Chou et al. (2001). The full model radiation
(or total LWR and SWR) calculations take ∼70% of
the total model physics calculations. It is noteworthy
that the results presented in this section were obtained
using the two latest versions of NCAR CAM – the
CAM-2 and CAM-3. The version of CAM used in the



000–0–00–000000–0 11-Haupt-c11 SHB0024-Haupt (Typeset by SPi, Delhi) page 222 of 234 September 30, 2008 11:22

222 V. M. Krasnopolsky

calculations is specified in the corresponding subsec-
tions below.

11.5.1 NCAR CAM Long Wave Radiation

The function of the LWR parameterization in
atmospheric GCMs is to calculate the heating fluxes
and rates produced by LWR processes. As was
already mentioned, the entire LWR parameterization
can be represented as an almost continuous mapping
(equation 11.3). Here a very general and schematic
outline of the internal structure of this parameteriza-
tion is given in order to illustrate the complexity that
makes it a computational “bottleneck” in the NCAR
CAM physics. This information about the internal
structure of the LWR parameterization was not used
when creating the LWR NN emulation.

The method for calculating LWR in the NCAR
CAM is based on LW radiative transfer equations in an
absorptivity/emissivity formulation (see Collins 2001
and references there),

F↓(p) = B(pt ) · ε(pt , p) +
p∫

pt

α(p, p′) · dB(p′)

F↑(p) = B(ps) −
ps∫

p

α(p, p′) · dB(p′) (11.6)

where F↑(p) and F↓(p) are the upward and the down-
ward heat fluxes, B(p) = σ · T 4(p) is the Stefan-
Boltzmann relation; pressures ps and pt refer to the top
and surface atmospheric pressures, and α and ε are the
atmospheric absorptivity and emissivity. To solve the
integral equations (11.6), the absorptivity and emis-
sivity have to be calculated by solving the following
integro-differential equations,

a(p, p′) =

∞∫

0
{dBν(p′)/dT (p′)} · [1 − τν(p, p′)] · dν

dB(p)/dT (p)

ε(pt , p) =

∞∫

0
Bν(pt ) · [1 − τν(pt , p)] · dν

B(pt )
(11.7)

where the integration is over wave number ν, and
B · (pt ) is the Planck function. To solve equations

(11.7) for the absorptivity and emissivity, additional
calculations have to be performed and the atmospheric
transmission τν has to be calculated. This calcula-
tion involves a time consuming integration over the
entire spectral range of gas absorption. Equations
(11.6, 11.7) illustrate the complexity of the LWR inter-
nal structure and explain the poor computational per-
formance of the original NCAR CAM LWR para-
meterization, which in this case is determined by
the mathematical complexity of the original LWR
parameterization.

The input vectors for the NCAR CAM LWR para-
meterization include ten vertical profiles (atmospheric
temperature, humidity, ozone, CO2, N2O, CH4, two
CFC mixing ratios (the annual mean atmospheric mole
fractions for halocarbons), pressure, and cloudiness)
and one relevant surface characteristic (upward LWR
flux at the surface). The CAM LWR parameterization
output vectors consist of the vertical profile of heating
rates (HRs) and several radiation fluxes, including the
outgoing LWR flux from the top layer of the model
atmosphere (the outgoing LWR or OLR). The NN
emulation of the NCAR CAM LWR parameterization
has the same number of inputs (220 total) and outputs
(33 total) as the original NCAR CAM LWR parame-
terization.

NCAR CAM was run for 2 years to generate rep-
resentative data sets. The first year of the model sim-
ulation was divided into two independent parts, each
containing input/output vector combinations. The first
part was used for training and the second for validation
(control of overfitting, control of a NN architecture,
etc.). The second year of the simulation was used to
create a test data set completely independent from both
the training and validation sets. This data set was used
for testing only. All approximation statistics presented
in this section were calculated using this independent
test data set.

The NN emulations developed were tested against
the original NCAR CAM LWR parameterization. Both
the original LWR parameterization and its NN emula-
tion are complex multidimensional mappings. Because
of their complexity, many different statistics and statis-
tical cross-sections were calculated to obtain a com-
plete enough comparison between these two objects
and to evaluate the accuracies of the NN emulations.
The mean difference B (bias or systematic error of
approximation) and the root mean square difference
RMSE (a root mean square error of approximation)
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between the original parameterization and its NN emu-
lation are calculated as follows:

B = 1

N × L

N∑

i=1

L∑

j=1

[Y (i, j) − YNN(i, j)]

RMSE =

√√√√√
N∑

i=1

L∑
j=1

[Y (i, j) − YNN(i, j)]2

N × L
(11.8)

where Y (i, j) and YNN(i, j) are outputs from the orig-
inal parameterization and its NN emulation, respec-
tively, where i = (latitude, longitude), i = 1, . . . , N is
the horizontal location of a vertical profile; N is the
number of horizontal grid points; and j = 1, . . . , L is
the vertical index where L is the number of the vertical
levels.

