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From Logic to Mathematical
Philosophy

Introduction

A scientific discipline earns its keep by solving problems. They can be of
three broad kinds. First, there are those that are generated by the world
around us and our participation in it. In the long run, these are the most de-
cisive ones — a discipline that is not able to make significant contributions
to this kind of problem, directly or indirectly, is bound to die out. Then
there are problems that are internal to the discipline itself: formulating new
concepts, answering new questions, and on a more global level organizing
the evolving whole into coherent forms. If such internal development ceases,
the theory ossifies, even when it is still a source of useful practical applica-
tions. Finally, there is the challenge of contributing towards the solution of
problems that take their origin in other disciplines. That, indeed, is a path
to glory.

Through its long history, logic has at times shone more brightly in one
or another of these directions. For two thousand years, from the death of
Aristotle to the early nineteenth century, it seemed to be a body of knowledge
perfect and complete in itself, but essentially static, capable of only minor
improvements and reorganizations. However, with its mathematization from
the time of Boole, then Frege, through the early twentieth century, logic saw
an extraordinary growth in its internal development and its connections with
the remainder of pure mathematics.

What about its application to the world around us and to problems
raised by neighbouring disciplines, other than pure mathematics? By the
middle of the twentieth century, these appeared to be falling behind. It is
revealing to recall the following remark, made by John Venn in 1866 about
the probability theory of his time, in the preface to the first edition of The
Logic of Chance. By 1966 there were critics who felt much the same about
logic:

D. Makinson, J. Malinowski, H. Wansing (eds.), Towards Mathematical Philosophy,
Trends in Logic, 28 c© Springer Science + Business Media B.V. 2009



2 D. Makinson, J. Malinowski, and H. Wansing

The science of Probability occupies at present a somewhat anomalous
position. It is impossible, I think, not to observe in it some of the
marks and consequent disadvantages of a sectional study. By a small
body of ardent students it has been cultivated with great assiduity,
and the results they have obtained will always be reckoned among
the most extraordinary products of mathematical genius. But by the
general body of thinking men its principles seem to be regarded with
indifference or suspicion. Such persons may admire the ingenuity dis-
played, and be struck with the profundity of many of the calculations,
but there seems to them, if I may so express it, an unreality about
the whole treatment of the subject. To many persons the mention of
Probability suggests little else than the notion of a set of rules, very
ingenious and profound rules no doubt, with which mathematicians
amuse themselves by setting and solving puzzles.

How probability theory has changed its image since then! Now deemed one
of the most practical of the pure parts of mathematics, and one of the more
useful to other sciences from biology through meteorology to physics, it looks
outwards as much as inwards.

In recent decades, logic too began deepening its role as a tool for neigh-
bouring scientific disciplines: in computer science, most visibly, but also in
theoretical linguistics, cognitive science, game theory and theoretical eco-
nomics. In at least two cases, game theory and preference aggregation in
economics, a reverse flow has also been evident.

In philosophy, the role of logic as an instrument of analysis had been
cultivated much earlier under the influence of Russell in the early twentieth
century and subsequently the so-called logical positivists, its fortunes rising
and falling as excessive hopes and claims were followed by disappointments.
However, with the recent development of formal epistemology, a more bal-
anced connection seems here to stay.

The conference Towards Mathematical Philosophy: Trends in Logic IV
(details below) was organized in 2006 with these three facets of the subject
in mind. The viewpoint was that while it is natural, indeed inevitable, that
the bulk of the work done in a living and growing discipline is essentially
internal, the importance of external connections with the world around us
and other disciplines must not be forgotten.

The present volume, which is based on the conference, continues the
same triple perspective. Its contributions have been grouped under three
main headings. The first group consists of investigations in modal logic,
which is currently a very active field in the internal development of the
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area and in applications to linguistics, formal epistemology, and the study
of norms. The second contains papers on non-classical and many-valued
logics, with an eye on applications in computer science and through it to
engineering. The third concerns the logic of belief management, which is
likewise closely connected with recent work in computer science but also
links directly with epistemology, the philosophy of science, the study of legal
and other normative systems, and cognitive science. The grouping is of
course rough, for there are contributions to the volume that lie astride a
boundary; at least one of them is relevant, from a very abstract perspective,
to all three areas.

We say a few words about each of the individual chapters, to relate them
to each other and the general outlook of the volume.

Modal Logics

The first bundle of papers in this volume contains contribution to modal
logic. Three of them examine general problems that arise for all kinds of
modal logics. The first paper is essentially semantical in its approach, the
second proof-theoretic, the third semantical again:

• Commutativity of quantifiers in varying-domain Kripke models, by
R. Goldblatt and I. Hodkinson, investigates the possibility of commu-
tation (i.e. reversing the order) for quantifiers in first-order modal logics
interpreted over relational models with varying domains. The authors
study a possible-worlds style structural model theory that does not val-
idate commutation, but satisfies all the axioms originally presented by
Kripke for his familiar semantics for first-order modal logic.

• The method of tree-hypersequents for modal propositional logic, by
F. Poggiolesi, introduces generalised sequent systems for the well-known
modal logics K, K4, KD, and KD4. The ‘tree hypersequents’ of these
calculi are trees whose nodes carry sequents. The admissibility of weak-
ening and contraction, the invertibility of all rules, soundness and com-
pleteness for the systems with cut, and finally, cut elimination are all
established. The central proofs are entirely syntactic.

• All splitting logics in the lattice NExt(KTB), by T. Kowalski and
Y. Miyazaki, explores the lattice of all normal extensions of the modal
logic KTB. It shows that only two logics split this lattice: a surprising
negative result, as there are many splitting logics both in a larger lattice
NExt(K) and in a smaller lattice NExt(S5).
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The other two papers in this section deal more specifically with tem-
poral, deontic and epistemic modalities. One focuses on temporal logic of
computation, the other on epistemic logic of belief justification.

• On the temporal logic of normative systems, by T. Ågotnes, W. van
der Hoek, J. Rodŕıguez-Aguilar, C. Sierra and M. Wooldridge, concerns
a conservative extension of computational tree logic, where the path
quantifiers are replaced by deontic operators. Called ntl, this norma-
tive/temporal logic is given a sound and complete axiomatisation, some
of its model-checking problems are studied, and complexity results are
obtained.

• Reasoning with justifications, by M. Fitting, has been positioned in the
section on modal logics in view of its techniques but, given its subject
matter, could equally well have been grouped with the contributions on
belief representation. It surveys what are known as ‘justification logics’.
In these logics, which have evolved from work of S. Artemov, the usual
representation of knowledge claims taking as components the knowledge
operator, the item known, and possibly the agent bearing the knowledge,
is expanded to include also the justification for the claim as part of the
object language.

Non-Classical and Many-Valued Logics

Many-valued logics have always been tempting to those interested in ap-
plications, but at the foundations one finds difficult philosophical questions
concerning the nature of their logical values. This is evident, for example,
in the case of fuzzy logic, which began as a tool for engineers without a
clear logical basis or even much mathematical rigour, but which in recent
years has been systematized as a logic of residuated structures, thereby lo-
cating it in the area of substructural logic as much as that of many-valued
logic. Other substructural logics include the syntactic calculi of categorial
grammar emanating from work of Ajdukiewicz and Lambek. Quite different
approaches to many-valued logic have emerged from logical investigations
into information processing, giving rise to the so-called ‘useful four-valued
logic’ of Dunn and Belnap, which have developed into general theories of
bilattices and, most recently, trilattices.

• The first paper in this section, Monotone relations, fixed points, and re-
cursive definitions, by J. Czelakowski, really cuts across all of the bound-
aries of this volume. Fixed points play a crucial role in several areas of
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computer science, mathematics, and logic including domain theory, data-
base theory, finite model theory, nonmonotonic reasoning in the style of
Reiter, logic programming with negation, the logic of common knowl-
edge, and the modal μ-calculus. The relationship of fixed point construc-
tions to recursive definitions is both important and subtle. The paper
is concerned with reflexive points of relations. The notions of monotone
and chain σ-continuous relations are introduced and their significance is
revealed in the context of indeterminate recursion principles.

• Processing information from a set of sources, by A. Avron, J. Ben-Naim
and B. Konikowska, analyses ways in which we can integrate and process
information collected by a computer from different directions, in a spirit
that derives ultimately from the early work of Dunn and Belnap. It
defines the notion of a source-processor structure and, from it, the con-
sequence relation induced by a class of source-processor structures. Cer-
tain assumptions about the behaviour of the sources together with an
existential strategy for collecting information give rise to many-valued
logics defined using the notion of a non-deterministic matrix. Strongly
sound and complete sequent calculi for the logics under consideration are
presented.

• The classical model existence theorem in sub-classical predicate logics, by
J.-L. Lee, presents a ‘resource-aware’ proof of the well-known classical
version of the theorem. Four sub-classical predicate logics satisfying the
theorem are extracted, and a suitable completeness result is established.

• Weak implicational logics related to the Lambek calculus — Gentzen ver-
sus Hilbert formalisms, by W. Zielonka, investigates questions of finite
axiomatisability. It shows that sequent systems for the implicational
fragments of the associative and the non-associative Lambek calculus
(with possibly empty antecedents) cannot be axiomatized by any finite
number of axioms (closed under substitution) with the cut rule as the
only rule of inference. This implies similar results for the corresponding
Hilbert-style calculi.

• Faithful and invariant conditional probability in �Lukasiewicz logic, by
D. Mundici, explores one aspect of the connection between logic and
probability. Specifically, it shows that we may define the notion of a
conditional probability function in the context of �Lukasiewicz infinite-
valued propositional logic, in a manner that succeeds in avoiding a Dutch
book in the sense of de Finetti.

• A fuzzy logic approach to non-scalar hedges, by S. van der Waart van Gu-
lik, presents a formal framework for handling so-called ‘non-scalar
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hedges’ of everyday language, that is, expressions such as ‘strictly speak-
ing’ and ‘loosely speaking’. Taking earlier work of George Lakoff as its
point of departure, it introduces a new first-order fuzzy logic for reason-
ing with non-scalar hedges, both semantically and proof-theoretically.
The logic makes use of a set of selection functions to provide conceptual
information that is critical for the semantics of hedged predicates.

Belief Management

Logic is not just about inference. It concerns, more generally, reasoning
and what we might call belief management — the multiple processes of
obtaining, assimilating, organizing, prioritizing, and discarding beliefs and
conjectures. These operations evidently bring us into close connection with
those of data modification in the information sciences, as well as the intellec-
tual operations of human beings studied by cognitive science. At the centre
of attention in the contemporary study of belief management is the theory
of belief change — contraction, revision, and update — with its surprisingly
close relations to the qualitative study of uncertain inference, also known as
non-monotonic logic, as well as to other global dimensions of belief sets such
as their coherence. The final section of this volume contains four papers
from this area.

• The procedures for belief revision, by P. �Lukowski, presents an approach
to belief revision using both the familiar Tarskian notion of a consequence
operation and the much less familiar one of an elimination operation.
Counterparts of the concepts of structurality and finitariness for elimi-
nation operations are defined in this setting in order to address questions
of belief change and non-monotonic reasoning.

• Shifting priorities: simple representations for twenty-seven iterated the-
ory change operators, by Hans Rott, proposes the use of prioritized be-
lief bases (understood as weakly ordered sets of sentences) as a tool for
representing iterated belief change operators, alternative to the usual
approaches for closed theories, carried out using systems of spheres or
related semantic constructions. To model the iterative aspect of belief
change, attention is focused on ways in which the order of prioritization
may itself change following a contraction or revision.

• The coherence of theories — dependencies and weights, by J. J. Li,
R. B. H. Kwok and N. Foo, studies the problem of evaluating compet-
ing, but possibly incompatible theories that account for the same set of
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empirical observations. To this end, a quantitative notion of theory co-
herence is developed, with weights assigned to theory components. The
concepts are illustrated by an application to game theory and the iterated
prisoner’s dilemma.

• On meta-knowledge and truth, by U. Wybraniec-Skardowska, is devoted
to investigating the interplay between knowledge and meta-knowledge.
More philosophical in tone than some of the other contributions, it
presents a formal theory of language, meaning, ontology, and reality,
in terms of which the notion of truth is conceptualized.
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Commutativity

of Quantifiers
in Varying-Domain
Kripke Models

Abstract. A possible-worlds semantics is defined that validates the main axioms of

Kripke’s original system for first-order modal logic over varying-domain structures. The

novelty of this semantics is that it does not validate the commutative quantification schema

∀x∀yϕ → ∀y∀xϕ, as we show by constructing a counter-model.

Keywords: possible-worlds semantics, commutative quantification, premodel, model, Krip-

kean model.

Introduction and Overview

Kripke’s model theory for first-order modal logic [4] assigns to each world
w a set Dw thought of as the domain of individuals that exist in w. The
quantifier ∀x is interpreted at a world as meaning “for all existing x”. This
semantics does not validate the Universal Instantiation schema

UI ∀xϕ → ϕ(y/x), where y is free for x in ϕ,1

because the value of variable y may not exist in a particular world. It does
however validate the variant

UI◦ ∀y(∀xϕ→ ϕ(y/x)), where y is free for x in ϕ,

along with the schemata

UD ∀x(ϕ → ψ) → (∀xϕ → ∀xψ),

VQ ϕ → ∀xϕ, where x is not free in ϕ,

of Universal Distribution, and Vacuous Quantification, as well as being sound
for the Universal Generalisation rule

UG from ϕ infer ∀xϕ.

1ϕ(τ/x) is the formula obtained by uniform substitution of term τ in place of free x in
ϕ; the side condition is the usual proviso that no variable of τ becomes bound in ϕ(τ/x)
as a result.

D. Makinson, J. Malinowski, H. Wansing (eds.), Towards Mathematical Philosophy,
Trends in Logic, 28 c© Springer Science + Business Media B.V. 2009



10 R. Goldblatt and I. Hodkinson

In addition this semantics validates the schema

CQ ∀x∀yϕ → ∀y∀xϕ

of Commutative Quantification, which was shown by Fine [1] not to be deriv-
able from UI◦, UD and VQ by using UG and valid Boolean reasoning. Fine’s
method involves a syntactic transformation that provides a nonstandard de-
finition of the substitution of a constant for free x in ϕ. Recently Grant
Reaber (personal communication) has noted that reading “∀x” as “for cofi-
nitely many values of x” in the structure (ω, <) gives an interpretation that
falsifies CQ while verifying UI◦, UD, VQ and UG.

These observations raise the question of whether there is some plausible,
“possible-worlds style”, structural model theory for systems that have the
axioms UI◦, UD and VQ, but perhaps not CQ.2 In this paper such a seman-
tics is presented, and a model constructed that falsifies CQ while validating
the other three quantificational axioms, along with the axioms for any spec-
ified normal propositional modal logic. The approach has been used previ-
ously in [6] and [3] to give a complete semantics for the quantified relevant
logic RQ and for a range of first-order modal logics that are incomplete for
their standard possible-worlds models.

There are two basic ideas involved. The first, already long exploited
in propositional modal logic, is that not every set of worlds need count
as a proposition. Instead we take a collection Prop of sets of worlds, the
admissible propositions, that forms a Boolean set algebra closed also under
the operation that interprets the modality �. The “truth value” of any
formula must then be a member of Prop.

The second notion has long been exploited in algebraic logic: the uni-
versal quantifier ∀x is interpreted as a greatest lower bound in the lattice of
propositions, this being the natural interpretation of arbitrary conjunctions.
To illustrate this, suppose we have the set W of worlds, and a universe U of
individuals that serves as the range of the quantifier ∀x. If ϕ is a formula
in which x is the only free variable, let ϕ(a) be the result of replacing free x
in ϕ by the individual a, viewed as a constant. Let |∀xϕ| and |ϕ(a)| be the
sets of worlds (subsets of W ) at which these sentences are true, respectively.
Intuitively, ∀xϕ is semantically equivalent to the conjunction of the ϕ(a)’s

2The axiomatisation of [4] took as axioms the closures of all instances of UI◦, UD, VQ,
tautologies and appropriate modal schemata, with detachment for material implication as
the only inference rule. UG and Necessitation (from ϕ infer �ϕ) are then derivable rules.
Here a closure of ϕ is any sentence obtained by prefixing universal quantifiers and copies
of � to ϕ in any order.
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for all a ∈ U . So
|∀xϕ| =

⋂

a∈U

|ϕ(a)|,

where
⋂

is set-theoretic intersection. This makes |∀xϕ| the greatest lower
bound of the |ϕ(a)|’s in the lattice of all subsets of W , i.e. the largest/weakest
proposition that implies all of the propositions |ϕ(a)|. But if we are con-
strained to use the set Prop of admissible propositions, which may not be
the full powerset ℘W of W , then instead we should take

|∀xϕ| =
�

a∈U

|ϕ(a)|,

where
�

is the greatest lower bound operation in the ordered set (Prop,⊆).
The definition of “model” should require that

�
a∈U |ϕ(a)| always exists in

Prop. It will be the weakest admissible proposition that implies all of the
|ϕ(a)|’s. But it may not be equal to

⋂
a∈U |ϕ(a)| !

This interpretation, as developed in [3], has the quantifiers ranging over a
fixed domain of possible individuals. But here we have the varying domains
Dw ⊆ U of existing individuals, with ∀xϕ being equivalent to the conjunc-
tion of the assertions “if a exists then ϕ(a)” for all a ∈ U . To formalise
this, let Ea = {w ∈ W : a ∈ Dw}, so that Ea represents the proposition “a
exists”. Then we want

|∀xϕ| =
�

a∈U

Ea ⇒ |ϕ(a)|, (0.1)

where ⇒ is the Boolean set implication operation: X ⇒ Y = (W \X) ∪ Y .
When

�
=
⋂

, equation (0.1) reproduces the Kripkean semantics of [4] for
the quantifier ∀x.

In working with greatest lower bounds we put
�

S =
⋃
{X ∈ Prop : X ⊆

⋂
S},

so that
�

S is defined for an arbitrary S ⊆ ℘W . When S ⊆ Prop and�
S ∈ Prop, then

�
S is indeed the greatest lower bound of S in Prop.

Also, if
⋂

S ∈ Prop, then
�

S =
⋂

S. But by making
�

a totally defined
operation we ensure that |∀xϕ| is always defined, regardless of whether it is
admissible. We will see that admissibility of |∀xϕ| is not required for the
validity of a number of principles, including UI◦, UD and UG, but is required
for VQ.

We will show that if all of the Ea’s are admissible (i.e. Ea ∈ Prop), then
the definition (0.1) of |∀xϕ| validates CQ. The same conclusion holds if U is
finite, or if the Boolean algebra Prop is atomic, hence if Prop is finite, and
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hence if W is finite. Moreover, validity of CQ follows if equality is definable
in the model in the sense that there is a formula “x ≈ y” such that when
instantiated with any two elements a, b in the domain we obtain

|a ≈ b| =
{

W, if a = b,

∅, otherwise.

Thus the construction of a falsifying model for CQ is not a simple matter.
In Sections 1–3 we define model structures, premodels (in which |∀xϕ|

need not be admissible) and models (in which it is), and prove several sound-
ness results. Section 4 gives sufficient criteria for validity of CQ, and Section
5 constructs its falsifying model. The final Section 6 briefly states complete-
ness results for various logics relative to the given semantics, and points out
some interesting relationships between CQ and the Barcan formula.

1. Model Structures

A model structure is a system S = (W, R,Prop, U, D) such that

• W is a set, and R is a binary relation on W ;

• Prop is a Boolean subalgebra of the powerset algebra ℘W ;

• Prop is closed under the operation [R] defined by

[R]X = {w ∈ W : ∀v ∈ W (wRv implies v ∈ X)};

• U is a set, and D is a function assigning to each w ∈ W a subset Dw ⊆ U .

Members of Prop are called the admissible sets of S. For each a ∈ U we
define Ea = {w ∈ W : a ∈ Dw}. Sets of the form Ea may be referred to as
“existence sets”. They are not required to be admissible.

Using Prop we define, for each X ⊆W ,

X↓ =
⋃
{Y ∈ Prop : Y ⊆ X},

X↑ =
⋂
{Y ∈ Prop : X ⊆ Y },

giving X↓ ⊆ X ⊆ X↑. The sets X↓ and X↑ need not belong to Prop, but if
they do, then X↓ is the largest admissible subset of X, and X↑ the smallest
admissible superset. So if X ∈ Prop, then X↓ = X↑ = X. Operations

�

and
⊔

on ℘℘W are defined by putting, for all S ⊆ ℘W ,
�

S = (
⋂

S)↓,
⊔

S = (
⋃

S)↑.

Then any admissible X has X ⊆
�

S iff X ⊆
⋂

S. If S ⊆ Prop and
�

S ∈
Prop, then

�
S is the greatest lower bound of S in the partially-ordered
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set (Prop,⊆), i.e. the largest admissible set included in every member of S.
Dual statements hold concerning the role of

⊔
S as the least upper bound of

S ⊆ Prop.
It is quite possible that

�
S is admissible while

⋂
S is not. However, if⋂

S ∈ Prop then
�

S =
⋂

S.
We now record some useful facts about

�
, some of which involve the

Boolean set “implication” operation ⇒, defined by X ⇒ Y = (W \X) ∪ Y .
Its main property is that Z ⊆ X ⇒ Y iff Z ∩X ⊆ Y .

In the following Lemma, Xi, Yi, Xij are subsets of W , S is a subset of
℘W , and

�
i∈I Xi is

�
{Xi : i ∈ I}.

Lemma 1.1.

(1) If Xi ⊆ Yi for all i ∈ I, then
�

i∈I Xi ⊆
�

i∈I Yi.

(2)
�

i∈I

�
j∈J Xij =

�
j∈J

�
i∈I Xij.

(3) If X ∈ Prop, then X ⇒
�

S =
�

Y ∈S(X ⇒ Y ).

(4) If {Yi : i ∈ I} ⊆ Prop, then
�

i∈I(Xi ⇒ Yi) =
�

i∈I(Xi↑ ⇒ Yi).

Proof.

(1)
⋂

i∈I Xi ⊆
⋂

i∈I Yi, and the operation ↓ is ⊆-monotonic.

(2) (N.B: the Xij ’s need not be admissible here.)
Let X be an admissible subset of

�
i∈I

�
j∈J Xij . Then X ⊆ Xij for all

(i, j) ∈ I × J . So, for a given j0 ∈ J we have X ⊆ Xij0 for all i ∈ I,
hence X ⊆

�
i∈I Xij0 because X ∈ Prop. Since this holds for every

j0 ∈ J , X ⊆
�

j∈J

�
i∈I Xij , again as X is admissible. Symmetrically,

each admissible subset of
�

j∈J

�
i∈I Xij is a subset of

�
i∈I

�
j∈J Xij .

Hence
�

i∈I

�
j∈J Xij =

�
j∈J

�
i∈I Xij , since both are unions of admis-

sible subsets.

(3) (N.B: the members of S need not be admissible.)
Since Y ⊆ (X ⇒ Y ),

�
S ⊆

�
Y ∈S(X ⇒ Y ) by (1). Also, as W \X ⊆

(X ⇒ Y ), and W \ X ∈ Prop because X ∈ Prop, we have W \ X ⊆�
Y ∈S(X ⇒ Y ). Altogether then,

X ⇒
�

S = W \X ∪
�

S ⊆
�

Y ∈S

(X ⇒ Y ).

For the converse inclusion it is enough to show that any admissible
subset of

⋂
Y ∈S(X ⇒ Y ) is a subset of X ⇒

�
S. But if Z ∈ Prop has

Z ⊆
⋂

Y ∈S(X ⇒ Y ), then for all Y ∈ S, Z ⊆ (X ⇒ Y ), so Z ∩X ⊆ Y .
Hence Z ∩X ⊆

�
S as Z ∩X ∈ Prop. Therefore Z ⊆ X ⇒

�
S.
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(4) (N.B: the Xi need not be admissible.)
First, since Xi ⊆ Xi↑, we have (Xi↑ ⇒ Yi) ⊆ (Xi ⇒ Yi), for all i ∈ I.
Hence

�
i∈I(Xi↑ ⇒ Yi) ⊆

�
i∈I(Xi ⇒ Yi) by (1).

For the converse inclusion, let Z be any admissible subset of
�

i∈I(Xi ⇒
Yi). Then for all i ∈ I, Z ⊆ Xi ⇒ Yi, hence Xi ⊆ Z ⇒ Yi. But Z ⇒ Yi

is admissible (by admissibility of Z and Yi), and so Xi↑ ⊆ Z ⇒ Yi,
implying that Z ⊆ Xi↑ ⇒ Yi. Hence Z ⊆

�
i∈I(Xi↑ ⇒ Yi).

2. Premodels and Models

Let L be a set of relation and function symbols and individual constants.
A premodel M = (S, | · |M) for L, based on a model structure S, is given by
an interpretation function | · |M on L that assigns

• to each n-ary relation symbol P a function |P |M : Un → Prop,

• to each individual constant c an element |c|M ∈ U , and

• to each n-ary function symbol F a function |F |M : Un → U .

We emphasise that the language is not assumed to have an equality symbol,
by which we would mean a binary relation symbol P interpreted in M by

|P |M(a, b) =

{
W, if a = b,

∅, otherwise.

As indicated in the Introduction, and as will be proved in Corollary 4.5, the
presence of a relation symbol thus interpreted, or even the definability of the
equality relation at all in the model, entails the validity of CQ.

We deal with first-order modal L-formulas, without equality, generated
using a set {xn : n < ω} of first-order variables, but often regard this set
simply as ω by identifying xn with n. A variable-assignment is then a map
f ∈ ωU . Any L-term τ can be interpreted via f as an element τ Mf ∈ U in
the usual way. We use the letters x, y, z, · · · for variables, and define f [a/x]
to be the function that “updates” f by assigning the value a ∈ U to x and
otherwise acting as f .

A premodel gives an interpretation |ϕ|M : ωU → ℘W to each L-formula.
For each assignment f , |ϕ|Mf is thought of as the set of worlds at which ϕ
is true under f . This is defined by induction on the formation of ϕ:

• |Pτ1 · · · τn|Mf = |P |M(τ M
1 f, . . . , τ M

n f) ∈ Prop,

• ||Mf = W and |⊥|Mf = ∅,
• |¬ϕ|Mf = W \ |ϕ|Mf , and |ϕ ∧ ψ|Mf = |ϕ|Mf ∩ |ψ|Mf ,
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• |�ϕ|Mf = [R]|ϕ|Mf ,

• |∀xϕ|Mf =
�

a∈U

(
Ea ⇒ |ϕ|Mf [a/x]

)
.

Thus if X ∈ Prop, then X ⊆ |∀xϕ|Mf iff X ⊆ Ea ⇒ |ϕ|Mf [a/x] for all
a ∈ U . We have

|∀xϕ|Mf =
[ ⋂

a∈U

Ea ⇒ |ϕ|Mf [a/x]
]
↓.

=
[ ⋂

a∈U

(W \ Ea) ∪ |ϕ|Mf [a/x]
]
↓.

Identifying ∃ with ¬∀¬ gives

|∃xϕ|Mf =
⊔

a∈U

Ea ∩ |ϕ|Mf [a/x]

=
[ ⋃

a∈U

Ea ∩ |ϕ|Mf [a/x]
]
↑.

Remark 2.1. The semantics of [4] interprets an n-ary relation symbol P as
a function

Φ(P, ·) : W → ℘(Un)

assigning to each world w an n-ary relation Φ(P, w) ⊆ Un. From such a Φ
we can define |P | : Un → ℘W by

w ∈ |P |(a1, . . . , an) iff 〈a1, . . . , an〉 ∈ Φ(P, w).

Alternatively, this can be viewed as a definition of Φ, given |P |, so the two
methods are equivalent. We find that use of the “proposition-valued” func-
tions |ϕ| provides a convenient way of handling the restriction to admissible
propositions.

It is worth emphasising that this kind of model theory allows relations
and properties to hold of non-existent objects (e.g. Pegasus has wings). Thus
it is not required that Φ(P, w) ⊆ (Dw)n; equivalently, it is not required that

|P |(a1, . . . , an) ⊆ Ea1 ∩ · · · ∩ Ean.

In fact there are numerous ways to set up a model theory for the language of
first-order modal logic, depending on a whole range of potential requirements
like this, including whether terms are allowed to be non-rigid (i.e. world-
dependent), whether they are interpreted locally at a world (i.e. as a member
of the domain of that world), whether predicates are taken to be extensional
or intensional, whether domains are fixed or variable or nested, etc. The
“quantified modal logic roadmap” of [2, Figure 1] gives some impression of
the complexity of this range of possibilities.
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Writing M, w, f |= ϕ to mean that w ∈ |ϕ|Mf , we get the following
clauses for this satisfaction relation |=, with all except that for ∀ being
familiar:

• M, w, f |= Pτ1 · · · τn iff w ∈ |Pτ1 . . . τn|Mf ,
• M, w, f |=  and M, w, f �|= ⊥,
• M, w, f |= ¬ϕ iff M, w, f �|= ϕ,
• M, w, f |= ϕ ∧ ψ iff M, w, f |= ϕ and M, w, f |= ψ,
• M, w, f |= �ϕ iff for all v ∈ W (wRv implies M, v, f |= ϕ).
• M, w, f |= ∀xϕ iff there is an X ∈ Prop such that w ∈ X and

X ⊆
⋂

a∈U

(
Ea ⇒ |ϕ|Mf [a/x]

)
.

A formula ϕ is valid in premodel M, written M |= ϕ, if |ϕ|Mf = W for all
f , i.e. if M, w, f |= ϕ for all w ∈ W and f ∈ ωU .

As with standard semantics, satisfaction of a formula depends only on
value-assignment to free variables:

Lemma 2.2. In any premodel M, for any formula ϕ, if assignments f, g ∈
ωU agree on all free variables of ϕ, then |ϕ|Mf = |ϕ|Mg.

Proof. The only departure from the standard proof is the inductive case
that ϕ is ∀xψ. Then if f and g agree on all free variables of ϕ, then for each
a ∈ U , f [a/x] and g[a/x] agree on all free variables of ψ, so |ψ|Mf [a/x] =
|ψ|Mg[a/x] by induction hypothesis. Hence

|ϕ|Mf =
�

a∈U

(
Ea ⇒ |ψ|Mf [a/x]

)
=

�

a∈U

(
Ea ⇒ |ψ|Mg[a/x]

)
= |ϕ|Mg.

This result can be used to establish the usual relationship between syn-
tactic substitution of terms for variables and updating of evaluations:

Lemma 2.3. Let ϕ be any formula, and τ a term that is free for x in ϕ.
Then in any premodel M, for any f ∈ ωU , |ϕ(τ/x)|Mf = |ϕ|Mf [τ Mf/x].

Proof. Again the only nonstandard case is when ϕ is of the form ∀yψ.
First, when x is not free in ϕ then f and f [τ Mf/x] agree on all free variables
of ϕ, and ϕ(τ/x) is just ϕ, so the result is given by Lemma 2.2.

Otherwise, x is free in ϕ, so x �= y and ϕ(τ/x) = ∀y(ψ(τ/x)) with τ free
for x in ψ, so y does not occur in τ . Then

|ϕ(τ/x)|Mf =
�

a∈U

Ea ⇒ |ψ(τ/x)|Mf [a/y], and

|ϕ|Mf [τ Mf/x] =
�

a∈U

Ea ⇒ |ψ|Mf [τ Mf/x][a/y].
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But for any a ∈ U , the induction hypothesis on ψ gives

|ψ(τ/x)|Mf [a/y] = |ψ|Mf [a/y][τ Mf [a/y]/x],

and τ Mf [a/y] = τ Mf because y is not in τ , while

f [a/y][τ Mf/x] = f [τ Mf/x][a/y]

as y �= x. So altogether

|ψ(τ/x)|Mf [a/y] = |ψ|Mf [τ Mf/x][a/y],

and hence |ϕ(τ/x)|Mf = |ϕ|Mf [τ Mf/x] in this case.

Corollary 2.4. If M |= ϕ, then M |= ϕ(τ/x) whenever τ is free for x
in ϕ.

Proof. If M |= ϕ, then for any f , |ϕ(τ/x)|Mf = |ϕ|Mf [τ Mf/x] = W .

We will say that a formula ϕ is admissible in M if the function |ϕ|M

has the form ωU → Prop, i.e. |ϕ|Mf ∈ Prop for all f ∈ ωU . Every atomic
formula Pτ1 · · · τn is admissible. Given the closure properties of Prop it
is evident that the set of admissible formulas is closed under the Boolean
connectives and �. In particular, every quantifier-free formula is admissible.

A model for L is a premodel in which every L-formula is admissible.

Lemma 2.5. In any model M, |∀xϕ|Mf =
�

a∈U

(
Ea↑ ⇒ |ϕ|Mf [a/x]

)
.

Proof. As ϕ is admissible in M, {|ϕ|Mf [a/x] : a ∈ U} ⊆ Prop. Hence by
Lemma 1.1(4),

�
a∈U

(
Ea ⇒ |ϕ|Mf [a/x]

)
=

�
a∈U

(
Ea↑ ⇒ |ϕ|Mf [a/x]

)
.

3. Soundness and M-Equivalence

We now fix a premodel M, and examine the validity of various principles in
it, identifying some whose validity requires M to be a model. From now on,
the M-superscript will often be dropped from the notation |ϕ|Mf .

Proposition 3.1. The schemata UI◦ and UD are valid in M, and the rule
UG is sound for validity in M.

Proof. UG is dealt with first, as it is simplest. If M |= ϕ, then for any f
and a, Ea ⇒ |ϕ|f [a/x] = Ea ⇒ W = W, so |∀xϕ|f =

�
{W} = W . Hence

M |= ∀xϕ.
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For UD, suppose that M, w, f |= ∀x(ϕ → ψ) and M, w, f |= ∀xϕ. Then
there exist X, Y ∈ Prop such that

w ∈ X ⊆
⋂

a∈U

Ea ⇒ |ϕ → ψ|f [a/x], and

w ∈ Y ⊆
⋂

a∈U

Ea ⇒ |ϕ|f [a/x].

Then w ∈ X ∩ Y ∈ Prop, and for all a,

X ∩ Y ∩ Ea ⊆ |ϕ → ψ|f [a/x] ∩ |ϕ|f [a/x] ⊆ |ψ|f [a/x],

hence X ∩ Y ⊆ Ea ⇒ |ψ|f [a/x]. This shows M, w, f |= ∀xψ.
For UI◦, let y be free for x in ϕ. It suffices to show that for any f and a,

Ea ⊆ |∀xϕ → ϕ(y/x)|f [a/y]. (3.1)

For then Ea ⇒ |∀xϕ → ϕ(y/x)|f [a/y] = W for all a ∈ U , so

|∀y(∀xϕ → ϕ(y/x))|f =
�
{W} = W,

and hence M |= ∀y(∀xϕ→ ϕ(y/x)).
To prove (3.1), let w ∈ Ea. Then if w ∈ |∀xϕ|f [a/y], there exists

X ∈ Prop with
w ∈ X ⊆

⋂

b∈U

Eb ⇒ |ϕ|f [a/y][b/x].

In particular, when b = a, since w ∈ Ea we get w ∈ |ϕ|f [a/y][a/x]. But by
Lemma 2.3, |ϕ|f [a/y][a/x] = |ϕ(y/x)|f [a/y] because yMf [a/y] = a. Thus

w ∈ |∀xϕ|f [a/y] ⇒ |ϕ(y/x)|f [a/y] = |∀xϕ → ϕ(y/x)|f [a/y].

Next we consider the validity of VQ:

Proposition 3.2. Suppose that x has no free occurrence in ϕ. If ϕ is
admissible in M, then M |= ϕ → ∀xϕ.

Proof. For any f ∈ ωU and a ∈ U , the assignments f and f [a/x] agree on
all free variables of ϕ, so by Lemma 2.2,

|ϕ|f = |ϕ|f [a/x] ⊆ Ea ⇒ |ϕ|f [a/x].

But |ϕ|f ∈ Prop by M-admissibility of ϕ, so

|ϕ|f ⊆
�

a∈U

(
Ea ⇒ |ϕ|f [a/x]

)
= |∀xϕ|f.

Hence |ϕ|f ⇒ |∀xϕ|f = W for all f .
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Corollary 3.3. Every model validates VQ.

Proof. In a model, every ϕ is admissible.

We say that formulas ϕ and ψ are M-equivalent if |ϕ|M = |ψ|M. The
following properties of this equivalence relation are left to the reader to
check.

Proposition 3.4. In any premodel M:

(1) ϕ is M-equivalent to ψ iff M |= ϕ ↔ ψ.

(2) If ϕ is tautologically equivalent to ψ (i.e. ϕ ↔ ψ is a tautology), then ϕ
and ψ are M-equivalent.

(3) M-equivalence is a congruence on the algebra of L-formulas, i.e. if the
pair ϕ, ψ are M-equivalent, then so are the pairs ¬ϕ,¬ψ and ϕ∧θ, ψ∧θ
and �ϕ, �ψ and ∀xϕ, ∀xψ and ∃xϕ, ∃xψ etc.

(4) If ψ is obtained from ϕ by replacing some subformula by anM-equivalent
formula, then ψ is M-equivalent to ϕ.

The next result will be used in a model construction in Section 5.

Proposition 3.5. In any premodel M:

(1) ∃x(ϕ ∨ ψ) and ∃xϕ ∨ ∃xψ are M-equivalent.

(2) ∃x(ϕ ∧ ψ) and ϕ ∧ ∃xψ are M-equivalent if ϕ is admissible in M and
has no free occurrences of x.

Proof. (1) It is enough to show that the formula

∃x(ϕ ∨ ψ)↔ ∃xϕ ∨ ∃xψ

is valid inM. But, as the reader can check, this formula is derivable from
tautologies and instances of UD using the rule UG and valid Boolean
reasoning. Hence it is valid in M by Proposition 3.1.

(2) If ϕ is M-admissible and without free x, then ¬ϕ is M-admissible and
without free x, so by Lemma 3.2 the formulas ϕ→ ∀xϕ and ¬ϕ → ∀x¬ϕ
are valid inM. But from these two, using tautologies, UD, UG and valid
Boolean reasoning we can derive

∃x(ϕ ∧ ψ) ↔ ϕ ∧ ∃xψ,

which is therefore valid in M.
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4. Validating CQ

We now give some conditions under which the formulas ∀x∀yϕ and ∀y∀xϕ
are M-equivalent in a model. Of course we can assume x �= y here, for oth-
erwise there is no work to do. Then assignments f [a/x][b/y] and f [b/y][a/x]
are identical, and may be written f [a/x, b/y] or f [b/y, a/x].

Lemma 4.1. In a premodel M, let f ∈ ωU and let B be any Boolean sub-
algebra of Prop that contains |ϕ|Mf [a/x, b/y], |∀xϕ|f [b/y], and |∀yϕ|f [a/x]
for all a, b ∈ U . Then exactly the same atoms of B are included in the sets
|∀x∀yϕ|Mf and |∀y∀xϕ|Mf .

Proof. Let X be an atom of B with X �⊆ |∀x∀yϕ|f . Then as X ∈ Prop,
there exists a0 ∈ U such that

X �⊆ Ea0 ⇒ |∀yϕ|f [a0/x]. (4.1)

Hence X �⊆ |∀yϕ|f [a0/x], so again as X ∈ Prop there exists b0 ∈ U such
that

X �⊆ Eb0 ⇒ |ϕ|f [a0/x, b0/y]. (4.2)

Hence X �⊆ |ϕ|f [a0/x, b0/y]. But X is a B-atom and |ϕ|f [a0/x, b0/y] ∈ B as
given, so X must be disjoint from |ϕ|f [a0/x, b0/y] = |ϕ|f [b0/y, a0/x]. Since
X ∩ Ea0 �= ∅ by (4.1), this implies

X �⊆ Ea0 ⇒ |ϕ|f [b0/y, a0/x].

Hence
X �⊆

�

a∈U

Ea ⇒ |ϕ|f [b0/y, a/x] = |∀xϕ|f [b0/y].

Again the atomicity of X then makes X disjoint from |∀xϕ|f [b0/y] ∈ B.
Since X ∩ Eb0 �= ∅ by (4.2),

X �⊆ Eb0 ⇒ |∀xϕ|f [b0/y].

Hence
X �⊆

�

b∈U

Eb ⇒ |ϕ|f [b/y] = |∀y∀xϕ|f.

Conversely, interchanging x and y in this argument shows that if X �⊆
|∀y∀xϕ|f , then X �⊆ |∀x∀yϕ|f .

Proposition 4.2. A model validates CQ if any of the following hold:
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(1) Prop is an atomic Boolean algebra.

(2) Prop is finite.

(3) The universe U is finite.

Proof. (1) Put B = Prop. For any f , all sets |ϕ|f [a/x, b/y], |∀xϕ|f [b/y],
|∀yϕ|f [a/x] are in B by admissibility. But likewise the sets |∀x∀yϕ|f
and |∀y∀xϕ|f are in B, and include the same atoms of B by Lemma 4.1,
hence as B is atomic this makes |∀x∀yϕ|f = |∀y∀xϕ|f .

(2) By (1), as any finite Boolean algebra is atomic.

(3) If U is finite, then for any f ,

{|∀x∀yϕ|f, |∀y∀xϕ|f}
∪ {|ϕ|f [a/x, b/y], |∀xϕ|f [b/y], |∀yϕ|f [a/x] : a, b ∈ U}

is a finite subset of Prop, so it generates a Boolean subalgebra B of Prop
that is finite, hence atomic. The proof that |∀x∀yϕ|f = |∀y∀xϕ|f in B
then follows by the argument of (1).

Next we consider consequences of admissibility of the “existence sets”
Ea and Ea↑.

Proposition 4.3. If a model has Ea↑ ∈ Prop for all a ∈ U , then it validates
CQ.

Proof. Since we are working in a model, we can use Lemma 2.5 to replace
Ea by Ea↑ in the definition of |∀xϕ|. Thus

|∀x∀yϕ|f

=
�

a∈U

(
Ea↑ ⇒

�
b∈U (Eb↑ ⇒ |ϕ|f [a/x, b/y])

)

=
�

a∈U

�
b∈U

(
Ea↑ ⇒ (Eb↑ ⇒ |ϕ|f [a/x, b/y])

)
by Lemma 1.1(3) as
Ea↑ ∈ Prop,

=
�

a∈U

�
b∈U

(
Ea↑ ∩ Eb↑ ⇒ |ϕ|f [a/x, b/y]

)
by set theory.

Similarly, |∀y∀xϕ|f =
�

b∈U

�
a∈U

(
Eb↑ ∩ Ea↑ ⇒ |ϕ|f [b/y, a/x]

)
.

But Eb↑∩Ea↑ ⇒ |ϕ|f [b/y, a/x] = Ea↑∩Eb↑ ⇒ |ϕ|f [a/x, b/y], so the
�

-
commutation result of Lemma 1.1(2) applies to give |∀x∀yϕ|f = |∀y∀xϕ|f .

Corollary 4.4. If a model has Ea ∈ Prop for all a ∈ U , then it validates
CQ.
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Proof. If Ea ∈ Prop, then Ea = Ea↑.

We say that equality is definable in M if for any distinct variables x, y,
there is an L-formula “x ≈ y” such that

|x ≈ y|Mf =

{
W, if fx = fy,

∅, otherwise.

Corollary 4.5. If equality is definable in a model, then it validates CQ.

Proof. Let a ∈ U be arbitrary, and suppose f ∈ ωU satisfies fx = a. Then
|∃y(x ≈ y)|f = [

⋃
b∈U Eb ∩ |x ≈ y|f [b/y]]↑ = Ea↑. Hence Ea↑ ∈ Prop as

every formula is admissible inM. By Proposition 4.3, CQ is valid inM.3

A premodel M will be called Kripkean if it always has

|∀xϕ|Mf =
⋂

a∈U

(
Ea ⇒ |ϕ|Mf [a/x]

)
.

This means that ∀ gets the varying-domain semantics of Kripke [4]:

M, w, f |= ∀xϕ iff for all a ∈ Dw, M, w, f [a/x] |= ϕ. (4.3)

A Kripkean model has
[ ⋂

a∈U

Ea ⇒ |ϕ|Mf [a/x]
]
∈ Prop

by admissibility of formula ∀xϕ, and conversely this last condition implies
that a model is Kripkean.

Proposition 4.6. Every Kripkean premodel validates CQ.

Proof. This is straightforward, essentially because the quantifiers for all
existing . . . commute in the metalanguage. A more formal proof can be
given by repeating the proof of Proposition 4.3 with

⋂
in place of

�
(and

Ea in place of Ea↑). Instead of parts (2) and (3) of Lemma 1.1, the results
⋂
i∈I

⋂
j∈J

Xij =
⋂

j∈J

⋂
i∈I

Xij , X ⇒
⋂

S =
⋂

Y ∈S

(X ⇒ Y ),

are used. These are laws of set theory that hold independently of any ad-
missibility constraints.

3For this proof to work it suffices in fact that |x ≈ y|Mf ⊇ Efx when fx = fy, and
|x ≈ y|Mf = ∅ otherwise.
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Remark 4.7. If a model structure S has all sets admissible, i.e. Prop = ℘W ,
then in general

�
S =
⋂

S, so all models on S are Kripkean and must
validate CQ by Proposition 4.6. This shows that a falsifying model for CQ
must restrict the admissible sets.

Increasing the expressivity of the language may force more sets to be
admissible. This is simply because all formulas have to be interpreted in
models as admissible sets. In particular, if equality is definable, all sets Ea↑
are of the form |∃y(x ≈ y)|f and so become admissible, which is enough to
entail CQ (Corollary 4.5).

5. A Countermodel to CQ

This section exhibits a model that falsifies an instance of CQ. It is not so
hard to construct a premodel that does this, but we wish to ensure that
every formula is admissible in M, so that it validates VQ as well as UI◦ and
UD. From what has been shown in the last Section, our model must have
infinite sets for U and Prop, and hence for W . Also Prop cannot be atomic,
and cannot contain every Ea, or every Ea↑. Moreover, the model cannot be
Kripkean, or permit the definability of equality.

Let ∼ denote a fixed (but arbitrary) equivalence relation on Q (the ratio-
nals) with infinitely many equivalence classes, each of which is dense in Q: so
each interval (a, b) for a < b in Q contains a point from each equivalence class.
Such a relation is easy to construct. Let b/∼ denote the ∼-equivalence class
containing b.

We define a model structure S = (W, R,Prop, U, D), where

• W = U = Q;

• either R = ∅, or R = {(a, a) : a ∈ Q};
• Prop is the Boolean subalgebra of ℘(Q) generated by the set of all half-

open intervals [a, b) = {x ∈ Q : a ≤ x < b}, where a, b ∈ Q and a < b;

• Da = {a} for each a ∈ Q. Hence Ea = {a}.

We have actually defined two model structures, depending on the choice of
R. In the first case with R = ∅, [R]X = W for all X ⊆ W . In the second
case with R the identity relation, [R]X = X. Hence in both cases Prop
is [R]-closed. In the first case (W, R) (and hence (W, R,Prop)) validates
the smallest normal propositional modal logic containing �⊥, while in the
second case it validates the smallest normal logic containing the schema
�ϕ ↔ ϕ. But each normal propositional modal logic is a sublogic of one of
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these two [5], so is validated by one of these structures. We will make use of
that fact in Section 6.

Each non-empty X ∈ Prop is a finite union of intervals of the form
(−∞, a), [b, c), and [d, +∞). Prop is atomless, and Ea↑ = Ea = {a} /∈ Prop
for all a ∈ Q.

Lemma 5.1. Write Q/∼ for the set of all ∼-classes, and let E ⊆ Q/∼. Then
(
⋃
E)↑ and (

⋃
E)↓ are admissible, with

(
⋃
E)↑ =

{
∅, if E = ∅,
Q, otherwise,

(
⋃
E)↓ =

{
Q, if E = Q/∼,

∅, otherwise.

Proof. If E = ∅ then
⋃
E = ∅, and clearly ∅↑ = ∅. Otherwise, by density,

any non-empty X ∈ Prop intersects
⋃
E , and so (

⋃
E)↑ = Q. The case

of ↓ is similar (or it can be derived from the ↑ case, using the equation
S↓ = Q \ ((Q \ S)↑) for S ⊆ Q).

Now let L consist of two binary relation symbols, P and ∼. (The two
uses of ∼ will be distinguished by context.) We define an L-premodel on S
by putting, for each a, b ∈ Q,

• |∼|M(a, b) =

{
Q, if a ∼ b,

∅, otherwise;

• |P |M(a, b) =

⎧
⎪⎨

⎪⎩

Q, if a ∼ b,

some non-empty interval
[b, c) not containing a, otherwise.

Note that Prop contains |∼|M(a, b) and |P |M(a, b) for all a, b ∈ Q, as re-
quired. The definition ensures that b ∈ |P |M(a, b) for all b, while a ∈
|P |M(a, b) iff a ∼ b.

Proposition 5.2. M does not validate ∀x∀yPxy → ∀y∀xPxy.

Proof. We show that for any f ∈ ωU ,

|∀x∀yPxy|f = Q while |∀y∀xPxy|f = ∅.

Now |∀yPxy|f =
[⋂

b∈Q Eb⇒ |P |(fx, b)
]
↓. But for any b,

Eb ⇒ |P |(fx, b) = {b} ⇒ |P |(fx, b) = Q,

since b ∈ |P |(fx, b). Hence |∀yPxy|f = Q↓ = Q. It follows that for any f ,
|∀x∀yPxy|f = [

⋂
a∈Q Ea ⇒ Q]↓ = Q as well.
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On the other hand, |∀xPxy|f =
[⋂

a∈Q Ea ⇒ |P |(a, fy)
]
↓. But

Ea ⇒ |P |(a, fy) = Q \ {a} ∪ |P |(a, fy) =

{
Q, if a ∼ fy,

Q \ {a}, otherwise,

so |∀xPxy|f =
[⋂

a �∼fy Q \ {a}
]
↓ = (fy/∼)↓ = ∅ by Lemma 5.1.

It follows that for any f , |∀y∀xPxy|f = [
⋂

b∈Q Q \ {b} ∪ ∅]↓ = ∅↓ = ∅ as
well.

Notice that this proof shows that M is non-Kripkean: since ∅ �= fy/∼,
we have

|∀xPxy|f �=
⋂

a∈Q

Ea ⇒ |P |(a, fy).

We now have to show that the premodelM is actually a model, i.e. |ϕ|Mf
is always an admissible set. For this we recall that formulas ϕ, ψ are M-
equivalent if |ϕ| = |ψ| in this M. The above proof of Proposition 5.2 shows
that the formulas ∀x∀yPxy and ∀y∀xPxy are not only admissible, they
are M-equivalent to the formulas  and ⊥, respectively. It turns out that
every formula ϕ is M-equivalent to some formula ψ that lacks quantifiers.
But as observed earlier, all quantifier-free formulas are admissible, so we get
|ϕ| = |ψ| ∈ Prop.

The proof of this “quantifier-eliminability” will be given next. A naive
approach would require us to express some basic equality types of tuples, by
which we mean conjunctions of formulas of the form x ≈ y and x �≈ y. This
has to be handled carefully as we also need equality not to be definable. So
in the example, ∼ plays the role of equality. It is a “weak equality”, with
only |∃y(x ∼ y)|Mf = Q, rather than |∃y(x ∼ y)|Mf = Efx↑, so it does not
add to the admissible sets (cf. Remark 4.7). But it is still expressive enough
to allow quantifier elimination, as we now show.

Proposition 5.3. Every formula is M-equivalent to a quantifier-free for-
mula, and hence is admissible in M.
Proof. Let us say that a formula ϕ is reducible if it is M-equivalent to a
quantifier-free formula. We show that every ϕ is reducible, by induction on
ϕ. In the proof, we write ‘M-equivalent’ simply as ‘equivalent’.

Note that any formula that is equivalent to a reducible one is itself re-
ducible, a fact that will be used repeatedly. To begin with, any formula is
equivalent to one formed from atomic formulas by the propositional connec-
tives (including �) and the quantifier ∃, so we can suppose without loss of
generality that ϕ has this form.

If ϕ is atomic, we are given the reducibility. The set of reducible formulas
is clearly closed under the Boolean connectives. It is also closed under �,
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since �ϕ is equivalent to the reducible  when R = ∅, and equivalent to ϕ
itself when R is the identity relation.

Assume that ϕ is reducible. We will prove that ∃xϕ is reducible. In-
ductively, there is a quantifier-free formula ψ equivalent to ϕ, and so ∃xϕ
is reducible if the equivalent ∃xψ is reducible. Thus we can suppose that ϕ
is quantifier-free. But then there is a quantifier-free ψ in disjunctive normal
form that is tautologically equivalent to ϕ, and hence equivalent to ϕ in M.
Again, ∃xϕ will be reducible if the equivalent ∃xψ is. Thus we can suppose
that ϕ is in disjunctive normal form.

So, suppose that ϕ is ϕ1 ∨ · · · ∨ ϕn, where each ϕi is a conjunction of
literals, i.e. atomic and negated-atomic formulas. If each ∃xϕi is reducible,
then so is ∃xϕ1 ∨ · · · ∨ ∃xϕn, which is equivalent to ∃x(ϕ1 ∨ · · · ∨ ϕn) by
Lemma 3.5(1), so ∃xϕ will be reducible. Hence we can suppose that ϕ is a
conjunction of literals.

Next we can split off the conjuncts of ϕ in which x does not occur. For, if
ϕ is equivalent to ψ∧θ with ψ a literal not containing x, and ∃xθ is reducible,
then so is ψ∧∃xθ, which is equivalent to ∃x(ψ∧θ) by admissibility of ψ and
Lemma 3.5(2), hence equivalent to ∃xϕ. So we can suppose that x occurs
in each conjunct of ϕ.

Similarly, we can delete P (x, x) and x ∼ x if they occur as conjuncts of
ϕ, since each is equivalent to  by the definitions of |∼|M and |P |M, and
∃x(∧θ) is equivalent to ∃xθ. Moreover, if the negation of P (x, x) or x ∼ x
occurs in ϕ then we are done, since ∃x(⊥∧ θ) is equivalent to the reducible
⊥. Finally, y ∼ x with y different to x can be replaced by the equivalent
x ∼ y. So altogether we can suppose that we are dealing with a formula of
the form ∃xϕ, where

ϕ =
∧

i

P (x, yi) ∧
∧

j

P (zj , x) ∧
∧

k

¬P (x, uk) ∧
∧

l

¬P (vl, x)

∧
∧

m

(x ∼ sm) ∧
∧

n

¬(x ∼ tn),

all variables yi, zj , etc are distinct from x, and each
∧

could be empty. Now
for any f ∈ ωU , we have

|∃xϕ|f =
[ ⋃

a∈Q

(
Ea ∩
⋂

i

|P |(a, fyi) ∩
⋂

j

|P |(fzj , a)

∩
⋂

k

(
Q \ |P |(a, fuk)

)
∩
⋂

l

(
Q \ |P |(fvl, a)

)

∩
⋂

m

|∼|(a, fsm) ∩
⋂

n

(
Q \ |∼|(a, ftn)

))]
↑.
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Any empty intersection here is interpreted as Q. Now Ea = {a} for any
a ∈ Q. So

|∃xϕ|f =
{

a ∈ Q : a ∈
⋂

i

|P |(a, fyi) ∩
⋂

j

|P |(fzj , a)

∩
⋂

k

(
Q \ |P |(a, fuk)

)
∩
⋂

l

(
Q \ |P |(fvl, a)

)

∩
⋂

m

|∼|(a, fsm) ∩
⋂

n

(
Q \ |∼|(a, ftn)

)}
↑.

Observe now that

• {a ∈ Q : a ∈ |P |M(a, b)} = {a ∈ Q : a ∈ |∼|M(a, b)} = b/∼ for any
b ∈ Q,

• {b ∈ Q : b ∈ |P |M(a, b)} = Q for any a ∈ Q.

So the set |∃xϕ|f above is
[⋂

i

(fyi/∼) ∩
⋂

j

Q ∩
⋂

k

(Q \ (fuk/∼)) ∩
⋂

l

∅

∩
⋂

m

(fsm/∼) ∩
⋂

n

(Q \ (ftn/∼))
]
↑.

If the l-conjunction is non-empty — a condition determined by ϕ and inde-
pendent of f — this set is ∅, and so ∃xϕ is equivalent to ⊥. We are done.
Otherwise, write Y for the set of all variables yi, sm above, and write Z for
the set of all variables uk, tn. Then

|∃xϕ|f =
[ ⋂

y∈Y

(fy/∼) ∩
⋂

z∈Z

(Q \ (fz/∼))
]
↑

=
[ ⋂

y∈Y

(fy/∼) \
⋃

z∈Z

(fz/∼)
]
↑.

The set in square brackets here is a Boolean combination of ∼-equivalence
classes. It is therefore of the form

⋃
E for some set E of ∼-classes. So

by Lemma 5.1, the ↑ of the set belongs to Prop. This shows that ∃xϕ is
admissible. The proof that it is reducible involves two cases, syntactically
determined by ϕ:

• If Y = ∅, then |∃xϕ|f = Q for all f , because there are infinitely many
∼-classes in Q and only finitely many of them are eliminated by the
Z-term. So ∃xϕ is equivalent to  in this case.
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• if Y �= ∅, then |∃xϕ|f is Q if all the fy are ∼-equivalent and no fz is
∼-equivalent to them: for then, the set inside the square brackets is a sin-
gle
∼-equivalence class, so its ↑ is Q. Otherwise, |∃xϕ|f is ∅. Thus, for
any f ∈ ωU ,

|∃xϕ|f =
∣∣∣
∧

y,y′ ∈Y

y ∼ y′ ∧
∧

y∈Y,z∈Z

¬(y ∼ z)
∣∣∣f.

So ∃xϕ is equivalent to this quantifier-free formula if Y �= ∅ (and, as one
can see, if Y = ∅ as well).

This completes the proof of Proposition 5.3, and hence the proof that M is
a model.

6. Completeness and the Barcan Formulas

Let L be any (consistent) normal propositional modal logic. For a given
signature L, let Q−L be the smallest set of L-formulas that includes

• all tautologies,

• all L-substitution-instances of L-theorems,

• the schemata UI◦, UD and VQ,

and is closed under

• detachment for material implication,

• the rule of Necessitation: from ϕ infer �ϕ, and

• the rule UG.

Now in the last section we defined two models for L = {P,∼}, call them
M0 and M1, with R = ∅ and R = the identity relation, respectively. We
noted that the underlying propositional frame (W, R) of one of these models
validates L, by the result of [5]. But then this model itself validates all L-
substitution-instances of L-theorems, by an argument given in the proof of
[3, Theorem 2]. From the soundness results we have proved, and the evident
soundness of Necessitation in any premodel, it then follows that this model
validates Q−L, while falsifying CQ.

It is notable that both the “Barcan formula”

BF ∀x�ϕ → �∀xϕ

and its converse
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CBF �∀xϕ → ∀x�ϕ

are valid in M0 and M1. This follows from the fact that �ψ is equivalent
to  in M0, and to ψ in M1.

It turns out that for any L, the logic Q−L is complete for the class of
all L-models validating L (i.e. validating all L-substitution-instances of L-
theorems). This can be shown by a Henkin-model construction which reveals
that the axioms UI◦, UD and VQ, together with the rule UG, exactly capture
the ∀-semantics

|∀xϕ| =
�

a∈U

Ea ⇒ |ϕ(a)|

of the L-models we have used.
The converse Barcan formula is valid in any L-model satisfying the ex-

panding domains condition

wRv implies Dw ⊆ Dv, (6.1)

equivalent to the requirement that Ea ⊆ [R]Ea for all a ∈ U .
The logic Q−L+CBF is complete for the class of its expanding domain

models. But it is also complete for the class of its models that have constant
domains :

wRv implies Dw = Dv. (6.2)

This last claim may raise the eyebrows of some readers who are used to
thinking of (6.2) as a condition that also validates the Barcan formula, which
is typically not derivable in Q−L+CBF. But the point is that BF can only
be shown to be valid in the presence of (6.2) when the model is Kripkean in
the sense of (4.3), in which case it also validates CQ.

The schema CQ is not a theorem of Q−L+CBF+BF, as the models M0

and M1 show. The logic Q−L+CBF+BF+CQ can be shown to be complete
for its class of constant-domain Kripkean models. These results indicate
that the main role of the Barcan formula in possible-worlds model theory is
not to provide models that have constant domains, but rather to ensure that
in a Henkin-style construction, the quantifier ∀ can be given the Kripkean
interpretation via

⋂
.

Justification of all these claims will be presented elsewhere.
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F. Poggiolesi The Method
of Tree-hypersequents
for Modal Propositional Logic

Abstract. In this paper we present a method, that we call the tree-hypersequent method,

for generating contraction-free and cut-free sequent calculi for modal propositional logics.

We show how this method works for the systems K, KD, K4 and KD4, by giving a sequent

calculus for these systems which are normally presented in the Hilbert style, and by proving

all the main results in a purely syntactical way.

Keywords: Contraction-free, Cut-free, Hypersequents, Modal logic, Sequent Calculus,

Tree-hypersequents.

1. Introduction

One of the open problems of modal propositional logic consists in the lack of
a good sequent calculus for (at least) its main systems, where we understand
a good sequent calculus to be one that satisfies certain requirements, mainly
listed by [1], [4] and [12], the principal ones being1:

Subformula Property : we should be able to associate to every proof d of
the sequent calculus, a proof d∗ of the same final sequent, in which each
formula is a subformula of the formulas occurring in the final sequent.

Semantic Purity : the sequent calculus should not make any use of explicit
semantic elements, such as possible words or truth values.

Explicitness : logical rules should exhibit the constant they introduce only
in the conclusion.

Separation: logical rules should not exhibit any constant other than the
one they introduce.

Symmetry : each constant of the language of the sequent calculus should
have at least two logical rules: one which introduces it on the left side of
the sequent, one which introduces it on the right.

Invertibility : for each of the rules of the calculus it should hold that not only
the conclusion is derivable from the premise(s), but also the premise(s)
from the conclusion.

1The list is by no means exhaustive but our aim here is not to discuss the properties
which define a good sequent calculus.

D. Makinson, J. Malinowski, H. Wansing (eds.), Towards Mathematical Philosophy,
Trends in Logic, 28 c© Springer Science + Business Media B.V. 2009
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The first attempts made at solving such a problem use the standard sequent
calculus (see, for example, [3], [6] and [11]), but they are generally not good
sequent calculi, as they do not satisfy the subformula property and their
rules are not explicit, nor invertible, nor separate nor symmetric.

More recently research has been oriented towards finding methods which
can generate extensions of the standard sequent calculus. These methods
can be divided in two groups: in one group there are methods which generate
purely syntactic sequent calculi, the most important of which are the method
of hypersequents [1] and the method of display logic [12]. In the other
group there are methods which extend the standard sequent calculus by
adding explicit semantic parameters. Some examples of this group are the
calculus given by G. Mints [7] and the calculus given by S. Negri [8]. None
of the methods proposed so far can generate a calculus which satisfies all the
desired properties: the calculi of the second group for the very reason that
they include explicit semantic parameters, and the calculi of the first group
because they lack other properties normally required.

When this work was essentially completed, we were informed of the ex-
istence of a further method, created by R. Kashima [5], and then developed
by K. Brünnler [2], which is called nested-sequents method (by Kashima),
or deep-sequents method (by Brünnler), and which makes use of the same
notion of sequent that we will present in this article, though using a differ-
ent notation. The main difference between the nested (or deep) — sequents
method and the one that we will introduce below, consists in the fact that
here the proof of cut-elimination is developed in a purely syntactic way (see
section 5), as well as the proof of admissibility of the several structural rules
(see section 3), while Kashima and Brünnler use semantics instead (Brünnler
sketches a syntactic cut-elimination procedure for the system K in his pa-
per). Moreover we apply the method for capturing the D — axiom, while
Kashima and Brünnler do not, and the cut-rule, as well as the related notions
of equivalence position and product, are introduced here for the first time.
Finally, although Kashima’s calculi are not contraction-free and invertible,
ours (and those of Brünnler) are.

We want also to point out that although the nested (deep, tree-hyper)
— sequents method has doubtless several common points with the methods
of Negri and Mints, it also has one important difference: it does not use
any labels. A clarification about the property of “not using labels” and the
advantages of having such property can be found in [2].

Having clarified the relationships with the recent related works, we can
finally introduce the method that we will call tree-hypersequent method. In
order to do it, we begin by informally explaining what a tree-hypersequent
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is and we do this by constructing such an object step-by-step. Let us, then,
recall, first of all, the simple notion of empty hypersequent : an empty hy-
persequent is a syntactic object of the following form:

n︷ ︸︸ ︷
−/− /−

which is to say: n slashes which separate n + 1 dashes. If the order of the
dashes is taken on account (as is not standardly done), we can look to this
entire structure as a tree-frame in Kripke semantics, where the dashes are
meant to be the worlds of the tree-frame and the slashes the relations be-
tween worlds in the tree-frame. Following this analogy the dash at distance
one in an empty hypersequent denotes a world at distance one in the corre-
sponding tree-frame, a dash at distance two denotes a world a distance two
in the corresponding tree-frame, and so on.

In a tree-frame, at every distance, except the first one, we may find
n different possible worlds: how can we express this fact in our syntactic
object? We separate different dashes with a semi-colon and obtain, in this
way, the notion of empty tree-hypersequent. So an example of an empty
tree-hypersequent is an object of the following form (the figure on the left):

– / – ; – �
◦ ◦
↖ ↗
◦

which corresponds to a tree-frame (the figure on the right) with a world
at distance one related with two different worlds at distance two. Another
example of an empty tree-hypersequent is an object of the following form
(the figure on the left):

−/(−/−);− �

◦
↖
◦ ◦
↖ ↗
◦

which corresponds to a tree-frame (the figure on the right) with a world at
distance one related with two different worlds at distance two, each of which
is, in turn, related with another world at distance three. Finally, in order to
obtain a tree-hypersequent we fill the dashes with sequents which are objects
of the form M ⇒ N , where M and N are multisets of formulas.

In the next section we will show how to apply this method in order to
obtain calculi for: (i) the basic system K, which is valid and complete in
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all the frames, (ii) the extensions of K which contain one or both the D
axiom and the 4 axiom, namely KD, K4 and KD4. We remind the reader
that the D axiom has the form: �α → �α, and its characteristic frame
property is seriality; the 4 axiom, instead, has the form: �α → ��α, and
its characteristic frame property is transitivity. In the third section we will
show which rules are admissible in these calculi, in the fourth section we will
prove that they are valid and complete in the corresponding Hilbert-style
system, and in the fifth section we will finally prove the cut-elimination
theorem for all of them.

2. The Calculi CSK*

We define the modal propositional language L� in the following way:

atoms: p0, p1, ...
logical constant: �

connectives: ¬, ∨

The other classic connectives can be defined as usual, as well as the
constant � and the formulas of the modal language L�.

Syntactic Conventions:

α, β, ...: formulae,
M , N , ...: finite multisets of formulae,
Γ, Δ, ...: sequents (SEQ). The empty sequent (⇒) is included.
G, H, ...: tree-hypersequents (THS).
X, Y , ...: finite multisets of tree-hypersequents (MTHS), ∅ included.

We point out that for the sake of brevity we will use the following no-
tation: given Γ ≡ M ⇒ N and Π ≡ P ⇒ Q, we will write α, Γ instead
of α, M ⇒ N and Γ, α instead of M ⇒ N, α, as well as Γ � Π instead of
M, P ⇒ N, Q.

Definition 2.1. The notion of tree-hypersequent is inductively defined in
the following way:

- if Γ ∈ SEQ, then Γ ∈ THS,
- if Γ ∈ SEQ and X ∈ MTHS, then Γ/X ∈ THS.
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Given the above definition, an example of tree-hypersequent is the fol-
lowing one:

Δ/(Γ/Σ); (Γ1/(Σ1/Θ); Σ2)

Definition 2.2. The intended interpretation of a tree-hypersequent is:

- (M ⇒ N)τ : =
∧

M →
∨

N ,
- (Γ/G1; ...; Gn)τ : = Γτ ∨�Gτ

1 ∨ ... ∨�Gτ
n.

Given the above definition, the intended interpretation of the tree-hyper-
sequent of the example above, is:

Δτ ∨�(Γτ ∨�Στ ) ∨�(Γτ
1 ∨�(Στ

1 ∨�Θτ ) ∨�Στ
3)

In order to display the rules of the calculi, we will use the notation G[Γ] (or
G[H]) to refer to a tree-hypersequent together with a specific occurrence in
it of a sequent Γ (or a tree-hypersequent H). You may think, if you like,
of G[ ] as a “tree-hypersequent with one hole,” an object which becomes a
real tree-hypersequent whenever a sequent Γ (or a tree-hypersequent H) is
appropriately put into the hole.

We can even use the notation G[Γ][[�α, Σ]], where [[�α, Σ]] represents
all the sequents in G which are successive to Γ and contain(ed) the formula
�α on the left side.

The calculus CSK is composed of:

Initial Tree-hypersequents.

G [p, Γ, p]

Propositional Rules.

G[Γ, α]
G[¬α, Γ] ¬A

G[α, Γ]
G[Γ,¬α] ¬K

G[α, β, Γ]
G[α ∧ β, Γ] ∧A

G[Γ, α] G[Γ, β]
G[Γ, α ∧ β] ∧K

Modal Rules.

G[�α, Γ/(α, Σ/X); X
′
]

G[�α, Γ/(Σ/X); X ′ ]
�A

G[Γ/⇒ α; X]
G[Γ,�α/X] �K

We underline that the addition of the formula �α to the left side of the
sequent of the premise of the rule �A only serves to make the rule invertible.
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This is analogous to the repetition of the formula ∀x(α) in the premise of
the rule which introduces the universal quantification, in some versions of
the sequent calculus of first-order logic.

In order to introduce the cut-rule, we firstly need two new notions:

Definition 2.3. Given two tree-hypersequents, G[Γ] and G
′
[Γ

′
] together

with an occurrence of a sequent in each, the relation of equivalent position
between two of their sequents, in this case Γ and Γ

′
, G[Γ] ∼ G

′
[Γ

′
], is defined

inductively in the following way:

- Γ ∼ Γ
′

- Γ/X ∼ Γ
′
/X

′

- If H[Γ] ∼ H
′
[Γ

′
], then Δ/H[Γ]; X ∼ Δ

′
/H

′
[Γ

′
]; X

′

Intuitively, given two tree-hypersequents, G[Γ] and G
′
[Γ

′
] together with

an occurrence of a sequent in each, the relation of equivalent position between
two of their sequents holds when, by considering G[Γ] and G

′
[Γ

′
] as trees,

and Γ and Γ
′
as nodes of the trees, the two nodes have the same height in

their respective trees. Consider for example the two tree-hypersequents G ≡
Δ/(Γ/Σ); (Γ1/(Σ1/Θ); Σ2) and G

′ ≡ Δ
′
/(Γ

′
/Σ

′
); (Γ

′
1); (Γ

′
2/(Σ

′
1/Θ

′
)). Then

Γ and Γ
′
are in equivalent position, as are Γ and Γ

′
1, or Θ and Θ

′
.

Definition 2.4. Given two tree-hypersequents G[Γ] and G
′
[Γ

′
] together

with an occurrence of a sequent in each, such that G[Γ] ∼ G
′
[Γ

′
], the oper-

ation of product, G[Γ] ⊗ G
′
[Γ

′
], is defined inductively in the following way:

- Γ⊗ Γ
′
:= Γ � Γ

′

- (Γ/X) ⊗ (Γ
′
/X

′
) := Γ � Γ

′
/X; X

′

- (Δ/H[Γ]; X) ⊗ (Δ
′
/H

′
[Γ

′
]; X

′
) : =

Δ � Δ
′
/(H[Γ] ⊗ H

′
[Γ

′
]); X; X

′

Cut rule.

Given two tree-hypersequents G[Γ, α] and G
′
[α, Π] together with an occur-

rence of a sequent in each, such that G[Γ, α] ∼ G
′
[α, Π], the cut rule is:

G[Γ, α] G
′
[α, Π]

G⊗G′ [Γ � Π] cutα

As the reader can easily see from the above definition, the cut rule should
respect two important criteria. The first one says that, given two tree-
hypersequents, we can cut on any two sequents belonging to them provided
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that they are in equivalent position. The second one says that after the cut
the two tree-hypersequents should not be randomly mixed but according to
the inductive definition of product. We underline that these two criteria are
fundamental because they serve to assure that the result of a cut between
two tree-hypersequents is still a tree-hypersequent, which is to say the tree
shape is kept.

The corresponding rules of axiom D and axiom 4 are, respectively, the
following two ones:

G[Γ/⇒]
G[Γ] ser.

G[�α, Γ/(�α, Σ/X); X
′
]

G[�α, Γ/(Σ/X); X ′ ]
tran.

Sequent calculi CSKD, CSK4 and CSKD4 can be obtained by adding
to the basic sequent calculus CSK one or both the above rules.
In next section we will use the notation CSK∗ (or, if necessary, CSKD∗ and
CSK4∗) to denote the calculus CSK (CSKD, CSK4) and its extensions.

3. Admissibility of the Structural Rules

In this section we will show which structural rules are admissible in calculi
CSK∗. Moreover, in order to show that the two rules of contraction are
height-preserving admissible we will show that all the logical and modal
rules are height-preserving invertible. The proof of the admissibility of the
cut-rule will be shown in the fifth section.

Definition 3.1. We associate to each proof d in CSK∗ a natural number
h(d) (height). Intuitively, the height corresponds to the length of the longest
branch in a tree-proof d, minus one. However we omit the standard inductive
definition.

Definition 3.2. d �n G means that d is a proof of G in CSK∗, with h(d)
≤ n. We write �〈n〉 G for: “there exists a proof d such that d �n G.”

Definition 3.3. Let G be a tree-hypersequent and G
′
be the result of the

application of a certain rule R on G. We say that this rule R is height-
preserving admissible when:

d �n G ⇒ ∃d′
(d

′ �n G
′
)

We call a rule, R, which transforms a tree-hypersequent G into a tree-
hypersequent G

′
, admissible when:

d �n G ⇒ ∃d′
(d

′ � G
′
)
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Observation 3.4. In the sequent calculus for classical logic, we usually say
that a formula of a sequent is principal in a rule when the rule operates
on that formula. In a similar way we will call a sequent(s) principal in a
tree-hypersequent when a certain rule operates on that sequent(s). In the
following proofs of the (height-preserving) admissibility of structural rules
and height-preserving invertibility of logical and modal rules, we will consider
only these cases where the sequent(s) is (are) principal. All the other cases
are dealt with easily, as shown in the two lemmas 3.14 and 3.15 which are
proved at the end of the current section.

Lemma 3.5. Tree-hypersequents of the form G[α, Γ, α], with α an arbitrary
modal formula, are derivable in CSK∗.

Proof. By straightforward induction on α.

Lemma 3.6. The rule:
G

⇒ /G
RN

is height-preserving admissible in CSK∗.

Proof. By induction on the derivation of the premise.
If G is an initial tree-hypersequent, then ⇒ /G is also an initial tree-

hypersequent.
If G is inferred by a logical rule, then the inference is clearly preserved.

We will give an example using the logical rule ¬K:

〈n−1〉G[α, Γ]
〈n〉G[Γ,¬α] ¬K �2

〈n−1〉 ⇒ /G[α, Γ]
〈n〉 ⇒ /G[Γ,¬α] ¬K

If G is inferred by the modal rules, these are clearly preserved. We will
give an example using the modal rule �K:

〈n−1〉G[Γ/⇒ α; X]
〈n〉G[Γ,�α/X] �K �

〈n−1〉 ⇒ /G[Γ/⇒ α; X]
〈n〉 ⇒ /G[Γ,�α/X] �K

If, finally, G is inferred by rule ser. or rule tran., these are clearly pre-
served. We will give an example using the rule ser.:

2The symbol � means: the premise of the right side is concluded by induction hypoth-
esis on the premise of the left side.
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〈n−1〉G[Γ/⇒]
〈n〉G[Γ] ser. �

〈n−1〉 ⇒ /G[Γ/⇒]
〈n〉 ⇒ /G[Γ] ser.

Lemma 3.7. The rules of weakening:

G[Γ]
G[α, Γ] WA

G[Γ]
G[Γ, α] WK

are height-preserving admissible in CSK∗.

Proof. By straightforward induction on the derivation of the premise.

Lemma 3.8. The rule of external weakening:

G[Γ/X]
G[Γ/X; Γ] EW

is height-preserving admissible in CSK∗.

Proof. By straightforward induction on the derivation of the premise.

Lemma 3.9. The rule of merge:

G[Δ/(Γ/X1); (Π/X2); Y ]
G[Δ/(Γ � Π/X1; X2); Y ] merge

is height-preserving admissible in CSK∗.

Proof. By induction on the derivation of the premise.

If the premise is an initial tree-hypersequent, then so is the conclusion.
If the premise is inferred by a logical rule, this inference is preserved. As the
rule of merge has two principal sequents, we should analyze the following
two cases: one in which the logical rule has been applied to the sequent Γ,
one in which the logical rule has been applied on the sequent Π. These two
cases are similar; hence we will only sketch the proof for one of them, taking
as example the logical rule ¬K:

〈n−1〉G[Δ/(α, Γ/X1); (Π/X2); Y ]
〈n〉G[Δ/(Γ,¬α/X1); (Π/X2); Y ] ¬K �

〈n−1〉G[Δ/(α, Γ � Π/X1; X2); Y ]
〈n〉G[Δ/(Γ � Π,¬α/X1; X2); Y ] ¬K

If the premise is inferred by the modal rule �K (for the rule ser. the treat-
ment is analogous), then as in the case of logical rules, there are two sym-
metric cases to analyze. We will give an example of just one case:
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〈n−1〉G[Δ/(Γ/⇒ α; X1); (Π/X2); Y ]
〈n〉G[Δ/(Γ,�α/X1); (Π/X2); Y ] �K �

〈n−1〉G[Δ/(Γ � Π/⇒ α; X1; X2); Y ]
〈n〉G[Δ/(Γ � Π,�α/X1; X2); Y ] �K

Finally, in the case where the premise is inferred by the rule tran. (for
the rule �A the treatment is analogous), there are, for a simple combination
of principal sequents, two pairs of analogous cases to analyze: on the one
hand, tran. applied between Δ and Γ, and between Δ and Π; on the other
hand, tran. applied between Γ and X1, and between Π and X2. We will
examine one case from each pair:

(1)
〈n−1〉G[�α, Δ/(�α, Γ/X1); (Π/X2); Y ]

〈n〉G[�α, Δ/(Γ/X1); (Π/X2); Y ] tran. �

〈n−1〉G[�α, Δ/(�α, Γ � Π/X1; X2); Y ]
〈n〉G[�α, Δ/(Γ � Π/X1; X2); Y ] tran.

(2)3
〈n−1〉G[Δ/(�α, Γ/(�α, Σ/X

′
1); X

′′
1); (Π/X2); Y ]

〈n〉G[Δ/(�α, Γ/(Σ/X
′
1); X

′′
1); (Π/X2); Y ]

tran. �

〈n−1〉G[Δ/(�α, Γ � Π/(�α, Σ/X
′
1); X

′′
1 ; X2); Y ]

〈n〉G[Δ/(�α, Γ � Π/(Σ/X
′
1); X

′′
1 ; X2); Y ]

tran.

Lemma 3.10. The following rule:

G[Γ/(Σ/X); X
′
]

G[Γ/(⇒ /Σ/X); X ′ ]
tran.2.

is admissible in those calculi which contain the rule tran.

Proof. By induction on the derivation of the premise. The cases where
the premise is an initial tree-hypersequent or is preceded by a logical rule
are trivial. We analyze the cases in which the last applied rule is one of the
modal rules or is the rule ser. or is the rule tran.

[�K] (for the rule ser. the treatment is analogous):

〈n−1〉G[Γ/⇒ α; (Σ/X); Y ]
〈n〉G[Γ,�α/(Σ/X); Y ] �K �

G[Γ/⇒ α; (⇒ /Σ/X); Y ]
G[Γ,�α/(⇒ /Σ/X); Y ] �K

3We take X1 ≡ (Σ/X
′
1); X

′ ′
1
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[�A:]
〈n−1〉G[�α, Γ/(α, Σ/X); Y ]

〈n〉G[�α, Γ/(Σ/X); Y ] �A �

G[�α, Γ/(⇒ /α, Σ/X); Y ]
G[�α, Γ/(�α ⇒ /α, Σ/X); Y ]

G[�α, Γ/(�α ⇒ /Σ/X); Y ]
G[�α, Γ/(⇒ /Σ/X); Y ] tran.

�A

AA

[tran.:]
〈n−1〉G[�α, Γ/(�α, Σ/X); Y ]

〈n〉G[�α, Γ/(Σ/X); Y ] tran. �

G[�α, Γ/(⇒ /�α, Σ/X); Y ]
G[�α, Γ/(�α ⇒ /�α, Σ/X); Y ]
G[�α, Γ/(�α ⇒ /Σ/X); Y ]

G[�α, Γ/(⇒ /Σ/X); Y ] tran.

tran.

AA

Lemma 3.11. All the logical and modal rules of CSK∗ are height-preserving
invertible.

Proof. The proof proceeds by induction on the derivation of the premise
of the rule considered. The cases of logical rules are dealt with in the clas-
sical way. The only differences — the fact that we are dealing with tree-
hypersequents, and the cases where the rule before the logical rule is �A or
�K or ser. or tran. — are dealt with easily.

The rule (�A) is trivially height-preserving invertible since the premise
is concluded by weakening from the conclusion, and weakening is height-
preserving admissible.

We show in detail the invertibility of the rule (�K). If G[Γ,�α/X] is an
initial tree-hypersequent, then so is G[Γ/⇒ α; X]. If G[Γ,�α/X] is preceded
by a logical rule R, we apply the inductive hypothesis on the premise(s),
G[Γ

′
,�α/X] (G[Γ

′′
,�α/X]) and we obtain derivation(s), of height n − 1,

of G[Γ
′
/ ⇒ α; X] (G[Γ′ ′/ ⇒ α; X]). By applying the rule R, we obtain

a derivation of height n of G[Γ/ ⇒ α; X]. If G[Γ,�α/X] is of the form
G[�β, Γ,�α/(Σ/X

′
); X

′′
] and is concluded by the modal rule �A, we apply

the inductive hypothesis on G[�β, Γ,�α/(β, Σ/X
′
); X

′′
] and we obtain a

derivation of height n−1 of G[�β, Γ/⇒ α; (β, Σ/X
′
); X

′′
]. By applying the

rule �A, we obtain a derivation of height n of G[�β, Γ/ ⇒ α; (Σ/X
′
); X

′′
].

If G[Γ,�α/X] is concluded by the rule ser. or tran. or by the modal rule �K
in which �α is not the principal formula, these cases are analogous to the
one of �A. Finally, if G[Γ,�α/X] is preceded by the modal rule �K and �α
is a principal formula, the premise of the last step gives the conclusion.
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Lemma 3.12. The rules of contraction:

G[α, α, Γ]
G[α, Γ] CA

G[Γ, α, α]
G[Γ, α] CK

are height-preserving admissible in CSK∗.

Proof. By induction on the derivation of the premise G[Γ, α, α]. We only
analyze the case of the rule CK. The case of the rule CA is symmetric.

If G[Γ, α, α] is an initial tree-hypersequent, so is G[Γ, α].
If G[Γ, α, α] is preceded by a rule R which does not have any of the two

occurrences of the formula α as principal, we apply the inductive hypothesis
on the premise(s) G

′
[Γ

′
, α, α] (G

′′
[Γ

′′
, α, α]), obtaining derivation(s) of height

n−1 of G
′
[Γ

′
, α] (G

′′
[Γ

′′
, α]). By applying the rule R we obtain a derivation

of height n of G[Γ, α]
G[Γ, α, α] is preceded by a logical or modal rule and one of the two

occurrences of the formula α is principal. Hence the rule which concludes
G[Γ, α, α] is a K-rule and we have to analyze the following three cases: ¬K,
∧K, �K.

