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Mathematical Models for Reservoir Operation
in Tunisia
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Abstract A genetic algorithm model has been developed and applied to solve a
planning problem of optimum allocation of water resources within a complex reser-
voir system. The specific conditions of the surface water resource utilization in
Tunisia, exemplified in a 10-reservoir case study system (Louati 2005 thèse de doc-
torat en sciences agronomiques “Spécialité: Génie rural eau et forets”, Inat, Tunis,
Tunisie), have required that the allocation of the available resources be analyzed
considering both the quantity as well as salinity of supply. Therefore, the analy-
ses included resource allocation optimization under the assumption of five different
objective functions reflecting the relationship between the two supply criteria. In
addition, the obtained solutions under the five objective assumptions have further
been assessed across a range of system performance indicators. This step has proven
essential in obtaining a more comprehensive insight into the operation of the system
under the different objectives.

Introduction

The availability of, and the demand for water form one of the most complex rela-
tionships the mankind is facing. Under “availability of water” one should primarily
underline the limiting amount and acceptable quality of water in our hydrological
cycle in arid and semi arid zones, and the uneven distribution of its quantities in
space and time. By “demand for water” one should consider drinking and agricul-
tural water consumption as the essential preconditions for human life sustenance, as
well as the areas of water use, which could be considered as contributing factors to
the improvement of the quality of life (i.e. non consumptive household, industrial
and tourism, energy production, recreation water demands etc.).
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Quality factor is the required to reconcile water availability and minimum re-
quired quality demand, as drinking water or some crop irrigation requirements. On
the one hand, the quality of available water resources determines, to a varying de-
gree, their suitability for different purposes. The quality of water released back to
the environment after its use, on the other, influences the extent of environmental
pollution and, in turn, prospects for the maintenance of the sustainable use of the
water resources in the future. Furthermore, both the use of the available water re-
sources and the release of the used effluents back to the environment have an impact
on the environmental balance in the affected areas.

The aforementioned quantitative and qualitative aspects of the balance of wa-
ter resources have been recognized as crucial in the strive to maintain the nec-
essary environmental quality, ensuring at the same time that everyone gets a just
share of water of good quality. The water resources management aims to im-
prove the water use efficiency, equity of distribution and sustainability of the water
system.

The objective criterion is to optimize the water management rules, with the qual-
ity as salinity and quantity objectives, for dams’ network. The case study system
consists of 15 large reservoirs in the Northern part of Tunisia. The reservoirs are
mutually interconnected in either serial or parallel fashion, both through natural
river reaches as well as man-made water transfers.

The system encompasses 36 individual demand centers grouped into three princi-
pal water user types: urban (five demands), irrigation (30 demands) and environmen-
tal (one demand). The demands have been described by two parameters: demand
volume and the maximum acceptable supply salinity.

System topology studied indicates that the analyses are to address a rather dif-
ficult operations research problem. On the one hand, the system itself can contain
multiple reservoirs and demand centers, which can be linked together in an intricate
network. On the other hand, the consideration of salinity of reservoir inflows and
releases, and thereby allocations to individual demands, adds additional complexity
to the operation problem. It is obvious therefore that the optimization problem must
apply criteria that will be able to address both the quantity and salinity of reservoir
allocations to individual demands. Furthermore, reservoir operating storage targets
(rule curves) are considered as an additional objective criterion.

The primary goal of the analyses is to identify the preferable water resource
allocation strategies within a complex water supply reservoir system and, at the
same time, to derive the respective optimum operating policies of system reservoirs.
To achieve this goal, three objective criteria have been defined and adopted for the
analyses:

� To minimize the supply quantity deficit;
� To minimize the violation (surpassing) of supply salinity thresholds set for indi-

vidual demands; and
� To minimize the deviation of the operating final storage of reservoirs from the

predefined final storage targets.
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Structure of the Optimization Problem

The main goal of this work is to assess the applicability of a combination of sev-
eral operations research approaches to a strategic operational problem of complex
reservoir supply systems. System topology requires that the adopted approach for
the analyses be able to tackle rather complex system configurations. With regard
to such a system topology, the focus of the work is limited to the optimization of
the long-term operating strategy of a multiple reservoir water supply system. In
principle, an operating strategy of such a complex system may be understood as a
composition of two main parts:

� Reservoir-demand allocation patterns; and
� Reservoir operating policies reflecting the aforementioned allocation patterns.

Such a decomposition of the operating strategy is justified by the fact that the
original problem is rather complex and mathematically none polynomial.

Reservoir-demand allocation patterns are introduced to resolve the problem of
demand sharing among groups of reservoirs. The task of optimization is therefore
to identify those demand sharing patterns that would lead to the best allocation of
water resources within a system.

Once reservoir-demand allocation patterns have been derived, the optimization of
individual reservoir operating policies can be carried out. This process is therefore
based on the assumption that the derived allocation patterns have to be complied
with in policy optimization. As a consequence, the obtained operating policies will
preserve the imposed reservoir-demand allocation patterns.

