
Chapter 10

Lysophospholipid Activation of G

Protein-Coupled Receptors

Tetsuji Mutoh and Jerold Chun

Abstract One of the major lipid biology discoveries in last decade was the broad
range of physiological activities of lysophospholipids that have been attributed to
the actions of lysophospholipid receptors. Themost well characterized lysopho-
spholipids are lysophosphatidic acid (LPA) and sphingosine 1-phosphate
(S1P). Documented cellular effects of these lipid mediators include growth-
factor-like effects on cells, such as proliferation, survival, migration, adhesion,
and differentiation. The mechanisms for these actions are attributed to a grow-
ing family of 7-transmembrane, G protein-coupled receptors (GPCRs). Their
pathophysiological actions include immune modulation, neuropathic pain
modulation, platelet aggregation, wound healing, vasopressor activity, and
angiogenesis. Here we provide a brief introduction to receptor-mediated lyso-
phospholipid signaling and physiology, and then discuss potential therapeutic
roles in human diseases.

Keywords Sphingosine 1-phosphate (S1P � autoimmune diseases �
transplantation � cancer � cardiovascular diseases

10.1 Introduction

In addition to being integral for cell membranes and essential sources of energy,
lipids also have a major function as signaling mediators. Lysophospholipids
(LPs), are simple lipid molecules with a wide range of important signaling effects
on many different organ systems. For example, LPs can act as extracellular
signaling molecules that affect cardiovascular function, immune responses, pain
transmission, embryo implantation, osteogenesis, the circulatory system, and
brain development. A lysophospholipid is a 3-carbon backbone phospholipid
derived from glycerophospholipids or sphingolipids that contain a single chain
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and phosphate headgroup in the first position. Examples of LPs include LPA

(lysophosphatidic acid), S1P (sphingosine 1-phosphate), LPC (lysophosphatidyl-

choline), SPC (sphingosylphosphorylcholine), LPS (lysophosphatidylserine),

and LPE (lysophosphatydilethanolamine).
Despite the high concentration of LPC in blood (several hundred mM) (Croset

et al., 2000), the physiological function of LPC remains largely unknown. On the

other hand, LPs with relatively low concentrations (low mM range (Aoki, 2004;

Okajima, 2002)) such as LPA, S1P, and LPS have documented functions in vivo.

In particular the LPs, LPA and S1P, as well as their signaling cascades, have

been extensively studied. Because lysophospholipids have a chemical makeup

that allows them to enter the lipid bilayer, it was previously thought that the

effect of LPs and their mechanisms of action were largely non-specific. How-

ever, this initial view changed with the identification of specific LP receptors

that were essential to the physiological functions of LPs. Cloning and func-

tional characterization of the lysophospholipid receptors represented a signifi-

cant advance towards understanding this class of lipid signals. Today, ten bona

fide lysophospholipid receptors have been reported, 5 for LPA (LPA1-5) and 5

for S1P (S1P1-5), with a number of additional putative lysophospholipid G

protein-coupled receptors (GPCRs) existing in the literature (Anliker and Chun,

2004; Ishii et al., 2004; Lee et al., 2006; Rivera and Chun, 2007). Recently, a

specific receptor for LPS was identified, however the associated signaling cas-

cade(s) for this receptor is not fully understood (Sugo et al., 2006).Many of the LP

receptors are necessary for normal embryonic development and have roles in

normal adult physiologies as well as disease processes. Furthermore, the GPCRs

for specific LPs are intriguing since they are attractive targets for drug discovery.
In this chapter, we will discuss the normal physiological functions of LPA

and S1P mediated by their cognate receptors. In addition, we will discuss disea-

ses associated with these bioactive LP molecules. Although LPA belongs to the

glycerophospholipid family and S1P belongs to the sphingolipid group, the

amino acid sequence of their receptors is generally conserved to a significant

extent and they have overlapping but distinct biological functions. Originally

known in the 1900s as a lipid metabolite, LPA was reported to have physio-

logically active properties that functioned to control blood pressure (Sen et al.,

1968; Tokumura et al., 1978). S1P was originally identified as a mitogen ca-

pable of inducing intracellular calcium mobilization via proposed intracellu-

lar mechanisms (Zhang et al., 1991). Continuing research in the field of lipid

biology revealed the importance of these two LP signaling molecules in vivo. For

instance, the phosphorylated metabolite of FTY720, FTY720-P, is an S1P

analog that was discovered to be a novel immunomodulator by inducing lym-

phopenia via S1P receptors (Mandala et al., 2002). While a number of recent

reviews have covered many facets of this rapidly growing field, the purpose of

this chapter is to provide a basic overview of LP signaling and discuss how LPs

are relevant to both normal physiological functions and the pathology of human

diseases.
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10.2 Biochemistry of LP Signaling

10.2.1 Receptor Mediated Signaling Pathways

Initially, LPs were shown to be precursors and metabolites in the de novo biosyn-

thesis of phospholipids. However, other bioactive properties were subsequen-

tly discovered. For instance, LPA was shown to function as an anti-hypertensive

agent (Sen et al., 1968; Tokumura et al., 1978). LPAwas also discovered to act as a

cell growth and motility factor present in serum, and the signaling cascades

mediated by LPA were shown to involve G proteins (van Corven et al., 1989),

suggesting the involvement of GPCRs, although other GPCR-independent

mechanisms were also possible in the absence of identified receptors. The first

LP receptorwas cloned frommouse brain cDNAby degenerate PCRwith primers

designed against GPCRs (Hecht et al., 1996). This receptor, originally designated