[¬K]:
〈n−1〉G[β, Γ,¬β]

〈n〉G[Γ,¬β,¬β] ¬K ���4
〈n−1〉G[β, β, Γ]

〈n−1〉G[β, Γ]
〈n〉G[Γ,¬β] ¬K

i.h.

[∧K]:
〈n−1〉G[Γ, β, β ∧ γ] 〈n−1〉G[Γ, γ, β ∧ γ]

〈n〉G[Γ, β ∧ γ, β ∧ γ] ∧K ���

〈n−1〉G[Γ, β, β]
〈n−1〉G[Γ, β] i.h

〈n−1〉G[Γ, γ, γ]
〈n−1〉G[Γ, γ] i.h.

〈n〉G[Γ, β ∧ γ] ∧K

[�K]:
〈n−1〉G[Γ,�β/⇒ β; X]

〈n〉G[Γ,�β,�β/X] �K ���

〈n−1〉G[Γ/⇒ β;⇒ β; X]
〈n−1〉G[Γ/⇒ β, β; X]

〈n−1〉G[Γ/⇒ β; X]
〈n〉G[Γ,�β/X] �K

i.h.

merge

Lemma 3.13. The rule of external contraction:

G[Γ/(Σ/X1); (Σ/X2); Y ]
G[Γ/(Σ/X1; X2); Y ] EC

is height-preserving admissible
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Proof.
5

G[Γ/(Σ/X1); (Σ/X2); Y ]
Γ/(Σ � Σ/X1; X2); Y ]

Γ/(Σ/X1; X2); Y ] c∗

merge

Lemma 3.14. Let G[H] be any tree-hypersequent and G∗[H] the result of the
application of one of the structural rules — classical and external weakening,
merge, tran2. and classical contraction — on G[H]. If for a rule R we have:

G[H
′
]

G[H] R

then it holds that:
G∗[H

′
]

G∗[H] R

Proof. By induction on the form of the tree-hypersequent G[H].

Lemma 3.15. Let G[H] be any tree-hypersequent and G[H
′
] the result of the

application of one of the logical rules or the rule �K on G[H]. If for a rule
R we have:

G∗[H
′
]

G[H ′ ] R

then it holds that:
G∗[H]
G[H] R

Proof. By induction on the form of the tree-hypersequent G[H
′
].

4. The adequateness of the calculi

In this section we briefly prove that our calculi CSK ∗ prove exactly the same
formulas as their corresponding Hilbert-style systems, that from now on, we
will indicate with the notation K∗.

Theorem 4.1. [i] If � α in K∗, then �⇒ α in CSK∗.

[ii] If � G in CSK∗, then � (G)τ in K∗.

5In the last inference of the proof, if the proof is read bottom up, we use the rule of
negation twice in a role. From now on we indicate the repeated running applications of a
same rule on a tree-hypersequent, by writing the rule with the symbol * as index.
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Proof. By induction on the height of proofs in K∗ and CSK∗, respec-
tively. As concerns [ii], we omit the proof which is easy but quite tedious.
However the technique to develop such proof consists of the following two
steps: first of all, the sequent(s) affected by the rule should be isolated and
the corresponding implication proved, then the implication should be trans-
ported up all along the tree so that, by modus ponens, the desired result
is immediately achieved. In order to further acquaint the reader with the
calculi CSK∗ we verify [i].The classical axioms and the modus ponens rule
are proved as usual, we just present the proof of the distribution axiom,
axiom D, axiom 4 and the necessity rule.

CSK∗ �⇒ �(α → β) → �α → �β
�(α → β) ⇒ /α ⇒ α �α ⇒ /β ⇒ β

�(α → β),�α ⇒ /α → β, α ⇒ β

�(α → β),�α ⇒ /α ⇒ β

�(α → β),�α ⇒ / ⇒ β

�(α → β),�α ⇒ �β

�(α → β)⇒ �α → �β

⇒ �(α → β) → �α → �β
→K

→K

�K

�A

�A

→A

CSKD∗ �⇒ �α → ¬�¬α
�α,�¬α ⇒ /α ⇒ α

�α,�¬α ⇒ /¬α, α ⇒
�α,�¬α ⇒ /α ⇒
�α,�¬α ⇒ /⇒
�α,�¬α ⇒

�α ⇒ ¬�¬α

⇒ �α → ¬�¬α
→K

¬K

ser.

�A

�A

¬A

CSK4∗ �⇒ �α → ��α
�α ⇒ /�α ⇒ /α ⇒ α

�α ⇒ /�α ⇒ / ⇒ α

�α ⇒ /�α ⇒ �α

�α ⇒ /⇒ �α

�α ⇒ ��α

⇒ �α → ��α
→K

�K

tran.

�K

�A

if CSK∗ �⇒ α, then CSK∗ �⇒ �α
⇒ α

⇒ / ⇒ α

⇒ �α
�K

RN
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5. Cut-elimination Theorem for CSK*

In this section we prove that the cut-rule is admissible in calculi CSK∗. In
order to prove such a theorem we firstly have to show the following lemma.

Lemma 5.1. Given three tree-hypersequents together with a displayed occur-
rence of a sequent Γ, I[Γ], J [Γ] and H[Γ] such that I[Γ] ∼ J [Γ] ∼ H[Γ], if
there is a rule R such that:

J [Γ]
I[Γ] R

then, for every Δ it holds:
J ⊗H[Δ]
I ⊗H[Δ] R

Proof. By induction on the form of the tree-hypersequents I[Γ], J [Γ] and
H[Γ].

Now we can prove that the cut-rule is admissible in the calculi CSK∗.

Theorem 5.2. Let G[Γ, α] and G
′
[α, Π] be such that G[Γ, α] ∼ G

′
[α, Π].

If:
... d1

G[Γ, α]

... d2

G[α, Π]

G⊗G
′
[Γ � Π]

cutα

and d1 and d2 do not contain any other application of the cut rule, then we
can construct a proof of G⊗G

′
[Γ � Π] without any application of cut rule.

Proof. The proof is developed by induction on the complexity of the cut
formula, which is the number (≥ 0) of the occurrences of logical symbols in
cut formula α, with subinduction on the sum of the heights of the derivations
of the premises of cut. We will distinguish cases by the last rule applied on
the left premise.

Case 1. G[Γ, α] is an initial tree-hypersequent. Then either the conclusion
is also a tree-hypersequent or the cut can be replaced by various applications
of the classical and external weakening rules on G

′
[α, Π].

Case 2. G[Γ, α] is inferred by a rule R in which α is not principal. This
case can be standardly solved, by induction on the sum of the heights of
the derivations of the premises of cut. Indeed there is no rule which is
able to change the position of the sequent where we cut, and, on the other
hand, the definition of product assures us that the structure of the tree-
hypersequent stay unchanged, therefore no problem arises. However, for the
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sake of clarity, let us make some examples. More particularly we will analyze
those significant cases where the ruleR has been applied on the sequent Γ, α.
The others can be dealt with analogously, thanks to the lemma 5.1. Let us
then suppose that the rule before G[Γ, α] is the rule �K (the case where R
is the rule ser. is analogous) applied on the sequent Γ, α and without α as
principal formula. We have:

G[Γ, α/⇒ β; X]
G[Γ, α,�β/X] �K

...
G′ [α, Π/Y ]

G⊗G′ [Γ � Π,�β/X; Y ] cutα

We reduce to:
G[Γ, α/⇒ β; X] G

′
[α, Π/Y ]

G⊗G
′
[Γ � Π/⇒ β; X; Y ]

G⊗G′ [Γ � Π,�β/X; Y ] �K

cutα

Let us suppose that the rule before G[Γ, α] is the rule �A (the case where
R is the rule tran. is analogous) applied between the sequent Γ, α and the
sequent successive to it, and without α as principal formula. We have:

G[�β, Γ, α/(β, Σ/X); X
′
]

G[�β, Γ, α/(Σ/X); X ′ ]
�A

...
G′ [α, Π/Y ]

G⊗G′ [�β, Γ � Π/(Σ/X); X ′ ; Y ]
cutα

We reduce to:

G[�β, Γ, α/(β, Σ/X); X
′
] G

′
[α, Π/Y ]

G⊗G
′
[�β, Γ � Π/(β, Σ/X); X

′
; Y ]

G⊗G′ [�β, Γ � Π/(Σ/X); X ′ ; Y ]
�A

cutα

Let us finally suppose that the rule before G[Γ, α] is the rule �A (the
case where R is the rule tran. is analogous) applied between the sequent
Γ, α and the sequent which precedes it, and without α as principal formula.
We have:

G[�β, Δ/(β, Γ, α/X); X
′
]

G[�β, Δ/(Γ, α/X); X ′ ]
�A

...
G′ [Λ/(α, Π/Y ); Y ′ ]

G⊗G′ [�β, Δ � Λ/(Γ � Π/X; Y ); X ′ ; Y ′ ]
cutα

We reduce to:

G[�β, Δ/(β, Γ, α/X); X
′
] G

′
[Λ/(α, Π/Y ); Y

′
]

G⊗G
′
[�β, Δ � Λ/(β, Γ � Π/X; Y ); X

′
; Y

′
]

G⊗G′ [�β, Δ � Λ/(Γ � Π/X; Y ); X ′ ; Y ′ ]
�A

cutα
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Case 3. G[Γ, α] is inferred by a rule R in which α is principal. We distin-
guish two subcases: in one subcase R is a logical rule, in the other R is a
modal rule.

Case 3.1. We suppose, as example, that the rule before G[Γ, α] is ¬K, we
have:

G[β, Γ]
G[Γ,¬β] ¬K

...
G′ [¬β, Π]

G⊗G′ [Γ � Π] cut¬β

By applying lemma 3.11 on G
′
[¬β, Π], we obtain G

′
[Π, β]. We replace the

previous cut with the following one which is eliminable by induction on the
complexity of the cut formula:

G
′
[Π, β] G[β, Γ]
G⊗G′ [Γ � Π] cutβ

Case 3.2. R is �K and α ≡ �β. We have the following situation:

G[Γ/⇒ β; X]
G[Γ,�β/X] �K

...
G′ [�β, Π]

G⊗G′ [Γ � Π/X] cut�β

We have to consider the last rule R′
of d2. If there is no rule R′

which
introduces G

′
[�β, Π] because G

′
[�β, Π] is an initial tree-hypersequent, then

we can solve the case as in 1. If R′
is a rule in which �β is not principal,

we solve the case as in 2. The only problematic cases are those cases where
R′

is �A or tran. We analyze them both.

�A:
G[Γ/⇒ β; X]
G[Γ,�β/X] �K

G
′
[�β, Π/(β, Φ/Y ); Y

′
]

G′ [�β, Π/(Φ/Y ); Y ′ ]
�A

G⊗G′ [Γ � Π/X; (Φ/Y ); Y ′ ]
cut�β

We reduce to:

G[Γ,�β/X] G
′
[�β, Π/(β, Φ/Y ); Y

′
]

G⊗G′ [Γ � Π/X; (β, Φ/Y ); Y ′ ]
cut�β

G[Γ/⇒ β; X] G⊗G
′
[Γ � Π/X; (β, Φ/Y ); Y

′
]

G⊗G⊗G
′
[Γ � Γ � Π/X; X; (Φ/Y ); Y

′
]

G⊗G′ [Γ � Π/X; (Φ/Y ); Y ′ ]
C∗

cutβ
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where the first cut is eliminable by induction on the sum of the heights of
the derivations of the premises of cut and the second cut is eliminable by
induction on the complexity of cut formula.
tran.:

G[Γ/⇒ β; X]
G[Γ,�β/X] �K

G
′
[�β, Π/(�β, Φ/Y ); Y

′
]

G′ [�β, Π/(Φ/Y ); Y ′ ]
tran.

G⊗G′ [Γ � Π/X; (Φ/Y ); Y ′ ]
Cut�β

In order to solve this case, we must check what can have introduced the
tree-hypersequent G

′
[�β, Π/(�β, Φ/Y ); Y

′
]. More particularly we go up the

derivation until either a rule applies to a formula different from the �β’s or
a rule different from tran. applies to some of the �β’s. This way we have
the following situation:

♦ : G
′
[�β, Π] [[�β, Ψ]]6

We then analyze each of the rules which can have inferred the tree-hyper-
sequent ♦:

- ♦ is an axiom. Then, as �β cannot be principal, even the conclusion of
the cut is an axiom and the case is solved.

- ♦ has been inferred by a rule R′′
which does not have any �β as a princi-

pal formula. In this case the technique consists of: firstly, permuting the
rule R′′

and the n applications of the rule tran., and, secondly, operating
as in case 2.

- ♦ has been inferred by a rule R′′
which has �β as principal formula.

R′′
can only be the rule �A. We still have to distinguish two others

possibilities. (1) the rule �A has been applied to one of the sequents
which follow the sequent [�β, Π]. Hence we have the following situation:

G[Γ/⇒ β; X]
G[Γ,�β/X]

G
′
[�β, Π] [[�β, Ψ/(β, Ξ/Z); Z

′
]]

G
′
[�β, Π] [[�β, Ψ/(Ξ/Z); Z

′
]]

...
G

′
[�β, Π] [[Ψ/(Ξ/Z); Z

′
]]

G⊗G
′
[Γ � Π/X][[Ψ/(Ξ/Z); Z

′
]]

We proceed within the following three steps:

6For the sake of brevity, we omit to write: /(Φ/Y
′
); Y

′ ′
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(i) we apply the rule �A and the n applications of the rule tran. in a
reverse order and so we obtain the tree-hypersequent:

G
′
[�β, Π] [[Ψ/(β, Ξ/Z); Z

′
]]

(ii) we apply the rule tran2. to the tree-hypersequent G[Γ/ ⇒ β; X]
a number of time sufficient to get ⇒ β in an equivalent position with
the sequence β, Ξ of the tree-hypersequent G

′
[�β, Π] [[Ψ/(β, Ξ/Z); Z

′
]].

This way we obtain a tree-hypersequent where ⇒ β is no longer after Γ,
but n empty sequences after. Let us note this as: G[Γ/X] [⇒ β].

(iii) We are now able to apply two cuts: the first eliminable by induction
on the sum of the heights, the second by induction on the complexity of
the cut formula.

G[Γ,�β/X] G
′
[�β, Π] [[Ψ/(β, Ξ/Z); Z

′
]]

G⊗G′ [Γ � Π/X][[Ψ/(β, Ξ/Z); Z ′ ]] cut�β

G[Γ/X] [⇒ β] G⊗G
′
[Γ � Π/X][[Ψ/(β, Ξ/Z); Z

′
]]

G⊗G⊗G
′
[Γ � Γ � Π/X; X][[Ψ/(Ξ/Z); Z

′
]]

G⊗G′ [Γ � Π/X][[Ψ/(Ξ/Z); Z ′ ]] C∗

cutβ

(2) The rule �A, with �β principal formula, has been applied on the
sequent [�β, Π]. In this case we apply, as before, the rule �A and the
n applications of the rule tran. in a reverse order, and we proceed as at
the beginning of this case.

6. Conclusions and Further Work

In this paper we have presented the tree-hypersequent method applied to
the systems K, KD, K4 and KD4. Through the several sections we were
given a chance to observe the advantages it has: it satisfies the subformula
property, its rules are invertible and they fit the criteria required for a good
sequent calculus, all the structural rules can be shown to be admissible,
the contraction rules included. Moreover all the proof, as the calculi, are
purely syntactic. Therefore the tree-hypersequents calculi seem to enjoy
the qualities for being defined as good. Given this situation, two interesting
questions seem to arise naturally: is it possible to obtain other results within
the tree-hypersequent method? Is it possible to apply the tree-hypersequent
method in order to obtain calculi for other systems of modal logic? Let us
answer both of them, following the order.
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As concerns the first hunch, it seems possible to prove two flavored re-
sults. As already remarked in [2], the tree shape of the hypersequents should
help proving the interpolation theorem. Moreover it does not seem a hard
work to adapt the technique introduced by Negri in order to prove the de-
cidability theorem in a purely syntactic way (decidability through semantics
has already been established in [2]).

As concerns the second question, in the light of what we have already
suggested in [10] and what has been analyzed in details in [2], we can claim
that the method of tree-hypersequents can be successfully applied to axioms
B and T too (as concerns axiom 5, see again [2]). Moreover, as we have
shown in [9], the method can be quite naturally modified in order to get
a very simple sequent calculus for modal logic S5. Finally it also seems
reasonable to apply the method to obtain a sequent calculus for the modal
logic of provability GL, in a way similar to that employed by Negri.

On the other hand, we have still to investigate the following two ques-
tions: the application of the tree-hypersequents method to temporal logics
(which seems quite complicated because of the tree shape of our syntactic
objects), and a comparison between the tree-hypersequents method and the
tableaux systems one (which seems quite natural).

Acknowledgements. I wish to thank Pierluigi Minari for his constant in-
terest in this work and the substantial help with the notation used in the
calculi; Brian Hill for the valuable discussions, comments and suggestions
that he has dedicated to this paper.
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All Splitting Logics
in the Lattice NExt(KTB)

Abstract. It is proved that there are only two logics that split the lattice NExt(KTB).

The proof is based on the general splitting theorem by Kracht and conducted by a graph

theoretic argument.

Keywords: splitting, lattice of modal logics, KTB.

1. Introduction

The logic KTB is the logic of tolerance relations, that is, a modal logic
whose Kripke frames are characterised as reflexive and symmetric. These
can also be viewed as the usual undirected graphs, if we assume the edge
relation to be reflexive. One could argue that KTB is a basic logic of
spatial locations (of being nearby or suchlike) in the same sense as Kt is
the basic logic of time. The algebraic counterpart of KTB is the variety
of KTB-algebras. These are Boolean Algebras with Operators (BAOs), of
course, but their mathematically most outstanding feature is that the unary
operator f satisfies

fx ∧ y = 0 iff x ∧ fy = 0

which makes it into a self-conjugate operator. KTB-algebras are in a sense
generic among varieties of BAOs with self-conjugate operators, namely, every
such BAO has a term-reduct isomorphic to a KTB-algebra. Thus analysing
the structure of the variety of KTB-algebras is a reasonable first step in
an investigation of varieties of BAOs with self-conjugate operators. We will
look closer at the subvariety lattice of the variety of KTB-algebras (speaking
in algebraic terms), or (speaking in logical terms) at the lattice NExt(KTB)
of normal extensions of KTB.

One useful way of analysing structure of lattices in general is via split-
tings. Somewhat informally, a splitting is a pair (a, b) of elements of a
lattice L such that a is the largest element not above b. In such a case
L splits (quite literally: see Figure 1) into the part above b and the part
below a. Thus, splittings, if exist, provide a divide-and-conquer method for

D. Makinson, J. Malinowski, H. Wansing (eds.), Towards Mathematical Philosophy,
Trends in Logic, 28 c© Springer Science + Business Media B.V. 2009
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dealing with L. Splittings proved to be particularly well-suited to investi-
gating structure of lattices of subvarieties of a given ‘big’ variety. Examples
include McKenzie’s work on equational bases for varieties of modular lat-
tices (cf. [18]), and Blok’s results on degree of Kripke incompleteness for the
lattices NExt(K), NExt(KT), and NExt(KD) (cf. [1, 2]). Blok obtained
his results by demonstrating and exploiting the existence of many split-
tings in the variety of modal algebras. Later, Blok and Pigozzi in their pa-
pers on varieties with equationally definable principal congruences (EDPC)
(cf. [4, 3, 5, 6]) proved that all varieties with EDPC have many splittings.
Translated to modal logic, this result implies that NExt(L) has many split-
tings if L possesses a master modality (this was known for modal algebras
before EDPC papers, cf. [21]). If L is moreover finitely axiomatised, then
every finite subdirectly irreducible L-algebra defines a splitting of NExt(L)
(see Proposition 3.3 below). An important modal logic with that property
is K4 and it is worth reminding that Zakharyaschev’s canonical formulae,
a powerful tool for dealing with transitive frames, are connected to split-
tings via characteristic formulae of Jankov and Fine, of which they are a
generalisation.

Without master modality (or EDPC in the general case) the situation is
less clear. While NExt(K) has many splittings (cf. [1]), the lattice NExt(Kt)
of normal tense logics has only one (cf. [14]). Outside modal domain, by the
classical Jankov’s result (cf. [11]) all finite subdirectly irreducible Heyting
algebras are splitting, yet generalising Heyting algebras to FLew-algebras
reduces the number of splittings to one (cf. [13]). On the other hand, the
variety of all lattices has many splittings: so many that splitting lattices
generate it (cf. [9]).

In this paper we consider splittings in the lattice NExt(KTB). From
Makinson’s theorem (cf. [17]) it follows that the logic of one reflexive point,
that is, full relation on one point (L(◦)) splits this lattice. The second author
has shown in [19] that the logic of full relation on two points (L(◦−◦)) also
splits NExt(KTB). We will complete the picture by showing that there
are no logics other than two mentioned above that split NExt(KTB). Our
technique makes use of General Splitting Theorem due to Kracht [16].

2. Preliminaries

Our notation in general follows Chagrov and Zakharyaschev [8], which we
also ask the reader to consult for any modal logic notions left undefined.
We deal with propositional modal logics, so our language L consists of (1) a
denumerable set of propositional variables {p0, p1, p2, . . .}, (2) boolean and
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modal connectives ∧,∨,¬,→,�,�, (3) a pair of parentheses (, ). The set Φ
of all formulas in this language is defined as usual. A normal modal logic
(we call it simply a logic for short) over L is a set of formulas that contains
all classical tautologies, the formula �(p ∧ q) → (�p ∧ �q), and is closed
under uniform substitution, modus ponens, and necessitation. The smallest
normal modal logics is denoted by K. The largest one is the whole Φ, the
unique inconsistent logic over L.

For a logic L and a set Γ of formulas, the smallest normal modal logic
containing both L and Γ is denoted by L ⊕ Γ, and the class of all normal
extensions of L is denoted by NExt(L). The class NExt(L) is a complete
lattice for any L; we use the same symbol for the class and the lattice.

We put T := �p → p, B := p → ��p, and the logic K ⊕ {T,B} is
denoted by KTB. Sometimes a normal modal logic containing KTB is
called a KTB logic. Thus, we deal here with the lattice of KTB logics.

As usual, we use frames as semantic objects. A (general) frame is a
triple F := 〈W, R, P 〉, where W is a non-empty set, R is a binary relation
on W , and P is a subset of P(W ) that satisfies (1) W ∈ P , (2) W is closed
under ∩ (intersection), − (set-theoretical complement), and the operation
fR defined for any X ∈ P by fR(X) := R−1(X). If W is finite, we can
always assume P = ℘(W ) and forget about P altogether, thereby obtaining
a Kripke frame. As we only need finite frames in the paper, we will use
frame to mean Kripke frame from now on.

A model on a frame F is M := 〈F , V 〉, where V is a function from the set
of variables into P , called a valuation. The notion of truth of a formula ϕ at
a point x in a model M (M |=x ϕ) is defined as usual. We will also use the
usual shorthand x |= ϕ if the model is clear from context or does not have
to be specified precisely. For a frame F , a formula ϕ is valid in F (F |= ϕ)
if for any model M on F and for any point x ∈ W , we have M |=x ϕ. We
write F |= L to mean that F |= ϕ for all ϕ ∈ L. The logic determined by F
is denoted by L(F), specifically, L(F) := {ϕ ∈ Φ: F |= ϕ}.

It is well-known that the axioms B and T correspond, respectively, to
symmetry and reflexivity of frames in the following sense. For a frame F ,
(1) F |= B if and only if F |≡ ∀x, y(xRy implies yRx). (2) F |= T if and
only if F |≡ ∀x(xRx). We use |≡ to express the fact that the frame satisfies
the condition on the right hand side in the standard model-theoretical sense.
Thus, a KTB-frame is a reflexive and symmetric frame.

We will also make use of modal algebras. An algebraic structure A =
〈A,∩,∪,−, f, 0, 1〉 is a modal algebra if: (1) 〈A,∩,∪,−, 0, 1〉 is a Boolean
algebra, and (2) f is a unary normal operator, that is, the following identities
hold:
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(i) f0 = 0 and
(ii) f(a ∨ b) = fa ∨ fb for a, b ∈ A.

Formulas are interpreted in a modal algebra by a valuation in the standard
way and a formula ϕ is defined to be valid in a modal algebra A if the
identity ϕ = 1 holds in A, which we will abbreviate by A |= ϕ (abusing the
model-theoretical notation a little). For a logic L, we denote A |= L to mean
that A |= ϕ for any ϕ ∈ L. The logic determined by a frame A is denoted
by L(A), specifically, L(A) := {ϕ ∈ Φ: A |= ϕ}. A modal algebra A is a
KTB-algebra if it satisfies two further identities:

(iii) a ≤ fa and
(iv) a ≤ −f−fa.

The second of these is in fact equivalent to the statement

fa ∧ b = 0 iff a ∧ fb = 0

mentioned already in the introduction. Thus, in BAO terminology, a KTB
algebra is a BAO with a single unary self-conjugate normal operator.

Since we will work with finite algebras and frames, it suffices to recall the
duality between finite atom structures and finite modal algebras. Let A be a
finite modal algebra. Define a frame A∗ = 〈WA, RA〉 by putting WA to be the
set of all atoms of A and RA a binary relation on WA defined for any a, b ∈
WA by (a, b) ∈ RA iff fb ≥ a. The frame A∗ is known as the atom structure
of A and both A∗ and A validate exactly the same formulas. Conversely, for
any finite frame F = 〈W, R〉, the corresponding modal algebra F∗ is defined
by putting F∗ = 〈P,∩,∪,−, fR, ∅, W 〉. Then, both F and F∗ validate the
same set of formulas. Moreover, for the transformations (·)∗ and (·)∗ we
have that A ∼= (A∗)∗ for any finite modal algebra A, and F ∼= (F∗)∗ for any
finite frame F . To be sure, these niceties break down for infinite structures
and the full force of Stone-Jónsson-Tarski duality is needed.

3. Splitting

3.1. Splittings of lattices of modal logics in general

Splittings of lattices were first investigated by Whitman in [23].

Definition 3.1 (Splitting). Let L = 〈L,∧,∨〉 be a lattice and a ∈ L. Then
a splits L if there exists b ∈ L such that for any x ∈ L, either x ≤ a or b ≤ x,
but not both. Such a pair (a, b) is called a splitting pair of the lattice L. In
this case the element b is a splitting of L by a and denoted by L/a. The
elements of a splitting pair (a, b) are sometimes called splitting partners.
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See Figure 1 for a picture of splitting (but notice that the definition does
not preclude the situation with a < b; if this happens then b is a unique cover
of a and b a unique subcover of a, such a splitting may be called trivial).
When splittings of a lattice of logics are considered and a logic L(F) splits
the lattice, then it is often said that the frame F splits the lattice. Since the
terminology of splittings is quite messy (perhaps splitting and co-splitting
choice adopted in [15] is the least so, but it is not the most common), we
offer the following rule-of-thumb principle. For lattices of varieties, think
of splitting as determined ‘low down’ (point b in Figure 1) by a variety
generated by a single (finite) subdirectly irreducible algebra B; its splitting
partner being the largest variety not containing B. For lattices of logics,
think of splitting as determined ‘high up’ (point a in Figure 1) by a logic
of a single (finite) rooted frame A; its splitting partner being the smallest
logic not verified by A. The algebra B is a splitting algebra, the frame A a
splitting frame and the logic of the splitting partner of A is a splitting logic1

Notice that by duality between lattices of logics and lattices of varieties and
between finite algebras and their atom structures, B and B∗ (A∗ and A)
determine dually isomorphic splittings.

In order to formulate General Splitting Theorem that we will make use
of, we need some more notation. For n ∈ ω we use �n for the n-th iteration

Figure 1. A splitting of a (bounded) lattice L

of the box operator, and put �(n)ϕ :=
∧n

i=0 �
iϕ. For a finite frame F , we

define the diagram ΔF of F as the following set of formulas: first we fix a

1On the purely linguistic level, think of anything that takes the adjective splitting as
small. A single rooted frame is small, as opposed to a class of frames. The same goes for
a single subdirectly irreducible algebra. But their logics are large and so a splitting logic,
i.e., a splitting partner of a large logic, is small. Surely, it is not fully satisfactory, for the
inconsistent logic turns out to be splitting in some classes, too. But nobody’s perfect.
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distinct propositional variable pa for each element a ∈ W . Then,

ΔF := {pa→�pb : aRb}∪{pa→¬�pb :¬(aRb)}∪{pa→¬pb : a �= b}∪{
∨

x∈W

px}

The characteristic formula δF for F is then defined by δF :=
∧

ΔF . In
a frame F := 〈W, R〉, a point r ∈ W is called a root if for any x ∈ W ,
there exists a number n such that rRnx. A frame with a root is called a
rooted frame. The following theorem was shown by Kracht in [16] (see also
Wolter [24]).

Theorem 3.2 (General Splitting Theorem). Let Γ0 ∈ NExt(K) and F be a
finite Kripke frame with root r. Then the following conditions are equivalent:

1. F splits NExt(Γ0).

2. There is n ∈ ω such that for any frame G with G |= Γ0, if �(n)δF ∧ pr is
satisfiable in G, then �(m)δF ∧ pr is also satisfiable in G for any m > n.

Thus, we have NExt(Γ0)/F = Γ0 ⊕ (�(n)δF → ¬pr), where NExt(Γ0)/F
is the splitting logic. In particular, if Γ0 is finite, then the splitting logic
is finitely axiomatisable. The next result holds in fact for any variety of
algebras generated by their finite members (cf. [18]).

Proposition 3.3. Let L0 be a modal logic which has the finite model prop-
erty, and A an algebra for L0. If L(A) splits NExt(A), then there exists a
finite subdirectly irreducible algebra B such that L(A) = L(B).

Since KTB has the finite model property, by the proposition above the
only candidates for splitting frames in NExt(KTB) are the finite ones.

For contrast with many splittings in NExt(K), we also recall the following
result.

Theorem 3.4 (Blok [1]). There exists only one splitting logic in NExt(KT),
that is the inconsistent logic Φ.

Notice that this is an example of a trivial splitting: the frame that splits
NExt(KT) is the one-element reflexive frame and L(◦) is the unique subcover
of Φ.

3.2. Splittings of the lattice NExt(KTB)

On the positive side, we know two logics that split the lattice NExt(KTB).
First, let us recall a classical theorem.
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Theorem 3.5 (Makinson [17]). Every consistent normal modal logic is con-
tained in either L(•) or L(◦), where • is the frame of one irreflexive point,
and ◦ is the frame of one reflexive point.

Since L(•) does not belong to NExt(KTB), we have that the logic L(◦)
splits the lattice NExt(KTB) (again, trivially). The second author discov-
ered another logic which splits NExt(KTB).

Theorem 3.6 (Miyazaki [19]). L(◦−◦) splits the lattice NExt(KTB), where
◦−◦ is the full relation on two points.

The proof of this theorem is based on Theorem 2.2, and the splitting
partner of L(◦−◦) turns out to be L(◦). This means that L(◦−◦) is the third
greatest of all members in NExt(KTB). We will prove that no logic other
than the two above splits NExt(KTB).

4. Connected KTB-frames

4.1. Subdirectly irreducible modal algebras and connected KTB-frames

We begin by recalling some notions from universal algebra. An algebra A

is a subdirect product of an indexed family {Ai : i ∈ I} of the same type if
there exists a one-to-one homomorphism f : A →

∏

i∈I

Ai such that for any

i ∈ I, πi◦f : A → Ai is onto, where πi is a projection map to i-th coordinate.
The map f is called a subdirect representation of A. A non-trivial algebra
A is subdirectly irreducible if for any subdirect representation f : A →

∏

i∈I

Ai

of A, there exists j ∈ I such that πj ◦f : A → Aj is one-to-one. By Birkhoff
Theorem every algebra in a variety V is isomorphic to a subdirect product of
subdirectly irreducible members in V (see e.g. [7]). Phrased in terms of logics
this means that every modal logic is characterised by a class of subdirectly
irreducible modal algebras.

Frame-theoretical counterparts of subdirectly irreducible modal algebras
for KTB logics are connected frames.

Definition 4.1 (Connectedness). Let F = 〈W, R〉 be a KTB-frame. Then,
F is connected if for any x, y ∈ W , there is a number n ∈ ω such that xRny.

Connectedness for KTB-frames is thus exactly the same as connectedness
for undirected graphs. More graph-theoretical notions will be recalled in the
next section, connectedness appears here because finite connected frames
are precisely the atom structures of finite subdirectly irreducible (in fact,
simple) KTB-algebras.
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Proposition 4.2. Let F = 〈W, R〉 be a finite KTB-frame and A be a finite
KTB-algebra. Then, A is subdirectly irreducible iff A is simple. Moreover,

1. F∗ is simple iff F is connected.
2. A is simple iff A∗ is connected.

The relation between subdirectly irreducible KTB algebras and con-
nected KTB-frames is deeper and a version of it holds also in the infinite
general case (cf. [19]), but this is of no concern to us here. All we need, is
that Proposition 4.2 together with Proposition 3.3 imply that in search for
frames that split NExt(KTB) we can restrict attention to the class of finite
connected KTB-frames.

4.2. Graph-theoretical notions

This section is just cosmetics. We define some usual (and two not-so-usual)
graph-theoretical notions for KTB-frames, simply by taking reflexivity into
account. Let F = 〈W, R〉 be a connected KTB-frame. Define a binary
relation Ř on W putting xŘy if and only if xRy and x �= y.

When there is a finite sequence of points {ai}n
i=0 ⊆ W in F (n ≥ 1)

such that aiŘai+1 for all i ∈ [0, n − 1], the list t = [a0, a1, . . . , an] is called
a path in F . In this case, the length �(t) of the path t is n. In F we define
a distance function d : W ×W → ω by putting d(x, y) := 0 if x = y, and
d(x, y) := n + 1 if not(xRny) and xRn+1y. The diameter s(F) of the frame
F is defined by s(F) := max{n ∈ ω : ∃x, y ∈ W, d(x, y) = n}.

In a KTB-frame F = 〈W, R, P 〉, for a point x ∈ W , the degree of x is a
number defined as deg(x) := card{y ∈ W : xŘy}. In a connected frame of
course deg(x) ≥ 1 for all x ∈ W . We call an a ∈ W a tail of F if there exists
exactly one point b ∈ W such that bŘa. In this case, b is called the base of
the tail a. In other words, a is a tail if and only if deg(a) = 1.

4.3. Pasting of KTB-frames

Our pasting construction is based on ideas from the first author’s [12], devel-
oped independently, but resembling the garland construction of Kracht [15].

Let F = 〈W, R〉 and G = 〈U, S〉 be KTB Kripke frames, a ∈ W , and
b ∈ U . The pasting F

⊎

(a,b)

G = 〈X, T 〉 of F and G at a and b is a KTB Kripke

frame defined as follows. First, we define an equivalence relation ≡(a,b) on
W ∪ U , putting ≡(a,b):= {(x, x) : x ∈ W} ∪ {(y, y) : y ∈ U} ∪ {(a, b), (b, a)}.
Then we define the set of worlds X := {[x] : x ∈ W ∪ U}, where [x] := {y ∈
W ∪U : x ≡(a,b) y}, and the relation T is defined as: for [x], [y] ∈ X, [x]T[y] if
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and only if for some u ∈ [x] and for some v ∈ [y], uRv or uSv holds. In other
words, the pasting of F and G is a Kripke frame obtained by identifying a
in F and b in G and leaving everything else untouched. Thus, since for all
points x ∈ W ∪U except a and b we have [x] = {x}, we will often omit square
brackets in order to avoid an overloaded notation. The pasting construction
will be used to build a sequence of KTB Kripke frames showing that a given
frame cannot split the lattice NExt(KTB).

5. Few splittings theorem

Having prepared the tools, in this section we show that no KTB logics except
L(◦) and L(◦−◦) split the lattice NExt(KTB). Our proof strategy makes use
of Theorem 2.2. This theorem implies that a finite connected KTB Kripke
frame F does not split NExt(KTB) if there is a sequence {Gn}n∈ω of KTB-
frames such that for every n ∈ ω the following two conditions are satisfied:

(a) �nδF ∧ p0 is satisfiable in Gn,
(b) there is an m > n such that �mδF ∧ p0 is not satisfiable in Gn.

Let F be a given finite and connected KTB-frame, whose diameter is �, and
for a0 and aN in this frame, let d(a0, aN ) = s(F) = �. In order to construct
a sequence {Gn}n∈ω with properties (a) and (b) for F , we will build the
following frame Gn for a given n. Suppose n satisfies k� ≥ n < (k + 1)�.
First, we prepare k+1 copies F (0),F (1),F (2), . . . ,F (k+1) and paste F (0) and
F (1) at a

(0)
0 and a

(1)
0 , paste F (1) and F (2) at a

(1)
N and a

(2)
N , etc., so that the

copies are pasted alternately at a0s and aN s. Next, we take a suitable finite
connected KTB-frame S, which we call a singularity, and paste it at the end
of the construction obtained in the first step.

Figure 2. Gn for k� ≤ n < (k + 1)�
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It is easy to see that the first ‘nonsingular’ part of the frame Gn above
satisfies �nδF ∧ p0 at a

(0)
0 under a valuation V (pj) := {a(i)

j : 0 ≤ i ≤ k}
for all j ∈ [0, N ]. Therefore, so does the entire frame, as the singularity
(whatever it is) is too far away to interfere. But now have to choose the
‘singular’ part so that �mδF ∧ p0 were not satisfiable in Gn for some m > n.
We also have to do it in some systematic way, because for F we can take
any finite connected KTB-frame (the only two exceptions being the splitting
frames).

To achieve that we divide all finite and connected KTB-frames into two
groups: chains, and frames that are not chains. For frames what are not
chains, we take a chain as its singularity, whereas for chains, singularities
of some particular form are needed. A (finite) chain is a KTB-frame Cn :=
〈W, R〉, where W := {c0, c1, c2, · · · , cn−1}, and R := {(ci, cj) ∈ W×W : |i−
j| ≤ 1} for n ≥ 1.

Theorem 5.1. For � ≥ 3, C� does not split NExt(KTB).

Proof. For each ci (0 ≤ i ≤ � − 1) in C�, we prepare a variable pi, and
we construct ΔC�

and δC�
as usual. For � ≥ 3, define a frame S� := 〈U, Q〉

as follows. U := {t, s0, s1, s2, . . . , s�}, and Q := {(si, sj) ∈ (U − {t})×(U −
{t}) : |i − j| ≤ 1} ∪ {(t, t), (t, s1), (s1, t)}. Of course, s(C�) = � − 1. Now we
construct a sequence {Gn}n∈ω. For any n ∈ [k(�−1), (k+1)(�−1)) for some
k ≥ 0, we prepare (k + 1) copies of C� and define Gn as follows. For an even
k, we put

Gn := C(0)
�

⊎

(c
(0)
�−1,c

(1)
�−1)

C(1)
�

⊎

(c
(1)
0 ,c
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�

⊎
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(2)
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�−1)

· · ·
⊎

(c
(k−1)
0 ,c

(k)
0 )

C(k)
⊎

(c
(k)
�−1,s0)

S�.

Alternatively, for an odd k, we put

Gn := C(0)
�

⊎

(c
(0)
�−1,c

(1)
�−1)

C(1)
�

⊎

(c
(1)
0 ,c

(2)
0 )

C(2)
�

⊎

(c
(2)
�−1,c

(3)
�−1)

· · ·
⊎

(c
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�−1 ,c

(k)
�−1)

C(k)
⊎

(c
(k)
0 ,s0)

S�.

An example of Gn is shown below.

Figure 3. The shape of G11, where k = 2 and � = 5.
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Then, note that s(Gn) = (k+1)×s(C�)+s(S) = (k+1)(�−1)+�. The frame
Gn satisfies (�nδC�

) ∧ p0 at the point c
(0)
0 under the valuation V given by

V (pi) := {c(j)
i : 0 ≤ j ≤ k} for 0 ≤ i ≤ �−1, since k(�−1) ≤ n < (k+1)(�−1).

It remains to show that �mδF ∧ p0 is not satisfiable in Gn for some m > n.
Put m := (k + 1)(�− 1) + �, and suppose that Gn satisfies (�mδC�

) ∧ p0

at some point a under some valuation V . Because m = s(Gn), wherever a
is in Gn, every point in Gn must make δC�

true under V . In particular, for
every point in Gn there is one and only one variable that is true at that point
under V . Therefore, exactly one variable is true at t under V . Because t
is a tail in Gn, then t |= p0 or else t |= p�−1 must hold. Consider the case
t |= p0. Then because c0Rc0 and c0Rc1, we can have s1 |= p0 or s1 |= p1,
but the former case never happens since in that case, t �|= p0 → �p1. Thus
s1 |= p1. By the same reasoning, we can deduce that si |= pi for every
1 ≤ i ≤ � − 1. Now consider s�. Because of the form of δC�

, there must
be precisely one variable that is satisfied at s�, moreover, since s� is a tail,
that variable can only be p0 or p�−1. Since p�−1 is true at a neighbouring
s�−1, the only choice is s� |= p�−1. But as s� �|= �p�−2 that choice is also
impossible. So, the assumption t |= p0 leads to a contradiction. Similar
reasoning shows that the assumption t |= p�−1 leads to a contradiction, too.
Therefore we conclude that Gn does not satisfy the formula (�mδC�

) ∧ p0,
and thus C� cannot split the lattice NExt(KTB).

The remaining candidates for splitting frames are those that are not
chains. We will call a finite KTB-frame F a non-chain, if F is not isomorphic
to Cn for any n ≥ 1.

Theorem 5.2. Let F be a finite and connected KTB-frame that is a non-
chain. Then F does not split the lattice NExt(KTB).

Proof. Suppose that F := 〈W, R〉 and that s(F) = �. Since F is a non-
chain, we have that � �= 0 and |W | ≥ 3. The definition of diameter ensures
that there exist x, y ∈ W such that d(x, y) = �. Since W is finite, we may
specify all points in W as W := {a0, a1, a2, . . . , aN}. Also we may assume
that d(a0, aN ) = �. Taking a variable pi for each ai, we build ΔF and δF .
Then we construct a sequence {Gn}n∈ω of KTB-frames as before, the only
difference being that we take a chain C�+1 as the singularity. To be precise,
let us fix an n ∈ [k�, (k + 1)�) (k ∈ ω). We first prepare (k + 1) copies of
F , that is, F (0),F (1), . . . ,F (k). Then we define the frame Gn putting, for an
even k,

Gn := F (0)
⊎

(a
(0)
N ,a

(1)
N )

F (1)
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(a
(1)
0 ,a

(2)
0 )

F (2)
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N ,a

(3)
N )

· · ·
⊎

(a
(k−1)
0 ,a

(k)
0 )

F (k)
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N ,c0)

C�+1.
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Alternatively, for an odd k,

Gn := F (0)
⊎

(a
(0)
N ,a

(1)
N )

F (1)
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(a
(1)
0 ,a

(2)
0 )

F (2)
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(a
(2)
N ,a

(3)
N )

· · ·
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(a
(k−1)
N ,a

(k)
N )

F (k)
⊎

(a
(k)
0 ,c0)

C�+1.

Note that s(Gn) = (k + 1)s(F) + s(C�+1) = (k + 1)� + �. Then, it is easily
shown that Gn satisfies (�nδF ) ∧ p0 at the point a

(0)
0 under the valuation V

given by V (pi) := {a(j)
i : 0 ≤ j ≤ k} for 0 ≤ i ≤ N .

Put m := (k + 1)� + �, and suppose that Gn satisfies (�mδF ) ∧ p0 at
some point a under a valuation V . Arguing as before, we show that for
every point in Gn there is one and only one variable that is true at this point
under V . In particular, it is so for every point in the part C�+1 of Gn. Thus
we may assume that for every point ci ∈ C�+1 (0 ≤ i ≤ �), there is a variable
pf(i) such that ci |= pf(i). Put A := {af(0), af(1), af(2), . . . , af(�)} ⊆ W in F .
Considering the degree of every ci in C�+1 in Gn, we get that deg(af(j)) ≤ 2 for
1 ≤ j < �. It is possible that deg(af(0)) is larger than 2, but it is impossible
that af(0)Raf(l), for �pf(0) is false at cl. Thus A forms a subchain in F ,
and since F is connected, there is a point at ∈ W − A such that af(0)Rat.
Furthermore, it is only af(0) in A that is connected to a point in W −A; this
can be shown again by looking at degrees of points in C�+1.

Now we will prove that every point in A is distinct from each other.
First, the point af(0) is distinct from any point in A − {af(0)}. For suppose
there is some j with 1 ≤ j < �, such that af(0) = af(j). Then af(0)Rat in
F implies that cj |= �pat must hold, but this is impossible, since no point
in {c1, c2, . . . , c�} can see a point at which pat is true under V . Second, the
point af(1) is distinct from any point in A− {af(0), af(1)}. For suppose there
is some j with 2 ≤ j ≤ �, such that af(1) = af(j). Then af(1)R

2at in F
implies that cj |= �2pat must hold, but this is impossible, since no point
in {c2, . . . , c�} can in two steps reach a point at which pat is true under V .
Similarly we can show that for any i ∈ [0, � − 1], the point af(i) is different
from any point in {af(i+1), af(i+2), . . . , af(�)}. Therefore every point in A is
distinct from each other, and so A forms a subchain of length � in F . But
this leads to a contradiction since s(F) = � and F is not a chain. This
completes our proof.

Putting Theorems 5.1 and 5.2 together, we obtain our main result.

Theorem 5.3. Let F := 〈W, R〉 be a finite and connected KTB-frame, where
card(W ) ≥ 3. Then F cannot split the lattice NExt(KTB).
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6. Some questions and conjectures

For a normal modal logic L extending L0, following Fine [10], we define the
degree of (Kripke) incompleteness ξNExt(K)(L) of L in NExt(L0) by taking

ξNExt(L0)(L) := card({L′ ∈ NExt(L0) : ∀ F ,F |= L if and only if F |= L′}).
In [1] Blok obtained a complete characterisation of ξNExt(K) that we recall
below.
Theorem 6.1 (Blok). Let L be a normal modal logic. ξNExt(K)(L) = 2ℵ0 if
and only if L is a join of splitting logics and L �= Φ. Otherwise ξNExt(K)(L)
is equal to 1.

A modal logic M is a cocover of L if and only if (1) M ⊆ L, and (2)
for any modal logic M′, M ⊆ M′ ⊆ L implies M = M′ or M′ = L.
For a normal modal logic L extending L0, we define χNExt(L0)(L) to be the
number of cocovers of L in NExt(L0). Blok [1] also contains the following
characterisation of χNExt(K).
Theorem 6.2 (Blok). Let L be a normal modal logic. χNExt(K)(L) = 2ℵ0

if and only if L is not a join of splitting logics and L �= Φ. Otherwise
χNExt(K)(L) ≤ ℵ0.

Both ξ and χ depend on what logic we take as base. It would be of
considerable interest to establish a complete description of ξ and χ with
respect to KTB. However, our main theorem leaves little hope of obtaining
a characterisation ξNExt(KTB) or χNExt(KTB) similar to the ones for NExt(K).
Comparing Theorem 5.3 with Theorem 3.4 reveals that NExt(KTB) may be
similar to NExt(KT) instead. For ξNExt(KT) and χNExt(KT), Blok also proved
the following results ([1, 2]).
Theorem 6.3 (Blok). Let L ∈ NExt(KT), and L �= Φ. Then,

1. ξNExt(KT)(L) = 2ℵ0.
2. χNExt(KT)(L) = 2ℵ0.

By analogy, the following conjecture seems to be plausible.

Conjecture 1. Let L ∈ NExt(KTB) and L ⊆ L(◦−◦). Then,

1. ξNExt(KTB)(L) = 2ℵ0.
2. χNExt(KTB)(L) = 2ℵ0.

As far as the authors can tell, not much is known about these questions
at present. As for (1) above, we know that there is a continuum of Kripke
incomplete logics in NExt(KTB) (see [20]). However, all known examples
of Kripke-incomplete logics NExt(KTB) are not finitely axiomatisable. We
do not feel in a position to venture any conjectures here.
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Question 1. Is there a KTB-logic which is Kripke-incomplete and finitely
axiomatisable?

As for (2) in the above conjecture, Stevens and the first author have
recently obtained the following partial result (cf. [22]).

Proposition 6.4 (Stevens and Kowalski). The logic L(◦−◦) has at least ℵ0

cocovers in NExt(KTB), that is, χNExt(KTB)(L(◦−◦)) ≥ ℵ0.

Question 2. Does the logic L(◦−◦) have uncountably many cocovers in
NExt(KTB)?

All we can say at present in regard to this question2 is that ‘empirical’
evidence suggests strongly that if such an uncountable family exists, it should
be n-transitive for some n ∈ ω, that is, it should verify the formula �n+1p↔
�np.

Since the method used to gain a description of ξ might be also used to
obtain a characterisation of χ with respect to our target modal logics, it
is reasonable to expect that when one of the above questions is solved, the
solutions to others may follow with less difficulty. Obtaining a clearer view
of the lattice NExt(KTB) would certainly advance the knowledge about
symmetric modal logics (i.e., logics extending KB), which remains quite a
way behind the knowledge about transitive ones (extending K4).
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A Temporal Logic
of Normative Systems

Abstract. We study Normative Temporal Logic (ntl), a formalism intended for reason-

ing about the temporal properties of normative systems. ntl is a generalisation of the

well-known branching-time temporal logic ctl, in which the path quantifiers A (“on all

paths. . . ”) and E (“on some path. . . ”) are replaced by the indexed deontic operators Oη

(“it is obligatory in the context of the normative system η that . . . ”) and Pη (“it is per-

missible in the context of the normative system η that. . . ”). After introducing the logic,

we give a sound and complete axiomatisation. We then present a symbolic representation

language for normative systems, and we identify four different model checking problems,

corresponding to whether or not a model is represented symbolically or explicitly, and

whether or not we are given a concrete interpretation for the normative systems named

in formulae to be model checked. We show that the complexity of model checking varies

from p-complete in the simplest case (explicit state model checking where we are given a

specific interpretation for all normative systems in the formula) up to exptime-hard in

the worst case (symbolic model checking, no interpretation given). We present examples

to illustrate the use of ntl, and conclude with discussions of related work (in particular,

the relationship of ntl to other deontic logics), and some issues for future work.

Keywords: Normative Systems, Temporal Logic, Multi-Agent Systems.

1. Introduction

Normative systems, or social laws, have been widely promoted as an ap-
proach to coordinating multi-agent systems [26, 25, 20, 27, 28, 18]. Crudely,
a normative system defines a set of constraints on the behaviour of agents,
corresponding to obligations, which may or may not be observed by agents.
The designer of a normative system typically has some objective in mind,
such that if the constraints of the normative system are observed, then the
objective is achieved [18].

A number of formalisms have been proposed for reasoning about norma-
tive behaviour in multi-agent systems, typically based on deontic logic [30,
12, 19]. However the computational properties of such formalisms — in par-
ticular, their use in the practical design and synthesis of normative systems

D. Makinson, J. Malinowski, H. Wansing (eds.), Towards Mathematical Philosophy,
Trends in Logic, 28 c© Springer Science + Business Media B.V. 2009
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and the complexity of reasoning with them — has received relatively little
attention. In this paper, we rectify this omission. We present a logic for rea-
soning about normative systems, which is closely related to the successful
and widely-used temporal logic ctl [14]. The idea underpinning Norma-
tive Temporal Logic (ntl) is to replace the universal and existential path
quantifiers of ctl with indexed deontic operators Oη and Pη, where Oηϕ
means that “ϕ is obligatory in the context of the normative system η”, and
Pηϕ means “ϕ is permissible in the context of the normative system η”.
Here, ϕ is a temporal logic expression over the usual ctl temporal opera-
tors �,♦, , and U , and a syntactic construction rule similar to that in
ctl applies: every temporal operator must be preceded by a deontic oper-
ator. A normative system η is understood to be a set of constraints on the
behaviour of agents within the system. In ntl, obligations and permissions
are thus, first, contextualised to a normative system η and, second, have a
temporal dimension. ntl generalises ctl because by letting η∅ denote the
empty normative system, which places no constraints on the behaviour of
agents, the universal path quantifier A can be interpreted as Oη∅ . Because
of its close relationship to ctl, much of the technical machinery developed
for reasoning with ctl can be adapted for use in ntl [14, 11].

The remainder of the paper is structured as follows. After introducing
the logic, we give a sound and complete axiomatisation. We then present a
symbolic representation language for normative systems. We investigate the
complexity of ntl model checking, and identify four different variations of
the model checking problem, depending on whether a model is represented
symbolically or explicitly, and whether we are given a concrete interpretation
for the normative systems named in formulae to be model checked. We
show that the complexity of model checking varies from p-complete in the
simplest case (explicit state model checking where we are given a specific
interpretation for all normative systems in the formula) up to exptime-
hard in the worst case (symbolic model checking, no interpretation given).
We present two examples to illustrate the use of the logic. We conclude
with a discussion of related work, (in particular, a discussion of the relation
to other deontic and deontic temporal logics), and some issues for future
research.

2. Normative Temporal Logic

2.1. Kripke Structures

Let Φ = {p, q, . . .} be a finite set of atomic propositional variables. A Kripke
structure (over Φ) is a quadruple



On the Temporal Logic of Normative Systems 71

K = 〈S, S0, R, V 〉,

where:

• S is a finite, non-empty set of states, with S0 being the initial states
(∅ ⊂ S0 ⊆ S);

• R ⊆ S × S is a total binary relation on S, which we refer to as the
transition relation1; and

• V : S → 2Φ labels each state with the set of propositional variables true
in that state.

A path over R is an infinite sequence of states π = s0, s1, . . . which must
satisfy the property that ∀u ∈ N: (su, su+1) ∈ R. If u ∈ N, then we denote
by π[u] the component indexed by u in π (thus π[0] denotes the first element,
π[1] the second, and so on). A path π such that π[0] = s is an s-path.

2.2. Normative Systems

Normative systems have come to play a major role in multi-agent systems
research; for example, under the name of social laws, they have been shown
to be a useful mechanism for coordination [27]. In this paper, a normative
system should be understood simply as a set of constraints on the behav-
iour of agents in a system. More precisely, a normative system defines, for
every possible system transition, whether or not that transition is consid-
ered to be legal or not, in the context of the normative system. Different
normative systems may differ on whether or not a particular transition is
considered legal. Formally, a normative system η (w.r.t. a Kripke structure
K = 〈S, S0, R, V 〉) is simply a subset of R, such that R\η is a total relation.
We refer to the requirement that R \ η is total as a reasonableness require-
ment: it prevents social laws which lead to states with no allowed successor.
Let N(R) = {η | η ⊆ R & R \ η is total} be the set of normative systems
over R. The intended interpretation of a normative system η is that the
presence of an arc (s, s′) in η means that the transition (s, s′) is forbidden
in the context of η, hence, R \ η denotes the allowed transitions. Since it
is assumed that η is reasonable, we are guaranteed that such a transition
always exists for every state. If π is a path over R and η is a normative
system over R, then we say that π is η-conformant if it does not contain

1In the temporal logic literature, it is common to refer to a relation R ⊆ S × S as being
total if ∀s ∈ S, ∃s′ ∈ S : (s, s′) ∈ R.
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any transition that is forbidden by η, i.e., if ∀u ∈ N, (π[u], π[u+1]) �∈ η. We
denote the set of η-conformant s-paths (w.r.t. some assumed R) by Cη(s).

Since normative systems in our view are just sets (of disallowed tran-
sitions), we can compare them, to determine, for example, whether one is
more liberal (less restrictive) than another: if η ⊂ η′, then η places fewer
constraints on a system than η′, and hence η is more liberal. Notice that,
assuming an explicit representation of normative systems, (i.e., representing
a normative system η directly as a subset of R), checking such properties can
be done in polynomial time. We can also operate on them with the standard
set theoretic operations of union, intersection, etc. Taking the union of two
normative systems η1 and η2 may yield (depending on whether R \ (η1 ∪ η2)
is total) a normative system that is more restrictive (less liberal) than either
of its parent systems, while taking the intersection of two normative systems
will yield a normative system which is less restrictive (more liberal). The ∪
operation is intuitively the act of superposition, or composition of normative
systems: imposing one law on top of another. Notice that, when operating
on normative systems using such set theoretic operations, care must be taken
to ensure the resulting normative system is reasonable.

Example 2.1. Consider two parallel circular train tracks. At one point both
tracks go through the same tunnel. At the east and the west end of the tunnel
there are traffic lights, which can be either green or red. A train controller
controls the lights. The eastern light should be set to green if and only if
there is a train waiting to enter the east end of the tunnel and there is no
train waiting at the west end of the tunnel, and similarly for the western
light. One train travels on each of the tracks, in opposite directions. We
call the train that enters the tunnel at the eastern end the east train and the
other train the west train. Obviously, the trains should not enter the tunnel
if the light is red.

We can model this situation by considering the physical properties and the
normative properties separately, as Kripke structures and normative systems
respectively. We assume that each train can be in one of three states: tunnel
(the train is in the tunnel); waiting (the train is waiting to enter the tunnel);
away (the train is neither in the tunnel nor waiting). When away, the train
can either be away or waiting in the next state; when waiting the train can
either be waiting or in the tunnel in the next state; when the train is in
the tunnel it leaves the tunnel and is away in the next state. Thus, we
use propositional atoms eTunnel, eWaiting, eAway, wTunnel, wWaiting,
wAway to encode the position of the east and west train. We also use atoms
eGreen and wGreen to represent the fact that the eastern/western lights
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Figure 1. Kripke model of the trains example, including all physically possible transitions.
Only a part of the model is shown. The transitions prohibited by the normative systems
η1 and η2 are shown with dashed and dotted lines, respectively. The labelling of the states
is abbreviated for readability: “twgr” stands for tunnel-waiting-green-red and means that
wTunnel, eWaiting, wGreen are true and that all other atoms (including eGreen) are
false.

are green. Thus, ¬eGreen means that the eastern light is red, and so on.
Let K be the Kripke structure where the states correspond to all possible
configurations of the atomic propositions, the (single) initial state is the
state where both lights are red and both trains away, and the transitions are
all physically possible transitions — illustrated in Figure 1. The transitions
include entering on a red light, but exclude physically impossible transitions
such as a train going directly from the tunnel state to the waiting state.

Let η1 be the normative system corresponding to the normative require-
ment on the switching of the lights described above: η1 contains all transi-
tions between states s1 and s2 in which one of the lights are set to green (in
s2) without the appropriate condition (as explained above) being true in s1.
The normative system η1 is illustrated by labels on the transitions in Figure
1. The description above contains another normative requirement as well:
trains should only enter the tunnel on a green light. Let η2 be the norma-
tive system corresponding to that requirement: η2 contains all transitions
between states s1 and s2 such that a train is in the tunnel in s2 only if the
corresponding light is green in s1. It is easy to see that η1, η2 ∈ N(R), where
R is the transition relation of K.

Finally, while the norms in this particular example are designed to avoid
a crash, there are other problems, such as “deadlock” (both trains can wait
forever for a green light), which they do not avoid. For simplicity, we will
only consider the norms mentioned above.
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2.3. Syntax of NTL

The language of ntl is a generalisation of ctl: the only issue that may cause
confusion is that, within this language, we refer explicitly to normative sys-
tems, which are of course semantic objects. We will therefore assume a stock
of syntactic elements Ση which will denote normative systems. An interpre-
tation for symbols Ση with respect to a transition relation R is a function
I : Ση → N(R). When R is a transition relation of Kripke structure K we
say that I is an interpretation over K. We will assume that the symbol η∅
always denotes the “emptyset” normative system, i.e., the normative system
which forbids no transitions. Note that this normative system will be well-
defined for any Kripke structure. Thus, we require that all interpretations I
satisfy the property that I(η∅) = ∅. If the interpretation function I is clear
from context or not relevant, we will sometimes identify the symbol η with
the normative system it denotes.

The syntax of ntl is defined by the following grammar:

ϕ ::=  | p | ¬ϕ | ϕ ∨ ϕ | Pη
�ϕ | Pη(ϕU ϕ) | Oη

�ϕ | Oη(ϕU ϕ)

where p ∈ Φ is a propositional variable and η ∈ Ση denotes a normative
system. Sometimes we call α occurring in an expression Oηα or Pηα a
temporal formula (although such an α is not a well-formed formula of ntl).

2.4. Semantic Rules

The semantics of ntl are given with respect to the satisfaction relation
“|=”. K, s |=I ϕ holds when K is a Kripke structure, s is a state in K, I an
interpretation over K, and ϕ a formula of the language, as follows:

K, s |=I ;

K, s |=I p iff p ∈ V (s) (where p ∈ Φ);

K, s |=I ¬ϕ iff not K, s |=I ϕ;

K, s |=I ϕ ∨ ψ iff K, s |=I ϕ or K, s |=I ψ;

K, s |=I Oη
�ϕ iff ∀π ∈ CI(η)(s) : K, π[1] |=I ϕ;

K, s |=I Pη
�ϕ iff ∃π ∈ CI(η)(s) : K, π[1] |=I ϕ;

K, s |=I Oη(ϕU ψ) iff ∀π ∈ CI(η)(s), ∃u ∈ N, s.t. K, π[u] |=I ψ and
∀v, (0 ≤ v < u) : K, π[v] |=I ϕ

K, s |=I Pη(ϕU ψ) iff ∃π ∈ CI(η)(s), ∃u ∈ N, s.t. K, π[u] |=I ψ and
∀v, (0 ≤ v < u) : K, π[v] |=I ϕ
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The remaining classical logic connectives (“∧”, “→”, “↔”) are assumed to
be defined as abbreviations in terms of ¬ and ∨, in the conventional manner.
We define the remaining ctl-style operators for ♦ and as abbreviations:

Oη♦ϕ ≡ Oη(U ϕ)
Pη♦ϕ ≡ Pη(U ϕ)

Oη ϕ ≡ ¬Pη♦¬ϕ
Pη ϕ ≡ ¬Oη♦¬ϕ

Recalling that η∅ denotes the empty normative system, we obtain the con-
ventional path quantifiers of ctl [14] as follows:

Aα ≡ Oη∅ α
Eα ≡ Pη∅ α

Thus the ctl universal path quantifier can be understood as obligation in
the context of the empty normative system, which places no restrictions on
which transitions the system takes, while the existential path quantifier can
be understood as permission in the context of this normative system.

We write K |=I ϕ if K, s0 |=I ϕ for all s0 ∈ S0, K |= ϕ if K |=I ϕ for all
I, and |= ϕ if K |= ϕ for all K.

Example 2.2 (Example 2.1 continued). Let K, η1, η2 be as in example 2.1.
Let I be such that I(η1) = η1, I(η2) = η2, I(η3) = η1 ∪ η2 (it is easy to see
that also η1 ∪ η2 ∈ N(R)). Let the formula

crash = eTunnel ∧ wTunnel

denote a crash situation. We have that (recall that K |=I ϕ means that ϕ is
satisfied in all the initial states of K under I):

• K |=I Oη1
�¬wGreen. In the initial state, according to normative sys-

tem η1 it is obligatory that the western light stays red in the next state.

• K |=I Pη1(¬eGreenU eTunnel). η1 permits the eastern light to stay red
until the east train is in the tunnel.

• K |=I ¬Pη2(¬eGreenU eTunnel). η2 does not permit the eastern light to
stay red until the east train is in the tunnel.

• K |=I Oη1 (wGreen → ¬eGreen). It is obligatory in the context of η1

that at least one of the lights are red.

• K |=I Pη∅♦crash. Without any constraining norms, the system permits
a crash in the future.
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• K |=I Pη1♦crash. The normative system η1 permits a crash.

• K |=I Oη3 ¬crash. It is obligatory, in the context of normative system
η3, that a crash never occurs; η3 does not permit a crash at any point in
the future.

The following are examples of expressions involving nested operators. It
is worth reflecting on the compositional meaning of nested operators. For
example, Pη3♦Pη1

�crash means that η3 permits a computation along which
in some future state Pη1

�crash is true. However, in the evaluation of
Pη1
�crash in states along that computation, the system is not restricted by

η3 (but only by η1).

• K |=I Oη∅ ((wWaiting ∧¬wGreen) → ¬Pη2
�wTunnel). It is obliga-

tory in the system that it is always the case that if the west train is waiting
and the western light is red then the western train is not permitted by η2

in the tunnel in the next state.

• K |=I Pη2♦Pη3
�crash. η2 permits a future state where a crash in the

next state is permitted even by η3.

• K |=I Pη3♦Pη1
�crash. η3 permits a future state where a crash in the

next state is permitted by η1.

• K |=I Oη3 Oη2
�¬crash. η3 does not permit a future state where a

crash is permitted in the next state by η2.

2.5. Properties and Axiomatisation

The following Proposition makes precise the expected property that a less
liberal system has more obligations and less permissions than a more liberal
system.

Proposition 2.3. Let K be a Kripke structure, I an interpretation over K
and η1, η2 ∈ Ση.

If I(η1) ⊆ I(η2) then K |=I Oη1ϕ→ Oη2ϕ and K |=I Pη2ϕ → Pη1ϕ

We now go on to exhaustively describe the universally valid properties,
of ntl as well as some derived systems, by presenting sound and complete
axiomatisations.

First, let ntl
− be ntl without the empty normative system. Formally,

ntl
− is defined exactly as ntl, except for the requirement that Ση contains

the η∅ symbol and the corresponding restriction on interpretations. An
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(Ax1) All validities of propositional logic

(Ax2) Pη♦ϕ↔ Pη(U ϕ)

(Ax2b) Oη ϕ↔ ¬Pη♦¬ϕ

(Ax3) Oη♦ϕ↔ Oη(U ϕ)

(Ax3b) Pη ϕ↔ ¬Oη♦¬ϕ

(Ax4) Pη
�(ϕ ∨ ψ) ↔ (Pη

�ϕ ∨ Pη
�ψ)

(Ax5) Oη
�ϕ↔ ¬Pη
�¬ϕ

(Ax6) Pη(ϕU ψ)↔ (ψ ∨ (ϕ ∧ Pη
�Pη(ϕU ψ)))

(Ax7) Oη(ϕU ψ)↔ (ψ ∨ (ϕ ∧ Oη
�Oη(ϕU ψ)))

(Ax8) Pη
� ∧ Oη
�

(Ax9) Oη (ϕ→ (¬ψ ∧ Pη
�ϕ)) → (ϕ→ ¬Oη(γ U ψ))

(Ax9b) Oη (ϕ→ (¬ψ ∧ Pη
�ϕ)) → (ϕ→ ¬Oη♦ψ)

(Ax10) Oη (ϕ→ (¬ψ ∧ (γ → Oη
�ϕ))) → (ϕ → ¬Pη(γ U ψ))

(Ax10b) Oη (ϕ→ (¬ψ ∧ Oη
�ϕ)) → (ϕ→ ¬Pη♦ψ

(Ax11) Oη (ϕ→ ψ)→ (Pη
�ϕ→ Pη
�ψ)

(R1) If � ϕ then � Oη ϕ (generalization)

(R2) If � ϕ and � ϕ → ψ then � ψ (modus ponens)

(Obl) Oη∅ α → Oηα

(Perm) Pηα → Pη∅ α

Figure 2. The two systems ntl
− ((Ax1)–(R2), derived from an axiomatisation of ctl

[14]) and ntl ((Ax1)–(R2),(Obl),(Perm)). α stands for a temporal formula.

axiom system for ntl
−, denoted �−, is defined by axioms and rules (Ax1)–

(R2) in Figure 2. ntl
− can be seen as a multi-dimensional variant of ctl,

where there are several indexed versions of each path quantifier2. Indeed,
the axiomatisation has been obtained from an axiomatisation of ctl [14].

Going on to ntl, we add axioms (Obl) and (Perm) (Figure 2); the corre-
sponding inference system is denoted �. We then (by soundness, see below),
have the following chain of implications in ntl (the second element in the

2Semantically, we can view the ntl structures as multi-dimensional ctl structures
with one (total) transition relation R \ I(η) for each normative system. This definition of
multi-dimensional structures is different from multiprocess temporal structures as defined
in [5, 14]. In the latter, only the union of the transition relations is required to be total.
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chain is a variant of a deontic axiom discussed later). If something is natu-
rally, or physically inevitable, then it is obligatory in any normative system;
if something is an obligation within a given normative system η, then it is
permissible in η; and if something is permissible in a given normative system,
then it is naturally (physically) possible:

|= (Aϕ → Oηϕ) |= (Oηϕ→ Pηϕ) |= (Pηϕ→ Eϕ)

Theorem 2.4 (Soundness and Completeness).
For every ϕ in the language of ntl

−, we have |= ϕ iff �− ϕ. The same holds
for � with respect to formulas from ntl.

Proof. (Sketch.) Soundness is straightforward.
For completeness, consider first ntl

−. Let ϕ0 be a consistent formula.
As noted earlier, we can view ntl

− as a multi-dimensional extension of
ctl. Rather than extending the tableau-based method for proving the com-
pleteness of ctl in [14], we describe3 a construction which employs the ctl

completeness result directly, viewing a formula as a ctl formula for one
dimension δ at a time by reading Oδ and Pδ as ctl path quantifiers A and
E, respectively, and treating formulae starting with a δ′-operator (δ′ �= δ)
as atomic formulae. By completeness of ctl, we get a ctl model for the
formula (if it is consistent), where the states are labelled with atoms such
as Oδ′ Γ or Pδ′ Γ (for δ′ �= δ). Then, for each δ′ and each state, we expand
the state by taking the conjunction of η′-formulae the state is labelled with,
construct a (single-dimension) ctl model of that formula, and “glue” the
root of the model together with the state. Repeat for all dimensions and all
states.

In order to keep the formulae each state is labelled with finite, we con-
sider only subformulae of ϕ0. A δ-atom is a subformula of ϕ0 starting with
either Pδ or Oδ. Let At−δ denote the union all of δ′-atoms for all δ′ �= δ.
Furthermore, we assume that ϕ0 is such that every occurrence of Pη(α1 U α2)
(Oη(α1 U α2)) is immediately preceded by Pη

� (Oη
�) — we call this XU

form. Any formula can be rewritten to XU form by recursive use of the
axioms (Ax6) and (Ax7). We start with a model with a single state labelled
with the literals in a consistent disjunct of ϕ0 written on disjunctive normal
form. We continue by expanding states labelled with formulae, one dimen-
sion δ at a time. In general, let at(δ, s) be the union of the set of δ-atoms s
is labelled with and the set of negated δ-atoms of XU form s is not labelled

3Due to lack of space we cannot give all the technical details here. For the interested
reader, more details are available at http://home.hib.no/ansatte/tag/misc/mctl.pdf.
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with. We can now view
∧

at(δ, s) as a ctl formula over a language with
primitive propositions Φ∪At−δ.

∧
at(δ, s) is ntl

− consistent. The following
holds: any ntl

− consistent formula is satisfied by a state s′ in a ctl model
M ′ viewing Φ ∪ At−δ as primitive propositions, such that for any δ′ �= δ
and any state t of M ′,

∧
(δ′, t) is ntl

− consistent, and s′ does not have
any ingoing transitions (the proof is left for the reader). This ensures that
we can “glue” the pointed model M ′, s′ to the state s while labelling the
transitions in the model with the dimension δ we expanded – M ′, s′ satisfies
the formulae needed to be true there. The fact that s′ does not have any
ingoing transitions ensures that we can append M ′, s′ to s without changing
the truth of δ-atoms at s′. The fact that ϕ0 is of XU form ensures that all
labelled formulae are of XU form, which again ensures that we don’t add
new labels to a state when we expand it (because all the formulae we expand
start with a next-modality). The fact that

∧
(δ′, t) is consistent for states t

in the expanded model, ensures that we can repeat the process. Only a finite
number of repetitions are needed, depending on the number of nested oper-
ators of different dimensions in the formula, after which we can remove the
non-Φ labels without affecting the truth of ϕ0 and obtain a proper model.

The same construction is used for ntl, treating η∅ as any other dimen-
sion, with the following difference. When expanding a node along dimension
δ, when gluing the ctl model to the expanded node label the transitions
with η∅ in addition to δ. Axioms (Obl) and (Perm) ensure that this is
consistent with the η∅-atoms present at the node.

Going beyond ntl, we can impose further structure on Ση and its in-
terpretations. For example, we can extend the logical language with basic
statements like η ≡ η′ and η � η′ (% can then be defined), with the obvious
interpretation. Furthermore, we can add unions and intersections of nor-
mative systems by requiring Ση to include symbols η & η′, η ' η′ whenever
it includes η and η′, and require interpretations to interpret & as set union
and ' as set intersection. As discussed earlier, we must then further restrict
interpretations such that R \ (I(η1)∪ I(η2)) is always total. This would give
us a kind of calculus of normative systems. Let K be a Kripke structure and
I be an interpretation with the mentioned properties:

K |=I Pη�η′ ϕ → Pηϕ K |=I Pηϕ→ Pη�η′ ϕ
K |=I Oηϕ → Oη�η′ ϕ K |=I Oη�ηϕ→ Oηϕ

(these follow from Proposition 2.3). Having such a calculus allows one to
reason about the composition of normative systems, similar to the way one
constructs complex programs from simpler ones in Dynamic Logic [16].
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Of course we could drop the reasonableness constraint. This would make
it possible that “too many” norms (i.e., too many constraints on agent be-
haviour) may prevent any transition from a given state.

3. Symbolic Representations

Our aim is for ntl to be used in the formal specification and analysis of
normative systems. To this end, we envisage a computer program that will
take as input a Kripke structure K, representing some system of interest,
together with an ntl formula ϕ representing a query about this system,
and some normative systems I; the program will then determine whether or
not the property expressed by ϕ holds of K, I, i.e., whether or not K |=I ϕ.
Such a program is called a model checker [11]. However, this raises the
issue of exactly how the Kripke structure K and normative systems I are
presented to the model checker. One possibility is to simply list all the states,
the propositions true in these states, and the transitions in the transition
relation. Such a representation is called an explicit state representation. In
practice, explicit state representations of Kripke structures are almost never
used. This is because of the state explosion problem: given a system with n
Boolean variables, the system will typically have 2n states, and so an explicit
representation in the input is not practicable. Instead, practical reasoning
tools provide succinct, symbolic representation languages for defining Kripke
structures. In this section, we present such a language for defining models,
and also introduce an associated symbolic language for defining normative
systems4.

3.1. A Symbolic Language for Models

The reactive modules language (rml) was introduced by Alur and
Henzinger as a simple but expressive formalism for specifying game-like dis-
tributed system models [2], and this language is used as the model specifi-
cation language for several model checkers [4]. In this section, we consider
a “stripped down” version of rml called simple reactive modules lan-

guage (srml), introduced in [17]; this language represents the core of rml,

4Notice that when we refer to a “symbolic representation”, we are referring to the
use of a symbolic definition of the Kripke structure in the input to the model checker ;
however, the term “symbolic model checking” is also commonly used to refer to the internal
representation used by a model checker, and in this paper, we are not concerned with this
issue [11].
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with some “syntactic sugar” removed to keep the presentation (and seman-
tics) simple.

Here is an example of an agent in srml (note that agents are referred to
as “modules” in srml):

module toggle controls x
init
�1 :  � x′ := 
�2 :  � x′ := ⊥
update
�3 : x � x′ := ⊥
�4 : (¬x) � x′ := 

This module, named toggle, controls a single Boolean variable, x. Occur-
rences of the primed version x′ refer to the fresh initial value of x (in init)
or its value in the next state (update). The choices available to the agent at
any given time are defined by those init and update rules5. The init rules
define the choices available to the agent with respect to the initialisation of
its variables, while the update rules define the agent’s choices subsequently.
In this example, there are two init rules and two update rules. The init
rules define two choices for the initialisation of this variable: assign it the
value  (i.e., “true”) or the value ⊥ (i.e., “false”). Both of these rules can
fire initially, as their conditions () are always satisfied; in fact, only one of
the available rules will ever actually fire, corresponding to the “choice made”
by the agent on that decision round. On the left hand side of the rules are
labels (�i) which are used to identify the rules. Note that labels do not form
part of the original rml language, and in fact play no part in the semantics
of rml — their role will become clear below. We assume a distinguished
label “[]”; the role of this label will also become clear below. With respect
to update rules, the first rule says that if x has the value , then the cor-
responding choice is to assign it the value ⊥, while the second rules says
that if x has the value ⊥, then it can subsequently be assigned the value
. In other words, the module non-deterministically chooses a value for x
initially, and then on subsequent rounds toggles this value. Notice that in
this example, the init rules of this module are non-deterministic, while the
update rules are deterministic: srml (and rml) allow for non-determinism
in both initialisation and update rules. An srml system is a set of such
modules.

5To be more precise, the rules are in fact guarded commands.
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Formally, a rule γ over a set of propositional variables Φ and a set of
labels L is an expression

� : ϕ � v′
1 := ψ1; . . . ; v′

k := ψk

where � ∈ L is a label, ϕ (the guard) is a propositional logic formula over Φ,
each vi is a member of Φ and ψi is a propositional logic formula over Φ. We
require that no variable vi appears on the l.h.s. of two assignment statements
in the same rule (hence no issue on the ordering of the updates arises). The
intended interpretation is that if the formula ϕ evaluates to true against
the interpretation corresponding to the current state of the system, then the
rule is enabled for execution; executing the statement means evaluating each
ψi against the current state of the system, and setting the corresponding
variable vi to the truth value obtained from evaluating ψi. We say that
v1, . . . , vk are the controlled variables of γ, and denote this set by ctr(γ).
A set of rules is said to be disjoint if their controlled variables are mutually
disjoint.

When dealing with the srml representation of models, a state is simply
equated with a propositional valuation (i.e., the set of states of an srml

system is exactly the set of possible valuations to variables within it: S =
2Φ)6. Given a state s ⊆ Φ and a rule γ : ϕ � v′

1 := ψ1; . . . ; v′
k := ψk such

that s enables γ (i.e., s |= ϕ) we denote the result of executing γ on s by
s ⊕ γ. For example, if s = {p, r}, and γ = p � q′ := ; r′ := p ∧ ¬r,
then s ⊕ γ = {p, q}. Note that if a variable does not have its value defined
explicitly by a rule that is enabled in some state, then this variable is assumed
to remain unchanged.

Given a state s ⊆ Φ, and set Γ of disjoint rules over Φ such that every
member of Γ is enabled by s, then the interpretation s′ resulting from Γ on
s is denoted by s′ = s⊕ Γ (since the members of Γ are disjoint, we can pick
them in any order to execute on s).

As described above, there are two classes of rules that may be declared
in a module: init and update. An init rule is only used to initialise the

6Thus the state space of an srml system will be exponential in the number of variables
in the system. One may then wonder how this squares with our requirement earlier that
we want to avoid an representation for models that is overly large. The point is that while
we cannot ultimately escape the fact that the number of possible states in a system will be
exponential in the number of variables, if we want to reason about a system, then we still
need some compact way of representing the system. This is the exactly the role played
by s(rml). It provides a compact language for defining Kripke structures, and is suitable
for use as the input to a model checker. A language which was not compact in this way
would be useless in practice as the input language to a model checker, since the size of the
input would be unfeasibly large.
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values of variables, when the system begins execution. We will assume that
the guards to init rule are “”, i.e., every init rule is enabled for execution
in the initialisation round of the system.

An srml module, m, is a triple:

m = 〈ctr, init, update〉 where:

• ctr ⊆ Φ is the (finite) set of variables controlled by m;
• init is a (finite) set of initialisation rules, such that for all γ ∈ init, we

have ctr(γ) ⊆ ctr; and
• update is a (finite) set of update rules, such that for all γ ∈ update, we

have ctr(γ) ⊆ ctr.

Note that this definition permits variables to be unitialised by the init rules
of the module. Such variables are by default assumed to be initialised to ⊥.

Given a module m, we denote the controlled variables of m by ctr(m), the
initialisation rules of m by init(m), and the update rules of m by update(m).
An srml system ρ is then an (n + 2)-tuple

ρ = 〈Ag, Φ,m1, . . . ,mn〉
where Ag = {1, . . . , n} is a set of agents, Φ is a vocabulary of propositional
variables, and for each i ∈ Ag, mi is the corresponding module defining i’s
choices; we require that {ctr(m1), . . . , ctr(mn)} forms a partition of Φ (i.e.,
every variable in Φ is controlled by some agent, and no variable is controlled
by more than one agent).

A joint rule (j.r.) is an indexed tuple 〈γ1, . . . , γn〉 of rules, with a rule
γi ∈ mi for each i ∈ Ag. A j.r. 〈γ1, . . . , γn〉 is enabled by a propositional
valuation s iff all its members are enabled by s.

It is straightforward to extract the Kripke structure Kρ = 〈Sρ, S
0
ρ , Rρ, Vρ〉

corresponding to an srml system ρ:

• the initial states S0
ρ correspond to the valuations that could be generated

by the init rules of ρ against the empty valuation;
• the remaining states in Sρ are those that could be generated by some

sequence of enabled update joint rules from some initial state;
• the transition relation Rρ is defined by (s, s′) ∈ Rρ iff there exists some

update j.r. 〈γ1, . . . , γn〉 such that this j.r. is enabled in s and s′ = s ⊕
{γ1, . . . , γn}.

Notice that there is nothing in this definition which requires a Kripke struc-
ture Kρ corresponding to a normative system ρ to be reasonable: it is the
responsibility of the modeller, defining a normative system using srml, to
ensure this.



84 Ågotnes, van der Hoek, Rodŕıguez-Aguilar, Sierra, and Wooldridge

3.2. A Symbolic Language for Normative Systems

We now introduce the srml Norm Language (snl) for representing nor-
mative systems, which corresponds to the srml language for models. The
general form of a normative system definition in snl is as follows:

normative-system id
χ1 disables �11 , . . . , �1k

· · ·
χm disables �m1 , . . . , �mk

Here, id ∈ Ση is the name of the normative system; these names will be
used to refer to normative systems in formulae of ntl. The body of the
normative system is defined by a set of constraint rules. A constraint rule

χ disables �1, . . . , �k

consists of a condition part χ, which is a propositional logic formula over the
propositional variables Φ of the system, and a set of rule labels {�1, . . . , �k} ⊆
L. The intuition is that if χ is satisfied in a particular state, then any srml

rule with a label that appears on the r.h.s. of the constraint rule will be
disabled in that state, according to this normative system. Consider the
following simple example.

normative-system forceTrue
 disables �3

We here define a normative system forceTrue, which consists of a single
rule. The condition part of the rule is , and hence always fires; in this
case, the effect is to disable the rule with label �3. Since the condition part
of this rule is always enabled, in the forceTrue normative system, rule �3

can never fire.

Example 3.1 (Example 2.1 continued). The following srml modules de-
scribe the Kripke model K from Example 2.1.

module wtrain controls wAway,wWaiting, wTunnel
init

[] :  � wAway′ := ;wWaiting′ := ⊥; wTunnel := ⊥
update

Wwait : wAway ∨ wWaiting � wWaiting′ := ;wAway′ := ⊥
Wstayaway : wAway � wAway′ := 
Wenter : wWaiting � wWaiting′ := ⊥;wTunnel′ := 
Wleave : wTunnel � wTunnel′ := ⊥;wAway := 
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The module for the western train controls the variables describing its posi-
tion. The four update rules correspond to the physical actions available. The
module etrain for the eastern train is defined in the same way, with rules
named Eenter and so on.

module controller controls wGreen, eGreen
init

[] :  � wGreen′ := ⊥; eGreen := ⊥
update

RR :  � wGreen′ := ⊥; eGreen′ := ⊥
RG :  � wGreen′ := ⊥; eGreen′ := 
GR :  � wGreen′ := ; eGreen′ := ⊥
GG :  � wGreen′ := ; eGreen′ := 

The controller module controls the variables describing the lights. For every
update the module chooses one of the rules corresponding to the four possible
light settings.

