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Abstract: A panel of 64 experts ranked 30 scenarios of human activities 
according to their impacts on coastal ecosystems. Experts were asked to rank 
the five scenarios posing the greatest threats and the five scenarios posing 
the least threats. The goal of this study was to find weights for criteria that 
adequately model these stakeholders’ preferences and can be used to predict 
the scores of other scenarios. Probabilistic inversion (PI) techniques were 
used to quantify a model of ecosystem vulnerability based on five criteria. 
Distinctive features of this approach are:

1. A model of the stakeholder population as a joint distribution over the 
criteria weights is obtained. This distribution is found by minimizing 
relative information with respect to a noninformative starting distribu-
tion, but makes no further assumptions about the interactions between 
the weights for different criteria. Criteria distributions with dependence 
emerge from the fitting procedure.

2. The multicriteria preference model can be empirically validated with 
expert preferences not used in fitting the model.

1. Introduction

This article presents an analysis of the 64 experts’ rankings of 30 scenarios 
of human activities and their impacts to coastal ecosystems. The elicitation 
protocols were designed and executed by researchers at the National Center 
for Ecological Analysis and Synthesis. Experts were asked to rank the five 
scenarios posing the greatest threats and the five scenarios posing the least 
threats. The goal of this study was to find weights for criteria that adequately 
model these stakeholders’ preferences and can be used to predict the scores 
of other scenarios. Probabilistic inversion (PI) techniques were used to quan-
tify a model of ecosystem vulnerability based on five criteria. Stakeholder 
preference modeling can also serve as a form of expert elicitation when the 
stakeholders are domain experts, as in the present case. Their preferences are 
taken to prioritize threats to marine ecosystems, with a view to optimizing 
mitigation and abatement actions.

Other multicriteria weighting methods [9, 10, 22] require stakeholders to 
evaluate the criteria directly. Of course, the weights assigned to a criterion 
cannot be assessed independently of  the scale on which all criteria scores are 
measured—a fact that is sometimes overlooked. The present approach asks 
the stakeholders to rank scenarios rather than evaluate criteria. Criteria 
weights are then derived to fit the stakeholder preference rankings as well 
as possible. This has the significant advantage of  allowing us to assess the 
validity of  our fitted model of  stakeholder preference.
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Probabilistic inversion denotes the operation of inverting a function over a 
probability distribution, rather than at a point. Such problems arise in quan-
tifying uncertainty in physical models [8, 13, 14, 15, 23]. One has uncertainty 
distributions on observable phenomena, either from data or from expert 
judgment, and one wishes to find a distribution over the parameters of a 
predictive model, such that one recovers the observed distributions when the 
parameter distributions are “pushed through” the model. PI algorithms used 
in the past were computationally intensive, involving sophisticated interior 
point optimization techniques and duality theory as well as ad hoc steering 
[16]. Recent computational advances [26, 34] clarify the mathematical foun-
dations for PI and yield simple algorithms with proven convergence behavior, 
suitable for use by nonspecialists. The results depend on a variant of the clas-
sical Iterative Proportional Fitting algorithm [6–8, 12, 17, 19, 20, 26].

In stakeholder preference modeling, the data is discrete-choice preference 
data elicited from a set of stakeholders. The distributions to be inverted are 
those of indicator variables such as:

■ Alternative i is better than alternative j.
■ Alternative i is ranked third in the given set of alternatives.

We are interested in the probability of such variables, taking the values “yes” 
or “no” for a set of stakeholders. We can measure these probabilities by que-
rying a large representative set of stakeholders. Existing discrete-choice—or 
random-utility—techniques construct a value or utility function from discrete-
choice data [1, 3, 23, 24, 27, 28, 30–33], and they strongly restrict the form of 
the utility functions. Using PI, this form can be inferred from choice data.

We first discuss the data, then address model adequacy and model fit. 
Summary statistics for the 30 scenarios are then given. The conclusion of 
this analysis is that the data are broadly consistent with a linear model of 
stakeholder preferences.