The stochasticity of reservoir inflows is considered where uncertainty of the in-
flow processes is sufficient for the case being analyzed. With regard to the temporal
discretization, the analyses are limited to monthly time steps assuming the stationar-
ity of the stochastic properties of monthly river flows (i.e. the probability distribution
of a stochastic process is not changing over time). Monthly water demands, on the
other hand, are assumed to be deterministic and considered to be recurring in annual
cycles. Since the chosen monthly time base is long enough the required time for the
released water to travel between any two serially linked reservoirs and any reservoir
and the respective demand centers can safely be neglected.

Since the size of such a problem can be prohibitively large (i.e. number of
reservoirs and demand centers, the complexity of reservoir-reservoir and reservoir-
demand interconnections, consideration of flow stochasticity, and multiple objec-
tives), it is inevitable to employ an iterative derivation procedure to arrive at the
respective solution. One common characteristic of almost all the approaches of
this kind is, however, that the global optimality of the obtained solution cannot be
guaranteed. It is, therefore, necessary to emphasize that the starting point of this
work was not to pursue a methodology which would guarantee the derivation of
the global optimum operating strategy at any cost, but rather to try and identify a
relatively simple and transparent, however yet efficient and effective approach for
the analysis of the operation of complex reservoir systems. With this notion in view,
the decomposition applied in this study is done at two levels:
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� Problem decomposition may be understood as a coupling of reservoir system
(topology) decomposition and reservoir-demand allocation patterns; and

� Reservoir operating policies reflecting the aforementioned allocation patterns.
The main features of the applied system decomposition approach as iterative
approach are:

� A multiple reservoir system is decomposed into single-reservoir sub-systems;
� Appropriate optimization/simulation techniques are applied to single-reservoir

sub-systems;
� Single reservoirs are entering an iterative cycle of analyses in a predefined

sequence;
� The interaction between the reservoirs is modeled by an auxiliary model, which

is selected on the basis of the type of problem being solved (i.e. reservoir-demand
allocation patterns or reservoir operating policies).

Based on the aforementioned description of the problem and its decomposition,
optimization and general structure of adopted approach to derive long-term operat-
ing strategy of a complex reservoir system can be formulated as follows:

� Decompose the problem into resource allocation and policy optimization;
� Decompose the reservoir system into individual reservoir sub-systems;
� Solve the resource allocation sub-problem applying the appropriate optimization

method combined with the reservoir system decomposition principles;
� Solve the policy optimization sub-problem applying the appropriate optimization

method combined with the reservoir system decomposition principles;
� Simulate the operation of the system according to the derived resource allocation

patterns and operating policies;
� Evaluate the performance of the system.

Namely, the resource allocation sub-problem is solved by a genetic algorithm
(GA) based search model. The principal idea of a GA search is to sweep the ob-
jective function space looking for solutions that bring improvement to the objective
function. In this specific case, the GA model assumes that a solution is a collection
of reservoir-demand allocation targets for the entire system and uses reservoir sys-
tem simulation to estimate the objective function value for each potential solution
to the allocation problem.

The adopted methodology for the optimization of the long-term operating poli-
cies for individual reservoirs combines a physical decomposition of the system into
individual reservoir subsystems, stochastic dynamic programming (SDP) optimiza-
tion of a single reservoir operation, simulation and release allocation among each
reservoir’s water users. Since the SDP model derives the operating policy for a
single reservoir (as opposed to the GA model which derives the allocation pattern
for the entire system) its application has to be combined with system decompo-
sition, simulation and release allocation. In addition, the developed SDP model
utilizes the reservoir-demand allocation patterns derived by the preceding run of
the GA.
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Finally, simulation of the system operation according to the derived policies is
essential due to three reasons:

� It is necessary for the evaluation of potential solutions in the genetic algorithm;
� It is an integral component of the stochastic dynamic optimization model; and
� System performance evaluation could be done using simulation.

To transform the multi-objective decision making problem into a single objec-
tive optimization, the obvious choice is to opt for a composite objective function,
which would include all three objectives. The composite objective has been made
to combine two objective criteria in deriving reservoir-demand allocation patterns,
and different pairs of criteria for the optimization of reservoir operating policies:

� Reservoir-demand allocation patterns: supply quantity and supply salinity objec-
tives; and

� Reservoir operating policies reflecting the aforementioned allocation patterns:
supply quantity and storage target objectives.

