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1.1 On the Nature of
Environmental Science

Environmental science is one of the oldest scientific
endeavors. Since the dawn of humanity, along with the
ability to reason came the ability to observe and inter-
pret the physical world. It is only natural that people
would observe patterns then build basic mental models
to predict a future state. For instance, records indicate
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that there has long been a version of the adage “Red at
night, sailor’s delight. Red in the morning, sailors take
warning.”! This saying is a simple predictive model
based on generations of experience, and it often works.
Over time people noted relationships between observa-
tions of the sky and subsequent conditions, formed this
mental model, and used it to predict future behavior of
the weather (Fig. 1.1).

The age of enlightenment following the Renais-
sance brought a more modern approach to science.
Careful experimentation and observation led to uncov-
ering the physics underlying natural phenomena. For
instance, a modern understanding of “Red at night,
sailor’s delight” is based on the theory of Mie scat-
tering. Light rays are scattered by large dry dust par-
ticles to the west in the setting sun. According to
this theory, large particles tend to scatter the longer
wavelength red light forward more than they do the
other frequencies of visible light. The long trajectory
of the solar beams through the atmosphere when the
sun is at a very low zenith angle (such as at sunset
or sunrise) compounds this effect. Thus, when light
rays from the setting sun are scattered by large dry
dust particles associated with a high pressure system to
the west, more red light reaches the observer, and the
sky appears red. Since prevailing winds in the mid lat-
itudes (where this adage is common) blow from west
to east, more Mie scattering at dusk implies that a dry
weather pattern is approaching. “Red in the morning,
sailors take warning,” refers to a similar process at

! For instance, see the quote in Matthew 16:1-2 of the Bible: “He
replied, “When evening comes, you say, ‘It will be fair weather,
for the sky is red,” and in the morning, “Today it will be stormy,
for the sky is red and overcast’” (NIV).
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dawn when the low zenith angle in the east would pro-
duce more scattering associated with a high pressure
system that has already passed, thus suggesting the
possibility that a low pressure system is now approach-
ing and wet weather may follow. This example exem-
plifies the types of physical explanations of observed
phenomena that developed in the environmental
sciences.

Emergence of modern mathematical techniques
gave scientists a new language to describe the natural
world. The new physical understanding was codified
into partial differential equations (PDEs) that repre-
sent the details of the physics. These PDEs can be
used to predict the future evolution of a system given
its initial state. Modern meteorology began with the
development of the primitive equations that describe
the conservation of mass, momentum, and energy in
the atmosphere. It was necessary to specify the exter-
nal forcings, including solar insolation and the Earth’s

rotation. Appropriate boundary and initial conditions
had to be applied. Numerical techniques were devel-
oped to discretize interlinking equations to form alge-
braic equations that can be solved simultaneously.
In the 1920s, a pioneer of modern meteorology, L.F
Richardson, attempted to integrate the full primitive
equations by hand. Unfortunately, he did not know
about the importance of filtering the equations to avoid
the effects of fast gravity and acoustic waves, which
caused his integration to “blow up” (Richardson 1922).
In spite of the fact that he obtained a very unphysical
solution and that the hand integration of the equations
took much longer than the weather itself, Richardson
made a huge impact on the science of weather fore-
casting through demonstrating that the equations could
be used for prediction and by foreseeing the impact
of modern parallel computing. In his 1922 treatise, he
imagines an orchestration of human “computers” for
numerical weather prediction:

Fig. 1.1(a) “Red at night, sailor’s delight.” Source: Copyright B.A. Haupt (2005)
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Fig. 1.1(b) “Red in the morning, sailor’s take warning.” Source: Copyright B.A. Haupt (2005)