These two error characteristics (equations (11.8))
describe the accuracy of the NN emulation integrated
over the entire 4-D (latitude, longitude, height, and
time) data set. Using a minor modification of equations
(11.8), the bias and RMSE for the mth vertical level of
the model can be calculated:

Bm = 1

N

N∑

i=1

[Y (i, m) − YNN(i, m)]
(11.9)

RMSEm =

√√√√√
N∑

i=1
[Y (i, m) − YNN(i, m)]2

N

The root mean square error can also be calculated for
each i th profile:

prmse(i) =
√√√√ 1

L

L∑

j=1

[Y (i, j) − YNN(i, j)]2

(11.10)

This error is a function of the horizontal location of the
profile. It can be used to calculate a mean profile root
mean square error PRMSE and its standard deviation
σPRMSE which are location independent:

PRMSE = 1

N

N∑

i=1

prmse(i)

(11.11)

σPRMSE =
√√√√ 1

N − 1

N∑

i=1

[prmse(i) − PRMSE]2

The statistics (11.11) and (11.8) both describe the
accuracy of the NN emulation integrated over the
entire 4-D data set. However, because of a different
order of integration it reveals different and comple-
mentary information about the accuracy of the NN
emulations. The root mean square error profile can be
calculated:

prmse( j) =
√√√√ 1

N

N∑

i=1

[Y (i, j) − YNN(i, j)]2

(11.12)

Several NNs have been developed that all have one
hidden layer with 20 to 300 neurons. Varying the num-
ber of hidden neurons allows one to demonstrate the
dependence of the accuracy of NN emulation on this
parameter, which is actually the complexity of the NN
emulation, as well as selecting an optimal NN emu-
lation (Krasnopolsky et al. 2005) with the minimal
complexity that still provides an emulation accuracy
sufficient for a successful multi-decadal climate model
integration.

All NN emulations (Krasnopolsky et al. 2005;
Krasnopolsky and Fox-Rabinovitz 2006a, b) devel-
oped for the NCAR CAM LWR have almost zero or
negligible systematic errors (biases). Figure 11.1 illus-
trates convergences of root mean square errors (11.8,
11.9, and 11.11) that are random errors in the case
of negligible biases. The figure shows that an error
convergence has been reached when the number of
hidden neurons k ≈ 100. However, the convergence
becomes slow and non-monotonic at k ≈ 50. The final
decision about the optimal NN emulation (in terms
of sufficient accuracy and minimal complexity) to be
implemented into the model is based on decadal (40
year) integrations using the NN emulations within
HGCM (Krasnopolsky et al. 2005; Krasnopolsky and
Fox-Rabinovitz 2006a, b). For assessing the impact
of using an NN emulation of the LWR parameteri-
zation in the HGCM, parallel climate simulation runs
were performed with the original GCM (NCAR CAM
including the original LWR parameterization) as the
control run and with the HGCM (NCAR CAM includ-
ing the NN emulations of LWR described above).
The climate simulations were run for 50 years. As
is usually done in climate simulations the simulated
fields for the first 10 years, that potentially include
the climate model spin-up effects, are not used for the
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Fig. 11.1 The convergence of root mean square errors (11.8, 11.9, and 11.11). Solid line – RMSE26 (11.9) dashed line – RMSE
(11.8), and dotted line – PRMSE (11.11)

analysis of the simulation results, leaving the remain-
ing 40 year period to be used for that purpose.