To solve this, a genetic algorithm search is used to derive reservoir-demand allo-
cation patterns. A GA search is based on objective function estimation using simu-
lation of system operation and, therefore, it is no problem to develop a simulation
model for a single reservoir that is able to simulate both the volumetric and salt
balance of water in a reservoir during a time step. Hence, supply salinity objective
can be applied to the first problem without difficulty. On the other hand, stochastic
dynamic programming is applied to derive reservoir-operating policies and consid-
ers reservoir inflows as a stochastic process. Thus, SDP describes reservoir inflows
as a Markov process through estimation of monthly inflow transitional probabilities.
Consideration of salinity would therefore also require that inflow salinity time series
is also described as a Markov process, which would impose that joint probability
distributions of flow volumes and salinities are estimated. This would however,
render a discrete SDP formulation rather complicated. Furthermore, salinity data
available for the research show very little variability over the years of record, thus
justifying the assumption that the consideration of supply salinity objective only in
reservoir-demand allocation sub-problem. That is, the derived allocation patterns
would then sufficiently reflect the objective to minimize the violation of supply
salinity threshold and would thereafter implicitly incorporate the salinity consider-
ation into the SDP-based operating policies derived within the second sub-problem.

Genetic algorithm search for the best reservoir-demand allocation patterns is also
used to derive the storage targets of individual reservoirs.

Finally, the combination of supply quantity and storage target objectives in SDP
optimization of reservoir operating policies completes the combination of the three
objectives. In addition, the derived SDP operating policies would reconcile, in a
single policy, the aim to maintain the optimum level of supply quantity and salinity,
and the desired storage target curve.

Since there are three objective criteria adopted, the selection of performance in-
dicators must also reflect the criteria themselves. Therefore, three distinctive sets
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of performance indicators are defined to provide additional information on the ana-
lyzed system performance:

� Performance indicators for the supply quantity objective;
� Performance indicators for the supply salinity objective; and
� Performance indicators for the storage target objective.

Reliability Criteria Assessment in Evaluation
of Reservoir Performance

Within stochastic optimization concepts the most frequently used objective criteria
include either the maximization of the expected system output or benefit function,
or the minimization of the expectation of some form of loss function. Utilization
of this type of criteria provides the estimate of the expected performance of the
system in the long run. However, they cannot shed any light on the frequency of
the system’s failing to provide the required service, the duration and severity of
potential failures, nor the ability of the system to return to a satisfactory operating
state once a failure has occurred. These important facets of a system’s performance
are widely known as reliability indicators. Consequently, substantial effort has been
put into the explicit consideration of reliability in the optimization of the operation
of reservoir systems. It could be said that the most significant in the field started with
the work on chance-constrained programming by ReVelle et al. (1969), which was
further extended by, to name just a few, ReVelle and Kirby (1970), Eastman and
ReVelle (1973), ReVelle and Gundelach (1975), Gundelach and ReVelle (1975),
Lebdi et al. (1997, 2003), Loucks and Dorfman (1975), Houck (1979), Houck and
Datta (1981), and many others, including the works on reliability programming by
Simonovic and Mariño (1980, 1981, 1982).

Recognizing that the simulated estimates of the mean and the variance of the se-
lected performance measure (e.g. output, operating cost) could not provide accurate
information about the frequency and magnitude of operational failures, Hashimoto
et al. (1982) used three additional performance indicators (PI) to compare a number
of different operating policies of a single irrigation water supply reservoir. They
introduced reliability to describe how often the system failed to meet the target;
resiliency to assess how quickly the system managed to return to a satisfactory state
once a failure had occurred; vulnerability to estimate how significant the likely con-
sequences of a failure might be. Based on simulation of the reservoir’s operation
over a long synthetic inflow time series, a set of operating strategies was evaluated
by deriving trade-offs among the expected loss, reliability, resiliency and vulnera-
bility. For instance, one conclusion that could be drawn from the analyses was that,
for the given case study, high system reliability was always accompanied by high
vulnerability (i.e. the fewer failures the reservoir had, the higher the deficits encoun-
tered in the failure periods). The authors also pointed out that each problem bears
its own unique features and, therefore, the selection of appropriate performance
indicators should always reflect upon those unique characteristics of the problem.
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Similar conclusions were also drawn by Moy et al. (1986) in their study of the
operation of a single water supply reservoir. They used mixed-integer linear pro-
gramming to derive trade-off curves among the virtually same three performance
indicators presented by Hashimoto et al. (1982). Namely, they defined reliability
as the probability of failing to meet the desired target; resilience as the maximum
number of consecutive failures prior to the reservoirs return to the full supply state
of operation; and vulnerability as the maximum supply deficit observed during sim-
ulation. The major finding described the relationship between vulnerability and the
other two PIs. In general, the results showed that a reservoir would likely exhibit
higher vulnerability (i.e. larger magnitude of failures) if it were more reliable (i.e.
had fewer operating failures), or if it were more resilient (i.e. had short sequences
of repeated failures).

The extensive study of Bogardi and Verhoef (1995) presented a more detailed
analysis of the sensitivity of the operation of the same three-reservoir Mahaweli river
development scheme in Sri Lanka. Using a range of different objective criteria, they
optimized the operation of the system by means of SDP and subsequently appraised
the derived operating strategies by simulation. In addition to the simulated objective
criterion estimates, the comparisons were carried out on the basis of an array of both
energy and irrigation related PIs (n.b. for each PI, separate estimates were derived
for energy and irrigation).