2. Data

The 30 threat scenarios were scored on five criteria:
■ C1 Spatial scale
■ C2 Frequency
■ C3 Trophic (functional) impact
■ C4 Recovery time
■ C5 Resistance

These criteria were developed and tested elsewhere [11, see also 5, 25, 29].
The stakeholders’ preference data is represented with a linear model:
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Score for scenario S = (score of S on C weight for Ci=1 i iΣ …5 × ))  (1)

The weights are random variables that are nonnegative and sum to 1. The 
(joint) distribution for the weights is modeled to represent the distribution of 
weights in a population of stakeholders, of which the 64 elicited experts are a 
random sample. Since the weights are normalized, the scores are transformed 
so that the product score × weight is positive and falls within the same range. 
Spatial scale is given in square kilometers, and the values for spatial scale 
range from 0.1 to 50,000 km2. These values are transformed to ln(100 m2),
whose values thus range from 2.3 to 15.4. Frequency was scored as ln(360*#
/year). Trophic or functional impact is the number of trophic layers affected. 
Resistance is scored as the percent of species affected per trophic layer. These 
transformations are chosen for mathematical convenience.

A salient feature of these data is dominance. Scenario A dominates 
Scenario B from above if  A’s scores on all five criteria are greater or equal to 
the scores of B. A dominates B from below if  A’s scores on all five criteria are 
less than or equal to those of B. If  A dominates B from above, then B can 
never be ranked above A in any model that computes the scenario score as 
a monotonic function of the five criteria scores. The presence of dominated 
scenarios enables us to analyze whether the experts’ rankings are broadly 
consistent with a monotonic model of criteria scores.

3. Model Adequacy

Of the 30 scenarios, only seven were nondominated. This means that 
none of  the 23 scenarios dominated from above could be ranked 1 by a 
stakeholder whose preferences were consistent with the model. In fact, 
22.4% of  the top rankings were inconsistent in this sense: 77.6% of  the 
top rankings went to four of  the seven nondominated scenarios. A sce-
nario dominated from above by two or more scenarios could not con-
sistently be ranked second; in fact, 23.7% of  the second rankings were 
inconsistent in this sense. Dominance from below was much less prevalent 
than dominance from above.

In view of the large number of dominated scenarios, we view the percent-
ages of inconsistent rankings as indicating that the stakeholders’ preferences 
were broadly, though not wholly, consistent with a monotonic model.1 We 
therefore proceeded to fit the linear model (1).

The 30 scenarios and their criteria scores are shown in Table 1. The non-
dominated scenarios are shaded.

 1 If  the 64 experts had chosen their top-ranked scenario at random, the probability that 14 
or fewer would chose one of the 23 dominated scenarios is in the order of 10−20.
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TABLE 1. Scenarios and Criteria Scores.

Nr Code Scenario
Scale
ln( (km*10)2)

Freq ln
(360*#/
year)

Func
(# trophic 
layers)

Recov 
(years) Resist

1 am Aquaculture: 
marine plant

5.30 11.77 1 1 0.2

2 as Aquaculture: shellfish 6.21 11.77 1 0.1 0.05
3 cl Climate change: sea 

level rise
13.82 5.19 2 5 0.2

4 ct Climate change: sea temp 15.42 5.89 3 50 0.25
5 cu Climate change: UV 13.82 3.58 1 1 0.05
6 ca Coastal engineering: 

habitat alteration
4.61 5.89 4 25 0.75

7 dh Direct human impact: 
trampling

9.62 11.77 2 25 0.35

8 fd Fishing: demersal 
destructive

6.68 2.89 4 0.5 0.1

9 fn Fishing: demersal 
nondestructive 
low bycatch

2.30 2.89 1 0.5 0.1

10 fa Fishing: nondestructive 
artisanal

4.61 2.89 1 1 0.5

11 fp Fishing: pelagic high bycatch 6.21 1.28 1 0.5 0.05
12 fr Fishing: recreational 6.68 9.84 2 5 0.2
13 fu Freshwater input: increase 6.91 4.28 2 1 0.1
14 is Invasive species 14.51 11.77 1 20 0.25
15 ma Military activity 6.91 8.37 1 5 0.1
16 nh Nutrient input: causing 