The NN emulation with k = 50 (NN50) is the sim-
plest NN emulation that could be integrated into the
model for decadal (40 years or longer) climate sim-
ulations without any visible (significant) accumula-
tions of errors in climate simulations, compared to the
control run with the original LWR parameterization.
This is the main indicator (in the framework of this
NN application) that the accuracy of this NN emu-
lation is sufficient for this application. Figure 11.2
shows the vertical error profile (11.12) prmse(j) for
the “optimal” NN emulation with 50 hidden neurons
(NN50). It shows that the errors are very small; at the
top 10 levels the error does not exceed 0.2 K/day, at
the top 20 levels it does not exceed 0.3 K/day and
reaches just about 0.6–0.8 K/day at the lowest level,
which does not lead to significant errors in the 40 year
climate simulations with HGCM. In addition to having
sufficient emulation accuracy, the NN50 NN emula-

tion performs about 150 times faster than the original
NCAR CAM LWR parameterization in a code by code
comparison.

Comparisons between the control and NN emu-
lation runs are presented in Table 11.1. They are
done by analyzing the time (40-year) and global
mean differences between the results of the paral-
lel runs, as is routinely done in climate modeling.
In the climate simulations performed with the orig-
inal GCM and with HGCM, the time and global
mean mass or mean surface pressure are precisely
preserved, which is the most important preservation
property for climate simulations. For the NN50 run,
there is no difference in mean sea surface pressure
between the NN and control runs (see Table 11.1).
Other time global means, some of which are also
presented in Table 11.1, show a profound similar-
ity between the parallel simulations for these terms.
These very small differences indicate the very close
results from the parallel climate simulations. Other
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Fig. 11.2 The vertical error
profile (11.10), prmse(j), for
the “optimal” LWR NN
emulation with 50 hidden
neurons (NN50)

simulations (with NN90, NN150, NN200, etc.) also
show that the HGCM results are profoundly similar to
those of the original GCM (Krasnopolsky et al. 2005;
Krasnopolsky and Fox-Rabinovitz 2006a, b). It is note-
worthy that the differences between these parallel runs
(HGCM and GCM) do not exceed the differences seen
in two identical GCM runs performed on different
supercomputers.

11.5.2 NASA NSIPP Long Wave Radiation

The robustness of the NN emulation approach was
investigated using another GCM. The NASA NSIPP
GCM (with a different LWR parameterization and
other different model components compared to the
NCAR CAM and its LWR parameterization) was used
for this purpose. The input vector for the NSIPP LWR

Table 11.1 Time (40-years) and global means for mass (mean
sea level pressure) and other model diagnostics for the NCAR
CAM-2 climate simulations with the original LWR para-

meterization (in GCM), and its NN emulation (in HGCM) using
NN50 and their differences (in %)

GCM with the original HGCM with NN
Field LWR parameterization emulation Difference (in %)

Mean sea level pressure (hPa) 1,011.48 1,011.48 <10−3

Surface temperature (K) 289.02 288.97 0.02
Total precipitation (mm/day) 2.86 2.89 1.04
Total cloudiness (fractions, %) 60.71 61.26 0.9
Wind at 12 km (m/s) 16.21 16.16 0.3
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includes surface temperature and five vertical pro-
files of cloud fraction, pressure, temperature, specific
humidity and ozone mixing rate, for a total of 202
inputs. The NSIPP LWR output vector consists of a
profile of heating rates and one surface parameter, for
a total of 41 outputs.

The NN emulation accuracy and complexity results
in this case (Krasnopolsky et al. 2005; Krasnopolsky
and Fox-Rabinovitz 2006a, b) are very similar to the
ones presented above for NCAR CAM. This illustrates
the robustness of the NN emulation approach.

11.5.3 NCAR CAM Short Wave Radiation

The second component of atmospheric radiation is
short wave radiation (SWR). LWR and SWR together
comprise the total atmospheric radiation. The function
of the SWR parameterization in atmospheric GCMs
is to calculate the heating fluxes and rates produced
by SWR processes. A description of the NCAR CAM
atmospheric SWR parameterization is presented in a
special issue of Journal of Climate (1998). The input
vectors for the NCAR CAM SWR parameterization
include twenty-one vertical profiles (specific humid-
ity, ozone concentration, pressure, cloudiness, aerosol
mass mixing ratios, etc.) and several relevant surface
characteristics. NN emulations for the CAM-2 and
CAM-3 versions of NCAR CAM SWR parameteri-
zations have been developed (Krasnopolsky and Fox-
Rabinovitz 2006a, b). The major difference between
the CAM-2 and CAM-3 SWR versions is that CAM-
3 uses significantly more information about aerosols.
This extended aerosol information is responsible for
a substantial increase in the number of inputs into
the CAM-3 SWR parameterization as compared with
CAM-2. The CAM SWR parameterization output vec-
tors consist of a vertical profile of heating rates (HRs)
and several radiation fluxes.