Nandalal and Bogardi (1996) used an array of quantity-related PIs to evaluate
the performance of a single water supply reservoir whose operating strategies were
derived by optimization considering both the quantity and quality of reservoir re-
leases. Specifically, they adopted seven PIs to investigate the impact of different
salinity reduction measures of reservoir releases on the quantitative aspects of the
reservoir’s performance.

A number of PIs is selected to compare different operating strategies of the case
study system in this work. The defined PIs do not depict the operating details of
individual reservoirs. They rather describe the performance of the entire multiple-
reservoir system with respect to the quantitative fulfillment of the water demand
imposed upon the system (n.b. a similar approach has also been adopted in Milutin
and Bogardi, 1995, 1996a and 1996b). The set of PIs used in this case study includes
a number of criteria defined to evaluate various facets of reliability, resilience and
vulnerability of the system’s operation. A detailed definition of the adopted PIs is
given in “Performance Indicators”.

Objective Criteria

This section provides the detailed description of the three objective criteria used.
Each of the three objective functions (i.e. supply quantity achievement, salinity
threshold non-breach and reservoir storage target achievement) is presented in its
full mathematical formulation. In addition, an introduction and an argumentation
about the combined use of the objective functions in different optimization steps are
given here as well.
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Supply Quantity Objective

The supply quantity objective aims at minimizing the deviation of supply from the
respective demand targets. The objective function is defined as an aggregate of the
squared supply deviations from the respective demand targets over all individual
demands and over the entire time span of the analyses:

Z1 =
T∑

t=1

N∑

i=1

(Rti − Dti )
2 (9.1)

Where:

Z1 supply quantity objective criterion achievement
T number of time steps in the objective criterion assessment
N number of demands
Rti allocation of supply to demand i in time step t
Dti demand i in time step t

To force the optimization procedure to seek the solution that is reducing the risk
from extreme supply shortages, this objective is penalizing the supply deviation
from its respective target as the square of the resulting deviation. If the objective
function were linear, the optimization procedure would not make any distinction be-
tween, for example, a single large deficit and a number of smaller deficits amounting
to the same total volume.

By adopting such an objective function form, it is ensured that the optimization
procedure will disregard, to the maximum extent possible, solutions that result in
excessive supply shortages or surpluses. This approach therefore strives to reduce
the vulnerability of the system performance.

Supply Salinity Objective

In essence, the initial assumptions used to define this objective function have been
very similar to the ones used in the definition of the other two objectives. That is,
given a certain salinity threshold beyond which the salinity of supply to a demand
center should not occur, this objective function should represent a penalty if such a
case does happen. There are two principal differences between the supply salinity
threshold objective and the other two objective functions:

� Supply salinity objective penalizes only the surplus of salt concentration beyond
the specified threshold value, whereas the other two penalize the deviation from
their respective target; and

� The units and the magnitude of surplus of salinity differ significantly from those
in the other two objectives.
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The first difference is no obstacle for the definition of the objective function.
However, the second one does require careful consideration when defining the ob-
jective function. This is due to the fact that the intrinsic multiobjective decision
making problem is to be transformed into a single (composite) objective optimiza-
tion, thus requiring that different objective function components be additive (i.e.
supply quantity achievement and salinity threshold non-breach objectives).

Since the objective functions should be used jointly in optimization, the second
obstacle is overcome by redefining the supply salinity surplus formulation into a vol-
umetric equivalent (volume of water) describing the relationship between the sup-
plied volume and salinity, and the imposed supply salinity threshold. Namely, let the
following be the variables and relations describing the aforementioned quantities:

� Salt concentration of the allocated supply to a demand center (Cti ):

Cti =
M∑

j=1

rti j ct j

/
M∑

j=1

rti j (9.2)

� The total amount of water allocated (Rti ) to meet the demanded volume Dti

Rti =
M∑

j=1

rti j (9.3)

where the newly introduced symbols so far are:

rti j volume released from reservoir j for demand i in time step t
ct j salinity of release from reservoir j in time step t

If the salinity of the supply Cti is beyond the maximum threshold salinity Cimax

for that particular demand, one can assume that the supplied volume will have to
be additionally treated or partially replaced by some fresh water amount (volume
Ati of salinity cext ) which would then reduce the salinity of the originally supplied
water to the threshold level, or lower. This amount of additional fresh water can be
estimated from the salt balance inequality:

Rti · Ci max ≥ (Rti − Ati ) · Cti + Ati · cext (9.4)

or, expressed as the equality for estimating the minimum value of the volume Ati :

Ati =
⎧
⎨

⎩
Rti

Ci max − Cti

cext − Cti
, Cti > Ci max

0 , otherwise
(9.5)
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It need not be mentioned that the assumed salinity cext of this “external” source
of fresh water must be lower than the supply salinity threshold Cimax of the demand
in question.