Imagine a large hall like a theatre, except that the circles
and galleries go right round through the space usually
occupied by the stage. The walls of this chamber are
painted to form a map of the globe. The ceiling repre-
sents the north polar regions, England is in the gallery,
the tropics in the upper circle, Australia on the dress
circle and the antarctic in the pit. A myriad of computers
are at work upon the weather of the part of the map
where each sits, but each computer attends only to one
equation or part of an equation. The work of each region
is coordinated by an official of higher rank. Numerous lit-
tle “night signs” display the instantaneous values so that
neighbouring computers can read them. Each number is

thus displayed in three adjacent zones so as to maintain
communication to the North and South on the map. From
the floor of the pit a tall pillar rises to half the height of
the hall. It carries a large pulpit on its top. In this sits
the man in charge of the whole theatre; he is surrounded
by several assistants and messengers. One of his duties
is to maintain a uniform speed of progress in all parts
of the globe. In this respect he is like the conductor of
an orchestra in which the instruments are slide-rules and
calculating machines. But instead of waving a baton he
turns a beam of rosy light upon any region that is running
ahead of the rest, and a beam of blue light upon those
who are behindhand.
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Fig. 1.2 Schematic of the Norwegian Cyclone Model. (a) Horizontal and (b) vertical cross-sections

Four senior clerks in the central pulpit are collect-
ing the future weather as fast as it is being computed,
and despatching it by pneumatic carrier to a quiet room.
There it will be coded and telephoned to the radio trans-
mitting station. Messengers carry piles of used comput-
ing forms down to a storehouse in the cellar. (Richard-
son 1922)

At the same time, weather observations continued and
more formal models of repeated patterns were for-
mulated. For instance, in meteorology, the Norwegian
cyclone model emerged in the early 1920s, attributed
primarily to V. Bjerknes and J. Bjerknes (Reed 1977).
It describes a weather system in terms of warm fronts,
cold fronts, and occluded fronts (see Fig. 1.2). In
between the warm and cold fronts is a warm sec-
tor. High cloudiness is expected to precede the warm
front, which brings in warm southerly winds some-
times preceded by a band of light showers. The warm
air rises over both the old cold air being pushed out

as well as the new cold air ushered in by the cold front.
This conveyer belt of rising warm air produces con-
vection, cooling, condensation, and rain. Convective
motion causes showers in the warm sector and deep
convection near the cold front often results in violent
thunderstorms. So before scientists could accurately
model cloud physical processes and their relationship
to precipitation mathematically, they could use the
Norwegian cyclone model to interpret the skies and
predict associated precipitation patterns. Once again,
lots of observations came together to form a more
formal model of atmospheric phenomena useful for
prediction.

With the advent of electronic computers in the
1950s, meteorological research returned to numeri-
cal weather prediction, this time aided by the rapid
calculations of a machine. The first operational com-
puter, the ENIAC (Electronic Numerical Integrator
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and Computer) at Aberdeen Proving Grounds became
the forecasting tool of Jules Charney, John von Neu-
mann, and R. Fjortoft. They wrote the dynamical
relationships in the form of the barotropic vorticity
equation, which does not include the fast gravity and
acoustic waves that had plagued Richardson. Their
efforts met success in 1950 when they produced the
first useful numerical weather forecast on the ENIAC
(Charney et al. 1950; Lorenz 2006). The field of
Numerical Weather Prediction (NWP) was thus born.
The field advanced (and continues to advance) through
the development of finer resolution models with
smaller time steps that can capture more details
of the physics. These NWP models have grown to
include cloud microphysics, details of radiative trans-
fer, interactions with the biosphere and cryosphere,
and dynamic oceanic forcing, among other important
dynamical and physical processes. For quite some
time, the accuracy of short term prediction contin-
ued to improve. Some even thought that if researchers
could continue to better define the physics and refine
the spatial and time scales, they would eventually be
able to perfectly predict the weather arbitrarily far in
advance.

This hope was dashed by the famous rediscovery
by Ed Lorenz at MIT of what has become known as
chaos theory (Lorenz 1963). Dr. Lorenz was study-
ing a version of the atmospheric equations simplified
to just three nonlinearly coupled ordinary differential
equations (Gleick 1987). He started a numerical inte-
gration of his “simple” system of equations then went
to lunch. When he came back, his computer run had
stopped and he wanted to restart it. He went back
several steps and entered the solution at that time as
an initial condition for the next run. Then he real-
ized that the numbers coming out of the computer
did not quite exactly match those from the succeeding
steps of the previous run. Computers were supposed to
exactly reproduce their prior computations. What was
different? The cause of the disparity was eventually
traced to the fact that when he typed in the numbers
to restart the program, he did not type in all the digits.
The small round-off error grew with time. What he
discovered was that in nonlinear dissipative systems,
there is sensitivity to initial conditions. This sensitivity
means that when a computer model is started with
two sets of initial conditions that differ only slightly,
the resulting solutions can diverge rapidly in time.
Lorenz’s observation led to the discovery of chaotic