VZG-1, and now called LPA1, was the first LP receptor discovered.Within several

years of this initial report, several members of an orphan GPCR receptor family,

called ‘‘endothelial differentiation genes (Edg),’’ were identified asGPCRs for both

lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) (An et al., 1997;

Ishii et al., 2004; Lee et al., 1998; van Brocklyn et al., 2000). All of these LP

receptors are GPCRs capable of interacting with a number of heterotrimeric G

proteins. The current nomenclature reflects the receptor’s cognate ligand and

chronological order of the relevant receptor’s identification (Chun et al., 2002;

Ishii et al., 2004; Table 10.1). LP receptor genes are distributed throughout the

genome and are organized in a somewhat similar fashion.
The coding regions for each of the lpa genes in the genomes of human and

mice, with the exception of LPA4, are divided between two exons, while the

coding region of each s1p gene is contained within a single exon, with only non-

coding exon(s) upstream (Contos and Chun, 2001; Contos et al., 2000b, 2002).

Several structural characteristics are shared between LPA and S1P receptors,

including an extracellular N-terminus, seven �-helical THs (transmembrane

Table 10.1 Nomenclature of lysophospholipid receptors

IUPHAR
Nomenclature

Chromosomal
location (Human)

Natural Agonist
Ligand Previous Names

LPA1 9q32 LPA Edg–2, LPA1, VZG–1, REC1.3

LPA2 19p12 LPA Edg–4, LPA2

LPA3 1p22.3–p31.1 LPA Edg–7, LPA3

LPA4 Xq13–q21.1 LPA GPR23, P2Y9

LPA5 12p 13.31 LPA GPR92

S1P1 1p21 S1P > SPC Edg–1, LPB1

S1P2 19p 13.2 S1P > SPC Edg–5, LPB2, AGR16, H218

S1P3 9q22.1–q22.2 S1P > SPC Edg–3, LPB3

S1P4 19p 13.3 S1P > SPC Edg–6, LPB4, LPC1

S1P5 19p 13.2 S1P > SPC Edg–8, LPB5, NRG–1
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helices), and an intracellular C-terminus (Pierce et al., 2002). Studies of LPA
and S1P receptor ligand bindingmechanisms suggest that several specific amino
acid residues are responsible for ligand interaction, e.g., Arginine 120 in TH3 is
thought to be required for ligand binding and Glutamine 121 for ligand speci-
ficity recognition (Holdsworth et al., 2004; Parrill, 2005; Parrill et al., 2000),
although no formal structural data have been reported for this family of
GPCRs.

Lysophospholipid receptors each have a heterogeneous spatiotemporal gene
expression pattern and multiple receptors may be expressed by the same cell.
These data have been derived by examining mRNA combined with functio-
nal assays. Notably, no antibodies or antisera have been clearly proven for use
in immunohistochemical studies of native proteins, although many can identify
overexpressed proteins in cell lines. For example, LPA1 was initially called
‘‘ventricular zone gene-1 (Vzg-1)’’ because of its enrichment in the neural progeni-
tor zone of the embryonic cerebral cortex, the so called ‘‘ventricular zone.’’ In adult
mice, LPA1 is widely expressed with high mRNA levels in brain, lung, heart, and
other organs. LPA1 and S1P1 expression patterns are generally similar but differ in
detail in both embryonic and adult tissues. For example, S1P1 is expressed in the
ventricular zone throughout the embryonic telencephalon, however, LPA1 gene
expression is limited to the neocortical ventricular zone as stated above (Anliker
and Chun, 2004; Contos et al., 2000b; Hecht et al., 1996; McGiffert et al., 2002).
Most cell types express multiple LPA and S1P receptors, and each receptor can
activate multiple types of downstream molecules as mentioned below. LP signal-
ing in each cell and tissue can vary depending upon the composition and expres-
sion level of the receptor family members and their downstream molecules. In
addition, ligand availability, concentration, and half-life are also likely to influ-
ence cellular responses mediated by LP receptors. Their desensitization is prob-
ably mediated by known mechanisms in other systems of phosphorylation of
GPCRs by kinases and or an uncoupling from G proteins by arrestins, followed
by receptor internalization and degradation (Lefkowitz and Shenoy, 2005).

LPA and S1P receptors couple to heterotrimericG proteins, which consist of a
G� and the associatedGbg subunits. The heterotrimericG proteins are thought to
be bound to the inner surface of the cell membrane. One receptor may couple to
several different types of G� protein subunits to form a complex signaling net-
work (Fig. 10.1). LPA1,2,4,5 and S1P2-5 all signal via G�12/13 to activate RhoA, a
member of the family of Rho GTPases. LPA1-5 and S1P2,3 couple to G�q/11 to
activate phospholipase C (PLC). LPA1-4 and S1P1-5also couple with G�i to
activate PLC, Ras, Phosphoinositide-3 Kinase (PI3K), and to inhibit adenylyl
cyclase (AC), but LPA4 can also couple to G�s to activate AC. When a ligand
binds to the receptor, it exchanges GDP for GTP on the G� subunit, and then
G�-GTP and Gbg can activate the effector molecule complex for each signaling
cascade (Etienne-Manneville and Hall, 2002; Neves et al., 2002).

