
Chapter 2
Gaussian Integrals

We must admit with humility that, while number is purely a
product of our minds, space has a reality outside our minds, so
that we cannot completely prescribe its properties a priori.
– Carl Friedrich Gauss.

In this chapter, we lay the mathematical foundations for the functional-integral for-
malism that we develop in later chapters. We start with introducing the Gaussian
probability distribution together with the corresponding integrals over this distribu-
tion, called Gaussian integrals. These concepts are then generalized to higher dimen-
sions, to the complex plane, and to what are called Grassmann variables. The multi-
dimensional Gaussian integral is of great importance for the rest of this book. In
Chap. 7, we show that it leads to an exact solution of noninteracting quantum gases,
which then also forms the basis for a perturbative description of interacting quantum
gases. The goal of this chapter is to highlight the practical use of several important
mathematical results that are needed to understand the rest of the book. The chapter
is not intended to be a full mathematical account of all the above-mentioned topics,
meaning that proofs will often be omitted or replaced by illustrative examples. The
more experienced reader who is already familiar with Gaussian integrals, complex
analysis, and Grassmann algebras, can use this chapter for reference.

2.1 The Gaussian Integral over Real Variables

The Gaussian or normal probability distribution is the most common distribution in
statistical physics. The main reason for this is that the probability distribution for the
sum of N independent random variables, each with a finite variance, converges for
large N to the Gaussian distribution. This is called the central limit theorem of prob-
ability theory. Famous physical examples of Gaussian distributions are the Maxwell
distribution for the velocities of the atoms in a classical ideal gas, or the spatial dis-
tribution for an atom in the quantum-mechanical ground state of a harmonic trap.
The Gaussian probability distribution is given by

P(x) =
√

α
π

exp
{−αx2}, (2.1)
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16 2 Gaussian Integrals

such that it is properly normalized to 1. This follows from

∫ +∞

−∞
dx e−αx2

=
√

π
α

, (2.2)

which is left as an exercise to the reader. The probability distribution of (2.1) has a
maximum at x = 0, whereas in general the maximum could be at any arbitrary value
x0. Then, we have

P(x) =
√

α
π

exp
{−α(x− x0)2}, (2.3)

which corresponds, for example, to the probability distribution of the velocities in
a thermal beam of atoms which is travelling at an average velocity x0. The latter
distribution has the property that the expectation value of the quantity x is equal to
x0, that is

〈x〉 ≡
∫ +∞

−∞
dx x P(x) =

√
α
π

∫ +∞

−∞
dx x exp

{−α(x− x0)2} = x0, (2.4)

which is easily proven by performing the shift x→ x+ x0.
For our purposes, it is convenient to write the parameter α as−G−1/2 =−1/2G,

with G < 0. In the first instance, this looks overly complicated. However, it estab-
lishes a direct link with the notation used in later chapters for the Green’s function in
the functional-integral formalism. From now on, we also no longer explicitly denote
the lower and upper limit of the integration when these are given by −∞ and +∞,
respectively. With these changes, the Gaussian integral can be written as

∫
dx exp

{
1
2

G−1x2
}

=
√−2πG =

√
2π exp

{
−1

2
log(−G−1)

}
. (2.5)

2.1.1 Generating Function

By including a linear term Jx in the exponent, we introduce the generating function
Z(J) of the probability distribution. This is very useful because it allows us to cal-
culate the expectation value of all the higher moments, i.e. the expectation values of
xn, by simply differentiating with respect to the current J. Specifically, we have for
the Gaussian distribution

Z(J) =
∫ dx√

2π
exp

{
1
2

G−1(x− x0)2 + Jx
}

=
∫ dx√

2π
exp

{
1
2

G−1(x+GJ)2− 1
2

GJ2 + Jx0

}

= exp
{
−1

2
GJ2 + Jx0− 1

2
log

(−G−1)
}

, (2.6)
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where in the first step we performed the shift x → x + x0 before completing the
square. Note that the additional factor 1/

√
2π conveniently cancels the factor

√
2π

coming from the Gaussian integral. The expectation value of x is now readily calcu-
lated from

