
Chapter 18
Proximate and Ultimate Control of Eel 
Continental Dispersal

Eric Edeline, Sylvie Dufour, and Pierre Elie

18.1 Introduction

Eels Anguilla spp. are fishes belonging to the Superorder Elopomorph, a group 
of phylogenetically ancient teleosts (Nelson 1994). Eels have ancestrally evolved 
a continental growth phase and thus migrate between marine breeding and conti-
nental feeding areas. In continental waters, eels colonize an extremely wide variety 
of salt (SW), brackish and freshwater (FW) habitats. Such ubiquity is almost 
unique among teleost fishes. However, the mechanisms controlling eel continental 
dispersal, i.e., distribution in different growth habitats, remain largely unknown. 
Dispersal is here understood in ecological terms and is thus referred to as move-
ments leading to habitat colonization in general. Dispersal is a pivotal process for 
both species persistence and evolution, and involves a great diversity of ecological 
phenomena (Clobert et al. 2001). In the eel, dispersal in different habitats may 
influence survival, growth, sex differentiation, age and size at silvering [female 
size affects fecundity, egg-size and larval viability (Einum et al. 2004)], swimming 
ability during the spawning migration, and finally capacity to reproduce. In turn, 
decision-makings by individual dispersers for migration to, immigration in and 
emigration from different habitats depend on genetic, physiological, morphologi-
cal and social attributes and are affected by a number of environmental parameters 
(Clobert et al. 2001).

In this chapter, we provide material to understand how (proximate control) and 
why (ultimate control) dispersal patterns by eels in continental habitats are what they 
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are. In the first section, we describe the process of continental dispersal, focusing on 
the behavioural changes that occur during ontogeny. We emphasize the importance 
of considering separately migration, which is mainly an endogenously-controlled 
behaviour expressed by glass eels and elvers, from ranging, which is mainly an 
environmentally-controlled behaviour expressed by yellow eels. Based on this 
dichotomy, we review in the second and third sections the internal and external 
(environmental) drivers of movements. In the fourth section, we investigate the 
evolutionary forces acting on eel movements and we propose an evolutionarily 
stable strategy (ESS) model explaining how decision-making for movement by indi-
vidual dispersers may be ultimately controlled. We further use this ESS model for 
qualitative predictions on the evolution of diadromy (i.e., colonisation of freshwater 
habitats) in response to anthropogenic changes in selective pressures. Finally, in the 
conclusion, we point out lack of knowledge and suggest future research directions.

18.2 Ontogeny of Eel Continental Dispersal

18.2.1 Metamorphosis

Metamorphosis is a drastic developmental strategy consisting of a suite of 
 morphological, physiological and behavioural adaptive changes. In the eel, 
metamorphosis of translucent leptocephalus larvae, drifting from the oceanic 
spawning grounds, into late-metamorphic, unpigmented glass eels occurs on the 
slope of the continental shelf (Schmidt 1909; Tesch 1977). This transformation 
is an adaptive shift from oceanic drift to river colonization, and marks the start 
of the continental dispersal phase. The larva’s body changes from willow-leaf to 
eel-shape, undergoes a reduction in length and weight, and an 80% drop in water 
content (Bertin 1951; Otake 2003). In addition, the brain structure is profoundly 
remodelled, with the external brain shape of the leptocephali gradually changing 
from laterally compressed to depressed elongated due to biased growth of the tel-
encephalon and optic tectum (Tomoda and Uematsu 1996). Also, feeding activity 
stops due to the shedding of larval teeth and reorganization of the digestive system. 
Then, as shown in A. anguilla glass eels, the gut specializes for osmoregulation in 
FW, independent of the environmental salinity (Ciccoti et al. 1993). This indicates 
that, although they keep the ability to live and grow in SW, eels are ontogeneti-
cally programmed for FW residency. Body pigmentation progressively develops 
throughout the glass eel phase over different pigment stages VA, VB, VIA
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not use the term “elver” but instead term “glass eel” for all the development stages 
between the leptocephalus larvae and the newly transformed yellow eel (stage VII 
of Elie et al. 1982). Feeding resumption occurs around the pigment stage VIA
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for most of individuals, after sufficient rearrangements of digestive organs and 
acquisition of a new set of teeth (Elie 1979). At feeding resumption, stomachs 
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contain mainly a mixture of plant and algal detritus that may be assimilated by 
the developing gut (Bardonnet and Riera 2005). The true end of metamorphosis, 
marking the start of the juvenile growth phase (yellow phase), occurs at completion 
of body pigmentation (stage VII) and matches the full development of gut and teeth 
(Vilter 1945; Elie 1979; Elie et al. 1982; Jegstrup and Rosenkilde 2003). At that 
stage, eels start feeding on macro-invertebrates and will progressively shift towards 
piscivory (Tesch 1977). The colonization of continental habitats is carried out by 
both the glass and yellow eels, but with quite different modalities.

18.2.2 Glass Eel Dispersal

Glass eels invade coastal and estuarine waters using selective tidal stream transport 
(STST), a saltatory transport mechanism with alternations of flow-carried swimming 
during flood tide and benthic sheltering behaviour during ebb tides (Creutzberg 1958; 
McCleave and Kleckner 1982; Elie and Rochard 1994). STST allows important 
energy saving compared to constant counter-current swimming (Weihs 1978). Glass 
eels orientate towards the river mouth and up-estuary following decreasing salinity gra-
dients (Tosi et al. 1990) and river water odours (Creutzberg 1961). Thermal gradients 
could also play a role in glass eel orientation (Tosi et al. 1990). As they reach the tidal 
limit (limit of flow reversals), migrating glass eels lose tidal advection for transport 
and have to switch from STST to constant counter-current swimming (McCleave and 
Wippelhauser 1987). We have investigated glass eel migration at the obstacle-free 
tidal limit area of the Dordogne River (France) during a 2-year field study (Edeline et 
al. 2007). This tidal limit is located about 50 km upstream from the salinity front, and 
thus provides a rare opportunity to separate the effects of salinity and hydrodynamics 
on the migration process. We have monitored the distributions of glass eels (pigment 
stages VB to VIB) vs. newly transformed yellow eels (stage VII, body length <15 cm) 
at five sites (coded A, B, C, D and E). Site C was located at the limit of flow revers-
als, i.e., at the point of the watershed where glass eels lose tidal advection for STST. 
The results indicate that glass eels arriving from the sea rapidly migrated up-estuary. 
Then, despite the absence of any osmotic barrier, glass eels accumulated at the limit 
of flow reversals (site C, Fig. 18.1). Upstream of this accumulation point, migration 
speed dropped and glass eels transformed into small yellow eels before reaching the 
non-tidal river area, where only small yellow eels and no glass eels were found (site 
E, Fig. 18.1). This finding is in accordance with other data indicating almost com-
plete absence of glass eels among inland river colonizers (Haro and Krueger 1988; 
Michaud et al. 1988; Naismith and Knights 1988; Dutil et al. 1989; McGovern and 
McCarthy 1992; White and Knights 1997b). Together, these results indicate that glass 
eels are strongly dependent on tidal streams for upstream movements and poorly 
adapted to colonization of non-tidal rivers. Therefore, the late-metamorphic glass eel 
should be considered as a transitory developmental stage between the oceanic larva 
and the continental juvenile, adapted to the colonization of tidal interface habitats by 
means of STST.
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18.2.3 Yellow Eel Dispersal

