Implementing a Neural Network Emulation
of a Satellite Retrieval Algorithm

George S. Young

10.1 Introduction

As shown in Stogryn et al. (1994), Krasnopolsky
et al. (1995), Thiria et al. (1993), Cornford
et al. (2001), and many other studies summarized
in Chapter 9, neural networks (NN) can be used to
emulate the physically-based retrieval algorithms
traditionally used to estimate geophysical parameters
from satellite measurements. The tradeoff involved
is a minor sacrifice in accuracy for a major gain in
speed, an important factor in operational data analysis.
This chapter will cover the design and development of
such networks, illustrating the process by means of an
extended example. The focus will be on the practical
issues of network design and troubleshooting. Two
topics in particular are of concern to the NN developer:
computational complexity and performance shortfalls.
This chapter will explore how to determine the
computational complexity required for solving a
particular problem, how to determine if the network
design being validated supports that degree of
complexity, and how to catch and correct problems in
the network design and developmental data set.

As discussed in Chapter 9, geophysical remote
sensing satellites measure either radiances using
passive radiometers or backscatter using a trans-
mitter/receiver pair. The challenge is then to esti-
mate the geophysical parameters of interest from
these measured quantities. The physics-based forward

George S. Young (<)

Department of Meteorology, The Pennsylvania State University,
PA, USA

Address: 503 Walker Building, University Park, PA 16802, USA
Phone: 814-863-4228; fax (814) 865-9429;

email: young @meteo.psu.edu

S. E. Haupt et al. (eds.), Artificial Intelligence Methods in the Environmental Sciences

© Springer-Verlag Berlin Heidelberg 2009

problem (equation 9.4) captures the cause and effect
relationship between the geophysical parameters and
the satellite-measured quantities. Thus, the forward
problem must be a single-valued function (i.e. have
a single possible output value for each set of input
values) if we have access to all of its input parameters.
As a result, the forward problem is generally well-
posed, i.e. variations in the input parameters are not
grossly amplified in the output. One could, however,
imagine some geophysical processes for which the for-
ward problem was ill-posed for some parameter values
as a result of a sudden transition from one regime
of behavior to another (e.g. the onset of fog forma-
tion producing a sharp change in shortwave albedo in
response to a minor change in air temperature).

In contrast to the forward problem, the inverse prob-
lem of deducing geophysical parameters from satellite
measurements does not follow cause and effect and so
is not necessarily single-valued over the bulk of the
input parameter space. Thus, these satellite retrieval
problems are often ill-posed over a significant part of
their input parameter space. As a result, the transfer
function (equation 9.5) can be multi-valued, having
a finite number of solutions at each point in some
regions ofthe input parameter space and an infinite
number of solutions at points along the borders of
these regions. These issues must be addressed via
some form of regularization (i.e. using prior knowl-
edge of the problem’s physics to constrain the solution
in some way). The extended example described below
exhibits all of these problems.

The example examined here is the classic problem
of retrieving sea surface wind speed from satellite
measurements of sea surface backscatter. In this case,
a Synthetic Aperture Radar (SAR) is used to measure
the backscatter from short-wavelength, wind-driven

207

10

208

G.S. Young

ocean waves. Because the wave amplitude is driven by
the wind-induced surface stress, the forward or causal
direction is from wind speed to backscatter. Thus, the
problem of interest for remote sensing is the inverse or
retrieval problem.

The traditional approach to solving the SAR
wind speed retrieval problem makes use of a semi-
empirical model that exists for the forward problem
(Monaldo et al. 2001). The version used here is called
CMOD4 (Stoffelen and Anderson 1997a, b). This for-
ward model is, however, too complex to invert analyt-
ically, so that approach can’t be used to produce an
analytic model for the inverse problem. Instead, the
traditional approach is to run the forward problem for
the full range of expected wind speeds, and then select
the speed for which it predicts a backscatter value clos-
est to that observed. This approach involves running
the computationally expensive physics-based forward
model many (typically 25) times for each pixel in a
SAR image, thus restricting realtime applications and
bulk data analysis.