〈x〉=
1

Z(J)
d
dJ

Z(J)
∣∣∣∣
J=0

= x0, (2.7)

and for 〈x2〉, we obtain

〈x2〉=
1

Z(J)
d2

dJ2 Z(J)
∣∣∣∣
J=0

=−G+ x2
0 =−G+ 〈x〉2. (2.8)

Since we can always perform initially the shift x → x + x0, we consider from now
on without loss of generality the case with x0 = 0. A useful observation is that this
leads to

〈x2m+1〉= 0, (2.9)

where m is an integer. This is because the integrand of the integral

∫
dx x2m+1 exp

{
1
2

G−1x2
}

is odd and the integral vanishes consequently. By repeatedly applying the derivative
d/dJ an even number of times to the first line of (2.6) with x0 = 0, we find that

〈x2m〉=
1

Z(J)
d2m

dJ2m Z(J)
∣∣∣∣
J=0

. (2.10)

Explicitly calculating the right-hand side of (2.10), using the expression in the last
line of (2.6), generates a large number of terms that vanish when we eventually take
the limit J → 0. To simplify the calculation, it is therefore convenient to realize that
if we expand Z(J) in powers of J only the terms proportional to J2m contribute. In
this manner, we find for x0 = 0 that

1
Z(J)

d2m

dJ2m Z(J)
∣∣∣∣
J=0

=
Z(0)
Z(J)

d2m

dJ2m

∞

∑
n=0

1
n!

(
−1

2
GJ2

)n
∣∣∣∣∣
J=0

=
(2m)!
2mm!

(−G)m = (2m−1)!!(−G)m, (2.11)

where (2m−1)!! = (2m−1)(2m−3)(2m−5) . . .1. Hence, we conclude that

〈x2m〉= (2m−1)!!(−G)m. (2.12)

It is important to realize that (2m−1)!! is exactly the number of ways in which 2m
numbers can be divided into m pairs. Thus, we have found that the expectation value
of x2m is equal to the sum of all possible ways in which 〈x2m〉 can be factorized as
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〈x2〉m. This last statement is the essence of the famous Wick’s theorem that will turn
out to be of great importance in later chapters.

2.1.2 Multi-Dimensional Gaussian Integral

The previous results can be immediately generalized to higher-dimensional inte-
grals. Consider a diagonal n×n matrix G,

G =




G11
G22

G33
. . .


 , (2.13)

with again G j j < 0. Then, the inverse G−1 of G is clearly given by

G−1 =




1
G11

1
G22

1
G33

. . .




. (2.14)

We want to evaluate the Gaussian integral

∫ (
n

∏
j=1

dx j

)
exp

{
1
2

x ·G−1 ·x
}
≡

∫
dx exp

{
1
2

x ·G−1 ·x
}

, (2.15)

where x denotes the vector (x1,x2, . . . ,xn). Because the integral factorizes into a
product of n one-dimensional integrals, we find that

∫
dx exp

{
1
2

x ·G−1 ·x
}

=
(2π)n/2

√
∏n

j=1(−G−1
j j )

=
(2π)n/2

√
Det[−G−1]

, (2.16)

where Det[−G−1] denotes the determinant of the matrix−G−1. In the same way we
find that (2.6) generalizes to

Z(J) =
∫ dx√

(2π)n
exp

{
1
2

x ·G−1 ·x+J ·x
}

= exp
{
−1

2
J ·G ·J− 1

2
Tr[log

(−G−1)]
}

, (2.17)

where we have taken again without loss of generality x0 = 0. Here Tr[. . .] denotes
the trace of a matrix, which is the sum of all diagonal elements. The n-th order
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correlation function 〈x j1x j2 . . .x jn〉, given by the expectation value of the product of
n coordinates x j, is now easily calculated from

〈x j1 . . .x jn . . .〉=
1

Z(J)
∂ n

∂J j1 . . .∂J jn
Z(J)

∣∣∣∣
J=0

. (2.18)

Example 2.1. Because Z(J) depends quadratically on J, it immediately follows that