The distribution pattern of small yellow eels in the tidal limit area of the Dordogne 
River was quite different from that of glass eels (Fig. 18.1), suggesting that completion 
of larval metamorphosis was related to a pronounced change in dispersal behaviour 
(Edeline et al. 2007). Upstream migratory movements by newly transformed yellow 
eels should have induced increased abundance upstream of the site where they accu-
mulated as glass eels (site C, Fig. 18.1). Instead, abundance remained almost constant 
between sites B and E, suggesting a loss of the upstream-oriented migratory behaviour 
at the onset of the growth phase. This result matches with experimental aquarium data 
indicating a shift from pelagic towards benthic behaviour during the transformation of 
glass eels into small yellow eels (Jegstrup and Rosenkilde 2003). Therefore, termina-
tion of metamorphosis and full development of feeding capacity seem to mark the end 
of the larval migratory period in the European eel, as commonly observed in benthic 
marine fishes (Moran 1994). Homogenous distribution of newly transformed small 
yellow eels after initial accumulation at the glass eel stage further suggests density 
dependent dispersal (Edeline et al. 2007). This hypothesis is supported by recent 
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Fig. 18.1 Ontogeny of eel dispersal behaviour, adapted from Edeline et al. (2007). Distributions 
of glass eels (dotted line) and newly transformed yellow eels (body length <15 cm, solid line) 
around the tidal limit of the Dordogne River (France). Eels were sampled at five sites (A, B, C, D 
and E) located at increasing distance from the river mouth. Site C was located at the breakpoint of 
tidal streams. Glass eels accumulated at site C, most likely due to the loss of tidal streams available 
for selective tidal stream transport (STST). In contrast, newly transformed yellow eels were homo-
geneously distributed around site C. This result is most parsimoniously interpreted as a behavioural 
shift from upstream migration to settlement and food search during the completion of larval meta-
morphosis (see Section 18.2.3). Abundance indices (y axis) were obtained by multiplying the 
estimated probability of presence of a fish at each sampling site, by the estimated abundance of fish 
when fish was present, taking into account the effects of several important environmental variables 
in generalized linear models (For further details, see Edeline et al. 2007)
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 studies suggesting that upriver movements by yellow eel are largely density-dependent 
(Smogor et al. 1995; Ibbotson et al. 2002; Feunteun et al. 2003; Briand et al. 2005a).
Based on the aforementioned results, we may propose a typical ontogenetic pattern for 
eel dispersal behaviour. According to Dingle (2006), during migration the individual 
is not distracted from movement by resource-based stimuli like food or living space. 
This definition clearly fits glass eel movements because glass eels move upstream 
even if resources are more abundant in the estuary or on the coastline. In contrast, at 
the yellow stage, movements are driven by the search for food or other resources, and 
also aim at avoiding competitors and predators (see Section 18.4.7). These movements 
are clearly not migratory because they cease when a resource is encountered (Dingle 
2006). We here choose to refer to these non-migratory yellow eel movements as “rang-
ing”, because they occur at the home range scale-either within or between home ranges 
[but see Dingle (2006) for further development]. Finally, we define settlement as the 
behavioural shift from migration to ranging.

18.2.4 Variability of the Eel Dispersal Phenotype

We have now defined the typical ontogenetic pattern for European eel continental 
dispersal: eels migrate upstream at the glass eel stage, settle at the onset of the 
yellow stage and then shift to ranging behaviour. However, there is probably a 
large variability around this typical (or average) ontogenetic pattern. Indeed, set-
tlement is a complex trait involving a number of morphological, physiological and 
behavioural changes, and complex traits generally show a large variability in popula-
tions. In accordance with the view that settlement timing is highly variable, otolith 
microchemistry shows that some eels never enter freshwater but settle at the glass 
eel stage at sea or in the estuary (Tsukamoto and Arai 2001; Daverat et al. 2006). 
Settlement may also occur after the onset of the yellow eel stage. Indeed, small yel-
low eels may show intense upriver migratory behaviour during spring “runs”, and 
some larger (“pioneer”) yellow eels may maintain density-independent, upstream 
migration (Feunteun et al. 2003).

After settlement, ranging may be aperiodic or instead occur on a periodic basis, 
and include movements within and between home ranges that may cross salinity 
boundaries. For instance, seasonal ranging movements by yellow eels may occur 
between the river and the estuary (Tesch 1977; Daverat et al. 2006). The combi-
nation of variability in settlement timing and ranging movements leads to a very 
large diversity of continental dispersal patterns - this diversity is stressed by otolith 
microchemistry studies. How the variability of pre-and post-settlement move-
ments is controlled is discussed in the three following sections. The definition 
of migration given above - that a migrant is not responsive to resource - 
based stimuli - implies that migration is primarily driven endogenously. However, 
it should be kept in mind that environmental factors may still affect many internal 
drivers. Reciprocally, ranging behaviour is mainly controlled by the environment, 
but final decisions for moving or staying remain under endogenous control.
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18.3 Internal Drivers of Eel Continental Dispersal

