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Abstract: ELECTRE III is a well established multiple-criteria decision-making 
method with a solid track record of real-world applications. It requires precise 
values to be specified for the parameters and criteria measurements, which 
in some cases might not be available. In this paper we present a method, 
SMAA-III, which allows ELECTRE III to be applied with imprecise 
parameter values. By allowing imprecise values, the method also allows an 
easily applicable robustness analysis. In SMAA-III, simulation is used and 
descriptive measures are computed to characterize stability of the results.

1. Introduction

ELECTRE III is a well established multiple-criteria decision-making 
(MCDM) method for ranking a discrete set of alternatives. It belongs to 
the ELECTRE family of methods, which are based on constructing and 
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 exploiting an outranking relation [3]. ELECTRE III has a long history 
of successful real-world applications in different areas. The inputs for 
ELECTRE III consist of criteria evaluations on a set of alternatives and 
preference information expressed as weights and thresholds.

ELECTRE III is a pseudocriteria-based model, and as such it uses a 
threshold to model indifference between pairs of alternatives. Although 
this threshold might be an easy concept for a typical decision maker (DM) 
to understand, simulation studies have shown that it causes the model be 
quite unstable with respect to changes in the indifference threshold value [8]. 
Because of this instability, robustness should always be analyzed by consid-
ering different values for the threshold.

Real-world decision-making problems in general include various types 
of uncertainties inherent in problem structuring and analysis [1]. Eliciting 
the DMs’ preferences in terms of relative criteria importance coefficients or 
weights is usually difficult. Such weights should always be considered impre-
cise, because humans usually do not think about preferences as exact numeri-
cal values, but as more vague concepts [14]. In some cases, weight information 
may be entirely missing, which corresponds to extremely imprecise weights.

This work presents a tool for dealing with imperfect knowledge within 
the ELECTRE III method. It can be used either when information is poor 
or when a robustness analysis needs to be done. The way robustness analysis 
is conducted comprises intensity of exploration in the parameter space. This 
is achieved by applying simulation in such a way that the parameter space is 
explored with a high concentration of discrete values. In addition to this, the 
exploration is coherent with the model. This means that, for example, when 
exploring the weight space, the meaning of weight is taken into account. In 
ELECTRE III weights represent the number of “votes” criteria have.

Capability to derive robust conclusions when applying MCDM methods 
is nowadays of utmost importance. The main sources of imperfect knowl-
edge that are present in complex and multifaceted decision-making situa-
tions require careful observation of the results, and make them dependent 
on an exploration of the neighborhood of the parameters used mainly to 
represent preferences or technical aspects of the problem. If  an alternative 
almost always occupies the first position when changing simultaneously all 
the parameters in a certain neighborhood, it means that it can be a good 
choice for future implementation; these are the kind of robust conclusions 
we are interested in.

The method presented in this paper is based on Stochastic Multicriteria 
Acceptability Analysis (SMAA) [7], a family of  decision support meth-
ods for aiding DMs in discrete decision-making problems. For a survey 
of  SMAA methods, refer to Tervonen and Figueira [15]. The proposed 
method, SMAA-III, explores weight, criteria measurement, and threshold 
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spaces, in order to describe which values result in certain ranks for the alter-
natives. It allows ELECTRE III to be used with different kinds of  imprecise 
or partially missing information. This brings numerous advantages. Firstly, 
SMAA-III allows performing an initial analysis without preference infor-
mation in order to eliminate “inferior” alternatives. Secondly, it allows DMs 
to express their preferences imprecisely, which can lower the DMs’ cognitive 
effort compared to specifying precise weights. Thirdly, imprecise criteria 
measurements can be represented with arbitrary joint probability distribu-
tions, modeling imprecision in a coherent way not possible with ELECTRE 
III. Fourthly, it allows representation of  the preferences of  a group of  DMs. 
Fifthly, the method can be used for analyzing the robustness of  the results 
by representing the imprecision of  the elicited weights as constraints or as 
suitable probability distributions.

