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Abstract: A number of unconventional formal approaches to decision mak-
ing have been developed to provide mathematical foundations for rational 
choices under both aleatory and epistemic uncertainty. They challenge a 
central assumption of the Bayesian theory, that uncertainty should always be 
gauged by a single (additive) measure, and values should always be gauged 
by a precise utility function [3].

Decision-making theorists have presented approaches for arriving at 
rational decisions in spite of imprecision and indeterminacy [4–8, 10]. This 
paper introduces the theory of upper and lower previsions, provides examples,
discusses how to account for unreliable statistical judgements, and reviews 
the relationships between the Precautionary Principle, indecision, and imprecise
statistical reasoning.

1. Introduction

One of the gravest errors in any type of risk management process is the presentation of risk 
estimates which convey a false impression of accuracy and confi dence – disregarding the un-
certainties inherent in basic understanding, data acquisition, and statistical analysis. [1]

Decision making concerning human activities with potentially harmful con-
sequences and high uncertainties is based on both scientific findings of the 
risk assessment and societal norms such as the Precautionary Principle (PP). 
However, risk assessments along with uncertainty measures complemented 
by the need to comply with the PP do not compel adoption of a particular 
course of action. This is usually left to the discretion of decision makers. As 
the stakes rise, the lack of scientific consistency among all systems analysis 
constituents preceding the option selection may result in failing to select 
an acceptable option. Systems analysis constituents include hazard/threat 
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identification, risk assessment, uncertainty assessment, account of societal 
norms, and decision making. Studying each of them as a separate compo-
nent is necessary, but this is no longer sufficient. An integrated approach, 
binding them in a formally consistent framework, is a coveted target for risk 
analysts.

Conceptual and computational structure of analyses of complex systems 
involves a division of uncertainty into aleatory uncertainty, which arises 
because the system under study can potentially behave in many different 
ways; and epistemic uncertainty, which arises from a lack of knowledge 
about quantities that have fixed but poorly known values. Aleatory uncer-
tainty is also called stochastic and irreducible, while epistemic is called reduc-
ible. Such separation plays a particularly important role in risk analyses, 
where aleatory uncertainty arises from many possible adverse outcomes or 
consequences and epistemic uncertainty arises from a lack of knowledge 
with respect to quantities required in the characterization of the frequency, 
evolution, or consequences of individual potential adverse effects [2].

A number of unconventional formal approaches to decision making have 
been developed to provide mathematical foundations for rational choices 
under both aleatory and epistemic uncertainty. They allow for the limited 
cognitive abilities of human beings and could be regarded as formal variants 
of the PP. They also give a perspective of how the integrated framework 
could be built.

Though different in detail, they have a very important point in common. 
They challenge a central assumption of the Bayesian theory, that uncer-
tainty should always be gauged by a single (additive) probability measure, 
and values should always be gauged by a precise utility function [3]. This 
assumption has been referred to as the Bayesian dogma of precision.1 The 
opponents of the dogma of precision claim that imprecision, indeterminacy, 
and indecision are compatible with rational choice [4].

One unconventional theory of  rational choice is discussed by Gårdenfors 
and Sahlin [5]. The point of  departure from the conventional theory of 
rational choice—Bayesian decision theory—is that the amount and quality 
of  information the decision maker has concerning the possible states and 
outcomes of  the decision situation in many cases constitute an important 
factor when making decisions. To describe this aspect of  the decision situ-
ation, the authors say that the information available concerning the pos-
sible states and outcomes of  a decision situation has different degrees of 
epistemic reliability. The second step is to recognize that the reliability of 

1 Perhaps the most noticeable calls to revise the Bayesian theory for making rational choices 
were pronounced by Herbert A. Simon (Nobel Prize winner). See, for example, Simon [9].
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a probability assignment for states affects the risk of  the decision. The less 
reliable the probability assignment, the more risky the decision, other things 
being equal.

