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Preface

On June 19th 1999, the European Ministers of Education signed the Bologna Dec-
laration, with which they agreed that the European university education should be
uniformized throughout Europe and based on the two-cycle bachelor-master’s sys-
tem. The Institute for Theoretical Physics at Utrecht University quickly responded
to this new challenge and created an international master’s programme in Theoret-
ical Physics which started running in the summer of 2000. At present, the master’s
programme is a so-called prestige master at Utrecht University, and it aims at train-
ing motivated students to become sophisticated researchers in theoretical physics.
The programme is built on the philosophy that modern theoretical physics is guided
by universal principles that can be applied to any subfield of physics. As a result,
the basis of the master’s programme consists of the obligatory courses Statistical
Field Theory and Quantum Field Theory. These focus in particular on the general
concepts of quantum field theory, rather than on the wide variety of possible applica-
tions. These applications are left to optional courses that build upon the firm concep-
tual basis given in the obligatory courses. The subjects of these optional courses in-
clude, for instance, Strongly-Correlated Electrons, Spintronics, Bose-Einstein Con-
densation, The Standard Model, Cosmology, and String Theory. The master’s pro-
gramme in Theoretical Physics is preceded by a summer school that is organized in
the last two weeks of August to help prospective students prepare for the intensive
master’s courses. Short courses are offered in quantum mechanics, electrodynam-
ics, statistical physics and computational methods, and are aimed at overcoming
possible deficiencies in any of these subjects.

The idea of writing this book came about during the period of 2000-2005,
when one of us was teaching the course on Statistical Field Theory for the above-
mentioned master’s programme in Theoretical Physics. The lecture notes used for
this course were an extended version of the lecture notes for the Les Houches sum-
mer school on Coherent Atomic Matter Waves that took place in 1999. Although
these lecture notes, in combination with the lectures and tutorials, were supposed
to be self-contained, in practice students often expressed a desire for more calcula-
tional details, applications and background material.

v



vi Preface

It was also during this period that the research field of ultracold atomic gases,
pushed in particular by the impressive experimental progress since the first observa-
tion of Bose-Einstein condensation in 1995, made rapid developments that helped
shape the field as we know it today. Nowadays, many experimental groups around
the world can routinely prepare quantum degenerate gases of bosons, fermions, and
various mixtures thereof. Moreover, the microscopic details of these atomic gases
are well known and can be controlled very accurately, leading to the exciting pos-
sibility of addressing fundamental questions about interacting quantum systems in
unprecedented detail. Because of this, it is also possible to perform ab initio theo-
retical calculations that allow for a quantitative comparison with experiments, such
that the connection between theory and experiment is particularly close in this field
of physics. There are various ways to perform these calculations, but most research
topics can be dealt with in a unified manner by using quantum field theoretical meth-
ods. Although there are several textbooks available on quantum field theory, to date
there does not exist a textbook that applies advanced quantum field theory, and in
particular its functional formulation, to ultracold atomic quantum gases.

The level of this textbook is geared to students beginning with their master’s and
to graduate students already working in the field of ultracold atoms. To overcome
the differences in educational background between the various students, the book
has been divided into three parts which can in principle be read independently of
each other. The first part briefly introduces elementary concepts from mathematics,
statistical physics, and quantum mechanics which are indispensable for a full un-
derstanding of the rest of the book. Various important concepts that return later in
the language of quantum field theory are introduced here in a more familiar setting.
At the end of each chapter, there are references to various excellent textbooks that
provide more background on each of the discussed topics. This part of the book is
particularly aimed at the Utrecht Summer School in Theoretical Physics and pro-
vides the participants with the appropriate background material for the obligatory
field theory courses that form the basis of the master’s programme in Theoretical
Physics. The second part of the book is devoted to laying the conceptual basis of
the functional formulation of quantum field theory from a condensed-matter point
of view. This part forms the core of the above mentioned Statistical Field Theory
course, in which also the canonical topics of superfluidity and superconductivity
of interacting Bose and Fermi gases are treated. The third part of the book is then
largely aimed at applications of the developed theoretical techniques to various as-
pects of ultracold quantum gases that are currently being explored, such that the
chosen topics give an idea of the present status of the field. It is our hope that, after
having read this part, students will be well prepared to enter this exciting field of
physics and be able to start contributing themselves to the rapid developments that
are taking place today.

The knowledge presented in this book has been acquired through many collab-
orations and interactions with our colleagues over the last two decades. Here, we
would like to sincerely thank everybody involved for that. It is unfortunately im-
possible to give everybody the proper credit for their contribution. As a result, both
in this short word of thanks, as well as in citing references throughout the book,
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subjective choices are made and important contributions left out. Our main aim
in citing has been to provide students with interesting additional reading material,
and not to give an exhaustive overview of the enormous amount of literature in the
field of ultracold atoms. We hope to be forgiven for that. With this in mind, we
thank the following persons together with the members of their groups, namely Im-
manuel Bloch, Georg Bruun, Keith Burnett, Eric Cornell, Peter Denteneer, Steve
Girvin, Randy Hulet, Allan MacDonald, Cristiane Morais Smith, Guthrie Partridge,
Chris Pethick, Subir Sachdev, Cass Sackett, Jörg Schmiedmayer, Kevin Strecker,
Peter van der Straten, Stefan Vandoren, and Eugene Zaremba for the collaborations
that have led to joint publications. We also thank the postdoctoral researchers Us-
ama Al Khawaja, Jens Andersen, Behnam Farid, Masud Haque, Jani Martikainen,
Pietro Massignan, and Nick Proukakis, and the graduate students Michel Bijlsma,
Marianne Houbiers, Michiel Bijlsma, Rembert Duine, Dries van Oosten, Gianmaria
Falco, Lih-King Lim, Mathijs Romans, Michiel Snoek, Arnaud Koetsier, and Jeroen
Diederix of the Utrecht Quantum Fluids and Solids Group. In particular, we men-
tion Usama Al Khawaja, Rembert Duine, Dries van Oosten, and Nick Proukakis for
their direct contributions to the recent applications that are discussed in the third
part of the book. We also thank our experimental colleagues Immanuel Bloch, Eric
Cornell, Randy Hulet, Wolfgang Ketterle, and Wenhui Li, for kindly providing us
with the experimental data that has allowed us to compare the theory to experiment
in this book. We thank Rembert Duine for providing several exercises and for many
helpful comments on the manuscript. Furthermore we express our gratitude to Tom
Spicer from Canopus Publishing for all his effort in bringing forth this book. We are
especially grateful to Randy Hulet for more than 15 years of friendship and fruitful
collaboration, from which we benefitted greatly, both personally and professionally.

Finally, we wish to thank Jolanda, Maurice, Inèz, Joke, Harry, Winy, Theo, Roos,
Hein, Paulien, Ryoko, Miguel, and the rest of our families and friends for all their
unconditional support and for sharing the joy of life.

Utrecht, May 2008 Henk Stoof
Koos Gubbels

Dennis Dickerscheid
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Chapter 1
Introduction

The field of many-body quantum physics has a long history of fundamental discov-
eries, many of which have gone far beyond our wildest imagination. These include
the study of novel states of matter, the observation of previously unseen phase tran-
sitions, and the discovery of new macroscopic quantum effects which arise when
the intriguing rules of quantum mechanics are no longer restricted to the subatomic
world, but rather determine the collective behavior of systems that are observable
with the naked eye. In the past, it has often been proven difficult to obtain the un-
derlying theory that yields an accurate description of the collective quantum phe-
nomenon on the microscopic level. A good example is the discovery of superflu-
idity in liquid 4He by Pyotr Kapitsa, John Allen and Don Misener in 1938 [1, 2],
where superfluidity refers to the fact that the liquid can flow without experiencing
resistance, which leads for example to the spectacular fountain effect [3]. Since the
atoms interact very strongly, the precise internal state of liquid helium is notoriously
difficult to determine.

An exception to this rule, however, is the question of what happens to a nonin-
teracting gas of bosons when it is cooled down to zero temperature. This question
was already theoretically answered long before the discovery of superfluid helium.
In fact, the answer was already obtained before the final formulation of quantum
mechanics and before a good understanding of phase transitions was achieved. The
question found its origin in the early 1920s, when Satyendra Bose introduced a dif-
ferent way of counting microstates than was usual in classical statistical mechanics
[4]. In this way, he was able to rederive Planck’s law for the energy spectrum of
black-body radiation. Albert Einstein generalized this result in 1924 to the case of
indistinguishable noninteracting massive bosons by including the effect of particle-
number conservation, which led to the famous Bose-Einstein distribution [5]. Ein-
stein also realized that a remarkable consequence of this Bose-Einstein distribution
is that below a certain critical temperature

Tc =
2π

ζ (3/2)2/3

h̄2n2/3

mkB
, (1.1)

1
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it predicts that a macroscopic fraction of the bosons occupies the same one-particle
quantum state. Here h̄ is Dirac’s constant, i.e. Planck’s constant h divided by 2π ,
m is the mass of the particles, kB is Boltzmann’s constant, n is the particle density
of the gas, and ζ (3/2) ' 2.612. This promotes the wavefunction of that particular
one-particle quantum state to the macroscopic level and gives rise to a new state of
matter that is known as a Bose-Einstein condensate or BEC. It is believed that Bose-
Einstein condensation is also the mechanism behind the superfluid behavior of liquid
helium. However, in liquid helium the density is high and the interaction between
the helium atoms is very strong, such that it is far from an ideal Bose gas. As a
result, Einstein’s theory needs to be modified considerably, and so far the properties
of liquid helium have been impossible to determine analytically. Furthermore, the
presence of a macroscopic occupation of a one-particle quantum state has never
been directly observed in this system.

The microscopic theory for the phenomenon of superconductivity, which was
discovered experimentally in 1911 by Heike Kamerlingh Onnes [6], also turned
out to be an extremely challenging task. After superconductivity had been found
it was studied experimentally in a wide variety of metals, leading to many impor-
tant discoveries. A crucial example, known as the Meissner effect [7], reveals that
a superconductor is a perfect diamagnet because any applied magnetic field is com-
pletely expelled from its interior. It took almost fifty years before John Bardeen,
Leon Cooper, and Robert Schrieffer [8] finally realized that superconductivity is
actually caused by a Bose-Einstein condensation of loosely bound fermion pairs.
The Bardeen-Cooper-Schrieffer or BCS theory of superconductivity is based on
the description of the electrons in a metal as a gas, where the electrons need an
effectively attractive interaction to form stable Cooper pairs. Physically, this attrac-
tive interaction is the result of the rather subtle effect that the electrons can deform
the positively charged ionic lattice that is present in the metal. It is perhaps ironic
that if the theory was invented before the experimental discovery of Kamerlingh
Onnes, physicists would probably have never started looking for superconductivity
in metals, because electrons do not usually form pairs due to their strongly repulsive
Coulomb interaction. In 1986, high-temperature superconductors were discovered
in ceramic materials [9]. However, the precise microscopic mechanism governing
these cuprates is still not clear today.

1.1 Ultracold Atomic Quantum Gases

From the moment that Bose-Einstein condensation was finally achieved in trapped
dilute gases of bosonic alkali atoms in 1995 by the groups of Eric Cornell and
Carl Wieman, Randy Hulet, and Wolfgang Ketterle [10, 11, 12], a completely new
category of systems became available for studying macroscopic quantum effects.
The most important ingredients for this accomplishment were the precooling of the
atoms using laser cooling [13], the trapping of the atoms in a magnetic trap [14],
the final cooling of the atoms using evaporative cooling [15], and the imaging of the
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gas either in situ or after expansion. In particular, the trapping of atoms and cooling
by means of evaporation turned out to be crucial. The reason for this is hidden in
the prediction of (1.1) that for the relevant low densities of 1012− 1015 atoms per
cubic centimeter, extremely low temperatures of 1− 100 nK are required to reach
Bose-Einstein condensation. These are impossible to achieve if the gas is in con-
tact with material walls. Once the atomic gas is magnetically or optically trapped,
evaporative cooling can be relatively easily implemented by lowering the trap depth,
so that only the most energetic atoms can escape from the trap and the remaining
gas cools after re-thermalization. Because of their complete isolation these ultracold
gases are, unlike solid-state systems, very clean in the sense that there are essentially
no impurities unless deliberately added. Moreover, due to the low densities, inter-
action effects can be sufficiently small as to be treated with perturbation theory. As
a result, it is possible to obtain an accurate microscopic description of these ultra-
cold atomic quantum gases using advanced field-theoretical methods. This is one of
the main goals of this book. Furthermore, these systems have also turned out to be
very flexible, as the external trapping potential and the interatomic interaction are
under complete experimental control. This allows for a systematic study of an enor-
mous variety of interesting many-body systems, ranging from weakly interacting
to strongly interacting, from one dimensional to three dimensional, from homoge-
neous to periodic, where the microscopic parameters are always precisely known
and tunable.

Shortly after the achievement of Bose-Einstein condensation, it was predicted
that the superfluid regime could also be reached in a dilute gas of fermionic atoms
[16]. However, the realization of this intriguing possibility turned out to be even
more difficult than reaching BEC. This comes about because the previously men-
tioned BCS theory for the condensation of fermion pairs predicts that the critical
temperature is exponentially dependent on the inverse of the (negative) scattering
length a, which describes the strength of the attractive interactions between the
fermions. Namely, we have that

Tc =
4(9π)1/3

e2−γ
h̄2n2/3

mkB
exp

{
− π

2kF|a|
}

, (1.2)

where γ ' 0.5772 is Euler’s constant and kF = (3π2n)1/3 is the Fermi wavevector.
This in general shifts the required temperature beyond the reach of experiments with
ultracold gases, which are dilute and therefore usually characterized by kF|a| ¿ 1.
Also, it turns out that it is more difficult to obtain an experimental signature for the
onset of the superfluid phase in the Fermi system than in the case of bosons. The
use of Feshbach resonances, which were theoretically discovered in the alkalis by
Eite Tiesinga, Boudewijn Verhaar and Henk Stoof [17], has fortunately solved both
of these problems.

In a Feshbach-resonant atomic collision, two atoms collide and virtually form
a long-lived molecule with a different spin configuration than the incoming two
atoms, where the molecule ultimately decays into two atoms again. The scattering
properties of the colliding atoms depend very sensitively on the energy difference
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of the molecular state with respect to the threshold of the two-atom continuum. This
energy difference is known as the detuning and can be changed with an applied mag-
netic field, because the different spin states of the incoming atoms and the molecule
lead to a different Zeeman shift. In particular, the Feshbach resonance allows for
a precise tuning of the scattering length a, which opens up the exciting possibil-
ity of reaching the superfluid regime for fermionic atoms. Namely, the interactions
can be made strongly attractive, i.e. kF|a| À 1, which leads to a critical temperature
comparable to that of an atomic Bose gas. This objective was ultimately achieved
in a series of ground-breaking experiments by the group of Debbie Jin using 40K
[18] and the groups of Wolfgang Ketterle, John Thomas, Rudi Grimm, Christophe
Salomon, and Randy Hulet using 6Li [19, 20, 21, 22, 23]. A number of these ex-
periments exploit the Feshbach resonance to its fullest by also using it to actually
observe the Bose-Einstein condensate of Cooper pairs.

To understand the latter better, we realize that there is an intimate connection
between the Bose-Einstein condensation of bosons and the Bose-Einstein conden-
sation of loosely-bound fermionic Cooper pairs. Note that the first is responsible for
the superfluidity of weakly-interacting Bose gases, while the latter is responsible
for both the superfluidity of weakly-interacting Fermi gases and the superconduc-
tivity of metals. The connection between the two condensates might have already
been anticipated from the fact that the critical temperatures in (1.1) and (1.2) are
very similar in the strongly-interacting limit kF|a| À 1. Moreover, the atomic Bose-
Einstein condensation experiments make use of alkali atoms, which are hydrogen-
like composite bosons that can be seen as an outer electron bond to an inner core
consisting of the fermionic nucleus and a surrounding electron cloud with an even
number of electrons. As a result, a condensate of bosonic atoms can also be seen as
a Bose-Einstein condensate of tightly-bound fermion pairs. We may thus conclude
that fermionic superconductivity and bosonic superfluidity are in fact two sides of
the same coin, differing only in the strength of the attraction between the fermions.
If the attraction is weak, the Cooper pairs are very weakly bound and their size
is much larger than the average interparticle distance n−1/3, which is also called
the superconductivity or BCS limit. However, in the superfluidity or BEC limit, the
attraction is strong and the pairs are much smaller than the average interparticle
distance, such that they act as composite bosons.

With an atomic Fermi gas near a Feshbach resonance, we can now for the first
time experimentally explore both sides of the coin in one and the same system, i.e.
study the full physics of the BEC-BCS crossover as first envisaged by David Ea-
gles and Tony Leggett [24, 25]. By changing the magnetic field we can go from a
large positive detuning above the Feshbach resonance, in which case we have no
stable molecular state and a weakly-attractive interaction, to a large negative de-
tuning below the Feshbach resonance, in which case there exists a deeply bound
molecular state. In this manner, we thus evolve from a condensate of loosely bound
Cooper pairs to a condensate of tightly bound molecules. The evolution between
these two extremes turns out to be a smooth crossover, such that the transition be-
tween diatomic molecules and Cooper pairs is continuous. As mentioned above, this
feature has been used to detect the Bose-Einstein condensate of Cooper pairs, by
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conveniently converting it into a Bose-Einstein condensate of tightly bound bosonic
molecules with the use of an adiabatic magnetic-field sweep across the Feshbach
resonance. The reason why it is so easy to observe a condensate of ideal bosons can
be readily understood from their macroscopic occupation of the same one-particle
ground state, which has a minimal kinetic energy. As a result, the atoms or diatomic
molecules hardly spread out upon releasing the condensate from the trap, which
leads to a very distinct peak in the velocity distribution at low velocities. The first
atomic Bose-Einstein condensate was observed [10] in exactly the same manner.

Presently, there are many exciting directions that are being explored with ultra-
cold atomic gases. First of all, we remark that the fermionic atoms that form the
pairs in the BEC-BCS crossover must have two different spin states due to the Pauli
principle. As a result, this crossover physics is usually studied in a balanced Fermi
mixture with an equal number of atoms in each of the two different spin states. At
the moment, a hot topic is to explore what precisely happens to the gas when the
Fermi mixture becomes imbalanced, so that it is impossible for all the atoms to pair
up simultaneously. Understanding this problem may also shed light on the physics
in the core of a neutron star, where an imbalanced mixture of free quarks with at-
tractive interactions can exist. These quarks may then form what is known as a color
superconductor [26].

Another important direction is associated with the possibility of creating an
intense standing wave of light with counter-propagating laser beams. This gives
rise to a periodic potential for the atoms due to the Stark effect, which is also
known as an optical lattice [27]. These optical lattices are very interesting for var-
ious reasons. An important one is that they can be used to simulate ionic lattices,
which offers the opportunity to explore various aspects of solid-state physics in
the very controlled environment of ultracold atoms. A particularly exciting possi-
bility in this respect is to study systematically the microscopic models that have
been proposed to govern high-temperature superconductors. Moreover, optical lat-
tices can also be used to create low-dimensional atomic gases. In particular, with
a very deep two-dimensional optical lattice we can make a two-dimensional array
of one-dimensional gases, whereas a one-dimensional optical lattice creates a one-
dimensional stack of two-dimensional systems. Low-dimensional quantum gases
are interesting, because they often give rise to intriguing strongly-correlated behav-
ior that is very different from the three-dimensional case. In various cases, low-
dimensional many-body systems even allow for exact theoretical solutions.

Also of much interest in current research is the use of Feshbach resonances
between two different atomic species to create ultracold heteronuclear molecules.
These kind of molecules can have a large electronic dipole moment, which leads
to a strong anisotropic dipole-dipole interaction. Since this interaction has a long-
range nature it can possibly be used in combination with an optical lattice to create
a new kind of superfluid, first proposed by Geoffrey Chester in 1970 [28], called a
supersolid. This unusual new state of matter, which shares the properties of both a
solid and a superfluid, has recently drawn a lot of attention in the context of solid
4He. However, these experiments appear to be inconclusive at present [29], such
that ultracold atomic gases may be a better system to explore this intriguing possi-
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bility [30]. To conclude, we remark that many other directions are being explored
at present, leading us to believe that ultracold atomic quantum gases will remain an
exciting area of physics for many years to come.

1.2 Outline

To facilitate the use of this book, we end this introduction by presenting a short
overview of its contents. The book is divided into three parts that to a large extent can
be read independently of each other. Part I contains the introductory material that is
necessary for understanding the formulation of the functional-integral approach to
quantum many-body physics, which is the method of choice for most condensed-
matter theorists active in research today. Part II is then the core of the book, where
the functional formalism is constructed, developed and used to discuss the canonical
topics of superfluidity in interacting Bose and Fermi gases. In Part III, we discuss
various more recent applications of the many-body techniques that are developed in
Part II in order to explain important experiments that have recently been performed
in the field of ultracold quantum gases.

1.2.1 Part One

Part I consists of Chaps. 2 to 6. We start in Chap. 2 with the mathematical foun-
dations that are needed to follow the calculations in the rest of the book. A con-
sequence of using the functional-integral approach to quantum field theory is that
we very often have to perform integrations over infinitely many variables. Most fre-
quently used is the Gaussian integral, because it is one of the few functional integrals
that we can solve exactly. In Chap. 2 we therefore discuss Gaussian integration over
an arbitrary number of variables, where we not only consider real variables, but also
complex variables and Grassmann variables. These last kind of variables change
sign upon permutation, which is very convenient when describing indistinguishable
fermions, whose antisymmetric behavior leads to precisely the same property. In
Chap. 3, we briefly review the basics of quantum mechanics that are relevant to
our purposes. In particular, we discuss the exact solution to the harmonic oscillator
problem, which is important for two reasons. First of all, in order to perform ex-
periments on ultracold atomic gases these gases are always trapped in space, and
the trapping potential is typically well approximated by a harmonic potential. Sec-
ond, the interacting many-body system described with quantum field theory turns
out to be equivalent to an infinite number of interacting harmonic oscillators. As a
result, we can already introduce various important concepts in the familiar setting of
a single harmonic oscillator, where later these concepts are generalized to the more
abstract language of quantum field theory. Examples are the coherent states and the
use of perturbation theory, whose generalization is a way to describe interaction ef-
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fects in many-body systems. Finally, we also consider some aspects of scattering
theory, because for ultracold atomic gases it turns out that we can calculate many-
body interaction effects from first principles if we know the two-atom scattering
properties at low kinetic energy.

Chap. 4 is devoted to statistical physics. Since interacting quantum gases typi-
cally consist of at least millions of particles, an exact treatment of all microscopic
degrees of freedom is unfeasible. However, we are usually only interested in the
averaged macroscopic quantities, whose description actually becomes more conve-
nient as the number of particles increases. This is the domain of statistical physics,
which also tells us how to deal with the effects of thermal fluctuations. Since exper-
iments with ultracold atomic gases are never performed at exactly zero temperature,
it is usually not sufficient to consider only the many-body ground state. We then
find from statistical physics that all macroscopic quantities can be directly obtained
from the partition function of the gas, such that the main challenge of a many-body
theoretical physicist is to determine this quantity in a sufficiently accurate approxi-
mation. For the ideal Bose and Fermi gases, this quantity can be computed exactly,
and we find that these two systems behave very differently at low temperatures. In
particular, the ideal Bose gas undergoes a phase transition to a new state of matter
called a Bose-Einstein condensate, as was already mentioned in the discussion of
(1.1). The precise knowledge of the noninteracting quantum gases is then a good
starting point to discuss the effects of interactions, which is treated in the second
part of the book.

In Chap. 5, we discuss quantum mechanics using Feynman’s path-integral ap-
proach, which is rather different from the more familiar operator formalism of Chap.
3. Path integrals turn out to be very well suited for a generalization to quantum field
theory, such that a thorough knowledge of them is very useful to fully understand
all the calculations in the later chapters. Many subtleties of the functional-integral
formalism already show up in this chapter, where we also immediately show how to
deal with them. In particular, we derive the path-integral expression for the partition
function of a single trapped atom. To also be able to derive the functional integral
for the partition function of an interacting many-body system, we need to reformu-
late the quantum mechanics of a many-body system in a somewhat more convenient
way. This is achieved in Chap. 6 via a procedure which is known as second quanti-
zation. In the second-quantized approach to many-body quantum theory, the parti-
cles are represented by creation and annihilation operators, which are conveniently
constructed such that they automatically incorporate the quantum statistics of the
particles. The eigenstates of these annihilation operators are called coherent states,
and are the final ingredient needed to derive the functional formulation of quantum
field theory.
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1.2.2 Part Two

This is then achieved in Part II of the book, which consists of Chaps. 7 to 14. Part II
forms the core of the book, in which we develop all the functional tools in quantum
field theory that are needed to understand the equilibrium properties of ultracold
atomic quantum gases. In fact, the introduced methods have a much wider range of
applicability, such that they can actually be used as a starting point to tackle any
quantum condensed-matter problem. However, in order to keep the book coherent,
most applications we discuss are from the field of ultracold atoms. A reader with
a good undergraduate education in quantum mechanics and statistical physics can
most likely enter the discussion here, after a quick study of Gaussian integrals and
Grassmann variables in Chap. 2 and the second-quantization formalism in Chap. 6.
Part II starts off with Chap. 7, in which we derive the functional integral for the
partition function of an interacting many-body system. We also reconsider the ideal
quantum gases, for which the partition function reduces to a Gaussian functional
integral such that it can be calculated exactly. We perform this calculation in three
different ways to familiarize ourselves with functional integration, and to introduce
various concepts that come back time after time throughout the rest of the book.

In Chap. 8 we discuss the effects of interactions between the particles, which in
general leave the partition function unsolvable, such that we have to resort to appro-
priate approximation methods. A first way to systematically study interaction effects
is by performing a perturbative expansion in the interaction. The general structure of
the resulting perturbation theory is then very conveniently visualized with the use of
Feynman diagrams. We also explain several features of the expansion that are valid
up to any order in the interaction strength, and that are therefore especially useful for
arriving at accurate approximations. In particular, we discuss the famous Hartree-
Fock approximation, which is a selfconsistent approximation that sums an infinite
number of Feynman diagrams and is used very often in condensed-matter physics
to obtain a first understanding of the importance of interaction effects. We derive
the Hartree-Fock theory by using a variational approach and by using a Hubbard-
Stratonovich transformation. This exact transformation turns out to be a very ver-
satile and powerful tool which comes back in many different guises throughout the
book.

In Chap. 9 we discuss the Landau theory of phase transitions, where an impor-
tant concept is the order parameter. This is the observable that distinguishes the two
phases involved in the phase transition by quantifying the occurrence of order in the
system. We then show that a nonzero value of the order parameter is often associated
with a spontaneous breakdown of symmetry, which means that an equilibrium state
of the system has less symmetry then the underlying microscopic Hamiltonian. The
usefulness of the Hubbard-Stratonovich transformation introduced in the previous
chapter becomes particularly obvious in the context of phase transitions, because it
can be used to bring the order parameter exactly into the many-body theory. More-
over, we show that fluctuations of the order parameter field can become crucial close
to the phase transition, such that they can even cause a breakdown of Landau the-
ory. To go beyond Landau theory turns out to be an exceedingly difficult task and
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requires advanced field-theoretical methods to which we return in Chap. 14. In or-
der to reach our goal of obtaining an ab initio microscopic description for the phase
transition to the superfluid state in interacting atomic Bose and Fermi gases, we still
need to understand some specific properties of the alkali atoms that are involved in
the actual experiments. In particular, the spin structure of the atoms is important,
because it affects the scattering properties of two atoms, where the resulting inter-
action strength is an input parameter for the quantum field theory of the trapped
atomic quantum gas. Chap. 10 deals in more detail with both the spin structure and
the scattering of atoms.

In Chap. 11 we apply the developed field-theorical machinery to discuss the
famous Bogoliubov and Popov theories of Bose-Einstein condensation, leading,
amongst others, to the equally famous Gross-Pitaevskii equation for the conden-
sate wavefunction. The Bogoliubov theory is only valid for temperatures close to
zero Kelvin, while the range of validity for the Popov theory is larger, because it
takes into account fluctuation effects in a similar manner to the Hartree-Fock the-
ory discussed in Chap. 8. The historically most important success of the Bogoli-
ubov theory was the correct prediction for the vibrational eigenfrequencies of a
fully Bose-Einstein condensed atomic cloud. In view of this success, we discuss
these collective modes in some detail using a hydrodynamic-like approach. We also
briefly discuss what happens when we try to bring the Bose-Einstein condensed gas
into rotation, which leads to interesting properties due to the superfluid nature of
the gas. Finally, we show that a condensate with effectively attractive interatomic
interactions is metastable and ultimately collapses into a Bosenova. In Chap. 12, the
Bose-Einstein condensation of Cooper pairs in an ultracold Fermi gas is discussed.
In particular, we show how a Hubbard-Stratonovich transformation introduces the
appropriate order parameter of the phase transition into the theory. This order pa-
rameter describes the condensate of Cooper pairs, which means that the superfluity
of an atomic Fermi gas has the same physical origin as the superconductivity of met-
als. We also derive the critical temperature for the transition in mean-field theory, the
result already announced in (1.2). Finally, we also give a more detailed discussion of
the BEC-BCS crossover taking place in an atomic gas near a Feshbach resonance.

After having discussed these two explicit examples of phase transitions, we are
ready for a more general discussion of the consequences of symmetries and sym-
metry breaking in quantum field theory. This is the topic of Chap. 13, which has a
somewhat more formal nature than the two earlier chapters. However, its results are
of much importance to practical calculations. We remember that in order to compare
theory with experiments, we usually have to make approximations, because inter-
acting quantum field theories are often too difficult to solve exactly. Obviously, we
want to arrive at approximations that do not violate the underlying symmetries of the
theory, which is particularly important in the discussion of phase transitions. This is
because we need the corresponding symmetry breaking to occur spontaneously and
not by the approximation that we make. It turns out that it is possible to derive identi-
ties, known as the Ward identities, that check if our approximations still preserve the
underlying symmetries. We give a few explicit examples of these Ward identities,
and discuss how they can be used in the calculation of certain directly measurable
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quantities in experiments. Another fundamental issue that we touch upon is the fact
that spontaneous symmetry breaking can formally only occur for systems with an
infinite number of particles, while realistic experiments always deal with a finite
number of particles. We discuss how these two facts can be reconciled with each
other for the specific case of superfluid atomic Bose and Fermi gases by discussing
the phenomenon of phase diffusion.

In Chap. 14, we go beyond the Landau theory of phase transitions. This is neces-
sary when critical fluctuations extend over the whole many-body system, giving rise
to critical phenomena. Since the critical fluctuations now dominate at each length
scale, the system is actually scale invariant, which we can use to describe it re-
cursively at increasing wavelengths. This leads to the renormalization group theory
of critical many-body systems which, amongst other results, provides the explana-
tion for universality, i.e. the remarkable observation that very different microscopic
systems have identical critical properties. We also apply the renormalization group
approach to the imbalanced Fermi gas in the strongly-interacting regime, where we
can compare the resulting homogeneous phase diagram with beautiful experimental
results that were obtained recently.

1.2.3 Part Three

The last three chapters, 15 to 17, form Part III of the book, in which the functional
formalism is applied to various recent topics in ultracold atomic gases. In Chap. 15
we discuss low-dimensional, i.e. one and two-dimensional, atomic Bose gases. An
important challenge in this chapter is caused by the breakdown of Popov theory due
to the enhanced importance of fluctuations in low dimensions. It is then explained
in detail how the Popov theory can be modified in order to resolve these problems
and, in particular, to describe the famous Kosterlitz-Thouless phase transition in two
dimensions. The low-dimensional atomic gases are experimentally realizable with
the use of optical lattices, which are the topic of Chap. 16. These lattices also give
rise to interesting new physics in three dimensions, because they can be used to sim-
ulate solid-state-like periodic potentials, where the depth of the periodic potential is
now tunable by varying the laser intensity. As a result, if a shallow optical lattice is
loaded with a Bose-Einstein condensate of bosonic atoms, the superfluidity can be
destroyed by increasing the lattice depth, which then leads to the Mott-insulator state
with precisely one trapped atom at each lattice site. This phase transition happens at
zero temperature, and is thus an example of a quantum phase transition, which was
observed by Greiner et al. in 2002 [31]. The same experiment can also be performed
with an ultracold Fermi mixture, which leads to the possibility of observing the Néel
state, and hopefully eventually to new insights into high-temperature superconduc-
tors. Finally, we end the book in Chap. 17 with the theory for Feshbach resonances,
which now have many important applications in ultracold atomic physics experi-
ments. We start with the two-body atomic physics that causes the resonance, after
which we also explain how this two-body physics can be accurately captured in a
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quantum field theory of atoms and molecules. As an application, we finally consider
the coherent Josephson oscillations between a Bose-Einstein condensate of atoms
and a Bose-Einstein condensate of molecules, where we also compare the results
with some beautiful quantum-mechanical interference experiments that are the ul-
tracold atomic analog of the neutrino oscillations known from high-energy physics.



Part I



Chapter 2
Gaussian Integrals

We must admit with humility that, while number is purely a
product of our minds, space has a reality outside our minds, so
that we cannot completely prescribe its properties a priori.
– Carl Friedrich Gauss.

In this chapter, we lay the mathematical foundations for the functional-integral for-
malism that we develop in later chapters. We start with introducing the Gaussian
probability distribution together with the corresponding integrals over this distribu-
tion, called Gaussian integrals. These concepts are then generalized to higher dimen-
sions, to the complex plane, and to what are called Grassmann variables. The multi-
dimensional Gaussian integral is of great importance for the rest of this book. In
Chap. 7, we show that it leads to an exact solution of noninteracting quantum gases,
which then also forms the basis for a perturbative description of interacting quantum
gases. The goal of this chapter is to highlight the practical use of several important
mathematical results that are needed to understand the rest of the book. The chapter
is not intended to be a full mathematical account of all the above-mentioned topics,
meaning that proofs will often be omitted or replaced by illustrative examples. The
more experienced reader who is already familiar with Gaussian integrals, complex
analysis, and Grassmann algebras, can use this chapter for reference.

2.1 The Gaussian Integral over Real Variables

The Gaussian or normal probability distribution is the most common distribution in
statistical physics. The main reason for this is that the probability distribution for the
sum of N independent random variables, each with a finite variance, converges for
large N to the Gaussian distribution. This is called the central limit theorem of prob-
ability theory. Famous physical examples of Gaussian distributions are the Maxwell
distribution for the velocities of the atoms in a classical ideal gas, or the spatial dis-
tribution for an atom in the quantum-mechanical ground state of a harmonic trap.
The Gaussian probability distribution is given by

P(x) =
√

α
π

exp
{−αx2}, (2.1)

15
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such that it is properly normalized to 1. This follows from

∫ +∞

−∞
dx e−αx2

=
√

π
α

, (2.2)

which is left as an exercise to the reader. The probability distribution of (2.1) has a
maximum at x = 0, whereas in general the maximum could be at any arbitrary value
x0. Then, we have

P(x) =
√

α
π

exp
{−α(x− x0)2}, (2.3)

which corresponds, for example, to the probability distribution of the velocities in
a thermal beam of atoms which is travelling at an average velocity x0. The latter
distribution has the property that the expectation value of the quantity x is equal to
x0, that is

〈x〉 ≡
∫ +∞

−∞
dx x P(x) =

√
α
π

∫ +∞

−∞
dx x exp

{−α(x− x0)2} = x0, (2.4)

which is easily proven by performing the shift x→ x+ x0.
For our purposes, it is convenient to write the parameter α as−G−1/2 =−1/2G,

with G < 0. In the first instance, this looks overly complicated. However, it estab-
lishes a direct link with the notation used in later chapters for the Green’s function in
the functional-integral formalism. From now on, we also no longer explicitly denote
the lower and upper limit of the integration when these are given by −∞ and +∞,
respectively. With these changes, the Gaussian integral can be written as

∫
dx exp

{
1
2

G−1x2
}

=
√−2πG =

√
2π exp

{
−1

2
log(−G−1)

}
. (2.5)

2.1.1 Generating Function

By including a linear term Jx in the exponent, we introduce the generating function
Z(J) of the probability distribution. This is very useful because it allows us to cal-
culate the expectation value of all the higher moments, i.e. the expectation values of
xn, by simply differentiating with respect to the current J. Specifically, we have for
the Gaussian distribution

Z(J) =
∫ dx√

2π
exp

{
1
2

G−1(x− x0)2 + Jx
}

=
∫ dx√

2π
exp

{
1
2

G−1(x+GJ)2− 1
2

GJ2 + Jx0

}

= exp
{
−1

2
GJ2 + Jx0− 1

2
log

(−G−1)
}

, (2.6)
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where in the first step we performed the shift x → x + x0 before completing the
square. Note that the additional factor 1/

√
2π conveniently cancels the factor

√
2π

coming from the Gaussian integral. The expectation value of x is now readily calcu-
lated from

〈x〉=
1

Z(J)
d
dJ

Z(J)
∣∣∣∣
J=0

= x0, (2.7)

and for 〈x2〉, we obtain

〈x2〉=
1

Z(J)
d2

dJ2 Z(J)
∣∣∣∣
J=0

=−G+ x2
0 =−G+ 〈x〉2. (2.8)

Since we can always perform initially the shift x → x + x0, we consider from now
on without loss of generality the case with x0 = 0. A useful observation is that this
leads to

〈x2m+1〉= 0, (2.9)

where m is an integer. This is because the integrand of the integral

∫
dx x2m+1 exp

{
1
2

G−1x2
}

is odd and the integral vanishes consequently. By repeatedly applying the derivative
d/dJ an even number of times to the first line of (2.6) with x0 = 0, we find that

〈x2m〉=
1

Z(J)
d2m

dJ2m Z(J)
∣∣∣∣
J=0

. (2.10)

Explicitly calculating the right-hand side of (2.10), using the expression in the last
line of (2.6), generates a large number of terms that vanish when we eventually take
the limit J → 0. To simplify the calculation, it is therefore convenient to realize that
if we expand Z(J) in powers of J only the terms proportional to J2m contribute. In
this manner, we find for x0 = 0 that

1
Z(J)

d2m

dJ2m Z(J)
∣∣∣∣
J=0

=
Z(0)
Z(J)

d2m

dJ2m

∞

∑
n=0

1
n!

(
−1

2
GJ2

)n
∣∣∣∣∣
J=0

=
(2m)!
2mm!

(−G)m = (2m−1)!!(−G)m, (2.11)

where (2m−1)!! = (2m−1)(2m−3)(2m−5) . . .1. Hence, we conclude that

〈x2m〉= (2m−1)!!(−G)m. (2.12)

It is important to realize that (2m−1)!! is exactly the number of ways in which 2m
numbers can be divided into m pairs. Thus, we have found that the expectation value
of x2m is equal to the sum of all possible ways in which 〈x2m〉 can be factorized as
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〈x2〉m. This last statement is the essence of the famous Wick’s theorem that will turn
out to be of great importance in later chapters.

2.1.2 Multi-Dimensional Gaussian Integral

The previous results can be immediately generalized to higher-dimensional inte-
grals. Consider a diagonal n×n matrix G,

G =




G11
G22

G33
. . .


 , (2.13)

with again G j j < 0. Then, the inverse G−1 of G is clearly given by

G−1 =




1
G11

1
G22

1
G33

. . .




. (2.14)

We want to evaluate the Gaussian integral

∫ (
n

∏
j=1

dx j

)
exp

{
1
2

x ·G−1 ·x
}
≡

∫
dx exp

{
1
2

x ·G−1 ·x
}

, (2.15)

where x denotes the vector (x1,x2, . . . ,xn). Because the integral factorizes into a
product of n one-dimensional integrals, we find that

∫
dx exp

{
1
2

x ·G−1 ·x
}

=
(2π)n/2

√
∏n

j=1(−G−1
j j )

=
(2π)n/2

√
Det[−G−1]

, (2.16)

where Det[−G−1] denotes the determinant of the matrix−G−1. In the same way we
find that (2.6) generalizes to

Z(J) =
∫ dx√

(2π)n
exp

{
1
2

x ·G−1 ·x+J ·x
}

= exp
{
−1

2
J ·G ·J− 1

2
Tr[log

(−G−1)]
}

, (2.17)

where we have taken again without loss of generality x0 = 0. Here Tr[. . .] denotes
the trace of a matrix, which is the sum of all diagonal elements. The n-th order
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correlation function 〈x j1x j2 . . .x jn〉, given by the expectation value of the product of
n coordinates x j, is now easily calculated from

〈x j1 . . .x jn . . .〉=
1

Z(J)
∂ n

∂J j1 . . .∂J jn
Z(J)

∣∣∣∣
J=0

. (2.18)

Example 2.1. Because Z(J) depends quadratically on J, it immediately follows that

〈xi〉=
1

Z(J)
∂

∂Ji
Z(J)

∣∣∣∣
J=0

= 0. (2.19)

For the expectation value 〈xix j〉, we find

〈xix j〉=
1

Z(J)
∂ 2

∂Ji∂J j
Z(J)

∣∣∣∣
J=0

=−Gi j. (2.20)

The above results were obtained for the specific case of a diagonal matrix. How-
ever, (2.17) is valid for any positive definite, symmetric matrix −G−1, where pos-
itive definite means that the matrix has only positive eigenvalues. First, note that
−G−1 can always be assumed to be symmetric, because any antisymmetric part
would give a vanishing contribution to the term −x ·G−1 · x. Then, a symmetric
matrix can always be brought into diagonal form by a similarity transformation S,
which means that S ·G−1 · S−1 is diagonal and S is orthonormal. Orthonormality
implies that

|Det[S]|= 1, (2.21)

such that the Jacobian of the coordinate transformation x = S−1 ·x′ is equal to one.
Applying the above considerations to (2.17), we have

Z(J) =
∫ dx′√

(2π)n
exp

{
1
2

x′ ·S ·G−1 ·S−1 ·x′+J ·S−1 ·x′
}

= exp
{
−1

2
J ·S−1 ·S ·G ·S−1 ·S ·J

}
1√

Det[−S ·G−1 ·S−1]

= exp
{
−1

2
J ·G ·J

}
1√

Det[−G−1]
, (2.22)

where we also used the property that for an orthogonal matrix the inverse matrix
and the transposed matrix are the same. Thus, we find that (2.17) is valid for any
positive definite matrix −G−1.



20 2 Gaussian Integrals

2.2 Complex Analysis

In the following, we generalize the results of the previous paragraph to Gaussian
integrals over n complex variables z j. Before doing so, we first review some con-
cepts from elementary complex analysis. The complex plane is a two-dimensional
linear space, meaning that any number in the complex plane can be written as x+ iy,
where x and y are real. Instead of using x and y as the independent variables to
parametrize the complex plane, it is more convenient for our purposes to make a
coordinate transformation that maps x and y onto the independent variables z and z∗
in the following way

z = x+ iy and z∗ = x− iy. (2.23)

Here, |z|2 = z∗z = x2 + y2 gives the square of the modulus of z, while the real and
imaginary parts of z are given by Re[z] = (z+ z∗)/2 and Im[z] = (z− z∗)/2i. Instead
of using the Cartesian coordinates x and y, it is also possible to introduce polar
coordinates. In that case, complex numbers are written as

z = reiϕ , (2.24)

where r =
√

z∗z is the complex modulus and ϕ = Arg[z] is the complex argument.

2.2.1 Differentiation and Contour Integrals

A general complex function f (x,y) is a map from the complex plane to the complex
plane and in general depends explicitly on both z and z∗. We write f (x,y) = u(x,y)+
iv(x,y), where u(x,y) = Re[ f (x,y)] and v(x,y) = Im[ f (x,y)]. In practise we will be
dealing mostly with analytic functions, which turn out to depend only explicitly on
z = x + iy. Because such a function f (x + iy) or f (z) only depends on z, we must
have that d f/dz = ∂ f/∂x =−i∂ f/∂y for an analytic function. Since

∂ f (x,y)
∂x

=
∂u(x,y)

∂x
+ i

∂v(x,y)
∂x

(2.25)

and

−i
∂ f (x,y)

∂y
=−i

∂u(x,y)
∂y

+
∂v(x,y)

∂y
, (2.26)

we have that the functions u and v are not independent, but rather satisfy the follow-
ing set of equations

∂u(x,y)
∂x

=
∂v(x,y)

∂y
and

∂u(x,y)
∂y

=−∂v(x,y)
∂x

. (2.27)



2.2 Complex Analysis 21

These equations are known as the Cauchy-Riemann equations and satisfying them
assures differentiability of the complex function.

Example 2.2. To explicitly demonstrate the use of the Cauchy-Riemann equations,
we test for two simple complex functions whether or not they are analytic functions.
First, consider the complex function f (x,y) = x+ iy = z, i.e. u(x,y) = x and v(x,y) =
y. Clearly it satisfies the Cauchy-Riemann equations, since ∂u/∂x = 1 = ∂v/∂y and
∂u/∂y = 0 = −∂v/∂x. However, the complex conjugate f (x,y) = x− iy = z∗ is
not analytic, because it does not satisfy the Cauchy-Riemann equations. Indeed, we
have ∂u/∂x = 1 6=−1 = ∂v/∂y. This illustrates the above statement that functions
depending explicitly on z∗ are not analytic.

Besides being able to take the derivative of a complex function we also want to be
able to integrate it. In principle, the integral of a general complex function between
two points in the complex plane depends on the specific path taken. However, if
the function f (z) satisfies the Cauchy-Riemann equations in all points enclosed by
two different paths connecting zi and zf, then the integral

∫ zf
zi

dz f (z) gives the same
result for each of the two paths. This leads directly to the Cauchy-Goursat theorem,
stating that for any function f which is analytic on a closed contour C and at all
points inside the contour, the integral along the contour vanishes, i.e.

∮

C
dz f (z) = 0. (2.28)

We will not prove this theorem here, but we give a simple demonstration in Example
2.3. With the Cauchy-Goursat theorem, it is then possible to prove the important
Cauchy integral formula

f (z0) =
1

2πi

∮

C
dz

f (z)
z− z0

, (2.29)

where the integration over the contour C is in a counterclockwise fashion. This will
always be the convention for contour integration from now on.

Example 2.3. Consider the function f (z) = z, and let the contour C be the circle
centered at z = 0 with radius R. The circle is parameterized by z = Reiφ , where ϕ
runs counterclockwise from 0 to 2π . Hence, dz = iReiϕ dϕ and we find

∮

C
dz z =

∫ 2π

0
dϕ iR2e2iϕ =

R2

2
e2iϕ

∣∣∣∣
2π

0
= 0. (2.30)

This illustrates the Cauchy-Goursat theorem. Consider in (2.29) the function f (z) =
1 and take for the contour C the circle based at z0 with radius R. We obtain
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1
2πi

∮

C
dz

f (z)
z− z0

=
1

2πi

∫ 2π

0
dϕ

iReiϕ

Reiϕ = 1 = f (z0). (2.31)

This illustrates the Cauchy integral formula.

The Cauchy integral formula can be used to express the derivatives of a complex
function in terms of a contour integral. By differentiating both sides of (2.29) n times
with respect to z0, we obtain

dn

dzn
0

f (z0) =
n!

2πi

∮

C
dz

f (z)
(z− z0)n+1 . (2.32)

2.2.2 Laurent Series and the Residue Theorem

For a function f (x) that depends on the real variable x, it is possible to make a Taylor
series expansion around the nonsingular point x0, i.e.

f (x) =
∞

∑
n=0

f (n)(x0)
n!

(x− x0)n, (2.33)

where f (n)(x) = dn f (x)/dxn and where we assumed that the sum on the right-hand
side converges. A similar expansion holds for complex functions that are analytic
throughout the interior of a circle centered at z0 with radius R. In that case, the
function can be written as

f (z) =
∞

∑
n=0

f (n)(z0)
n!

(z− z0)n. (2.34)

Now, suppose that we have a function that is singular at a single point z0 that lies
within a circle centered at z0 and with radius R1, as is illustrated in Fig. 2.1. We call
S the region enclosed by the circle excluding the singular point z0. For each point z
that lies within S, the function f (z) is given by

f (z) =
∞

∑
n=−∞

an(z− z0)n, (2.35)

where the coefficients are given by

an =
1

2πi

∮

C
dz

f (z)
(z− z0)n+1 , (2.36)

and C is any contour that encloses z0 and lies within S. This series expansion is also
known as the Laurent series expansion. The coefficient a−1, which is the integral of
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R

S

z

1

0

Fig. 2.1 Laurent series expansion. The region S is enclosed by a circle with radius R1 that is
centered at z0, but excludes the point z0 itself.

f (z) along the contour C, is called the residue of f at the singular point z0

a−1 =
1

2πi

∮

C
f (z)dz≡ Res[ f (z0)]. (2.37)

For our purpose, analytic functions that have the following expansion in terms of a
Laurent series are most relevant

f (z) =
∞

∑
n=−m

an(z− z0)n, (2.38)

and the singularity at z = z0 is called a pole of order m. For the residue, this leads to

Res[ f (z0)] =
1

(m−1)!
lim
z→z0

dm−1

dzm−1 ((z− z0)
m f (z)) . (2.39)

The concept of the residue allows for a generalization of Cauchy’s integral formula
of (2.29) to any contour enclosing a finite number of finite-order poles. This leads
to the residue theorem, that is

∮

C
dz f (z) = 2πi∑

j
Res[ f (z j)]. (2.40)

Example 2.4. The function f (z) = 1/((1− iz)(1 + iz)) is not analytic in z = ±i. To
find the Laurent series expansion of f (z) at z = i, we start by writing

1
1+ iz

=−i(z− i)−1. (2.41)

Moreover, the Taylor series of the term 1/(1− iz) is given by,
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−R

z = i

C 

z = − i

+ R

C ’’

’

Fig. 2.2 Illustration of the contour C = C′+C′′ used in Example 2.5.