The following snl specifications describe the normative systems η1 and η2.

normative-system η1

(¬wWaiting ∨ eWaiting) disables GR,GG
(¬eWaiting ∨ wWaiting) disables RG, GG

normative-system η2

¬wGreen disables Wenter
¬eGreen disables Eenter

Formal Definition of SNL

Formally, an snl constraint rule is a pair

c = 〈ϕ,L〉

where ϕ is a propositional formula over Φ, and L ⊆ L is a set of rule labels.
An snl normative system is then a pair

η = 〈id, C〉

where id ∈ Ση is a unique identifier for the normative system and C is a set
of srml constraint rules. In any given state s, the set of srml rules that are
disabled by a normative system 〈id, C〉 will be the set of rules whose labels
appear on the right hand side of constraint rules in C whose condition part
is satisfied in s.
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Given snl normative systems η1 and η2, for some srml system ρ, we
say: η1 is at least as liberal as η2 in system ρ if for every state s ∈ Sρ, every
rule that is enabled according to η2 is enabled according to η1; and they are
equivalent if for every state s ∈ Sρ, the set of rules enabled according to η1

and η2 are the same.

Theorem 3.2. The problem of testing whether snl normative system η1 is
at least as liberal as snl normative system η2 is pspace-complete, as is the
problem of testing equivalence of such systems.

Proof. We do the proof for checking equivalence; the liberality case is sim-
ilar. For membership of pspace, consider the complement problem: guess a
state s, check that s ∈ Sρ, (reachability of states in rml is in pspace [2]) and
check that there is some rule enabled in s according to η2 is not enabled in s
according to η1, or vice versa. Hence the complement problem is in npspace,
and so the problem is in pspace. For pspace-hardness, we reduce the prob-
lem of propositional invariant checking over (s)rml modules [2]. Given an
srml system ρ and propositional formula ϕ, define normative systems η1

and η2 as follows (where � does not occur in ρ):

normative-system η1 normative-system η2

¬ϕ disables � ⊥ disables �

According to η2, � is always enabled; thus η1 will be equivalent to η2 iff ϕ
holds across all reachable states of the system.

4. Model Checking

The model checking problem is an important computational problem for any
logic, since model checking is perhaps the most successful approach to the
automated verification of logical properties of systems [11]. We consider two
versions of the model checking problem for ntl, depending on whether the
model is presented explicitly or symbolically. For each of these cases, there
are two further possibilities, depending on whether we are given an interpre-
tation I for normative systems named in formulae or not. If we are given
an interpretation for the normative systems named in the formula, then
ntl model checking essentially amounts to a conventional model checking
problem: showing that, under the given interpretation, the model and associ-
ated normative systems have certain properties. However, the uninterpreted
model checking problem corresponds to the synthesis of normative systems:
we ask whether there exist normative systems that would have the desired
properties. Thus the uninterpreted model checking problems combine model
checking with a satisfiability checking aspect.
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4.1. Explicit State Model Checking

The interpreted explicit state model checking problem for ntl is as follows.

Given a Kripke structure K = 〈S, S0, R, V 〉, interpretation I : Ση →
N(R) and formula ϕ of ntl, is it the case that K |=I ϕ?

It is known that the model checking problem for ctl may be solved in
time O(|K| · |ϕ|) [14], and is in fact p-complete [22]. The standard dynamic
programming algorithm for ctl model checking may be trivially adapted for
interpreted explicit state ntl model checking, and may be seen to have the
same time complexity. More interesting perhaps is the case where we are
not given an interpretation. The uninterpreted explicit state model checking
problem for ntl is as follows.

Given a Kripke structure K = 〈S, S0, R, V 〉 and formula ϕ of ntl,
does there exist an interpretation I : Ση → N(R) such that K |=I ϕ?

Notice that uninterpreted model checking has a very natural application, as
follows. We have a Kripke structure K and want a normative system η that
will ensure some property, so we write an ntl formula ϕ, which refers to η,
describing this property (the property might, for example, be Oη ¬fail);
the uninterpreted model checking problem then corresponds to the feasibility
problem described in [18]: it asks whether there in fact exist a normative
system that has the desired properties. We can show:

Theorem 4.1. The uninterpreted explicit state model checking problem for
ntl is np-complete.

Proof. For membership in np, simply guess an interpretation I and ver-
ify that K |=I ϕ. Since interpretations are polynomial in the size of the
Kripke structure and formula, guessing can be done in (nondeterministic)
polynomial time, and checking is the interpreted explicit state model check-
ing problem. Hence the problem is in np. For np-hardness, we reduce sat.
Given a sat instance ϕ(x1, . . . , xk), we create an instance of the uninter-
preted explicit state model checking problem as follows. For each propo-
sitional variable xi in the sat instance, we create two variables t(xi) and
f(xi), and we define a Kripke structure with 3k + 1 states, as illustrated in
Figure 3; state s0 is the initial state, and state s3k+1 is a final state, with
the only transition possible from this state being back to itself. Now, given
the input sat instance ϕ(x1, . . . , xk), we denote by ϕ∗(x1, . . . , xk) the ntl

formula obtained by systematically replacing every propositional variable xi

with Pη♦t(xi). Finally, we define the formula to be model checked as the
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Figure 3. Reduction for Theorem 4.1.

conjunction of the following formulae.

ϕ∗(x1, . . . , xk) (I)
∧

1≤i≤k

(Pη♦t(xi) → ¬Pη♦f(xi)) (II)

∧

1≤i≤k

(Pη♦f(xi) → ¬Pη♦t(xi)) (III)

∧

1≤i≤k

(Pη♦(t(xi) ∨ f(xi))) (IV)

If this formula is satisfied in the structure by some interpretation, then the
interpretation for η must give a satisfying valuation for ϕ(x1, . . . , xk); con-
versely, if ϕ(x1, . . . , xk) is satisfiable, then any satisfying assignment defines
an interpretation for η that makes the formula true in the structure.

4.2. Symbolic Model Checking

As we noted above, explicit state model checking problems are perhaps of
limited interest, since such representations are exponentially large in the
number of propositional variables. Thus we now consider the srml model
checking problem for ntl. Again, we have two versions, depending on
whether we are given an interpretation or not. The interpreted version is as
follows:

Given an srml system ρ, a set of snl normative systems I = {η1, . . . ,
ηk} acting as an interpretation, and an ntl formula ϕ in which the
only normative systems named are defined in I, is it the case that
Kρ |=I ϕ?

Theorem 4.2. The interpreted srml model checking problem for ntl is
pspace-complete.

Proof. pspace-hardness is by a reduction from the problem of propo-
sitional invariant verification for srml, which is proved pspace-complete



On the Temporal Logic of Normative Systems 89

in [1]7. Given a propositional formula ϕ and an (s)rml system ρ, let
I = {η∅}, and simply check whether ρ |=I Oη∅ ϕ. Membership of pspace

is by adapting the ctl symbolic model checking algorithm of Cheng [10].

The uninterpreted srml model checking problem for ntl is defined ex-
actly as expected:

Given an srml system ρ and an ntl formula ϕ, does there exist a set
of snl normative systems I = {η1, . . . , . . . , ηk}, one for each η named
in ϕ, such that Kρ |=I ϕ?

This problem is provably worse (under standard complexity theoretic
assumptions) than the interpreted version.

Theorem 4.3. The uninterpreted srml model checking problem for ntl is
exptime-hard.

Proof. We prove exptime-hardness by reduction from the problem of de-
termining whether a given player has a winning strategy in the two-player
game peek-G4 [29, p.158]. An instance of peek-G4 is a quad:

〈X1, X2, X3, ϕ〉
where:

• X1 and X2 are disjoint, finite sets of Boolean variables, with the intended
interpretation that the variables in X1 are under the control of agent 1,
and X2 are under the control of agent 2;

• X3 ⊆ (X1 ∪X2) are the variables deemed to be true in the initial state
of the game; and

• ϕ is a propositional logic formula over the variables X1∪X2, representing
the winning condition.

The game is played in a series of rounds, with the agents i ∈ {1, 2} alternat-
ing (with agent 1 moving first) to select a value (true or false) for one of their
variables in Xi, with the game starting from the initial assignment of truth
values defined by X3. Variables that were not changed retain the same truth
value in the subsequent round. An agent wins in a given round if it makes a
move such that the resulting truth assignment defined by that round makes
the winning formula ϕ true. The decision problem associated with peek-G4

involves determining whether agent 2 has a winning strategy in a given game
instance 〈X1, X2, X3, ϕ〉. Notice that peek-G4 only requires “memoryless”

7In fact, the result of [2] is for rml in general, but the proof does not rely on any
features of rml that are not present in srml.
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Figure 4. Game trees and witness trees.

(Markovian) strategies: whether or not an agent i can win depends only
on the current truth assignment, the distribution of variables, the winning
formula, and whose turn it is currently. As a corollary, if agent i can force
a win, then it can force a win in O(2|X1∪X2|) moves.

The idea of the proof is as follows. We can understand the possible plays
of a finite two player game of perfect information as a tree (see Figure 4(i)),
where nodes correspond to configurations of the game, and are choice points
for the two players A (universal) and E (existential). Thus in an A node the
universal player makes a choice, while in an E node the existential player
makes a choice. We are interested in whether the E player has a winning
strategy in such a game. If this is the case, then there will be a witness to
this in the form of a sub-tree of the game tree, which characterises all plays
of a winning strategy for E. This witness tree will be a sub-tree of the game
tree with the following characteristics (see Figure 4):
• The starting position of the game is present in the witness tree.
• At every A node, all outgoing arcs of the game tree from this node must

be present in the witness tree. (The E player strategy must win against
all possible A moves.)

• At every E node, there can be only one outgoing node. (The E player’s
strategy can select only one move in any given state.)

• Every play in the witness tree must correspond to a win for the E player
— that is, every possible infinite path through the witness tree from the
starting position must contain a node in which the E player wins.

The idea of the reduction is to define an srml system such that the com-
putations of this system correspond to the plays of the peek-G4 instance,
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and then define a ntl formula referring to a single normative system η, such
that η will encode a witness tree for player 2.

Formally, given an instance 〈X1, X2, X3, ϕ〉 of peek-G4, we produce an
instance of srml model checking as follows. For each Boolean variable
x ∈ (X1∪X2), we create a variable with the same name in our srml model,
and we create an additional Boolean variable turn, with the intended in-
terpretation that if turn = , then it is agent 1’s turn to move, while if
turn = ⊥, then it is agent 2’s turn to move. We have a module move, the
purpose of which is to control turn, toggling its value in each successive
round, starting from the initial case of it being agent 1’s move.

module move controls turn
init
[] � turn′ := 
update
[]turn � turn′ := ⊥
[](¬turn) � turn′ := 

For each of the two peek-G4 players i ∈ {1, 2}, we create an srml module
agi that controls the variables Xi. The module agi is as follows. It begins
by deterministically initialising the values of all its variables to the values
defined by X3 (that is, if variable x ∈ Xi appears in X3 then this variable
is initialised to , otherwise it is initialised to ⊥). Subsequently, when it
is this player’s turn, it can non-deterministically choose at most one of the
variables under its control and toggle the value of this variable; when it is
not this player’s turn, it has no choice but to do nothing, leaving the value of
all its variables unchanged. The general structure of ag1 is thus as follows,
where X1 = {x1, . . . , xk}.

module ag1 controls x1, . . . , xk

init
// initialise to values from X3

[] � x′
1 := . . . ;xk := . . .

update
�11 : turn � x′

1 := ⊥
�12 : turn � x′

1 := 
. . .
�12k

: turn � x′
k := ⊥

�12k+1
: turn � x′

k := 
�12k+2

: � skip
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Notice that an agent can always skip, electing to leave its variables un-
changed; and, if it is not this agent’s turn to move, this is the only choice it
has. Agent ag2 has a similar structure.

We now define the formula to model check. First, we define chng(xi) to
mean that variable i changes value in some transition according to η:

chng(xi) ≡ ((xi ∧ Pη
�¬xi) ∨ (¬xi ∧ Pη

�xi))

Agent 2 is an existential player: if it is agent 2’s turn, then at most one of
its possible moves is allowed in the witness tree8.

Oη (
∑

xi∈X2

chng(xi) ≤ 1)

If the E player changes the value of one of its variables, then this change is
implemented in all its next states.
∧

xi∈X2

Oη (¬turn)→
(chng(xi) → ((Pη

�xi ↔ Oη
�xi) ∧ (Pη
�¬xi ↔ Oη
�¬xi)))]

If the E player leaves the value of one of its variables unchanged in one next
state, then it is unchanged in all its next states.

∧

xi ∈X2

Oη (¬turn) →
(¬chng(xi) → ((xi ↔ Oη

�xi) ∧ (¬xi ↔ Oη
�¬xi)))]

Agent 1 is a universal player: all of its possible moves must be in the witness
tree.

Oη turn→

⎡

⎣
∧

xi ∈X1

chng(xi)

⎤

⎦

Finally, the runs that remain must represent wins for agent 2:

Oη(¬ϕ)U (ϕ ∧ turn)

Conjoining these formulae gives the formula to model check. We claim that
this formula passes iff agent 2 has a winning strategy. For suppose that
the formula passes. Then η defines a witness tree for agent 2. That it
corresponds to a well-defined strategy follows from the other properties: for
example, agent 2 is only allowed to make one choice in any given state when
it is it’s turn, which must win against all choices of agent 1. Similarly, if
agent 2 has a winning strategy, then this strategy corresponds to a normative
system η such that the formula passes under this interpretation.

8We use the
∑

notation here as an abbreviation for the obvious propositional equiva-
lent.
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5. Case Study: Traffic Control

We use a simple case study to illustrate some of the concepts we have intro-
duced. The basis of the case study is as follows:

Consider a circular road with two parallel lanes. Vehicles circulate
on the two lanes clockwise. We consider three types of vehicles: cars,
taxis, and ambulances. Each of the lanes is discretised into m posi-
tions, each position possibly occupied by a vehicle. In what follows,
lane 1 stands for the outer lane, while lane 0 stands for the inner
lane. We will refer to lane 0 as the right lane and to lane 1 as the left
lane considering the direction of the vehicles. At each time step, cars
and taxis can either stand still or change their position by one unit
ahead, possibly changing lane at the same time. For instance a car
could go from position 5 on the left lane to either position 6 on the
right lane or position 6 on the left lane — or it could choose to stand
still. Ambulances can stand still or change their position by one or
two units, either straight or changing lanes at will.

To avoid crashes and make it possible for ambulances to get to hospitals
faster, and to give taxis priority over private cars, we can imagine a number
of norms that regulate the behaviour of the vehicles:

η1 : Ambulances have priority over all other vehicles. By this we mean, in
more detail, that other vehicles should stop whenever there is an ambu-
lance behind them.

η2 : Cars cannot use the rightmost (priority) lane.
η3 : Vehicles have “right” priority. By this we mean that a vehicle should

stop if there is another vehicle to its right. This is, of course, a very strict
rule for prioritarisation which we adopt for simplicity. Otherwise, in
order for a car to give way to another car with right priority, a signalling
system should be used.

η4 : Ambulances give “priority” to ambulances ahead. By an ambulance
giving priority to ambulances ahead, we mean that the ambulance slows
down (and therefore can only change its position by at most one unit)
when there is another ambulance one unit right in front of it. Thus,
norm η4 is intended to avoid ambulances crashing when they are close
and take 2-unit moves.

These norms act on the decisions that agents can make by constraining
them. For instance, η1 will force cars to stop in order to allow ambulances
to overtake them.
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Now, our goal in the remainder of this section is to show how the technical
tools developed in this article can be used to analyse this scenario. A full
scale “implementation” (involving real taxis and ambulances, etc) is beyond
our current resources. However, what we can do instead is to take the key
features of the scenario, as described above, and model them in srml and
snl, abstracting away from lower level implementation details. We can then
use model checking tools to investigate the properties of the scenario. Note
that we cannot be certain that the results we obtain truly reflect reality;
however, the models of systems and normative systems that we develop can,
we believe, usefully inform subsequent development, and can help to identify
potential issues with normative systems at an early stage of design.

Vehicle Modules

We model each vehicle as a module containing the rules that determine their
physically legal movements. We define two types of modules, one for each
of the two types of vehicles: those with 2-unit speed and those with 1-unit
speed. Cars and taxis are vehicles of 1-unit speed, while ambulances are
vehicles of 2-unit speed.

Assume that there are v vehicles named 1, . . . , v, each of which is either a
car, a taxi or an ambulance. It is assumed that there are more positions than
vehicles (m > v). It might be the case that none of the vehicles are cars,
and the same for taxis and ambulances. Let cars = {c0, . . . , cq} ⊆ {1, . . . , v}
(q ≥ 0) be the (names of) the cars. Similarly, taxis = {t0, . . . , tr} and
ambu = {a0, . . . , as}. We first describe the Boolean variables. For each
vehicle 1 ≤ i ≤ v, position 1 ≤ pos ≤ m and lane ∈ {0, 1}, we have
a Boolean variable vposi(lane, pos). For example, vpos2(1, 7) means that
vehicle number 2 is in position 7 on the left lane.

For each car i ∈ cars we define a module car-i as in Figure 5 (for
simplicity, the set {v′

1 := ψ1, . . . , v
′
k := ψk} is used as an abbreviation for

the sequence of assignment operations v′
1 := ψ1; . . . ; v′

k := ψk.)
Each car module controls the variables describing its own position. The

initial position of car i is at position i along one of the tracks; the track
is chosen non-deterministically (in what follows the initial positions of the
cars are completely arbitrary, this particular choice was made as a simple
way to ensure that two cars don’t occupy the same position). In the update
phase, a car module can perform one of four actions. First, the car can
stand still, in which case there are no changes to the controlled variables (in
this case the right hand side of the stilli rule is just a dummy expression
indicating no change). Second, the car can move straight ahead. In all
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module car-i controls vposi(0, 1), . . . , vposi(0, m), vposi(1, 1), . . . , vposi(1, m)
init

[] : � � vposi(0, i)′ := �; vposi(1, i)′ := ⊥; {vposi(x, y)′ := ⊥ | x ∈ {0, 1}, y �= i}
[] : � � vposi(1, i)′ := �; vposi(0, i)′ := ⊥; {vposi(x, y)′ := ⊥ | x ∈ {0, 1}, y �= i}
update

stilli : � � vposi(0, 1)′ := vposi(0, 1)

straighti :
∨

x∈ {0,1},1≤j≤m

(
vposi(x, j) ∧

∧
k �=i(¬vposk(x, (j + 1)mod m))

)
�

vposi(0, 1)′ := vposi(0, m); vposi(1, 1)′ := vposi(1, m);
vposi(0, 2)′ := vposi(0, 1); vposi(1, 2)′ := vposi(1, 1);

..

.
vposi(0, m)′ := vposi(0, m − 1); vposi(1, m)′ := vposi(1, m − 1)

righti :
∨

1≤j≤m

(
vposi(1, j) ∧

∧
k �=i(¬vposk(0, (j + 1)mod m))

)
�

vposi(0, 1)′ := vposi(1, m); vposi(1, 1)′ := ⊥;
vposi(0, 2)′ := vposi(1, 1); vposi(1, 2)′ := ⊥;

.

..
vposi(0, m)′ := vposi(1, m − 1); vposi(1, m)′ := ⊥

lefti :
∨

1≤j≤m

(
vposi(0, j) ∧

∧
k �=i(¬vposk(1, (j + 1)mod m))

)
�

vposi(1, 1)′ := vposi(0, m); vposi(0, 1)′ := ⊥;
vposi(1, 2)′ := vposi(0, 1); vposi(0, 2)′ := ⊥;

.

..
vposi(1, m)′ := vposi(0, m − 1); vposi(0, m)′ := ⊥

Figure 5. Cars in the ambulance scenario.

of the three rules which move the car it is assumed that a car will only
move to a position which is currently not occupied. This is a reasonable
safety assumption about behaviour of cars, however it is neither sufficient
(two cars might move simultaneously to the same position) nor necessary
(the car currently occupying the position might move to another position
at the same time) to avoid crashes. Alternatively, this assumption could
have been implemented as a separate normative system. Thus, the guard of
the straighti rule ensures that the position immediately in front of car i is
currently available. The right hand side of this rule updates the position of
car i by setting vposi(x, y +1) to true if vposi(x, y) were true before the rule
was executed, and so on. The guard of the righti rule checks that the car is
in the left lane and that one position ahead in the right lane is available, and
the r.h.s. updates the position. Similarly for lefti. Note that the operations
on vehicles’ positions are modulo-m operations, where m is the number of
positions in the road.

We similarly define a module taxi-i for each taxi i ∈ taxis — see Figure 6.
Ambulances follow the same schema except that they have two-step rules

which (also) can only be executed when the road is clear. We define a module
ambu-i for each ambulance i ∈ ambu — see Figure 7.
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module taxi-i controls vposi(0, 1), . . . , vposi(0, m), vposi(1, 1), . . . , vposi(1, m)
init

(as for car-i)
update

(as for car-i)

Figure 6. Taxis in the ambulance scenario.

module ambu-i controls vposi(0, 1), . . . , vposi(0, m), vposi(1, 1), . . . , vposi(1, m)
init

(as for car-i)
update

stilli : (as for car-i)
straighti : (as for car-i)
righti : (as for car-i)
lefti : (as for car-i)
straightstraighti :

∨
x∈ {0,1},1≤j≤m(

vposi(x, j) ∧
∧

k �=i(¬vposk(x, (j + 1)mod m) ∧ ¬vposk(x, (j + 2)mod m))
)
�

vposi(0, 1)′ := vposi(0, m − 1); vposi(1, 1)′ := vposi(1, m − 1);
vposi(0, 2)′ := vposi(0, m); vposi(1, 2)′ := vposi(1, m);

···
vposi(0, m)′ := vposi(0, m − 2); vposi(1, m)′ := vposi(1, m − 2)

straightrighti :
∨

1≤j≤m(
vposi(1, j) ∧

∧
k �=i(¬vposk(1, (j + 1)mod m) ∧ ¬vposk(0, (j + 2)mod m))

)
�

vposi(0, 1)′ := vposi(1, m − 1); vposi(1, 1)′ := ⊥;
vposi(0, 2)′ := vposi(1, m); vposi(1, 2)′ := ⊥;

···
vposi(0, m)′ := vposi(1, m − 2); vposi(1, m)′ := ⊥

rightstraighti :
∨

1≤j≤m(
vposi(1, j) ∧

∧
k �=i(¬vposk(0, (j + 1)mod m) ∧ ¬vposk(0, (j + 2)mod m))

)
�

vposi(0, 1)′ := vposi(1, m − 1); vposi(1, 1)′ := ⊥;
vposi(0, 2)′ := vposi(1, m); vposi(1, 2)′ := ⊥;

···
vposi(0, m)′ := vposi(1, m − 2); vposi(1, m)′ := ⊥

straightlefti :
∨

1≤j≤m(
vposi(0, j) ∧

∧
k �=i(¬vposk(0, (j + 1)mod m) ∧ ¬vposk(1, (j + 2)mod m))

)
�

vposi(1, 1)′ := vposi(0, m − 1); vposi(0, 1)′ := ⊥;
vposi(1, 2)′ := vposi(0, m); vposi(0, 2)′ := ⊥;

···
vposi(1, m)′ := vposi(0, m − 2); vposi(0, m)′ := ⊥

leftstraighti :
∨

1≤j≤m(
vposi(0, j) ∧

∧
k �=i(¬vposk(1, (j + 1)mod m) ∧ ¬vposk(1, (j + 2)mod m))

)
�

vposi(1, 1)′ := vposi(0, m − 1); vposi(0, 1)′ := ⊥;
vposi(1, 2)′ := vposi(0, m); vposi(0, 2)′ := ⊥;

···
vposi(1, m)′ := vposi(0, m − 2); vposi(0, m)′ := ⊥

Figure 7. Ambulances in the ambulance scenario.
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In addition to the rules car and taxi modules have, ambulances have
rules for moving two units at a time. straightstraighti moves two positions
directly ahead, and the guard checks that both positions immediately ahead
are unoccupied. straightrighti means moving to the position which is two
steps ahead in the right lane; given that the ambulance is currently in the
left lane and the final position in the right lane is unoccupied. The difference
between straightrighti and rightstraighti is that the former also requires
the position immediately ahead to be available, corresponding to driving
straight and then turning right, and instead the latter also requires the
position one step to the right to be available, corresponding to first turning
right. Similarly for straightlefti and leftstraighti.

Thus, the srml description of the model consists of a collection of these
modules. Note that the description of the modules here abstracts away from
the number of vehicles in general as well as the number of the particular
vehicle types. In reality, for a given number of vehicles, there are equally
many modules. However, all the car (taxi, ambulance) modules are defined
in the same way. For example, if there are four vehicles {1, 2, 3, 4} and
vehicles 1 and 2 are cars, vehicle 3 is a taxi, and vehicle 4 is an ambulance,
then the srml description consists of the modules named car-1, car-2, taxi-3
and ambu-4.

Normative Systems

We now go on to use snl to describe the norms discussed above in the form
of four separate normative systems (see Figure 8). Normative system η1 has
a constraint rule for each car {c0, . . . , cq} and each taxi {t0, . . . , tr}, disabling
any movement if they are immediately in front of an ambulance; η2 has two
constraint rules for each car, disabling switching to the right lane and moving
ahead if already in the right lane; η3 has one constraint rule for each vehicle,
disabling any movement in the case that there is another vehicle immediately
to the right; finally, η4 has one constraint rule for each ambulance, disabling
two-step moves in the case that there is another ambulance one step ahead
in either lane.

Model Checking

For a fixed number of vehicles v, cars cars, taxis taxis and ambulances ambu,
let ρ(v, cars, taxis, ambu) denote the srml system defined above. As noted
earlier, ρ(v, cars, taxis, ambu) induces a Kripke structureKρ(v,cars,taxis,ambu).
We can now model check formulae containing references to η1, η2, etc., by
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normative-system η1∨
x∈ {0,1},1≤y≤m,a∈ambu vposc0(x, (y + 1)mod m) ∧ vposa(x, y)

disables straightc0 , rightc0
..
.∨

x∈ {0,1},1≤y≤m,a∈ambu vposcq (x, (y + 1)mod m) ∧ vposa(x, y)

disables straightcq , rightcq∨
x∈ {0,1},1≤y≤m,a∈ambu vpost0 (x, (y + 1)mod m) ∧ vposa(x, y)

disables straightt0 , rightt0
..
.∨

x∈ {0,1},1≤y≤m,a∈ambu vpostr (x, (y + 1)mod m) ∧ vposa(x, y)

disables straighttr , righttr

normative-system η2∨
1≤y≤m vposc0(0, y) disables straightc0

� disables rightc0
..
.∨

1≤y≤m vposcq (0, y) disables straightcq

� disables rightcq

normative-system η3∨
1≤j≤v,1≤y≤m (vpos1(1, y) ∧ vposj(0, y)) disables straight1, right1

..

.∨
1≤j≤v,1≤y≤m (vposv(1, y) ∧ vposj(0, y)) disables straightv , rightv

normative-system η4∨
x,x′ ∈ {0,1},1≤y≤m,a∈ambu(vposa0 (x, y) ∧ vposa(x′, (y + 1)mod m))

disables straightstraighta0 , straightrighta0 , rightstraighta0 , straightlefta0 , leftstraighta0
.
..∨

x,x′ ∈ {0,1},1≤y≤m,a∈ambu(vposas (x, y) ∧ vposa(x′, (y + 1)mod m))

disables straightstraightas , straightrightas , rightstraightas , straightleftas , leftstraightas

Figure 8. Normative systems η1 to η4.

using the snl normative systems above as interpretations. Furthermore, we
let η12 denote the normative system obtained by taking the union of η1 and
η2, and so on. Let I denote the interpretation of all these normative systems.

Of primary interest is, of course, whether or not there will be crashes in
the system under various circumstances. We define:

crash =
∨

i �=j,x∈ {0,1},k

vposi(x, k) ∧ vposj(x, k)

We have the following.

(P1) Without norms, there might be crashes:

Kρ(v,cars,taxis,ambu) |=I Pη∅♦crash
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In other words, the unrestricted system permits a run along which
a crash happens.

(P2) The combination of the normative systems η1, η2, η3 and η4 always
ensures that there are no crashes:

Kρ(v,cars,taxis,ambu) |=I Oη1234 ¬crash

In other words, it is an obligatory property of a run that a crash never
happens.

The two properties above hold no matter how many vehicles of each type
there are. The following are examples of normative properties which hold
for particular configurations of vehicles:

(P3) If there are no ambulances (ambu = ∅), then η3 ensures that there are
no crashes:

Kρ(v,cars,taxis,ambu) |=I Oη3 ¬crash

(P4) If there is only one ambulance (ambu = {a0}), then the combination of
the normative systems η1, η2 and η3 ensures that there are no crashes:

Kρ(v,cars,taxis,ambu) |=I Oη123 ¬crash

(P5) If there is more than one ambulance, then the combination of the
normative systems η1, η2 and η3 is not enough to ensure that there
are no crashes:

Kρ(v,cars,taxis,ambu) |=I Pη123♦crash

A Note on Analysis

The properties above can be checked by manual inspection: this is a techni-
cally straightforward, but rather tedious process. Instead, we have analysed
this case study using the mocha model checker [4]. mocha implements
model checking for ctl and atl [3] against models specified using the Re-
active Systems language, of which srml is a subset. Of course, we cannot
directly check ntl and snl properties in this way. Instead, to realise the
effect of normative systems, we manually “implement” them by modifying
the conditions of relevant srml rules; this allows us to represent a (strict)
subset of ntl properties as ctl formulae.

Figure 9 summarises some test results with different scenarios. A ‘0’
under a norm means that the norm is not applied, and a ‘1’ that it is. A crash
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is possible when a ‘1’ appears under the Crash column, corresponding to
the formula Pη♦crash being true, where η is the combination of normative
systems under consideration. These test results are of course in accordance
with the results presented above: property (P1) can be observed in rows 1,
3 and 10. Line 17 is an instance of property (P2). Line 2 is an instance of
property (P3). Line 9 is an instance of property (P4). Property (P5) can
be observed on lines 10–16.

#Ambulances #Taxis #Cars η1 η2 η3 η4 Crash

1 0 0 2 0 0 0 0 1
2 0 0 2 0 0 1 0 0
3 1 0 1 0 0 0 0 1
4 1 0 1 0 0 1 0 1
5 1 0 1 0 1 1 0 1
6 1 0 1 1 0 0 0 1
7 1 0 1 1 0 1 0 1
8 1 0 1 1 1 0 0 1
9 1 0 1 1 1 1 0 0
10 2 1 1 0 0 0 0 1
11 2 1 1 0 0 1 0 1
12 2 1 1 0 1 1 0 1
13 2 1 1 1 0 0 0 1
14 2 1 1 1 0 1 0 1
15 2 1 1 1 1 0 0 1
16 2 1 1 1 1 1 0 1
17 2 1 1 1 1 1 1 0

Figure 9. Testing η1, η2, η3, η4 with different numbers of ambulances, taxis and cars.

6. Discussion

6.1. Related Work

The work presented in this paper has its roots in several different communi-
ties, the most significant being the tradition of using deontic logic in com-
puter science to reason about normative behaviour of systems [30, 12, 19],
and the use of model checking and temporal logics such as ctl to analyse
the temporal properties of systems [14, 11].

The two main differences between the language of ntl and the language
of conventional deontic logic (henceforth “deontic logic”) are, first, contextual
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deontic operators allowing a formula to refer to several different normative
systems, and, second, the use of temporal operators. All deontic expressions
in ntl refer to time: Pη

�ϕ (“it is permissible in the context of η that ϕ
is true at the next time point”); Oη ϕ (“it is obligatory in the context of
η that ϕ always will be true”); etc. Conventional deontic logic contains no
notion of time. In order to compare our temporal deontic statements with
those of deontic logic we must take the temporal dimension to be implicit
in the latter. Two of the perhaps most natural ways of doing that is to take
“obligatory” (Oϕ) to mean “always obligatory” (Oη ϕ), or “obligatory at
the next point in time” (Oη

�ϕ), respectively, and similarly for permission.
In either case, all the principles of Standard Deontic Logic (sdl) (see, e.g.,
[9]) hold also for ntl, viz., O(ϕ → ψ) → (Oϕ → Oψ) (K); ¬O⊥ (D):9 and
from ϕ infer Oϕ (N). The two mentioned temporal interpretations of the
(crucial) deontic axiom D are (both ntl validities):

¬Oη ⊥ and ¬Oη
�⊥

A more detailed understanding of the relationship between ntl and other
deontic logics would also be useful. Observe that our language is in one sense
rather restricted: every deontic attitude is towards the future, never about
the present or past. Indeed, when reasoning about normative behaviour of
a system, it is also not easy to see what an obligation towards an objective,
purely propositional formula, actually means. Our framework focuses on
ideal transitions, rather than ideal states. This choice of design makes it
also not easy to compare our set-up with other temporal deontic logics.
We cannot, for instance, express properties like Oη

�ϕ → �Oηϕ (for a
discussion of such “perfect recall”-like properties for temporal deontic logic,
see [8]). There is another interesting direction to relax our class of formulae,
however: namely, to allow for arbitrary linear temporal logic formulas Tϕ
in the scope of an obligation Oη.10 This would allow us for instance to
express that in system η, property ϕ needs to be true within three steps:
Oη( �ϕ∨ � �ϕ∨ � � �ϕ). Semantically, this would also pave the way to
define a norm as a restriction on runs, rather than transitions. One can for
instance think of a norm that forbids any run in which some “unwanted”
transition occurs more than n times. As a special case this would facilitate
to enforce fairness and liveness conditions by a norm [15].

9Actually, the scheme D is Oϕ → ¬O¬ϕ, but for the logics that we consider here, both
representations are equivalent.

10The ‘η∅ fragment’ of this language would still be a strict subset of ctl
∗, so the overall

language might still be well-behaved.
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Contrary-to-Duty obligations are structures involving two obligations,
where the second obligation “takes over” when the first is violated [21]. Log-
ics that deal with this kind of obligation typical add actions, time, a default
component or a notion of context (signalling that the primary obligation has
been violated, and we are now entering a sub-ideal context) to their semantic
machinery to deal with them [21]. ntl is already equipped with a temporal
component, and it would certainly also be possible to label the transitions
in our semantics with actions. However, given that we incorporate a suite of
norms within one system, it seems ntl can also represent “sub-ideal” con-
texts. Technically, η2 represents the secondary obligations that come into
force when η1 is violated, if the domain dom(η2) = {t | ∃u (t, u) ∈ η2}
is exactly the range ran(η1) = {t | ∃s (s, t) ∈ η1} of η1. We leave a de-
tailed comparison between existing temporal deontic logics and ntl for fu-
ture works, as well as any investigation into the usefulness of ntl to model
contrary-to-duty obligations.

It has been argued that “deadlines are important norms in most inter-
actions between agents” [13, page 40], and this naturally suggests the need
for a temporal component in reasoning about systems with norms. Indeed,
the authors of [13] used ctl in their paper Designing a Deontic Logic of
Deadlines [7], and one of their authors reduces Strategic Deontic Temporal
Logic to atl in [6]11.

One of our concerns in this paper was to give a computationally grounded
semantics for deontic modalities, in that we aim to give the semantics a clear
computational interpretation; in this respect, our work is similar in spirit to
the deontic interpreted systems model of Lomuscio and Sergot [19]. Perhaps
the most obvious difference is that while we consider “bad transitions”, Lo-
muscio and Sergot are concerned with “bad states”.

We should also mention work by Sergot and Craven on the use of vari-
ants of the C+ language for representing and reasoning about deontic sys-
tems [23, 24]. The nC+ language they develop can be understood as an
alternative to srml/snl for defining (symbolic) representations of Kripke
models and normative systems. The main difference is that the C+ language
provides a richer, higher level, arguably more general, logical framework for
specifying models than srml/snl. In fact their work emerges from a rather
different community — reasoning about action and non-monotonic reason-
ing in artificial intelligence. It would be interesting to undertake a more
formal investigation of the relationship between the two frameworks, with
respect to both expressive power and computational complexity. It seems

11The latter paper includes an application to Chisholm’s paradox.
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plausible that analogues of our srml/snl model checking problems will be
more complex in the richer framework of nC+, although we emphasise that
currently we have no results here. Note that the first of the papers cited
above also presents an outline of how normative properties expressed in ctl

can be evaluated using standard model checking tools, and uses an example
similar to that used in this paper.

Finally, ntl is closely related to a system called Normative atl, which
was introduced in [31]. In fact, ntl is related to ctl [14] in the same way as
that Normative atl is related to atl [3]: however, ntl (and specifically its
semantics) is much simpler (and we believe more intuitive) than Normative
atl [31], and we present many more technical results associated with our
logic.

6.2. Future Work

A number of issues suggest themselves for future work:

• Regarding ntl, tight bounds for complexity of uninterpreted symbolic
model checking, and the complexity of satisfiability, which has not been
addressed within this paper.

• The calculus of normative systems, as mentioned in Section 2, could be
developed further. In this paper, we have considered only set-theoretic
operations on normative systems, (taking their union and intersection),
but other possible operators might be considered as well, such as what
happens when a normative system is “restricted” to some set of players,
or when it is restricted to those constraints that some players regard as
in their best interests. To capture these latter concerns, we would need
some notion of preference or goals.

• Another issue of interest is that of “reasonableness”, and in particular
the extent to which this constraint is necessary.

• We might usefully consider the possibility and implications of non- com-
pliance. It seems inevitable that in real systems, some agents will fail to
comply with a normative system, even if it is in their best interests to
do so. This raises two issues: First, what is the right way to go about
dealing with this possibility with respect to the design of normative sys-
tems themselves, and second, how are we to deal with these concerns at
the language level?

• We might also consider prioritised collections of normative systems (“if
this normative system fails, then use this”).



104 Ågotnes, van der Hoek, Rodŕıguez-Aguilar, Sierra, and Wooldridge

• Finally, of course, a full implementation of a model checker encompassing
the variations discussed in Section 4 would be desirable, and as ever, more
detailed case studies would be useful to further evaluate the logic.

6.3. Conclusions

The design and application of normative systems and social laws is a major
area of research activity in the multi-agent systems community. If we are
going to make use of such social laws, then it seems only appropriate that
we develop formalisms that allow us to explicitly and directly reason about
them. In this paper, we have developed a Normative Temporal Logic that
is intended for this purpose, being careful to give a semantics to deontic
modalities that has a clear computational interpretation. We see the key
advantages of ntl as follows. First, the fact that the formalism is so closely
related to ctl is likely to be an advantage from the point of view of compre-
hension and acceptance within the mainstream model checking/verification
community. Second, the fact that the language has a clear computational in-
terpretation means that it can be applied in a computational setting without
any ambiguity of interpretation. Third, the clear identification of different
normative systems within the language, and the ability to talk about these
directly, represents a novel step forward. While ntl arguably lacks some
of the nuances of more conventional deontic and deontic temporal logics,
we believe these advantages imply that the language and the approach it
embodies merit further research.
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Thomas Ågotnes

Bergen University College
PO Box 7030
N-5020 Bergen
Norway
tag@hib.no

Juan A. Rodŕiguez-Aguilar

& Carles Sierra

Artificial Intelligence Research Institute — IIIA
Spanish Council for Scientific Research — CSIC
Barcelona, Spain
{jar,sierra}@iiia.csic.es

Wiebe van der Hoek

& Michael Wooldridge

Department of Computer Science
University of Liverpool
Liverpool
L69 3BX United Kingdom
{wiebe,mjw}@csc.liv.ac.uk



Melvin Fitting Reasoning with Justifications

Abstract. This is an expository paper in which the basic ideas of a family of Justification

Logics are presented. Justification Logics evolved from a logic called LP, introduced by

Sergei Artemov [1, 3], which formed the central part of a project to provide an arithmetic

semantics for propositional intuitionistic logic. The project was successful, but there was

a considerable bonus: LP came to be understood as a logic of knowledge with explicit

justifications and, as such, was capable of addressing in a natural way long-standing prob-

lems of logical omniscience. Since then, LP has become one member of a family of related

logics, all logics of knowledge with explicit knowledge terms. In this paper the original

problem of intuitionistic foundations is discussed only briefly. We concentrate entirely on

issues of reasoning about knowledge.

Keywords: logic of knowledge, justification logic, modal logic.

1. Introduction

This is an expository paper in which the basic ideas of a family of Justifi-
cation Logics are presented. Justification Logics evolved from a logic called
LP, introduced by Sergei Artemov [1, 3], which formed the central part of
a project to provide an arithmetic semantics for propositional intuitionistic
logic. The project was successful, but there was a considerable bonus: LP
came to be understood as a logic of knowledge with explicit justifications
and, as such, was capable of addressing in a natural way long-standing prob-
lems of logical omniscience, [7]. Since then, LP has become one member of
a family of related logics, all logics of knowledge with explicit knowledge
terms. In this paper the original problem of intuitionistic foundations is
discussed only briefly. We concentrate entirely on issues of reasoning about
knowledge.

2. Hintikka’s Logics of Knowledge

In [21] Hintikka developed an approach to logics of knowledge that has be-
come the basis for much that followed. While the central ideas are generally
familiar, a sketch of them will be useful. A logic with multiple agents is the

D. Makinson, J. Malinowski, H. Wansing (eds.), Towards Mathematical Philosophy,
Trends in Logic, 28 c© Springer Science + Business Media B.V. 2009
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natural one but for the time being we will confine things to a single agent,
and discuss widening the setting towards the end of the paper.

A propositional modal logic is constructed. It is customary to denote
the necessity operator by K, standing for it is known that. We take ⊃ and
⊥ as basic, with other connectives defined in the usual way. Then a minimal
logic of knowledge can be formulated as follows.

Axiom Schemes

K1 All instances of classical tautologies

K2 K(X ⊃ Y ) ⊃ (KX ⊃ KY )

K3 KX ⊃ X

Rules of Inference

Modus Ponens
X X ⊃ Y

Y

Necessitation
X

KX

Axiom K3 can be seen as capturing part of the classic characterization of
knowledge as justified, true belief: it says that what is known must be true.
Without such an axiom we are capturing belief, not knowledge. Axiom K2 is
familiar from normal modal logics, but is somewhat problematic here. It says
knowledge is closed under modus ponens—briefly, we know the consequences
of what we know. This will be discussed further below. The Necessitation
rule is also familiar from normal modal logics, and is also problematic here.
It says all logical truths are known, and it too will be discussed further
below.

These minimal axioms are generally extended with one or both of the
following.

Axiom Schemes

Positive Introspection KX ⊃ KKX

Negative Introspection ¬KX ⊃ K¬KX

The first says that if we know something, we know we know it. The second
says if we don’t know something, we know we don’t know it. While these
are increasingly strong, and increasingly doubtful assumptions, adding them
both seems to have been the most common approach in the literature.

Historically, the justified knowledge approach sketched in this paper be-
gan with an analog of Hintikka’s axioms including the one for Positive Intro-
spection but not Negative Introspection. It was straightforward to provide
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an analog for the system without either Introspection axiom, and more re-
cently an analog of the system with both Introspection axioms has appeared.
To keep things relatively simple, we will follow the historical development
here, and assume only Positive Introspection.

The semantics Hintikka introduced is a possible world one. A model
M = 〈G,R, 	〉 consists of a collection G of states of knowledge, an acces-
sibility relation R on them that is reflexive and transitive (since we have
positive introspection), and a notion of truth at a state, which we write as
M, Γ 	 X, where M is a model, Γ is a state, and X is a formula. On
propositional connectives 	 is truth-functional at each world, and the usual
Kripke condition is met,

M, Γ 	 KX ⇐⇒M, Δ 	 X for all Δ ∈ G with ΓRΔ (1)

where this is usually read informally as: the agent knows X at state Γ if X is
the case at all states the agent cannot distinguish from Γ. For a single agent
this logic of knowledge is simply the well-known modal logic S4—things
become more complex when multiple agents are involved.

Hintikka’s approach has been successfully applied to many well-known
puzzles and problems, but it is not the end of the matter. What is it that an
agent has knowledge of, sentences or propositions? Hintikka’s logic is quite
unproblematic when taken to be a logic of propositions—in it, if X ≡ Y
is provable, so is KX ≡ KY . But two sentences might be equivalent and
so express the same proposition, while that equivalence is not at all easy
to see—we may not be aware of the equivalence. What we communicate
directly is sentences, and propositions only indirectly. Wittgenstein argued
that all mathematics is, essentially, a single tautology. In this sense, if we
know the proposition that 2 + 2 = 4, we know all mathematics—it’s just
a single proposition, the truth. But here the distinction between sentences
and propositions is fundamental—mathematicians work with sentences di-
rectly, and propositions quite indirectly. Thought of as a logic of sentences,
Hintikka’s approach suffers from a fundamental difficulty usually referred to
as logical omniscience. An agent turns out to know too much. This problem
really breaks into two separate pieces, which we now discuss.

The first omniscience problem arises from the Necessitation Rule. Ac-
cording to this, an agent must know all tautologies. But a tautology could
have as many symbols as there are atoms in the universe, and it is unlikely
an agent actually would know the truth of such a formula. The second comes
from axiom K2. It follows from this scheme that an agent would know the
consequences of what it knows. This, too, seems unlikely in practice.
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The usual sentence-based solution is to say that we are not really dealing
with a logic of knowledge, but a logic of potential knowledge. KX informally
means that X is knowable, rather than actually known. This has its negative
uses—if ¬KX is established then X is not knowable, so it is certainly not
known, whatever we might mean by that. But still, a true logic of knowledge
for sentences, not just knowability, would be a nice thing to have.

3. Awareness Logic

One of the reasons we might not know something that is knowable is that we
haven’t thought about it. In [11], Fagin and Halpern give this simple idea a
formal treatment, producing a family of awareness logics. In these there is
an explicit representation of the things one has thought about, so to speak.

Semantically, an awareness model is 〈G,R,A, 	〉, where G, R, and 	
are as before, and A is a mapping assigning to each member of G a set of
formulas. The members of A(Γ) are the formulas we are aware of at Γ. No
special conditions are placed on this function; in particular, A(Γ) need not
be complete, or consistent, or closed under subformulas. Syntactically, an
operator A is added to the language, and AX is taken to be true at a state
Γ just in case X ∈ A(Γ).

With this machinery added, ‘actual’ knowledge can be represented as a
conjunction KX ∧ AX. We explicitly know those formulas that are know-
able, and that we have thought about. This now allows us to avoid logical
omniscience problems—we easily have models in which formulas that might
be problems are not because we are not aware of them.

The authors of [11] consider various natural conditions one might place
on A such as closure under subformulas, or preservation on passing to ac-
cessible states (monotonicity). Likewise one might want to say one is only
aware of formulas that are not too complicated, or formulas whose possible
justifications are not too long. The framework is, in fact, very general. It is
more of a toolbox, able to contain many things useful or not, than a tool in
itself.

4. Explicit Justifications

Now we start on the main subject matter of this survey—logics with explicit
justification terms. Instead of KX, that is, “X is known,” consider t:X, that
is, “X is known for the explicit reason t.” Of course these explicit reasons,
or justification terms, should have some internal structure. We introduce
the basic machinery.
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4.1. Syntax and Axiom System

A justification for X ⊃ Y applied to a justification for X should produce a
justification for Y . The symbol ·, called application, is used and the basic
principle is this.

1. s:(X ⊃ Y ) ⊃ (t:X ⊃ (s · t):Y )

Adding extra (perhaps useless) material to a justification still gives a
justification, though a weaker one. The symbol + is used for this.

2. s:X ⊃ (s + t):X

3. t:X ⊃ (s + t):X

A justification can be verified for correctness. It has it’s own justification.
The symbol ! is used here. This is referred to as checking or verification.

4. t:X ⊃!t:t:X

A logical truth has a justification and no further analysis is needed.
Constant symbols are used for this, that is, if X is a ‘basic’ truth we can
conclude c :X, where c undergoes no further analysis. Of course, c can be
assigned a weight of some kind, reflecting the complexity of X, but this will
not be done here.

In addition to logical truths, there are also facts of the world. These
are, in a sense, inputs from outside the structure. They are represented by
variables, thus x:X.

Gathering this together, we have the following formal language. First we
have justifications, or terms, sometimes called proof polynomials when used
in a mathematical setting.

Variables: x, y, z, . . . , are justifications.

Constants: c, d, e, . . . , are justifications.

Application: If s and t are justifications, so is (s · t).
Weakening: If s and t are justifications, so is (s + t).

Checking: If t is a justification, so is !t.

Next, the definition of formulas.

Propositional Letters: P , Q, . . . , are formulas.

Falsehood: ⊥ is a formula.

Implication: If X and Y are formulas, so is (X ⊃ Y ).
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Justification Formulas: If X is a formula and t is a justification then t:X is
a formula.

Axioms were, mostly, given above. Here they are in full. All formulas of the
following form are axioms.

J0 A sufficient set of classical tautologies
J1 s:(X ⊃ Y ) ⊃ (t:X ⊃ (s · t):Y )
J2 s:X ⊃ (s + t):X
J3 t:X ⊃ (s + t):X
J4 t:X ⊃!t:t:X
J5 t:X ⊃ X

Finally the rules of inference.

Modus Ponens: From X and X ⊃ Y infer Y .
Axiom Necessitation: If X is an axiom, infer c :X, where c is a constant

symbol.
The logic just described is called LP, standing for logic of proofs, [1, 3].

The name comes from the fact that it was originally created to represent
arithmetic proofs, which are certainly justifications of a very special kind.
Variations on LP will be discussed in Section 9.

4.2. Semantics

The standard epistemic semantics for LP comes from [13], and amounts to
a blending of an earlier semantics from [22] with the usual Hintikka style
semantics for logics of knowledge. One can see it as being in the tradition
of Awareness Logics, but with the awareness function supplied with an ad-
ditional structure of justifications. A model is M = 〈G,R, E , 	〉, where G
and R are as usual, with R reflexive and transitive, and with 	 behaving
on propositional connectives in the usual way. The new item is E , which is
an evidence function. The idea is, E assigns to each possible world Γ and to
each justification t a set of formulas—those formulas that t is relevant to,
or that t can serve as possible evidence for, at Γ. Evidence functions must
meet certain conditions.

Monotonicity ΓRΔ implies E(Γ, t) ⊆ E(Δ, t)
Application X ⊃ Y ∈ E(Γ, s) and X ∈ E(Γ, t) imply Y ∈ E(Γ, s · t)
Weakening E(Γ, s) ∪ E(Γ, t) ⊆ E(Γ, s + t)
Checking X ∈ E(Γ, t) implies t:X ∈ E(Γ, !t)
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The one new condition on 	 concerns the behavior of justification terms.
It is the counterpart of (1) for standard logics of knowledge.

M, Γ 	 t:X ⇐⇒ M, Δ 	 X for all Δ ∈ G with ΓRΔ
and X ∈ E(Γ, t)

(2)

In short, we have t:X at Γ if X is knowable at Γ in the Hintikka sense,
and t is relevant evidence for X at Γ. If we think of Hintikka semantics as
capturing the idea of true belief, then what the present machinery captures
is justified true belief.

There is also a stronger version of the semantics. A model M is said
to be fully explanatory provided, if M, Δ 	 X for all Δ ∈ G with ΓRΔ
then there is some justification t such that M, Γ 	 t:X. More informally,
M is fully explanatory provided knowability of X at Γ (in the Hintikka
approach) implies there is a justification for X at Γ. Under simple, reason-
able conditions, designed to ensure that constants behave in corresponding
ways semantically and proof theoretically, provability agrees with truth at
all worlds of all models, and this agrees with truth at all worlds of all fully
explanatory models, [13].

4.3. Awareness Logics Again

LP can be seen as an extension of awareness logic with the awareness function
made more explicit. One can extract a variety of awareness logics from LP
directly, as well. For instance, we might define #(t) to be the number of
operation symbols in term t; then A(Γ) = {X | X ∈ E(Γ, t) and #(t) <
n} is a natural awareness function, for each choice of n—we are aware of
formulas with possible justifications that are not too complicated. Or again,
we might set A(Γ) = {X | X ∈ E(Γ, t) and t ∈ S}, where S is a fixed set of
justifications. Both these are quite plausible awareness functions, and others
are easy to come by as well.

5. Internalization

In logics of knowledge, and more generally in normal modal logics, one has
a necessitation rule: if X is provable, so is �X. In LP this takes a much
stronger form, and is a constructively provable theorem rather than a basic
rule. It is called internalization and is due to Artemov. It says, given a
proof of X, then t:X is provable for some closed term t, where t embodies
the given proof of X. Here is a very simple example. First we have a proof
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in LP, of t:P ⊃ (c · t):(P ∨Q), where c is a proof constant for P ⊃ (P ∨Q),
and t is some arbitrary proof term.

1. c :(P ⊃ (P ∨Q))
2. c :(P ⊃ (P ∨Q)) ⊃ (t:P ⊃ (c · t):(P ∨Q))
3. t:P ⊃ (c · t):(P ∨Q)

Line 1 is by axiom necessitation, 2 is an instance of axiom scheme 1, and 3
is from 1 and 2 by modus ponens. Internalizing this proof, the following is
also LP provable, where d is a proof constant for c :(P ⊃ (P ∨Q)) ⊃ (t:P ⊃
(c · t):(P ∨Q)).

(d·!c):(t:P ⊃ (c · t):(P ∨Q))

Notice that !c justifies line 1 of the proof above, d justifies line 2, and (d·!c)
justifies line 3 by representing the application of modus ponens. We omit
the proof of this formula in LP.

6. Information Hiding and Recovery

In LP justifications are explicit, while in Hintikka-style logics of knowledge
they are hiden. The knowledge operator of a Hintikka logic is a kind of
existential quantifier asserting the existence of a justification without saying
what it is. Explicit justifications can easily be hidden behind such quantifier-
like operators. Remarkably, explicit justifications can also be recovered. This
is the content of a fundamental theorem in the subject of justification logics.

First, the easy direction. As noted above, one can think of K as a kind
of existential quantifier: KX is read as “there is a reason for X”. Then
if X is a theorem of LP, with explicit justifications, and we replace each
justification with K, we get a theorem of the Hintikka knowledge logic S4.
This is easy to see. Each LP axiom scheme instance turns into an axiom
of S4, and applications of LP rules of inference turn into applications of S4
rules of inference. Consequently an entire LP axiomatic proof converts into
a proof in S4, and hence theorems convert as well.

A translation in the opposite direction is also possible, but much more
difficult, and goes under the name Realization Theorem. It is due to Arte-
mov, as is its first proof. Loosely it says, if X is a theorem of S4, there is
some way of replacing occurrences of K with explicit justifications to pro-
duce a theorem of LP. But one can do better yet. In making the replacement
of K symbols with justifications, negative occurrences of K can always be
replaced with distinct variables, and positive occurrences with justifications
that may be computed from those variables. Thus S4 theorems have a hidden
input-output structure that is exposed by a realization in LP.
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Here is an example whose verification is left to the reader. (KP ∨KQ) ⊃
K(KP ∨KQ) is a theorem of S4. And here is a realization of it, provable
in LP, and with negative occurrences of K replaced with distinct variables.

(x:P ∨ y:Q) ⊃ (c·!x + d·!y):(x:P ∨ y:Q)

In this, c and d are constant symbols introduced using the Axiom Necessi-
tation rule, with c introduced for the tautology x:P ⊃ (x:P ∨ y:Q) and d for
the tautology y:Q ⊃ (x:P ∨ y:Q).

Artemov’s original proof of the Realization Theorem was entirely con-
structive, [3]. It extracted a provable realized version of an S4 theorem from
a cut-free sequent calculus proof of the S4 theorem. Since then variations on
the construction have been developed by several people, and the algorithm
has become more efficient. In [13] a non-constructive proof was given, using
the semantics described in Section 4.2. While not algorithmic, it goes more
deeply into the role of the + operator. More recently a constructive proof
along somewhat different lines, but still using a cut-free sequent calculus,
was given in [15]—more about this in Section 8.

The Realization Theorem, and its associated algorithms, is central to
understanding the significance of a logic like LP. It says we can reason Hin-
tikka style and then, on demand, produce a conclusion with full justifications
present. This holds great potential which is being explored by a number of
researchers.

7. Original Intent

The logic LP is the first in a family of epistemic logics with explicit justifi-
cations; others will be discussed in section 9. But the original reason for its
creation was quite different, and of considerable significance. It was part of a
project to produce a constructive foundation for intuitionistic propositional
logic. This project was successful. In this section we sketch the basic ideas.

There is a well-known BHK interpretation of the intuitionistic connec-
tives (Brouwer, Heyting, Kolmogorov). Loosely, one thinks of intuitionistic
truth as being rather like provability. This is often used informally to mo-
tivate intuitionistic logic. There have been various attempts to make the
idea into a proper mathematical construct, Kleene’s notion of realizability,
for instance.

Gödel gave an axiomatization of the intuitive notion of provability, in
[19]. He wrote Bew for the modal operator—we will use � in this section.
In his short paper he observed three fundamental things: 1) his axiomati-
zation was equivalent to the Lewis logic S4; 2) intuitionistic logic embedded
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into it by inserting his ‘provable’ operator before each subformula; and 3)
his axiomatization of provability did not correspond to the formal notion of
provability in Peano arithmetic, because under an arithmetic interpretation
�X ⊃ X amounted to a consistency assertion. Thus the attempt was only
partially successful, though tremendously influential. It was eventually re-
alized that the logic of provability in Peano arithmetic was not S4, but GL,
in which �X ⊃ X is replaced with the Löb axiom, �(�X ⊃ X) ⊃ �X, but
GL is not a logic into which one can embed intuitionistic logic, Gödel style.

Gödel made another suggestion, in [20], which remained largely un-
known until the publication of his collected works. One might interpret
S4 arithmetically, not as the logic of provability, but as the logic of explicit
proofs. Sergei Artemov independently conceived the same idea, and carried
it through to a successful conclusion, thus completing Gödel’s project. The
chain of construction goes as follows. First, as Gödel noted, propositional
intuitionistic logic embeds in S4, with intuitionistic connectives being trans-
lated as ‘provable’ versions of their classical counterparts. Second, via the
Realization theorem, S4 embeds in LP. And third, LP does embed into Peano
arithmetic, with LP terms mapping to Gödel numbers of explicit arithmetic
proofs—this is the Artemov Arithmetic Completeness theorem. All this
combines to provide the desired arithmetic semantics for intuitionistic logic.

It became clear as early as 1998 that logics with explicit proof terms could
also be seen as logics of explicit justifications in a more general sense, [2, 6]
for instance. The introduction of a Kripke-style semantics for LP, [13], pro-
vided a significant technical and conceptual tool for epistemic applications.
Today work on understanding and applying LP and its relatives to epistemic
problems proceeds at an increasing pace. But from an epistemic point of
view, and taking various generalizations of LP into account, arithmetic com-
pleteness is not central in the way it was for the intuitionistic logic project.
The Realization theorem, however, remains fundamental. This accounts for
the minimal mention the arithmetic result gets here—it is important, but
for something other than the subject of our immediate concern.

8. Realizations As First-Class Objects

Originally a realization was simply a tool for extracting the explicit content
of an S4 theorem. More recently realizations have become objects for in-
vestigation in their own right. In [17, 16, 15] they are functions mapping
occurrences of necessity operators to justification terms (the use of � instead
of K will be continued). Occurrences themselves are formally distinguished
by breaking � up into infinitely many copies, �1, �2, . . . , with each having
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at most one occurrence in a formula. Further, positive and negative occur-
rences are distinguished, with even indexed operators in negative positions
and odd indexed ones in positive positions. A formula with such subscripted
modal operators is called properly annotated. Every modal formula can be
properly annotated, and all properly annotated versions of the same formula
are effectively interchangeable for our purposes. Then a realization is simply
a function from positive integers to justification terms that maps even inte-
gers to distinct variables. If r is a realization function and X is an annotated
formula, r(X) is the result of replacing each subformula �iY with r(i):r(Y ).

We also need the standard notion of substitution—recall that justifi-
cation terms can contain variables. A substitution is a mapping, σ, from
variables to justification terms. The result of applying a substitution σ
throughout a formula X is denoted Xσ. It is not hard to show that if X is
a theorem of LP, so is Xσ for any substitution (though the role of constants
may shift).

The direct use of realization functions, and of substitutions, has made
it possible to state some algorithmic results concerning LP in a relatively
coherent way—we do this in the rest of the section.

8.1. The Replacement Theorem

In S4, as in every normal modal logic, one has a Replacement Theorem.
If A ≡ B is provable, then so is X ≡ Y , where Y is like X except that
an occurrence of A as a subformula has been replaced with B. (Multiple
replacements can be handled sequentially.) To state this more easily, we
use the following notation. Suppose X(P ) is a formula with at most one
occurrence of the propositional letter P . Then we write X(Z) for the result
of substituting Z for P in X(P ). Now the usual Replacement Theorem can
be stated as follows. If �S4 A ≡ B then �S4 X(A) ≡ X(B).

We saw in the previous section that, in LP, positive and negative oc-
currences of subformulas sometimes play different roles. One problem with
developing a Replacement Theorem for LP is that when A ≡ B is expanded
using ∧, ∨, and ¬, one sees that A has both a positive and a negative oc-
currence. Fortunately this difficulty can be addressed, because there is a
‘polarity preserving’ version of Replacement. Suppose P has at most one
positive occurrence in X(P ). Then if �S4 A ⊃ B then �S4 X(A) ⊃ X(B).
Here is this result again, for purposes of comparison with the corresponding
LP result given below.

A ⊃ B

X(A) ⊃ X(B)
(3)
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We might have a hope, then, that a polarity preserving version of Re-
placement will transfer to LP. But the obvious transfer does not work, and
a moment’s thought suggests why. Suppose we have �LP A ⊃ B, and P
has at most one positive occurrence in X(P ). In X(A) the subformula A
might occur within the scope of a justification term, and when we replace A
with B to produce X(B) we should expect that justification term will need
updating to incorporate its original reasoning, plus a reason accounting for
the passage from A to B. That justification term itself may occur within
the scope of another one, which will need updating, and so on up. In short,
wherever appropriate, reasons must be modified to reflect the fact that A
implies B.

With realization and substitution machinery available a proper, algorith-
mic, version of Replacement for LP can be given. Suppose X(P ), A and B are
properly annotated modal formulas (not LP formulas), where P has a single
positive occurrence in X(P ). Suppose also that r0 is a realization function
such that �LP r0(A) ⊃ r0(B). Then there is a pair, 〈r, σ〉 where r is a realiza-
tion function and σ is a substitution, such that �LP r0(X(A))σ ⊃ r(X(B)).
Schematically in LP we have the following, instead of (3).

r0(A) ⊃ r0(B)
r0(X(A))σ ⊃ r(X(B))

(4)

In this, the substitution σ and the new realization function r take care of
the ‘justification adjustment’ discussed above.

There are some conditions on the result above that must be stated. First,
neither A nor B should share an index with X(P ). This is rather minor since
annotations can always be reassigned in X(P ). Second and more serious, r0

must be what is called non self-referential on variables over X(A), that is,
if �2nZ is a subformula of X(P ), and r0(2n) is the variable x, then x does
not occur in r0(Z). This is especially important since it was shown in [10]
that self-referential constant symbols are essential for completeness.

There are also stronger versions of the Replacement Theorem than we
stated. There are, for instance, restrictions on the behavior of the substi-
tution σ. But most importantly, the pair 〈r, σ〉 carries out a replacement
of A by B not only in X(P ), but in subformulas as well. (With negative
subformulas the implication in the conclusion is reversed.) Thus it is a kind
of uniform replacement.

The proof of the LP Replacement Theorem is entirely algorithmic, with
the algorithm depending on the complexity of X(P ).
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8.2. Realization Merging

Suppose we have two different realization functions; is there some way of
merging them into a single one? As with the Replacement Theorem, there
is an algorithmic solution to this problem too, and the result takes the
following form. If r1 and r2 are realization functions, and X is a properly
annotated modal formula. Then there is a pair 〈r, σ〉, where r is a realization
function, σ is a substitution, so that we have both �LP r1(X)σ ⊃ r(X) and
�LP r2(X)σ ⊃ r(X). Actually, the full result says 〈r, σ〉 will merge not only
X, but subformulas as well, but we can avoid the complexities in this survey
paper.

Here is a simple example to show the utility of this. Suppose A ⊃ C
and B ⊃ C are properly annotated modal formulas, and we have separate
realization functions r1 and r2 such that �LP r1(A ⊃ C) and �LP r2(B ⊃
C). If we apply the algorithm referred to above, using (A ∨ B) ⊃ C for
the formula X, a pair 〈r, σ〉 is produced, and it is not hard to show that
�LP r((A ∨B) ⊃ C).

8.3. The Realization Theorem, Again

Both the Replacement result of section 8.1 and the Merging result of sec-
tion 8.2 are special cases of a more general result which will not be stated
here. Replacement, Merging, and one more consequence of the general the-
orem, together yield yet another algorithm for producing an LP provable
realization of an S4 theorem, [15]. Like the original Artemov proof, it makes
use of a cut-free S4 proof to create the provable realization. The relationship
of this algorithm to the original one has not yet been determined.

8.4. What’s Missing

A central open problem in this area concerns the familiar rule modus po-
nens. Suppose X and X ⊃ Y are modal formulas, and we have LP provable
realizations for both. Then there will be a provable realization for Y as
well, by the following indirect argument. Since each of these has a provable
realization, then X and X ⊃ Y themselves are provable in S4. But then
so is Y , and by the Realization Theorem, it will have an LP provable re-
alization. The problem is, the only algorithmic ways currently known for
producing a provable realization of Y is to begin with a cut-free proof of Y .
This is expensive, and we wind up discarding any information contained in
the provable realizations for X and X ⊃ Y that we started with.
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Is there a direct way of calculating a provable realization for Y , given
provable realizations for X and X ⊃ Y ? Nobody knows how to handle
this. The various merging and replacement algorithms discussed above do
not apply. All of them pay careful attention to polarity of subformulas, but
notice that the occurrence of X in X ⊃ Y is in a negative position, while in
X itself it is positive. Until this has been dealt with, we do not have a fully
satisfactory calculus of realization functions.

9. Generalizations

LP is a version of S4 with explicit justifications. S4 is just one single agent
logic of knowledge. What about others; what about multiple agents; what
about communication of justifications?

9.1. Single Agent Logics

Logics weaker than S4 were investigated early on. T works fine. One simply
removes the obvious axioms from LP. Actually, the axiom necessitation rule
needs modification too—it now reads: if X is an axiom, so is c :X for a
constant c, and now the same rule can be reapplied. This change is to
compensate for the removal of the ! operator. K4 and K can be thought of
as logics of belief rather than of knowledge, but again justification versions
of them are straightforward to develop. For all these logics a Realization
Theorem holds, [9], and completeness relative to a possible world semantics,
as in section 4.2, can be shown.

In the other direction, S5 has also been given its justification version,
independently in [25] and [23]. This requires the introduction of an addi-
tional operator, ?, dual to !. Whereas ! is designed for an explicit version
of positive introspection, ? is intended to deal with negative introspection.
Once again, Realization and semantical completeness have been established.

Several other single-knower variations have been considered, but this
should be enough to give the general picture.

9.2. Multiple Agent Logics

There has already been work on justification versions of multiple agent Hin-
tikka logics of knowledge. The idea has been to treat shared justifications as
a kind of explicit common knowledge [4, 8, 5]. In fact, explicit justifications
can be shown to satisfy the fixpoint condition usually imposed on common
knowledge.
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More recent work, still in progress, concerns multiple agent logics in
which each agent has its own set of reasons, [26]. This is a natural setting for
considering the results of communication, and some work has been done on
the justification version of public announcements [24]. Among other things,
this involves putting a syntactic counterpart of the semantic evidence func-
tion into the language in a way reminiscent of the treatment of the awareness
function, discussed in section 3.

10. The Goal

What we are after is logics in which we can reason, not just about facts,
but about reasons for facts, and in which we can reason about these reasons
conveniently and efficiently. Work is very much in progress. We conclude
with a quick summary of the current state of things.

For single agent logics of knowledge, both implicit (Hintikka style) ver-
sions and explicit (justification style) versions exist, and there is effective
machinery to translate between them. How to handle modus ponens is still
an open problem, but some progress is being made on this. In the meantime,
cut-free sequent formulations serve as tools, though expensively. There are
versions in which both implicit and explicit knowledge can be expressed.
These are natural, and have a well-understood proof theory and semantics.
What is missing for these is a version of the Realization Theorem, which
now would take the form of ‘self-realization.’ Here the treatment of modus
ponens seems to be even more of a central issue.

Multiple agent logics of knowledge with explicit justifications are not as
well developed yet, partly because of the additional richness available. So
far the most successful versions have had implicit knowledge individually,
while explicit justifications were shared machinery. The two central issues
currently being explored are: allowing a separate family of justifications for
each agent, and permitting communication of justifications. This is perhaps
the most active current area of development.

One might consider a move to a first-order logic of knowledge, implicit
and explicit. One might have quantifiers over things or even quantifiers
over justifications. There has been some work on this, [27, 18, 14], but the
situation is complex and not yet well-understood.

Formalizing the reasoning of knowledge with justifications that are ex-
plicitly present has turned out to be a rich source of results and techniques.
Already what has been achieved is significant, and progress remains steady.
The range of logical systems that has resulted presents an exciting mix of
expressiveness and succinctness, with strong proof-theoretic and semantic
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aspects. It is to be hoped that this work will lead to a better understanding
of reasoning, its explanation and communication.
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Janusz Czelakowski Monotone Relations, Fixed
Points and Recursive
Definitions∗

Abstract. The paper is concerned with reflexive points of relations. The significance of

reflexive points in the context of indeterminate recursion principles is shown.

Keywords: fixed-point, monotone relation, chain-σ-continuous relation, definability by

arithmetic recursion.

The focus of this paper is on the method of defining mathematical objects
by means of fixed-points. The theory of fixed-points splits into two, to a large
extent autonomous and conceptually independent, areas of research. Each of
these fields is determined by the specific choice of underlying mathematical
models:

(1) the theory of fixed-points developed in the setting of complete metric
spaces (see e.g. Goebel and Kirk [1990], Kirk and Sims (eds.) [2001]).

(2) the theory of fixed-points carried out in order-complete partially or-
dered sets (see e.g. Gunter and Scott [1990]).

In this paper we are mainly concerned with the second branch of the
theory of fixed-points. The basic idea of (2) is simple. At the outset one iso-
lates a partially ordered set (P,≤), the universe of discourse, which exhibits
some form of order-completeness. In the strongest case (P,≤) is assumed
to be a complete lattice. But weaker versions of order-completeness are also
plausible as e.g. inductivity, i.e., which means that the underlying poset is
closed under the formation of suprema of chains, or continuity (alias directed
completeness), i.e., the closure under the formation of supremas of directed
subsets. In the weakest case, (P,≤) is assumed to have a zero and be closed
under the suprema of chains of type ω.

In the standard approach to the order-oriented fixed-point theory, the
focus is on mappings π : P → P exhibiting certain natural properties linked
with the order of the poset (P,≤). The weakest natural property of π in

∗The author is indebted to the referees for many suggestions which have improved the
original exposition to its present form and for careful reading of the manuscript which
have uncovered certain inaccuracies.

D. Makinson, J. Malinowski, H. Wansing (eds.), Towards Mathematical Philosophy,
Trends in Logic, 28 c© Springer Science + Business Media B.V. 2009



126 J. Czelakowski

this context is that of monotonicity: for every pair a, b ∈ P , a≤ b implies
π(a) ≤ π(b). Some other properties of mappings such as e.g. expansivity or
various forms of order-continuity are also important.

Any pair formed by (P,≤) together with an appropriate mapping π :
P → P is called an intended model. The method of fixed-points is aimed
at showing that for each such intended model, the mapping π has a least
fixed-point in the sense of ≤, say a*. This means that π(a*) = a* and a* is
the least element b of P such that π(b) = b. From the perspective of defin-
ition theory, one defines an object as the least fixed-point of π because the
standard conditions imposed on a correct definition, viz. the existence and
uniqueness conditions are implied by the properties of π. Thus the definition
of such an object as the least fixed-point is fully legitimate. It is clear how-
ever that the defining procedure based on the fixed-point method is highly
impredicative. The reason is that the defined object viz. the least fixed-
point of π, is not defined directly but indirectly, through an intermediate
universe (P,≤).

But in this paper we are also concerned with a wider problem than that
of definability objects; the focus is rather on proving the existence of objects,
based on various fixed-point procedures, and not their uniqueness. There is
also another significant difference — the method we want to outline concerns
fixed-points (alias reflexive points) of relations, and not only functions. The
underlying models we study are founded on order-complete posets (P,≤).
But these posets are additionally equipped with certain binary relations,
which need not be functions. We give a bunch of fixed-points theorems for
relations and give some applications of these results.

The difference between the method of fixed points for mappings and
that for relations in the theory of definition lies in the fact that in the case
of relations we do not define certain objects unambiguously as least fixed-
points, but merely prove the existence of such objects as fixed-points (of
relations). We thus allow for a range of defined objects in the space P . The
logical status of this method is somewhat similar to the well-known category
method in mathematics.

From the perspective of formal semantics, the structures we study are
Kripke frames augmented with an order relation ≤, where ≤ is assumed to
be at least chain σ-complete, which means that the order has a zero and the
supremum of every well-ordered chain of type ω exists.

The order oriented fixed-point theory constitutes the conceptual frame-
work of the theory of semantic domains, a part of theoretical computer
science. Investigations of semantic domains were initiated by Dana Scott in
the end of the sixties and then developed by him and his collaborators (see
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e.g. Gunter and Scott [1990].) A recent paper by Desharnais and Möller
[2005] surveys older results on fixed-points for relations (see e.g. Cai and
Paige [1992]) and presents new results, relevant to computer science.

This work is a modest part of a more ambitious research project entitled
Infinitistic methods in the theory of definitions, sponsored by KBN grant
No. 2 H01 A 007 25. The project is centered on comparing various infinitistic
methods of defining mathematical objects as e.g. transfinite recursion, the
fixed-points method, the diagonal method, and the methods provided by
calculus. This paper is thought as a preliminary account of fixed-points (=
reflexive points) for relations.

The paper has a two-level structure. Many of the results of the paper
are formulated in the object language of the theory of fixed-points, viz. the
language of ordered Kripke frames. (The object language need not be first-
order.) The object language and the fixed-point theorems proved in it consti-
tute the first level of the research. But the work also contains results which
belong to the metatheory of fixed-points. The second level of the research
is constituted by the metalanguage of the fixed-point-theory and theorems
establishing the relationship between fixed-point theorems and results be-
longing to other disciplines, especially to set theory. The paper contains an
array of fixed-point theorems which are compared with the Axiom of Choice
and its weak counterparts as well as with definability principles by arith-
metic recursion. The results belonging to the metalevel are marked by the
prefix meta to distinguish them from the object-level results.

In Chapter 2 we are also interested in the constructive dimension of the
research which means that the focus is on the methods that guarantee at-
tainability of the least fixed-point in ω steps in the pertinent posets. The
fixed point-theory from the constructive perspective is coextensive with the-
oretical arithmetic, because, as it is shown below, fixed-point theorems for
mappings presented in this paper are basically equivalent to various forms of
arithmetic recursion (in the deterministic version). A more advanced theory
of inherently infinitistic fixed-points for relations and its relationship with
various forms of definability based on the Noetherian induction or transfi-
nite recursion as well as the fixed-point approach to the well-known back
and forth method will be presented in another paper.

1. Partially Ordered Sets

Let P be a set. A binary relation ≤ on P is an order (or partial order) on
P iff ≤ satisfies the following conditions:
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(i) ≤ is reflexive, i.e., a≤ a, for all a ∈ A;

(ii) ≤ is transitive, i.e., a≤ b and b ≤ c implies a≤ c, for all a, b, c ∈ A;

(iii) ≤ is antisymmetric, i.e., a≤ b and b ≤ a implies a = b, for all a, b ∈ A.

A partially ordered set, a poset, for short, is a set with an order defined
on it. Each order relation ≤ on P gives rise to a relation < of strict order:
a < b in P if and only if a≤ b and a �= b.

Let (P,≤) be a poset and let X be a subset of P . Then X inherits an
order relation from P : given xy ∈ X, x ≤ y in X iff x ≤ y in P . We then
also say that the order on X is induced by the order from P .

(1) An element M ∈ X is called maximal in X whenever M ≤ x implies
M = x, for every x ∈ X.

(2) An element m ∈ X is called minimal in X whenever x ≤ m implies
m = x, for every x ∈ X.

(3) An element u ∈ P is called an upper bound of the set X if x ≤ u, for
every x ∈ X.

(4) An element l ∈ P is called a lower bound of the set X if l ≤ x, for
every x ∈ X.

(5) An element a ∈ P is called the least upper bound of the set X if a is an
upper bound of X and a≤ u for every upper bound u of X. If X has
a least upper bound, this is called the supremum of X and is written
‘sup(X)’.

(6) An element b ∈ P is called the greatest lower bound of the set X if b is
a lower bound of X and l ≤ b for every lower bound l of X. If X has
a greatest lower bound, this is called the infimum of X and is written
‘inf(X)’.

A set X may have more than one maximal element or none at all. A sim-
ilar situation holds for minimal elements.

Instead of ‘sup(X)’ and ‘inf(X)’ we shall often write ‘∨X’ and ‘∧X’; in
particular we write ‘a∨b’ and ‘a∧b’ instead of ‘sup({a, b})’ and ‘inf({a, b})’.

If the poset P itself has an upper bound u, then it is the only upper
bound. u is then called the greatest element of P . In an analogous way the
notion of the least element of P is defined.

A set X ⊆ P is:

(a) an upward directed subset of P if for every pair a, b ∈ X there exists
an element c ∈ X such that a≤ c and b ≤ c (or, equivalently, if every
finite non-empty subset of X has an upper bound in X);
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(b) a chain in P (or: a linear subset) if, for every pair a, b ∈ X, either
a≤ b or b ≤ a (that is, if any two elements of X are comparable);

(c) a well-ordered subset of P (or: a well-ordered chain in P ) if X is a
chain in which every non-empty subset Y ⊆ X has a minimal element
(in Y ).

Equivalently, in the presence of the Axiom of Dependent Choices (see
below), X is well-ordered if and only if it is a chain and there is no strictly
decreasing sequence c0 > c1 > . . . > cn > . . . of elements of X. Every well-
ordered chain is isomorphic to a unique ordinal, called the type of X. The
empty set ∅ is well-ordered and ∅ is its order type.

A downward directed subset is defined similarly; when nothing to the
contrary is said, ‘ directed’ will always mean ‘ directed upwards’.

If the poset (P,≤) itself is a chain or directed, then it is simply called a
chain or a directed poset.

Let (P,≤) be a poset and let X and Y be subsets of P . The set X is
cofinal with Y if for every a ∈ Y there exists b ∈ X such that a≤ b. If X is
cofinal with Y , then sup(Y ) exists if and only if sup(X) exists. Furthermore
sup(Y ) = sup(X).

Theorem 1.1. Let (P,≤) be a poset. Every countable directed subset D
of (P,≤) contains a well-ordered subset of type ≤ ω. In particular, every
countably infinite chain contains a cofinal well-ordered subchain of type ω.

Proof. Let an, n ∈ ω, be an enumeration of the countably infinite directed
set D. By Arithmetic Recursion (see Section 3) we define an increasing
sequence bn, n ∈ ω, of elements of D. We put b0 := a0. Assume b0, b1, . . . , bn

have been defined so that b0 < b1 < . . . < bn. Then bn+1 := the unique
element am of D with the least index m such that bn < am and an < am.
The chain bn, n ∈ ω, is cofinal with D.

The above theorem is not true for uncountable directed subsets.
Theorem 1.2 (Kuratowski -Zorn’s Lemma). If every non-empty chain in a
poset P has an upper bound, then the set P contains a maximal element.

Kuratowski-Zorn’s Lemma is an equivalent form of the Axiom of Choice
(on the basis of the familiar axioms of Zermelo-Fraenkel’s set theory ZF
without the Axiom of Regularity).

Definition 1.3. Let (P,≤) be a poset.

(a) (P,≤) is directed-complete if for every directed subset D ⊆ P , the
supremum sup(D) exists in (P,≤).
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(b) (P,≤) is chain-complete (or inductive) if for every chain C ⊆ P , the
supremum sup(C) exists in (P,≤).

(c) (P,≤) is well-orderably-complete if for every well-ordered chain C ⊆ P ,
the supremum sup(C) exists in (P,≤). �

It is clear that every directed-complete poset is chain-complete and every
inductive poset is well-orderably-complete. The above properties are thus
successively weaker and weaker. It turns out however that in the presence
of the Axiom of Choice they are mutually equivalent.

The empty subset of a poset is well-ordered. Hence, if (P,≤) is well
orderably-complete, then the supremum of the empty subset exists and it is
the least element in (P,≤). The least element of (P,≤) is often denoted by 0
and called the zero of the poset P . Thus every well-orderably-complete poset
has a zero. It follows that in every inductive poset and in every directed-
complete poset the least element exists.

Let (P,≤) be a poset. A mapping π : P → P is monotone (or isotone) if
a≤ b implies π(a) ≤ π(b) for every pair a, b ∈ A.

It is easy to see that if π is monotone and C is a chain (a well-ordered
chain, a directed subset) in (P,≤), then the image π[C] := {π(a) : a ∈ C} is
also a chain (a well-ordered chain, a directed subset, respectively).

If R ⊆ P×P is a binary relation, the system (P,≤, R) is called an ordered
frame. In the modal logic jargon, the elements of P are called worlds. The
fact that aRb holds for some a, b ∈ P , bears various readings:

The world b is possible with respect to a,
The world b is alternative to a,
The world a sees the world b etc.

A relation R ⊆ P × P is called serial (or left total, or simply total) if for
every a ∈ P there exists an element b ∈ P (not necessarily unique) such that
aRb holds, symbolically

(1) (∀a ∈ P∃b ∈ P ) aRb.

Definition 1.4. Let R ⊆ P×P be a binary relation defined on a non-empty
set P . An element a* ∈ P is called a fixed-point of R if a*Ra* holds. �

Fixed-points of relations are also called reflexive points.

In the paper we apply the notation adopted by Desharnais and Möller
[2005]. Given a binary relation R on a set P and a ∈ P , we define:

aR := {x ∈ P : aRx}
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and
Ra := {x ∈ P : xRa}.

aR is called the R-image of the element a and Ra is the R-preimage of a.
In particular, given a poset (P,≤) and a ∈ P , we have:

a≤= {x ∈ P : a≤ x},

and
≤ a = {x ∈ P : x ≤ a}.

The sets a≤ and ≤a are also marked in some papers by ↑a and ↓a,
respectively.

A relation R ⊆ P × P is called ∀-expansive if it is serial and included in
≤, i.e.,

(2) (∀a ∈ P )∅ �= aR ⊆ a≤.

∀ — expansive relations are also called inflationary (see e.g. Desharnais
and Möller [2005]).

We begin the presentation of fixed-point theorems for relations with the
following two, rather trivial, observations.

Theorem 1.5 (The Fixed-Point Theorem for ∀-Expansive Relations). Let
(P,≤) be a poset in which every non-empty chain has an upper bound. Let
R ⊆ P × P be a ∀-expansive relation. Then R has a fixed-point a* which
additionally satisfies the following condition:

(3) for every b ∈ P , if a*Rb, then b = a*.

(This means that a*R = {a*}. In other words, the world a* sees only itself.)

Proof. By Kuratowski-Zorn’s Lemma, applied to (P,≤), there exists at
least one maximal element a* (in the sense of ≤). We show that a* is a
fixed-point for R. By seriality, there exists b ∈ P such that a*Rb. (2) then
implies that a* ≤ b. Since a* is maximal, we have that a* = b. Hence
a*Ra*, i.e., a* is a reflexive point of R. By maximality and (2), a* also
satisfies (3).

It is obvious that if R is a function on P , that is, R satisfies the condition:
for every a ∈ P there exists a unique element b ∈ P such that aRb holds,
symbolically:

(∀a ∈ P ∃! b ∈ P )aRb,

then every fixed-point of R satisfies (3).
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Let (P,≤) be a poset. A relation R ⊆ P × P is called ∃-expansive if for
every a ∈ P there exists b ∈ P such that aRb and a≤ b, symbolically:

(4) (∀a ∈ P )aR ∩ a≤�= ∅.
Evidently, every ∃-expansive relation is serial and every ∀-expansive rela-

tion is ∃-expansive. It is clear that if R is a total function from P to P , then
the properties of being ∀-expansive and ∃-expansive are equivalent for R.