flow and of the limits to predictability in systems of
equations such as those representing the atmosphere.
What does this imply for forecasting the weather by
integrating the dynamical equations? It implies that
there is a limit to predictability. No matter how big and
fast our computers become, we cannot expect to ever
forecast accurately beyond this inherent limit. There is
hope, however, that we can find the “strange attractor”
of the system, and we are assured that the solution will
be somewhere on that manifold of possible solutions.
Thus, it might be possible to say something about the
likely weather pattern, even without pinpointing the
specific conditions. Figure 1.3 pictures the “butterfly”-
shaped strange attractor of Lorenz’s three equation
system in the chaotic regime.

Several new research fields emerged to deal
with the discovery of the limits to predictability.
The first involves trying to transform atmospheric
measurements into an appropriate “initial condition”
for a forecast model run. This process is known as ini-
tialization. Various complex statistical techniques can
be used to first assimilate and interpolate the monitored
data to the grid of the model and find a best fit to the
steady state model equations. In this manner, the initial
condition is tuned to have the lowest possible error to
help keep it closer to the solution that could be repre-
sented by the model. (See Daley 1991 or Kalnay 2005
for more discussion.)

A second new direction that has emerged is using
statistical and data-based approaches to weather pre-
diction. One class of methods is model output statis-
tics (MOS), which compares past model predictions
to corresponding records of the observed actual condi-
tions to tune the model or adjust its forecasts (Glahn
and Lowry 1972). Another class of methods involves
addressing sensitivity to initial conditions head-on by
using multiple initial conditions to initialize ensembles
of NWP model runs. The forecaster must then interpret
the multiple forecasts to make a prediction, but is pro-
vided a measure of uncertainty via their variance. At
the lowest level, this approach has returned to using
the human art of forecasting to distinguish between
and synthesize the ensemble of solutions. Of course,
it was not long until advanced statistical techniques
attempted to emulate that human process by using
methods reminiscent of model output statistics to tune
the ensemble model runs (Gnieting and Raftery 2005).

Now that statistical techniques have been applied
to the forecasting problem, it is natural to ask whether
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Fig. 1.3 The Lorenz attractor

a completely statistical approach could be developed.
Some recent research has attempted to do that to
a limited extent. Among the nascent techniques are
empirical methods that are no longer based on the
deterministic physics, but instead seek ways to glean
past information for predictive modeling and to code
it into PDEs. Such empirical stochastic methods have
been successful at predicting some major atmospheric
phenomena such as the El Nino/Southern Oscillation
(Penland and Matrosova 1998) and for determining
how the atmosphere responds to an imposed forcing
(Branstator and Haupt 1998).

These developments leave environmental science in
general, and numerical weather prediction in partic-
ular, at a crossroads. There are two totally different
approaches to forecasting: the first is deterministic or
dynamics-based and depends on our ability to write
all the dynamical and physical processes mathemati-
cally and to discretize them so that they can be solved
numerically; the second is empirical or data-based,
and depends on the available data and how we choose
to use it statistically for prediction. Both approaches
typically require large scale computing resources.

Even newer are forecasting techniques that attempt
to return to the early methods of recognizing useful
patterns without employing formal statistical theory.
These methods are empirical data-based methods that
do not directly depend on dynamics, but instead seek
to model some natural process. The goal of this book
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is to demonstrate how these “artificial intelligence”
methods can be successful at recognizing patterns, per-
forming regression for the purpose of prediction, and
optimizing solutions to difficult nonlinear problems.
These methods are different from the prior directions
of numerically integrating carefully derived dynami-
cal physics equations. Researchers who use artificial
intelligence methods are never able to include every
tiny detail of the physics in their equations. There is
inherent uncertainty in both the measurements and the
equations. But looking at how the environment has
previously changed will help us predict how it will
change the next time, even without modeling all the
details. We can use the patterns we recognize, whether
they are cold fronts and warm fronts or clustering in
some phase space to tell us what typically happens
in such a situation. Lorenz’s work (1963) implies that
we will never be able to exactly predict the future
behavior of these complex systems, but it does not
inform us whether our dynamics-based methods are
likely to be any better than our data-based methods.
Many researchers have been highly trained in the phys-
ical dynamics-based deterministic methods, and that is
certainly helpful background for our adventure into the
empirical data-based Al methods.