NN, however, are well suited to emulating smooth
nonlinear functions such as that in the forward
(CMOD4) model (see Chapter 9). This raises a num-
ber of questions concerning their potential for improv-
ing the efficiency of the wind speed retrieval process.
Could we achieve speed up (i.e. use fewer or faster
floating point operations and intrinsic function calls)
by using a NN to emulate the forward model? Could
we go one step further and use a NN to emulate the
inverse model even though its analytic form is not
known? Because we have a physics-based analytic
model for the forward problem we can generate the
data required to train a NN for either the forward or
inverse problem as discussed in Chapter 9.

There are, thus, several ways in which NN could be
applied to solve the SAR wind speed retrieval prob-
lem. First, one can emulate the forward model with a
NN and retain the current brute-force-search approach
(i.e. examining each of the 25 candidates) to finding a
wind speed that yields the observed backscatter. While
likely to succeed because the forward physics is gen-
erally well-posed, this approach maintains the funda-
mental inefficiency of the traditional method, using
many forward model runs to obtain the answer for each
pixel. Second, one can emulate the inverse model with
a NN. This is a potentially more challenging problem
because the physics is apt to be ill-posed in at least part
of the input parameter space. It does, however, offer a

distinct advantage in terms of efficiency because only
one model run is required per pixel. We’ll explore the
pros and cons of these two approaches as the example
unfolds below. Third, one can follow the approach
suggested by Thiria et al. (1993) for similar prob-
lems in scatterometry, emulating the inverse model
with a categorization rather than regression NN. This
approach only partially mitigates the inefficiency of
using a multi-run forward model to solve the retrieval
problem because, although the NN is run only once,
the network’s output layer has a node for each of the
discretized values of wind speed. The activation output
of each of these output nodes is the coefficient of like-
lihood for the corresponding value of wind speed. A
continuous value of wind speed is obtained by fitting
an interpolation curve to the peak of this likelihood
function. The Thiria et al. method does, however, offer
the interesting benefit of documenting whether the
inverse function is single- or multi-valued: a single
peak will occur in the plot of likelihood coefficient ver-
sus wind speed if inverse function is single-valued and
multiple peaks will occur if it is multi-valued. Thus,
this third approach can serve a valuable diagnostic
role, guiding the development of more efficient meth-
ods based on the inverse regression model approach.

10.2 Method

The success of a NN development project depends
crucially on two factors, use of an appropriate train-
ing data set and design of a minimally complex, but
sufficient network. As we shall see as the example
progresses, both of these factors can pose serious chal-
lenges in ill-posed retrieval problems.

10.2.1 Developmental Data

As pointed out in Chapter 9, the existence of an ana-
lytic forward model such as CMOD4 offers several
advantages when developing a NN for the correspond-
ing retrieval problem. Using the forward model to gen-
erate the training datasets allows us to cover the entire
parameter space with cases, including types of events
that would be rare in observations. This eliminates one
of the common problems encountered when training
a NN from observations wherein the observation set,

10 Implementing NNS for Satellite Retrieval

209

and thus the network’s fitness, is dominated by the
climatologically most likely parts of the input parame-
ter space. By using the physics-based forward model
to uniformly cover all parts of the parameter space
with cases, we can ensure that the NN is trained to
perform as well in the rarer parts of the input para-
meter space as it does in the more commonly encoun-
tered cases. A NN trained in this manner functions in
interpolation mode for all cases rather than having to
extrapolate from the training set when dealing with the
rarer events. As discussed in Chapter 9, this approach
leads to better generalization, i.e. better performance
in actual operations.

For the SAR wind speed problem the parameters
are surface wind speed, backscatter, incidence angle,
and the radar look direction relative to the surface
wind direction (Monaldo et al. 2001). For the forward
model all but backscatter are input parameters and for
the inverse model all but wind speed are. Thus, to
obtain developmental data for both the forward and
inverse models, CMOD4 was used to create a uniform
four-dimensional grid of backscatter values with cases
spaced every 1° in incidence angle, every 1° in radar
look angle relative to the wind direction, and at 450
values of wind speed from 0 to 60 ms~". This results in
5,670,000 cases, more than can be processed in a rea-
sonable time via the NN training algorithm. Therefore
two samples of 10,000 cases are selected at random,
one for training the network, a second for validation,
and a third for final validating. Given the independence
of the samples, high performance on the validation set
indicates that the NN has been fit robustly across the
input parameter space. Of course, if the same valida-
tion set is used repeatedly when optimizing the NN
architecture, the resulting NN will be biased towards
it as it is towards the developmental data. Therefore,
a third set of 10,000 cases is used to recalculate the
skill of the final network, eliminating this source of
false optimism. Alternatively, one could use a different
validation set on each of the NN architectures in order
to achieve this independence.