〈xi〉=
1

Z(J)
∂

∂Ji
Z(J)

∣∣∣∣
J=0

= 0. (2.19)

For the expectation value 〈xix j〉, we find

〈xix j〉=
1

Z(J)
∂ 2

∂Ji∂J j
Z(J)

∣∣∣∣
J=0

=−Gi j. (2.20)

The above results were obtained for the specific case of a diagonal matrix. How-
ever, (2.17) is valid for any positive definite, symmetric matrix −G−1, where pos-
itive definite means that the matrix has only positive eigenvalues. First, note that
−G−1 can always be assumed to be symmetric, because any antisymmetric part
would give a vanishing contribution to the term −x ·G−1 · x. Then, a symmetric
matrix can always be brought into diagonal form by a similarity transformation S,
which means that S ·G−1 · S−1 is diagonal and S is orthonormal. Orthonormality
implies that

|Det[S]|= 1, (2.21)

such that the Jacobian of the coordinate transformation x = S−1 ·x′ is equal to one.
Applying the above considerations to (2.17), we have

Z(J) =
∫ dx′√

(2π)n
exp

{
1
2

x′ ·S ·G−1 ·S−1 ·x′+J ·S−1 ·x′
}

= exp
{
−1

2
J ·S−1 ·S ·G ·S−1 ·S ·J

}
1√

Det[−S ·G−1 ·S−1]

= exp
{
−1

2
J ·G ·J

}
1√

Det[−G−1]
, (2.22)

where we also used the property that for an orthogonal matrix the inverse matrix
and the transposed matrix are the same. Thus, we find that (2.17) is valid for any
positive definite matrix −G−1.
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2.2 Complex Analysis

In the following, we generalize the results of the previous paragraph to Gaussian
integrals over n complex variables z j. Before doing so, we first review some con-
cepts from elementary complex analysis. The complex plane is a two-dimensional
linear space, meaning that any number in the complex plane can be written as x+ iy,
where x and y are real. Instead of using x and y as the independent variables to
parametrize the complex plane, it is more convenient for our purposes to make a
coordinate transformation that maps x and y onto the independent variables z and z∗
in the following way

z = x+ iy and z∗ = x− iy. (2.23)

Here, |z|2 = z∗z = x2 + y2 gives the square of the modulus of z, while the real and
imaginary parts of z are given by Re[z] = (z+ z∗)/2 and Im[z] = (z− z∗)/2i. Instead
of using the Cartesian coordinates x and y, it is also possible to introduce polar
coordinates. In that case, complex numbers are written as

z = reiϕ , (2.24)

where r =
√

z∗z is the complex modulus and ϕ = Arg[z] is the complex argument.

2.2.1 Differentiation and Contour Integrals

A general complex function f (x,y) is a map from the complex plane to the complex
plane and in general depends explicitly on both z and z∗. We write f (x,y) = u(x,y)+
iv(x,y), where u(x,y) = Re[ f (x,y)] and v(x,y) = Im[ f (x,y)]. In practise we will be
dealing mostly with analytic functions, which turn out to depend only explicitly on
z = x + iy. Because such a function f (x + iy) or f (z) only depends on z, we must
have that d f/dz = ∂ f/∂x =−i∂ f/∂y for an analytic function. Since

∂ f (x,y)
∂x

=
∂u(x,y)

∂x
+ i

∂v(x,y)
∂x

(2.25)

and

−i
∂ f (x,y)

∂y
=−i

∂u(x,y)
∂y

+
∂v(x,y)

∂y
, (2.26)

we have that the functions u and v are not independent, but rather satisfy the follow-
ing set of equations

∂u(x,y)
∂x

=
∂v(x,y)

∂y
and

∂u(x,y)
∂y

=−∂v(x,y)
∂x

. (2.27)
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These equations are known as the Cauchy-Riemann equations and satisfying them
assures differentiability of the complex function.

