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Abstract: The paper outlines a reasonable modification of an approach 
developed in the framework of imprecise prevision theory and adapted to 
the available information about some features of probability density func-
tions. This reduces the uncertainty associated with risk analysis operations 
and as a result leads to obtaining the close interval estimations of statistical 
characteristics necessary for decision support.

1. Introduction

Reasonable use of available information on factors and phenomena is indeed 
the root principle of obtaining adequate risk assessments for effective deci-
sion support. As risk is typically considered in the form of composed proba-
bilities of events and their consequences, the statistical model of the situation 
(scenario) is of great importance for achieving correct analytical results. 
Everybody who deals with risk analysis confirms that the level of uncertainty 
can be very high (this is caused by the lack of initial statistical data; data col-
lection is poor because the events are rare). The only option is to elicit sub-
jective information from experts [1]. However, we would like to use the most 
reliable expert judgements to derive a model with acceptable accuracy. This 
means that suitable but inaccurate assumptions are not allowed.

If  the uncertainty is so radical that nothing can be said even about the 
distribution families related to events or influencing factors, then we face a 
problem statement in which all the distributions are plausible. This problem 
statement falls in the scope of the imprecise prevision theory (IPT), estab-
lished in fundamental publications by Walley and Kuznetsov [2, 3]. IPT is 
unique in searching for at least some conclusions about the performance 
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of extremely uncertain characteristics. The main advantage of IPT is its 
 capacity to combine both objective statistical and expert information to esti-
mate the lower and upper bounds of probabilities and other relevant data. 
Such estimates can be obtained without any assumptions of a specific prior 
distribution law by solving linear programming problems.

As has been demonstrated [4], the impediment to previous IPT methodol-
ogy is that optimal solutions are defined for a family of degenerated distribu-
tions (in other words, distributions composed of δ-functions). The existence 
of solutions for degenerated distributions often leads to high imprecision, 
negating the pragmatic value of the assessments of interest (especially for 
risk analysis applications).

The negative issues associated with attempts to quantify uncertainty via 
IPT algorithms can be reduced by incorporating some additional information 
on model features. This paper discusses a strategy of enhancing the estima-
tion technique by means of ‘economic’ addition of available information, 
which allows computing more precise bounds of the intervals for the resulting 
assessments.

2. Imprecise Previsions: Traditional Problem Statement

Let ρ(x) be unknown probability density function of a continuous random 
variable X distributed in the interval [0, T]. Traditional IPT problem formu-
lation (one-dimensional case) [2–4] considers the following constraints:

r r r( ) , ( ) , ( ) ( ) , , ,...,x x dx a f x x dx a i n
T
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Here fi(x) are the given real-valued positive functions (“gambles”) and ai, āi
Œ R+ are the given numbers.

Computing the coherent lower and upper previsions M(g) and M
_

(g)
for expectation M(g) of any function g(x), which is also a gamble, requires 
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subject to constraints (1).
As is known [2, 3], optimization problem (1), (2) is of the linear program-

ming type. So the main approach to searching for a corresponding solution 
involves forming a dual of initial problem statement. In turn such a dual can 
be easily solved in many practical cases.



 ATTRACTING ADDITIONAL INFORMATION FOR ENHANCING 257

The dual for optimization problem (1), (2) follows:
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Investigation [4] shows that function ρ(x) for which M(g) attains the values 
of M(g) or M

_
(g) belongs to a family of degenerated distributions (this den-

sity is composed of δ-functions). This undesirable fact is like a “payment” 
for reasoning under too high a level of uncertainty. Very often we may incor-
porate some limited additional information (typically elicited from experts), 
which has the capacity to provide more valuable analytical results. One pos-
sible method has been described previously [5].

3. The Case of Bounded Densities

The first portion of additional information which allows achieving improve-
ment when solving the optimization problem (1), (2) is presented in the form 
of the bounded probability densities. To get these data we have to ask an 
expert questions like “What is the largest possible percentage of accidents 
per year/decade for a given plant with definite age?” The resulting judgement 
is reflected by inequality:

r( ) ,x K const≤ =  (7)

where K is a real positive number satisfying the condition KT ≥ 1.
New problem formulation requires optimizing the objective function (2) 

subject to constraints (1), (7). This problem can be solved via the methods 
of the calculus of variations [5]. The resulting optimal density function 
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becomes a member of a family of step-functions equal to either zero or K
(so degenerated solutions are eliminated). This leads to much more precise 
previsions (numerical examples confirm improvement of 50% in estimating 
the upper and the lower bounds of M(g) ).