18.3.1 Genetic Factors

Despite its central importance for both ecological and conservation purposes, the 
genetic control of eel life history has been historically neglected. Indeed, many 
authors implicitly consider that phenotypic diversity results from a single genotype 
showing different norms of reaction in response to various environmental effects. 
However, assuming no genetic variation (i.e., one genotype) for migratory behav-
iour simply implies that migration cannot evolve, because evolution results from 
sorting of genotypes by selection (Futuyma 1998). Instead, in both vertebrates and 
invertebrates, migration is an heritable syndrome (i.e., a complex trait) that requires 
genetic programming for morphological, physiological and behavioural adaptations 
(Berthold 1991; Pulido et al. 1996; Futuyma 1998; Roff and Fairbairn 2001; Alerstam 
et al. 2003; Dingle 2006). Typically, these adaptations are controlled by many loci 
each with a small additive effect (polygenic model) together bearing considerable 
genetic variation (Berthold and Pulido 1994; Futuyma 1998; Roff and Fairbairn 
2001). Accordingly, recent studies have shown significant genetic variation in 
A. anguilla (Daemen et al. 2001; Wirth and Bernatchez 2001; Maes and Volckaert 
2002; Dannewitz et al. 2005), that may be correlated to fitness-related traits (Pujolar 
et al. 2005). In the genus Anguilla, genetic diversity for migratory traits is necessary 
to explain evolution of diadromy from ancestral marine residency (Gross et al. 1988), 
as well as spatiotemporal shifts of migration loops (migration route and life cycle) 
that caused separation into subpopulations and speciation (Tsukamoto et al. 2002).

18.3.2 Body Condition

Body condition, i.e., energetic status, is a parameter of major importance that influences 
dispersal in birds and mammals (Dufty and Belthoff 2001). In anadromous fishes, limi-
tations in energy reserves constitute a major constraint for migration (Bernatchez and 
Dodson 1987; Jonsson et al. 1997; Forseth et al. 1999). Migrating glass eels, due to 
both their small size and non-trophic state, are likely prone to energetic constraints. 
Indeed, decreased body condition triggers a swap from FW- to SW-preference and a 
shift from migration to settlement in glass eels (Bardonnet et al. 2003; Edeline et al. 
2004, 2006; Bureau du Colombier et al. 2007). This energetically-controlled migratory 
plasticity likely reflects an adaptive threshold (see Section 18.5). Indeed, high body 
condition fishes will gain the highest fitness return by migrating to low-density river 
habitats (see Sections 18.4.7 and 18.5), while low body condition individuals increase 
their fitness by stopping migration-related energy expenditure and settling precociously 
in saline habitats. Glass eels are recruited into estuaries during migration peaks lasting 
for several months (Tesch 1977). The body condition of estuarine recruits decreases 
over this migration period in A. anguilla (Elie 1979; Charlon and Blanc 1982), 
A. rostrata (Jessop 1998), A. japonica (Kawakami et al. 1999), A. reinhardtii, A. 
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 australis (Sloane 1984) and A. dieffenbachii (Jellyman and Lambert 2003), possibly 
due to a decreased productivity of oceanic ecosystems during the larval migration 
period (Désaunay and Guerault 1997). Hence, the propensity to colonize river rather 
than marine and estuarine habitats is probably higher in early than in late recruits. Also, 
longer term oscillations in oceanic productivity (Désaunay and Guerault 1997) might 
plastically affect the proportion of diadromous individuals among recruits.

18.3.3 Endocrine Factors

Because they integrate both the genetic and environmental influences and, in turn, 
regulate gene transcription, neuronal and metabolic activities, hormones are key 
behavioural mediators. Diadromous fish migrations are under endocrine control 
(Fontaine 1975). During salmonid smoltification, pre-adaptation to SW residency is 
controlled in synergy by growth hormone (GH) and cortisol (Boeuf 1993; McCormick 
2001), while thyroid hormones (THs, thyroxine T

4
 and triiodothyronine T

3
) are involved 

in many adaptive processes including olfactory imprinting (Lema and Nevitt 2004), 
changes in muscle physiology (Katzman and Cech 2001), and rheotaxis (Specker 
et al. 2000). In the eel also, THs have a crucial role in controlling leptocephalus 
metamorphosis (Yamano et al. 1991; Ozaki et al. 2000) body pigmentation and gut 
transformations (Vilter 1946; Jegstrup and Rosenkilde 2003). In glass eels, THs fur-
ther stimulate migratory behaviour (Edeline et al. 2004, 2005b). Therefore, THs play 
a key role in the regulation of morphological, physiological and behavioural adapta-
tions leading to the colonization of FW habitats by the eel. Thyroid gland activity 
decreases at the yellow stage (Callamand and Fontaine 1942), likely promoting the 
observed switch from migration to settlement during transformation of glass eels 
into small yellow eels (see Section 18.2.3). In yellow eels, individuals caught climb-
ing water falls also have higher plasma T

4
 levels and locomotor activity compared 

to sedentary individuals (Castonguay et al. 1990), suggesting that maintenance of a 
high thyroid gland activity at the yellow stage delays settlement.

It seems likely that cortisol and GH are also involved in the regulation of glass 
eel dispersal (Fig. 18.2). Indeed, in both glass and yellow eels, cortisol promotes 
gill and intestine Na+/K+-ATPase activity, i.e., adaptation to SW residency, prob-
ably in synergy with GH (Epstein et al. 1971; Butler and Carmichael 1972; Wilson 
et al. 2004). In addition, cortisol injections decrease plasma THs levels (Redding 
et al. 1986), while THs exert a negative feedback on GH production by the pituitary, 
an eel-specific regulation (Rousseau et al. 2002). These crossed negative feed-
backs between THs vs. cortisol-GH could mediate the swap of glass eels from 
FW-oriented migration to settlement induced by a lowered body condition (Fig. 
18.2). Indeed, in teleosts, a lowered caloric status induces decreased thyroid gland 
activity (Eales 1988). In glass eels, a low body condition correlates to low thyroid 
gland activity (Edeline et al. 2004) and high GH levels (Lambert et al. 2003), while 
physiological stress and fasting in yellow eels stimulate GH and cortisol secretion 
through brain production of corticotropin-releasing hormone (Marchelidon et al. 
1996; Rousseau et al. 1999; Dufour et al. 2001).
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18.4 External Drivers of Eel Continental Dispersal