Example 2.2. To explicitly demonstrate the use of the Cauchy-Riemann equations,
we test for two simple complex functions whether or not they are analytic functions.
First, consider the complex function f (x,y) = x+ iy = z, i.e. u(x,y) = x and v(x,y) =
y. Clearly it satisfies the Cauchy-Riemann equations, since ∂u/∂x = 1 = ∂v/∂y and
∂u/∂y = 0 = −∂v/∂x. However, the complex conjugate f (x,y) = x− iy = z∗ is
not analytic, because it does not satisfy the Cauchy-Riemann equations. Indeed, we
have ∂u/∂x = 1 6=−1 = ∂v/∂y. This illustrates the above statement that functions
depending explicitly on z∗ are not analytic.

Besides being able to take the derivative of a complex function we also want to be
able to integrate it. In principle, the integral of a general complex function between
two points in the complex plane depends on the specific path taken. However, if
the function f (z) satisfies the Cauchy-Riemann equations in all points enclosed by
two different paths connecting zi and zf, then the integral

∫ zf
zi

dz f (z) gives the same
result for each of the two paths. This leads directly to the Cauchy-Goursat theorem,
stating that for any function f which is analytic on a closed contour C and at all
points inside the contour, the integral along the contour vanishes, i.e.

∮

C
dz f (z) = 0. (2.28)

We will not prove this theorem here, but we give a simple demonstration in Example
2.3. With the Cauchy-Goursat theorem, it is then possible to prove the important
Cauchy integral formula

f (z0) =
1

2πi

∮

C
dz

f (z)
z− z0

, (2.29)

where the integration over the contour C is in a counterclockwise fashion. This will
always be the convention for contour integration from now on.

Example 2.3. Consider the function f (z) = z, and let the contour C be the circle
centered at z = 0 with radius R. The circle is parameterized by z = Reiφ , where ϕ
runs counterclockwise from 0 to 2π . Hence, dz = iReiϕ dϕ and we find

∮

C
dz z =

∫ 2π

0
dϕ iR2e2iϕ =

R2

2
e2iϕ

∣∣∣∣
2π

0
= 0. (2.30)

This illustrates the Cauchy-Goursat theorem. Consider in (2.29) the function f (z) =
1 and take for the contour C the circle based at z0 with radius R. We obtain
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1
2πi

∮

C
dz

f (z)
z− z0

=
1

2πi

∫ 2π

0
dϕ

iReiϕ

Reiϕ = 1 = f (z0). (2.31)

This illustrates the Cauchy integral formula.

The Cauchy integral formula can be used to express the derivatives of a complex
function in terms of a contour integral. By differentiating both sides of (2.29) n times
with respect to z0, we obtain

dn

dzn
0

f (z0) =
n!

2πi

∮

C
dz

f (z)
(z− z0)n+1 . (2.32)

2.2.2 Laurent Series and the Residue Theorem

For a function f (x) that depends on the real variable x, it is possible to make a Taylor
series expansion around the nonsingular point x0, i.e.

f (x) =
∞

∑
n=0

f (n)(x0)
n!

(x− x0)n, (2.33)

where f (n)(x) = dn f (x)/dxn and where we assumed that the sum on the right-hand
side converges. A similar expansion holds for complex functions that are analytic
throughout the interior of a circle centered at z0 with radius R. In that case, the
function can be written as

f (z) =
∞

∑
n=0

f (n)(z0)
n!

(z− z0)n. (2.34)

Now, suppose that we have a function that is singular at a single point z0 that lies
within a circle centered at z0 and with radius R1, as is illustrated in Fig. 2.1. We call
S the region enclosed by the circle excluding the singular point z0. For each point z
that lies within S, the function f (z) is given by

f (z) =
∞

∑
n=−∞

an(z− z0)n, (2.35)

where the coefficients are given by

an =
1

2πi

∮

C
dz

f (z)
(z− z0)n+1 , (2.36)

and C is any contour that encloses z0 and lies within S. This series expansion is also
known as the Laurent series expansion. The coefficient a−1, which is the integral of
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R

S

z

1

0

Fig. 2.1 Laurent series expansion. The region S is enclosed by a circle with radius R1 that is
centered at z0, but excludes the point z0 itself.