10.2.2 Neural Network Design

The basics of NN are discussed in chapter Y-NN and
one approach to universal function emulation using
NNs is explored in Chapter 9. Although details can

vary from one implementation to another, the basics
are the same. The network’s input layer consists of
a data source for each of the input parameters. All
of these values are fed into each of the processing
nodes of the next layer, often called a hidden layer.
Each processing node first computes the output of a
linear equation, which takes its input from the input
layer. The coefficients can differ between processing
nodes, so differing computations are done in parallel
by the nodes of a processing layer. The results of each
equation are then “squashed” into the range —1 to 1
using the hyperbolic tangent or a similar activation
function. At this point the squashed results may be fed
into an output layer as in Chapter 9 or into additional
processing layers as in Reed and Marks (1999). The
latter approach will be used in the example discussed
in this chapter. In either case, the results of the final
processing layer are fed through one more linear equa-
tion, called an output node. If the result is to be a
probabilistic or categorical (yes/no) prediction, than
a squashing function is applied to the output layer’s
result. If, as in the SAR wind speed retrieval problem,
the desired output is numerical, no squashing function
is applied to the output node.

Training of the NN involves finding values for all
of these coefficients. This can be done via various
forms of the back propagation of errors (Reed and
Marks 1999) or by using a general purpose nonlinear
optimization tool such a genetic algorithm (GA, Haupt
and Haupt 2004) (Jones 1993; Munro 1993). Neither
of these approaches is necessarily best for all retrieval
problems. For example, training a NN to emulate some
nonlinear functions is “GA-easy” while training the
network to emulate other functions of equivalent com-
plexity is “GA-hard”. The “GA-hard” problems are
those where the under-constrained nature of NNs leads
to multiple distinct solutions, each at a local mini-
mum in the network’s forecast error, that, when bred,
yield solutions of lower rather than higher skill (Reed
and Marks 1999). Likewise networks trained by back
propagation can become trapped in such local minima
(Yamada and Yabuta 1993; Reed and Marks 1999).
Back propagation techniques are popular, particularly
in the data mining community, (e.g. Alpsan et al. 1995;
Reed and Marks 1999; Witten and Frank 2005) and
will be employed here.

As mentioned in Chapter 9, NNs with a single hid-
den layer are adequate to fit any continuous nonlin-
ear function provided enough hidden nodes are used.

210

G.S. Young

Thus, the design process for a single-layer network
consists of simply increasing the number of nodes until
good performance is achieved on independent valida-
tion data.! The smallest network that achieves good
performance is then used in practice, both because
it is more efficient than larger networks and because
it is less likely to be over-fit and so will generalize
better. The design problem is more complex when
the network includes multiple processing layers. The
designer not only has to decide on the number of lay-
ers, but also on the number of nodes per layer. The
design space is thus multidimensional. One could, of
course, use a genetic algorithm or some other general
purpose nonlinear optimizer to develop the network
design (Dodd 1990; Reed and Marks 1999), but in
practice one often simply tries a number of likely can-
didates learning enough from each to design a likely
Successor.

While this iterative design process includes two rel-
atively distinct aspects, determining how many layers
to use and determining how many nodes to include
in each, there is a tradeoff between the two because
increasing the number of layers decreases the number
of nodes required in each. The design tactic employed
here is to alternately tune the number of nodes and
the number of layers, starting first with the nodes and
then cycling back and forth until performance stops
improving. Experience suggests that three hidden lay-
ers makes a good starting point with the first layer
having as many nodes as there are predictors and the
other layers progressively less. The network designer
then tunes the number of nodes per layer by trying
greater and lower node counts in the networks and
seeing which produces the best result. This is just the
manual version of the various gradient descent meth-
ods common to nonlinear optimization (Nelder and
Mead 1965). Once the optimal number of nodes is
found, one should check the weights in the last hidden
layer. If each node has the same weight values as all
the others, then they’re all making the same calculation
and the layer is probably redundant. In some cases
the results will improve by eliminating that layer and
in other cases by reducing the number of nodes it
contains until the weights differ from node to node.
If the nodes in the last hidden layer differ, one could

I'In a more general setting, for example with noisy data, the
optimal NN is the one that has the lowest average error over
multiple validation sets.

try adding an additional layer of two nodes. If perfor-
mance improves, one could start tuning the number of
nodes again, otherwise go back one design and stop
iterating. If this approach seems too complex, stick
with a single hidden layer as described in Chapter 9.