The knowledge of the solution type creates an opportunity for reducing 
the initial problem that belongs to scope of the calculus of variations to the 
easier-to-solve problem of optimizing a multivariable function subject to 
algebraic constraints.

Indeed, denote the intervals [x0,x1), [x2,x3), [x4,x5),…, where ρ(x) = K ≠ 0.
Also denote
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Then we can reformulate our optimization problem:
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To solve such multivariable optimization problems in the general case, we 
can apply a lot of numerical methods like gradient algorithms, simplex-plan-
ning search, and genetic algorithms. In some simple situations, a solution can 
be reached in analytical form.

The remaining question is, how to choose the value of m? Very often we 
don’t know this value a priori.

The recommendation for these situations is as follows: start from small 
values of m (e.g., set m = 0) to solve the optimization problem. The value of 
m can be increased (m = 1), continuing to solve the problem. The process can 
be stopped if  the step-function for ρ(x) begins retaining its form (this means 
that newly introduced intervals become the same as for the previous value of 
m). This finalizes the process of seeking the resulting assessment.
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4. The Case of Bounded Modules of Density Derivatives

The next additional portion of  information can be represented by con-
straints related to the maximum values of  the density derivatives [6]. 
Sometimes it is realistic to elicit these data from experts by asking them a 
question like “What is the largest possible difference between the percent-
ages of  accidents computed for two neighboring years/decades for a given 
plant with definite age?”

Let us denote M ∈ R+ an upper bound on the values of the probability 
density derivative module; i.e., for ∀x

d x dx M constr( ) / .≤ =  (13)

Now we have to optimize the objective function (2) subject to constraints (1), 
(7) and (13). This is also a problem that can be solved via the methods of the 
calculus of variations (very similar to the approach described in [5]). This 
shows that optimal density functions belong to a family of trapezoid—or 
triangular—functions (Figure 1). Correspondingly the intervals for the final 
assessments are expected to be closer as the speed of density change is con-
strained. Another effect of recognizing the form of the optimal solution is the 
possibility of reducing the initial problem to an easier-to-solve optimization of 
a multivariable function subject to algebraic constraints (as was done above).

Indeed, let [x0,x1),[x2,x3),[x4,x5),…,[x2m,x2m + 1) be the intervals that play 
the role of the trapezoid lower bases. It is easy to see that the trapezoid upper 
bases for which ρ(x) = K are located within the intervals

[ / , / ),[ / , / ), ,[ / , / )x K M x K M x K M x K M x K M x K Mm m0 1 2 3 2 2 1+ − + − + −+K

Let [x1, x2), [x3, x4), [x5, x6),…,[x2m+1,x2m+2) be the intervals on which ρ(x) = 0 
(Figure 1).

Figure 1. The Plot of Optimal Bounded Density with Bounded Module of Derivative.

xxxxxxxxx ...3
'
3

'
221

'
1

'
00

r(x)

K

/;/;/;/ 3
'
32

'
21

'
10

'
0 MKxxMKxxMKxxMKxx −=+=−=+=



260 V.G. KRYMSKY

Then the problem statement can be easily reformulated in relation 
to optimizing the multivariate function, which depends on the variables 
x0,x1,…,x2m+1.

The choice of a value for m can be accomplished as was done above. 
Specifically, we can start from minimum values of m (e.g., m = 0) and then 
try to increase it with testing in parallel if  change to m is followed by a 
change to optimal density.

The numerical examples confirm the improvement of up to 75% in result-
ing accuracy. However, the incentive to find a more promising model for 
uncertainty remains, as the bounded densities and bounded density deriva-
tives lead to partially unrealistic solutions: the densities are equal to zero for 
some argument intervals, which means that the ‘probabilistic mass’ is con-
centrated in separate zones. This explains the desire to restrict ourselves by 
considering only the class of smooth differentiable density functions.