f (z) along the contour C, is called the residue of f at the singular point z0

a−1 =
1

2πi

∮

C
f (z)dz≡ Res[ f (z0)]. (2.37)

For our purpose, analytic functions that have the following expansion in terms of a
Laurent series are most relevant

f (z) =
∞

∑
n=−m

an(z− z0)n, (2.38)

and the singularity at z = z0 is called a pole of order m. For the residue, this leads to

Res[ f (z0)] =
1

(m−1)!
lim
z→z0

dm−1

dzm−1 ((z− z0)
m f (z)) . (2.39)

The concept of the residue allows for a generalization of Cauchy’s integral formula
of (2.29) to any contour enclosing a finite number of finite-order poles. This leads
to the residue theorem, that is

∮

C
dz f (z) = 2πi∑

j
Res[ f (z j)]. (2.40)

Example 2.4. The function f (z) = 1/((1− iz)(1 + iz)) is not analytic in z = ±i. To
find the Laurent series expansion of f (z) at z = i, we start by writing

1
1+ iz

=−i(z− i)−1. (2.41)

Moreover, the Taylor series of the term 1/(1− iz) is given by,
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−R

z = i

C 

z = − i

+ R

C ’’

’

Fig. 2.2 Illustration of the contour C = C′+C′′ used in Example 2.5.

1
1− iz

=
∞

∑
n=0

1
2(n+1) in(z− i)n. (2.42)

Multiplying the two terms gives the Laurent series of the function f (z),

f (z) = −
∞

∑
n=0

(
i
2

)n+1

(z− i)n−1

=
∞

∑
n=−1

an(z− i)n, (2.43)

where an =−(i/2)n+2. This shows that the residue is equal to a−1 =−i/2.

Example 2.5. Suppose we want to calculate the following integral along the real axis
∫ ∞

−∞
dx

1
1+ x2 .

This is a standard integral whose answer is known to be arctanx|+∞
−∞ = π . Now we

show how we can also obtain this result by making use of the residue theorem. We
start by extending the function f (x) = 1/(1 + x2) on the real axis to the function
f (z) in the complex plane, such that

f (z) =
1

(z+ i)(z− i)
. (2.44)

This function has poles in the complex plane at z = ±i. To be able to apply the
residue theorem, we use the contour C shown in Fig. 2.2. It is the union of the line
C′, which is the part of the real axis from−R to +R, and C′′, which is the semicircle
in the upper half-plane centered at zero with radius R. Our original integral can be
obtained by taking the limit R → ∞ and subtracting the integral along the path C′′.
Due to the residue theorem, we have that

∮

C
dz f (z) = 2πi Res[ f (z = i)] = π. (2.45)
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The contour integral along the semicircle C′′ vanishes in the limit R→ ∞, since

lim
R→∞

∫

C′′
dz

1
1+ z2 = lim

R→∞

∫ π

0
dϕ

i
Reiϕ = 0. (2.46)

As a result, we see that we retrieve the original answer, as desired.

2.3 Gaussian Integrals over Complex Variables

In this section, we generalize the results that we obtained for the Gaussian integral
along the real axis in (2.5) to integrations over the complex plane. We assume that
the complex number G−1 has a real part that is less than zero. We find

∫
dz∗dz exp

{
G−1z∗z

} ≡
∫ ∂ (z∗,z)

∂ (x,y)
dx dy exp

{
G−1(x2 + y2)

}

=
∫

dx dy 2iexp
{

G−1x2}exp
{

G−1y2}

= −2πiG, (2.47)

where the integral is over the full complex plane. The coordinate transformation of
(2.23) that maps x and y onto z∗ and z, also defines the measure dz∗dz through the
relation

dz∗dz≡ ∂ (z∗,z)
∂ (x,y)

dx dy = 2idx dy, (2.48)

where in the last step we explicitly calculated the Jacobian of the coordinate trans-
formation. Just like in the real case, we can add a linear term z∗J + J∗z to the expo-
nent of the Gaussian integral and define the generating function

Z(J,J∗) =
∫ dz∗dz

2πi
exp

{
G−1z∗z+ z∗J + J∗z

}

= exp
{−J∗GJ− log(−G−1)

}
, (2.49)

which is shown by completing the square. As before, we can calculate all moments
with this generating function, such that we have for example

〈zz∗〉=
1

Z(J,J∗)
d2

dJ∗dJ
Z(J,J∗)

∣∣∣∣
J∗=J=0

=−G. (2.50)

Next, consider the diagonal n×n matrix G−1, i.e.
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G−1 =




1
G11

1
G22

1
G33

. . .