harmful algal blooms
9.21 4.28 2 1 0.1

17 nz Nutrient input: causing 
hypoxic zones

6.68 4.28 3 1 0.05

18 no Nutrient input: into 
oligotrophic waters

8.29 4.97 1 0.5 0.3

19 og Ocean dumping: lost 
fishing gear

2.30 5.89 3 3 0.15

20 os Ocean dumping: 
ship wrecks

3.91 2.89 4 10 0.5

21 ox Ocean dumping: toxic 
materials

6.91 2.89 1 1 0.1

22 po Ocean pollution 6.91 6.58 1 3 0.2
23 pa Pollution input: atmospheric 9.62 3.58 1 0.5 0.2
24 pi Pollution input: inorganic 8.29 4.28 2 3 0.2
25 pr Pollution input: organic 8.52 5.19 2 5 0.2
26 ps Power, desalination plants 4.61 11.77 3 10 0.5
27 sr Scientific research: collecting 2.30 8.37 1 2 0.15
28 sd Sediment input: decrease 3.91 1.28 1 0.5 0.05
29 si Sediment input: increase 10.82 5.19 2 10 0.3
30 ts Tourism: surfing 2.30 10.49 1 1 0.05
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4. Model Fitting: Criteria Weights

We fit the linear model by finding a distribution over criteria weights which 
fit as well as possible the probabilities of  rankings given by the stakeholders. 
The fitting is done by probabilistic inversion. We start with a noninforma-
tive distribution over criteria weights (which however are constrained to 
add to 1). We then adapt this distribution to optimally recover the stake-
holders’ rankings. That is, if  we sample randomly from the adapted distri-
bution, the probability of  drawing a set of  weights with which Scenario A 
is ranked first equals, to the extent possible, the percentage of  experts who 
ranked A first, and so on. The fitting based on first ranks applies only to 
the percentages for the scenarios that were ranked first. Similarly, the fit-
ting based on the first two ranks applies only to the percentages for the 
scenarios ranked 1 or 2.

We are interested in finding a fitting that can be validated by predict-
ing rankings not used in the fitting. Since the goal is to prioritize threats, 
the top rankings are most important. Satisfactory results were found by 
fitting the model based on the first four rankings; this model could then 
and used to predict the fifth rankings. Table 2 and Figure 4 compare the 
predicted and observed percentages of  rankings. The model is first used to 
“retrodict” or “recover” the first four rankings. These are the data actually 
used to fit the model, so this comparison is a check of  model fit rather 
than model prediction. Using the model, we can predict the percentages of 
experts ranking the various scenarios in the fifth position (Figure 5). These 
percentages were not used in fitting the model and test the ability of  the 
model to predict preferences of  the population of  stakeholders. Of  course, 
we should hope that the predictions and retrodictions show similar agree-
ment with the observed rankings.

Because we are fitting a linear model, the expected score of  any scenario 
may be computed by using the expected values of  the criteria weights in 
the adapted distribution. A new scenario, not among the original 30, can 
be scored by multiplying its (transformed) criteria scores by the expected 
weight of  each criterion. This of  course is the great advantage of  a linear 
model, and explains the preference for this model above more complex 
models, even though the latter might yield a better fit. Figure 1 shows the 
expected criteria weights based on fitting only the first ranks, the first two 
ranks, the first three ranks, and the first four ranks, and finally, based on 
fitting all ranks. We observe that these expected weights do not change 
significantly between the two-, three-, and four-rank options. Using all 
ranks causes changes, and also causes greater variance in the criteria 
scores (see Table 4).
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TABLE 2. Model Predictions and Stakeholder Probabilities for Top Five Rankings.