Theorem 1.6 (The Fixed-Point Theorem for ∃-Expansive Relations). Let
(P,≤) be a poset in which every non-empty chain has an upper bound. Let
R ⊆ P × P be a ∃-expansive relation. Then R has a fixed-point a* which
additionally satisfies the following condition:

(5) (∀b ∈ P )a*Rb and a* ≤ b implies b = a*.

(This means that a*R ∩ a*≤= {a*}.)
Proof. Let R0 be the intersection of the relations R and ≤, i.e., R0 :=
R∩ ≤. The relation R0 is serial and ∀-expansive. By Theorem 1.5, R0 has
a fixed-point a* for which (3) holds. Consequently, a*Ra* and (5) readily
follows.

The proof of Theorem 1.6 employs the Axiom of Choice (in the form of
Zorn’s Lemma). But in fact, the set-theoretic status of Theorems 1.5 and
1.6 is the same — each of the above fixed-point theorems is equivalent to
the Axiom of Choice.

Metatheorem 1.7. On the basis of Zermelo-Fraenkel set theory ZF− (=
ZF without the Axiom of Regularity), the following conditions are equivalent:

(a) The Axiom of Choice (AC).

(b) Theorem 1.5.

(c) Theorem 1.6.

Proof. The implication (a) ⇒ (b) directly follows from the proof of The-
orem 1.5 because Zorn’s Lemma is used here. The implication (b) ⇒ (c) is
present in the proof of Theorem 1.6. To prove the implication (c) ⇒ (a),
assume that Theorem 1.6 holds. We show that then Zorn’s Lemma holds.
For let (P,≤) be an arbitrary poset in which every non-empty chain has an
upper bound. Let R be equal to ≤, i.e., R :=≤. The relation R is evidently
∃-expansive. By Theorem 1.6, R has a fixed-point a* which satisfies (5). We
show a* is a maximal element in (P,≤). Assume b ∈ P and a* ≤ b. So a*Rb
and a* ≤ b, by the definition of R. Condition (5) then gives that b = a*.
This means that a* is a maximal element in (P,≤).
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The above observation shows that the proofs of fixed-point results based
on Theorems 1.5 and 1.6 would require adopting as strong set-theoretic
assumptions as the Axiom of Choice.

Examples. 1. Let P = [0, 1] be the closed unit interval of real numbers.
Evidently, the system (P,≤) with the usual ordering ≤ of real numbers
satisfies the hypothesis of Theorems 1.5 and 1.6. If the relation R is taken
to be equal to ≤ on P , then R is ∀-expansive. Hence it has a fixed-point
in (P,≤) which additionally satisfies (3). It is clear that 1 is the only such
a fixed-point of R. On the other hand, every element of P is a fixed-point
of R.

2. Let A be a non-trivial Boolean algebra. If F is a filter of A and
a ∈ A, then Fi(F, a) denotes the filter of A generated by the set F ∪ {a}.

Let F0 be a proper filter of A and let P be the poset consisting of all
proper filters of A that include F0. P is non-empty and ordered by inclusion.
We define the relation R ⊆ P × P as follows. For F, G ∈ P :

FRG iff [(∃a ∈ A−F )G = Fi(F, a)]∨[(∀a ∈ A−F )A = Fi(F, a)∧F = G].

FRG says that either G is an extension of F obtained by adjoining a
new element to F or Fi(F, a) is an improper filter for all a ∈ A−F and then
F = G.

Claim 1. R is serial.

Indeed, suppose F ∈ P . If the filter Fi(F, a) is proper for some a ∈ A− F ,
we evidently have that FRG for G := Fi(F, a)]. If Fi(F, a) is improper for
all a ∈ A− F , then FRG for G := F .

Claim 2. R is ∀- expansive.

Suppose FRG. It directly follows from the definition of R that F ⊆ G.

As the poset (P,⊆) satisfies the assumption of Theorem 1.5, the above
claims imply the existence of a fixed-point F* of R that satisfies (3). It
follows that F* is actually an ultrafilter of A extending F0. Thus every
proper filter of A can be extended to an ultrafilter. �

Let (P,≤) be a poset. A mapping π : P → P is expansive if a≤ π(a) for
every a ∈ A.

Corollary 1.8 (Zermelo). Let (P,≤) be a poset in which every non-empty
chain has an upper bound. Let π : P → P be an expansive mapping. Then
π has a fixed- point, i.e., there exists a* ∈ P such that π(a*) = a*. Further-
more, a* can be assumed to be a maximal element in (P,≤).
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Proof. In the standard formulations of set theory, say in the theory ZF
of Zermelo-Fraenkel, each function is identified with its graph. Accordingly,
let Rπ be the graph of π. Thus aRπb holds iff b = π(a), for all a, b ∈ P . The
relation Rπ satisfies the hypotheses of both Theorems 1.5 and 1.6. Rπ is
serial, because π is a function. Rπ is ∀-expansive because it is serial and π is
expansive. In virtue of Theorem 1.5, Rπ has a fixed-point a*. In particular,
a*Rπa* holds which means that a* = π(a*).

The first statement of Corollary 1.8 is provable in ZF− and AC is not
needed here. Moschovakis [1994] gives a proof of it which is based on Hartog’s
Theorem.

It is clear that if a poset (P,≤) is finite, then every non-empty chain has
a supremum and there are maximal elements in (P,≤). It follows that if a
mapping π : P → P is expansive, it has fixed-points.

The above theorems prove the existence of rather big fixed-points — they
are maximal elements in a given poset. The theorems we present farther are
concerned with the problem of finding possibly small fixed-points.

2. Monotone relations

Definition 2.1. Let (P,≤) be a poset. A binary relation R ⊆ P × P is
called monotone if it satisfies:

(∗) (∀a, b, c ∈ P )[a≤ b and aRc implies (∃d ∈ P )bRd and c ≤ d]

(see the figure below). �

In diagrams like this, horizontal arrows are labeled by R and the vertical
arrows are labeled by the order sign ≤.

In the above definition it suffices to assume that a is strictly less than b,
i.e., a < b, because if a = b, the succedent of the monotonicity condition (∗)
is satisfied by the element d := c.

The monotonicity condition can be then written as:
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(∗∗) (∀b, c ∈ P )[≤b ∩Rc �= ∅ implies bR∩ ≤c �= ∅]
or equivalently, by contraposition, as

(∀b, c ∈ P )[bR∩ ≤c = ∅ implies ≤b ∩Rc = ∅].
If π : P → P is a function, then π is monotone if and only if the graph

Rπ of π is a monotone relation in the above sense.

Notes 2.2.

1. Let P0(X) denotes the set of all non-empty subsets of a set X.
There is an obvious one-to-one correspondence between serial relations

defined on a set P and set-valued mappings from P to P0(P ). Indeed, if
R is serial, then define the mapping Tr(R) : P → P0(P ) by Tr(R)a := aR
(= {x ∈ P : aRx}), for all a ∈ P . Conversely, given a mapping T : P →
P0(P ), we define the serial relation Re(T ) ⊆ P × P by: aRe(T )b iff b ∈ Ta,
for a, b ∈ P . Then Re(Tr(R)) = R and Tr(Re(T )) = T .

Let (P,≤) be a complete lattice. Fujimoto [1984] introduces the notion of
an isotone set-valued mapping T : P → P0(P ) as a mapping which satisfies
the condition: for any a, b ∈ P , if a ≤ b then for any c ∈ Ta there exists
a d ∈ Tb such that c ≤ d. It is not difficult to show that a serial relation
R ⊆ P ×P is monotone in the sense of the above Definition 2.1 if and only if
the derived set-valued mapping Tr(R) : P → P0(P ) is isotone in the sense of
Fujimoto [1984]. (In fact, Fujimoto’s definition of an isotone mapping also
makes sense in the wider context of arbitrary posets.) We may therefore
say that Definition 2.1, when restricted to serial relations, is equivalent to
Fujimoto’s definition of isotonicity.

2. Desharnais and Möller [2005] are also concerned with monotone rela-
tions R defined on complete lattices. The meaning of the term ‘monotone
relation’ defined by them differs from the one provided by Definition 2.1. In
fact, in the context of complete lattices they consider four natural conditions
imposed on R and each of them is regarded as generalization of the notion of
a monotone mapping. In other words, they define four independent mean-
ings of the term ‘monotone relation’. The defining conditions introduced by
them are marked below by (a), (b), (c), and (d), respectively. �
Definitions. Let (P,≤) be a complete lattice and let R be a binary relation
on P . Consider the following conditions:

(a) (∀a, b ∈ P )[a < b implies inf aR ≤ inf bR],
(b) (∀a, b ∈ P )[a < b implies inf aR ≤ sup bR],
(c) (∀a, b ∈ P )[a < b implies sup aR ≤ inf bR],
(d) (∀a, b ∈ P )[a < b implies sup aR ≤ sup bR].
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According to Desharnais and Möller [2005], each of these sentences is treated
as the definiens of the monotonicity definition of R. Consequently, (a)–(d)
individually yield four different definitions of monotonicity. �

Desharnais and Möller prove that in the general case the above condi-
tions are independent. But they note that if R is serial, then the following
implications hold:

(c) ⇒ (a) ⇒ (b) and (c) ⇒ (d) ⇒ (b).

Moreover, if R is a total function, all the four conditions are equivalent
and they state that the function R is monotone.

The key theorem proved by Desharnais and Möller (Theorem 5) states
that if R is serial and satisfies (c) then R has a least reflexive point.

None of these four conditions is equivalent to Definition 2.1. But in case
the poset (P,≤) is a complete lattice, condition (∗) of Definition 2.1 and con-
ditions (a)–(d) are not independent altogether. We have the following simple
observations that relate the notions of monotonicity defined by Desharnais
and Möller to the notion provided by Definition 2.1.

The first observation shows that in the context of complete lattices, De-
finition 2.1 is stronger than the definition of monotonicity provided by con-
dition (d):

Proposition 1. Let (P,≤) be a complete lattice and let R be a binary
relation on P . If R is monotone in the sense of Definition 2.1, then R is
monotone in the sense of (d).

Proof. Let a, b ∈ P and a < b. We must show that sup aR ≤ sup bR. If
the set aR is empty, the thesis trivially holds, because sup aR = sup ∅ = 0 ≤
sup bR. We consider the case aR is non-empty. As R is monotone in the
sense of Def. 2.1, it follows that for every c ∈ aR there exists d ∈ bR such
that c ≤ d. Consequently, for every c ∈ aR it is the case that c ≤ sup bR.
Whence sup aR ≤ sup bR.

The second observation says that in the context of complete lattices, the
definition of monotonicity of serial relations provided by condition (c) is
stronger than Definition 2.1:

Proposition 2. Let (P,≤) be a complete lattice and let R be a serial binary
relation on P . If R is monotone in the sense of (c), then R is monotone in
the sense of Definition 2.1.

Proof. Suppose that a≤ b and aRc for some a, b, c ∈ P . We claim that
there exists d ∈ P such that bRd and c ≤ d.
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The claim evidently holds if a = b, because it suffices to put d := c. We
assume that a < b. But then condition (c) implies that sup aR ≤ inf bR. As
c ∈ aR, it follows that c ≤ sup aR ≤ inf bR. Hence c ≤ inf bR.

As R is serial, the set bR is non-empty. Let d be an element of bR. As
inf bR ≤ d, it follows that c ≤ inf bR ≤ d. Hence bRd and c ≤ d.

It follows from the above facts that in the class of complete lattices the
scope of Definition 2.1 for serial relations is limited by conditions (c) and
(d) in the sense that the implications (c) ⇒ (∗) ⇒ (d) hold.

In this paper we adopt Definition 2.1 and from now on this definition
constitutes the meaning of the term ‘monotone relation’.

If a finite poset (P,≤) is endowed with a non-trivial monotone relation
R, then R has reflexive points. The non-triviality of R means that there
are elements a, b ∈ P such that a≤ b and aRb. Indeed, let P0 := {y ∈ P :
(∃x ∈ P )(x ≤ y ∧ xRy)}. The subset P0 is finite and non-empty. Let a* be
a maximal element in P0 in the sense of ≤. As a* belongs to P0, there exists
x in P such that x ≤ a* and xRa*. Hence, by monotonicity, there exists
b ∈ P such that a*Rb and a* ≤ b. It follows that b also belongs to P0. Due
to maximality of a* we get that a* = b. So a*Ra*.

In this section we are mainly concerned with infinite ordered frames. Our
goal is to prove the existence of reflexive points in such frames by applying
methods weaker than the Axiom of Choice.

A poset (P,≤) is called chain-σ-complete if (P,≤) has a zero element 0
and every well-ordered chain in (P,≤) of type ≤ ω has a supremum.

Definition 2.3. Let (P,≤) be a chain-σ-complete poset and let R ⊆ P ×P
be a binary relation.

1. R is called chain-σ-continuous if R is monotone and it additionally
satisfies the following condition:

(cont)σ For every strictly increasing sequence of elements of P of type ω

a0 < a1 < . . . < an < an+1 < . . .

and for every increasing sequence

b0 ≤ b1 ≤ . . . ≤ bn ≤ bn+1 ≤ . . .

of elements of P of type ≤ ω, if it is the case that anRbn for all n, then
sup{an : n ∈ ω}R sup{bn : n ∈ ω}.

(cont)σ can be equivalently formulated as follows:



138 J. Czelakowski

for every chain C in (P,≤) of type ω and for every monotone mapping
f : C → P , if aRf(a) for all a ∈ C, then sup(C)R sup(f [C]).

2. R is chain-σ-continuous in the stronger sense if it is chain-σ-continu-
ous and additionally satisfies the following condition:

(∗)σ For every chain D in (P,≤) of type ω and for every element a ∈ P , if
aRd for all d ∈ D, then aR sup(D). �

It is not difficult to prove that R is chain-σ-continuous in the stronger
sense if and only if it is monotone and satisfies:

(cont)*σ For any two monotone mappings f : ω → P and g : ω → P , if
f(n)Rg(n) for all n ∈ ω, then sup(f [ω])R sup(g[ω]).

It is easy to see that in light of Theorem 1.1, the condition (cont)σ can be
equivalently formulated as a sentence in which one quantifies over arbitrary
countably infinite chains C and not only over chains of type ω. The same
remark applies to the condition (∗)σ.

The proof of Theorem 2.4 below requires a certain weak and plausible
form of the Axiom of Choice, viz. the Axiom of Dependent Choices:

Axiom of Dependent Choices (DC).

For each set A, for each binary serial relation R on A and for each
a ∈ A, there exists a function f : ω → A such that f(0) = a and
f(n)Rf(n + 1) for all n ∈ ω.

DC is unprovable from the standard axioms of ZF (Fraenkel, Mostowski).
This fact together with the well-known Cohen’s proof of the independence
of AC from the axioms of ZF implies that DC itself is independent from ZF.
Moreover DC is known to be strictly weaker than AC.

The following observation shows that the antecedent of (count)σ is not
vacuously satisfied for certain relations:

Observation. Assume the Axiom of Dependent Choices. Let (P,≤) be a
poset. If a relation R ⊆ P×P is a monotone and serial, then for every chain
a0 < a1 < . . . an < an+1 < . . . in (P,≤) of type ω, there exists a countable
chain b0 ≤ b1 ≤ . . . ≤ bn ≤ bn+1 ≤ . . . in (P,≤) of type less or equal to ω
such that anRbn for all n.

Indeed, let a0 < a1 < . . . an < an+1 < . . . be a chain of type ω. As R
is serial, there exists an element b0 ∈ P such that if a0Rb0. Since a0 ≤ a1

and a0Rb0, the monotonicity of R implies the existence of an element b1 ∈ P
such that a1Rb1 and b0 ≤ b1. As a1 ≤ a2 and a1Rb1, there exists an
element b2 ∈ P such that a2Rb2 and b1 ≤ b2, again by monotonicity. Going



Monotone Relations, Fixed Points and Recursive Definitions 139

farther, as a2 ≤ a3 and a2Rb2, there exists an element b3 ∈ P such that
a3Rb3 and b2 ≤ b3. Continuing this procedure, we define a countable chain
b0 ≤ b1 ≤ . . . ≤ bn ≤ bn+1 ≤ . . . in (P,≤) such that anRbn for all n. �

The above proof is an application of the so called Principle of Indeter-
minate Definability by Arithmetical Recursion. (We shall later discuss this
principle in detail.) This principle is frequently used in mathematical proofs,
often without mentioning it. The idea is that in the induction base one freely
picks out one of several options, say c0. Then, in the induction step, having
defined elements c0, c1, . . . , cn, one has a range for freedom of picking out the
consecutive element. Let it be cn+1. We shall later check that the Principle
of Indeterminate Definability by Arithmetical Recursion is equivalent to the
Axiom of Dependent Choices.

(We leave it to the reader to check that DC really is used in the above
proof. Here is an outline of the formal proof. Given a chain a0 < a1 <
. . . an < an+1 < . . . of type ω in (P,≤), we define the following set of triples:

A := {(an, an+1, c) : n ∈ ω, anRc, c ∈ P}.

Then the binary relation S is defined on the set A according to the
formula:

(x1, x2, x3)S(y1, y2, y3) iff (∃n ∈ ω)(x1 = an ∧ y1 = an+1 ∧ x3 ≤ y3).

The fact that R is monotone implies that S is serial. Indeed, suppose
(x1, x2, x3) ∈ A. Then, for some n ∈ ω, x1 = an, x2 = an+1, and anRx3. As
an < an+1 and anRx3, the monotonicity of R implies the existence of y3 ∈ P
such that an+1Ry3 and x3 ≤ y3. Putting y1 := an+1 and y2 := an+2, we see
that (y1, y2, y3) ∈ A and (x1, x2, x3)S(y1, y2, y3).

As R is serial, there exists b0 ∈ P such that (a0, a1, b0) ∈ A. By the
seriality of S and DC, there exists a mapping g : ω → A such that f(0) =
(a0, a1, b0) and g(n)Sg(n + 1) for all n ∈ ω. We then define f : ω → P
as follows. Let n ∈ ω. Suppose g(n) = (an, an+1, b). Then f(n) := b.
Evidently, f [ω] is a chain such that anRf(n) for all n ∈ ω.)

The basic observation concerning fixed-points of σ-continuous relations
is provided by the following theorem:

Theorem 2.4. Assume the Axiom of Dependent Choices. Let (P,≤) be
a σ-chain-complete poset. Every chain-σ-continuous relation R ⊆ P × P
such that the set 0R is non-empty has a fixed-point a*. Moreover, a* can be
assumed to have the following property: for every y ∈ P , if yR ⊆≤ y, then
a*≤y.
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Proof. 0 is the least element in (P,≤). 0 is the supremum of the empty
chain. As R is chain-σ-continuous, R is a monotone relation in (P,≤).

We define:

Q := {x ∈ P : xR ∩ x≤�= ∅ and (∀y ∈ P )(yR ⊆≤y implies x ≤ y)}.

We notice that 0 ∈ Q, because the set 0R is non-empty.

Lemma 1. R+Q, the restriction of R to Q, is ∃-expansive in the poset (Q,≤).

Proof of the lemma. Let a ∈ Q. As aR ∩ a≤�= ∅, there exists b ∈ P
such that

(1) aRb and a≤ b.

We prove that b ∈ Q. This will show that R+Q is ∃-expansive. By (1)
and the monotonicity of R in (P,≤), there exists c ∈ P such that bRc and
b ≤ c (see the figure below). This means that the set bR∩ b≤ is non-empty.

Now let y be an arbitrary element of P such that yR ⊆≤y. We show
b ≤ y. As a ∈ Q and yR ⊆≤y, we have that a≤ y. As aRb, the monotonicity
of R implies the existence of an element z ∈ P such that yRz and b ≤ z (see
the diagram below). Since z ∈ yR and yR ⊆≤y, we get that z ≤ y. We
thus have that b ≤ z ≤ y, which gives that b ≤ y. This proves that b ∈ Q.

If C is a well-ordered chain in (P,≤) of type ω and f : C → P is a
monotone mapping, then the f -image f [C] is a chain of type ≤ ω. Hence
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sup(f [C]) exists in (P,≤). Evidently, every chain in (Q,≤) is also a chain
in (P,≤). Consequently, by the σ-continuity of R:

(2) For every chain C in (Q,≤) of type ω and for every monotone map-
ping f : C → P such that xRf(x) for all x ∈ C, it is the case that
sup(C)R sup(f [C]).

Lemma 2. Let C be a chain in (Q,≤) of type ω. Assume that there exists
a monotone mapping f : C → Q such that xRf(x) and x ≤ f(x) for all
x ∈ C. Then the supremum sup(C) belongs to Q.

Proof of the lemma. Let m := sup(C). We show m ∈ Q. By (2) we
have that mR sup(f [C]). Furthermore, as x ≤ f(x) for all x ∈ C, it follows
that m = sup(C) ≤ sup(f [C]). This shows that sup(f [C]) ∈ mR ∩ m≤.
Hence

(3) mR ∩m≤�= ∅.

Now let y ∈ P be an element such that yR ⊆≤y. We claim that m ≤ y.
As C ⊆ Q, we have that x ≤ y for all x ∈ C, by the second conjunct of the
definition of Q. It follows that m = sup(C) ≤ y. This and (3) prove that
m ∈ Q.

We now proceed to the proof of the theorem. We inductively define a
strictly increasing sequence a0 < a1 < . . . < an < an+1 < . . . of elements of
Q (see the diagram below). The type of the sequence is smaller or equal to ω.
We assume the Axiom of Dependent Choices and define: a0 := 0. Suppose
the elements a0 < a1 < . . . < an have been defined. As an ∈ Q and, by
Lemma 1, the relation R+Q is ∃-expansive, there exists an element b ∈ Q
such that an ≤ b and anRb. If b = an, the defining procedure terminates.
In this case a* := an is already a fixed-point of R. As a* belongs to Q,
the second statement of the thesis of the theorem evidently holds for a*. If
b �= an, we put: an+1 := b. Clearly an < an+1.

It remains to consider the case when the sequence a0 < a1 < . . . < an <
an+1 < . . . has type ω. In this case we put C := {an : n ∈ ω} and define
f : C → P by f(an) := an+1 for all n ∈ ω. f is well-defined and monotone.
As C ⊆ Q, aRf(a) and a≤ f(a) for all a ∈ C, the supremum sup(C) belongs
to Q, by Lemma 2. Furthermore sup(C)R sup(f [C]), by the σ-continuity of
R. But evidently sup(C) = sup(f [C]) because a0 = 0 (see the figure below).
Putting a* := sup(C), we thus see that a*Ra*. So a* is a reflexive point of
R. Since a* ∈ Q, it follows that for every y ∈ P , if yR ⊆≤y, then a* ≤ y.
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Notes 2.5.

(1). The assumption of σ-continuity, and hence monotonicity of R, in
Theorem 2.4 is essential and cannot be dropped altogether. For let P = [0, 1]
be the closed unit interval of real numbers. Evidently, the system (P,≤)
with the usual ordering ≤ of real numbers is a chain-σ-complete poset. The
relation R ⊆ P × P is defined as follows:

aRb if and only if (∃n ∈ ω, n ≥ 1)|a− b| = (1/2)n.

It is easy to see that:

(a) R is symmetric and serial,

(b) R is not monotone,

(c) R does not posses a fixed-point.

As to (b), observe that for the numbers 1/2 and 1, we have 1/2R1 and
1/2 < 1. But there does not exists a number d ∈ [0, 1] such that 1Rd and
1 ≤ d.
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(2). The hypothesis that (P,≤) is chain-σ-complete is essential in The-
orem 2.4. For let P = {1, 2, a, b}, where 1 < 2 and a < b. Let R be the
relation on P defined as follows:

R := {〈1, a〉, 〈a, 1〉, 〈2, b〉, 〈b, 2〉}.

R is symmetric and monotone. R is also chain σ-continuous. But R does
not possess a fixed-point. The poset (P,≤) is not chain-σ-complete because
it does not have the least element, the supremum of the empty chain. �

Let (P,≤) be a chain-σ-complete poset. A mapping π : P → P is called
order σ-continuous if it is monotone and

π(sup(C)) = sup(π[C])

for every chain C in (P,≤) of type ω.
Since for any monotone mapping π : P → P , the image π[C] of any

chain C in (P,≤) is a chain as well, we see that, in view of the chain-σ-
completeness of (P,≤), the above formula thus postulates the equality of
the two supremums and not their existence.

It is clear that a mapping π : P → P is σ-continuous in the above sense
if and only if the graph Rσ is σ-continuous as a binary relation.

The following well-known observation is a direct consequence of Theo-
rem 2.4.

Theorem 2.6. Let (P,≤) be a chain-σ-complete poset. Every σ-continuous
mapping π : P → P has a least fixed-point a*, i.e., π(a*) = a* and

(∀b ∈ P )(π(b) ≤ b implies a* ≤ b).

Proof. The above result does not require the Axiom of Dependent Choices
but it requires the Arithmetic Induction Principle (see Metatheorem 3.1
below). We work with the graph Rπ of π and proceed as the proof of Theorem
2.4. Since π is σ-continuous, the graph Rπ i is a chain-σ-continuous relation
and 0Rπ = {π(0)}. By Theorem 2.4, there is a fixed-point a* of Rπ such
that for every b ∈ P , bRπ ⊆ b≤ implies that a* ≤ b. But the last condition
simply says that for every b ∈ P , π(b) ≤ b implies a* ≤ b.

Let us also note that the chain a0 ≤ a1 ≤ . . . ≤ an ≤ an+1 ≤ . . . ,
defined as in the proof of Theorem 2.4 for the relation Rπ, has the following
properties:

a0 = 0,

an+1 = π(an), for all n.

Furthermore, a* = sup({an : n ∈ ω}).
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Notes 2.7.

1. The above chain a0 ≤ a1 ≤ . . . ≤ an ≤ an+1 ≤ . . . is known as
Kleene’s approximation sequence (Kleene [1952]. It can also be found in
Tarski’s [1955] classical paper. Many properties of such objects are compiled
in Chapter 4 of Davey and Priestley [2002].

2. Apart from the notion of chain-σ-completeness of a poset, one can
define the relative properties formulated in terms of countable well-ordered
chains and countable directed subsets.

We say that a poset (P,≤) is:

(A) linearly-σ-complete if every countable chain C in (P,≤) (not necessar-
ily of type ω ) has a supremum,

(B) directed-σ-complete if every countable directed subset D in (P,≤) has
a supremum.

It is clear that the chain-σ-completeness implies property (A) and that
(B) implies the chain-σ-completeness. However, it readily follows from The-
orem 1.1 that in the presence of the Axiom of Dependent Choices the above
three properties are equivalent. In the sequel we will not carefully distin-
guish between these three situations. We shall however uniformly formulate
the results discussed in this chapter in terms of the chain-σ-completeness of
posets.

3. Theorem 2.6 should be compared with Theorem 3.6 in the next section
— see Note following Theorem 3.6.

4. Let (P,≤) be a complete lattice and let π : P → P be a monotone
mapping. Tarski’s Fixed-Point Theorem (Tarski [1955]) states that the set
of fixed-points of π forms a non-empty complete lattice for the ordering
of (P,≤). The weak version of the above theorem, stating that under the
above assumptions π has a fixed-point, is called the Knaster-Tarski theo-
rem, because a special case of this theorem (for the lattices of powersets)
was proved by Knaster already in 1928. There is vast literature devoted to
Tarski’s Theorem (in both versions). This theorem was generalized in var-
ious directions - see e.g. Berman and Blok [1988]. Fujimoto [1984] extends
the Knaster-Tarski theorem to the case of set-valued mappings. Fujimoto’s
paper [1984] is chronologically the first work in the literature which is (im-
plicitly) concerned with fixed-points of relations. In the paraphrased but
equivalent form, expressed in terms of monotone relations, the main result
proved by Fujimoto says the following: �
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Theorem. Let (P,≤) be an inductive poset. Let R be a serial and monotone
relation defined on (P,≤). Suppose moreover that for every a ∈ P the subset
Ka :=

⋃
{≤u : u ∈ aR} of P is inductive. Then R has a fixed-point.

In particular, if (P,≤) is a complete lattice, π : P → P is a mapping,
and R is the graph of π, then the set Ka coincides with ≤π(a) (= {x ∈ P :
x ≤ π(a)}). The last set is inductive. It follows from the above theorem
that if π is monotone then it has as a fixed-point. Thus the Knaster-Tarski
theorem is a consequence of Fujimoto’s result.

For the sake of completeness of the presentation we shall insert here a
short proof of Fujimoto’s Theorem and show how to relate this theorem to
Theorem 1.6.

If R is serial, then the set aR is non-empty, for all a ∈ P . Consequently,
for any a ∈ P the set Ka is non-empty, because it contains 0.

The inductivity of Ka says that if C is an arbitrary chain in (P,≤) such
that for every c ∈ C there is an element u ∈ P such that c ≤ u and aRu,
then taking supC we also find an element u such that sup C ≤ u and aRu.
In other words, if a sees a world above each element of C, then a sees a
world above supC either.

We then define
Q := {x ∈ P : xR ∩ x≤�= ∅}.

The following observation is due to Fujimoto:

Lemma 1. Q is a non-empty inductive subset of (P,≤).

Proof of the Lemma. As 0 ∈ Q by seriality, it follows that the supremum
of the empty chain belongs to Q.

Let A be a non-empty chain in Q and let b := supA in (P,≤).

Claim. A ⊆ Kb.

Proof. Suppose a ∈ A. As A ⊆ Q the definition of Q implies that there
exists an element c ∈ P such that aRc and a≤ c. Evidently, a≤ b. Then by
monotonicity of R, there exists d ∈ P such that bRd and c ≤ d.
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As a ≤ c and c ≤ d, we have that a ≤ d. Thus bRd and a ≤ d. This
implies that a ∈ Kb. The claim is proved.

Since A ⊆ Kb the assumption of the theorem implies that sup A belongs
to Kb, i.e., b ∈ Kb. This means that there exists c ∈ P such that bRc and
b ≤ c. Hence b ∈ Q.

This proves the lemma.

We also have:

Lemma 2. R is ∃-expansive on Q.

Proof of the lemma. Assume x ∈ Q. Then, by the definition of Q there
exists y ∈ P such that x ≤ y and xRy. As R is monotone on P , it follows
that there exists z ∈ P such that yRz and y ≤ z. This shows that y ∈ Q.
As xRy and x ≤ y, we see that R is ∃-expansive on Q.

Applying Theorem 1.6 to Lemmas 1-2, we conclude that there is an
element a* ∈ Q such that a*Ra* and for every b ∈ Q, a*Rb and a* ≤ b
implies b = a*. The second conjunct says that a* is a maximal element in
Q.

This concludes the proof of Fujimoto’s Theorem.

The fact that Fujimoto’s Theorem can be derived from Theorem 1.6, once
Lemma 1 is established, is not surprising, because Theorem 1.6 is equivalent
to Kuratowski-Zorn’s Lemma. The original proof of Fujimoto’s Theorem
makes use of Zorn’s lemma.

3. Arithmetic Recursion and Fixed-Points

We shall now investigate more closely the logical status of Theorems 2.4
and 2.6. We first recall the Induction Principle for natural numbers and
the Principle of Definability by Arithmetic Recursion. We present the last
principle in two versions.

ω is the least non-empty limit ordinal. The elements of ω are called finite
ordinals or natural numbers. Thus 0 = ∅ is the least natural number and
n + 1 = {0, . . . , n}, for all n ∈ ω.

The Arithmetic Induction Principle.

For each set X ⊆ ω,
0 ∈ X ∧ (∀n ∈ ω)(n ∈ X → n + 1 ∈ X) → X = ω.
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The following fundamental results in axiomatic number theory follow
from the Induction Principle.

The Principle of Definability by Arithmetic Recursion. Version I.

Let A be a non-empty set and let g : A → A be a function. Then for
every a ∈ A there exists exactly one function f : ω → A such that
f(0) = a and f(n + 1) = g(f(n)), for all n ∈ ω.

If A is a set and n ∈ ω, then An is the set of functions from n to A. Note
that A0 = {∅}. We then define A<ω :=

⋃
n∈ω An.

The Principle of Definability by Arithmetic Recursion. Version II.

Let A be a non-empty set and let G : A<ω → A be a function.
Then there exists exactly one function F : ω → A such that F (n) =
G(F +n), for all n ∈ ω.

(F +n is the restriction of F to the set n = {0, 1, . . . , n−1}. Hence F +n ∈ An).
Both principles are also jointly called Arithmetic Recursion Principles.

The second version of the Recursion Principle is called Complete Recursion
in the literature (see e.g. Moschovakis [1994], p. 72).

Metatheorem 3.1. In the presence of the Arithmetic Induction Principle
the following conditions are equivalent:

(a) The Principle of Definability by Arithmetic Recursion. Version I.

(b) The Principle of Definability by Arithmetic Recursion. Version II.

(c) Theorem 2.6.

Proof. (b) ⇒ (a). Assume (b). Let g : A → A be a function and let
a be an arbitrary but fixed element of A. We define G : A<ω → A as
follows. Assume p ∈ An for some n > 0, i.e., p = {〈0, a0〉, . . . , 〈n− 1, an−1〉}.
Then G(p) := g(an−1). If n = 0, A0 = {∅}. Then G(∅) := a, where a is
defined as above. G is thus well-defined. As (b) holds, there exists a unique
function F : ω → A such that F (n) = G(F +n), for all n ∈ ω. For n = 0
we have that F (0) = G(F +0) = G(F +∅) = G(∅) = a. For each n ∈ ω,
F (n+1) = G(F +n+1) = G(F +{0, . . . , n}) = G({〈0, F (0)〉, . . . , 〈n, F (n)〉} =
g(F (n)). We thus see that F has the required properties, viz. F (0) = a and
F (n + 1) = g(F (n)), n ∈ ω. So (a) holds.

(c) ⇒ (b). Let A be a non-empty set and let G : A<ω → A be a
function. We claim that there exists a unique function F : ω → A such that
F (n) = G(F +n), n ∈ ω.
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We define P := A<ω ∪ Aω. The set P is ordered by inclusion. We let 0
denote the empty function. 0 is the smallest element in (P,⊆). We notice
that if p ∈ P , then Dom(p) = ω or Dom(p) = n for some n ∈ ω. It follows
from this remark that if

p0 ⊂ p1 ⊂ . . . ⊂ pn ⊂ pn+1 ⊂ . . .

is a strictly increasing ω-chain of members of P , then the union
⋃

n∈ω pn is
a total function from ω to A and hence a member of P . Consequently, the
poset (P,⊆) is chain σ-complete.

For each function p ∈ P we define the function π(p) ∈ P as follows. We
consider two cases.

Case 1. p is a total function, i.e., Dom(p) = ω.

We then put: Dom(π(p)) = ω and π(p)(n) := G(p+n), n ∈ ω.

Case 2. p is a partial function, i.e., Dom(p) = n.

Then Dom(π(p)) = n + 1 and π(p)(i) := G(p+i), i < n + 1.

Note that in both cases π(p)(0) = G(p+0) = G(0). We also have the
following obvious observation:

Claim 1. π maps P into P .

Claim 2. The mapping π : P → P is monotone.

Proof of the claim. We observe that π acts as a substitution: for each
p ∈ P and each i ∈ Dom(p), π replaces the value p(i) by G(p+i). Further-
more, if p is not total and Dom(p) = n, π adjoins the pair 〈n, G(p+n)〉 to
the graph {〈i, G(p+i)〉 : i ∈ Dom(p)}. It is then clear that for p, q ∈ P , p ⊆ q
implies π(p) ⊆ π(q).

Claim 3. π : P → P is chain σ-continuous.

Proof of the claim.As π is monotone, it suffices to prove that π(supC) =
supπ[C] for every chain C ⊆ P of type ω. Let C be a strictly increasing
chain

p0 ⊂ p1 ⊂ . . . ⊂ pn ⊂ pn+1 ⊂ . . .

of elements of P . For each n ∈ ω we have that Dom(pn) is a natural number
and n ⊆ Dom(pn). (The Arithmetic Induction Principle is used here.) Let
p :=
⋃

n∈ω pn. Then Dom(p) = ω and, consequently Dom(π(p)) = ω and
π(p)(n) = G(p+n) for any n ∈ ω. We then have, for each i ∈ ω and each
a ∈ A, the following chain of equivalent conditions:
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〈i, a〉 ∈ π(supC),

a = π(p)(i),

(∃n ∈ ω)i < n ∧ a = G(p+n)(i),

(∃n ∈ ω)i < n ∧ a = G(pn+n)(i),

(∃n ∈ ω)i < n ∧ a = π(pn)(i),

〈i, a〉 ∈
⋃

n∈ω π(pn),

〈i, a〉 ∈ sup π[C].

Claim 4. If p ∈ P is a fixed-point of π, then p is a total function.

Proof of the claim. Suppose p is a fixed-point of π and Dom(p) = n.
According to the definition of π(p), the function π(p) is defined at n. As
π(p) = p, it follows that p itself is defined at n, which is impossible.

We can now prove (b). In view of (c), π has a least fixed-point, say F .
It follows from Claim 4 that F is a unique fixed-point of π. Indeed, suppose
p is a fixed-point of π. As F is the least fixed-point, we have that F ⊆ p.
But ω = Dom(F ) = Dom(p), by Claim 4. Hence F = p.

As π(F ) = F and F is total, we have that F (n) = π(F )(n) = G(F +n),
n ∈ ω, by the definition of π. So (b) holds.

(a)⇒ (c). Let (P,≤) be a chain-σ-complete poset. Assume π : P → P is
a σ-continuous mapping. By (a) there exists exactly one function f : ω → P
such that f(0) = 0 and f(n + 1) = π(f(n)), for all n ∈ ω. The Arithmetic
Induction Principle then yields:

Claim 5. f [ω] is a chain of type ≤ ω.

Proof of the claim. Define the property Q of natural numbers (i.e., a
subset of ω) by:

Q(n) : f(n) ≤ f(n + 1).

Since f(0) = 0 ≤ f(1), Q(0) holds. Assume Q(n) holds, i.e., f(n) ≤ f(n+1).
As π is monotone, we get that f(n+1) = π(f(n)) ≤ π(f(n+1)) = f(n+2).
So Q(n + 1) holds. Thus Q(n) holds for all n ∈ ω. The claim follows.

As (P,≤) is chain-σ-complete, a* := sup f [ω] exists in P .

Claim 6. a* is the least fixed-point of π.
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Proof of the claim. As f(n) ≤ a* for all n ∈ ω, we have, by monotonic-
ity, that π(f(n)) ≤ π(a*) for all n ∈ ω. Since 0 is the least element in (P,≤),
a* = sup{f(n + 1) : n ∈ ω}. Consequently, by continuity

π(a*) = π(sup{f(n) : n ∈ ω}) = sup{π(f(n)) : n ∈ ω} =

sup{f(n + 1) : n ∈ ω} = a*.

So a* is a fixed-point of π. To prove that a* is the least fixed-point of π,
suppose b ∈ P and π(b) ≤ b. Define the property Q of natural numbers as
follows:

Q(n) : f(n) ≤ b.

Applying the Arithmetic Induction Principle and the fact that π(b) ≤ b,
we easily obtain that Q(n) holds for all natural numbers n. Consequently,
a* := sup f [ω] ≤ b. So (c) holds.

This concludes the proof of Metatheorem 3.1.

It is a well-known fact that each of the above statement (a), (b), (c) of
Metatheorem 3.1 is provable in the standard set theory ZF of Zermerlo and
Fraenkel. It is also a trivial fact from classical logic that if ϕ and ψ are
theorems of whatever theory T , their equivalence ϕ ↔ ψ is a theorem of T
as well. Thus, in a trivial way, the above conditions (a)–(c) are all equivalent
on the basis of ZF. Of course, we can say more: any two mathematical facts
provable in ZF, say ‘2 + 2 = 4’ and ‘There exists a limit ordinal greater
than 0’, are deductively equivalent. But this observation gives us no direct
insight into the proof of the equivalence of these facts, nor in particular into
the equivalence of conditions the above conditions (a)–(c). The significance
of Metatheorem 3.1 consists in the fact it underlies logically relevants facts
that are needed in proving each of the conditions (a)–(b) on the basis of any
other condition from this list.

We now pass to the discussion on the logical (or rather set-theoretic)
status of Theorem 2.4. We first recall the Principle of Countable Choice
(ACω):

The Principle of Countable Choice (ACω).

For each non-empty set A, for each binary serial relation R ⊆ ω×A,
there exists a function f : ω → A such that nRf(n) for all n ∈ ω.

It is well-known that ACω is constructively equivalent to the proposition:
every countable, infinite family X of non-empty and pairwise disjoint sets
admits a choice function, i.e., there exists a function f defined on X such
that f(A) ∈ A for allA ∈ X. (Two propositions are constructively equivalent
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if their equivalence can be established on the basis of the axioms of ZF−

without appealing to any choice principle whatsoever — see Moschovakis
[1994], p. 127. ZF− stands for Zermelo-Fraenkel set theory without the
Axiom of Regularity.)

ACω is known to be weaker than the Axiom of Dependent Choices but
independent of the axioms of ZF.

We define the following indeterminate versions of the Principle of Defin-
ability by Arithmetic Recursion.

We recall that P0(A) is the set of non-empty subsets of a set A.

The Principle of Indeterminate Definability by Arithmetic Recursion.

Version I.

Let A be a non-empty set and let g : A → P0(A) be a function. Then
for every a ∈ A there exists a function f : ω → A such that f(0) = a
and f(n + 1) ∈ g(f(n)), for all n ∈ ω.

The Principle of Indeterminate Definability by Arithmetic Recursion.

Version II.

Let A be a non-empty set and let G : A<ω → P0(A) be a function.
Then there exists a function F : ω → A such that F (n) ∈ G(F +n),
for all n ∈ ω.

The above theorems are also called Indeterminate Arithmetic Recursion
Principles. They are often applied in various set-theoretic contexts. The
procedures based on these principles are referred to as inductive ones. We
mention as examples the proof of the Baire Category Theorem, the proof of
the instance MA(ω) of Martin’s Axiom (see Kunnen [1999], Lemma 2.6 (c),
p. 54), or the proof of the equivalence of various versions of the Axiom of
Regularity in set theory. The proofs of the above results apply Indeterminate
Arithmetic Recursion Principles.

The following observation establishes the relationship between the fixed-
point theorem provided by the statement of Theorem 2.4 and the above
recursion principles.

Metatheorem 3.2. Assume the Arithmetic Induction Principle. In the
presence of the Principle of Countable Choice the following conditions are
equivalent:

(1) The Axiom of Dependent Choices.

(2) The Indeterminate Arithmetic Recursion Principle. Version I.
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(3) The Indeterminate Arithmetic Recursion Principle. Version II.

(4) The statement of Theorem 2.4.

Proof. (1) and (2) are trivially equivalent because every binary relation R
on an arbitrary set A can be viewed as a set-valued function g : A → P(A),
where g(a) := {b ∈ A : aRb} for each a ∈ A, and every serial relation
R ⊆ A×A can be viewed as a function g : A → P0(A) (see Note 2.2).

(3) ⇒ (2). Assume (3). Let g : A → P0(A) be a function and let a be
an arbitrary but fixed element of A. We define G : A<ω → P0(A) as follows.
Assume p ∈ A for some n > 0, i.e., p = {〈0, a0〉, . . . , 〈n− 1, an−1〉} for some
a0, . . . , an−1 ∈ A. We then put G(p) := g(an−1). If n = 0, A0 = {∅}.
Then G(∅) := {a}, where a is defined as above. G is thus well-defined. As
(3) holds, there exists a function F : ω → A such that F (n) ∈ G(F +n),
for all n ∈ ω. For n = 0 we have that F (0) ∈ G(F +0) = G(F +∅) =
G(∅) = {a}. Hence F (0) = a. For each n ∈ ω, F (n + 1) ∈ G(F +n + 1) =
G(F +{0, . . . , n}) = G({〈0, F (0)〉, . . . , 〈n, F (n)〉} = g(F (n)). We thus see
that F has the required properties: F (0) = a and F (n + 1) ∈ g(F (n)),
n ∈ ω. So (2) holds.

(4) ⇒ (3). Let A be a non-empty set and let G : A<ω → P0(A) be
a function. We claim that there exists a function F : ω → A such that
F (n) ∈ G(F +n) for all n ∈ ω.

We define P := A<ω ∪Aω. The set P is ordered by inclusion. 0 denotes
the empty function. 0 is the smallest element in (P,⊆). ((P,⊆) is thus
identical with the poset defined in the proof of the implication (c) ⇒ (b) of
Metatheorem 3.1.) The poset (P,⊆) is chain σ-complete.

We define the following binary relation R ⊆ P × P . Let p, q ∈ P . We
consider two cases.

Case 1. p is a total function, i.e., Dom(p) = ω.

Then pRq if and only if Dom(q) = ω and q(n) ∈ G(p+n) for all n ∈ ω.

Case 2. p is a partial function, i.e., Dom(p) = n for some n ∈ ω.

Then pRq if and only if Dom(q) = n + 1 and q(i) ∈ G(p+i) for all i < n + 1.

Note that in both cases q(0) ∈ G(p+0) = G(0). If p = 0, we have that
0Rq iff Dom(q) = 1 = {0} and q(0) ∈ G(0). Hence 0R = G(0) �= ∅.

Claim 1. The relation R is monotone.

Proof of the claim. Let p, q, and r be elements of P such that p ⊆ q
and pRr. We shall prove that there exists s ∈ P such that qRs and r ⊆ s.
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We consider two cases.

Case 1. p is a total function, i.e., Dom(p) = ω.
As p ⊆ q, we have that Dom(q) = ω. Hence p = q. In this case we simply
put s := r.

Case 2. p is a partial finite function, i.e., Dom(p) = n for some n ∈ ω.
As pRr, we have that Dom(r) = n+1 and r(i) ∈ G(p+i) for all i < n+1. In
particular r(n) ∈ G(p+n). Moreover, as p ⊆ q, we have that n = Dom(p) ⊆
Dom(q). We then consider two subcases:

Subcase 2A. Dom(q) = m for some m ∈ ω.
Then n ≤ m. We define s ∈ P as follows. Dom(s) = m + 1 and

s(i) :=

{
r(i) if i ≤ n

∈ G(q+i) if n + 1 ≤ i ≤ m.

It is clear that r ⊆ s. Furthermore, as pRr, s+n + 1 = r and p ⊆ q, it is also
clear that s(i) ∈ G(q+i) for i = 0, 1, . . . , m. This means that qRs.

Subcase 2B. Dom(q) = ω.
Then s ∈ P is defined as follows. Dom(s) = ω and

s(i) :=

{
r(i) if i ≤ n

∈ G(q+i) if n + 1 ≤ i.

We note that the Principle of Countable Choice is applied here, because
one simultaneously picks out an element from each set from the countably
infinite list of non-empty sets G(q+i), where i ∈ ω and n + 1 ≤ i.

It is then clear that r ⊆ s and s(i) ∈ G(q+i) for all i ∈ ω. Hence qRs.

Claim 2. R is chain σ-continuous.

Proof of the claim. Let C be a strictly increasing chain

p0 ⊂ p1 ⊂ . . . ⊂ pn ⊂ pn+1 ⊂ . . .
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of elements of P of type ω, and let f : C → P be a monotone mapping
such that pnRf(pn+1) for all n ∈ ω. The sets Dom(pn), n ∈ ω, form a
strictly increasing sequence of natural numbers. Applying the Arithmetic
Induction Principle we get that n ⊆ Dom(pn), for all n ∈ ω. Furthermore
Dom(f(pn)) = Dom(pn) + 1, and

(∗) f(pn)(i) ∈ G(pn+i) for all i ≤ Dom(pn), n ∈ ω.

As f : C → P is monotone, we also have that the functions f(pn), n ∈ ω,
form an increasing chain

f(p0) ⊆ f(p1) ⊆ . . . ⊆ f(pn) ⊆ f(pn+1) ⊆ . . .

of type ≤ ω. It follows that p :=
⋃

n∈ω pn and q :=
⋃

n∈ω f(pn) are well-
defined functions and Dom(p) = Dom(q) = ω. Consequently, p, q ∈ P and,
by (∗),

q(i) ∈ G(p+i) for all i ∈ ω.

Hence pRq. This proves the claim.

Claim 3. If p ∈ P is a fixed-point of R, then Dom(p) = ω.

Proof of the claim. Suppose Dom(p) = n for some n ∈ ω. According
to the definition of π(p), the function π(p) is defined at n. As pRp, the
definition of R yields that p is defined at n, which is impossible.

We can now prove (3). The above remarks show that (P,⊆) and R
satisfy the assumptions of (4). It follows that R has a fixed-point p* ∈ P .
Furthermore, for every q ∈ P , if qR ⊆≤q, then p* ⊆ q.

As p*Rp*, we have that Dom(p*) = ω and p*(i) ∈ G(p*+i) for all i ∈ ω.
Putting F := p*, we see that (3) holds.

Note that ACω is required in the proof of implication (4) ⇒ (3).

(1) ⇒ (4). This is Theorem 2.4.

It follows from the proof of Metatheorem 3.2 that in the presence of the
Arithmetic Induction Principle, each of the conditions (1)–(3) is equivalent
to the conjunction of ACω and Theorem 2.4. In particular, the Axiom of
Dependent Choices (DC) is equivalent to the conjunction of the Principle
of Countable Choice and Theorem 2.4. It is unknown whether Theorem
2.4 itself implies ACω. This fact would entail the effective equivalence of
Theorem 2.4 with DC.

Example. We take a closer look at the proof of Baire’s Theorem. This
theorem is formulated here in the following form:
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Let (X, d) be a complete metric space. Let A0, A1, . . . be a countable se-
quence of closed nowhere dense subsets of X. Then the union

⋃
n∈ω An

is a proper subset of X.

Proof. Let B be the set of all open balls in (X, d) with radius < 1/2. For
each n ∈ ω we define

Pn := {a ∈ B : a ∩An = ∅}.
Since each set X \An is dense and open in X, it follows that a∩(X \An) �= ∅
for all n and all open balls a. Hence Pn �= ∅, for all n.

Let
A :=

⋃

n∈ω

{n} × Pn.

Let ra denote the radius of the ball a. We then define the relation R ⊆ A×A
as follows: for (m, a), (n, b) ∈ A,

(m, a)R(n, b) iff n = m + 1, a ⊇ b and rb < (1/2)ra.

Claim. R is serial.

Proof of the claim. Let (m, a) be an element of A. Then a ∈ Pm, which
means that a∩Am = ∅. As a∩(X \Am+1) is non-empty, there exists an open
ball b such that b ⊆ a ∩ (X \Am+1)) and rb < (1/2)ra. So (m, a)R(n, b).

We then select a ball a ∈ P0. By the Axiom of Dependent Choices, there
exists a mapping f : ω → A such that f(0) = (0, a) and f(n)Rf(n + 1) for
all n ∈ ω. We may then write

f(n) = (n, an), for all n.

The burden of the proof of the theorem rests on the definition of the above
sequence of balls an, for all n. This definition requires DC.

Let xn and ra be the center and the radius of an, respectively, for all
n ∈ ω. The conclusion of the proof of the theorem is reached when one
notices that

1. {xn} is a Cauchy sequence in (X, d).
2. Let x be the limit of {xn} in (X, d). Then x �∈ An, for all n ∈ ω.

Hence
⋃

n∈ω An is a proper subset of X.

We shall discuss a certain property of relations, which is stronger than
monotonicity, viz. the transfer property for upper bounds of chains. Mono-
tonicity is a special case of the transfer property obtained by restricting the
latter property to one-element chains.
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Definition 3.3. Let (P,≤) be a poset and let R ⊆ P × P be a binary
relation. We say that upper bounds of directed sets in (P,≤) are transferable
with respect to R if the following holds:

For every non-empty directed set D in (P,≤), for every monotone
mapping f : D → P such that xRf(x) for all x ∈ D, and for every
upper bound a of D in (P,≤) there exists an element b ∈ P such that
b is an upper bound of the directed set f [D] in (P,≤) and aRb. �

In other words, under the adopted assumptions, if for every x ∈ D the
world x sees the world f(x), then each upper bound of D sees a world b
which is an upper bound of f [D].

By confining the above property to certain types of directed subsets,
further refinements of the transfer property are defined, as e.g. the transfer-
ability of upper bounds of chains and the transferability of upper bounds of
well-ordered chains.

In the sequel we will be mainly concerned with chain-complete posets.
Therefore the format of the transfer property will be restricted to the con-
texts in which inductive posets occur. But the results presented below also
holds for the other types of posets we have introduced.

Corollary 3.4. If (P,≤) is a chain-complete poset. Let R ⊆ P × P be a
binary relation. The following conditions are equivalent:

(1) Upper bounds of arbitrary chains in (P,≤) are transferable with respect
to R.

(2) R is monotone and R satisfies the following condition:

(∗) For every non-empty chain C in (P,≤), for every monotone
mapping f : C → P such that xRf(x) for all x ∈ C, there exists
an element b ∈ P such that sup(C)Rb and sup(f [C]) ≤ b.

The analogous fact holds for directed-complete posets and well-ordered
chain-complete posets, respectively, with chains replaced by directed sets and
well-ordered chains, respectively.

Proof. (1) ⇒ (2). Assume (1) holds. We first show R is monotone. Let
u, v, z be a triple of elements of P such that uRz and u ≤ v. C := {u}
is a one-element chain and the mapping f : C → P given by f(u) := z is
monotone. Trivially xRf(x) for all x ∈ C. As v is an upper bound of C, (1)
implies that there exists w ∈ P such that w is an upper bound of f [C] and
vRw (see the figure below). Hence z ≤ w and vRw. So R is monotone.
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The second conjunct of (2) directly follows from (1), because sup(C) is
trivially an upper bound of C.

(2) ⇒ (1). Assume (2) holds. Let C be a non-empty chain in (P,≤) and
let f : C → P be a monotone mapping such that xRf(x) for all x ∈ C. Let
a be an upper bound of C. As (P,≤) is chain-complete, sup(C) exists and
obviously sup(C) ≤ a. By (2) (∗) there exists b0 ∈ P such that sup(C)Rb0

and sup(f [C]) ≤ b0. Hence, by the monotonicity of R, there exists b ∈ P
such that aRb and b0 ≤ b (see the figure below).

We then have that sup(f [C]) ≤ b0 ≤ b, which gives that b is an upper
bound of the chain f [C]). So (1) holds.

If π : P → P is a monotone mapping (in the usual sense), then upper
bounds of arbitrary chains are transferable with respect to the graph Rπ.
For let C be a non-empty chain in (P,≤). Assume f : C → P is a monotone
mapping such that xRπf(x) for all x ∈ C and let a be an upper bound of
C. Evidently, f(x) = π(x) for all x ∈ C. As x ≤ a for all x ∈ C, we obtain
that π(x) ≤ π(a) for all x ∈ C, by the monotonicity of π. It follows that
b := π(a) is an upper bound of the chain f [C] in (P,≤) and aRπb.

We shall supplement the list of fixed-point theorems for relations with
the following observation:

Theorem 3.5. Assume the Axiom of Choice. Let (P,≤) be a chain-complete
poset. Let R ⊆ P×P be a relation such that upper bounds of arbitrary chains
in (P,≤) are transferable with respect to R. Suppose that the set 0R is non-
empty. Then R has a fixed-point a*. Furthermore, a* can be assumed to
have the property: for every y ∈ P , if yR ⊆≤y, then a* ≤ y.



158 J. Czelakowski

The analogous results hold for well-ordered chain-complete posets and
directed-complete posets.

The proof is omitted.

In comparison with Theorem 2.4, Theorem 3.5 assumes a stronger prop-
erty of the poset (P,≤), viz. chain-completeness. In turn, the property of
chain-σ-continuity of a relation is replaced by the transferability of upper
bounds of chains.

The above theorem provides a general, order-theoretic setting of a half
of the well-known back and forth method from model theory, namely of the
forth part (see e.g. Czelakowski [2006]).

The proof, which much resembles the proof of Theorem 2.4, is omitted.
It will be presented in another paper. It should be underlined that not
the full strength of AC is required here but merely a stronger version of
the Axiom of Dependent Choices, which is called the Ordinal Principle of
Choice. (Set-theoretic aspects of Theorem 3.5 are not discussed here.)

Note. The fixed-point a* need not be unambiguously defined: there may
be many elements a* satisfying the second statement of the above theorem.
In order to better elucidate the above question, we introduce the following
definition.

Let (P,≤, R) be an ordered frame. An element a ∈ P is called a strong
fixed-point of R (or a is a strong reflexive point of R) if aRa and aR ⊆≤a,
i.e., aRz implies z ≤ a for all z.

It follows from Theorem 3.5 that each of the fixed-points a* of R satis-
fying the last statement of the theorem is equal or smaller than all strong
reflexive points of R. Indeed, suppose that a is a strong reflexive point of R.
Then aR ⊆≤ a. Consequently, a* ≤ a. But a* itself need not be a strong
reflexive point. We produce an appropriate example.

Let P = {0, a, b, 1} be a four element poset with the order declared by
0 < a < 1 and 0 < b < 1. The elements a and b are incomparable — see the
diagram below.



Monotone Relations, Fixed Points and Recursive Definitions 159

Moreover, let R ⊆ P × P be the relation defined by:

R := {(0, a), (a, a), (a, 1), (0, b), (b, b), (b, 1), (1, 1)}
(see the diagram below).

We have:

(1) (P,≤) is an inductive poset.

(2) R is monotone.

(3) Upper bounds of chains in (P,≤) are transferable with respect to R.

(4) 1 is a strong reflexive point of R.

(5) a and b are incomparable reflexive points of R smaller than 1.

(6) a and b are not strong reflexive points but they satisfy the statement
of Theorem 3.5.

(The proof of (2) is straightforward but tedious. Among 64 triples (x, y, z)
(with repetitions) of elements of P only 17 of them satisfies the condition:
xRz and x ≤ y. Then in each such a case one finds w such that yRw and
z ≤ w.

To prove (3) one applies Corollary 3.4.(2) and examines non-empty chains
C in (P,≤), viz. the subsets {0, a, 1}, {0, b, 1}, {0, a}, {0, b}, {a, 1}, {b, 1}, {0,
1}, {0}, {a}, {b}, {1}, together with monotone mappings f : C → P such
that xRf(x) for all x ∈ C. There are 25 such situations. In each situation
the statement of Corollary 3.4.(2) holds.)

If one slightly modifies the definition of R, namely one deletes the pair
(1, 1) from R, the resulting relation is not monotone because for the triple
(1, b, 1) it is the case that bR1 and b ≤ 1, but there is no element w in P such
that 1Rw and 1 ≤ w. This new relation does not possess strong reflexive
points but a and b remain its reflexive points. �

The proof of the following result does not require the Axiom of Choice.

Theorem 3.6. Let (P,≤) be an inductive poset. Let π : P → P be a
monotone mapping. Then π has the least fixed-point, i.e., there exists a* in
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P such that π(a*) = a* and for every y ∈ P , if π(y) ≤ y, then a* ≤ y. An
analogous result holds for directed-complete posets and well-ordered chain-
complete posets, respectively.

Proof. As π is monotone, the graph of π satisfies the hypotheses of Theo-
rem 3.5. The Axiom of Choice is not needed here.

Notes 3.7.

1. Theorem 2.6 proved in the previous section should not be confused
with Theorem 3.6 — the latter is not a generalization of the former. The
thesis of Theorem 3.6, viz, every monotone mapping π : P → P has a
least fixed-point a*, is indeed stronger that the thesis of Theorem 2.6 but
Theorem 3.6 assumes more about the poset (P,≤) (it requires (P,≤) to be
chain-complete and not merely chain-σ-complete). Thus in the narrower
context formed by inductive posets, the hypothesis of σ-continuity of π,
which is essential in Theorem 2.6, is dropped here altogether and replaced
by the weaker condition of monotonicity.

The proof of Theorem 3.6 can be found in Chapter 8 of Davey and
Priestley [2002] and in Moschovakis [1994]. Theorem 3.6 can also be found
in Markowsky [1976], where in turn it is attributed to Bourbaki, based on
some ideas of Zermelo.

2. In the contexts where families of related results for various notions of
order completeness are presented one may use the notion of Z-sets in the
sense of Wright, Wagner and Thatcher [1978]. They consider the following
(meaningful) definition scheme “A poset (P,≤) is Z-inductive if it has a sub-
posets C of Z-compact elements such that for every element a of P there is
a Z-set X ⊆ C such that a = sup(X)”, where the symbol Z ranges over such
adjectives as “directed”, “linear”, “well-ordered”, etc. Many theorems in the
theory of posets differ only in their instantiations of Z. Similar phenomenon
occurs when one considers such notions as Z-completeness of Z-continuity.
Wright, Wagner and Thatcher abstracted out the essential common proper-
ties of the different instantiations of Z and proved common theorems within
the resulting abstract framework. In this paper we do not make an explicit
use of the above definition scheme. But some definitions and results of this
paper can be uniformly formulated in terms of Z-sets as e.g. various instanti-
ations of Definition 3.3 or Corollary 3.4, where Z ranges over the properties:
transferability of upper bounds of directed subsets, transferability of upper
bounds of chains and transferability of well-ordered chains. We shall devote
more space to Z-sets in another paper devote to algebraic posets and the
ways of defining various objects by means of extending monotone mappings
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from a poset (P,≤) to a directed-complete poset (Q,≤) to order continuous
mappings from the algebraic completion of (P,≤) to (Q,≤). �

4. The downward Loewenheim-Skolem-Tarski Theorem

As an illustration of the scope of Theorem 2.4 we outline here an alter-
native proof of the downward Loewenheim -Skolem-Tarski Theorem (LST,
for short). This theorem belongs to model theory. LST states, roughly,
that every infinite model A has an elementary submodel of any intermedi-
ate power between the cardinality of the language and of the cardinality of
A. The standard proof of LST applies Indeterminate Arithmetic Recursion
Principle (in whatever version) — see e.g. Chang and Keisler [1973, Theorem
3.1.6] The model-theoretic notions applied here are standard.

A language is a set being the union of threes sets: a set of relational sym-
bols (predicates), a set of function symbols, and a set of constant symbols.
(Constant symbols are often viewed as nullary function symbols.) If L is a
language, then For(L) denotes the set of first-order formulas of L.

Theorem 4.1 (Downward Loewenheim-Skolem-Tarski Theorem). Let L be
a language and let α and β be cardinal numbers such that |For(L)| ≤ β≤ α.
Let A be a model for L of cardinality α. Then A has an elementary submodel
of cardinality β. In fact, for any subset X0 ⊆ A of power ≤ β, the model A
has an elementary submodel of power β which contains X0 as a subset of its
universe.

Proof. Let P be the family consisting of all subsets X ⊆ A such that
|X| = β and X0 ⊆ X. Evidently, P is non-empty because |A| ≥ β. We have:

(A) The family P , ordered by inclusion, is chain-σ-complete.

Indeed, for any non-empty countable chain C (of type ≤ ω) of subsets
of A such that |X| = β for all X ∈ C, the union

⋃
C has cardinality β.

Furthermore, the set 0 := X0 is the least element of P . 0 is the supremum
of the empty chain.

We define the following binary relation R on the poset (P,⊆): for
X, Y ∈ P ,

XRY iff X ⊆ Y and for every formula Φ(x, x1, . . . , xn) ∈ For(L) and
any sequence a1, . . . , an ∈ X (of length n) such that

A 
 (∃x)Φ[a1, . . . , an]
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there exists b ∈ Y such that

A 
 Φ[b, a1, . . . , an].

XRY thus says that the set Y includes X and furthermore, for each
formula Φ(x, x1, . . . , xn) and any n-tuple a1, . . . , an ∈ X satisfying (∃x)Φ
in A, the set Y contains at least one b ∈ A such that the (n + 1)-tuple
b, a1, . . . , an satisfies Φ(x, x1, . . . , xn) in A. The set Y may also contain
some other elements of A but the cardinality of Y should not exceed β.

(P,⊆, R) is an ordered frame. As |For(L)| ≤ β, the crucial observation
is that

(B) The relation R is serial, i.e., for any X ∈ P there exists Y ∈ P such
that XRY .

Furthermore, the definition of R gives that for any X, Y, X1, X2, Y ∈ P :

(C) If XRY then X ⊆ Y .

(D) X1 ⊆ X2 and X2RY implies X1RY .

It follows from (B) and (C) that R is ∀-expansive. But, more interest-
ingly,

(E) The relation R is chain-σ-continuous (in the stronger sense).

We first check that R is monotone in (P,⊆). Assume X, Y, Z ∈ P so
that X ⊆ Y and XRZ. Evidently Y ∪ Z belongs to P . By (B) and (C),
there exists a set W such that Y ∪ ZRW and Y ∪ Z ⊆ W . As Y ∪ ZRW ,
(D) gives that Y RW . Evidently Z ⊆W . This proves monotonicity.

Suppose we are given two non-empty chains of elements of P ,

Y0 ⊆ Y1 ⊆ . . . ⊆ Yn ⊆ Yn+1 ⊆ . . . and Z0 ⊆ Z1 ⊆ . . . ⊆ Zn ⊆ Zn+1 ⊆ . . . ,

the first chain of type ω , such that YnRZn for all n. It is clear that the sets⋃
n∈ω Yn and

⋃
n∈ω Zn belong to P . We claim that

⋃

n∈ω

Yn R
⋃

n∈ω

Zn.

The fact that YnRZn for all n implies that Yn ⊆ Zn for all n. Hence⋃
n∈ω Yn ⊆

⋃
n∈ω Zn.

Let Y :=
⋃

n∈ω Yn and Z :=
⋃

n∈ω Zn. Let Φ(x, x1, . . . , xk) be a formula
in For(L) and let a1, . . . , ak be a sequence of elements of Y (of length k)
such that

A 
 (∃x)Φ[a1, . . . , ak].
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There exists n ∈ ω such that a1, . . . , ak ∈ Yn. Since YnRZn, there exists
b ∈ Zn such that

A 
 Φ[b, a1, . . . , an].

Consequently, there exists b ∈ Z such that

A 
 Φ[b, a1, . . . , an].

As Φ(x, x1, . . . , xk) is an arbitrary formula in For(L) and a1, . . . , ak are ar-
bitrary elements of Y , this proves that Y RZ. So R is σ-continuous.

As R is serial, then trivially the set 0R is non-empty. The system
(P,⊆, R) thus satisfies the assumptions of Theorem 2.4. It follows that
the relation R has a fixed-point in (P,⊆), say B. It is then easy to verify
that B is a universe of an elementary submodel B of A. As B belongs to P ,
the cardinality of B is equal to β.
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Processing Information

from a Set of Sources

Abstract. We introduce a general framework for solving the problem of a computer

collecting and combining information from various sources. Unlike previous approaches

to this problem, in our framework the sources are allowed to provide information about

complex formulae too. This is enabled by the use of a new tool — non-deterministic

logical matrices. We also consider several alternative plausible assumptions concerning

the framework which lead to various logics. We provide strongly sound and complete

proof systems for all the basic logics induced in this way.

Keywords: Information processing, multiple sources, non-deterministic matrices, non-

classical logics, paraconsistency.

1. Introduction

The idea considered in this paper has originated from Belnap, whose fa-
mous four-valued logic [9, 8]1 stemmed from considering the problem of a
computer collecting and combining information from various sources. Later
Belnap’s approach was extended by Carnielli and Lima-Marques in their so-
ciety semantics [10] to consider various information collecting and processing
strategies applied by the computer (or some other agent). However, both
works considered just the simple case of sources providing information only
about atomic formulas of some logical language (which corresponds to the
case of simple relational databases). Unfortunately, this does not capture
all the situations encountered in practice, for e.g. knowledge bases and dis-
junctive databases can also provide information about complex formulas.
Accordingly, in this paper we extend the previous approaches in an essential
way by allowing the sources to provide information about complex formulae
too. This is enabled by the use of a new tool — non-deterministic logical
matrices (Nmatrices — see [5, 6, 4]), which is necessary in view of the fact
that ordinary logical matrices are unable to capture the above general case.

The structure of the paper is as follows. In Section 2 we describe our
general framework for processing information coming from different sources,
as well as several various plausible assumptions concerning it, leading to

1Actually, this logic should be called Dunn-Belnap logic, since it was originally intro-
duced by Dunn [12].

D. Makinson, J. Malinowski, H. Wansing (eds.), Towards Mathematical Philosophy,
Trends in Logic, 28 c© Springer Science + Business Media B.V. 2009
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important special cases. In Section 3 we investigate the four basic logics
obtained by adopting the simplest such assumption, according to which a
processor accepts any proposition declared true by one of its sources (even
if this leads to contradictions). Two of these logics (Dunn-Belnap logic and
the basic paraconsistent 3-valued logic) are well-known. The two others
are new. Section 4 shortly investigates an alternative strategy, in which a
processor initially accepts a proposition only if all its sources declare it to
be true. This strategy also leads to a famous logic: Kleene’s strong 3-valued
logic. In Section 5 we introduce calculi of sequents for all these logics, and
prove their strong soundness and completeness, as well as a strong version
of the admissibility of the cut rule in them. Finally, in Section 6 we outline
directions for future research.2

2. The framework

2.1. Informal description

Assume we have a framework for information collecting and processing,
which consists of a set of information sources S and a processor P . The
sources provide information about formulas of the classical propositional
logic LC (which we take here to be based on the connectives {¬,∨,∧}). We
assume that for each such formula ϕ, a source s ∈ S can say that ϕ is true,
that ϕ is false, or that it has no knowledge about ϕ. Thus, every source de-
fines some (possibly partial) valuation (using the two classical truth-values).
Note that we do not assume here that the valuations must be homomor-
phisms of formulas into logical values. In turn, the processor collects infor-
mation from the sources, combines it according to some strategy, processes
the result and finally defines its resulting combined valuation (denoted in
the sequel by d) of formulas in LC . Analogously as in case of sources, the
processor’s valuation need not be a homomorphism either.

Clearly, for any formula ϕ ∈ LC , the processor can encounter at the infor-
mation collecting stage four possible situations concerning the information
it gets from the sources:

• It has information that ϕ is true but no information that ϕ is false
• It has information that ϕ is false but no information that ϕ is true
• It has both information that ϕ is true and information that ϕ is false
• It has no information on ϕ at all

2The first short description of our framework was given in [7]. In that paper, the basic
proof system used here was derived using some general method, yielding a roundabout
proof of a rather weak form of the soundness and completeness theorem for that system.
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In view of the above, a natural logical domain for the considered framework
features four logical values corresponding to the four cases above, which are
usually denoted3

t = {1}, f = {0},  = {0, 1}, ⊥ = ∅,

Here 1 and 0 represent the classical logical values of true and false (re-
spectively), and so  represents inconsistent information, while ⊥ denotes
absence of information. Among these four truth values, we take as desig-
nated t and  — the truth values whose assignment to a formula ϕ means
that the processor has information that ϕ is true (even though it might also
have information that ϕ is false). This represents the so-called weak seman-
tics. Another possible option could have been to consider strong semantics,
whereby the only designated value is t, which means ϕ is deemed satisfied if
the processor has information that ϕ is true, but has no information that ϕ
is false. However, the consequence relation induced by the strong semantics
can be simulated by the weaker one employed here (see Subsection 2.4).

2.2. Variants of the model

The general model introduced above has many variants, corresponding to
various assumptions on the kind of information provided by the sources
and the strategy used by the processor to combine it. Within this general
framework, we can classify the resulting system under four kinds of criteria:

1. Behavior of each source.

2. Behavior of the whole set of information sources.

3. Procedure for collecting information from the sources.

4. Procedure for processing the collected information.

Exemplary basic assumptions concerning those criteria are listed below.

2.2.1. Behavior of each source

i) Scope of information provided by a source:

(a) It provides information about all propositions (complete knowledge),
i.e., assigns either 0 or 1 to each formula.

3Especially in the literature on bilattices — see e.g. [16, 15]. An alternate notation
(see e.g. [13]) uses b (for both) to denote {0, 1}, n (for neither) to denote ∅, T to denote
{1}, and F to denote {0}.
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(b) It provides information about some propositions only (partial knowl-
edge), i.e., assigns either 0 or 1 to some formulas only (with no par-
ticular logical restrictions).

(c) It provides information only about (some/all) atomic propositions
(partial/complete atomic knowledge).

ii) Logical characteristics of a source:
The assignment of values by a source can be restricted by certain logical
constraints. For example, we could demand that:

(a) For any formulas A, B such that A ∼ B (where ∼ denotes classi-
cal equivalence), each source should assign the same value to A and
B. Instead of classical equivalence, other types of logical equiva-
lence, more plausible from the implementation viewpoint, can also
be considered here.

(b) The sources should be classically coherent: i.e., the partial valua-
tion provided by each of the sources should be extendable to a full
classical valuation.

(c) The sources should be classically closed, meaning that if ϕ classically
follows from Γ, then any source which assigns 1 to all formulas in Γ
should assign 1 to ϕ too, and that 1 (0) is assigned to ¬ϕ iff 0 (1) is
assigned to ϕ.

2.2.2. Behavior of the whole set of information sources

We may assume that, e.g.:

1. For each atomic proposition F , there is at least one source which provides
information about F .

2. For an arbitrary proposition F , there is at least one source which provides
information about F .

2.2.3. Procedure for collecting information from the sources

The processor can use various strategies in combining information from the
sources. Thus it can accept a formula ψ as true (false) whenever:

Existential strategy: At least one source assigns ψ the value 1 (0). Note
that in this case there is a possibility of assigning both 1 and 0 to the
same formula. In such a case, the processor uses the truth value .

Note 2.1. Since a source might assign at most one classical truth-value to a
formula, we might identify a source valuation with a total function from F to
{t, f,⊥} (and even change our definition of a source valuation accordingly).
Hence we may view the sources as using three out of the four truth values
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in our many-valued framework — namely, t, f and ⊥, but not . However,
in a more complex or hierarchic framework, a processor P provided with
information by some sources could in turn supply information to another
processor P ′ by passing to P ′ the values it has assigned to formulas (based
on the information from its sources). In such a framework, also the sources
may use all of the processor’s truth-values (including ). This idea has
indeed been taken up and investigated by Y. Shramko and H. Wansing in
[19, 20]. However, in this paper we examine just a single “information layer”.

Universal strategy: All the sources assign ψ the value 1 (0). Note that in
this case the processor might assign no value to a formula even if its
sources are of the “know all” type. In other words, the processor might
use ⊥ even if the sources assign some classical logical value in {0, 1} to
every formula (and so implicitly use t and f only).

Unanimous voting strategy: Some sources assign ψ the value 1 (0), and no
source assigns 0 (1). This amounts to the universal policy, but with “all
sources” applied only to the sources which give a definite answer.

Preferred sources strategies: Each of the three preceding strategies can be
applied using a preferred set of sources (determined by ψ) rather than
the whole set of sources.

2.2.4. Procedure for information processing

After collecting the direct information from the sources, the processor processes
that information to define its own valuation d of formulas in LC . We assume
that during that stage the processor derives from the above direct informa-
tion at least the most basic new information provided by an inspection of
the truth tables of classical logic. By this we mean that

1. If the processor has already assigned ai1 , . . . , aik to ϕi1 , . . . , ϕik (respec-
tively), and according to the classical truth tables the truth-value of
�(ϕ1, . . . , ϕn) should be b (b ∈ {0, 1}) whenever for every 1 ≤ l ≤ k the
truth-value of ϕil is ail , then the processor assigns b to �(ϕ1, . . . , ϕn)
(For example: If ϕ is assigned 1 then ϕ ∨ ψ is also assigned 1).

2. If the processor has already assigned b ∈ {0, 1} to �(ϕ1, . . . , ϕn), and
according to the classical truth tables the truth-value of �(ϕ1, . . . , ϕn)
can be b only if the truth-value of ϕi0 is a (where 1 ≤ i0 ≤ n), then the
processor assigns a to ϕi0 (For example: If ϕ∨ψ is assigned 0 then both
ϕ and ψ are assigned 0, by two applications of this principle).

Note that these two principles might again lead to 0 and 1 being both as-
signed to the same formula. Note also that a stronger assumption on the
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processor’s procedure for information processing might have been that it
fully respects everything dictated by the truth tables of classical logic (For
example: If ψ is assigned 0, and ϕ ∨ ψ is assigned 1, then ϕ is assigned 1).
This possibility is not investigated here.

2.3. Formal definitions

The source-processor framework is formalized as follows:4

Definition 2.1. Let A and F be the set of all atomic formulas and the set of
all formulas of the language LC of propositional classical logic, respectively.

• By a source valuation we mean a partial function s : F → {0, 1}.
• By a processor valuation we mean a function v : F → P({0, 1}).
• By a source-processor structure we mean a tuple S = 〈S, g, d〉, where S

is a non-empty set of source valuations, g is an arbitrary processor valu-
ation, and d is a processor valuation satisfying the following conditions:

(d0) g(ϕ) ⊆ d(ϕ) for every formula ϕ;

(d1) 0 ∈ d(¬ϕ) iff 1 ∈ d(ϕ);

(d2) 1 ∈ d(¬ϕ) iff 0 ∈ d(ϕ);

(d3) 1 ∈ d(ϕ ∨ ψ) if 1 ∈ d(ϕ) or 1 ∈ d(ψ);

(d4) 0 ∈ d(ϕ ∨ ψ) iff 0 ∈ d(ϕ) and 0 ∈ d(ψ);

(d5) 1 ∈ d(ϕ ∧ ψ) iff 1 ∈ d(ϕ) and 1 ∈ d(ψ);

(d6) 0 ∈ d(ϕ ∧ ψ) if 0 ∈ d(ϕ) or 0 ∈ d(ψ).

(d1)–(d6) are called the standard integrity conditions for LC .

Note 2.2. (d1)–(d6) are the rules which correspond to our above minimal
assumptions concerning the processor’s procedure for information process-
ing. Note that the converses of (d3) and (d6) do not hold. For example, since
the sources can provide information about complex formulas, the processor
might e.g. be informed that ϕ ∨ ψ is true without being told either that ϕ
is true or that ψ is true. As from the truth of ϕ ∨ ψ we cannot conclude
either the truth of ϕ or the truth of ψ, this means that the processor cannot
ascribe 1 to any of these formulas based on the information that ϕ ∨ ψ is
true — which is why we could not assume that the converse of (d3) holds.

Definition 2.2. A source-processor structure 〈S, g, d〉 for LC is called stan-
dard, if d is the minimal processor valuation satisfying conditions (d0)–(d6).

4This section has benefited from discussions with David Makinson.
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Each source-processor structure S = 〈S, g, d〉 can be seen as a represen-
tation of an instance I of the source-processor framework defined informally
in Subsection 2.1, with the two being related as follows:

• S is the set of source valuations defined by the sources present in the
instance I, where, for each s ∈ S, s(ϕ) = 1 iff ϕ is true according to
source s, and s(ϕ) = 0 iff ϕ is false according to source s;

• g represents the global information collected by the processor directly
from the sources, i.e., 1 ∈ g(ϕ) (resp. 0 ∈ g(ϕ)) iff, after information
collecting, ϕ is accepted by the processor as true (resp. false);

• d represents the information derived by the processor from g during the
information processing stage, i.e., 1 ∈ d(ϕ) (resp. 0 ∈ d(ϕ)) iff, after
processing the global information in g, the processor concludes that ϕ is
true (resp. false).

From the viewpoint of the information collecting strategy, in this paper
we consider the following two basic types of source-processor structures:

Definition 2.3. A source-processor structure S = 〈S, g, d〉 is called:

• existential, iff for any ϕ ∈ F ,

1 ∈ g(ϕ) iff ∃ s ∈ S.s(ϕ) = 1 and 0 ∈ g(ϕ) iff ∃ s ∈ S.s(ϕ) = 0

• universal iff for any ϕ ∈ F ,

1 ∈ g(ϕ) iff ∀ s ∈ S.s(ϕ) = 1 and 0 ∈ g(ϕ) iff ∀ s ∈ S.s(ϕ) = 0

Next we turn to the logics induced by source-processor structures. Each
such structure S = 〈S, g, d〉 naturally generates a satisfaction relation on the
formulas in F (determined by the final processor valuation d):

Definition 2.4. Let S = 〈S, g, d〉 be a source-processor structure. Then S
satisfies (is a model of):

• a formula ϕ ∈ F , in symbols |=S ϕ, iff 1 ∈ d(ϕ).
• a set of formulas F ⊂ F , in symbols |=S F , iff for any ϕ ∈ F , |=S ϕ.

Accordingly, each source-processor structure or, more generally, a class of
source-processor structures, induces the corresponding consequence relation:

Definition 2.5. Let J be a class of source-processor structures. The con-
sequence relation induced by J is the relation �J on P(F) × F such that
T �J ϕ if every S ∈ J which is a model of T is also a model of ϕ.
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2.4. The need for using sequents

In the context of source-processor structures, the expressive power of for-
mulas of LC is too weak. Thus there is no way to express that a certain
formula ϕ is not true (meaning that 1 �∈ d(ϕ)). In the classical framework
the fact that ϕ is not true is equivalent to the truth of ¬ϕ. However, in
the present context the truth of ¬ϕ means only that 0 ∈ d(ϕ), and this
neither implies nor is implied by 1 �∈ d(ϕ). Similarly, there is no way to
express disjunctive knowledge of the form “one of the sentences ϕ and ψ is
known to be true” (meaning that either 1 ∈ d(ϕ) or 1 ∈ d(ψ)), because it
is possible that 1 ∈ d(ϕ ∨ ψ) but neither 1 ∈ d(ϕ) nor 1 ∈ d(ψ). These
problems can be overcome by using Gentzen-type sequents for expressing
these two types of knowledge that cannot be expressed directly in the lan-
guage. The idea is that given a source-processor structure 〈S, g, d〉, a sequent
ϕ1, . . . , ϕn ⇒ ψ1, . . . , ψk expresses the information that either 1 �∈ d(ϕ1), or
1 �∈ d(ϕ2), or . . . or 1 �∈ d(ϕn), or 1 ∈ d(ψ1), or . . . or 1 ∈ d(ψk).

Another shortcoming of LC is that it does not possess any implication
connective that corresponds to the intended consequence relation. Again this
problem is (essentially) overcome by using sequents, since sequents provide
non-nestable (“first-degree”, in the terminology of [2]) version of implication.

Finally, in addition to the considerable enhancement of the expressive
power of our language provided by sequents, the latter will be also used
in their usual role – to built sequent-based Gentzen calculi which offer an
excellent mechanism for reasoning about information.

The notions of model and satisfaction, and the corresponding conse-
quence relations are extended to the language of sequents in a straightfor-
ward way:

Definition 2.6.

• A sequent is a structure of the form Γ ⇒ Δ, where Γ and Δ are finite sets
of formulas. We denote by Seq the set of all sequents in the language LC .

• Let S = 〈S, g, d〉 be a source-processor structure. S satisfies (is a model
of) a sequent Σ = Γ ⇒ Δ, in symbols |=S Σ, iff either S is a model of
some formula in Δ, or it is not a model of some formula in Γ.

• Let J be a class of source-processor structures. The sequent consequence
relation induced by J is the relation �J on P(Seq)×Seq s.t. Q �J Σ if
every S ∈ J which is a model of Q is also a model of Σ.

Note 2.3. It can easily be seen that if Γ is a finite subset of F , and ϕ is
a formula in F , then Γ �J ϕ iff �J Γ ⇒ ϕ iff {⇒ ψ | ψ ∈ Γ} �J⇒ ϕ.
Hence the sequent consequence relation �J can be seen as an extension of
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the formula consequence relation �J defined above (Definition 2.5). This
justifies the use of the same symbol to denote both.

Note 2.4. Given a source-processor structure 〈S, g, d〉 and a formula ϕ,
every known basic fact about d(ϕ) can be expressed by sequents as follows:

• 1 ∈ d(ϕ) iff |=S⇒ ϕ

• 1 �∈ d(ϕ) iff |=S ϕ⇒
• 0 ∈ d(ϕ) iff |=S⇒ ¬ϕ

• 0 �∈ d(ϕ) iff |=S ¬ϕ⇒
One corollary of this fact is that, given a class of source-processor structures
J , a formula ϕ follows from a set T of formulas according to the strong
semantics (see Subsection 2.1) iff both G(T ) �J⇒ ϕ and G(T ) �J ¬ϕ ⇒,
where G(T ) = {⇒ ψ | ψ ∈ T} ∪ {¬ψ ⇒| ψ ∈ T}. Hence the consequence
relation induced by the strong semantics can be simulated by the weak one
investigated in this paper.