. (2.51)

We want to evaluate the Gaussian integral

∫ (
n

∏
j=1

dz∗j dz j

2πi

)
exp

{
z∗ ·G−1 · z}≡

∫ dz∗dz
(2πi)n exp

{
z∗ ·G−1 · z}, (2.52)

where z is the complex vector (z1, . . . ,zn). As before, the integral factorizes and we
find that

∫ dz∗dz
(2πi)n exp

{
z∗ ·G−1 · z} =

1

∏n
j=1(−G−1

j j )
=

1
Det[−G−1]

. (2.53)

Now, we can also generalize (2.49) to

Z(J,J∗) =
∫ dz∗dz

(2πi)n exp
{

z∗ ·G−1 · z+ z∗ ·J+J∗ · z}

= exp
{−J∗ ·G ·J−Tr[log(−G−1)]

}
. (2.54)

The above results were obtained for the specific case of a diagonal matrix. However,
(2.54) is true for all positive definite hermitian matrices −G−1, because these can
be diagonalized by a unitary transformation U with |Det[U]|= 1.

2.4 Grassmann Variables

To complete our discussion of Gaussian integrals we introduce another set of num-
bers, namely the set of anticommuting complex numbers or Grassmann numbers.
These turn out to be very useful in setting up the functional-integral formalism for
fermionic quantum gases. The reason for this is that, as we see later, fermionic be-
havior is mathematically expressed by anticommuting creation and annihilation op-
erators. To illustrate this we note that if a fermionic creation operator anticommutes
with itself then its square gives zero, which expresses the Pauli principle that two
fermions cannot be created in the same quantum state. In order to consider eigen-
values of such anticommuting operators we need anticommuting numbers, i.e. the
Grassmann numbers.

A Grassmann algebra is a set of Grassmann variables, which are called the gen-
erators of the algebra. They span a complex linear space by making linear combi-
nations of them with complex coefficients. The simplest example that we can think
of is the set {1,φ}. By definition, we have for a Grassmann variable φ that its an-
ticommutator vanishes, i.e. [φ ,φ ]+ = φφ + φφ = 0. We can think of the elements
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1 and φ as basis vectors of a linear space. However, in order to find a matrix rep-
resentation of the algebra, it is actually more convenient to think of the elements
also as operators. For instance, since we have that 1 · 1 = 1 and 1 · φ = φ , we see
that 1 can be viewed as an operator on the Grassmann algebra that sends both 1 and
φ to themselves. The element φ then sends the basis vector 1 to φ , while the other
basis vector φ is mapped onto 0. In terms of matrices, the above mappings of basis
vectors are readily found in matrix form as

1∼
[

1 0
0 1

]
and φ ∼

[
0 0
1 0

]
. (2.55)

Note that the above matrices automatically satisfy all rules imposed on the algebra.
Furthermore, since φ 2 = 0, the most general function of φ is simply F(φ) = f1 +
f2φ .