Constraint Prediction I Prediction I,II
Prediction 

I,II,III
Prediction 
I,II,III,IV Stakeholders

#S3 = 1 0.0000 0.0000 0.0000 0.0000 0.0597

#S4 = 1 0.3424 0.3428 0.3420 0.4359 0.3433

#S6 = 1 0.2695 0.2687 0.4164 0.3008 0.2687

#S7 = 1 0.0296 0.0299 0.0453 0.0329 0.0299

#S8 = 1 0.0000 0.0000 0.0114 0.0000 0.0149

#S9 = 1 0.0000 0.0000 0.0000 0.0000 0.0149

#S11 = 1 0.0000 0.0000 0.0000 0.0000 0.0149

#S12 = 1 0.0000 0.0000 0.0000 0.0000 0.0149

#S14 = 1 0.0744 0.0748 0.0580 0.0800 0.0746

#S16 = 1 0.0000 0.0000 0.0000 0.0000 0.0299

#S19 = 1 0.0000 0.0000 0.0000 0.0000 0.0149

#S22 = 1 0.0000 0.0000 0.0000 0.0000 0.0448

#S25 = 1 0.0000 0.0000 0.0000 0.0000 0.0149

#S28 = 1 0.0000 0.0000 0.0000 0.0000 0.0299

#S29 = 1 0.0000 0.0000 0.0000 0.0000 0.0299

#S2 = 2 0.0000 0.0000 0.0000 0.0000 0.0339

#S3 = 2 0.0001 0.0339 0.0442 0.0392 0.0339

#S4 = 2 0.2295 0.2213 0.1713 0.2218 0.2203

#S5 = 2 0.0000 0.0000 0.0000 0.0000 0.0169

#S6 = 2 0.4753 0.0511 0.0663 0.0661 0.0508

#S7 = 2 0.1557 0.0676 0.0825 0.0681 0.0678

#S8 = 2 0.0000 0.0679 0.0432 0.0725 0.0678

#S9 = 2 0.0000 0.0000 0.0000 0.0000 0.0169

#S11 = 2 0.0000 0.0000 0.0000 0.0000 0.0169

#S14 = 2 0.0275 0.2700 0.1855 0.2829 0.2712

#S16 = 2 0.0000 0.0000 0.0000 0.0000 0.0508

#S18 = 2 0.0000 0.0000 0.0000 0.0000 0.0169

#S20 = 2 0.0238 0.0170 0.0214 0.0174 0.0169

#S22 = 2 0.0000 0.0000 0.0000 0.0000 0.0508

#S23 = 2 0.0000 0.0000 0.0000 0.0000 0.0169

#S24 = 2 0.0000 0.0000 0.0000 0.0000 0.0169

#S29 = 2 0.0000 0.0000 0.0000 0.0000 0.0508

#S2 = 3 0.0000 0.0000 0.0000 0.0000 0.0317

(continued)
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Constraint Prediction I Prediction I,II
Prediction 