Furthermore, several reports suggest that LP receptor signaling can involve
trans effects via receptor tyrosine kinases, as seen in the synergistic interaction
between S1P and platelet derived growth factor (PDGF), as well as signaling via
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other kinases such as p42/p44 MAPK or Akt activation in chemotaxis, and
Erk1/2 mediated anti-apoptotic effects (Hobson et al., 2001; Pyne et al., 2007;
Wong et al., 2007). In addition, PDGF, VEGF and TNF-� can stimulate
sphingosine kinases (e.g., SPHK1) and increase S1P levels in an autocrine
fashion. This has important implications for vascular maturation (Spiegel and
Milstien, 2003). Interestingly, a recent report suggested a ‘‘criss-cross’’ transac-
tivation between estrogen-S1P-EGFR pathways (Sukocheva et al., 2006), and
that other interactions amongst GPCRs and receptor tyrosine kinases/other
kinases are likely.

10.2.2 Variable Cellular Responses via LPA and S1P

Before the discovery of specific LP receptors, there were multiple hypotheses
proposed to explain the physiological signaling response mechanisms provoked
by LPs. For instance, it was thought that LPs could act as calcium chelators,
ionophores, membrane disruptors, second messengers, or act via intracellular
receptors (reviewed in (Chun, 1999; Fukushima et al., 2001). Heterologous
expression of cloned receptors was performed to prove that extracellular recep-
tors mediated the LP signaling pathway. Two cell lines, RH7777 (hepatoma)

Fig. 10.1 The network of LPA and S1P signaling through G protein-coupled receptors. Each
LPA and S1P receptor couples to their specific class of G proteins. Ligand binding activates or
inhibits downstream second messenger molecules, and the most prominent cellular effects are
illustrated. Rock, Rho-associated kinase; SRF, serum response factor; IP3, inositol 1,4,5-
trisphosphate; PLC, phospholipase C; DAG, diacylglycerol; PKC, protein kinase C;MAPK,
mitogen-activated protein kinase; PI3K, phosphoinositol 3-kinase; DAG, diacylglycerol
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and B103 (neuroblastoma) were identified, which lack endogenous responses to
LPA and/or S1P and were useful in these mechanistic studies (Fukushima et al.,
1998). Even though several non-GPCRmediated signaling pathways have been
reported (Hooks et al., 2001; McIntyre et al., 2003), it is now clear that the
dominant mechanism by which extracellular LPs function, at least in verte-
brates, is through the actions of specific cell surface receptors (Chun andRosen,
2006). In terms of pathology, there are numerous functional studies using
cancer cells that show cell growth, apoptosis, invasion, cell migration, and
extra-cellular matrix reorganization, which are mediated by LPs. Concomitant
alterations in cell migration and invasion may further contribute to the growth
of metastatic cancer. Studies with primary cells have shown that LPs influence
immune responses including cytokine and chemokine secretion, platelet aggre-
gation, smooth muscle contraction, and neurite retraction (Fig. 10.2).

10.2.2.1 Cell Survival and Growth

LPA and S1P can signal viaGi, Gq/11, G12/13, andGs. Inmany well-documented
studies using cultured cell lines, LPs function as survival factors (Ishii et al.,
2004). LPA and S1P largely couple to the Gi pathway that regulates PI3K and
Akt, but other signals generated through different G protein pathways can also
be initiated. The signaling cascades that are activated via the Gi and Ras/
MAPK pathway or Gq and phospholipases generate second messengers that
facilitate cell growth. While it is generally known that the activation of PLC,
Ca2+, or PKC signaling pathways are insufficient to promote cell proliferation,
additional signaling pathways activated by LP receptors provide complemen-
tary proliferative stimuli. Signaling through the G12/13 mediated Rho pathway
also promotes cell proliferation. Gi-mediated signaling contributes to cell sur-
vival through PI3K/Akt (Radeff-Huang et al., 2004; Weiner et al., 2001).

10.2.2.2 Cell Migration

LPs also affect cell migration of diverse normal and transformed cell types (Mills
and Moolenaar, 2003). Depending on the combination of receptors expressed
and downstream molecules, S1P signaling can also promote and inhibit cell
migration (Okamoto et al., 2000; Sugimoto et al., 2003). S1P1 is crucial for
angiogenesis and lymphocyte trafficking, which is based on its ability to stimu-
late cell migration (Chun and Rosen, 2006). On the other hand, S1P2 inhibits
Rac and abolishes membrane ruffling and cell migration. This inhibition can be
antagonized by concurrent Gi mediated Rac activation (Sugimoto et al., 2003).
Many studies have shown that Gi and/or G12/13 mediated pathways can control
cell motility via changes in cytoskeletal organization (van Leeuwen et al., 2003).
The actin cytoskeleton is regulated by the Rho-GTPase family: RhoA, Cdc42,
andRac. Gi activates the PI3K-Rac pathway via RhoA (Neves et al., 2002). It is
notable that S1P1 is unique in that it only couples to Gi, which appears to utilize
Rac signaling to promote migration via this particular receptor.
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10.2.2.3 Cell Shape Change

Asmentioned above, LP signaling regulates F-Actin throughGi and/orG12/13. In
this context, LPs affect cell shape changes not only by influencing motility, but
also neurite retraction, growth cone collapse, repulsive growth cone turning,
neuroblast and glial cell rounding, and smooth muscle cell contraction (Ishii
et al., 2004; Moolenaar et al., 2004). For assessing the LP effect on cell shape
and cytoskeletal changes, cell rounding assays, stress fiber formation assays,
membrane ruffling assays with F-Actin staining, and real-time assays are utilized.