1
1− iz

=
∞

∑
n=0

1
2(n+1) in(z− i)n. (2.42)

Multiplying the two terms gives the Laurent series of the function f (z),

f (z) = −
∞

∑
n=0

(
i
2

)n+1

(z− i)n−1

=
∞

∑
n=−1

an(z− i)n, (2.43)

where an =−(i/2)n+2. This shows that the residue is equal to a−1 =−i/2.

Example 2.5. Suppose we want to calculate the following integral along the real axis
∫ ∞

−∞
dx

1
1+ x2 .

This is a standard integral whose answer is known to be arctanx|+∞
−∞ = π . Now we

show how we can also obtain this result by making use of the residue theorem. We
start by extending the function f (x) = 1/(1 + x2) on the real axis to the function
f (z) in the complex plane, such that

f (z) =
1

(z+ i)(z− i)
. (2.44)

This function has poles in the complex plane at z = ±i. To be able to apply the
residue theorem, we use the contour C shown in Fig. 2.2. It is the union of the line
C′, which is the part of the real axis from−R to +R, and C′′, which is the semicircle
in the upper half-plane centered at zero with radius R. Our original integral can be
obtained by taking the limit R → ∞ and subtracting the integral along the path C′′.
Due to the residue theorem, we have that

∮

C
dz f (z) = 2πi Res[ f (z = i)] = π. (2.45)
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The contour integral along the semicircle C′′ vanishes in the limit R→ ∞, since

lim
R→∞

∫

C′′
dz

1
1+ z2 = lim

R→∞

∫ π

0
dϕ

i
Reiϕ = 0. (2.46)

As a result, we see that we retrieve the original answer, as desired.

2.3 Gaussian Integrals over Complex Variables

In this section, we generalize the results that we obtained for the Gaussian integral
along the real axis in (2.5) to integrations over the complex plane. We assume that
the complex number G−1 has a real part that is less than zero. We find

∫
dz∗dz exp

{
G−1z∗z

} ≡
∫ ∂ (z∗,z)

∂ (x,y)
dx dy exp

{
G−1(x2 + y2)

}

=
∫

dx dy 2iexp
{

G−1x2}exp
{

G−1y2}

= −2πiG, (2.47)

where the integral is over the full complex plane. The coordinate transformation of
(2.23) that maps x and y onto z∗ and z, also defines the measure dz∗dz through the
relation

dz∗dz≡ ∂ (z∗,z)
∂ (x,y)

dx dy = 2idx dy, (2.48)

where in the last step we explicitly calculated the Jacobian of the coordinate trans-
formation. Just like in the real case, we can add a linear term z∗J + J∗z to the expo-
nent of the Gaussian integral and define the generating function

Z(J,J∗) =
∫ dz∗dz

2πi
exp

{
G−1z∗z+ z∗J + J∗z

}

= exp
{−J∗GJ− log(−G−1)

}
, (2.49)

which is shown by completing the square. As before, we can calculate all moments
with this generating function, such that we have for example

〈zz∗〉=
1

Z(J,J∗)
d2

dJ∗dJ
Z(J,J∗)

∣∣∣∣
J∗=J=0

=−G. (2.50)

Next, consider the diagonal n×n matrix G−1, i.e.
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G−1 =




1
G11

1
G22

1
G33

. . .




. (2.51)

We want to evaluate the Gaussian integral

∫ (
n

∏
j=1

dz∗j dz j

2πi

)
exp

{
z∗ ·G−1 · z}≡

∫ dz∗dz
(2πi)n exp

{
z∗ ·G−1 · z}, (2.52)

where z is the complex vector (z1, . . . ,zn). As before, the integral factorizes and we
find that

∫ dz∗dz
(2πi)n exp

{
z∗ ·G−1 · z} =

1

∏n
j=1(−G−1

j j )
=

1
Det[−G−1]

. (2.53)

Now, we can also generalize (2.49) to

Z(J,J∗) =
∫ dz∗dz

(2πi)n exp
{

z∗ ·G−1 · z+ z∗ ·J+J∗ · z}

= exp
{−J∗ ·G ·J−Tr[log(−G−1)]

}
. (2.54)

The above results were obtained for the specific case of a diagonal matrix. However,
(2.54) is true for all positive definite hermitian matrices −G−1, because these can
be diagonalized by a unitary transformation U with |Det[U]|= 1.

2.4 Grassmann Variables

To complete our discussion of Gaussian integrals we introduce another set of num-
bers, namely the set of anticommuting complex numbers or Grassmann numbers.
These turn out to be very useful in setting up the functional-integral formalism for
fermionic quantum gases. The reason for this is that, as we see later, fermionic be-
havior is mathematically expressed by anticommuting creation and annihilation op-
erators. To illustrate this we note that if a fermionic creation operator anticommutes
with itself then its square gives zero, which expresses the Pauli principle that two
fermions cannot be created in the same quantum state. In order to consider eigen-
values of such anticommuting operators we need anticommuting numbers, i.e. the
Grassmann numbers.

A Grassmann algebra is a set of Grassmann variables, which are called the gen-
erators of the algebra. They span a complex linear space by making linear combi-
nations of them with complex coefficients. The simplest example that we can think
of is the set {1,φ}. By definition, we have for a Grassmann variable φ that its an-
ticommutator vanishes, i.e. [φ ,φ ]+ = φφ + φφ = 0. We can think of the elements
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1 and φ as basis vectors of a linear space. However, in order to find a matrix rep-
resentation of the algebra, it is actually more convenient to think of the elements
also as operators. For instance, since we have that 1 · 1 = 1 and 1 · φ = φ , we see
that 1 can be viewed as an operator on the Grassmann algebra that sends both 1 and
φ to themselves. The element φ then sends the basis vector 1 to φ , while the other
basis vector φ is mapped onto 0. In terms of matrices, the above mappings of basis
vectors are readily found in matrix form as

1∼
[

1 0
0 1

]
and φ ∼

[
0 0
1 0

]
. (2.55)

Note that the above matrices automatically satisfy all rules imposed on the algebra.
Furthermore, since φ 2 = 0, the most general function of φ is simply F(φ) = f1 +
f2φ .

The previous discussion is easily generalized to the set {1,φ ,φ ∗,φ ∗φ} of two
such Grassmann variables, where φ and φ ∗ are independent variables. The two
Grassmann variables anticommute with each other, giving

[φ ,φ ∗]+ = φφ ∗+φ ∗φ = 0. (2.56)

As before, we also have that φ 2 = φ ∗2 = 0, such that the above set is complete. The
complex conjugation in this algebra is defined by

(φ)∗ = φ ∗, (φ ∗)∗ = φ , (φ ∗φ)∗ = (φ)∗(φ ∗)∗ = φ ∗φ , (2.57)

and the most general function on this algebra yields

A(φ ∗,φ) = a11 +a12φ +a21φ ∗+a22φ ∗φ . (2.58)

It is natural to define differentiation of Grassmann variables by

∂
∂φ

A(φ ∗,φ) = a12−a22φ ∗, (2.59)

where the minus sign occurs because we need to permute φ ∗ and φ before we can
differentiate with respect to φ . The differentiation of (2.59) is called a left differen-
tiation. Similarly, we have

∂
∂φ ∗

A(φ ∗,φ) = a21 +a22φ , (2.60)

where this time the minus sign is absent, because now we do not have to permute
the Grassmann variables. Furthermore, we find

∂ 2

∂φ ∗∂φ
A(φ ∗,φ) =− ∂ 2

∂φ∂φ ∗
A(φ ∗,φ) =−a22 . (2.61)
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Next, we introduce integration over the Grassmann variables. Note that since
φ 2 = 0, we only have two possible integrals to consider, namely

∫
dφ 1 and

∫
dφ φ .

We define these by ∫
dφ 1 = 0 (2.62)

and ∫
dφ φ = 1 . (2.63)

This means that integration is equivalent to differentiation. The main reason for
the above definitions is that we want the integration to obey the rules of partial
integration. In particular, this implies that

∫
dφ

∂F(φ)
∂φ

= 0 , (2.64)

for any function F(φ) = f1 + f2φ . Obviously, this condition requires that
∫

dφ 1 = 0.
The result for

∫
dφ φ then turns out to be merely a question of normalization. The

most general quadratic integral for the present Grassmann algebra thus yields
∫

dφ ∗dφ A(φ ∗,φ) =
∫

dφ ∗dφ (a11 +a12φ +a21φ ∗+a22φ ∗φ) =−a22 . (2.65)

All the above definitions are then readily further generalized to the Grassmann
algebra generated by the Grassmann variables φ j and φ ∗j with j = 1,2, . . . ,n. It is
left as an exercise to show that with the above definitions, the Gaussian integral over
2n Grassmann variables leads to

∫ (
∏

j
dφ ∗j dφ j

)
exp

{
∑
j, j′

φ ∗j G−1
j, j′φ j′

}
= Det[−G−1] = eTr[log(−G−1)] . (2.66)

Note the difference with the result from (2.54), namely

∫ (
∏

j

dφ ∗j dφ j

2πi

)
exp

{
∑
j, j′

φ ∗j G−1
j, j′φ j′

}
=

1
Det[−G−1]

= e−Tr[log(−G−1)] , (2.67)

which is valid for ordinary complex variables. These last two results will be used
extensively throughout the rest of the book.

2.5 Problems

Exercise 2.1. Prove the Gaussian integral in (2.2). To do so, consider

(∫
dx e−αx2

)2

=
∫

dx dy e−α(x2+y2), (2.68)
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and make use of the fact that the integrand is invariant under rotations, so that you
can use polar coordinates to perform the integration.

Exercise 2.2. Consider a Gaussian probability distribution with nonzero average
〈x〉 = x0. Calculate 〈x3〉 and 〈x4〉 by transforming to the variable x′ = x− x0 that
has a Gaussian probability distribution centered around zero, such that you can use
(2.9) and (2.12). Also calculate 〈x3〉 and 〈x4〉 by making use of the generating func-
tion from (2.6), namely

Z(J) = exp
{
−1

2
GJ2 + x0J− 1

2
log(−G−1)

}
. (2.69)

Exercise 2.3. Observe that partial integration of the Gaussian integral leads to the
following identity,

∫ dx√
2π

exp
{

1
2

G−1x2
}

= −
∫ dx√

2π
G−1x2 exp

{
1
2

G−1x2
}

. (2.70)

Prove now equation (2.12) by making repeated use of partial integration.

Exercise 2.4. Prove that
∮

C
dz

1
(z− z0)n+1 = 2πiδn,0 (2.71)

by taking the contour C to be a circle with radius R around z0, such that z = z0 +Reiϕ

and the contour integral becomes an integral over ϕ .

Exercise 2.5. Contour integration
Using contour integration, show
(a) that the following one-dimensional integral yields

∫
dq

1
E+−q2/m

eiqx/h̄ =−iπ
√

m
E

exp
{

i|x|√mE
h̄

}
, (2.72)

where E+ = E + iη with η an infinitesimally small positive number, and
(b) that the following three-dimensional integral yields

∫ dk
(2π)3

e−ik·r

α2 + γk2 =
1

4πγ
e−r/ξ

r
, (2.73)

where ξ =
√γ/α is also called the correlation length. Hint: use spherical coordi-

nates dk = k2 sin(ϑ)dk dϑ dϕ , such that k · r = kr cos(ϑ), and perform the integra-
tions over the angles first.

Exercise 2.6. Find a matrix representation of the Grassmann algebra generated by
φ and φ ∗. Note that we need at least 4×4 matrices.
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Exercise 2.7. Prove (2.66). To this end, it is instructive to first show that
∫

dφ ∗1 dφ1 dφ ∗2 dφ2 exp{−α11φ ∗1 φ1−α12φ ∗1 φ2−α21φ ∗2 φ1−α22φ ∗2 φ2}
= α11α22−α21α12, (2.74)

before considering the general case of an integral over 2n Grassmann variables.

Exercise 2.8. Hubbard-Stratonovich Transformation
Consider the following integral Z over the complex variables φ ∗j and φ j,

Z =
∫ (

n

∏
j=1

dφ ∗j dφ j

2πi

)
exp

{
n

∑
j, j′=1

(
φ ∗j G−1

0; j, j′φ j′ −
Vj, j′

2
φ ∗j φ ∗j′φ j′φ j

)}
, (2.75)

where G−1
0 and V are invertible matrices with only negative eigenvalues, i.e.

∑
j′′

Vj, j′′V
−1
j′′, j′ = ∑

j′′
G−1

0; j, j′′G0; j′′, j′ = δ j, j′ . (2.76)

Note that we cannot calculate the integral exactly, because it is not Gaussian, due
to the quartic term in the exponential. However, we are going to perform a trick to
transform the quartic term away.
(a) Show that the integral Z can be written as

Z =
∫ (

n

∏
j=1

dφ ∗j dφ j

2πi

)(
n

∏
j=1

dη j√
2π

)
exp

{
1
2

Tr[log(−V)]
}

(2.77)

×exp

{
∑
j, j′

(
φ ∗j G−1

0; j, j′φ j′ +
1
2

η jVj, j′η j′ −η jVj, j′φ ∗j′φ j′

)}
,

where η is a real variable. Note that there is no longer a quartic term, since we have
transformed it away. This is the essence of the Hubbard-Stratonovich transforma-
tion, which we use many times when treating interacting quantum gases.
Hint: use the following identity

∫ (
n

∏
j=1

dη j√
2π

)
exp

{
1
2 ∑

j, j′

(
η j−φ ∗j φ j

)
Vj, j′

(
η j′ −φ ∗j′φ j′

)}
= e−Tr[log(−V)]/2.

(b) Show that Z can be written in the following way

Z = eTr[log(−V)]/2
∫ (

n

∏
j=1

dη j√
2π

)
exp

{
1
2 ∑

j, j′
η jVj, j′η j′ −Tr

[
log

(−G−1
0 +ΣΣΣ

)]
}

,

where we introduced the matrix Σ j, j′ = ∑ j′′ η j′′Vj′′, j′δ j, j′ .
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Additional Reading

• S. Hassani, Mathematical Physics, A Modern Introduction to Its Foundations,
(Springer-Verlag, Berlin, 1999).

• A mathematically concise textbook on many-particle systems is J. W. Negele and
H. Orland Quantum Many-Particle Systems, (Westview Press, Boulder, 1998).

• For a thorough mathematical treatment of complex functions, S. Lang Complex
Analysis, (Springer, Berlin, 1999).



Chapter 3
Quantum Mechanics

The quantum theory was born in 1900, with the twentieth
century, and future centuries will list it among our own’s most
remarkable achievements. Designed to account for the puzzling
behavior of matter at the submicroscopic scale of individual
atoms, the theory has enjoyed phenomenal success. It has
accounted in a quantitative way for atomic phenomena with
numerical precision never before achieved in any field of
science.
– N. David Mermin

At the end of the 19th century, the macroscopic world was understood in great detail.
Newton’s laws described mechanics ranging from the collisions of marbles to the
motion of planets, Maxwell’s equations explained electromagnetic phenomena and
statistical physics was the underlying theory for thermodynamic observations. How-
ever, a few effects remained truly unexplained, such as the spectrum of black-body
radiation and the photoelectric effect. When Planck first quantized the accessible
energies for the modes inside a black body, thereby accurately reproducing the ob-
served black-body spectra, he still regarded it as a dirty trick. Einstein was the first
to take this idea more seriously when he used it to explain the photoelectric effect
by introducing the quantum of light, nowadays called a photon. It was gradually
realized that the microscopic world is governed by a set of rules that is completely
different from the rules that we know in our everyday life. This set of rules is called
quantum mechanics and its success in explaining the microscopic world has been
enormous. An important example is Bohr’s explanation for the discrete spectra of
light that is absorbed and emitted by atoms. Initially quantum mechanics came in
two seemingly different formulations, namely the one by Heisenberg now known
as matrix mechanics, and the one by Schrödinger now known as wave mechanics.
Soon these two pictures were shown to be equivalent, and the unified formulation of
quantum mechanics was given by Dirac and Von Neumann. Later, yet another way
of doing quantum mechanics was developed by Feynman with the use of path inte-
grals. The latter formalism, which is the topic of Chap. 5, is generalized to quantum
field theory in the second part of this book.

In this chapter we review the elementary concepts from quantum mechanics in
the elegant formulation of Dirac, focusing on concepts that we need later on for the
description of interacting quantum gases. We introduce various important concepts
in a familiar setting, such as the number states and the coherent states, before gener-
alizing them to the more abstract formalisms of second quantization and functional
path integrals in later chapters.

33
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3.1 Hilbert Spaces

In quantum mechanics, an isolated physical system is described by an abstract state
vector |ψ〉 in an appropriate quantum-mechanical Hilbert space H . This is a com-
plex linear space that has an inner product and whose elements are the state vec-
tors, denoted by |ψ〉, which are often called ‘kets’. In a Hilbert space, adding up
two different state vectors leads to a new state vector, which is known as the su-
perposition principle. It is also possible to multiply a state vector with an arbitrary
complex number, but this does not change the physical information contained in
the vector. To be able to construct the inner product on the Hilbert space, we need
to introduce the so-called ‘bra’ 〈ψ|, which is by definition the hermitian conju-
gate of the ket |ψ〉, i.e. 〈ψ| = (|ψ〉)†, where hermitian conjugation is a combi-
nation of both transposition and complex conjugation. The inner product of two
vectors |ψ〉 and |ψ ′〉 is then a complex number that we denote by the ‘bracket’
〈ψ|ψ ′〉. It is linear, i.e. 〈ψ|(α|ψ ′〉+ β |ψ ′′〉) = α〈ψ|ψ ′〉+ β 〈ψ|ψ ′′〉, and satisfies
〈ψ|ψ ′〉= (〈ψ ′|ψ〉)† = 〈ψ ′|ψ〉∗. Well-known examples of inner products satisfying
the above conditions include the standard inner product between two complex m-
dimensional vectors, giving 〈ψ|ψ ′〉 = ∑m

j=1 ψ∗
j ψ ′

j, and the inner product between
two complex-valued functions f and g, for which we have 〈 f |g〉=

∫
dx f ∗(x)g(x).

Consider now a state vector characterized by a set of quantum numbers collec-
tively denoted by ν . Then a set of such state vectors {|ν〉} is said to be linearly
independent if the relation ∑ν cν |ν〉 = 0 implies that the complex numbers cν are
equal to zero for all ν . A set of independent vectors that span the whole vector space
is called a basis. Furthermore, two vectors are said to be orthogonal if 〈ν |ν ′〉 = 0
and the length or norm of a vector is defined through the inner product as

√
〈ν |ν〉.

If all the vectors of a basis are mutually orthogonal and if the length of the basis
vectors is also normalized to unity, then the basis is called orthonormal. In that case,
we have 〈ν |ν ′〉 = δν ,ν ′ , where δν ,ν ′ is the Kronecker delta that equals one when
ν = ν ′ and zero otherwise. An orthonormal set of vectors |ν〉 is called complete if
it satisfies the completeness relation

∑
ν
|ν〉〈ν |= 1̂. (3.1)

The completeness relation ensures that an arbitrary vector can be expressed uniquely
in terms of the orthonormal basis as

|ψ〉= ∑
ν
|ν〉〈ν |ψ〉 ≡∑

ν
cν |ν〉. (3.2)

Demanding that the state vector |ψ〉 is properly normalized to unity, we have that

〈ψ|ψ〉= ∑
ν ,ν ′

c∗ν cν ′〈ν |ν ′〉= ∑
ν
|cν |2 = 1, (3.3)

such that |cν |2 can be interpreted as the probability for the system to be in state |ν〉.
If {|ν〉} and {|µ〉} are both complete sets of orthonormal states, then we can always
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go from one basis to the other by inserting a completeness relation, i.e.

|ν〉= ∑
µ
|µ〉〈µ |ν〉 (3.4)

and

|µ〉= ∑
ν
|ν〉〈ν |µ〉. (3.5)

Note that to generalize the above discussion to a continuous index ν , the sums over
ν should be replaced by integrals.

Example 3.1. For a single atom on a line, typical examples of complete bases for
its Hilbert space H are the momentum basis |p〉, whose states are labelled by the
momentum of the particle, or the continuous position basis |x〉, whose states are
labelled by the position of the particle. Since the position basis |x〉 is continuous,
orthonormality is expressed by

〈x|x′〉= δ (x− x′), (3.6)

where the appropriate generalization of the Kronecker delta is the Dirac delta func-
tion, such that the relation ∑ν δν ,ν ′ = 1 generalizes to

∫
dx′ δ (x−x′) = 1. Moreover,

completeness then implies that
∫

dx |x〉〈x|= 1̂. (3.7)

3.2 Observables

In quantum mechanics, dynamical variables are described by linear hermitian op-
erators Ô that act on the Hilbert space and have a complete set of eigenstates.
Such operators are also called observables. Linear means that Ô(c1|ψ〉+ c2|ψ〉) =
c1Ô|ψ〉+ c2Ô|ψ〉, while Hermitian means that the operator is its own Hermitian
conjugate Ô = Ô†, defined by 〈ψ ′|Ô†|ψ〉 = (Ô|ψ ′〉)†|ψ〉 = 〈ψ|Ô|ψ ′〉∗. Examples
of physical dynamical variables are the total energy, described by the Hamilton op-
erator Ĥ, the position, described by the position operator x̂, and the momentum,
described by the momentum operator p̂. Important mathematical properties of Her-
mitian operators include that they are diagonalizable and that they have real eigen-
values. It is also convenient to introduce functions of observables. If f (x) has a
series expansion given by

f (x) =
∞

∑
i=0

aixi, (3.8)
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then the operator function f (Ô) is defined through

f (Ô) =
∞

∑
i=0

aiÔi. (3.9)

To perform quantum-mechanical calculations in practice, the position represen-
tation is often used. In this representation, the momentum operator has the familiar
form

p̂ =
∫

dx |x〉
(
−ih̄

d
dx

)
〈x| ≡ −ih̄

d
dx̂

. (3.10)

Then, we can substitute (3.10) into the eigenvalue equation

p̂|p〉= p|p〉, (3.11)

which leads to

〈x|p̂|p〉 =
∫

dx′ 〈x|x′〉
(
−ih̄

d
dx′

)
〈x′|p〉

= −ih̄
∫

dx′ δ (x− x′)
d

dx′
〈x′|p〉

= −ih̄
d
dx
〈x|p〉= p〈x|p〉. (3.12)

Combining the above differential equation with the orthonormality condition

〈p|p′〉=
∫

dx 〈p|x〉〈x|p′〉= δ (p− p′), (3.13)

we find that the position representation of the momentum states is given by

〈x|p〉=
1√
2π h̄

exp
{

ipx
h̄

}
. (3.14)

Example 3.2. Consider a particle confined to a line of length L. The Hamiltonian is
given by Ĥ = p̂2/2m with m the mass of the particle. The eigenstates of Ĥ we denote
by |n〉 and the corresponding eigenvalues by εn. In the coordinate representation, the
corresponding eigenvalue equation is given by

− h̄2

2m
d2

dx2 χn(x) = εnχn(x) (3.15)

with χn(x) = 〈x|n〉. The eigenvalue equation for a time-independent Hamiltonian
is called the time-independent Schrödinger equation. Writing pn =

√
2mεn, we see

that the linearly independent solutions of the above Schrödinger equation are pro-
portional to eipnx/h̄, where the normalization factor is determined below. Assuming
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periodic boundary conditions, i.e. χn(x+L) = χn(x), we find that pn = 2π h̄n/L with
n = 0,±1,±2, . . . ,±∞. As a result, the energy spectrum becomes discrete and

εn =
2π2h̄2

mL2 n2. (3.16)

The normalization of the wavefunctions χn(x) is fixed by

∫ L/2

−L/2
dx |χn(x)|2 = 1, (3.17)

giving χn(x) = eipnx/h̄/
√

L. Note also that the wavefunctions χn(x) are orthonormal,
since

∫ L/2

−L/2
dx χ∗n (x)χn′(x) =

∫ L/2

−L/2
dx

1
L

exp
{

i
h̄
(pn− pn′)x

}
= δn,n′ . (3.18)

Example 3.3. Let |ψ〉 be a state vector for a particle confined to a line of length L and
let ψ(x) = 〈x|ψ〉 be the corresponding wavefunction in the position representation.
To obtain the wavefunction in the momentum representation, we have to perform a
Fourier transform, because

ψ(p) = 〈p|ψ〉=
∫

dx 〈p|x〉〈x|ψ〉

=
∫ dx√

2π h̄
e−ipx/h̄ψ(x). (3.19)

This means in particular for the eigenstates of Example 3.2 that

χn(p) = 2h̄
sin((p− pn)L/2h̄)√

2π h̄L(p− pn)
, (3.20)

with pn = 2π h̄n/L.

Now, suppose that we have an ensemble of identical systems all in state |ψ〉
and we want to measure the dynamical variable O described by the observable Ô,
which has a complete set of eigenstates |ν〉 with real eigenvalues ν . Then, a single
measurement of the dynamical variable always yields one of the eigenvalues ν of
the observable. However, if we perform a series of measurements on the ensemble
and average over the result, then we experimentally determine the expectation value
of the observable, which according to quantum mechanics is given by

〈Ô〉 ≡ 〈ψ|Ô|ψ〉= ∑
ν ′,ν

c∗ν ′cν〈ν ′|ν |ν〉= ∑
ν

ν|cν |2, (3.21)
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where |cν |2 is thus to be interpreted as the probability of measuring the eigenvalue ν .
Note that even for a perfect single measurement on a perfectly prepared system, we
can in principle not be certain which of the eigenvalues ν we find as an outcome.
The best we can do is to predict the probability |cν |2 of finding each eigenvalue
ν , showing the intrinsic probabilistic character of quantum mechanics. Only in the
special case when the system is in one of the eigenstates of the observable Ô, then it
is absolutely certain that a perfect measurement gives the corresponding eigenvalue
ν = 〈ν |Ô|ν〉.

Example 3.4. For the eigenstates of Example 3.2, we have that

〈p̂〉=
∫

dp p |χn(p)|2 = pn. (3.22)

Note that the momentum is not sharply defined in the eigenstates χn(p), since these
states give rise to a width of order h̄/L, which is a direct consequence of the Heisen-
berg uncertainty relation to which we come next. However, in the limit L→ ∞, this
is resolved, because then |χn(p)|2 converges to the Dirac delta function such that
the state has a definite momentum, as expected for an eigenstate of the free-particle
Hamiltonian.

Upon considering two operators, such as for example the position operator x̂ and
the momentum operator p̂, we can introduce their commutator, which is defined by

[x̂, p̂]− ≡ x̂ p̂− p̂x̂. (3.23)

If two or more observables commute, i.e. when their commutator is zero, then it can
be shown that they share a common complete set of eigenfunctions. However, a very
fundamental postulate of quantum mechanics is that the position operator x̂ and the
momentum operator p̂ actually do not commute and that they obey the commutation
relation

[x̂, p̂]− = ih̄. (3.24)

This commutation relation then also gives rise to the expression of the momentum
operator in position space, as given in (3.10). Furthermore, it is left as an exercise
to show that the nonvanishing commutator of (3.24) directly leads to the famous
Heisenberg uncertainty relation

∆x∆p≥ h̄
2
, (3.25)

with the uncertainty or standard deviation given by ∆x≡
√
〈(x̂−〈x̂〉)2〉.
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3.3 Schrödinger vs. Heisenberg Picture

So far, we have not explicitly considered the time evolution of quantum-mechanical
systems. The dynamics of a state vector |ψ(t)〉 is governed by the time-dependent
Schrödinger equation, which in the basis-independent formulation is given by

ih̄
d
dt
|ψ(t)〉= Ĥ|ψ(t)〉, (3.26)

where Ĥ is the Hamilton operator or Hamiltonian corresponding to the total energy
of the system. If we expand the state vector in terms of the orthonormal basis |ν〉,
we find

|ψ(t)〉= ∑
ν

ψν(t)|ν〉. (3.27)

As before, we demand that the state |ψ(t)〉 is properly normalized, giving

∑
ν
|ψν(t)|2 = 1, (3.28)

such that |ψν(t)|2 represents the probability to be in state |ν〉 at time t. Therefore,
ψν(t) is known as the probability amplitude or the wavefunction in the ν repre-
sentation. Substituting the expansion of (3.27) into the Schrödinger equation and
multiplying the resulting equation with 〈ν | gives

ih̄
dψν(t)

dt
= ∑

ν ′
Hνν ′ψν ′(t), (3.29)

with Hνν ′ = 〈ν |Ĥ|ν ′〉 the matrix elements of the Hamiltonian in the ν represen-
tation. By choosing the most appropriate representation for the specific quantum-
mechanical problem, the Schrödinger equation is most conveniently solved in prac-
tice.

For a Hamiltonian that does not depend on time we can consider the time-
independent Schrödinger equation, given by

Ĥ|ψn〉= εn|ψn〉. (3.30)

If the system is in an eigenstate of the time-independent Hamiltonian at a certain
time t0, then it will remain in this eigenstate and the time evolution of the state is
given by

|ψn(t)〉= e−iεn(t−t0)/h̄|ψn(t0)〉, (3.31)

which is easily verified by substituting the above solution in (3.26). In particular, we
have for such an eigenstate |ψn(t)〉 that

〈ψn(t)|Ĥ|ψn(t)〉= εn (3.32)
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and the energy is conserved. To study the time evolution of an arbitrary wavefunc-
tion, we can either first expand it into eigenfunctions of the Hamiltonian, after which
each of the eigenfunctions evolves according to (3.31), or we can formally solve the
Schrödinger equation in (3.26) and find that the final state vector |ψ(tf)〉 at time tf
depends on the initial state vector |ψ(ti)〉 at time ti through

|ψ(tf)〉= exp
{
− i

h̄
Ĥ(tf− ti)

}
|ψ(ti)〉 . (3.33)

As a result, it is natural to define the time-evolution operator as

Û(t, ti) = exp
{
− i

h̄
Ĥ(t− ti)

}
, (3.34)

which describes the time evolution of the initial state |ψ(ti)〉 and satisfies the differ-
ential operator equation

ih̄
d
dt

Û(t, ti) = ĤÛ(t, ti) . (3.35)

The time evolution operator is unitary, since

Û(t, ti)Û†(t, ti) = Û†(t, ti)Û(t, ti) = 1̂, (3.36)

which is easily seen from the fact that Û†(t, ti) = Û(ti, t) and Û(t, ti)Û(ti, t) = 1̂.
Since a unitary transformation preserves the length of a vector, we have that the
time evolution conserves the total probability.

This formulation of quantum mechanics, where the state vectors depend on
time and the operators are time independent, is known as the Schrödinger picture.
A different, but equivalent way to formulate quantum mechanics is to use time-
independent state vectors and operators that depend on time. This approach is known
as the Heisenberg picture and can be obtained from the Schrödinger picture via a
unitary transformation. The time evolution of the operator Ô(t) is determined by

Ô(t)≡ Û†(t,0)ÔÛ(t,0), (3.37)

where the operator Ô on the right-hand-side is the time-independent operator from
the Schrödinger picture. The equation of motion for the operator Ô is obtained by
taking the time derivative of the above equation. Doing so, we find with the use of
(3.35) the Heisenberg equation of motion

ih̄
dÔ(t)

dt
= [Ô(t), Ĥ]−. (3.38)

The expectation value for any observable Ô is then the same in the two pictures,
since

〈ψ(t)|Ô|ψ(t)〉= 〈ψ|Û†(t,0)ÔÛ(t,0)|ψ〉= 〈ψ|Ô(t)|ψ〉, (3.39)

showing that the two pictures are indeed equivalent.
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3.4 Bosonic Harmonic Oscillator

One of the most common problems in quantum mechanics is that of a particle in a
harmonic potential, whose importance can be understood as follows. Since a system
near equilibrium finds itself close to the minimum of the potential energy, we can
often make a series expansion around this minimum and only keep the quadratic
term. This shows that many systems in or near equilibrium experience the harmonic
potential. The simplest version is the one-dimensional harmonic oscillator, which is
described by the Hamiltonian

Ĥ =
p̂2

2m
+

1
2

mω2x̂2, (3.40)

where m is the mass of the particle and ω is the frequency that specifies the strength
of the potential. The time-independent Schrödinger equation in the place represen-
tation thus becomes

Ĥχ(x) =
{
− h̄2

2m
d2

dx2 +
1
2

mω2x2
}

χ(x) = εχ(x), (3.41)

which turns out to be analytically solvable. The solutions are given by

χN(x) =
(

1
l
√

π2NN!

)1/2

e−x2/2l2
HN(x/l), (3.42)

where l =
√

h̄/mω is the harmonic oscillator length and HN(x) are the Hermite
polynomials. The corresponding eigenenergies are given by εN = h̄ω(N +1/2) and
the Hermite polynomials are defined through

HN(x) = (−1)Nex2 dN

dxN e−x2
, (3.43)

leading to the property

d
dx

HN(x) = 2xHN(x)−HN+1(x). (3.44)

It is left as an exercise to show that the eigenfunctions χN(x) satisfy
√

mω
2h̄

(
x̂+

i
mω

p̂
)

χN(x) =
√

NχN−1(x), (3.45)
√

mω
2h̄

(
x̂− i

mω
p̂
)

χN(x) =
√

N +1χN+1(x), (3.46)

where the last equation shows that the creation operator
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â† ≡
√

mω
2h̄

(
x̂− i

mω
p̂
)

(3.47)

effectively changes the eigenstate χN(x) to the eigenstate χN+1(x). The Hermitian
conjugate operator â is known as the annihilation operator, and changes the eigen-
state χN(x) to the eigenstate χN−1(x).

3.5 Creation and Annihilation Operators

The creation and annihilation operators defined in the previous section are con-
venient operators to represent the harmonic oscillator problem. We reconsider the
Hamiltonian in (3.40) and write it in terms of the creation and annihilation operators
as

Ĥ =
1
2

mω2
{

p̂2

m2ω2 + x̂2
}

=
1
2

mω2
{(

x̂− i p̂
mω

)(
x̂+

ip̂
mω

)
− i

mω
[x̂, p̂]−

}

= h̄ω
{

â†â+
1
2

}
. (3.48)

In terms of the creation and annihilation operators the Schrödinger equation be-
comes

Ĥ|χ〉= h̄ω
(

â†â +
1
2

)
|χ〉= ε|χ〉. (3.49)

Comparing the Hamiltonian in this form with the energy eigenvalues εN = h̄ω(N +
1/2), we anticipate that the operator â†â equals the operator N̂, which has the natural
numbers (including zero) as eigenvalues. Physically, the operator N̂ counts the num-
ber of energy quanta that are stored in the harmonic oscillator and is appropriately
called the number operator. The eigenstates of the number operator are denoted by
|N〉. From the previous paragraph we have that

â|N〉=
√

N|N−1〉, (3.50)

and
â†|N〉=

√
1+N|N +1〉, (3.51)

showing indeed that a†a|N〉= N|N〉. We also have

[â, â†]− = 1, (3.52)

and we can obtain any number state |N〉 by applying the creation operator succes-
sively N times to the ground state, giving
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|N〉=
(â†)N
√

N!
|0〉. (3.53)

In the basis of eigenstates |N〉, it is easy to obtain the matrix representations of the
creation and annihilation operators, respectively. We have, for instance, that

â =




0
√

1 0 0 . . .

0 0
√

2 0 . . .

0 0 0
√

3 . . .
0 0 0 0 . . .
...

...
...

...
. . .




, (3.54)

and the matrix representation of the creation operator in this basis is given by the
transpose of the above matrix.

3.6 Three-Dimensional Harmonic Oscillator

To generalize the one-dimensional harmonic oscillator to three dimensions, we con-
sider the Hamiltonian

Ĥ =
p̂2

2m
+

1
2

mω2r2 (3.55)

with the corresponding time-independent Schrödinger equation given by
{
− h̄2∇∇∇2

2m
+

1
2

mω2r2

}
ψ(r) = Eψ(r). (3.56)

In Cartesian coordinates, the eigenfunctions are simply given by the product of three
one-dimensional harmonic oscillator wavefunctions, one for each direction (x, y, z),
and the corresponding eigenvalues are εn = h̄ω(nx +ny +nz +3/2). However, to ex-
ploit the spherical symmetry of the system we might also use spherical coordinates
(r,ϑ ,ϕ), where ϑ is the zenith and ϕ the azimuth angle. For the kinetic term, this
yields

− h̄2∇∇∇2

2m
=− h̄2

2mr2

{
∂
∂ r

(
r2 ∂

∂ r

)
+

1
sinϑ

∂
∂ϑ

(
sinϑ

∂
∂ϑ

)
+

1
sin2 ϑ

∂ 2

∂ϕ2

}
. (3.57)

Because the interaction potential is spherically symmetric, the Schrödinger equation
has separable solutions of the form

ψE`m(r) = RE`(r)Y`m(ϑ ,ϕ), (3.58)
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such that the radial and angular part of the wavefunction each satisfy their own
differential equation. We have for the angular part
{
− 1

sinϑ
∂

∂ϑ

(
sinϑ

∂
∂ϑ

)
− 1

sin2 ϑ
∂ 2

∂ϕ2

}
Y`m(ϑ ,ϕ) = `(`+1)Y`m(ϑ ,ϕ), (3.59)

which is analytically solvable and whose solutions are the well-known spherical
harmonics

Y`m(ϑ ,ϕ) = (−1)m

√
(2`+1)

4π
(`−m)!
(`+m)!

Pm
` (cosϑ)eimϕ , (3.60)

where the associated Legendre polynomials Pm
` (cosθ) are determined by

Pm
` (x) = (1− x2)|m|/2 1

2``!
d|m|

dx|m|
d`

dx`
(x2−1)`, (3.61)

with ` = 0,1,2...∞ and m =−`,−`+1, ..., `−1, `, where unfortunately the standard
notation for this quantum number is identical to that for the mass of the particle. The
spherical harmonics satisfy the following orthonormality relations

∫ 2π

0
dϕ

∫ π

0
dϑ sinϑ Y ∗`′m′(ϑ ,ϕ)Y`m(ϑ ,ϕ) = δ`,`′δm,m′ , (3.62)

which automatically means that the spherical harmonics are normalized,

∫ 2π

0
dϕ

∫ π

0
dϑ sinϑ |Y`m(ϑ ,ϕ)|2 = 1. (3.63)

The radial part of the wavefunction satisfies the radial Schrödinger equation,
which, after introducing uE`(r) = rRE`(r), takes the form

{
− h̄2

2m
d2

dr2 +
h̄2`(`+1)

2mr2 +
1
2

mω2r2−E
}

uE`(r) = 0. (3.64)

This radial differential equation can also be solved analytically and after multiplica-
tion with the spherical harmonics the final eigenstates are given by

ψn`m(r,ϑ ,ϕ) =

√
2
l3

(
n+ `+1/2

n

)−1/2 1√
(`+1/2)!

×e−r2/2l2
L(1/2+`)

n ((r/l)2)
( r

l

)`
Y`m(ϑ ,ϕ), (3.65)

where the associated Laguerre polynomials are defined through

L(1/2+`)
n (x) =

exx−1/2−`

n!
dn

dxn (e−xxn+`+1/2) (3.66)
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with the corresponding energy eigenvalues

εn,` = (2n+ `+3/2)h̄ω . (3.67)

Note that the energy levels are degenerate in the quantum number m.

3.7 Coherent States

In this section, we introduce a very useful set of states in the context of the one-
dimensional harmonic oscillator. This set consists of eigenstates of the annihilation
operator, which are known as coherent states. Important physical examples of sys-
tems that are in a coherent state include lasers and Bose-Einstein condensates. Co-
herent states turn out to be of great importance in later chapters, when we set up the
functional-integral formalism to describe interacting quantum gases. In this section,
we study their relevant properties to serve this purpose. We start by looking at the
creation operator, which cannot have eigenstates. To see this, we remember that an
arbitrary state can always be expressed as a superposition of the number eigenstates
|N〉. From (3.51) we see that, after applying the creation operator to an arbitrary
state, the number eigenstate with the lowest eigenvalue of N̂ has disappeared from
the linear superposition. Thus, the new superposition can never be the same as the
old one. However, the same argument does not hold for the annihilation operator. If
we apply the annihilation operator to a superposition of number eigenstates, we find
that

â
M

∑
N=0

ψN |N〉=
M−1

∑
N=0

ψN+1
√

N +1|N〉. (3.68)

For a finite number of terms, the number state with the highest eigenvalue of N̂
would disappear from the superposition, which means that this state cannot be an
eigenstate of the annihilation operator. However, if the superposition contains an
infinite number of terms, we can circumvent this problem. Considering the state

|φ〉= exp
{

φ â†}|0〉 (3.69)

with φ a complex number, we note that application of the annihilation operator gives

â|φ〉= â exp
{

φ â†}|0〉= â ∑
N

φ N
√

N!
|N〉= φ |φ〉, (3.70)

where in the last step we used (3.50). Thus, we see that the state |φ〉 is indeed an
eigenstate of the annihilation operator â with the eigenvalue φ .

It is important to realize that the coherent states are overcomplete and do not form
an orthonormal set. This is easily shown by considering the inner product between
two different coherent states
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〈φ |φ ′〉= ∑
N,N′

〈N| (φ
∗)N

√
N!

(φ ′)N′

√
N′!

|N′〉= eφ∗φ ′ . (3.71)

However, the coherent states do obey a completeness or closure relation, that is
∫ dφ ∗dφ

2πi
e−φ∗φ |φ〉〈φ |= 1̂ . (3.72)

To prove this important relation, we write the eigenvalue φ of the coherent state |φ〉
as φ = ρeiθ , where both θ and ρ are real. Note that by making this change of vari-
ables, we pick up an additional factor of 2iρ coming from the Jacobian. Therefore,
we find

∫ dφ ∗dφ
2πi

e−φ∗φ |φ〉〈φ |=
∫ dφ ∗dφ

2πi ∑
N,N′

e−φ∗φ (φ)N
√

N!
|N〉〈N′| (φ

∗)N′

√
N′!

=
∫ ∞

0
dρ

∫ 2π

0
dθ ∑

N,N′

ρ
π

e−ρ2 (ρeiθ )N
√

N!
|N〉〈N′| (ρe−iθ )N′

√
N′!

. (3.73)

Since, the angular integration leads to 2πδN,N′ , we are left with

∫ dφ ∗dφ
2πi

e−φ∗φ |φ〉〈φ |= 2∑
N

|N〉〈N|
N!

∫ ∞

0
dρ ρ2N+1e−ρ2

. (3.74)

This last integral is equal to N!/2, which follows from the change of variables t = ρ2

and the integral form of the Gamma function Γ(n), namely

Γ(n) = (n−1)! =
∫ ∞

0
dt tn−1e−t . (3.75)

We then arrive at the desired result
∫ dφ ∗dφ

2πi
e−φ∗φ |φ〉〈φ |= ∑

N
|N〉〈N|= 1̂. (3.76)

The coherent states can also be used to perform a trace of an observable. Using a
complete set of states {|ν〉}, the trace of Ô is defined by

Tr[Ô]≡∑
ν
〈ν |Ô|ν〉. (3.77)

We can express this in terms of coherent states by inserting the completeness relation

Tr[Ô] = ∑
ν
〈ν |Ô|ν〉=

∫ dφ ∗dφ
2πi

e−φ∗φ ∑
ν
〈ν |Ô|φ〉〈φ |ν〉

=
∫ dφ ∗dφ

2πi
e−φ∗φ 〈φ |Ô|φ〉. (3.78)
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3.8 Fermionic Harmonic Oscillator

To study a fermionic version of the one-dimensional bosonic harmonic oscillator, we
demand that the energy quanta in the harmonic oscillator satisfy the Pauli exclusion
principle. This means that a maximum of one fermionic quantum can be put into
the oscillator, resulting in two possible number states, namely |0〉 and |1〉. To mimic
such a system, we consider the following Hamiltonian consisting of two energy
levels

Ĥ =
[
+ h̄ω

2 0
0 − h̄ω

2

]
, (3.79)

with eigenvalues ±h̄ω/2. We denote the ground state [0,1] by |0〉 and the excited
state [1,0] by |1〉. An arbitrary state is then given by the two-component vector
[ψ↑,ψ↓]. In analogy with the bosonic case, we introduce creation and annihilation
operators

b̂† =
[

0 1
0 0

]
and b̂ =

[
0 0
1 0

]
. (3.80)

These operators satisfy the anticommutation relation

[b̂ , b̂†]+ ≡ b̂ b̂† + b̂†b̂ = 1̂, (3.81)

as well as

[b̂, b̂]+ = [b̂†, b̂†]+ = 0, (3.82)

and have the following effect on the two number states

b̂|0〉= 0, b̂|1〉= |0〉, (3.83)

and
b̂†|0〉= |1〉, b̂†|1〉= 0, (3.84)

as required for fermionic creation and annihilation operators that satisfy the Pauli
principle. This can also be written as

b̂|M〉=
√

M|M−1〉 (3.85)

and

b̂†|M〉=
√

1−M|M +1〉, (3.86)

which is to be compared with (3.50) and (3.51) for the bosonic case. In terms of the
creation and annihilation operators, the Hamiltonian has the form

Ĥ = h̄ω
(

b̂†b̂ − 1
2

)
. (3.87)
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Fig. 3.1 Energy level structure of the supersymmetric one-dimensional harmonic oscillator. See
Example 3.5.

Example 3.5. By adding the bosonic and the fermionic Hamiltonians in (3.49) and
(3.87) we obtain

Ĥ = h̄ω(â†â+ b̂†b̂). (3.88)

This Hamiltonian has a special kind of symmetry as we show now. The eigenvalues
of this Hamiltonian are εN,M = h̄ω(N + M) belonging to the eigenstates |N,M〉,
where N = 0,1,2, . . . ,∞ are the number of quanta in the bosonic harmonic oscillator
and M = 0,1 are the number of quanta in the fermionic harmonic oscillator. We thus
find that, while the ground state |0,0〉 is nondegenerate, every bosonic state |N,0〉,
with N 6= 0, is degenerate with a fermionic state |N− 1,1〉. This degeneracy is the
result of a symmetry that is generated by the operator Q̂ = b̂†â, which changes a
boson in a fermion and has the properties Q̂|N,0〉=

√
N|N−1,1〉 and [Ĥ, Q̂]− = 0.

The last relation is most easily seen by observing that the Hamiltonian can be written
as

Ĥ = h̄ω[Q̂†, Q̂]+, (3.89)

where we used the (anti)commutation relations for bosons and fermions, together
with the the commutation of fermions with bosons. We also have that Q̂2 = 0,
since b†b† = 0. This system exhibits a simple example of supersymmetry between
fermions and bosons, resulting in a degeneracy between bosonic and fermionic
states. The energy level structure of the supersymmetric harmonic oscillator is
shown in Fig. 3.1.
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3.9 Spin

As we show in this section, the spin-1/2 system is equivalent to the fermionic har-
monic oscillator that was considered in the previous section. Furthermore, in the
study of interacting quantum gases, the spin degree of freedom plays an important
role both from a theoretical and an experimental point of view. For example, the
atomic spin degree of freedom can be used by experimentalists to trap ultracold
atoms by applying an external magnetic field. Later, we will also see an example
where a fully spin-polarized atomic system behaves like a noninteracting ideal gas,
while an atomic mixture of two spin states is strongly interacting. To appreciate such
important effects, we look at the spin degree of freedom in a bit more detail.