Given the estimates of the required external source supply Ati to dilute the allo-
cated volumes in each time step when the supply salinity threshold breach occurs,
the objective function value can be estimated as:

Z2 =
T∑

t=1

N∑

i=1

A2
ti (9.6)

The objective is penalizing the volumetric equivalent of the supply salinity sur-
plus beyond its respective threshold as the square of the equivalent volume of fresh
water needed to dilute the allocated salinity to the respective threshold value. Again,
the choice of a squared rather than linear form of the penalty is forcing the optimiza-
tion procedure to opt for more failures of lesser magnitude rather than just a few high
ones.

Reservoir Storage Target Objective

The reservoir storage target objective function is very similar in its form to the
supply quantity objective described before. Namely, it penalizes the deviation of
the final storage volume of a reservoir observed in optimization/simulation from the
respective target storage volume. The function itself is defined as an aggregate of
the squared final storage volume deviations from their respective targets over all
individual reservoirs and over the entire time span of the analyses:

Z3 =
T∑

t=1

M∑

j=1

(
SF t j − ST t j

)2
(9.7)

where the newly introduced symbols so far are:

Z3 reservoir storage target objective criterion achievement
M number of reservoirs
SFt j observed final storage volume of reservoir j in time step t
STti target final storage volume of reservoir j in time step t

Similarly to the discussion on the other two objective functions presented in
“Supply Quantity Objective and Supply Salinity Objective”, the storage target ob-
jective function is also defined as an aggregate of squared deviations to force the
optimization procedure to avoid solutions with fewer high deviations as opposed to
those with numerous lower deviations from the target.
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Composite Objective Within Resource Allocation Optimization

A genetic algorithm search for the best resource allocation pattern is based on the
objective that minimizes the value of a so-called fitness function. In essence, a
genetic algorithm fitness function is the equivalent of an objective function in an
optimization procedure. The adopted fitness function is defined as an aggregate of
two distinct components:

� Quantity-related squared deviation of supply from the target demand, multiplied
by the respective weight factor; and

� Salinity related squared penalty of a volumetric equivalent of the violation of the
maximum acceptable supply salinity, multiplied by the respective weight factor.

Given the definition of the two individual objective functions in “Supply Quantity
Objective and Supply Salinity Objective”, it is necessary to adjust their estimation
for the purpose of their combined use in the aforementioned fitness evaluation. It
should also be noted here that in the definition of the genetic algorithm’s fitness
evaluation model the allocated consumptive release cannot exceed the respective
demand. Therefore supply shortage is the only possible quantitative supply failure,
and surplus can never occur.

The penalty associated with a failure of meeting the quantity and/or quality
requirement is derived under the assumption that either of the two is to be com-
pensated for from an imaginary external source with water of a constant (low and
known) salt concentration. The joint penalty for utilization of such a source is pro-
portional to the square of the amount of water withdrawn regardless of the purpose
of such a withdrawal (i.e. to compensate for quantity shortage or to improve the
quality of delivered water or both). The penalty is thus estimated in four steps de-
scribed below:

1. Based on the observed quantitative supply deficit associated with a demand dur-
ing a certain time step, the imaginary external source provides full compensation
for the incurred shortage. The external compensation for the supply deficit affects
the salt concentration of the water delivered to the demand center. The estima-
tion of the resulting salinity of the assumed “full supply” is computed from the
following equations:

� Salinity of the original supply from the associated reservoirs:

Cti =
M∑

j=1

rti j ct j

/
M∑

j=1

rti j (9.8)

� Total volume supplied by the associated reservoirs:

Rti =
M∑

j=1

rti j (9.9)
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� Salinity of “full supply” (including the volume provided by the external
source):

C ′
ti = Rti · Cti − (Dti − Rti ) · cext

Dti
(9.10)

� Salinity of “full supply” (in a slightly different form):

C ′
ti = Rti

Dti
· Cti +

(

1 − Rti

Dti

)

· cext (9.11)

2. Having estimated the salinity of the “full supply” after the initial compensation
from the external source for the quantitative shortage, it is necessary to assess
whether the newly obtained supply salinity is below the supply salinity threshold
associated with this demand:

� The “full supply” salinity is below the threshold value,

C ′
ti ≤ Cimax (9.12)

and there is no need for additional fresh water supply, i.e. Ati = 0.
� The “full supply” salinity is still higher than the threshold value,

C ′
ti > Cimax (9.13)

and the additional fresh water volume (Ati ) is estimated from the salt balance
equation for this demand (it needs no mention that cext < Ci max)

Dti · Cimax = (Dti − Ati ) · C ′
ti + Ati · cext (9.14)

which leads to

Ati = Dti · C ′
ti − Ci max

C ′
ti − cext

(9.15)