10.2.2.4 Cell Adhesion and Aggregation

The activation of G12/13 induces Rho and Rho kinase-mediated formation of
actin stress fibers, focal adhesions, and cell contraction. Both LPA and S1P also
mediate physiological wound healing processes and potentially atherogenic and
thrombogenic processes (Siess, 2002). For example, LPA and mildly oxidized
LDL (mox-LDL) promote monocyte binding to endothelial cells by increasing
the cell surface expression of E-selectin and the vascular cell adhesion molecule-1
(VCAM-1) on endothelial cells (Rizza et al., 1999). LPA can also induce N-
cadherin mediated Schwann cell clustering and Rho-ROCK mediated focal
adhesion formation (Weiner et al., 2001). S1P can stimulate adhesion activity,
but it can also inhibit cell adhesion via PI3K and nitric oxide synthase (eNOS)
activation (Kimura et al., 2006).

10.2.2.5 Inhibition of GAP Junction Communication

LPA inhibits GAP junction communication by connexin 43 phosphorylation in
rat liver cells (Hill et al., 1994). MAPK and arachidonic acid cascades may
transduce the signal, but the mechanism is still unclear (De Vuyst et al., 2007).
Recently, it was reported that high S1P levels negatively affect gap junctions in
astrocytes. In this case, the inhibitory effect of LPA is mediated through Gi and
Rho GTPases (Rouach et al., 2006).

10.2.2.6 Transcription Regulation

LPA and S1P have been shown to activate NF-kappaB and induce expression
of multiple effector genes. In endothelial cells, LPA also increases the levels of
various adhesion molecule mRNAs and secreted factors, such as E-selectin,
VCAM, and ICAM, as mentioned above (Li et al., 2005; Xia et al., 1998).

10.2.3 Metabolism and Enzymes

To understand the dynamics of LPs in vivo, it is necessary to review the enzymes
involved in LPA production and degradation. After the identification of the
receptors, the identification of enzymes responsible for LP synthesis and degra-
dation has accelerated our understanding of lipid biology (Fig. 10.3).
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10.2.3.1 Synthetic and Degradating Enzymes

As signaling mediators in vivo, the production and degradation of lysopho-

spholipids should be tightly controlled. The metabolism of LPA has been

partially characterized and involves a number of convergent biosynthetic path-

ways and enzymes of varied specificity (Meyer zu Heringdorf and Jakobs,

Fig. 10.3 LPA and S1P metabolic pathways. Schematic representation of LPA and S1P
metabolism. LPA is produced by ATX (‘‘autotaxin,’’ a lysophospholipase D or lysoPLD),
phospholipase A1 and A2 (PLA1/2), and acylglycerol kinase (AGK). PA is generated and
transported from the inner leaflet of the plasma membrane, then subsequently converted to
LPA by PLA1 or PLA2. According to a recent report, acylglycerol kinase phosphorylates
monoacylglycerol (MAG) and DAG can produce LPA in mitochondria (Bektas et al., 2005).
S1P is formed from sphingosine by sphingosine kinase 1 and 2 (SPHK1, SPHK2). Lipid
phosphate phosphatases (LPPs) inactivate both LPA and S1P through dephosphorylation.
Sphingosine phosphate phosphatase (SPP) specifically dephosphorylates S1P. S1P is also
inactivated by S1P lyase (SPL) that produces irreversible cleavage. The space-fillingmolecular
models and structures of LPA, S1P, and some major analogs are shown in the right box. High
affinity LP receptors are indicated in parentheses under the name of each ligand
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2007). To date, lysophospholipase D (lysoPLD), autotoxin (ATX), phospholi-
pase A1 (PLA1), phospholipase A2 (PLA2), and acylglycerol kinase (AGK) are
enzymes reported to be involved in LP synthesis (Chun andRosen, 2006). There
are multiple pathways responsible for LPA production (Meyer zu Heringdorf
and Jakobs, 2007).

S1P metabolism involves a number of specific and highly conserved enzymes
(Saba and Hla, 2004). Two sphingosine kinase isoforms, sphingosine kinase 1
(SPHK1) and sphingosine kinase 2 (SPHK 2), produce S1P from sphingosine
(Kohama et al., 1998; Liu et al., 2000a). Recently it was shown by specific
genetic removal of SPHK 1 and 2 in erythrocytes that these cells are the major
source of S1P in blood (Pappu et al., 2007). SPHK activity is not only present in
blood, but also in most mouse tissues (with high activity in thymus and lung)
(Fukuda et al., 2003).

The duration and strength of LP signaling likely depends, at least locally, on
the activity of synthetic and degradative enzymes and their localization relative
to the LP receptors. For example, it has been reported that S1P lyase (SPL) has
an important role in maintaining a steep gradient of S1P between blood and
tissues, which in part controls lymphocyte localization (Schwab and Cyster,
2007; Schwab et al., 2005). The local distribution and potential LP gradients in
tissues remain to be elucidated. Pharmacological and molecular manipulation
of LP metabolic enzyme activity is also an intriguing approach for cancer
therapy or other clinical treatments (see below).