3. Existential strategy for standard structures

In this section we assume that the existential strategy is adopted, and in-
vestigate under this assumption certain basic variants of standard source-
processor structures for LC (shortly referred to as “standard structures”).
We shall consider the following four basic scenarios — the first two corre-
sponding to well-known logics, and the other two new.

I Dunn-Belnap’s logic: the sources provide information about atomic for-
mulas only, but not necessarily about all of them;

II D’Ottaviano and da Costa’s basic paraconsistent logic: Like the preced-
ing case, but the sources taken together are required to provide some
information about all atomic formulas.

III The most general source-processor logic: The sources provide informa-
tion about arbitrary formulas, both atomic and composed ones, but not
necessarily about all of them.

IV General source-processor logic with complete information: As the pre-
ceding case, but the sources taken together are required to provide some
information about all atomic formulas.

To handle the new logics arising out of the last two cases, we need a gener-
alization (see Note 3.2) of the notion of an ordinary logical matrix, namely
non-deterministic matrices (shortly: Nmatrices) introduced in [5, 6]:
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Definition 3.1.

1. A non-deterministic matrix (Nmatrix for short) for a propositional lan-
guage L is a tuple M = 〈V,D,O〉, where:

(a) V is a non-empty set of truth values.
(b) D is a non-empty proper subset of V (the “designated values”).
(c) For every n-ary connective � of L, O includes a corresponding n-ary

function �̃ from Vn to 2V − {∅}.
2. Let F be the set of formulas of L. A (legal) valuation in an Nmatrix M

is a function v : F → V that satisfies the following condition for every
n-ary connective � of L and ψ1, . . . , ψn ∈ L:

v(�(ψ1, . . . , ψn)) ∈ �̃(v(ψ1), . . . , v(ψn))

3. A valuation v in an Nmatrix M is a:

• model of (satisfies) a formula ψ in M (v |=M ψ) if v(ψ) ∈ D.

• model of a set T ⊆ F in M (v |=M T ) if v |=M ψ for all ψ ∈ T .

• model of a sequent Σ = Γ ⇒ Δ (v |=M Σ) iff either v |=M ψ for
some ψ ∈ Δ, or v �|=M ψ for some ψ ∈ Γ.

4. The formula consequence relation induced by the Nmatrix M (denoted
by �M) is defined by: T �M ϕ if every model of T inM is also a model of
ϕ. The corresponding sequent consequence relation induced by M (also
denoted by �M) is defined similarly (compare Definition 2.6).

Note 3.1. Again, we have (see Note 2.3) that for every Nmatrix M, every
finite subset Γ ⊆ F , and every formula ϕ ∈ F , Γ �M ϕ iff �M Γ ⇒ ϕ iff
{⇒ ψ | ψ ∈ Γ} �M⇒ ϕ.

Note 3.2. An ordinary (deterministic) multiple-valued matrix can be seen as
a special case of an Nmatrix, in which the interpretations of the connectives
always return singletons. Accordingly, we shall identify ordinary matrices
with this special case of Nmatrices (identifying a truth-value a with the
singleton {a}).

3.1. Dunn-Belnap’s logic

The first case we examine is when the sources provide (possibly incomplete)
information about atomic formulas only, and the processor uses the existen-
tial strategy to combine the direct information from the sources and obtain
the global information g. We shall show that the logic induced by this class of
structures coincides with Dunn-Belnap’s four-valued logic ([12, 9, 8]). This
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logic is induced by the following four-valued matrix M4
B = 〈V,D,O〉, where

V = {f,⊥,, t},D = {, t},O = {¬̃, ∨̃, ∧̃}, and the interpretations of the
connectives are given by the following tables (see Note 3.2):

∨̃ f ⊥  t

f f ⊥  t
⊥ ⊥ ⊥ t t
  t  t
t t t t t

∧̃ f ⊥  t

f f f f f
⊥ f ⊥ f ⊥
 f f  
t f ⊥  t

¬̃ f ⊥  t

t ⊥  f

Recalling what f,⊥,, t stand for, these tables are best understood using
the following well-known equivalent representation of M4

B:

Definition 3.2. Let v0 : A → P({0, 1}).

• The Belnap extension of v0 is the function v : F → P({0, 1}) defined
inductively as follows:

(b0) v(p) = v0(p) for p ∈ A;

(b1) If 1 ∈ v(ϕ), then 0 ∈ v(¬ϕ);

(b2) If 0 ∈ v(ϕ), then 1 ∈ v(¬ϕ);

(b3) If 1 ∈ v(ϕ) or 1 ∈ v(ψ), then 1 ∈ v(ϕ ∨ ψ);

(b4) If 0 ∈ v(ϕ) and 0 ∈ v(ψ), then 0 ∈ v(ϕ ∨ ψ);

(b5) If 1 ∈ v(ϕ) and 1 ∈ v(ψ), then 1 ∈ v(ϕ ∧ ψ);

(b6) If 0 ∈ v(ϕ) or 0 ∈ v(ψ), then 0 ∈ v(ϕ ∧ ψ).

• A Belnap valuation is a function v : F → P({0, 1}) being a Belnap
extension of some valuation v0 : A → P({0, 1}). The set of all Belnap
valuations will be denoted by V(M4

B).

• A Belnap model of Γ ⊆ F is any v ∈ V(M4
B) such that ∀ϕ ∈ Γ.1 ∈ v(ϕ)

(note this is equivalent to taking t and  as the designated values).

• The Belnap formula consequence relation and the Belnap sequent conse-
quence relation (both denoted in the sequel by �M4

B
) are defined based

on the notion of a Belnap model in the usual way (see Definitions 2.5,
2.6, and the end of Definition 3.1. Since ordinary matrices are a special
type of Nmatrices, �M4

B
is actually an instance of the latter).

Lemma 3.1. Each Belnap valuation satisfies the converses of (b1)–(b6).
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Proof. In the inductive process of extending v0 : A → P({0, 1}) to a
Belnap valuation v, the inclusion of 0 or 1 in the value of a composed formula
can be due to exactly one of the rules (b1)–(b6). Hence the result.

Definition 3.3. Let EA denote the class of standard source-processor struc-
tures S = 〈S, g, d〉, where each s ∈ S is undefined outside A (i.e., the sources
provide information about atomic formulas only), and the processor uses the
existential strategy to obtain g out of the valuations in S.

Lemma 3.2. We have the following correspondence between M4
B and EA:

(1) ∀v ∈ V(M4
B) ∃S ∈ EA ∃S ∃g.S = 〈S, g, v〉

(2) ∀S ∈ EA ∀S ∀g ∀d.S = 〈S, g, d〉 → d ∈ V(M4
B)

Proof. Ad (1): Define S = 〈Sv, gv, v〉, where Sv = {s0
v, s

1
v}, and for ϕ ∈ F :

(i) si
v(ϕ) = i if ϕ ∈ A and i ∈ v(ϕ), undefined otherwise

(ii) gv(ϕ) = v(ϕ) if ϕ ∈ A, ∅ otherwise.
Since v ∈ V(M4

B), by (ii), v is the minimal extension of gv which satisfies
(b1)-(b6). Lemma 3.1 implies that it is also the minimal extension of gv

which satisfies (d1)-(d6). Hence S is a standard structure. It is easy to see
that i ∈ gv(ϕ) ⇔ ∃s ∈ S.i = s(ϕ) (for ϕ ∈ A and i ∈ {0, 1}). Since gv(ϕ) is
non-empty only for ϕ ∈ A, this implies that S is existential. Hence S ∈ EA.
Ad (2): Assume S = 〈S, g, d〉 ∈ EA. Since s(ϕ) is undefined for ϕ �∈ A,
also g(ϕ) = ∅ for ϕ �∈ A. Accordingly, g can be viewed as a function from
A to P({0, 1}). As S is a standard structure, d is the minimal processor
valuation which satisfies conditions (d0)–(d6). Let v be the Belnap extension
of g. Then v(p) = g(p) for p ∈ A, which in view of g(ϕ) = ∅ for ϕ �∈ A
implies that g(ϕ) ⊆ v(ϕ) for every ϕ ∈ F . This and Lemma 3.1 imply that
v satisfies conditions (d0)–(d6). Hence by the minimality of d we must have
d ⊆ v. However, since d(p) = v(p) for atomic p, and d satisfies conditions
(b1)–(b6), the converse implication must also hold by Definition 3.2. Thus
d = v, and d is a Belnap valuation.

Proposition 3.1. �E A=�M4
B
.

Proof. This is immediate from Lemma 3.2.

3.2. D’Ottaviano and da Costa’s basic paraconsistent logic

Case II refers to the situation when the sources provide complete information
about atomic formulas, and no information about complex ones. Since we
assume here the existential strategy, this implies that g(p) �= ⊥ for every
atomic formula p. By induction on the complexity of formulas (using (d1)–
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(d6)), one can show that d(ϕ) �= ⊥ for every formula. Accordingly, the
difference between this case and the previous one is that this time we have to
do with just the three logical values f,, t. Therefore, this case is represented
by the ordinary three-valued submatrix M3

B = 〈V,D,O〉 of M4
B, with V =

{f,, t},D = {, t},O = {¬̃, ∨̃, ∧̃}, and the deterministic interpretations of
the connectives given by:

∨̃ f  t

f f  t
   t
t t t t

∧̃ f  t

f f f f
 f  
t f  t

¬̃ f  t

t  f

This matrix corresponds to the {¬,∨,∧}-fragment of D’Ottaviano and da
Costa’s logic J3 ([17, 18, 3, 14]).

Proposition 3.2. Let ECA denote the class of standard source-processor
structures S = 〈S, g, d〉, where each s ∈ S is undefined outside A, the proces-
sor uses the existential strategy to obtain g out of the valuations in S, and
g(ϕ) �= ⊥ for every ϕ ∈ A (i.e., the sources taken together provide informa-
tion about all atomic formulae). Then �E C A=�M3

B
.

The proof is similar to that of Proposition 3.1, so we omit it.

3.3. The most general source-processor logic

Now we shall discuss the most general case (III), when the sources can
provide information about arbitrary formulas, including the complex ones,
but that information may not cover all formulas, i.e. it may be incomplete.
It is easy to see that in this case the conditions (d1)–(d6) from Subsection
2.3, obeyed by the processor in assigning values to formulas, imply that
the presented setup can be described by the four-valued Nmatrix M4

I =
〈V,D,O〉, where V = {f,⊥,, t},D = {, t},O = {¬̃, ∨̃, ∧̃}, and the non-
deterministic interpretations of the connectives are given by the following
tables:

∨̃ f ⊥  t

f {f,} {t,⊥} {} {t}
⊥ {t,⊥} {t,⊥} {t} {t}
 {} {t} {} {t}
t {t} {t} {t} {t}

∧̃ f ⊥  t

f {f} {f} {f} {f}
⊥ {f} {f,⊥} {f} {f,⊥}
 {f} {f} {} {}
t {f} {f,⊥} {} {t,}

¬̃ f ⊥  t

t ⊥  f
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Intuitively, any legal valuation of M4
I represents possible information about

values of formulas in a standard source-processor structure. To better un-
derstand this, let us examine the rather surprising entry in the table for ∨̃
saying that ⊥∨̃⊥ = {t,⊥}. Suppose that in a source-processor structure
S = 〈S, g, d〉 we have d(ϕ) = d(ψ) = ⊥. Then 0 �∈ d(ϕ) and 0 �∈ d(ψ), so by
(d4) 0 �∈ d(ϕ∨ψ). Hence two cases are possible. If also 1 �∈ d(ϕ∨ψ) (which
is what one might expect in case 1 �∈ d(ϕ) and 1 �∈ d(ψ)), then d(ϕ∨ψ) = ⊥.
If 1 ∈ d(ϕ ∨ ψ) (e.g. because there is a source s such that s(ϕ ∨ ψ) = 1, in
which case 1 ∈ g(ϕ∨ψ) in view of the existential globalisation strategy used
by the processor), then d(ϕ∨ψ) = t. This justifies the two options included
in this table entry; some other entries are explained in [7].

Proposition 3.3. Let E denote the class of standard source-processor struc-
tures where the processor uses the existential strategy. Then �E =�M4

I
.

Proof. Let V(M4
I) be the set of legal valuations of M4

I . Obviously, v is in
V(M4

I) iff it satisfies conditions (d1)-(d6). It follows that

(1) ∀S ∈ E ∀S ∀g ∀d. S = 〈S, g, d〉 → d ∈ V(M4
I)

Now assume that v ∈ V(M4
I). For i = 0, 1 and for every ϕ ∈ F , let si

v(ϕ) = i
if i ∈ v(ϕ), and undefined otherwise. It is easy to see that S = 〈{s0

v, s
1
v}, v, v〉

is an element of E . Hence:

(2) ∀v ∈ V(M4
I) ∃S ∈ E ∃S ∃g.S = 〈S, g, v〉

The theorem is now immediate from (1) and (2).

3.4. General source-processor logic with complete information

The last case is when the sources provide complete information about all
atomic formulas (but they may provide information, not necessarily com-
plete, about other formulas too). Thus for any atomic formula p of LC ,
some source in S must say either that p is true or that p is false. Like in
Subsection 3.2, one can easily prove by induction that under this condition
no formula is given the value ⊥. Thus in this case too only three truth-
values are employed. However, this time the scenario gives rise to a logic
based on a three-valued Nmatrix. This is the Nmatrix M3

I = 〈V,D,O〉,
where V = {f,, t},D = {, t},O = {¬̃, ∨̃, ∧̃}, and the non-deterministic
interpretations of the connectives are given by:

¬̃ f  t

t  f

∨̃ f  t

f {f,} {} {t}
 {} {} {t}
t {t} {t} {t}

∧̃ f  t

f {f} {f} {f}
 {f} {} {}
t {f} {} {t,}



Processing Information from a Set of Sources 179

We leave the proof of the following easy proposition to the reader:

Proposition 3.4. Let EC denote the class of standard source-processor
structures where the sources taken together provide some information about
every atomic formula, and the processor uses the existential strategy. Then
�E C =�M3

I
.

4. The universal strategy

In this section we discuss in brief the case in which the processor applies the
universal strategy in collecting information from the sources. Note first that
if there are at least two sources then g(ϕ) may be ⊥ in this case, even if all the
sources are of the “know all” type (because the processor will assign neither
0 nor 1 to a formula ϕ which is assigned different values by two sources). On
the other hand, it is obvious that with the universal strategy g(ϕ) �=  for
every formula ϕ. Without further integrity constraints, this is not necessarily
true for the standard extension d of g. One such plausible constraint is that
the sources should all be classically coherent (see Subsection 2.2.1). Another
is again that the sources provide information about atomic formulae only.
It is easy to see that the resulting logic in the latter case is that induced by
the famous (strong) 3-valued matrix M3

K of Kleene:

∨̃ f ⊥ t

f f ⊥ t
⊥ ⊥ ⊥ t
t t t t

∧̃ f ⊥ t

f f f f
⊥ f ⊥ ⊥
t f ⊥ t

¬̃ f ⊥ t

t ⊥ f

Proposition 4.1. Let AA be the class of standard source-processor struc-
tures S = 〈S, g, d〉, where each s ∈ S is undefined outside A and the proces-
sor uses the universal strategy to obtain g out of the valuations in S. Then
�AA=�M3

K
.

Proof. Similar to the proof of Proposition 3.1.

5. Proof systems for the existential strategy

Now we will proceed to develop proof systems for the four logics discussed in
the preceding section. As we explained in Subsection 2.4, to compensate for
the weakness of the language, the systems we will provide will be strongly
sound and complete sequent calculi.
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5.1. The most general source-processor logic

We begin with the proof system for the most general case, from which we
will later derive the proof systems for the remaining cases.

Definition 5.1. Let C4
I be the sequent calculus defined as follows:

Axioms: ϕ ⇒ ϕ

Structural inference rules: Weakening, Cut.

Logical inference rules:

(¬¬ ⇒)
Γ, ϕ ⇒ Δ

Γ,¬¬ϕ ⇒ Δ
(⇒ ¬¬)

Γ⇒ Δ, ϕ

Γ⇒ Δ,¬¬ϕ

(⇒ ∨)
Γ⇒ Δ, ϕ, ψ

Γ⇒ Δ, ϕ ∨ ψ

(¬∨ ⇒)
Γ,¬ϕ,¬ψ ⇒ Δ

Γ,¬(ϕ ∨ ψ)⇒ Δ
(⇒ ¬∨)

Γ⇒ Δ,¬ϕ Γ⇒ Δ,¬ψ

Γ⇒ Δ,¬(ϕ ∨ ψ)

(∧ ⇒)
Γ, ϕ, ψ ⇒ Δ,

Γ, ϕ ∧ ψ ⇒ Δ
(⇒ ∧)

Γ⇒ Δ, ϕ Γ⇒ Δ, ψ

Γ⇒ Δ, ϕ ∧ ψ

(⇒ ¬∧)
Γ⇒ Δ,¬ϕ,¬ψ

Γ⇒ Δ,¬(ϕ ∧ ψ)

Definition 5.2. Let C4
I be the calculus obtained from C4

I by limiting the
applications of the cut rule to formulas occurring in the premises of sequent
derivations. In other words: If S = {Γ1 ⇒ Δ1, . . . , Γn ⇒ Δn} then S �C4

I
Σ

if there is a proof of Σ from S in C4
I in which all cuts are on formulas from⋃n

i=1(Γi ∪Δi) (in particular: �C4
I

Σ iff Σ has a cut-free proof in C4
I ).

Theorem 5.1. The calculus C4
I is finitely strongly sound and complete for

�M4
I
, i.e., for any finite set of sequents S ⊆ Seq and any sequent Σ ∈ Seq,

S �M4
I

Σ iff S �C4
I

Σ.

Proof. For simplicity, in what follows we drop the decorations on |=.
It is easy to see that C4

I is strongly sound for �M4
I

(i.e. if S �C4
I

Σ then
S �M4

I
Σ). Hence it suffices to prove the strong completeness of C4

I for finite
premise sets.

We argue by contradiction. Suppose that for a finite set of sequents S
and a sequent Σ0 = Γ ⇒ Δ we have S �M4

I
Σ0, but Σ0 is not derivable
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from S in C4
I . We shall construct a counter-valuation v such that v |= S but

v �|= Σ0.
Denote by F (S) the set of all formulae belonging to at least one of the

sides in some sequent in S. Then F (S) is finite; assume it has l elements. Let
ϕ1, ϕ2, . . . , ϕl be an enumeration of formulae in F (S). We shall now define a
sequence of sequents Γn ⇒ Δn, n = 0, 1, . . . , l, such that, for n = 0, 1, . . . , l:

(i) Γ ⊆ Γn, Δ ⊆ Δn

(ii) If n �= 0 then ϕn ∈ (Γn ∪Δn).

(iii) Γn ⇒ Δn is not derivable from S in C4
I .

The above sequences are defined inductively as follows:

• We put Γ0 = Γ, Δ0 = Δ. As by our assumption Γ ⇒ Δ is not derivable
from S in C4

I , (i)–(iii) above are satisfied for n = 0.
• Suppose n ≤ l− 1 and we have defined the sequents Γi ⇒ Δi satisfying

conditions (i)–(iii) for i ≤ n. Then the sequents Σ1 = Γn ⇒ Δn, ϕn+1

and Σ2 = ϕn+1, Γn ⇒ Δn cannot be both derivable from S in C4
I , since

then Γn ⇒ Δn would be derivable from them by an allowed cut on
the formula ϕn+1 ∈ S. We take Γn+1 ⇒ Δn+1 to be Σ1, if Σ1 is not
derivable, and Σ2 otherwise. Then, obviously, from the inductive as-
sumption it follows that the sequence Γn+1 ⇒ Δn+1 satisfies conditions
(i)–(iii).

By induction, each element of the sequence Γn ⇒ Δn, n = 0, 1, . . . , l, satisfies
the desired conditions (i)–(iii). What is more, from the inductive construc-
tion we can see that Γn ⊆ Γn+1, Δn ⊆ Δn+1 for n = 1, 2, . . . , l− 1. Now call
a sequent Γ ⇒ Δ saturated if it is closed under the logical rules in C4

I applied
backwards (e.g., if ϕ∧ψ ∈ Γ then both ϕ and ψ are in Γ, while if ϕ∧ψ ∈ Δ
then either ϕ ∈ Δ or ψ ∈ Δ). Let Γ∗ ⇒ Δ∗ be an extension of Γl ⇒ Δl to a
saturated sequent which is not derivable from S in C4

I (it is easy to see that
such a sequent exists). Then Γ ⊆ Γ∗, Δ ⊆ Δ∗, and F (S) ⊆ Γ∗ ∪Δ∗. Using
Γ∗ ⇒ Δ∗ we define the desired valuation v as follows:

• For any atomic p:

(v0) 1 ∈ v(p) iff p ∈ Γ∗, 0 ∈ v(p) iff ¬p ∈ Γ∗;

• For any formulas α, β:

(v1) 1 ∈ v(¬α) iff 0 ∈ v(α);

(v2) 0 ∈ v(¬α) iff 1 ∈ v(α);

(v3) 1 ∈ v(α ∨ β) iff 1 ∈ v(α) or 1 ∈ v(β) or (α ∨ β) ∈ Γ∗;
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(v4) 0 ∈ v(α ∨ β) iff 0 ∈ v(α) and 0 ∈ v(β);

(v5) 1 ∈ v(α ∧ β) iff 1 ∈ v(α) and 1 ∈ v(β);

(v6) 0 ∈ v(α ∧ β) iff 0 ∈ v(α) or 0 ∈ v(β) or ¬(α ∧ β) ∈ Γ∗;

It can be easily checked, by considering the truth tables of the Nmatrix M4
I ,

that v defined as above is a legal valuation for that Nmatrix. It remains to
prove that v is indeed the desired counter-valuation, i.e., that:

(I) v |= Σ for each Σ ∈ S; (II) v �|= (Γ ⇒ Δ);

We start with (II). As Γ ⊆ Γ∗, Δ ⊆ Δ∗, then in order to prove (II) it suffices
to prove that v �|= (Γ∗ ⇒ Δ∗). To this end, we have to show that:

(A) v |= γ for each γ ∈ Γ∗; (B) v �|= δ for each δ ∈ Δ∗

We argue by induction on the complexity of formulas.

Proof of (A):

• Assume γ is atomic. Then 1 ∈ v(γ) by (v0) in the definition of v,
whence v |= γ.

• Assume γ = ¬γ′. This case splits in the following four subcases:

γ′ = p (where p is atomic): Then ¬p = γ ∈ Γ∗, and by (v0) in the
definition of v we have 0 ∈ v(p), whence by (v1) of that definition
we get 1 ∈ v(γ);

γ′ = ¬α: Then ¬¬α = γ ∈ Γ∗. As Γ∗ ⇒ Δ∗ is saturated, then by
rule (¬¬ ⇒) we have α ∈ Γ∗, whence by the inductive assumption
1 ∈ v(α), which in turn yields 1 ∈ v(¬¬α) = v(γ) by applications
of (v2) and (v1);

γ′ = α ∨ β: Then ¬(α ∨ β) = γ ∈ Γ∗. As the sequent Γ∗ ⇒ Δ∗ is
saturated, then by rule (¬∨ ⇒) we have ¬α,¬β ∈ Γ∗, whence
by the inductive assumption 1 ∈ v(¬α), 1 ∈ v(¬β) Thus 0 ∈
v(α), 0 ∈ v(β) by (v1), whence 0 ∈ v(α ∨ β) by (v4), and finally
1 ∈ v(¬(α ∨ β)) = v(γ) by (v1);

γ′ = α ∧ β: Then ¬(α ∧ β) = γ ∈ Γ∗, whence by (v6) 0 ∈ v(α ∧ β),
which yields 1 ∈ v(¬(α ∧ β)) = v(γ).

• Assume γ = γ1 ∨ γ2. Then γ1 ∨ γ2 = γ ∈ Γ∗, so by (v3) we have
1 ∈ v(γ1 ∨ γ2) = v(γ).

• Assume γ = γ1∧γ2. As γ ∈ Γ∗ and the sequent Γ∗ ⇒ Δ∗ is saturated,
then by rule (∧ ⇒) we have γ1, γ2 ∈ Γ∗, whence by the inductive
assumption 1 ∈ v(γ1), 1 ∈ v(γ2), which yields 1 ∈ v(γ1 ∧ γ2) = v(γ)
by (v5).
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Proof of (B):

Assume first that δ = p where p is atomic. As δ ∈ Δ∗ and Γ∗ ⇒ Δ∗ is
not derivable, then p �∈ Γ∗, whence 1 �∈ v(δ) by (v0). In turn, if δ = ¬p,
then ¬p �∈ Γ∗, for Γ∗ ⇒ Δ∗ is not derivable. Thus by (v0) 0 �∈ v(p),
whence by (v1) we have 1 �∈ v(¬p) = v(δ).
The proof that (B) holds for δ’s which are not literals is carried out by
induction, following a single schema analogous to the proof of, e.g., the
last case in (A). Each time, from the fact that Γ∗ ⇒ Δ∗ is saturated and
from the right hand side rule of the sequent calculus corresponding to the
given complex formula α we conclude that the appropriate component
formulas of α must also be in Δ∗, whence by the inductive assumption
they are not assigned 1 by v. From the latter we deduce that 1 �∈ v(α)
using the appropriate clauses of the definition of v.

This ends the proof of (II) above. It remains to prove (I), i.e., to show that
v |= Σ for each Σ ∈ S. So let Σ ∈ S. Then Σ = ϕ1, . . . , ϕk ⇒ ψ1, . . . , ψm for
some integers k, m and formulas ϕi, ψj , i = 1, . . . , k, j = 1, . . . , m. Clearly,
we cannot have both {ϕ1, . . . , ϕk} ⊆ Γ∗ and {ψ1, . . . , ψm} ⊆ Δ∗, for then
Γ∗ ⇒ Δ∗ would be derivable from Σ, and hence from S, by weakening. Since
F (S) ⊆ Γ∗ ∪ Δ∗, this implies that either ϕi ∈ Δ∗ for some i, or ψj ∈ Γ∗

for some j. Hence by (A) and (B), which we have already proved, we have
either v �|= ϕi for some i, or v |= ψj for some j, which implies that v |= Σ.

Corollary 5.1. The calculus C4
I is (weakly) sound and complete for �M4

I
,

and the cut rule is admissible in it. In particular: If Γ is a finite set of
formulas, and ϕ is a formula, then Γ �M4

I
ϕ if the sequent Γ ⇒ ϕ has a

cut-free proof in C4
I .

5

Proof. This follows from the last theorem and Note 3.1.

Note 5.1. The finiteness assumption can in fact be dropped from the for-
mulation of Theorem 5.1, for the theorem holds for infinite premise sets too.
However, we skip the proof of this fact here, for such a generalization seems
to be of little practical usefulness for the purposes of this paper.

5.2. The other logics

Strongly finitely sound and complete calculi for the other main logics investi-
gated in this paper can be obtained by extending C4

I and C4
I with appropriate

rules and axiom:

5This corollary was first proved (using a different method) in [7].
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General source-processor logic with complete information
Calculi corresponding to this case are obtained by augmenting C4

I and C4
I

with either the excluded middle axiom ⇒ ϕ,¬ϕ, or by the left-to-right
swap rule

Γ, ϕ ⇒ Δ
Γ ⇒ Δ,¬ϕ

(However, addition of the swap rule does not allow us to eliminate any
of the previous negation rules, for none of them is derivable from it).

Dunn-Belnap’s logic
To obtain the calculi for Dunn-Belnap’s logic, we augment C4

I and C4
I by

the two symmetric rules “missing” from them, i.e.

(∨ ⇒)
Γ, ϕ ⇒ Δ Γ, ψ,⇒ Δ

Γ, ϕ ∨ ψ ⇒ Δ
(¬∧ ⇒)

Γ,¬ϕ ⇒ Δ Γ,¬ψ ⇒ Δ
Γ,¬(ϕ ∧ ψ) ⇒ Δ

The resulting system is the LC-fragment of the Gentzen-type system for
“first degree entailments” introduced in [1]. The fact that M4

B is weakly
characteristic for first degree entailments (and so for this Gentzen-type
system) is well-known (see [2, 12, 13]).

D’Ottaviano and da Costa’s logic
The calculi for the above paraconsistent logic are obtained by adding
either the excluded middle axiom ⇒ ϕ,¬ϕ, or the left-to-right swap
rule, to the calculi for Belnap’s logic.

Kleene’s logic As is well known, calculi for Kleene’s 3-valued logic are ob-
tained by adding to the calculi for Belnap’s logic either the axiom ϕ,¬ϕ ⇒
(corresponding to the law of contradiction), or the right-to-left swap rule
Γ⇒Δ,ϕ
Γ,¬ϕ⇒Δ .

Theorem 5.2. The obvious analogues of Theorem 5.1 (and its Corollary 5.1)
hold for each of the calculi introduced above with respect to their associate
matrix/Nmatrix.

The proofs are similar to that of Theorem 5.1, and are left to the reader.

6. Future research

One direction of future research is to explore the general case of the universal
strategy, namely, one where the sources can also provide information about
complex formulas. As the introduction to Section 4 implies, it will split in
two subcases: one when the final processor valuation d can also take the
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value , and one where this is not possible due to an additional constraint,
like classical coherence (see Section 2.2.1).

Another direction is to investigate other variants of the framework, es-
pecially those signalled in Subsections 2.2.1 and 2.2.3.6

Finally, a major goal will be to upgrade our framework and results to the
first-order language, or some weaker but more manageable language above
the propositional level.

Acknowledgment. This research was supported by THE ISRAEL SCIENCE
FOUNDATION founded by The Israel Academy of Sciences and Humanities
(grant No. 809/06).

References

[1] Anderson, A.R., Belnap, N.D., ‘First degree entailments’, Mathematische An-

nalen, 149: 302–319, 1963.

[2] Anderson, A.R., Belnap, N.D., Entailment, vol. 1, Princeton University Press,

Princeton NJ, 1975.

[3] Avron, A., ‘Natural 3-valued logics: Characterization and proof theory’, The Journal

of Symbolic Logic, 56: 276–294, 1991.

[4] Avron, A., ‘Logical Non-determinism as a tool for logical modularity: an introduc-

tion’, in Artemov, S., Barringer, H., d’Avila Garcez, A.S., Lamb, L.C., Woods, J.

(eds.), We Will Show Them: Essays in Honor of Dov Gabbay, vol. 1, College Publi-

cations, Ithaca, NY, 2005, pp. 105–124.

[5] Avron, A., Lev, I., ‘Canonical propositional Gentzen-type systems’, in Goré, R.,
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Université Paul Sabatier, IRIT,
LILaC 118 route de Narbonne
F-31062 Toulouse Cedex 9,
France
bennaim@irit.fr

Beata Konikowska

Institute of Computer Science
Polish Academy of Sciences
Warsaw, Poland
beatak@ipipan.waw.pl



Jui-Lin Lee The Classical Model Existence
Theorem in Subclassical
Predicate Logics I

Abstract. We prove that in predicate logics there are some classically sound Hilbert

systems which satisfy the classical model existence theorem (every ⊥-consistent set has a

classical model) but are weaker than first order logic.

Keywords: extended completeness theorem, strong completeness, prenex normal form,

intuitionistic logic, three-valued logic.

1. Introduction

In classical logic the extended completeness theorem (for any Σ and ϕ, Σ |=
ϕ implies Σ � ϕ) is obviously an extension of completeness theorem (for
any ϕ, |= ϕ implies � ϕ). To prove the extended completeness theorem
by completeness theorem, one can simply use the compactness theorem for
classical semantics (Σ |= ϕ implies that there is a finite Σ0 ⊆ Σ such that
Σ0 |= ϕ) and the semantic deduction theorem (Σ ∪ {α} |= β implies Σ |=
α → β). Since to prove the compactness theorem for classical semantics one
may need some extra effort (e.g. ultraproduct), it seems more convenient to
prove the extended completeness theorem directly.

The direct proof of extended completeness theorem for classical logic, in
most logic textbooks, is done by proving the following two properties:
(CME) Every consistent set has a classical model (under the standard

two-valued truth-functional semantics).
(RAA) If Σ �� ϕ, then Σ ∪ {¬ϕ} is consistent (i.e., Σ ∪ {¬ϕ} �� ⊥).

Let us call the first statement the classical model existence property
(CME for short) and the second statement the Reducio Ad Absurdum prop-
erty (RAA for short). In classical logic one can easily formulate RAA into
an axiom scheme (with the aid of deduction theorem and modus ponens).
Since RAA is trivial in classical logic, CME, as the major step in prov-
ing the extended completeness theorem, is called the strong completeness
theorem for first order logic (see [3]).

D. Makinson, J. Malinowski, H. Wansing (eds.), Towards Mathematical Philosophy,
Trends in Logic, 28 c© Springer Science + Business Media B.V. 2009
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Though CME holds in classical logic, it may be a mistake to call CME
the strong completeness property if there are other classically sound logics
which also satisfy CME (then CME does not characterize the classical
logic).

Consider the ⊥-consistency case (i.e., Σ is ⊥-consistent iff Σ �� ⊥). One
can see that L1 = {(Σ,⊥) | Σ is not classically satisfiable} is the weakest
relation which is classically sound and satisfies CME, and L2 = L1∪{(∅, ϕ) |
ϕ is a classical tautology} is the weakest relation which is classically sound
and satisfies CME and the completeness theorem (as a property). But the
problem is that L1 (or L2) may not be a logic. Whether L1 (or L2) is
qualified for being a logic depends on what we think a logic is1.

Here we take the view that a logic is a proof system. It is known that in
propositional logics the classical consistency is equivalent to the intuition-
istic consistency (see [12]). Therefore the intuitionistic propositional logic
IPL also satisfies CME and then CME does not deserve the name “strong
completeness” in propositional logics. The key step can be briefly sketched
as follows: If Σ �CPL ⊥, then (by employing Glivenko’s theorem) we have
Σ �IPL ¬¬⊥. Since ¬¬⊥ is (⊥ → ⊥) → ⊥, ⊥ → ⊥ is provable in IPL,
and modus ponens holds in IPL, we have Σ �IPL ⊥. And IPL is not the
weakest proof system satisfying CME. In [6] it is proved that CME with
respect to the ⊥-consistency holds even in some paraconsistent logic weaker
than IPL.

What may be interesting is that such logics cannot be distinguished from
classical logic by any example/non-example of ⊥-consistent sets, i.e., in any
of these logics (including classical logic) for any set Σ of sentences, whether
Σ can derive ⊥ does not depend on which of these logics we choose.

In this paper we consider the predicate case. We prove that there are
some classically sound Hilbert systems which satisfy CME but are weaker
than first order logic. This proof is based on the following three facts:

(1) In propositional logics CME holds in some weak proof systems. (See
Section 2.)

(2) For any ⊥-consistent set of prenex normal form sentences, there is a
Herbrand-Henkin style extension (by adding witnesses) such that the
remaining step of constructing a classical model can be done at the
quantifier-free level. (See Section 3.)

1If one insists that every logic must satisfy RAA, then the classical logic becomes the
only logic which satisfies both CME and RAA. On the other hand, if one takes the view
that a logic is a consequence operator, the minimal consequence operator containing L2 is
not the classical logic.
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(3) Converting a sentence into a prenex normal form sentence, though not
allowed in intuitionistic predicate logic, can be done in some logic weaker
than FOL. (See Section 4.)

This paper is organized as follows: In Section 2 we sketch the proof of
CME in weak propositional logics H1 and H2, where H1 is the {→,⊥}
fragment of IPL and H2, a sublogic of H1, is a paraconsistent logic. We
then define the predicate logics Q1H1,Q=

1 H1,Q1H2,Q=
1 H2. In Section 3 we

give a Herbrand-Henkin style proof of CME for ⊥-consistent sets of prenex
normal form sentences w.r.t. proof systems Q1H1,Q=

1 H1,Q1H2,Q=
1 H2. In

Section 4 we prove that prenex normal form theorem holds in any axiomatic
extension of Q1 (including Q1H1,Q=

1 H1,Q1H2,Q=
1 H2). And we sketch how

these logics are weaker than FOL by three-valued semantics. In Section 5
we discuss the relationship of Kripke models of Q1H1,Q=

1 H1 and classical
models.
Remark 1.1. The ⊥-consistency of intuitionistic predicate logic is different
from that of first order logic: Since ¬¬∀x[A(x) ∨ ¬A(x)] is classically valid
but not intuitionistically valid, {¬∀x[A(x) ∨ ¬A(x)]} is classically inconsis-
tent but intuitionistically consistent. (See [1], pp. 48–49.)

2. Classical model existence theorem in propositional logics

In this section we sketch the proof in [6] that both H(DT1, DT2, ECQ; MP )
(the {→,⊥}-fragment of IPL) and H(DT1, DT2, DA∗

⊥; MP ) (a paraconsis-
tent logic) satisfy CME with respect to the ⊥-consistency. At the end of
this section we define the predicate proof systems which will be used later.

For convenience in this paper we denote H1 = H(DT1, DT2, ECQ; MP )
and H2 = H(DT1, DT2, DA∗

⊥; MP ). In these two systems, they have only
one inference rule MP : A, A → B infer B, and their axiom schemes are:

(DT1) A → (B → A)

(DT2) [A → (B → C)]→ [(A → B) → (A→ C)]

(ECQ) ⊥ → A

(DA∗
⊥) (A → ⊥) → {[(A → B) → ⊥] → ⊥}

Note that the following proof does not rely on the syntactic translation proof
of Glivenko’s theorem.

Assume that Γ is ⊥-consistent, i.e., Γ �� ⊥ (w.r.t. H1 or H2). We will
show that Γ has a classical model. By Lindenbaum’s theorem (enumerating
all sentences ψ0, . . . , ψn, . . . and sequentially adding ψn to the set if the ⊥-
consistency is preserved) Γ can be extended to a maximal consistent set Δ.
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Δ is then negation complete, i.e., for any sentence ϕ exactly one of ϕ and
¬ϕ(= ϕ→ ⊥) is in Δ: Not both ϕ,¬ϕ in Δ is clear by MP . If ϕ = ψn �∈ Δ,
then Δ ∪ {ϕ} � ⊥. By deduction theorem Δ � ϕ → ⊥. Since Δ can be
proved to be deductively closed (i.e., Δ � α implies α ∈ Δ for any α),
¬ϕ ∈ Δ. To show that the truth-functionality of → (i.e., α → β ∈ Δ iff
α �∈ Δ or β ∈ Δ for any α, β) holds in Δ, it is by MP (from left to right),
(DT1) (from β ∈ Δ to α → β ∈ Δ), and (ECQ) or (DA∗

⊥) (from α �∈ Δ to
α → β ∈ Δ). Note that in H1 the scheme (DA): (A → ⊥) → (A → B) is
derivable and it can be used to show α → β ∈ Δ from α �∈ Δ. In H2 the
weaker axiom (DA∗

⊥) will suffice to show the truth-functionality of → on Δ
by the following argument: “if α �∈ Δ and α → β �∈ Δ, then Δ � ⊥.”

Note that in H1 the ⊥-consistency is equivalent to the absolute consis-
tency2. In H2 it is not so: {⊥} is absolutely consistent in H2 but it does not
have a classical model. However, CME with respect to the ⊥-consistency
still holds in this weaker system H2.

Now we define predicate proof systems which will be used in this paper.

Definition 2.1. Let i ∈ {1, 2}. The equality-free proof system Q1Hi has
only one inference rule MP , and the axiom schemes of Q1Hi are axiom
schemes from Hi (in the predicate sense), (Ax1)–(Ax15), and all their uni-
versal generalizations3. Here all formulas used in Q1Hi are equality-free.

The proof system Q=
1 Hi are defined in a similar way. Axiom schemes

of Q=
1 Hi are: the axiom schemes of Hi, the axiom schemes (Ax1)–(Ax18),

and all their universal generalizations. Below we list the axiom schemes
(Ax1)–(Ax18):

(Ax1) ∀xϕ(x) → ϕ(t), where the term t is free for x in ϕ(x).

(Ax2) ϕ(t) → ∃xϕ(x), where the term t is free for x in ϕ(x).

(Ax3) ϕ → ∀xϕ, where x �∈ FV (ϕ).

(Ax4) ∀x(ϕ→ ψ)→ [∀xϕ → ∀xψ]

(Ax5) ∀x(ϕ→ ψ)→ [∃xϕ → ∃xψ]

(Ax6) ∀x(ϕ→ ψ)→ [ϕ → ∀xψ], where x �∈ FV (ϕ).

(Ax7) [ϕ → ∀xψ] → ∀x(ϕ → ψ), where x �∈ FV (ϕ).

(Ax8) ∃x(ϕ→ ψ)→ [ϕ → ∃xψ], where x �∈ FV (ϕ).

(Ax9) [ϕ → ∃xψ] → ∃x(ϕ → ψ), where x �∈ FV (ϕ).

(Ax10) ∀x(ϕ→ ψ)→ [∃xϕ → ψ], where x �∈ FV (ψ).

2Σ is absolutely consistent with respect to Q iff Σ �� Q ϕ for some ϕ.
3That is, if ϕ is an axiom of Q1Hi, then so is ∀−→x ϕ.
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(Ax11) [∃xϕ → ψ]→ ∀x(ϕ→ ψ), where x �∈ FV (ψ).

(Ax12) ∃x(ϕ → ψ) → [∀xϕ → ψ], where x �∈ FV (ψ).

(Ax13) [∀xϕ → ψ]→ ∃x(ϕ→ ψ), where x �∈ FV (ψ).

(Ax14) ∀xϕ(x) → ∀yϕ(y), where y does not occur in ϕ(x).

(Ax15) ∃xϕ(x) → ∃yϕ(y), where y does not occur in ϕ(x).

(Ax16) x = x

(Ax17) x = y → t(v0 . . . vi−1xvi+1 . . . vn) = t(v0 . . . vi−1yvi+1 . . . vn)

(Ax18) x = y → [R(v0 . . . vi−1xvi+1 . . . vn) → R(v0 . . . vi−1yvi+1 . . . vn)]

In (Ax17),(Ax18) the term t and the relation symbol R are from the predi-
cate language in concern.

Definition 2.2. Q1 is the proof system with inference rule MP and axiom
schemes (DT1), (DT2), (Ax1)–(Ax15) (and all their universal generaliza-
tions). A proof system Q is called an axiomatic extension of Q1 iff Q is
obtained by adding some axiom schemes (and their universal generaliza-
tions) to Q1. Let i ∈ {1, 2}. Pi is the quantifier-free sublogic of Q1Hi, i.e.,
Pi has axiom schemes of Hi (applying to quantifier-free, equality-free sen-
tences). Similarly P=

i has axiom schemes of Hi (applying to quantifier-free
sentences) and all instantiations of (Ax16), (Ax17), (Ax18) (replacing all
variables x, y, vj by closed terms).

3. A Herbrand-Henkin style proof of the classical model existence
theorem for prenex normal form sentences

In this section4 we prove the classical model existence theorem for prenex
normal form sentences. In first order logic (FOL) it is clear that every sen-
tence is provably equivalent to a prenex normal form sentence (w.r.t. FOL).
Therefore, a proof of CME for prenex normal form sentences also shows
that CME holds in FOL.

The proof idea is as follows: Given a ⊥-consistent set Γ of prenex normal
form sentences, we extend Γ into a ⊥-consistent Γ′ which fully witnesses all
quantifiers in Γ by instantiating ∀ by all closed terms and instantiating ∃
by new constant symbols (new w.r.t. the construction stage). Let Γ′ ′ be
the quantifier-free part of Γ′. We then construct the canonical model of Γ′ ′

at the quantifier-free level. Since this classical model is also a model of Γ′

4The idea of this section is originated from [5].
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(∀ witnessed by all closed terms and ∃ witnessed by new constant symbols),
it is a classical model of Γ and S.

For convenience we use the following setting. We assume that any first
order language in concern contains at least one constant symbol. L(Γ) is the
set of language symbols in Γ (including predicate symbols, function symbols,
and (at least one) constant symbols). ConQ(Γ) means that Γ ��Q ⊥ in proof
system Q. Sat(Γ) means that Γ has a classical model. “ϕ is a Π sentence”
means that ϕ is of prenex normal form and it is a Πm sentence for some
m ≥ 0. ∀−→x means ∀x1 . . . ∀xk. CT (Γ) is the set of all closed terms of
L(Γ). Σ sentences, L(ϕ), ConQ(ϕ), Sat(ϕ), ∃−→x , CT (ϕ(−→x )) are defined in
a similar way. The word “countable” means finite or infinitely countable.

First we consider two special cases of CME.

Theorem 3.1 (CME for Π1 and Σ1 cases). Let ϕ(−→x ) be a quantifier-free
formula (where −→x is x1, . . . , xk) and the proof system Q be one of Q1H1,
Q=

1 H1, Q1H2, Q=
1 H2 (described in Section 2).

(a) If {∀−→x ϕ(−→x )} is ⊥-consistent, then it has a countable classical model.
(b) If {∃−→x ϕ(−→x )} is ⊥-consistent, then it has a countable classical model.

Proof. (a). Let Γ = {∀−→x ϕ(−→x )} and Γ′ = Γ ∪ {ϕ(t1, . . . , tk) | t1, . . . , tk ∈
CT (ϕ(−→x ))}. Then Γ′ ′ = Γ′ \ Γ is the quantifier-free part of Γ′. It is clear
that ConQ(Γ) implies ConQ(Γ′): If Γ′ �Q ⊥, by using (Ax1) and MP ,
we get Γ �Q ⊥. The canonical model construction of Γ′ ′, as presented in
Theorem 3.2, has the domain consisting of all (equivalence classes of) closed
terms. Since the universal quantifiers are witnessed by all closed terms (in
Γ′ ′), the canonical model of Γ′ ′ is also a classical model of Γ.
(b). Let Γ = {∃−→x ϕ(−→x )} and Γ′ = Γ ∪ {ϕ(d1, . . . , dk)}, where d1, . . . , dk are
new constant symbols. Then ConQ(Γ) implies ConQ(Γ′): If Γ′ �Q ⊥, by
deduction theorem, replacing

−→
d by −→x (free variables not in Γ), universal

generalization ∀−→x (a property of Q, see Theorem 4.1), (Ax10), we have
Γ �Q ⊥. Again the canonical model of Γ′ ′ is also a classical model of Γ since
the existential quantifiers are witnessed by d1, . . . , dk.

Theorem 3.2 (Canonical model theorem for quantifier-free case).
Consider proof systems Q1H1, Q=

1 H1, Q1H2, Q=
1 H2.

(1) (Without equality: Q1H1,Q1H2) If Γ′ ′ is a ⊥-consistent set of quantifier-
free sentences, then Γ′ ′ has a classical model with domain CT (Γ′ ′).

(2) (With equality: Q=
1 H1, Q=

1 H2) If Γ′ ′ is a ⊥-consistent set of quantifier-
free sentences, then Γ′ ′ has a classical model with domain CT (Γ′ ′)/ ∼,
where ∼ is an equivalence relation (on CT (Γ′ ′)) obtained by the Linden-
baum maximal extension construction.
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Proof. Let i ∈ {1, 2}. If Γ′ ′ ��Q1Hi ⊥, since Pi, the quantifier-free sublogic
of Q1Hi, is a subsystem of Q1Hi, Γ′ ′ ��Pi ⊥. (Similarly, Γ′ ′ ��Q=

1 Hi ⊥ implies
Γ′ ′ ��P =

i
⊥.)

The proof is essentially the same as the propositional case. Enumerate
all quantifier-free sentences of L(Γ′ ′), say, ψ0, ψ1, . . . , ψn, . . . Define Δ0 = Γ′ ′,

Δn+1 =

{
Δn ∪ {ψn} if it is ⊥-consistent,
Δn else.

Let Δ =
⋃∞

i=0 Δi. One can easily show that (1) Δ is maximal ⊥-consistent
and Δ � α implies α ∈ Δ for any quantifier-free α; (2) Δ is negation
complete, i.e., exactly one of ϕ, ϕ → ⊥ is in Δ for any quantifier-free ϕ;
and (3) the truth functionality of → holds in Δ. (This is because what
Q1Hi does in the quantifier-free case is the same as what Hi does in the
propositional case.)

In the case Q1Hi we define the classical model M with the domain
CT (Γ′ ′) and, for any −→a ∈ CT (Γ′ ′) and any relation symbol R ∈ L(Γ′ ′),
M |= R(−→x )[−→a ] iff R(−→a ) ∈ Δ. In the case Q=

1 Hi, we take the domain
to be CT (Γ′ ′)/ ∼, where ∼ is the equivalence relation defined by s ∼ t
iff (s = t) ∈ Δ. ∼ being an equivalence relation and both functions and
relations being well-defined are proved by using the equality axioms (Ax16),
(Ax17), (Ax18).

Intuitively, for Σm with m ≥ 2 we can introduce new constant symbols
to witness the Σm sentences in Γ by adding some Πm−1 sentences. Similar
to Theorem 3.1(b), the ⊥-consistency is preserved. And for Πm with m ≥ 2
it seems that we can use “all” closed terms to witness Πm sentences by
adding some Σm−1 sentences and the ⊥-consistency is preserved (similar to
Theorem 3.1(a)). If all sentences are witnessed by quantifier-free sentences,
we can use Theorem 3.2 to construct a classical model.

But when m ≥ 2, there are some problems in the Πm cases. Consider the
case with a Π2 sentence ∀−→x ∃yϕ(−→x , y). When we first witness Π2 sentences
by all closed terms (Π2 to Σ1) and then witness Σ1 sentences by new constant
symbols (Σ1 to Π0), the closed terms used for witnessing ∀−→x are no longer
“all the closed terms” because we add new constant symbols.

This problem can be resolved by repeating above procedure countably
many times! At level 0 we define Γ0,0 = {∀−→x ∃yϕ(−→x , y)} and L0 = L(Γ0,0).
We enlarge Γ0,0 to Γ0,1 = Γ0,0 ∪ {∃y ϕ(t1, . . . , tk, y) | t1, . . . , tk are closed
terms of L0}. Γ0,2 = Γ0,1 ∪ {ϕ(t1, . . . , tk, cf(t1,...,tk)) | t1, . . . , tk are intro-
duced at previous stage and ∃y ϕ(t1, . . . , tk, y) ∈ Γ0,1 and cf(t1,...,tk) is a new
constant symbol}. Then at level 1 we set Γ1,0 =

⋃2
i=0 Γ0,i and L1 = L(Γ1,0).
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By repeating the same procedure (similar to level 0) we can generate Γn,0

and Ln for any n ∈ N. Finally we take Γ′ =
⋃

n∈N Γn,0 and L =
⋃

n∈N Ln. It
is clear that in Γ′ the universal quantifiers are witnessed by all closed terms
of L and the existential quantifiers are witnessed by new constant symbols.

Note that in general the set of prenex normal form sentences Γ may have
no finite upper bound on the complexity of quantifier alternation. Therefore
in general we need to enlarge Γn,0 through Γn,i for all i ∈ N and Γn+1,0 =⋃

i∈N Γn,i. Rigorously speaking, for n ≥ 0 we define Γ0,0 = Γ, Γn+1,0 =⋃
i≥0 Γn,i, Ln = L(Γn,0), Γn,2m+1 = Γn,2m ∪ {ϕ(t1, . . . , tk) | ϕ(t1, . . . , tk)

is a Σ sentence, ∀−→x ϕ(−→x ) ∈ Γn,2m \ Γn,2m−1, and t1, . . . , tk ∈ CT (Ln)}
and Γn,2m+2 = Γn,2m+1 ∪ {ϕ(t1, . . . , tk, cf1(t1,...,tk), . . . , cfl(t1,...,tk)) | it is a Π
sentence, and ∃−→x ϕ(t1, . . . , tk,−→x ) ∈ Γn,2m+1\Γn,2m, t1, . . . , tk are introduced
for this sentence previously, and f1, . . . , fl are the corresponding Skolem
function symbols for indexing new constant symbols}. By repeating this
procedure to generate Ln, Γn,m for n, m ∈ N, we have a ⊥-consistent set Γ′ =⋃

n,m>0 Γn,m and Γ′ ′ is the quantifier-free part of Γ′. Now by Theorem 3.2,
we have:

Theorem 3.3 (CME for prenex normal form sentences). Let the proof
system Q be one of Q1H1, Q=

1 H1, Q1H2, Q=
1 H2. If Γ is a ⊥-consistent set

of prenex normal form sentences, then Γ has a classical model.

Remark 3.4. The difference between our approach and the standard Henkin
construction (or Hintikka set construction) is that our construction from S
through Γ to Γ′ does not need to use AC (we only need the existence of
inductive sets). The standard Henkin construction, due to the mix-up of
quantifier cases and propositional cases, makes less clear that the quantifier
cases can be managed without AC. However, it is not avoidable to use at
least a weak version of AC at the quantifier-free stage for model construction.
Remark 3.5. The Skolem function indexing on constant symbols gives us
not only an easy way to manage new constant symbols, but also an easy
way to construct the Herbrand universe for canonical model. Surely it is not
really necessary to index constant symbols this way for proving CME in
first order logic (Henkin’s method is mathematically successful). However,
we should illustrate this by the following example: Assume that L0 has one
ternary function f , one unary function g, two constant symbols d1, d2, and
the Skolem functions introduced for indexing constant symbols are two unary
function symbols h1, h2. Then the Herbrand universe is the free algebra
D generated by {d1, d2, f, g, h1, h2} and the domain is either D or D/ ∼
(when we deal with logic with equality and ∼ is the equivalence relation
obtained by the Lindenbaum maximal extension construction). Then the
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closed term f(d1, ch1(g(d2)), ch2(ch2(d1))) is interpreted as the equivalence class
[f(d1, h1(g(d2)), h2(h2(d1)))] in D/ ∼, where f(d1, h1(g(d2)), h2(h2(d1))) ∈
D is obtained by removing all c and pulling up all Skolem terms from the
lower right corners.
Remark 3.6. CME states that consistency implies satisfiability. Consider
the sentence ∀−→x ∃yϕ(−→x , y). By AC, Sat(∀−→x ∃yϕ(−→x , y)) holds if and only if
Sat(∀−→x ϕ(−→x , f(−→x ))) holds. It seems that to prove CME is as easy as the
Π1 case (Theorem 3.1(a)) if we can introduce Skolem function symbols to
eliminate all existential quantifiers.

However, in this approach for proving CME it seems not avoidable to
prove at first the preservation of ⊥-consistency from {∀−→x ∃yϕ(−→x , y)} to
{(∀−→x ϕ(−→x , f(−→x ))}. A direct proof of it is not trivial, though feasible. In
[10] (pp. 55–56) the “Theorem on Functional Extensions” (it states, in our
terminology, that “If T � ∃yϕ(−→x , y), f is a new function symbol, and f(−→x )
is free for y in ϕ(−→x , y), then T ∪ {ϕ(−→x , f(−→x ))} is a conservative extension
of T .”) implies the preservation of ⊥-consistency.

In proving Theorem on Functional Extensions in [10], Herbrand’s the-
orem plays a crucial role. And the proof of Herbrand’s theorem seems to
require some careful proof theoretic analysis (either as in [10] (pp. 48–55),
or by cut-elimination theorem).
Remark 3.7. One may also try to prove CME via second order logic. Apply
the axiom AC in second order logic ∀−→x ∃yϕ(−→x , y) → ∃f∀−→x ϕ(−→x , f(−→x )) and
then repeat the argument in Theorem 3.1(b) by introducing new (second
order) function constant f . The problem is that one needs to show that the
preservation of ⊥-consistency of S from FOL to some second order deductive
system (FOL + AC or some deductive system including AC, for example,
D2 in [9]), and this seems not easier.

4. Prenex normal form theorem holds in logics weaker than first
order logic

In this section we prove that the prenex normal form theorem holds in any
axiomatic extension of Q1 (described in Section 2). Since we do not use the
connective ∧, we define the Q-provable equivalence as follows: ϕ and ψ are
provably equivalent in Q iff �Q ϕ→ ψ and �Q ψ → ϕ.

Let FV (Σ) be the collection of all free variables in ϕ for some ϕ ∈ Σ.
We also take the following convention: In any derivation of Σ �Q ϕ, the
universal generalization on variable x must satisfy that x �∈ FV (Σ). And to
avoid the trouble that Σ uses all free variables, we take the view that “There
are always countably many un-used free variables (to Σ).”
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Theorem 4.1. Let Q be any axiomatic extension of Q1 (described in Sec-
tion 2). If Σ �Q ϕ and x �∈ FV (Σ), then Σ �Q ∀xϕ.

Theorem 4.1 is proved by induction using axioms (Ax3),(Ax4) and the
fact that the universal generalization of an axiom in Q is also an axiom in
Q. Note that this type of axiomatization is proposed in [4], [11].

We then modify the construction in [8] (pp. 48–49) to prove the prenex
normal form theorem. By taking axioms (Ax14),(Ax15), Q1 allows the
schema of alphabetic change of a bound variable: �Q1 ∀xϕ(x) → ∀yϕ(y) and
�Q1 ∀yϕ(y) → ∀xϕ(x), where y does not occur in ϕ(x) (and similarly the ∃
case). Again this holds for any axiomatic extension of Q1.

Next we have the following schema of substitutivity of equivalence.

Theorem 4.2 (Substitutivity of Equivalence). Let Q be any axiomatic ex-
tension of Q1 and ϕ(−→x ), ψ(−→x ) be formulas with free variables among −→x .
Suppose that B results from A by replacing zero or more occurrences of ϕ(−→x )
in A by ψ(−→x ). Then

�Q ∀−→x [ϕ(−→x ) → ψ(−→x )] → {∀−→x [ψ(−→x ) → ϕ(−→x )] → [A → B]}

and

�Q ∀−→x [ϕ(−→x ) → ψ(−→x )] → {∀−→x [ψ(−→x ) → ϕ(−→x )] → [B → A]}

Note that the proof of Theorem 4.2 is done by induction using Theo-
rem 4.1 and (DT1), (DT2), (Ax1), (Ax4), (Ax5).

Note that in Q1 the existential quantifier ∃ is not equivalent to ¬∀¬
(according to the three-valued semantics at the end of this section).

Finally we have the prenex normal form theorem.

Theorem 4.3. Let Q be any axiomatic extension of Q1. In Q every formula
is provably equivalent to a formula in prenex normal form.

The proof is done by

1. Change all bound variables so that they are all distinct (using Theo-
rem 4.2 and the schema of alphabetic change of a bound variable).

2. Use (Ax6), (Ax7), (Ax8), (Ax9), (Ax10), (Ax11), (Ax12), (Ax13) to
proof-theoretically convert the formula into a prenex normal form for-
mula.

SinceH1 andH2 both satisfy propositional CME, according to Section 3
we have:

Theorem 4.4. In the following four systems Q1H1,Q=
1 H1,Q1H2,Q=

1 H2, the
classical model existence theorem for ⊥-consistency holds.
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At the end of this section we show that Q=
1 H1 is weaker than FOL (so

are the other three systems). To do so we use the following three-valued
semantics. Let the truth values be 0,1,2. We take 2 for designated value.
0 < 1 < 2 and the value of ∀xϕ(x) is the minimum of all the values of ϕ(d)
with d ranging over the domain of the intended three-valued model M . ∃ is
evaluated similarly by taking the maximum value. The truth value of ⊥ is
0 and the truth function f for → is:

f 0 1 2
0 2 2 2
1 0 2 2
2 0 1 2

It is a tedious but feasible work to check that all axioms in Q1 are
tautologies (always with truth value 2) with respect to above three-valued
semantics. However, ¬∀x¬ϕ(x) → ∃xϕ(x) and ¬¬ψ → ψ are not tautolo-
gies. To deal with equality, we interpret (x = y)[a, a] the value 2 for any a in
the domain of discourse and (x = y)[a, b] the value 0 for distinct a, b in the
domain of discourse. With these (Ax16), (Ax17), (Ax18) are tautologies in
above three-valued semantics.

5. Concluding remarks

In this section we discuss the (modified) Kripke models of Q1H1,Q=
1 H1, and

the relationship of the Kripke model for Σ �|= ϕ and the classical model for Σ.
We modify the definition of Kripke models (in [1], p. 46) by dropping

the conditions of ∧,∨ (because we are considering {→,⊥}-fragment), and
adding conditions given by axioms (Ax9), (Ax13). Note that (Ax9), (Ax13)
are axioms not true in Kripke models for first order intuitionistic logic.

Now we modify (see [1], p. 67) the definition that a set Γ is nice with
respect to P by dropping the condition that Γ has the Or-property. Then
the modified Lemma 10.3, Lemma 10.4 (3), (4), (5), (6), Lemma 10.5 (in [1],
pp. 67–69) can be proved in Q1H1 and Q=

1 H1. With these we can prove the
extended completeness theorem for these modified Kripke semantics.

Then what is the relationship between Γ �� ⊥ and Γ �� ϕ? Assume that Γ
is finite. In the propositional case H1, if Γ �� ⊥, by filtration (considering all
subformulas of Γ ∪ {ϕ}) there is a finite frame Kripke model in which there
is a w such that w 	 Γ and w �	 ϕ. Since the persistency of true sentences in
Kripke model, from w we can reach an end node in the finite frame Kripke
model, which is a classical model of Γ (this is probably due to Jaśkowski).
If Γ ∪ {¬ϕ} �� ⊥, the classical model of Γ ∪ {¬ϕ} is also a Kripke model for



198 J.-L. Lee

Γ �|= ϕ (with single world). However, this will not always happen: for some
ϕ we have ¬¬ϕ �� ϕ and {¬¬ϕ,¬ϕ} � ⊥. When Γ is infinite, the classical
model can be reached only through infinite process (similar to compactness
theorem).

In Q1H1 or Q=
1 H1, if Γ �� ϕ, we may assume that Γ is in prenex normal

form. Then by the method in Section 3, we can extend Γ to Γ′ such that
Γ′ �� ϕ. But now the quantifier-free part of Γ′ can be managed as the infinite
case in H1. The classical model of Γ can be constructed this way (with single
world). If fortunately we have Γ ∪ {¬ϕ} �� ⊥, this classical model is also a
Kripke model for Γ �|= ϕ (though this will not always work).

There are at least three more remarkable facts from the study of CME.
Firstly, Glivenko’s theorem holds in Q1H1,Q=

1 H1,Q1H2,Q=
1 H2. Let Q be

any of them. If Σ � ϕ in FOL but Σ �� ¬¬ϕ in Q, then Σ ∪ {¬ϕ} �� ⊥.
By CME with respect to the ⊥-consistency, there is a classical model for
Σ �|= ϕ, a contradiction.

Secondly, for any given set Γ of sentences we can always convert it into
prenex normal form and instantiate it as we do in Section 3. Since the
quantifier-free part of Γ′ has a classical model if and only if Γ is ⊥-consistent,
we can conclude that whether Γ is ⊥-consistent is a matter of quantifier-free
issue (with adding countably many new constant symbols).

Thirdly, we can easily extend Q1H1 by adding the corresponding axioms
for ∧,∨ in IPL (axioms 3–8 in [1], p. 63) and the corresponding prenex-
normal-form axioms for ∧,∨: Qx(ϕ ∗ ψ) → [(Qxϕ) ∗ ψ] and [(Qxϕ) ∗ ψ] →
Qx(ϕ ∗ ψ), where Q ∈ {∀, ∃}, ∗ ∈ {∧,∨}, and x �∈ FV (ψ). This logic
satisfies prenex normal form theorem and CME. If we add one more axiom
(A6) (in [2], p. 36) into it, it becomes an extension of Gödel logic G∀ (by
adding (Ax9), (Ax13) to G∀), which is still subclassical (by the three-valued
semantics in Section 4 together with interpreting ∧ by min and ∨ by max).
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Wojciech Zielonka Weak Implicational Logics
Related to the Lambek
Calculus — Gentzen versus

Hilbert Formalisms

Abstract. It has been proved by the author that the product-free Lambek calculus with

the empty string in its associative (L0) and non-associative (NL0) variant is not finitely

Gentzen-style axiomatizable if the only rule of inference is the cut rule. We give here

rather detailed outlines of the proofs for both L0 and NL0. In the last section, Hilbert-

style axiomatics for the corresponding weak implicational calculi are given.

Keywords: Lambek calculus, implicational logics, finite axiomatizability.

1. Introduction

The calculus of syntactic types invented by Joachim Lambek [5], [6] almost
fifty years ago still attracts the attention of linguists, logicians, mathemati-
cians and computer scientists. Since then, numerous variants of the calculus
were invented. In this paper, we are interested in some of them.

For the sake of uniformity, we start with considering the sequential
(Gentzen-style) formulation of the calculi. Lambekian sequents have always
the form X → x where the succedent x is a single type and the antecedent
X is, generally speaking, a string of types. The axioms are all sequents of
the form x → x and the rules of inference, following Gentzen, introduce
type-forming functors either in the antecedent or in the succedent. Now,
particular calculi may differ in the following respects:
• The choice of type-forming functors from among the three original Lam-

bekian ones: \ (left division), / (right division) and · (product). In par-
ticular, product-free calculi turn out to form an important class, mainly
in linguistic applications. All the systems in question will be product-
free.

• The admissibility of the empty sequent antecedent (the empty string, to
be short). Our systems do admit it. However, a number of results on
those which do not will be mentioned below.

D. Makinson, J. Malinowski, H. Wansing (eds.), Towards Mathematical Philosophy,
Trends in Logic, 28 c© Springer Science + Business Media B.V. 2009
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• Structural (like commutativity) and substructural (like associativity)
properties of the operation of building sequent antecedents out of types.
Both Lambek’s systems, the associative [5] and the non-associative [6]
do not employ structural rules peculiar to Gentzen. In the last section,
we shall go a little beyond the substructural domain.

Various kinds of semantics have been proposed for the Lambek calculus.
We shall concentrate on two of them.

Lambek himself is motivated linguistically: his types are to be inter-
preted as sets of expressions with the product and both divisions standing
respectively for the complex concatenation and its both reverse operations.
The sequent x1 . . . xn → y means “every concatenation of expressions of the
types x1, . . . , xn in that order belongs to the type y”. Since the empty string
has little linguistic application, Lambek does not allow it.

Another interpretation, of rather logical than linguistic kind, follows the
spirit of the Gentzen formalism. Here, Lambekian functors (resp. primitive
types, types, sequents) are interpreted as propositional connectives (resp.
variables, formulas, rules of inference) of linear logic (to be more precise,
its non-commutative intuitionistic multiplicative fragment; see [1]). Under
this interpretation, \ and / correspond respectively to the right (→) and left
(←) implication. In absence of commutativity, \ and / (and thus → and ←)
are not mutually definable. The empty string is now allowed since otherwise
there would be rules but no axioms.

All the syntactic calculi are known to be closed w. r. t. the (appropriately
formulated) cut rule whence their decidability easily follows. For a long time,
attempts were made to find for them axiomatics based on the cut as the only
rule of inference, by adding sufficiently many axioms instead of Gentzenian
functor introduction rules. The problem has a trivial solution: one may
add all derivable sequents as new axioms. In view of the decidability, such
axiomatization is even recursive. What was really looked for were finite cut-
rule axiomatics. According to what was stated in preceding paragraphs, this
research was motivated in a twofold way: logically or linguistically depending
on whether the system admits the empty string or not. More about this
motivation may be found in the introductory section of [12].

Before going into details, we introduce some notation. By NL, L, LP we
denote respectively the nonassociative, associative, and associative-
commutative Lambek calculus without the empty string. The subscript 0
(thus NL0, L0, LP0) means that the empty string is allowed.

The first attempt was made by Cohen [3] who (wrongly) identified L
with the system based on the cut and the following axiom schemata:
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(1) x/y y → x (1’) y y\x → x
(2) y → x/(y\x) (2’) y → (x/y)\x
(3) x/y y/z → x/z (3’) z\y y\x→ z\x
(4) (x\y)/z → x\(y/z) (4’) x\(y/z)→ (x\y)/z

In [8], I gave the nonfinite-axiomatizability proof for L. The research was
continued in the late 80’s together with Kandulski ([4], a similar negative
result for NL) and Buszkowski ([2], solutions for LP (negative) and LP0

which was shown to be the only finitely cut-rule axiomatizable variant). In
[9], negative results were established for unidirectional (i.e., involving only
one division functor) fragments of L0 and NL0. For the whole of both latter
systems, the problem turned out to be particularly difficult and it remained
unsolved until the end of the millenium. The solution for L0 was finally
published in [11] and [12], and that for NL0 in [10] and [13]. In the next two
sections, we give their outlines.

2. Preliminaries

We start with presenting the calculi L0 and NL0 in their Gentzen-style form,
as given by Lambek respectively in [5] and [6]. Next, we discuss briefly the
finite cut-rule axiomatizability problem for both systems.

We define the set Tp of types :

• Primitive types p1, p2, . . . are types.
• If x and y are types, so are (x/y) and (x\y) (as usual, we omit the

outermost parentheses).

We use lowercase (resp. capital) letters to denote elements of Tp (resp.
Tp*). Sequents are expressions of the form X → x (unlike Lambek, we
admit sequents with the empty antecedent).

Axioms of L0: all sequents of the form x → x.

Rules of L0:

(R1′)
T → y UxV → z

Ux/yTV → z
(R1′ ′)

T → y UxV → z

UTy\xV → z

(R2′)
Ty → x

T → x/y
(R2′ ′)

yT → x

T → y\x.

Cut elimination theorem (Lambek [5]). L0 is closed w.r.t. the cut rule:

(CUT)
T → x UxV → y

UTV → y.
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The calculus NL0 differs from L0 in that the sequent antecedents are not
(unstructured) strings but bracketed strings of types (BSTp’s) defined as
follows:

• The empty string is a BSTp.

• Types are BSTp’s.

• If X and Y are nonempty BSTp’s, then [XY ] is a BSTp (as usual, we
omit the outermost brackets).

Substrings of a nonempty BSTp are defined in a natural way: the type
x is its only substring; substrings of [XY ] are those of X and Y as well as
[XY ] itself. The rules (R1) and (CUT) in NL0 have the form

(R1′)
T → y Y [x] → z

Y [x/yT ] → z
(R1′ ′)

T → x Y [x] → z

Y [Ty\x] → z

(CUT)
T → x Y [x] → y

Y [T ] → y.

Here, as well as in (R2) which do not change formally, Y and T denote
BSTp’s. Y [x] is a BSTp in which x occurs as a substring. If X is nonempty
or Y [x] = x, then Y [X] results from Y [x] by substitution of the BSTp X for
one such occurrence of x. If Y [x] �= x, then Y [x] clearly has a substring of
the form [xZ] or [Zx] with Z nonempty. Thus, we define Y [] as a result of
the substitution of Z for one such occurrence of [xZ] or [Zx] in Y [x].

The cut elimination theorem holds also for NL0 (see Lambek [6]).
It should be remembered that, in both L0 and NL0, we admit empty

sequent antecedents which are not allowed in Lambek’s original systems.
In the presence of (CUT), one may replace (R1) by the axioms

(A1’) x/y y → x (A1”) y y\x → x

In fact, in L0 we have

T → y x/y y → x

x/y T → x UxV → z

Ux/yTV → z

and similarly for (R1”). In NL0, the proof is essentially the same.
One may ask whether it is possible to replace (R2) by finitely many

axiom schemata in a similar way. The answer is negative for both L0 and
NL0.
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A standard method of nonfinite-axiomatizability proofs is based on a
simple criterion due to Tarski: a deductive system is not finitely axiomatiz-
able (under a given set of rules of inference) if it is the union of a chain (Sn)
of systems such that, for every n, Sn+1 is a proper extension of Sn. Thus,
in order to prove the aforementioned results, one must do two things:

• firstly, find a (clearly infinite) axiomatics based on (CUT) as the only
rule of inference for the system in question (L0 or NL0) and divide its
axioms into “ranks” numbered with natural numbers;

• secondly, prove that the axioms of a given rank are not derivable from
those of inferior ranks.

In sections 3 and 4 below, we shall show how to do that respectively for
L0 and NL0.

3. The associative case

Let C be the formal system whose only rule is (CUT) and whose axioms are
defined as follows:

• Axioms of rank 0: all sequents of the form
(A1′) x/y y → x (A1′ ′) y y\x → x

• Axioms of rank 1: all sequents of the form
(A2′) → x/x (A2′ ′) → x\x
(A3′) → (x/(y\x))/y (A3′ ′) → y\((x/y)\x)
(A4′) → ((x/z)/(y/z))/(x/y) (A4′ ′) → (y\x)\((z\y)\(z\x))

• Axioms of higher ranks: if → y is an axiom of rank n, then all sequents
of the form
(A5′) → x/(x/y) (A5′ ′) → (y\x)\x.

are axioms of rank n + 1.

We denote by Cn be the system C restricted to the axioms of rank ≤ n.
We write “X �n x” instead of “X → x is derivable in Cn”.

Theorem 3.1 ([11]). L0 and C are equivalent.

Proof. Using Lambek’s decision method [5], we verify that axioms of C are
derivable in L0. In view of the cut elimination theorem, C is a subsystem of
L0. To prove the converse, we show first that the axiom-forming rules (A5)
are admissible rules of C in the sense that they yield a theorem of Cn+1

when applied to a theorem of Cn. It follows easily that (R2) have the same
property. (R1) may be directly derived in C as shown in Section 1. The
axiom sequents x → x of L0 follow from (A1), (A2) and (CUT).
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It remains to be proved that Cn+1 is a proper extension of Cn. For this
purpose, we need some intermediate results. For every n > 1, let CR

n be the
system whose only rule is (CUT) and whose axioms are

(3A’) y → x/(y\x) (3A”) y → (x/y)\x
(4A’) x/y → (x/z)/(y/z) (4A”) y\x→ (z\y)\(z\x)
(5A’) x/y → x whenever → y (5A”) y\x→ x whenever → y

is an axiom of Cn−1 is an axiom of Cn

(4B) y/z → x/z whenever y → x
is an axiom of CR

n .

For n = 1, the axioms are (3A’), (4A’), (4B), and
(3B) y\x→ x whenever → y is derivable in Cn.

Theorem 3.2 ([12]). Let n > 0. If �n u/v and u �= v, then v → u is
derivable in CR

n .

Proof. Induction on derivations in CR
n and in some auxiliary systems re-

lated to Cn and CR
n . The details may be found in [12] (Theorems 4, 5

and 6).

We define the type y/X by induction on the length of the string X
of types: y/() = y; y/(Xx) = (y/x)/X. An axiom of CR

n is said to be
Montagovian if it has the form y/Z → x/Z with y → x an instance of (3A).
Clearly, a Montagovian axiom is (3A) if Z is empty and (4B) otherwise.

We define the head of the type x as follows: head(p) = p for p primitive;
head(x/y) = head(y\x) = head(x). Now, Montagovian axioms have the
property that the antecedent and the succedent may have different heads.
This is the main source of technical difficulties in the proof of Theorem 3.3
below.

For n = 1, 2, . . . , we define Sn to be the least set such that

• all primitive types are in Sn,

• if x ∈ Sn and �n−1 y, then x/y ∈ Sn,

• if x ∈ Sn and �n y, then y\x ∈ Sn.

Theorem 3.3 ([12]). If n > 1, �n s/t and s is primitive, then t ∈ Sn.

Proof. It is easy to see that the derivation of x → y in CR
n may be repre-

sented in the form of a reduction, i.e., in the form

x0 → x1 → . . . → xm
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where x0 = x, xm = y and xk−1 → xk (0 < k ≤ m) is an axiom of CR
n . The

axiom xk−1 → xk is the k-th stage of the reduction and the number m is its
length. By Theorem 3.2, there exists a reduction of t to s in CR

n . There are
two cases:

(1) The reduction has no Montagovian stages. Then the proof proceeds
easily by induction on its length.

(2) The contrary holds. Define the complexity of an axiom (5A) to be
the number of occurrences of “/” and “\” in the type denoted by y in the
axiom schema (5A), and the complexity of a reduction to be the sum of the
complexities of all its stages (5A). We prove that whenever the reduction
has a Montagovian stage, its complexity may be lowered. Thus, (2) may be
reduced to (1).

Corollary 3.1. Let s be primitive. If n > 1 and �n s/(s/x), then �n−1 x.

Let s be primitive. Define the sequence (yn) of types as follows: y0 = s/s,
yn+1 = s/(s/yn). it is easy to show that ��0 y0 and ��1 y1. Hence ��n yn by
the corollary and induction on n. On the other hand, → yn is an axiom
of Cn+1. It follows that Cn+1 is a proper extension of Cn which was to be
proved.

4. The non-associative case

Let NC be the formal system whose only rule is (CUT) and whose axioms
are defined as follows:

• Axioms of rank 0 an 1: like in Cn, with (A4) replaced by

(A4’) → (((x/y)\x)/z)/(y/z) (A4”) → (z\y)\(z\(x/(y\x)))
(A5’) → (z/((x/y)\x))\(z/y) (A5”) → (y\z)/((x/(y\x))\z)

• If → y is an axiom of rank n, so are
(A6’) → (x/z)\((y\x)/z) (A6”) → (z\(x/y))\(z\x)
(A7’) → (z/x)\(z/(y\x)) (A7”) → ((x/y)\z)/(x\z)

• If → y is an axiom of rank n, then

(A8’) → x/(x/y) (A8”) → (y\x)\x
are axioms of rank n + 1.

We denote by NCn the system NC restricted to the axioms of rank ≤ n.
We write “X �n x” instead of “X → x is derivable in NCn”.

Theorem 4.1 ([10]). NL0 and NC are equivalent.
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Proof. Analogous to that of Theorem 3.1. In view of (A6) and (A7), every
level of the hierarchy (Sn) has its own hierarchical structure. Consequently,
in order to prove that NC is closed w. r. t. (R2), one must prove that
(A6) and (A7) are admissible rules of NCn for every n. This requires some
auxiliary results and makes the proof technically very complicated when
compared to that of Theorem 3.1.

We define the reflection x of the type x as follows: s = s for s primitive;
y/z = z\y; z\y = y/z. Clearly x = x.

For a fixed n, we define inductively the sequences (F ′
k), (F ′ ′

k ), (G′
k), (G′ ′

k)
of axiom schemata as follows:

F ′
0: y → (x/y)\x F ′ ′

0 : y → x/(y\x)
G′

0: y\x → x whenever → y G′ ′
0: x/y → x whenever → y

is an axiom of NCn is an axiom of NCn−1

F ′
k+1 (resp. G′

k+1): v\zk → u\zk whenever u → v is F ′
k (resp. G′

k)
F ′ ′

k+1 (resp. G′ ′
k+1): zk/v → zk/u whenever u → v is F ′ ′

k (resp. G′ ′
k)

For every n, let NCR
n be the system whose only rule is (CUT) and whose

axioms are all the Fk and Gk as well as

F ′: y/z → ((x/y)\x)/z F ′ ′: z\y → z\(x/(y\x))
G′: (y\x)/z → x/z whenever → y G′ ′: z\(x/y)→ z\x whenever → y

is an axiom of NCn is an axiom of NCn−1

The axioms F0 and F are said to be Montagovian.

Theorem 4.2 ([13]). Let n > 0. If �n u/v and u �= v, then v → u is
derivable in NCR

n .

Proof. Induction on derivations in NCR
n , NCn and in the system NC ′

n

related to NCn. The details may be found in [13] (Theorems 4 and 5)

Theorem 4.3 ([13]). If n > 0, �n s/t and s is primitive, then t ∈ Sn.

Proof. We define reductions in NCR
n analogously to those in CR

n . By
Theorem 4.2, there exists a reduction of t to s in NCR

n . Here again, we
distinguish two cases (1) and (2) depending on whether it has a Montagovian
stage or not.

(1) We proceed exactly as in the associative case.
(2) Define the complexity of an axiom G0 like that of an axiom (5A) of

CR
n . An axiom Gk+1 of the form v\zk → u\zk or zk/v → zk/u has the same

complexity as u → v. An axiom G of the form u/z → v/z has the same
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complexity as u → v. The complexity of a reduction in NCR
n is the sum of

the complexities of all its stages G and Gk.
The height of an axiom Fk or Gk is the number k. Axioms F and G have

height 0. The height of a reduction in NCR
n is the sum of heights of all its

stages.
We prove by induction on the height of a reduction that whenever it has

a Montagovian stage, either its complexity or the number of its stages Fk

may be lowered. Thus, (2) may be reduced to (1).

Corollary 4.1. Let s be primitive. If n > 0 and �n s/(s/x), then �n−1 x.

We prove now in the same way as in the associative case that NCn+1 is
a proper extension of NCn.

Let us emphasize that, in spite of some apparent similarity, there is no
far-reaching analogy between the proofs of case (2) in Theorems 3.3 and 4.3.
They involve quite different technical means. This lack of a general method
of type-raising elimination is peculiar to the nonfinite-axiomatizability proofs
for various systems related to the Lambek calculus.

5. Hilbert-style formalism

We adopt here the “logical” interpretation of the Lambek calculus presented
in Section 1. Consequently, there are two variants of modus ponens:

(MP) A A→B � B and (PM) B←A A � B

corresponding to the derivable sequents y y\x � x and x/y y � x of L0 (and
NL0).

We are concerned with the Hilbert-style axiomatization of implicational
logics related to L0 and NL0 in the above-mentioned sense. As far as possi-
ble, we look for axiomatics which (1) do not employ rules other than modus
ponens and (2) are finite.

The cut-rule axiomatics for L0 and NL0 given respectively in sections
3 and 4 have the property that all their axiom sequents have empty an-
tecedents except for y y\x � x and x/y y � x which, under our interpreta-
tion, are (MP) and (PM). In [9], unidirectional (i.e., \-free or /-free) parts
of both systems were axiomatized in a similar way. Since, under the same
interpretation, the cut rule is nothing more than the metarule of proof-tree
construction, it follows that the corresponding implicational calculi are not
finitely detachment-rule axiomatizable.

We define the reflection A of an implicational formula A by induction:
A = A if A is a propositional variable; A→ B = B← A; B← A = A→ B.
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Now, the implicational logic for L0 may be axiomatized by means of (MP),
(PM), and the following axiom schemata:

(1) A→ A
(2) A→ ((B← A) → B),
(3) (A→ B) → B whenever A is an axiom,
(4) (A→ B) → ((C→ A) → (C→ B)).

together with their reflections. To get the ←-free fragment, corresponding
to the system L of [9], delete everything except for (MP), (1), (3), and (4).

It was proved in [11] that (3) may be treated as an inference rule rather
than an axiom-forming rule. In this case, we clearly get finite axiom systems.

The implicational logic for NL0 may be axiomatized by means of (MP),
(PM), (1), (2), (3) as above, and the following axiom schemata:

(4) (C→ A) → (C→ (B← (A→ B))),
(5) (A→ C) ← ((B← (A→ B))→ C),
(6) (C→ (B← A)) → (C→ B) whenever A is an axiom,
(7) ((B← A) → C) ← (B→ C) whenever A is an axiom.

together with their reflections. To get the ←-free fragment, corresponding
to the system NL of [9], delete everything except for (MP), (1), and (3) and
then add

(8) (C→ A) → (C→ B) whenever A→ B is an axiom,
(9) (B→ C) → (A→ C) whenever A→ B is an axiom.

Here again, (6), (7), (8), (9), and (3) may be treated as inference rules rather
than axiom-forming rules, as proved in [10], in order to obtain finite axiom
systems.

Both L0 and NL0 are substructural, i.e., their sequential formulation
does not involve Gentzen’s “structural” rules which operate on sequent an-
tecedents without introducing any functor. However, variants of L0 aug-
mented with structural rules like

(P)
UxyV � z

UyxV � z
and (C)

Uxx � y

Ux � y

have also been considered. We denote by LP0 (resp. LPC 0) the system L0

with (P) (resp. (P) and (C)) added.
In LP0 (and LPC 0), both y\x � x/y and x/y � y\x are derivable. As

a consequence, → and ← may be reduced to a single implication, to be
denoted →. An appropriate axiomatics for LP0 found by Buszkowski [2]
consists of (MP) and the following schemata:
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(1′) A→ A,
(2′) (A→ (B→ C)) → (B→ (A→ C)),
(3′) (A→ B) → ((C→ A) → (C→ B)).