These developments in weather forecasting are
indicative of the types of challenges that arise in
the broader field of environmental science. Solid
earth geophysicists have explored physical models,
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data-based models, and artificial intelligence methods
to advance their field. So have wildlife biologists, ecol-
ogists, water resource managers, air pollution experts,
and space scientists, among the many other branches
of environmental science.

Many environmental fields deal with complex sys-
tems: the atmosphere and the climate system, for
instance, or, even more complex living ecosystems and
their environment. From a dynamical point of view, we
can look at these systems as built on a very high num-
ber of component subsystems that interact with each
other with feedback. The dynamical approach to grasp-
ing this complexity is based on a ‘“decomposition-
recomposition” strategy: look at the fundamental sub-
systems and interactions, phenomena and processes;
describe them via dynamical equations; and, finally,
simulate the complex system in a computer by means
of one or more systems of coupled equations (see
Pasini 2005 for an introduction to this dynamics-based
approach to modeling in weather and climate studies).

Due to the complexity of the physical systems ana-
lyzed, dynamics-based models can suffer from sig-
nificant problems, such as the difficulty of correctly
balancing the ‘“strength” of the many interactions
and feedbacks. Often, the modeler must fine-tune the
values of the coupling parameters to obtain realis-
tic behavior: obviously, this makes it impossible to
uniquely reconstruct the simulated system, thus weak-
ening the reliability of the simulation results coming
from the deterministic model. Therefore, the challenge
of complexity seems to hint at the need for a more
phenomenological approach where the system can be
considered as a whole and its behavior can be analyzed
in terms of the evolution in time of some representative
or important variables of the system, subject to all the
interactions and feedbacks. In this framework, artifi-
cial intelligence methods have proven useful.

1.2 On the Nature of Artificial
Intelligence

Artificial intelligence (AI) has grown out of modern
computing combined with a plethora of data to inter-
pret and engineering problems to solve. In some sense,
it returns to the earlier methods of analyzing data and
trying to build predictive models based on empirical
data in a “natural” way. In this sense, Al techniques are

typically more data-based than dynamics-based. This
use of data can make fast, robust, and skillful forecasts
possible in domains that might be intractable by a
dynamics-based approach. As Einstein once remarked,
“So far as the laws of mathematics refer to reality, they
are not certain. And so far as they are certain, they do
not refer to reality” (Einstein 1922).

A 19th century scientist would be astonished by
the capability of today’s computers — solving multi-
variable PDEs, running numerical models of the
atmosphere, or simulating debris flows, for instance.
Yet, that scientist would be equally astonished by the
incapabilities of modern computers — their limitations
in recognizing a face in a crowd or responding to
spoken language, for example. Humans, on the other
hand, find that recognizing faces is a cinch but solving
multi-variable equations is hard. This is not how it was
supposed to be. The earliest computers were billed
as machines that could think. Indeed, Al has been
defined as enabling machines to perceive, understand,
and react to their environments. Although perceptive
humanoid robots have been a staple of science fic-
tion for many decades, they are still quite impracti-
cal. Rather, successful applications of Al have concen-
trated on single tasks, such as optimally managing the
gates at an airline terminal or successfully classifying
cells as benign or cancerous.

Al started out by attempting to build upon
Aristotelian ideas of logic. Thus, initial research
emphasized induction and semantic queries. The goal
was to build a system of logic by which computers
could “reason” their way from simple bits of data to
complex conclusions. After all, humans do this sort
of reasoning effortlessly. However, it slowly became
apparent that there is more to human reasoning than
just induction. Humans, it turns out, are naturally good
at many things in ways that current computer designs
may never match.