18.4.1 Tidal Streams: The Importance of STST

As indicated by their behavioural adaptation to tidal streams (the STST), glass eels 
are strongly constrained in their movements by the water current, that may either 
represent a transport vector or a migration barrier depending on its direction. At 
the tidal limit, migrating glass eels accumulate because tidal advection is no longer 
available to support upstream movements (see Section 18.2.2). In estuaries, glass 
eels may be found swimming in the water column during ebb-tide, while the use of 
STST for migration implies sheltering close to the bottom during ebb-tide. These 
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Fig. 18.2 Hypothetical endocrine mechanism for the control of glass eel migratory plasticity based 
on the results provided in Section 18.3.3. Thyroid hormones (THs) induce a river-oriented migra-
tory behaviour, but also exert a reciprocal negative feedback on cortisol and growth hormone (GH) 
production, which are both involved in saltwater (SW) acclimation. Left panel: individual’s physi-
ology is “THs-dominated”. We suggest that a satisfying energetic status (high body condition, see 
Section 18.3.2) may stimulate thyroid gland activity. Then, high THs levels maintain low GH and 
cortisol levels and promote colonization of river habitats. Right panel: we depict a possible endo-
crine switch to a “GH-cortisol-dominated” physiology (bold vs. thin arrows). Decreasing energetic 
status lowers THs production and increases GH and cortisol secretion, inducing low migratory 
activity and good hypoosmoregulatory ability. We suggest that shift from a “THs-dominated” to a 
“GH-cortisol-dominated” physiology occur when individual’s energetic status reaches a switch 
point described in Section 18.5
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ebb-tide glass eels present signs of physiological stress, similar to settling glass eels 
that remain on the bottom of the estuary during flood tide (Edeline et al. 2004). 
These results suggest that an inefficient use of tidal streams (by ebb-tide glass eels) 
is one of the mechanisms that could lead precocious settlement in saline habitats at 
the glass eel stage through a sequence presented in Fig. 18.3.

The rhythmic activity during STST is triggered by both exogenous olfactory cues 
(Creutzberg 1959; Barbin et al. 1998) and endogenous cues produced by an internal 
circatidal clock, which rhythm is synchronized by flow reversals (Wippelhauser 
and McCleave 1988). Disruption of these phasing mechanisms could hinder effec-
tive utilization of tidal streams (Fig. 18.3). For instance, pollutants could affect 
fine sensory processing of water currents and odours necessary for synchronization 
of the internal clock. Indeed, pollutants may damage olfactory neurons (Halpern 
1982) and may also affect a variety of behaviours through the upsetting of sensory, 
hormonal, neurological, and metabolic systems (Scott and Sloman 2004). Also, 
in poikilotherms, temperature is a very strong synchronizer of internal oscillators. 
Slight temperature changes may induce phase shifting of endogenous rhythms 
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Fig. 18.3 Proximate mechanism for the control of glass eel dispersal by tidal streams based on the 
results provided in Section 18.4.1. The rhythmic activity during selective tidal stream transport 
(STST) is triggered by both endogenous (internal clock) and exogenous (olfactory) cues. A rhythmic 
swimming activity in phase with flood tides allows energy saving and maintenance of satisfying 
energetic status and high thyroid gland activity, which promote preference for freshwater (FW) and 
a river-oriented migratory behaviour. In contrast, a phase shifting in activity rhythm, preventing glass 
eels from efficient using of tidal streams as transport means, leads to physiological stress through the 
resultant high energy cost of movements. This decreases thyroid gland activity and promotes prefer-
ence for saltwater (SW), loss of migratory behaviour and finally settlement. We suggest that the 
physiological condition could possibly exert a feedback on the synchronization of rhythmic activity 
(dotted arrows) because THs could be involved in olfactory sensitivity (see Section 18.3.3)
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through alterations of the clock molecular machinery (Rensing and Ruoff 2002). 
Accordingly, in A. japonica glass eels kept under free-running conditions, a slight 
temperature change may shift the rhythm of the internal circatidal clock (Kim 
et al. 2002). Such temperature-mediated phase shifting in the internal tidal clock 
may be one of the processes leading to an inefficient use of tidal streams by glass 
eels (see Fig. 18.3).

18.4.2 Salinity

Salinity is a major environmental factor that affects fish distribution (Jung and 
Houde 2003) and growth (Boeuf and Payan 2001). In the eel, salinity tolerance 
varies during development. Both glass eels and silver eels show an extraordinary 
capacity to cope with abrupt salinity transfers (Fontaine and Raffy 1932; Wilson 
et al. 2004) but osmotic tolerance decreases in small yellow eels (Boucher-Firly 
1935) which may suffer high mortalities during acute transfer from FW (0 ppm) 
to SW (35 ppm) (E. Edeline, unpublished data (2002): 100% mortality among 
197 newly transformed small yellow eels previously held and fed in FW for 2 
months). Salinity is likely to influence eel movements during both migration 
and ranging. Indeed, despite exceptional osmotic tolerance, glass eels arriving 
from the sea need a delay period before voluntary entry into FW (Petit and Vilter 
1944; Deelder 1958), indicating that salinity preference may reflect subtle proc-
esses that are not revealed by osmoregulation studies. Salinity preference tests 
show that, at arrival from the sea, the proportion of FW-seeking glass eels varies 
between 50% and 70% (Tosi et al. 1988; Tosi et al. 1989, 1990), suggesting inter-
individual variation in salinity preference that could possibly influence migration 
and/or habitat selection.

In order to investigate the role of glass eel salinity preference in the control of eel 
migration, Edeline et al. (2005a) sorted groups of A. anguilla glass eels (hereafter 
termed “contingents”) over two consecutive salinity preference tests. This allowed 
us to study the link between salinity preference and locomotor activity (i.e., positive 
rheotaxis), and to separate contingents of glass eels that were either plastic or fixed 
in their preference for FW or SW. During the first trial series, 3,193 glass eels were 
tested for salinity preference 1, 2 and 3 days after capture; 864 were active (i.e., 
actively swam towards either a FW or a SW flow). All the active glass eels, as well 
as a batch (n = 543) of inactive fish, were kept to perform the second behavioural 
test. The other fish (the rest of the inactive glass eels) were released. During the 
second trial series, we tested these two batches (543 inactive and 864 active glass 
eels) for their salinity preference, 9 and 10 days after capture. After the second 
trial, the 543 glass eels that had been inactive during the first trial were released. 
Among the 864 glass eels that had been active during the first trial series, 526 were 
again active during the second trial series. These 526 fish were used to carry out a 
growth experiment (see below), while the others were released. We classified the 
526 glass eels that were active during the two trials into contingents according to 
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their salinity preference: FWC (n = 240) for FW contingent (double preference for 
FW), SWC (n = 47) for SW contingent (double preference for SW), and PCC (n 
= 239) for plastic contingent (shift in salinity preference over the acclimatization 
period: from SW to FW, or from FW to SW). Somatic growth of these three con-
tingents was then monitored during 2 months under excess feeding in controlled 
FW and SW conditions.