If we add the schema

(4′) (A→ (A→ B))→ (A→ B),

we get an axiomatics for LPC 0 which, curiously, is equivalent to the well-
known “weak theory of implication” W (see, e.g., [7] and references therein).
In both cases, (2′) may be replaced by

(2′ ′) A→ ((A→ B)) → B).

which is equivalent to (2′) modulo (1′), (3′), and (MP).
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Daniele Mundici Faithful and Invariant
Conditional Probability
in �Lukasiewicz Logic

in memoriam Sauro Tulipani

Abstract. To every consistent finite set Θ of conditions, expressed by formulas (equiva-

lently, by one formula) in �Lukasiewicz infinite-valued propositional logic, we attach a map

PΘ assigning to each formula ψ a rational number PΘ(ψ) ∈ [0, 1] that represents “the

conditional probability of ψ given Θ”. The value PΘ(ψ) is effectively computable from

Θ and ψ. The map Θ �→ PΘ has the following properties: (i) (Faithfulness): PΘ(ψ) = 1

if and only if Θ � ψ, where � is syntactic consequence in �Lukasiewicz logic, coinciding

with semantic consequence because Θ is finite. (ii) (Additivity): For any two formu-

las φ and ψ whose conjunction is falsified by Θ, letting χ be their disjunction we have

PΘ(χ) = PΘ(φ) + PΘ(ψ). (iii) (Invariance): Whenever Θ′ is a finitely axiomatizable

theory and ι is an isomorphism between the Lindenbaum algebras of Θ and of Θ′, then

for any two formulas ψ and ψ′ that correspond via ι we have PΘ(ψ) = PΘ′ (ψ′). (iv) If

θ = θ(x1, . . . , xn) is a tautology, then for any formula ψ = ψ(x1, . . . , xn), the (now uncon-

ditional) probability P {θ}(ψ) is the Lebesgue integral over the n-cube of the McNaughton

function represented by ψ.

Keywords: Conditional, conditional probability, de Finetti coherence criterion, Dutch

Book, many-valued logic, �Lukasiewicz logic, infinite-valued logic, MV-algebra, state, fini-

tely additive measure, subjective probability, invariant measure, faithful state.

Introduction: Conditionals and de Finetti coherence criterion

Probability measures over sets of events were characterized by de Finetti as
coherent betting systems as follows: Two players, Ada (the palindromic, or
reversible bookmaker) and Blaise (the philosopher-mathematician bettor)
wager money on the possible occurrence of events φ1, φ2, . . ., given a set Θ
of conditions, all represented by formulas. By Mod(Θ) we shall denote the
set of all “possible worlds” satisfying Θ. Every possible world V ∈ Mod(Θ)
assigns to each event φi a “truth-value” V (φi), which is always assumed to
be a real number in the real interval [0, 1]. In particular, the truth-value
of a boolean (yes-no) event is either 1 or 0. Ada assigns to each event φi a

D. Makinson, J. Malinowski, H. Wansing (eds.), Towards Mathematical Philosophy,
Trends in Logic, 28 c© Springer Science + Business Media B.V. 2009
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“betting odd” B(φi) ∈ [0, 1]. Then Blaise chooses a finite subset {ψ1, . . . , ψn}
of {φ1, φ2, . . .}, and for each j = 1, . . . , n he fixes a “stake” σj ∈ R for his bet
on event ψj . As an effect of his choice, σjB(ψj) euros are instantly exchanged
between Blaise and Ada, with the understanding that −σjV (ψj) euros shall
be exchanged in the opposite direction when the truth-value V (ψj) is known
in the possible world V ∈ Mod(Θ). Money transfers are so oriented that
“positive” means Blaise-to-Ada. In particular, if Blaise chooses a negative
stake σj then we have a “reverse bet” on event ψj , where the roles of Ada
and Blaise are interchanged: Ada pays now |σj | B(ψj) euros to Blaise, and
Blaise will pay off to Ada |σj |V (ψj) euros.1

By definition, Ada’s “book” B is coherent if it has the following property:

For any events ψ1, . . . , ψn ∈ {φ1, φ2, . . .} and stakes σ1, . . . , σn ∈ R

there is a possible world V ∈ Mod(Θ) such that

n∑

j=1

σj(B(ψj)− V (ψj)) ≥ 0. (1)

In other words, Ada’s book is incoherent if Blaise can choose events and
stakes for his (possibly reverse) bets, ensuring him a sure profit regardless
of the outcome of the gamble.

For the case of boolean events φi, where V (φi) ∈ {0, 1} for any possible
world V , de Finetti showed that condition (1) is necessary and sufficient for
B to be a finitely additive probability measure on the (Lindenbaum) boolean
algebra of Θ. In this way he derived the main properties of conditional prob-
ability from principles that are applicable well beyond boolean semantics.2

In fact, de Finetti’s characterization was extended by Paris [18] to various
modal logics, by Gerla [8] to finite-valued �Lukasiewicz logics, and by the
present author [15] to infinite-valued �Lukasiewicz logic �L∞.

Specifically, in [15, 5.6, 6.1] it is proved that, given any consistent set
of formulas Θ, a [0,1]-valued map B on formulas satisfies condition (1) if
and only if B is a state of Θ, i.e., Θ � ψ ⇒ B(ψ) = 1, and whenever Θ
proves the incompatibility of the conjunction φ / ψ of two formulas φ, ψ
then B evaluates their disjunction φ ⊕ ψ as B(φ) + B(ψ). This shows that
states are a natural generalization of de Finetti’s coherent betting systems
for continuously-valued events.

1Needless to say, real bookmakers never accept reverse bets.
2See, e.g., [4, pp. 311–312], [5, pp. 34–35], [6, pp. 85–90]. See [11] for further devel-

opments of the logical theory of conditionals vs. conditional bets. See [1] for deductive-
algorithmic applications.
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From a different, but no less important viewpoint, in [17, Proposition
1.1] it is proved that states of (the Lindenbaum algebra of) Θ are in one-
one correspondence with Borel probability measures on the set Mod(Θ),
equipped with the natural (spectral) topology. Thus states also take care of
probability distributions over Mod(Θ) different from the even distribution
corresponding to Lebesgue measure.

Having thus seen that states provide a convincing philosophical justifi-
cation of probability in systems of [0, 1]-valued events obeying �Lukasiewicz
semantics, we define a conditional of �L∞ to be a map P : Θ 0→ PΘ assigning to
every consistent finite set Θ of formulas a state PΘ of Θ.3 For every formula
ψ, the number PΘ(ψ) is meant to represent the probability of ψ given Θ.4

A conditional P is faithful if the only P-negligible events are those which
Θ proves to be impossible. P is invariant if PΘ(ψ) only depends on the
logical-semantical relations between the events described by Θ and ψ. See
3.2 for a precise definition.

The invariance property of a conditional P captures the natural desider-
atum that the probability of an event ψ given a set of Θ conditions, should
not depend on our choice of which events are to be thought of as “primitive”
and as such, will be coded by propositional variables. Invariance is a very
strong property: Panti [17, Theorem 2.3] characterizes the Lebesgue inte-
gral as the only invariant state s on the Lindenbaum algebra of m-variable
formulas in �Lukasiewicz logic, such that, letting φn = φ/· · ·/φ (n times),
limn→∞ s(φn) = 0 for all formulas with dim(Mod(φ)) < m.

In Theorem 3.3 we show that �L∞ has a faithful invariant conditional P .
In particular, if the conditions Θ are tautological, the (now “unconditional”)
probability PΘ(φ) of any event φ coincides with the Lebesgue integral of the
McNaughton function fφ represented by φ (see Corollary 5.2).

1. The i-dimensional volume of a formula

Preliminaries on MV-algebras and �Lukasiewicz logic [2]. Throughout, [0, 1]n

denotes the n-cube, equipped with the product topology of Rn. Further,
M([0, 1]n) shall denote the MV-algebra of all continuous piecewise (affine)
linear functions f : [0, 1]n → [0, 1] such that each piece of f has integer
coefficients. Any such f is called a ([0, 1]-valued) McNaughton function.

3In MV-algebraic probability theory, ([19, 3.2] and references therein) conditional ex-
pectations are defined for σ-complete MV-algebras with a product operation. No such
assumption is made here.

4Following Makinson’s remarks on conditionalization in [10], we do not assume that “ψ
given Θ” is a formula in any logic.
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We say that P ⊆ [0, 1]n is a McNaughton set if P = g−1(1) for some Mc-
Naughton function g ∈ M([0, 1]n). McNaughton’s theorem [2, 9.1.5], states
that M([0, 1]n) is the free MV-algebra over the free generating set whose
members are the coordinate functions πi : [0, 1]n → [0, 1].

More generally, for any closed set ∅ �= X ⊆ [0, 1]n we shall denote by
M(X) the MV-algebra of restrictions to X of the functions in M([0, 1]n).
Further, μ(M(X)) shall denote the space of maximal ideals of M(X), i.e.,
kernels of homomorphisms of M(X) into the standard MV-algebra [0, 1].
The space μ(M(X)) comes equipped with the spectral topology: a basis of
closed sets for μ(M(X)) is given by the zerosets Zf of all elements f ∈ M(X),
i.e., by the sets Zf = {m ∈ μ(M(X)) | f ∈ m}. As is well known, μ(M(X))
is a nonempty compact Hausdorff space. In fact, much more is true:

Proposition 1.1. For n = 1, 2, . . . let X be a nonempty closed subset of
[0, 1]n. We then have:

(i) The map x ∈ X 0→ mx = {f ∈ M(X) | f(x) = 0} is a homeomorphism
of X onto the maximal ideal space μ(M(X)). The inverse map m 0→ xm

sends every m ∈ μ(M(X)) to the only element xm of the set
⋂
{g−1(0) |

g ∈ m}.
(ii) For every m ∈ μ(M(X)) there is a unique pair (ιm, Im) where Im is a

subalgebra of the standard MV-algebra [0, 1], and ιm is an isomorphism
of the quotient M(X)/m onto Im.

(iii) For every x ∈ X and f ∈ M(X), f(x) = ιmx(f/mx).

Proof. (i) The proof of [13, 4.17] shows that for any two distinct points
x, y ∈ X there is f ∈ M(X) such that f(x) �= f(y). By [2, 3.4.3] the
map x 0→ mx is a one-one correspondence between X and μ(M(X)). The
definition of spectral topology ensures that this map is a homeomorphism.

(ii) By [2, 1.2.10, 3.5.1], M(X)/m is isomorphic to a subalgebra A of
[0, 1]. By [2, 7.2.6] A is uniquely determined, and so is the isomorphism of
M(X)/m onto A.

(iii) Two functions f, g ∈ M(X) are mapped to the same element by
the quotient map f 0→ f/mx iff |f − g| ∈ mx iff f(x) = g(x). The map
β : f/mx 0→ f(x) is an isomorphism of M(X)/mx onto the MV-algebra V =
{v ∈ [0, 1] | v = f(x) for some f ∈ M(X)}. By (ii), β = ιmx .

Preliminaries on polyhedral topology [7, 22]. For 0 ≤ m ≤ n, an m-simplex
in Rn is the convex hull S = conv(v0, . . . , vm) of m + 1 affinely independent
points in Rn. The vertices v0, . . . , vm are uniquely determined by S. We
say that an m-simplex S = conv(v0, . . . , vm) ⊆ [0, 1]n is rational if the coor-
dinates of each vertex vj of S are rational numbers. Let Σ be a simplicial
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complex. A simplex S ∈ Σ is maximal if it is not properly contained in any
simplex of Σ. We denote by Σmax(d) the set of maximal d-simplexes of Σ.
The point-set union of the simplexes in Σ is called the support of Σ, and is
denoted |Σ|. Σ is said to be a triangulation of |Σ|.

Let S ⊆ [0, 1]n be a rational m-simplex with vertices v0, . . . , vm. For each
j = 0, . . . , m, the vertex vj has the form (rj1/sj1, . . . , rjn/sjn), for uniquely
determined integers 0 ≤ rjt ≤ sjt (t = 1, . . . , n) such that sjt > 0, and
gcd(rjt, sjt) = 1. The least common multiple of {sj1, . . . , sjt} is called the
denominator of vj , and is denoted den(vj). The denominator den(S) of S
is defined by den(S) = den(v0) · · · den(vm). The homogeneous correspondent
of vj is the integer vector ṽj = den(vj) (rj1/sj1, . . . , rjn/sjn, 1) ∈ Zn+1. This
vector is primitive, i.e., minimal (as an integer nonzero vector) along its ray
{μṽj ∈ Rn+1 | μ ≥ 0}. Conversely, vj is said to be the affine correspondent
of ṽj .

An m-simplex S = conv(v0, . . . , vm) ⊆ [0, 1]n is said to be unimodular
if it is rational and the set of homogeneous correspondents {ṽ0, . . . , ṽm}
of its vertices can be extended to a basis of the free abelian group Zn+1.
A simplicial complex is said to be a unimodular triangulation (of its support)
if all its simplexes are unimodular.

As usual [7, 22], by a subdivision of a simplicial complex Σ we mean a
simplicial complex Σ′ with the same support of Σ, such that every simplex
of Σ′ is contained in some simplex of Σ. Let Σ be a simplicial complex
and a ∈ |Σ| ⊆ [0, 1]n. Following [22, p. 376], or [7, III, 2.1], by the blow
up Σ(a) of Σ at a we mean a subdivision which is obtained from Σ by the
following procedure: replace every simplex S ∈ Σ containing a by the set of
all simplexes of the form conv(a, F ), where F is any face of S that does not
contain a. Note that Σ(a) is a simplicial complex. The inverse of a blow-up
is called a blow down.

For any m ≥ 1 and unimodular m-simplex T = conv(w0, . . . , wm) ⊆
[0, 1]n the Farey mediant of T is the affine correspondent of the vector w̃0 +
· · ·+ w̃m ∈ Zn+1, where each w̃i is the homogeneous correspondent of wi. In
the particular case when Σ is a unimodular triangulation and a is the Farey
mediant of a simplex S of Σ, the blow-up Σ(a) is still unimodular.

In Proposition 1.2 below we shall describe the basic relations between
McNaughton sets, unimodular triangulations, and formulas in the infinite-
valued propositional calculus �L∞ of �Lukasiewicz, [20]. For notation and
terminology we shall follow [2, Chapter 4]. Accordingly, negation, disjunc-
tion and conjunction are denoted by ¬,⊕ and /. The implication φ → ψ
is thought of as an abbreviation of ¬φ ⊕ ψ. For each n = 1, 2, . . . we let
Formn denote the set of formulas ψ = ψ(x1, . . . , xn) whose variables are
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contained in the set {x1, . . . , xn}. The map xi 0→ πi uniquely extends to
an interpretation ψ 0→ fψ of every formula ψ(x1, . . . , xn) as a McNaughton
function fψ : [0, 1]n → [0, 1]. The McNaughton set f −1

ψ (1) is a closed subset
of the n-cube, denoted Oneset(ψ). By McNaughton theorem [2, 9.1], every
f ∈ M([0, 1]n) has the form fφ for some φ(x1, . . . , xn).

Proposition 1.2. Let X be a nonempty subset of [0, 1]n. Then the following
conditions are equivalent:

(i) X coincides with the support of some unimodular triangulation Δ.

(ii) X is a McNaughton set.

(iii) X = Oneset(ψ) for some formula ψ(x1, . . . , xn).

Proof. (iii)→(ii) is trivial. (ii)→ (iii) follows from McNaughton theorem
[2, 3.1, 9.1.5]. (ii)→ (i) Suppose X = f −1(1) for some McNaughton function
f . By [2, 9.1.2] there is a unimodular triangulation Υ of the n-cube such
that f is linear over each simplex of Υ. Let Δ ⊆ Υ be the sub-complex of Υ
given by those simplexes which are contained in X. Then Δ is the required
unimodular triangulation of X.

Finally, to prove (i)→(ii), let S1, . . . , Su be the maximal simplexes of Δ.
Let H1, . . . , Hk be a list of closed half-spaces in Rn, each Hi of the form

Hi = {(x1, . . . , xn) ∈ [0, 1]n | p1x1 + · · ·+ pnxn ≥ q}

for some p1, . . . , pn, q ∈ Q, such that for each j = 1, . . . , u the simplex Sj is
the intersection of halfspaces taken from the set {H1, . . . , Hk}. Let e1, . . . , en

be the standard basis vectors in Rn. For each permutation σ of the set
{1, . . . , n} let Sσ be the n-simplex in Rn whose vertices are 0, eσ(1), eσ(1) +
eσ(2), . . . , eσ(1) + · · · + eσ(n). Let K∗ be the simplicial complex consisting of
the n-simplexes Sσ’s together with their faces. (In [21, pp. 60–61], the set
of Sσ’s is denoted T (Q) and is called the standard triangulation of the n-
cube.) Direct inspection shows that K∗ is a unimodular triangulation of
the n-cube. Using the affine version of De Concini-Procesi theorem [3], [7,
p. 252] as in [16, 2.2], we construct a sequence of unimodular triangulations
K0 = K∗, K1, . . . , Kr such that (i) each Kt+1 is obtained by blowing-up Kt

at the Farey mediant of some 1-simplex of Kt, (ii) for each i = 1, . . . , k, the
convex polyhedron Hi ∩ [0, 1]n is a union of simplexes of Kr, whence (iii) for
each j = 1, . . . , u, Sj is a union of simplexes of Kr. Let the McNaughton
function g ∈ M([0, 1]n) be uniquely determined by the following properties: g
is linear over every simplex of Kr, g(v) = 1 for each vertex v ∈ X of a simplex
of Kr, and g(w) = 0 for any other vertex w of Kr; such g is obtainable as a
suitable sum of the “Schauder hat” functions hv corresponding to Δ as in [2,
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9.1.4]. The coefficients of each linear piece of g are integers as a consequence
of the unimodularity of Kr. Direct inspection shows that X = g−1(1).

Theorem 1.3. Let P ⊆ [0, 1]n be a McNaughton set and Δ a unimodular
triangulation of P . For each i = 0, 1, . . . let λi(P, Δ) be defined by

λi(P, Δ) =
∑

S∈Δmax(i)

1
i ! den(S)

, (2)

where the sum equals zero if Δmax(i) = ∅. Then for any unimodular tri-
angulation Δ′ of P we have λi(P, Δ) = λi(P, Δ′). The rational number
λi(P ) = λi(P, Δ) = λi(P, Δ′) is called the i-dimensional volume of P .

Proof. By W�lodarczyk’s solution of the weak Oda conjecture [22, 13.3]
(also see [12]), there is a sequence of unimodular triangulations

Δ0 = Δ, Δ1, . . . , Δn−1, Δn = Δ′

such that Δt+1 is obtained from Δt by a blow-up at the Farey mediant
of some simplex S ∈ Δt, or vice versa, Δt is obtained from Δt+1 by a
similar blow-up. Thus we have only to prove λi(P, Δt) = λi(P, Δt+1), ∀t =
0, . . . , n − 1 and i = 0, 1, . . . . Without loss of generality we may suppose
that Δt+1 is obtained from Δt by a blow-up at the Farey mediant a of some
j-simplex S = conv(v0, . . . , vj) ∈ Δt (otherwise we interchange the roles of
Δt and Δt+1). From the unimodularity of S we get den(a) = den(v0)+ · · ·+
den(vj). Let M be the set of all m such that a is contained in some maximal
m-simplex of Δt. Let T = conv(v0, . . . , vj , . . . , vm) be a maximal simplex of
Δt containing a. For each u = 0, . . . , j let

Fu = conv(v0, . . . , vu−1, a, vu+1, . . . , vj , vj+1, . . . , vm).

The unimodularity of T ensures that each Fu is unimodular, and den(Fu) =
den(T ) · den(a)/den(vu). By definition of blow-up, T is replaced in Δt+1

by the simplicial complex whose maximal simplexes are the m-simplexes
F0, . . . , Fj . From the identity 1/den(T ) =

∑j
u=0 1/den(Fu) we obtain

∑
{(m! den(T ))−1 | T ∈ Δmax

t (m)} =
∑
{(m! den(F ))−1 | F ∈ Δmax

t+1 (m)}.

We have just shown that λm(P, Δt) = λm(P, Δt+1) for each m ∈ M . For
i �∈ M the maximal i-simplexes of Δt are exactly the same as those of Δt+1.
Thus λi(P, Δt) = λi(P, Δt+1) for all i = 0, 1, . . . .

Remark. In particular, when P is a unimodular d-simplex,

λd(P ) =
1

d ! den(P )
, and λi(P ) = 0 for i �= d. (3)
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By abuse of terminology, for any formula ψ(x1, . . . , xn) and i = 0, 1, . . . we
define the i-dimensional volume λi(ψ) by λi(ψ) = λi(Oneset(ψ), Δ), where
Δ is an arbitrary unimodular triangulation of Oneset(ψ). Direct inspection
shows that the map (ψ, i) 0→ λi(ψ) is effectively computable. Trivially,
λi(ψ) = 0 for all integers i > n. On the other hand, for i < n, λi(ψ) can be
arbitrarily high. Finally, for i = n, the following result can be taken as a
justification of our terminology:

Proposition 1.4. For every formula ψ(x1, . . . , xn), λn(ψ) is equal to the
n-dimensional Lebesgue measure λ(Oneset(ψ)).

Proof. Without loss of generality we can assume Oneset(ψ) to be n-dim-
ensional, and λm(ψ) = 0 for all m �= n. Let Δ be a unimodular tri-
angulation of Oneset(ψ) as given by Proposition 1.2. Let S1, . . . , Sr be
the n-simplexes of Δ. For each k = 1, . . . , r, let vk0, . . . , vkn be the ver-
tices of Sk, with their respective denominators mk0, . . . , mkn. It suffices to
show that the n-dimensional Lebesgue volume λ(Sk) coincides with λn(Sk).
To this purpose, let S∗

k ⊆ Rn+1 be the (n + 1)-simplex whose vertices
are 0, (vk0, 1), . . . , (vkn, 1). S∗

k is contained in the (n + 1)-dimensional
parallelepiped Pk = {μ0(vk0, 1) + · · · + μn(vkn, 1) | μ0, . . . , μn ∈ [0, 1]}.
By definition of homogeneous correspondent, Pk is included in the paral-
lelepiped Uk = {μ0ṽk0 + · · · + μnṽkn | μ0, . . . , μn ∈ [0, 1]} ⊆ Rn+1. The
unimodularity of Sk means that Uk has unit Lebesgue volume. From ṽk0 =
mk0(vk0, 1), . . . , ṽkn = mkn(vkn, 1) it follows that the ((n + 1)-dimensional)
Lebesgue volume λ(Pk) equals (mk0 · · ·mkn)−1. It is easy to see that the
Lebesgue volume λ(S∗

k) satisfies the identities

λ(Sk)× 1
n + 1

= λ(S∗
k) =

λ(Pk)
(n + 1)!

.

The first identity is the classical formula for the volume of the (n + 1)-
dimensional pyramid; the second follows from the observation that Pk can
be triangulated with (n+1)! simplexes, all having the same Lebesgue volume
as S∗

k . By (3) we conclude that λ(Sk) = λ(Pk)/n! = (n! mk0 · · ·mkn)−1 =
λn(Sk).

2. Conditionals in �Lukasiewicz propositional logic �L∞

Intuitively, a “possible world” assigns a “truth-value” to certain “events”.
When events are taken care of by infinite-valued �Lukasiewicz propositional
logic �L∞, ([2, Chapter 4]), the imprecise notion of possible world is captured
by the following
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Definition 2.1. Fix n = 1, 2, . . . . Then a valuation (over Formn) is a
function V : Formn → [0, 1] such that V (¬φ) = 1 − V (φ), V (φ ⊕ ψ) =
min(1, V (φ) + V (ψ)), and V (φ/ ψ) = max(0, V (φ) + V (ψ)− 1).

Because every valuation is uniquely determined by its restriction to the
propositional variables, the map V 0→ wV = (V (x1), . . . ,V (xn)) is a one-
one correspondence between valuations over Formn and points in the n-cube
[0, 1]n. For arbitrary w ∈ [0, 1]n we denote by Vw the valuation correspond-
ing to w. Vw is the only valuation such that w = (Vw(x1), . . . , Vw(xn)).

We say that formulas φ, ψ ∈ Formn are (logically) equivalent if V (φ) =
V (ψ) for all valuations V . By [2, 4.4.1,4.5.2], this is the same as saying
that φ ↔ ψ is a tautology. We denote by |ψ| the equivalence class of ψ.
Upon equipping the set of equivalence classes of formulas ψ(x1, . . . , xn) with
the MV-algebraic operations inherited from the connectives ¬,⊕,/, we get
the free n-generated MV-algebra Ln, [2, 4.5.5]. Let the map β send the
equivalence class |xi| of each propositional variable xi to the ith coordi-
nate function πi : [0, 1]n → [0, 1]. Then by McNaughton theorem [2, 9.1], β
uniquely extends to an isomorphism η : |ψ| 0→ fψ of Ln onto the MV-algebra
M([0, 1]n). Therefore, for every ψ ∈ Formn, η yields a concrete representa-
tion of |ψ| ∈ Ln as the McNaughton function fψ ∈ M([0, 1]n). By induction
on the number of occurrences of connectives in ψ we get

fψ(w) = Vw(ψ) for all w ∈ [0, 1]n. (4)

For every formula θ ∈ Formn let Mod(θ) denote the set of valuations V ∈
[0, 1]Formn such that V (θ) = 1. Any such V is said to satisfy θ.

The following proposition describes the tight relation between Oneset(θ)
and Mod(θ):

Proposition 2.2. The range of the one-one map V ∈ Mod(θ) 0→ wV =
(V (x1), . . . , V (xn)) ∈ [0, 1]n coincides with Oneset(θ).

Proof. From (4) we have: w = wV for some V ∈ Mod(θ) iff Vw ∈ Mod(θ)
iff Vw(θ) = 1 iff fθ(w) = 1 iff w ∈ Oneset(θ).

Logical equivalence of two formulas ψ, φ ∈ Formn is generalized to logical
equivalence ≡θ as follows: ψ ≡θ φ iff θ � ψ ↔ φ, where � is syntactic con-
sequence in �Lukasiewicz logic �L∞, [2, 4.3.2]. For each formula φ(x1, . . . , xn),
the ≡θ-equivalence class of φ shall be denoted |φ|θ. The set of ≡θ-equivalence
classes of Formn forms an MV-algebra, called the Lindenbaum algebra of θ
and denoted Lθ (see [2, 4.6.8]).
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We write θ |= ψ, and we say that ψ is a semantic consequence of θ, iff
Mod(θ) ⊆ Mod(ψ) (iff Oneset(θ) ⊆ Oneset(ψ)). Wójcicki’s theorem [23],
[2, 4.6.7] states that θ � ψ iff θ |= ψ.5

The following generalization of McNaughton theorem allows us to iden-
tity Lθ with M(Oneset(θ)):

Proposition 2.3. For θ ∈ Formn with Oneset(θ) �= 0, the map ρθ : |φ|θ 0→
fφ |̀Oneset(θ) is an isomorphism of Lθ onto M(Oneset(θ)).

Proof. To prove that ρθ is a well defined homomorphism, let O be short
for Oneset(θ). Then by (4) and [2, 4.5.1] we have:

fψ |̀O �= fφ |̀O ⇒ ∃w ∈ [0, 1]n with fθ(w) = 1 and fψ(w) �= fφ(w)
⇒ Vw(θ) = 1, Vw(ψ) �= Vw(φ) for some w ∈ [0, 1]n

⇒ θ � ψ ↔ φ

⇒ θ � ψ ↔ φ

⇒ |ψ|θ �= |φ|θ.

To prove that ρθ is onto M(O) we will use McNaughton theorem: for every
g ∈ M(O), letting h = hχ ∈ M([0, 1]n) be such that g = h |̀O, it follows that
g = ρθ(|χ|θ). Finally, in order to prove that ρθ is one-one, suppose |ψ|θ is
not the zero element of Lθ, i.e., θ � ¬ψ. By Wójcicki’s theorem, ¬ψ is not a
semantic consequence of θ, θ �|= ¬ψ. In other words, for some valuation V we
have V (θ) = 1 and V (¬ψ) �= 1. Thus V (ψ) > 0. The point w = wV satisfies
fθ(w) = 1 and fψ(w) > 0. Thus, fψ |̀ f −1

θ (1) �= 0, i.e., fψ |̀O �= 0.

3. A faithful invariant conditional for �L∞

Let Θ = {θ1, . . . , θu} be a nonempty finite subset of Formn, for some n =
1, 2, . . . . Again by Wójcicki’s theorem, the set

Θ� = {ψ ∈ Formn | Θ � ψ}

of syntactic consequences of Θ coincides with the set

Θ|= = {ψ ∈ Formn | V (ψ) = 1 for all V with 1 = V (θ1) = · · · = V (θu)}

of semantic consequences. Further, letting θ = θ1/. . ./θu be the conjunction
of the formulas in Θ, we have Θ� = {θ}�. We shall always assume that Θ is
consistent, i.e., Θ� does not coincide with Formn. Throughout this paper we

5As is well known, the identity between syntactic and semantic consequence ceases to
hold in general if θ is replaced by an infinite set of formulas, [2, p. 99].
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shall identify Θ with θ without any danger of confusion. Wójcicki’s theorem
then becomes the identity

θ|= = θ�. (5)

By Proposition 2.3, the consistency of θ is equivalent to Oneset(θ) being
nonempty.

Recall [14, 15] that a faithful state of an MV-algebra A is a [0, 1]-valued
map s on A such that, for all x, y ∈ A, (i) s(x) = 1 ⇔ x = 1, and (ii)
s(x ⊕ y) = s(x) + s(y) whenever x / y = 0. Similarly, by a faithful state
of a consistent formula θ ∈ Formn we mean a map S : Formn → [0, 1] such
that (i) S(ψ) = 1 if and only if θ � ψ; and (ii) S(ψ ⊕ φ) = S(ψ) + S(φ)
whenever θ � ¬(ψ / φ); in other words, S is additive on pairs of formulas
whose conjunction is falsified by θ. It follows that S(¬ψ) = 1 − S(ψ), and
ψ ≡θ ψ′ ⇒ S(ψ) = S(ψ′), whence the proof of the following proposition is a
routine verification:

Proposition 3.1. Let θ be a fixed, but otherwise arbitrary formula in Formn.
Let us define the map

ε : faithful states of M(Oneset(θ))→ faithful states of θ

by the following stipulation: for any such state s, letting S = ε(s),

S(ψ) = s(fψ |̀Oneset(θ)) ∀ψ ∈ Formn.

Then ε : s 0→ S maps faithful states of M(Oneset(θ)) one-one onto faithful
states of θ.

Definition 3.2. A faithful conditional is a map P : θ 0→ Pθ such that, for
every n = 1, 2, . . . and every consistent formula θ ∈ Formn, Pθ is a faithful
state of θ. We say that P is invariant if it has the following property: when-
ever θ ∈ Formn, θ′ ∈ Formn′ , and η is an isomorphism of the Lindenbaum
algebras Lθ′ and Lθ, then Pθ(ψ) = Pθ′ (ψ′) for any two formulas ψ and ψ′

such that |ψ|θ = η(|ψ′|θ′ ).

When P is clear from the context, for every ψ ∈ Formn the quantity
Pθ(ψ) is said to be the conditional probability of ψ given θ. As noted in the
introduction, invariance ensures that this quantity does not depend on the
syntactical details of our transcription of event ψ and condition θ, but only
on their mutual logical relations.

The main result of this paper is the following

Theorem 3.3. �Lukasiewicz propositional logic has a faithful invariant con-
ditional P.
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4. Proof: construction of a faithful conditional P

Given a consistent formula θ = θ(x1, . . . , xn) let the McNaughton set P ⊆
[0, 1]n be defined by P = Oneset(θ). By hypothesis, P is nonempty. Let us
identify Lθ and M(P ) via the isomorphism ρθ of Proposition 2.3. Let D be
the set of those indexes j such that λj(P ) > 0. Then D ⊆ {0, . . . , n} and
its number |D| of elements is ≥ 1. Let us say that D is the dimensional
spectrum of P . With reference to Theorem 1.3, for each j ∈ D let the
rational coefficient cj be defined by

cj = cj,θ =
1

|D| · λj(P )
. (6)

For any ψ ∈ Formn let f = fψ |̀P = |ψ|θ. Let Δ be a unimodular tri-
angulation of P . The proof of Proposition 1.2 shows that it is no loss of
generality to assume that f is linear over every simplex of Δ, for short Δ
is an (always unimodular) f -triangulation: As a matter of fact, if Δ is not
an f -triangulation, a suitable subdivision Δ� of Δ via blow-ups will be an
f -triangulation, by the affine version of De Concini-Procesi theorem.

For each i ∈ D and i-simplex T = conv(v0, . . . , vi) ∈ Δmax(i), the average
value f |̀T of f over T is given by

f |̀T =
f(v0) + · · ·+ f(vi)

i + 1
. (7)

Letting 1P denote the constant function 1 over P , by Theorem 1.3 we have
∑

T ∈Δmax(i)

ci · λi(T ) · 1P |̀T =
∑

T ∈Δmax(i)

λi(T )
|D| · λi(P )

=
1
|D| . (8)

Let the rational number ςT (f) be defined by

ςT (f) = ci · λi(T ) · f |̀T . (9)

Intuitively, ςT (f) is the normalized (i+1)-dimensional volume of the portion
of space below the graph of f |̀T. We now define

ςθ,Δ(f) =
∑

i∈ D

∑

T ∈Δmax(i)

ςT (f). (10)

This is the total normalized sum of the volumes below the graph of f |̀P in
all dimensions where P has maximal simplexes. (In Claim 1 below we shall
see that this volume only depends on θ.) From (8) we obtain

ςθ,Δ(1P ) = 1. (11)
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For S = conv(v0, . . . , vj) an arbitrary simplex of Δ, let a be the Farey medi-
ant of S. Then the blow-up Δ(a) of Δ at a is a unimodular f -triangulation.

We shall prove invariance under blow-up,

ςθ,Δ(f) = ςθ,Δ(a)
(f). (12)

As a consequence of the unimodularity of S we get den(a) = den(v0) +
· · · + den(vj). Let R = conv(v0, . . . , vj , . . . , vm) be a maximal m-simplex of
Δ containing a. Note that m belongs to D. For each u = 0, . . . , j, let the
m-simplex Fu of Δ(a) be defined by

Fu = conv(v0, . . . , vu−1, a, vu+1, . . . , vj , vj+1, . . . , vm).

Then Fu is unimodular and den(Fu) = den(R) · den(a)/den(vu). In Δ(a)

the m-simplex R is replaced by (the complex generated by) the maximal
m-simplexes F0, . . . , Fj . Each Fu is maximal in Δ(a). Since f |̀R is linear
and its coefficients are integers, for each k = 0, . . . , m there is an integer
nk such that 0 ≤ nk ≤ den(vk) and f(vk) = nk/den(vk). Similarly, there
is an integer 0 ≤ na ≤ den(a) such that f(a) = na/den(a). From the
unimodularity of S ⊆ R, together with the linearity of f over R, it follows
that na = n0 + · · ·+ nj . Next we prove

ςR(f) =
j∑

u=0

ςFu(f). (13)

To this purpose, recalling (3), we first write

λm(Fu) =
1

m! den(Fu)
=

den(vu)
m! den(R) den(a)

, (14)

and recalling (7),

f |̀Fu =
f(a)− f(vu) +

∑m
k=0 f(vk)

m + 1
. (15)

A tedious but straightforward computation now yields:
j∑

u=0

ςFu(f) =
j∑

u=0

cm · λm(Fu) · f |̀Fu

=
cm
∑

u den(vu) [f(a)− f(vu) +
∑m

k=0 f(vk)]
(m + 1)! den(R) den(a)

=
cm
∑

u den(vu)
[

na
den(a) −

nu
den(vu) +

∑m
k=0 f(vk)

]

(m + 1)! den(R) den(a)
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=
cm

[
(
∑

u den(vu)) na
den(a) −

∑
u nu + (

∑
u den(vu))

∑m
k=0 f(vk)

]

(m + 1)! den(R) den(a)

=
cm [na − na + den(a)

∑m
k=0 f(vk)]

(m + 1)! den(R) den(a)

=
cm

m! den(R)
· 1
m + 1

·
m∑

k=0

f(vk) = cm · λm(R) · f |̀R = ςR(f).

This settles (13) as well as (12).

Having thus proved invariance under blow-up, we now prove invariance
under unimodular triangulations:

Claim 1. If Δ′ is an f -triangulation of P then ςθ,Δ(f) = ςθ,Δ′ (f).

In order to use (12), we must construct a path from Δ to Δ′ only consist-
ing of f -triangulations. To this purpose, let Δ∗ be a subdivision of Δ′ which
is obtained from Δ via a sequence of blow-ups. The existence of Δ∗ again
follows from the affine version of the De Concini-Procesi theorem [3], [7,
p. 252], arguing as in [16, 2.2] (compare with the proof of Proposition 1.2).
All triangulations in the path leading from Δ to Δ∗ are f -triangulations.
By (12) we have

ςθ,Δ(f) = ςθ,Δ∗ (f). (16)

For each i ∈ D every i-simplex L of Δ′ is a union of i-simplexes L1, . . . , Lq

of Δ∗. Let Δ′
L ⊆ Δ′ be the sub-complex given by all simplexes of Δ′ con-

tained in L. Then Δ′
L consists of L together with its faces. Let Δ∗

L ⊆ Δ∗

be the sub-complex given by all simplexes of Δ∗ contained in L. One more
application of the solution of the weak Oda conjecture [22, 13.3], [12], shows
that Δ′

L and Δ∗
L are connected by a path of blow-ups and blow-downs: each

complex obtained in this path is a unimodular triangulation of L, and is also
an f -triangulation, because f is linear over L. The same calculation of the
proof of (13) yields ςL(f) = ςL1(f)+ · · ·+ ςLq(f), whence ςθ,Δ′ (f) = ςθ,Δ∗ (f).
Recalling (16), Claim 1 is settled.

The definition of P. We are now in a position to define the map P : θ 0→ Pθ

by stipulating that, for each formula ψ = ψ(x1, . . . , xn),

Pθ(ψ) = ςθ,Δ(fψ |̀P ), (17)

where Δ is an arbitrary triangulation of P = Oneset(θ) such that fψ is linear
over each simplex of Δ . By Claim 1, P is well defined.

Claim 2. Pθ is a faithful state of θ.
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Suppose θ � ψ, i.e., fψ = 1 over P . Let Ω be an arbitrary unimodular
triangulation of P . From (11) we can write ςθ,Ω(1P ) = 1, whence Pθ(ψ) = 1.

In order to prove that Pθ has the additivity property, suppose θ � ¬(ψ/
φ). By (5) and Proposition 2.3 we can write fψ�φ |̀P = (fψ / fφ) |̀P = 0.
In other words, the sum fψ + fφ is ≤ 1 over P . Let Φ be a unimodular
triangulation of P such that both fψ and fφ (whence their sum) are linear
over each simplex of Φ. Trivially, (fψ + fφ) |̀P is uniquely determined by its
values at the vertices of Φ. By (7)-(9), for any maximal simplex T ∈ Φ we
have the identity ςT ((fψ + fφ) |̀P ) = ςT (fψ |̀P ) + ςT (fφ |̀P ). From (10) and
(17) it follows that

Pθ(ψ ⊕ φ) = ςθ,Φ(fψ⊕φ |̀P ) = ςθ,Φ((fψ ⊕ fφ) |̀P ) = ςθ,Φ((fψ + fφ) |̀P )

= ςθ,Φ(fψ |̀P ) + ςθ,Φ(fφ |̀P ) = Pθ(ψ) + Pθ(φ).

We have just proved that Pθ is a state of θ.
There remains to be proved that Pθ is faithful. To this purpose, suppose

θ � ψ, i.e., fψ is not constantly equal to 1 over P . As above, let Ψ be a
triangulation of P such that fψ is linear over each simplex of Ψ. For some
maximal simplex S of Ψ and some vertex v of S we must have fψ(v) < 1,

whence fψ |̀S < 1. By (6) and (8) we conclude that Pθ(ψ) < 1. This settles
Claim 2.

5. Conclusion of the proof: P is invariant

Given θ′ ∈ Formn′ and an isomorphism η : Lθ′ ∼= Lθ = M(P ), let P ′ =
Oneset(θ′) ⊆ [0, 1]n

′
. By Proposition 2.3 we may write without loss of gen-

erality Lθ′ = M(P ′). For each i = 1, . . . , n′ let πi |̀P ′ be the restriction
to P ′ of the ith coordinate function πi : [0, 1]n

′ → [0, 1]. Then η(πi |̀P ′) is
the restriction fi to P of some (possibly not unique) McNaughton function
f̃i ∈ M([0, 1]n). Let the continuous function f̃ : [0, 1]n → [0, 1]n

′
be defined

by x 0→ f̃(x) = (f̃1(x), . . . , f̃n′ (x)). Let f = (f1, . . . , fn′ ) be the restriction
of f̃ to P . By McNaughton theorem, every function g ∈ M(P ′) has the
form fχ |̀P ′ for some formula χ(x1, . . . , xn′ ). By induction on the number of
connectives occurring in χ we obtain

η(g) = η(fχ |̀P ′) = fχ ◦ f , (18)

where ◦ denotes composition. Suppose z′ ∈ range(f)\P ′ (absurdum hypoth-
esis). Then by [13, 4.17] there is a formula ξ with n′ variables, such that fξ

vanishes over P ′ and fξ(z′) = 1. By (18), η(fξ |̀P ′) = fξ ◦ f �= 0, whereas
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fξ |̀P ′ is the zero element of M(P ′), against our assumption about η. We
have just proved that f maps P into P ′.

Symmetrically, we have a function f ′ : P ′ → P such that η−1(fρ |̀P ) =
fρ ◦ f ′, for every formula ρ ∈ Formn. Since η is an isomorphism, f ′ = f −1.
Since P is compact, f is a piecewise linear homeomorphism of P onto P ′,
and each piece of both f and f −1 has integer coefficients.

By Proposition 1.1, for each h ∈ M(P ) and x ∈ P , ιmx(h/mx) = h(x).
Since η is an isomorphism, M(P ′)/mf(x)

∼= M(P )/mx. Once these two quo-
tients are uniquely embedded into [0, 1], they coincide. For every ratio-
nal point z ∈ P , identifying the quotient M(P )/mz with the MV-algebra
{h(z) | h ∈ M(P )}, it follows that M(P )/mz is the subalgebra of [0, 1] gen-
erated by den(z). Thus a point z ∈ P is rational iff so is the point f(z) ∈ P ′,
and for all z ∈ P ∩Qn we have

den(f(z)) = den(z). (19)

Let Σ be a unimodular triangulation of P such that every function
f1, . . . , fn′ is linear over every simplex of Σ. The existence of Σ follows
by the same argument as in the proof of Proposition 1.2. Let Σ′ be the
f -image of Σ. Since each linear piece of every fi has integer coefficients, Σ′

is a rational triangulation of P ′.
Fix a simplex S = conv(v0, . . . , vj) of Σ, with its f -image S′ ∈ Σ′. Then

the (affine) linear map f : x ∈ S 0→ y ∈ S′ determines the homogeneous linear
map f ↑

S : (x, 1) 0→ (y, 1). In more detail, let MS be the (n′ + 1) × (n + 1)
integer matrix whose ith row (i = 1, . . . , n′) is given by the coefficients of
the linear (affine) polynomial fi |̀S, and whose bottom row has the form
(0, 0, . . . , 0, 0, 1), with n zeros. Then MS(x, 1) = (y, 1) = f ↑(x, 1). Let

S↑ = R≥0 ṽ0 + · · ·+ R≥0 ṽj ⊆ Rn+1

be the positive span of the homogeneous correspondents ṽ0, . . . ṽj of the
vertices of S. In a similar way, let S′ ↑ be the positive span of the vectors
MS ṽ0, . . . , MS ṽj . Then MS sends the set of integer points of S↑ one-one
into the set of integer points of S′ ↑. Interchanging the roles of P and P ′

one sees that MS actually sends integer points of S↑ one-one onto integer
points of S′ ↑. From Blichfeldt’s theorem in the Geometry of Numbers [9,
p.35] we get the following characterization: S is unimodular iff the half-open
parallelepiped QS = {μ0ṽ0 + · · · + μj ṽj | 0 ≤ μ0, . . . , μj < 1} contains no
nonzero integer points, iff so does its MS-image QS′ , iff S′ is unimodular.
Since S is unimodular we have proved

Claim 3. For any unimodular triangulation Σ of P such that f is linear over
every simplex of Σ, the image Σ′ = f(Σ) is a unimodular triangulation of P ′.
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To conclude the proof of invariance, suppose ψ′ ∈ Formn′ , and |ψ|θ =
η(|ψ′|θ′ ), with the intent of proving Pθ(ψ) = Pθ′ (ψ′). By Proposition 2.3 we
can write |ψ|θ = fψ |̀P and |ψ′|θ′ = fψ′ |̀P ′. Let Σ satisfy the hypothesis
of Claim 3, and have the additional property that fψ is linear over every
simplex of Σ. The existence of Σ again follows from the affine version of De
Concini-Procesi theorem. By Claim 3 and (18), the image Σ′ = f(Σ) is a
unimodular triangulation of P ′ such that fψ′ is linear over every simplex of
Σ′. For each d-simplex S ∈ Σ its correspondent f(S) = S′ is a d-simplex of
Σ′. By (3) and (19) we can write

λd(S) = (d! den(S))−1 = (d! den(f(S)))−1 = λd(S′). (20)

For all e �= d both λe(S) and λe(S′) vanish. Maximal simplexes of Σ corre-
spond via f to maximal simplexes of Σ′. Computing λi(P ′) with the help
of the unimodular triangulation Σ′ in the light of Theorem 1.3, we obtain
λi(P ) = λi(P ′) for all i = 0, 1, 2, . . .. Since the dimensional spectra D and
D′ of P and P ′ are equal, from (6) we get cj,θ = cj,θ′ , ∀j ∈ D = D′.
Using (18), for all x ∈ P we can write fψ′ (f(x)) = (η−1(fψ))(f(x)) =
fψ(f −1(f(x))) = fψ(x), whence the values of fψ and fψ′ at correspond-
ing points x ∈ P and x′ = f(x) ∈ P ′ coincide. For every maximal i-
simplex T of Σ, letting T ′ = f(T ), by (7) and (20) we obtain the identity
λi(T )×fψ |̀T = λi(T ′)×fψ′ |̀T ′. It follows that ςT (fψ |̀T ) = ςT ′ (fψ′ |̀T ′) and

Pθ(ψ) = ςθ,Σ(fψ |̀P ) = ςθ′,Σ′ (fψ′ |̀P ′) = Pθ′ (ψ′).

Thus P is invariant, and the proof of Theorem 3.3 is complete.

Since finitely presented MV-algebras coincide with isomorphic copies of
the Lindenbaum algebras Lθ for some formula θ, combining Propositions 2.3
and 3.1 with Theorem 1.3 we obtain from the foregoing theorem:

Corollary 5.1. Let A ∼= Lθ
∼= M(Oneset(θ)) be a finitely presented MV-

algebra. Then A has a faithful state, which is also invariant under all auto-
morphisms of A. Further, the sequence of rational numbers

Λ(A) = λ0(Oneset(θ)), λ1(Oneset(θ)), . . .

is an invariant of A, in the sense that A′ ∼= A ⇒ Λ(A′) = Λ(A).

Recalling Proposition 1.4 we have the following representation of the
unconditional fragment of P :

Corollary 5.2. Let τ = τ(x1, . . . , xn) and ψ = ψ(x1, . . . , xn) be formulas,
with τ a tautology. Then Pτ (ψ) is the Lebesgue integral over the n-cube of
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the McNaughton function fψ ,

Pτ (ψ) =
∫

[0,1]n
fψ .

In particular, Pτ (ψ) = 0 if and only if ψ is the negation of a tautology.

Final Remarks.

(i) The map (θ, ψ) 0→ Pθ(ψ) ∈ Q is effectively computable.

(ii) The conditional probability Pθ is defined even if Oneset(θ) ⊆ [0, 1]n is
Lebesgue negligible. Our hypothesis that θ is consistent ensures that
for some 0 ≤ i ≤ n the i-dimensional volume of θ does not vanish.
The consistency of θ is all we need to define Pθ(ψ). Note that Pθ =
Pθ�θ = Pθ�θ�θ = . . .. Thus Pθ(ψ) actually evaluates “the conditional
probability of ψ within the setW of possible worlds assigning the truth-
value 1 to θ.”

(iii) In case θ is inconsistent, W is empty; still one might be interested,
e.g., in assessing the conditional probability p of ψ within the set of all
possible worlds V such that V (θ) ≥ 1/2. One then immediately sees
that p = Pθ⊕θ(ψ). This is so because V (θ) ≥ 1/2 ⇔ V (θ ⊕ θ) = 1.

(iv) More generally, let Q ⊆ [0, 1] be a finite union of closed intervals
with rational endpoints. Let σ be a one-variable formula such that
Oneset(σ) = Q, as given by Proposition 1.2. As a generalization of (1),
Ada’s book might refer to the set W all possible worlds V such that
V (θ) ∈ Q. Thus it makes sense to speak of the probability q of ψ within
all possible worlds in W . A moment’s reflection shows that q coincides
with Pσ(θ)(ψ).

(v) Last, but not least, for any ψ, θ, τ ∈ Formn with τ a tautology and θ
different from the negation of a tautology (which is a more general con-
dition than θ being consistent) our conditional P allows the introduction
of the quantity Pτ (ψ ∧ θ)/Pτ (θ), measuring the average truth-value of
ψ∧ θ relative to the average truth-value of θ. Here, as usual, ∧ denotes
the derived idempotent conjunction of �L∞, as in [2, p. 89]. By Corollary
5.2, Pτ (θ) �= 0. A discussion of the properties of this quantity and its
relationship with de Finetti’s theory are left for future work.
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to Non-scalar Hedges

Abstract. In [4], George Lakoff proposes a fuzzy semantics for the non-scalar hedges

technically, strictly speaking, and loosely speaking. These hedges are able to modify the

meaning of a predicate. However, Lakoff’s proposal is problematic. For example, his

semantics only contains interpretations for hedged predicates using semantic information

provided by selection functions. What kind of information these functions should provide

for non-hedged predicates remains unspecified. This paper presents a solution for this

deficit and other problems by means of a generic first-order fuzzy logic FLh. A wide range

of fuzzy logics can be used as a basis for FLh. Next to a fully specified semantics, this

solution also incorporates a proof theory for reasoning with these hedges. FLh makes use

of a special set of selection functions. These functions collect the kind of information a

reasoner can retrieve from concepts in his or her memory when interpreting a (non-)hedged

predicate. Despite this non-standard element, FLh remains a conservative modification

of its underlying fuzzy logic.

Keywords: fuzzy logic, non-scalar hedges, fuzzy concepts, cognitive science.

1. Introduction

In [4], George Lakoff analyzes the semantics of a specific kind of linguistic
modifiers, namely those terms or phrases which modify the meaning of a lex-
ical item. He calls these modifiers hedges. Consider the following examples.

(1.a) “Technically, it’s a bird.”
(1.b) “It’s a regular bird.”
(1.c) “Loosely speaking, it’s a bird.”

On the basis of his analysis, Lakoff proposes a formal fuzzy semantics for
the hedges technically, strictly speaking, and loosely speaking. His proposal
however is problematic. For example, his semantics does not deal with non-
hedged predicates. It only contains interpretations for hedged predicates
using semantic information provided by special selection functions. What
kind of information these functions should provide for non-hedged predicates
remains unspecified. In this paper, I present a solution for this deficit and
other problems by means of a generic first-order fuzzy logic FLh based upon

D. Makinson, J. Malinowski, H. Wansing (eds.), Towards Mathematical Philosophy,
Trends in Logic, 28 c© Springer Science + Business Media B.V. 2009
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a fuzzy logic FL. A wide range of fuzzy logics can be used as FL. Moreover,
not only does this solution include a fully specified fuzzy semantics for the
hedges technically, strictly speaking, and loosely speaking, it also incorporates
a proof theory for reasoning with these hedges.

The paper is structured as follows. In section 2, I first give an out-
line of Lakoff’s proposal and clarify its relation with research in cognitive
science and fuzzy logic. Next, I discuss its problems. In section 3, I intro-
duce and explain some new formal machinery that plays a special role in
FLh (including a way of representing logically relevant information stored
in the fuzzy concepts of predicates). I also discuss some intuitive relations
between the hedged and non-hedged usage of predicates that should hold in
a proper logic. Section 4 contains the formal characterization of FLh as well
as several meta-theorems which confirm the intuitive relations from section
3. In section 5, I sum up the main results and present some open research
questions.

2. Lakoff’s proposal

2.1. An outline

Consider the following sentences.

(2.a) “Technically, Richard Nixon is a Quaker.”
(2.b) “Strictly speaking, Richard Nixon is a Quaker.”
(2.c) “Strictly speaking, a whale is a mammal.”
(2.d) “Loosely speaking, a whale is a fish.”

According to Lakoff, sentence (2.a) is true. Nixon is a Quaker ‘in some
definitional sense’ because a definitional criterium associated with the pred-
icate Quaker, i.e. the predicate Born-into-Quaker-Family, can be applied to
Nixon. However, people also tend to associate the embracement of pacifism
with the predicate Quaker, as this is also characteristic of most Quakers.
However, the predicate Pacifist cannot be applied to Nixon without great
controversy. This is the reason why sentence (2.b) is not true. Given these
insights, Lakoff concludes that a predicate is used in a technical sense iff
all its associated predicates of definitional importance are applicable and at
least one associated predicate of primary importance is not. A predicate
is used in a strict sense iff all its associated predicates of definitional and
primary importance are applicable.

Lakoff analyzes the difference between the semantics of the hedges strictly
speaking and loosely speaking in a similar way. In his view, sentences (2.c)
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and (2.d) are both true. Sentence (2.c) states that whales can be classi-
fied as mammals when both definitional and other important predicates for
distinguishing mammals are taken into account (e.g. Gives-life-birth and
Breathes-air). Interestingly, sentence (2.d) states that whales can also be
classified as fish in a loose sense. When associated predicates of secondary
importance are taken into account (e.g. Lives-in-water), whales can be in-
terpreted as a kind of fish, despite the obvious fact that many predicates of
definitional and primary importance associated with fish (e.g. Gills) cannot
be applied to whales. Hence, Lakoff concludes that a predicate is used in
a loose sense iff all its associated predicates of secondary importance are
applicable and at least one associated predicate of definitional or primary
importance is not.

By means of these insights, Lakoff suggests a formal fuzzy semantics
for the hedges technically, strictly speaking, and loosely speaking.1 Let π
be a unary predicate and let μπ : D → [0, 1] be the membership func-
tion characterizing its fuzzy extension, where D is a non-empty set and
[0, 1] = {x | 0 ≤ x ≤ 1 and x ∈ R}. Now presuppose a predicate π that is
linked with a set of associated predicates {π1, ..., πn}. Let π = {μπ1 , ..., μπn}
be the set of the membership functions of the extensions of these associated
predicates. Furthermore, let def (initional), prim(ary) and sec(ondary) be
selection functions which select the appropriate membership functions from
π in order to generate the membership function of a new fuzzy set. Take the
minimum function min to construct this function. For example, if def picks
out μπ1 , μπ2 and μπ3 in the case of π, then def (π) = min(μπ1 ,min(μπ2 , μπ3)).
Note that min captures the truth-functionality of a fuzzy conjunction. Fi-
nally, let neg be a standard order inversion 1− x, where x ∈ [0, 1]. Remark
that neg captures the truth-functionality of a fuzzy negation.

(1) μtech(π) =df min(def(π), neg(prim(π)))
(2) μstrict(π) =df min(def(π), prim(π))
(3) μloos(π) =df min(sec(π), neg(min(def(π), prim(π))))

It is easy to see that these definitions perfectly correspond to Lakoff’s
conclusions concerning the semantics of technically, strictly speaking, and
loosely speaking. For example, in line with Lakoff’s conclusion regarding
the semantics of technically in sentence (2.a), definition (1) demands that a
predicate is used in a technical sense iff all its associated definitional pred-

1Lakoff also discusses the semantics of the hedge regularly. I do not discuss this hedge
as it is not clear at the moment how it can be integrated in a truth-functional logic like
FLh.
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icates collected by def are applicable and at least one associated predicate
of primary importance selected by prim is not.

2.2. Its relation with cognitive science and fuzzy logic

I first clarify the relation between Lakoff’s proposal and research in cognitive
science. In Lakoff’s proposal, the type of predicate that may be modified by
hedges like technically, strictly speaking and loosely speaking is necessarily
linked with a set of associated predicates. This set is often interpreted as the
concept of the predicate, cf., for instance, [5]. I call this type of predicate
a complex predicate. It stands in contrast to what I call a scalar predicate.
This type of predicate cannot be analyzed in terms of other predicates and
is simply linked to some scale on which its applicability is set out (e.g. the
application of the primitive predicate Red in function the level of perceived
‘reddishness’). Lakoff also presupposes that each predicate in the concept of
a complex predicate π has a specific level of importance. This level is based
on how characteristic the predicate in casu is for things that are known to
be π. This idea is related with classic models in cognitive science concerning
the development and structure of fuzzy concepts.

A good example is Fintan Costello’s Diagnostic Evidence Model, cf. [2].
I briefly illustrate the main idea behind this model. Consider the predicates
Fly and Bird. The more birds are observed flying, and the less other things
are observed flying, the more characteristic and, hence, important Fly be-
comes in the concept of Bird. The fuzzy truth of the expression α is a Bird,
i.e. the level up to which Bird can be applied to an instance α, directly
depends on the levels up to which associated predicates like Fly, Feathered,
Beak, etc. are applicable to a (possibly weighted in function of their rela-
tive importance). Note that most concepts do not contain predicates with
absolute, or definitional importance, i.e. they do not contain a definitional
core.2

With respect to research in fuzzy logic, it is important to keep in mind
that the type of hedges analyzed by Lakoff are not the same as those dis-
cussed by Lofti Zadeh in [10]. Zadeh focuses on hedges which operate ex-
clusively on scalar predicates. Consequentially, these hedges can be best
distinguished as scalar hedges. Examples are intensifiers and de-intensifiers
like very, sort of, etc. Lakoff instead focuses on hedges that operate on

2In many (natural language) categories, each member of the category has at least one,
and probably several, properties in common with one or more other members, but often no,
or few, properties are common to all members, cf. Eleanor Rosch’s well-known research in,
for instance, [7] and [8]. Remark that Lakoff himself explicitly uses Rosch’s experimental
research in [6] to frame his proposal.
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complex predicates, i.e. non-scalar hedges. This type of hedges can be un-
derstood best as narrowing down or loosening the meaning of a complex
predicate, or even generating a kind of meaning shift (see also subsections
3.3 and 4.6).

2.3. Problems

Lakoff’s formal fuzzy semantics for the hedges technically, strictly speaking,
and loosely speaking is problematic. First of all, his semantics is not fully
specified. As already mentioned, it does not deal with non-hedged com-
plex predicates. It is not specified what kind of semantic information the
selection functions should provide when interpreting non-hedged predicates.
Note that this makes it impossible to specify and check intuitions concerning
the logical relations between the hedged and non-hedged usage of complex
predicates. Secondly, the application radius of strictly speaking, and loosely
speaking is too much restricted. Reconsider definitions (2) and (3) in subsec-
tion 2.1. Remark that the selection function def is used in both definitions to
generate an argument for the binary function min. If def would be allowed
to put in nothing, it would become possible for min to lack an argument.
Hence, only those predicates that have at least one predicate of definitional
importance in their concept are within the range of application. This is
strange, as strictly speaking and loosely speaking clearly may also operate
on predicates of which the concept does not own predicates of definitional
importance. Take for instance the predicate Game. As Ludwig Wittgenstein
has argued extensively, this is a good example of a predicate for which it
is very hard, maybe even impossible, to conceive a set of singly necessary
and jointly sufficient criteria, cf. §3 in [9]. In other words, the concept of
Game lacks a definitional core. Yet, it is intuitively correct to state phrases
like “Strictly speaking, it’s a game.” or “Loosely speaking, it’s a game.”
Hence, Lakoff’s proposal applies to an unrealistically small set of complex
predicates.

In the next sections, I present a solution for these problems by means of
the logic FLh. In section 3, I introduce some new formal machinery that
has a special role in FLh. Section 4 contains the actual characterization of
FLh.

3. Some new machinery

3.1. Selection functions

As already mentioned, there are two main types of predicates: scalar pred-
icates and complex predicates. In contrast to Lakoff, I further divide the
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latter type into those predicates of which the concept possesses a defini-
tional core, i.e. those of which the concept owns at least one predicate of
definitional importance, and those that do not. In sum, I use the following
sets of predicates: the set of scalar unary predicates Ps, the set of complex
unary predicates with a definitional core Pd, and the set of complex unary
predicates without a definitional core Ph. The union of all previous sets
Ps ∪ Pd ∪ Ph is called P .

I also introduce a set of selection functions S. Informally speaking, these
functions collect the kind of information a reasoner can retrieve from fuzzy
concepts in his or her memory when interpreting a (non-)hedged complex
predicate. For every complex predicate, the selection functions d , h, p, and
s respectively select the associated predicates of definitional or high impor-
tance, primary importance and secondary importance. The set is defined as
follows.

Definition 3.1. A set of selection functions S is a non-empty set {d, h, p, s}
which complies with the following conditions (ρ, ρi, ρj ∈ S and π ∈ P):

(a) ρ : Pd ∪ Ph → ℘(P),
(b) for each π ∈ Pd: ρ(π) �= ∅,
(c) for each π ∈ Ph: d(π) = ∅,
(d) for each π ∈ Ph: ρ(π) �= ∅ if ρ �= d,
(e) for each π: ρi(π) ∩ ρj(π) = ∅ where ρi �= ρj ,
(f) π is of type 0 iff π ∈ Ps; π is of type n + 1 iff the maximum
type of the predicates in d(π) ∪ h(π) ∪ p(π) ∪ s(π) equals n.

I briefly explain each condition. Condition (a) demands that the concept
of each complex predicate only consists of complex predicates and scalar
predicates. Condition (b) states that for every predicate with a definitional
core, each selection function should pick up a non-empty set of predicates.
Conditions (c) and (d) together state that for every predicate without a
definitional core, all selection functions should pick up a non-empty set of
predicates except for selection function d, which should pick up the empty set
(given the absence of a core). The motivation behind the conditions (b)–(d)
is technical. They make sure that it is impossible that complex predicates
are defined in terms of empty predicate sets in the definitions (Dh1)–(Dh7)
in subsection 3.2. Condition (e) demands that every two different predicate
sets selected in function of a complex predicate are disjoint. To let these sets
overlap is pointless and overly complex, both from a logical and a cognitive
science perspective. Condition (f) establishes a recursive structure. Scalar
predicates are of type 0, complex predicates are of type n > 0 and the
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concept of a predicate of type n may only consist of predicates of type n− 1
or smaller. This condition makes sure that the analysis of a concept cannot
go on infinitely (but eventually has to end with a set of primitive scalar
predicates). Given the finite nature of our cognitive machinery, this seems
a reasonable demand. The condition also avoids conceptual circularity. The
concept of a complex predicate π cannot be based on π itself.

For some readers this type of selection functions might suggest a rather
idealized kind of concept structures. However, for the present purpose, it
does the job. Moreover, the set-up can still be modified in the future to fit
more realistic standards.

3.2. Modified definitions

I now define the interpretations of (non-)hedged complex predicates (t , s and
l respectively stand for technically, strictly speaking and loosely speaking.
πi, πj ∈ Pd ∪ Ph. α is a term, and ¬ and & are the fuzzy negation and
conjunction of the FL of choice, see also subsection 4.2).3

(Dh1) πα =df &{πiα | πi ∈ d(π)}, (π ∈ Pd)
(Dh2) πα =df &{πiα | πi ∈ h(π)}, (π ∈ Ph)
(Dh3) πtα =df &{πiα | πi ∈ d(π)}&¬&{πjα | πj ∈ p(π)}, (π ∈ Pd)
(Dh4) πsα =df &{πiα | πi ∈ d(π) ∪ p(π)}, (π ∈ Pd)
(Dh5) πsα =df &{πiα | πi ∈ h(π) ∪ p(π)}, (π ∈ Ph)
(Dh6) πlα =df &{πiα | πi ∈ s(π)}&¬&{πjα | πj ∈ d(π) ∪ p(π)}, (π ∈ Pd)
(Dh7) πlα =df &{πiα | πi ∈ s(π)}&¬&{πjα | πj ∈ h(π) ∪ p(π)}, (π ∈ Ph)

The definitions (Dh3)–(Dh7) are based upon Lakoff’s original proposal.
There is only one major difference. In the cases of strictly speaking and
loosely speaking I differentiate between predicates that own a definitional
core, cf. (Dh4) and (Dh6), and those that do not, cf. (Dh5) and (Dh7). In
the latter type, the highly important predicates take over the role of the
definitional core. In contrast to Lakoff, I also provide interpretations for
non-hedged complex predicates, cf. (Dh1) and (Dh2). In (Dh1) the defin-
itional core is used, in (Dh2) the highly important predicates are selected.
Another possibility would be to simply collect all predicates associated with
the complex predicate in question. However, it is well-known that the most
important predicates in a concept are also the most easily accessible ones,
cf., for instance, [1]. Hence, it is more likely that only the definitional or
highly important predicates are taken into account during interpretation, as

3I use & for the &-conjunction of all formulas in a given set.
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these are retrieved relatively fast and unhindered.4 The presence of a hedge
implies some extra cognitive effort during interpretation because also less
important predicates need to be retrieved from the concept.

Remark that by means of the definitions (Dh1)–(Dh7) and the recursive
structure established by S, every expression π(h)α is eventually equated
with a formula that only consists of scalar predicates, where π ∈ Pd ∪ Ph,
h ∈ H and (h) denotes the possible presence of a hedge. In other words, I
presuppose that the interpretation of a (non-)hedged complex predicate is
eventually based upon a set of primitive scalar predicates.

3.3. Some logical intuitions

Given definitions (Dh1) and (Dh2), it becomes possible to specify some in-
tuitions concerning the logical relations between the hedged and non-hedged
usage of complex predicates. A proper logic should affirm these relations.
First of all, both technically as well as strictly speaking evidently narrow
down the meaning of a complex predicate as they invoke some extra con-
ditions on top of those used in the non-hedged case. Hence, it is correct
to expect that πhα implies πα, where h is t or s, but not vice versa. For
example, if someone is technically a Quaker, that person can also be called
a Quaker, but not vice versa. Secondly, the hedge loosely speaking seems
to generate some kind of meaning shift. The focus lies on the predicates
of secondary importance and it is possible that predicates critical for the
non-hedged case cannot be applied. Hence, it is correct to expect that πlα
cannot imply πα, nor vice versa. For example, it is not correct to state that
a whale is a fish because it is a fish in some loose sense. Likewise, it is not
correct to state that because Nixon is a Quaker, Nixon is also a Quaker in
a loose sense. In subsection 4.6, I show that FLh confirms these relations.

4. The generic fuzzy logic for non-scalar hedges FLh

4.1. Preliminaries

In this section, I characterize FLh. This logic is based upon a first-order
fuzzy logic FL. Many fuzzy logics can serve as FL. One possibility is to use a
t-norm logic, cf. Petr Hájek’s [3]. A t-norm logic is characterized by a t-norm
operator ⊗ which determines the truth-functionality of the conjunction. It
is defined as follows (x, y, z ∈ [0, 1]).

4This makes even more sense when taking into account the fact that people often need
to interpret statements under time pressure (e.g. during fast and sloppy communication).
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Definition 4.1. A t-norm ⊗ is a binary operator that satisfies the following
properties:

1. ⊗ : [0, 1]2 → [0, 1],
2. x⊗ y = y ⊗ x (commutativity),
3. x⊗ (y ⊗ z) = (x⊗ y)⊗ z (associativity),
4. If x ≤ y, then x⊗ z ≤ y ⊗ z (monotonicity),
5. 1⊗ x = x (neutral element).

The t-norm of choice determines a specific residuation operator ⇒ which
determines the truth-functionality of the implication. It is defined as follows.

Definition 4.2. A residuation operator⇒ is a binary operator that satisfies
the following properties:

1. ⇒: [0, 1]2 → [0, 1],
2. x ⇒ y = max{z | z ⊗ x ≤ y} (residuation).

Note that the residuation operator also has the following derivable prop-
erties (capturing classical behavior for 0 and 1): (a) x ⇒ y = 1 iff x ≤ y,
(b) if x = 1 and y = 0, then x⇒ y = 0.

In the rest of the section, I use the concrete logic BL∀h to illustrate
FLh. BL∀h is based on the t-norm logic BL∀, which is a well-known logic
with several interesting extensions (e.g. �Lukasiewicz logic �L∀, Goguen logic
Π∀ and Gödel logic G∀).

4.2. The language schema of FLh

The language schema Lh of FLh makes use of the following types of non-
logical symbols (I do not use n-ary predicates with n > 1, identity or func-
tions because they are not important in this context):

• C: the set of constants,
• V: the set of variables,
• Ps: the set of scalar predicates,
• Pd: the set of complex predicates with a definitional core,
• Ph: the set of complex predicates without a definitional core,
• 0, 1: false and true,
• H: the set of the non-scalar hedges t(echnically), s(trictly) and
l(oosely).

The schema is closed under the connectives ¬, &, ∨, ∧ →, ↔ and the
quantifiers ∃ and ∀. The set of FLh-formulas Lh is the smallest set which
satisfies the following conditions (π ∈ P , α ∈ C ∪ V):
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1. πα, 0, 1 ∈ Lh,
2. if π ∈ Pd, then πtα ∈ Lh,
3. if π ∈ Pd ∪ Ph, then πsα, πlα ∈ Lh,
4. if A ∈ Lh, then ¬A ∈ Lh,
5. if A, B ∈ Lh, then A&B, A → B, A ∧B, A ∨B, A ↔ B ∈ Lh,
6. if A ∈ Lh and α ∈ V, then (∀α)A, (∃α)A ∈ Lh.

Wh is the set of closed Lh-formulas.
This linguistic set-up is supplemented with the definitions (Dh1)–(Dh7).

Let me stress again that by means of these definitions and the recursive
structure established by S, every expression π(h)α, where π ∈ Pd ∪ Ph, is
eventually equated with a formula that only consists of scalar predicates.

4.3. The structure of a FLh-theory

Definition 4.3. A FLh-theory is a couple 〈Γ, S〉. The first element Γ is a
set of Wh-formulas. The second element is a selection function set S.

4.4. The proof theory of FLh

The proof theory of FLh is a conservative modification of the proof theory of
FL. There is only one difference. FLh implements alternative definitions of
the notions theoremhood and derivability that take into account the presence
of a selection function set S. Consider the proof theory of BL∀h based on
BL∀. The axioms, rules and definitions of BL∀h are simply those of BL∀
(β ∈ C).

(A1) (A→ B) → ((B → C) → (A→ C))
(A2) (A&B) → B
(A3) (A&B) → (B&A)
(A4) (A&(A→ B)) → (B&(B → A))
(A5) (A→ (B → C)) → ((A&B)→ C)
(A6) ((A&B)→ C) → (A→ (B → C))
(A7) ((A→ B) → C) → (((B → A)→ C) → C)
(A8) 0→ A
(∀1) (∀α)A(α)→ A(β) (β substitutable for α in A(α))
(∃1) A(β)→ (∃α)A(α) (β substitutable for α in A(α))
(∀2) (∀α)(B → A) → (B → (∀α)A) (α not free in B)
(∃2) (∀α) (A→ B) → ((∃α)A→ B) (α not free in B)
(∀3) (∀α)(A ∨B) → ((∀α)A ∨B) (α not free in B)
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(MP) From A and A → B derive B
(UG) From A, derive (∀α)A

(D1) ¬A =df A → 0
(D2) A ∧B =df A&(A→ B)
(D3) A ∨B =df ((A→ B) → B)&((B → A) → A)
(D4) A ↔ B =df (A → B)&(B → A)

In order to complete the proof theory of BL∀h, the following FLh-definitions
for theoremhood and derivability are added.

Definition 4.4. �FLh
A iff there is a proof of A from 〈∅, S〉 for each possible

S: i.e., for each possible set S, there exists a sequence of formulas that ends
with A in which every member is either an axiom or follows from previous
members of the sequence by means of a rule.

Definition 4.5. 〈Γ, S〉 �FLh
A iff there is a proof of A from 〈Γ, S〉: i.e.,

there exists a sequence of formulas that ends with A in which every member
is either an axiom, a member of Γ or follows from previous members of the
sequence by means of a rule.

Remark that definition 4.4 makes it impossible that derivations that are
based solely on the information in a particular S are interpreted as theorems
of FLh. For example, if Bird ∈ Ph and Fly is selected by h(Bird) in some
S, it holds that 〈∅, S〉 �FLh

(∀x)Birdx → Flyx. However, this expression
has nothing to do with tautological truths in FLh. It is only a conceptual
truth (or ‘analytical truth’, as some like to say). It is always possible to use
some other S′ in which Fly �∈ h(Bird). The same idea holds for the semantic
notion validity, cf. definition 4.7.

4.5. The semantics of FLh

The semantics of FLh is also a conservative modification of the semantics of
FL. There are only two differences: (1) the FLh-valuation function is both
determined by a model M as well as a selection function set S, and (2) FLh

implements alternative definitions for the notions truth in a model, validity
and semantic consequence that take into account the presence of a selection
function set S. Consider the semantics of BL∀h. A model in BL∀h is build
up in the same way as a model in the original semantics of BL∀. In both
cases, a model M is defined by a couple 〈D, v〉. D is a non-empty set. v is
an assignment function that complies with the following conditions.
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(i) v : C ∪ V → D
(ii) v : Ps → (D → [0, 1])

As already mentioned, in FLh, the valuation function vMS : Lh → [0, 1] is
determined by a model M and a selection function set S. In the case of
BL∀h this function complies with the following conditions.

S.1 vMS(πα) = v(π)(v(α)), where π ∈ Ps

S.2 vMS(0) = 0
S.3 vMS(1) = 1
S.4 vMS(A&B) = vMS(A)⊗ vMS(B)
S.5 vMS(A → B) = vMS(A) ⇒ vMS(B)
S.6 vMS((∃α)A) = Sup{vM ′S(A) | M ′ = 〈D, v′〉 differs at most from M

in that possibly v′(α) �= v(α)}
S.7 vMS((∀α)A) = Inf {vM ′S(A) |M ′ = 〈D, v′〉 differs at most from M

in that possibly v′(α) �= v(α)}

The set of designated values W of FLh is identical to the one of FL. In the
case of BL∀h this means that W = {1}. In order to complete the semantics
of BL∀h, the following FLh-definitions for the notions truth in a model,
validity and semantic consequence are added.

Definition 4.6. 〈M, S〉 |=FLh
A iff vMS(A) ∈ W .

Definition 4.7. |=FLh
A iff vMS(A) ∈ W in all possible M , under all

possible S.

Definition 4.8. 〈Γ, S〉 |=FLh
A iff vMS(A) ∈ W in all M where vMS(B) ∈

W , for all B ∈ Γ.

Note that v does not assign fuzzy extensions to complex predicates. Only
scalar predicates are assigned an extension. It are the definitions (Dh1)–
(Dh7), combined with the recursive structure established by S, that make
sure that the valuation of every expression π(h)α, where π ∈ Pd ∪ Ph, ulti-
mately depends on the extensions of a set of scalar predicates. In this way,
the semantics directly reflects the philosophical idea that the interpretation
of a (non-)hedged complex predicate ultimately depends on the primitive
meaning of some related set of scalar predicates.

4.6. Some interesting meta-theorems of FLh

I first prove two general properties of the t-norm ⊗ (x, y, z ∈ [0, 1]).

Lemma 4.9. x⊗ y ≤ x
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Proof. Property (4) in definition 4.1 states that x ⊗ z ≤ y ⊗ z, if x ≤ y.
Property (5) in definition 4.1 states that 1⊗ x = x. Suppose y = 1. Hence,
x⊗ z ≤ z. Given property (2) in definition 4.1, this implies z ⊗ x ≤ z.

Lemma 4.10. x⊗ 0 = 0

Proof. Given lemma 4.10, y ⊗ x ≤ y. Hence, if y = 0, then 0⊗ x = 0 and,
given property (2) of ⊗ in definition 4.1, x⊗ 0 = 0.

I now prove some meta-theorems of FLh which confirm the logical rela-
tions discussed in subsection 3.3 (πi, πj ∈ P and max is a metavariable for
the functions d and h in those cases where both functions are possible).

Theorem 4.11. |=FLh
πtα → πα

Proof. Observe that vMS(πtα → πα) = vMS(πtα) ⇒ vMS(πα). Now
presuppose that vMS(πtα) = 1 and vMS(πα) = 0, for some model M and
some selection function set S. This would make vMS(πtα) ⇒ vMS(πα) = 0
because of property (b) of ⇒. However, given definitions (Dh3) and (Dh1),
vMS(πtα) = vMS(&{πiα | πi ∈ d(π)}) ⊗ vMS(¬&{πjα | πj ∈ p(π)}) and
vMS(πα) = vMS(&{πiα | πi ∈ d(π)}). Given lemma 4.9, vMS(&{πiα | πi ∈
d(π)})⊗ vMS(¬&{πjα | πj ∈ p(π)}) ≤ vMS(&{πiα | πi ∈ d(π)}). Hence, the
presupposition is impossible and, given property (a) of ⇒, |=FLh

πtα → πα
holds.

Theorem 4.12. |=FLh
πsα → πα

Proof. Similar to the proof of theorem 4.11.

Theorem 4.13. �|=FLh
πα → πtα

Proof. Given definitions (Dh1) and (Dh3), vMS(πα) = vMS(&{πiα | πi ∈
d(π)}) and vMS(πtα) = vMS(&{πiα | πi ∈ d(π)}) ⊗ vMS(¬&{πjα | πj ∈
p(π)}). Let vMS(&{πiα | πi ∈ d(π)}) = 1 and vMS(¬&{πjα | πj ∈ p(π)}) =
0, for some model M and some selection function set S. Hence, vMS(πtα) =
1⊗ 0. Given lemma 4.10, this implies vMS(πtα) = 0. So, vMS(πα → πtα) =
vMS(πα) ⇒ vMS(πtα) = 1 ⇒ 0. Hence, because of property (b) of ⇒,
vMS(πα → πtα) = 0 and �|=FLh

πα → πtα holds.

Theorem 4.14. �|=FLh
πα → πsα

Proof. Similar to the proof of theorem 4.13.

Theorem 4.15. �|=FLh
πlα → πα
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Proof. Given definitions (Dh6) and (Dh7) as well as (Dh1) and (Dh2),
vMS(πlα) = vMS(&{πiα | πi ∈ s(π)})⊗vMS(¬&{πjα | πj ∈ max (π)∪p(π)})
and vMS(πα) = vMS(&{πiα | πi ∈ max(π)}). Given definition (D1),
vMS(¬&{πjα | πj ∈ max (π) ∪ p(π)}) = vMS(&{πjα | πj ∈ max (π) ∪
p(π)}) ⇒ vMS(0). Note that vMS(&{πjα | πj ∈ max (π) ∪ p(π)}) =
vMS(&{πiα | πi ∈ max (π)}) ⊗ vMS(&{πjα | πj ∈ p(π)}). Now let
vMS(&{πiα | πi ∈ max (π)}) = 0, vMS(&{πjα | πj ∈ p(π)}) = 1 and
vMS(&{πiα | πi ∈ s(π)}) = 0, for some model M and some selection function
S. Given lemma 4.10, this implies vMS(&{πjα | πj ∈ max (π) ∪ p(π)}) = 0
and, because of property (a) of⇒, vMS(¬&{πjα | πj ∈ max (π)∪p(π)}) = 1.
Given that vMS(&{πiα | πi ∈ s(π)}) = 1 and property (5) of ⊗ in definition
4.1., this implies vMS(πlα) = 1. Hence, vMS(πlα → πα) = vMS(πlα) ⇒
vMS(πα) = 1 ⇒ 0. Because of property (b) of ⇒, this implies vMS(πlα →
πα) = 0 and thus �|=FLh

πlα → πα holds.

Theorem 4.16. �|=FLh
πiα → πl

iα

Proof. Similar to the proof of theorem 4.15.

4.7. A philosophical note on completeness

In [4], Lakoff conjectures the following.

“It seems to me unlikely that one is going to be able to get complete axioma-
tizations for fuzzy predicate logic containing such hedges. [...] If my guess is
correct, then we will have learned something very deep and important about
natural languages and how they differ from artificial languages.” [4], p. 494.

Unfortunately, it is unclear which type of hedges Lakoff has in mind. He
explicitly mentions Zadeh’s scalar hedges at this point in his paper, yet,
given the focus of the paper on non-scalar hedges and the generality of
the statement above, he also seems to refer to the latter type of hedges.
However, when considering a fuzzy logic like FLh developed to deal with
the non-scalar hedges technically, strictly speaking and loosely speaking, his
conjecture is wrong. FLh and FL are evidently coextensive. Hence, if FL
is proven to be (sound and) complete, so is FLh. A good example is the
first-order fuzzy Gödel logic G∀.5 This logic is complete with respect to
[0,1]-semantics, cf. [3]. Hence, G∀h is also complete.

5The proof theory of G∀ is obtained by adding A → (A ∧ A) to the axiom set of BL∀.
Its semantics is obtained by letting the t-norm be the minimum function min (which makes
the residuation operator correspond to the condition (x ⇒ y) = 1 if x ≤ y and otherwise
(x ⇒ y) = y).
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5. Conclusion

Lakoff’s fuzzy semantics for the non-scalar hedges technically, strictly speak-
ing and loosely speaking can be integrated in a generic fuzzy logic FLh.
By doing this, several deficits of Lakoff’s original proposal become solved.
First of all, FLh also incorporates interpretations for non-hedged complex
predicates. Secondly, the application radius of strictly speaking, and loosely
speaking becomes broadened in such a way that also predicates without a
definitional core can be modified by these hedges. FLh has a fully specified
semantics as well as a straightforward proof theory for reasoning with these
hedges. Furthermore, FLh confirms intuitive logical relations between the
hedged and non-hedged usage of complex predicates.

In order to make all this possible, FLh makes use of a special set of
selection functions. These functions collect the kind of information a rea-
soner can retrieve from concepts in his or her memory when interpreting a
(non-)hedged complex predicate. Despite this non-standard element, FLh

evidently remains a conservative modification of its underlying fuzzy logic.
To end, I briefly mention two open research questions in order to illus-

trate the many challenges still pending. One important challenge is to adjust
the formalism of FLh in such a way that it can also deal with other hedges
(e.g. typically or regularly). Another challenge is to adjust the system in
such a way that also non-unary predicates may be hedged (as this often
happens in natural language, e.g. “Technically speaking, July is the mother
of Tom.”). Obviously, both adjustments first and foremost demand a lot of
extra-logical research in line with Lakoff’s original analysis.
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Piotr �Lukowski The Procedures
for Belief Revision

Abstract. The idea of belief revision is strictly connected with such notions as revision

and contraction given by two sets of postulates formulated by Alchourrón, Gärdenfors

and Makinson in [1], [2], [5]. In the paper expansion, contraction and revision are defined

probably in the most orthodox way, i.e. by Tarski’s consequence operation (e.g. [11]) and

Tarski-like elimination operation (see [7]). In our approach nonmonotonicity appears as

a final result of alternate using of two steps of our reasoning: “step forward” and “step

backward”. Step forward extends the set of our beliefs and it is used when some new

belief appears. Step backward reduces the set of our beliefs and it is used when we reject

some previously accepted belief. A decision of adding or rejecting of some sentences is

arbitrary and depends on our wish only. Thus, this decision cannot be logical and logic

cannot justify it. In our approach logic is a tool for faultless and precise realization of

extension or reduction of the set of our beliefs. But why some sentences should be added

or refused depends on extralogical reasons.