Spin behaves quantum mechanically like an angular momentum, which means
that we can describe it by an operator Ŝ, whose Cartesian components satisfy the
commutation relations

[Ŝx, Ŝy]− = ih̄Ŝz, [Ŝy, Ŝz]− = ih̄Ŝx, [Ŝz, Ŝx]− = ih̄Ŝy. (3.90)

From these commutation relations, it follows that the operators Ŝ2 and Ŝz commute
and can thus be diagonalized simultaneously. Their simultaneous eigenstates |s,ms〉
satisfy

Ŝ2|s,ms〉= s(s+1)h̄2|s,ms〉 (3.91)

and

Ŝz|s,ms〉= msh̄|s,ms〉. (3.92)

For simplicity, we consider the case of a spin-1/2 atom, for which the z component
of the spin angular momentum only takes on the values ±h̄/2. This implies that we
have two basis vectors, |1/2,1/2〉 and |1/2,−1/2〉 which we denote as |↑〉 and |↓〉,
respectively. The spin angular momentum part of the wavefunction of the atom can
be represented as the two-component vector

[
ψ↑(t)
ψ↓(t)

]
,

where ψ↑(t) is the amplitude for the atom to be in the | ↑〉 state and ψ↓(t) is the
amplitude for the atom to be in the |↓〉 state, i.e.

|ψ(t)〉= ψ↑(t)| ↑〉+ψ↓(t)| ↓〉, (3.93)

with |ψ↑(t)|2 + |ψ↓(t)|2 = 1. Because there are only two spin states, we can represent
the operators Ŝi by 2× 2 matrices, where Ŝ = (h̄/2)σ̂σσ with σ̂i represented by the
Pauli matrices. In the basis of the eigenstates |1/2,±1/2〉, the matrix representation
of the Pauli matrices is given by
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σσσ x =
[

0 1
1 0

]
, σσσ y =

[
0 −i
i 0

]
, σσσ z =

[
1 0
0 −1

]
. (3.94)

The Hamiltonian that describes an atomic spin in a time-dependent magnetic
field is given by the Zeeman interaction

Ĥ =−γ Ŝ ·B(t), (3.95)

where γ determines the strength of the coupling of the spin to the magnetic field.
Let us first consider the time evolution of the spin in a static magnetic field along
the z axis. In this case, the Hamiltonian reduces to

Ĥ =−γ B Ŝz, (3.96)

which is the fermionic harmonic oscillator of the previous paragraph with ω =−γB.
The time evolution operator for this case is given by

U(t,0) = exp
{

i
h̄

γB Ŝz t
}

. (3.97)

Clearly, the eigenstates of the Hamiltonian are given by the eigenstates of Ŝz, i.e. the
states |↑〉 and |↓〉. For a state that at t = 0 is characterized by |ψ(0)〉= ψ↑(0) | ↑〉 +
ψ↓(0) | ↓〉, we have that

|ψ(t)〉= ψ↑(0)e−iωt/2| ↑〉+ψ↓(0)eiωt/2| ↓〉. (3.98)

t t
1 t2

B (t)

Fig. 3.2 Example of a time-dependent magnetic field, whose area determines the phase of a spin-
1/2 atom.

We proceed with the more general case of a magnetic field whose magnitude
depends on the time t, but whose direction is always along the x axis. Note that in
deriving (3.34) for the time evolution operator Û(t, ti), it was explicitly used that the
Hamiltonian was time independent. For the more general case that the Hamiltonian
does depend on time, but that the Hamiltonians at different times commute, we have
for the evolution operator
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Û(t, ti) = exp
{
− i

h̄

∫ t

ti
dt ′ H(t ′)

}
. (3.99)

In the case of a time-varying magnetic field, such as illustrated in Fig. 3.2, the time
evolution of the spin states is determined by the area under the curve, because

Û(t, ti) = exp
{

i
h̄

γ Ŝx

∫ t

ti
dt ′ B(t ′)

}
. (3.100)

From (3.94), we see that σ̂2
x = 1̂, such that the time-evolution operator can be written

as

Û(t, ti) = exp
{

i
h̄

γ Ŝx

∫ t

ti
dt ′ B(t ′)

}
= exp

{
− iθ(t)

2
σ̂x

}

=
∞

∑
n=0

1
n!

(
− iθ(t)

2

)n

σ̂n
x

=
∞

∑
n=0

(−1)n

(2n)!

(
θ(t)

2

)2n

1̂− i
∞

∑
n=0

(−1)n

(2n+1)!

(
θ(t)

2

)2n+1

σ̂x

= cos(θ(t)/2)1̂− i sin(θ(t)/2)σ̂x, (3.101)

where we introduce a shorthand notation for the integral in the argument of the
exponent, namely

θ(t) =−γ
∫ t

ti
dt ′ B(t ′). (3.102)

This tells us that if an atom is initially in the state | ↑〉, then at a later time t it is in
the state

|ψ(t)〉= cos(θ(t)/2)| ↑〉− i sin(θ(t)/2)| ↓〉 . (3.103)

By manipulating the phase θ(t), which is determined by the area below the applied
magnetic field pulse, we can control the final state. Three examples are of particular
experimental importance. The first example is the application of a π/2 pulse, for
which θ(t) = π/2 after the pulse. The initial state | ↑〉 is then transferred into the
state(| ↑〉− i| ↓〉)/√2. The second example is the π pulse, for which θ(t) = π after
the pulse, and the initial state | ↑〉 is transferred into the state | ↓〉. Finally, we can
apply a constant magnetic field at all times after t1. In that case

θ(t) =−γB(t− t1) (3.104)

and the probability amplitude for being in state |↑〉 equals P↑ = cos2 (γB(t− t1)/2),
which is seen to oscillate with a period T = 2π/γB. Such oscillations are known as
Rabi oscillations.
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3.10 Perturbation Theory

For most Hamiltonians, the time-independent Schrödinger equation cannot be solved
exactly. However, if the Hamiltonian Ĥ = Ĥ0 +V̂ consists of two parts, one part Ĥ0
that is exactly solvable and a perturbation V̂ that is weak, then we can use perturba-
tion theory to obtain an approximate solution which is systematically improvable.
The strategy is to expand both the eigenenergies Eν and eigenstates |ν〉 of Ĥ in
powers of the perturbation

Eν = E(0)
ν +E(1)

ν +E(2)
ν + . . . (3.105)

and
|ν〉= |ν(0)〉+ |ν(1)〉+ |ν(2)〉+ . . . , (3.106)

where the superscript ( j) denotes the contribution from the j-th order of the pertur-
bative expansion in the interaction V̂ . For convenience, we assume that the set of
eigenvalues is nondegenerate.

Since the unperturbed Hamiltonian Ĥ0 is exactly solvable, we have that

Ĥ0|ν(0)〉= E(0)
ν |ν(0)〉 . (3.107)

To find the corrections to these unperturbed eigenvalues and eigenstates, we intro-
duce the operator

Ĝ(E) =
1

E− Ĥ
= ∑

ν

|ν〉〈ν |
E−Eν

, (3.108)

which is seen to have the exact eigenstates |ν〉〈ν | as residues at the simple poles
E = Eν . We may substitute the formal expansions from (3.105) and (3.106), and
evaluate the resulting expansion up to first order in the interaction

Ĝ(E) = ∑
ν

|ν(0)〉〈ν(0)|+ |ν(0)〉〈ν(1)|+ |ν(1)〉〈ν(0)|+ ...

E−E(0)
ν −E(1)

ν − ...
(3.109)

= ∑
ν




|ν(0)〉〈ν(0)|

E−E(0)
ν

+
|ν(0)〉〈ν(0)|(
E−E(0)

ν

)2 E(1)
ν +

|ν(0)〉〈ν(1)|
E−E(0)

ν
+
|ν(1)〉〈ν(0)|

E−E(0)
ν

+ ...





.

To find the actual expressions for the first-order corrections, we consider the explicit
expansion of Ĝ(E) in terms of V̂ . From (3.108), we have that

Ĝ−1(E) = E− Ĥ0−V̂ = Ĝ−1
0 (E)−V̂ , (3.110)

where we also introduced Ĝ0(E) = (E−Ĥ0)−1. The above equation can be rewritten
as
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Ĝ(E) = Ĝ0(E)+ Ĝ0(E)V̂ Ĝ(E) = Ĝ0(E)+ Ĝ0(E)V̂ Ĝ0(E)+ ... , (3.111)

such that we can insert completeness relations of the unperturbed basis set {|ν(0)〉}
into the right-hand side of (3.111) to obtain

Ĝ(E) = ∑
ν

|ν(0)〉〈ν(0)|
E−E(0)

ν
+ ∑

ν ,ν ′

|ν ′(0)〉〈ν ′(0)|V̂ |ν(0)〉〈ν(0)|(
E−E(0)

ν ′
)(

E−E(0)
ν

) + ... . (3.112)

Considering the case ν = ν ′ in the second term of (3.112) and comparing it with
(3.109), we find the first-order correction to the eigenenergy

E(1)
ν = 〈ν(0)|V̂ |ν(0)〉. (3.113)

In the case that ν 6= ν ′, the second term of (3.112) gives rise to the first-order correc-
tion |ν(1)〉 to the eigenstates. To see this more clearly, we split the fraction, giving

∑
ν

∑
ν ′ 6=ν

{
|ν ′(0)〉〈ν ′(0)|V̂ |ν(0)〉〈ν(0)|
(E(0)

ν ′ −E(0)
ν )(E−E(0)

ν ′ )
+
|ν ′(0)〉〈ν ′(0)|V̂ |ν(0)〉〈ν(0)|
(E(0)

ν −E(0)
ν ′ )(E−E(0)

ν )

}
,

such that the second term of this expression can be directly compared with the fourth
term of Ĝ−1(E) in (3.109), while the first term corresponds to the third term in
(3.109). As a result, we find for the first-order correction |ν(1)〉 to the eigenstates

|ν(1)〉= ∑
ν ′ 6=ν

|ν ′(0)〉 〈ν
′(0)|V̂ |ν(0)〉

E(0)
ν −E(0)

ν ′
, (3.114)

and the corresponding expression for the hermitian conjugate. In a similar way, we
can derive higher-order corrections by looking at higher-order terms in the pertur-
bative expansion. As an example, for the second-order correction to the energy we
obtain

E(2)
ν = ∑

ν ′ 6=ν

|〈ν ′(0)|V̂ |ν(0)〉|2
E(0)

ν −E(0)
ν ′

. (3.115)

Equations (3.113), (3.114) and (3.115) were first obtained by Schrödinger when he
generalized a classical perturbative method developed by Lord Rayleigh to quantum
mechanics. We note that the present way of deriving the perturbative corrections is
more analogous to the methods used in quantum field theory, which is the topic of
Chap. 8.

3.11 Scattering Theory

So far, we have mainly dealt with single-body quantum-mechanical problems. In
this section, we look at the more general problem of two particles interacting via a
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Fig. 3.3 Two-atom scattering
in the center-of-mass refer-
ence frame. The atoms are
initially in a plane-wave state
with relative momentum p,
and scatter into the spherical
wave with relative momentum
p′. Due to energy conserva-
tion we have that |p| = |p′|.
The angle between p and p′
is denoted by θ . The region
where the interaction takes
place is indicated by the black
circle. Figure adapted from
reference [32].

potential V (r1−r2) that only depends on the relative coordinate r = r1−r2 between
the two particles. It is left as an exercise to show that the corresponding two-body
Schrödinger equation separates into a part describing the center-of-mass motion and
a part describing the relative motion, which then both effectively reduce to single-
body problems. The center-of-mass part part behaves as a free particle with mass
M = m1 + m2, which is equal to 2m for equal particle masses, whereas the relative
part behaves as a single particle with reduced mass µ = m1m2/(m1 +m2), equal to
m/2 for equal masses. The relative wavefunction is then determined by the time-
independent Schrödinger equation

{
− h̄2∇∇∇2

m
+V (r)

}
ψ(r) =

{
Ĥ0 +V (r)

}
ψ(r) = Eψ(r), (3.116)

where we assumed equal masses and introduced Ĥ0 for the kinetic-energy operator.
We can think of the above time-independent Schrödinger equation as describing a
steady-state solution for a continuous stream of particles scattering from a central
potential. We assume that the potential V (r) is short ranged, which means that it
becomes negligible at a certain distance.

If the separation between the atoms is large, such that the interaction potential
can be neglected, then (3.116) becomes the Schrödinger equation for a free particle.
In this region, the wavefunction is a superposition between the incoming plane-wave
state with relative momentum p and the scattered state with relative momentum p′,
as also illustrated in Fig. 3.3. In the center-of-mass frame, the incoming plane wave
corresponds to a kinetic energy E = p2/m = 2εp. Since we are interested in elastic
scattering processes, this energy is conserved. In scattering theory the relevant quan-
tity to calculate is called the scattering amplitude, which is the probability amplitude
for the initial plane-wave state with relative momentum p to scatter into the spheri-
cal wave with relative momentum p′. In this section, we show that the scattered state
is indeed a spherical wave.
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From the above considerations, we have that the time-independent Schrödinger
equation in basis-independent notation becomes

{
2εp− Ĥ0

} |ψ(+)
p 〉= V̂ |ψ(+)

p 〉, (3.117)

whose solutions |ψ(+)
p 〉 can formally be obtained by applying 1/(2εp− Ĥ0 + i0) to

both sides and realizing that the solution of the problem for V̂ = 0 is given by |p〉,
such that

|ψ(+)
p 〉= |p〉+ 1

2εp− Ĥ0 + i0
V̂ |ψ(+)

p 〉. (3.118)

The notation i0 means iε with ε ↓ 0, where this limiting procedure is used to deal
with the singular nature of the operator 1/(E − Ĥ0). The reason for choosing +i0
and not −i0 will become apparent when we obtain the solution for the scattering
wavefunction 〈r|ψ(+)

p 〉. The equation for the scattering state, (3.118), is known as
the Lippmann-Schwinger equation. To find the scattering wavefunction ψ(+)

p (r), we
multiply (3.118) with 〈r|. Doing so, we obtain

〈r|ψ(+)
p 〉= 〈r|p〉+

∫
dr′ 〈r| 1

2εp− Ĥ0 + i0
|r′〉〈r′|V̂ |ψ(+)

p 〉, (3.119)

where the first term on the right-hand side corresponds to the incoming plane wave

〈r|p〉=
eip·r/h̄

(2π h̄)3/2 , (3.120)

while the second term requires some more work, and gives
∫

dr′ 〈r| 1
2εp− Ĥ0 + i0

|r′〉〈r′|V̂ |ψ(+)
p 〉

=
∫

dr′
∫ dp′

(2π h̄)3
exp{ip′ · (r− r′)/h̄}

2εp−2εp′ + i0
〈r′|V̂ |ψ(+)

p 〉

=− m
h̄2

∫
dr′

exp{ip|r− r′|/h̄}
4π|r− r′| 〈r′|V̂ |ψ(+)

p 〉. (3.121)

Here, we inserted in the first step the completeness relation of the momentum states
and in the second step we used the known integral as shown in Table 3.1. Because
the potential V (r) is short ranged, we are primarily interested in the behavior of
the scattering wavefunction at distances that are large with respect to this range.
Therefore, we can expand the interatomic distance for r À r′ as

|r− r′| =
√

r2−2r · r′+ r′2 = r

√
1−2

r · r′
r2 +

r′2

r2 ' r− r
r
· r′, (3.122)

which we substitute into (3.121), giving
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∫
dr′ 〈r| 1

2εp− Ĥ0 + i0
|r′〉〈r′|V̂ |ψ(+)

p 〉

=− m
h̄2

eipr/h̄

4πr

∫
dr′ exp

{
−ip

r
r
· r′/h̄

}
〈r′|V̂ |ψ(+)

p 〉. (3.123)

Then, we define the vector p′ = pr/r, which has the same length as the vector p,
but points in the direction r/r. With this definition, we recognize that the integral
on the right-hand side of (3.123) is nothing but a Fourier transform. By defining the
scattering amplitude

f (p′,p) =− 1
4π

(2π h̄)3 m
h̄2 〈p′|V̂ |ψ

(+)
p 〉, (3.124)

we indeed find that at distances much larger than the range of the interaction, the
total wavefunction can be written as the sum of an incoming plane wave and an
outgoing spherical wave, that is

ψ(+)
p (r) =

1
(2π h̄)3/2

{
eip·r/h̄ + f (p′,p)

eipr/h̄

r

}
. (3.125)

Now, we can also understand the reason for adding the small positive imaginary
part +i0 in (3.118). The wavefunction ψ(+)

p (r) in (3.125) describes an incoming
plane wave and an outgoing spherical wave, whereas a small negative imaginary
part would have led to an an incoming spherical wave, i.e. a description of the time-
reversed scattering process.

Table 3.1 The integral

Id =
∫ dp′

(2π)d
eip′·(x−x′)/h̄

p2−p′2 + i0
,

where d is the dimension. The
function K0(x) is the modified
Bessel function of the second
kind.

dimension d Id

1
exp{ip|x− x′|/h̄}

2ip

2
K0(−ip|x−x′|/h̄)

−2π

3
exp{ip|x−x′|/h̄}
−4π|x−x′|/h̄
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3.12 Many-particle Quantum Mechanics

If we want to go beyond two particles and describe a many-body system consisting
of N identical particles, then we have to solve the N-body Schrödinger equation for
the wavefunction Ψ(x1, . . . ,xN , t), giving

ih̄
∂
∂ t

Ψ(x1, . . . ,xN , t) (3.126)

=

{
∑

i

(
− h̄2∇∇∇2

i

2m
+V ex(xi)

)
+

1
2 ∑

i6= j
V (xi−x j)

}
Ψ(x1, . . . ,xN , t),

where V ex(xi) is the external potential and V (xi− x j) is the two-body interaction
potential. In principle, there are also three-body interactions, which occur when
the electronic clouds of three particles simultaneously overlap. However, for the
interacting atomic quantum gases of interest in this book, these interactions almost
never play a role, because under realistic experimental conditions the gases are very
dilute. On the other hand, the external potential V ex(xi) is always present in a real
experiment, because the atoms have to be prevented from heating by material walls.
Typically, such an external trapping potential has a harmonic shape and can for
example be created by a space-dependent magnetic field acting on the spin of the
atom via the Zeeman interaction, i.e. V̂ ex(x) = −γ B(x) · Ŝ. Another possibility is
to trap the atoms optically by using the strong electric fields in a laser beam. This
gives rise to an induced electric dipole moment of the atom, such that classically
the trapping potential becomes V ex(x) = −αE2(x) with α the polarizability. This
last kind of trapping is discussed more detailed later on, when we encounter optical
lattices, which are periodic potentials created by counter-propagating laser beams.

Since the one-body Schrödinger equation is already often impossible to solve,
a solution of the many-body Schrödinger equation with typically millions of inter-
acting particles seems absolutely hopeless. However, the microscopic description in
(3.126) actually contains far too much information, because typically we are only
interested in a few macroscopic quantities such as the particle density n, the energy
U , and the pressure p of the system. These macroscopic quantities are only weakly
sensitive to the precise microscopic state the system, and can therefore be obtained
by an appropriate average over the microscopic degrees of freedom. In the next
chapter, we show how statistical physics is used to perform this averaging properly.

3.13 Problems

Exercise 3.1. Heisenberg Uncertainty Relation
(a) Calculate ∆x2∆p2 for the coherent state in (3.70).
(b) Prove (3.25).

Exercise 3.2. Prove (3.45) and (3.46).
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Exercise 3.3. Solve the one-dimensional Schrödinger equation for a particle that
scatters of a hard-sphere potential, i.e.

V (x) =

{
∞, x < a.

0, x > a,
(3.127)

where a is positive.

Exercise 3.4. Two-particle Schrödinger equation
Consider the Schrödinger equation for two particles that interact through a potential
that depends only on their relative coordinate r1− r2, i.e.

{
− h̄2∇∇∇2

1

2m1
− h̄2∇∇∇2

2

2m2
+V (r1− r2)

}
ψ(r1,r2) = Eψ(r1,r2). (3.128)

(a) Show by introducing the relative coordinate r = r1− r2 and the center-of-mass
coordinate R = (m1r1 +m2r2)/(m1 +m2) that

− h̄2∇∇∇2
1

2m1
− h̄2∇∇∇2

2

2m2
=− h̄2∇∇∇2

rel

2µ
− h̄2∇∇∇2

cm

2M
, (3.129)

where M = m1 +m2 is the total mass and µ = m1m2/(m1 +m2) is the reduced mass.
(b) Show that the two-particle Schrödinger equation thus becomes two one-particle
Schrödinger equations, where the center-of-mass part behaves as a free particle

{
− h̄2∇∇∇2

cm

2M

}
ψcm(R) = Ecmψcm(R), (3.130)

while the relative part behaves as a particle of mass µ in a central potential V (r)
{
− h̄2∇∇∇2

rel

2µ
+V (r)

}
ψrel(r) = Erelψrel(r) (3.131)

with ψ(R,r) = ψcm(R)ψrel(r) and E = Ecm +Erel.

Additional Reading

• A classical work on quantum mechanics is P. A. M. Dirac, Principles of Quantum
Mechanics, (Oxford University Press, London, 1958).

• There are also more recent textbooks on quantum mechanics, such as J. J. Saku-
rai, Modern Quantum Mechanics, (Addison-Wesley, Reading, 1994), and

• B. H. Bransden and C. J. Joachain, Quantum Mechanics, (Prentice Hall, New
York, 2000).



Chapter 4
Statistical physics

There are four Laws. The third of them, the Second Law, was
recognized first; the first, the Zeroth Law, was formulated last;
the First Law was second; the Third Law might not even be a
law in the same sense as the others.
– P.W. Atkins

Thermodynamics is a phenomenological theory for interacting many-body systems,
whose empirical laws are taken from experiments. The aim of statistical physics is to
derive these phenomenological laws starting from a true microscopic description of
the many-body system. It is then needed to perform an appropriate average over the
many microscopic degrees of freedom. The fundamental assumption of statistical
physics is that every microscopic state that is accessible to the system is equally
probable. Therefore, the problem of finding the correct probability distribution over
which we have to average reduces to the problem of finding the total number of
states of the system.

In this chapter, we discuss the basic concepts and techniques that are used in
statistical physics to describe many-body systems. In particular, we briefly consider
the three most frequently used statistical ensembles, namely the micro-canonical,
the canonical and the grand-canonical ensemble. In the thermodynamic limit these
ensembles become essentially equivalent, such that we can choose the ensemble
that is most convenient to work with. In our case, this is nearly always the grand-
canonical ensemble, which we then apply to the study of the ideal gases. We treat
the classical gas that obeys Maxwell-Boltzmann statistics, the Bose gas that obeys
Bose-Einstein statistics and the Fermi gas that obeys Fermi-Dirac statistics. At low
temperatures, the ideal Bose gas undergoes a phase transition better known as Bose-
Einstein condensation. A thorough knowledge of the ideal gases is important for
understanding the interacting quantum gases, which is the topic of the second part
of this book.

4.1 Legendre Transformations

The Legendre transformation is a convenient tool that is often used in thermo-
dynamics, and in many other fields of physics. A familiar example comes from
classical mechanics, which can be formulated in terms of the Lagrangian formal-
ism or, equivalently, in terms of the Hamiltonian formalism. While the Lagrangian
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y = p x + g (   p )

Fig. 4.1 Graphical illustration of the Legendre transform g(p) for a convex function f (x).

L(xi,dxi/dt, t) is a function that depends explicitly on the positions xi and the veloc-
ities dxi/dt of the particles, the Hamiltonian H(xi, pi, t) depends on the generalized
momenta pi = ∂L/∂ (dxi/dt) rather than on the velocities. The relationship between
the Hamiltonian and the Lagrangian of the system is given by

H(xi, pi, t) = ∑
i

dxi

dt
pi−L(xi,dxi/dt, t), (4.1)

which is an example of a Legendre transformation. It is a change of variables that
leads to an equivalent description of the system, such that it is often used in trans-
forming to the most suitable variables for the situation of interest.

To study the Legendre transformation in somewhat more detail, we use a simple
example, namely a convex function f (x), such that d2 f/dx2 > 0. The function f
determines a set of points (x,y) with y = f (x). However, this set of points also
gives rise to a set of tangent lines that contain exactly the same information, as
is illustrated in Fig. 4.1. Each tangent line is uniquely determined by the slope of
the function f (x) at x and the intercept of the tangent with the y axis. Conversely,
each tangent line determines a unique point on the curve (x,y). The corresponding
Legendre transform g(p) of f (x) is defined as

g(p) = f (x(p))− x(p)p, (4.2)

where x(p) is given by the root of the equation

p =
d f (x)

dx
. (4.3)

Note that the convexity of the function f (x) is required to make sure that this equa-
tion has a unique solution. In the following, we will encounter various examples of
Legendre transformations in statistical physics.
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4.2 Statistical Physics

The first law of thermodynamics, also known as the conservation of energy, states
that if we apply an amount of heat dQ to a system, then this heat can be used either
to increase the internal energy dU of the system or to let the system do an amount
work dW . Mathematically, this is expressed as

dQ≡ T dS = dU +dW = dU + pdV −µdN, (4.4)

where T is the temperature, p the pressure, V the volume, µ the chemical potential,
N the number of particles, and S the entropy of the system, defined by

S(U,V,N)≡ kB logg(U,V,N), (4.5)

where kB = 1.38 ·10−23 J/K is Boltzmann’s constant and g(U,V,N) is the total num-
ber of states. The term pdV describes the mechanical work that the system can do
by expanding, whereas the term−µdN describes the chemical work that the system
can do by expelling particles. The first law of thermodynamics implies that

∂S
∂U

∣∣∣∣
V,N

=
1
T

,
∂S
∂V

∣∣∣∣
U,N

=
p
T

,
∂S
∂N

∣∣∣∣
U,V

=−µ
T

, (4.6)

such that the entropy of the system S(U,V,N) is everything we need to know
for determining all relevant macroscopic variables. Instead of using the entropy
S(U,V,N), we can equally well use the internal energy U(S,V,N), for which we
have

dU = T dS− p dV + µdN, (4.7)

leading to

T =
∂U
∂S

∣∣∣∣
V,N

, p =
∂U
∂V

∣∣∣∣
S,N

, µ =
∂U
∂N

∣∣∣∣
S,V

. (4.8)

This last equation shows that the chemical potential is the energy needed to add a
particle to the system at fixed entropy and volume.

4.2.1 Spin Chain

To make the above concepts more concrete, we study the one-dimensional Ising
model, which is a spin chain with N + 1 spin-1/2 particles. For later convenience,
we take N to be even. Nearest neighboring spins interact through a coupling of
strength J, such that the Hamiltonian becomes
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Ĥ =−4J
h̄2

N

∑
j=1

Ŝz, j Ŝz, j+1, (4.9)

where Ŝz, j denotes the z component of the spin operator Ŝ at site j. Note that for
positive J, the absolute ground state is reached when all the spins are aligned, which
leads to ferromagnetic order. For negative J, the absolute ground state consists only
of anti-aligned spins, which leads to antiferromagnetic order.

Next, we introduce what are known as bond variables

V̂j =
1
h̄2 (Ŝz, j+1− Ŝz, j)2, (4.10)

which are zero for equal spins and one for opposite spins. The set {Ŝz,1, . . . , Ŝz,N+1}
is then equivalent to the set {Ŝz,1,V̂1, . . . ,V̂N}, since both sets can be used to char-
acterize all possible states of the spin chain. Using the latter set, the Hamiltonian
becomes

Ĥ =
N

∑
j=1

(2JV̂j− J) =−JN +2J
N

∑
j=1

V̂j, (4.11)

and the model of interacting spins has been transformed to a model of noninteracting
bonds, which allows for an exact solution. Note that since the Hamiltonian does not
depend on Ŝz,1, there is at least a two-fold degeneracy for each eigenvalue of the
Hamiltonian. To identify these eigenvalues, we call the number of times that V̂j is
equal to zero N/2− s, such that −N/2 ≤ s ≤ N/2 and E = 2Js. Calculating the
number of states that give rise to this energy, we find

g(s,N +1) = 2
N!

(N/2+ s)!(N/2− s)!
. (4.12)

Then, we can use Stirling’s formula

N! =
√

2πNNNe−N
(

1+
1

12N
+ . . .

)
(4.13)

and consider the case |s| ¿ N/2, such that

g(s,N +1)'
√

2
πN

2N+1 exp
(−2s2

N

)
, (4.14)

where we used (1− x/M)M ' e−x for large M. Also note that
∫ ∞
−∞ ds g(s,N + 1) =

2N+1, showing that our approximation still reproduces the exact number of states.
An important observation is that g(s,N + 1) is a very sharply-peaked function

of s/N with a spread of only O(1/
√

N). To illustrate this point we also allow for
fluctuations of the internal energy, due to for example heat exchange with another
large system, called a heat bath. In the next section we show that the application of
the fundamental assumption of statistical physics, which states that each microstate
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is equally probable, then leads to P(s) ∝ g(s,N +1)e−E(s)/kBT for the probability to
measure an energy E(s) of the spin chain. Considering now in particular such high
temperatures that the contact with the heat bath allows for essentially arbitrary large
energy fluctuations, then by far the most probable internal energy is given by s = 0.
However, we realize that this last physical statement is actually rather weakly de-
pendent on the fundamental assumption of statistical physics itself. This is because
nearly all other initial probability distributions for the microstates would also lead
to a very sharply-peaked distribution with a maximum at s = 0 after multiplication
with the number of states g(s,N + 1). The fact that the physical predictions of the
theory do not depend strongly on the fundamental assumption itself can be seen as
a physical argument to explain why this assumption is valid. It is also important to
realize that the very sharp behavior of the number of available states is not a specific
feature of the one-dimensional Ising model, but is in fact inherent to any system in
the thermodynamic limit, meaning that N → ∞. The crucial ingredient for the be-
havior is namely that the entropy is an extensive variable, which means that for large
N the entropy is proportional to N, i.e. S(U,V,N) = N S(U/N,V/N). As a result,
we find

g(U,V,N) = eN S(U/N,V/N)/kB , (4.15)

which for N → ∞ is indeed infinitely sharply peaked around the maximum of the
entropy with only O(1/

√
N) fluctuations in the intensive variables, such as for ex-

ample the density n = N/V .
If the total internal energy of our system is fixed, which is the case for an isolated

system, then thermodynamic equilibrium is reached when the system is at the max-
imum of its entropy. This is physically understood by noting that the maximum of
the entropy corresponds to the maximum number of microstates, such that a system
naturally tends to its most probable configuration. Describing a system at a fixed
internal energy leads to the microcanonical ensemble, which is therefore particu-
larly suitable for isolated systems. However, in practice, we are usually not dealing
with an isolated system at a fixed total internal energy, but rather with a system at
a fixed temperature in contact with its surroundings. Then, the system of interest
together with its surroundings can be considered isolated and the microcanonical
ensemble is applicable to the whole. The surroundings are usually called a heat bath
or a reservoir, because their only physical relevance is to keep the temperature of the
system of interest constant. Since the reservoir constantly exchanges heat, the inter-
nal energy of the system of interest fluctuates, such that it is not described by the
microcanonical ensemble. Next, we derive the properties of such a system, which
is said to be in the canonical ensemble. Another possibility we consider is that the
reservoir not only exchanges heat, but also particles with the system of interest.
Then, the chemical potential remains constant, whereas the number of particles in
the system of interest fluctuates. This results in the grand-canonical ensemble. It is
possible to show that in the thermodynamic limit the different ensembles become
essentially equivalent. In this limit, we can therefore conveniently choose the en-
semble that is most practical to work with, which is for our purposes usually the
grand-canonical ensemble.
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4.2.2 Canonical Ensemble

We define the (Helmholtz) free energy F(T,V,N) =U−T S for an isolated system as
the Legendre transform of U . From dF = dU−T dS−S dT , together with equation
(4.4), we obtain

dF =−S dT − p dV + µdN. (4.16)

Therefore, once we have obtained the Helmholtz free energy, the relevant thermo-
dynamics variables are found from

S =− ∂F
∂T

∣∣∣∣
V,N

, p =− ∂F
∂V

∣∣∣∣
T,N

, µ =
∂F
∂N

∣∣∣∣
T,V

. (4.17)

Next, we consider the total system to be split up into a system of interest and a
large heat bath or reservoir. The two subsystems are coupled to each other such
that the temperature of both remains constant. Then, the fundamental assumption of
statistical physics tells us that the probability for the system of interest to be in a
certain microstate ν with energy Uν is given by

P(ν) ∝ gR(U0−Uν) = eSR(U0−Uν )/kB , (4.18)

where U0 is the total energy of the reservoir plus the system of interest, which we
consider to be fixed, and where gR(U0 −Uν) is the number of microstates in the
reservoir with an energy U0−Uν . In the case of a large reservoir, U0 is much larger
than Uν , and we can expand the entropy of the reservoir SR as

SR(U0−Uν) = SR(U0)−Uν
dSR

dU0
+

1
2

U2
ν

d2SR

dU2
0

+ . . . , (4.19)

where the first term on the the right-hand side is of order NR, the second of order
N and the third of order N2/NR, which can be neglected if the number of particles
in the reservoir NR is much bigger than the number of particles N in the system of
interest. Using (4.18) and dSR/dU0 = 1/T , we find that P(ν) = e−Uν /kBT /Z, where
the normalization factor Z is determined by the condition that the total probability
equals 1. The normalization factor is also called the canonical partition function and
yields

Z = ∑
ν

e−βUν , (4.20)

where the sum is over all microstates of the system of interest and where we intro-
duced β = 1/kBT . For a large system of interest, we can replace the sum over states
by an integral over the internal energy U , which leads to

Z '
∫

dU g(U) e−βU =
∫

dU e−β (U−T S(U)) ' e−βF , (4.21)

where we defined F ≡ 〈U〉−T S(〈U〉) with 〈U〉 minimizing U −T S(U) and S(U)
the entropy corresponding to the system of interest. This definition generalizes the
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free energy to the canonical ensemble, in which the internal energy U is fluctuating.
It can be shown that the minimized variable F ≡ 〈U〉−T S(〈U〉) corresponds to a
maximized entropy for the entire system including reservoir. It is a general feature of
the canonical ensemble that thermodynamic equilibrium is reached by minimizing
the free energy. Furthermore, (4.21) shows that for large systems we have for the
free energy F = −kBT logZ, which we now also prove for any system size. Since
the average energy 〈U〉 of the system in the canonical ensemble equals

〈U〉 ≡ 1
Z ∑

ν
Uν e−βUν =− ∂

∂β
logZ, (4.22)

and since by definition we have that S = −∂F/∂T |V,N , the free energy obeys the
differential equation

F = 〈U〉+T
∂F
∂T

∣∣∣∣
V,N

. (4.23)

Therefore, we find for the average energy

〈U〉= F−T
∂F
∂T

∣∣∣∣
V,N

=
∂

∂β
(βF)

∣∣∣∣
V,N

. (4.24)

Together with equation (4.22), this shows that F =−kBT logZ + ckBT . In the limit
of zero temperature, Z will be dominated by the contribution corresponding to the
lowest energy U0, i.e. Z → g0e−βU0 , where g0 is the degeneracy of the ground state.
This means that F →−kBT (logg0 +c)+U0. But since−∂F/∂T = S→−kB logg0,
we must take c = 0. This proves the important claim that

F(T,V,N) =−kBT logZ(T,V,N) . (4.25)

As a result, the general procedure to tackle a problem in the canonical ensemble is
to calculate first the canonical partition function Z and from that the free energy F .
Using (4.17), we then obtain all the relevant thermodynamical variables.

4.2.3 Grand-Canonical Ensemble

The calculation of the canonical partition function is often inconveniently compli-
cated due to the fact that we need to sum over all microstates with a fixed number of
particles. Instead, it is typically much simpler to relax the constraint of a fixed par-
ticle number and consider a system at a fixed chemical potential. This corresponds
physically to a situation, where the system of interest is in contact with a reservoir
with which it can exchange both heat and particles. The relevant thermodynamic
variable in the grand-canonical ensemble is the thermodynamic potential Ω, which
is the Legendre transform of the free energy F generalized to the case when the total
particle number is fluctuating, that is
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Ω = F−µ〈N〉= 〈U〉−T S−µ〈N〉. (4.26)

This means that the thermodynamic potential is an explicit function of Ω(T,V,µ).
As a result, we have

dΩ =−S dT − p dV −〈N〉dµ, (4.27)

and once we know Ω(T,V,µ), we can calculate the thermodynamical equilibrium
properties of the system by

S =− ∂Ω
∂T

∣∣∣∣
V,µ

, p =− ∂Ω
∂V

∣∣∣∣
T,µ

, 〈N〉=− ∂Ω
∂ µ

∣∣∣∣
T,V

. (4.28)

Using similar arguments as in the derivation for the canonical ensemble, we can
show that the probability for the system of interest to be in a microstate ν with an
internal energy Uν and a number of particles Nν is given by

P(ν) =
1
Z

exp{−β (Uν −µNν)}, (4.29)

where we introduced the grand-canonical partition function

Z = ∑
ν

e−β (Uν−µNν ), (4.30)

where the sum is over all microstates of the system of interest. We now also expect
that as before

Ω(T,V,µ) =−kBT logZ(T,V,µ), (4.31)

where to show this, we first observe that

〈U〉−µ〈N〉 ≡ 1
Z ∑

ν
(Uν −µNν)e−β (Uν−µNν ) =− ∂

∂β
logZ . (4.32)

From (4.27) we know that S =−∂Ω/∂T |V,µ , and combining this with (4.26) yields

〈U〉−µ〈N〉= Ω−T
∂Ω
∂T

∣∣∣∣
V,µ

=
∂

∂β
(βΩ)

∣∣∣∣
V,µ

. (4.33)

We conclude that indeed Ω =−kBT logZ, where the integration constant can again
be shown to equal zero by taking the limit T → 0.

Furthermore, in the grand-canonical ensemble it is the minimum of the thermo-
dynamic potential that leads to thermodynamic equilibrium, since it corresponds to
the maximum of the entropy for the entire system including reservoir. Also note
that the thermodynamic potential is not a completely new thermodynamic quantity,
which we see as follows. Since the thermodynamic potential is extensive, meaning
Ω(T,λV,µ) = λΩ(T,V,µ), we have that Ω(T,V,µ) = V ω(T,µ). However, we also
know that
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p =− ∂Ω
∂V

∣∣∣∣
T,µ

=−ω(T,µ), (4.34)

showing that the thermodynamic potential is directly related to the pressure by

Ω(T,V,µ) =−p(T,µ)V. (4.35)

4.3 Ideal Gases

The methods described in the previous section can be used to calculate the ther-
modynamic properties of the ideal Bose and Fermi gases in the grand-canonical
ensemble. The ideal Bose (Fermi) gas consists of noninteracting identical bosons
(fermions), for which in the homogeneous case, i.e. in the absence of an external po-
tential, the single-particle Hamiltonian is simply given by Ĥ = p̂2/2m. We consider
spinless bosons or fermions in a box of volume L3, where we mean with spinless
that there is only one spin degree of freedom, which is then irrelevant for the Hamil-
tonian. We impose periodic boundary conditions, such that the allowed momenta
are given by pi = h̄ki = 2π h̄ni/L, where i denotes the Cartesian direction x, y, z, and
ni = 0,±1,±2, . . . ,∞, while the energy levels are given by εk = h̄2k2/2m. For a sys-
tem of N identical bosons or fermions, the state N of the system is uniquely specified
by giving the occupation numbers Nk of the single-particle states with wavenumber
k. We have

Nk =

{
0,1,2, . . . ,∞ Bosons
0,1 Fermions,

(4.36)

where due to the Pauli principle two identical fermions are forbidden to be in the
same momentum state.

To calculate the grand-canonical partition function we have to sum the grand-
canonical probability distribution over all microstates corresponding to a given num-
ber of particles, after which we also have to sum over all possible particle numbers.
This means,

Z =
∞

∑
N=0

∑
N

′ exp

{
−β

(
∑
k

εkNk−µN

)}

= ∑
N

eβ µN∑
N

′ exp

{
−β ∑

k
εkNk

}
= ∑

N
eβ µNZN , (4.37)

where ∑′ indicates that the sum is constrained to all sets of occupation numbers
that satisfy N = ∑k Nk. We see that for each value of N, we have to calculate the
canonical partition function ZN , which is very cumbersome due to the constraint
N = ∑k Nk. However, the double sum can also be performed by summing for each
momentum state |h̄k〉 over all possible values of the occupation numbers, i.e.
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Z = ∏
k

∑
Nk

exp{−β (εk−µ)Nk}= ∏
k

(
1∓ e−β (εk−µ)

)∓1
, (4.38)

where ∓ refers to bosons and fermions, respectively. The thermodynamic potential
is readily calculated from (4.31) and is given by

Ω =±kBT ∑
k

log
(

1∓ e−β (εk−µ)
)
. (4.39)

From the thermodynamic potential, we can calculate the average number of particles
using 〈N〉=−∂Ω/∂ µ from (4.28), which leads to the average occupation numbers
for the bosons NBE

〈N〉= ∑
k

1
exp{β (εk−µ)}−1

≡∑
k

NBE(εk) (4.40)

and for fermions NFD

〈N〉= ∑
k

1
exp{β (εk−µ)}+1

≡∑
k

NFD(εk), (4.41)

which are recognized as the famous Bose-Einstein and Fermi-Dirac distribution
functions respectively. In the case of a negative chemical potential and in the limit
β |µ |À 1, the above distributions converge to the classical Maxwell-Boltzmann dis-
tribution, given by

〈N〉= ∑
k

exp{−β (εk−µ)} ≡∑
k

NMB(εk). (4.42)

This last point is also illustrated by the phase diagram for the ideal gases, shown in
Fig. 4.2. Here, the three solid curves show for each distribution the chemical poten-
tial as a function of temperature for a fixed average number of particles 〈N〉. We see
that left of the straight line given by−µ = 1/β , that is when β |µ |> 1, the three dis-
tributions indeed converge to the Maxwell-Boltzmann distribution. However, right
of the straight line, they start to deviate significantly from each other. As a result, the
left regime can be called classical, whereas the right regime can be called quantum
mechanical, because here the difference in quantum statistics between bosons and
fermions becomes clearly noticable.

4.3.1 Ideal Maxwell-Boltzmann Gas

To find an explicit expression for the relation between the total number of particles
〈N〉, the chemical potential and the temperature for the homogeneous Maxwell-
Boltzmann gas, we have to perform the sum
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Fig. 4.2 The ‘phase diagram’ for the ideal gases. The solid lines show the behavior of the chem-
ical potential µ as a function of the temperature T for a fixed average particle number, when the
gas satisfies Bose-Einstein (BE), Fermi-Dirac (FD), or Maxwell-Boltzmann (MB) statistics. The
dashed lines show the same, but for a smaller number of particles. The diagonal line |µ|= kBT is
the location of the crossover between the classical and quantum regimes.

〈N〉= ∑
k

NMB(εk) = ∑
k

exp{−β (εk−µ)}, (4.43)

whose exact result can be expressed in terms of elliptic theta functions. However,
in practice it is often much more convenient to convert the sum over states into
an integral. Since the ideal gas in a large box with periodic boundary conditions
gives rise to quantized wavenumbers k according to ki = 2πni/L with i = x,y,z and
ni = 0,±1,±2, . . . ,∞, we have that each cube in k space with a volume 8π3/L3

contains precisely one quantum state, or, conversely, that the number of quantum
states in a volume dk = dkx dky dkz is on average equal to L3dk/8π3. This can
be used to convert a sum over momentum states into an integral, according to the
substitution

∑
k
→ L3

(2π)3

∫
dk, (4.44)

which is allowed if the thermal energy or the chemical potential is much larger than
the energy splittings between the quantum states. Note that it becomes exact in the
continuum limit L→ ∞. The above substitution is performed very often in practical
calculations.

As a result, we obtain

〈N〉= ∑
k

NMB(εk) =
V

2π2

∫ ∞

0
e−β (εk−µ)k2dk, (4.45)
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where in the last step we exploited the spherical symmetry of the integrand by using
spherical coordinates and performing the trivial angular integrals. We can rewrite
the integral in terms of energies ε by using the substitution ε = h̄2k2/2m, which
gives

〈N〉=
V

(2π)2

(
2m
h̄2

)3/2 ∫ ∞

0
e−β (ε−µ)√εdε. (4.46)

From the above expression, we find the density of states D(ε), which is defined
as the number of states in the interval [ε,ε + dε]. For the homogenous three-
dimensional ideal gas, we have

D(ε) =
V

(2π)2

(
2m
h̄2

)3/2√
ε, (4.47)

and we can write for the total number of atoms and the total energy

〈N〉=
∫ ∞

0
dε D(ε)NMB(ε) and 〈U〉=

∫ ∞

0
dε ε D(ε)NMB(ε). (4.48)

For the total number of particles, we find explicitly from (4.46) that

〈N〉 = V
(

m
2π h̄2β

)3/2

eβ µ . (4.49)

Solving the above equation for µ leads to

µ =
1
β

log(nΛ3),

where n = 〈N〉/V is the density of particles, and Λ = (2π h̄2/mkBT )1/2 is the thermal
de Broglie wavelength.

4.3.1.1 Inhomogeneous Maxwell-Boltzmann Gas

In a real experiment, an atomic gas is always subject to an external trapping po-
tential, resulting in an inhomogeneous gas. The trapping potential is typically well
approximated by a harmonic trapping potential, which leads to a different density of
states compared to the homogenous gas. For an isotropic harmonic oscillator with
frequency ω , i.e.

V ex(x) =
m
2

ω2x2, (4.50)

we have that the single-particle eigenenergies are given by εn = h̄ω(nx + ny + nz +
3/2) with ni = 0,1, ...,∞. As a result, we find
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Fig. 4.3 a) For a homogeneous gas, the number of states N (ε) with an energy less than ε is given
by the volume of the sphere in n space with radius (mL2ε/2h̄2π2)1/2, of which the first octant is
shown. The cubic lattice of dots represents the accessible single-particle quantum states b) For a
harmonically trapped gas, N (ε) is given by the volume of the shown pyramid in the first octant.
The density of states then follows from D(ε) = dN (ε)/dε .

〈N〉= ∑
n

NMB(εn) = ∑
n

exp{−β (εn−µ)}=
eβ (µ−3h̄ω/2)

(1− e−β h̄ω)3 , (4.51)

where we used ∑∞
n=0 e−αn = 1/(1−e−α). Again, we can also obtain the total number

of particles by converting the sum to an integral. First, we determine the number of
states N (ε) with an energy less than ε . If kBT is large compared to h̄ω , we may
treat n as a continuous variable. If we also take 3h̄ω/2 as our zero of energy, the
number of states N (ε) is simply given by the volume of the triangular pyramid in
n-space with the four edge points (0,0,0),(ε/h̄ω,0,0),(0,ε/h̄ω,0),(0,0,ε/h̄ω),
that is

N (ε) =
1
6

( ε
h̄ω

)3
, (4.52)

which is also illustrated in Fig. 4.3. The density of states is then by definition equal
to dN (ε)/dε , which yields

D(ε) =
1

2(h̄ω)3 ε2. (4.53)

We find for the total number of atoms that

〈N〉=
∫ ∞

0
dε

1
2(h̄ω)3 ε2e−β (ε−µ) = eβ µ

(
kBT
h̄ω

)3

, (4.54)

which is seen to equal the result of (4.51), when β h̄ω ¿ 1. Thus, we see that we
may convert the sums over states into continuous integrals when the temperature is
much larger than the energy spacing between states.
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4.3.1.2 Local-Density Approximation

A third way to conveniently deal with the inhomogeneous Maxwell-Boltzmann gas
is by applying the local-density approximation. The condition for this approxi-
mation is that the trapping potential varies slowly compared to the single-particle
wavefunctions, such that the trap looks locally flat. Then, we are allowed to con-
veniently use the homogeneous density of states locally in the trap. Another way
to formulate the above condition is that the thermal de Broglie wavelength of the
particles should be small compared to the harmonic oscillator length of the trap. We
are then allowed to simply absorb the trapping potential in the chemical potential
µ(r) = µ−V ex(r) = µ−mω2r2/2 and use locally the theory for the homogeneous
gas with the spatially varying chemical potential. With the use of (4.45), this leads
for the local density of particles to

n(r) =
1

2π2

∫
e−β (εk−µ(r))k2dk = e−βV ex(r)eβ µ

(
m

2πβ h̄2

)3/2

, (4.55)

using the result of (4.49). By integrating over space, we retrieve the total number of
particles in the trap

〈N〉=
∫

dr n(r) = eβ µ
(

m
2πβ h̄2

)3/2 ∫
dr r2e−βmω2r2/2 = eβ µ

(
kBT
h̄ω

)3

, (4.56)

showing that the local-density approximation gives exactly the same result as the
continuum approximation, leading to (4.54). A big advantage of the local-density
approximation is that we have also obtained an expression for the density profile,
the density of atoms as a function of position in the trap n(r), which is cumbersome
to calculate in a different way.

4.3.2 Ideal Bose Gas: Bose-Einstein Condensation

For the homogeneous ideal Bose gas, we have

〈N〉= ∑
k
〈Nk〉= ∑

k
NBE(εk) = ∑

k

1
exp{β (εk−µ)}−1

, (4.57)

with 〈Nk〉 the average number of particles in state |k〉, which should therefore be
larger or equal to zero. For the state with k = 0, this means

〈N0〉=
1

exp{−β µ}−1
≥ 0, (4.58)

from which we see that µ ≤ 0. Consider now an average number of particles 〈N〉,
that we keep fixed. Upon lowering the temperature, we see from (4.57) that we have
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to increase the chemical potential to keep the number of particles constant, which
can only be done until µ reaches zero. If we lower the temperature even further,
then we can only keep the particle number constant by macroscopically occupying
the ground state. As a result, we have for µ = 0

〈N〉= 〈N′〉+ 〈N0〉= ∑
k6=0

1
exp{βεk}−1

+ 〈N0〉, (4.59)

with 〈N′〉 the number of particles in the excited states. The transition temperature Tc
to a state with a macroscopic occupation of the ground state is given by the condition
that 〈N0〉 is still negligible compared to 〈N〉, which means that all the particles can
still be precisely accommodated in the excited states. This leads to the condition
〈N〉= 〈N′(µ = 0,Tc)〉. The macroscopic occupation of the single-particle state with
k = 0 is called Bose-Einstein condensation, which, as we will see later in the book,
gives rise to intriguing physical properties, such as for example superfluidity. Note
that the Bose statistics, in which there is no limitation on the number of particles in a
single quantum state, is crucial for the occurrence of the Bose-Einstein condensate.
Indeed, in an ideal Fermi gas there is no condensation.