10.2.3 Network Training

We could easily develop our own back propaga-
tion training program following, for example, Reed
and Marks (1999). Ready built open source tools
such as Weka (Witten and Frank 2005) are, how-
ever, readily available for download (http://www.cs.
waikato.ac.nz/ml/weka/), so that approach is often
more efficient. Weka will be used here because it offers
good documentation, a point-and-click interface, and
extensive support for troubleshooting and validation.
No matter which development tool we use, the phases
are the same.

e Data ingest

e Predictand and predictor selection

* Cross-validation setup (in this example using a val-
idation set)

* Network design

* Network building (i.e. tuning the regression coeffi-
cients)

* Network testing on independent validation data

Following each validation stage the network is
redesigned as described above and the build and val-
idate cycle is repeated. Clearly, to make this cycle
converge, careful consideration must be given to how
the validation results vary with network design. The
final design must yield a high accuracy solution but
do so with the minimum number of nodes, thereby
minimizing computational cost.

10.3 Results

The NN development tactics described above are
applied to both the forward and inverse problems link-
ing SAR backscatter with surface wind speed. The
results will be presented in the order originally encoun-
tered when this project was under development. Each
of the problems that arose during this development

10 Implementing NNS for Satellite Retrieval

211

process will be discussed at the stage where it was first
diagnosed. Thus, the results discussion will focus on
how the problems were detected and then addressed by
appropriate regularization. The section will conclude
with a discussion of efficiency issues and a compar-
ison of the various NN approaches to the traditional
CMOD4 approach they are designed to replace.

10.3.1 Forward Model

Table 10.1 shows a sample of network designs for
the forward (wind speed to backscatter) problem. The
network design is described via a comma separated
list giving the number of nodes in each hidden layer.
Training was undertaken for 500 cycles (Epochs) in
all but one case. The model performance is described
in terms of percent variance explained (i.e. r*) and
mean absolute error (MAE). Each network’s compu-
tational cost is computed from a count of the various
floating point operations and intrinsic function calls
using times estimated for each of these actions via a
procedure described in Section 10.3.4 below. The cost
value is then normalized by the similarly computed run
time estimate for the analytic CMOD4 code. Lower
values of cost are of course to be preferred over high
values. Note that these values are not the cost of net-
work development, but rather the computational cost to
apply the network in operational SAR image analysis.

The first NN, with a single hidden layer of four
nodes shows skill, but is not accurate enough to serve
as a replacement for the analytic CMOD4 forward
model as the MAE remains large relative to operational
requirements. Performance improves when two more
hidden layers are added and further improves when
the number of nodes in these layers is increased past
a total of 20. There is, however, some decrease in skill

for the most complex networks, suggesting either over-
fitting or an inadequate number of training epochs for a
network of that degree of network complexity. Because
the skill improves markedly when the most complex
network is redeveloped using 5,000 epochs instead of
500, we can conclude that inadequate training rather
than over-fitting was the problem. This final NN was
reevaluated on an independent set of test data yielding
a percent variance explained of 0.9998, the same value
obtained with the validation data set. Thus, we can
conclude that the NN was not over-fit, a fact attribut-
able to the noise free synthetic data and the large num-
ber of cases in the developmental data set. The MAE
of 0.0052 is accurate enough that the NN could be used
as a replacement for the analytic CMOD4 forward
model. It is, however, a factor of five more costly in
computational time than the analytic CMOD4 model.
Clearly, if NNs are to be of aid in the SAR wind speed
analysis it must be in the inverse rather than forward
problem, where it would replace multiple runs of the
analytic CMOD4 model instead of just one.