In SMAA-III, robustness is analyzed with respect to weights, criteria 
measurements, and thresholds. Traditionally, robustness with ELECTRE 
methods is analyzed by considering discrete points in the weight space (see, 
e.g., [12]). But in the case of ELECTRE III this is not enough: weights 
between these points that might give contradictory results are missed. There 
are also simulation techniques for robustness analysis outside the SMAA 
methodology [2], but to the best of our knowledge, they have never before 
been applied to ELECTRE III.

This paper is organized as follows: ELECTRE III is briefly introduced 
in Section 2. SMAA-III is presented in Section 3. We skim rapidly through 
some computational aspects in Section 4 before proceeding to conclusions 
in Section 5.

2. ELECTRE III

ELECTRE III is designed for solving a discrete ranking problem. It consists 
of m alternatives a1,…, ai,…, am, which are evaluated in terms of n criteria 
g1,…, gj,…, gn. We denote by J the set of criterion indices. gj(ai) is the evalu-
ation of criterion gj for alternative ai. Without loss of generality, we assume 
that all criteria are to be maximized.

Similarly to the other ELECTRE family methods, ELECTRE III is 
based on two phases. In the first phase, an outranking relation between pairs 
of alternatives is formed. The second phase consists of exploiting this rela-
tion, producing a final partial pre-order and a median pre-order.

S denotes the outranking relation, that is, aSb denotes that “alternative a
is at least as good as alternative b.”

ELECTRE III applies pseudocriteria in constructing the outranking 
relation. A pseudocriterion is defined with two thresholds for modeling 
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 preference: an indifference threshold qj(gj(⋅) ) for defining the difference in 
criterion gj that the DM deems insignificant, and a preference threshold 
pj(gj(⋅) ) for the smallest difference that is considered absolutely preferred. 
Between these two is a zone of “hesitation” between indifference and strict 
preference. ELECTRE III also defines a third threshold: the veto threshold 
vj(gj(⋅) ). It is the smallest (negative) difference that completely nullifies (raises 
a “veto” against) the outranking relation. In addition to the thresholds, 
preferences are quantified through a weight vector w = (w1,…, wj,…, wn).
Without loss of generality, we assume that wj

j J

=
∈
∑ 1.

Exploitation of the outranking relation produces a partial pre-order, in 
which every pair of alternatives is connected with indifference (I), incompa-
rability (R), or preference ( f ) relation.

2.1. CONSTRUCTING THE OUTRANKING RELATION

The outranking relation between every pair of alternatives is constructed 
based on a comprehensive concordance index and partial discordance indi-
ces. The concordance index is computed by considering individually for each 
criterion gj the support it provides for the assertion aSjb, “a outranks b with 
respect to criterion gj”. The partial concordance index is computed as fol-
lows, for all j ∈ J:
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After computing the partial concordance indices, the comprehensive con-
cordance index is computed as follows:

c a b w c a bj j
j J

( , ) ( , ).=
∈
∑

The discordance of criterion gj describes the veto effect this criterion imposes 
against the assertion aSb. The partial discordance indices are computed 
separately for each criterion j ∈ J:
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By applying the previously mentioned indices, the degree of credibility of the 
outranking assertion aSb is defined as:
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Notice that when dj(a,b) = 1 for any j ∈ J, this implies that ρ(a,b) = 0.

2.2. THE EXPLOITATION PROCEDURE

The exploitation of the outranking relation consists of two phases. In the 
first phase, two complete pre-orders, Z1 (descending) and Z2 (ascending) are 
constructed with the so-called distillation procedures. In the second phase, 
a final partial pre-order or a complete median pre-order is computed based 
on these two pre-orders.

The distillation procedures work by iteratively cutting the fuzzy outrank-
ing relations with descending λ-cutting levels. With a given cutting level λ*,
alternative a outranks alternative b (aSλ*b) if  the following holds:

aS b
a b
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where s(⋅) is the distillation threshold, usually defined as [1]:

s x x( ) . . .= −0 3 0 15
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The pre-orders are constructed in an iterative manner. In each step the 
alternatives with the highest or lowest qualification scores are distilled, 
 depending on whether the distillation is descending or ascending. The 
qualification score is computed as a difference between the number of 
alternatives that the selected alternative outranks and the number of  alter-
natives that outrank it for a given cutting level. The procedure is presented 
in Algorithm 1.