To find an explicit expression for the critical temperature, we consider

〈N〉= 〈N′(µ = 0,Tc)〉= ∑
k6=0

NBE(εk) =
V

2π2

∫ ∞

0

k2dk
exp{εk/kBTc}−1

, (4.60)

which, as before, we can rewrite as

〈N〉= 〈N′(µ = 0,Tc)〉=
V

(2π)2

(
2m
h̄2

)3/2 ∫ ∞

0

√
ε dε

exp{ε/kBTc}−1
. (4.61)

The integral of (4.61) can be performed exactly and yields

〈N〉= 〈N′(µ = 0,Tc)〉= V ζ (3/2)
(

mkBTc

2π h̄2

)3/2

, (4.62)

where

ζ (α) =
∞

∑
x=1

1
xα (4.63)

is the Riemann zeta function and ζ (3/2)' 2.612. This equation can be inverted to
give the critical temperature as a function of the density n = 〈N〉/V

Tc =
2π h̄2

kBm

(
n

ζ (3/2)

)2/3

. (4.64)

If we lower the temperature T below Tc, then the number of excited atoms be-
comes smaller, according to
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〈N′(µ = 0,T )〉= V ζ (3/2)
(

mkBT
2π h̄2

)3/2

= 〈N〉(T/Tc)3/2. (4.65)

The rest of the atoms have to reside in the zero-momentum state and it follows that
the number of condensed atoms is given by

N0(T ) = 〈N〉−〈N′〉= 〈N〉
{

1−
(

T
Tc

)3/2
}

, (4.66)

for T ≤ Tc. The behavior of the chemical potential as a function of temperature for
the ideal Bose gas is given in Fig. 4.2.

4.3.2.1 Inhomogeneous Bose Gas

In a real experiment, the atomic Bose gas is trapped in an external trapping potential,
which is typically harmonic and changes the density of states. Using the density of
states obtained in (4.53), we find for the total number of atoms in the excited states
when µ = 0 that

〈N′〉=
∫ ∞

0
dε

1
2(h̄ω)3

ε2

eβε −1
= ζ (3)

(
kBT
h̄ω

)3

, (4.67)

where ζ (3) ' 1.212 Again, we have the critical condition for Bose-Einstein con-
densation 〈N〉= 〈N′(µ = 0,Tc)〉, from which we obtain the critical temperature

Tc =
h̄ω
kB

( 〈N〉
ζ (3)

)1/3

. (4.68)

Below Tc, the number of atoms in the ground state of the harmonic oscillator is given
by

〈N0(T )〉= 〈N〉−〈N′〉= 〈N〉
{

1−
(

T
Tc

)3
}

. (4.69)

The realization of Bose-Einstein condensation in a trapped dilute ultracold
atomic gas was first realized by the group of Wieman and Cornell [10], and later
by the groups of Hulet and Ketterle [11, 12] in 1995. For their achievements, Wie-
man, Cornell and Ketterle were awarded the Nobel prize in 2001. In Fig. 4.4, we see
the experimental data as obtained in the first BEC experiment [10], which shows the
velocity distribution of expanded clouds of ultracold rubidium atoms as a function
of temperature. Let us see if we can understand this data from our present knowl-
edge of the trapped ideal Bose gas. For N0 noninteracting bosons in the ground state
of a harmonic trap, the many-body wavefunction Ψ(x1, . . . ,xN0), is simply a product
of the single-particle states



4.3 Ideal Gases 75

400 nK

200 nK

50 nK

Fig. 4.4 Velocity distribution of rubidium-87 atom clouds at three different temperatures. The left
image corresponds to a temperature just above the condensation temperature, the center image
corresponds to a temperature at the onset of condensation and the right image shows a nearly pure
Bose-Einstein condensate. Image by Mike Matthews, JILA [10].

Ψ(x1, . . . ,xN0) = ∏
i

χ0(xi), (4.70)

where χ0(x) is the wavefunction for the harmonic oscillator ground state. If we
generalize our discussion to a general anisotropic harmonic potential V ex(x) =
m(ω2

x x2 + ω2
y y2 + ω2

z z2)/2, which is actually the case for the experiment of Fig.
4.4, then we have for the ground state

χ0(x) =
(

mω̄
π h̄

)3/4

exp
{
− m

2h̄
(ωxx2 +ωyy2 +ωzz2)

}
, (4.71)

with ω̄ = (ωxωyωz)1/3. The density distribution for the condensate is simply given
by

n0(x) = N0|χ0(x)|2, (4.72)

where we note that the spread in position for the above wavefunction is proportional
to the harmonic oscillator lengths li =

√
h̄/mωi with i = x,y,z and is therefore inde-

pendent of temperature. The same holds for the spread in the momenta, which can
be obtained from the Fourier transform of (4.71), giving

χ0(p) =
(

1
π h̄mω̄

)3/4

exp
{
− 1

2mh̄
(p2

x/ωx + p2
y/ωy + p2

z /ωz)
}

. (4.73)
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To obtain the density distribution of the excited atoms, we use the local-density
approximation with the local homogeneous density of states from (4.47), such that

〈N′(x)〉=
V

(2π)2

(
2m
h̄2β

)3/2 ∫ ∞

0

√
u du

eue−β µ(x)−1
, (4.74)

where we changed variables to u = βε . The above integral can be performed exactly
and yields

n′(x) =
〈N′(x)〉

V
=

(
m

2π h̄2β

)3/2

g3/2(e
β µ(x) =

g3/2(eβ µ(x))
Λ3 , (4.75)

where Λ is the thermal de Broglie wavelength and the polylogarithm gn(z) is defined
by

gn(z) =
∞

∑
x=1

zx

xn . (4.76)

For β |µ| À 1, the Bose distribution converges to the Maxwell-Boltzmann distri-
bution, such that (4.75) gives the local-density Maxwell-Boltzmann result n′(x) =
eβ µ(x)/Λ3. It is important to note that the spread in position for the excited particles

depends on temperature and is given by
√

kBT/mω2
i for i = x,y,z. In a similar way,

we can calculate the density of atoms in momentum space. By defining

〈N′〉 =
∫ dk

(2π)3

∫
dx

1
eβεke−β µ(x)−1

≡
∫

dp n′p (4.77)

with the use of p = h̄k, we have that

n′(p) =
1

(2π h̄)3

∫ dx dy dz
eβεpe−β µ(x)−1

=
1

(2π h̄)3

∫ dx′ dy′ dz′

eβ (εp−µ)eβV ex(x′)−1

=
1

2π2h̄3

∫ ∞

0

r2 dr
eβ (εp−µ)eβmω̄2r2/2−1

=
1√

2π2(βmω̄2)3/2h̄3

∫ ∞

0

√
u du

eβ (εp−µ)eu−1

=
1

(2πβmω̄2)3/2h̄3 g3/2(e
−β (εp−µ)), (4.78)

where in the first step we changed variables, for example x = ω̄x′/ωx, such that
V ex(x′) = mω̄x′2/2, which allows us to go to spherical coordinates. We also trans-
formed to the variable u = βmω̄2r2/2, which brings the integral to the form of
(4.74). For β |µ| À 1, the result of (4.78) converges to the Maxwell-Boltzmann dis-
tribution, which is given by n′(p) ∝ e−β (εp−µ). It is important to note that the spread
in momentum depends on temperature and is given by

√
kBT/m. The spread is thus

the same in each direction, that is isotropic, even though the trap is anisotropic.
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If we compare the spread in the momenta of the noncondensed particles with the
spread of the condensed particles, then we see that the ratio is given by

√
2kBT/h̄ωi,

which in a typical experiment is much larger than unity. This follows from (4.68)
and the fact that the number of atoms in the experiments obeys 〈N〉À 1. As a result,
the momentum distribution of the condensate is much narrower than that of the ther-
mal cloud. Furthermore, the spread of the condensate is anisotropic and independent
of temperature, whereas for the thermal cloud it is isotropic and increases with tem-
perature. Note that actually the Bose-Einstein condensate minimizes the spread in
position and velocity with the minimum set by the Heisenberg uncertainty principle
∆xi∆pi = h̄/2, which is the general behavior for coherent states. We can compare
these results with the experimental data for the velocity distributions above and be-
low Tc as shown in Fig. 4.4. We see indeed that the condensate is much narrower and
more anisotropic than the thermal cloud. However, the gas of rubidium atoms used
in the experiment was not truly noninteracting. In Chap. 11, we consider in more
detail Bose-Einstein condensation and take also interaction effects into account.

4.3.3 Ideal Fermi Gas

As mentioned before, for an ideal Fermi gas, we do not have Bose-Einstein conden-
sation due to the Pauli principle which does not allow for a macroscopic occupation
of a single quantum state. To determine the chemical potential for an ideal homoge-
neous Fermi gas as a function of temperature, we need to calculate

〈N〉=
∫ ∞

0
dε D(ε)NFD(ε), (4.79)

where we have that

NFD(ε) =
1

e(ε−µ)/kBT +1
. (4.80)

In the zero-temperature limit, the Fermi distribution becomes a step function and
the fermions fill up all states up to a certain energy, called the Fermi energy εF. For
an ideal Fermi gas, this Fermi energy is equal to the chemical potential µ at zero
temperature and it can be calculated analytically in terms of the density from

〈N〉=
∫ ∞

0
dε θ(µ− ε)D(ε) =

∫ εF

0
dε D(ε), (4.81)

with θ(x) = 1 for x > 0 and zero otherwise. Using the density of states for the
homogeneous ideal gas from (4.47), it follows that

n =
〈N〉
V

=
1

6π2

(
2mεF

h̄2

)3/2

, (4.82)
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or inversely

εF =
h̄2

2m
(6π2n)2/3, (4.83)

which we actually use as the definition for the Fermi energy in the case of a ho-
mogeneous spinless Fermi gas, also at nonzero temperatures. As a result, the Fermi
energy is always determined by the density of particles and we can use it to rewrite
the density of states as

D(ε) =
3
2
〈N〉
εF

√
ε
εF

. (4.84)

To treat the nonzero temperature case, where we look at temperatures kBT ¿ εF,
we start by a partial integration, which yields

〈N〉 =
∫ ∞

0
dε 〈N〉

(
ε
εF

)3/2 (
−∂NFD(ε)

∂ε

)
. (4.85)

The derivative of the Fermi distribution is given by

−∂NFD(ε)
∂ε

=− β
4cosh2(β (ε−µ)/2)

, (4.86)

which for low temperatures is a very sharply-peaked function around the chemical
potential. In the zero-temperature limit, it becomes the Dirac delta function. As a
result, the integral in the last equation can be performed by expanding the term
(ε/εF)3/2 around µ . Specifically, we have

(
ε
εF

)3/2

'
(

µ
εF

)3/2

+
3
2

(
µ
εF

)1/2 ε−µ
εF

+
3
8

(
εF

µ

)1/2 (ε−µ)2

ε2
F

+ . . . , (4.87)

where substitution of this result into (4.85) gives

〈N〉 = −〈N〉
(

µ
εF

)3/2 ∫ +∞

−∞
dε

∂NFD

∂ε
− 3〈N〉

2εF

(
µ
εF

)1/2 ∫ +∞

−∞
dε (ε−µ)

∂NFD

∂ε

−3〈N〉
8ε2

F

(
εF

µ

)1/2 ∫ +∞

−∞
dε (ε−µ)2 ∂NFD

∂ε
+ . . . . (4.88)

Here, we extended the range of the integrals to −∞, which is allowed, because
∂NFD(ε)/∂ε is exponentially suppressed in this regime. Performing the integrals,
we obtain the Sommerfeld expansion, namely

〈N〉= 〈N〉
(

µ
εF

)3/2

+ 〈N〉π2

8

(
εF

µ

)1/2 (
kBT
εF

)2

+ . . . , (4.89)
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Fig. 4.5 Axial density profile of trapped fermionic Lithium-6 atoms in a single hyperfine state
subject to an external magnetic field of B = 967 G. Also shown is the calculated axial density
profile nz(z) for an ideal Fermi gas at zero temperature using the local-density approximation.
Image by Wenhui Li and Randy Hulet, Rice University.

where we used that that the second term in (4.88) gives zero, because the inte-
grand is odd, while the third term can be evaluated using the standard integral∫

du u2/cosh2(u) = π2/6. We can now solve the above equation for µ , which leads
for kBT ¿ εF to

µ = εF

{
1− π2

12

(
kBT
εF

)2
}

, (4.90)

which means that for low temperatures the chemical potential decreases quadrati-
cally until it reaches the Fermi energy at zero temperature. This result is also shown
in the phase diagram of Fig. 4.2.

4.3.3.1 Inhomogeneous Fermi Gas

To study the inhomogeneous ideal Fermi gas, we determine the density profile at
zero temperature by applying the local-density approximation. Using the density of
states of the homogeneous gas with a spatially varying chemical potential µ(r) =
µ−V ext(r), we find

n(r) =
〈N(r)〉

V
=

1
(2π)2

(
2m
h̄2

)3/2 ∫ ∞

0
dε
√

ε θ(µ(r)− ε)

=
1

6π2

(
m
h̄2

)3/2

(2µ−mω2
ρ ρ2−mω2

z z2)3/2, (4.91)
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where we considered a cylindrically symmetric potential V ext(r) = (mω2
ρ ρ2 −

mω2
z z2)/2 with ρ = (x2 +y2)1/2 and where the above equation is valid for µ(r) > 0.

Determining the integrated density nz(z) along the z axis, we find

nz(z) =
∫ 2π

0
dϕ

∫ R′

0
ρ dρ

1
6π2

(
m
h̄2

)3/2

(2µ−mω2
ρ ρ2−mω2

z z2)3/2

=
1

15πmω2
ρ

(
m
h̄2

)3/2

(2µ−mω2
z z2)5/2, (4.92)

where the integration limit for ρ is given by R′ = {(2µ −mω2
z z2)/mω2

ρ}1/2. Note
that absorption measurements inevitably give rise to integrated density profiles. To
show the validity of the local-density approximation for typical experimental cir-
cumstances in ultracold atomic Fermi gases, we then compare (4.92) with an actual
absorption measurement that determines the axial density, which is shown in Fig.
4.5. The agreement is excellent.

The behavior of the ideal Bose gas and the ideal Fermi gas at low temperatures
could not be more different. Whereas the Bose gas undergoes a phase transition to
a Bose-Einstein condensate, the Fermi gas fills up all single-particle quantum states
one by one until it reaches the Fermi energy. As a result, the states that are occupied
in momentum space by the homogeneous Fermi gas form an incompressible sphere
for temperatures below the Fermi temperature TF ≡ εF/kB. This incompressibility
caused by the Pauli principle prevents for example white dwarfs and neutron stars
from gravitational collapse. Note that the Fermi temperature usually represents a
large energy scale in the system, because it is related to the total amount of parti-
cles. The striking difference between the Bose-Einstein and Fermi-Dirac statistics
has been beautifully visualized in an experiment that has simultaneously trapped
fermionic Lithium-6 and bosonic Lithium-7 gas clouds [33]. These isotopes are
chemically the same, because they differ only by a single neutron in the nucleus.
The results are shown in Fig. 4.6. At the initial temperature the two clouds are ap-
proximately the same size, but as the atom clouds are cooled down below the Fermi
temperature the Bose gas contracts, whereas the Fermi gas cannot do so due to the
pressure exerted by the exclusion principle. From (4.85), we see that the size of the

fermionic cloud is at low temperatures given by Ri =
√

2µ/mω2
i with i = ρ,z.

4.4 Density Matrix

Quantum mechanics is intrinsically probabilistic in the sense that preparing a system
in a fully specified state |ψ〉 does not allow for a certain prediction for the outcome
of an experiment measuring an observable Ô. However, if we perform many mea-
surements on exact copies of the same system, we can predict the average outcome
of the experiment by calculating the expectation value 〈ψ|Ô|ψ〉. Such a collection
of copies of one and the same quantum state is called a pure ensemble. However,
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Fig. 4.6 Absorption images of the first quantum degenerate mixture of bosons and fermions. The
images on the left are of bosonic 7Li atoms, while those on the right are of fermionic 6Li atoms,
taken at progressively lower temperatures. For each temperature, also the ratio with the correspond-
ing critical temperature for condensation Tc and the Fermi temperature TF is given. Although the
6Li and 7Li atoms are simultaneously trapped in the same volume, the images are separated for
clarity. The absorption is highest in the center of the clouds, where the atomic densities are largest.
Adapted from A. G. Truscott, K. E. Strecker, W. I. McAlexander, G. Partridge, and R. G. Hulet,
”Observation of Fermi Pressure in a Gas of Trapped Atoms”, Science 291, 2570 (2001). Reprinted
with permission from AAAS.

in statistical physics we typically do not know precisely in which microstate the
system is, but rather we know the probability for each microstate. A collection of
copies of various quantum states, each with a certain probability, is called a mixed
ensemble. Consider for example an unpolarized beam of spin-1/2 atoms, where half
of the atoms have their spin up and half of the atoms have their spin down. Note that
such a beam is not described by the state |ψ〉= | ↑〉/√2+ | ↓〉/√2, since this would
correspond to a beam of particles that are all in state |ψ〉 and therefore actually have
a polarization in the x direction.

To correctly describe the consequences of a mixed ensemble of states |ν〉, where
each state has a probability pν , we introduce the density matrix as

ρ̂ = ∑
ν
|ν〉pν〈ν |, (4.93)

where, since the total probability obeys ∑ν pν = 1, we have that

Tr[ρ̂] = 1. (4.94)

Note that the density matrix is by construction a semi-positive definite Hermitian
operator, which means that its diagonal form has eigenvalues larger than or equal to
zero. In the basis of the eigenstates |ν〉 of the density matrix, the matrix elements
are simply given by
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ρνν ′ = 〈ν |ρ̂|ν ′〉= pν δνν ′ . (4.95)

However, we may represent the density matrix in any other basis |µ〉 via

ρµµ ′ = 〈µ |ρ̂|µ ′〉= ∑
ν ,ν ′
〈µ |ν〉〈ν |ρ |ν ′〉〈ν ′|µ ′〉. = ∑

ν
〈µ|ν〉pν〈ν |µ ′〉. (4.96)

Example 4.1. We consider a spin-1/2 atom in the pure state

|ψ〉=
1√
2

(| ↑〉+ | ↓〉) . (4.97)

As a result, in the basis |1〉= (| ↑〉+ | ↓〉)/√2 and |2〉= (| ↑〉−| ↓〉)/√2, the density
matrix is given by

ρpure =
[

1 0
0 0

]
, (4.98)

which is the characteristic diagonal form of a pure state. In the basis | ↑〉 and | ↓〉,
the density matrix yields

ρpure =
1
2

[
1 1
1 1

]
. (4.99)

In contrast, for a mixture of states where half of the spins is | ↑〉 and half is | ↓〉, we
have in the basis | ↑〉 and | ↓〉

ρmixture =
1
2

[
1 0
0 1

]
, (4.100)

which then does not correspond to a pure state. Whether or not we are dealing with
a pure state can actually be most clearly distinguished by looking at the trace of ρ̂2,
which only equals one for a pure state.

The expectation value or ensemble average of an operator Ô can now be calcu-
lated by using the density matrix. We define the average of an operator Ô over the
mixed ensemble |ν〉 as

〈Ô〉 ≡∑
ν

pν〈ν |Ô|ν〉= ∑
ν ,ν ′
〈ν |ρ̂|ν ′〉〈ν ′|Ô|ν〉= Tr[ρ̂Ô], (4.101)

where the trace has the convenient property that for two square matrices A and B we
have Tr[AB] = Tr[BA]. As a result, Tr[AB] = Tr[S−1SAS−1SB] = Tr[SAS−1SBS−1],
and thus (4.101) also holds in any other basis representation. The time dependence
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of the density matrix follows from the Schrödinger equation for the states |ν(t)〉,
and is seen to obey

ih̄
dρ̂(t)

dt
= [Ĥ, ρ̂(t)]−, (4.102)

which looks similar to the Heisenberg equation of motion (3.38) although the above
relation is actually valid in the Schrödinger picture.

The density matrix that assigns the canonical probability to each energy eigen-
state of a Hamiltonian reads

ρ̂ =
e−β Ĥ

Z
, (4.103)

whereas the grand-canonical ensemble is described by

ρ̂ =
e−β (Ĥ−µN̂)

Z
. (4.104)

It is the last density matrix that we use mostly throughout the rest of this book.

4.5 Problems

Exercise 4.1. One-dimensional Ising Model
(a) Show with the use of (4.14) that as a function of temperature the average energy
〈U〉 of the one-dimensional Ising model equals

〈U〉=−N
J2

kBT
. (4.105)

Why is this answer only valid for kBT À J?
(b) Calculate the exact free energy F for the one-dimensional Ising model using the
transformation to noninteracting bonds that yields (4.11). Show that for kBT À J,
you obtain for the energy the result of (a).
(c) Consider the one-dimensional Ising model with periodic boundary conditions.
Write the partition function as

Z = ∑
{Sz,i}

〈Sz,1|T̂ |Sz,2〉〈Sz,2|T̂ |Sz,3〉 . . .〈Sz,N+1|T̂ |Sz,1〉, (4.106)

where Sz,i = ±h̄/2 and 〈Sz,i|T̂ |Sz, j〉 = e4JSz,iSz, j/h̄2kBT is the transfer matrix, whose
elements are the Boltzmann factors. Since we now have Z = Tr[T̂ N+1], we can
calculate Z if we know the eigenvalues of T̂ . Show that these eigenvalues are
eJ/kBT + e−J/kBT and eJ/kBT − e−J/kBT , respectively. Calculate the free energy and
take the limit N → ∞. Compare your results with (a) and (b).

Exercise 4.2. Show that in the grand-canonical ensemble we have that P(ν) =
e−β (Uν−µNν )/Z. To this end apply the same approach that was used to derive the
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probability distribution for the canonical ensemble. Note that in the present case
you should expand the entropy of the reservoir both with respect to the internal
energy and the number of particles.

Additional Reading

• C. Kittel and H. Kroemer, Statistical Mechanics, (W. H. Freeman and Company,
New York, 1980).

• K. S. Huang, Statistical Mechanics, (Wiley, New York, 1987).
• A review of Bose-Einstein condensation in trapped gases is given by F. Dalfovo

et al., Rev. Mod. Phys. 71, 463 (1999), and by
• A. J. Leggett, Rev. Mod. Phys. 73, 307 (2001)



Chapter 5
Path Integrals

It doesn’t matter how beautiful your theory is, it doesn’t matter
how smart you are. If it doesn’t agree with experiment, it’s
wrong.
– Richard Feynman.

In this chapter, we discuss the Feynman path-integral formulation of quantum me-
chanics. It is the generalization of the classical Lagrange and Hamilton formalisms
to quantum mechanics. In the path-integral approach, the central object that deter-
mines the dynamics of the system is called the action. We start by considering the
mathematical properties of an action, which is a functional, where we focus ini-
tially on functional differentiation. This allows us to determine the minimum of an
action, which, according to the principle of least action, determines the classical
motion. Having become familiar with actions, we go through the derivation of the
path-integral expression for the quantum-mechanical transition amplitude using the
time-slicing procedure. The same procedure returns in Chap. 7, when we derive the
functional-integral formalism for quantum field theory. Having obtained the path
integral, we discuss various ways of solving it and apply these methods to the free
particle and to a particle in a potential. We also derive the path-integral expressions
for matrix elements of operators and expectation values, where we see that the path-
integral formalism gives rise to time-ordered expectation values. All these important
concepts return many times in parts II and III of the book, when we use the gener-
alization of the path-integral formalism to quantum field theory in the treatment of
interacting quantum gases.

5.1 Functionals and Functional Derivatives

To fully appreciate the principle of least action, we need to carefully understand
what an action actually is. Mathematically, the action is a functional, which is an
object that assigns a number to a function f (x). To illustrate this concept, we con-
sider two simple, but important examples.

Example 5.1. A simple example of a functional is given by F [ f ] =
∫ b

a dx f (x). In this
case, the functional assigns to any function the value of the integral of that function

85
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between a and b, assuming that the integral exists. So, if f (x) = 1 and g(x) = x, we
have for this example that F [ f ] = (b−a) and F [g] = (b2−a2)/2.

Another important example is given by the functional

δx[ f ] = f (x), (5.1)

which returns the value of the function at point x and defines the Dirac delta-function
δ (x). We have

δx[ f ] =
∫

dx′ δ (x′− x) f (x′) = f (x), (5.2)

whereas the derivative of the Dirac delta-function follows from

δ ′x[ f ] =
∫

dx′ f (x′)
d

dx′
δ (x′− x) =− d

dx
f (x), (5.3)

where we used partial integration.

To determine the least action, we need to be able to differentiate a functional. It
is thus a natural question to ask what the change in F [ f ] is as we vary f (x). That is,
we want to know the value F [ f + δ f ]−F [ f ], where δ f (x) is a small perturbation
to the function f (x). First, we note that the differential of an ordinary multivariate
function h(u1, . . . ,un) is given by dh = ∑i(∂h/∂ui)dui. Since we may interpret the
functional F [ f ] as a infinitely multivariate function, where the value of f at each
point x can be considered as an independent variable for the functional F , the natural
generalization of ordinary differentiation to the functional derivative δF [ f ]/δ f (x)
is given by

F [ f +δ f ]−F [ f ] =
∫

dx′
δF [ f ]
δ f (x′)

δ f (x′). (5.4)

The functional derivative can be expressed as the derivative in the direction of the
Dirac delta-function, i.e.

δF [ f ]
δ f (x)

= lim
ε→0

F [ f (x′)+ εδ (x′− x)]−F [ f (x′)]
ε

, (5.5)

which immediately follows from (5.4) by taking εδ (x′− x) as a perturbation. If we
have a functional of the form F [ f ] = ( f (x′))n, then the application of (5.5) is seen
to yield

δ ( f (x′))n

δ f (x)
= lim

ε→0

( f (x′)+ εδ (x′− x))n− ( f (x′))n

ε
= n( f (x′))n−1δ (x′− x), (5.6)

which shows that the functional derivative obeys similar rules as ordinary differen-
tiation.
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Example 5.2. The functional derivative of the functional F [ f ] =
∫ b

a dx′ f (x′) is given
by

δF [ f ]
δ f (x)

=
∫ b

a
dx′ δ (x′− x) =

{
1 if a < x < b
0 if x < a or x > b,

(5.7)

or, more generally, the functional derivative of the functional F [ f ] =
∫

dx′ ( f (x′))n

is given by

δF [ f ]
δ f (x)

= lim
ε→0

∫
dx′

( f (x′)+ εδ (x′− x))n− ( f (x′))n

ε
=

∫
dx′n( f (x′))n−1δ (x′− x)

= n( f (x))n−1. (5.8)

5.2 Principle of Least Action

In classical mechanics, the trajectory of a particle between two space-time points
(xi, ti) and (xf, tf) is very elegantly determined by the principle of least action. This
principle states that the classical trajectory xcl(t) of the particle minimizes the func-
tional S[x], which is known as the action and given by

S[x] =
∫ tf

ti
dt L(x(t),dx(t)/dt, t), (5.9)

where L(x(t),dx(t)/dt, t) is the Lagrangian for the system. For a particle with mass
m and moving in a potential V (x, t), the Lagrangian is given by

L(x(t),dx(t)/dt, t) =
1
2

m
(

dx(t)
dt

)2

−V (x(t), t), (5.10)

which is the kinetic energy minus the potential energy. The classical trajectory xcl(t)
is determined by minimizing the action, where the end points remain fixed. Since
xcl(t) is an extremum of the action S[x], we must have for the functional derivative
of the action that

δS[x]
δx(t)

∣∣∣∣
x=xcl

= 0. (5.11)

With the use of (5.8), we find that this implies for the classical path

δS[x]
δx(t)

=
∫ tf

ti
dt ′

{
∂L
∂x

δ (t ′− t)+
∂L

∂ (dx/dt ′)
d

dt ′
δ (t ′− t)

}
= 0. (5.12)
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Performing the integration, we arrive at

∂L(x(t),dx(t)/dt, t)
∂x(t)

=
d
dt

∂L(x(t),dx(t)/dt, t)
∂ (dx(t)/dt)

, (5.13)

which can be solved using the additional condition that the end points are fixed,
i.e. x(ti) = xi and x(tf) = xf. The above equation is known as the Euler-Lagrange
equation. Upon substitution of (5.10), we find Newton’s equation

m
d2x(t)

dt2 =−∂V (x(t), t)
∂x(t)

. (5.14)

Example 5.3. For a free particle, we have

L =
1
2

m
(

dx(t)
dt

)2

, (5.15)

such that the Euler-Lagrange equation leads to md2x(t)/dt2 = 0. Therefore, the
classical path for a free particle satisfying the boundary conditions xcl(ti) = xi and
xcl(tf) = xf, is given by

xcl(t) = xi +(xf−xi)
t− ti
tf− ti

. (5.16)

As a result, we obtain for the extremal classical action in this case

S[xcl] =
∫ tf

ti
dtL(xcl(t),dxcl(t)/dt) =

1
2

m
(xf−xi)

2

tf− ti
. (5.17)

Example 5.4. For a particle in a harmonic potential, we have

L =
1
2

m
(

dx(t)
dt

)2

− 1
2

mω2x2(t) (5.18)

and the Euler-Lagrange equation leads to d2x(t)/dt2 = −ω2x(t). Therefore, the
classical path for a particle in a harmonic potential satisfying the boundary con-
ditions xcl(ti) = xi and xcl(tf) = xf, is given by

xcl(t) =
xf sin(ω(t− ti))−xi sin(ω(t− tf))

sin(ω(tf− ti))
. (5.19)

As a result, we obtain for the classical action of the harmonic oscillator
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S[xcl] =
∫ tf

ti
dtL(xcl(t),dxcl(t)/dt)

=
mω

2sin(ω(tf− ti))
{
(x2

i +x2
f )cos(ω(tf− ti))−2xi ·xf

}
. (5.20)

5.3 Phase-Space Representation

In the previous section, we formulated the principle of least action in terms of the
Lagrangian L(x(t),dx(t)/dt, t). However, in some situations we are more interested
in the Hamiltonian, which is an explicit function of the coordinate x(t) and the
momentum p(t). The Hamiltonian determines the total energy of the system. A good
example is classical statistical mechanics, where we want to determine the canonical
partition function, which is an integral of the Boltzmann weights e−βH(p,x) over
the total phase space. Thus, we would also like to formulate the principle of least
action in terms of the Hamiltonian, which is related to the Lagrangian by means of
a Legendre transformation

H(p(t),x(t), t) = p(t) · dx(t)
dt

−L(x(t),dx(t)/dt, t). (5.21)

The velocity dx(t)/dt must be eliminated in favor of the momentum via

p(t) =
∂L(x(t),dx(t)/dt, t)

∂ (dx(t)/dt)
, (5.22)

such that action is given by the functional

S[p,x] =
∫ tf

ti
dt

{
p(t) · dx(t)

dt
−H(p(t),x(t), t)

}
. (5.23)

The variation of the action has to vanish for the classical path xcl(t) and pcl(t), lead-
ing to the Hamilton equations of motion by demanding that the functional deriva-
tives with respect to position and momentum are zero, giving

dp(t)
dt

=−∂H(p(t),x(t), t)
∂x(t)

and
dx(t)

dt
=

∂H(p(t),x(t), t)
∂p(t)

. (5.24)

Example 5.5. Performing the Legendre transformation in (5.21) for the Lagrangian
in (5.10), we find that

H(p(t),x(t)) =
p2(t)
2m

+V (x(t), t), (5.25)
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where from the Hamilton equations of motion, we find again Newton’s equations in
the form

m
dx(t)

dt
= p(t) and

dp(t)
dt

=−∂V (x(t), t)
∂x(t)

. (5.26)

5.4 The Feynman Path Integral

To generalize the above concepts to quantum mechanics, we wish to calculate the
quantum-mechanical transition amplitude for a particle that is initially prepared at
ti with position xi to be found at a later time tf at xf, given by

W (xf, tf;xi, ti)≡ 〈xf, tf|xi, ti〉 ≡ 〈xf|e−iĤ(tf−ti)/h̄|xi〉. (5.27)

To calculate this matrix element, we proceed by dividing the finite time interval
tf− ti into M intervals by defining ∆t = (tf− ti)/M, where the intermediate times are
denoted by t j = ti + j∆t. In particular, this means that t0 = ti and tM = tf. By insert-
ing at every intermediate time a completeness relation, we find that the transition
amplitude from (5.27) can be written as

W (xf, tf;xi, ti) =
∫ (

M−1

∏
j=1

dx j

)
〈xM, tM|xM−1, tM−1〉

×〈xM−1, tM−1|xM−2, tM−2〉 . . .〈x1, t1|x0, t0〉

=
∫ (

M−1

∏
j=1

dx j

)
M

∏
j=1
〈x j, t j|x j−1, t j−1〉. (5.28)

The interpretation of (5.28) is that quantum mechanically not just one, but many
paths contribute to the transition amplitude, and that we have to sum over all of
them. To illustrate this point, Fig. 5.1 shows several possible paths between the
initial and final point. The Hamiltonian we consider here is a function of momentum
and position Ĥ = Ĥ(p̂, x̂), and is given by the sum of kinetic and potential energy,

Ĥ =
p̂2

2m
+V (x̂), (5.29)

which leads to

〈p|Ĥ|x〉=
{

p2

2m
+V (x)

}
〈p|x〉 ≡ H(p,x)〈p|x〉. (5.30)

Note that the crucial ingredient for obtaining (5.30) is that the Hamiltonian is normal
ordered, which means that all the momentum operators are positioned to the left of
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x

x

t tf

f

i

t ti12

Fig. 5.1 Possible paths that contribute to the transition amplitude in the t vs. x plane.

the position operators. Upon taking the limit M → ∞, the time interval ∆t becomes
infinitesimally small. The matrix element 〈x jt j|x j−1t j−1〉 can then be evaluated by
expanding the time-evolution operator to first order in ∆t and neglecting all terms
that are of order (∆t)2 or higher. This is acceptable because it only leads to errors in
the total transition amplitude that are of order M∆t2 = (tf− ti)2/M, which vanish in
the limit M → ∞. Thus, we have

〈x j, t j|x j−1, t j−1〉 =
∫

dp j〈x j|p j〉〈p j|e−iĤ∆t/h̄|x j−1〉

'
∫

dp j〈x j|p j〉〈p j|
(
1− iĤ∆t/h̄

) |x j−1〉, (5.31)

which, after using (5.30) and writing the expansion as an exponential again, be-
comes

〈x j, t j|x j−1, t j−1〉=
∫ dp j

(2π h̄)d eip j ·(x j−x j−1)/h̄−i∆tH(p j ,x j−1)/h̄, (5.32)

where we used 〈x|p〉 = eip·x/h̄/(2π h̄)d/2 with d the number of spatial dimensions.
Note that the re-exponentiation also leads only to errors of order (∆t)2 and is there-
fore allowed. If we substitute this result into (5.28), we obtain for the transition
amplitude

W (xf, tf;xi, ti) =
∫ (

M−1

∏
j=1

dx j

)(
M

∏
j=1

dp j

(2π h̄)d

)
(5.33)

×exp

{
i
h̄

M

∑
i=1

∆t
(

pi · (xi−xi−1)
∆t

−H(pi,xi−1)
)}

.

In the limit M → ∞, the first term in the argument of the above exponent becomes a
derivative and the infinite sum becomes an integral. Then, we can write the transition
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amplitude as

W (xf, tf;xi, ti) (5.34)

=
∫

d[p]
∫ x(tf)=xf

x(ti)=xi

d[x]exp
{

i
h̄

∫ tf

ti
dt

(
p(t) · dx(t)

dt
−H(p(t),x(t))

)}
,

where we have introduced the integration measures

∫
d[p]

∫ x(tf)=xf

x(ti)=xi

d[x]≡ lim
M→∞

∫ (
M−1

∏
j=1

dx j

)(
M

∏
j=1

dp j

(2π h̄)d

)
. (5.35)

In the case of a particle in a potential Ĥ = p̂2/2m +V (x̂), the Gaussian integral
over momenta can be done exactly. Using the result of (2.17), we have that

∫ dpi

(2π h̄)d exp
{

i
h̄

∆t
(

pi · (xi−xi−1)
∆t

− p2
i

2m

)}

=
(√

m
2π h̄i∆t

)d

exp
(

im
2h̄∆t

(xi−xi−1)2
)

, (5.36)

which, after insertion in (5.34), leads to the following integral over the coordinates

W (xf, tf;xi, ti) =
(√

m
2π h̄i∆t

)d

lim
M→∞

∫ (
M−1

∏
j=1

dx j

(√
m

2π h̄i∆t

)d
)

×exp

{
i
h̄

M

∑
i=1

∆t
( m

2∆t2 (xi−xi−1)2−V (xi−1)
)}

. (5.37)

Example 5.6. In the case of a free particle, the remaining integrals over the positions
xi are also Gaussian, such that they can be performed exactly. We first determine

∫
dxi exp

{
im

2h̄∆t
(xi+1−xi)2

}
exp

{
im

2h̄∆t
(xi−xi−1)2

}

= exp
{

im
2h̄∆t

(x2
i+1 +x2

i−1)
}∫

dxi exp
{

im
h̄∆t

x2
i − i

m
h̄∆t

xi · (xi+1 +xi−1)
}

,

=

(√
iπ h̄∆t

m

)d

exp
{

im
4h̄∆t

(xi+1−xi−1)2
}

, (5.38)

where we again used (2.17). Substituting the result into (5.37), we finally obtain

〈xf, tf|xi, ti〉=
(√

m
2πih̄(tf− ti)

)d

exp
{

i
h̄

m
2

(xf−xi)2

tf− ti

}
. (5.39)
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5.4.1 Continuum Limit and Fluctuation Expansion

In practice, it is not convenient to solve path integrals by going through the whole
discretization procedure each time. Instead, we usually perform the integrals directly
using continuum expressions. We have from (5.34) that

W (xf, tf;xi, ti) (5.40)

=
∫ x(tf)=xf

x(ti)=xi

d[x]
∫

d[p]exp
{

i
h̄

∫ tf

ti
dt

(
p(t) · dx(t)

dt
− p(t)2

2m
−V (x(t))

)}
,

which is quadratic in momenta. In general, a convenient way to solve Gaussian
integrals is by expanding the quadratic function f (x) = G−1x2/2 + Jx around its
maximum x0 =−GJ, giving

∫
dx e f (x) =

∫
dx exp

{
f (x0)+

d2 f (x)
dx2

∣∣∣∣
x=x0

(x− x0)2

}

= e f (x0)√−2πG = e−GJ2/2√−2πG, (5.41)

which is valid, because the expansion up to second order is exact for a quadratic
function and the linear term in x− x0 is zero, if x0 is the maximum of f (x). The
approach is particularly convenient if we are only interested in the behavior of the
integral as a function of J, because all the dependence on J is contained in f (x0),
which is obtained without even performing an integral. The rest of the expression
is then merely a numerical prefactor independent of J. The above approach can be
generalized to Gaussian functionals F [p], giving

∫
d[p] eF [p] = eF [pcl]

∫
d[π] exp

{∫
dt

∫
dt ′

δ 2F [p]
δ p(t)δ p(t ′)

∣∣∣∣
p=pcl

π(t)π(t ′)

}

= eF [pcl]N , (5.42)

where we introduced the momentum fluctuations π(t) = p(t)− pcl(t) and N is
a short-hand notation for the outcome of the functional integral on the right-hand
side. If we apply this procedure to the momentum integral of (5.40), we find for the
extremum of the functional in the exponent pcl(t) = mdx(t)/dt, leading to

W (xf, tf;xi, ti) =

N
∫ x(tf)=xf

x(ti)=xi

d[x]exp

{
i
h̄

∫ tf

ti
dt

(
1
2

m
(

dx(t)
dt

)2

−V (x(t))

)}
, (5.43)

where the undetermined numerical prefactor N is independent of x(t). This last re-
sult illustrates the power of the fluctuation expansion and the direct use of continuum
expressions, because we have obtained in one simple step the correct dependence
of the path integral on x(t), leaving only a normalization factor undetermined. This
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normalization factor is often physically irrelevant or even drops out of calculations
completely, as is for example the case for statistical expectation values seen in Sect.
5.7. Thus, we find that the transition amplitude is given by

W (xf, tf;xi, ti) = N
∫ x(tf)=xf

x(ti)=xi

d[x]exp
{

i
h̄

∫ tf

ti
dt L(x(t),dx(t)/dt)

}

= N
∫ x(tf)=xf

x(ti)=xi

d[x]exp
{

i
h̄

S[x]
}

, (5.44)

where comparison with (5.37) reveals that the correct normalization factor in the
discretized case is actually given by N = (m/2πih̄∆t)dM/2.

Example 5.7. In the case of a free particle, we can further evaluate (5.44). We start
by doing another fluctuation expansion, x(t) = xcl(t)+ξξξ (t), where the classical path
xcl(t) minimizes the action. The fluctuation ξξξ (t) is the deviation from the classical
path and satisfies the boundary conditions ξξξ (tf) = ξξξ (ti) = 0. Hence, we find that the
path integral in (5.44) can be written as

W (xf, tf;xi, ti) = exp
{

i
h̄

S[xcl]
}

N
∫ ξξξ (tf)=0

ξξξ (ti)=0
d[ξξξ ]exp

{
i
h̄

∫ tf

ti
dt

1
2

m
(

dξξξ (t)
dt

)2
}

≡ exp
{

i
h̄

S[xcl]
}

f (tf, ti), (5.45)

where the linear terms in the fluctuations are zero by construction. Since the path
integral on the right-hand side does not depend on the classical path, and in partic-
ular not on the initial and final positions, the fluctuation factor f (tf, ti) only depends
on the initial and final time. Actually, because the Lagrangian does not depend ex-
plicitly on time, the function f (tf, ti) only depends on the difference tf− ti, and we
have

f (tf− ti) = W (0, tf;0, ti) = 〈0|U(tf, ti)|0〉= 〈0|e−iĤ(tf−ti)/h̄|0〉, (5.46)

where the corresponding Hamiltonian for the free particle only depends on momen-
tum. By inserting a full set of eigenstates of the Hamiltonian, we find that

〈0|U(tf, ti)|0〉 =
∫ dp

(2π h̄)d exp
{
− i

h̄
p2

2m
(tf− ti)

}

=
(√

m
2πih̄(tf− ti)

)d

, (5.47)

so that (5.45) indeed agrees with the transition amplitude obtained in (5.39).
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5.4.2 Gel’fand-Yaglom Method

In the previous section, we introduced the fluctuation expansion to calculate the tran-
sition amplitude for a free particle. In this section, we elaborate on this expansion
and introduce a technique that also allows for an exact solution of the harmonic po-
tential. We consider a system described by the action S[x] =

∫
dt L(x(t),dx(t)/dt),

where the potential V (x) entering the Lagrangian only depends on the position x.
The classical path that follows from solving the Euler-Lagrange equations (5.13) we
denote by xcl(t). A general path x(t) can always be written as x(t) = xcl(t)+ ξξξ (t),
where ξξξ (t) gives the deviation from the classical path and satisfies the boundary
conditions ξξξ (tf) = ξξξ (ti) = 0. Inserting the fluctuation expansion in the action, gives

S[x] = S[xcl +ξξξ ] =
∫ tf

ti
dt

{
1
2

m
(

dxcl(t)
dt

+
dξξξ (t)

dt

)2

−V (xcl(t)+ξξξ (t))

}

=
∫ tf

ti
dt

{
1
2

m
(

dxcl(t)
dt

)2

+m
dxcl(t)

dt
· dξξξ (t)

dt

+
1
2

m
(

dξξξ (t)
dt

)2

−V (xcl(t)+ξξξ (t))

}
. (5.48)

The second term on the right-hand side of the above equation can be rewritten as

∫ tf

ti
dt m

dxcl(t)
dt

· dξξξ (t)
dt

=
∫ tf

ti
dt

{
m

d
dt

(
dxcl(t)

dt
·ξξξ (t)

)
−m

d2xcl(t)
dt2 ·ξξξ (t)

}

= m
dxcl(t)

dt
·ξξξ (t)

∣∣∣∣
tf

ti

−
∫ tf

ti
dt m

d2xcl(t)
dt2 ·ξξξ (t), (5.49)

where the first term vanishes because of the boundary conditions for the fluctuations
ξξξ (t). The second term can be rewritten using the fact that the classical path satisfies
the Euler-Lagrange equations, giving

m
d2xcl(t)

dt2 =− dV (x)
dx

∣∣∣∣
x=xcl

. (5.50)

As we show now explicitly, this term is actually cancelled by the first-order term
in the series expansion of the potential around the classical solution. Note that this
cancellation of the first-order terms in the fluctuations is required, because the clas-
sical path is by definition the minimum of the action. Explicitly, expanding the in-
teraction up to second order in the fluctuations, we have
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V (xcl(t)+ξξξ (t)) = V (xcl(t))+
dV (x)

dx

∣∣∣∣
x=xcl

·ξξξ (t)

+
1
2

d2V (x)
dx dx

∣∣∣∣
x=xcl

: ξξξ (t)ξξξ (t)+ . . . , (5.51)

where the colon : defines the contraction of the tensor d2V (x)/dx dx with the tensor
ξξξ ξξξ , i.e.

1
2

d2V (x)
dx dx

∣∣∣∣
x=xcl

: ξξξ (t)ξξξ (t)≡ ∑
i, j

d2V (x)
dxi dx j

ξξξ j(t)ξξξ i(t)

∣∣∣∣∣
x=xcl

, (5.52)

where the summations are over all spatial directions. Note that the expansion of
(5.51) is exact for the harmonic potential. Combining all of the above, we find that
the total action can be written as the sum of the classical action and terms that are
quadratic in the fluctuations

S[ξξξ ] = S[xcl]+
1
2

∫ tf

ti
dt

{
m

(
dξξξ (t)

dt

)2

− d2V (x)
dx dx

∣∣∣∣
x=xcl

: ξξξ (t)ξξξ (t)+ . . .

}

= S[xcl]+
1
2

∫ tf

ti
dt

∫ tf

ti
dt ′

δ 2S[x]
δx(t) δx(t ′)

∣∣∣∣
x=xcl

: ξξξ (t)ξξξ (t ′)+ . . . , (5.53)

where the terms linear in the fluctuations ξξξ have indeed vanished.
We proceed by considering a potential for which the second-order term of the

expansion in (5.51) gives rise to an harmonic oscillator frequency ω(t) that is the
same in each of the d dimensions, that is

mω2(t)≡ d2V (x)
dx2

∣∣∣∣
x=xcl

. (5.54)

We note that the second term on the right-hand side of (5.53) does not depend on the
classical path xcl and in particular not on the initial and final position. As a result,
the transition amplitude can be written as a product of the classical amplitude and a
fluctuation factor f (tf, ti), i.e.

W (xf, tf;xi, ti) = exp
{

i
h̄

S[xcl]
}

×N
∫ ξξξ (tf)=0

ξξξ (ti)=0
d[ξξξ ]exp

{
im
2h̄

∫ tf

ti
dt

((
dξξξ (t)

dt

)2

−ω2(t)ξξξ 2(t)

)}

= exp
{

i
h̄

S[xcl]
}

f (tf, ti). (5.55)

We use the exact discretized-time expression of (5.37) for the fluctuation factor, i.e.



5.4 The Feynman Path Integral 97

f (tf, ti) = W (0, tf;0, ti) =
(√

m
2π h̄i∆t

)d

lim
M→∞

∫ (
M−1

∏
j=1

dξξξ j

(√
m

2π h̄i∆t

)d
)

×exp

{
im∆t
2h̄

M

∑
i=1

((
ξξξ i−ξξξ i−1

∆t

)2

−ω2
i ξξξ 2

i

)}
, (5.56)

where we also used ξξξ 0 = ξξξ M = 0.
The fluctuation factor can be further evaluated by making use of the method

developed by Gel’fand and Yaglom [34]. We can immediately perform the Gaussian
integrals over ξξξ . Doing so, we find

f (tf, ti) = lim
M→∞

(√
m

2π h̄i∆t
1√

Det[AM−1(ω)]

)d

, (5.57)

where the matrix AM−1(ω) is given by

AM−1(ω) =




2− (∆t)2ω2
M−1 −1 0 0

−1 2− (∆t)2ω2
M−2 −1 0

0 −1 2− (∆t)2ω2
M−3 −1

0 0 −1
. . .