3. The total penalty fti (both quantity and salinity related) associated with the sup-
ply to this demand center during one time step then becomes (wq and ws are
penalty weights associated with the quantity and quality penalty components
respectively):

fti = wq · (Rti − Dti )
2 + ws · A2

ti (9.16)
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where

wq ≥ 0 (9.17)

ws ≥ 0 (9.18)

wq − ws = 1.0 (9.19)

4. Summing up these individual penalties over all demand centers and over the en-
tire period under consideration gives the total penalty associated with the system
for the chosen release distribution pattern:

f = wq

T∑

t=1

N∑

i=1

(Rti − Dti )
2 + ws

T∑

t=1

N∑

i=1

A2
ti (9.20)

The volume (Rti − Dti ) in the above equation is the penalty base associated with
the quantitative supply shortage whereas the amount of water Ati represents the
penalty base for the inadequate salinity of the delivered water.

Since genetic algorithms are essentially maximization search procedures, the
presented penalty function must be transformed into an equivalent whose maximum
will refer to the optimum solution of the allocation problem. In this case, the choice
of transformation is rather simple. Namely, the actual fitness (objective) function
f ∗ used is computed as the difference between the maximum possible penalty fmax

estimated on the basis of equation (9.20) and the actual penalty f for a particular
alternative solution (equation (9.20)):

f ∗ = fmax − f (9.21)

where fmax is estimated assuming the following:

� Weight factors wq and ws are set to 1.0 and 0.0, respectively.
� Demands supplied by a single reservoir only encounter 100% deficit (no supply).
� Demands supplied by multiple reservoirs receive full demand supply from each

of the reservoirs (maximum surplus.) It should be noted here that such a case is
actually not possible within the settings of the genetic algorithm model. Never-
theless, it does ensure that the maximum possible fitness be certainly beyond any
penalty value that can be encountered in the search.

Composite Objective Within Operating Policy Optimization

The operating policy optimization is carried out using stochastic dynamic program-
ming (SDP). The SDP model applies reservoir system decomposition and optimizes
the operating policies of individual reservoirs in an iterative fashion. Therefore,
the objective function does not reflect the objective achievement of the entire sys-
tem like the allocation optimization model (Composite Objective Within Resource
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Allocation Optimization), but only a contribution of a single reservoir operation to
the overall objective function value. The adopted objective function is the sum of
two components:

� The annual aggregate of the squared monthly deviation of release from the re-
spective demand, multiplied by a given weight factor; and

� The annual aggregate of the squared deviation of monthly final storage volume
from the respective target storage volume, multiplied by a given weight factor.

Since this model applies stochastic dynamic programming, the objective function
value represents the expectation of the objective achievement covering the span of
one annual cycle.

Unlike the combination of supply deficit and supply salinity objectives (Com-
posite Objective Within Resource Allocation Optimization), this compound objec-
tive function does not require transformation of either of its components since both
represent volumetric quantities of the same type:

G = wd ·
T∑

t=1

(
Rt j − Dt j

)2 +wv ·
T∑

t=1

(
SFt j − STt j

)2
(9.22)

where the newly introduced symbols so far are:

wd weight factor for supply deviation component (wd ≥ 0)
wv weight factor for storage target deviation component (wv ≥ 0)
Rt j total consumptive release of reservoir j in time step t
Dti total demand imposed upon reservoir j in time step t

Suffice it to say at this stage that both weight factors are predefined positive real
numbers and must meet the condition:

wd − wv = 1.0 (9.23)

Performance Indicators

This section gives a full description of the risk and reliability indicators, hereafter
referred to as performance indicators (PI), used in the present work. Performance
Indicators (PIs) provide specific information about the performance of a system
with regard to, for instance, the likelihood of the occurrence of insufficient supply,
the probable severity of such a failure and the estimate of the likely duration of
periods of full and insufficient supply, respectively. Since there are three objective
criteria, the description distinguishes which indicators are appropriate for use in
which of the objective cases. Furthermore, and due to the complexity of the system
being analyzed, the estimation of performance indicators can be applied either to the
system as a whole, to individual reservoirs or groups thereof, or to individual/groups
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of demand centers. The ultimate choice among the aforementioned alternatives is
made during the analyses and is addressed accordingly.

Definitions

Since there are three distinct objective criteria considered it is deemed appropriate
to introduce a few important terms at this stage to ensure that consistent terminology
is used throughout the text:

� Level of service. The term “level of service” describes the extent to which a
“service provider” (i.e. reservoir, reservoir system) fulfils its obligations towards
meeting the agreed requirements of its “client(s)” (i.e. demand centers) during a
single time step.

� Failure vs success. Contrary to a “success” event, a “failure” event indicates
that a “service provider” has not managed to provide the full service to meet
the requirement of its “client(s)” during a certain time step (e.g. supply shortage
occurred, maximum acceptable salinity of supply surpassed, storage target not
achieved).