10.2.3.2 Endogenous Concentration of LPA and S1P In Vivo

It was previously thought that the major source of lysophospholipids was from
blood. Reported concentrations of LPA and S1P vary in the literature, how-
ever most publications report around 1000 nM (200–5000 nM) in blood, and
0.2–100 nmol/g in tissues under basal, normal conditions (Aoki, 2004; Berdyshev
et al., 2005; Bielawski et al., 2006; Das and Hajra, 1989; Eichholtz et al., 1993;
Min et al., 2002; Murata et al., 2000; Okajima, 2002; Olivera et al., 1994;
Yatomi et al., 1997). Platelets contain large amounts of LPA and S1P, which
can both be released following platelet activation (Benton et al., 1982; Yatomi
et al., 1997). For this reason, it was believed that platelets are the major source
of S1P. However, it had been shown that erythrocytes can synthesize S1P by
enzymatic pathways (Stoffel et al., 1970), and it is now clear that SPHKs present
in erythrocytes are responsible for S1P in blood (Pappu et al., 2007). In addi-
tion, it has been shown that erythrocytes are able to import and store S1P that
can be actively released upon stimulation (Hanel et al., 2007). It was also
believed that LPA in blood is mainly derived from activated platelets, however
it was recently reported that an LPA producing enzyme, lysophospholipase
D(lysoPLD)in plasma, may also contribute to the total amount of LPA found
in the blood (Aoki, 2004). The plasma LysoPLD activity was measured directly
and half of this activity is attributed to autotaxin (ATX), one of the major
LysoPLDs (Tanaka et al., 2006). In addition to the aforementioned pathway,
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there might be local LP synthesis in specific tissues. For example, the highest
expression of ATX is found in the floor plate of the developing embryo and in
the choroids plexus and osteoblasts throughout development (Bachner et al.,
1999). Also, neurons are a potential source of LPA in the developing brain as
nanomolar concentrations of LPA are found in conditioned medium from
embryonic brain primary cultures (Fukushima et al., 2000).

10.2.4 Binding Proteins

Lysophospholipids are usually bound to lipoproteins in vivo. Serum LPA binds
to albumin, gelsolin, and other proteins (Moolenaar et al., 2004). S1P binds
mainly to HDL and albumin (Levkau et al., 2004; Nofer et al., 2004; Okajima,
2002; Sato et al., 2007; Theilmeier et al., 2006). Such lipoproteins stabilize LPs
in the hydrophilic environment and possibly protect them from rapid degra-
dation. The stabilization effect of the lipoprotein is currently being studied
(Moumtzi et al., 2007).

10.3 Physiology of LPs

As mentioned above, the LPA and S1P receptors are widely expressed through-
out the body, however each receptor’s expression is temporally and spatially
distinct albeit often overlapping. To study the physiological function of each
lipid receptor signal, targeted gene mutations in mice have been utilized to
remove LP receptor genes or related enzymes. To date, null mutations for the
LP receptor genes LPA1-, LPA2-, LPA3, S1P1-, S1P2-, S1P3, and S1P5, and the
LP producing enzymes ATX, SPHK1, SPHK2 have been reported.

10.3.1 LPA Receptor Mutant Mice

Deletion of LPA1 in mice causes a reduction in litter size primarily reflecting a
50% perinatal mortality rate. The observed mortality is due to poor suckling
behavior that appears to result from an olfactory defect. However, they have a
grossly normal cerebral cortex (Contos et al., 2000a). A smaller body size, shorter
snouts, and cranial hematomas are characteristic features of surviving LPA1 null
mutant mice. Mild anatomical defects in the cerebral cortex and defective beha-
vior in pre-pulse inhibition assays have also been reported in distinct null mutants
or genetic variants (Estivill-Torrus et al., 2007; Harrison et al., 2003). LPA1-null
mice also show an increased number of apoptotic Schwann cells in the sciatic
nerve (Contos et al., 2000a). This is consistent with the fact that LPA1-null
Schwann cells exhibit a reduced response to LPA (Weiner et al., 2001). Indeed,
LPA1-null mice do not show injury-induced dorsal root demyelination and
neuropathic pain after peripheral nerve injury (Inoue et al., 2004).
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The LPA2-null mutation produces viable animals that are also grossly nor-
mal. The LPA1 and LPA2 double knockout animals show only a slight exacer-
bation of the hematoma defect that is seen in the LPA1-null. However, primary
fibroblasts and the embryonic cortex show vastly reduced responses to LPA
(Contos et al., 2002; Kingsbury et al., 2003).

The functional loss of LPA3 causes severe reproductive defects (Ye et al.,
2005). The LPA3-null litter sizes were less than 50% of wild type and hetero-
zygote controls, and show delayed embryo implantation as well as spacing
defects in the uterus. These phenotypes are attributable to the maternal geno-
type regardless of the male or embryo genotypes. The cyclooxygenase 2 (COX2)
expression and prostaglandin levels are also reduced in the LPA3-null uterus.
This study demonstrated that LPA3 is an indispensable upstream regulator of
prostaglandin-mediated on-time implantation and embryo spacing.

10.3.2 S1P Receptor Mutant Mice

S1P1-null mice have severe defects in vascular maturation, and die in utero
because of hemorrhaging between E12.5 to E14.5 (Liu et al., 2000b). Because
of the embryonic lethality, studies with S1P1 conditionally deleted with the Cre-
loxP system were used to analyze defects in specific cell and tissue types.
Endothelial cell-specific deletion of S1P1 showed that the vascular abnormality
observed in S1P1-null mice was due to a maturation defect in vascular endothe-
lial cells (Allende et al., 2003). Also, T cell-specific deletion showed that S1P1 was
crucial for mature T cell egress from the thymus to the periphery (Allende et al.,
2004a). To study lymphocyte egress using constitutive S1P1 null mutant lym-
phocytes, hematopoietic precursors from S1P1-null embryos were transferred to
irradiated wild type adult mice and allowed to repopulate the lymphoid com-
partments. These elegant experiments showed that S1P1 was intrinsically
required for appropriate lymphocyte egress (Matloubian et al., 2004).