 . (5.58)

To calculate the determinant in the above expression, we introduce

ΨN = ∆t Det[AN(ω)], (5.59)

where AN(ω) is defined as the N ×N matrix forming the lower right corner of
AM−1(ω). The functions ΨN and ΨN−1 are related, as can be made explicitly clear
by working out the determinants. We have that

Det[AN ] = (2− (∆t)2ω2
N)Det[AN−1]−Det[AN−2], (5.60)

which implies

ΨN −2ΨN−1 +ΨN−2

(∆t)2 = ω2
NΨN−1, (5.61)

valid for N > 2. The initial conditions are

A1 = 2− (∆t)2ω2
1

A2 = (2− (∆t)2ω2
1 )(2− (∆t)2ω2

2 )−1, (5.62)

which means that

Ψ1 = 2∆t− (∆t)3ω2
1 and

Ψ2−Ψ1

∆t
= 1+ . . . . (5.63)
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In the continuum limit M →∞, (5.61) results in a second-order differential equation
for ΨN ,

d2Ψ(t)
dt2 =−ω2(t)Ψ(t) (5.64)

with initial conditions

Ψ(ti) = lim
∆t→0

Ψ1 = 0 (5.65)

and

dΨ(t)
dt

∣∣∣∣
t=ti

= lim
∆t→0

Ψ2−Ψ1

∆t
= 1 . (5.66)

Given the solution Ψ(t), the fluctuation determinant of interest to us becomes

f (tf, ti) =
(√

m
2πih̄Ψ(tf)

)d

. (5.67)

Example 5.8. As a first application, we again consider the free particle. In this case,
the differential equation in (5.64) becomes

d2Ψ(t)
dt2 = 0. (5.68)

The solution to this equation that satisfies the boundary conditions in (5.65) and
(5.66) is given by

Ψ(t) = t− ti. (5.69)

From this we see that

f (tf, ti) =
(√

m
2πih̄(tf− ti)

)d

, (5.70)

which is in agreement with (5.39).
As a second example, we calculate the transition amplitude for the case of a

particle in a harmonic trapping potential V (x) = mω2x2/2, for which the Gel’fand
Yaglom method is exact. The fluctuation factor is determined by solving the differ-
ential equation (5.64) with a constant frequency ω . We obtain

f (tf, ti) =
(√

m
2πih̄

√
ω

sinω(tf− ti)

)d

. (5.71)
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Combining this with the contribution coming from the classical action given by
(5.20), we find that

W (xf, tf;xi, ti) =
(√

m
2πih̄

√
ω

sinω(tf− ti)

)d

×exp
{

i
2h̄

mω
sinω(tf− ti)

{
(x2

f +x2
i )cos(ω(tf− ti))−2xf ·xi

}}
. (5.72)

5.5 Matrix Elements and Time Ordering

We have now developed several methods to calculate quantum-mechanical transi-
tion amplitudes using path integrals. To further extend the path-integral formalism,
we show next how it can be used to determine matrix elements of operators

〈xf, tf|O(p̂(t), x̂(t), t)|xi, ti〉= 〈xf|e−iĤ(tf−t)O(p̂, x̂, t)e−iĤ(t−ti)|xi〉, (5.73)

where O(p̂(t), x̂(t), t) is a function of the Heisenberg operators p̂(t) and x̂(t), eval-
uated at some time ti < t < tf. To derive the continuum limit of the corresponding
path integral, we proceed as before by dividing the time interval into M subintervals,
where t is given by one of the intermediate discrete times tm. Moreover, we assume
that O(p̂(t), x̂(t), t) is in normal order, which means that all momentum operators
are positioned to the left of the position operators. We note that a general opera-
tor can always be brought into normal form using the commutation relation of the
position and momentum operator. For the matrix element of the operator, we then
have

〈xf, tf|O(p̂(tm), x̂(tm), tm)|xi, ti〉=
∫ (

M−1

∏
j=1

dx j

)
〈xM, tM|xM−1, tM−1〉

×〈xM−1, tM−1|xM−2, tM−2〉 . . .〈xm, tm|O(p̂(tm), x̂(tm), tm)|xm−1, tm−1〉 . . .
×〈x1, t1|x0, t0〉, (5.74)

where we have seen in the previous paragraphs how to deal with the matrix ele-
ments 〈x j, t j|x j−1, t j−1〉. However, the matrix element containing the operator func-
tion 〈xm, tm|O(p̂(tm), x̂(tm), tm)|xm−1, tm−1〉 is a little bit more complicated, such that
by inserting two closure relations we obtain

〈xm, tm|O(p̂(tm), x̂(tm), tm)|xm−1, tm−1〉 (5.75)

=
∫

dx′m
∫

dp′m〈xm, tm|p′m, tm〉〈p′m, tm|O(p̂, x̂, tm)|x′m, tm〉〈x′m, tm|xm−1, tm−1〉

=
∫

dx′m
∫

dp′m
1

(2π h̄)d eip′m(xm−x′m)/h̄O(p′m,x′m, tm)〈x′m, tm|xm−1, tm−1〉,
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where we see that in general we thus need an extra integral over both position and
momentum to calculate the above matrix element.

Example 5.9. For an operator function depending only on the position operator, we
obtain

〈xm, tm|O(x̂(tm), tm)|xm−1, tm−1〉
=

∫
dx′m

∫
dp′m

1
(2π h̄)d eip′m(xm−x′m)/h̄O(x′m, tm)〈x′m, tm|xm−1, tm−1〉

= O(xm, tm)〈xm, tm|xm−1, tm−1〉, (5.76)

and the additional integrals over the primed coordinates are seen to vanish. For an
operator function depending only on the momentum operator, we obtain

〈xm, tm|O(p̂(tm), tm)|xm−1, tm−1〉

=
∫

dx′m
∫

dp′m
∫

dpm
eip′m(xm−x′m)/h̄

(2π h̄)2d O(p′m, tm)ei(pm·(x′m−xm−1)−∆tH(pm,xm−1))/h̄

=
∫ dpm

(2π h̄)d O(pm, tm)ei(pm·(xm−xm−1)−∆tH(pm,xm−1))/h̄, (5.77)

were we used (5.32) and (5.75). Again, we find that the additional integrals over the
primed coordinates vanish.

Since the transition amplitudes for the infinitesimal time steps in equation (5.74)
can be evaluated in exactly the same way as before, we finally obtain

〈xf, tf|O(p̂(t), x̂(t), t)|xi, ti〉

=
∫

d[p]
∫ x(tf)=xf

x(ti)=xi

d[x]O(p(t),x(t), t)exp
{

i
h̄

S[p,x]
}

, (5.78)

where in principle, due to (5.75), the measure would now contain an extra integral
over both position and momentum. However, as we saw in Example 5.9, these extra
integrals vanish when the operator function depends only on the position operator
or the momentum operator. Moreover, if we want to calculate the matrix element
of (5.73) for a normally-ordered operator function of the form O(p̂(t), x̂(t ′), t, t ′)
with t > t ′, then we find that the momentum operators end up in a different time
slice to the position operators, such that we can apply (5.76) and (5.77), and the
measure in (5.78) actually does not contain any additional integrals. As a result,
we should think of the path integral in the right-hand side of (5.78) as calculating
〈xf, tf|O(p̂(t+), x̂(t), t)|xi, ti〉 with t+ denoting the limiting procedure η ↓ 0 of t +η .

From the above discussion, we realize that if we want to calculate the matrix
element of equation (5.73) for any product of operators at different times with the
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path-integral approach, then we need to first order them in time to be able to ap-
ply the discretization procedure. This also holds the other way around. If we use
the path-integral formulation to calculate matrix elements, then we automatically
calculate the elements of time-ordered operators, given by

T[Â(t)B̂(t ′)] =

{
Â(t)B̂(t ′) t > t ′

B̂(t ′)Â(t) t ′ > t
. (5.79)

A convenient way to calculate the matrix element of a time-ordered product of x̂
and p̂ operators in the path-integral formalism is to introduce an additional term

−ih̄
∫ tf

ti
dt (J(t) ·x(t)+ I(t) ·p(t))

to the action. Doing so, we have for the transition amplitude that

WI,J(xf, tf;xi, ti) =
∫

d[p]
∫ x(tf)=xf

x(ti)=xi

d[x]

×exp
{

i
h̄

∫ tf

ti
dt

(
p(t) · dx(t)

dt
−H(p(t),x(t), t)

)}

×exp
{∫ tf

ti
dt (J(t) ·x(t)+ I(t) ·p(t))

}
, (5.80)

such that WI,J(xf, tf;xi, ti) becomes a generating functional. By differentiation of WI,J
with respect to J and I, we can immediately calculate the time-ordered matrix ele-
ments for any tensor product of operators. For instance, differentiating n times with
respect to J yields

〈xf, tf|T [x̂(t1) . . . x̂(tn)]|xi, ti〉=
δ n

δJ(t1) . . .δJ(tn)
WI,J(xf, tf;xi, ti)

∣∣∣∣
I=J=0

=
∫

d[p]
∫ x(tf)=xf

x(ti)=xi

d[x] x(t1) . . .x(tn)

×exp
{

i
h̄

∫ tf

ti
dt

(
p(t) · dx(t)

dt
−H(p(t),x(t), t)

)}
. (5.81)

For Hamiltonians of the form Ĥ = p̂2/2m +V (x̂), we can perform the Gaussian
integral over the momenta in (5.80) exactly. Using the approach of Sect. 5.4.1, we
find

WI,J(xf, tf;xi, ti) = N
∫ x(tf)=xf

x(ti)=xi

d[x] (5.82)

×exp

{
i
h̄

∫ tf

ti
dt

{
1
2

m
(
−ih̄I(t)+

dx(t)
dt

)2

−V (x(t))− ih̄J(t) ·x(t)

}}
,
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which is immediately rewritten as

WI,J(xf, tf;xi, ti) = N
∫ x(tf)=xf

x(ti)=xi

d[x]exp
{

i
h̄

S[x]
}

×exp
{

i
h̄

∫ tf

ti
dt

(
−1

2
mh̄2I2(t)− ih̄mI(t) · dx(t)

dt
− ih̄J(t) ·x(t)

)}
. (5.83)

Using the two equivalent expressions for WI,J(xf, tf;xi, ti), namely(5.80) and (5.83),
we can find the connection between the matrix elements of the momentum p(t) and
the velocity dx(t)/dt. Differentiating both equations with respect to the currents, we
find

〈xf, tf|p(t)x(t ′)|xi, ti〉=
δ 2WI,J

δ I(t)δJ(t ′)

∣∣∣∣
I=J=0

= m
d
dt
〈xf, tf|x(t)x(t ′)|xi, ti〉 (5.84)

and

〈xf, tf|p(t)p(t ′)|xi, ti〉=
δ 2WI,J

δ I(t)δ I(t ′)

∣∣∣∣
I=J=0

= m2 d2

dt dt ′
〈xf, tf|x(t)x(t ′)|xi, ti〉

− ih̄mδ (t− t ′)〈xf, tf|xi, ti〉. (5.85)

The last term on the right-hand side of (5.85) might seem peculiar, but is actually
present due to the canonical commutation relation between momentum and position.
This can be made clear by explicitly considering the time derivatives of the time-
ordered product of operators, for which we have

m2 d
dt

T
[
x̂(t)x̂(t ′)

]
= m2 d

dt

{
θ(t− t ′)x̂(t)x̂(t ′)+θ(t ′− t)x̂(t ′)x̂(t)

}

= m2
{

δ (t− t ′)x̂(t)x̂(t ′)+θ(t− t ′)
dx̂(t)

dt
x̂(t ′)

−δ (t ′− t)x̂(t ′)x̂(t)+θ(t ′− t)x̂(t ′)
dx̂(t)

dt

}

= mT
[
p̂(t)x̂(t ′)

]
+m2δ (t− t ′)[x̂(t), x̂(t ′)]−, (5.86)

where in the last step we used the Heisenberg equation of motion for the position
operator, which for the Hamiltonian considered here yields

m
dx̂(t)

dt
= p̂(t). (5.87)

Also note that the commutator on the right-hand side of (5.86) gives zero at equal
times, such that this term vanishes. In the same manner, we now calculate the second
derivative and find

m2 d2

dt dt ′
T

[
x̂(t)x̂(t ′)

]
= T

[
p̂(t)p̂(t ′)

]−mδ (t− t ′)[p̂(t), x̂(t ′)]− , (5.88)
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where the commutator on the right-hand side yields −ih̄ at equal times. As a re-
sult, we find indeed that the matrix elements of (5.85), computed conveniently in
the path-integral formalism using the generating functional WI,J , are in complete
agreement with time-ordered products of operators.

5.6 Quantum-Mechanical Partition Function

So far, we have used path integrals to study the time evolution of dynamical
quantum-mechanical systems. Next, we show how the path integral formalism can
also be used to study equilibrium physics in quantum statistical mechanics. In Chap.
4, we found that all macroscopic thermodynamic variables of interest can be com-
puted in equilibrium from the partition sum, which is in the canonical ensemble
quantum mechanically given by

Z = ∑
ν
〈ν |exp

{−β Ĥ
}|ν〉= Tr

[
exp

{−β Ĥ
}]

, (5.89)

where β ≡ 1/kBT is the inverse temperature and |ψn〉 denotes the full set of eigen-
states of the Hamiltonian. Since the trace is invariant under basis transformations,
any complete set can be used to perform the trace. By identifying tf = −ih̄β , we
find that the canonical partition function can be related to the transition amplitude
W (xf, tf;xi,0) as

Z =
∫

dx 〈x|e−β Ĥ |x〉=
∫

dx 〈x|e−iĤtf/h̄|x〉=
∫

dx W (x,−ih̄β ;x,0). (5.90)

As a result, the partition function is expressed by the following path integral in phase
space with the boundary condition x(0) = x(tf), giving

Z =
∫

xM=x0

(
M

∏
j=1

dx j

)(
M

∏
j=1

dp j

(2π h̄)d

)

×exp
{

i
h̄

∫ −ih̄β

0
dt

(
p(t) · dx(t)

dt
−H(p(t),x(t))

)}

=
∫

x(h̄β )=x(0)
d[x]

∫
d[p]

×exp
{
−1

h̄

∫ h̄β

0
dτ

(
−ip(τ) · dx(τ)

dτ
+H(p(τ),x(τ))

)}
, (5.91)

where in the second step we made a transformation to imaginary time τ = it, also
known as a Wick rotation. Since the trace leads to an extra integral over position, it
restores the symmetry in the number of position and momentum integrals. However,
note that we have not changed the notation of the measure, although there is now
in principle one more integration compared with (5.34). This may seem like sloppy
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notation but, thinking in terms of continuous functional integration, the difference
between the two expressions is actually incorporated by the boundary conditions
of the integration. Put differently, by specifying each time the specific boundary
conditions, it becomes clear which of the discrete integration measures is actually
being used.

For the Hamiltonian Ĥ = p̂2/2m+V (x̂) we can integrate out the momentum, as
explained in Sect. 5.4.1, such that we obtain

Z = N
∫

x(h̄β )=x(0)
d[x]exp

{
−1

h̄

∫ h̄β

0
dτ

(
1
2

m
(

dx(τ)
dτ

)2

+V (x(τ))

)}
, (5.92)

where we note that in imaginary time the Lagrangian actually becomes the Hamil-
tonian. Finally, the boundary condition in imaginary time x(h̄β ) = x(0) can be en-
forced automatically in an elegant way by making a Fourier expansion, such that

x(τ) =
1√
h̄β

∞

∑
n=−∞

e−iωnτ xn, (5.93)

with ωn = 2πn/h̄β , which are called the bosonic Matsubara frequencies.

5.7 Expectation Values

The time evolution of a Heisenberg operator in imaginary time is defined by

O(p̂(τ), x̂(τ)) = eĤτ/h̄O(p̂, x̂)e−Ĥτ/h̄, (5.94)

which follows from Wick rotation of the corresponding expression in ordinary time.
The expectation value of Ô(τ) in the canonical ensemble is then given by

〈Ô(τ)〉 =
1
Z ∑

ν
〈ν |Ô(τ)exp

{−β Ĥ
}|ν〉=

1
Z

Tr
[
Ôexp

{−β Ĥ
}]

, (5.95)

where in the second step we used (5.94) and the cyclic invariance of the trace, such
that the expectation value is seen to be independent of τ . Combining the discussions
of Sects. 5.5 and 5.6, we see that the corresponding path integral is given by

〈Ô〉 =
1
Z

∫
d[x]

∫
d[p] O(p(τ),x(τ))

×exp
{
−1

h̄

∫ h̄β

0
dτ

(
−ip(τ) · dx(τ)

dτ
+H(p(τ),x(τ))

)}
, (5.96)

with cyclic boundary conditions on the position. If the operator in question only
depends on the position x we can integrate out the momenta, leading to
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〈Ô〉= (5.97)

1
Z

∫
d[x] O(x(τ))exp

{
−1

h̄

∫ h̄β

0
dτ

{
1
2

m
(

dx(τ)
dτ

)2

+V (x(τ))

}}
,

where we note that the numerical prefactor N coming from the momentum inte-
grals cancels, since the same prefactor is also present in the path integral for the
partition sum Z. Moreover, to calculate imaginary time-ordered expectation values
explicitly, it is convenient to add source currents to the imaginary-time action in a
manner completely analogous to the real-time case.

5.8 Hubbard-Stratonovich Transformation

The Hubbard-Stratonovich transformation is a powerful tool in rewriting path inte-
grals. It makes use of (2.17), which in the continuum limit becomes

∫
d[κ]exp

{
− 1

2h̄

∫ h̄β

0
dτ dτ ′ (κ(τ)−κ0(τ))M(τ,τ ′)

(
κ(τ ′)−κ0(τ ′)

)}

×exp
{

1
2

Tr[log(M/h̄)]
}

= 1, (5.98)

where we have interpreted the function M(τ,τ ′) as a matrix with continuous indices
τ and τ ′ over which we can take a trace in the following way

Tr[M/h̄] =
1
h̄

∫ h̄β

0
dτ M(τ,τ). (5.99)

Since exp{Tr[log(M/h̄)]/2} in (5.98) is merely a numerical prefactor, it is usually
not of much importance.

Now, suppose that we want to calculate a partition sum using the path-integral
formalism, but that we cannot solve it due to the presence of a certain term, such
as for example a fourth-order term, that makes it impossible to deal with. As a
result, we would like to have a method to transform such a term away. To this end,
we notice that we can substitute the left hand-side of (5.98) into any path integral
we wish to evaluate, since it is equal to unity. Moreover, (5.98) contains a lot of
freedom in choosing the precise form of M(τ,τ ′) and κ0(τ), which we can use to
cancel the term that we want to remove. To see precisely how this works, we look
at the following example.

Example 5.10. Consider a single atom moving in a one-dimensional quartic poten-
tial, described by the Hamiltonian
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Ĥ =
p̂2

2m
+α x̂2 +

1
2

β x̂4, (5.100)

where β is not the inverse temperature, but corresponds to the rather standard nota-
tion for a fourth-order term, which comes from the Landau theory for phase transi-
tions. This Landau theory is the topic of Chap. 9. Substituting the quartic potential
into the path integral of (5.92), we find

Z = (5.101)

N
∫

d[x]exp

{
−1

h̄

∫ h̄β

0
dτ

(
1
2

m
(

dx(τ)
dτ

)2

+αx2(τ)+
1
2

βx4(τ)

)}
.

We have seen how to solve Gaussian path integrals, but how do we deal with the
fourth-order term in the exponent? By choosing κ0(τ) = x2(τ) and M(τ,τ ′) =
−βδ (τ− τ ′) in (5.98) and substituting the result in (5.101), we find that the fourth-
order term gets cancelled.

Although the Hubbard-Stratonovich transformation is extremely useful in remov-
ing an unwanted term in the original action, it goes at the cost of introducing an ad-
ditional path integral over a new field κ(τ), which usually leaves the resulting path
integral still unsolvable. In that sense, the transformation is only a formal rewriting
of the original problem. However, in many situations the newly obtained action al-
lows for various approximate solutions, such as for example by using a stationary
phase or mean-field approximation to the newly introduced field κ(τ). This strategy
is actually used several times in this book, since it allows for an elegant description
of interacting quantum gases. It turns out that due to the flexibility of this technique,
it finds applications ranging from the Hartree-Fock theory of an interacting normal
gas to the Bardeen-Cooper-Schrieffer theory for a superfluid interacting Fermi gas.
These issues are the topics of Chaps. 8 and 12.

5.9 Problems

Exercise 5.1. Derive the Euler-Lagrange equation by explicitly working out the
variation

δS[xcl] = S[xcl +δx]−S[xcl] = 0. (5.102)

Exercise 5.2. Show that the quantum-mechanical transition amplitude

W (x, t;xi, ti)≡ 〈x, t|xi, ti〉 (5.103)

satisfies the time-dependent Schrödinger equation.
Hint: Make use of the complete set of eigenstates {|ν〉} of the Hamiltonian Ĥ with
corresponding eigenvalues Eν and show that the transition amplitude in (5.103) now
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becomes

W (x, t;xi, ti) = ∑
ν

χ∗ν (x)χν(xi)exp
{
− i

h̄
Eν(t− ti)

}
. (5.104)

Exercise 5.3. Transition Amplitudes
(a) Derive the path-integral expression for the amplitude 〈pftf|piti〉.
(b) Derive the path-integral expression for the amplitude 〈pftf|xiti〉.
Exercise 5.4. Atom in a Quartic Potential
Consider a single atom moving in an external potential V ex(x) = αx2 +βx4/2.
(a) Give the path-integral expression for the matrix element 〈x|e−iĤt/h̄|x〉.
(b) Derive from this the path-integral expression for the partition function of the
atom, by performing an analytic continuation to imaginary time. What are the
boundary conditions for this path integral?
(c) Take the classical limit h̄β ↓ 0 and show that you have obtained the correct
classical partition function for the atom.

Additional Reading

• R. P. Feynman, A. R. Hibbs, Quantum Mechanics and Path Integrals, (McGraw-
Hill, New York, 1965).

• H. Kleinert, Path integrals in Quantum Mechanics, Statistics, Polymer physics,
and Financial Markets, (World Scientific, Singapore, 2004).

• E. Zeidler, Applied Functional Analysis, Applications to Mathematical Physics,
(Springer-Verlag, Berlin, 1995).



Chapter 6
Second Quantization

The fundamental laws necessary for the mathematical treatment
of a large part of physics and the whole of chemistry are thus
completely known, and the difficulty lies only in the fact that
application of these laws leads to equations that are too
complex to be solved.
– Paul Dirac

Quantization is the procedure of going from a classical theory to a quantum the-
ory. An important example is the canonical quantization procedure for going from
classical mechanics to quantum mechanics. It amounts to replacing the classical dy-
namical variables and their Poisson brackets by quantum mechanical operators and
their commutators. Considering a system of particles in an external electromagnetic
field, the above procedure leads to the original formulation of quantum mechan-
ics where the motion of the particles is quantized, while the applied fields are still
treated classically. However, it turns out that the canonical quantization procedure
can also be extended to field theory, such that the classical fields are replaced by
quantum-mechanical creation and annihilation operators. Since the resulting formu-
lation allows for the quantization of the fields that were in the original quantum
theory still treated classically, it is commonly referred to as second quantization.
Another way to understand this name is by introducing a Lagrangian density that
generates the Schrödinger equation upon applying the Euler-Lagrange equations.
This means that the fields of the Lagrangian density become the wavefunctions in
the Schrödinger equation. Upon applying the canonical quantization procedure to
these fields, the wavefunctions actually become quantized themselves, and the cor-
responding operators are creation and annihilation operators of particles. It is this
last way of applying second quantization that corresponds to the formalism devel-
oped in this chapter.

The reason for introducing the language of second quantization is that it turns out
to be extremely convenient in the formulation of a quantum theory for many inter-
acting particles. The starting point of this chapter is the more familiar first-quantized
N-body Schrödinger equation in the place representation, where the Hamiltonian of
interest is motivated from the study of ultracold atomic quantum gases. However,
the resulting Hamiltonian is actually seen to be much more general, such that it also
applies to a large class of condensed-matter problems. For identical particles, the re-
sulting many-body wavefunction needs to be fully symmetric for bosons, whereas it
needs to be fully antisymmetric for fermions. Since a fully (anti)symmetrized wave-
function consists of about N! terms, we need to introduce a shorthand notation,
because N is for our purposes typically a million or more. A convenient way to fully
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specify an (anti)symmetric wavefunction is in terms of the occupation numbers of
the single-particle eigenstates from which the many-body state is constructed. This
notation is appropriately called the occupation-number representation. Then, by re-
laxing the constraint of a fixed number of N particles, we introduce the Hilbert space
of all (anti)symmetric many-body states, which is also known as Fock space. Since
the number of particles in Fock space is not fixed, it is natural to define an anni-
hilation operator, that can destroy a particle in a certain quantum state. From this
definition, we immediately also obtain the creation operator, which is consequently
used to construct all possible many-body states in Fock space. This procedure is then
seen to incorporate automatically the statistics of the corresponding identical parti-
cles. By expressing also the many-body Hamiltonian in terms of the creation and
annihilation operators, we arrive at our fully second-quantized many-body theory.
Finally, we prove the complete equivalence between the old, more familiar formu-
lation of the N-body Schrödinger equation in the place representation, also referred
to as the first-quantized formalism, and the new formulation in terms of creation
and annihilation operators, also referred to as the second-quantized formalism. This
equivalence then ultimately validates all newly introduced definitions and expres-
sions.

6.1 Many-Body Hamiltonian

Atoms form rich quantum systems with many internal degrees of freedom, such as
the electronic and the nuclear spin. These internal degrees of freedom are impor-
tant because they give rise to the hyperfine structure, the magnetic moment, and the
electric polarizability of the atoms, which are used to manipulate them experimen-
tally by applying magnetic and electric fields. In principle, calculating the effect
of applied external fields on atoms can be a tedious task, just as deriving the full
atomic interaction potential from first principles. In Chap. 10, where we focus on
atomic physics, we address such questions in more detail. However, for our present
goal only the outcome of such calculations are relevant, and we start from the point
where the external potential and the interaction potential are given. Moreover, we re-
strict ourselves to atomic mixtures of at most two hyperfine states, which describes
practically all important experiments that have been performed on ultracold atomic
gases so far. We then add the remark that the following treatment is easily gener-
alized to three hyperfine states or more. In this chapter we describe the hyperfine
degrees of freedom by two effective spin states |s,ms〉, whereas in Chap. 10 we
overcome this simplification and treat the hyperfine structure in more detail.

Consider N identical atoms with mass m and effective spin s in a constant mag-
netic field B and an external potential V ex(x), caused for example by a spatially
varying electric field. As a result, the time-dependent Schrödinger equation we have
to solve is

ih̄
∂
∂ t
|Ψ(t)〉= Ĥ|Ψ(t)〉 (6.1)
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with the Hamiltonian given by

Ĥ =
N

∑
i=1

{
p̂2

i
2m

+V ex(x̂i)− γ ŝi ·B
}

+
1
2

N

∑
i6= j=1

V (x̂i− x̂ j) , (6.2)

where we have that [x̂ j, p̂ j]− = ih̄, and all other commutators of the position and
momentum operators vanish. The first term on the right-hand side is the sum of the
one-particle Hamiltonians, including an effective Zeeman interaction −γ ŝi ·B that
accounts for a possible difference in the hyperfine energies of the two spin states.
The second term describes the two-body interactions between the atoms. The factor
1/2 in front of the interaction term makes sure that we count the potential-energy
contribution of each pair of atoms only once. For notational simplicity, we assume
in first instance that the interaction V (x̂i− x̂ j) is independent of the hyperfine states
of atoms i and j. This is in general not the case for realistic atomic gases, and in later
sections we overcome this approximation. Finally, we also have neglected possible
three-body interactions. This is particularly valid for our goal of describing dilute
interacting quantum gases, when it is highly improbable for three atoms to have an
simultaneously overlapping electron cloud.

Although we have motivated the above Hamiltonian by atomic physics, it is in
fact much more general. In particular, it is also the Hamiltonian describing the elec-
tron gas in metals and semiconductors. The external potential represents then the
periodic potential provided by the ionic crystal and the interaction V (x̂i− x̂ j) is due
to the Coulomb repulsion between the electrons. The effect of an external mag-
netic field is, however, not fully correctly incorporated in this case, because for
charged particles the magnetic field does not only couple to the spin of the parti-
cles, but also to their momenta. To arrive at the correct Hamiltonian for an elec-
tron gas in a magnetic field, we need to perform the minimal-coupling substitution
p̂i → p̂i + eA(x̂i)/c, with −e the electron charge and A(x) the vector potential that
is related to the magnetic field by B(x) = ∇∇∇×A(x). We come back to such orbital
effects in Chap. 13, where they turn out to also be of importance for neutral atoms
if the quantum gas is being rotated.

6.2 Fock Space

To tackle the many-body problem, we start by solving the one-particle time-independent
Schrödinger equation. Assuming that we have done so, the eigenfunctions χn(x)≡
〈x|n〉 that correspond to the eigenenergies εn satisfy

{
− h̄2∇∇∇2

2m
+V ex(x)− εn

}
χn(x) = 0 , (6.3)

where n = (nx,ny,nz), such that the integers nx, ny, and nz denote the three quantum
numbers that are required to specify the one-particle eigenstates in the external po-
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tential. For the spin part, we introduce the shorthand notation |α〉= |s,ms〉, leading
to an effective Zeeman energy εα

−γ ŝ ·B|α〉=−γmsB|α〉= εα |α〉, (6.4)

where we conveniently took the quantization axis of the spin-angular momentum
along the direction of the applied magnetic field. As a result, the total eigenenergy
of the single-particle eigenstate |n,α〉 = |n〉|α〉 is given by εn,α ≡ εn + εα . In the
absence of interactions, the eigenstates of the many-body Hamiltonian of (6.2) are
given by the product states

{|n1,α1〉1|n2,α2〉2 . . . |nN ,αN〉N},

which form a basis for the N-particle Hilbert space HN ,

HN = H1⊗H1⊗·· ·⊗H1,

which is given by the tensor product of N single-particle Hilbert spaces. The inner
product between two N particle product states is given by

N〈nN ,αN | . . .1〈n1,α1||n1,α1〉1 . . . |nN ,αN〉N =

1〈n1,α1|n1,α1〉1 . . .N〈nN ,αN |nN ,αN〉N . (6.5)

A fundamental postulate of quantum mechanics is that identical particles are in-
trinsically indistinguishable. To study the consequences of this statement, we may
introduce the permutation operator that interchanges two particles. Since the parti-
cles are indistinguishable, their interchange leads to the same physical state, such
that the permutation operator only introduces a phase factor eiφ . Then, the eigen-
states of the permutation operator with eigenvalue eiφ = 1 are symmetric states, and
the particles obeying this symmetry are called bosons. The eigenstates with eigen-
value -1 are antisymmetric states, and the particles obeying this antisymmetry are
called fermions. It turns out that, in one and two dimensions, particle-like excita-
tions that obey eiφ 6= ±1 are possible. These exotic excitations are called anyons,
and they give rise to fractional statistics. They also form the basis for the explana-
tion of the fractional quantum Hall effect. However, so far all observed anyons in
Nature have been exotic excitations of a low-dimensional system, whereas all ele-
mentary particles we know today are actually either bosons or fermions. Since any
many-body wavefunction |Ψ(t)〉 describing identical (fermions) bosons has to be
fully (anti)symmetric, it is actually very convenient to consider a Hilbert space that
consists only of fully (anti)symmetrized states and that is therefore described by a
fully (anti)symmetrized basis of product states.

To introduce a short-hand notation for this basis of fully (anti)symmetrized prod-
uct states, we make the convention that we only specify the occupation numbers of
the single-particle eigenstates Nn,α from which a basis state is formed. As a result,
we use for the full set of basis states the shorthand notation {|N〉}. It is then conve-
nient to order the occupation numbers that make up the vector N = [. . . ,Nn,α , . . .] in
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a certain arbitrary, but fixed way. As an example, we may use an ordering in increas-
ing single-particle eigenenergies, such that the number on the left corresponds to the
ground state of the single-particle Hamiltonian, whereas upon moving to the right
the occupation numbers correspond to excited single-particle states with monoton-
ically increasing energies εn,α . If degeneracies occur within the energy levels, then
we need an additional arbitrary convention to order the single-particle states within
a degenerate energy level. These concepts are made more concrete in the following
example.

Example 6.1. Consider two particles in a one-dimensional harmonic oscillator with
eigenvalues εn = h̄ω(n+1/2) and corresponding single-particle eigenfunctions |n〉,
as discussed in Sect. 3.5. Then, for two bosons the state |1,1,0, . . .〉 corresponds
to the fully symmetrized state in which they occupy the ground state and the first
excited state of the single-particle Hamiltonian, that is

|1,1,0, . . .〉= (|0〉1|1〉2 + |1〉1|0〉2)/
√

2, (6.6)

whereas the state |2,0, . . .〉 corresponds to the trivially symmetrized state in which
both particles occupy the ground state

|2,0, . . .〉= |0〉1|0〉2. (6.7)

Then, for two fermions the state |1,1, . . .〉 corresponds to the fully antisymmetrized
state

|1,1,0, . . .〉= (|0〉1|1〉2−|1〉1|0〉2)/
√

2, (6.8)

whereas the state |2,0, . . .〉 is seen to give zero

|2,0, . . .〉= |0〉1|0〉2−|0〉1|0〉2 = 0. (6.9)

The last expression shows that antisymmetrization of a state, in which two fermions
occupy the same single-particle quantum state, immediately leads to zero. This
statement is known as the Pauli exclusion principle. For fermions, we thus have
only two possible occupation numbers, namely Nn,α = 0,1. Note that any fermionic
N-particle state |N〉 can be written out explicitly in terms of one-particle states by us-
ing a Slater determinant. For bosons, we have Nn,α = 0,1,2, . . ., and any N-particle
state |N〉 can be written out explicitly using a permanent, which is a sign-less deter-
minant.

The (anti)symmetrized basis set {|N〉} with the constraint ∑n,α Nn,α = N is a
basis for the (anti)symmetrized N-particle Hilbert space. By relaxing this constraint,
the set becomes a basis for the Hilbert space of all possible (anti)symmetrized many-
body states. This space is also known as Fock space F , and is defined by

F = H0⊕H1⊕H2⊕H3⊕ . . . ,
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where H0 consists of the vacuum state with zero particles |0〉. The vacuum satis-
fies by definition 〈0|0〉 = 1 and its inner product with all other Fock states gives
zero. Note that |0〉 should not be confused with the ground state of the single-
particle Hamiltonian, which is a single-particle state and therefore orthonormal to
the vacuum. Furthermore, the inner product between any two states having differ-
ent number of particles is equal to zero, because two such states are by definition
in different parts of the Fock space. We thus have that the complete set of ba-
sis states for the fermionic Fock space is given by {|0〉,|1,0, . . .〉,|0,1,0, . . .〉,. . .,
|1,1,0 . . .〉,|1,0,1,0, . . .〉,. . .,|1,1,1,0 . . .〉,. . .}. For bosons, we can also have any
number of particles in the same single-particle state, leading to additional Fock
states, such as |2,0,0, . . .〉,|0,2,0, . . .〉, |0,2,317,3, . . .〉 and so on.

Example 6.2. For a system of 5 bosonic atoms that are all in the ground state, we
have

|Ψ〉= |5,0,0, . . .〉, (6.10)

whereas a filled Fermi-sea consisting of 5 fermionic atoms becomes

|Ψ〉= |1,1,1,1,1,0,0, . . .〉. (6.11)

6.3 Creation and Annihilation Operators

Since the (anti)symmetric set {|N〉} is by construction orthonormal, it can be con-
veniently used to represent any (anti)symmetric many-body wavefunction |Ψ(t)〉 as

|Ψ(t)〉= ∑
N

ΨN(t)|N〉 , (6.12)

where ΨN(t) is the amplitude for the many-body sytem to be in state |N〉 at time t.
In this basis, the Schrödinger equation becomes

ih̄
∂
∂ t

ΨN(t) = ∑
N′
〈N|Ĥ|N′〉 ΨN′(t) . (6.13)

This shows that we need to determine the matrix elements of the Hamiltonian be-
tween different states in Fock space. For the quantum theory of the harmonic os-
cillator in Sect. 3.5, where we encountered number states for the first time, it was
very convenient to express all operators and number states in terms of creation and
annihilation operators. In analogy with this treatment, we define the annihilation
operator ψ̂n,α acting on Fock space by

ψ̂n,α |N〉= ψ̂n,α | . . . ,Nn,α , . . .〉= (±1)Mn,α
√

Nn,α | . . . ,Nn,α −1, . . .〉 , (6.14)
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where the upper (lower) sign corresponds to bosons (fermions). The factor Mn,α
gives for the many-body state |N〉 = | . . . ,Nn,α , . . .〉 the total number of occupied
single-particle states that are ordered to the left of the single-particle state corre-
sponding to Nn,α . If we use the ordering in increasing energy, then Mn,α thus counts
the number of occupied states with an energy less then εn,α . In the case that εn,α
is degenerate, then Mn,α also includes the occupied states of the same energy that
are placed to the left εn,α according to some arbitrary convention. The reason for
the factor Mn,α in the case of fermions becomes clear in the example below. It is
now left as an exercise to show that from the above definition for the annihilation
operator, it automatically follows that the creation operator ψ̂†

n,α is given by

ψ̂†
n,α | . . . ,Nn,α , . . .〉= (±1)Mn,α

√
1±Nn,α | . . . ,Nn,α +1, . . .〉 . (6.15)

Example 6.3. Consider a two-level system with ground-state energy ε0 and excited
state energy ε1. The creation operator that creates a fermion in the ground state is
denoted by ψ̂0, whereas the creation operator for the excited state is denoted by ψ̂1.
Then, according to the above defintions, we have

ψ̂†
0 |0,0〉= |1,0〉, ψ̂†

1 |0,0〉= |0,1〉,
ψ̂†

0 ψ̂†
1 |0,0〉= ψ̂†

0 |0,1〉= |1,1〉,
ψ̂†

1 ψ̂†
0 |0,0〉= ψ̂†

1 |1,0〉=−|1,1〉. (6.16)

We thus find that due to the counting factor (−1)Mn,α introduced for fermions, the
permutation of two fermionic creation operators leads to a minus sign. This reveals
that the antisymmetric nature of fermions upon interchange is now expressed by
anticommuting fermionic creation and annihilation operators. Note that the partic-
ular way of ordering is merely a matter of convention, because any fixed ordering
leads to ψ̂†

1 ψ̂†
0 |0,0〉=−ψ̂†

0 ψ̂†
1 |0,0〉, and is therefore equally appropriate. Ultimately,

the anticommuting behavior of the fermionic operators is the defining property that
matters.

From (6.14) and (6.15), it follows that the operator ψ̂†
n,α ψ̂n,α conveniently counts

the number of particles in the single-particle state |n,α〉, i.e.

ψ̂†
n,α ψ̂n,α | . . . ,Nn,α , . . .〉= Nn,α | . . . ,Nn,α , . . .〉 . (6.17)

It is left as another exercise to show that the creation and annihilation operators for
bosons (fermions) satisfy the following set of (anti)commutation relations

[ψ̂n,α , ψ̂n′,α ′ ]∓ = [ψ̂†
n,α , ψ̂†

n′,α ′ ]∓ = 0,

[ψ̂n,α , ψ̂†
n′,α ′ ]∓ = δn,n′δα,α ′ , (6.18)
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where again the upper (lower) sign refers to bosons (fermions). We use this no-
tational convention always from now on. As a result, we have for fermions that
(ψ̂†

n,α)2 = 0, expressing the Pauli principle that two particles cannot be created in
the same state. From (6.15), it follows that any basis state |N〉 in Fock space can be
conveniently expressed as products of creation operators

|N〉= ∏
n,α

(ψ̂†
n,α)Nn,α

√
Nn,α !

|0〉 , (6.19)

where for bosons the order of the creation operators does not matter, whereas the
fermionic creation operators are ordered in the same way as the occupation num-
bers. For the ordering in increasing energy, this means that the creation operator
corresponding to the lowest single-particle energy is positioned to the left.

Example 6.4. The creation and annihilation operators take a state in the Fock space
and map it onto another state in the Fock space. If we consider a system that has only
one quantum state available then the problem reduces to the bosonic or fermionic
harmonic oscillator we considered in Chap. 3. Specifically, the matrix representation
of the annihilation operator in the basis of Fock states is then for the bosonic case
given by (3.54).

6.3.1 Second-Quantized Hamiltonian

Now that we have seen how the fully (anti)symmetrized Fock states are represented
in terms of (fermionic) bosonic creation operators, we also want to express the rel-
evant quantum mechanical operators, such as the external potential V ex(x̂i) and the
two-body interaction V (x̂i− x̂ j), in the language of second quantization. In this para-
graph, we motivate physically the form of the relevant operators in terms of creation
and annihilation operators acting on Fock space, where we postpone the proof of
the full equivalence of the first and second-quantized formalism to Sect. 6.4. This
proof then ultimately also validates the definition of the creation operation opera-
tor in (6.14), from which the annihilation operator of (6.15), the (anti)commutation
relations of (6.18), and the basis representation of (6.19) immediately follow.

Without interactions, we have that the second-quantized form of the first-quantized
N-body Hamiltonian in (6.2) is given by

Ĥ = ∑
n,α

εn,α ψ̂†
n,α ψ̂n,α , (6.20)

which is easily understood, since ψ̂†
n,α ψ̂n,α counts the number of particles in each

single-particle state |n,α〉, which is then multiplied by the single-particle eigenen-
ergy εn,α to give the total energy of the noninteracting system. Including the two-
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body interaction term, we have that the second-quantized form of (6.2) becomes

Ĥ = ∑
n,α

εn,α ψ̂†
n,α ψ̂n,α

+
1
2 ∑

α,α ′
∑

n,n′,m,m′
Vn,n′;m,m′ψ̂†

n,α ψ̂†
n′,α ′ψ̂m′,α ′ψ̂m,α , (6.21)

where the matrix elements of the two-body interaction are given by

Vn,n′;m,m′ =
∫

dx
∫

dx′ χ∗n(x)χ∗n′(x
′)V (x−x′)χm(x)χm′(x′). (6.22)

The second-quantized expression for the interacting part of the Hamiltonian is also
intuitively clear, because two particles that are initially in state |m,α〉 and |m′,α ′〉
can scatter into the states |n,α〉 and |n′,α ′〉 under the influence of the interaction
potential V (x−x′). Moreover, the probability amplitude for this process to happen
is given by Vn,n′;m,m′ . The corresponding scattering process is also shown schemat-
ically in Fig. 6.1(a).

b)

α

α

α

α

’

’

’

n α,
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n ’, α

m

’

’’, α

a)

x x

Fig. 6.1 Diagrammatic representation of the interaction terms in a) (6.21) and b) (6.29).

6.3.2 Field Operators

To be able to compare the first-quantized Hamiltonian in (6.2) and the second-
quantized Hamiltonian in (6.21), it is most convenient to transform the creation
and annihilation operators to real space. This is achieved by introducing the field
operators

ψ̂α(x) = ∑
n

ψ̂n,α χn(x) (6.23)

and
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ψ̂†
α(x) = ∑

n
ψ̂†

n,α χ∗n(x), (6.24)

that annihilate and create a particle in the spin state |α〉 at position x, respectively.
The inverse of the above relations is given by

ψ̂n,α =
∫

dx ψ̂α(x)χ∗n(x) (6.25)

and
ψ̂†

n,α =
∫

dx ψ̂†
α(x)χn(x). (6.26)

As a result, we have for the (anti)commutation relations of the field operators

[ψ̂α(x), ψ̂α ′(x′)]∓ = [ψ̂†
α(x), ψ̂†

α ′(x
′)]∓ = 0 (6.27)

and

[ψ̂α(x), ψ̂†
α ′(x

′)]∓ = δ (x−x′)δα,α ′ , (6.28)

where we used equation (6.18) and the completeness of the wavefunctions χn(x).
With the use of the field operators, the second-quantized Hamiltonian of (6.21)

can be written as

Ĥ = ∑
α

∫
dx ψ̂†

α(x)

{
− h̄2∇∇∇2

2m
+V ex(x)+ εα

}
ψ̂α(x)

+
1
2 ∑

α,α ′

∫
dx

∫
dx′ ψ̂†

α(x)ψ̂†
α ′(x

′)V (x−x′)ψ̂α ′(x′)ψ̂α(x) , (6.29)

which is most easily shown by inserting (6.23) and (6.24) into (6.29) and using the
orthonormality of the wavefunctions χn(x). Furthermore, the number operator in
terms of field operators becomes

N̂ = ∑
n,α

ψ̂†
n,α ψ̂n,α = ∑

α

∫
dx ψ̂†

α(x)ψ̂α(x), (6.30)

such that the density operator for particles in the state |α〉 is given by n̂α(x) =
ψ̂†

α(x)ψ̂α(x). Similarly, the total effective spin operator Ŝ is given by

Ŝ = ∑
n,α,α ′

ψ̂†
n,α〈α|ŝ|α ′〉ψ̂n,α ′ = ∑

α ,α ′

∫
dx ψ̂†

α(x)〈α|ŝ|α ′〉ψ̂α ′(x) . (6.31)
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6.4 Equivalence of First and Second Quantization

To finally prove the equivalence of the first-quantization and second-quantization
formalisms, we consider the general N-body state written in second quantization as

|Ψ(t)〉= (6.32)

1√
N! ∑

α1...αN

∫ (
N

∏
k=1

dxk

)
Ψα1...αN (x1, . . . ,xN ; t)ψ̂†

α1
(x1) . . . ψ̂†

αN
(xN)|0〉,

where we show that the expansion coefficients Ψα1...αN (x1, . . . ,xN ; t) satisfy the
first-quantized many-body Schrödinger equation. Note that because the Fock states
are by construction (anti)symmetric, only the (anti)symmetric parts of the expan-
sion coefficients survives the integration in (6.32). This is desired, because in first
quantization the N-body wavefunction should indeed be (anti)symmetric in the case
of (fermions) bosons. Next, we consider the N-body Schrödinger equation

ih̄
∂
∂ t
|Ψ(t)〉= Ĥ|Ψ(t)〉 (6.33)

with the second-quantized Hamiltonian as given in (6.29). We note that all the time
dependence is taken into account by the expansion coefficients Ψα1...αN (x1, . . . ,xN ; t).
The left-hand side of (6.33) is then given by

ih̄
∂
∂ t
|Ψ(t)〉 =

1√
N! ∑

α1...αN

∫ (
N

∏
k=1

dxk

)
ih̄

∂
∂ t

Ψα1...αN (x1, . . . ,xN ; t)

×ψ̂†
α1

(x1) . . . ψ̂†
αN

(xN)|0〉. (6.34)

To evaluate the right-hand side of (6.33) we first consider the contribution of the
noninteracting part of the Hamiltonian, which yields

∑
α

∫
dx ψ̂†

α(x)

{
− h̄2∇∇∇2

2m
+V ex(x)+ εα

}
ψ̂α(x)

× 1√
N! ∑

α1...αN

∫ (
N

∏
k=1

dxk

)
Ψα1...αN (x1, . . . ,xN ; t)

N

∏
l=1

ψ̂†
αl

(xl)|0〉=

N

∑
i=1

∑
α

∫
dx ∑

α1...αN

∫ (
N

∏
k=1

dxk

)
(±1)i+1 ψ̂†

α(x)

{
− h̄2∇∇∇2

2m
+V ex(x)+ εα

}

× 1√
N!

Ψα1...αN (x1, . . . ,xN ; t) δ (x−xi)δα,αi

N

∏
l 6=i=1

ψ̂†
αl

(xl)|0〉. (6.35)

Although this looks rather complicated, we actually only used
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ψ̂α(x)
N

∏
l=1

ψ̂†
αl

(xl)|0〉=
N

∑
i=1

(±1)i+1δ (x−xi)δα ,αi

N

∏
l 6=i=1

ψ̂†
αl

(xl)|0〉 (6.36)

which is proven by using the (anti)commutation relations of (6.28) to bring the
annihilation operator all the way to the right, where it annihilates the vacuum, i.e.
ψ̂α(x)|0〉= 0, and disappears. We then perform in (6.35) the integration over x and
the summation over α , such that we retrieve the missing creation operator ψ̂†

αi(xi)
which we consequently put back in the right place. Comparing (6.34) with (6.35)
we then find that, in the absence of interactions, the expansion coefficients satisfy

ih̄
∂
∂ t

Ψα1...αN (x1, . . . ,xN ; t)

=
N

∑
i=1

{
− h̄2∇∇∇2

2m
+V ex(xi)+ εαi

}
Ψα1...αN (x1, . . . ,xN ; t), (6.37)

which is indeed the first-quantized many-body Schrödinger equation with the Hamil-
tonian of (6.2) in the absence of interactions.