Another theory of decision making is discussed by Levi [6]. His point 
of departure is that we often do not know or cannot decide what we most 
 prefer; yet we still have to choose. In such cases, called decision making 
under unresolved conflict, the requirement that preferences should be logi-
cally coherent does not necessarily imply that choices should satisfy proper-
ties of consistency such as avoiding sure loss. A rational agent, Levi claims, 
ought to restrict his choice to the set of admissible options; within this set, 
any choice is allowed. The theory suggests a formal way of constructing the 
set of admissible choices.

There are some other developed rules of rational choice that accept as 
a starting point a lack of knowledge for exactly defining utilities and prob-
ability assignments for the set of outcomes. They presuppose that numerical 
input for decision making is interval-valued and suggest different approaches 
for choosing one option among those permissible. The width of the interval 
manifests the lack of knowledge concerning utilities and probability assign-
ments [4, 7, 8].

Decision making is the final phase in systems analysis and to all appear-
ances there are mathematically furnished rules to make rational choices 
under lack of knowledge. The question to ask now is: Are there formal 
frameworks for uncertainty modeling that are built on the clear distinction 
between aleatory and epistemic uncertainty?

Reasoning that can accommodate the both types of uncertainties is called 
imprecise statistical reasoning and is motivated by the idea that the dogma 
of precision is mistaken and imprecise probabilities are needed in statistical 
reasoning and decision. The pivotal concept of this reasoning is imprecise 
probability, which is a generic term for a range of mathematical models that 
measure chance or uncertainty without sharp numerical probabilities. These 
models include belief  functions, Choquet capacities, comparative probability 
orderings, convex sets of  probability measures, fuzzy measures, interval-
valued probabilities, possibility measures, plausibility measures, and upper 
and lower expectations or previsions [4].

In pursuit of uncertainty representation, aggregation, and propagation 
through models of reliability and risk, we employ the theory of upper and 
lower expectations (previsions) as described by Walley [4] and Kuznetsov 
[10] and build interval statistical models based on it. Generally speaking, to 
measure aleatory uncertainty, we need some kind of probability; to measure 
epistemic uncertainty, we need intervals.

This paper introduces the theory of upper and lower previsions in a ‘soft’ 
way, avoiding heavy formalism. A variety of statistical evidence admitted 



228 I. KOZINE

in the framework is exemplified. A way to account for unreliable statistical 
judgements is also briefly described. A short passage on the relationships 
between the PP, indecision, and imprecise statistical reasoning concludes the 
paper.

2. Discrete Case

Let us look first at what kind of discrete problem can be solved in the frame-
work of the theory of upper and lower expectations.

Assume there are three possible outcomes s1, s2, and s3in a subject matter 
of interest. This is an exhaustive set of events meaning that P(s1) + P(s2) + 
P(s3) = 1, where P(⋅) stands for a probability. Information on the probabili-
ties of the occurrences of these events is given as three pieces of evidence: (1) 
P(s1) ∈ [0.1, 0.3], (2) s2 is at least two times as probable as s3, and (3) s2 and s3
is at least as probable as s1. What probabilities P(s2) and P(s3) can one derive 
based on the provided information?2

One can hardly expect that the source imprecise information can result in 
precise answers in the form of precise probabilities P(s2) and P(s3). What is 
the mechanism for arriving at an answer?

As we have three possible outcomes, the simplex representation can dem-
onstrate well the basic ideas of the approach. In Figure 1, the vertexes 1, 2, 
and 3 correspond to the three states s1, s2, and s3. The probability simplex 
is an equilateral triangle with height one unit, in which the probabilities 
assigned to the three elements are identified with perpendicular distances 

2

3

0.1

0.3

1

P(s1) ∈[0.1, 0.3]

Figure 1. Presentation of the Statistical Evidence P(s1) ∈ [0.1, 0.3] on the Simplex.

2 This Example has been Demonstrated in Greater Detail [11.]
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from the three sides of the triangle. Adding up these three distances gives 
1. Thus, each point inside of the simplex can be thought of as a precise 
probability distribution. The simplex representation is especially useful for 
depicting pieces of statistical evidence and studying their effects on the prob-
abilities of outcomes.