Interestingly, S1P2-null mice show a degenerative and progressive loss of
hearing and balance (Herr et al., 2007; Kono et al., 2007; MacLennan et al.,
2006). S1P2 is indispensable for maintenance of vestibular and cochlear hair
cells in vivo. S1P2-null mutants in the C57Bl/6 background have also been
reported to show electrophysiological defects and develop seizures (MacLennan
et al., 2001). In zebrafish, a single point mutation in the S1P2-related mil gene
leads to abnormal heart development (Kupperman et al., 2000), however, this
defect in not recapitulated in S1P2 knockout mice (Ishii et al., 2002). S1P3-null
mutant mice are grossly normal, but lack some of the S1P-mediated responses.
For example, they show a loss of the vasodilation response to FTY720 (Tolle
et al., 2005) with MEFs from S1P3-nulls showing a marked decrease in PLC
activation (Ishii et al., 2001). The knockout studies also revealed some functional
redundancy in that mice lacking multiple receptors have new or exacerbated
phenotypes. For example, mice lacking both S1P2 and S1P3 receptors have
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remarkably reduced litter sizes owing to an increase in perinatal lethality (Ishii
et al., 2002). In addition, S1P1,2,3 triple knockouts show severe defects in vascular
development, to a greater extent than any single or double mutant, and are
embryonically lethal at E10.5-11.5 (Kono et al., 2004).

The S1P5-null mouse was recently reported. These mice do not have any
apparent behavioral deficits or evident myelin deficiencies and their oligoden-
drocytes do not show defects in S1P induced process retraction and cell survival
(Jaillard et al., 2005). This is surprising since S1P5 expression is highly restric-
ted and is present at significant levels only in oligodendrocytes and some
hematopoetic cells. Further analyses of this mutant may reveal unrecognized
phenotypes.

10.3.3 Others

The genetic study of lipid metabolic enzymes has yielded complementary data.
One of the most well characterized LPA producing enzymes is LysoPLD,
originally known for its nucleotide phosphodiesterase activity as a protein
called Autotoxin (ATX). ATX mutants have been generated by three different
groups (Ferry et al., 2007; Tanaka et al., 2006; van Meeteren et al., 2006).
Heterozygous deletion of ATX results in mice that are grossly normal, but
have LPA plasma levels half of those in normal mice. Homozygotes are lethal at
E9.5 due to severe defects in blood vessel development and neural tube forma-
tion (Tanaka et al., 2006; van Meeteren et al., 2006).

Similar to S1P receptor mutants, individual loss of either SPHK1 or SPHK2
does not produce an abnormal phenotype. However, SPHK 1 and 2 double
mutant embryos lose detectable SPHK activity. As a consequence, the double
mutants are lethal prior to E13.5 with severe vascular and neural tube defects
(Allende et al., 2004b; Mizugishi et al., 2005).

Some of the LP kinase and lyase mutant mice have also been reported and
their phenotypes are consistent with receptor mutant mice (Escalante-Alcalde
et al., 2003; Schmahl et al., 2007). However, a number of enzymes are involved
in lipid metabolic pathways so the existence of functional redundancy is there-
fore conceivable. Ongoing multiple and conditional gene targeting studies are
helping to elucidate these pathways.

10.4 Possible Relevance of LPs to Human Diseases

10.4.1 Possible Clinical Applications

10.4.1.1 Immunity/Transplantation

Both LPA and S1P have been shown to act as immunomodulators in the
regulation of T-cells, B-cells, and macrophages. These immune cells are likely
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regulated by combinations of LP receptors. LPA and S1P acting through
LPA1,2 and S1P2,3 respectively may also serve as survival factors for T-cells
by suppressing Bax (Goetzl et al., 1999). LPA induces migration and suppres-
sion of IL-2 production in unstimulated T-cells via LPA2, however, once the T-
cell is stimulated, LPA inhibits cell migration but activates IL-2 production via
LPA1 (Zheng et al., 2000, 2001). The expression pattern of LP receptors can also
be changed during cell activation (Graler and Goetzl, 2002; Rosen et al., 2003;
Zheng et al., 2000). According to recent models, S1P stimulates migration of
inactive T-cells via S1P1 and S1P4. Upon activation, T-cells temporarily sup-
press receptor expression and lose the S1P mediated migration response. For
retention in lymphoid organs, terminally differentiated effector T-cells then
again upregulate S1P1 to egress from lymph nodes (Graeler and Goetzl, 2002;
Matloubian et al., 2004; Schwab and Cyster, 2007). The proper S1P gradient
between plasma and lymph node is also important for lymphocyte migration
(Schwab et al., 2005).

Studies with FTY720 have been of great importance in demonstrating the
role of S1P signaling in immunomodulation. The phosphorylated metabolite of
FTY720 (FTY720-P) is being evaluated as a clinically relevant immunosup-
pressant for organ transplantation. Conventional immunosuppressants like
cyclosporine (cyclophilin inhibitor) and FK506 (calcineurin inhibitor) inhibit
IL-2 dependent T-cell activation. The unique feature of FTY720-P is that it
suppresses the immune system by inhibiting lymphocyte egress from lymphoid
organs and acts as an S1P receptor modulator (Brinkmann, 2007). Thus,
application of FTY720 with conventional immunosuppressants is expected to
reduce the risk of conventional drug side effects like kidney toxicity from
cyclosporine (Tedesco-Silva et al., 2005).