To prove the equivalence of first and second quantization also in the presence
of the two-body interactions, we need to extend the previous discussion with the
second-quantized expression for the interaction, for which we need to show that

1
2
√

N! ∑
α1...αN

∫ (
N

∏
k=1

dxk

)
N

∑
i6= j=1

V (xi−x j)Ψα1...αN (x1, ...,xN ; t)
N

∏
l=1

ψ̂†
αl

(xl)|0〉

=
1
2 ∑

α,α ′

∫
dx

∫
dx′ ψ̂†

α(x)ψ̂†
α ′(x

′)V (x−x′)ψ̂α ′(x′)ψ̂α(x)

× 1√
N! ∑

α1...αN

∫ (
N

∏
k=1

dxk

)
Ψα1...αN (x1, ...,xN ; t)

N

∏
l=1

ψ̂†
αl

(xl)|0〉. (6.38)

The strategy is again to move the annihilation operators ψ̂α ′(x′) and ψ̂α(x) through
all the creation operators, giving

ψ̂α ′(x′)ψ̂α(x)
N

∏
l=1

ψ̂†
αl

(xl)|0〉 (6.39)

=
N

∑
i6= j=1

(±1)i+ j+θ( j−i)δ (x′−x j)δα ′,α j δ (x−xi)δα,αi

N

∏
l=1

l 6=i, j

ψ̂†
αl

(xl)|0〉,

where θ is the step function, i.e. θ = 0 for i > j and θ = 1 for i < j. Substituting
(6.39) into the right-hand side of (6.38), we obtain
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1
2 ∑

α,α ′
∑

α1...αN

N

∑
i6= j=1

∫ (
N

∏
k=1

dxk

)∫
dx

∫
dx′ ψ̂†

α(x)ψ̂†
α ′(x

′)V (x−x′)(±1)i+ j+θ( j−i)

×δ (x′−x j)δα ′,α j δ (x−xi)δα ,αi

1√
N!

Ψα1...αN (x1, ...,xN ; t)
N

∏
l=1

l 6=i, j

ψ̂†
αl

(xl)|0〉=

1
2 ∑

α1...αN

N

∑
i6= j=1

∫ (
N

∏
k=1

dxk

)
ψ̂†

αi
(xi)ψ̂†

α j
(x j)V (xi−x j) (6.40)

×(±1)i+ j+θ( j−i) 1√
N!

Ψα1...αN (x1, ...,xN ; t)
N

∏
l=1

l 6=i, j

ψ̂†
αl

(xl)|0〉=

1√
N! ∑

α1...αN

∫ (
N

∏
k=1

dxk

)
N

∑
i6= j=1

1
2

V (xi−x j)Ψα1...αN (x1, ...,xN ; t)
N

∏
l=1

ψ̂†
αl

(xl)|0〉.

Comparison of the above equation with (6.33) (6.34) and (6.37) indeed shows that
the coefficients Ψα1...αN (x1, . . . ,xN ; t) satisfy the first-quantized N-body Schrödinger
equation including interactions, namely

ih̄
∂
∂ t

Ψα1...αN (x1, . . . ,xN ; t) =
N

∑
j=1

{
− h̄2∇∇∇2

2m
+V ex(x j)+ εα j

}
Ψα1...αN (x1, . . . ,xN ; t)

+
1
2

N

∑
i6= j=1

V (xi−x j)Ψα1...αN (x1, ...,xN ; t), (6.41)

which is what we wanted to prove.
We have thus developed a second-quantized operator formalism with which we

can study an interacting many-body quantum system of interest. In order to study its
thermodynamic equilibrium properties, we need to determine the grand-canonical
partition function, which can be derived from the time-evolution operator by going
to imaginary time as explained in Sect. 5.6. Since we have expressed the experi-
mentally relevant observables in terms of the field operators, the equilibrium prop-
erties of the system can now be studied through the imaginary-time evolution of the
Heisenberg operator

ψ̂(x,τ) = e(Ĥ−µN̂)τ/h̄ψ̂α(x)e−(Ĥ−µN̂)τ/h̄ (6.42)

at a fixed chemical potential µ [35]. Put differently, the desired quantum field theory
would be defined by the Heisenberg equation of motion

h̄
∂

∂τ
ψ̂α(x,τ) = [Ĥ−µN̂, ψ̂α(x,τ)]− , (6.43)

and we would need to solve this equation in a sufficiently accurate approximation.



122 6 Second Quantization

However, the above operator equation turns out to be rather inconvenient to
deal with in practice. Instead, we develop in the next chapters a functional integral
formalism in which we merge the presently obtained many-body operator theory
with Feynman’s path-integral approach to quantum mechanics. In the functional ap-
proach, the field annihilation operators are represented by their eigenvalues. Since
these eigenvalues can be manipulated algebraically, they are much more convenient
to work with than the operators themselves. Furthermore, the functional-integral
method allows for an elegant solution of the ideal gas, which is therefore an ideal
starting point for incorporating interaction effects perturbatively. These are the top-
ics of the next chapters. However, to derive the functional-integral formalism and
treat the bosonic and fermionic quantum fluids in a unified manner, we need one
more essential ingredient, namely the closure relation for the coherent states in Fock
space. This is the topic of the next section.

6.5 Coherent States

In Sect. 3.7 the notion of the coherent state was introduced in the context of the
one-dimensional harmonic oscillator, where it was defined as the eigenstate of the
annihilation operator. This concept we may generalize to the Fock space for bosons,
where we have that a general coherent state |φ〉 is given by [36, 37]

|φ〉= exp

{
∑
n,α

φn,α ψ̂†
n,α

}
|0〉 , (6.44)

which can be seen as follows. Using (6.18), we have that

ψ̂n,α(ψ̂†
n,α)n|0〉= n(ψ̂†

n,α)n−1|0〉, (6.45)

showing that ψ̂n,α acts as ∂/∂ψ̂†
n,α on the Fock states. As a result, we find

ψ̂n,α |φ〉= φn,α exp

{
∑
n,α

φn,α ψ̂†
n,α

}
|0〉 , (6.46)

showing that |φ〉 is indeed a coherent state. We can also write equation (6.44) in
terms of the field operators and obtain

|φ〉= exp
{

∑
α

∫
dx φα(x)ψ̂†

α(x)
}
|0〉 , (6.47)

where we introduced the field φα(x) = ∑n φn,α χn(x), such that we have ψ̂α(x)|φ〉=
φα(x)|φ〉. It is important to realize that these bosonic coherent states are not or-
thonormal. This was already shown in Sect. 3.7 for the coherent states in the context
of the one-dimensional harmonic oscillator, whose number eigenstates are equiva-
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lent to a bosonic Fock space with only one single-particle quantum state with energy
εn,α = h̄ω . It is left as an exercise to generalize the expression for the overlap of the
coherent states, as given by (3.71), to an arbitrary number of single-particle quantum
states, leading to

〈φ |φ ′〉= exp

{
∑
n,α

φ ∗n,α φ ′n,α

}
= exp

{
∑
α

∫
dxφ ∗α(x)φ ′α(x)

}
≡ e(φ |φ ′). (6.48)

Furthermore, in Sect. 3.7 it was proven that the coherent states obey a closure re-
lation, namely (3.72). It is left as another exercise to generalize the expression for
the closure relation of the bosonic coherent states, as given by (3.72), to an arbitrary
number of single-particle quantum states, leading to

∫
d[φ ∗]d[φ ] e−(φ |φ)|φ〉〈φ |= 1̂ , (6.49)

where the integration measure is defined by

∫
d[φ ∗]d[φ ]≡

∫
∏
n,α

dφ ∗n,α dφn,α

2πi
. (6.50)

To extend the above discussion to fermions and consider also eigenstates of the
fermionic annihilation operator, we need the Grassmann variables introduced in
Sect. 2.4. Consider the state

|φn,α〉= exp
{−φn,α ψ̂†

n,α
} |0〉= (1−φn,α ψ̂†

n,α)|0〉 , (6.51)

where φn,α is an anticommuting Grassmann variable that also anticommutes with
all creation and annihilation operators in the Fock space, that is [φn,α ,ψ(†)

n′,α ′ ]+ = 0.
Then, we have that

ψ̂n,α |φn,α〉 = ψ̂n,α |0〉+φn,α ψ̂n,α ψ̂†
n,α |0〉

= φn,α |0〉= φn,α(1−φn,α ψ̂†
n,α)|0〉= φn,α |φn,α〉 , (6.52)

such that |φn,α〉 is indeed an eigenstate of ψ̂n,α with the eigenvalue φn,α . More
generally, we can now consider the states

|φ〉= exp

{
−∑

n,α
φn,α ψ̂†

n,α

}
|0〉, (6.53)

that also obey ψ̂n,α |φ〉= φn,α |φ〉. Introducing the Grassmann-valued field φα(x) =
∑n φn,α χn(x), the latter two relations can be rewritten as

|φ〉= exp
{
−∑

α

∫
dx φα(x)ψ̂†

α(x)
}
|0〉 (6.54)
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and ψ̂α(x)|φ〉= φα(x)|φ〉.
It is important to note that the coherent states are not orthonormal. In contrast,

we find that

〈φ |φ ′〉 = 〈0|∏
n,α

(1− ψ̂n,α φ∗n,α)(1−φ ′n,α ψ̂†
n,α)|0〉= ∏

n,α
(1+φ ∗n,α φ ′n,α) (6.55)

= exp

{
∑
n,α

φ ∗n,α φ ′n,α

}
= exp

{
∑
α

∫
dx φ ∗α(x)φ ′α(x)

}
≡ e(φ |φ ′) .

Nevertheless, the coherent states do obey a closure relation, which can be shown
as follows. First, consider the simplest case when the single-particle Hilbert space
consists only of one quantum state |n,α〉. Then, we have

1̂ = |0〉〈0|+ |1〉〈1|= |0〉〈0|+ ψ̂†
n,α |0〉〈0|ψ̂n,α

=
∫

dφ ∗n,α dφn,α (1−φ ∗n,α φn,α)(1−φn,α ψ̂†
n,α)|0〉〈0|(1− ψ̂n,α φ ∗n,α)

=
∫

dφ ∗n,α dφn,α exp
{−φ ∗n,α φn,α

} |φn,α〉〈φn,α |, (6.56)

where we performed an integration over Grassmann variables as given by (2.65).
This we can generalize to any number of single-particle states, for which we find

1̂ = ∑
N
|N〉〈N|

=
∫

∏
n,α

(
dφ ∗n,α dφn,α (1−φ ∗n,α φn,α)

)
∏
n,α

(1−φn,α ψ̂†
n,α)|0〉〈0|∏

n,α
(1− ψ̂n,α φ ∗n,α)

=
∫ (

∏
n,α

dφ ∗n,α dφn,α

)
exp

{
−∑

n,α
φ ∗n,α φn,α

}
|φ〉〈φ |

≡
∫

d[φ ∗]d[φ ] e−(φ |φ)|φ〉〈φ |. (6.57)

Summarizing, we have thus found for bosons and fermions that

|φ〉= exp
{
±∑

α

∫
dx φα(x)ψ̂†

α(x)
}
|0〉 , (6.58)

〈φ |φ ′〉= e(φ |φ ′) , (6.59)
∫

d[φ ∗]d[φ ] e−(φ |φ)|φ〉〈φ |= 1̂ . (6.60)

Using the coherent states, we can express the trace of an operator Ô over the Fock
space as
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Tr[Ô] = ∑
N
〈N|Ô|N〉

= ∑
N

∫
d[φ ∗]d[φ ] e−(φ |φ)〈N|φ〉〈φ |Ô|N〉

= ∑
N

∫
d[φ ∗]d[φ ] e−(φ |φ)〈±φ |Ô|N〉〈N|φ〉

=
∫

d[φ ∗]d[φ ] e−(φ |φ)〈±φ |Ô|φ〉 , (6.61)

where it is left as an exercise to show that due to the anticommuting nature of the
Grassmann variables, we have in the fermionic case 〈N|φ〉〈φ |N〉 = 〈−φ |N〉〈N|φ〉.
We have now acquired all the mathematical tools that we need to construct a func-
tional formalism for the unified treatment of bosonic and fermionic quantum fluids.
This is the topic of the next chapter.

6.6 Problems

Exercise 6.1. Creation and Annihilation Operators
(a) Show that (6.15) follows from (6.14).
(b) Prove the various (anti)commutation relations from (6.18) for the (fermionic)
bosonic creation and annihilation operators ψ̂†

n,α and ψ̂n,α , respectively.
(c) Show that the basis of the Fock space given in (6.19) is orthonormal.
(d) Prove the various (anti)commutation relations from (6.28) between the field op-
erators ψ̂α(x) and ψ̂†

α(x).

Exercise 6.2. Operators in Second Quantization
(a) For a single particle, the matrix elements of a general one-body operator Â(r̂)
that depends on the coordinate r̂ are given by the first-quantized expression

An,α;n′,α ′ = 〈χn,α |Â|χn′,α ′〉=
∫

dr χ∗n(r)〈α|Â(r)|α ′〉χn′(r). (6.62)

Show, by considering these matrix elements, that in second quantization the operator
Â is given by

Â = ∑
n,α,n′,α ′

An,α ;n′,α ′ψ̂†
n,α ψ̂n′,α ′ . (6.63)

(b) Show that the factor 1/2 in front of the interaction term on the right-hand side
of (6.21) is correct. Do this by considering the matrix elements of V (x− x′) for
properly (anti)symmetrized and normalized two-particle states in the language of
first quantization. Compare these to the same matrix elements calculated entirely
with the use of creation and annihilation operators, i.e. in the language of second
quantization.



126 6 Second Quantization

Exercise 6.3. Heisenberg Equation of Motion
The goal is to derive and solve the Heisenberg equation of motion from (6.42) for
the field operators ψ̂α(x,τ) and ψ̂†

α(x,τ) in the case of an ideal quantum gas with
no interactions. We assume that the single-particle Schrödinger equation has been
solved and that its solution is given by (6.3).
(a) First, show that

[Ĥ−µN̂, ψ̂α(x,τ)]− =−
{
− h̄2∇∇∇2

2m
+V ex(x)+ εα −µ

}
ψ̂α(x,τ). (6.64)

both for bosons and fermions. Determine also the corresponding commutator for the
creation operators.
(b) The resulting Heisenberg equation of motion takes a simple form by expanding
the field operators in terms of the single-particle eigenstates χn(x). Show that the
solution becomes

ψ̂α(x,τ) = ∑
n

ψ̂n,α e−(εn+εα−µ)τ/h̄χn(x) (6.65)

and find the corresponding expression for ψ̂†
α(x,τ).

Exercise 6.4. Bosonic Coherent States
(a) Show that the coherent state in equation (6.54) is an eigenstate of the bosonic
field operators ψ̂α(x). Do this by Taylor expanding the exponent and by explicitly
calculating the effect of the annihilation operator on an arbitrary term in the expan-
sion.
(b) Prove (6.48).
(c) Prove (6.49).

Exercise 6.5. Show that the minus sign in the right-hand side of (6.61) is indeed
required for the fermionic case.

Exercise 6.6. Bardeen-Cooper-Schrieffer (BCS) Theory
In a Nobel prize-winning paper [8], Bardeen, Cooper and Schrieffer used a varia-
tional wavefunction to explain the superconducting state of metals at zero temper-
ature. This exercise is mainly used as a training in second-quantized calculations,
because presently not all the physics behind the wavefunction can be understood.
However, it does serve as an excellent preparation for Chap. 12, where the con-
cepts introduced in this exercise are extensively discussed, but then from the slightly
different perspective of the functional-integral formalism. Consider the following
second-quantized Hamiltonian for a two-component Fermi gas (the two components
are labelled by a spin index α =↑,↓) with an attractive interaction V0 < 0 between
opposite spins, i.e.

Ĥ = ∑
k,α

εkψ̂†
k,α ψ̂k,α +

V0

V ∑
K,k,k′

ψ̂†
K/2+k′,↑ψ̂

†
K/2−k′,↓ψ̂K/2−k,↓ψ̂K/2+k,↑ . (6.66)
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We determine the ground-state energy using the wavefunction

|ΨBCS〉= ∏
k

(
uk + vkψ̂†

k,↑ψ̂
†
−k,↓

)
|0〉 , (6.67)

where uk,vk are variational parameters that we for simplicity take to be real. This
wavefunction describes physically a Bose-Einstein condensate of fermion pairs with
opposite spin and momentum, called Cooper pairs.
(a) Show that the BCS wavefunction leads to the following expecation values

〈ΨBCS|ψ̂†
k,α ψ̂k,α |ΨBCS〉 = v2

k, (6.68)
〈ΨBCS|ψ̂k,↓ψ̂−k,↑|ΨBCS〉 = ukvk. (6.69)

(b) Show that |ΨBCS〉 is normalized if u2
k + v2

k = 1.
(c) Show that the expectation value 〈ΨBCS|Ĥ−µN̂|ΨBCS〉 gives rise to the following
terms, namely

〈ΨBCS|Ĥ−µN̂|ΨBCS〉= 2∑
k

(εk−µ)v2
k +

V0

V ∑
k,k′

ukvkuk′vk′ + . . . , (6.70)

where we do not consider any other possible terms, N̂ is the operator for the total
number of atoms and µ is the chemical potential.
(d) Motivated by (b), we may write uk = sinθk and vk = cosθk. Express 〈ΨBCS|Ĥ−
µN̂|ΨBCS〉 as obtained from (6.70) in terms of θk, and minimize this result to find

0 = (εk−µ)sin2θk + cos2θk∆ , (6.71)

where ∆, which is also called the gap parameter, obeys the gap equation

∆ =− V0

2V ∑
k′

sin2θk′ . (6.72)

(e) Solve for θk and show that the gap equation can be rewritten as

1
V0

=− 1
V ∑

k

1

2
√

(εk−µ)2 +∆2
. (6.73)

The right-hand side of the last equation is not convergent. However, in Chap.
12, we learn how to deal with its ultraviolet divergence. So far, we have performed
second-quantized calculations without actually realizing that they describe the su-
perfluid state of attractively interacting fermions. In Chap. 12, we find that the gap
∆ is interpreted as the energy needed to break up a Cooper pair, which means that it
costs a certain amount of energy to excite the BCS ground state. As a result, an ob-
ject moving through a condensate of Cooper pairs needs to have a minimum kinetic
energy to transfer momentum, i.e. to experience friction.
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Exercise 6.7. Itinerant Ferromagnetism
In a Fermi system, itinerant ferromagnetism is a result of the competition between
the kinetic energy and repulsive interactions. The word “itinerant” reflects the fact
that the magnetism is due to spins that are delocalized, as opposed to localized spins
in, e.g., the Ising or Heisenberg models. Let us first convince ourselves of the fact
that for the same total number of particles, the polarized Fermi gas has a larger
kinetic energy than the unpolarized Fermi gas, where the Hamiltonian of the system
is again given by (6.66), but now with V0 > 0.
(a) Consider the unpolarized state |Ψup〉 = ∏′

k ψ̂†
k,↑ψ̂

†
k,↓|0〉, where ∏′ denotes the

restricted product of all states below the Fermi energy. Calculate its total kinetic
energy in terms of the total density n. Note that for the total density we have n =
n↑+n↓, where nα is the density of atoms in spin state |α〉.
(b) Next, consider the fully-polarized state |Ψp〉 = ∏′

k ψ̂†
k,↑|0〉. Calculate its kinetic

energy in terms of the total density n = n↑. Note that the Fermi energy is now dif-
ferent from the previous exercise.
(c) We define the magnetization by m̂ ≡ ∑k,α ,α ′ ψ̂

†
k,α σσσαα ′ψ̂k,α ′/V , where σσσ =

(σσσ x,σσσ y,σσσ z) is a vector of Pauli matrices. What is the magnetization for the above
two states?
(d) Calculate the interaction energy for the polarized and unpolarized state and show
that the polarized state has no interaction energy. Explain why.
(e) Consider now the state |Ψ〉= ∏′

k ψ̂†
k,↑∏′

k′ ψ̂
†
k′,↓|0〉, where the products over k,k′

are restricted by the requirement that the density of ↑ atoms is n↑ and the density of
↓ atoms is n↓. Give the total energy as a function of n↑ and n↓.
(f) Using this result, show that the system becomes polarized if V0D(εF) > 1, where
D(εF) is the density of states at the Fermi level. This is the Stoner criterion.
(g) Calculate the interaction energy of the state |Ψ〉= ∏′

k(ψ̂
†
k,↑+eiϕ ψ̂†

k,↓)|0〉, where
ϕ is an arbitrary angle. In which direction is the magnetization of this state pointing?
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Chapter 7
Functional Integrals

It is difficult for me to believe that quantum mechanics, working
very well for currently practical set-ups, will nevertheless fail
badly with improvements in counter efficiency.
– John S. Bell

In this first chapter of Part II, we introduce the functional-integral formalism that
we use throughout the rest of the book to determine the equilibrium properties of a
quantum fluid. Today, functional integrals are the preferred tool of researchers work-
ing on quantum many-body problems, in particular in condensed-matter physics and
high-energy physics. Although this formulation of quantum field theory is of course
fully equivalent to the operator formulation developed in the previous chapter, it is
in practice more flexible to arrive at systematic approximation schemes and often
also leads to a much simpler derivation of exact results. In this chapter, we derive
the functional formulation of quantum field theory exactly along the same lines as
we derived the path-integral approach to quantum mechanics in Chap. 5. To famil-
iarize ourselves with this new method, we then discuss in detail the ideal quantum
gases. The deep and fundamentally different consequences of interactions are then
the topic of the rest of the book.

7.1 Grand-Canonical Partition Function

From statistical physics, we know that the equilibrium properties of an interacting
many-body system follow from the grand-canonical partition sum

Z = Tr
[
e−β (Ĥ−µN̂)

]
, (7.1)

where β = 1/kBT and µ is the chemical potential. Our goal is to evaluate this quan-
tity by combining many-body quantum-field theory with Feynman’s path-integral
approach to quantum mechanics. As we show next, our goal can be achieved by
writing the partition function as a functional integral over time-dependent fields
φα(x,τ), in the same manner that we wrote the partition function for a single parti-
cle as a path integral over time-dependent paths x(τ), which was achieved in Chap.
5. These fields are actually the eigenvalues of the coherent states that we introduced
in the previous chapter. We start with (6.61) for the trace of an operator, evaluated
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as a functional integral over coherent states, giving

Z =
∫

d[φ ∗]d[φ ] e−(φ |φ)〈±φ |e−β (Ĥ−µN̂)|φ〉 , (7.2)

and observe that we are thus faced with the task of calculating the matrix elements
〈φM|e−β (Ĥ−µN̂)|φ0〉 with φ0,α(x) = φα(x) and φ ∗M,α(x) =±φ ∗α(x). Just like in Sect.

5.6, we realize that the operator e−β (Ĥ−µN̂) is identical to the quantum mechani-
cal evolution operator U(t,0) = e−i(Ĥ−µN̂)t/h̄ evaluated at t =−ih̄β . Put differently,
we need to calculate the matrix elements of the imaginary-time evolution operator
U(−iτ,0) for τ = h̄β . To do so, we split the time interval [0, h̄β ] into M pieces, with
τ j = jh̄β/M and j = 0,1, . . . ,M, such that ∆τ = h̄β/M. The procedure is summa-
rized in Fig. 7.1.

¿M = ~¯ ¿M¡1

¢¿

¿1 ¿0 = 0¿2

Fig. 7.1 Illustration of the slicing of the imaginary time interval [0, h̄β ] needed to derive Feynman’s
path-integral formulation of the partition function.

At each intermediate time τ j, we then apply the closure relation of the coherent
states, given by (6.60). This yields

〈φM|e−β (Ĥ−µN̂)|φ0〉

=
∫ (

M−1

∏
j=1

d[φ ∗j ]d[φ j] e−(φ j |φ j)

)
M

∏
j=1
〈φ j|e−∆τ(Ĥ−µN̂)/h̄|φ j−1〉 . (7.3)

Now, we can use that in the limit M → ∞ we only need to know the latter matrix
elements up to order ∆τ , because terms of order (∆τ)2 lead to corrections only
of order M(∆τ)2 ∝ 1/M to the total matrix element, which consequently vanish.
Hence,

〈φ j|e−∆τ(Ĥ−µN̂)/h̄|φ j−1〉 ' 〈φ j|1−∆τ(Ĥ−µN̂)/h̄|φ j−1〉
≡ 〈φ j|φ j−1〉(1−∆τH[φ ∗j ,φ j−1]/h̄) , (7.4)

where we defined the grand-canonical Hamiltonian functional as
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H[φ ∗,φ ] = ∑
α

∫
dx φ ∗α(x)

{
− h̄2∇∇∇2

2m
+V ex(x)+ εα −µ

}
φα(x)

+
1
2 ∑

α ,α ′

∫
dx

∫
dx′ φ ∗α(x)φ ∗α ′(x

′)V (x−x′)φα ′(x′)φα(x) , (7.5)

which follows from the second-quantized form of the Hamiltonian and the num-
ber operator, given by (6.29) and (6.30), together with the defining property of the
coherent states, namely ψ̂α(x)|φ〉= φα(x)|φ〉 and 〈φ |ψ̂†

α(x) = 〈φ |φ ∗α(x).
Next, we can re-exponentiate the right-hand side of (7.4), leading again to errors

only of order (∆τ)2, giving

〈φ j|e−∆τ(Ĥ−µN̂)/h̄|φ j−1〉= e(φ j |φ j−1)−∆τH[φ∗j ,φ j−1]/h̄ , (7.6)

where we also used (6.59) for the overlap of the coherent states. As a result, the
desired matrix element of the imaginary-time evolution operator becomes

〈φM|e−β (Ĥ−µN̂)|φ0〉 =
∫ (

M−1

∏
j=1

d[φ ∗j ]d[φ j] e−(φ j |φ j)

)
(7.7)

×exp

{
M

∑
j=1

((φ j|φ j−1)−∆τH[φ ∗j ,φ j−1]/h̄)

}
,

which can then be manipulated into the suggestive form

〈φM|e−β (Ĥ−µN̂)|φ0〉= e(φM |φM)
∫ (

M−1

∏
j=1

d[φ ∗j ]d[φ j]

)

×exp

{
−1

h̄

M

∑
j=1

∆τ
(

h̄
(φ j|φ j)− (φ j|φ j−1)

∆τ
+H[φ ∗j ,φ j−1]

)}
. (7.8)

Taking the continuum limit M → ∞ and putting φ j ≡ φ(τ j), we find that

〈φM|e−β (Ĥ−µN̂)|φ0〉

= e(φ(h̄β )|φ(h̄β ))
∫ φ∗(h̄β )=φ∗M

φ(0)=φ0

d[φ ∗]d[φ ] e−S[φ∗,φ ]/h̄ , (7.9)

with the Euclidean action given by

S[φ ∗,φ ] =
∫ h̄β

0
dτ

{
∑
α

∫
dx φ ∗α(x,τ)h̄

∂
∂τ

φα(x,τ)+H[φ ∗(τ),φ(τ)]
}

. (7.10)

We have thus obtained the desired functional integral for the matrix element of
(7.3), where we need to integrate over all fields φα(x,τ) that satisfy the boundary
conditions φα(x,0) = φ0,α(x) and φ ∗α(x, h̄β ) = φ ∗M,α(x). We note that for bosons
the fields φα(x,τ) are ordinary complex functions, whereas for fermions they are
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Grassmann valued functions, meaning that we pick up a minus sign each time we
permute two such fields. Note that (7.9) is precisely the field theory analogue of
the Feynman path integral for the transition amplitude obtained in (5.34). To calcu-
late the grand-canonical partition function, we see from (7.2) that we need to put
φ0,α(x) equal to ±φM,α(x) and perform a last functional integration over φM,α(x)
and φ ∗M,α(x). Then, we finally obtain

Z =
∫

d[φ ∗]d[φ ] e−S[φ∗,φ ]/h̄, (7.11)

where we need to integrate over all fields with the boundary conditions φα(x, h̄β ) =
±φα(x,0), i.e. the fields are periodic in [0, h̄β ] for bosons and antiperiodic for
fermions. The short-hand notation for the integration measure now means

∫
d[φ ∗]d[φ ] =

∫ M

∏
j=1

d[φ ∗j ]d[φ j] =
∫ M

∏
j=1

∏
n,α

dφ ∗j,n,α dφ j,n,α

(2πi)(1±1)/2

=
∫

∏
n,α

d[φ ∗n,α ]d[φn,α ], (7.12)

where (anti)periodic boundary conditions were implied and we also used (6.50).
Note that in (7.9) we have used the same notation for the integration measure as
in (7.11), although there is in principle one more integration in the expression for
the partition function. This may seem somewhat imprecise. However, thinking in
terms of functional integration over all possible continuous functions φα(x,τ), we
note that the difference between the two expressions is automatically accounted for
by the different boundary conditions of the continuous integration. Put differently,
by specifying each time the specific boundary conditions, it becomes clear which
of the discrete integration measures is actually meant. From now on we also always
imply (anti)periodic boundary conditions for (fermions) bosons, corresponding to
the discrete measure of (7.12), unless stated otherwise.

Having arrived at an exact identity between the partition function and a functional
integral, we are now going to familiarize ourselves with this identity. This means that
in the next section we are going to treat various methods for performing functional
integrals by considering the ideal quantum gases.

7.2 Ideal Quantum Gases

Since the partition functions Z0 of the ideal quantum gases are known exactly, they
are ideal test cases for our field-theoretical methods. Moreover, a thorough field-
theoretical knowledge of the ideal quantum gases is important in its own right be-
cause it forms the basis for treating interacting quantum gases, in particular when
the interaction effects are incorporated perturbatively. How such a perturbation the-
ory is performed is discussed in detail in Chap. 8. For the noninteracting quantum
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gas, we have from (7.5) and (7.10) that

S0[φ ∗,φ ] = ∑
α

∫ h̄β

0
dτ

∫
dx

× φ ∗α(x,τ)
{

h̄
∂

∂τ
− h̄2∇∇∇2

2m
+V ex(x)+ εα −µ

}
φα(x,τ) (7.13)

and evaluating the partition function boils down to performing a Gaussian integral
over the fields. It will be illustrative to evaluate this partition function in three dif-
ferent ways.

7.2.1 Semiclassical Method

The first method, which is called the semiclassical method, is the field-theoretical
analogue of the way we solved the path integral for a free particle in the example of
Sect. 5.4.1. We start by considering solely the matrix element 〈±φ |e−β (Ĥ−µN̂)|φ〉
and postpone the evaluation of the trace for the partition function to the end of the
calculation. By using the full set of eigenstates χn(x)≡ 〈x|n〉 for the noninteracting
single-particle Schrödinger equation, as introduced in (6.3), we can expand the fields
as

φα(x,τ) = ∑
n

φn,α(τ)χn(x). (7.14)

As follows from (7.9), the matrix element 〈±φ |e−β (Ĥ−µN̂)|φ〉 is in the absence of
interactions given by the following path integral

∫ φ∗(h̄β )=±φ∗

φ(0)=φ

(
∏
n,α

d[φ ∗n,α ]d[φn,α ]

)
exp

{
∑
n,α

φ ∗n,α(h̄β )φn,α(h̄β )

}

×exp

{
−1

h̄

∫ h̄β

0
dτ ∑

n,α
φ ∗n,α(τ)

(
h̄

∂
∂τ

+ εn,α −µ
)

φn,α(τ)

}
,

which is the product for each n and α of the path integral
∫

d[φ ∗n,α ]d[φn,α ]

×exp
{

φ ∗n,α(h̄β )φn,α(h̄β )− 1
h̄

∫ h̄β

0
dτ φ ∗n,α(τ)

(
h̄

∂
∂τ

+ εn,α −µ
)

φn,α(τ)
}

with the boundary conditions φn,α(0) = φn,α and φ ∗n,α(h̄β ) = ±φ ∗n,α . Note that
this last path integral thus actually corresponds to the particular matrix element
〈±φn,α |e−β (εn,α−µ)ψ̂†

n,α ψ̂n,α |φn,α〉 for one specific value of n and α .
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Then, we perform in analogy with Sect. 5.4.1 a fluctuation expansion, which
amounts to a shift to the new integration variables ξn,α(τ), such that φn,α(τ) =
φcl;n,α(τ)+ ξn,α(τ) and φ ∗n,α(τ) = φ ∗cl;n,α(τ)+ ξ ∗n,α(τ), where φcl;n,α(τ) obeys the
‘classical’ equation of motion

δS0[φ ∗,φ ]
δφ ∗n,α(τ)

∣∣∣∣
φ=φcl;n,α

=
(

h̄
∂

∂τ
+ εn,α −µ

)
φcl;n,α(τ) = 0 (7.15)

and similarly for φ ∗cl;n,α(τ). This means that we fix the classical fields by requir-
ing them to minimize the action. The solutions to (7.15) with the correct boundary
values are

φcl;n,α(τ) = φn,α e−(εn,α−µ)τ/h̄ and φ ∗cl;n,α(τ) =±φ ∗n,α e(εn,α−µ)(τ−h̄β )/h̄, (7.16)

such that we obtain

exp
{
±e−β (εn,α−µ)φ ∗n,α φn,α

}

×
∫

d[ξ ∗n,α ]d[ξn,α ] exp
{
−1

h̄

∫ h̄β

0
dτ ξ ∗n,α(τ)

(
h̄

∂
∂τ

+ εn,α −µ
)

ξn,α(τ)
}

with the boundary conditions ξ ∗n,α(h̄β ) = ξn,α(0) = 0. Note that in the last expres-
sion the path integral in the second line evaluates to 1, because it corresponds to the
matrix element

〈0|e−β (εn,α−µ)ψ̂†
n,α ψ̂n,α |0〉= 〈0|(1−β (εn,α −µ)ψ̂†

n,α ψ̂n,α + . . .)|0〉= 1,

such that actually only the prefactor, namely exp
{
±e−β (εn,α−µ)φ ∗n,α φn,α

}
, remains.

Multiplying the obtained result for each value of n and α , we find the total matrix
element

〈±φ |e−β (Ĥ−µN̂)|φ〉= exp

{
±∑

n,α
e−β (εn,α−µ)φ ∗n,α φn,α

}
, (7.17)

which we then still have to integrate in order to evaluate the trace and find the
partition function. Using (2.66) and (2.67), we find

Z0 = ∏
n,α

∫ dφ ∗n,α dφn,α

(2πi)(1±1)/2 exp

{
−∑

n,α

(
1∓ e−β (εn,α−µ)

)
φ ∗n,α φn,α

}

= ∏
n,α

(1∓ e−β (εn,α−µ))∓1 = exp

{
∓∑

n,α
log(1∓ e−β (εn,α−µ))

}
. (7.18)

This can be immediately compared with (4.38), where the only differences are that
our present result is also valid in the presence of an external potential and that we
have included the possibility of a spin degree of freedom. We have thus obtained
the exact result for the ideal bosonic and fermionic quantum gases with the use of
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field-theoretical methods. The average total number of particles is obtained by using
the thermodynamic identity of (4.28), namely

〈N̂〉0 =
1
β

∂ logZ0

∂ µ
, (7.19)

leading to

〈N̂〉0 = ∑
n,α

1
eβ (εn,α−µ)∓1

, (7.20)

which is the summation over the previously obtained Bose-Einstein and Fermi-
Dirac distributions of (4.40) and (4.41). Note that in the homogeneous case we have
χk(x) = eik·x/

√
V , where V = Ld is the volume of a d-dimensional box and the

wavevector k is related to the momentum p through p = h̄k. The general single-
particle eigenenergies εn,α in (7.20), then result in

εk,α =
h̄2k2

2m
+ εα , (7.21)

which reduces to εp = p2/2m for spinless atoms.

7.2.2 Matsubara Expansion

Next, we evaluate the partition function for the noninteracting quantum gas again,
but this time by writing the action first in a more convenient basis. We not only
transform the space coordinate using the full set of eigenstates χn(x) ≡ 〈x|n〉, but
also the (imaginary) time coordinate by going to (imaginary) frequency space

φα(x,τ) = ∑
n

∞

∑
n=−∞

φn,n,α χn(x)
e−iωnτ
√

h̄β
, (7.22)

where ωn = π(2n)/h̄β for bosons and ωn = π(2n + 1)/h̄β for fermions. These are
known as the even and odd Matsubara frequencies, or as the bosonic and fermionic
Matsubara frequencies, respectively. Note that the Matsubara frequencies conve-
niently incorporate the boundary conditions automatically, since they make the
bosonic fields periodic in imaginary time, and the fermionic fields antiperiodic. Us-
ing the above expansion, we find for the action of (7.13) that
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S0[φ ∗,φ ] = ∑
α

∫ h̄β

0
dτ

∫
dx φ ∗α(x,τ)

×
{

h̄
∂

∂τ
− h̄2∇∇∇2

2m
+V ex(x)+ εα −µ

}
φα(x,τ)

= ∑
α

∫ h̄β

0
dτ

∫
dx ∑

n,n
∑

n′,n′
φ ∗n,n,α χ∗n(x)

eiωnτ
√

h̄β

× (−ih̄ωn′ + εn′ + εα −µ)φn′,n′,α χn′(x)
e−iωn′ τ√

h̄β
= ∑

n,n,α
φ ∗n,n,α (−ih̄ωn + εn,α −µ)φn,n,α , (7.23)

where we used the orthonormality of the single-particle eigenstates and

∫ h̄β

0
dτ

ei(ωn−ωn′ )τ

h̄β
= δn,n′ . (7.24)

Example 7.1. Note that each time we perform a transformation on the integration
variables, we in principle pick up a corresponding Jacobian. In this respect there is
a subtlety with the continuum limit of the functional integral that we for complete-
ness’ sake would like to point out here, although it turns out to be unimportant in
practice and can therefore be safely ignored. If we consider the discrete version of
the above Fourier transform

φ j,n,α =
M−1

∑
n=0

φn,n,α
e−iωnτ j
√

∆τM
, (7.25)

with ∆τ = h̄β/M, we find that

∑
j

φ ∗j,n,α φ j,n,α = ∑
n

1
∆τ

φ ∗n,n,α φn,n,α , (7.26)

which means that the Jacobian for the transformation from discrete time slices to
the Matsubara frequencies is given by

∂ ({φ ∗j,n,α ,φ j,n,α})
∂ ({φ ∗n,n,α ,φn,n,α}) = (∆τ)∓M =

(
M
h̄β

)±M

. (7.27)

Note that the difference between the Jacobians for bosons and fermions is a conse-
quence of the fact that for Grassmann variables, we have that

∫
dφ c φ = c =

∫
d(cφ) c (cφ),
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whereas for ordinary complex integration, we would use
∫

dφ c φ =
∫

d(cφ)
1
c

(cφ).

This also implies that for Grassmann variables dφ does not have the same physical
dimension as φ . Indeed, their dimensionalities are precisely inverse to each other.
Both observations are easily understood from the fact that integration is equivalent
to differentiation for Grassmann variables. Although the factor M±M from (7.27)
is present when working with the discrete expression, it has no obvious continuum
limit. As a result, the Jacobian is usually taken to be just (h̄β )∓M . The difference
amounts to a numerical prefactor in the partition sum, which cancels when calcu-
lating expectation values. Moreover, we show below that the prefactor actually also
plays no role in obtaining the exact answer for the partition sum of the ideal quantum
gas directly in the continuum limit.

For the grand-canonical partition function of the gas, we thus find from (7.23)
that

Z0 =
∫ (

∏
n,n,α

dφ ∗n,n,α dφn,n,α

(2πi)(1±1)/2

1
(h̄β )±1

)

×exp

{
−1

h̄ ∑
n,n,α

φ ∗n,n,α(−ih̄ωn + εn,α −µ)φn,n,α

}
, (7.28)

where we included the factor 1/(h̄β )±1 coming from the Jacobian of the coordinate
transformation as explained in the example. Note that we can immediately perform
the Gaussian integrals to obtain

Z0 = ∏
n,n,α

(β (−ih̄ωn + εn,α −µ))∓1

= exp

{
∓ ∑

n,n,α
log(β (−ih̄ωn + εn,α −µ))

}
, (7.29)

where we used (2.66) and (2.67). To evaluate the resulting sum over Matsubara
frequencies, it is useful to add a convergence factor eiωnη and finally take the limit
η ↓ 0. The precise reason for this procedure is explained in Example 7.2 at the end
of this section. Comparing the above expression with (7.18), we thus need to prove

lim
η↓0

∑
n

log(β (−ih̄ωn + ε−µ))eiωnη = log(1∓ e−β (ε−µ)) . (7.30)

In first instance, we can show that this is correct up to a constant by differentiating
the latter equation with respect to β µ . We then obtain
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Fig. 7.2 Illustration of the contour integrations that are required to perform the summation over
the Matsubara frequencies. a) The black dots indicate the position of the poles in the integrand
from (7.32). b) The thick line indicates branch cut of the integrand from (7.34).

lim
η↓0

1
h̄β ∑

n

eiωnη

iωn− (ε−µ)/h̄
=∓ 1

eβ (ε−µ)∓1
, (7.31)

which can be shown by using contour integration in the following way. First note
that the function h̄β/(eh̄β z ∓ 1) has simple poles at the even and odd Matsubara
frequencies, such that its residue at the poles is given by±1. Hence, by applying the
residue theorem from (2.40), we find that

lim
η↓0

1
2πi

∫

C
dz

eηz

z− (ε−µ)/h̄
±1

eh̄β z∓1
= lim

η↓0

1
h̄β ∑

n

eiωnη

iωn− (ε−µ)/h̄
(7.32)

with C a contour that fully encloses the imaginary axis as shown in Fig. 7.2a. Next,
we note that we can freely add the infinite arcs C′ to the contour C, because the
additional integration along the arcs C′ on the left-hand side of (7.32) vanishes. The
reason for this is that the integrand behaves as±e−(h̄β−η)Re(z)/|z| for Re(z)→∞ and
as −eηRe(z)/|z| for Re(z)→−∞. Thus, for any 0 < η < h̄β , the integrand always
vanishes much faster than 1/|z| on the contour C′, namely exponentially fast, such
that the corresponding integral indeed gives no contribution. By considering now
the closed contours formed by C and C′, we see that the poles at the Matsubara
frequencies are no longer inside the contour. Now, we only have the simple pole at
z = (ε−µ)/h̄ inside the contour and application of the residue theorem leads to

lim
η↓0

1
2πi

∫

C+C′
dz

eηz

z− (ε−µ)/h̄
±1

eh̄β z∓1
=∓ 1

eβ (ε−µ)∓1
, (7.33)

which is then seen to prove (7.31). As a result, we have also shown the correctness
of (7.30) up to a constant independent of β µ .
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However, we can also prove (7.30) directly using contour integration, which we
show explicitly for the bosonic case, while the fermionic case is left as an exercise.
We can start again by writing the sum over bosonic Matsubara frequencies as a
contour integral along the contour C, which gives

lim
η↓0

∑
n

log(β (−ih̄ωn +ε−µ))eiωnη = lim
η↓0

1
2πi

∫

C
dz log(β (−h̄z+ε−µ))

eηz

eh̄β z−1
.

(7.34)
We can also add the arc C′ at no cost, because its contribution evaluates to zero.
However, this time we need to be careful near the positive real axis, because for
z > (ε−µ)/h̄ the logarithm in the integrand of (7.34) has a branch cut. As a result,
we need to integrate around this branch cut, using C′′ as a part of the contour which
is shown in Fig. 7.2b. Since now the contour C+C′+C′′ does not contain any poles,
application of the residue theorem simply yields

lim
η↓0

1
2πi

∫

C+C′+C′′
dz log(β (−h̄z+ ε−µ))

eηz

eh̄β z−1
= 0. (7.35)

This leads to

lim
η↓0

∫

C

dz
2πi

log(β (−h̄z+ ε−µ))
eηz

eh̄β z−1
=

∫

C′′
dz

2πi
log(β (−h̄z+ ε−µ))

−1
eh̄β z−1

=
∫ ∞

(ε−µ)/h̄
dz

−1
eh̄β z−1

= log(1− e−β (ε−µ)), (7.36)

where we used that log(x + iε)− log(x− iε) = 2πi for x < 0 and ε ↓ 0. Comparing
(7.34) with (7.36) shows that we have indeed proven (7.30), which leads to the
conclusion that the Matsubara expansion gives the same exact solution for the ideal
quantum gas as the semiclassical method of the previous paragraph.

Example 7.2. Consider the following grand-canonical partition sum for bosonic par-
ticles that have only access to one single-particle quantum state with energy ε

Z = Tr[e−β (ε−µ)ψ̂†ψ̂ ], (7.37)

where ψ̂† creates a single boson in this single-particle quantum state. Then, the
slicing procedure of Sect. 7.1 leads to the following path integral for the partition
sum,

Z(η) =
∫

d[φ ∗]d[φ ]exp
{
−1

h̄

∫ h̄β

0
dτφ ∗(τ +η)

(
h̄

∂
∂τ

+ ε−µ
)

φ(τ)
}

=
∫

d[φ ∗]d[φ ]exp
{
−1

h̄ ∑
n

φ ∗n (−ih̄ωn + ε−µ)eiηωn φn

}
, (7.38)
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Note that the slicing procedure from Sect. 7.1 shows that the fields φ ∗(τ + η) and
φ(τ) come from operators ψ̂† and ψ̂ acting on the imaginary time slices ∆τ( j+1) =
τ + ∆τ and ∆τ j = τ , respectively. Indeed, (7.4) shows that for a normal-ordered
Hamiltonian, ψ̂† acts on slice j + 1 when ψ̂ acts on slice j, which then explains
why we should take η to be infinitesimally positive in the limit ∆τ ↓ 0.

It is left as an exercise to show that if we take η to be infinitesimally negative,
we find for the partition function

lim
η↑0

Z(η) =
(

eβ (ε−µ)−1
)−1

= e−β (ε−µ)
(

1− e−β (ε−µ)
)−1

= e−β (ε−µ) lim
η↓0

Z(η)

= e−β (ε−µ)Tr[e−β (ε−µ)ψ̂†ψ̂ ] = Tr[e−β (ε−µ)ψ̂ψ̂†
], (7.39)

which shows that there is a discontinuity of e−β (ε−µ) in the partition sum of (7.38)
as a function of η . Moreover, this discontinuity precisely represents the equal-time
commutator in the operator formalism. We will see more examples of this feature in
the next chapters.

7.2.3 Green’s Function Method

The third method turns out to be the most convenient and versatile technique, and
it is also the most easily extended to interacting quantum gases. Therefore, this is
the method that is actually used most frequently throughout the book. The method
is based on explicitly introducing the (inverse) noninteracting Green’s function
G−1

0;α,α ′(x,τ;x′,τ ′), such that the partition sum of the noninteracting quantum gas
can be written as

Z0 =
∫

d[φ ∗]d[φ ] exp
{

∑
α

∫ h̄β

0
dτ

∫
dx

×∑
α ′

∫ h̄β

0
dτ ′

∫
dx′ φ ∗α(x,τ)G−1

0;α,α ′(x,τ;x′,τ ′)φα ′(x′,τ ′)

}
, (7.40)

where the specific function G−1
0;α,α ′(x,τ;x′,τ ′) leading to this expression still has to

be determined. However, note that we may interpret G−1
0 as a ‘matrix’ both in spin

space and in coordinate space with matrix elements G−1
0;α,α ′(x,τ;x′,τ ′). The indices

of this matrix are discrete in the spin coordinates, but continuous in the space and
imaginary-time coordinates. In analogy with (2.66) and (2.67), valid for discrete
matrices, we can then write

Z0 = exp
{∓Tr[log(−G−1

0 )]
}

. (7.41)
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To be able to work practically with the above expression, we need to introduce
concepts such as matrix multiplication and taking a trace in coordinate space. For
matrix multiplication of the matrices M and M′, we have in analogy with ordinary
matrix multiplication

[M ·M′]α,α ′′(x,τ;x′′,τ ′′)

= ∑
α ′

∫ h̄β

0
dτ ′

∫
dx′Mα,α ′(x,τ;x′,τ ′)M′

α ′,α ′′(x
′,τ ′;x′′,τ ′′), (7.42)

where also the trace has its familiar form of adding diagonal elements, namely

Tr[M] = ∑
α

∫ h̄β

0
dτ

∫
dx Mα ,α(x,τ;x,τ). (7.43)

The definition of the inverse of a matrix is given by

δα,α ′′δ (x−x′′)δ (τ− τ ′′)

= ∑
α ′

∫ h̄β

0
dτ ′

∫
dx′Mα,α ′(x,τ;x′,τ ′)M−1

α ′,α ′′(x
′,τ ′;x′′,τ ′′), (7.44)

such that the Dirac delta function is the unity matrix in coordinate space, as follows
also from

[M ·1]α,α ′′(x,τ;x′′,τ ′′)

= ∑
α ′

∫ h̄β

0
dτ ′

∫
dx′Mα,α ′(x,τ;x′,τ ′)δα ′,α ′′δ (x′−x′′)δ (τ ′− τ ′′)

= Mα,α ′′(x,τ;x′′,τ ′′). (7.45)

Finally, we also introduce the following convenient short-hand notation

(φ |M|φ) (7.46)

= ∑
α,α ′

∫
dτ

∫
dx

∫
dτ ′

∫
dx′φ ∗α(x,τ)Mα,α ′(x,τ;x′,τ ′)φα ′(x′,τ ′).