The first piece of evidence, P(s1) ∞ [0.1, 0.3], is depicted in Figure 1; 
Figure 2 depicts all the source information with the simplex representation.

The source evidence can be rewritten in the form of inequalities (1) 0.1 ≤
P(s1) ≤ 0.3, (2) P(s2) ≥ 2P(s3), and (3) P(s2) + P(s3) ≥ P(s1). These inequalities 
and condition P(s1) + P(s2) + P(s3) = 1 define a constrained area which is 
shown in black in Figure 2. The calculation of upper and lower bounds for 
the probabilities of interest becomes a geometric task. The calculated values 
of the probabilities are P

_
(s2) =0.466, P

_
(s2) =0.9, P

_
(s3) =0, P

_
(s3) =0.3, while 

P
_
(s1) =0.1 and P

_
(s1) =0.3 remain unchanged.

It can be noticed from Figure 2 that the evidence P(s2) + P(s3) ≥ P(s1)
does not contribute to the precision and can be discarded without influenc-
ing the result. That is, the black area, defining the lower and upper prob-
abilities, does not change if  this evidence is removed from the set of evidence. 
This simply supports the common-sense fact that not all information has a 
positive contribution to the precision of the result.3

The coherent imprecise probabilities are considered a particular case 
of the theory of imprecise coherent previsions and are based on three 
 fundamental principles: avoiding sure loss, coherence, and natural exten-
sion. A probability model avoids sure loss if  it cannot lead to behavior that 

3 Precision is considered the value of difference between the upper and lower bound of the 
probability of interest.

2
0.1

0.3
0.33

3

0.5

1

P2 ≥ 2P3

P2 + P3 ≥ P1

P1 ∈ [0.1, 0.3]

Figure 2. Presentation of All Available Statistical Evidence on the Simplex.
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is certain to be harmful. This is a basic principle of rationality. Coherence is 
a stronger principle, which characterizes a type of self-consistency. Coherent 
models can be constructed from any set of probability assessments that avoid 
sure loss through a mathematical procedure of natural extension which effec-
tively calculates the behavioral implications of the assessments [4].

The principle of avoiding sure loss for the lower and upper probabilities 
is equivalent to holding the following inequalities:

0 1≤ ≤ ≤ ∀ =P A A i ni i( ) ( ) , , ,P 1 K  (1)

P P Ai
i

n

( ) ( )W = ≤
=
∑ 1

1

and

P P Ai
i

n

( ) ( )W = ≥
=
∑ 1

1

where Ai are pairwise-disjoint subsets for any i,j = 1,…,n whose union is Ω,
the possibility space.

The construction of coherent imprecise statistics and probabilities of 
events different from Ai is performed through the natural extension. The 
natural extension for this particular case is the solution of two linear pro-
gramming problems

Mg = →
=∑ g A P Ai ii

n
( ) ( ) min

1
 (2)

Mg g A P Ai ii

n
= →

=∑ ( ) ( ) max
1

 (3)
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( ) ( ) ( ),
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  i 1,...,n
(4)

Function g can be, for example, g = x and then M_ g and M
_
 are lower and 

upper mean values of x.
If  g is a characteristic function of an event B, i.e., g = IB(Ai) = 1 if  Ai Œ

B and IB(Ai) = 0 if  Ai ∉ B, then the natural extension is

P B I A P AB i ii

n
( ) ( ) ( ) min= →

=∑ 1
 (5)

P B I A P AB i ii

n
( ) ( ) ( ) max= →

=∑ 1
 (6)
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subject to (4).
The lower and upper mean values M_ g and M

_
g or p

_
(B) and P_ (B) obtained 

as the solutions of linear programming problems (2) and (3) subject to (4) 
and (5) and (6) subject to (4) are referred to as coherent. In [4] and [10] other 
definitions of the natural extension can be found.

The sense of the natural extension in precise mathematical terms is to 
estimate the interval [M_ g, M

_
g] of  possible values of Mg for all probability 

distributions for which P_ (Ai) ≤ P(Ai) ≤ P
_
(Ai), i = 1,…,n. That is, we assume 

that any probability distribution consistent with the initial judgements P_ (Ai)
≤ P(Ai) ≤ P

_
(Ai) for i = 1,…,n is possible and base our inferences on this 

assumption without preferring a particular distribution.
An example is provided below.