In the original ELECTRE III, a median pre-order is computed based on 
the two complete pre-orders, Z1 and Z2, and the final partial pre-order. The 
final partial pre-order is computed as the intersection of the two complete 
pre-orders in such a way that the following relations hold:

a b a b a b aI b a b a b aI b

aIb aI b a

Z Z Z Z Z Z

Z
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Algorithm 1: Distillations
1. Determine the maximum value of the credibility indices in the 

set under consideration. Assign this to λ.

2. Determine l
l l4 =

< −
max { ( , )}

( , ) ( )d a b z
d a b , where (a,b) belong to the 

set under consideration.

3. If  λ4 = 0, end this distillation.

4. Determine for each alternative its qualification score; that is, 
the difference between the number of alternatives it outranks 
and the number of alternatives that outrank it. Outranking is 
determined according to λ*.

5. The set of alternatives having the largest (or smallest, if  the 
distillation is ascending) qualification is the current distillate.

6. If  the number of alternatives in the current distillate is larger 
than 1, repeat the process from step 2 inside the distillate.

7. Form a new set under consideration by removing the distilled 
alternatives from the current one. If  this set is not empty, 
repeat the process on the new set from step 1.

8. The final pre-orders are ranked so that the alternatives in the 
first distillate are given rank 1, in the second rank 2, etc.
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After this, the median pre-order can be computed by removing the incompa-
rabilities and calculating the differences of ranks of an alternative in the two 
complete pre-orders.

2.3. ROBUSTNESS ANALYSIS FOR WEIGHTS

There are numerous weight elicitation techniques proposed for ELECTRE 
methods; the following are among the most recent and popular:

1. DIVAPIME by Mousseau [10] produces intervals for weights.

2. Hokkanen and Salminen [5] used two different weight elicitation proc  
edures and found that the normalized sets of weights had minor differ-
ences.

3. SRF by Figueira and Roy [4] allows weight elicitation in a user-friendly 
manner by using a technique based on a pack of “playing cards” to 
determine the relative importance of criteria coefficients. It can produce 
interval weights and was also designed to support multiple DMs.

4. The approach proposed by Rogers and Bruen [11] uses pairwise compari-
sons to elicit the weights.

The first three techniques, which produce intervals or two-weight sets that 
may be used to define intervals, can be used directly in robustness analysis. 
With the fourth weight elicitation technique, intervals (such as ± 10%) could 
be defined around the original weights.

Traditionally the robustness analysis for ELECTRE methods has been an 
ad hoc investigation into the effect of changing values [1]. This type of investi-
gation typically considers only discrete points (for example, extreme points) of 
the feasible weight space (e.g., weight intervals). The procedure of building the 
pre-orders is based on exploiting the fuzzy outranking relation, which is non-
linear and discontinuous by nature. Therefore, instead of just a few discrete 
points, it is important to analyze the entire continuum of the weight space.

3. SMAA-III

In order to overcome the limitations of ELECTRE III, SMAA-III applies 
simulation and studies the effect of changing parameter values and criterion 
evaluations on the results. The imprecision is quantified through joint density 
functions in the corresponding spaces.

The weights are represented by a weight distribution with joint density 
function fW(w) in the feasible weight space W. The weights are non-negative 
and normalized. The weight space is an n − 1 dimensional simplex:
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Completely missing preference information is represented by a uniform (con-
stant) weight distribution in W; that is:

f w WW ( ) / ).=1 vol(

If  some kind of preference information is available, different weight distribu-
tions can be applied [7]. In practice, the preferences can usually be elicited 
as interval constraints for weights. In this case, a uniform distribution in the 
space bounded by the constraints is used. Figure 1 illustrates the restricted 
feasible weight space of a three-criteria problem with lower and upper 
bounds for w1. In this paper the focus is on weight information provided as 
intervals, because:

1. If  there are multiple DMs whose preferences need to be taken into 
account, the weight intervals in general can be determined to contain the 
preferences of all DMs [7].