10.3.2 Inverse Model

Given the successful emulation of the analytic
CMOD4 forward model, it is reasonable to ask
whether the neural net approach can be applied to emu-
late the inverse problem for which no analytic model
exists. Doing so would eliminate the need for multiple
runs of the analytic forward model to make up for
the lack of an analytic inverse model. As Table 10.2
shows, however, the initial NN results are quite
disheartening.

The skill demonstrated by each NN was markedly
worse on the inverse problem than it had been on
the forward problem discussed in the section above.

Ta(llale 11_1,0'1 Neur;ll nteht design Network design ~ Training epochs r? MAE Relative cost
and performance for the
forward problem. Those 4 500 0.9577 0.15 0.28
values of r2 and MAE in 432 500 0.9616 0.10 0.63
parentheses were computed 8,42 500 0.9631 0.12 1.03
using an independent set of 12,6,2 500 0.9956 0.050 1.55
test data, the rest were all 16,8,4 500 0.9972 0.023 2.29
computed using a single set of 24,122 500 0.9984 0.015 3.98
validation data 32,16,2 500 0.9962 0.035 4.84
32,16,4 500 0.9884 0.043 5.06
32,164 5,000 0.9998 (0.9998) 0.0053 (0.0052) 5.06

212

G.S. Young

Table 10.2 Neural net design and performance for the inverse problem. Those values of 1> and MAE in parentheses were computed
using an independent set of test data, the rest were all computed using a single set of validation data

Network design Training epochs 2 MAE (ms~!) Relative cost
12,6,3 500 0.8188 5.02 0.0912
16,8,4 500 0.8714 4.03 0.1281
24,16,2 500 0.8712 3.75 0.2195
32,16,2 500 0.8571 4.53 0.2713
32,16,4 500 0.8709 4.12 0.2832
32,16,4 5,000 0.8541 (0.8506) 3.80 (3.82) 0.2832

Indeed, the best 1> value was near 0.87 rather than
above 0.999. Another sign that the NN is not perform-
ing well is that further training on the inverse problem
did not provide a performance improvement the way
it did on the forward problem. Thus, something about
the inverse problem is making it much more challeng-
ing for neural net emulation. The problem cannot be
attributed to reuse of the validation data because sim-
ilar skill was obtained for the most complex network
when it was reevaluated using an independent set of
test data.

Examination of the relationship between wind
speed and backscatter in CMOD4 quickly reveals the
source of the problem. For a number of incidence angle
and wind direction combinations, such as that shown
in Fig. 10.1, the relationship is multi-valued in wind
speed. Thus, while each wind speed corresponds to one

backscatter value, a single backscatter may correspond
to two widely different wind speeds. Because the NN
has only one output it can’t fit a multi-valued function,
and thus fails over much of its input parameter space.
There are two obvious approaches for solving this
problem. One approach is to redesign the training set
and the NN to support two output values. These val-
ues would differ for those parts of the input parameter
space where wind speed is a multi-valued function of
backscatter, while being the same where the function
is single-valued. This approach leaves the decision as
to which value is correct to the end user, thus putting
off the required regularization of the inverse problem.
The second approach is to regularize the data in the
training set as described in Chapter 9, so that the NN is
developed to return only one of the two possible wind
speed values. This approach most closely follows the

1.2

o o
o e -

°
~

Normalized Radar Cross-section

Fig. 10.1 Normalized radar 0.2

cross-section (i.e. backscatter)
as a function of wind speed
for an incidence angle of 20°

and a wind-relative look
direction of 45°

1
30
Wind Speed m/s

20 40 50 60

10 Implementing NNS for Satellite Retrieval

213

current practice with the analytic CMOD4 model and
so will be followed in the sections below.

10.3.3 Regularization of the Inverse
Model

A simple regularization of the training data set can
be achieved by eliminating those cases for which the
wind speed takes on the higher of two possible val-
ues. This follows the current CMOD4 practice (N. S.
Winstead 2006, personal communication) of assum-
ing that the lowest wind speed consistent with the
backscatter is most likely to be correct. This regu-
larization makes the function to be emulated single-
valued and thus should improve the NN’s performance
on the inverse problem.