3. Interpretation of Upper and Lower Probabilities

For many people, the fi rst time they heard of the Pentagon’s plan to accept bets on terror-
ist activities was when the bizarre-sounding idea was abandoned. …The Defence Advanced 
Research Projects Agency (DARPA) would have traded futures contracts that paid out if  par-
ticular events, including terrorist attacks, took place. It was widely attacked as both ghoulish 
and nonsensical. [26]

Expressions (5) and (6) give us a formal definition (mathematical representa-
tion) of the upper and lower bounds for probabilities as maxima and minima 
of the objective functions subject to a set of constraints. In turn, the set of 
constraints also includes upper and lower probabilities. Where do they come 
from? How can one acquire them?

To answer these questions we need to distinguish first the issue of inter-
pretation from that of mathematical representation. There are many kinds of 
mathematical models for uncertainty, such as additive probability measures, 
upper and lower probabilities, and comparative probability ordering. Any of 
these models can be given various interpretations. Similarly, any single inter-
pretation of probability can be given various mathematical representations. 
De Finetti’s work is a valuable example of how interpretation can profoundly 
affect the mathematical theory. His emphasis on finite (rather than count-
able) additivity and on exchangeability is a consequence of his operational 
interpretation [4].

Let the possibility space W be the set of possible states of the world that 
are of interest. The elements of W are assumed to be mutually exclusive 
and exhaustive. A gamble is a bounded real-valued function defined on the 
domain W. A gamble X should be interpreted as a random or uncertain 
reward; if  the true state of the world turns out to be w, then the reward is 
X(w) units of an appropriate asset. The reward may be negative, in which 
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case it represents a loss of X(W) units. The value of the reward X is uncer-
tain, because it is uncertain which element of W is the true state.

Essentially, gambles are risky investments in which the utility values of 
the possible outcomes are known precisely [12]. The subject’s uncertainty 
about a domain can be measured through his attitudes to gambles X defined 
on that domain, and particularly by determining whether he will buy or sell a 
gamble X for a specified price x. In principle, we could measure the subject’s 
uncertainty concerning W to any desired accuracy by offering him sufficiently 
many gambles and observing which of them are accepted. Equivalently, 
we could measure the subject’s lower and upper previsions for a particular 
Gamble X, which are defined to be the supremum acceptable buying price 
and infimum acceptable selling price for X. The transaction in which a 
Gamble X is bought at price x has reward function X – x, a new gamble. A 
subject’s supremum acceptable buying price for X is the largest real number c 
such that he is committed to accept the gamble X – x for all x < c. Similarly, 
the transaction in which a gamble X is sold for price x has reward function 
x – X, and a subject’s infimum acceptable selling price for X is the smallest 
real number d such that he is committed to accept the gamble x – X for all 
x > d. This leads to the theory of upper and lower previsions in [10]. The 
marginal buying and selling prices (lower and upper previsions) for a gamble 
may differ because the subject is indecisive or because he has little informa-
tion about the gamble. As the amount of relevant information increases, the 
difference between the marginal buying and selling prices typically decreases. 
In the special case where every gamble X has a ‘fair price,’ meaning that the 
supremum acceptable buying price agrees with the infimum acceptable sell-
ing price, one obtains the theory of linear previsions [13].

Subsets of  W, which are called events, can be identified with their 
indicator functions, which are gambles as well. When A is a subset of  W,
buying and selling prices (lower and upper previsions) for the indicator 
function A can be regarded as betting rates on and against A (lower and 
upper probabilities).