2. Weight intervals allow simple robustness analysis even when only deter-
ministic weights are available, by specifying, for example, a ± 10% inter-
val for each weight.

Figure 1.  Feasible Weight Space of  a Three-criteria Problem with Lower and Upper Bounds 
for w1.
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It should be observed that other forms of easily elicitable preference infor-
mation can be used as well, such as ranking of the criteria. A ranking can 
be obtained by asking the DMs to identify their most important and second 
most important criterion etc. Figure 2 illustrates the feasible weight space for 
a three-criteria problem with the ranking w1 ≥ w2 ≥ w3.

Imprecise thresholds are represented by stochastic functions αj(⋅), βj(⋅),
and γj(⋅), corresponding to the deterministic thresholds pj(⋅), qj(⋅), and vj(⋅),
respectively. To simplify the notation, we define a 3-tuple of thresholds τ
= (α, β, γ). It has a joint density function fτ in the space of possible values 
defining the functions. It should be noted that all feasible combinations of 
thresholds must satisfy qj(ai) < pj(ai) < vj(ai).

Traditionally the thresholds in ELECTRE models have been used to 
model preferences of  the DMs (e.g., differences deemed significant) as well 
as data imprecision. But it has been shown that the indifference thresh-
old does not correspond to a linear imprecision interval [8]. Therefore, in 
SMAA-III thresholds are used only to model preferences (together with 
weights). Imprecision in the criteria measurements is modeled with stochas-
tic variables.

These stochastic variables are denoted with ξij corresponding to the 
deterministic evaluations gj(ai). They have a density function fX(ξ) defined in 
the space X Í Rm×n. In principle, arbitrary distributions can be used, but in 
practice a uniform distribution in a certain interval or a Gaussian distribu-
tion is used.

Figure 2. Feasible Weight Space of a Three-criteria Problem with Ranking of the Criteria.
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Incomparabilities between alternatives can be present in the final results 
of ELECTRE III. This is one of the main features of ELECTRE methods in 
comparison with the methods applying classical multi-attribute utility theory 
[6]. In the late seventies, it was considered a very important theoretical advance. 
But, in reality when dealing with practical situations,  incomparabilities in the 
final result are inconvenient. This aspect was soon observed [13] and partial pre-
orders were replaced by complete pre-orders or median pre-orders. We apply 
median pre-orders in computing rank acceptability indices. The only informa-
tion lost in using the median pre-order as the primary measure of the ranking is 
the incomparability. As our method is also aimed to help analysts accustomed to 
ELECTRE III, we will later present another index to measure incomparability.

a b

a b a b aI b a b a b aI b

a b b a

Z Z Z Z Z Z

Z Z
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where r(⋅) is the ranking of an alternative in the superscripted pre-order. 
Monte Carlo simulation is used in SMAA-III to compute three types of 
descriptive measures: rank acceptability indices, pairwise winning indices, 
and incomparability indices. In order to compute these indices, let us define 
a ranking function that evaluates the rank r of  the alternative ai with the cor-
responding parameter values:

rank(i w, , , ).ξ t

The evaluation of this function corresponds to executing ELECTRE III and 
returning the rank of the corresponding alternative in the resulting median 
pre-order. We will next introduce the three indices. Interpretation of their 
values is presented in Section 4 through various re-analyses.

3.1. RANK ACCEPTABILITY INDEX

The rank acceptability index, bi
r , measures the share of feasible weights 

that grant alternative ai rank r in the median pre-order by simultaneously 
taking into account imprecision in all parameters and criterion evaluations. 
It represents the share of all feasible parameter combinations that make 
the alternative acceptable for a particular rank, and it is most conveniently 
expressed as a percentage.

The rank acceptability index bi
r  is computed numerically as a multidi-

mensional integral over the spaces of feasible parameter values as:

b f w f f dTdwdi
r

W XXW i w r TT
= ∫∫ ∫=

( ) ( ) ( ) .
: , , , )

x t x
trank( ξ
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The most acceptable (“best”) alternatives are those with high acceptability 
for the best ranks. Evidently, the rank acceptability indices are within the 
range [0,1], where 0 indicates that the alternative will never obtain a given 
rank and 1 indicates that it will always obtain the given rank with any feasi-
ble choice of parameters.