As shown by comparing Tables 10.2 and 10.3, how-
ever, this improvement does not occur (except for the
1% statistic for one network design). Rather, the per-
cent variance explained dropped slightly and the MAE
increased. Why did the regularization fail to make the
problem more tractable? Reexamination of Fig. 10.1
sheds light on the problem. Not only is wind speed
potentially a multi-valued function of backscatter, but
also it exhibits a zone of hypersensitivity to backscat-
ter near the peak of this latter parameter. Thus, for
backscatter observations near this peak value, major
changes in wind speed result from minor changes in
backscatter. So backscatter provides little information
on wind speed in that zone. This sensitivity makes
the NN hard to train and would in any case cause
the resulting network’s output to be highly sensitive
to observational errors in its input. This sensitivity rule
applies not just to NN, but to any model as mentioned
in the discussion of ill-posed systems in Chapter 9.

The lesson to be learned from this failure is that if
the gradient of input with respect to output is small,

Table 10.3 Neural net design and performance for the single-
valued inverse problem. Those values of 1> and MAE in

then output is hypersensitive to input because the gra-
dient of output to input is huge. Thus, careful examina-
tion of the Jacobian of the problem can greatly aid in
planning a successful regularization strategy. This task
can be undertaken either numerically, or by examina-
tion of the plotted function as was done above.

Full regularization requires elimination of these
zones of hypersensitivity as well as resolution of
any regions where the function to be emulated is
actually multi-valued. Users of the analytic CMOD4
model do this by limiting analysis to wind speeds
of less than some threshold, typically 25ms~" (N. S.
Winstead 2006, personal communication). It is sim-
ple enough to apply this same approach to neural net
development, eliminating all cases with higher wind
speeds from the training. Note that there are many
other forms of regularization. This is just the one that’s
appropriate for the SAR inverse problem. Note also
that, as pointed out in Chapter 9, the resulting NN
is apt to be wildly inaccurate outside of its training
domain. Thus, in making operational use of the NN, all
output wind speeds above 25 ms~! should be truncated
to that value and the value itself viewed as an out-of-
domain error flag. This is the current practice with the
analytic CMOD4 model, so the NN results shown in
Table 10.4 are a fair test of performance relative to the
analytic code.

This time the regularization achieves its desired
effect. The skill of the fully regularized inverse model
is almost as good as that of the forward model. This
result holds up when the network is reevaluation on
an independent set of test data, demonstrating that
over-fitting did not take place. Some hint of the chal-
lenge remains in that it took an order of magnitude
more training epochs to achieve near perfection on the
percent variance explained statistic. The best network
yielded an MAE of about 0.1 ms™!, about one tenth
of the typical error of the CMOD4 analytic model in
comparison with observations (Monaldo et al. 2001).

parentheses were computed using an independent set of test data,
the rest were all computed using a single set of validation data

Network design Training epochs r? MAE (ms™!) Relative cost
12,6,3 500 0.8521 8.98 0.0913
16,8,4 500 0.8545 7.40 0.1281
24,16,2 500 0.8321 5.05 0.2195
32,16,2 500 0.8697 7.75 0.2713
32,16,4 500 0.8722 7.32 0.2832
32,16,4 5,000 0.8668 (0.8673) 5.37 (5.33) 0.2832

214 G.S. Young
Table 10.4 Neural net design Network design ~ Training epochs 2 MAE (ms™ l) Relative cost
and performance for the fully
regularized inverse problem. 4.2 5,000 0.8416 2.67 0.0235
Those values of 2 and MAE 12,6,3 5,000 0.9857 0.77 0.0913
in parentheses were computed 16,8,4 5,000 0.9878 0.57 0.1281
using an independent set of 20,10,5 5,000 0.9894 0.56 0.1681
test data, the rest were all 20,20,2 5,000 0.9984 0.42 0.2208
computed using a single set of 24,16,2 5,000 0.9988 0.34 0.2195
validation data 279,3 5,000 0.9974 0.24 0.1886
32,16,2 5,000 0.9982 0.19 0.2713
32,16,2 50,000 0.9990 (0.9990) 0.10 (0.12) 0.2713

Thus, emulation of the CMOD4 analytic model by an
appropriate NN would not substantially increase error
in operational applications. The remaining question is
then, would such a replacement be more efficient in
terms of computational cost.