4.  Judgements Admitted in Imprecise Statistical Reasoning: 
Continuous Case

The thesis that, “all available statistical evidence in risk and reliability analy-
ses is to be utilized” is repeated in numerous guidelines in risk and reliability 
analysis. Everybody agrees but nobody knows how to make this true. As the 
remedy, Bayesian updating is usually brought up. Unfortunately, many peo-
ple seem to believe that this is the only way of producing coherent statistical 
inferences. That is not so, for two reasons [14].
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First, coherent statistical inferences need not be based on any assessment 
of prior probabilities. Second, even when inference proceeds by updating 
prior probabilities, imprecise prior probabilities can be presented by several 
mathematical models other than a set of prior probability distributions. In 
many problems it is difficult to identify a suitable prior distribution or set 
of prior distributions to perform Bayesian sensitivity analysis. Coherent 
imprecise previsions constitute an alternative method that in some problems 
is more convenient and traceable.

In this section I will give some examples of the judgments that can be 
easily utilized by the method and that are relevant for a continuous set of 
possible outcomes. (More on admitted judgments can be found elsewhere 
[15, 16].) Examples will usually involve the notion of time to failure (a con-
tinuous variable), this being a favorite target for reliability analysts. I will try 
to avoid giving too much mathematical formalism, but some of it cannot 
be avoided. To utilize a judgment it has to be represented in a mathematical 
form that is then used as a constraint for a properly constructed objective 
function.

Direct judgements on the lower and upper probabilities of events 
or—in general—lower and upper previsions are a straightforward way 
to elicit the imprecise probability characteristics of interest. Constraint 

a f x x dx a
R

≤ ≤
+

∫ ( ) ( )r  is the model of a direct judgement. If, for instance, 

fi(X) = X, then a_i, ā i are the lower and upper expected values of X_, corre-
spondingly. If  X is time to failure, then a_i, ā i are the lower and upper bounds 
for the mean time to failure. If  fi(X) = I[t, •](X), where I[t, •](X) is an indicator 
function such that I[t, •](X) = 1 if  X Œ [t,∞] and I[t, •](X) = 0 otherwise, then 
a_i, ā i are the lower and upper bounds for the probability of failure occur-
rence within [t, ∞].

On a general note, direct judgements can be elicited and utilized for any 
probability characteristic that can be represented as an expectation to a 
properly chosen gamble.

Being able to utilize comparative judgements is a good feature of the the-
ory of imprecise previsions. They could be, for example, “the failure of com-
ponent A within the time interval [0,10] is at least as probable as the failure 
of component B within [0,20],” or “the mean time to failure of component B
is less than the mean time to failure of component A.” The first judgement 
is modeled as follows:

0 0 0 10 0 20 0
∞ ∞

, ,∫ ∫ − , ≥( ( ) ( )) ( ) ,[ ] [ ]I x I x x x dx dxA B A B A Br

and the second:
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0 0
0

∞ ∞

∫ ∫ − , ≥( ) ( ) .x x x x dx dxA B A B A Br

Another kind of judgement is a structural judgement. Informally, a structural 
judgement is a hypothetical judgement that if  you were willing to accept 
Gamble X, then you would be willing also to accept Gamble Y [4]. Structural 
judgements may involve the notions (properties) of independence and per-
mutability, and both types can be modeled.

If  the objective function for computing the lower bound of the expected 
value of a random function g appears in a form like this

M g g d M g g d
P R P Rn n

( ) sup ( ) ( ) ( ) inf ( ) ( )= , = ,
+ +

∫ ∫x x x x x xr r

where x = (x1, …, xn), then this models the complete ignorance with regard to 
independence. The infimum is sought over the set P of all possible joint prob-
ability density functions r(x). No structural judgement is introduced here. 
If there is a ground on which to judge independence among xi, then r(x)=
r(x1)… r(xn). It is clear that in this case set P is reduced and consists only 
of densities which can be represented as a product. As set P becomes smaller, 
then the imprecision, ∆ = M

_
 (g) − M_ (g), is reduced.

In fact, the scope of judgements that can be utilized by the method is 
very wide (for more examples see [4], page 169). This, therefore, makes the 
thesis “all available statistical evidence in risk and reliability analyses is to 
be utilized” persuasive. This is because a tool really exists that can utilize a 
wide spectrum of evidence.