Al researchers scaled back their overly ambitious
initial goal to that of building systems that would com-
plement human users and do tasks that humans found
onerous. Computers are good at unflaggingly process-
ing reams of data and performing complex computa-
tions, but poor at obtaining a holistic view of systems.
Humans, good at higher-level thinking, find it hard
to do mind-numbing calculations. Al researchers also
approached the problem with a new awareness of the
impressive performance of biological systems. Thus,
many of the new Al approaches were intentionally
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modeled on the way human experts thought or behaved
or on how underlying biological systems such as the
human brain worked.

Rather than building an AI system that would
replace a human’s multifaceted capabilities, resear-
chers concentrated on building special purpose sys-
tems that could do one thing well. Thus, instead of
building a system that would conduct a wellness check
on a patient, for example, they developed a system
that would determine an appropriate drug dosage for a
cancer patient. The solutions to such targeted problems
were called expert systems, because they encoded the
rules that an expert in the field would follow to come
to his or her conclusions. Computers proved capable of
quickly and objectively determining answers to prob-
lems where the methodology was precisely defined.
The rules in such expert systems are often in the form
of decision trees, where the answer to one question
narrows down the possibilities and determines what
question is asked next, until all possible conclusions
but one (or a few) are eliminated.

One fundamental problem in expert systems is
how to represent and apply the domain knowledge
of experts. Experts often state their knowledge ver-
bally using imprecise words like “not very hot” and
“less water.” Such words do not lend themselves well
to decision trees since the ambiguity can span mul-
tiple branches of the tree at each step. This issue
is addressed by another Al technique: fuzzy logic.
Fuzzy logic provides a framework for encoding impre-
cise verbal rules — such as those provided by sub-
ject domain experts — and aggregating them to yield
a final answer. It also allows partial, ambiguous or
uncertain evidence to be maintained and efficiently
synthesized in the production of the final result. The
most celebrated successes of fuzzy logic have been in
Japan, where numerous engineering control systems
have been built based on encoding expert knowledge
in fuzzy rules that are then combined for prediction or
control.

Fuzzy logic can be used to create automated
decision support systems that model what a human
expert would do under similar circumstances. Because
humans are considerably skilled at recognizing
patterns and often understand the underlying processes
that lead to the data, the verbal rules formulated by
human experts are often quite robust, even to unseen
data and unanticipated situations. A fuzzy logic
system, by piggy-backing on such effective analysis,

can possess considerable skill. Because fuzzy logic
systems are relatively simple to encode and do not
require training datasets, they are also fast to create
and implement. Another advantage of these systems,
often a deciding factor in many applications, is that
the fuzzy rules and their synthesis can be naturally
interpreted by a human expert. If a training dataset
is available, it can be used to optimize the fuzzy
logic algorithm’s parameters, though this step is not
required. Thus, a fuzzy logic system can provide
considerable skill and a human-understandable,
tunable system for very little investment.

Fuzzy logic systems often provide good solutions to
problems for which reliable expert knowledge is read-
ily available and can be represented with verbal rules
or heuristics. While there are many situations where
this is the case, there are also many others in which
either no experts are available or their knowledge
cannot easily be represented with verbal rules. One
might gauge the suitability of a fuzzy logic approach
by assessing whether different experts tend to agree
on data cases; if they don’t, it might be necessary to
code and evaluate multiple fuzzy logic algorithms to
represent the range of solution methodologies, which
might not be practical. It may also be difficult to deter-
mine whether the verbal rules that experts identify
is really all that they use to come to their conclu-
sion. Humans often underestimate the role of intuition
or the subconscious knowledge brought to bear on a
problem. Moreover, many domains in the environ-
mental sciences are exceedingly complex and poorly
understood to begin with, so a method capable of auto-
matically recognizing patterns from data may be more
appropriate.