5. Application of Generalized Distribution Family

Let us introduce a family of distribution densities described by smooth dif-
ferentiable functions as
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in which Ck, αk ≥ 0, k = 1,2,…,n, are real numbers satisfying the condition
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In the case where ρ(x) satisfies (14) we obtain
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in which Fi(s), i = 1,2,…,m, are Laplace transformed functions fi(x).
Note that Laplace transform Fi(s) for any continuous function fi(x) is 

introduced by the expression
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F s f x sx dxi i( ) ( ) exp( ) ,= −
∞

∫
0

in which s is the Laplace variable (which may take complex values in gen-
eral case: s = Re(s) + j . Im(s); here Re(s), Im(s) denote real and imaginary 
parts of s respectively).

Meanwhile it is proven by D.V. Widder [7] that if  we know the perform-
ances of Fi(s) for real positive values of s then we have a unique expansion 
of its behavior to the whole complex plane of s values.

The tables containing results of the Laplace transformation for different 
functions are widely presented in relevant literature.

For instance, if fi(x) = x then Fi(s) = 1 / s2; if fi(x) = x2 then Fi(s) = 2 / s3,
etc.

Hence, we can write the following general formulae for expectation and 
variation:
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In turn probability of the event X ≤ x can be found as
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Formulae (17)–(19) allow the reduction of typical IPT problems to easier-
to-solve standard problems that belong to the scope of optimizing nonlinear 
multivariable functions depending on the values of Ck, αk, k = 1,2,…,n.

For instance, if  we would like to estimate P(X ≤ x0) for given x0 on the 
basis of interval previsions for moments (17), (18), then we have to substitute 

x0 instead of x into objective function (6) and search for max ( )
,Ck k

P X x
a

≤ 0  and 

min ( )
,Ck k

P X x
a

≤ 0  subject to constraints (1) as well as
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Here E X Var X E X Var X[ ], [ ], [ ], [ ]  are the lower and the upper bounds of 

the intervals for the values of the moments respectively.
An important particular case of the introduced distributions which can 

be obtained if  we consider only two exponential terms in the sum for r( )x
in equality (16) is analyzed below.

Consider the case in which
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Here C1,C2,α ≥ 0, β ≥ 0 are the distribution parameters.
First, analyze which type of statistical characteristic behavior can be pre-

sented by Expression (21).
If  C1 and C2 are of the same sign (i.e., C1C2≥ 0), then Expression (21) 

corresponds to monotonic density functions (Figure 2).
Note that function behavior like of ρ•(x) is more typical for different non-

zero values of C1, C2 and C1C2 ≥ 0; the behavior reflected by ρ*•(x) (‘pure’ 
exponential type) takes place if  C1 = 0 or C2 = 0. The last situation appears 
also if  α = β.

If  C1 and C2 have different signs (i.e. C1C2 ≤ 0) then Expression (21) may 
correspond to nonmonotonic density functions (Figure 3).

Figure 2. Types of Density Functions Presented by Expression (21) if  C1C2 ≥ 0.
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It becomes clear that the introduced family of density functions covers 
a wide class of practically important distribution types (unimodal and even 
antimodal).

Using this generalized distribution family allows reduction of the prob-
lem to optimization of the objective function (2) as a multivariable function 
depending on the initially unknown parameters Ck, αk ≥ 0, k = 1,2,…,n.

The improvement achieved for numerical assessments becomes somewhat 
higher than for cases of nonsmooth density functions.

6. Concluding Remarks

Some reasonable data elicited from experts and accessible for verification can 
significantly improve the decisions made under the conditions of uncertainty. 
Adding information on density bounds, density derivative bounds, or any 
generalized form of distribution function with unknown parameters is, on 
the one hand, a kind of reasonable enhancement and, on other hand, does 
not actually restrict us in taking into account possible (probable) scenarios. 
Meanwhile, this technique provides promising modification of traditional 
approaches based on imprecise previsions and creates a bridge between the 
strict concepts of the corresponding theory and practical needs for assess-
ment accuracy.

The proposed methodology opens the door for next steps associated with 
incorporating additional information elicited from experts. Thus it makes 
sense sometimes to ask an expert if  s/he is ready to give preferences about 
some kinds of data. By presenting these preferences in the form of subjective 
probabilities, we have an opportunity to compute the expectations of  the 
upper and the lower bounds derived for previsions. In turn this strengthens 
support for responsible decisions in the framework of risk analysis.

Figure 3. General form of Density Functions Presented by Expression (21) if  C1C2 < 0.
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