Note that the notation (φ |M|φ) is basis independent and upon basis transformation
this inner product can be evaluated in any other basis. As a result, (7.40) becomes
in basis-independent notation

Z0 =
∫

d[φ ∗]d[φ ] exp
{(

φ |G−1
0 |φ)}

= exp
{∓Tr[log(−G−1

0 )]
}

. (7.47)

Comparing (7.40) with (7.11) and (7.13), we find that the inverse Green’s func-
tion is given by
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G−1
0;α ,α ′(x,τ;x′,τ ′) (7.48)

=−1
h̄

{
h̄

∂
∂τ
− h̄2∇∇∇2

2m
+V ex(x)+ εα −µ

}
δ (x−x′)δ (τ− τ ′)δα ,α ′ ,

which is easily shown by substituting the above expression in (7.40) and integrating
and summing over the primed coordinates. Using the definition of the inverse, we
have that

δα,α ′δ (x−x′′)δ (τ− τ ′′)

= ∑
α ′

∫ h̄β

0
dτ ′

∫
dx′ G−1

0;α,α ′(x,τ;x′,τ ′)G0;α ′,α ′′(x′,τ ′;x′′,τ ′′), (7.49)

such that we can multiply (7.48) on both sides with G0;α ′,α ′′(x′,τ ′;x′′,τ ′′), which
after integration over the singly-primed coordinates leads to

−h̄δ (x−x′)δ (τ− τ ′)δα ,α ′

=

{
h̄

∂
∂τ
− h̄2∇∇∇2

2m
+V ex(x)+ εα −µ

}
G0;α,α ′(x,τ;x′,τ ′) , (7.50)

where we renamed the doubly-primed coordinates as singly-primed coordinates
again. This shows that G0;α,α ′(x,τ;x′,τ ′) is indeed mathematically a Green’s func-
tion, and its physical meaning will be extensively studied in the rest of the book.
Also note that G0;α,α ′(x,τ;x′,τ ′) is not an operator, but rather the solution to (7.50),
given by

G0;α ,α ′(x,τ;x′,τ ′) = δα,α ′ ∑
n,n

−h̄
−ih̄ωn + εn,α −µ

χn(x)χ∗n(x′)
e−iωn(τ−τ ′)

h̄β
, (7.51)

which can be readily checked by substitution in (7.50).
In general, we can expand any matrix in terms of Matsubara modes and single-

particle eigenfunctions using

Mα,α ′(n, iωn;n′, iωn′)

≡
∫ h̄β

0
dτ dτ ′

∫
dx dx′ Mα ,α ′(x,τ;x′,τ ′)χ∗n(x)χn′(x′)

eiωnτ−iωn′ τ
′

h̄β
. (7.52)

For the noninteracting Green’s function of (7.51), this becomes

G0;α ,α ′(n, iωn;n′, iωn′) = δn,n′δn,n′δα ,α ′
−h̄

−ih̄ωn + εn,α −µ
, (7.53)

where we used the orthonormality of the single-particle wavefunctions and the Mat-
subara modes to perform the integrals over the space and imaginary-time coordi-
nates. It explicitly shows that the noninteracting Green’s function is a diagonal ma-
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trix in the expansion coefficients, which in a less superfluous notation becomes

G0;α(n, iωn) =
−h̄

−ih̄ωn + εn,α −µ
, (7.54)

which means that the inverse noninteracting Green’s function is now easily found as

G−1
0;α(n, iωn) =

−ih̄ωn + εn,α −µ
−h̄

. (7.55)

Example 7.3. As an example, we consider the homogeneous case, for which we have
that χk(x) = eik·x/

√
V . Substituting this into (7.51), we find for the noninteracting

homogeneous Green’s function that

G0;α,α ′(x,τ;x′,τ ′)

= δα,α ′
1

h̄βV ∑
k,n

−h̄
−ih̄ωn + εk,α −µ

eik·(x−x′)e−iωn(τ−τ ′). (7.56)

Note that the right-hand side of this equation explicitly shows that the Green’s func-
tion only depends on the difference in the coordinates G0;α,α ′(x− x′,τ − τ ′). This
is the direct consequence of the fact that the homogeneous ideal gas is both transla-
tionally invariant in position and imaginary time. The equation also shows that the
Fourier transform of the noninteracting Green’s function is given in diagonal form
by

G0;α ,α ′(k, iωn) =
−h̄

−ih̄ωn + εk,α −µ
δα,α ′ . (7.57)

Going back to (7.41) for the partition sum of the noninteracting quantum gas, we
find upon substitution of the inverse Green’s function of (7.54), that

Z0 = exp

{
∓ ∑

n,n,α
log(β (−ih̄ωn + εn,α −µ))

}

= exp

{
∓∑

n,α
log(1∓ e−β (εn,α−µ))

}
, (7.58)

where the logarithm in the exponent contains an additional factor of h̄β , which
comes from the Jacobian of the transformation from imaginary time to the Matsub-
ara frequencies. Although this factor should be included for dimensional reasons, it
was actually already seen to be irrelevant for the Matsubara sum in proving (7.30),
i.e. in obtaining the final answer of (7.36).
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7.3 Wick’s Theorem

Next, we elaborate on the physical meaning of the Green’s function introduced in
the previous section. To this end, we first consider the time-ordered expectation
value

〈T [ψ̂α(x,τ)ψ̂†
α ′(x

′,τ ′)]〉
≡ θ(τ− τ ′)〈ψ̂α(x,τ)ψ̂†

α ′(x
′,τ ′)〉±θ(τ ′− τ)〈ψ̂†

α ′(x
′,τ ′)ψ̂α(x,τ)〉 , (7.59)

where 〈ψ̂α(x,τ)ψ̂†
α ′(x

′,τ ′)〉 gives the probability for a single particle that was added
to the system at position x′ and imaginary time τ ′ to be found at a different position
x at another imaginary time τ . Since the removal of a particle can be seen as the
creation of a hole, the expectation value 〈ψ̂†

α ′(x
′,τ ′)ψ̂α(x,τ)〉 actually describes the

propagation of a hole in the reversed direction. In this section, we prove that the
Green’s function of the previous section is directly related to the time-ordered ex-
pectation value of (7.59), such that this Green’s function is also commonly referred
to as the one-particle propagator or correlation function. Note that although (7.59)
is formulated in imaginary time, we can also retrieve real-time information by per-
forming a Wick rotation. Furthermore, since the expectation value is determined in
the grand-canonical ensemble, we have that the imaginary time Heisenberg operator
ψ̂α(x,τ) is defined through

ψ̂α(x,τ) = e(Ĥ−µN̂)τ/h̄ψ̂α(x)e−(Ĥ−µN̂)τ/h̄ (7.60)

and therefore obeys the Heisenberg equation of motion

h̄∂τ ψ̂α(x,τ) = [Ĥ−µN̂, ψ̂α(x,τ)]−. (7.61)

For the noninteracting case it reads

h̄
∂

∂τ
ψ̂α(x,τ) =

{
h̄2∇∇∇2

2m
−V ex(x)− εα + µ

}
ψ̂α(x,τ) , (7.62)

which in combination with (7.59) leads to

h̄
∂

∂τ
〈T [ψ̂α(x,τ)ψ̂†

α ′(x
′,τ ′)]〉0 = h̄δ (τ− τ ′)〈[ψ̂α(x,τ), ψ̂†

α ′(x
′,τ ′)]∓〉0

+

{
h̄2∇∇∇2

2m
−V ex(x)− εα + µ

}
〈T [ψ̂α(x,τ)ψ̂†

α ′(x
′,τ ′)]〉0 . (7.63)

Substituting the equal-time (anti)commutation relations of (6.28), we find

[ψ̂α(x,τ), ψ̂†
α ′(x

′,τ)]∓ = δ (x−x′)δα,α ′ , (7.64)

which suggests that
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G0;α ,α ′(x,τ;x′,τ ′) =−〈T [ψ̂α(x,τ)ψ̂†
α ′(x

′,τ ′)]〉0 . (7.65)

We can provide a more careful proof of this important relation, which bridges
the gap between the functional formulation of quantum field theory and the more
familiar operator formalism. First of all, from the slicing procedure used to derive
the functional-integral formalism in Sect. 7, it follows that with path integrals we
always automatically calculate time-ordered expectation values. This was actually
more carefully explained in Sect. 5.5. Therefore, we have that

〈T [ψ̂α(x,τ)ψ̂†
α ′(x

′,τ ′)]〉0 =
1
Z0

∫
d[φ ∗]d[φ ] φα(x,τ)φ ∗α ′(x

′,τ ′)e−S0[φ∗,φ ]/h̄

= 〈φα(x,τ)φ ∗α ′(x
′,τ ′)〉0 . (7.66)

As also explained in Sect. 5.5, it is most convenient to calculate expectation values
in the path-integral approach by adding external currents Jα(x,τ) and J∗α(x,τ) to
the partition function, where in the fermionic case these currents are Grassmann
variables. Then, the partition function generalizes to a generating functional, given
by

Z0[J,J∗] =
∫

d[φ ∗]d[φ ] exp

{
−1

h̄
S0[φ ∗,φ ] (7.67)

+ ∑
α

∫ h̄β

0
dτ

∫
dx (φ ∗α(x,τ)Jα(x,τ)+ J∗α(x,τ)φα(x,τ))

}
.

Since the right-hand side of (7.65), as given by (7.66), can be conveniently expressed
as a second derivative of the generating functional to the currents, we have that
proving (7.65) actually boils down to showing that

−G0;α,α ′(x,τ;x′,τ ′) =
±1
Z0

δ 2Z0[J,J∗]
δJ∗α(x,τ)δJα ′(x′,τ ′)

∣∣∣∣
J,J∗=0

. (7.68)

Using the short-hand notation introduced in (7.46), we have

Z0[J,J∗] =
∫

d[φ ∗]d[φ ] exp
{
(φ |G−1

0 |φ)+(φ |J)+(J|φ)
}

. (7.69)

The terms in the exponent can be rewritten as (φ + G0J|G−1
0 |φ + G0J)− (J|G0|J),

which is usually called completing the square. Note that here the short-hand notation
G0J actually corresponds to

[G0 · J]α(x,τ) = ∑
α ′

∫
dx′ dτ ′ G0;α,α ′(x,τ;x′,τ ′)Jα ′(x′,τ ′). (7.70)

Performing a shift in the integration variables φ +G0J → φ then leads to
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Z0[J,J∗] = Z0[0,0]e−(J|G0|J) = Z0[0,0]exp
{
−∑

α

∫ h̄β

0
dτ

∫
dx (7.71)

×∑
α ′

∫ h̄β

0
dτ ′

∫
dx′ J∗α(x,τ)G0;α,α ′(x,τ;x′,τ ′)Jα ′(x′,τ ′)

}
,

which indeed proves (7.68) after performing the corresponding functional differen-
tiation.

The generating functional Z0[J,J∗] is in fact very convenient for calculating the
expectation value of the time-ordered product of any number of operators. With
the expressions for Z0[J,J∗] from (7.67) and (7.71), we can easily show that this
results in the sum of all possible products of time-ordered expectation values of two
operators, which is better known as Wick’s theorem. For instance, we have that

〈φ ∗α(x,τ)φ ∗α ′(x
′,τ ′)φα ′′(x′′,τ ′′)φα ′′′(x′′′,τ ′′′)〉0

= 〈φ ∗α(x,τ)φα ′′′(x′′′,τ ′′′)〉0〈φ ∗α ′(x′,τ ′)φα ′′(x′′,τ ′′)〉0
±〈φ ∗α(x,τ)φα ′′(x′′,τ ′′)〉0〈φ ∗α ′(x′,τ ′)φα ′′′(x′′′,τ ′′′)〉0 , (7.72)

where we obtained the left-hand side of the above equation by differentiating (7.67)
four times with respect to the appropriate currents, while we obtained the right-
hand side by differentiating (7.71) with respect to the same currents. Wick’s theo-
rem plays a crucial role in the next section, where we start with the treatment of
interaction effects and find that due to this theorem we can systematically set up a
perturbation theory to take such effects into account.

Example 7.4. Note that for the ideal quantum gas, we immediately find

〈φα(x,τ)φα ′(x′,τ ′)〉0 =
1
Z0

δ 2Z0[J,J∗]
δJ∗α(x,τ)δJ∗α ′(x′,τ ′)

∣∣∣∣
J,J∗=0

= 0, (7.73)

where in the first step we used (7.67), while in the second step we used (7.71).
In later chapters, we see examples of situations where these anomalous expecta-
tion values are not equal to zero. This is then found to be intimately connected to
phenomena as Bose-Einstein condensation and superfluidity. For the ideal gas, the
expectation value for any odd number of operators evaluates to zero. In the case of
three operators, we have for example that

〈φα(x,τ)φ ∗α ′(x
′,τ ′)φα ′′(x′′,τ ′′)〉0 =

±1
Z0

δ 2Z0[J,J∗]
δJ∗α(x,τ)δJα ′(x′,τ ′)δJ∗α ′′(x′′,τ ′′)

∣∣∣∣
J,J∗=0

= 0, (7.74)

where again in the first step we used (7.67), while in the second step we used (7.71).
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7.4 Problems

Exercise 7.1. Ideal-Gas Partition Function
In this exercise, we solve the ideal quantum gas in a fourth exact manner, namely
by applying the Gaussian integral formulas from (2.66) and (2.67) directly to the
expression of the partition sum following from (7.2) and (7.8), which is indeed
quadratic in the time-sliced fields φ j,α(x).
(a) First, expand the fields φ j,α(x) in terms the eigenstates χn(x) of the single-
particle Hamiltonian to show that the partition function can be written as

Z =
∫ M

∏
j=1,

∏
n,α

(dφ ∗j,n,α dφ j,n,α

(2πi)(1±1)/2

)
exp

{
M

∑
j=1

∑
n,α

(
φ ∗j,n,α φ j,n,α

+
[

1− (εn,α −µ)
∆τ
h̄

]
φ ∗j,n,α φ j−1,n,α

)}
≡

∫
d[φ ∗]d[φ ]e−(φ |A|φ). (7.75)

(b) Realizing that the matrix An,α, j, j′ is diagonal in n and α , give its explicit form in
terms of j and j′ for a specific value of n and α . Show that the determinant of this
matrix is given by

Det[An,α, j, j′ ] = 1∓ (1− (εn,α −µ)β/M)M, (7.76)

Hint: for the correct form of An,α, j, j′ , the (anti)periodic boundary relation between
the fields at j = 0 and j = M is crucial.
(c) Using the result from (b) and taking the limit M → ∞, show that the partition
function for the ideal quantum gas is indeed given by (7.18).
Hint: use limM→∞(1− x/M)M = e−x.

Exercise 7.2. Matsubara Summation and Contour Integration
(a) Show by contour integration, in a similar way as for (7.31), that

lim
η↓0

1
h̄β ∑

n

eiωnη

−iωn− (ε−µ)/h̄
=∓ 1

eβ (ε−µ)∓1
−1 . (7.77)

(b) Show by contour integration, in a similar way as for (7.30), that for bosons we
have

lim
η↓0

∑
n

log(β (−ih̄ωn + ε−µ))e−iωnη = log(eβ (ε−µ)−1) . (7.78)

(c) Show by contour integration that for fermions we have

lim
η↓0

∑
n

log(β (−ih̄ωn + ε−µ))eiωnη = log(1+ e−β (ε−µ)) , (7.79)

where we note that for the ideal Fermi gas we can also have µ > 0, whereas for ideal
bosons we only have µ ≤ 0

Exercise 7.3. Prove (7.72) explicitly by an appropriate differentiation of Z0[J,J∗].



Chapter 8
Interactions and Feynman Diagrams

The bottom line for mathematicians is that the architecture has
to be right. In all the mathematics that I did, the essential point
was to find the right architecture. It’s like building a bridge.
Once the main lines of the structure are right, then the details
miraculously fit. The problem is the overall design.
– Freeman Dyson.

In the previous chapter, we introduced the functional-integral formalism of quantum
field theory for the treatment of many-body systems. In particular, we calculated the
partition sum for the ideal quantum gas in three different ways. The last method
involved the noninteracting Green’s function, which was seen to form the bridge
between the more familiar operator formalism and the newly obtained functional-
integral formalism. In this chapter we extend the notion of the Green’s function
to interacting systems, starting with the Lehmann representation of the interacting
Green’s function. This representation is exact and shows that in general the poles
of the interacting Green’s function correspond to the single-particle excitations of
the many-body system, which are also called the quasiparticle excitations. Realizing
that the interacting Green’s function gives us both the elementary excitations of the
many-body system, as well as the expectation value of the one-particle observables,
the question arises how to determine this important quantity in practice.

Since it is in general not possible to determine the interacting Green’s function
exactly, we need to develop approximate methods to take interaction effects into
account. A systematic way to do so is by performing a perturbation theory in pow-
ers of the interaction, which is the many-body analogue of the perturbation the-
ory known from quantum mechanics. The rather cumbersome expressions resulting
from this expansion are then elegantly represented in terms of Feynman diagrams,
which make it possible to see the general structure of the expansion. To lowest order
in the interaction, the noninteracting Green’s function is then found to be modified
by the Hartree and Fock diagrams which consequently can be used to construct a
self-consistent Hartree-Fock theory. The name of the resulting theory comes from
the full analogy with the nonperturbative Hartree-Fock theory for many electrons
in an atom. This theory is then not only studied diagrammatically, but also varia-
tionally and finally with the Hubbard-Stratonovich transformation. The latter is the
technique most frequently used in the following chapters when we are interested in
phase transitions occurring in interacting quantum gases.

151
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8.1 Quasiparticles

In a homogeneous noninteracting quantum gas, the energies of the single-particle
eigenstates for a particle with mass m are given by

h̄ωk = εk−µ =
h̄2k2

2m
−µ , (8.1)

where the chemical potential µ implies that we work in the grand-canonical en-
semble. This relation is also called the dispersion or the energy-momentum relation
for the particles. Consider, as an example, the ground state for an ideal Fermi gas,
which has all single-particle states filled up to the chemical potential. We note that
this ground state can be excited by either adding a particle outside the Fermi sea,
or by removing a particle from the Fermi sea, i.e. by creating a hole in the Fermi
sea. These kinds of excitation are therefore appropriately called the single-particle
excitations of the many-body system. In the case of the ideal Bose gas, we can of
course also make excitations by either adding or removing particles. If the quantum
gas becomes interacting then the particles are not separate objects anymore, but also
feel their surrounding medium. As a result, the interactions between the particles
change the dispersion of (8.1), where the physical reason for this change is that a
particle travelling through the gas now has to move other particles out of the way or
temporarily drag neighboring particles along. As it turns out, the composite object
of the particle and its surrounding cloud often behaves very much like a particle
again, such that it is then suggestively called a quasiparticle. The resulting single-
particle excitation spectrum in the presence of the interacting medium is therefore
also called the quasiparticle excitation spectrum. Typically, after the dressing with
the surrounding cloud has been taken into account, the quasiparticles interact only
weakly with each other such that it takes a long time before their momentum is
changed by interactions with other quasiparticles. To study these quasiparticles and
their dispersion experimentally, we can perform tunnelling experiments that either
add or remove a single particle from the system. A famous example of a theory
where the quasiparticle picture plays an important role is Landau’s Fermi liquid the-
ory for liquid helium-3 [38], which explains why this strongly-interacting quantum
liquid shares so many similarities with the noninteracting Fermi gas. In the same
way, Fermi liquid theory is an underlying reason why the model of a free electron
gas works so surprisingly well in describing the properties of metals.

To give the quasiparticle picture a solid foundation we consider the interacting
Green’s function, which is the extension to the interacting case of the noninteracting
Green’s function that we studied extensively in the previous chapter. The Green’s
function, or one-particle propagator Gα ,α ′(x,τ;x′,τ ′), is a very important quantity
to determine theoretically because, as we will see, it gives us both the quasiparticle
excitation spectrum for our system of interest and the expectation value of any one-
particle observable. As an example of the last, we see that the average density of
particles in the spin state |α〉 for an ideal gas is given by
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〈ψ̂†
α(x,τ)ψ̂α(x,τ)〉0 =∓G0;α,α(x,τ;x,τ+) (8.2)

= lim
η↓0

∑
n,n

±eiωnη

β (−ih̄ωn + εn,α −µ)
|χn(x)|2 = ∑

n

1
eβ (εn,α−µ)∓1

|χn(x)|2 ,

where we used (7.31), (7.51) and (7.65). Moreover, we used the notation τ+ for
the limit η ↓ 0 of τ + η . From the time-ordered definition of the Green’s function
in (7.65), we see that this is the correct limiting procedure to get the operators in
the correct order for calculating the average density. This type of ordering, where
the creation operators are placed to the left of the annihilation operators, is also
known as normal ordering. Note that all the second-quantized operators that were
introduced in Sect. 6.3 are normal ordered.

From the argument of the Bose or Fermi distribution function in (8.2), we see that
the single-particle or elementary excitations have an energy of εn,α−µ . Considering
the Fourier transform of the Green’s function to the Matsubara frequencies,

Gα ,α ′(x,x′; iωn) = δα,α ′ ∑
n

−h̄
−ih̄ωn + εn,α −µ

χn(x)χ∗n(x′) , (8.3)

and replacing iωn by ω , we see that Gα ,α ′(x,x′;ω) has poles at precisely h̄ω =
εn,α −µ . As we see in the next subsection, this important result turns out to be very
general, such that the poles in the (non)interacting Green’s function Gα ,α ′(x,x′;ω)
correspond to the energies of the elementary or quasiparticle excitations of the
(non)interacting many-body system. Moreover, these quasiparticle excitation ener-
gies can in general also have a negative imaginary component, which then results in
a finite lifetime of the excitation.

8.1.1 The Lehmann Representation

Next, we study in detail the analytic structure of the one-body correlation function
for an interacting many-body system, i.e. the interacting Green’s function, and show
in more detail how it is related to the quasiparticle spectrum. It is instructive to con-
sider the expansion coefficients Gα ,α ′(n,τ;n′,τ ′) of the interacting Green’s func-
tion Gα,α ′(x,τ;x′,τ ′) with respect to the complete set of single-particle eigenstates
χn(x), such that we obtain

Gα ,α ′(x,τ;x′,τ ′) = ∑
n,n′

χn(x)χ∗n′(x
′)Gα ,α ′(n,τ;n′,τ ′), (8.4)

where by definition

Gα,α ′(n,τ;n′,τ ′)≡−〈T [ψ̂n,α(τ)ψ̂†
n′,α ′(τ

′)]〉 . (8.5)

To understand the physical content of the above expansion coefficients, we consider
a system with on average N À 1 particles described by the grand-canonical Hamil-
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tonian Ĥ−µN̂. We write |0;N〉 for the ground state of this system, such that at zero
temperature, we have

Gα,α ′(n,τ;n′,τ ′) = −θ(τ− τ ′)〈0;N|ψ̂n,α(τ)ψ̂†
n′,α ′(τ

′)|0;N〉
∓θ(τ ′− τ)〈0;N|ψ̂†

n′,α ′(τ
′)ψ̂n,α(τ)|0;N〉. (8.6)

Denoting the full set of eigenstates and corresponding eigenenergies of the N-
particle Hamiltonian Ĥ by {|ν ;N〉} and {EN

ν }, we insert

∑
ν
|ν ;N±1〉〈ν ;N±1|= 1̂ (8.7)

into (8.6) and obtain

Gα,α ′(n,τ;n′,τ ′) =

−θ(τ− τ ′)∑
ν ′′
〈0;N|ψ̂n,α(τ)|ν ′′;N +1〉〈ν ′′;N +1|ψ̂†

n′,α ′(τ
′)|0;N〉 .

∓θ(τ ′− τ)∑
ν ′′
〈0;N|ψ̂†

n′,α ′(τ
′)|ν ′′;N−1〉〈ν ′′;N−1|ψ̂n,α(τ)|0;N〉. (8.8)

Explicitly substituting the imaginary-time dependence of the creation and annihila-
tion operators as given by (7.60), we obtain

Gα,α ′(n,τ;n′,τ ′) = −θ(τ− τ ′)∑
ν ′′
〈0;N|ψ̂n,α |ν ′′;N +1〉〈ν ′′,N +1|ψ̂†

n′,α ′ |0;N〉

×exp
{−(EN+1

ν ′′ −EN
0 −µ)(τ− τ ′)/h̄

}

∓θ(τ ′− τ)∑
ν ′′
〈0;N|ψ̂†

n′,α ′ |ν ′′;N−1〉〈ν ′′;N−1|ψ̂n,α |0;N〉

×exp
{−(EN−1

ν ′′ −EN
0 + µ)(τ ′− τ)/h̄

}
. (8.9)

Note that the matrix element 〈ν ′′;N +1|ψ̂†
n′,α ′ |0;N〉 gives the overlap of the exact

N + 1 particle state |ν ′′;N +1〉 and the N particle ground state |0;N〉 to which we
add one single atom with quantum numbers n′ and α ′. Similarly, the matrix element
〈ν ′′;N−1|ψ̂n,α |0;N〉 gives the overlap of the exact N−1 particle state |ν ′′;N−1〉
and the N particle ground state |0;N〉 from which we removed one single atom
with quantum numbers n and α . To make the physical meaning of the difference in
energies EN+1

ν ′′ −EN
0 more clear, we add and subtract from it the ground-state energy

for the N +1 particle system, i.e.

EN+1
ν ′′ −EN

0 = (EN+1
ν ′′ −EN+1

0 )+(EN+1
0 −EN

0 ). (8.10)

The quantities EN+1
ν ′′ −EN+1

0 = h̄ων ′′ ≥ 0 give the energies of all the possible exci-
tation energies above the many-body ground-state, where the ground state contribu-
tions themselves give zero. The difference EN+1

0 −EN
0 = µ is the chemical potential

because it tells us what the energy cost is to add a particle to the system.. Similarly,
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the difference EN−1
0 −EN

0 = −µ tells us what the energy gain is to remove a parti-
cle from the ground state of the system. Note that we have implicitly used N À 1,
i.e. we consider the thermodynamic limit, such that the magnitude of the latter two
quantities are equal and the excitation energies do not depend on N.

As a result, we can now determine the Fourier transform of (8.9), which boils
down to Fourier transforming exponentially decaying functions for all excited states
and the step function for the ground state contributions. Explicitly, we find for the
Fourier transform with respect to the imaginary time difference τ − τ ′, where we
may set τ ′ to zero, that

Gα,α ′(n,n′; iωn) =
∫ ∞

−∞
dτ exp(iωnτ)Gα,α ′(n,τ;n′,0)

= ∑
ν ′′

〈0;N|ψ̂n,α |ν ′′;N +1〉〈ν ′′,N +1|ψ̂†
n′,α ′ |0;N〉

iω+
n −ων ′′

∓∑
ν ′′

〈0;N|ψ̂†
n′,α ′ |ν ′′;N−1〉〈ν ′′;N−1|ψ̂n,α |0;N〉

iω−
n +ων ′′

, (8.11)

where we introduced the convention ω±
n = limη↓0(ωn± iη). Note that the Fourier

transform of 1/iω±
n can be used as a definition for the step function ∓θ(±τ).

Also note that because we work at zero temperature, the Matsubara frequencies
iωn have become continuous variables. The representation of the Green’s function
from (8.11) is known as the Lehmann representation and it brings out the analytic
structure as a function of iωn explicitly. Note that the above calculation is exact
and that it is thus valid for any interacting many-body system at zero temperature.
The final form of (8.11) indeed shows that in general the poles of Gα ,α ′(n,n′;ω),
corresponds to the exact elementary or single-particle excitations of the many-body
system. Although we have considered here for calculational convenience only the
zero-temperature case, the same calculation can also be performed at nonzero tem-
peratures. Then, we should take the trace over the density matrix in (8.6), which
turns out to result in additional Boltzmann factors but does not change the analytic
structure of the Lehmann representation. As a result, we may conclude that the poles
of the exact interacting Green’s function always correspond to the exact quasiparti-
cle excitations.

Example 8.1. We have seen in the previous chapter (see Example 7.3) that the
Fourier transform of the homogeneous noninteracting Green’s function is given by

G0;α ,α ′(k, iωn) =
−h̄

−ih̄ωn + εk,α −µ
δα,α ′ . (8.12)

After the analytic continuation, i.e. iωn → ω , we see that this Green’s function has
a pole when the energy h̄ω is precisely equal to εk,α −µ . The same expression for
the noninteracting Green’s function also follows from (8.11), which we show here
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explicitly for the Fermi case. To this end, we note that the excitation energies indeed
become εk,α −µ , while the matrix elements yield

〈k′′,α ′′,N +1|ψ̂†
k′,α ′ |0;N〉= δα ′,α ′′δk′,k′′θ(εk′,α ′ −µ) (8.13)

and

〈k′′,α ′′;N−1|ψ̂k′,α ′ |0;N〉= δα ′,α ′′δk′,k′′θ(µ− εk′,α ′). (8.14)

It is then left as an exercise to show that the Lehmann representation also leads to
the correct noninteracting Green’s function in the Bose case.

8.1.2 The Spectral-Weight Function

In the homogeneous case, we can extend the discussion of the Lehmann representa-
tion by exploiting the diagonality of the Green’s function in the momentum h̄k. In
the previous subsection, we found that the interacting Green’s function Gα,α ′(k,ω)
in general only has poles on the real frequency axis. To be able to deal with these
poles analytically, we add a infinitesimally small imaginary part to the frequency,
such that the Green’s function now has a nonzero imaginary part. As an example,
we then obtain from (7.57) for the noninteracting case

Im[G0;α,α ′(k,ω+)] = −h̄πδ (h̄ω− εk,α + µ)δα,α ′ , (8.15)

where G0;α,α ′(k,ω+) is called the retarded noninteracting Green’s function. Note
that in obtaining (8.15), we have actually performed the analytic continuation
iωn → ω+, which is mathematically allowed because (8.11) shows that the Green’s
function is analytic on the entire upper half of the complex plane plane. If we study
(8.15) as a function of h̄ω , we thus find an infinitely sharp line at the energy εk,α−µ .
In spectroscopy such a line is known to correspond to a state with an infinite life-
time, because any decay mechanism yields a broadening of the line. This is under-
stood from Heisenberg uncertainty relation, where the longer the lifetime τk,α of the
state, the more accurately we can determine its energy according to ∆E ≥ h̄/2τk,α .
Note that the infinite lifetime of the single-particle state |k,α〉 is expected for the
noninteracting quantum gas, because there is no mechanism that can remove a par-
ticle from its state. These observations lead naturally to the general definition of the
spectral-weight function, which is given by

ρα(k,ω) =− 1
π h̄

Im[Gα ,α(k,ω+)]. (8.16)

The spectral function ρα(k,ω) gives the energies, the amplitudes and the lifetimes
of the states accessible to a particle with momentum k and spin |α〉 in the presence
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of a medium, such that the spectral function can also be interpreted as a single-
particle density of states.

Applying the above definition of the spectral-weight function to the Green’s func-
tion in the Lehmann representation of (8.11), we find that

ρα(k,ω) = − 1
π h̄

Im[Gα,α(k,ω+)] = ∑
ν ′′

∣∣∣〈ν ′′;N +1|ψ̂†
k,α |0;N〉

∣∣∣
2

δ (h̄ω− h̄ων ′′)

∓∑
ν ′′

∣∣〈ν ′′;N−1|ψ̂k,α |0;N〉
∣∣2 δ (h̄ω + h̄ων ′′) , (8.17)

where we note that only states with |ν ′′,N ± 1〉 = |λ ′′,k,α ,N ± 1〉 give rise to a
nonzero overlap in the above expression, because k and α are good quantum num-
bers for the homogeneous quantum gas. Using the above result and the complete-
ness of the exact eigenstates |ν ′′,N±1〉 of the many-body Hamiltonian, we find the
following important identity that the spectral-weight function satisfies

∫
d(h̄ω) ρα(k,ω) = 〈0;N|ψ̂k,α ψ̂†

k,α |0;N〉∓〈0;N|ψ̂†
k,α ψ̂k,α |0;N〉= 1, (8.18)

which is also known as the frequency sum-rule. Using the interpretation of the spec-
tral function as a single-particle density of states in the presence of a medium, it
simply means that one particle occupies precisely the equivalent of one quantum
state.

In obtaining the Lehmann representation of the exact interacting Green’s function
in the previous subsection, we made use of the exact eigenstates and eigenenergies
of the many-body Hamiltonian. This made the discussion rather formal, because in
general it turns out to be impossible to determine the exact eigenstates and eigenen-
ergies when dealing with an interacting system of a large number of particles. As a
result, it is our task to find manageable approximations for the Green’s function that
describe the physics of the many-body system of interest. In the next section, we
show that the Green’s function for a homogeneous system with spin-independent
interactions can always be written in the form

Gα,α ′(k, iωn) =
−h̄

−ih̄ωn + εk−µ + h̄Σα(k, iωn)
δα,α ′ , (8.19)

where the selfenergy h̄Σα(k, iωn) is a complex-valued function that describes the
effects of the interactions between the atoms. As a result, our task of finding man-
ageable approximations for the Green’s function amounts to finding manageable
approximations to the selfenergy. This is the topic of the rest of this chapter. Note
already that due to the presence of a complex-valued selfenergy, the spectral-weight
function for the interacting system may change significantly its shape.

We have seen that for the noninteracting case the spectral-weight function
ρα(k,ω) is a delta function for every wavenumber. This implies that a particle
with momentum h̄k has a well-defined energy and therefore an infinite lifetime.
In the interacting case, it is sometimes possible to approximate the selfenergy by
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h̄Σα(k, iωn) ' ∆εk,α − ih̄/2τk,α . Then, the spectral-weight function becomes the
Lorentz profile

ρα(k,ω) =
h̄

2πτk,α

1
(h̄ω− εk,α −∆εk,α + µ)2 +(h̄/2τk,α)2 , (8.20)

such that the energy of the atom is no longer well defined and the corresponding
lifetime has become finite. More precisely, the Green’s function now has a pole
at εk,α + ∆εk,α − µ − ih̄/2τk,α , which implies that the time evolution of the corre-
sponding wavefunction is given by

e−i(εk,α +∆εk,α−µ)t/h̄e−t/2τk,α .

We see that due to the interactions with other atoms, the energy of an atom with
momentum h̄k and spin |α〉 is shifted with ∆εk,α , while its lifetime has become
equal to τk,α , which describes an exponential decay e−t/τk,α of the probability for
the atom to be precisely in state |k,α〉.

8.1.3 Collective Excitations

To end this discussion on excitations, we note that there are also other ways to
excite a system than by taking out or adding a particle. In particular, we can have
excitations that do not change the number of particles, such as when we kick a
certain particle out of one single-particle quantum state into another single-particle
quantum state. Note that in the case of a filled Fermi sea, such a procedure would
lead to a particle outside the sea and a hole inside the sea, also called a particle-hole
pair. Just as the single-particle excitations are described by the poles of the single-
particle Green’s function, the particle-hole excitations are described by the poles of
the two-particle Green’s function, which is given by

〈T [ψ̂†
α(x,τ)ψ̂α ′(x′,τ ′)ψ̂†

α ′′(x
′′,τ ′′)ψ̂α ′′′(x′′′,τ ′′′)]〉 .

These kind of excitations are called collective excitations, because they have to do
with the behavior of the system as a whole. To illustrate this, we note for exam-
ple that ψ̂†

α(x,τ)ψ̂α(x,τ) is the density operator, such that the above correlation
function is able to describe density correlations rather than merely single-particle
correlations. A well-known example of a collective excitation is a phonon in a crys-
tal, which is a vibration of the lattice propagating through the system. These kinds
of density fluctuations are also called sound waves, because they are the same kind
of compression waves that are detectable by the ear in air. Another example of a col-
lective excitation is a density fluctuation of electrons propagating through a metal,
in which case we speak of a plasmon. These kind of collective fluctuations return in
the last section of the chapter, when we discuss the Jellium model for electrons in a
metal.
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Using Wick’s theorem from (7.72), we find for the noninteracting gas that

〈φ ∗α(x,τ)φ ∗α ′(x
′,τ ′)φα ′′(x′′,τ ′′)φα ′′′(x′′′,τ ′′′)〉0

= 〈φ ∗α(x,τ)φα ′′′(x′′′,τ ′′′)〉0〈φ ∗α ′(x′,τ ′)φα ′′(x′′,τ ′′)〉0
±〈φ ∗α(x,τ)φα ′′(x′′,τ ′′)〉0〈φ ∗α ′(x′,τ ′)φα ′′′(x′′′,τ ′′′)〉0 , (8.21)

such that in this case the two-particle Green’s function does not give rise to addi-
tional poles compared to the single-particle Green’s function. This shows that col-
lective excitations are truly interaction effects. We remark that collective excitations
can also be studied experimentally by using probes that do not change the number
of particles and that are sensitive to, for example, the particle density. This can be
achieved by scattering experiments, where scattering of photons is often used for
the atomic gases, while in condensed-matter physics more techniques are available
in general, such as scattering of electrons, ions, and neutrons. As a last remark, we
note that theoretically the collective degrees of freedom are particularly convenient
to introduce into the many-body theory with the Hubbard-Stratonovich transforma-
tion, which we already briefly encountered in Sect. 5.8. We generalize this technique
to quantum field theory later in this chapter and apply it, amongst others, to the col-
lective excitations of the Jellium model in Sect. 8.7.

8.2 Perturbation Theory

Having discussed the meaning and the relevance of the Green’s function, the ques-
tion arises as to how to determine it in practice for an interacting quantum system. In
the previous chapter, we found that the functional formalism conveniently allowed
for a variety of methods to solve the ideal quantum gas. Next, we show that this
formalism also accommodates a whole set of tools to tackle interacting many-body
systems. The action for the interacting quantum gas of interest has the form

S[φ ∗,φ ] = S0[φ ∗,φ ]+Sint[φ ∗,φ ], (8.22)

where the noninteracting part is given by

S0[φ ∗,φ ] (8.23)

= ∑
α

∫ h̄β

0
dτ

∫
dx φ ∗α(x,τ)

{
h̄

∂
∂τ
− h̄2∇∇∇2

2m
+V ex(x)+ εα −µ

}
φα(x,τ)

and the interactions are described by

Sint[φ ∗,φ ] = (8.24)
1
2 ∑

α,α ′

∫ h̄β

0
dτ

∫
dx

∫
dx′ φ ∗α(x,τ)φ ∗α ′(x

′,τ)V (x−x′)φα ′(x′,τ)φα(x,τ) ,
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as follows from (7.5) and (7.10). Note that only the symmetric part of the spin-
independent interaction survives the real-space integrals, which is easily shown by
interchanging the integration variables. As a result, we can take the spinless interac-
tion to be symmetric in the coordinates. We wish to calculate the interacting Green’s
function, whose expression in the functional formalism is given by

Gα ,α ′(x,τ;x′,τ ′) = −〈φα(x,τ)φ ∗α ′(x
′,τ ′)〉

= − 1
Z

∫
d[φ ∗]d[φ ] φα(x,τ)φ ∗α ′(x

′,τ ′)e−S[φ∗,φ ]/h̄, (8.25)

where, due to the presence of the fourth-order interaction term, the functional inte-
gral cannot be performed exactly anymore. As a result, we need to develop approx-
imate methods to take the interaction effects into account.

The first approach we discuss is based on the systematic expansion of the func-
tional integral in powers of the interaction. It is the field-theoretical analogue of the
perturbation theory known from quantum mechanics, which was discussed in Sect.
3.10. We start with expanding the exponent containing the interaction in both the
numerator and the denominator of (8.25). Up to first order, we find for the partition
function in the denominator

Z =
∫

d[φ ∗]d[φ ] e−S0[φ∗,φ ]/h̄e−Sint[φ∗,φ ]/h̄ (8.26)

=
∫

d[φ ∗]d[φ ] e−S0[φ∗,φ ]/h̄
(

1− Sint[φ ∗,φ ]
h̄

)
≡ Z0

(
1− 1

h̄
〈Sint[φ ∗,φ ]〉0

)
.

Using Wick’s theorem, (7.72), we thus have

−1
h̄
〈Sint[φ ∗,φ ]〉0 =

1
2 ∑

α ,α ′

∫ h̄β

0
dτ

∫
dx

∫
dx′ G0;α,α(x,τ;x,τ+) (8.27)

× −V (x−x′)
h̄

G0;α ′,α ′(x′,τ;x′,τ+)

±1
2 ∑

α

∫ h̄β

0
dτ

∫
dx

∫
dx′ G0;α ,α(x′,τ;x,τ+)

× −V (x−x′)
h̄

G0;α,α(x,τ;x′,τ+) ,

where the noninteracting Green’s function G0;α,α(x,τ;x′,τ ′) was studied exten-
sively in the previous chapter. We again used the convention τ+ = limη↓0(τ + η),
and we note the difference with the corresponding notation for the frequency ω+.
From now on, the convention of this notation will always be that for imaginary times
τ+ we add an infinitesimal real part, while for frequencies ω+ we add an infinites-
imal imaginary part. The necessity of the limiting procedure G0;α ,α(x,τ;x,τ+) can
be understood as follows. It was already explained in Sects. 5.5 and 7.3 that the
expectation values calculated with the functional approach always correspond to
time-ordered expectation values of operators, such that we automatically have
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Fig. 8.1 Diagrammatic representation of the partition function up to first order in the interaction.

〈Sint[φ ∗,φ ]〉0 = ∑
α,α ′

∫ h̄β

0
dτ

∫
dx

∫
dx′ V (x−x′) (8.28)

×
〈

T
[
ψ̂†

α(x,τ)ψ̂†
α ′(x

′,τ)ψ̂α ′(x′,τ)ψ̂α(x,τ)
]〉

0
.

But, since all of the above operators are at equal time, how do we know which
of them comes first? Remember that the interaction part of the action comes from
the Hamiltonian of (6.29), which is normal-ordered at equal time, such that all the
creation operators are to the left of the annihilation operators. To incorporate this
equal-time normal ordering into the functional-integral formalism, we give the cre-
ation operators an infinitesimal increase in time ψ̂†

α(x′,τ+) such that time-ordering
automatically places them to the left of the annihilation operators. From (7.65) we
see that the imaginary-time coordinate of the creation operator actually corresponds
to the second imaginary-time argument of the Green’s function, which therefore
explains the expression found in (8.27). Note that we already encountered this pro-
cedure in (8.2), where we indeed found that G0;α,α(x,τ;x,τ+) corresponds to the
expectation value of the normal-ordered operators at equal time 〈ψ̂†

α(x,τ)ψ̂α(x,τ)〉0
such that it describes the density of atoms for an ideal gas.

From (8.27) it then becomes clear that, if we want to calculate higher-order terms
in the perturbative expansions of (8.25) and (8.26), we soon find that the expres-
sions get very cumbersome to write out explicitly. Therefore, it is convenient to
introduce a short-hand notation that makes it possible to easily keep track of all the
expanded terms and that allows us to understand the general structure of the expan-
sion. Such a notation is obtained in terms of Feynman diagrams, where we represent
the factor −V (x− x′)/h̄ by a wiggly line and the noninteracting Green’s function
G0;α,α(x,τ;x′,τ ′) by a thin arrowed line pointing from (x′,τ ′) to (x,τ). The result of
this procedure for (8.26) and (8.27) is shown in Fig. 8.1 where we have, for clarity’s
sake, also explicitly indicated the various coordinates and spin degrees of freedom
that are integrated or summed over in (8.27). In practice, however, these integrated
or summed degrees of freedom are rarely explicitly specified in the corresponding
Feynman diagrams. For the numerator of (8.25), we obtain up to first order in the
interaction

−
∫

d[φ ∗]d[φ ] φα(x,τ)φ ∗α ′(x
′,τ ′)e−S0[φ∗,φ ]/h̄

(
1− Sint[φ ∗,φ ]

h̄

)
(8.29)

= Z0

(
−〈φα(x,τ)φ ∗α ′(x

′,τ ′)〉0 +
1
h̄
〈φα(x,τ)φ ∗α ′(x

′,τ ′)Sint[φ ∗,φ ]〉0
)

,
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Fig. 8.2 Diagrammatic representation of the numerator of (8.25) up to first order in the interaction.

where as an example we will work out in more detail the second expectation value
in the above equation.

Example 8.2. To evaluate 〈φα(x,τ)φ ∗α ′(x
′,τ ′)Sint[φ ∗,φ ]〉0/h̄, we first note that for

unequal spins α ,α ′ it gives zero. This is seen by using Wick’s theorem to factorize
the expectation value into noninteracting Green’s functions, resulting always in one
of them having unequal spins and thus yielding zero. Also note that due to Wick’s
theorem, a part of the factorization has the form

〈φα(x,τ)φ ∗α ′(x
′,τ ′)〉0〈Sint[φ ∗,φ ]〉0/h̄ ,

which is the product of the noninteracting expectation value of the interaction, for
which the Feynman diagrams are shown in Fig. 8.1, with the noninteracting Green’s
function, drawn as a single line. This simple product is then represented by the
disconnected diagrams shown in Fig. 8.2. The rest of the terms obtained from Wick’s
theorem are given by

−1
h̄ ∑

α ′

∫ h̄β

0
dτ ′′

∫
dx′′

∫
dx′′′V (x′′−x′′′)

×
(
±G0;α(x,τ;x′′,τ ′′)G0;α(x′′,τ ′′;x′,τ ′)G0;α ′(x

′′′,τ ′′;x′′′,τ ′′+)

+ δα,α ′G0;α(x,τ;x′′,τ ′′)G0;α(x′′′,τ ′′;x′,τ ′)G0;α ′(x
′′,τ ′′;x′′′,τ ′′+)

)
,

where we explicitly used that the spinless interaction potential can be taken symmet-
ric in the coordinates. The above expression is represented by the last two connected
diagrams in Fig. 8.2. In general, if we want to evaluate the noninteracting expecta-
tion value of 2n fields, consisting of n conjugated pairs, then we get n! terms due to
Wick’s theorem. However, after integration over coordinates several terms may be
equal, which are then represented by topologically the same Feynman diagram.
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Fig. 8.3 Interacting Green’s function, represented by the thick line, up to first order in the interac-
tion.

Combining the results of (8.26) and (8.29), we find for the Green’s function of
(8.25) in the first instance

−〈φα(x,τ)φ ∗α ′(x
′,τ ′)〉

=
−〈φα(x,τ)φ ∗α ′(x

′,τ ′)〉0 + 1
h̄ 〈φα(x,τ)φ ∗α ′(x

′,τ ′)Sint[φ ∗,φ ]〉0
1− 1

h̄ 〈Sint[φ ∗,φ ]〉0
. (8.30)

For weak interactions, the average 1
h̄ 〈Sint[φ ∗,φ ]〉0 in the denominator of the above

expectation value is small. To consistently evaluate the above expression up to first
order in the interaction, we must expand the denominator, which yields

(
1− 1

h̄
〈Sint[φ ∗,φ ]〉0

)−1

' 1+
1
h̄
〈Sint[φ ∗,φ ]〉0 +

1
h̄2 〈Sint[φ ∗,φ ]〉20 + . . . . (8.31)

Working out the multiplication of the numerator of (8.30) with (8.31), and collecting
all the terms that are at most of first order in the interaction, we get

−〈φα(x,τ)φ ∗α ′(x
′,τ ′)〉

=−〈φα(x,τ)φ ∗α ′(x
′,τ ′)〉0 +

1
h̄
〈φα(x,τ)φ ∗α ′(x

′,τ ′)Sint[φ ∗,φ ]〉0

−1
h̄
〈Sint[φ ∗,φ ]〉0〈φα(x,τ)φ ∗α ′(x

′,τ ′)〉0. (8.32)

This first-order approximation to the exact Green’s function is shown diagrammati-
cally in Fig. 8.3. It is important to note that the disconnected diagrams have exactly
cancelled in the final result. This is a general feature that happens for any expec-
tation value up to any order in the interaction, so the disconnected diagrams that
occur in the numerator are always exactly cancelled by the denominator. It is left as
an exercise to explicitly show this for the interacting Green’s function up to second
order.
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8.3 Dyson’s Equation

From the calculation of the previous section we find that in the presence of interac-
tions between the atoms, the interacting Green’s function can be systematically writ-
ten as a sum of corrections to the noninteracting Green’s function. These corrections
are represented by connected diagrams that contain one incoming and one outgoing
line. It is useful to introduce some nomenclature to be able to better describe the
structure of the series of diagrams that contribute to the interacting Green’s func-
tion. An amputated diagram is a diagram that arises when we remove the two ex-
ternal lines of a connected diagram contributing to the interacting Green’s function.
Mathematically, this means that we remove the incoming and outgoing noninter-
acting Green’s functions in the corresponding expression for the Feynman diagram.
The selfenergy diagrams are then precisely those amputated diagrams that cannot be
broken up into two disconnected parts by removing one noninteracting line. Such
diagrams are also said to be one-particle irreducible. Examples of selfenergy dia-
grams are shown in Fig. 8.4.

From the above definitions, it follows that the interacting Green’s function satis-
fies the exact Dyson equation shown diagrammatically in Fig. 8.5 [39]. This equa-
tion is readily understood in terms of diagrams. The selfenergy part consists by
definition of all the one-particle irreducible Feynman diagrams, whereas the recur-
sive solution of the Dyson equation automatically generates the rest of the possible
diagrams, i.e. all the one-particle reducible Feynman diagrams. To study the Dyson
equation more concretely, we assume in first instance that the interacting Green’s
function is in diagonal form. This can always be arranged for in a homogeneous
system, which is translationally invariant, such that the Green’s function only de-
pends on the difference in the coordinates. Therefore, it can be expanded exactly in
terms of plane waves as

Gα,α ′(x−x′;τ− τ ′) = ∑
k,n

Gα,α ′(k, iωn)
eik(x−x′)

V
e−iωn(τ−τ ′)

h̄β
. (8.33)

For an inhomogeneous system, the above argument does not hold. However, if the
interaction energies are small compared to the energy splittings between the eigen-
states χn(x) in the external potential, then it is a good approximation to consider
these eigenstates to be unaffected by the interaction effects. This is called the weak-
coupling limit. Then, the interacting propagator is also to a good approximation
diagonal, such that we have

=Σ ++ + +  ...