During the two behavioural tests, locomotor activity and salinity preference 
were significantly linked. Indeed, the glass eels that were active during the first trial 
(preferring either FW or SW) showed a high locomotor activity during the second 
trial but also a sharp preference for FW, even if SW had been preferred first. This 
result indicated that a high locomotor activity was associated with FW preference in 
glass eels, a behavioural syndrome likely promoting migration to the river (Edeline 
et al. 2005a). In contrast, inactivity during the first trial was associated with a low 
locomotor activity during the second trial, but also to a preference for SW if the fish 
were active. This result indicated that low locomotor activity was associated with 
SW preference in glass eels, a behavioural syndrome probably promoting an early 
settlement in marine and estuarine habitats (Edeline et al. 2005a).

Additionally, the behavioural syndromes observed during the behavioural tests 
were associated with growth patterns that fitted with the observed growth patterns 
of yellow eels in the wild. Indeed, the FWC (i.e. glass eels that preferred FW twice) 
had the lowest growth rates in both FW and SW rearing conditions. In contrast, the 
SWC (i.e. glass eels that preferred SW twice) had the highest growth rates in SW 
rearing conditions. These results suggest a trade-off (negative correlation) between 
migration and growth, in accordance with data from the wild showing that freshwa-
ter eels grow more slowly than estuarine eels (Tzeng et al. 2003; Jessop et al. 2004; 
Daverat and Tomás 2006). Additionally, growth was higher in SW than in FW in all 
contingents, indicating that, in addition to the migration/growth trade-off, habitat 
salinity may directly affect growth (Edeline et al. 2005a). The PCC (i.e. glass eels 
that swapped their salinity preference) had an intermediary growth status that could 
be related to the nomad life style of eels moving between different habitat types 
during their life (Feunteun et al. 2003; Daverat and Tomás 2006). The results from 
this behavioural – growth experiment provide a comprehensive ecological mecha-
nism for the control of habitat distribution and growth patterns in glass and yellow 
eels, as presented in Fig. 18.4.

Trade-offs between migration and other fitness-related traits are frequent 
because migration incurs heavy fitness costs (Roff and Fairbairn 2001), and 
may involve various ecological, physiological, and genetic pathways (Zera and 
Harshman 2001). In juvenile eels, the links between locomotor activity, salinity 
preference and growth probably involve complex interactions of several mediators, 
including metabolic hormones and genes (Fig. 18.4). The speculations presented in 
Fig. 18.4 are based on the facts that: (1) THs promote locomotor activity in glass 
eels (Edeline et al. 2005b) and have also been shown to affect salinity preference 
(Baggerman 1960, 1962; Iwata 1995) and growth (Higgs et al. 1982) in other tel-
eosts, (2) GH affects growth, acclimation to SW (see Section 18.3.3) and locomotor 
activity in salmonids (Øverli et al. 2002; Johansson et al. 2004), and (3) genes 
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(allozyme heterozygosity) affects both salinity tolerance in teleosts (Shikano et al. 
2000) and growth performance in A. anguilla (Pujolar et al. 2005). Finally, migra-
tory behaviour could also be correlated to sex differentiation through growth (Fig. 
18.4). Indeed, recent data suggest that slow growth rates during the first year of 
continental life may favour female sex differentiation (Holmgren and Mosegaard 
1996; Holmgren et al. 1997; Davey and Jellyman 2005)

18.4.3 Water Temperature

Water temperature profoundly affects the whole metabolic machinery and is 
thus a crucial driver for eel dispersal plasticity. In glass eels, both the estua-
rine migration and river recruitment are conditioned by temperature thresholds 

Selection of low
salinity waters
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activity

Genetic and 
endocrine status

Sex differentiation

Growth

Upstream
migration

Settlement in
river habitats

Selection of high
salinity waters

Low locomotor
activity

Early
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marine and estuarine
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Fig. 18.4 A simple mechanism for the proximate control of eel life history in continental habitats 
based on the results provided in Section 18.4.2. Non-filled boxes refer to processes occurring in 
glass eels and elvers (hereafter simply termed glass eels), while grey boxes refer to processes occur-
ring in yellow eels. In glass eels, locomotor activity and salinity preference are correlated (double 
arrows) and participate in driving upstream migratory behaviour. High locomotor activity and 
preference for FW lead to upstream migration and diadromy, while a low locomotor activity and 
preference for SW favour an early settlement and non-diadromy. At the yellow stage, habitat salin-
ity and primary productivity directly influence somatic growth (+ and −). However, we further 
suggest occurrence of a trade-off between migration and somatic growth, presumably through 
endocrine and genetic pathways. High migratory propensity at the glass eel stage seems to be cor-
related with low juvenile growth rates, while a low migratory propensity by glass eels seems to be 
related to high juvenile growth rates. Following other authors, it is suggested that growth rate during 
the first year of continental life could affect sex differentiation (dotted line)
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(Vøllestad and Jonsson 1988; McGovern and McCarthy 1992; Elie and Rochard 
1994; Jessop 2003). Accordingly, under experimental conditions, a temperature 
increase from 10°C to 18°C enhances both locomotor activity (i.e. positive rheo-
taxis) and FW-preference (Edeline et al. 2006). Runs of small yellow eels in rivers 
are also triggered by a rise in water temperature; the temperature-dependency of 
movements decreases with increasing body size (Moriarty 1986; Naismith and 
Knights 1988; White and Knights 1997b). There are several physiological mecha-
nisms by which temperature may affect locomotion. Decreased environmental 
temperatures primarily act in reducing enzymatic activities and fluidity of both 
membranes and internal liquids, causing a drop in the power output from muscles 
(Johnston and Temple 2002). Water temperature also affects endocrine secretions. 
In A. anguilla yellow eels, thyroid gland activity decreases with water tempera-
ture (Leloup 1958; Leloup and De Luze 1985) and, in glass eels, a fall in water 
temperature slows down the process of metamorphosis (Briand et al. 2005b). 
Finally, habitat selection at the patch scale may be affected by water temperature 
(Chen and Chen 1991; Richardson et al. 1994). Thermal preferences match with 
optimal temperatures for growth (Elie and Daguzan 1976), suggesting that prefer-
ence is related to optimal functioning of the enzymatic machinery.