Fortunately, another Al method excels at modeling
complex, nonlinear systems based on data — the neural
network (NN), Like many Al methods, NNs are bio-
logically inspired. The name comes from the fact that
they were initially modeled on the way neurons fire,
with the accumulated firings of many neurons together
determining the brain’s response to any particular set
of stimuli. The most common architecture used in NNs
comprises three layers of neurons — an input layer, a
layer of “hidden nodes” and a final output layer. Such
an NN can represent any continuous function on a
compact domain arbitrarily closely, even a nonlinear
one, if it has enough hidden nodes — though choosing
the optimal number of hidden nodes for a particular
problem may require some effort (Cybenko 1989).
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Feed-forward NNs are members of the class of
supervised learning machines. In a process called
“training”, such a learning machine is presented with
patterns — sets of inputs and target values, or ideal
output corresponding to desired responses to those
inputs. The target values may either be provided by
an expert in the field, or can be obtained from field
surveys, measurements and other information; as such,
the target values are often referred to as “ground truth.”
At the end of training, if all goes well, the learning
machine will have created a function that approxi-
mately maps the training inputs to the associated tar-
gets. Subsequently, when this function is presented
with a new set of inputs, it determines a response based
on the evidence generalized from the training speci-
mens. Thus, if viewed as an expert system, NNs learn
previously unknown relationships or knowledge that
experts may not be able to represent with verbal rules.
This is because supervised learning machines approx-
imate expert learning behavior, not by approximating
the logic that experts use and inexactly describe, but by
creating a new mapping to the ground truth associated
with the inputs. Specifically, NNs are trained by adjust-
ing their parameters to minimize a cost (or objective)
function — a quantity that is usually some function
of the difference between the target values and the
approximation thereof produced by the network.

Although NNs can represent any continuous func-
tion and avoid the problem of depending on expert
descriptions by learning data relationships instead,
that flexibility comes with a price. First, although
the NN learns to approximate the mapping from
training samples to target values, the actual function
used to represent this approximation is encoded in
a large set of connection weights that usually yield
no insights. Thus, unlike an expert system, an NN
representation is generally not human-understandable,
though researchers have found ways to extract approx-
imate rules from an NN in some specific cases (see, for
instance, Setiono et al. 2002). The inability to explain
in simple terms the behavior of an NN has led to it
being called a “black box.” However, it is important
to point out that this opaqueness is not specific to
NN but applies to many nonlinear models, which may
represent the physical world very well but resist being
neatly summarized. The fact is that the human desire to
explain relationships in simple terms may be inconsis-
tent with the competing requirement to have the most
accurate predictions possible, a trade-off that is not

peculiar to Al; more details on this will be provided
in Chapter 2.

NNs’ ability to fit any data places severe require-
ments on the data necessary for training them. Many
NN have a large number of parameters (weights) that
must be estimated during the training phase. The esti-
mates can be highly unreliable if the size of the train-
ing data set is not sufficiently large. An abundance of
parameters can also lead to overfitting (see Chapter 2),
which in turn can adversely affect NNs’ performance
on “new” data (i.e., not included in the training set).
In short, properly training an NN requires lots of data.
How much? That question is difficult to answer, but
Chapter 2 describes some methods that can help in
addressing it.

Another set of biologically-inspired methods are
Genetic Algorithms (GAs). They derive their inspira-
tion from combining the concept of genetic recom-
bination with the theory of evolution and survival of
the fittest members of a population. Starting from
a random set of candidate parameters, the learning
process devises better and better approximations to
the optimal parameters. The GA is primarily a search
and optimization technique. One can, however, pose
nearly any practical problem as one of optimization,
including many environmental modeling problems. To
configure a problem for GA solution requires that the
modeler not only choose the representation methodol-
ogy, but also the cost function that judges the model’s
soundness. As mentioned above, training an NN usu-
ally involves minimizing some cost function, and that
process usually requires differentiating the cost func-
tion. By contrast, the learning/training process for a
GA does not place any restriction on the differentia-
bility of the cost function, so any measure of perfor-
mance may be used. The GA is also capable of finding
optimal solutions to problems such as those in design.
Indeed, genetic algorithms may be used to train either
an NN or a fuzzy logic system! Using genetic algo-
rithms to train an NN gives us the ability to use non-
differentiable cost functions (see Chapter 18), while
using GAs to train a fuzzy logic system allows us to
improve on human-devised rules by optimizing their
parameters.