Using the rank acceptability indices as measures of  robustness is 
quite straightforward: when the index is near 1, the conclusion is robust. 
Nevertheless, caution should be used when interpreting the results in cases 
where these indices are computed without weight information to character-
ize the problem. If  an alternative obtains a low score for first-rank accept-
ability, it does not necessarily mean that it is “inferior”. The DMs’ actual 
preferences may well lie within the corresponding (small) set of  favorable 
first-rank weights.

3.2. PAIRWISE WINNING INDEX

The pairwise winning index oik [9] describes the share of weights that place 
alternative ai on a better rank than alternative ak. An alternative ai that has 
oik = 1 for some k always obtains a better rank than alternative ak, and can 
thus be said to dominate it.

The pairwise winning index oik is computed numerically as a multidi-
mensional integral over the space of weights that gives a lower rank for one 
alternative than for another:

o f w f f dTdwdik W XXw W i w k w T= ∫∫ ∈ <
( ) ( ) ( )

: , , , ) , , , )
x t

x t x trank( rank(
xx

T∫ .

The pairwise winning indices are especially useful when trying to dis-
tinguish between the ranking differences of  two alternatives. Because 
the number of  ranks in the median pre-order varies among different 
simulation runs, two alternatives might obtain similar rank acceptabili-
ties although one is in fact inferior. In these cases looking at the pairwise 
winning indices between this pair of  alternatives can help to determine 
whether one of  the alternatives is superior to the other or if  they are equal 
in “goodness.”

3.3. INCOMPARABILITY INDEX

Because median pre-orders are used in computing the rank acceptability 
indices, it is no longer possible to model incomparability. As some DMs 
might be accustomed to make decisions that take incomparabilities into 
account, another index is introduced. Incomparability index σik measures 
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the share of  feasible parameter values that cause alternatives ai and ak to be 
incomparable. For this reason, we define the incomparability function:

R i k
a ai k( , , , )

,
x t =

1  if the alternatives  and  are incomparablle,

, if not.0

⎧
⎨
⎩

This function corresponds to running ELECTRE III with the given param-
eter values and checking if  the alternatives are judged incomparable in 
the final partial pre-order. In practice we do not compute the final partial 
pre-order, because this information can be extracted from the two partial 
pre-orders Z1 and Z2 as shown (1). By using the incomparability function, 
the incomparability index is computed numerically as a multidimensional 
integral over the feasible parameter spaces as:

s x t x t xik W XXW TT
f w f f R i j dTdwd= ∫∫ ∫( ) ( ) ( ) ( , , , ) .

4. Computation

All of the indices mentioned above are computed with Monte Carlo simula-
tion. The procedure is similar to that presented and analyzed by Tervonen and 
Lahdelma [16]. SMAA-III differs in the sense that it applies the ELECTRE 
III procedure to derive the descriptive values instead of a utility function.

In each simulation iteration, sample parameter values are generated from 
their corresponding distributions, and ELECTRE III is executed with these 
values. Then the corresponding hit counters are updated as with the original 
SMAA. If standard distributions are used for defining the imprecise param-
eter values, then all sampling operations except weight generation are compu-
tationally very light. In the case of weight generation, if tight upper bounds are 
used, we can have very high weight rejection ratios (up to 99.9%). Nevertheless, 
even with 99.9% weight rejection, the method is fast enough to use in an inter-
active decision-making process with problems of reasonable size.

To obtain sufficient accuracy for the indices, we suggest using at least 
10,000 simulation iterations. This gives error limits of less than 0.01 with 
95% confidence [16].

5. Conclusions

In this paper we introduced a new method, SMAA-III, which allows the 
parameters and criteria measurements of ELECTRE III to be imprecise and 
to be defined with various types of constraints: no deterministic values are 
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required. This has numerous advantages, especially in the context of MCDM 
with multiple DMs, because the parameters can be determined as intervals 
that contain the preferences of all DMs. It also allows an easily applicable 
robustness analysis to be performed.
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