The data sets for training, validating, and testing
SWR emulating NNs were generated in the same way
as those for the LWR NN emulations described above.
SWR NN emulations were tested against the original
NCAR CAM SWR parameterizations using the inde-
pendent test set.

The NN emulations of NCAR CAM-2 and CAM-
3 SWR parameterizations have 173 and 451 inputs,
respectively, and 33 outputs, which are the same

numbers as the inputs and outputs for the original
NCAR CAM-2 and CAM-3 SWR parameterizations.
As in the case of the LWR parameterizations, several
NNs were developed that all have one hidden layer
with 20 to 300 neurons. In the case of the SWR para-
meterizations, the convergence of root mean square
errors (11.8, 11.9, and 11.11) is very similar to that
for the LWR parameterization shown in Fig. 11.1. The
convergence is reached when the number of hidden
neurons k ≈ 100. However, it becomes slow and non-
monotonic at k ≈ 50. The NN emulation with k = 55
(NN55) is the simplest NN emulation that satisfies
the sufficient accuracy criterion; it could be integrated
in the HGCM for multi-decadal simulations without
visible (significant) accumulations of errors in climate
simulations as compared to the control run with the
original SWR parameterization. Figure 11.3 shows the
vertical error profile (11.12) prmse(j) for the “optimal”
NN emulation NN55. It shows that the errors are very
small; at the top 20 levels the error does not exceed
0.2 K/day and reaches just about 0.45 K/day at the
lowest level, which does not lead to significant errors
in the HGCM climate simulations. In addition to suf-
ficient emulation accuracy, the NN55 SWR NN emu-
lation performs about 20 times faster than the original
NCAR CAM SWR parameterization in a code by code
comparison.

Comparisons between the control and NN emula-
tion runs are also presented in Table 11.2 (see the
Table 11.1 explanation in the text above). For the
NN55 run there is a negligible difference between
the NN and control runs for sea surface pressure (see
Table 11.2). Other time global means, some of which
are also presented in Table 11.2, show a profound sim-
ilarity between the parallel simulations for these terms,
with differences usually within about 0.3%. These very
small differences indicate the very close results from
the parallel climate simulations. Other simulations
(with NN100, NN150, etc.) also show that the HGCM
results are profoundly similar to those of the original
GCM (Krasnopolsky and Fox-Rabinovitz 2006a, b).

11.5.4 NCAR CAM Full Radiation

It was shown in the previous subsections that both
components of radiation, LWR and SWR, can be suc-
cessfully emulated using the NN approach. This means
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that these most time consuming components of model
physics can be significantly sped up without any nega-
tive impact on the accuracy of the climate simulations.
The next logical step is to combine these two NN emu-
lations (LWR and SWR) to emulate the total model
radiation. The NN50 LWR emulation and NN55 SWR
emulation described in the previous subsections were
combined together in one HGCM. This HGCM with
the NN emulations of the total model radiation was
integrated for 40 years and the results of the climate
simulation were compared with those of the NCAR

CAM-2 GCM simulation control run with the original
NCAR CAM LWR and SWR parameterizations. In
addition to having a sufficient emulation accuracy, the
total radiation NN emulations perform about 12 times
faster in the model than the original NCAR CAM para-
meterizations in terms of model time spent to calculate
total radiation.

Comparisons between the control and NN emu-
lation runs are presented in Table 11.3 (see the
Table 11.1 explanation in the text above). For the
total radiation run there is a negligible difference of

Table 11.2 Time (40-years) and global means for model diagnostics from NCAR CAM-2 climate simulations with the original
SWR (in GCM), its NN emulation (in HGCM) using NN55, and their differences (in %)

GCM with the original HGCM with SWR
Field SWR parameterization NN emulation Difference (in %)

Mean sea level pressure (hPa) 1,011.48 1,011.49 0.001
Surface temperature (K) 289.01 288.97 0.01
Total precipitation (mm/day) 2.86 2.86 <0.1
Total cloudiness (fractions, %) 60.73 60.89 0.3
Wind at 12 km (m/s) 16.21 16.20 0.06
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Table 11.3 Time (40-years) and global means for model
diagnostics from NCAR CAM-2 climate simulations with the
original LWR and SWR (in GCM), their NN emulations (in

HGCM) using NN50 (LWR) and NN55 (SWR), and their dif-
ferences (in %)

GCM with the original LWR HGCM with LWR and
Field and SWR parameterizations SWR NN emulations Difference (in %)

Mean sea level pressure (hPa) 1,011.48 1,011.50 0.002
Surface temperature (K) 289.02 288.92 0.03
Total precipitation (mm/day) 2.86 2.89 1.04
Total cloudiness (fractions, %) 60.71 61.12 0.6
Wind at 12 km (m/s) 16.21 16.29 0.5

0.002% between the NNs and control runs for sea
surface pressure (see Table 11.3). Other time global
means, some of which are also presented in Table 11.3,
show a profound similarity between the parallel simu-
lations for these terms. These very small differences
indicate the very close results from the parallel climate
simulations.