Such understood nonmonotonicity can be considered also on logics other than classi-

cal. A reconstruction of a given logic in its deductive-reductive form is here the basis of

nonmonotonicity. It means that nonmonotonic reasoning can be formalized on the base

of every logic for which its deductive-reductive form can be reconstructed. Firstly our

approach is tested on the ground of the classical logic. Next it is confronted with the

intuitionism represented by the Heyting-Brouwer logic.

Procedures of contraction and revision are verified by using of the AGM postulates.

We limit our considerations to first six conditions for contraction and revision, because

of the well known relation between contraction satisfying first four conditions together

with the sixth one and revision defined by this contraction and consequence operation.

Satisfaction of almost every postulate is for us a good sign that our approach is reasonable.

The only exception we make for the fifth postulate and for Harper identity. Analyzing the

reasoning alternately extending and contracting the set of beliefs it is difficult to accept

the postulate that adding previously rejected sentence we obtain again the same set of

beliefs as before the contraction. This problem is deeper considered in the paper. The

original AGM settles the relations between contraction and revision with, the well known

Levi and Harper identities. In all cases of our approach, revision is defined on the basis of

contraction which with respect to revision is prime.

Keywords: belief revision, expansion, contraction, revision; consequence operation, elimi-

nation operation; logic of truth, logic of falsehood, nonmonotonic reasoning; classical logic,

Heyting-Brouwer logic, intuitionistic logic.

D. Makinson, J. Malinowski, H. Wansing (eds.), Towards Mathematical Philosophy,
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1. Introduction

Our basis in defining expansion, contraction and revision procedures will be
consequence and elimination operations. Both functions are given in a dual
way. Let L be a given language with universum L. E, C : 2L → 2L for any
X, Y ⊆ L satisfy the following conditions:

E(X) ⊆ X ⊆ C(X)
X ⊆ Y implies E(X) ⊆ E(Y ) and C(X) ⊆ C(Y )
E(X) ⊆ EE(X) and CC(X) ⊆ C(X)

As in [7], also here a notion of logic is extended to the triple (L, C, E). It
is evident that not any arbitrary elimination and consequence operations
constitute a logic: both functions have to be somehow linked, i.e. they
constitute a one logic. In fact there is a unique way in which they may be
mutually connected (see [7]): for any X ⊆ L,

E(X) = L− Cd(L−X),

where Cd is a consequence operation dual in Wójcicki’s sense to the given
C (see [12]). More precisely, a complete reconstruction of the given logic
gives two deductive-reductive (d-r) forms of this logic: the first one in the
d-r form of the logic of truth (L, C, E), and the second one, the d-r form of
the logic of falsehood (L, Cd, Ed). Of course, for any X ⊆ L,

Ed(X) = L− C(L−X).

Both triples (L, C, E) and (L, Cd, Ed) constitute a logic in the complete d-r
form. This form of some reconstructed logic can be is represented by the
square:

Ed E

C Cd

◦ •

• ◦

Let H be a class of valuations v : L −→ {0, 1}. Then,

α ∈ C(X) iff ∀v ∈ H (v(X) ⊆ {1} implies v(α) = 1);
α ∈ Cd(X) iff ∀v ∈ H (v(X) ⊆ {0} implies v(α) = 0);
α ∈ E(X) iff ∃v ∈ H (v(L−X) ⊆ {0} and v(α) = 1);
α ∈ Ed(X) iff ∃v ∈ H (v(L−X) ⊆ {1} and v(α) = 0).
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In the notation typical for relations, the complete d-r logic has a form of two
triples: (L,�,1) and (L,�d,1d), where for any X ⊆ L:

X 1 α iff L−X �d α;
X 1d α iff L−X � α.

It is important to notice that the theory of elimination operation is quali-
tatively and conceptually different from the consequence theory at first sight
only. Actually, one is an expansion of the other. Both theories bases on the
same set X, usually finite. Indeed, an operation E works on infinite com-
plements L −X of finite sets X. But the set L −X is always given by X.
It means that E is de facto an operation based on finite sets. The same,
answers on all metalogical questions, proof-theoretic and semantic problems
like decidability, completeness, finite axiomatizability, which can be con-
nected with the theory of elimination operation are fully “localized” in the
set X itself, as in the case of consequence theory. Thus the elimination op-
eration theory expanding the consequence theory sheds an additional light
on the problem of acceptance of sentences constituting the finite (usually)
set X.

Let us assume that X ⊆ L is a set of accepted by us sentences, i.e.
accepted without any logical afterthought.1 It means that every element of
the set X is in our opinion a true sentence. Then, since we have already
accepted X, we should also accept C(X) — all truthful consequences of
X. It is an example for using of the deductive part (L, C) of the logic of
truth (L, C, E). From the other hand, since we accepted only X, thus we
did not accept L −X. This fact has also some consequences. One can say
that L − X is in some sense the set of rejected sentences. Since we had
already rejected L − X, we should also reject Cd(L − X) — all “falseful”
consequences of X. Here, we use a deductive part (L, Cd) of the logic of
falsehood (L, Cd, Ed). But what about the set of our beliefs X, i.e. the set
of accepted by us sentences? Obviously, it should be reduced by all sentences
from Cd(L −X). It means that our new set of beliefs should be limited to
the set: L − Cd(L −X) = E(X). In such a way we use the reductive part
(L, E) of the logic of truth (L, C, E).2

1I.e. without verifying of any logical consequences of accepted premises. Firstly sen-
tences of X are accepted by us, and then operations C and E are applied.

2It seems that the comment above would be more convincing, when the set C(X)
would appear instead of X in the definition equality of E. Indeed, if one accepts a set
X of sentences, then one has to accept C(X), and so the expression L − Cd(L − X)
should be replaced by L − Cd(L − C(X)). However, the comment above explains the
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Now, let us assume that X ⊆ L is a set of sentences which are false
for us. Then, all sentences from Cd(X) should be also false for us, by
the deductive part (L, Cd) of the logic of falsehood (L, Cd, Ed). However,
simultaneously the set of false for us sentences should be limited to the set
L−C(L−X) = Ed(X), by the reductive part (L, Ed) of the logic of falsehood
(L, Cd, Ed).

It means that a logic given in the complete form can be applied to the
set of true sentences as well as to the set of false sentences. In the paper we
will consider such an extension of the classical logic which can be applied to
the set of sentences among which some are true and some other false.

A logic in the d-r form allows us to move freely forward and backwards in
our reasoning, i.e. either to extend or to reduce our set of beliefs. Contrary
to AGM the procedures considered in the sequel may work in other logics,
not only in the classical one. Thanks to elimination and consequence oper-
ations all these reasoning procedures can be defined on any logic given by
structural finite consequence operation and, linked to it, elimination opera-
tion, or equivalently with cofinite structural elimination operation and linked
to it consequence operation. Therefore, we shall deal only with structural,
finitary consequence operations and with structural, cofinitary elimination
operations. Now, let us recall some useful notions and facts given in [14]
and [7].

A consequence operation C is structural, if for any endomorphism e of the
language L and for any X ⊆ L:

eC(X) ⊆ C(eX).

An elimination operation E is structural, if for any endomorphism e of the
language L and for any X ⊆ L:

e(L− E(X)) ⊆ L− E(L− e(L−X)).

A consequence operation C is finitary, if for any X ⊆ L:

C(X) =
⋃
{C(Y ) : Y ⊆ X and Y is a finite set}.

An elimination operation E is cofinitary, if for any X ⊆ L:

E(X) =
⋂
{E(Y ) : X ⊆ Y and Y is a cofinite set}.

nature of E, and not express a philosophical motivation for it. The motivation is given
by presented above semantic characterisation of four operations: C, Cd, E, Ed. So, an
equality L − Cd(L − X) = E(X) directly comes from the semantical relations between C,
E and Cd. Moreover, the operation E is defined for every X and not for C(X) only.
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Sets X = C(X) and Y = E(Y ) are C-theory and E-theory further desig-
nated by T and F , respectively. Trivial theories T = L and F = ∅ are called
inconsistent and insufficient, respectively.

A C-theory T is maximal relatively to α, if

1. α �∈ T and
2. α ∈ C(T + β) for any β �∈ T.

A C-theory maximal relatively to some formula is relatively maximal.

An E-theory F is minimal relatively to α, if

1. α ∈ F and
2. α �∈ E(F − β) for any β ∈ F.

An E-theory minimal relatively to some formula is relatively minimal.

Lindenbaum Lemma. Let C be a finitary consequence operation on L. For
any consistent C-theory T and for any α �∈ T there exists a C-theory T0

maximal relatively to α such that T ⊆ T0.

Dual-to-Lindenbaum Lemma. Let E be a cofinitary elimination opera-
tion on L. For any sufficient E-theory F and for any α ∈ F there exists an
E-theory F0 minimal relatively to α such that F0 ⊆ F .

The letter of the following notions will be useful for the further considera-
tions:

– a maximal relatively to α C-theory T for the set X;

and

– a minimal relatively to α E-theory F for the set X.

Assume that α �∈ Y . In order to construct a maximal relatively to α
C-theory for the set X including consistent set Y , it is sufficient to mod-
ify a proof of Lindenbaum lemma, presented with all details in [13]. This
construction begins from the ordering, in the form of the sequence, of all
formulas of the set L− Y . Building a maximal relatively to α C-theory for
the set X, this sequence is formed in such a way that every formula from
X − Y proceeds all formulas from (L− Y )−X. It means that all formulas
from the set X will be always taken into account as first in the procedure of
extending the set Y .

An analogous, small correction of the proof of the dual-to-Lindenbaum
lemma results in the construction of minimal relatively E-theories for a
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given set X. Let α ∈ Y and X¬ = {¬β : β ∈ X}. The construction of
the minimal relatively to α E-theory for the set X included in the sufficient
set Y begins from the ordering, in the form of the sequence, of all formulas
of the set Y . This sequence is formed in such a way that every formula
from Y ∩ X¬ precedes all formulas from Y ∩ (L − X). It means that all
formulas from the set Y ∩X¬ will be always taken into account as first in
procedure of removing from the set Y . Since, in the case of the classical logic,
simultaneous removing of any formula together with its negation from some
set makes this set insufficient, removing ¬β from Y prevents the removing
β from Y .

1.1. Dual to �Loś-Suszko Theorem

Syntactically, each elimination operation is defined by the so called E-
axioms, i.e. formulas which cannot be accepted even in the whole language.
So, as C-axioms are expressions of the shape

∅ � α,

i.e. α is a tautology of �, E-axioms have a form of

L 1 α,

i.e. α is a counter-tautology of � or equivalently a tautology of �d. While
consequence operation enables us to express a set of all tautologies, C(∅),
elimination operation defines a set of non-counter-tautologies (i.e. all for-
mulas which are not counter-tautologies), E(L). Moreover, if C and E are
linked, then a sentence α ∈ C(β) is equivalent to β �∈ E(L − α). The
case of E-rule is analogous. A deduction rule (D-rule) is of the form ∅ +
{α1, . . . , αk} � β, shortly {α1, . . . , αk} � β. The E-rule, the rule of elimina-
tion should be of shape L− {α1, . . . , αk} 1 β. Of course, from the syntactic
point of view a definition of D-rule and E-rule is the same: it is an ordered
pair of formula set and single formula. Thus, Modus Ponens deductive in
character has its reductive counterpart in the form of the rule which says
which formula should be removed from a given set, if some other formulas
are removed from it.

In the consequence theory there is the notion of “proof” which plays the
key role. The elimination operation is closely connected with a dual notion
of “disproof”.

Let R be a set of rules of elimination operation E. A formula α is called
disprovable from X by means of rules from R, if and only if there exists in
L−X a finite sequence of formulas α1, . . . , αk, such that
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– α = αk and
– for any i ∈ {1, . . . , k}, αi ∈ L−X or for some Y ⊆ {α1, . . . , αk−1},

L− Y 1 αi is an instance of some rule from R.

Every sequence α1, . . . , αk satisfying above conditions is called a disproof of
α from X by means of R.

A formula α is called confirmed for X by means of R if there exists no
disproof of α from X by means of R.

For more details see also [7].

Directly from the definition above it follows that rules from R remove
some of elements from X in such a way that the set L −X is extended to
some set (L − X)R = L − E(X). Thus, the set (L − X)R is closed under
every rule from R3.

Lemma. Let E : 2L → 2L be any elimination operation, and R(E) be a set
of all rules of E. Then, for any X ⊆ L and α ∈ L:

α ∈ E(X) implies α ∈ ER(E)(X).

Proof. Assume that α �∈ ER(E)(X).Then, there exists a disproof α1, . . . , αk

of α from X by means of R(E). Now, it will be shown that for any i ∈
{1, . . . , k}, αi �∈ E(X).

For i = 1, α1 �∈ X or L 1 α1 is an instance of some rule from R(E).
In the first case, obviously, α1 �∈ E(X). Assume that L 1 α1 is a rule
from R(E). Then, the set (L − X)R is closed under rule L 1 α1, and so
α1 �∈ E(X).

Now assume that α1 �∈ E(X), . . . , αi−1 �∈ E(X), for i ∈ {2, . . . , k}. By
the above definition of disproof, αi �∈ X or for some Y ⊆ {α1, . . . , αi−1},
L− Y 1 αi is a rule from R(E). Obviously, if αi �∈ X, then α �∈ E(X). Let
for some Y ⊆ {α1, . . . , αi−1}, L−Y 1 αi is a rule fromR(E). Then, (L−X)R
is closed under rule L− Y 1 αi, and since Y ⊆ (L−X)R ({α1, . . . , αi−1} ⊆
(L − X)R), αi ∈ (L − X)R. Thus, αi �∈ E(X). It proves that for any
i ∈ {2, . . . , k}, if α1 �∈ E(X), . . . , αi−1 �∈ E(X), then αi �∈ E(X).

Since αk = α, α �∈ E(X).

Dual to �Loś-Suszko Theorem. For every cofinitary elimination opera-
tion E : 2L → 2L there exists R, a set of E-rules such that

E = ER.

3In our approach, the set (L − X)R is a Cd-theory, i.e. a theory of the logic dual to C
in Wójcicki’s sense.
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Proof. Assume that α∈E(X). Then, by the Lemma above, α ∈ ER(E)(X).
Now assume that α �∈ E(X). Since E is a cofinitary elimination operation,
α �∈ E(L− Y ), for some finite Y ⊆ L−X. Then, {α1, . . . , αk} 1 α is a rule
from R(E), where {α1, . . . , αk} = Y . Of course, α1, . . . , αk, α is a disproof
of α from X by means of R(E). Thus, α �∈ ER(E)(X).

2. Nonmonotonicity on classical base

Classical logic will serve here as the first illustration. Albeit many other log-
ics could be also considered, the main aim of this section is to check how our
approach realizes AGM postulates (Alchourrón-Gärdenfors-Makinson postu-
lates) for contraction and revision on typical for AGM ground of the classical
propositional logic.

The classical propositional logic of truth in the deductive-reductive form
is a triple:

(LCL, CCL, ECL),

where
LCL = (LCL,¬,∧,∨,→).

CCL is the very well known deductive part and the reductive part ECL of
the classical propositional logic of truth is given by the following axiom set:

1E LCL 1CL ¬(¬(α → β)→ α)
2E LCL 1CL ¬(¬(¬(γ → α) → ¬(β → α)) → ¬(¬(γ → β) → α))
3E LCL 1CL ¬((α ∧ β) → α)
4E LCL 1CL ¬((α ∧ β) → β)
5E LCL 1CL ¬(¬(¬(γ → (α ∧ β))→ ¬(γ → β))→ ¬(γ→α))
6E LCL 1CL ¬(α → (α ∨ β))
7E LCL 1CL ¬(β → (α ∨ β))
8E LCL 1CL ¬(¬(¬((α ∨ β)→ γ)→ ¬(β → γ))→ ¬(α → γ))
9E LCL 1CL ¬(¬(β → ¬α) → ¬(α → ¬β))

10E LCL 1CL ¬(β → (α → α))
11E LCL 1CL α ∧ ¬α

MTE LCL − {β,¬(α → β)} 1CL α

A meaning of MTE is the following: removing two sentences ¬(α→β) and
β from X removes α from X.
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In order to obtain a syntax for classical logic of falsehood Cd
CL

4, a logic
dual in Wójcicki’s sense to CCL (see [12]), it suffices to replace “LCL 1CL”
by “∅ �CLd” in 1E-11E , and MTE by MTC : {β,¬(α → β)} �CLd α. It
means that one can formulate an equality expressing the relation between
ECL and Cd

CL. For X ⊆ L:

ECL(X) = L− Cd
CL(L−X).

Further, i.e. throughout the “classical” section of the paper only, for sim-
plicity, let us use “C”, “E” and “L” instead of “CCL”, “ECL” and “LCL”,
respectively.

It is useful to formulate narrower notions of the relativeness of theories,
which shall be of special use in the sequel.

A C-theory T will be called maximal relatively to the given formula set
{α1, . . . , αk}, if T is maximal relatively to α1∨ . . .∨αk.

An E-theory F will be called minimal relatively to the given formula set
{α1, . . . , αk}, if F is minimal relatively to α1∧ . . .∧αk.

Moreover,

1. a C-theory T is C-prime, if for any α, β: α∨β ∈ T iff (α ∈ T or β ∈ T );

and

2. an E-theory F is E-prime, if for any α, β: α∧β ∈ F iff (α ∈ F and
β ∈ F ).

Obviously, every relatively maximal C-theory is C-prime and every rel-
atively minimal E-theory is E-prime.

2.1. Expansion

The simplest case possible is the procedure which coincides with the con-
sequence. Treating the consequence operation as extending the belief set is
not exceptional but naturally adopted by AGM (see [1], [2] and [5]). Belief
set is closed under logical consequences set of sentences, further called C-set
of beliefs. Thus, in our notation we obtain

EXPANSION:
T ⊕ ϕ = C(T + ϕ) (I)

In the form of expansion we code a reasoning informing us which sentences
we have to accept, when we have already accepted some other sentences.

4Of course, Cd
CL = CCLd .
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2.2. Contraction

On the basis of deductive reasoning, contraction is a typical step backward.
And, if we decide to reject given sentence from the C-set of our beliefs, we
employ a contraction, i.e., such a procedure, which leads from one C-set of
beliefs with a given sentence to a new, obviously smaller C-set of beliefs
being a C-theory but already without this sentence.

Removing some sentence from C-theory results in a C-theory. It means
that with this sentence we have to remove other sentences from which it
follows. It is easy to see that the elimination operation allows for removing
exactly those sentences. However, usually more than one solution is possible.
Let us assume that we intend to remove a sentence ϕ from the C-set T .
Obviously, in E(L−ϕ) (also in E(T −ϕ)) there are no sentences from which
ϕ follows. Unfortunately, neither E(L − ϕ) nor E(T − ϕ) is a C-theory.
Let us suppose that ϕ ∈ C(α1, α2, α3). Of course, α1 ∧ α2 ∧ α3 �∈ E(L− ϕ).
However, the condition “α∧β �∈ X iff α �∈ X or β �∈ X” holds for E-prime E-
theories only. It means that E(L−ϕ) as a non-relatively minimal E-theory
can contain all sentences: α1, α2, α3, and then ϕ ∈ CE(L− ϕ).

An assumption ϕ ∈ C(α1, α2, α3) means that it suffices to remove only
one of these sentences to remove ϕ — as well. It is not difficult to imagine
a situation in which we do not wish to lose, for example, α2. Then, we may
fix it by replacing E(L−ϕ) with Eα2(L−ϕ) which is an E-theory minimal
relatively to α2. For this reason the notion expressed by K−̇A5 and appear-
ing in AGM postulates is not considered here: speaking precisely K−̇A is a
name of a class of contractions and not of only one concrete contraction. Of
course, so called informational economy gives some explanation how K−̇A
can be only one contraction procedure. But it seems that such approach
makes problem too poor. Indeed, let us consider a simple example: In our
world a sentence “when it rains, the streets are wet” (α→β) is true, because
great majority of streets are roofless. Hence when it rains we know that
streets are wet. Now suppose, that we are in bed and hear some delicate
sound. We conjecture that “it rains” (α), so we think that “our street is
wet” (β). Later after a short nap, we wake up and look through the window
and realize that the street is dry. In result from the C-set of our beliefs
have to reject a sentence β, i.e. “my street is wet”. Of course, this sen-
tence was a conclusion of some other beliefs we had, namely α → β and α.
Probably, nobody supposes that the first of them should be removed from
the C-set of beliefs. In contrary, it would be natural to leave this sentence,

5K−̇A is an original for AGM notation, where K is a set of beliefs (of course, C-set)
and A — a sentence rejected from K (cf [5]).
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which means that the only reasonable solution is to take Eα→β(L − β), an
E-theory minimal relatively to α → β. Obviously, α does not belong to this
theory.

Evidently, it is possible to find an opposite example where the only rea-
sonable solution would be to keep α and to remove α → β. One way or
another, it is absolutely natural and necessary to take into account the pos-
sibility of keeping the desired sentences.

Unfortunately, a name “E-theory minimal relatively to some sentence
set” also designates a class of contractions instead of only one contraction
procedure. Moreover, applying this notion one can cancel all sentences which
are not connected with removed sentence. Indeed, assume that our C-set
T contains ϕ, following from α1, α2, α3, α4 ∈ T , and ψ which has no links
with the mentioned sentences. Building an E-theory minimal relatively,
for example, to α1, among others we have to verify two sentences ψ and
¬(ϕ → ψ). In this situation, everything depends on the order which sentence
will be checked as the first one. If at first we verify ¬(ϕ → ψ), this sentence
will be removed from the E-theory minimal relatively to α1, while ψ will
belong to this theory. An opposite situation occurs, when we check sentence
ψ as first. Then, this sentence will be removed from our minimal relatively
E-theory, and ¬(ϕ → ψ) will belong to this theory. Obviously, contraction
should work only on these sentences which are connected with the removed
sentence. All other sentences are preserved. Thus, in order to avoid such an
undesired result like removing additional sentences, for the construction of
contraction procedure, instead of the E-theory minimal relatively to some
sentence, we should use a minimal relatively to some sentence E-theory for
some sentence set. It is visible, that our minimal relatively to α1 E-theory
for the set T contains ψ and of course, ¬(ϕ → ψ) does not belong to such
theory.

A relatively minimal E-theory for some set satisfies a condition which
probably can be called . . . a postulate of informational economy. Since
relatively minimal E-theory is “for the set T”, all sentences which do not
have to be removed from the belief set will be saved. Returning to our
example, because of ϕ ∈ C(α1, α2, α3, α4) (assume that ϕ does not follow
from any proper subset of this four-sentences set), a minimal relatively to
α1 E-theory for T has to contain two other sentences from {α2, α3, α4}.
Unfortunately it is not predeterminated which sentences are to be saved. It
means that also a “relatively minimal E-theory for some set” names a class
of possible contractions, and not only one procedure. Of course a scope of
such possible contractions is strongly limited — in the case of our example
there are only three different minimal relatively to α1 E-theories for T .
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Now, it is clear that the intersection of all minimal relatively to some
sentences E-theories for a given set is the one and only one set of sentences.
In our example, an intersection of all minimal relatively to α1 E-theories for
T contains among others as many sentences from T as possible, i.e. all these
sentences belonging to T from which ϕ does not follow. Simultaneously,
in the case of the set {α1, α2, α3, α4} only one sentence α1 belongs to the
intersection in question. Sentences α2, α3 and α4 are removed from the
intersection. One can say that the procedure based on the intersection of
relatively minimal E-theories cancels all sentences from which a removed
sentence follows, with the only exception of chosen sentences to which E-
theories are relatively minimal. Let us extend our example and suppose that
the sentence ϕ follows not only from {α1, α2, α3, α4} but also from the set
{β1, β2, β3}. Obviously, no sentence from the set of betas belongs to the
intersection of all minimal relatively to α1 E-theories for T .

Let us recall that every relatively minimal E-theory is prime and so is
a C-theory. Thus, an intersection of any family of relatively minimal E-
theories is a C-theory.

Finally, let us formulate

CONTRACTION:

(T 2 ϕ)α1,...,αk
= T ∩

⋂
ET

α1,...,αk
(L− ϕ) (II)

with ET
α1,... ,αk

(L − ϕ) an E-theory for T , minimal relatively to the set
{α1, . . . , αk} ⊆ T . According to these definition our C-set of beliefs T is
decreased by ϕ but the desired sentences α1, . . . , αk are still our beliefs. Ob-
viously, the final belief C-set is a C-theory (not necessarily prime). More-
over, if ϕ follows from the set {α1, . . . , αk, αk+1, . . . , αn} and ϕ does not
follow from any proper its subset, {αk+1, . . . , αn} ∩ (T 2 ϕ)α1,...,αk

= ∅.

Now let us see how the so called AGM postulates are satisfied by this
procedure. In our notation, first six postulates for contraction are of the
following form:

Con1 (T 2 ϕ)α1,...,αk
is a C-theory

Con2 (T 2 ϕ)α1,...,αk
⊆ T

Con3 if ϕ �∈ T, then (T 2 ϕ)α1,...,αk
= T

Con4 if ϕ �∈ C(∅), then ϕ �∈ (T 2 ϕ)α1,...,αk

Con5 if ϕ ∈ T, then T ⊆ (T 2 ϕ)α1,...,αk
⊕ ϕ

Con6 if C(ϕ) = C(ψ), then (T 2 ϕ)α1,...,αk
= (T 2 ψ)α1,...,αk

Of course, in all conditions T is a C-theory.
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A satisfaction of Con1 and Con2 is evident and directly follows from the
equality (2). Let us check the rest of the above postulates.

Assume that ϕ �∈ T . Suppose, moreover, that β ∈ T and β �∈ E(L− ϕ),
for some β ∈ L. By reductive theorem for classical logic (see [7]) ¬(β →
ϕ) �∈ E(L). So, ¬(β → ϕ) is a countertautology, and the same β → ϕ ∈ T as
a tautology. It means that by assumption ϕ ∈ T — a contradiction. Thus,
T ⊆ E(L−ϕ). Then, directly from the construction of the relatively minimal
E-theory for the set T , it follows that every relatively minimal E-theory for
the set T is disjoint with T ¬. It means that T is included in every relatively
minimal E-theory for T , and so Con3 is satisfied.

Obviously, ϕ �∈ E(L − ϕ), for any ϕ ∈ L. Of course, if ϕ ∈ C(∅), then
E(L− ϕ) = ∅, and so ϕ �∈ E(L− ϕ). Thus, the condition Con4 holds. Our
verification shows that the fourth AGM postulate can be here replaced by
its stronger version:

Con∗
4 ϕ �∈ (T 2 ϕ)α1,...,αk

An assumption that ϕ ↔ ψ is a classical tautology implies that ¬(ϕ→ ψ)
as well as ¬(ψ → ϕ) are countertautology. Thus, C(ϕ) = C(ψ) implies
E(L− ϕ) = E(L− ψ)6. It means that Con6 is satisfied (see [7]).

Assume that ϕ, ψ ∈ T . Let moreover, ϕ ∈ C(ψ) and ψ �∈ C(ϕ). Then,
by deductive theorem ψ → ϕ ∈ C(∅). Thus, ¬(ψ → ϕ) �∈ E(L), and
by reductive theorem, ψ �∈ E(L − ϕ). It means that ψ �∈ (T 2 ϕ)α1,...,αk

.
Moreover, since ψ �∈ C(ϕ), thus ψ �∈ (T 2 ϕ)α1,...,αk

⊕ ϕ. It falsifies the
condition Con5.

From the intuitive point of view, it is difficult to accept the fifth AGM
condition. In fact, adding to the C-set of beliefs some sentence removed from
it earlier by contraction, not always brings back the sentences from which it
follows although they formerly belonged there. It is sufficient to recall our
example with rain and a wet street. Sentences α and α → β will be again
in T only if contraction removing β from T will remove α → β as well. But
definition of contraction limited to such cases although correct accordingly
to informational economy idea is rather unreasonable even in such simple
cases like our example. A contraction giving us the full scope of possible
solutions fails to obey a postulate in AGM form. Probably, the following
version of Con5 seems to be more intuitive:

Con∗
5 if ϕ �∈ T, then T ⊂ (T 2 ϕ)α1,...,αk

⊕ ϕ;
if ϕ ∈ T, then (T 2 ϕ)α1,...,αk

⊕ ϕ ⊂ T.

6An opposite implication also holds.
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Checking the first sentence of Con∗
5, suppose that ϕ �∈ T . Then by Con3,

(T2ϕ)α1,...,αk
= T , and so T ⊆ C((T2ϕ)α1,...,αk

+ϕ). Given our assumption,
the inclusion in question is proper. In the light of the falsification above and
Con2, the condition for ϕ ∈ T is evident.

An examination of the first six AGM postulates for contraction shows
that, they are satisfied with only one exception of the fifth one. The fourth
condition is fulfilled even in a more general case.

2.3. Revision

In the already quoted here publications dealing with belief revision it is
underlined that contraction and revision are independent as far as their
introduction is concerned but it is possible to find between them some mutual
relations formalized by the so called Levi and Harper identities. Levi identity
provides a method of defining revision by contraction, while the second one
defines contraction by revision. In our case, contraction is a prime function
with respect to the revision. It means that contraction is the first step in
revision. Thus, if we plan to add a sentence contradictory to some other
our belief, we have to resign from the old belief at first. Only then we can
consistently accept the new sentence. Thus, contraction is a proper part of
revision and obviously, it is impossible to make revision without contraction.
This idea is expressed by Levi identity, and the next definitions follow it.

REVISION:
(T / ϕ)α1,...,αk

= (T 2 ¬ϕ)α1,...,αk
⊕ ϕ (III)

As in the case of contraction also our notion of revision takes into account
a fact that for a given belief C-set T and sentence ϕ there exists not only
one revision. Thus, accordingly to the above definition, a revision of C-set
T by sentence ϕ depends on sentences α1, . . . , αk which are still hold in the
C-set.

It is shown in [1], [2] and [5] that for 2 satisfying Con1-Con4, Con6 and
⊕ being a consequence operation the function / defined by (5) satisfies the
following six conditions being the well known AGM postulates for revision:

Rev1 (T / ϕ)α1,...,αk
is a C-theory

Rev2 ϕ ∈ (T / ϕ)α1,...,αk

Rev3 (T / ϕ)α1,...,αk
⊆ T ⊕ ϕ

Rev4 if ¬ϕ �∈ T, then T ⊕ ϕ ⊆ (T / ϕ)α1,...,αk

Rev5 if ¬ϕ ∈ C(∅), then (T / ϕ)α1,...,αk
= L

Rev6 if C(ϕ) = C(ψ), then (T / ϕ)α1,...,αk
= (T / ψ)α1,...,αk
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The already mentioned Harper identity enables us to reconstruct AGM
contraction for a given AGM revision. In our notation its form should be
the following

(T 2 ϕ)α1,...,αk
= T ∩ (T / ¬ϕ)α1,...,αk

i.e.
(T 2 ϕ)α1,...,αk

= T ∩ C((T 2 ¬¬ϕ)α1,...,αk
+ ¬ϕ).

Contrary to Levi identity this one does not work in general but only for
ϕ �∈ T , due to Con3 and Con6, (T 2 ¬¬ϕ)α1,...,αk

= (T 2 ϕ)α1,...,αk
= T ,

and so Harper identity is satisfied. Assume, however, that ϕ belongs to the
consistent C-set T . Let, moreover, ψ = γ ∧ (γ → ϕ) as well as δ = ¬ϕ →
(γ ∧ (γ → ϕ)) also are in T . Obviously, ¬ϕ �∈ T , ψ �∈ (T 2ϕ)α1,...,αk

but δ ∈
(T2ϕ)α1,...,αk

= (T2¬¬ϕ)α1,...,αk
. Evidently C((T2¬¬ϕ)α1,...,αk

+¬ϕ) = L
but neither ψ nor ϕ belong to (T 2 ϕ)α1,...,αk

. Thus, Harper identity is
falsified.

3. Nonmonotonicity on intuitionistic base

The reconstruction of the reductive part for the intuitionistic logic is not
easy. The problem is strictly connected with the axiomatization of the logic
dual in Wójcicki’s sense to the well known intuitionistic logic. As it was
shown (see [3], [4], [10]), there is no finite axiomatization of this logic. Since,

EINT (X) = L− Cd
INT (L−X),

it means that there is also no finite axiomatization of the reductive part
of the intuitionistic logic in the deductive-reductive form. By the same,
there is a real problem with successful defining of intuitionistic contraction
and revision. Fortunately, it is possible to extend intuitionistic logic to the
Heyting-Brouwer logic, which can be a base for easy defining of both belief
revision functions.

Heyting-Brouwer logic (HB) as well as HBd, the logic dual to HB was
define in seventies by C. Rauszer (see [8], [9]). Rauszer constructs both logics
on the classical language extended by two connectives: co-implication (↽)
and weak negation (∼);

LHB = (LHB,¬,∼,∧,∨,→, ↽)

The syntax of HB consists of axiom set for the intuitionistic logic and the
following axioms defining both new connectives:

∅ �HB α → (β ∨ (α ↽ β))
∅ �HB (α ↽ β)→ ∼(α → β)
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∅ �HB ((α ↽ β) ↽ γ) → (α ↽ (β ∨ γ))
∅ �HB ¬(α ↽ β) → (α → β)
∅ �HB (α → (β ↽ β)) → ¬α
∅ �HB ¬α → (α → (β ↽ β))
∅ �HB ((β → β) ↽ α) → ∼α
∅ �HB ∼α → ((β → β) ↽ α)

for α, β, γ ∈ LHB; and two rules of inference: Modus Ponens and α �HB

¬∼α.

In [9], there is defined HBd by the following axioms:

∅ �HBd ((β ↽ γ) ↽ (α ↽ γ)) ↽ ((β ↽ α) ↽ γ)
∅ �HBd ((γ ↽ α) ↽ (γ ↽ β)) ↽ (β ↽ α)
∅ �HBd (α ∧ β) ↽ α
∅ �HBd (α ∧ β) ↽ β
∅ �HBd ((γ ↽ (α ∧ β)) ↽ (γ ↽ β)) ↽ (γ ↽ α)
∅ �HBd α ↽ (α ∨ β)
∅ �HBd β ↽ (α ∨ β)
∅ �HBd (((α ∨ β) ↽ γ) ↽ (β ↽ γ)) ↽ (α ↽ γ)
∅ �HBd ((γ ↽ (α ∨ β)) ↽ ((γ ↽ β) ↽ α)
∅ �HBd ((γ ↽ β) ↽ α) ↽ (γ ↽ (α ∨ β))
∅ �HBd ((β → α) ∧ β) ↽ α
∅ �HBd (∼α ↽ ∼β) ↽ (β ↽ α)
∅ �HBd ((β ∧ γ) → α) ↽ (γ → (β → α))
∅ �HBd ¬(β ↽ α) ↽ (β → α)
∅ �HBd (α ↽ β) ↽ ∼(α → β)
∅ �HBd ∼α ↽ ((β → β) ↽ α)
∅ �HBd ((β → β) ↽ α) ↽ ∼α
∅ �HBd ¬α ↽ (α → (β ↽ β))
∅ �HBd (α → (β ↽ β)) ↽ ¬α

HBd has two primitive inference rules: α ↽ β, β �HBd α and ∼¬α �HBd

α. For the semantical characterization of HB and HBd let us consider a
structure

M = (A, {Ds : s ∈ S}),

where
A = (A,¬,∼,∩,∪,→, ↽)

is an algebra similar to the HB-language, a non-empty set S is partially
ordered by ≤, and for every s ∈ S, Ds ⊆ A.
M is a model for HB if for any a, b ∈ A, s ∈ S:
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a ∈ Ds implies for any t ≥ s, a ∈ Dt;
¬a ∈ Ds iff for any t ≥ s, a �∈ Dt;
∼a ∈ Ds iff for some t ≤ s, a �∈ Dt;

a ∩ b ∈ Ds iff a ∈ Ds and b ∈ Ds;
a ∪ b ∈ Ds iff a ∈ Ds or b ∈ Ds;

a → b ∈ Ds iff for any t ≥ s, a �∈ Dt or b ∈ Dt;
a ↽ b ∈ Ds iff for some t ≤ s, a ∈ Dt and b �∈ Dt.

IfM = (A, {Ds : s ∈ S}) is a model for HB, thenM = (A, {A−Ds : s ∈ S})
is a model for HBd. Thus, M is a model for HBd if for any a, b ∈ A, s ∈ S:

a ∈ Ds implies for any t ≥ s, a ∈ Dt;
¬a ∈ Ds iff for some t ≤ s, a �∈ Dt;
∼a ∈ Ds iff for any t ≥ s, a �∈ Dt;

a ∩ b ∈ Ds iff a ∈ Ds or b ∈ Ds;
a ∪ b ∈ Ds iff a ∈ Ds and b ∈ Ds;

a → b ∈ Ds iff for some t ≤ s, a �∈ Dt and b ∈ Dt;
a ↽ b ∈ Ds iff for any t ≥ s, a ∈ Dt or b �∈ Dt.

In [9] Rauszer formulates an Important Observation (I.O.)7:

α → β is a tautology of HB iff α ↽ β is a tautology of HBd.

This observation can be easily semantically verified. Of course, a tautology
of HBd is a countertautology of HB.

Axioms for the reductive part of the Heyting-Brouwer logic are axioms
for HBd with “∅ �HBd” replaced by “LHB 1HB”. Primitive rules for the
reductive part of HB have the following shape:

LHB − {β, α ↽ β} 1HB α and LHB − {∼¬α} 1HB α.

Let T and F be a CHB-theory and EHB-theory, respectively. Belief
revision functions on the base of Heyting-Brouwer logic have an expected
form:

EXPANSION:
T ⊕HB ϕ = CHB(T + ϕ).

CONTRACTION:

(T 2HB ϕ)α1,...,αk
= T ∩

⋂
ET

HBα1,...,αk
(LHB − ϕ).

REVISION:

(T /HB ϕ)α1,...,αk
= (T 2HB ¬ϕ)α1,...,αk

⊕HB ϕ.

7“Important Observation” is an original name given by Rauszer.
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The verification of Con1, the first postulate for contraction, uses two facts.
The first of them is proved by Rauszer in [9]: let X ⊂ LHB then,

1. X is a relatively maximal C-theory of HB if and only if LHB − X is a
relatively maximal C-theory of HBd.

The second fact is a direct conclusion of the equation:

EHB(X) = LHB − Cd
HB(LHB −X);

and says that:

2. The complement of the relatively maximal C-theory of HBd is a relatively
minimal E-theory of HB as well as the complement of the relatively minimal
E-theory of HB is a relatively maximal C-theory of HBd.

Thus, from facts 1 and 2 it directly follows that:

Conclusion. X is a relatively maximal C-theory of HB if and only if X is a
relatively minimal E-theory of HB.

Using the above Conclusion, it is easy to prove that
⋂

ET
HBα1,...,αk

(LHB−ϕ)
is a C-theory of HB. Thus, (T 2HB ϕ)α1,...,αk

also is a C-theory of HB and
Con1 is satisfied. The verification of the rest of postulates uses I.O. and
is analogous to the verification in the case of classical logic. It means that
HB-contraction satisfies Con1-Con3, Con∗

4, Con∗
5, Con6, and so HB-revision

satisfies Rev1-Rev6.

4. Generalization

Deductive-reductive form of logic can be especially useful for defining of the
belief change procedures. It does not matter if the logic is classical or not.
Everything depends on the reconstruction of the reductive part for a given
logic. If the reconstruction is possible, the defining of contraction as well
as revision is simple. Thus, our proposal opens the belief change area for
non-classical logics.

Another benefit of the approach is that the work with formula sets be-
comes possible. The functions we have presented in the paper have some
special form: all of them are defined for a given C-set T and for some
sentence ϕ. However, using the elimination and consequence operations it
is possible to redefine all considered reasonings in more general terms, i.e.
with a set of sentences {ϕ1, . . . , ϕn} instead of a separate sentence ϕ. Thus,
repeating all definitions in a new form we obtain



The Procedures for Belief Revision 267

for Expansion:

T ⊕ {ϕ1, . . . , ϕn} =

C(T ∪ {ϕ1, . . . , ϕn}),

for Contraction:

(T 2 {ϕ1, . . . , ϕn})α1ϕ1
,...,αkϕ1

,...,α1ϕn
,...,αkϕn

=

T ∩
⋂

ET
α1ϕ1

,...,αkϕ1
,...,α1ϕn

,...,αkϕn
(L− {ϕ1, . . . , ϕn}),

for Revision:

(T / {ϕ1, . . . , ϕn})α1ϕ1
,...,αkϕ1

,...,α1ϕn
,...,αkϕn

=

(T 2 {¬ϕ1, . . . ,¬ϕn})α1ϕ1
,...,αkϕ1

,...,α1ϕn
,...,αkϕn

⊕ {ϕ1, . . . , ϕn}.

Probably the most important side of our approach is that the belief
change can take concrete form unlimited to general postulates.
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Hans Rott Shifting Priorities: Simple
Representations for Twenty-seven
Iterated Theory Change Operators

Abstract. Prioritized bases, i.e., weakly ordered sets of sentences, have been used for

specifying an agent’s ‘basic’ or ‘explicit’ beliefs, or alternatively for compactly encoding

an agent’s belief state without the claim that the elements of a base are in any sense basic.

This paper focuses on the second interpretation and shows how a shifting of priorities in

prioritized bases can be used for a simple, constructive and intuitive way of representing

a large variety of methods for the change of belief states — methods that have usually

been characterized semantically by a system-of-spheres modeling. Among the methods

represented are ‘radical’, ‘conservative’ and ‘moderate’ revision, ‘revision by comparison’

in its raising and lowering variants, as well as various constructions for belief expansion

and contraction. Importantly, none of these methods makes any use of numbers.

Keywords: theory change, belief bases, belief revision, prioritization, iteration, two-

dimensional revision operators.

1. Introduction

“All necessary reasoning without exception is diagrammatic,” said Charles
Sanders Peirce (1903, p. 212). According to Peirce, the only way of under-
standing logical and mathematical propositions is by perceiving generalities
in diagrams. The history of belief revision seems to confirm this thesis. By
far the most intuitive representation of what is involved in various operations
of belief change uses a modelling by means of systems of spheres (briefly,
SOS ) in the style of Lewis (1973) and Grove (1988). The SOS picture, how-
ever, is not without disadvantages. First, while it is excellently suited for
the representation of the changes of belief states, it does not make for an
easy grasp of the contents of the belief states in question. Second, SOS’s are
sets of sets of large cardinalities. A more constructive approach would seem
to be welcome in order to turn our semantic intuitions into something more
manageable. Third, it is not evident at all where the systems of spheres of
possible worlds come from.

Prioritized (or ‘stratified’) bases, on the other hand, have been used (i)
for the representation of an agent’s explicit beliefs (e.g., in Rescher 1964,

D. Makinson, J. Malinowski, H. Wansing (eds.), Towards Mathematical Philosophy,
Trends in Logic, 28 c© Springer Science + Business Media B.V. 2009
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Nebel 1992, Rott 1992, Dubois, Lang and Prade 1994, Williams 1995) as
well as (ii) for the compact encoding of belief states (e.g., in Rott 1991b).
The motivating ideas are quite different in the two cases. In interpretation
(i), it makes an essential difference whether one has p and q separately or
conjoined into p∧q in the belief base, in interpretation (ii) these are just no-
tational variants without a difference in “meaning”. Still the most elaborate
account of the first interpretation of belief bases (without prioritization) is
due to Hansson (1999). In this paper we are only interested in the second
interpretation. Prioritized bases have been used to represent single belief
states. In this paper, I will explain how they can be used in what appears
to me a very elegant way of representing a large variety of changes of belief
states.

Once one has a syntactic representation that corresponds to the semantic
SOS modelling of single belief states, it is natural to ask whether there are
operations on these syntactic representations that correspond to reasonable
transformations of SOS’s. This is the topic of this paper.

2. Representing doxastic states: Prioritized belief bases, entrench-
ment, systems of spheres

A prioritized belief base is a sequence of sets of sentences
−→
H = 〈H1, . . . , Hn〉.

For i < j, the elements in Hj are supposed to be more “certain” or “reliable”
or more “important” than the elements in Hi, while the elements within each
Hi are tied. We presume that there are no incomparabilities. We shall also
frequently use the alternative notation

−→
H = H1 ≺ · · · ≺ Hn

This generates, in an obvious way, a transitive and complete ordering 4
between the Hi’s, and also between the elements of the Hi’s.

If
−→
H were intended to be a belief base representing the explicit beliefs of

an agent, then the syntactical structure of the elements in each Hi would
be important. In this paper, however, I am only interested in prioritized
belief bases as compact and convenient representations of doxastic states
(in structured axiomatizations as it were). Let us assume in the following
for the sake of simplicity that not only the number of Hi’s but also each
of the individual sets Hi is finite. Under the interpretation as compact
representations, then, there is no obstacle to conjoining the elements in each
base layer Hi into a single sentence hi =

∧
Hi. For the constructions we

shall discuss in this paper, no change will result by such a maneuver. Rather
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than
−→
H , we can then equivalently use the string

−→
h = h1 ≺ · · · ≺ hn

It will be assumed throughout this paper that the beliefs of the highest
priority, Hn or hn, are consistent. Contradictions may arise only at lower
levels.

Let  (verum) and ⊥ (falsum) be the sentential constants that are al-
ways true and false, respectively. If we liked, we could extend strings by
putting “⊥ ≺” in front or attaching “≺ ” to the end of

−→
h . But the former

is not necessary because, as we shall soon see, inconsistent “up-sets” are
irrelevant anyway.1 And the latter is not desirable as a general requirement
on prioritized belief bases, because we want to allow revision methods that
push up contingent sentences to the level of tautologies. As a consequence,
the AGM postulate of ‘consistency preservation’, according to which only an
inconsistent input can lead into an inconsistent belief set, is not validated
by such methods studied in this paper.

We introduce some notation and abbreviations. Unless otherwise noted,
i ranges from 1 to n:

H = H1 ∪ · · · ∪Hn

H≥i = Hi ∪ · · · ∪Hn

H>i = Hi+1 ∪ · · · ∪Hn for 0 ≤ i ≤ n− 1

h := h1 ∧ · · · ∧ hn

h≥i := hi ∧ · · · ∧ hn

h>i := hi+1 ∧ · · · ∧ hn
−−→
H≥i := 〈Hi, . . . , Hn〉 = Hi ≺ · · · ≺ Hn

−−→
H≤i := 〈H1, . . . , Hi〉 = H1 ≺ · · · ≺ Hi

−→
h≥i := hi ≺ · · · ≺ hn ,

−→
h≤i := h1 ≺ · · · ≺ hi

−−−→
h ∧ α := h1 ∧ α ≺ · · · ≺ hn ∧ α
−−−→
h ∨ α := h1 ∨ α ≺ · · · ≺ hn ∨ α−−−→
h

+
∨ α := h1 ≺ h1 ∨ α ≺ h2 ≺ h2 ∨ α ≺ · · · ≺ hn ≺ hn ∨ α

1This statement has to be qualified. If the dynamics of belief are driven by syntactical
manipulations on prioritized belief bases, it does matter whether there are lower levels that
make the base inconsistent as a whole. Statically equivalent bases may be dynamically
different. I neglect this point in the present paper.
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And, for example
−−−−−→
h≥i ∧ α := hi ∧ α ≺ · · · ≺ hn ∧ α
−−−−−→
h<i ∨ α := h1 ∨ α ≺ · · · ≺ hi−1 ∨ α for 2 ≤ i ≤ n + 1
−−−−−→
h>i

+
∨ α := hi+1 ≺ hi+1 ∨ α ≺ · · · ≺ hn ≺ hn ∨ α for 0 ≤ i ≤ n− 1

For
−→
h = h1 ≺ · · · ≺ hn and

−→
g = g1 ≺ · · · ≺ gm we define the concatena-

tions
−→
h ≺ . α = h1 ≺ · · · ≺ hn ≺ α and

−→
h ≺ .

−→
g = h1 ≺ · · · ≺ hn ≺ g1 ≺

· · · ≺ gm. (The dot next to a ≺ symbol indicates that at least one of the
relata is not a set of sentences or a single sentence, but an ordered sequence
itself.)

The most important sets definable by prioritized bases are the up-sets
H≥i and the sentences h≥i. They serve as standards of consistency and
inconsistency in a way to be explained soon.

Instead of numbers, we can also use sentences in order to define the
relevant up-sets. If H implies α, let in the following definitions i be the
greatest number such that H≥i implies α (so H>i does not imply α). Then
we define H≥α = H≥i and H>α = H>i and H=α = Hi. If H does not imply α,
we set H≥α = H>α = H. Notice that Hn = H=�, but not necessarily H1 =
H=h (but this does hold for purified bases, see below). In the same fashion,
we define h≥α = h≥i, h>α = h>i and h=α = hi, where i is the greatest
number such that h≥i implies α. Notational devices mixing sentences and
numbers like h>α+1 or h=h−1 should be understood in the obvious way.

The belief set B supported by a prioritized base
−→
H is defined as Bel(

−→
H ) =

Cn (H>⊥). Here and throughout this paper, we use Cn to indicate a conse-
quence operation governing the language that is Tarskian, includes classical
propositional logic and satisfies the deduction theorem.2 Notice that belief
sets so conceived are always consistent (except perhaps in the limiting case
when Hn is itself inconsistent).

Beliefs in Bel(
−→
H ) can be ranked according to their certainty, reliability

or importance. We employ a Weakest Link Principle according to which
a chain is just as strong as its weakest link. Less metaphorically, a set of
premises is just as strong as its weakest element. In accordance with this
idea, it would be possible to define rankH(α) to be the largest integer i

2A logic Cn is Tarskian iff it is reflexive (H ⊆ Cn (H)), monotonic (if H ⊆ H ′, then
Cn(H) ⊆ Cn(H ′)), idempotent (Cn(Cn(H)) ⊆ Cn(H)) and compact (if α ∈ Cn(H), then
α ∈ Cn(H ′) for some finite H ′ ⊆ H). The deduction theorem says that α → β ∈ Cn(H)
if and only if β ∈ Cn(H ∪ {α}). We write H � α for α ∈ Cn (H).



Shifting Priorities: Simple Representations . . . 273

such that H≥i implies α. But here is an important warning: Numbers don’t
really mean anything in our framework – never apply arithmetic operations
(addition, subtraction, multiplication) to any such ranks! So let us work
with a relation instead:

(Def ≤ from 4) α ≤ β iff for every i, if H≥i implies α then it also implies β

Such relations are often called relations of epistemic entrenchment. The
idea of (Def ≤ from 4) has become folklore in the belief revision literature
and was put to use, for instance by Rott (1991b) and Williams (1995). En-
trenchment relations were first introduced and axiomatized by Gärdenfors
and Makinson (1988). Notice, however, that the Gärdenfors-Makinson ‘max-
imality condition’ that says that only logical truths are maximally en-
trenched is not a necessary property of the entrenchment relations used in
this paper.

An alternative and, as we said, more vivid representation of the signif-
icance of prioritized bases is in terms of possible worlds or more exactly,
in terms of models of the underlying language. A prioritized base may be
thought of as structuring the space of all models of the underlying language
into a system $ of nested spheres (à la Lewis 1973 and Grove 1988):

(Def $ from ≺): The system of spheres $ generated by a prioritized belief

base
−→
H is the set of sets Si of models such that for each i, Si is the set

of models of H≥i, in symbols:

$ = {mod(H≥i) : i = 1, . . . , n}

The idea is that the models of H = H≥1 are the most plausible worlds,
the models of H≥2 that are not models of H≥1 are the second most plausible
worlds, etc., and the models of Hn that are not models of H≥n−1 are the
least plausible worlds — except for those models that do not even satisfy
Hn and may be regarded as completely ‘inaccessible’ to the agent’s mind.
The set Hn characterizes the agent’s ‘certainties’ or ‘commitment set’ the
elements of which he or she is extremely reluctant to give up.3

Now let us introduce an important operation on prioritized belief bases.
Prioritized bases can be simplified or ‘purified’ without affecting the gener-
ated positions of the beliefs or worlds. The purification of a base

−→
H deletes,

3Though not absolutely reluctant, see for instance the models of moderate and very
radical expansion below. Segerberg (1998) unofficially calls what is characterized by Hn

‘knowledge’. It seems to me, however, that it is more adequate (though not fully adequate)
to identify knowledge with belief that is indefeasible by true inputs, and this does not
require maximal entrenchment. For discussions of this concept of knowledge in game-
theoretic and epistemological contexts, see Stalnaker (1996) and Rott (2004), respectively.
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for every i, all sentences α in Hi which are entailed by H>i (where i < n).
If after these deletions a set Hi turns out to be empty, it is deleted as a
coordinate from

−→
H . Similarly, the purification of a base

−→
h deletes, for every

i, every sentence hi which is entailed by h>i (where again i < n). If some
Hi or hi is deleted, so is the symbol ‘≺’ to its right. Purification makes
prioritized bases less misleading. If hi ≺ hj in a purified base, then it is
guaranteed that also hi < hj in the generated epistemic entrenchment or-

dering.4 If
−→
H = H1 ≺ · · · ≺ Hn is purified, then the number of spheres in

the generated system of spheres $ is n, and the number of equivalence classes
in the generated entrenchment relation ≤ is n + 1 if

−→
H is consistent, and

n if
−→
H is inconsistent. It is easy to see that the entrenchment relation or

system of spheres generated by a purified base is identical with that of the
unpurified one. For this reason we regard an original base and its purified
forms as equivalent. We may always purify a prioritized base, but we are not
forced to, when performing any of the belief change operations that follow.

The aim of this paper is to show that the most common qualitative ap-
proaches to iterated revision can be represented in a smooth, perspicuous
and computationally efficient way as operations on prioritized bases. The
operations have a much more constructive flavour than the equivalent oper-
ations on entrenchment relations or systems of models. In contrast to the
latter, they are syntactic rather than semantic in nature.

Doxastic states S can be represented, e.g., by systems of spheres of pos-
sible models $, by entrenchment relations ≤ or by prioritized belief bases

−→
H .

Doxastic states define belief sets, e.g., using the equations K = Bel($) =
{α : α is true in all models that are contained in every non-empty S ∈ $},
K = Bel(≤) = {α : ⊥ < α} and K = Bel(

−→
H ) = Cn (H>⊥), respectively.5

In the following, we indeed assume that K is derived from some state S,
i.e., from some system of spheres $, some entrenchment relation ≤ or some
prioritized belief base

−→
H . The traditional AGM notation K ∗α denoting the

revised belief set is then to be read as an abbreviation for Bel(S ∗ α), i.e.,

Bel($ ∗ α), Bel(≤ ∗α) or Bel(
−→
H ∗ α), respectively.

We now take revision operations to operate on doxastic states. The
revisions below will be presented as revisions of

−→
h rather than

−→
H , but the

4Compare the ‘Entailment condition’ as a test for determining whether an ‘E-base’ is
really an E-base for its generated entrenchment relation in Rott (1991b, p. 146).

5These definitions guarantee that the belief set is consistent, except in extreme limiting
cases in which $ contains only the empty set, � ≤ ⊥, or Hn is inconsistent, respectively.
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generalization to the latter case will be obvious. Just do ‘the same’ that
is being done to hi to all the members of Hi individually, and keep them
together at their common level. Limitations of space not only make explicit
proofs impossible, but also prevent me from dealing with the limiting cases
in due detail. The reader is asked to read all coming claims and conditions
for revisions by α as restricted to the case in which α is considered possible
by the agent, i.e., in which hn is consistent with α, or equivalently, in which
some sphere in $ contains some α-models, or again equivalently, in which
¬α is less entrenched than .

3. Variants of expansion

In traditional AGM theory, the expansion of a set of plain beliefs consists in
simply adding a sentence to a given stock of beliefs and closing under deduc-
tion. This is a clear method offering no possibilities of choice. Its disadvan-
tage becomes evident, however, when the input sentence is inconsistent with
the prior beliefs. There is room for choice and different methods, however, if
we consider expansions of belief states (like prioritized bases, entrenchment
relations, system of spheres) rather than just belief sets. We think of expan-
sions as applying sensibly to the paradigm case where the input is consistent
with the prior beliefs, that is, with h. No claim is made that the expansion
methods must make sense in the belief-contravening case. But it is instruc-
tive to study the number of possibilities of expansions (see Figs. 1–5) that
mirror quite nicely the corresponding revision and contraction operations.
No such analogy between (trivial) expansions and (non-trivial) revisions of
belief sets is present in AGM theory.

Conservative expansion by α:
−→
h 0→ α ≺ .

−→
h

Plain expansion by α:
−→
h 0→ h1 ∧ α ≺ .

−−→
h>1

Moderate expansion by α:
−→
h 0→

−→
h ≺ . α ≺ .

−−−→
h ∨ α

Radical expansion by α:
−→
h 0→

−−→
h<n ≺ . hn ∧ α

Very radical expansion by α:
−→
h 0→

−→
h ≺ . α

One can see immediately the symmetry between plain and radical and
between conservative and very radical expansion. The differences are only
those between inserting the input sentence at the lowest or highest level vs.
inserting it in a newly created lowest or highest level of priority. It is also
very evident now why the moderate method is called ‘moderate’: the input
sentence gets assigned a middle rank. Let us have a look what happens
to the number of different levels after purification of the revised prioritized
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base. Assume the principal case for expansion in which h implies neither
α nor ¬α. Then plain expansion leaves the number of levels at n, while
conservative expansion raises it to n + 1. Radical expansion give at most n
levels, very radical expansion at most n+1, and finally, moderate expansion
gives at least n+1 and at most 2n+1 levels. (Very) radical expansion tends
to coarsen, while moderate expansion tends to refine it.

Very radical expansion accepts α as more certain than all the previous
beliefs, thereby making some previously inaccessible α-models accessible.
That is, some previously maximally entrenched sentences lose their status as
certainties.6 This prevents very radical expansion from being commutative.
In radical (but not very radical) expansion, the new information gets as
highly entrenched as the maximal prior information, but not higher than
that. This operation is commutative.

4. Radical revision

We take as paradigmatic for revision the case where the new information is
incompatible with the original belief set (the belief-contravening case). We
continue to assume that the agent is bound to accept the input sentence α
and denote the posterior entrenchment relation by ≤′.

All methods for iterated revision to be discussed in this paper have es-
sentially AGM revision as a limiting case for the case of a one-step revision.
In terms of systems of spheres, this means that the innermost sphere of the
revised SOS is exactly the intersection of the set of models of α with the
smallest sphere in the original SOS that contains any models of α. In terms
of entrenchments, a sentence β is more entrenched than ⊥ with respect to the
revised entrenchment relation ≤′ if and only if the conditional α→ β is more
entrenched than ¬α with respect to the original entrenchment relation ≤.7

The SOS representations of each of the belief change operations to came
are given in the Appendix. In the following main text, we list the corre-
sponding operations on prioritized bases, the entrenchment representations,
and finally the characterizations in terms of iterated belief changes.

The first method that we discuss is Segerberg’s (1998) ‘irrevocable revi-
sion’ (see Fig. 6), which I like to call ‘radical revision’. Fermé (2000) studied
the same operation in terms of epistemic entrenchment.

6The same happens in ‘moderate’ expansion. Cf. footnote 10 below.
7In the limiting case in which no sphere in the SOS contains α-models, or in which ¬α

is maximally entrenched, we can decide that the revised SOS and the revised entrenchment
relation are identical with the original ones.
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Here is a representation of the radical revision of
−→
h by the input α.

−→
h 0→

−−→
h<n ≺ . hn ∧ α

The new base may then be purified. Equivalently, one could use the repre-
sentation

−−−→
h ∧ α plus purification.

An even more radical strategy is the recipe of very radical revision (see
Fig. 7): −→

h 0→
−→
h ≺ . α

Here the same comments apply as in the case of very radical expansion.
The revised entrenchment relation generated by the radical revision of a

prioritized base is defined by

γ ≤′ δ iff α→ γ ≤ α→ δ

the revised entrenchment relation generated by the very radical revision of
a prioritized base is defined by

γ ≤′ δ iff α→ γ ≤ α→ δ , and α �� γ or α � δ

The recipe for radical revision corresponds to the rule (RER) of Rott
(1991a, p. 171; 2003, p. 130).8 This operation revises an arbitrary prior
entrenchment ordering ≤ without assuming that it was generated from a
prioritized belief base.

Against the background of the AGM axioms for one-step revisions, rad-
ical revision can be characterized in terms of an iterated revision postulate
as follows

(K ∗ α) ∗ β = K ∗ (α ∧ β)

and very radical revision is similarly characterized by

(K ∗ α) ∗ β =

⎧
⎨

⎩

K ∗ (α ∧ β) if K ∗ (α ∧ β) �� ⊥
Cn (β) if {α, β} � ⊥
Cn (α, β) otherwise

5. Conservative revision

Conservative revision (see Fig. 8), originally called ‘natural revision’, was
advocated and studied by Boutilier (1993, 1996) and Rott (2003).

8Actually, (RER) in the later paper has an extra clause ‘and �� γ or � δ’ that guarantees
that α <′ � for non-tautological α. As already mentioned, I do not want to require AGM’s
maximality condition in the present paper.
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Here is a representation of the conservative revision of
−→
h by the input α.

−→
h 0→ α ≺ .

−−−−−−→
h≤ ¬α ∨ α ≺ .

−−−→
h>¬α

If h is purified and does not imply α, no posterior purification is necessary,
and the posterior base has n + 1 levels. If h is purified and does imply α,
then the term ‘α ≺’ will be dropped in purification, and the posterior base
is identical with the n-level prior base

−→
h .

The revised entrenchment relation ≤′ generated by the conservative re-
vision of a prioritized base by α is defined by

γ ≤′ δ iff α→ γ ≤ ¬α , or γ ≤ δ and ¬α < α→ δ

This is the condition (CER) for ‘conservative entrenchment revision’ of Rott
(2003, p. 122).

Conservative revision can be characterized in terms of an iterated revision
postulate as follows

(K ∗ α) ∗ β =
{

K ∗ (α ∧ β) if β is consistent with K ∗ α9

K ∗ β otherwise

Mirroring the difference between conservative and plain (AGM) expan-
sion, we can define a variant of conservative revision which is obtained by
an AGM contraction (see Section 8 below) with respect to ¬α, followed by
a plain (AGM) expansion by α, i.e., by a version of the well-known Levi
identity:

Here is a representation of what might be called the plain revision of
−→
h

by the input α.
−→
h 0→ α ≺ .

−−−−−−−−→
h>1,≤ ¬α ∨ α ≺ .

−−−→
h>¬α

This operation forgets as it were about the lowest ranked elements of the
prioritized belief base, or correspondingly, the innermost ring of the prior
system of spheres. Since it does not seem to be a very natural revision
operation, I refrain from giving alternative representations of it.

6. Moderate revision

Moderate revision is my name for what is often called ‘lexicographic revision’
(see Fig. 9). It has been advocated and studied by Nayak and his collabo-

9In a more general context without ‘dispositional coherence’, we should put Cn ((K ∗
α) ∪ {β}) in this case rather than K ∗ (α ∧ β), see Rott (2003). But given the dispositional
coherence encoded in AGM’s 7th and 8th axioms, this comes down to the same thing.
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rators (1994, 2003), but also by many other researchers. It has become part
of the folklore of belief revision research, but here does not seem to be a
standard reference paper for it. We present a formulation here that does not
presume consistency preservation for revision functions (or the maximality
condition for entrenchments).

Here is a representation of the moderate revision of
−→
h by the input α.

−→
h 0→

−→
h ≺ . α ≺ .

−−−→
h ∨ α

As always, the new base may be purified.
The revised entrenchment relation ≤′ generated by the moderate revision

of a prioritized base by α is defined by

γ ≤′ δ iff
{

α→ γ ≤ α→ δ and α �� γ or
γ ≤ δ and α � δ

This is similar to, but not exactly the same as condition (MER) (for
‘moderate entrenchment revision’) of Rott (2003, p. 131). The slight mod-
ification suggested here is correct also when the revision function does not
satisfy the fifth AGM postulate (‘consistency preservation’) or, equivalently,
when the entrenchment relation has not only tautologies as maximal ele-
ments (what was excluded in Rott 2003).

Moderate revision can be characterized in terms of an iterated revision
postulate as follows10

(K ∗ α) ∗ β =

⎧
⎨

⎩

K ∗ (α ∧ β) if K ∗ (α ∧ β) is consistent
K ∗ β if α � ¬β
Cn (α ∧ β) otherwise

7. Restrained revision

Recently, Booth and Meyer (2006) advocated the interesting operation of
restrained revision (see Fig. 10), which can be seen as composition of a
refinement by α (see Section 9) followed by a conservative revision by α.

10A somewhat more moderate revision could be defined thus:
−→
h �→

−→
h ≺ . α ≺ .

−−−−−→
h<n ∨ α ≺ . hn

In terms of SOS’s, the more moderate revision never turns previously inaccessible worlds
into accessible ones (what moderate revision usually does). In terms of entrenchments,
more moderate revision replaces the clauses ‘α �� γ’ and ‘α � δ’ by ‘α → γ < �’ and
‘� ≤ α → δ’, respectively. In terms of iterated revision, more moderate revision replaces
the last two lines of moderate revision by ‘(K∗α)∗β = K∗β otherwise’. Also cf. footnote 15.
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Here is a representation of the restrained revision of
−→
h by the input α.

−→
h 0→ α ≺ .

−−−−−−→
h≤ ¬α ∨ α ≺ .

−−−−−−→
h>¬α

+
∨ α

plus purification.
The revised entrenchment relation ≤′ generated by the restrained revi-

sion of a prioritized base by α is defined by

γ ≤′ δ iff α→ γ ≤ ¬α, or γ ≤ δ and
{

α→ γ ≤ γ or
¬α < α→ δ and γ < α→ δ

While its entrenchment representation is somewhat difficult to comprehend,
restrained revision can be characterized elegantly in terms of an iterated
revision postulate (Booth and Meyer 2006):

(K ∗ α) ∗ β =
{

K ∗ (α ∧ β) if K ∗ α �� ¬β or K ∗ β �� ¬α
K ∗ β otherwise

8. Variants of contraction

The simplest way of getting rid of a belief α is a method that has been
called ‘Rott contraction’ by Fermé and Rodriguez (1998), ‘severe withdrawal’
by Pagnucco and Rott (1999) and ‘mild contraction’ by Levi (2004) (see
Fig. 11). The method was extended to iterated belief change in Rott (2006).

Here is a representation of the severe withdrawal of α from
−→
h

−→
h 0→

−−→
h>α

The revised entrenchment relation corresponding to the severe with-
drawal operation with respect to α is this:

γ ≤′ δ iff γ ≤ α or γ ≤ δ

The so-called Levi identity recommends to construct a revision by α
through applying an operation of expansion by α after a preparatory con-
traction by ¬α. Accordingly, we can define different concepts of severe re-
vision by applying different expansion operations after a severe withdrawal.
Let us distinguish three versions of severe revision by α.

This is severe withdrawal combined with conservative expansion (see
Fig. 12):

−→
h 0→ α ≺ .

−−−→
h>¬α
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Here is severe withdrawal combined with plain expansion (see Fig. 13):

−→
h 0→

−−−−−−−−→
h=¬α+1 ∧ α ≺ .

−−−−−→
h>¬α+1

And here is severe withdrawal combined with moderate expansion (see
Fig. 14): −→

h 0→
−−−→
h>¬α ≺ . α ≺ .

−−−−−−→
h>¬α ∨ α

The most faithful extrapolation of one-step AGM contraction of belief
sets to the revision of belief states seems to be the conservative contraction
with respect to α (see Fig. 15):

−→
h 0→

−−−−−−→
h≤α ∨ ¬α ≺ .

−−→
h>α

The revised entrenchment relation corresponding to the conservative con-
traction operation with respect to α is this:

γ ≤′ δ iff γ ≤ ⊥ or α ∨ γ ≤ α or (α < α ∨ δ and γ ≤ δ)

Notice that γ ≤′ δ according to conservative contraction implies γ ≤′ δ
according to severe withdrawal.

Finally, here is a representation of the moderate contraction (see Fig. 16)

of
−→
h with respect to α.

−→
h 0→

−−→
h>α ≺ .

−−−−→
h ∨ ¬α

Nayak, Goebel and Orgun (2007) propose an operation of lexicographic
contraction which corresponds to Nayak and others’ operation of lexico-
graphic revision. This interesting proposal is, however, too complex to re-
ceive a treatment in the present paper.

9. Refinement: Neither revision nor contraction

Papini (2001) introduced an interesting belief change operation that is nei-
ther a revision nor a contraction operation. It is a kind of reverse lexico-
graphic belief change, that I like to call refinement. In the system of spheres
modelling, each level of the prior system is kept in place, but split in such
a way that the α-models of a certain level are after the change made more
plausible than the ¬α-models of the same level (see Fig. 17).

Refinement of
−→
h by input α.

−→
h 0→

−−−→
h<¬α ≺ .

−−−−−−→
h≥ ¬α

+
∨ α

plus purification.
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The revised entrenchment relation ≤′ generated by the reverse lexico-
graphic change of a prioritized base by α is defined by

γ ≤′ δ iff γ ≤ δ and
{

α→ γ ≤ γ or
γ < α→ δ

Using the notation K/α for the belief set resulting from the refinement

of
−→
H or ≤ or $ by α, we note that the operation / is not always successful in

the way revision operations ∗ are supposed to be successful. More precisely,
we have α ∈ K/α = Cn (K ∪ {α}) if and only if α is consistent with K;
otherwise ¬α ∈ K/α = K.

There is no characterization of reverse lexicographic belief change (‘re-
finement’) in terms of iterated ‘revision’ postulates, perhaps simply because
refinement is no revision operation.11 Refinement need not have any effects
on the belief set level, but may be confined to worlds in outer systems of
spheres or to sentences higher up in the entrenchment ranking. We have the
property (which is too weak to characterize refinement)

K/α/β =

⎧
⎪⎪⎨

⎪⎪⎩

K/(α ∧ β) = K + (α ∧ β) if ¬(β ∧ α) /∈ K
K/α = K + α if ¬α /∈ K,¬(β ∧ α) ∈ K
K/β = K + β if ¬α ∈ K,¬β /∈ K
K/α = K/β = K/(α ∧ β) = K if ¬α,¬β ∈ K

10. Two-dimensional operators: Revision by comparison

The idea of two-dimensional belief change operators is that a belief state
is transformed in such a way that a sentence α (the ‘input’) gets accepted
with the certainty of a sentence β (the ‘reference sentence’). The input is
something like ‘β ≤ α’. The operation of revision by comparison (see Fig. 18)
was studied by Cantwell (1997), who called it ‘raising’, and by Fermé and
Rott (2004), who used the notation ◦βα. The principal case is when β is
more entrenched than α (which we may think of not being accepted in the
prior belief state); some interesting limiting cases will be addressed presently.

−→
h 0→

−−→
h<β ≺ . h=β ∧ α ≺ .

−−→
h>β

plus purification.
Fermé and Rott (2004, p. 13) give the following definition of revision by

comparison in terms of epistemic entrenchment. Let ≤ be a prior entrench-
ment ordering (usually not thought of arising from an e-base). Assuming

11A characterization should be possible using a postulate for K/α ∗ β, where ∗ is an
AGM revision function.
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again that the agent is to accept α (the input sentence) at least as certainly
as β (the reference sentence), the posterior entrenchment relation ≤′ =≤∗

β≤α

is defined by

γ ≤′ δ iff
{

β ∧ (α→ γ) ≤ (α→ δ) and γ ≤ β or
γ ≤ δ and β < γ

It is surprising that the extremely simple operation on prioritized bases
indeed captures the operation of revision by comparison which was charac-
terized and studied in rather laborious ways by Fermé and Rott.

There are a number of interesting unary special cases of revision by com-
parison. The special case ◦α⊥ with input sentence ⊥ and reference sentence
α reduces to a severe withdrawal of α (cf. Section 8). The special case ◦�α
with input sentence α and reference sentence  reduces to an irrevocable
or radical revision by α (cf. Section 4). Another operation worth mention-
ing is that of irrefutable revision obtained by fixing a reference sentence ε
and defining K ∗ α := K ◦ε α. Though similar with irrevocable revision,
especially if a highly entrenched reference sentence ε is chosen, there are
some interesting differences (cf. Rott 2006). The change of the prioritized
knowledge base cannot further be reduced (see Fig. 19).

11. Two-dimensional operators: Cantwell’s lowering

Cantwell (1997) argued that there are two ways of dealing with the situation
when we have the prior relation α < β and when the input is something like
‘β ≤ α’. What ‘revision by comparison’ in the sense of Fermé and Rott
does in some intuitive way is to promote α to the rank of β. Although it
is problematic to make cross-relational comparisons,12 the above represen-
tation with prioritized belief bases illustrates this: α is simply inserted into
the rank of β. But Cantwell saw that there is also a dual operation. One
can also obtain the intended effect, in the same principal situation, by de-
moting β to the rank of α (see Fig. 20).13 This is the relevant operation on
prioritized bases:

−→
h 0→

−−→
h<α ≺ . h=α,≤β ∧ β ≺ .

−−−−−−−−→
h>α,≤β ∨ ¬β ≺ .

−−→
h>β

plus purification.

12Compare Fermé and Rott (2004, pp. 25–26).
13Something like that can happen in ‘revision by comparison’ as well, see the case of

severe withdrawal above. However, the paradigm case for the application of revision by
comparison is α ≤ ⊥ < β, while the paradigm case of lowering is ⊥ < α < β.
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Assuming that the agent is to accept α (the input sentence) at least as
certainly as β (the reference sentence) and that β < , the revised entrench-
ment relation ≤′=≤∗

β≤α
as generated by the lowering of β to the degree of α

is defined by the following recipe:14

γ ≤′ δ iff
(γ ≤ δ and γ ≤ α) or (γ ≤ δ and β < β ∨ δ) or (α ≤ δ and β ∨ γ ≤ β)

As far as I know, this condition is new, but it is similar in spirit to
Cantwell’s axiomatization of lowering. It looks more complicated than it
is. Roughly, the explanation for it is this: The old ordering ≤ remains
undisturbed below α, and indeed the relationship γ ≤ δ does not change as
long as δ is not lowered (which happens when β < β ∨ δ). If not γ ≤ δ,
we can get a new relationship γ ≤′ δ if γ is lowered (which happens when
β ∨ γ ≤ β) and δ is at least as entrenched as α.

The above condition does not give us the lowering operation if  ≤ β,
for in this case it reduces to γ ≤′ δ iff α ≤ δ or γ ≤ δ. This operation
is a kind of dual to severe withdrawal (which rules that γ ≤′ δ iff γ ≤ α
or γ ≤ δ). While, roughly speaking, severe withdrawal collapses the levels
below α into one, this operation collapses the levels above α into one, and
in fact into the highest possible one (see Fig. 21).

Given our general assumption that α < β in the prior belief state, there
are two unary special cases of the lowering operation. First, fix β = . Then
the lowering operation on bases gives

−→
h 0→

−−→
h<α ≺ . h=α ∧  ≺ .

−−−−−−→
h>α ∨ ¬

which produces no change at all. Tautologies simply cannot be lowered.
Second, fix α = ⊥. In this case the lowering operation reduces to

−→
h 0→ h=⊥ ∧ β ≺ .

−−−−−−−−−→
h>⊥, ≤β ∨ ¬β ≺ .

−−→
h>β

which results in a conservative contraction (= AGM contraction) with re-
spect to β.

The recipe for lowering is quite similar to the recipe for conservative
revision. The obvious input that might show that conservative revision by α
is in fact a special case of lowering, namely an extreme lowering of ¬α, would

14In the case � ≤ β, the revised entrenchment relation ≤′=≤∗
β≤α

generated by lowering
is defined as

γ ≤′ δ iff (γ ≤ δ and γ ≤ α) or (γ ≤ δ and � β ∨ δ) or (α ≤ δ and �� β ∨ γ)

If even � β, this reduces to γ ≤′ δ iff γ ≤ δ.
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be ‘¬α ≤ ⊥’. But this doesn’t quite give us a revision, it only amounts to
conservative contraction with respect to ¬α. It eliminates ¬α, but it does
not promote α to the rank of a belief, i.e., above ⊥. For revision, we need
another kind of lowering operation. Inputs in the form of strict inequalities
will help us to solve the problem (see Section 13 below).

12. Gentle raising and lowering

Revision by comparison (raising) is different from lowering even when α and
β are ‘neighbours’ in the sense that in the prior entrenchment ordering, there
is no sentence strictly between α and β. One can see this in the operations
of ‘gentle promotion’ and ‘gentle demotion’, in which the rank of α is raised
and lowered by one, respectively (see Figures 22 and 23).

Gentle promotion of α:
−→
h 0→

−−→
h≤α ≺ . h=α+1 ∧ α ≺ .

−−−−→
h>α+1

Gentle demotion of α:
−→
h 0→

−−−−→
h<α−1 ≺ . h=α−1 ∧ α ≺ . h=α ∨ ¬α ≺ .

−−→
h>α

The reader is invited to compare this with the related operation advocated
by Darwiche and Pearl (1997, p. 15).

13. Two-dimensional operators: Raising and lowering
by strict comparisons

Now suppose the initial situation is that α ≤ β. Can an inequality β < α
as input be processed in just the same way as the equality β ≤ α? First we
have to be clear that not any input of the form β < α is admissible. If α
implies β, then α cannot be more entrenched than β. So let us assume that
α does not imply β, i.e., that α→ β is not a logical truth, and have a look
at the official definitions.

Raising with input β < α would seem to be simply this:
−→
h 0→

−−→
h≤β ≺ . h=β+1 ∧ α ≺ .

−−−−→
h>β+1

But there is a precondition here if the operation is to be successful: h>β ∧α
must not imply β. If it does, one has to put α somewhere further up, and
exactly to the lowest level i such that h≥i∧α does not imply β. So the right
idea to meet the constraint specified by the input is this (see Fig. 24):

−→
h 0→

−−−−−→
h≤(α→β) ≺ . h=(α→β)+1 ∧ α ≺ .

−−−−−−−→
h>(α→β)+1

It is clear that the new prioritized base generates the relation β < α. The
two sentences occupy neighbouring layers of entrenchment separated at the
left occurrence of ‘≺ . ’.
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Prima facie, lowering with input β < α would seem to be this:
−→
h 0→

−−−−→
h<α−1 ≺ . h=α−1 ∧ β ≺ .

−−−−−−−−→
h≥α,≤β ∨ ¬β ≺ .

−−→
h>β

Due to the disjuncts ‘¬β’, there is no danger that β is implied by higher
levels. However, here we have a problem complementary to the one before.
It is no longer guaranteed that the levels higher than β after the change still
imply α. The solution is similar. Again we have to replace β by α→ β. The
right recipe turns out to be, after a little simplification (see Fig. 25):
−→
h 0→

−−−−→
h<α−1 ≺ . h=α−1 ∧ β ≺ .

−−−−−−−−−−−−−−−−→
h≥α,≤(α→β) ∨ (α ∧ ¬β) ≺ .

−−−−−→
h>(α→β)

It is clear that the new prioritized base generates the relation β < α. Again
the two sentences occupy neighbouring layers of entrenchment separated at
the middle occurrence of ‘≺ . ’.

Conservative revision is a special case of lowering with strict inputs. The
input is simply ⊥ < α. It turns out that shifting contradictions below the
level of α is nothing but conservatively accepting α.

14. Two-dimensional operators: Bounded revision

Conservative revision was soon recognized as being too conservative: Only
very few α-models are made more plausible than the ¬α-models. On the
other hand, moderate revision is still fairly radical: All α-models are treated
as more plausible than all the ¬α-models. It seems a good idea to employ a
two-dimensional operator to steer a middle course. Revision by comparison
(raising) and lowering, however, are not the right solutions to this problem,
since they are not “between” the one-dimensional operators of conservative
and moderate revision, and they do not satisfy the Darwiche-Pearl postu-
lates. Bounded revision is a two-dimensional operator that is in a precise
sense between conservative and moderate revision. It is motivated and ex-
plored in Rott (2007). It seems to dispel Spohn’s (1988, pp. 112–113) early
complaints about the disadvantages of both conservative and moderate re-
vision.

14.1. Bounded revision, strict version.

The idea of this operation is to accept an input sentence α as long as β
holds along with α (see Fig. 26). The reference sentence β functions here as
a measure of how much of α the agent should consider most plausible after
the change. This idea is similar to that of revision by comparison, but not
quite the same. The operation to be considered in this subsection does not
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move α to an entrenchment level exceeding that of β. (It is only the variant
that we are going to consider in subsection 14.2 that achieves this.)

Here is a representation of the strict bounded revision of
−→
h by input α

as long as β (along with α).
−→
h 0→

−→
h ≺ . α ≺ .

−−−−−−−−→
h<(α→β) ∨ α ≺ .

−−−−−→
h≥(α→β)

or equivalently, modulo purification,
−→
h 0→

−−−−−−−−→
h>¬α,<(α→β) ≺ . α ≺ .

−−−−−−−−→
h<(α→β) ∨ α ≺ .

−−−−−→
h≥(α→β)

Now let us look at the definition of bounded revision in terms of epistemic
entrenchment. If ≤ is the prior entrenchment ordering, then the posterior
entrenchment relation ≤′ = ≤∗

α;β is given by

γ ≤′ δ iff
{

α→ γ ≤ α→ δ , if α→ (γ ∧ δ) < α→ β
γ ≤ δ , otherwise

In the following equation for iterated revisions, read K ∗ α := K ∗;ε α
and K ∗ β := K ∗;ε′ β for some ε and ε′.

(K ∗ α) ∗ β =

{
K ∗ (α ∧ β) if ¬(α ∧ β) < α→ ε

K ∗ β otherwise

Notation: Here ¬(α ∧ β) < α→ ε is short for the condition that ε is in,
but ¬β is not in K ∗ (α∧ (¬β ∨ ε)). This abbreviation is in accordance with
usual entrenchment theories.

The strict version of bounded revision reduces to moderate revision if one
takes a logical truth like  as the reference sentence, except for a limiting
case.15

14.2. Bounded revision, non-strict version.

The idea of this operation is to accept an input sentence α as long as β holds
along with α, and even just a little more (see Fig. 27). The operation of this
subsection moves α to an entrenchment level just above that of β. In this
respect it is quite close to revision by comparison.

Here is a representation of the non-strict bounded revision of
−→
h by input

α as long as β (along with α).
−→
h 0→

−→
h ≺ . α ≺ .

−−−−−−−−→
h≤(α→β) ∨ α ≺ .

−−−−−→
h>(α→β)

15The difference in the limiting case is precisely that between moderate and more mod-
erate revision. See footnote 10.
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or equivalently, modulo purification,
−→
h 0→

−−−−−−−−→
h≥ ¬α,≤(α→β) ≺ . α ≺ .

−−−−−−−−→
h≤(α→β) ∨ α ≺ .

−−−−−→
h>(α→β)

We again look at the definition of this version of bounded revision in
terms of epistemic entrenchment. Let ≤ be a prior entrenchment ordering.
Then the posterior entrenchment relation ≤′ = ≤∗

α,β is given by

γ ≤′ δ iff
{

α→ γ ≤ α→ δ, if α→ (γ ∧ δ) ≤ (α→ β)
γ ≤ δ, otherwise.

In the following equation, read K ∗ α := K ∗,ε α and K ∗ β := K ∗,ε′ β
for some ε and ε′.

Iterated revision postulate

(K ∗ α) ∗ β =

{
K ∗ (α ∧ β), if ¬(α ∧ β) ≤ α→ ε

K ∗ β, otherwise.

Notation: Here ¬(α ∧ β) ≤ α → ε is short for the condition that either
¬β is not in or ε is in K ∗ (α∧ (¬β ∨ ε)). This abbreviation is in accordance
with usual entrenchment theories.

