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Abstract This paper presents an investigation on the Baumgarte stabilization
method for dynamic analysis of constrained multibody systems. The purpose of this
work is to study the influence of the main variables that affect the constraints viola-
tion, namely, the values of the Baumgarte parameters. In the process, the formulation
of the dynamic equations of motion of constrained multibody systems and the main
issues of the Baumgarte stabilization method are revised. Attention is given to the
techniques to help in the Baumgarte parameters selection. A demonstrative example
is presented and the results of some simulations are discussed.
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Introduction

Over the last decades the importance of the dynamic simulation of constrained
multibody systems (MBS) has been recognized as playing a crucial role in a broad
variety of engineering fields, such as robots, biomechanics, automobile systems and
railway vehicles [1]. The equations of motion of constrained MBS are composed by
a set of differential and algebraic equations (DAE) of index three. The numerical so-
lution of the set of DAE is not straightforward problem. One of the most popular and
used methods to solve this problem consists of converting the system of DAE into
a set of ordinary differential equations (ODE) by appending the second derivative
with respect to time of the constraint equations. However, with this approach, the
state of variables, i.e., the generalized position and velocity constraint equations do
not satisfy due to numerical error, being the global results not acceptable in practical
applications.
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In recent years, a lot of attempts have been made dealing with the constrained
multibody systems. Due to its simplicity and easiness for computational implemen-
tation, the Baumgarte stabilization method (BSM) is the most attractive technique
to overcome the drawbacks of the standard integration of the equations of motion.
Baumgarte’s method can be looked upon as an extension of feedback control theory
[2]. The principle of this method is to damp out the acceleration constraint violations
by feeding back the violations of the position and velocity constraints. The choice
of the feedback parameters depends on several factors, namely, the integrator used
and the model of the MBS. This method does not solve all possible numerical in-
stabilities as, for instance, those that arise near kinematic singularities. The major
drawback of Baumgarte’s method is the ambiguity in choosing feedback parameters.
The coordinate partitioning method and the augmented Lagrangian formulation are
alternative methods to deal with the constraints violation. In addition to these ap-
proaches, many research papers have been published on the stabilization methods
for the numerical integration the equations of motion of multibody systems [3–5].

In this paper, an investigation on the Baumgarte’s method for dynamic simulation
of constrained MBS is presented. The formulation of the equations of motion of
general MBS is also reviewed. The equations of motion are solved by using the
Baumgarte stabilization technique with the intent of keeping the constraint vio-
lations under control. Finally, an eccentric slider crank mechanism is used as an
application example.

Equations of Motion for Constrained MBS

When the configuration of a constrained MBS, with f degrees of freedom, is modeled
through a set of n dependent coordinates, then a set of m algebraic constraints can
be written as [1],

�(q, t) = 0 (1)

where q is the vector of generalized coordinates and t is the time variable. The
equations of motion for a constrained MBS can be represented by [1],

Mq̈ + �T
q λ = g (2)

where M is the generalized mass matrix, q̈ is the system accelerations, �q is the
Jacobian matrix, λ is the Lagrange multipliers vector and g is the generalized force
vector that includes the gravitational, centrifugal and Coriolis force terms. In or-
der to progress with solution, the constraint velocity and acceleration equations
are required. Thus, differentiating Eq. (1) with respect to time yields the velocity
constraint equations,

�qq̇ = −�t ≡ � (3)
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in which q̇ is the vector of generalized velocities and � is the right hand side of
velocity equations, which contains the partial derivates of � with respect to time.
A second differentiation of Eq. (1) with respect to time leads to the acceleration
constraint equations,

�qq̈ = −(�qq̇)qq̇ − 2�qt q̇ − �t t ≡ � (4)

where q̈ is the acceleration vector and � is the right hand side of acceleration equa-
tions. Equations (1), (3) and (4) must be satisfied during the simulation. Equation (4)
can be appended to Eq. (2) and rewritten in matrix form as,

[
M �T

q
�q 0

]{
q̈
�

}
=

{
g
�

}
(5)

This system of equations is solved for q̈ and �. Then, in each integration time
step, the accelerations vector, q̈, together with velocities vector, q̇, are integrated
in order to obtain the system velocities and positions for the next time step. This
procedure is repeated up to final time analysis is reached.

In order to keep the constraint violations under control, the Baumgarte stabiliza-
tion method is used [2]. The BSM allows constraints to be slightly violated before
corrective actions can take place, in order to force the violation to vanish. The goal of
Baumgarte’s method is to replace the differential Eq. (4) by the following equation,

�̈ + 2α�̇ + β2� = 0 (6)

Equation (6) is the differential equation for a closed loop system in terms of
kinematic constraint equations. The terms 2α�̇ and β2� in Equation (6) play the
role of a control terms. Thus, utilizing the Baumgarte’s approach, the equations of
motion for a system subjected to constraints are stated in the form,

[
M �T

q
�q 0

]{
q̈
�

}
=

{
g

� − 2α�̇ − β2�

}
(7)

In general, if α and β are chosen as positive constants, the stability of the gen-
eral solution of Eq. (7) is guaranteed. When α is equal to β, critical damping is
achieved, which usually stabilizes the system response more quickly. Baumgarte
[2] highlighted that the suitable choice of the parameters α and β is performed by
numerical experiments. It should be highlighted that the improper choice of these
coefficients can lead to unacceptable results in the dynamic simulation of multibody
systems.
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Techniques to Select the Baumgarte Parameters

The first and simplest way to evaluate the Baumgarte parameters consists of ex-
panding in Taylor’s series the constraint equation and neglecting the terms of order
higher than two. Thus, it is possible to write,