11.6 Ocean Application of the Hybrid
Model Approach: Neural Network
Emulation of Nonlinear
Interactions in Wind Wave Models

The ocean wind wave model used for simulation and
forecast purposes is another example of an ENM. It
is based on a form of the spectral energy or action
balance equation (11.2) and has the nonlinear wave-
wave interaction source term Snl as a part of the model
physics in the right hand side of the equation. In its full
form (e.g., Hasselmann and Hasselmann 1985) the cal-
culation of the Snl interactions requires the integration
of a six-dimensional Boltzmann integral:

Snl
(	k4

) = T ⊗ F
(	k)

= ω4

∫
G

(	k1, 	k2, 	k3, 	k4
) · δ

(	k1 + 	k2 − 	k3 − 	k4
)

× δ
(
ω1 + ω2 − ω3 − ω4

) [
n1 · n3 · (

n4 − n2
)

+ n2 · n4 · (n3 − n1
)]

d	k1d	k2d	k1 (11.13)

n
(	k) = F

(	k)

ω
; ω2 = g · k · tanh(kh)

where the complicated coupling coefficient G contains
moving singularities; T is a symbolic representation
for the mapping. This integration requires roughly 103

to 104 times more computational effort than all other
aspects of the wave model combined. Present opera-
tional constraints require that the computational effort
for the estimation of Snl should be of the same order
of magnitude as the remainder of the wave model.
This requirement was met with the development of
the Discrete Interaction Approximation (DIA, Hassel-
mann et al. 1985). Two decades of experience with the
DIA in wave models has identified significant short-
comings in the DIA (Tolman et al. 2005). It is not
sufficiently accurate and, in many physically important
cases, significantly deviates from the equation (11.13)
deteriorating the prediction capabilities of the wind
wave model (11.2).

When considering the above, it is crucially impor-
tant for the development of third generation wave mod-
els to develop an economical yet accurate approxima-
tion for Snl . A Neural Network Interaction Approx-
imation (NNIA) was explored to achieve this goal
(Krasnopolsky et al. 2002; Tolman et al. 2005). NNs
can be applied here because the nonlinear interaction
(11.13) is essentially a nonlinear mapping, symboli-
cally represented by T , which relates two vectors F
and Snl (2-D fields in this case). Discretization of S and
F (as is necessary in any numerical approach) reduces
(11.13) to a continuous mapping of two vectors of
finite dimensions. Modern high resolution wind wave
models use descretization on a two dimensional grid
which leads to S and F vector dimensions on the order
of N ∼ 1,000. It seems unreasonable to develop a NN
emulation of such a high dimensionality (about 1,000
inputs and outputs). Moreover, such a NN will be grid
dependent.

In order to reduce the dimensionality of the NN
and convert the mapping (11.13) to a continuous
mapping of two finite vectors that are less dependent
on the actual spectral discretization, the spectrum F
and source function Snl are expanded using systems of



000–0–00–000000–0 11-Haupt-c11 SHB0024-Haupt (Typeset by SPi, Delhi) page 229 of 234 September 30, 2008 11:22

11 NNs for Hybrid Numerical Models 229

Decomposition 

Composition 

NN

( , )F f θ

( , )nlS f θ

X

Y

0

( , ) ( , )iix d df F f f
π

π

θ θ θ
∞

−

= Φ∫ ∫

00
11

tanh( )
nk

q q qj j ji i
ij

y a a b b x
==

= + ⋅ + ⋅∑ ∑

1

( , ) ( , )
M

nl q q
q

S f y fθ θ
=

= Ψ∑

Fig. 11.4 Graphical
representation of the NNIA
and NNIAE algorithms

two-dimensional functions, each of which (�i and �q)

creates a complete and orthogonal two-dimensional
basis

F ≈
n∑

i=1

xi�i , Snl ≈
m∑

q=1

yq�q , (11.14)

where for the coefficients of decomposition/com-
position xi and yq ,

xi =
∫∫

F�i , yq =
∫∫

Snl�q , (11.15)

where the double integral identifies integration over
the spectral space. Now, the developed NN emulation
relates vectors of coefficients X and Y: Y =TNN(X).