� Quantity-based performance indicators. This set of PIs evaluates the perfor-
mance of the selected system (i.e. single reservoir, system of reservoirs, single or
group of demands) from the level of service point of view (i.e. supply quantity,
supply salinity, storage target). Thus, the performance is assessed reflecting the
magnitude of failure events and not their temporal distribution.

� Time-based performance indicators. Contrary to quantity-based PIs, time-
based indicators describe the temporal facets of failure and success event occur-
rence related to the level of service of the selected system (i.e. single reservoir,
system of reservoirs, single or group of demands).

Quantity-Based Performance Indicators

1. Quantity-based reliability (PI1), is a simulation-based estimate of the mean level
of service delivery over the entire period under consideration:

PI 1 =

Nt∑

i=1
max(0, Ti − Si )

Nt∑

i=1
Ti

(failure: shortage) (9.24)

2. Average magnitude of failure (PI3) is the simulation-based estimate of the mean
magnitude of failure:
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PI 3 =

Nt∑

i=1
max(0, Ti − Si )

Nt
(failure: shortage) (9.25)

PI 3 =

Nt∑

i=1
max(0, Si − Ti )

Nt
(failure: surplus) (9.26)

PI 3 =

Nt∑

i=1
(Ti − Si )

Nt
(failure: deviation) (9.27)

3. (Undershooting) vulnerability (PI5) indicates the magnitude of the most severe
failure, i.e. shortage failure type, observed over the entire simulation period:

PI 5 = max
i

[max(0, Ti − Si )] (failure: shortage) (9.28)

4. (Overshooting) vulnerability (PI6) indicates the magnitude of the most severe
failure, i.e. surplus failure type, observed over the entire simulation period:

PI 6 = max
i

[max(0, Si − Ti )] (failure: surplus) (9.29)

Time-Based Performance Indicators

5. Time-based reliability (PI7) is the simulation-based estimate of the long-term
probability that the system service will be able to meet the target (consequently,
the likelihood that the system will fail to provide the targeted service is 1 – PI7):

PI 7 = 1 − 1

Nt

Nt∑

i=1

ui (9.30)

6. Average (success) recovery time (PI8) is defined as the average number of succes-
sive time steps the system continuously fails to meet the target, thus stating the
expected time required by the system to switch to an operating mode character-
ized by full service delivery once it has encountered an operating service failure
during one time step (this PI can thus be described as the average duration of
failure):

PI 8 =

Nt∑

i=1
ui

Nt∑

i=1
vi

(9.31)
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7. Average (failure) recurrence time (PI9) is defined as the average number of suc-
cessive time steps the system sustains full service delivery before switching to
a failure operating mode. In other words, it gives the estimate on how long the
system may be expected to provide full service once it has recovered from an op-
erating failure (this PI can thus be described as the average duration of success,
or full service):

PI 9 =
Nt −

Nt∑

i=1
ui

Nt∑

i=1
wi

(9.32)

8. Resilience (or failure persistence) (PI10) is the longest interval �i (in number of
time steps) of consecutive operating failure events:

PI 10 = max
i

(
�i |vi = 1 ∧ wi+�i = 1, �i ≥ 0

∧ u j = 1∀ j ∈ {i − 1, . . . , i − �i − 1} )
(9.33)

9. Resistance (or success persistence) (PI11) is the longest interval �i (in number
of time steps) of consecutive full operating service:

PI 11 = max
i

(�i |wi = 1 ∧ vi+�i = 1, �i ≥ 0

∧u j = 0∀ j ∈ {i − 1, . . . , i − �i − 1}) (9.34)

The notation used in equations above is described in the following:

i the index depicting a time step (i.e. month);
Nt the length, in time steps (i.e. months), of the simulation time period;
Ny the length, in years, of the simulation time period;
Ti the target that the system service is expected to reach in time step i;
Si the service that the system is expected to provide in time step i;
12∑

i=1
Ti j the annual target that the system service is expected to reach in year j;

12∑

i=1
Si j the annual service that the system is expected to provide in year j;

ui the success/failure (ui = 0/ui = 1) descriptor which indicates whether
the system has managed to provide the expected service during time
step i:

ui =
{

1, Ti > Si

0, Ti ≤ Si
, ∀i (failure: shortage) (9.35)
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ui =
{

0, Ti ≥ Si

1, Ti < Si
, ∀i (failure: surplus) (9.36)

ui =
{

0, Ti = Si

1, Ti �= Si
, ∀i (failure: deviation) (9.37)

vi the descriptor indicating a success-to-failure operating transition:

vi =
{

1, ui−1 = 0 ∧ ui = 1
0, otherwise

, ∀i > 1, v1 = u1 (9.38)

wi the descriptor indicating a failure-to-success operating transition:

wi =
{

1, ui−1 = 1 ∧ ui = 0
0, otherwise

, ∀i > 1, w1 = 1 − u1 (9.39)

It should be noted here that the definitions and functional relationships of all the
PIs have been presented assuming that the system’s operation is characterized by
both success and failure events thus excluding a possibility of a division by zero
in the estimation of any of the PIs. Similarly, it is assumed that the target service
imposed upon the system over the whole simulation span, as well as the length of
the simulation period, are not zero.