I,II,III
Prediction 
I,II,III,IV Stakeholders

#S3 = 3 0.0015 0.0084 0.1924 0.3305 0.1587

#S4 = 3 0.0798 0.0656 0.0769 0.1486 0.0635

#S6 = 3 0.0707 0.2063 0.0713 0.1131 0.0635

#S7 = 3 0.5732 0.4615 0.0816 0.1401 0.0794

#S8 = 3 0.0005 0.0053 0.0328 0.0514 0.0317

#S9 = 3 0.0000 0.0000 0.0000 0.0000 0.0159

#S12 = 3 0.0000 0.0000 0.0000 0.0000 0.0635

#S14 = 3 0.0730 0.0649 0.1276 0.1616 0.1270

#S16 = 3 0.0000 0.0000 0.0000 0.0000 0.0317

#S17 = 3 0.0000 0.0000 0.0000 0.0000 0.0635

#S18 = 3 0.0000 0.0000 0.0000 0.0000 0.0317

#S20 = 3 0.0968 0.1582 0.0158 0.0189 0.0159

#S21 = 3 0.0000 0.0000 0.0000 0.0000 0.0159

#S22 = 3 0.0000 0.0000 0.0000 0.0000 0.0159

#S24 = 3 0.0000 0.0000 0.0000 0.0000 0.0159

#S25 = 3 0.0000 0.0000 0.0000 0.0000 0.1111

#S26 = 3 0.1044 0.0293 0.0160 0.0181 0.0159

#S29 = 3 0.0000 0.0000 0.0000 0.0000 0.0794

#S3 = 4 0.0137 0.0687 0.0137 0.2174 0.1864

#S4 = 4 0.1508 0.1125 0.0150 0.0392 0.0339

#S5 = 4 0.0001 0.0036 0.0372 0.0392 0.0339

#S6 = 4 0.0889 0.3417 0.2099 0.0958 0.0847

#S7 = 4 0.1196 0.1948 0.2580 0.1091 0.1017

#S8 = 4 0.0031 0.0074 0.0028 0.0737 0.0678

#S11 = 4 0.0000 0.0000 0.0000 0.0000 0.0339

#S12 = 4 0.0017 0.0000 0.0000 0.0000 0.0847

#S14 = 4 0.2851 0.0784 0.0235 0.0910 0.0847

#S16 = 4 0.0000 0.0000 0.0000 0.0000 0.0339

#S17 = 4 0.0000 0.0000 0.0000 0.0000 0.0169

#S18 = 4 0.0000 0.0000 0.0000 0.0000 0.0169

#S20 = 4 0.0990 0.0795 0.3630 0.0176 0.0169

#S22 = 4 0.0000 0.0000 0.0000 0.0000 0.0678

#S24 = 4 0.0000 0.0000 0.0000 0.0000 0.0169

TABLE 2. (continued)

(continued)
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Although the expected weights are most important in using the model, it 
is also of interest to examine the distributions of weights. Figure 2 shows the 
cumulative distribution functions of the five weights in the four cases shown 
in Figure 1. The joint distributions for one rank, four ranks, and all ranks 
are shown in Figure 3.

The rightmost cumulative distributions indicate greatest importance. The 
picture from Figure 2 echoes that in Figure 1 for the first two ranks: resist-
ance is most important, followed by trophic impact. Of course, we must bear 
in mind that these results are relative to the scaling chosen to represent the 
criteria scores.

Figures 1 and 2 show that the mean values and marginal distributions are 
somewhat similar in all fitting situations. The joint distributions, however, are 
quite different. One sample of weights represents one virtual stakeholder. If  
we plot these five weights on five vertical lines, we get a jagged line representing 

Constraint Prediction I Prediction I,II
Prediction 

I,II,III
Prediction 
I,II,III,IV Stakeholders

#S25 = 4 0.0000 0.0000 0.0000 0.0000 0.0508

#S29 = 4 0.0000 0.0001 0.0000 0.1024 0.1017

#S2 = 5 0.0122 0.0024 0.0035 0.0705 0.0333

#S3 = 5 0.0140 0.0845 0.0276 0.0000 0.0500

#S4 = 5 0.1189 0.1671 0.0182 0.0270 0.0500

#S6 = 5 0.0544 0.0789 0.0974 0.0969 0.0667

#S7 = 5 0.1121 0.1460 0.4151 0.2279 0.1667

#S8 = 5 0.0034 0.0091 0.0057 0.0000 0.0167

#S12 = 5 0.0094 0.0005 0.0000 0.0004 0.0167

#S13 = 5 0.0000 0.0000 0.0000 0.0000 0.0167

#S14 = 5 0.1848 0.1641 0.1137 0.1036 0.1167

#S16 = 5 0.0000 0.0000 0.0000 0.0000 0.0833

#S17 = 5 0.0000 0.0000 0.0114 0.0000 0.0167

#S19 = 5 0.0000 0.0000 0.0000 0.0000 0.0167

#S20 = 5 0.1714 0.0864 0.0883 0.2331 0.0333

#S22 = 5 0.0000 0.0000 0.0000 0.0000 0.0333

#S24 = 5 0.0000 0.0000 0.0000 0.0000 0.0167

#S25 = 5 0.0000 0.0000 0.0000 0.0000 0.0500

#S26 = 5 0.2552 0.1646 0.1003 0.0493 0.0667

TABLE 2. (continued)
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Weights First Rank

w1 w2 w3 w4

3% 6%

7%

22%

2%

6%

63%
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75%
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w5

w1 w2 w3 w4 w5

Weights First Two Ranks

Figure 1. Expected criteria weights based on ranks 1, 1&2, 1&2&3, 1&2&3&4, and all 
ranks.