5. Unreliable Judgements (Hierarchical Models)

Good is prepared to defi ne second order probability distributions…, and third order prob-
ability distributions over these, etc., until he gets tired. [17]

The quality of information that a decision maker has concerning the possible 
states and outcomes of a decision situation is in many cases an important fac-
tor when making decisions. Experts providing judgements have different levels 
of expertise and their sources of information may not be equally reliable. So it 
is natural to assign different degrees of plausibility or probability to opinions 
by different experts. To allow for this, a kind of hierarchical model can be used. 
In general, hierarchical models arise when there is a “correct” or “ideal” (first-
order) uncertainty model about a phenomenon of interest, but the modeler 
is uncertain about what it is. The modeler’s uncertainty is then called second-
order uncertainty [12]. The hierarchical model is, in many applications, a useful 
assessment strategy for constructing a first-order prior distribution [14].
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The most common hierarchical model is the Bayesian one, where both the 
first and the second-order model are (precise) probability measures [18–22]. 
Other models allow imprecision in the second-order model, but still assume 
that the first-order model is precise. Examples are the robust Bayesian mod-
els [18], models involving second-order possibility distributions [14, 23, 24], 
and the Gardenfors and Sahlin epistemic reliability model [5]. In [12] de 
Cooman introduced and studied a particular type of imprecise behavioral 
second-order model in terms of so-called lower desirability functions.

We have studied hierarchical uncertainty models of  a general form: 
imprecise first- and second-order uncertainty models. Both models of 
uncertainty, first-order and second-order, are coherent interval statistical 
models.

Suppose that we have a set of unreliable interval-valued expert judge-
ments on a parameter of interest b. To be more specific, we have n intervals 
B b bi

i i= ⎡⎣ ⎤⎦1 2,  provided by n experts, where bi
1  and bi

2  are the lower and upper 
bound of the interval Bi, respectively. The intervals provided are thought 
of as covering the true value of b, and are the models of uncertainty of the 
first order. The levels of confidence in the judgements depend on available 
information about experts’ performance and their competences and may be 
subject to their own self-assessment. Suppose that each of n experts or each 
of their judgements is characterized by a subjective probability gi or, in gen-
eral, by an interval-valued probability [g_i, g-i], i = 1, …, n. Now a hierarchical 
model can be written as follows:

Pr , , , ,b b b i ni i
i i1 2 1≤ ≤{ } [ ] =∈ …g_ g

_

The hierarchical model is introduced to become a useful assessment strategy 
for constructing first-order uncertainty intervals. Its implementation is illus-
trated by the problem of combining expert opinions.

As given above, the information concerning a parameter b is given by a 
collection of n intervals Bi. Combined lower, b_, and upper, b−, bounds for b−

are the goals.
The result will definitely depend on the degree of credibility to each 

of the provided judgements. Say, the analyst is absolutely (100%) and 
equally confident about all the judgements. In terms of the formalism 
introduced above this means that Pr , ,b b b i ni i

1 2 1 1≤ ≤{ } = ∀ = K , that 
is, g g

i i i n= = ∀ =1 1,..., . As proven in [15], this case yields a simple rule of 
combination called the conjunction rule [4]:

b b b b
i n

i

i n

i= =
= =
max min

,..., ,...,1
1 1 2and
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This rule is valid only for nonconflicting judgements (“consistent collection 
of intervals”) and if  the analyst is prepared to accept the modeling of the lin-
guistic expression “equally credible” as g_i = g-i = 1 ∀ i = 1,…, n. Consistency 
as well as the absence of conflict mean that Çi, iBi ≠ Ø.

Another rule of combination is valid if  all intervals in the collection are 
nested (“consonant”), that is, if

b b b b b bn n
1
1

2
1

1
2

2
2

1 2, , ... ,⎡⎣ ⎤⎦ ⊆ ⎡⎣ ⎤⎦ ⊆ ⊆ ⎡⎣ ⎤⎦ and

the credibility to the judgements is expressed in the different form g_i = gi, g-i = 
1, i = 1,…n and g1 ≤ g2 ≤ … ≤ gn. A closer look at this information gives a hint 
that this kind of source data setup is nothing other than a possibility distri-
bution. This case of hierarchical models was described in [12] and [14].