10.4.1.2 Asthma

S1P levels are dramatically upregulated in the airways of asthmatic patients
following allergen exposure. Cross-linking of IgE receptors on mast cells acti-
vates SPHK1 and increases S1P levels. Activation of S1P2, and to a lesser extent
S1P1, promotes degranulation and chemotaxis of mast cells (Jolly et al., 2002,
2004). Also, airway smooth muscle cells (SMC) express S1P1-4, and they could
modulate the SMC contraction and proliferation via the G12/13 and Gi/o path-
ways (Jolly et al., 2002). This potential therapeutic modality has been demon-
strated in vivo with the observation that FTY720 administration can reduce the
Th1 or Th2 cell-mediated lung-inflammatory responses (Sawicka et al., 2003).

10.4.1.3 Autoimmune Diseases

Since FTY720 does not generally impair lymphocyte proliferation and func-
tion, it could provide a new strategy for immunosuppression, which would be
useful in transplantation, multiple sclerosis (MS), or autoimmune diabetes,
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leaving crucial functions of the immune system intact (Gardell et al., 2006;
Rivera and Chun, 2007).

10.4.1.4 Cancer

LP signaling has relevance to cancer. One of the better characterized cancer
links is ovarian cancer. LPA elevation in the ascites of patients was reported to
elicit growth factor-like activity (Mills et al., 1988), although there is contro-
versy over the generality of this initial report. It has also been shown that LP
receptors and the enzymes involved in LPA and S1P metabolisms are highly
expressed in multiple cancer types, e.g. ovarian cancer and glioblastoma (Murph
et al., 2006). S1P has both positive and negative effects on cancer cell growth
(Hong et al., 1999). FTY720 has anti-tumor effects in vitro and in vivo, and this
may be due to not only the effect on tumor cells, but also the inhibition of
angiogenesis directly or indirectly (Azuma et al., 2002; Ho et al., 2005; LaMon-
tagne et al., 2006).

10.4.1.5 Cardiovascular

Both LPA and S1P have vaso-regulatory functions, such as regulation of heart
rate, blood pressure, platelet aggregation, and smooth muscle contraction
(Karliner, 2004; Siess et al., 2000). Atherosclerosis is a type of accelerated vascu-
litis that reduces blood flow leading to heart attacks and strokes (Siess, 2002). It
is well known that HDL level correlates with a reduced risk of cardiovascu-
lar disease, such as atherosclerosis (Choi et al., 2006), and it has been recently
shown that it is the S1P content of HDL that mediates many of its effects. For
example, HDL induces vasodilation and myocardial perfusion by activation of
S1P3 (Levkau et al., 2004; Nofer et al., 2004). Furthermore, in an in vivo mouse
study, HDL and S1P reduce the infarction size about by 20 and 40% and also
inhibit inflammation caused by the recruitment of polymorphonuclear leukocytes
and cardiomyocyte apoptosis via the S1P3 receptor eNOS/NO pathway (Theil-
meier et al., 2006).

10.4.1.6 Hearing Loss

As mentioned above, S1P2-null mice lose hearing and have balance defects
(Herr et al., 2007; Kono et al., 2007;MacLennan et al., 2006). It may be possible
to prevent the degeneration of hair cells with a selective S1P signaling mod-
ulator. These studies are ongoing and may offer novel treatment modalities for
the prevention of age-related and ototoxic hearing loss.

10.4.1.7 Wound Healing (CNS)

LPA and S1P in blood may enter the brain during central nervous system
(CNS) injury. An experimentally caused brain hemorrhage provides an influx
of 1–10 mM of LPA in the cerebrospinal fluid (Tigyi et al., 1995). In cerebral
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infarction, platelet aggregation can release micromolar concentrations of LPA
and could also lead to increased LPA levels in CSF (Eichholtz et al., 1993).
Indeed, intracranial injection of LPA or S1P causes astrogliosis in vivo (Sorensen
et al., 2003). Reactive astrogliosis is a prominent component of CNS injury, and
this would benefit from further study of LP signaling modulator applications.

10.4.1.8 Pain

In animal models, nerve injury to the dorsal root results in the development of
behavioral allodynia and hyperalgesia paralleled by demyelination. Intrathecal
injection of LPA, but not S1P, initiates behavioral, morphological, and bio-
chemical symptoms of neuropathic pain via an LPA1-mediated Rho/Rho-
kinase pathway (Inoue et al., 2004). LPA signaling modulation may be relevant
for some forms of neuropathic pain, an area of significant, unmet medical need
(Dworkin et al., 2007).

10.4.1.9 Female Reproduction

Recent studies show that LPA3 has a crucial role in blastocyst implantation
through COX-2, which generates prostaglandins (PGs) E2 and I2 (Hama et al.,
2006, 2007; Shah and Catt, 2005; Ye et al., 2005). S1P can also act to prevent
intrinsic, chemical, and irradiation-induced oocyte apoptosis. S1P pretreatment
improves the rate of successful pregnancy in irradiatedmice (Morita et al., 2000;
Tilly, 2001). Thus, controlling LP signaling could be a valuable therapeutic
option in human infertility.