Weights First Three Ranks
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w1 w2 w3 w4 w5

3%

4%

16%

69%

8%

With All Ranks

9%

1%

6%

24%

60%

w1 w2 w3 w4 w5

Weights First Four Ranks

Figure 1. (continued)

one virtual stakeholder. If  we plot 16,000 such lines we get a picture of the 
population of stakeholders. We say that the stakeholder weights have inter-
actions if, for example, knowledge that a stakeholder assigns high weight to 
the “frequency” criterion gives significant information regarding weights for 
other criteria. A quick visual impression of the joint distributions is given 
by the “percentile cobweb plots” shown in Figure 3. Instead of the weights 
themselves, Figure 3 plots the weights’ percentiles, as this makes the depend-
ence structure more visible. Evidently the joint distributions are complex, 
and are different for the different fitting situations. A detailed analysis of 
interactions is not undertaken here. It is worth noting that the probabilistic 
inversion infers the dependence structure from the stakeholder data; it does 
not assume or impose any structure. We note that as we use more ranks in 
the fitting, the fitting becomes less smooth. The departure from the starting 
distribution grows more pronounced as the number of constraints that the 
fitting tries to satisfy increases.
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Figure 2. Cumulative weight distributions based on rank 1, 1&2, 1&2&3, 1&2&3&4, and all 
ranks.
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Figure 2. (continued)
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Table 2 shows the predicted probabilities of rankings based on the fitting 
in the four cases discussed above. Thus “prediction I” indicates the prediction 
based on fitting only the first-ranked scenarios. The first column gives the con-
straints. “#S4=1” denotes the constraint that Scenario 4 was ranked 1. The last 

Figure 2. (continued)

Figure 3. Percentile cobweb plots for criteria weights fitting one rank, four ranks, and all 
ranks.
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column shows that 34.33% of the stakeholders ranked Scenario 4 as 1. Using 
the fitting based only on the first ranks predicts that 34.24% of the population 
of stakeholders would rank Scenario 4 as 1. Similarly, using the fitting based on 
the first four ranks, 43.59% of the population would rank Scenario 4 first. Of 
course, owing to the presence of inconsistent rankings, the fitting can never be 
perfect. Indeed, 22.4% of the first ranks were inconsistent with the model; as we 
fit 77.6% of the consistent rankings, the remaining probability mass must be dis-
tributed over the other feasible rankings. Some of the discrepancies are sizeable, 

Stakeholders vs prediction based on 1rst 4 ranks

Prediction l,ll,lll,lV

Prediction V

Stakeholders %

0.6

0.5

0.4

0.3

0.2

0.1

0

0 0.2 0.4 0.6

p
re

d
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d

 %

Figure 4. Predictions based on ranks 1– 4 of stakeholder percentages for the first four ranks 
(diamonds), and for the fifth ranks (squares)

Figure 3. (continued)
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Figure 5. Densities for the top four ranked scenarios.

as in the case of #S20 = 5 for the prediction based in the top four ranks. On the 
whole, however, the predictions do capture the drift of stakeholder preferences. 
Fitting all ranks is numerically quite burdensome and conflates issues that deter-
mine the most serious and least serious threats. The fitting based on the top four 
rankings presents the best compromise.

Figure 4 shows the information in Table 2 graphically. On the horizontal 
axis are stakeholders’ percentages for rankings of scenarios; on the vertical 
axis are the predicted percentages based on the fitted model. The diamonds 
are scenarios which were ranked first, second, third, or fourth. These per-
centages were used to fit the model. The squares are scenarios that were 
ranked fifth. We see that these percentages are reasonably well predicted by 
the model. Scenarios plotted on the horizontal axis correspond to rankings 
that are inconsistent with the model.

5. Scenario Scores

Figure 5 shows the densities of  the scores of  the top four scenarios, 
ranked according to their mean values. These densities are generated by 
the distribution of  criteria weights, which models the distribution of  par-
ticipants. It is interesting to note that the modes of  these densities are all 
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TABLE 3. Scenario scores using the first four ranks.