10.3.4 Computational Cost

Estimation of wind speed from SAR backscatter
using the analytic CMOD4 forward model is a costly
process, both because the model must be run for each
candidate wind speed and because the model itself
includes a number of calls to costly intrinsic func-
tions such as cosine and hyperbolic tangent. The first
problem can be solved by using a NN to emulate
the inverse model as discussed above. Unfortunately,
from the computational cost perspective, each NN
node includes a call to the hyperbolic tangent intrinsic
function and so is, itself, fairly costly. An estimate
of the computational cost of the existing CMOD4
code and the NN inverse model can be obtained

by counting the number of these operations in each
approach.

The computational cost for each of the floating
point operations and intrinsic function calls is obtained
by a benchmarking program that executes each instruc-
tion enough times to obtain accurate timing informa-
tion. The values shown in Table 10.5 were obtained
using the default floating point variables in MAT-
LAB version 7 running on a 3.2 GHz Intel Pentium 4
Windows XP PC. These timing results will of course
vary with computer language, hardware, and float-
ing point precision, but the final results reported in
Tables 10.1 through 10.4 are, to a certain extent, nor-
malized when the NN time estimates are scaled by
that for the analytic CMOD4 model. The full opera-
tion count for CMOD4 and a multi-layer NN are also
shown in Table 10.5.

The key result of this timing analysis is that intrinsic
function calls such as cosine and hyperbolic tangent
are much more costly than the basic floating point
operations of add, multiply, and divide. Thus, the NN
times reported in Tables 10.1 through 10.4 are dom-
inated by the hyperbolic tangent calls and are there-
fore approximately linear with the number of nodes.

Table 10.5 Inputs for the computational cost calculation for CMOD4 and the neural networks. The functions in this table are those

used in the analytic CMOD4 code and the neural network

Operation or intrinsic

function call Time in nano-seconds

Uses in CMOD4

Uses in neural network

Add 7
Multiply 11
Divide 13
Cosine 117
Tangent 174
Power 4717
Log to base 10 462
Square root 144

Hyperbolic tangent 359

31 Sum over all layers of number of inputs plus
one times number of nodes
36 Sum over all layers of number of inputs times
number of nodes
4 0
2 0
2 0
4 0
1 0
1 0
2 Equals number of hidden nodes

10 Implementing NNS for Satellite Retrieval

215

A 32,16,4 network has 52 such calls and would thus
require roughly twice the computer time as a 16,8,2
network. In comparison, the CMOD4 analytic model
has only two hyperbolic tangent calls, but does invoke
a number of other expensive intrinsic functions.

The key advantage of the neural net inverse model
over the analytic CMOD4 model is that it need be run
only once instead of 25 times. Thus, even the most
complex networks shown in Tables 10.1 through 10.4
require only one fourth of the time of the ana-
Iytic model. As a result, replacement of the analytic
CMOD4 model by a NN inverse model can yield a
substantial savings in computational time at the price
of a modest increase in wind speed retrieval error.

In light of NN’s success on the problem, it is worth
considering whether more traditional methods could
have achieved a similar speedup in the SAR wind
speed retrieval. For example, the search strategy used
in the operational CMOD4-based retrieval is to run the
analytic forward model at 1 ms~! intervals from 1 to
25ms~!. If the more efficient binary search algorithm
(Knuth 1997) was used instead, only seven runs of
the forward model would be required to bracket the
answer to this precision, not 25. This speed ratio of
0.28 is almost identical to the 0.27 achieved by the
high accuracy neural net emulation. Thus, there are
multiple means of accelerating the SAR wind speed
retrieval process. The sole obvious advantage of a NN
over binary search is that it does not require branching
code and so should pipeline better on modern micro-
processors.

10.4 Conclusions

As demonstrated in Chapter 9 and the example above,
NNs can provide accurate emulations of smooth non-
linear functions, as long as they are well-posed.
NNs can exhibit a substantial speed advantage when
computing the desired function would be otherwise
cumbersome, for example when the traditional
approach involves iterative improvement or examina-
tion of many trial solutions. The latter situation occurs
for the example problem described above, so a NN
with one fourth of the computational cost can emu-
late the operational retrieval algorithm to within one
tenth of the operational model’s own accuracy. So, for
a slight increase in error and total loss of physical

insight, the NN provides a massive improvement in
computational efficiency. In contrast, neural net emu-
lation of the forward problem exhibits a substantial
cost penalty. This difference between inverse and for-
ward problems results from the efficiency of the ana-
lytic forward model, CMODA4, and the inefficiency of
the multi-run brute force search strategy traditionally
used in applying it to the inverse problem. Interest-
ingly, replacing the brute force search with a binary
search using the analytic forward model would yield a
run time improvement almost identical to that achieved
via NN emulation. Clearly the paths to wisdom are
many and varied.