To train the NN emulation TNN , a training set has
to be created that consists of pairs of the vectors X
and Y. To create this training set, a representative set
of spectra Fp has to be generated with corresponding
(exact) interactions Snl,p using equation (11.13). For
each pair (F, Snl)p, the corresponding vectors (X,Y)p

are determined using equation (11.15). These pairs of
vectors are then used to train the NN to obtain TNN .
After TNN has been trained, the resulting NN Inter-
action Approximation (NNIA) algorithm consists of
three steps: (i) decompose the input spectrum F by
applying equation (11.15) to calculate X; (ii) estimate
Y from X using NN; and (iii) compose the output
source function Snl from Y using equation (11.14).

A graphical representation of the NNIA algorithm is
shown in Fig. 11.4.

Two approaches have been used for the basis func-
tions. The first is the mathematical basis used in
Krasnopolsky et al. (2002). As is usually done in the
parametric spectral description of wind waves, separa-
ble basis functions are chosen where the frequency and
angular dependence are separate. The advantage of this
choice of basis functions is the simplicity of the basis
generation. The disadvantage is the slow convergence
of the decompositions. As an alternative, a second
approach to the basis functions choice has been inves-
tigated. In this approach Empirical Orthogonal Func-
tions (EOFs) or principal components (Lorenz 1956;
Jolliffe 2002) are used (Tolman et al. 2005).

EOFs compose a statistically optimal basis. In
the case considered, the basis functions �i and �q

are functions of two variables f and θ . The set of
spectra F and source terms Snl , which are used for
the training of the NN, are also used to generate
the EOFs for decomposing F and Snl . When using
EOFs the basis generation procedure is computation-
ally expensive, with the cost increasing as the res-
olution of the model increases. However, as in NN
training the basis generation needs to be performed
only once. Stored results can be used without the
need to recalculate in the final NNIA algorithm. The
main advantage of EOFs is the fast convergence of
the decomposition.
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Table 11.4 Approximation RMSes (in nondimensional units)
and performance (DIA calculation time is selected as a unit) for
DIA, NNIA, NNIAE, and exact Snl calculation (original)

Algorithm RMSE Performance

DIA 0.312 1
NNIA 0.088 4
NNIAE 0.035 7
Original parameterization 0. ∼8. × 105

To distinguish between NN algorithms using dif-
ferent basis functions for decomposition, we use the
abbreviation NNIAE for our NN algorithm that used
the EOF basis. Table 11.4 demonstrates comparisons
of the accuracy and performance of DIA with the two
NN emulations NNIA and NNIAE, all versus the exact
calculation of Snl original parameterization. Approx-
imation errors (RMSEs) are calculated in nondimen-
sional units and performance is measured in DIA cal-
culation times (taken as a unit). The NNIAE is nearly
ten times more accurate than DIA. It is about 105 times
faster than the original parameterization. As in the
case of the atmospheric long wave radiation, a care-
ful investigation of the parallel runs with the original
ENM (the wave model with the original wave-wave
interaction) and the HEM run with the NN emulation
should be performed for the final test of the NN emu-
lation (Tolman et al. 2005).

11.7 Discussion

11.7.1 Summary and Advantages of the
Hybrid Modeling Approach

In this chapter, we reviewed a new hybrid paradigm in
environmental numerical modeling. Within the frame-
work of this paradigm a new type of ENM – a hybrid
environmental model (HEM) based on a synergetic
combination of deterministic modeling and statistical
learning within an HEM (using a NN technique) is
introduced. This approach uses NNs to develop highly
accurate and fast emulations of model physics compo-
nents. The presented results show:

(i) The conceptual and practical possibility of devel-
oping HEMs with accurate NN emulations of
model components, which preserve the integrity
and all the detailed features of the original
ENM.

(ii) NN emulations of model physics parameteriza-
tions developed by Krasnopolsky et al. (2000,
2002, 2005) are practically identical to the orig-
inal physical parameterizations, due to the capa-
bility of NN techniques to very accurately emu-
late complex systems like the model physics. This
fact allows the integrity and level of complexity
of the state-of-the-art parameterizations of model
physics to be preserved. As a result, for example,
a HGCM using these NN emulations produces
climate simulations that are practically identical
to those of the original GCM. It is noteworthy that
the NN emulation developed has the same inputs
and outputs as the original parameterization and
is used precisely as its functional substitute within
the model.