The combination rule for this case follows:

b b

b b

i ii

n i

i ii

n i

= −( )
= −( )

−=

−=

∑
∑

g g

g g

11 1

11 2

In this rule, it is assumed that g0 = 0 and gn = 1.
A model for “equally credible” judgements could be differently con-

structed with the hierarchical model introduced. The modeler may choose to 
model equal credibility in the following way:

[g_i, g-i]=[gi, 1] and g1 = g2 = … = gn = g then the last rule of combination 
degenerates to

b b b

b b b

n

n

= + −

= + −

g g

g g
1
1

1

2
1

2

1

1

( )

( )

If  γ tends to 1, then the results of this rule coincide with the results of the 
conjunction rule.

The conjunction rule can also be applied to consonant intervals as this 
rule is valid for a consistent collection of intervals, and it is clear that nested 
intervals are nonconflicting pieces of evidence. But it should be kept in mind 
that the conjunction rule presupposes that the analyst is 100% confident 
about all the judgments; i.e., g_i = g-i = 1.

If  the collection of intervals is conflicting (there is at least one pair of 
nonoverlapping intervals), then one way of reconciling the conflict is to 
accept complete ignorance concerning the level of credibility in the judg-
ments. That is, the analyst can assume g_i = 0, g-i = 1, ∀i = 1,…n. Using this 
assumption we arrive at the unanimity rule
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b b b b
i n

i

i n

i= =
= =
min max

,..., ,...,1 1
1

2and

These are simple combination rules that have been derived based on the 
hierarchical model, and the way they have been derived was fully predefined 
by the theoretical framework of coherent imprecise probabilities. This fact 
is worth stressing, since, in contrast, in the framework of purely Bayesian 
approach and point-valued probabilities only some ad-hoc combination 
rules are possible. An example is the linear opinion pool which is one of 
many others devised to combine evidence.

6. Precautionary Principle and Indecision

Determinacy and decisiveness in decision making are favored by the pub-
lic and decision makers, while fuzziness and indecision in providing crisp 
answers are reckoned as signs of incompetence and meekness which are usu-
ally disliked. In this regard, Bayesian decision theory appears the right one 
as providing a clear-cut answer to what action is to be preferred.

In contrast, the approach to decision making based on imprecise (inter-
val-valued) probabilistic criteria will reach results that, generally, do not 
yield an ‘optimal’ action that is preferred to all others. In effect, this means 
that there is a third alternative answer under decision making. It is indecision 
in saying neither ‘yes’ nor ‘no.’ The failure to determine a uniquely optimal 
action simply reflects the absence of information about the set of possible 
actions.

What would be a strategy which could be used to make a decision in case 
there is more than one reasonable action? One of them is to search for more 
information concerning the set of possible actions to make the probabilities 
and utilities more precise. The other is to postpone a decision until a later 
time, when more information may be available. For more strategies see [4], 
p. 239–240.

A small but growing number of authors have called for, and observed the 
development towards, a paradigm shift in environmental decision making. 
As uncertainty becomes an accepted fact by scientists on the one side and 
the public and politicians on the other:

this requires a change of  attitude on both sides: The politicians have to accept that fuzzy 
answers may be the best expression of  expertise. The scientists have to learn that identifi -
cation of  the fuzzy borderline between knowledge and ignorance may be the sign of  real 
competence. [25]

Imprecise statistical reasoning provides models to quantify scientific incerti-
tude that is a result of a lack of relevant information or sizable uncertainty. 
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When there is little information on which to base our conclusions, we cannot 
expect reasoning (no matter how clever or thorough) to reveal a most prob-
able hypothesis or a uniquely reasonable course of action. There are limits to 
the power of reasons [4]. An educated mind should provide answers consist-
ent with the relevant knowledge and uncertainty.

One of  the important novelties of  imprecise statistical reasoning 
approach is that we now have a formal framework in which we can articulate 
uncertainty and indecision.
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