18.4.4 Water Odour, Migration and Habitat Selection

Odours are widely known to guide salmon to their native stream during spawning 
migration (Døving and Stabell 2002). According to the definition of Harden-Jones 
(1984), migratory fishes may use water odour as a “cue” triggering movements 
(i.e., shift from inactivity to activity) above sensitivity thresholds, and/or as a 
“clue”orienting movements through odorous gradients once the fish is in motion 
(i.e., after the cue triggered onset of movement). In glass eels, the smell of inland 
waters is thought to provide a cue triggering the onset of swimming during STST 
(see Section 18.4.1), but also clues orienting movements towards rivers (Creutzberg 
1961). Attraction is due to several earthy compounds (Sorensen 1986; Tosi and 
Sola 1993; Sola 1995), that may either attract or repel glass eels depending on 
environmental salinity (Sola and Tongiorgi 1996). It has been hypothesized that 
orientation towards earthy odorants during migration evolved because these com-
pounds are indicative of habitat primary productivity (Sorensen 1986). Odours also 
transmit social information. Both glass eels (Briand et al. 2002) and yellow eels 
(Saglio 1982) are attracted by the odour of conspecifics, possibly through epider-
mal mucous compounds (Saglio 1982), bile salts (Sola and Tosi 1993) and amino 
acids (Sola et al. 1993; Sola and Tongiorgi 1998). Chemoattraction could promote 
glass eel’s grouping behaviour during migration, mediate conspecific recognition 
and allow food location during ranging (Sola and Tongiorgi 1998). Therefore, 
odorous signals may be seen as mediators of optimal foraging and optimal habitat 
selection by dispersers during ranging.
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18.4.5 Light and Photoperiod

In both plants and animals, light is one of the most important synchronizers of 
internal rhythms (Hastings et al. 1991). Photoperiodic (seasonal) information is 
transformed into a melatonin secretory rhythm that, through hypothalamic stimula-
tion, regulates many biological functions such as growth and reproduction (Bolliet 
et al. 1996; Boeuf and Le Bail 1999; Falcon et al. 2003). In teleosts, photoperiod 
affects circulating levels of numerous hormones, including GH (Björnsson et al. 
1994), THs (Leiner and McKenzie 2001) and reproductive hormones (Blázquez et al. 
1998). In salmonids, the spring increase in daylength is one of the factors trigger-
ing smoltification (Hoar 1988). In the eel, the effects of photoperiod variations 
on physiology and behaviour remain unexplored, but it is well known that light 
inhibits eel movements. Glass eels are strongly photonegative (Bardonnet et al. 
2003; Dou and Tsukamoto 2003), and light avoidance increases with body pigmen-
tation (Bardonnet et al. 2005). In estuaries, glass eels avoid both the daylight and 
moonlight by remaining on the bottom or swimming deeper in the water column 
(Creutzberg 1961; Elie and Rochard 1994; De Casamajor et al. 2000). Yellow eels 
also show nocturnal foraging activity (Bertin 1951; Tesch 1977; Baisez 2001), 
reduced during full moon periods (Adam and Elie 1994). This light inhibition of 
eel movements is mediated by increased secretion of brain catecholamines (Le 
Bras 1978, 1984). Finally, both glass eels (Wippelhauser and McCleave 1988) and 
silver eels (Edel 1976) have circadian activity rhythms in free-running conditions, 
suggesting occurrence of an internal circadian clock.

18.4.6 Anthropogenic Pressures

Anthropogenic pressures on aquatic environments may be considered critical 
to eel continental dispersal (Feunteun 2002). First, global warming affects oce-
anic gyres, reduces nutrient availability and slows down oceanic migration, and 
could thus increase larval mortality through enhanced starvation and predation 
(Knights 2003). On the other hand, continental influences should not be neglected. 
Overharvesting, habitat fragmentation and loss, and introduction of exotic species 
are strong agents of selection and may drive species to extinction (Stockwell 
et al. 2003). For instance, estuarine fisheries may deplete a large proportion of the 
migrating glass eels. In the Vilaine River, where a dam blocks upstream move-
ment, the fishery removes up to 99% of the glass eel stock (Briand et al. 2003). 
In barrier-free estuaries, exploitation rates are probably sharply reduced but glass 
eel fisheries, by selectively targeting migrants using STST, could possibly favour 
evolution towards reduced migratory behaviour in the population on a decadal time 
scale (see Section 18.5). Indeed, fisheries may induce rapid life history evolution 
in fish populations (Law 2000). Furthermore, dams dramatically decrease habitat 
accessibility (White and Knights 1997a; Lafaille et al. 2005), and could possibly 
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increase mortality in migrants that accumulate below the obstacle. Introduction of 
strong FW predators such as Silurus glanis could also seriously impair the benefits 
from colonizing river habitats. Finally, pollution impacts fitness through decreased 
individual condition and genetic erosion (Maes et al. 2005), and probably also 
disrupts complex behaviours through various endocrine and metabolic pathways 
(Robinet and Feunteun 2002; Scott and Sloman 2004).

18.4.7 Social Interactions

Social interactions are critical to animal dispersal (Clobert et al. 2001). In the eel, 
social entrainment to migration (i.e., positive density-dependent migration) is likely 
to occur through schooling behaviour (Tesch 1977). However, it is probably dur-
ing ranging that social interactions play their major role in driving eel continental 
dispersal patterns. Indeed, yellow eels are strongly agonistic and confrontations 
may induce severe injuries or even death of the defeated individual (Bertin 1951; 
Tesch 1977; Peters et al. 1980). This agonistic behaviour is coupled to cannibalism 
(Degani and Levanon 1983; Knights 1987) and results in negative density-dependent 
survival (Vøllestad and Jonsson 1988; Briand et al. 2005a) and growth (Degani et al. 
1988; Beentjes and Jellyman 2003). In mammals, competition for food and space 
and agonistic interactions are known to induce positive density-dependent dispersal 
(Sutherland et al. 2002). The same is likely to be true for the eel. In other words, 
how far yellow eels disperse from the habitat where they settled (the tidal limit area 
for many individuals) should be positively related to the density of dominant eels 
present in this habitat. Indeed, several recent studies indicate that river coloniza-
tion by yellow eels is positively density-dependent, i.e., is a process equivalent to 
random diffusion of particles driven by density at the point source (Smogor et al. 
1995; Ibbotson et al. 2002; Feunteun et al. 2003; Briand et al. 2005a).