Another method for inferring the relationship
between inputs and targets is to automatically build
a decision tree based on the training data set. This
approach is also among the fastest in terms of train-
ing speed: decision trees can often be trained on
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substantial data sets in a fraction of the time required
by competing techniques. Decision trees, like fuzzy
logic systems, also have the advantage of being
human-understandable. Unlike fuzzy logic, however,
one doesn’t need to know the rules beforehand — the
rules are learned from training data. Decision trees fell
out of favor because the skill realizable with decision
trees often lags what is possible using other super-
vised learning techniques. Recent advances in machine
learning — averaging decision trees trained on sub-
sets of the training sets (“bagging”) and continually
focusing the training on the training data cases that
the decision trees get wrong (“boosting”) — have made
decision trees viable again, but at the cost that the
resulting decision trees are no longer human readable.
However, aggregate statistics obtained from decision
trees are useful in gaining insights into how the deci-
sion trees come to their decisions. This is yet another
illustration of the aforementioned trade-off between
pure performance and transparency.

One of the problems with all of the above data-
based methods is that the data on which they are based
are always imperfect, corrupted by measurement noise
or other artifacts, as are the “ground truth” answers
provided in the training data set. Artificial intelligence
and statistical methods are closely related in that they
both attempt to extract information from noisy data.
Al techniques can be utilized to create a practical rep-
resentation whereas statistical methods can be used to
measure how confident we may be that the extracted
representation is correct.

1.3 On the Use of Artificial Intelligence
in Environmental Science

It is only natural that AI should find applications in
the environmental sciences. Let’s return to our his-
torical example of weather forecasting, in particular,
precipitation forecasting on timescales of about a day.
We described a progression from basic generalizations
such as “red at night ...” through modern numerical
weather prediction with model output statistics and
ensemble runs to help deal with inherent error due to
sensitivity to initial conditions. What other methods
could be used to predict precipitation as well as to
address the many other environmental problems?

In Chapter 17, we will see the application of fuzzy
logic to analyzing Doppler radar data and to predicting
atmospheric turbulence for aviation users. In Chap-
ter 18, neural networks trained with a genetic algo-
rithm will be demonstrated for building models to
predict hail. Chapter 11 describes how the radiation
physics model in a climate model can be replaced by
a much faster Neural Network model with no degra-
dation in the results. The complexity of the Lorenz
strange attractor is modeled with a GA in Chapter 18
and an NN in Chapter 12. Some very specific nonlin-
ear phenomena including the El Nino-Southern Oscil-
lation (ENSO) are modeled by NN-based nonlinear
principal components in Chapter 8. The use of NNs
for assimilating satellite data is developed in Chapter 9
and a specific application described in Chapter 10.
Interpreting climate data using an NN is described
in Chapter 12. An NN is also used to model the
boundary layer height based on radon data in Chap-
ter 13. Chapter 14 describes how a GA is applied to
back-calculate the initial conditions of a toxic release
if sensor data are available. Chapter 16 discusses
advances in image processing techniques through
using Al. Habitat suitability modeling using NNs is
described in Chapter 19. These chapters sample the
utility of Al techniques in a variety of environmental
problems.

This book does not try to cover all of the sta-
tistical techniques used for environmental study or
prediction (there are already excellent entire books
on that topic) but instead concentrates on Artificial
Intelligence methods. We describe many of these
methods and demonstrate their usefulness on some
problems addressed by the authors. But we cannot
hope to be exhaustive, for it is a very broad field.
Similarly, no attempt is made to cover any particular
method in great detail. We instead reference the many
good treatises that provide details of the methodolo-
gies. In attempting to give an overview of many appli-
cations, we are unable to provide depth. What we hope
to do is to give the reader an introduction to some Al
methods and a sampling of the sorts of things that
can be done and invite him or her into the field to
help make progress in developing and testing alterna-
tive methods for modeling the natural world. Plenty
of challenges in environmental science have not yet
been addressed, and lots of relatively new Al methods
could be applied to meet these challenges. The primary
purpose of this book is to describe some of the basic
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Al techniques, demonstrate some applications in the
environmental sciences, and whet the reader’s appetite
for trying them on his or her own applications. Let the
adventure begin.
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