10.4.2 Pharmacology (Agonists and Antagonists)

About 40% of drugs on the market in the United States target GPCRs. Further-
more, over 2% of genes in the human genome are estimated to encode GPCRs
(over 1000) (Tyndall and Sandilya, 2005). Screening efforts are underway to
identify chemicals that agonize and antagonize LP signaling (Chun and Rosen,
2006; Delgado et al., 2007; Herr and Chun, 2007). A computational approach is
also being performed to design drugs and assess receptor specificity based on the
structure of ligand binding pockets and amino acid residues required for ligand
binding (as mentioned in Section 10.2.1.) (Holdsworth et al., 2004; Parrill et al.,
2000).

10.4.2.1 LPA Pharmacological Tools

Several LPA receptor agonists or antagonists have been reported, although
most show modest selectivity and lack in vivo validation, which should be
considered in any experimental usage, particularly for in vivo studies.
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Agonists:N-acyl ethanolamide phosphate (NAEPA) is an LPA analog which
has an ethanol amine backbone (Lynch et al., 1997). A screening of a 2-Oleoyl
LPA derivative which had a pyran ring to stabilize the head group was per-
formed and one LPA1-selective agonist, two LPA3-selective LPA agonists, and
one LPA3-selective antagonist were identified with this scheme (Tamaruya
et al., 2004).

Antagonists:VPC-12449 is an LPA1- and LPA3-selective compound that can
protect against LPA3-mediated renal ischemia-reperfusion injury in a mouse
model (Okusa et al., 2003). A natural lipid metabolite, diacylglycerol pyropho-
sphate (DGPP), was shown to act as an LPA1 and LPA3 specific antagonist
(Fischer et al., 2001). Ki16425 is an LPA1 and LPA3 selective antagonist with
little resemblance to LPA (Ohta et al., 2003). This compound can inhibit breast
cancer cell proliferation and bone metastasis in mice (Boucharaba et al., 2006).

10.4.2.2 S1P Pharmacological Tools

There are also several S1P receptor agonists and antagonists which have dif-
ferent receptor selectivities.

Agonists:AAL-(R) is non-selective S1P receptor agonist which has structural
and functional similarities to FTY720 (Brinkmann et al., 2002; Rosen et al.,
2003). Another agonist, KRP-203 prevents allograft rejection, but does not
affect S1P3 signaling (Fujishiro et al., 2006). KRP-203 (S1P1 > S1P3) is cur-
rently in Phase I clinical trials for the treatment of multiple sclerosis (Novartis).
SEW2871 and AUY954 are S1P1 specific agonists and have been shown to
function to prevent appropriate lymphocyte egress and inhibit allograft rejec-
tion, respectively (Pan et al., 2006; Sanna et al., 2004). Receptor-selectivity is
expected to show greater efficacy with minimal undesirable side effects.

Antagonist: JTE-013 is an S1P2 specific antagonist (Yokoo et al., 2004). A
recently reported S1P1 specific antagonist called W146 can induce loss of capil-
lary integrity (Sanna et al., 2006). In addition, there are a number of agonists/
antagonists that have been described with varying affinities for the different
receptor subtypes (Clemens et al., 2003, 2004; Davis et al., 2005; Im et al., 2001).

FTY720 (FTY720-P): FTY720 is perhaps the best characterized S1P recep-
tor agonist and deserves special consideration. FTY720 is currently in Phase
III clinical trials for the treatment of multiple sclerosis (Novartis). FTY720
was initially isolated from the fungi Ascomycetes in 1995 and identified as an
immunosuppressive agent (Adachi et al., 1995). FTY720 administration sig-
nificantly increases the survival rate of canine kidney allograft recipients
(Suzuki et al., 1996). Recent reports have shown that FTY720 is phosphory-
lated by SPHK2 but not SPHK1 (Allende et al., 2004b; Kharel et al., 2005), and
it inhibits T and B-cell egress from lymph nodes by modulating S1P signaling
(Schwab and Cyster, 2007; Zemann et al., 2006). An increase in S1P levels, as
seen by S1P lyase inhibition, also inhibits lymphocyte egress from lymph nodes
(Schwab et al., 2005). Other S1P1 antagonists, AAL-(R) and SEW2871, can
inhibit thymocyte egress in vivo (Rosen et al., 2003), and an S1P1 partially
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selective agonist, KRP-203, sequesters circulating lymphocytes into peripheral

lymphoid organs (Shimizu et al., 2005). These data suggest that FTY720 and

related agonists mimic high dose S1P exposure. FTY720 can also induce poly-

ubiquitination and proteasomal degradation of S1P1 (Oo et al., 2007), that

could remove receptors from further agonism. In addition, an S1P1 deficiency

arrests thymocyte development at the CD69 positive stage, and prevents lym-

phocyte egress, as mentioned above (Allende et al., 2004a; Matloubian et al.,

2004). These data suggest that FTY720 can result in degradation of the S1P

receptor, acting as a functional antagonist of S1P signaling. However, some

controversies concerning the immunosuppression mechanism by which FTY720

operates still remain (Chun, 2007), and this is still an active research area.
FTY720 represents the first generation of LP receptor modulators that may

have therapeutic value. Other data concerning the efficacy of FTY720 admin-

istration for the treatment of type I diabetes, uveoretinitis, thyroiditis, myocar-

ditis, systemic lupus erythematosus, rheumatoid arthritis, andmultiple sclerosis

in animal models have been reported (Fujino et al., 2003; Hozumi et al., 1999;

Kurose et al., 2000; Matsuura et al., 2000; Okazaki et al., 2002; Suzuki et al.,

1998; Webb et al., 2004). The potential to treat medically important diseases

through LP receptor modulation represents an attractive and technically tract-

able approach that is being actively assessed.
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