(iii) That accurate NN emulations are robust and very
fast (10 to 105 times faster than the original para-
meterization) so the significant speed-up of HEM
calculations can be achieved without compromis-
ing accuracy.

(iv) That statistical (NN) components can be success-
fully combined with deterministic model compo-
nents within the HEM so their synergy can be effi-
ciently used for environmental and climate mod-
eling without any negative impacts on simulation
quality.

(v) That this productive synergy or new combina-
tion of state-of-the-art deterministic and NN emu-
lation approaches leads to new opportunities in
using HEMs for environmental and climate sim-
ulations and prediction. For example new more
sophisticated parameterizations, or even “super-
parameterizations” such as a cloud resolving
model, that are extremely time consuming or even
computationally prohibitive if used in their orig-
inal form will become computationally “afford-
able” in ENMs when using their accurate and
computationally much more efficient NN emula-
tions in HEMs.

11.7.2 Limitations of the Current Hybrid
Modeling Framework

The development of NN emulations, the core of the
hybrid modeling approach, depends significantly on
our ability to generate a representative training set
to avoid using NNs for extrapolation far beyond the
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domain covered by the training set. Because of high
dimensionality of the input domain that is on the order
of several hundreds or more, it is rather difficult to
cover the entire domain, especially the “far corners”
associated with rare events, even when we use simu-
lated data for the NN training. Another related problem
is that NN emulations are supposed to be developed
for an environmental or climate system that changes
in time. This means that the domain configuration for
a climate simulation may evolve over time, for exam-
ple, when using a future climate change scenario. In
both situations described the emulating NN may be
forced to extrapolate beyond its generalization ability
and may lead to errors in NN outputs and result in
simulation errors in the corresponding HEM. The next
subsection is devoted to addressing these issues.

11.7.3 Current and Future Developments
of the Hybrid Modeling Approach

Two new techniques are being developed to take care
of the kind of problems outlined in the previous sec-
tion and to make the NN emulation approach suitable
for long-term climate change simulations and other

applications – a compound parameterization (CP) and
a NN dynamical adjustment (DA) (Krasnopolsky and
Fox-Rabinovitz 2006a, b). Here they are only briefly
outlined.

CP consists of the following three elements: the
original parameterization, its NN emulation, and a
quality control (QC) block. During a routine HEM
simulation with CP, QC block determines (at each time
step of integration at each grid point) based on some
criteria whether the NN emulation or the original para-
meterization has to be used to generate physical para-
meters (parameterization outputs). When the original
parameterization is used instead of the NN emulation,
its inputs and outputs are saved to further adjust the
NN emulation. After accumulating a sufficient num-
ber of these records, a DA of the NN emulation is
produced by a short retraining using the accumulated
input/output records. Thus, the adapted NN emulation
becomes dynamically adjusted to the changes and/or
new events/states produced by the complex environ-
mental or climate system.

There were different possible designs considered
for QC (Tolman and Krasnopolsky 2004, Krasnopol-
sky and Fox-Rabinovitz 2006a, b). The first and sim-
plest QC design is based on a set of regular phys-
ical and statistical tests that are used to check the
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Fig. 11.5 Compound parameterization design for the NCAR
CAM SWR. For each NN emulation (NN55 in this case), addi-
tional NNs (Error NN) is trained specifically for predicting, for
a particular input, X , the errors, Yε , in the NN emulation output

YNN . If these errors do not exceed a predefined threshold (mean
value plus two standard deviations in this case), the SWR NN
emulation (NN55) is used; otherwise, the SWR original para-
meterization is used instead of the NN emulation
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Fig. 11.6 Probability density distributions of emulation errors
for the SWR NN emulation NN55 (solid line) and for the
compound SWR parameterization (dashed line) are shown in
Fig. 11.5. Both errors are calculated vs. the original SWR

parameterization. Compound parameterization reduces the
probability of medium and large errors an order of magnitude.
Vertical axis is logarithmic

consistency of the NN outputs. This is the simplest,
mostly generic but not sufficiently focused approach.