To conclude, Table 9.1 summarizes the applicability of individual PIs to the as-
sessment of system performance with regard to each of the three objective criteria.

Table 9.1 Summary on performance indicators applicability

Performance indicator Objective

Supply
quantity

Supply
quality

Storage
target

Quantity-based
1 Reliability �
2 Shortage index �
3 Average magnitude of failure � � �
4 Average absolute magnitude of failure �
5 (Undershooting) vulnerability � �
6 (Overshooting) vulnerability � �

Time-based
7 Reliability � � �
8 Average (failure) recurrence time � � �
9 Average (success) recovery time � � �

10 Resilience (or failure persistence) � � �
11 Resistance (or success persistence) � � �
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Case Study and Results

The methodology is summarized in Fig. 9.1.

Fig. 9.1 The adopted approach for system operation optimization

The approaches developed and applied in this work have been thoroughly tested
on the 15-reservoir case study system (Louati, 2005). It is therefore of primary im-
portance to seek an opportunity for further research to appraise the applicability of
these methods to different reservoir systems.

This study has been restricted to several long-term operational aspects associated
with a multiple-reservoir-multiple-demand water supply system. Two particular op-
timization problems have been identified in this regard:

� Optimum allocation of available resources within such a system; and
� Optimization of the individual reservoir operating policies.

The two aforementioned optimization problems have been formulated and solved
so as to reflect the desire of a decision maker to reconcile two primary objectives
and one secondary goal. The primary objectives have been defined as:
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� Quantitative satisfaction of water demand imposed upon the system; and
� Maintenance of supply salinity below the salt concentration limits predefined for

each of the individual demands.

The work has focused on the assessment of applicability of a technique combin-
ing system and optimization problem decomposition, resource allocation, operating
policy optimization and simulation to solving a strategic operational problem of
a “multiple-reservoir-multiple-demand” water resource system. The complexity of
the operational problem has brought about an assumption that the problem itself
could be split into two main components. Namely, an operating strategy of such a
complex system may be understood as a composition of two main parts:

� Resource (reservoir-demand) allocation patterns; and
� Reservoir operating policies reflecting the aforementioned allocation patterns.

The effectiveness of the proposed optimization and search methods have been
appraised and compared not only on the basis of the applied objective criterion
but rather over an array of simulated performance indicator estimates describing
different aspects of system operation.

Given the findings of this research, genetic algorithms seem to be a good choice
for this type of water resource management problems. The main advantage is their
robustness and insensitivity to the size of the problem. Secondly, genetic algorithms
rely on the objective function estimate derived by simulation, thus allowing the
use of detailed simulation models. Finally, genetic algorithms can easily identify a
number of equally good alternative solutions, which is frequently the case in water
resources management problems.

The selected genetic algorithm-based resource allocation strategy has further
been used to estimate the individual reservoir storage targets. The storage targets
have been computed upon simulation of the entire system operation over 20 sets
of 250 years of synthetic monthly inflows to individual reservoirs. The inflows to
individual reservoirs have been generated using the autoregressive lag-one Thomas-
Fiering model with seasonally varying coefficients, however without modeling the
stream flow cross-correlation among the different streamflow processes.

It should be noted that the reservoir storage targets are derived assuming equal
importance of supply towards all demand types, i.e. drinking water, irrigation and
environmental needs. The simplification of the approach in this regard is made be-
cause this issue is extending beyond the scope, main objectives and resources of this
research and should be treated to a greater detail elsewhere.

Since flood control is an integral part of any reservoir operation, additional anal-
yses are required to assess the effects of flood control rules on the system operation.
The consideration of flood control may also prove important to the assessment of
the scope and magnitude of policy violation simulation used in this work. Namely,
seasonal flood control related storage limitations would certainly influence the ex-
tent of the applied violations of stochastic dynamic programming policies. However,
such an approach would also require deeper consideration of issues like river flow
forecasting and/or rainfall-runoff modeling.
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Ultimately, the findings of this research have shown that there are multiple as-
pects of system operation affecting the final decision on the preferred planning
option. Namely, the use of performance indicators depicting the reliability, risk,
resilience and vulnerability of different aspects of system performance have proven
invaluable in making the final assessment of the efficiency and effectiveness of the
proposed resource allocation and reservoir operating policy options. It is therefore
sensible to assume that further research considering objective criteria like reliability,
risk and/or vulnerability in devising water resource allocation plans may offer ad-
ditional valuable insight into the available planning alternatives for such a reservoir
system.
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