Under density-dependent ranging, the many environmental (seasonal or not) 
variations that may alter the social structure of local populations will promote 
a reorganization of distributions, following a model of a patchy “fluid mosaic” 
(Feunteun et al. 2003). Depending on availability of habitat resources (space, water 
temperature, food availability, dissolved oxygen, etc.) and/or demographic param-
eters (density, proportion of dominant eels, etc.), subordinate eels shift towards 
habitats where survival and growth conditions are better (see also Section 18.5.2). 
This density-dependent ranging period is by far the longest of the continental 
phase, giving opportunity for generation of a very large variety of dispersal pat-
terns. How often an individual will cross salinity boundaries during this period may 
partly depend on its osmotic capacities (see Section 18.4.2). In conclusion, social 
interactions combined with habitat variations represent major cues inducing plastic 
dispersal responses through ranging movements. However, we suggest that social 
interactions further represent a major selective force for the evolution of migration 
and timing of settlement because they induce habitat-specific survival and growth. 
This point is developed in the following section.
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18.5 Ultimate Control of Eel Continental Dispersal

Game theory and associated concepts such as the Evolutionarily Stable Strategy 
(ESS) provide a framework for studying eel alternative phenotypes in terms of 
their costs and benefits to evolutionary fitness. We have analysed eel continental 
dispersal in the context of evolutionarily stable strategies, considering movement 
as a threshold trait with two alternative values: moving or staying. For the sake of 
clarity we have equated moving with diadromy (i.e. colonization of FW habitats) 
and staying with non-diadromy (i.e. colonization of SW habitats), but we suggest 
that the approach is valid for any type of movement.

18.5.1 The Cost/Benefits Fitness Ratio of Diadromy

Evolution of diadromy should be seen as driven by a ratio between its costs and 
benefits in terms of fitness (Gross et al. 1988; Edeline 2007). Diadromy provides 
evolutionary benefits because it may give access to increased food resources (Gross 
et al. 1988). In eels, diadromy may be considered as an ancestral trait. Indeed, eels 
appeared in tropical oceans where they probably evolved diadromy from a marine 
ancestor because primary productivity is higher in FW than in SW at low latitudes 
(Aoyama et al. 2001; Tsukamoto et al. 2002). Colonization of temperate oceans by 
several eel species has promoted evolution of a facultative diadromy (i.e., a fraction 
of the population never enter FWD presumably because relative productivity of riv-
ers decreases compared to the sea, estuaries or deltas (Tsukamoto and Arai 2001). 
However, diadromy remains the predominant migratory tactic in temperate eels, as 
suggested by the ontogenetic programming of A. anguilla for osmoregulation in 
FW (Ciccoti et al. 1993). Most likely, maintenance of diadromy by temperate eels is 
selected for because it allows reduction of both inter- and intraspecific competition, 
two pivotal components of dispersal evolution (Clobert et al. 2001). Indeed, a shift 
to FW permits temperate eels to escape both strong marine predators (Jonsson and 
Jonsson 1993), such as conger eels (Moriarty 2003), and high conspecific densities 
(Tesch 1977). In that sense, social interactions may be considered as major drivers 
for the evolution of migration in the eel.

However, migration and diadromy incur a strong energetic cost (Roff 1991), 
that results in increased mortality. Indeed, depletion of energy stores by migration 
induces exhaustion that could lead to death, either directly or through reduced com-
petitive ability and increased sensitivity to predation and infections (Bernatchez 
and Dodson 1987; Gandon and Michalakis 2001). In addition, migration probably 
incurs growth costs as already discussed in Section 18.4.2. Indeed, in the eel, energy 
requirements of digestion and locomotor activity are conflicting (Owen 2001), and 
the glass eel’s migratory propensity is negatively correlated to juvenile growth per-
formance (Edeline et al. 2005a). Therefore, the evolution of eel diadromy may be 
driven by a trade-off between search for the most productive habitats and competition 
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avoidance favouring shift to less productive areas, while costs of dispersal hinder 
movements. We now provide an ESS model that may explain how eels cope with 
these conflicting selective pressures.

18.5.2 Evolutionarily Stable Strategy Model

Conditional strategies are ESSs that are commonly invoked to explain the occurrence of 
alternative phenotypes (i.e., threshold traits) among populations because they allow 
individuals to cope with physiological- and environment-dependent fitness trade-
offs (Hazel et al. 1990; Gross 1996; Roff 1996; Hazel et al. 2004). Conditional 
strategies depict a special case of phenotypic plasticity in which the reaction norm 
is not continuous but instead takes a number of discrete values - most often two 
values - constituting the threshold trait under scrutiny (Schlichting and Pigliucci 
1995). Classical examples of conditional strategies include predator - induced pro-
tected morphs, trophic polymorphisms or male alternative reproductive behaviours 
(but see Roff 1996 for review). The alternative phenotypes may be cued by internal 
(physiological) cues, and/or by external (environmental) cues if they are reliable 
indicators of environment quality (Hazel et al. 2004). Following Gross (1996), we 
hereafter term “tactic” the value taken by the phenotype (or decision taken by the 
individual), and “status” the value of the internal cue triggering the tactic (“status” 
is not convenient for environmental cues). Tactics change at the status at which fit-
ness benefits switch from favouring one tactic to favouring the alternative: the ESS 
switch point (Gross 1996).

Edeline (2005, 2007) suggested that glass eel diadromy is a conditional strategy 
cued by individual energetic status, based on the observation that shift from migra-
tion to settlement by glass eels as their body condition decreases has an adaptive 
significance (Edeline et al. 2006) (see also Section 18.3.2). Edeline (2007) consid-
ered it parsimonious to consider a model in which both the switch point and the 
status (energy stores) of the conditional strategy as polygenic traits influenced by 
environmental factors. Hence, in an individual, both traits (the switch point and 
the status) are genetically fixed but they vary with environmental conditions. For 
instance, energy stores may possibly be influenced by the amount of food encoun-
tered during the larval stage (Désaunay and Guerault 1997). Also, the switch point 
may change with temperature, as indicated by the fact that low water temperature 
increases preference for SW in A. anguilla glass eels (Edeline et al. 2006). At the 
population level however, variations for the cue and the switch point result from 
both genetic and environmental variations, resulting in normal distributions for 
both traits (Hazel et al. 1990; Roff 1996; Hazel et al. 2004) (Fig. 18.5).