The second more sophisticated and effective QC
design is based on training, for each NN emulation,
an additional NN to specifically predict the errors in
the NN emulation outputs from a particular input. If
these errors do not exceed a predefined threshold the
NN emulation is used; otherwise, the original para-
meterization is used instead. A CP of this design was
successfully tested for the NCAR CAM SWR. For
the SWR NN55 (see Section 11.5.3) an error NN
was trained which estimated a NN55 output error
prmse(i) (11.10) for each particular input vector Xi .
The design of the CP in this case is shown in Fig. 11.5.
Figure 11.6 shows the comparison of two error
probability density functions. One curve (solid line)

corresponds to the emulation errors of NN55, another
(dashed line) corresponds to the emulation errors of the
CP shown in Fig. 11.5 (both errors are calculated vs.
the original parameterization on the independent test
set; vertical axes are logarithmic). Figure 11.6 demon-
strates the effectiveness of CP; the application of CP
reduces medium and large errors by about an order
of magnitude. Figure 11.7 demonstrates the effec-
tiveness of CP in removing outliers, and Table 11.5
shows improvements in other statistical measures. It
is noteworthy that for this CP less than 2% of the
SWR NN emulation outputs are rejected by QC and
calculated using the original SWR parameterization.
Further refinement of the criteria used in the QC may
result in a reduction in the already small percentage of
outliers.
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Fig. 11.7 Scatter plot for HRs calculated using the SWR NN
emulation NN55 (left figure) vs. the original SWR parameter-
ization (left and right horizontal axes) and for HRs calculated
using the SWR compound parameterization (right figure) vs. the

original SWR parameterization. Gray crosses (left figure) show
outliers that will be eliminated by the compound parameteriza-
tion (right figure)

The third QC design is based on the domain check
technique proposed in the context of NN applications
to satellite remote sensing (see Chapter 9, Section 9.5).
In this case, QC is based on a combination of forward
and inverse NNs. This design has already been suc-
cessfully applied, as a preliminary study, to the ocean
wave model (Section 11.6) (Tolman and Krasnopol-
sky 2004). Figure 11.8 illustrates the CP design in the
case of the NNIA described in Section 11.6.

The parameterization Jacobian, a matrix of the first
derivatives of parameterization outputs over inputs,
may be useful in many cases. For example, in
data assimilation applications (an optimal blending
of observational and simulated data to produce the
best possible fields) a Jacobian is used to create an
adjoint (a tangent-linear approximation). A Jacobian
is also instrumental for a statistical analysis of the
original parameterization and its NN emulation. An
inexpensive computation of the Jacobian when using
a NN emulation is one of the advantages of the

X YNN

X'

NN

iNN

Original
Parameterization

||X-X‘||<e

F(f,q)

No

Yes
Snl

Snl(f,q)YNN

CP

Snl

Fig. 11.8 Compound parameterization design for the NNIA
and NNIAE algorithms described in Section 11.6 and shown
in Fig. 11.4. Due to the use of the EOF decomposition and
composition procedures the inverse NN (iNN) and QC block is
implemented on the level of composition coefficients X and X ′

NN approach. Using this Jacobian in combination
with the tangent-linear approximation can addition-
ally accelerate the calculations (Krasnopolsky et al.
2002). However since the Jacobian is not trained, it is
simply calculated through the direct differentiation of

Table 11.5 Error statistics for SWR NN emulation NN55 and SWR compound parameterization: Bias and RMSE (25), RMSE26
(26), and Extreme Outliers (Min Error & Max Error)

Bias RMSE RMSE26 Min error Max error

SWR NN55 4.10−3 0.193 0.434 −46.1 13.6
SWR CP 4.10−3 0.171 0.302 −9.2 9.5
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an emulating NN. In this case the statistical inference
of a Jacobian is an ill-posed problem and it is not guar-
anteed that the derivatives will be sufficiently accurate.

It is noteworthy that for the type of NN applications
considered in this section, the NN emulation approach
that treats a parameterization of model physics as a sin-
gle object offers a simple and straightforward solution
that alleviates the need for calculating the NN Jaco-
bian explicitly. The adjoint tangent-linear approxima-
tion of a parameterization (e.g., of a radiation parame-
terization) may be considered as an independent/new
parameterization, the NN emulation approach can be
applied to such a parameterization, and a separate
NN emulation can be trained to emulate the adjoint.
For other applications that require an explicit cal-
culation of the NN Jacobian, several solutions have
been offered and investigated (Aires et al. 1999, 2004;
Krasnopolsky 2006).
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