The non-strict version of bounded revision reduces to conservative revi-
sion if one takes ¬α as the reference sentence, except for a limiting case.16

15. Conclusion

A prioritized belief base represents an agent’s belief state. The set of her
beliefs as well as her ranking of beliefs in terms of entrenchment can easily
be obtained from a prioritized base. The prioritized base representation
has, I believe, a number of significant advantages over the more established
models. It is compact, constructive and convenient. While the semantics of
spheres of possible worlds helps us understand the changes of belief states
very well, the syntax of prioritized bases helps us to read off at a glance
much of the contents and ranks of a base. We have used bases as compact
and convenient tools for representing belief states, without implying that
the elements of such a base themselves carry any epistemological weight
as “basic” or “explicit” beliefs. Bases are finite and typically have only a
comparatively small number of layers and a small number of sentences within

16In terms of iterated revision, for instance, the difference is as follows. Non-strictly
bounded revision with ε = ¬α gives the inconsistent set K ∗ α ∗ β = K ∗ (α ∧ β) if K ∗ α is
inconsistent, while our official definition of conservative revision gives K ∗ α ∗ β = K ∗ β
in this case. This difference could easily be adapted, if we liked.
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each layer. In contrast, other representations of doxastic states typically
involve large numbers of possible worlds, or of beliefs to be ordered by some
preference relation.

We have presented a fairly wide, though certainly not exhaustive, variety
of methods for belief revision by way of manipulations of prioritized bases.
These manipulations display quite clearly where in an existing priority or-
dering the new input is being placed: at the bottom (conservative revision,
severe revision), at the top (radical revision) or somewhere in the middle
(moderate revision, raising and lowering). There is a surprising multiplicity
of revision methods that can be captured in this way. We have collected
sphere models of 27 change functions in the Appendix.

A main point of this paper has been to show that prioritized bases are
a very good way of representing not only belief states at a certain time,
but also changes of belief states. Besides the calculation of implications,
the operations to be performed on prioritized bases are: Copying some list
of sentences, cutting some such list, applying booleans (¬, ∨ and ∧) to the
elements of a list, and concatenating lists. Prioritized belief base engineering
is a little like DNA engineering. It probably is not realistic psychologically,
but it should have nice computational properties. All operations are simple,
transparent and give the user an immediate feeling of the status that a new
piece of input is assigned in the posterior belief state.

We have gathered considerable inductive evidence that the revisions of
belief states systematically defined via SOSs can all be captured by fairly
simple syntactical means (prioritized belief base engineering). It does not
seem that this can be proved, however, given the vagueness of the terms
“systematically defined” and “fairly simple”.

After this paper was conceived, I was alerted to the fact that ideas very
similar to prioritized base changes as presented here have already been ex-
plored in the framework of possibilistic logic in a series of papers, e.g. in
Benferhat, Dubois and Prade (2001). The work of Meyer, Ghose and Chopra
(2001) is also relevant. The research of both groups was done in the more
general (and more interesting) area of belief merging. I recommend the
reader to closely study these works and also consult the references men-
tioned therein. The present paper complements these earlier works in the
following respects. The presentation as given here is somewhat simpler; I
survey a larger number of methods of iterated belief change that can all lay
claim to being regarded as rational; and finally, I make it fully clear that no
numbers are needed for any of the belief change methods considered.

All the methods considered are purely qualitative, in the sense that there
are no meaningful numbers involved. The numbers used in the representa-
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tion of prioritized belief bases, as well as the numbers appearing in the
sphere pictures only encode orderings. In view of the abundance of quali-
tative methods at our disposal, we are not likely to subscribe to the view
of proponents of numerical methods, according to which purely qualitative
methods will always remain too poor to model a reasonable evolution of our
beliefs. The problem is rather the reverse: We are facing an embarrassment
of riches. What we urgently need is some substantive metatheory that tells
us which method to apply in what situations. Unfortunately, we do not have
anything like such a methodology yet.
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Fermé, Eduardo, Rott, Hans (2004), ‘Revision by comparison’, Artificial Intelligence,

157: 5–47.

Gärdenfors, Peter, Makinson, David (1988), ‘Revisions of knowledge systems using

epistemic entrenchment’, in Vardi, M. (ed.), Theoretical Aspects of Reasoning About

Knowledge, Morgan Kaufmann, Los Altos, CA, 1988, pp. 83–95.

Grove, Adam (1988), ‘Two modellings for theory change’, Journal of Philosophical Logic,

17: 157–170.

Hansson, Sven O. (1999), A Textbook of Belief Dynamics. Theory Change and Database

Updating, Kluwer, Dordrecht.

Levi, Isaac (2004), Mild Contraction: Evaluating Loss of Information due to Loss of

Belief, Oxford University Press, Oxford.

Lewis, David (1973), Counterfactuals, Blackwell, Oxford.

Meyer, Thomas, Ghose, Aditya, Chopra, Samir (2001), ‘Syntactic representations of

semantic merging operations’, in Proceedings of the IJCAI-2001 Workshop on Inconsis-

tency in Data and Knowledge, Seattle, USA, August 2001, pp. 36–42.

Nayak, Abhaya C. (1994), ‘Iterated belief change based on epistemic entrenchment’,

Erkenntnis, 41: 353–390.

Nayak, Abhaya C., Pagnucco, Maurice, Peppas, Pavlos (2003), ‘Dynamic belief

revision operators’, Artificial Intelligence, 146: 193–228.

Nayak, Abhaya, Goebel, Randy, Orgun, Mehmet (2007), ‘Iterated belief contrac-

tion from first principles’, International Joint Conference on Artificial Intelligence (IJ-

CAI’07), pp. 2568–2573.

Nebel, Bernhard (1992), ‘Syntax-based approaches to belief revision’, in: Gärdenfors,

Peter (ed.), Belief Revision, Cambridge University Press, Cambridge, pp. 52–88.

Pagnucco, Maurice, Rott, Hans (1999), ‘Severe withdrawal—and recovery’, Journal

of Philosophical Logic, 28: 501–547. (Full corrected reprint in the JPL issue of February

2000.)

Papini, Odile (2001), ‘Iterated revision operations stemming from the history of an agent’s

observations’, in Williams, Rott (eds.), pp. 279–301.



292 H. Rott

Peirce, Charles S. (1903), ‘The nature of meaning’, Harvard Lecture delivered on 7 May

1903, published in The Essential Peirce, vol. 2 (1803–1913), ed. by the Peirce Edition

Project, Indiana University Press, Bloomington, 1998, pp. 208–225.

Rescher, Nicholas (1964), Hypothetical Reasoning, North-Holland, Amsterdam.

Rott, Hans (1991a), ‘Two methods of constructing contractions and revisions of knowl-

edge systems’, Journal of Philosophical Logic, 20: 149–173.

Rott, Hans (1991b), ‘A non-monotonic conditional logic for belief revision I’, in

Fuhrmann, A., Morreau, M., The Logic of Theory Change, LNCS vol. 465, Springer,

Berlin, pp. 135–181.

Rott, Hans (1992), ‘Modellings for belief change: Prioritization and entrenchment’, Theo-

ria, 58: 21–57.

Rott, Hans (2000), ‘ “Just because”: Taking belief bases- seriously’, in Buss, Samuel R.,
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Appendix: Sphere pictures

Figure 1: Conservative ex-
pansion

Figure 2: Plain expansion

Figure 3: Moderate expan-
sion

Figure 4: Radical expan-
sion

Figure 5: Very radical ex-
pansion

Figure 6: Radical revision
(= ‘irrevocable revision’)

Figure 7: Very radical re-
vision

Figure 8: Conservative re-
vision (= ‘natural revi-
sion’)
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Figure 9: Moderate revi-
sion (= ‘lexicographic revi-
sion’)

Figure 10: Restrained revi-
sion

Figure 11: Severe with-
drawal (= ‘mild contrac-
tion’)

Figure 12: Severe revision

Figure 13: Plain severe re-
vision

Figure 14: Moderate se-
vere revision

Figure 15: Conservative
contraction (≈ AGM con-
traction)

Figure 16: Moderate con-
traction
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Figure 17: Refining (=
‘Reverse lexicographic be-
lief change’)

Figure 18: Revision by
comparison (= ‘raising’)

Figure 19: Irrefutable revi-
sion (with fixed ε)

Figure 20: Lowering

Figure 21: Dual to severe
withdrawal

Figure 22: Gentle raising

Figure 23: Gentle lowering

Figure 24: Raising by
strict comparison
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Figure 25: Lowering by
strict comparison

Figure 26: Bounded revi-
sion (strict version)

Figure 27: Bounded revi-
sion (non-strict version)
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The Coherence of Theories
— Dependencies and Weights

Abstract. One way to evaluate and compare rival but potentially incompatible theories

that account for the same set of observations is coherence. In this paper we take the

quantitative notion of theory coherence as proposed by [Kwok et al., 1998] and broaden

its foundations. The generalisation will give a measure of the efficacy of a sub-theory

as against single theory components. This also gives rise to notions of dependencies and

couplings to account for how theory components interact with each other. Secondly we

wish to capture the fact that not all components within a theory are of equal importance.

To do this we assign weights to theory components. This framework is applied to game

theory and the performance of a coherentist player is investigated within the iterated

Prisoner’s Dilemma.

Keywords: coherence, philosophy of science, theory evaluation, game theory.

1. Introduction

The core of scientific theories are laws. These laws often make use of the-
oretical terms, linguistic entities which do not directly refer to observables.
There is therefore no direct way of determining which theoretical assertions
are true. This suggests that multiple theories may exist which are incompat-
ible with one another but compatible with all possible observations. Since
such theories make the same empirical claims, empirical tests cannot be used
to differentiate or rank such theories. Hawking very nicely summarised this
positivist approach in the philosophy of science: “A scientific theory is a
mathematical model that describes and codifies the observations we make.
A good theory would describe a large range of phenomena on the basis of a
few postulates, and make definite predictions that can be tested” [Hawking,
2001]. One property that has been suggested for evaluating rival theories is
coherence. This was investigated qualitatively in the philosophy of science
(see, e.g, summaries in [van Fraassen, 1980] and [Nagel, 1961]) until [Kwok
et al., 1998] introduced a coherence measure based on the average use of
formulas in accounting for observations. Prior to this measure, the qualita-
tive approaches considered properties of theories typified by informal notions

D. Makinson, J. Malinowski, H. Wansing (eds.), Towards Mathematical Philosophy,
Trends in Logic, 28 c© Springer Science + Business Media B.V. 2009
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like “tightness of coupling” of the axioms, “brevity”, “predictive scope”, etc.
Kwok et.al. (op.cit.) took these as guides for their quantification. The idea
was to identify highly coherent theories as those whose formulas are tightly
coupled in accounting for observations, while low coherence theories contain
many disjointed and isolated statements. It proved to be quite fruitful; for
instance this provided a rebuttal to Craig’s method [Craig, 1953] for the
elimination of theoretical terms by showing that the method yields theories
with very low coherence.

Later work [Kwok et al., 2003], [Kwok et al., 2007] by the same authors
generalised the approach to better mirror scientific practice. For instance, a
standard way to use a theory is to design experiments with varying input and
output sets. However, another way is to regard observations as inputs and
explanations as outputs. The generalisation accommodates both views, and
in fact permits other interpretations of input-output relations to test theories
for coherence. It is also able to explain notions like theory modularisation.

It is fair to say that this approach to reifying coherence is in effect a
combinatorial grounding that relies on the widely understood concept of
support sets that plays an important role in artificial intelligence logic in
areas as diverse as diagnoses, logic program semantics and abduction. One
may question whether the hitherto qualitative notion of coherence is ap-
propriately captured by our quantitative measure. Our response is that we
propose a plausible way to fix the interpretation of coherence that can be
tested by its efficacy in explicating some well-known examples, with the
awareness that other plausible methods may emerge in future that capture
variant qualitative interpretations.

In the current paper we take the above as starting points and widen
the foundations of coherence as defined through support sets. Two ideas
are broached, based on intuitions from scientific practice that were not con-
sidered in [Kwok et al., 1998] and [Kwok et al., 2003]. The first widening
derives from the observation that coherence should also measure how well
pairs, triples, etc. of formulas jointly account for observations or outputs.
This gives rise to the quantitative notion of dependency in coherence. The
second widening mirrors the practical fact that not all formulas may be
considered to be equal in importance. This is already acknowledged in the
works on belief revision, primarily the AGM approach [Gardenfors, 1988],
where varying commitments to particular beliefs goes by the name of en-
trenchment. The possibilistic logicians’ fuzzy measures aimed at capturing
the same intuition have been shown to be equivalent to entrenchment. In
our paper we use weights on formulas to do this. This enhanced definition
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of coherence reduces to the previous version when dependencies are among
singletons and all weights are equal.

Numerous formal examples will illustrate the efficacy of the new defin-
ition, but we also apply it to a domain not traditionally considered in the
philosophy of science which initially motivated our work. The domain is
game theory, specifically forms of the (in)-famous Prisoner’s Dilemma [Ax-
elrod, 1981], where the one-time game is classically represented as a matrix
that displays the payoffs for each of the two players depending on their choice
of action (called strategy). Game theorists then assume rational decisions
by each player and analyse the action choices that must be entailed. Iter-
ating the one-time game was then studied by a number of researchers (see,
e.g. Axelrod [Axelrod, 1981]). It is this iterated version to which we will
apply the notion of coherence. We will model a player’s reasoning (using
its beliefs, desires and intentions) as formulas, and the player’s adaptations
during the game is seen as attempts to maintain high coherence among these
doxastic qualities. Computer simulations of this approach are also described
and analysed.

Finally we discuss future directions that this work may profitably take.
It is plausible that traditional norms of “rationality” in the evaluation of
scientific theories as well as economic and social behaviour may be modu-
lated by current discomfort with the policies that result from them. Wider
notions of what it means for these theories to be coherent can contribute to
modifications of the existing norms.

2. Internalist Coherence

This section reviews the previous contribution by [Kwok et al., 2003], and
suggests innovations in areas that were not addressed up to this date, such as
the utility of a set of formulas, and the relationship between sets of formulas:
how one may dominate over another, and how tightly they have coupled to
account for observations. It can also be seen the other way round, as how
closely they have been associated when supported by empirical evidence. For
the time being, we call these nominated properties “Internalist Coherence”.

2.1. Support Sets

The building blocks of coherence are support sets. They describe how a
theory accounts for an observation from specific inputs. In this framework,
a theory, an input set and an output set are all sets of formulas from a first-
order language L. It is appropriate to motivate the setting assumed by the
next definition. We conceive of logical theories as formal models of selected
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aspects of the world that interest us. In science the theories of a domain
such as chemistry are often painfully constructed over the course of time,
and subject to much testing and revision. We do not address the revision
issue here, but as we shall see the testing is implicit. A theory T can be
used in many ways. It may help to visualise T as a blackbox into which the
“input” set I formulas is fed, and an “output” set of formulas O is produced.
The “directionality” suggested by these terms should not be taken literally.
The interpretation of I and O depends on how T is intended to be used.
For instance, O could be a set of observed outcomes of an experiment, in
which case I could describe the initial conditions of that experiment. If
given certain hypotheses, we interpret O as desired conclusions of T , I could
be such a set of hypotheses. Moreover, T itself can have atoms which say
that we are only interested in models of T that satisfy those atoms. It is
a matter of modelling to decide which atoms (“facts”) to place in I, O or
T , and different choices will yield different coherence measures. To see that
this flexibility is an advantage, consider the following. Suppose someone
proposes a theory T that purports to account for some phenomena. If we
wish to test T only in settings where conditions C hold, one way to do that
is to consider instead the theory T ∪ {C}. But if we already have a set O of
observations, and we wish to find conditions C under which T can account
for O, then C is part of I.

For brevity in the sequel we sometimes use the term axiom for an element
of T .

Definition 1 (Support Sets [Kwok et al., 2003]). Given input set I, output
set O, a subset of the theory T be Γ. Γ is an I-relative support set of O if
1. Γ ∧ I |= O and
2. Γ is minimal (wrt set inclusion).

Let S(T, I,O) denote the family of all I-relative support sets for O. As
explained above different choices of input set I will result in different support
sets. This approach is designed to be “independent of any commitment to
causality or particular use of laws” [Kwok et al., 1998]. This definition is
intended to capture the idea that Γ alone cannot account for O but it can
do that with the help of I; moreover we want I to be as small as possible,
viz. no redundancy.

Example 1 (Socrates is Mortal). Given the input I:

I : {man(Socrates)} − Socrates is a man

output O:
O : {mortal(Socrates)} − Socrates is mortal
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the theory T :

T = {α1 : ∀(x) man(x) → mortal(x), α2 : ∀(x) deity(x) → ¬mortal(x)}
−all men are mortal ,−all deities are not mortal

{α1} constitutes a support set for I and O, since it explains how O is derived
from I, whereas {α2} does not constitute a support for I and O.

Example 2. Let T be the theory that geniuses would only pass if they are
not intoxicated; and if one is not a genius, then one would only pass after
study:

¬genius(x) ∧ ¬study(x) → ¬pass(x)
¬genius(x) ∧ study(x) → pass(x)
genius(x) ∧ intoxicated(x)→ ¬pass(x)
genius(x) ∧ ¬intoxicated(x)→ pass(x)

Suppose we wish to explain an output set O = {¬pass(john)}. Possible
input sets are:

I1 = {genius(john), intoxicated(john)} and
I2 = {¬genius(john),¬study(john)}.
Observe that we may re-interpret O as a prediction given the input in-

formation I1 or I2. For this O the second and fourth formulas in T are not
used. However, should O be changed to {¬pass(john), pass(verana)} it can
be seen that all the formulas in T will be used to compute the input support
sets.

2.2. Utility of a set of formulas

Recall the informal properties of coherence, such as “tightness of coupling”
and “work together”, that we wish to encapsulate in our formal quantita-
tive framework. One element missing from the previous approach [Kwok,
et.al. 03] was the notion of measuring the usefulness of a group of formulas,
or a sub-theory. This is an important concern as the utility of the sub-theory
would reflect both the utility of the components of the sub-theory, and the
tightness of the coupling between the components, and thus capture some
of the desired properties of coherence in our representation.

We wish to measure the contribution of not only one formula, but several
formulas in how they together have contributed to support observations.
Building on the [Kwok et al., 2003] definition, we now examine how a set of
formulas “work together”. For instance, in a theory T consisting of elements
α, β and γ; we may wish to consider not only the individual utilities of
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elements α and β, but their synergistic qualities of working together, e.g.
the utility of the set Θ = {α, β}.

The next definition formalises this intuition. A higher level of utility for
a set means that its formulas occur together often in support of observations.

Definition 2 (Utility of a Set of Formulas). Given a theory T and a non-
empty set of formulas A ⊆ T , its utility is:

U(A, T, I, O) =
| {Γ : A ⊆ Γ and Γ ∈ S(T, I,O)} |

| S(T, I,O) | if S(T, I,O) �= ∅

This formal definition provides a measure of how well all formulas in
the set “work together” in supporting observations. It sees the formulas as
equal, and does not discriminate one over another. Informally the idea is
as follows. To measure the utility of the set A we do this: first count how
many times it appears within the support sets for the given I and O; we
then express this as a fraction of the total number of those support sets —
hence the more frequently A so appears the higher its utility. If one formula
does not work with the group, the utility for the group will be rendered as
zero. The connection between the utility of individual formulas (singleton
set) and the utility of sets of which it is a member is addressed in Lemma 1
below.

Lemma 1 (Joint Utility). Let a set of formulas A consist of two proper
subsets B and Δ, i.e. A = B ∪Δ. The following properties hold:

(i) U(A, T, I,O) = U(B ∪Δ, T, I, O)

(ii) if S(T, I,O) �= ∅, then

U(A, T, I, O) =
| {Γ : B ⊆ Γ ∧ Δ ⊆ Γ ∧ Γ ∈ S(T, I,O)} |

| S(T, I,O) |
since

{Γ : B ∪Δ ⊆ Γ} = {Γ : B ⊆ Γ ∧Δ ⊆ Γ}

This will be useful in subsequent proofs where sets of axioms appear together.

2.3. Dependencies between formulas

The “tightness of coupling” between elements of a theory can be reflected in
two ways. We shall elaborate the two different senses of “tightness” over the
next two sections. First, this property can be exhibited in the reliance of one
set of formulas upon another. For example, to account for the observation
“Socrates is mortal”, the axiom “Socrates is a man” would not make sense
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without the other axiom “all men are mortal”. However, if there are two
independent explanations of Socrates’ mortal nature based on he is a man,
then the axiom “Socrates is a man” would be less dependent on each of the
set of formulas that amounts to the respective explanations.

Formally, we wish to see how dependent a specific set of formulas is upon
another. It may be that this set in isolation is not a support set, but that in
combination with another set it is one; then informally the first set can be
regarded as dependent on the second. More precisely, if set Φ is contained
in most of the support sets that contain another set Θ, then Θ would have
a high dependency on Φ. This dependency is generally asymmetric.

Definition 3 (Dependency Coefficient).

D(Θ, Φ, T, I, O) =
| {Γ : Γ ∈ S(T, I,O) and Θ ⊆ Γ and Φ ⊆ Γ} |

| {Γ : Γ ∈ S(T, I,O) and Θ ⊆ Γ} |
This defines the dependency of Θ on Φ.

The dependency above also reflects the importance of the set Φ. Consider
a formula α in T that not only occurs in most support sets, but where other
formulas are dependent on it to make a support set, this then makes α
important in T . This can be captured as the weight of a formula which we
discuss later. Section 2.3 discusses the use of dependencies.

Dependency is related to utility. Given two sub-theories Θ and Φ, the
dependency of Θ to Φ measures the proportion of support sets that contain
both Θ and Φ against those that contain Θ. The higher the dependency, the
more support sets that contain Θ also contain Φ.

Corollary 1 (Dependency-Utility Connection).

D(Θ, Φ, T, I, O) =
U(Θ ∪ Φ, T, I, O)

U(Θ, T, I, O)
Proof. Recall:

D(Θ, Φ, T, I, O) =
| {Γ1 : Θ ⊆ Γ1 and Φ ⊆ Γ1 and Γ1 ∈ S(T, I,O)} |

| {Γ2 : Θ ⊆ Γ2 and Γ2 ∈ S(T, I,O)} |
Divide numerator and denominator by | S(T, I,O) |:

D(Θ, Φ, T, I, O) =

| {Γ1 : Θ ⊆ Γ1 and Φ ⊆ Γ1 and Γ1 ∈ S(T, I,O)} |
| S(T, I,O) |

| {Γ2 : Θ ⊆ Γ2 and Γ2 ∈ S(T, I,O)} |
| S(T, I,O) |

Then from Lemma 1, translate the numerator and denominator back to
utility:

D(Θ, Φ, T, I, O) =
U(Θ ∪ Φ, T, I, O)

U(Θ, T, I, O)
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2.4. Coupling of formulas

The second way to encapsulate the “tightness of coupling” property is to see
how elements of a theory mutually need each other. That is, how much they
“work together” in proportion to the total amount of work they do in forming
I-relative support sets. The greater the ratio, the “tighter” the elements
coupled together. This is different to the previous definition of dependency,
as this looks at how much both sub-theories take part in accounting for
observations.

We wish to formalise a notion of mutual dependency between two sub-
theories. Intuitively, this will measure the degree to which the sub-theories
need each other in accounting for observations. The following symmetric
definition formalises this intuition.

Definition 4 (Coupling Coefficient).

CP (Θ, Φ, T, I, O) =
| {Γ1 : Θ ⊆ Γ1 and Φ ⊆ Γ1 and Γ1 ∈ S(T, I,O)} |
| {Γ2 : (Θ ⊆ Γ2 or Φ ⊆ Γ2) and Γ2 ∈ S(T, I,O)} |

This coupling coefficient represents how two sub-theories mutually need
each other. The higher the coupling, the more they work together, reflecting
the properties of coherence as stated from the informal definition proposed
by [Kwok et al., 1998].

2.5. Example — Socrates is wise

Example 3 (Socrates is wise). Consider the proposal that Socrates is wise
because he had a wise student named Plato. Plato, apart from being wise,
was also a prolific writer in philosophy. Therefore, we may have two possible
ways of accounting for the fact that Socrates is wise, being either “The
teacher of a wise man is also wise”, or “The teacher of a prolific writer is
wise”. The theory can be formalised as:

I = ∅
T = {α1: ∀x∀y teacher(y, x) ∧ wise(y) → wise(x),
α2: teacher(Plato, Socrates),
α3: wise(Plato),
α4: prolificWriter(Plato),
α5: ∀x∀y teacher(y, x) ∧ prolificWriter(y) ∧ philosopher(y) → wise(x),
α6: philosopher(Plato) }
O = {wise(Socrates)}
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As the theory itself is sufficient to account for the observations, we there-
fore do not require inputs in this example. However, we still consider support
sets to be I-relative as we still consider the input set together with the the-
ory to account for observations, and in this case the input set just happens
to be empty. This formalised theory enables us to investigate the utility of
formulas and sub-theories, the dependencies of one component of the the-
ory to another, and the coupling between the components. Hence we find
a measure for “usefulness” of components of the theory and how they are
“tightly coupled”.

2.5.1. Utility of sets

The two I-relative support sets for O are: {α1,α2,α3}, and {α2,α4,α5,α6}.
Hence the utility of formulas {α5, α6} as a set would be 1

2 , since they
appear together in only one of the two possible support sets; the set {α1, α4}
have the utility value of 0 since they do not work together at all; and the
utility of {α2} is 1 due to the fact that it appeared in all support sets.

2.5.2. Dependencies

Case 1: High Dependency
A formula α would have high dependency on a set Γ if {α}∪Γ occurs in most
support sets that contain α. So in the support sets and the theory illustrated
above, the formula α1 has a high dependency on both α2 and α3. Because
without either formula, α1 would not be able to account for the observation.
In a theory where only one explanation is possible, the dependencies of all
formulas in the support set relative to each other would be 1.

Case 2: Moderate/Low Dependency
A formula α would have a moderate/low dependency on a set Γ if α occurs
in multiple support sets. This way the formulas in Γ may not always occur
in support sets containing α. In the example above, α2 has a moderate de-
pendency on other formulas. This is because α2 is contained in two support
sets, and no other formula in T also occurs in the same two support sets.
However, occurring in multiple support sets does not necessarily guarantee
a moderate/low dependency to other formulas, for there could be another
formula δ which occurs in the same support sets, thus having a high coupling
coefficient. This is examined later in the section on couplings.

Case 3: Zero Dependency
Formulas will have zero dependency if they have nothing to do with each
other. In the current theoretical context it means that they do not share
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any support sets. Here axioms α1...3 are totally disjointed from axioms α4...6,
thus any pairs selected with one from each set would yield zero dependence
to each other.

2.5.3. Couplings

Case 1: High Coupling
High coupling occurs when two formulas (sets) often appear in the same sup-
port sets. In our example, α5 and α6 are required in the same support sets,
since Plato needed to be both a prolific writer and a philosopher. Together,
they have a coupling value of 1. However, this is different to dependency.
If there were another formula α that also occurs across both support sets,
then α and α2 would have a high coupling value of 1 despite being spread
across more than one support set.
Case 2: Moderate/low Coupling
Moderate/low coupling happens when two formulas (sets) appear in some
support sets together, but in other support sets only one formula (set) is
required. With our example, α1 and α2 have a coupling value of 1

2 . This
value reflects the fact that both α1 and α2 appear in one support set, but
only α2 appears in the other support set. The coupling value between sets
A and B is greater than 0 as long as they appear together in one support
set. Formally:

CP (A, B, T, I, O) > 0 if and only if, for some Γ ∈ S(T, I,O), A ∪B ⊆ Γ

Case 3: Zero Coupling
Like dependency, two formulas (sets) have zero coupling when they have
nothing to do with each other; they do not ever work together to account
for an observation. In our example, α1 and α5 have zero coupling.

2.6. Formulas with weights

Within a theory T , some axioms may be considered more important than
others. This quality is described in the AGM framework [Gardenfors, 1988].
The importance of an axiom can either be innate, judgemental or could be
determined from its usage in accounting for observations (its occurrence in
support sets). Although some axioms are not frequently used, they may
still be essential to the integrity of the theory. The measure of utility will
be generalised to take into account an innate or judgemental weighing of
axioms. In AGM entrenchment a logically weaker statement entailed by a
stronger one will have an entrenchment at least as high as the latter. The
analog of this for utility is the following: a weaker statement would account
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for at least as many input-output sets as a stronger one. This property
is preserved by the definitions below of observational and natural weights.
However, if weights are just subjective judgements then the analog of AGM
entrenchment may not hold.
Definition 5 (Weight of a Formula). Let T be a finite theory {α1, . . . , αn},
the weighing coefficient W : T 0→ R is the subjective distribution of weights
in T . W (αi) reflects the innate weight of formula αi.

However, it is possible to abuse the weighing process by arbitrarily adding
weight to make the theory carry a high degree of coherence. Socrates may
say: “My theory has half the coherence of your theory, so I just give each
formula three times the weight, then mine would be more coherent!” To
avoid this, and to make different theories comparable, weighing should be
normalised in order to reflect the proportionate importance of formula αi to
the theory T .
Definition 6 (Normalisation Criterion). Let T be a finite theory {α1, . . . ,
αn}, the normalisation criterion states that:

n∑

i=1

W (αi) = n

Ontologically it does not make sense to give any formula a negative
weight, for at worst it plays no part in support sets. Hence we assume:
Assumption 1 (Positivity Assumption). Let T be a finite theory {α1, . . . ,
αn}

W (αi) > 0 for every i : 1 ≤ i ≤ n

2.6.1. Observational Weights

Thus far, utility has been defined relative to an individual input set I and
output set O. The pair (I,O) can be thought of as a single experiment
or application of theory T . However, a theory is typically applicable and
testable under many situations. It is therefore natural to consider what
utility might mean across a vector of experiments or applications. Con-
sider vectors (or sequences) of input and output sets, I = (I1, I2, . . . , Im)
and O = (O1, O2, . . . , Om). One may interpret this vector as a sequence of
experiments, e.g., a pair (Ik, Ok) being the k-th experiment with Ik being
the initial conditions and Ok being the observation that results; other in-
terpretations are of course possible, including Ok being an observation and
Ik being the explanation. However, some observations may be considered
more important than others, e.g., as in “crucial” experiments that may un-
dermine a theory. To reflect this, experiments can be associated with a rank
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or weight that represents its judged significance. (In subsection 2.6.2 we
propose a rather more objective assignment of weights.) The weight can
then be “shared” by formulas that support this observation.

First we define a notion of support weight (SW). For each Oj in O
= (O1, . . . , Om), we associate a payoff P (Oj). Then the support weight
SW (αi, T, Ij , Oj) can be the “share” of the payoff for αi.

Definition 7 (Support Weight).

SW (αi, T, Ij , Oj) =
P (Oj)

| S(T, Ij , Oj) |
∑

Γ∈S(T,Ij ,Oj) and αi ∈Γ

1
| Γ |

Hence from the support weight we define the observational weight that
eventually reflects the importance of a formula.

Definition 8 (Observational Weight). For a theory T = {α1, . . . , αn}, with
input I : (I1, . . . , Im) and output O : (O1, . . . , Om), the Weight Share (WS)
of axiom αi in T is:

WS(αi) =
1
m

m∑

j=1

SW (αi, T, Ij , Oj)

and the observational weight (OW) is:

OW (αi) = n
WS(αi)∑n

j=1 WS(αj)

2.6.2. Natural Weights

By the original definition, weighing is a subjective measure of “importance”
of formulas in a theory. However, it is possible to define a scheme of weigh-
ing from the dependency coefficient as defined before, since intuitively, if a
formula is more needed by others, then it is more important.

For every formula αi in T , we can define a dependency weight from how
each formula in T depends on αi. This represents an implicit weight of the
specific formula.

Definition 9 (Dependency Weight). For an axiom αi in a theory T :
{α1, . . . , αn} with input I : (I1, . . . , Im) and output O : (O1, . . . , Om)

DW (αi, T, I,O) =
n∑

j=1

m∑

k=1

D(αj , αi, T, Ik, Ok)

Just as before, we could derive a measure of Natural Weight (NW) from
the building block of dependency weights from the axioms.
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Definition 10 (Natural Weight). So for a theory T = {α1, . . . , αn} with
input I : (I1, . . . , Im) and output O : (O1, . . . , Om)

NW (αi) = n
DW (αi, T, I,O)∑n

j=1 DW (αj , T, I,O)

In this way the ranking of axioms is accomplished by how other com-
ponents of the theory depend on this component, and thus its weight is
proportional to its importance in the theory. The advantage of this ap-
proach is that the weight of an axiom is no longer a subjective distribution
given by the user, either by entrenchment or weights of observations. The
natural weighing takes advantage of the natural properties of dependency,
and thus weighing becomes an automated process.

2.7. Weighted Utility and Coherence

From this framework of weighted axioms, we can adopt a new and feature-
rich definition of weighted utility. This makes utility useful in its own right,
for we are able not only to compare between different theoretical systems,
but components within a theoretical system. One possible application of
this newly found role is in game theory, which shall be further investigated
in this paper.

Definition 11 (Weighted Utility of a Formula). The Weighted Utility of a
formula α in a theory T with respect to an input set I and an output set O,
and a weight function W is:

WU(α, T, I,O) = U(α, T, I,O)W (α)

Notice that we have introduced two weight functions: observational
weight and natural weight. Observational weight is based on a subjective
value placed on input/output (I,O) pairings while natural weight is based
on dependency calculations. Both weighing functions are valid instances of
W in the above definition.

The generalisation of coherence to weighted formulas will follow the in-
tuition from [Kwok et al., 1998], as the average of weighted utilities.

Definition 12 (Coherence of a Weighted Theory).

C(T, I,O) =
1

mn

n∑

i=1

m∑

j=1

WU(αi, T, Ij , Oj)

This culminating definition of coherence allow rival and possibly incom-
patible theories with weighted axioms to be evaluated and compared in a
quantitative fashion. The evaluation is based on the brevity of the theory
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and the weighted utility of each of the theory components. It provides a
perspective of how a theory can be judged based on inputs and observa-
tions, while taking into account the varying weights of different axioms in
the theory.

2.8. Examples — Socrates is Wise 2

Example 4 (Socrates is wise).

T = {α1: ∀x∀y teacher(y, x) ∧ wise(y) → wise(x),
α2: teacher(Plato, Socrates),
α3: wise(Plato),
α4: prolificWriter(Plato),
α5: ∀x∀y teacher(y, x) ∧ prolificWriter(y) ∧ philosopher(y) → wise(x),
α6: philosopher(Plato) }
O = {wise(Socrates)}

Recall the above “Socrates is Wise” example. It contains two support
sets for the same observation. They are {α1, α2, α3}, and {α2, α4, α5, α6}.
The first support contain three axioms, where the second contained four. In
this example we denote {α1, α2, α3} as the first support set and {α2, α4, α5,
α6} as the second support set. The common element is α2, which is featured
in both support sets. The other axioms would be called exclusive members
of their support sets.

2.8.1. Example — Observational Weight

Suppose we assign the payoff of 100 points to the observation wise(Socrates).
Since both support sets adequately explain the observation, they deserve an
equal share of the payoff, i.e., each support set will be apportioned 50 points.
Each axiom that belong strictly to the first support set (of size 3) such as
α1 would receive an equal share of the payoff given to that support set, i.e.,
1
3 × 50 = 162

3 . Axiom α4, belonging strictly to the second larger support set
of size 4, would get a lesser share at 1

4 × 50 = 121
2 .

Axiom α2, contained in both support sets will have the greatest support
weight at 1

3 × 50 + 1
4 × 50 = 291

6 . Hence its observational weight would be
6

100 × 291
6 = 13

4 , which is also its weighted utility, since it appears in all
support sets of O. The utility of the other formulas would be half of their
observational weight, since there is only one observation and they belong
strictly to one of the two support sets. It would be 1

2 for the exclusive
members of the first support set and 3

8 for exclusive members of the second
support set. Hence the weighted coherence value would be 31

48 . This value
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reflects the degree of coherence of the given theory with respect to a set of
observations with weights.

2.8.2. Example — Natural Weight

For the given support set, the dependency weight of the exclusive member
of support sets would be 21

2 and 31
2 respectively. Since this definition values

the support from other axioms, the members of the larger support set would
receive more weight. The common element α2 would receive a dependency
weight of 6.

Therefore the natural weight of α2 would be 72
43 . The exclusive members

of the first support set would receive a natural weight of 30
43 , and the second

support set 42
43 . This is also their utility value since there is only one obser-

vation. The weighted coherence value is 55
86 . This value reflects the degree

of coherence with respect to the internal structure of the theory, thus the
value is different to that derived from observational weights. We consider
both to be valid, but different measures of coherence. The user would make
the choice in selecting which measure to use depending on its applications.

Further examples of this new weighted system of coherence, particularly
in observational weights, are illustrated in the following section with an
application in Game Theory.

3. Application to Game Theory

3.1. Concept

Coherence, once quantified, can be used as a comparator between any two
theoretical systems. In typical agent interactions, all of an agent’s beliefs,
desires and intentions (BDI) can be represented in formal semantics [Rao
and Georgeff, 1991]. These enable us to assess a systemic coherence in one’s
belief, and the process of interaction can be seen as an effort by each agent
to modify its own system in order to achieve a satisfactory outcome with
respect to the other agents while maintaining a high level of its internal
coherence. The intuition is that the agent will choose an action that is most
coherent with its set of beliefs, desires and intentions.

3.2. Prisoner’s Dilemma Simulation

3.2.1. Background

The Prisoner’s Dilemma was originally formulated by mathematician Albert
W. Tucker. The iterated version of the game was proposed in [Axelrod,
1981]. It has since become the classic example of a “non-zero sum” game in
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economics, political science, evolutionary biology, and of course game theory.
So that the exposition below may be independently understood, we briefly
recount the set-up. In the game, two prisoners are interrogated separately
in different cells. The two prisoners can either choose to cooperate (keep
silent) or defect (blame the other). If they both cooperate, they receive a
sentence of 2 years in prison. If one cooperates but the other betrays, the
first gets 10 years in prison, and the second gets 1 year. If both betray, each
will get 4 years. The payoff (years in prison) of an action is dependent on
the action of the other player. It is therefore in the interests of a player to
minimise this payoff. The way the payoff is set out means that whatever a
player chooses to do, the other player can reduce its payoff by defecting, so
in a one-time game both players will defect, resulting in 4 years for each.
A better result will be for both to cooperate, suffering a sentence of only 2
years each; but they cannot communicate to negotiate, and even if they can,
lack of trust may enter the picture. This “bad” solution of both defecting
can intuitively be ameliorated if the game is played repeatedly, whence each
player understands that if it defects now the other player can retaliate in
the next iteration. Thus, in the iterated version, the players repeatedly play
the game and have a memory of their previous encounters. We set out to
test the application of our coherence calculations in this scenario, and how
it behaves in an iterated game with evolution of populations.

3.2.2. The Coherentist Agent

In coherence-based evaluative simulations in game theory, we set out to play
the game repeatedly, and the histories of past games are recorded by each
player. This history then forms the Belief in what had happened in the past,
which can be seen as the theory T in the calculation. The player’s Desire
(D) is to maximise its payoff (or minimise it if interpreted as a penalty).
This desire can be seen as a mode of evaluating payoff as weights of each
outcome. The beliefs (B), together with the criterion of selection (D), will
lead to the calculation of the utility of each of the actions that the player
may take. A selection of the action according to its utility will lead the
player to formulate the intention to act upon this decision.

More specifically, the inputs (I) describes the rules of what the player
knows about the nature of the game. This includes actions of the player,
consequences of these actions, states (in a finite-state game) and payoffs as-
sociated with a particular state. The observations (O), whether a result,
consequence or state, is the corresponding payoff. The desire of the player
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will be driven by the ranking of these payoffs. Hence the Support Set con-
sists of the list of axioms, which together with the given input, will make a
particular observation true.

In the iterated game of Prisoner’s Dilemma, the prisoner evaluates the
history played against the respective player to reach a rational decision.
Each history element consists of the player’s move at that iteration, and the
returned value / payoff from that particular move. The returned value can
be seen as the weight of that observation, and hence the support weight for
that particular action.

The coherentist agent uses the paradigm of the observational weight as
discussed in Section 2.6.1. This way the weight of a formula is reflected by
the observations that it supports. The weight of an action can be evaluated
from the history of payoffs for a given opponent.

The Input (I) for a particular iteration are the rules of the game, and
the move of other players. Below is a summary of the rules, expressed
logically. The propositions Betray and otherBetray mean respectively that
a player betrays and the other also betrays; Cooperate and otherCooperate
have corresponding meanings. The numbers are the payoffs for a player,
depending on the move of the other player; recall that these are the years in
prison, and hence a penalty to be minimised.

I =

⎧
⎪⎪⎨

⎪⎪⎩

Betray ∧ otherBetray → 4,
Betray ∧ otherCooperate → 1,
Cooperate ∧ otherBetray → 10,
Cooperate ∧ otherCooperate → 2

⎫
⎪⎪⎬

⎪⎪⎭

This input set will remain fixed for each game of the Prisoner’s Dilemma.
For each move of a player the other player has the choices otherBetray

or otherCooperate. The theory, to be evaluated, are the rival options the
player could adopt. viz., Betray or Cooperate, bearing in mind that in any
iteration the moves of both players are to be made simultaneously.

T = {Betray ,Cooperate}

For instance, consider a history (Action, Penalty) of (Cooperate, 2), (Be-
tray, 1), (Betray, 4), (Betray, 4). This implies that at the same time the other
player had made the corresponding choices of otherCooperate, otherCooper-
ate, otherBetray and otherBetray. Hence the sequence of output observation
set is:

O = (O1 : {otherCooperate ∧ 2},
O2 : {otherCooperate ∧ 1},
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O3 : {otherBetray ∧ 4},
O4 : {otherBetray ∧ 4})

In section 2.7 we associated a payoff to each output set. This payoff was
a measure of the importance of the output set. For our application to the
Prisoner’s Dilemma, we wish to measure how advantageous each output is to
an agent. This would be inversely proportional to the prison sentence. In our
simulation studies, we simply used the length of the prison sentence as the
payoff and chose the option with the smaller Observational Weight. With the
above example, the Weight Share of Betray is (1+4+4 )÷ 3 = 3, whereas the
Weight Share of Cooperate is 2 ÷ 1 = 2. Hence the Observational Weight is
evaluated at 3

4 for Betray, and 2
4 for Cooperate. Therefore, in a system where

lower weight (penalty) is favoured, Cooperate is the preferred strategy. This
was the approach adopted in the experiments. However, for the analogous
approach where the system favours higher weights, the payoff can be taken
as the inverse of the penalty. Therefore the agent’s choice of an axiom of
higher weighted utility reflects its pursuit of a higher degree of coherence.

The problem of course is that it is difficult to predict what the other
player will do at any iteration. In the tournament organised by Axelrod
[Axelrod, 1981] the system pitted many players together and simulated the
iterations, looking for the best performing players. In the simulations we
ran, we investigated how coherentist players performed against other kinds
of players, including the best performing player in Axelrod’s tournaments.

3.2.3. Simulation

We define five types of agents in the simulation. They are reckless, cooper-
ative, tit-for-tat, suspicious and trusting. The last two types are the same
coherentist agent with different initial conditions. A reckless player is one
who always defects, whereas the cooperative player is one who always cooper-
ates (does not defect). The “tit-for-tat” strategy was traditionally regarded
as the best deterministic strategy developed by Anatol Rapoport, which
cooperates in the first turn, and subsequently plays the opposing player’s
previous move. The coherentist agents are divided into two groups, one be-
ing suspicious, for its members would betray at the initial phase, whereas
the other group, the trusting agents, would cooperate.

To initialise simulation, the user specifies how many of each type of agent
there are in the game. The user also specifies how many iterations are to
be simulated. In each iteration a player will play a round-robin tournament,
playing once with every other player in the simulation. When two players
meet, they have the option to either betray or cooperate. The move and the
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payoff will be recorded, and the agent can review this as a history element
when playing this opponent in the next iteration.

After a specified number of iterations, the old players will die and a new
generation of players will replace them. They will be free of the history from
previous players. However, their proportions, according to agent type, will
be inversely proportional to the average time the particular type of agent
spent in jail. The result is then normalised to maintain the population size.
Although rounding error is allowed, the overall population size will only
decrease due to rounding, and increases are prohibited.

3.2.4. Trends and Behaviours

Initially, we set 20 iterations per generation with an equal proportion of each
player type. It turns out that the coherentist player performs well compared
to other agent types. As predicted the cooperative agents perish rather
quickly in the simulation. In the end it was the “suspicious” coherentist
agents that took over the population, while others struggled to hang on.
(Figure 1)

Figure 1. All five players with equal initial population, 20 iterations per generation

The suspicious and trusting agents only differ in their initial response
when they have no previous history of playing against the other player. Yet
the impact is significant as the suspicious player takes over the population
after a brief initial period when both coherentist agents perform well. Both
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the coherentist agents gain an edge over tit-for-tat, as they exploit the co-
operative agents while tit-for-tat is only nice to them.

When the number of iterations per generation is raised from 20 to 50,
the results are slightly different. One feature is that the reckless agents per-
formed much more badly, while the tit-for-tat agents played better, though
not as well as the coherentist agents. (Figure 2)

Figure 2. All five players with equal initial population, 50 iterations per generation

In both simulations the coherentist agents came out on top. This may be
associated with the coherentist agent’s flexible approach of punish reckless
behaviour, cooperate with rational, nice agents, and exploit the overly nice
and vulnerable agents. In particular the latter characteristic is absent in
the behaviour of tit-for-tat agents. However, this positive outcome may not
necessarily be associated with simply a coherentist behaviour. Instead, it
may be the case that the macro-environment of the game in this situation
enabled the coherentist agents to be the fittest. For a different environment
with different rules, coherentist agents may not perform as well as agents of
the “simple faith”, such as the reckless or tit-for-tat agents.

What emerges from these results is that coherence alone as a property
of agents is an aid to their performance, but external factors and initial
conditions (such as the first move) also matter. A way to think of the role
of coherence is that it constrains agent choices in such a way that its use of
its theory aligns those choices well with its observations.
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4. Summary and Discussion

We aim to establish basic principles governing the coherence of laws within
theoretical systems. Such principles provide a means for evaluating and
comparing different systems. By defining a measure of how a sub-theory
contributes to a theory, in terms of Group Utility, Dependency and Cou-
pling, the formalism captures a number of important properties of coherence.
Specifically, the formalism provides a rendering of informal characteristics
of coherence, viz. how axioms “work together” and are “coupled tighter”.
The framework has also been significantly enhanced by the introduction of
weights to axioms and observations. By relativising one axiom’s weight,
either in terms of the weight of observations or the dependency to other
axioms, we derived an account of the importance and rank of axioms in a
theory.

Our proposed framework of coherence serves as a useful treatment of
an old problem in the philosophy of science, namely the evaluation of rival,
but possibly incompatible theories. It also provides a perspective on the
development of scientific theories, where anomalies found in observations
contribute to the degree of incoherence of a theory, and scientific develop-
ments to account for these anomalies can be viewed as the pursuit of a
greater coherence.

This measure of coherence is not only useful for the domain of the phi-
losophy of science, it is also useful for describing reasoning, deliberation and
interaction in agents. The example of Prisoner’s Dilemma illustrated how
coherence can be used in game theory. When an agent chooses the option
that is most coherent with its beliefs, the agent has a rational basis for
reasoning and acting.
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Urszula Wybraniec-Skardowska On Meta-knowledge
and Truth

Abstract. The paper deals with the problem of logical adequacy of language knowl-

edge with cognition of reality. A logical explication of the concept of language knowledge

conceived of as a kind of codified knowledge is taken into account in the paper. Formal

considerations regarding the notions of meta-knowledge (logical knowledge about language

knowledge) and truth are developed in the spirit of some ideas presented in the author’s

earlier papers (1991, 1998, 2001a,b, 2007a,b,c) treating about the notions of meaning,

denotation and truthfulness of well-formed expressions (wfes) of any given categorial lan-

guage. Three aspects connected with knowledge codified in language are considered, in-

cluding: 1) syntax and two kinds of semantics: intensional and extensional, 2) three kinds

of non-standard language models and 3) three notions of truthfulness of wfes. Adequacy

of language knowledge to cognitive objects is understood as an agreement of truthfulness

of sentences in these three models.

Keywords: Meta-knowledge, categorial syntax, meaning, denotation, categorial semantics,

non-standard models, truthfulness, language knowledge adequacy.

Introduction

It is commonly realized that the term ‘knowledge’ is ambiguous. Speaking
about knowledge, we disregard psychological knowledge offered through unit
cognition, although it is from knowledge of that sort that verbal knowledge
codified by means of language arose. Knowledge will be understood as an
inter-subjective knowledge preserved in language, where it is formed and
transferred to others in cognitive-communicative acts. Representation of
this knowledge is regarded as language knowledge.

For our purposes, in this paper we will consider three aspects of language
knowledge: one syntactic and two semantic ones: intensional and exten-
sional. The main aim of the paper is to answer the following well-known,
classical philosophical problem:

When is our language knowledge in agreement with our cognition
of reality?

D. Makinson, J. Malinowski, H. Wansing (eds.), Towards Mathematical Philosophy,
Trends in Logic, 28 c© Springer Science + Business Media B.V. 2009
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In this paper, the problem is considered from a logical and mathemat-
ical perspective and is called: the problem of logical adequacy of language
knowledge. We will consider it as:

1) an adequacy of syntax and two kinds of semantics,
2) concord between syntactic forms of language expressions and their two

correlates: meanings and denotations, and
3) an agreement of three notions of truth: one syntactic and two semantic

ones.

The main ideas of our approach to meta-knowledge (logical knowledge
about language knowledge) and truthfulness of sentences in which knowl-
edge is encoded will be outlined in Section 1. In Section 2 we will give the
main assumptions of a formal-logical theory of syntax and semantics which
are the basis for theoretical considerations, and in Section 3 we will define
three notions of truthfulness of sentences. The paper ends with Section 4
containing a formulation of a general condition for adequacy of language
knowledge with regard to these notions.

� � �

The paper is a result of many years of research conducted by the author
and a summary of results obtained earlier [47–58]. The synthetic charac-
ter of the article provides a strong motivation for the conceptual apparatus
introduced further. The apparatus employs some formal-logical and mathe-
matical tools. The synthesis being produced does not always allow detailed,
verbal descriptions of particular formal fragments of the paper; nor can it
allow for development of some formal parts. The author does, however, be-
lieve that the principal ideas and considerations in the paper will be clear
to the reader.

1. Ideas

The notion of meta-knowledge is connected with the relationships defined
by the triad: language-cognition-reality (see Figure 1 ).

Figure 1.
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Three different aspects, representing cognitively independent factors, are
taken into account at constituting any language L as a tool of communica-
tion in which knowledge is formed and transmitted. They are: syntactic,
semantic and pragmatic factors.

Reliability of cognition of reality by means of language L and truthful-
ness of its sentences are given by an agreement of syntactic and two kinds
of (intensional and extensional) semantic knowledge, which correspond to
three levels of knowledge about the components of the triad (cf. Wybraniec-
Skardowska 2007c).

According to Figure 1, following Frege [17], Husserl [25] and other mod-
ern followers of gramatica speculativa, the meta-knowledge is the knowledge
referring to three realities (spaces):

1. language reality S (the set of all well-formed expressions of L), in which
results of cognitive activities such as concepts and propositions are ex-
pressed,

2. conceptual reality C, in which products of cognition of ordinary reality
such as logical concepts and logical propositions (meanings of language
expressions) are considered, and

3. ontological reality O which contains objects of cognition, among others,
denotations of language expressions.

Applying the terms: ‘language reality’, ‘conceptual reality’ and ‘ontolog-
ical reality’ we aim at distinguishing some models of language L which are
necessary to define three different notions of truthfulness of its sentences.
Thus, we depart from the classical notion of ‘Reality’ as an object of cogni-
tive research. In particular, speaking further about indexation reality I, we
mean certain metalinguistic space of objects (indices) serving the purpose of
indication of categories of expressions of S, categories of conceptual objects
of C and ontological categories of objects of O. The reality I forms categorial
skeleton of language, conceptual and ontological realities.

Theoretical considerations are based on:

• syntax – describing language reality S related to L,
and two kinds of semantics:

• intensional (conceptual) semantics – comprising the relationship between
S and cognition – describing conceptual reality C, and

• extensional (denotational) semantics – describing the relationships be-
tween L and ordinary reality – ontological reality O to which the language
refers (see Wybraniec-Skardowska 1991, 1998, 2007a, b, c).
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The theoretical considerations take into account the adequacy of the
syntax and two kinds of semantics of language L.

The language reality S is described by a theory of categorial syntax
and the conceptual and ontological realities by its expansion to a theory of
categorial semantics in which we can consider three kinds of models of L:

• one syntactic
and

• two semantic (intensional and extensional).

For these models we can define three notions of truthfulness:

• one syntactic
and

• two semantic employing the notion of meaning (intension) and the notion
of denotation (extension), respectively.

2. Main Assumptions of the Theory of Syntax and Semantics

2.1. Categorial Syntax and Categorial Semantics

Any syntactically characterized language L is fixed if the set S of all well-
formed expressions (briefly wfes) is determined. L is given here on the
type-level, where all wfes of S are treated as expression-types, i.e. some
classes of concrete, material, physical, identifiable expression-tokens used in
definite linguistic-situational contexts. Hence, wefs of S are here abstract
ideal syntactic units of L1.

Language L can be exactly defined as a categorial language, i.e. language
in which wfes are generated by a categorial grammar whose idea goes back
to Ajdukiewicz (1935) and Polish tradition, and has a very long history2.
Language L at the same time may be regarded as a linguistic scheme of

1Let us note that the differentiation token-type for linguistic objects originates from
Charles Sanders Peirce (1931-1935). A formal theory of syntax based on this distinction
is given in [49] and [51].

2The notion of categorial grammar originated from Ajdukiewicz (1935, 1960) was
shaped by Bar-Hillel (1950, 1953, 1964). It was constructed under influence of Leśniewski’s
theory of semantic (syntactic) categories in his protothetics and ontology systems (1929,
1930), under Husserl’s ideas of pure grammar (1900-1901), and under the influence of
Russell’s theory of logical types. The notion was considered by many authors: Lambek
(1958, 1961), Montague (1970, 1974), Cresswell (1973, 1977), Buszkowski (1988, 1989),
Marciszewski (1988), Simons (1989) and others. In this paper language L is generated
by the so-called classical categorial grammar, the notion introduced and explicated by
Buszkowski (1988, 1989) and the author (1985, 1989, 1991).
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ontological reality O, keeping with Frege’s ontological canons (1884), and of
conceptual reality C.

Considerations are formalized on the ground of author’s general formal-
logical theory of categorial syntax and categorial semantics (1985, 1991,
1998, 1999, 2001a,b, 2006).

Every compound expression of L has a functor-argument structure and
both it and its constituents (the main part – the main functor and its com-
plementary parts – arguments of that functor) have determined:

• the syntactic, the conceptual and the ontological categories defined by
the functions ιL, ιC , ιO of the indications of categorial indices assigned
to them, respectively,

• meanings (intensions), defined by the meaning operation μ,

• denotations (extensions), defined by the denotation operation δ.

Figure 2.

It should be underlined that since wefs of S are understood as some
abstract syntactic units of L, meanings of wfes are not their mental signifi-
cation and denotations of wfes are not the same as object references of their
concrete, material expression-tokens (cf. [57]).
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2.2. Three referential relationships of wfes

We will concentrate on three referential relationships of wfes of S to three
realities to which wfes refer:

• one syntactic: metalinguistic relationship connected with the above-men-
tioned indexation reality I, and

• two semantic: conceptual (intensional) and denotational (extensional)
relationships connected with realities C and O, respectively. These rela-
tionships are illustrated in Figure 2.

2.3. Categorial indices

The theory of categorial syntax is a theory formalising the basic principles
of Leśniewski’s theory of semantic (syntactic) categories (1929, 1930) im-
proved by Ajdukiewicz (1935) by introducing categorial indices assigned to
expressions of language L.

Categorial indices belong to the indexation reality I and are metalan-
guage expressions corresponding to expressions of language L. They serve
to defining the set S of all wfes of L. The set S is defined according to the
principle (SC) of syntactic connection referring to Ajdukiewicz’s approach
(1935).

(SC) is the rule establishing the correspondence between the index of
any functor-argument expression of L and indices: the index of its main
functor and indices of its successive arguments. It states that:

(SC) The index of the main functor of a functor-argument expression is
a complex (functoral) index formed of the index of that expression and the
successive indices of the successive arguments of that functor.

2.4. Syntactic Operations

In the theory the functions: ιL, ιC , ιO of the indications of categorial indices
are certain syntactic operations from reality S or fragments of realties C and
O into reality I, respectively, i.e.

• the syntactic operation ιL : S→I,

• the ontological syntactic partial operation ιO : O→I,

• the conceptual syntactic partial operation ιC : C→I.

Categorial indices of I also serve to indicate syntactic, conceptual (in-
tensional) and ontological (denotational) categories. These categories are
included in realities S, C and O, respectively.



On Meta-knowledge and Truth 325

If ξ ∈I then these categories are defined, respectively, as follows:

(1) Catξ = {e ∈S : ιL(e) = ξ},
(2) Conξ = {c ∈C : ιC(c) = ξ},
(3) Ontξ = {o ∈O : ιO(o) = ξ}.

In order to define semantic categories indicated by categorial indices,
and also by conceptual and ontological categories, we have to take into con-
sideration two semantic relationships and use some semantic operations.

2.5. Semantic Operations

In the theory of categorial semantics such notions as meaning and denotation
of a wfe of L are considered.

As it was illustrated in Figure 2 we consider three semantic operations
defining meanings and denotations of wfes :

• the meaning operation μ : S→C,

• the denotation operation δ : S→O,

• the conceptual denotation operation δC : C→O.

Let us note that the semantic functions: μ, δ and δC, are defined on
abstract objects of S (on wfes-types) and of C (on meanings: logical concepts,
logical propositions, operations on them, operations on these operations and
so on), respectively.

The notion of meaning as a value of the meaning operation μ on any
wfe of L is a semantic-pragmatic one and it is defined as a manner of us-
ing wfes of L by its users in connection to the concept of meaning deriving
from L. Wittgenstein (1953) and, independently, from K. Ajdukiewicz (1931,
1934); see Wybraniec-Skardowska (2005, 2007 a,b). So, the notion of mean-
ing of any wfe of L is an abstract entity.

We take the standpoint that any wfe-type of S has an established meaning
which determines its denotation, even if such an expression is understood as
an indexical one in natural language (e.g. ‘he’, ‘this’, ‘today’)3. In this sense

3For example, let us note that the word-type ‘today’ understood as a class of all word-
tokens identifiable with the word-token:

today

does not have a fixed meaning, but each of its sub-types consisting of identifiable tokens
(utterances) of the word-type ‘today’ formulated on a given day is a meaningful wfe-type
of English and determines by itself a denotation that is this day.
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the approach presented here agrees with the classical Aristotelian position
that the context has to be included somehow in the meaning; the manner of
using wfes of L is in a way built into the meaning (cf. [57]).

The notion of meaning is differentiated from the notion of denotation in
accordance with the distinction of G. Frege (1892) Sinn and Bedeutung and
R. Carnap’s distinction intension-extension (1947).

The denotation operation δ is defined as the composition of the operation
μ and the operation δC of conceptual denotation, i.e.

(δC) δ(e) = δC(μ(e)) for any e ∈ S.
So, we assume that denotation of the wfe e is determined by its meaning

μ(e) and it is the value of the function δC of conceptual denotation for μ(e).
Hence, we can state that:

If two wfes have the same meaning then they have the same denotation.

Formally:

Fact 1. μ(e) = μ(e′) ⇒ δ(e) = δ(e′), for any e, e′ ∈ S.

It is well-known that the converse implication does not hold. So, the
operation δC shows that something can differ meaning from denotation.

2.6. Knowledge and Cognitive Objects

The image μ(S) of S determined by the meaning operation μ is a fragment
of conceptual reality C and includes all meanings of wfes of language L,
so all components of knowledge (logical notions, logical propositions and
operations between them, operations on the latter, and so on) and can be
regarded as knowledge of relatively stable users of L about reality O, codified
by means of wfes of L.

The image δ(S) of S determined by the denotation operation δ is a frag-
ment of ontological reality O and includes all denotations of wfes of language
L, so all objects of cognition of O (things, states of things and operations
between them) in cognitive-communicative process of cognition of reality O
by relatively stable users of L.

We differentiate two kinds of semantic categories: intensional and exten-
sional.
(4) Intξ = {e ∈ S : μ(e) ∈ Conξ}.
(5) Extξ = {e ∈ S : δ(e) ∈ Ontξ}.

So, intensional categories consist of all wfes whose meanings belong to
suitable conceptual categories, while extensional categories consist of all wfes
whose denotations belong to suitable conceptual categories.
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Adequacy of syntax and semantics required the syntactic and semantic
agreement of wfes of L.

2.7. The principles of categorial agreement

In accordance with Frege’s-Husserl’s-Leśniewski’s and Suszko’s understand-
ing of the adequacy of syntax and semantics of language L, syntactic and se-
mantic (intensional and extensional) categories with the same index should
be the same (see Frege, 1879, 1892; Husserl, 1900-1901; Leśniewski, 1929,
1930; Suszko, 1958, 1960, 1964, 1968).

This correspondence of the categorial agreement (denoted by (CA1 ) and
(CA2 )) – is here postulated by means of categorial indices that are the tool
of coordination of language expressions and by two kinds of references that
are assigned to them:
(CA1 ) Catξ = Intξ.
(CA2 ) Catξ = Extξ.

From (1)–(5) and (CA1 ), (CA2 ) we get the following variants of the
principles:

For any wfe e
(C’A1 ) e ∈ Catξ iff μ(e) ∈ Conξ.
(C’A2 ) e ∈ Catξ iff δ(e) ∈ Ontξ.
(CA3 ) ιL(e) = ιC(μ(e)) = ιO(δ(e)).

The condition (C’A2 ) is called the principle of categorial agreement and
it is a formal notation of the principle originated by Suszko (1958, 1960,
1964; cf. also Stanosz and Nowaczyk 1976).

So, according to innovative Frege’s ideas, the problem of adequacy of
syntax and semantics of L is solved if:

Well formed expressions of L belonging to the same syntactic category
correspond with their denotations, and more generally – with their two kinds
of references (meanings and denotations) that are assigned to them, which
belong to the same ontological, and more generally – to the same conceptual
and ontological category.

2.8. Algebraic structures of categorial language and its correlates

The essence of the approach proposed here is considering functors of lan-
guage expressions of L as mathematical functions mapping some language
expressions of S into language expressions of S and as functions which corre-
spond to some set-theoretical functions on extralinguistic objects – indices,
meanings and denotations of arguments of these functors.
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All functors of L create the set F included in S.
The systems:

L = 〈S, F〉 and ιL(L) = 〈ιL(S), ιL(F)〉

are treated as some syntactic algebraic structures, while the systems:

μ(L) = 〈μ(S), μ(F)〉 and δ(L) = 〈δ(S), δ(F)〉

can be treated as some semantic algebras.
All these algebras are partial algebras4.
The functors of F differ from other, basic expressions of S in that they

have indices formed from simpler ones.
If e is a complex functor-argument wfe with the index a and its main

functor is f ∈ F and its successive arguments are e1, e2, . . . , en with indices
a1, a2, . . . , an, respectively, then the index b of f belonging to the set ιL(F)
is a functoral (complex) index formed from the index a and indices: a1, a2,
. . . , an of its successive arguments.

The index b of the functor f can be noted as the quasi-fraction:

ιL(f) = b = a/a1a2 . . . an = ιL(e)/ιL(e1)ιL(e2) . . . ιL(en).

We will show that indices, meanings and denotations of functors of the
set F are algebraic, partial functions defined on images ιL(S), μ(S), δ(S) of
the set S, respectively.

First we will note that in accordance with the principle (SC ) the main
functor f of e can be treated as a set-theoretical function satisfying the
following formula:

(Catf ) f ∈ Cata/a1a2...an
iff

(f ) f : Cata1 × Cata2 × · · · × Catan → Cata & e = f(e1, e2, . . . , en) &

(ι) ιL(f) : {(ιL(e1), ιL(e2), . . . , ιL(en))} → {ιL(e)} &

(PC1 ) ιL(e) = ιL(f(e1, e2, . . . , en)) = ιL(f)(ιL(e1), ιL(e2), . . . , ιL(en)).

4Ideas about the algebraisation of language can already be found in Leibniz’s papers.
We can also find the algebraic approach to issues connected with syntax, semantics and
compositionality in Montague’s ‘Universal Grammar’ (1970) and in the papers of van Ben-
them (1980, 1981, 1984, 1986), Janssen (1996), Hendriks (2000). The difference between
their approaches and the approach which we shall present here lies in the fact that carriers
of the so-called syntactic and semantic algebras discussed in this paper include functors
or, respectively, their suitable correlates, i.e. their ιL − or some other semantic-function
images. Simple functors and their suitable ιL−, μ− or δ− images are partial operations
of these algebras. They are set-theoretical functions determining these operations.
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On the basis of the principles of categorial agreement we can state that
semantic correlates of the functor f of the expression e are set-theoretical
functions too, and deduce that they satisfy the following conditions:

(Conf ) μ(f) ∈ Cona/a1a2...an
iff

(μ) μ(f) : Cona1 × Cona2 × · · · × Conan → Cona &

(PC2 ) μ(e) = μ(f(e1, e2, . . . , en)) = μ(f)(μ(e1), μ(e2), . . . , μ(en));

(Ontf ) δ(f) ∈ Onta/a1a2...an
iff

(δ) δ(f) : Onta1 ×Onta2 × · · · ×Ontan → Onta &

(PC3 ) δ(e) = δ(f(e1, e2, . . . , en)) = δ(f)(δ(e1), δ(e2), . . . , δ(en)).

2.9. Compositionality

The conditions (PC1 ), (PC2 ) and (PC3 ) are called the principles of com-
positionality of syntactic forms, meaning and denotation, respectively (cf.
Partee et al. 1990; Janssen 1996, 2001; Hodges 1996, 1998, 2001). They
have the following scheme of compositionality (Ch) for the function h rep-
resenting:

1) the function ιL, 2) the operation μ and 3) the operation δ:

(Ch) h(e) = h(f(e1, e2, . . . , en)) = h(f)((h(e1), h(e2), . . . , h(en)).

The scheme (Ch) says that: 1) the index, 2) the meaning and 3) the
denotation of the main functor of the functor-argument expression e is a
function defined on 1) indices, 2) meanings and 3) denotations of successive
arguments of this functor.

The suitable variants of compositionality are some requirement of homo-
morphisms between the mentioned partial algebras:

L = 〈S, F〉 hom−−−−→
ιL

ιL(L) = 〈ιL(S), ιL(F)〉,

L = 〈S, F〉 hom−−−−→
μ

μ(L) = 〈μ(S), μ(F)〉,

L = 〈S, F〉 hom−−−−→
δ

δ(L) = 〈δ(S), δ(F)〉.

2.10. Concord between syntactic forms and their correlates

On the level of metatheory, it is possible to show the agreement between
syntactic structures of wfes of the language reality S and their correlates in
the conceptual reality C and in the ontological reality O.
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As wfes have function-argument form: all the functors (all their corre-
lates) precede their arguments (correlates of their arguments as appropriate).
Then the algebraic approach to language expressions corresponds to the tree
method.

Example. Let us consider two wfes of language of arithmetic:

a. 5 > 3− 2 and b. 3− 2 > −1.

First we present parenthetical recordings a’. and b’. for a. and b. and
diagrams of trees meant to explicate them. Diagrams Ta and Tb show a
natural, phrasal, natural functorial analysis of these expressions. The dotted
lines show functors.

Appropriate function-argument recordings af. and bf. and diagrams of
trees: Taf., Tbf. show “functional analysis” of expressions a., b. in Aj-
dukiewicz’s prefix notation.

Let us note that the functorial analysis of a. and b. given here provides
functional-argument expressions af. and bf.. It is unambiguously determined
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due to the semantic (denotational and intensional) functions of the signs
‘>’ and ‘−’: the first is a sign of two-argument operation on numbers, the
second one in a. denotes a two-argument number operation, while in b. it
also denotes a one-argument operation.5 The mentioned signs, as functors,
and thus as functions on signs of numbers, have as many arguments as their
semantic correlates have.

Comparison of tree method and algebraic method based on composition-
ality shows one-to-one correspondence of constituents of any wfe of L with
correlates in order to form and transmit our knowledge on reality O repre-
sented by L (see diagrams of trees Tbf . and Tb. of the expression b. and
corresponding to them diagrams of trees of categorial indices TιL(bf ) and
TιL(b) of b.).

Let us note that from the principle (PC1 ) and in accordance with the
principle (SC ), for e = f(e1, e2, . . . , en) ∈ S and ιL(e) = a, ιL(f) = b,
ιL(ei) = ai (i = 1, 2, . . . , n), we obtain, on the basis of our theory, the follow-
ing reconstruction of the rule of cancellation of indices used by Ajdukiewicz
(1935):

(rc) a/a1a2 . . . an(a1, a2, . . . , an) = a.

5Unambiguous “functorial analysis” is a feature of the languages of formal sciences. In
relation to natural languages the analysis depends on linguistic intuition and often allows
for a variety of possibilities (see e.g. Marciszewski 1981).

In this conception we do not state that “functoral analysis” of linguistic expressions
must be determined unambiguously but we accept the statement that it is connected with
expressions of a determined functor-argument structure.

Let us also note that traditional phrasal linguistic analysis, formalized by Chomsky
(1957) in his grammars of phrasal structures, takes into consideration grammatical phrasal
analysis and only two parts of functoral parsing of expressions.

Let us consider, for instance, the expression a. and its functorial analysis illustrated by
a derivation tree in Chomsky’s sense.
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The agreement between syntactic forms of wfes and their correlates is
very important whenever we want to know whether our knowledge repre-
sented in language L is adequate to our cognition of reality.

Let e is any wfe of L and Ce is the set of all constituents of e. The concord
between syntactic structure of e and its correlates is possible because the
tree T(Ce) of constituents of e is isomorphic with trees:

T(ιL(Ce)) of indices of all constituents of e,

T(μ(Ce)) of all meanings of all constituents of e and

T(δ(Ce)) of all denotations of those constituents.

These trees are formally defined as graphs by means of the set Ce and
corresponding to it sets: ιL(Ce), μ(Ce) and δ(Ce) of all constituents that are
appropriate correlates of constituents of e. So,

T(Ce) = 〈Ce,≈>〉,
T(h(Ce)) = 〈h(Ce),≈>h〉 for h = ιL, μ, δ,

where ≈> is a linear ordering relation of an earlier syntactic position in e
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defined by means of the relation → of syntactical subordination (see Aj-
dukiewicz, 1960); ≈>h is h-image of the relation ≈>.

The mentioned isomorphisms of tree graphs are established by the func-
tions h mapping every constituent of e in Ce that occupies in e a fixed
syntactic position (place) onto its h-correlate that occupies in h(e) the same
position (place).

All notions introduced in this part can be defined formally.

Definition 1 (constituent of an expression e).

a. t ∈ C0
e ⇔ e = t.

A constituent of the order zero of a given wfe e is equal to the expression.
b. t ∈ C1

e ⇔
∃n≥1∃f,t0,t1,...,tn∈S (e = f(t0, t1, . . . , tn) ∧ ∃0≤j≤n(t = f ∨ t = tj)).
t is a constituent of the first order of a given expression e iff e is a
functor-argument expression and t is equal to the main functor of the
expression or to one of its arguments.

c. k > 0⇒
(
t ∈ Ck+1

e ⇔ ∃r∈Ck
e

t ∈ C1
r

)
.

A constituent of k+1-th order of e, where k > 0, is a constituent of the
first order of a constituent of k-th order of e.

d. t ∈ Ce ⇔ ∃n t ∈ Cn
e .

A constituent of a given expression is a constituent of a finite order of
that expression.

Definition 2 (constituent of e with the fixed syntactic position).

a. t ∈ C
(j1)
e ⇔ e is a functor-argument expression ∧ t is the j1-th constituent

of C1
e .

b. k > 0 ⇒
(
t ∈ C

(j1,j2,...,jk+1)
e ⇔ t is equal to the jk+1-th constituent of a

constituent of the set C
(j1,j2,...,jk)
e )

)
.

Definition 3 (relation of an earlier syntactic position in e).

a. s → s′ iff ∃
k,j

s ∈ Ck
e ∧ s′ ∈ Cj

e ∧ k ≤ j.

b. s ≈>s′ iff s → s′ ∨(
∃j1,j2,...,jk,n,m (s ∈ C

(j1,j2,...,jk,n)
e ∧ s′ ∈ C

(j1,j2,...,jk,m)
e ∧ n < m)

)
.

s has in e an earlier syntactic position than s′ iff s, s′ are constituents
of e and either s has the order lesser than or equal to the order of s′ or s and
s′ are simultaneously constituents of some part e′ of e with the same order
k > 0 but s has in e′ the position n while s′ – the position m > n.

On the basis of the principles of compositionality it is easy to prove
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Theorem 1. For h = ιL, μ, δ

T(Ce) = 〈Ce,≈>〉 h−−−−→
isom

T(h(Ce)) = 〈h(Ce),≈>h〉.

Uniformity of algebraic approach and tree approach allows to compare
knowledge reference to three kinds of realities and to take into account the
problem of its adequacy. It is connected with the problem of truthfulness of
sentences of L representing knowledge.

3. Three notions of truthfulness

3.1. Three kinds of models of language and the notion of truth

We have treated the language reality S and corresponding to it ιL−, μ− and
δ− images of S, i.e. ιL(S) – a fragment of the indexation reality I, μ(S ) – a
fragment of the conceptual reality C and δ(S ) – a fragment of the ontological
reality O as some algebraic structures, as some partial algebras.

Let us distinguish in S the set of all sentences of L. Models of L are non-
standard models. They are the three mentioned algebraic structures (partial
algebras) given as homomorphic images of algebraic structure L=〈S, F〉 of
language L:

ιL(L) = 〈ιL(S), ιL(F)〉,
μ(L) = 〈μ(S), μ(F)〉,
δ(L) = 〈δ(S), δ(F)〉.

They are determined by the fragments ιL(S), μ(S) and δ(S) of the realities
I, C and O, respectively. The first of them ιL(L) is syntactic one and the
next two are semantic: μ(L) – intensional and δ(L) – extensional.

3.2. Three notions of truthfulness

For the three models ιL(L), μ(L) and δ(L) of the language L we define three
notions of truthfulness. For this purpose we distinguish three nonempty
subsets TιL, Tμ, Tδ of realities I, C and O, respectively:

• TιL consists only of the index of any true sentences,

• Tμ consists of all meanings of sentences of L that are true logical propo-
sitions and

• Tδ consists of all denotations of sentences of L that are states of affairs
that obtain.
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Figure 3.

All of the three definitions of a true sentence in one of the models ιL(L),
μ(L) and δ(L) of L are analogous and are substitutions of the following
definition scheme:

Scheme of definitions (truthfulness): For h = ι, μ and δ

The sentence e is true in the model h(L) iff h(e) ∈ Th.

The definitions of a true sentence correspond to the truth value principle
(cf. W. Hodges 1996). An expansion of the principle could be formulated as
follows:

The correlate of a sentence (i.e. its index, meaning or denotation, re-
spectively) determines whether or not it is true in a suitable model.

The three definitions of a true sentence can be given as follows:

• e is syntactically true iff ιL(e) ∈ TιL,

• e is intensionally true iff μ(e) ∈ Tμ,

• e is extensionally true iff δ(e) ∈ Tδ.

From the above scheme of definitions of truthfulness of sentences we can
easily get the following scheme of theorems:
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Metatheorem 1. For h = ιL, μ, δ

If e, e′ are sentences and h(e) = h(e′), then
e is true in h(L) iff e′ is true in h(L).

Metatheorem 1 is the scheme of the following three theorems our formal
theory:
1) If we have two sentences with the same index then they are syntactically
true iff they have the same truth value in the syntactic model, i.e. their index
is the index of all true sentences,
2) If two sentences have the same meanings then they are intensionally true
iff they have the same truth value in the intensional model, i.e. their mean-
ings are true logical propositions,
3) If two sentences have the same denotation then they have the same truth
value in the extensional model, i.e. their denotations are the states of affairs
that obtain.

3.3. Reliability of cognition of reality

The main purpose of cognition is aiming at an agreement of truthfulness of
sentences that are results of cognition in all three models: ιL(L), μ(L) and
δ(L) (cf. Figure 3 ).

Let us note that if a sentence is true in the extensional model δ(L) then
it does not have to be true in the remaining models. So, in particular, a
deductive knowledge that is included in the conceptual reality C cannot be
in agreement with knowledge referring to the ontological reality O. There can
be true sentences in δ(L) that are not deduced from the knowledge accepted
earlier and cannot be true in the intensional model μ(L).

Considerations outlined in this paper point to a new aspect of the impor-
tance of Gödel’s Incompleteness Theorem (1931): it explains why language
cognition of reality illustrated by Figure 3 can be incomplete.

Justification of these statements requires introducing some new notions.

3.4. Operations of replacement

The most important theorems which follow from the principles of compo-
sitionality (PC1 ), (PC2 ) and (PC3 ) use the syntactic notion of the three-
argument operation π of replacement of a constituent of a given wfe of L. The
operation π is defined by means of the operation πn of replacement of the con-
stituents of n-th order. The expressions e′ = π(p′, p, e) and e′ = πn(p′, p, e)
are read: the expression e′ is a result of replacement of the constituent p,
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respectively, the constituent p of n-th order, of e by the expression p′. The de-
finition of the operation πn is inductive (see Wybraniec-Skardowska, 1991).

Definition 4 (operation of replacement). Let e, e′, p, p′ ∈ S. Then

a. e′ = π0(p′, p, e) iff p = e and p′ = e′,

b. e′ = π1(p′, p, e) iff e and e′ are some functor-argument expressions of the
set S with the same number of arguments of their main functors and
differ from one another only by the same syntactic position when in e
occurs the constituent p and in e′ occurs the constituent p′,

c. e′ = πk+1(p′, p, e) iff ∃q,q′ ∈S

(
e′ = πk(q′, q, e) & q′ = π1(p′, p, q)

)
,

d. e′ = π(p′, p, e) iff ∃n≥0(e′ = πn(p′, p, e)).

We can define the operations of replacement h(π) for the correlates wfes
of S (h = ιL, μ, δ) in an analogous manner.

3.5. The most important theorems

In this part we will give some theorems of our deductive, formal-logical
theory of syntax and semantics. They are logical consequences of the above-
given definitions and principles of compositionality formulated earlier.

It is easy to justify three principles of compositionality with respect to
the operation π. They are a substitution of the following metatheorem:

Metatheorem 2 (compositionality with respect to π). For h = ιL, μ, δ

(PCπ) h(π(p′, p, e)) = h(π)(h(p′), h(p), h(e)).

We can also easily state that the theorems that we get from the next
scheme are valid:

Metatheorem 3 (homomorphisms of replacement systems). For
h = ιL, μ, δ

〈S, π, T 〉 h−−−−→
hom

〈h(S), h(π), h(T )〉,

where T is the set of all true sentences of L.

We can postulate that TιL = ιL(T ), Tμ = μ(T ) and Tδ = δ(T ).

Now, we will present theorems called replacement theorems.

Fact 2. For h = ιL, μ, δ
If e = f(e1, e2, . . . , en), e′ = f ′(e′

1, e
′
2, . . . , e

′
n) ∈ S

then h(e) = h(e′) iff h(f) = h(f ′) and h(ei) = h(e′
i) for any i = 1, . . . , n.
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By means of Fact 2 we can easily obtain the one fundamental syntactic
replacement theorem and two fundamental semantic replacement theorems
which are the suitable substitutions of the following metatheorem of our
theory:

Metatheorem 4 (replacement principles). For h = ιL, μ, δ

If e, e′ ∈ S and e′ = π(p′, p, e) then (h(p) = h(p′) iff h(e) = h(e′)).

So: Two expressions have the same correlate (the same categorial index –
the syntactic category, the same meanings, the same denotation, respectively)
if and only if by the replacement of one of them by the other in any wfe of
L we obtain a wfe of L which has the same correlate (the same categorial
index – the same syntactic category, the same meaning, the same denotation,
respectively), as the expression from which it was derived.

Corollary 1. If e, e′ ∈ S and e′ = π(p′, p, e), then
∃ζ(p, p′ ∈ Catζ) iff ∃ζ(e, e′ ∈ Catζ),
∃ζ(p, p′ ∈ Conζ) iff ∃ζ(e, e′ ∈ Conζ),
∃ζ(p, p′ ∈ Ontζ) iff ∃ζ(e, e′ ∈ Ontζ).

The next theorems are connected with the true value principles.

Metatheorem 5 (referring to the truth value principles). For h = ι, μ, δ
If e, e′ are sentences of L and e′ = π(p′, p′, e) and h(p) = h(p′), then

e is true in h(L) iff e′ is true in h(L) .

The three theorems that we get from the above metatheorem together
state that:

Replacing in any sentence its constituent by an expression which has the
same correlate (the same index, the same meaning, the same denotation,
respectively), never alters the truth value of the replaced sentence in the
given syntactic, intensional, extensional, respectively, model.

If we accept the following axiom:

Axiom: If e is a sentence and μ(e) ∈ Tμ, then δ(e) ∈ Tδ ,

then from the above metatheorem, for h = μ, we get:

Fact 3. If e, e′ are sentences, e′ = π(p′, p′, e) and μ(p) = μ(p′), then
if e is true in μ(L) then e′ is true in δ(L).

So: Replacing in any true sentence in the intensional model its con-
stituent by an expression that has the same meaning, we get a sentence
which is true in the extensional model.
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Stronger Metatheorem (referring to truth value principles)
For h = ι, μ, δ.
If e, e′ are sentences and e′ = π(p′, p, e), then
h(p) = h(p′) iff (e is true in h(L) iff e′ is true in h(L)).

The recognition of the above metatheorem requires accepting the three
axioms which are connected with Leibniz’s principles (cf. Gerhard 1890,
p. 280, Janssen 1996, p.463) and have the same scheme:

Scheme of Leibniz’s Axioms For h= ι, μ, δ.
If e, e′ are sentences and e′ = π(p′, p, e), then
if (e is true in h(L) iff e′ is true in h(L)) then h(p) = h(p′).

Leibniz’s Axioms together state that:
If replacing in any sentence its constituent p by an expression p′ never

alters the truth value of the replaced sentence in the syntactic, in the inten-
sional, in the extensional, respectively, model, then p and p′ have the same
categorial index, the same meaning, the same denotation, respectively.

Three theorems which follow from Stronger Metatheorem (referring to
truth value principles) together say that (cf. Hodges 1996):

Two expressions of the language L have the same correlates (the same
categorial index – syntactic category or form, the same meaning – intension,
the same denotation – extension, respectively), if and only if replacing one of
them by another in any sentence never alters the truth value of the replaced
sentence in the syntactic, intensional, extensional, respectively, model of the
language L.

4. Final remarks

• We have tried to give a description of meta-knowledge in connection with
three references of logical knowledge to:

– language,
– conceptual reality and
– ontological reality.

• Thanks to it we could define three kinds of models of language and three
kinds of truthfulness in these models.

• These models are not standard models; in particular the notion of truth
does not employ the notions of satisfaction and valuation of variables
used for formalized languages.
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• Adequacy of language knowledge to cognitive objects of reality is under-
stood as an agreement of truthfulness in these three models.

• It is possible to give a generalization of the notion of meta-knowledge in
communication systems in order to apply it to knowledge in text systems
but the solution of this problem requires more time and is solved by my
co-worker Edward Bryniarski.

4.1. Acknowledgements

I thank unknown referees and my colleagues Edward Bryniarski and Marek
Magdziak for their stimulating comments, remarks and suggestions which
allowed me to complete or improve some fragments of my paper.

References

[1] Ajdukiewicz, K., 1931, ‘O znaczeniu’ (‘On meaning of expressions’), Księga
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