Acknowledgements This work was supported by NSF and
ONR through grants ATM-0240869 and N00014-04-10539.
Special thanks are due to Nathaniel Winstead and Frank Mon-
aldo of the Johns Hopkins University Applied Physics Labo-
ratory for providing the CMOD4 analytic code and numerous
valuable insights.

References

Alpsan, D., Towsey, M., Ozdamar, O., Tsoi, A., & Ghista, D.
(1995). Are modified back-propagation algorithms worth the
effort? IEEE International Conference on Neural Networks,
Orlando, USA, 1, 567-571.

Cornford, D., Nabney, I. T., & Ramage, G. (2001). Improved
neural network scatterometer forward models. Journal of
Geophysical Research 106, 22331-22338.

Dodd, N. (1990). Optimization of network structure using
genetic techniques. Proceedings of the International Joint
Conference on Neural Networks, Washington D.C., USA, 1,
965-970.

Haupt, R., & Haupt, S. (2004). Practical genetic algorithms
(2nd ed., 253 pp.). Hoboken, NJ: Wiley.

Jones, A. (1993). Genetic algorithms and their applications to
the design of neural networks. Neural Computing and Appli-
cations, 1, 32-45.

Knuth, D. (1997). The art of computer programming, volume
3: Sorting and searching (3rd ed., 780 pp.). Reading, MA:
Addison-Wesley.

Krasnopolsky, V., Breaker, L., & Gemmill, W. H. (1995).
A neural network as a nonlinear transfer function model
for retrieving surface wind speeds from the special sensor
microwave imager. Journal of Geophysical Research 100,
11033-11045.

Monaldo, F., Thompson, D., Beal, R., Pichel, W., & Clemente-
Coldn, P. (2001). Comparison of SAR-derived wind speed
with model predictions and ocean buoy measurements. /[EEE
Transactions on Geoscience and Remote Sensing, 39, 2587—
2600.

Munro, P. (1993). Genetic search for optimal representations in
neural networks. In R. Albrecht, C. Reeves, & N. Steele

216

G.S. Young

(Eds.), Artificial neural nets and genetic algorithms. Pro-
ceedings of the international conference (pp. 628-634).
Innsbruck, Austria: Springer.

Nelder, J., & Mead, R. (1965). A simplex method for function
minimization. Computer Journal, 7, 308-313.

Reed, R., & Marks, R. (1999). Neural smithing: Supervised
learning in feedforward artificial neural networks (346 pp.).
Cambridge, MA: MIT Press.

Stoffelen, A., & Anderson, D. (1997a). Scatterometer data
interpretation: Measurement space and inversion. Journal of
Atmospheric and Oceanic Technology, 14, 1298-1313.

Stoffelen, A., & Anderson, D. (1997b). Scatterometer data inter-
pretation: Estimation and validation of the transfer func-
tion CMOD4. Journal of Geophysical Research, 102, 5767—
5780.

Stogryn, A. P, Butler, C. T., & Bartolac, T. J. (1994). Ocean sur-
face wind retrievals from special sensor microwave imager
data with neural networks. Journal of Geophysical Research,
90, 981-984.

Thiria, S., Mejia, C., Badran, F., & Crepon, M. (1993). A neural
network approach for modeling nonlinear transfer functions:
Application for wind retrieval from spaceborne scatterome-
ter data. Journal of Geophysical Research, 98,22827-22841.

Witten, 1., & Frank, E. (2005). Data mining: Practical machine
learning tools and techniques (2nd ed., 525 pp.). San Fran-
cisco: Morgan Kaufmann.

Yamada, T., & Yabuta, T. (1993). Remarks on neural net-
work controller which uses genetic algorithm. Proceedings
of International Joint Conference on Neural Networks (pp.
2783-2786). Japan: Nagoya.