In Fig. 18.5, we depict this conditional strategy model in glass eels. Individual 
glass eels switch from migration to settlement if their energetic status decreases 
below their switch point. The proportion of migrants in the population is thus 
determined by the distribution of switch points relative to the distribution of ener-
getic status (Fig. 18.5). In this model THs vs. GH and cortisol are presumably the 
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Fig. 18.5 Ultimate control of eel migratory behaviour. Conditional evolutionarily stable strategy 
(ESS) with alternative migratory tactics depicted as a threshold trait, after Edeline (2007) and 
adapted from the quantitative genetic models of Hazel et al. (1990, 2004). Consider first the solid 
curves and arrow. The distribution of the ESS switch points in the population (lower axis) is 
scaled with exposure to the cueing trait (energetic status, upper axis). An individual x (mean 
individual with regards to the switch points) will be sedentary if its energetic status Ex is lower 
than its switch point Sx, and migrant if its energetic status is higher than Sx. The proportion of 
migrants in the population therefore depends on the distribution of the switch points relative to 
the distribution of energetic status. For distributions corresponding to solid curves, the majority 
of the population presents a migratory phenotype (the mean switch point is lower than the mean 
energetic status). Note that variation for the switch point is larger than variation for energetic 
status, leading to the existence of unconditional migrants and unconditional sedentary individu-
als in the population (Hazel et al. 2004). Now, consider the effects of increased selection against 
migrants due to anthropogenic pressure on FW habitats (see Section 18.4.6). Individuals with a 
low switch point and/or a high energetic status are counter-selected, resulting in new distributions 
(dashed curves). This displacement of the curves induces a drop in the proportion of migrants in 
the population (dashed arrow). We suggest that such evolutionary shift contributes to explain the 
collapse of eel recruitment into FW during the last decades. Increased selection against migrants 
strengthens stabilizing selection and thus results in reduced variance in distributions (Futuyma 
1998). Note that because the surface below a curve is held constant, reduced variance induces 
increased peak values

proximate mediators of the alternative tactics, as described in Section 18.3.3. This 
conditional ESS model, initially designed for glass eel migration, may be adapted 
to ranging behaviour by yellow eels provided that the cue (internal or environmen-
tal) is a reliable proxy for fitness gain from dispersal decisions. For instance, indi-
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vidual body size relative to that of the opponent (hierarchical status) is probably a 
reliable cue for risk of injury during agonistic interactions. Hence, the relationship 
between fitness of the alternative dispersal phenotypes and status in yellow eels will 
be the opposite of that found in glass eels: residency will be favoured in (large, high 
status) dominant eels, while (small, low status) subordinate eels will derive higher 
fitness from dispersal to lower density habitats. In that case, variation in the switch 
point for fighting or avoiding confrontation is related to individual “personality” 
[aggressiveness or boldness for instance (Stamps 2007)]. In other words, not all 
subordinate eels of the same size will skip confrontation with a given larger oppo-
nent. The view that relative body size is a reliable cue for post-settlement dispersal 
decisions is supported by data showing that the intensity of movements by yellow 
eels is inversely proportional to their size (Feunteun et al. 2003).

Ecological events may change selective pressures acting on migrants and sed-
entary individuals and thus generate equilibrium displacements in the distributions 
of both switch points and status. For instance, in Fig. 18.5, we have depicted the 
effects of an anthropogenic increase in selection against migrants (see Section 
18.4.6). Enhanced mortality, acting selectively on migrants (individuals with a low 
switch point and/or a high body condition), pushes distributions away from each 
other and then dramatically reduces the proportion of migrants in the population. 
Concurrently, global population collapse will decrease densities in SW habitats 
and thus favour non-migrant individuals (individuals with a high switch point and/
or a low body condition), further contributing to separate the two distributions. As 
underlined in Section 18.4.6, such evolutionary shifts may be rapid. Hence, we sug-
gest that the collapse of FW eel stocks monitored during the last decades (Dekker 
et al. 2003; Stone 2003) may have anthropogenic sources. This collapse would not 
only result from decreased population size, but also from a decrease in the propor-
tion of diadromous individuals in the population (Edeline 2007).

18.6 Conclusion and Suggested Future Research Directions

Eel dispersal in different growth habitats influences pivotal life history traits such 
as growth, sex differentiation, age and size at silvering and finally capacity to repro-
duce. Therefore, understanding the mechanisms controlling continental dispersal is 
crucial to eel biology and conservation. The ontogeny of dispersal behaviour reveals 
that most of the glass eels switch from upstream migration to food-search and den-
sity-dependent dispersal during their transformation to yellow eels. However, the 
timing of settlement is variable and some individuals settle precociously at the glass 
eel stage while others continue upstream migration at the yellow stage. These dif-
ferent migratory tactics are underlaid by genetic variation that allows the evolution 
of migratory behaviour and induces correlations between migratory behaviour and 
other life history traits such as salinity preference, locomotor activity and growth. 
Individual energetic status is a major cue for eel migratory plasticity. The endocrine 
system, processing both genetic and non-genetic influences, may be considered 
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as the key mediator of the alternative migratory tactics. A host of environmental 
parameters may influence migration reaction norms, among which are water cur-
rents, temperature, salinity and odours. Post-settlement, eel movements are driven 
by search for resources and are thus more appropriately termed “ranging”. Ranging 
is density-dependent and often results from aggressive interactions whose output is 
size-dependent. During this phase of continental life, variations in demography and 
resource availability generate a wide array of dispersal patterns. Ultimately, eels 
have evolved a conditional ESS to regulate dispersal decisions during continental 
life, i.e. a form of phenotypic plasticity that allows individuals to be either seden-
tary or dispersing, depending on their environment, and on their physiological and 
social status. This ESS model suggests that the worldwide collapse of river recruit-
ment during the last decades may result not only from decreased abundance, but 
also from an adaptive decrease in the proportion of migrants in populations.

There still remain many gaps in our knowledge, as shown by the many specula-
tive or purely theoretical parts of this review. Future works should aim at investi-
gating the genetic basis of the alternative migratory tactics, such as for instance 
correlations between migratory behaviour and fitness-related genetic markers. 
More generally, mapping correlations among fitness-related traits could greatly 
help in dissecting both the proximate and ultimate constraints shaping the eel life 
history. At the endocrine level, the roles of THs, GH and cortisol in regulating 
the morphological, physiological and behavioural processes governing dispersal 
should be explored more deeply. Also, the mechanisms controlling glass eel rhyth-
mic activity are poorly understood, but additional studies could bring fascinating 
insights about the fine tuning of the glass eel’s coastal and estuarine movements. 
At the environmental level, our understanding of the social control of dispersal 
remains limited, and the importance of olfaction in conspecific interactions could 
be underestimated. Finally, a better evaluation of the anthropogenic impacts on eel 
life history is critical for better management of the endangered eel populations.
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