�(t + h) = �(t) + �̇(t)h + �̈(t)
h2

2
(8)

where h represents the time step. Considering that function � is null at instant t +h,
then Eq. (8) can be written as,

�̈(t) + 2

h
�̇(t) + 2

h2
�(t) = 0 (9)

By comparing and analyzing Eqs. (6) and (9) the mathematical relation for
Baumgarte parameters and time step can be expressed by,

α = 1

h
(10)

β =
√

2

h
(11)

From Eqs. (10) and (11) it can be observed that with this technique the Baum-
garte parameters are inversely proportional to the time step. This approach is quite
simple, very easy to implement in any general code and works reasonably well from
the computational view point. However, this procedure can lead to some numer-
ical instability which ultimately produces incorrect results when the time step is
too small, because the damping terms dominate the numerical value of Eq. (6) and
make the system to become stiff. Thus, a more sophisticated methodology should
be considered, being the Euler’s integration method used to show how to select an
appropriate set of α and β parameters. Herein, the proposed methodology is based
on the stability analysis procedure in digital control theory. Applying the Laplace
transform technique to a first order differential yields,

sY (s) = F(s) (12)

where s is the operator of Laplace domain. Moreover, when Euler’s integration
method is used, the numerical solution of a first order differential yields,

yn+1 = yn + h fn (13)

in which the subscript represents the numerical solution at the corresponding time
step and h is the integration time step.
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Since Eq. (13) is a difference equation, that is, a discrete data function, the Z
transform technique must be used to study it. Thereby, the Z transform of Eq. (13)
results in

zY (z) = Y (z) + hF(z) (14)

where z is the Z transform variable. Re-arranging Eq. (14) yields,

F(z)

Y (z)
= z − 1

h
(15)

Analyzing Eqs. (12) and (15), striking resemblances between Laplace and Z trans-
form techniques results in,

s = z − 1

h
(16)

This means that the substitution of Eq. (16) in any F(s)/Y(s) yields a F(z)/Y(z)
based on the Euler’s integration method.

Considering now Eq. (6), the corresponding characteristic equation is,

s2 + 2αs + β2 = 0 (17)

Equation (17) suggests that if α and β are greater than zero, the system will be
stable. However, Eq. (17) is not adequate to select α and β parameters. In order to
select the appropriate values of the parameters α and β, the response of the second
order characteristic equation (17) for different locations of its roots in the z-plane
must be known first. Letting s = σ + jω, it is possible to write,

z = et(�+ jω) = eσ t∠ωt (18)

since 1∠ωt = cos ωt + jsin ωt .
A system is stable if all roots of the characteristic equation are inside the unit

circle on the z-plane, that is, |z | < 1. Conversely, a system is said to be unstable
when the roots are outside the unit circle, that is, |z| > 1. When a system has its
roots on the unit circle, |z| = 1, is called as marginally stable. In order to study the
stability of characteristic Eq. (17), let substitute Eq. (16) yielding the characteristic
equation in terms of z-plane as,

z2 + (2αh − 2)z + (β2h2 − 2αh + 1) = 0 (19)

Equation (19) shows that α, β and h influences the location of the roots and,
consequently, the dynamic system response. In order to have a criterion to help
in the selection of the α and β parameters independently of the time step h, let
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Fig. 1 Stability region in the α-β plane for the Euler integration method

consider two additional coefficients α and β defined by, α = αh and β = β2h2.
The relationship between the α and β coefficients for the Euler integration method
is illustrated in Fig. 1, being easier to identify the stability region as function of the
Baumgarte parameters.

Demonstrative Example

The purpose of this section is to demonstrate the computational effectiveness of the
presented techniques to an eccentric slider crank mechanism, which is illustrated
in Fig. 2. The system is driven by the crank which rotates with a constant angu-
lar velocity. Several representative simulations are performed in order to study and
compare the efficiency of different values for α and β parameters on the stabiliza-
tion of the constraint violations. A measure of their efficiency can be drawn from
the error of the third constraint equation �3, that are representative of the rest of the
constraint equations and their derivatives, which present similar results. Eight sets of
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Fig. 2 Initial configuration of the eccentric slider crank mechanism
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Fig. 3 Error of the 3rd constraint equation �3

Baumgarte parameters were used, which were selected based on the methodologies
presented in the previous section. Other variables were studied, chiefly, the values of
the integration method, the size of the time step and the quality of the initial system
guess for positions, being the results not presented due to lack of space.

Figure 3(a) shows that when α = β = 0 is used the violation of the con-
straints grows indefinitely with the time. For nonzero values for parameters α and
β, the behaviour of the system is slightly different, as it is illustrated in Fig. 3(b–d).
Moreover, when the parameters α and β are equal, the critical damping is reached,
which stabilizes the system response more quickly, that is, after a transient phase the
first and second derivatives converge to zero. Thus, the constraint equations, and not
only their second derivatives, are satisfied at any give time. Figure 3 (d) illustrates a
stiff system, which occurs when the values of α and β are high.

Concluding Comments

An investigation on the Baumgarte stabilization method for dynamic analysis of
constrained multibody systems was discussed in this work. A demonstrative ex-
ample is presented and the results of some simulations were discussed. Several
numerical simulations were performed in order to study the influence of the main
variables that affect the constraints violation. In the process, the formulation of the
dynamic equations of motion of constrained multibody systems and the Baumgarte
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stabilization method are revised. Special attention is also given to the techniques to
help in the selection of the Baumgarte parameters. From the main results obtained,
it can be concluded that the selection of the Baumgarte parameters play a key role
on the dynamic systems’ response.
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