 Using first four ranks 

Variable Mean Variance SD

S1 1.572 1.362 1.167
S2 1.561 1.523 1.234
S3 2.214 2.103 1.450
S4 2.901 3.702 1.924
S5 1.763 1.649 1.284
S6 2.328 1.464 1.210
S7 2.420 2.441 1.562
S8 1.825 1.732 1.316
S9 0.693 0.193 0.439
S10 1.146 0.214 0.462
S11 0.923 0.412 0.642
S12 1.844 1.547 1.244
S13 1.446 0.920 0.959
S14 2.540 2.953 1.719
S15 1.472 1.075 1.037
S16 1.657 1.226 1.107
S17 1.639 1.352 1.163
S18 1.446 0.688 0.829
S19 1.405 1.035 1.017
S20 1.858 1.165 1.079
S21 1.118 0.533 0.730
S22 1.412 0.794 0.891
S23 1.465 0.856 0.925
S24 1.642 1.050 1.025
S25 1.729 1.178 1.085
S26 2.220 1.944 1.394
S27 1.065 0.677 0.823
S28 0.712 0.228 0.477
S29 2.024 1.513 1.230
S30 1.129 1.023 1.012

similar, but the shapes are different. The top-ranked scenario, Scenario 4 
(Sea level rise), is distinguished by a large right tail. Scenario 6 (Coastal 
engineering) shows a bimodal form, suggesting that there are two distinct 
subgroups of  participants. The remaining two scenarios, Scenario 14 
(Invasive species) and Scenario 7 (Direct human impact) are quite similar 
in distribution.

Table 3 shows the mean, variance, and standard deviation of the five cri-
teria weights and the 30 scenarios, based on the first four ranks. Table 4 gives 
the same information based on all ranks. Note that the variances in Table 4 
tend to be larger, sometimes much larger. The top-ranked Scenario 4 has a 
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TABLE 4. Scenario scores using all ranks.

 Using all ranks 

Variable Mean Variance SD

S1 1.118 1.725 1.313
S2 1.065 2.115 1.454
S3 2.066 4.997 2.235
S4 4.196 17.187 4.146
S5 1.613 4.405 2.099
S6 2.689 4.173 2.043
S7 2.726 6.270 2.504
S8 1.396 2.081 1.442
S9 0.528 0.255 0.505
S10 1.041 0.482 0.694
S11 0.822 0.932 0.965
S12 1.510 2.294 1.514
S13 1.167 1.585 1.259
S14 2.768 7.954 2.820
S15 1.274 1.975 1.405
S16 1.384 2.433 1.560
S17 1.263 1.874 1.369
S18 1.264 1.688 1.299
S19 1.039 0.961 0.980
S20 1.786 1.714 1.309
S21 0.981 1.232 1.110
S22 1.220 1.596 1.263
S23 1.302 2.185 1.478
S24 1.445 2.066 1.437
S25 1.568 2.362 1.537
S26 1.918 2.361 1.537
S27 0.757 0.651 0.807
S28 0.605 0.431 0.656
S29 2.051 3.663 1.914
S30 0.701 0.902 0.950

variance of 3.7 based on four ranks, and 17.2 based on all ranks. This suggests 
that trying to fit the top and bottom ranks just muddies the water—it does not 
give more insight into the factors determining high-threat scenarios.

6. Conclusion

By design, this study involved many dominated scenarios. This enabled 
us to test the extent to which the stakeholder preferences were consistent 
with a model for scenario scores based on a monotonic function of the five 
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criteria scores. A stakeholder who prefers a dominated to a nondominated 
scenario is not consistent with any such model. Of course, this does not 
mean that such a stakeholder is inconsistent, it simply means that his/her 
preferences are not consistent with this type of model. In view of the large 
number of dominated scenarios, we may conclude that these stakeholders 
are broadly, though not wholly, consistent with such a monotonic model. 
A more complex model—possibly involving other criteria or interactions of 
criteria—might produce a better fit, but such models would be much more 
cumbersome in practice.

The linear model (1) is one type of monotonic model. Owing to the 
inconsistencies noted above it can never yield a perfect fit, but it does seem 
to capture the main drift of the stakeholder preferences. This means that the 
expected weights (Figure 1) can be used to score coastal ecosystem threat 
scenarios, provided their scores on the five criteria are given and scaled 
appropriately.
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