The previous discussion is easily generalized to the set {1,φ ,φ ∗,φ ∗φ} of two
such Grassmann variables, where φ and φ ∗ are independent variables. The two
Grassmann variables anticommute with each other, giving

[φ ,φ ∗]+ = φφ ∗+φ ∗φ = 0. (2.56)

As before, we also have that φ 2 = φ ∗2 = 0, such that the above set is complete. The
complex conjugation in this algebra is defined by

(φ)∗ = φ ∗, (φ ∗)∗ = φ , (φ ∗φ)∗ = (φ)∗(φ ∗)∗ = φ ∗φ , (2.57)

and the most general function on this algebra yields

A(φ ∗,φ) = a11 +a12φ +a21φ ∗+a22φ ∗φ . (2.58)

It is natural to define differentiation of Grassmann variables by

∂
∂φ

A(φ ∗,φ) = a12−a22φ ∗, (2.59)

where the minus sign occurs because we need to permute φ ∗ and φ before we can
differentiate with respect to φ . The differentiation of (2.59) is called a left differen-
tiation. Similarly, we have

∂
∂φ ∗

A(φ ∗,φ) = a21 +a22φ , (2.60)

where this time the minus sign is absent, because now we do not have to permute
the Grassmann variables. Furthermore, we find

∂ 2

∂φ ∗∂φ
A(φ ∗,φ) =− ∂ 2

∂φ∂φ ∗
A(φ ∗,φ) =−a22 . (2.61)
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Next, we introduce integration over the Grassmann variables. Note that since
φ 2 = 0, we only have two possible integrals to consider, namely

∫
dφ 1 and

∫
dφ φ .

We define these by ∫
dφ 1 = 0 (2.62)

and ∫
dφ φ = 1 . (2.63)

This means that integration is equivalent to differentiation. The main reason for
the above definitions is that we want the integration to obey the rules of partial
integration. In particular, this implies that

∫
dφ

∂F(φ)
∂φ

= 0 , (2.64)

for any function F(φ) = f1 + f2φ . Obviously, this condition requires that
∫

dφ 1 = 0.
The result for

∫
dφ φ then turns out to be merely a question of normalization. The

most general quadratic integral for the present Grassmann algebra thus yields
∫

dφ ∗dφ A(φ ∗,φ) =
∫

dφ ∗dφ (a11 +a12φ +a21φ ∗+a22φ ∗φ) =−a22 . (2.65)

All the above definitions are then readily further generalized to the Grassmann
algebra generated by the Grassmann variables φ j and φ ∗j with j = 1,2, . . . ,n. It is
left as an exercise to show that with the above definitions, the Gaussian integral over
2n Grassmann variables leads to

∫ (
∏

j
dφ ∗j dφ j

)
exp

{
∑
j, j′

φ ∗j G−1
j, j′φ j′

}
= Det[−G−1] = eTr[log(−G−1)] . (2.66)

Note the difference with the result from (2.54), namely

∫ (
∏

j

dφ ∗j dφ j

2πi

)
exp

{
∑
j, j′

φ ∗j G−1
j, j′φ j′

}
=

1
Det[−G−1]

= e−Tr[log(−G−1)] , (2.67)

which is valid for ordinary complex variables. These last two results will be used
extensively throughout the rest of the book.

2.5 Problems

Exercise 2.1. Prove the Gaussian integral in (2.2). To do so, consider

(∫
dx e−αx2

)2

=
∫

dx dy e−α(x2+y2), (2.68)
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and make use of the fact that the integrand is invariant under rotations, so that you
can use polar coordinates to perform the integration.

Exercise 2.2. Consider a Gaussian probability distribution with nonzero average
〈x〉 = x0. Calculate 〈x3〉 and 〈x4〉 by transforming to the variable x′ = x− x0 that
has a Gaussian probability distribution centered around zero, such that you can use
(2.9) and (2.12). Also calculate 〈x3〉 and 〈x4〉 by making use of the generating func-
tion from (2.6), namely

Z(J) = exp
{
−1

2
GJ2 + x0J− 1

2
log(−G−1)

}
. (2.69)

Exercise 2.3. Observe that partial integration of the Gaussian integral leads to the
following identity,

∫ dx√
2π

exp
{

1
2

G−1x2
}

= −
∫ dx√

2π
G−1x2 exp

{
1
2

G−1x2
}

. (2.70)

Prove now equation (2.12) by making repeated use of partial integration.

Exercise 2.4. Prove that
∮

C
dz

1
(z− z0)n+1 = 2πiδn,0 (2.71)

by taking the contour C to be a circle with radius R around z0, such that z = z0 +Reiϕ

and the contour integral becomes an integral over ϕ .

Exercise 2.5. Contour integration
Using contour integration, show
(a) that the following one-dimensional integral yields

∫
dq

1
E+−q2/m

eiqx/h̄ =−iπ
√

m
E

exp
{

i|x|√mE
h̄

}
, (2.72)

where E+ = E + iη with η an infinitesimally small positive number, and
(b) that the following three-dimensional integral yields

∫ dk
(2π)3

e−ik·r

α2 + γk2 =
1

4πγ
e−r/ξ

r
, (2.73)

where ξ =
√γ/α is also called the correlation length. Hint: use spherical coordi-

nates dk = k2 sin(ϑ)dk dϑ dϕ , such that k · r = kr cos(ϑ), and perform the integra-
tions over the angles first.

Exercise 2.6. Find a matrix representation of the Grassmann algebra generated by
φ and φ ∗. Note that we need at least 4×4 matrices.
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Exercise 2.7. Prove (2.66). To this end, it is instructive to first show that
∫

dφ ∗1 dφ1 dφ ∗2 dφ2 exp{−α11φ ∗1 φ1−α12φ ∗1 φ2−α21φ ∗2 φ1−α22φ ∗2 φ2}
= α11α22−α21α12, (2.74)

before considering the general case of an integral over 2n Grassmann variables.

Exercise 2.8. Hubbard-Stratonovich Transformation
Consider the following integral Z over the complex variables φ ∗j and φ j,

Z =
∫ (

n

∏
j=1

dφ ∗j dφ j

2πi

)
exp

{
n

∑
j, j′=1

(
φ ∗j G−1

0; j, j′φ j′ −
Vj, j′

2
φ ∗j φ ∗j′φ j′φ j

)}
, (2.75)

where G−1
0 and V are invertible matrices with only negative eigenvalues, i.e.

∑
j′′

Vj, j′′V
−1
j′′, j′ = ∑

j′′
G−1

0; j, j′′G0; j′′, j′ = δ j, j′ . (2.76)

Note that we cannot calculate the integral exactly, because it is not Gaussian, due
to the quartic term in the exponential. However, we are going to perform a trick to
transform the quartic term away.
(a) Show that the integral Z can be written as

Z =
∫ (

n

∏
j=1

dφ ∗j dφ j

2πi

)(
n

∏
j=1

dη j√
2π

)
exp

{
1
2

Tr[log(−V)]
}

(2.77)

×exp

{
∑
j, j′

(
φ ∗j G−1

0; j, j′φ j′ +
1
2

η jVj, j′η j′ −η jVj, j′φ ∗j′φ j′

)}
,

where η is a real variable. Note that there is no longer a quartic term, since we have
transformed it away. This is the essence of the Hubbard-Stratonovich transforma-
tion, which we use many times when treating interacting quantum gases.
Hint: use the following identity

∫ (
n

∏
j=1

dη j√
2π

)
exp

{
1
2 ∑

j, j′

(
η j−φ ∗j φ j

)
Vj, j′

(
η j′ −φ ∗j′φ j′

)}
= e−Tr[log(−V)]/2.

(b) Show that Z can be written in the following way

Z = eTr[log(−V)]/2
∫ (

n

∏
j=1

dη j√
2π

)
exp

{
1
2 ∑

j, j′
η jVj, j′η j′ −Tr

[
log

(−G−1
0 +ΣΣΣ

)]
}

,

where we introduced the matrix Σ j, j′ = ∑ j′′ η j′′Vj′′, j′δ j, j′ .
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Additional Reading

• S. Hassani, Mathematical Physics, A Modern Introduction to Its Foundations,
(Springer-Verlag, Berlin, 1999).

• A mathematically concise textbook on many-particle systems is J. W. Negele and
H. Orland Quantum Many-Particle Systems, (Westview Press, Boulder, 1998).

• For a thorough mathematical treatment of complex functions, S. Lang Complex
Analysis, (Springer, Berlin, 1999).