Fig. 8.4 One-particle irreducible selfenergy diagrams that contribute to the interacting Green’s
function.
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= Σ+ 

Fig. 8.5 Exact Dyson equation for the interacting Green’s function. The thick line corresponds to
the interacting Green’s function, whereas the thin line corresponds to the noninteracting Green’s
function.

Gα,α ′(x,τ;x′,τ ′) = ∑
n,n

Gα ,α ′(n, iωn)χn(x)χ∗n(x′)
e−iωn(τ−τ ′)

h̄β
, (8.34)

where it turns out that for realistic trapped atomic gases the weak-coupling limit is
almost always realized in the normal phase of the quantum gas.

As a result, we find that the Dyson equation becomes

Gα,α ′(n, iωn) = G0;α,α ′(n, iωn) (8.35)

+ ∑
α ′′,α ′′′

G0;α ,α ′′(n, iωn)Σα ′′,α ′′′(n, iωn)Gα ′′′,α ′(n, iωn) ,

which follows from Fig. 8.5 and the diagonal form of the corresponding Green’s
functions and selfenergies, such that the matrix multiplication implied by the
right diagram simply amounts to the product of the diagonal elements. Since we
have G0;α,α ′(n, iωn) = G0;α(n, iωn)δα,α ′ and since the interaction potential is spin-
independent, we may easily convince ourselves that perturbation theory yields an
interacting Green’s function that is also diagonal in spin space Gα,α ′(n, iωn) =
Gα(n, iωn)δα,α ′ . Indeed, following the approach of the previous subsection, we can
expand the interacting Green’s function up to any order in the interaction, after
which we apply Wick’s theorem to factorize the resulting expectation values into
noninteracting Green’s functions. However, this procedure leads to zero in the case
of unequal spin indices −〈φα φ ∗α ′〉, because each generated term has now in total an
odd number of spin indices α and α ′, as follows directly from the form of the inter-
action given by (8.24). As a result, there must be in each generated term at least one
noninteracting Green’s function with unequal spin indices, which is not possible.

Having established that the interacting and the noninteracting Green’s function
are both also diagonal in spin space, we can multiply (8.35) from the right with
G−1 and from the left with G−1

0 , where both the inverse matrices are of course also
diagonal, leading to

1
Gα(n, iωn)

=
1

G0;α(n, iωn)
−Σα(n, iωn)

= −1
h̄
(−ih̄ωn + εn,α −µ)−Σα(n, iωn) , (8.36)

which shows that then also the selfenergy is diagonal in spin space. Hence, we arrive
at
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Gα(n, iωn) =
−h̄

−ih̄ωn + εn,α + h̄Σα(n, iωn)−µ
, (8.37)

revealing that interaction effects have shifted the poles in the Green’s function.

Example 8.3. The two simplest selfenergy diagrams that we can think of are shown
in Fig. 8.6. We now calculate them in the weak-coupling limit, when they can be
considered diagonal, i.e. Σα(n, iωn). In real space and imaginary time, the first self-
energy diagram of Fig. 8.6 leads to

Σα ,α ′(x,τ;x′,τ ′) (8.38)

=∓δα,α ′δ (x−x′)δ (τ− τ ′)∑
α ′′

∫
dx′′

V (x−x′′)
h̄

G0;α ′′,α ′′(x′′,τ;x′′τ+) .

We can expand this selfenergy in terms of the single-particle eigenstates and the
Matsubara modes, giving

Σα(n, iωn) =
∫ h̄β

0
dτ dτ ′

∫
dx dx′Σα(x,τ;x′,τ ′)χn(x)χ∗n(x′)

e−iωn(τ−τ ′)

h̄β

= ∓ 1
h̄2β ∑

n′,n′,α ′
Vn,n′,n,n′G0;α ′(n′; iωn′), (8.39)

where we used the expansion of the noninteracting Green’s function from (7.51) and
the expression for the matrix elements of the two-body interaction from (6.22). The
above expression can be further evaluated, namely

Σα(n, iωn) = ∓ lim
η↓0

1
h̄2β ∑

n′,n′,α ′
Vn,n′,n,n′

−h̄eiωn′η

−ih̄ωn′ + εn′,α ′ −µ

=
1
h̄ ∑

n′,α ′
Vn,n′,n,n′

1

eβ (εn′,α ′−µ)∓1
, (8.40)

where we used the result for the sum over Matsubara frequencies of (7.31). Note
that the sign of the convergence factor η eventually comes from the correct equal
time limiting procedure as explained for (8.27). In the same way, we can calculate
the second Feynman diagram of Fig. 8.6, which in real space and imaginary time is
given by

Σα,α ′(x,τ;x′,τ ′) =−δ (τ− τ ′)
V (x−x′)

h̄
G0;α,α ′(x,τ;x′,τ+), (8.41)

which finally leads to
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Σα(n, iωn) =
∫ h̄β

0
dτ dτ ′

∫
dx dx′ Σα(x,τ;x′,τ ′)χn(x)χ∗n(x′)

e−iωn(τ−τ ′)

h̄β

= − 1
h̄2β ∑

n′,n′
Vn′,n,n,n′G0;α(n′; iωn′)

= ±1
h̄ ∑

n′
Vn′,n,n,n′

1

eβ (εn′,α−µ)∓1
. (8.42)

8.4 Hartree-Fock Approximation

In our first-order calculation of Sect. 8.2 we found two different corrections to the
noninteracting Green’s function, which are shown in Fig. 8.3. The corresponding
selfenergy diagrams are then simply obtained by removing the external lines, which
gives the diagrammatic result shown in Fig. 8.6. This is the most simple approxima-
tion to the exact selfenergy that we can think of. In the weak-coupling limit or for
a homogeneous system, when the selfenergy can be obtained in diagonal form, the
Feynman diagrams of Fig. 8.6 yield

h̄Σα(n, iωn) = ∑
n′,α ′

Vn,n′;n,n′
1

eβ (εn′,α′−µ)∓1
±∑

n′
Vn′,n;n,n′

1

eβ (εn′,α−µ)∓1

= ∑
n′,α ′

(Vn,n′;n,n′ ±Vn′,n;n,n′δα ,α ′)
1

eβ (εn′,α ′−µ)∓1
, (8.43)

as was explained in Example 8.3. The first term on the right-hand side of equation
(8.43), which corresponds to the middle Feynman diagram in Fig. 8.6, is known
as the direct or Hartree contribution, whereas the second term, which corresponds
to the right Feynman diagram, is known as the exchange or Fock contribution to
the selfenergy. From (8.43), we conclude that the matrix elements of the interaction
only enter in the combination

Vn,n′;n,n′ ±Vn′,n;n,n′δα,α ′ , (8.44)

which in the fermionic case is a reflection of the Pauli principle, since it forces the
effective interaction between two fermionic atoms in the same state to vanish.

To obtain a nonperturbative and fully self-consistent Hartree-Fock theory, we
should not use the noninteracting propagators in the expression for the selfenergy,
but rather precisely those propagators GHF that follow from the Dyson equation,
which is then given by (GHF)−1 = G−1

0 −ΣHF. The diagramatic representation of
the resulting Hartree-Fock approximation to the exact selfenergy is shown in Fig.
8.7. In the weak-coupling limit, it leads to the new dispersion relation

h̄ωn,α = εn,α + h̄ΣHF
α (n,0)−µ (8.45)
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Fig. 8.6 Selfenergy up to first order in the interaction. The middle diagram is known as the direct
or Hartree contribution, while the right diagram is known as the exchange or Fock contribution.

for the ‘dressed’ particles or quasiparticles of the gas. The selfenergy is essentially
still given by (8.43), where we only have to replace on the right-hand side εn′,α ′ by

ε ′n′,α ′ ≡ εn′,α ′ + h̄ΣHF
α ′ (n

′,0), (8.46)

because we have replaced the noninteracting propagator by the propagator in the
Hartree-Fock approximation. In this manner, we have thus obtained an approxima-
tion to the interacting Green’s function that is nonperturbative in the interaction and
effectively sums an infinite number of Feynman diagrams. Although we have as-
sumed weak coupling so far, the Hartree-Fock approximation can also be used in
the strong-coupling limit. In that case, it diagrammatically still corresponds to the
solution of the Dyson equation with a selfenergy as shown in Fig. 8.7. However, we
are then no longer allowed to assume that the exact Green’s function is diagonal in
the eigenstates χn(x) of the external trapping potential.

8.5 Variational Approach

To gain more insight in the Hartree-Fock approximation, we are going to derive
the Hartree-Fock selfenergy also by means of a variational calculation in the zero-
temperature limit. We consider here only the fermionic case, while the treatment
of the bosonic case is left to Exercise 11.1. In the variational calculation, we as-
sume that the ground state of the system is given by a single Slater determinant of
one-particle states χ ′n,α with energies ε ′n,α , which we both want to determine varia-
tionally. Since at zero temperature the Fermi distribution becomes the stepfunction
θ(µ − ε ′n,α), we have that the many-body ground state |0;N〉 is the fully antisym-

+=Σ H  F +

Fig. 8.7 Hartree-Fock approximation for the selfenergy. The thick line represents the interacting
Green’s function in the selfconsistent Hartree-Fock approximation. The middle diagram is the
direct or Hartree contribution, while the right diagram is the exchange or Fock contribution.
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metrized product of all single-particle states χ ′n,α that have an energy ε ′n,α that is
lower than the chemical potential µ . In the language of second quantization, this
can be written as

|0;N〉=

(
∏
n,α

′ψ̂†
n,α

)
|0〉, (8.47)

where Π′ denotes the restricted product over all states with quantum numbers n and
α that satisfy ε ′n,α < µ .

Next, we want to calculate the expectation value of the energy 〈0;N|Ĥ|0;N〉 for
this ground state, where the Hamiltonian Ĥ is given by

Ĥ = ∑
α

∫
dx ψ̂†

α(x)

{
− h̄2∇∇∇2

2m
+V ex(x)+ εα

}
ψ̂α(x)

+
1
2 ∑

α,α ′

∫
dx

∫
dx′ ψ̂†

α(x)ψ̂†
α ′(x

′)V (x−x′)ψ̂α ′(x′)ψ̂α(x) . (8.48)

To do this, we expand the field operators in terms of the unknown states χ ′n,α(x), i.e.
ψ̂α(x) = ∑n ψ̂n,α χ ′n,α(x) and ψ̂†

α(x) = ∑n ψ̂†
n,α χ ′∗n,α(x). These states should not be

confused with the solutions to the single-particle Schrödinger equation from (6.3).
If we substitute these expansions into the Hamiltonian, we obtain

Ĥ = ∑
α

∑
n,n′

ψ̂†
n,α Eα;n,n′ψ̂n′,α

+
1
2 ∑

α,α ′
∑
n,n′

∑
m,m′

ψ̂†
n,α ψ̂†

n′,α ′Vn,n′;m,m′ψ̂m′,α ′ψ̂m,α , (8.49)

where the quadratic coefficients are determined by

Eα;n,n′ ≡
∫

dx χ ′∗n,α(x)

{
− h̄2∇∇∇2

2m
+V ex(x)+ εα

}
χ ′n′,α(x), (8.50)

and the fourth-order coefficients by

Vn,n′;m,m′ ≡
∫

dx
∫

dx′ χ ′∗n,α(x)χ ′∗n′,α ′(x
′)V (x−x′)χ ′m′,α ′(x

′)χ ′m,α(x). (8.51)

The expectation value for the total energy thus becomes

〈0;N|Ĥ|0;N〉 = ∑
α

∑
n,n′

Eα ;n,n′〈0;N|ψ̂†
n,α ψ̂n′,α |0;N〉 (8.52)

+
1
2 ∑

α,α ′
∑
n,n′

∑
m,m′

Vn,n′,m,m′〈0;N|ψ̂†
n,α ψ̂†

n′,α ′ψ̂m′,α ′ψ̂m,α |0;N〉.

Considering the first term on the right-hand side, we observe that due to the or-
thonormality of the Fock-states ψ̂n,α |0;N〉 and ψ̂n′,α |0;N〉, the quantum numbers n
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and n′ have to be equal to have a nonzero overlap. For the interaction term, the sit-
uation is a bit more complicated. There, we see that we have the freedom to choose
which pairs of states are equal. We have two possibilities. The first choice is to have

n = m and n′ = m′, (8.53)

while the second option is

n = m′ and n′ = m. (8.54)

In the second case, we also have that α = α ′. As a result, we find for the total energy

〈0;N|Ĥ|0;N〉= ∑
n,α

′Eα;n,n +
1
2 ∑

n,α

′ ∑
n′,α ′

′ (Vn,n′;n,n′ −Vn,n′;n′,nδα,α ′
)
, (8.55)

where the restricted sum ∑′ is over all states with an energy ε ′n,α less than µ .
Next, we want to determine the unknown single-particle wavefunctions χ ′n,α(x)

that minimize the total energy under the condition that the wavefunctions remain
properly normalized, that is

∫
dx |χ ′n,α(x)|2 = 1. (8.56)

The standard procedure to find the minimum of a function with an additional con-
straint is to introduce a Lagrange multiplier for the constraint. Then, the product of
the constraint and the Lagrange multiplier is added to the original function, which is
consequently minimized as a whole with respect to both the original variables and
the Lagrange multiplier. In this case, we add the following term to the expectation
value 〈0;N|Ĥ|0;N〉 of the total energy

∑
n,α

′ε ′n,α

(
1−

∫
dx χ ′∗n,α(x)χ ′n,α(x)

)
,

after which we minimize the resulting expression by taking the functional derivative
with respect to χ ′∗n,α(x), that is

δ
δ χ ′∗n,α(x)

{
〈0;N|Ĥ|0;N〉+ ∑

n′,α ′

′ε ′n′,α ′
(

1−
∫

dx′ χ ′∗n′,α ′(x
′)χ ′n′,α ′(x

′)
)}

= 0.

(8.57)

From this, we find with the use of (8.50) and (8.51) a Schrödinger-like equation
that determines the one-particle states and energies by
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{
− h̄2∇∇∇2

2m
+V ex(x)+ εα

}
χ ′n,α(x)

+ ∑
n′,α ′

′
∫

dx′ V (x−x′)χ ′∗n′,α ′(x
′)χ ′n′,α ′(x

′)χ ′n,α(x)

−∑
n′

′
∫

dx′ V (x−x′)χ ′∗n′,α(x′)χ ′n′,α(x)χ ′n,α(x′) = ε ′n,α χ ′n,α(x). (8.58)

These equations take a particularly convenient form, if we introduce the single-
particle density matrix nα(x,x′) according to

nα(x,x′) = ∑
n

′χ ′∗n,α(x)χ ′n,α(x′), (8.59)

which for x = x′ becomes equal to the particle density in spin state |α〉, i.e. nα(x).
The total density of particles is therefore given by

n(x) = ∑
α

nα(x).

With the help of these definitions, (8.58) finally becomes
{
− h̄2∇∇∇2

2m
+V ex(x)+ εα +

∫
dx′ V (x−x′)n(x′)

}
χ ′n,α(x)

−
∫

dx′ V (x−x′)nα(x,x′)χ ′n,α(x′) = ε ′n,α χ ′n,α(x). (8.60)

In the weak-coupling limit the eigenstates can be considered unaffected, i.e. χ ′n,α(x)
= χn,α(x), so that we can calculate them from the one-particle Schrödinger equation
and substitute them in the above equation to obtain the expression for the quasiparti-
cle energy ε ′n,α in the Hartree-Fock approximation. However, with the use of (8.60),
we can also deal with the strong-coupling limit. Starting from the noninteracting
wavefunctions, we can then numerically calculate the strong-coupling wavefunc-
tions χ ′n,α(x) in an iterative way. To do this, we calculate the density matrices at
each step of the iteration with the wavefunctions found in the previous step.

8.6 Hubbard-Stratonovich Transformation

In the previous sections, we showed how to do Hartree-Fock theory by using ei-
ther diagrammatic perturbation theory or a zero-temperature variational method. In
this section, we show how Hartree-Fock theory can also be derived with the use
of the Hubbard-Stratonovich transformation, which we already briefly encountered
for path integrals in Sect. 5.8. Here, we generalize the transformation to the case of
quantum field theory. The advantages of the Hubbard-Stratonovich transformation



172 8 Interactions and Feynman Diagrams

over the other two techniques are the following. First, it is a technique that is easy
to deal with in calculations. Second, it corresponds to an exact transformation and
thus leads to nonperturbative results. Third, it is by no means restricted to zero tem-
perature, and fourth, it is a very versatile technique, as also explained in Sect. 5.8.
Since it is very useful for a wide range of physical problems, we use the Hubbard-
Stratonovich transformation many times throughout the rest of this book.

8.6.1 Hartree Theory

Before we treat the full Hartree-Fock theory, we first consider the Hartree and Fock
contributions separately. We start with the Hartree contribution and consider the
action for an interacting gas of spinless atoms, given by

S[φ ∗,φ ] =
∫ h̄β

0
dτ

∫
dx φ ∗(x,τ)

{
h̄

∂
∂τ
− h̄2∇∇∇2

2m
+V ex(x)−µ

}
φ(x,τ) (8.61)

+
1
2

∫ h̄β

0
dτ

∫
dx

∫
dx′ φ ∗(x,τ)φ(x,τ)V (x−x′)φ ∗(x′,τ)φ(x′,τ) .

Next, we consider the following identity for the functional-integral over the real
field κ(x,τ)

1 =
∫

d[κ ]exp
{

1
2h̄

(
κ−V φ ∗φ |V−1|κ−V φ ∗φ

)}
, (8.62)

where the integration measure now contains the factor exp
{

Tr[log(−V−1/h̄)]/2
}

,
which is thus seen to cancel the result coming from the Gaussian functional integral.
This last procedure is mainly done for notational convenience, where we also note
that the absorbed term merely amounts to a numerical prefactor, which is therefore
often of little physical importance. As explained in Sect. 7.2.3, we note that in the
above equation the short-hand notation in the exponent actually means

1
2h̄

∫ h̄β

0
dτ dτ ′

∫
dx dx′

(
κ(x,τ)−

∫
dx′′ φ ∗(x′′,τ)φ(x′′,τ)V (x′′−x)

)

×V−1(x−x′)δ (τ− τ ′)
(

κ(x′,τ ′)−
∫

dx′′ V (x′−x′′)φ ∗(x′′,τ ′)φ(x′′,τ ′)
)

,

where we also explicitly wrote out the matrix structure in imaginary time.
Inserting the identity of (8.62) in the partition function conveniently cancels the

fourth-order interaction term in the original action. However, it also introduces an
extra path integral over the field κ , as we explicitly see below. This generalizes
the Hubbard-Stratonovich transformation introduced in Sect. 5.8 to the present case
of quantum field theory. To also be able to calculate the exact atomic Green’s func-
tion G(x,τ;x′,τ ′) after the Hubbard-Stratonovich transformation, we add the current
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terms −h̄(J|φ)− h̄(φ |J) to the action, leading finally to the partition function

Z[J,J∗] =
∫

d[φ ∗]d[φ ]
∫

d[κ]exp
{
−1

h̄
S[φ ∗,φ ]+ (J|φ)+(φ |J)

}

×exp
{

1
2h̄

(
κ−V φ ∗φ |V−1|κ−V φ ∗φ

)}

=
∫

d[φ ∗]d[φ ]
∫

d[κ]exp
{

1
2h̄

(
κ|V−1|κ)

+(J|φ)+(φ |J)
}

×exp
{(

φ |(G−1
0 −Σ)|φ)}

, (8.63)

where the Hartree-like selfenergy is given by

h̄Σ(x,τ;x′,τ ′;κ) = δ (τ− τ ′)δ (x−x′)κ(x,τ). (8.64)

Since the resulting functional integral has become quadratic in the atomic fields, we
can integrate them out exactly. In this manner, we obtain an action only for the κ
field, which we call the effective action Seff[κ]. As a result, we find

Z[J,J∗] =
∫

d[κ]exp
{

1
2h̄

(
κ|V−1|κ)∓Tr

[
log

(−G−1)]− (J|G|J)
}

≡
∫

d[κ ]exp
{
−1

h̄
Seff[κ]− (J|G|J)

}
, (8.65)

where the inverse Green’s function G−1(x,τ;x′,τ ′;κ) satisfies the equation

G−1(x,τ;x′,τ ′;κ) = G−1
0 (x,τ;x′,τ ′)−Σ(x,τ;x′,τ ′;κ)

= −1
h̄

{
h̄

∂
∂τ
− h̄2∇∇∇2

2m
−µ +V ex(x)+κ(x,τ)

}

×δ (τ− τ ′)δ (x−x′), (8.66)

which follows from (7.48) for the noninteracting inverse Green’s function and (8.64)
for the selfenergy. By inverting the above equation, we obtain
{

h̄
∂

∂τ
− h̄2∇∇∇2

2m
−µ +V ex(x)+κ(x,τ)

}
G(x,τ;x′,τ ′;κ) =−h̄δ (τ− τ ′)δ (x−x′),

(8.67)

where this Green’s function is actually not equal to the exact atomic Green’s func-
tion, but rather is related to it. To see this, we consider the definition of the exact
atomic Green’s function G(x,τ;x′,τ ′), which is given by
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G(x,τ;x′,τ ′) = −
∫

d[φ ∗]d[φ ] φ(x,τ)φ ∗(x′,τ ′)exp
{
−1

h̄
S[φ ∗,φ ]

}

=
∓1

Z[0,0]
δ 2

δJ∗(x,τ)δJ(x′,τ ′)
Z[J,J∗]

∣∣∣∣
J=0

, (8.68)

Using (8.65), we find that

G(x,τ;x′,τ ′) =
∫

d[κ ] G(x,τ;x′,τ ′;κ) exp
{−Seff[κ ]/h̄

}
∫

d[κ] exp{−Seff[κ]/h̄} , (8.69)

where we note that the factor that is absorbed in the measure of (8.62) cancels in
the above equation. In this way, we can actually express all higher-order correlation
functions of the product φ ∗(x,τ)φ(x,τ) in terms of the effective action Seff[κ ] by
considering all higher-order derivatives with respect to the currents.

However, in the present case it gives more insight to perform the calculation
of the exact atomic correlation functions slightly differently. Instead of adding the
current terms −h̄(J|φ)− h̄(φ |J), we add the following source term to the atomic
action S[φ ∗,φ ]

−h̄
∫ h̄β

0
dτ

∫
dx φ ∗(x,τ)φ(x,τ)I(x,τ) = −h̄(φ ∗φ |I) , (8.70)

where we take I to be real, because φ ∗φ is also real. The generating functional is
then given by

Z[I] =
∫

d[φ ∗]d[φ ]exp
{
−1

h̄
S[φ ∗φ ]+ (φ ∗φ |I)

}
. (8.71)

Next, we perform a Hubbard-Stratonovich transformation that simultaneously de-
couples the interaction between the fermions and also removes the above source
term from the fermionic part of the action. We therefore insert the following iden-
tity

1 =
∫

d[κ]exp
{

1
2h̄

(
κ−V φ ∗φ + h̄I|V−1|κ−V φ ∗φ + h̄I

)}
(8.72)

into the integrand of Z[I], where the measure is the same as in (8.62). As a result,
the generating functional Z[I] is now given by

Z[I] =
∫

d[φ ∗]d[φ ]exp
{(

φ |G−1
0 |φ)}

×
∫

d[κ]exp
{

1
2

{
h̄
(
I|V−1|I)+

(
κ|V−1|I)+

(
I|V−1|κ)}}

×exp
{

1
2h̄

{(
κ|V−1|κ)− (κ |φ ∗φ)− (φ ∗φ |κ)

}}
, (8.73)
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where we can integrate out the atomic fields and calculate the effective action
Seff[κ; I], for which we then find

Z[I] =
∫

d[κ ]exp
{

1
2h̄

(
κ|V−1|κ)∓Tr[log

(−G−1)]

+
1
2

{
h̄
(
I|V−1|I)+

(
κ |V−1|I)+

(
I|V−1|κ)}}

. (8.74)

By definition, we have from (8.71) that

〈φ ∗(x,τ)φ(x,τ)〉=
1

Z[I]
δZ[I]

δ I(x,τ)

∣∣∣∣
I=0

, (8.75)

where we can calculate the right-hand side with the use of (8.74), such that
∫

dx′ V−1(x−x′)〈κ(x′,τ)〉= 〈φ ∗(x,τ)φ(x,τ)〉, (8.76)

which can be rewritten as

〈κ(x,τ)〉=
∫

dx′ V (x−x′)〈φ ∗(x′,τ)φ(x′,τ)〉. (8.77)

Note that the above relation does not come as a complete surprise, because if we
look at (8.72) for zero I we see that the minimum for the Gaussian integral over
κ is given by V φ ∗φ . Since (8.72) is consequently substituted in the path integral
over φ ∗ and φ , this minimum is actually fluctuating, which then on average leads
to 〈κ〉 = V 〈φ ∗φ〉 as given by (8.77). We can also take the second-order functional
derivative with respect to I in (8.71) and (8.74), leading to

∫
dx′′ dx′′′ V (x−x′′)V (x′−x′′′)〈φ ∗(x′′,τ)φ(x′′,τ)φ ∗(x′′′,τ ′)φ(x′′′,τ ′)〉

= 〈κ(x,τ)κ(x′,τ ′)〉+ h̄V (x−x′)δ (τ− τ ′) . (8.78)

This last equation shows that the operator κ̂(x,τ) associated with the Hubbard-
Stratonovich field κ(x,τ) is not identical to the operator

∫
dx′ V (x−x′)ψ̂†(x′,τ)ψ̂(x′,τ) .

Looking at (8.72), we indeed see that κ is not strictly equal to V φ ∗φ , but actually is
free to fluctuate around this value according to a Gaussian distribution. As a result,
the Hubbard-Stratonovich transformation does not have a clear analogue in the oper-
ator formalism. We consider this a reason to prefer functional methods over operator
methods, since this transformation is a very powerful technique in practice.

To summarize the results of this subsection, we recall that we have performed
a Hubbard-Stratonovich transformation to a new collective field κ , which is an ex-
act transformation and allows us to remove or decouple the fourth-order interaction
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term. The downside of the procedure is that we have now also introduced an addi-
tional path integral over this collective field κ . Since the action becomes quadratic in
the atomic fields after the transformation, we can integrate these fields out exactly,
leading to (8.65). The resulting path integral over κ can no longer be performed
exactly, because the logarithm contains terms up to any order in κ . To still be able
to extract physical results, we are thus forced to make approximations. To this end,
we first note that we have also obtained an expression for the average of κ , which is
given by (8.77). In the mean-field approximation, we simply approximate the field
κ by its average value 〈κ〉, which is given by the minimum of the effective action
Seff[κ]. This actually means that we replace the whole path integral over κ by only
its maximum contribution, which is given by the minimum of the effective action.
Therefore, the mean-field approximation is also called the saddle-point approxima-
tion or the stationary-phase approximation, since no fluctuations in the collective
field are considered. Note that by substituting in (8.64) for the selfenergy the aver-
age value of κ as given by (8.77), we obtain the familiar expression for the Hartree
approximation to the selfenergy, because the right-hand side of (8.77) corresponds to
the middle Feynman diagram of Fig. 8.7. Thus, although the Hubbard-Stratonovich
to the field κ is in itself exact, mean-field theory in κ actually corresponds to the
Hartree approximation. Then, if we want to improve on Hartree theory, we could try
to take the fluctuations around the mean-field into account. In Sect. 8.7, when we
discuss the explicit example of the Jellium model, the concepts sketched above are
worked out more concretely.

8.6.2 Fock Theory

In this section, we show how the Hubbard-Stratonovich transformation can also
be used to obtain the Fock theory. The approach that we use here is completely
analogous to the one that we used in the previous section, when we discussed the
Hartree theory. The starting point is also the action of (8.61), which describes a
quantum gas of interacting atoms. To deal with the fourth-order term, we perform
again a Hubbard-Stratonovich transformation, but this time to a field λ (x,x′,τ) that
on average is proportional to the one-particle density matrix of the atomic quantum
gas, that is

〈λ (x,x′,τ)〉= V (x−x′)〈φ ∗(x′,τ)φ(x,τ)〉. (8.79)

As for Hartree theory, the Hubbard-Stratonovich transformation is achieved by in-
serting a Gaussian integral over the field λ that decouples the interaction. However,
in order to introduce a collective field λ that satisfies (8.79), we have to perform a
somewhat more involved transformation. We must insert into the partition function
the following identity
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1 =
∫

d[λ ]exp
{
± 1

2h̄

∫ h̄β

0
dτ

∫ h̄β

0
dτ ′

∫
dx

∫
dx′

∫
dx′′

∫
dx′′′

×(
λ (x,x′,τ)−V (x−x′)φ ∗(x′,τ)φ(x,τ)

)

× 1
V (x′′−x′′′)

δ (x−x′′′)δ (x′−x′′)δ (τ− τ ′)

× (
λ (x′′,x′′′,τ ′)−V (x′′−x′′′)φ ∗(x′′′,τ ′)φ(x′′,τ ′)

)}
, (8.80)

where the present notation 1/V (x− x′) should not be confused with V−1(x− x′),
since now we have that V (x− x′)/V (x− x′) = 1, whereas the inverse is defined
through (7.44). As explained before, in the above notation the measure conveniently
contains a prefactor that precisely cancels the result that comes from the Gaussian
path integral over λ . To facilitate our calculations, we introduce again a short-hand
notation, such that the above expression is represented by

1 =
∫

d[λ ]exp
{
± 1

2h̄

(
λ −V φ ∗φ ||V−1||λ −V φ ∗φ

)}
, (8.81)

where we note that in the present structure the notation V φ ∗φ denotes the product of
the interaction with the atomic fields at different positions, whereas in the previous
subsection a similar notation implied that the atomic fields were at the same position
over which was consequently also integrated.

For the same reasons as in the case of the Hartree theory, we then add the current
terms −h̄(φ |J)− h̄(J|φ) to the action, such that we obtain

Z[J,J∗] =
∫

d[φ ∗]d[φ ]
∫

d[λ ]exp
{
±1

2
(
λ ||V−1||λ)

+(φ |J)+(J|φ)
}

×exp
{(

φ |(G−1
0 −Σ)|φ)}

, (8.82)

where the Fock-like selfenergy is given by

h̄Σ(x,τ;x′,τ ′;λ ) =±λ (x,x′,τ)δ (τ− τ ′). (8.83)

After integrating out the fermions, we obtain the effective action Seff[λ ] for the λ
field, namely

Z[J,J∗] =
∫

d[λ ] exp
{
± 1

2h̄

(
λ ||V−1||λ)− (J|G|J)∓Tr[log

(−G−1)]
}

≡
∫

d[λ ] exp
{
−1

h̄
Seff[λ ]− (J|G|J)

}
, (8.84)

where we have that

G−1(x,τ;x′,τ ′;λ ) = G−1
0 (x,τ;x′,τ ′)−Σ(x,τ;x′,τ ′;λ ). (8.85)
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The exact atomic Green’s function G(x,τ;x′,τ ′) can be expressed in terms of the
effective action and the above Green’s function G(x,τ;x′,τ ′;λ ). Analogously to
(8.69) for Hartree theory, we obtain for Fock theory

−〈φ(x,τ)φ ∗(x′,τ ′)〉=
∫

d[λ ] G(x,τ;x′,τ ′;λ )e−Seff[λ ]/h̄
∫

d[λ ] e−Seff[λ ]/h̄
, (8.86)

where we could also express the exact atomic correlation function in terms of λ by
considering the source term

−h̄
∫ h̄β

0
dτ

∫
dx

∫
dx′ φ ∗(x,τ)φ(x′,τ)I(x′,x,τ).

It is left as an exercise to show that, in complete analogy with (8.77) for Hartree the-
ory, this last approach indeed leads to (8.79). Performing a mean-field theory in the
collective field 〈λ (x,x′,τ)〉 then leads to the Fock approximation to the selfenergy,
because the right-hand side of (8.79) corresponds to the right diagram of Fig. 8.7.

8.6.3 Hartree-Fock Theory for an Atomic Fermi Gas

Having discussed both the Hartree and the Fock theory separately, we combine them
into the Hartree-Fock theory using the Hubbard-Stratonovich transformation. We
consider for simplicity a fermionic mixture with an equal number of atoms in two
hyperfine states and start by splitting our spin-independent interaction V (x−x′) into
two spin-dependent parts such that one part contributes only to the Hartree diagram
and the other part only to the Fock diagram. Denoting a spin-dependent interaction
by Vα ′,β ′;α,β (x−x′) = 〈α ′,β ′|V̂ |α,β 〉, we thus want

V (x−x′)δα,α ′δβ ,β ′ = V H
α ′,β ′;α,β (x−x′)+V F

α ′,β ′;α,β (x−x′), (8.87)

with
∑
β

V H
β ,α;α,β (x−x′) = ∑

β
V F

α,β ;α ,β (x−x′) = 0. (8.88)

Using operators in spin space, it is left as an exercise to show that a possible solution
to these equations is

V̂ H =
2
3
(2− P̂12)V (x−x′) (8.89)

and
V̂ F =

1
3
(2P̂12−1)V (x−x′) , (8.90)

where 〈α ′,β ′|P̂12|α ,β 〉= (1+σσσβ ′,β ·σσσα ′,α)/2 are the matrix elements of the spin-
exchange operator, such that P̂12|α,β 〉= |β ,α〉, and σσσ is a vector of Pauli matrices.
Note that we are describing the atoms as having effectively a spin one half. As a
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result, we now have

Sint[φ ∗,φ ] =
1
2 ∑

α ,α ′;β ,β ′

∫ h̄β

0
dτ

∫
dx

∫
dx′

×
{

φ ∗α ′(x,τ)φα(x,τ)V H
α ′,β ′;α,β (x−x′)φ ∗β ′(x

′,τ)φβ (x′,τ)

− φ ∗α ′(x,τ)φβ (x′,τ)V F
α ′,β ′;α,β (x−x′)φ ∗β ′(x

′,τ)φα(x,τ)
}

, (8.91)

which we write as

Sint[φ ∗,φ ]≡ 1
2
(φ ∗φ |V H|φ ∗φ)− 1

2
(φ ∗φ ||V F||φ ∗φ) . (8.92)

Next, we apply a Hubbard-Stratonovich transformation to both the Hartree and
the Fock parts of the interaction. We start with the Hartree part, where we gener-
alize the discussion of Sect. 8.6.1 to the spin-dependent case. Then, we note that
e−SH

int[φ
∗,φ ] can be written as a functional integral over the four real fields κα,α ′ ,

which we may parameterize as κα ,α ′(x,τ) ≡ κ0(x,τ)δα,α ′ + κκκ(x,τ) · σσσα ,α ′ . The
Hubbard-Stratonovich transformation for the Hartree term is based on the identity

exp
{
− 1

2h̄
(φ ∗φ |V H|φ ∗φ)

}

=
∫

d[κ ] exp
{

1
2h̄

(κ |V H−1|κ)− 1
2h̄

(κ|φ ∗φ)− 1
2h̄

(φ ∗φ |κ)
}

, (8.93)

where the inner products now also contain sums over spin and where the measure
incorporates the inverse determinant of the inverse interaction. If we ignore the Fock
part for a moment, we can substitute this equality in the integrand of the partition
function to obtain Z =

∫
d[κ ]d[φ ∗]d[φ ]e−S[κ,φ∗,φ ]/h̄ with the action

S[κ,φ ∗,φ ] =−1
2
(κ |V H−1|κ)+ ∑

α,α ′

∫ h̄β

0
dτ

∫
dx φ ∗α(x,τ) (8.94)

×
{(

h̄
∂

∂τ
− h̄2∇∇∇2

2m
+V ex(x)+ εα −µ

)
δα ,α ′ +κα,α ′(x,τ)

}
φα ′(x,τ) .

We see that in this manner the action for the fermions has become quadratic with
a selfenergy h̄Σα,α ′(x,τ;x′,τ ′) = κα ,α ′(x,τ)δ (x− x′)δ (τ − τ ′), such that we can
integrate out the fermion fields to obtain Z =

∫
d[κ]e−Seff[κ]/h̄ and

Seff[κ] =−1
2
(κ |V H−1|κ)− h̄Tr[log(−G−1)] , (8.95)

where G−1 = G−1
0 −Σ depends on κα,α ′(x,τ). Up to now, we have not made any ap-

proximations and have performed an exact rewriting of the partition function. How-
ever, the resulting effective action Seff[κ] contains all powers of the fields κα,α ′(x,τ)
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and is thus rather complicated. To proceed, we therefore need to make an approxi-
mation.

We start by noting that the contribution to the partition function is largest for
configurations that minimize the action Seff[κ ]. To make use of this observation, we
expand the action around its minimum, i.e. we put

κα,α ′(x,τ) = 〈κα,α ′(x)〉+κ ′α,α ′(x,τ), (8.96)

which is a shift in the integration variables. To this end, we require that

δSeff[κ ]
δκα,α ′(x,τ)

∣∣∣∣
κ=〈κ〉

= 0,

and if we neglect the fluctuations, we obtain Z ' e−Seff[〈κ〉]/h̄. This turns out to be the
Hartree approximation, as also discussed in Sect. 8.6.1, but which we show in more
detail now. Anticipating this result, we introduce in basis-independent notation

G−1 = G−1
0 −〈κ〉/h̄−κ ′/h̄≡ GH−1−κ ′/h̄ = GH−1

(1−GHκ ′/h̄) , (8.97)

which we substitute in (8.95), such that we obtain for the terms linear in the fluctu-
ations

−h̄Tr[−GHκ ′/h̄]− (κ ′|V H−1|〈κ〉) .

If 〈κα,α ′(x)〉 is indeed a minimum of the action Seff[κ], these linear terms have to
vanish, which implies that

〈κα ′,α(x)〉= ∑
β ,β ′

∫
dx V H

α ′,β ′;α ,β (x−x′)GH
β ,β ′(x

′,τ;x′,τ+) . (8.98)

As promised, this is precisely the most general expression for the Hartree contribu-
tion to the selfenergy in Fig. 8.7. Considering as before a selfenergy that is diagonal
in spin space, 〈κα ′,α(x)〉 = κα(x)δα ′,α , we find that the Hartree approximation to
the one-particle propagator obeys GH

β ,β ′(x
′,τ;x′,τ+) = n(x′)δβ ,β ′/2, with n(x′) the

total average atomic density in the Hartree approximation. As a result, we obtain the
usual expression for the Hartree selfenergy

κα(x) = ∑
β

∫
dx′ V H

α,β ;α ,β (x−x′)
n(x′)

2
=

∫
dx′ V (x−x′)n(x′) , (8.99)

where we also used (8.88).
Next, we want to include the Fock part of the interaction and treat this con-

tribution also by a Hubbard-Stratonovich transformation. This requires introduc-
ing four real fields that depend on two spatial coordinates, which are denoted by
λα,α ′(x,x′,τ). We then use
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exp
{

1
2h̄

(φ ∗φ ||V F||φ ∗φ)
}

(8.100)

=
∫

d[λ ] exp
{
− 1

2h̄
(λ ||V F−1||λ )+

1
2h̄

(λ ||φ ∗φ)+
1

2h̄
(φ ∗φ ||λ )

}
,

where the inner product (φ ∗φ ||λ ) is given by

(φ ∗φ ||λ ) = ∑
α,α ′

∫ h̄β

0
dτ

∫
dx dx′φ ∗α(x,τ)φα ′(x′,τ)λα,α ′(x,x′,τ). (8.101)

This leads to the total selfenergy

h̄Σα,α ′(x,τ;x′,τ ′) = [κα,α ′(x,τ)δ (x−x′)−λα,α ′(x,x′,τ)]δ (τ− τ ′), (8.102)

which after integration over the fermion fields gives rise to the effective action

Seff[κ,λ ] =−1
2
(κ|V H−1|κ)+

1
2
(λ ||V F−1||λ )− h̄Tr[log(−G−1)] . (8.103)

Expanding the above action around the expectation value 〈λ 〉 and demanding that
the terms linear in the fluctuation are zero, then indeed leads to the expected expres-
sion for the Fock selfenergy

〈λα ′,α(x,x′)〉= ∑
β ,β ′

V F
β ′,α ′;α,β (x−x′)GHF

β ′,β (x,τ;x′,τ+) . (8.104)

In the case of a diagonal selfenergy in spin space 〈λα ′,α(x,x′)〉= λα(x,x′)δα ′,α , we
have that also the Green’s function GHF

β ,β ′(x,τ;x′,τ+) is diagonal in spin space, such
that

λα(x,x′) = V (x−x′)nα(x′,x) (8.105)

with nα(x′,x) = GHF
α ,α(x,τ;x′,τ+) = 〈ψ̂†

α(x′,τ+)ψ̂α(x,τ)〉.
To perform a true Hartree-Fock calculation in practice, we need to be able to

actually determine the Green’s function GHF
α ,α ′(x,τ;x′,τ ′) in terms of the parame-

ters that specify the system, such as the strength of the trapping potential and the
chemical potential, for instance. The easiest way to do so is by realizing that GHF

is the Green’s function of the operator describing the fermionic piece of the action
S[κ,λ ,φ ∗,φ ] obtained after the Hubbard-Stratonovich transformations. If we diag-
onalize this operator by solving the eigenvalue problem

{
− h̄2∇∇∇2

2m
+V ex(x)+κα(x)− ε ′n

}
χ ′n(x)−

∫
dx′ λα(x,x′)χ ′n(x′) = 0 , (8.106)

the desired one-particle propagator acquires the ideal-gas form
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GHF
α,α ′(x,τ;x′,τ ′)

= δα,α ′ ∑
n,n

−h̄
−ih̄ωn + ε ′n,α −µ

χ ′n(x)χ ′∗n (x′)
e−iωn(τ−τ ′)

h̄β
, (8.107)

with new one-particle energies ε ′n,α = ε ′n +εα and eigenstates χ ′n(x) that incorporate
the average effect of the interactions of an atom with all the other atoms in the gas.
Note that the eigenvalue problem in (8.106) is the same as the coupled equations
we found by the variational calculation in (8.58), as can be seen from (8.99) and
(8.105).

In the case that the eigenstates are not affected by these mean-field effects, we
also recover the weak-coupling results of Sect. 8.4. Although we have thus precisely
reproduced our diagrammatic result, there are two important advantages in using
the Hubbard-Stratonovich transformation. First, it is in principle exact, and allows
us to also calculate corrections to the Hartree-Fock approximation. For example,
if we expand Seff[κ,λ ] up to quadratic order in κ ′ and λ ′, and neglect all higher
orders, we find the generalized random-phase approximation or GRPA. The latter
approach actually gives us also the opportunity to study the density fluctuations and
therefore the collective excitations of the gas. Second, the Hubbard-Stratonovich
transformation is by no means restricted to only Hartree-Fock theory. As it turns
out, it actually allows for a beautiful way to describe phase transitions, as we show
in the following chapters.

8.7 The Jellium Model

To give a concrete physical application of the techniques developed in this chapter,
we consider the Hartree theory for an electron gas in the presence of a homogeneous
positively charged background, where the average density of the electron gas ne and
the background are the same. This corresponds to what is called the jellium model
for electrons in a metal. In particular, we are going to derive the dispersion for
the density fluctuations in the jellium model with the use of the field-theoretical
methods discussed in the previous section. It will be insightful to first discuss the
model in the familiar setting of classical mechanics, before turning to the more
abstract formulation of quantum field theory. In classical mechanics, the equation
of motion for the total density of electrons n(x, t) is obtained from the continuity
equation

∂n(x, t)
∂ t

+∇∇∇ ·J(x, t) = 0, (8.108)

and Newton’s law for the current density of particles J(x, t)

m
∂J(x, t)

∂ t
+∇∇∇p(x, t) =−en(x, t)E(x, t), (8.109)
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where m is the electron mass, p(x, t) is the local pressure of the electron gas, −e is
the electron charge and E(x, t) is the electric field, which is determined by Gauss’
law

∇∇∇ ·E(x, t) =−e(n(x, t)−ne)/ε0. (8.110)

We rewrite (8.108) and (8.109) such that they both contain the term m∇∇∇ ·∂J(x, t)/∂ t,
after which subtraction of the two equations yields

m
∂ 2n(x, t)

∂ t2 −∇∇∇2 p(x, t) = e∇∇∇ · (n(x, t)E(x, t)). (8.111)

In the case of small density fluctuations n′(x, t) = n(x, t)− ne, we may linearize
(8.108) and (8.109) around the average value ne to obtain a single equation for the
fluctuations. Since the electric field E(x, t) is proportional to n′(x, t), we have to first
order in the fluctuations

∇∇∇ · (n(x, t)E(x, t)) = ne∇∇∇ ·E(x, t).

As a result, we find

m
∂ 2n′(x, t)

∂ t2 −∇∇∇2 p(x, t) =−e2ne

ε0
n′(x, t). (8.112)

Linearizing p(n) by means of

p(n(x, t)) = p(ne)+

(
∂ p
∂n

∣∣∣∣
n=ne

)
n′(x, t), (8.113)

we find that the density fluctuations obey the wave equation
{

m
∂ 2

∂ t2 −
(

∂ p
∂n

∣∣∣∣
n=ne

)
∇∇∇2

}
n′(x, t) =−e2ne

ε0
n′(x, t). (8.114)

The solutions to this equation are travelling waves and we are interested in the dis-
persion relation for these waves. As a solution, we insert

n′(x, t) = n′0 exp{ik ·x− iω(k)t} (8.115)

into (8.114), which gives
{
−ω2(k)+

k2

m

(
∂ p
∂n

∣∣∣∣
n=ne

)}
n′0 =−e2ne

mε0
n′0. (8.116)

For this equation to be valid, the frequency ω(k) of the density fluctuations has to
satisfy the dispersion relation
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ω(k) =

√√√√ 1
m

(
∂ p
∂n

∣∣∣∣
n=ne

)
k2 +ω2

p , (8.117)

with the plasma frequency given by ωp = (e2ne/mε0)1/2.

8.7.1 Field-Theory Approach

We are now going to reproduce these results in two steps with the use of field-
theoretical methods. The action for the electron fields φα is given by

S[φ ∗,φ ] = (8.118)

∑
α=↑,↓

∫ h̄β

0
dτ

∫
dx φ ∗α(x,τ)

{
h̄

∂
∂τ
− h̄2∇∇∇2

2m
+V ex(x)−µ

}
φα(x,τ)

+
1
2 ∑

α,α ′

∫ h̄β

0
dτ

∫
dx

∫
dx′ φ ∗α(x,τ)φ ∗α ′(x

′,τ)V (x−x′)φα ′(x′,τ)φα(x,τ) ,

where the interaction potential is given by the Coulomb potential

V (x−x′) =
e2

4πε0

1
|x−x′| , (8.119)

while the external potential V ex(x) is added to take into account the positively
charged background in which the electrons move, such that

V ex(x) =−ne

∫
dx′ V (x−x′). (8.120)

Analogous to the discussion of Sects. 8.6.1 and 8.6.3, we may introduce a col-
lective field κ(x,τ) by means of a Hubbard-Stratonovich transformation, such that
on average

〈κ(x,τ)〉= ∑
α

∫
dx′ V (x−x′)〈φ ∗α(x′,τ)φα(x′,τ)〉, (8.121)

where it is left as an exercise to explicitly perform the transformation that leads to
the above equation. The transformation then results in the following partition sum

Z =
∫

d[κ]exp
{
−1

h̄
Seff[κ]

}
(8.122)

with the effective action given by

Seff[κ] = −1
2

(
κ|V−1|κ)− h̄Tr[log

(−G−1)]. (8.123)
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The above inverse Green’s function satisfies

G−1
α,α ′(x,τ;x′,τ ′) = G−1

0;α,α ′(x,τ;x′,τ ′)−Σα,α ′(x,τ;x′,τ ′), (8.124)

with
h̄Σα,α ′(x,τ;x′,τ ′) = κ(x,τ)δ (x−x′)δ (τ− τ ′)δα,α ′ . (8.125)

8.7.2 Effective Action

As mentioned in Sect. 8.6.3, the largest contribution to the partition function is given
by the configuration that minimizes the action Seff[κ ]. We put κ(x,τ) = 〈κ(x)〉+
κ ′(x,τ), where 〈κ(x)〉minimizes the effective action Seff[κ ]. As a result, we have in
the basis-independent formulation that

G−1 = G−1
0 −〈κ〉/h̄−κ ′/h̄≡ GH−1−Σ′ = GH−1

(1−GHΣ′) , (8.126)

with GH−1 = G−1
0 −〈κ〉/h̄ and h̄Σ′ = κ ′. Substituting this in (8.123) and using the

series expansion of the logarithm, we find to second order in the fluctuations that

log
(
1−GHΣ′

)
=−GHΣ′− 1

2
(
GHΣ′GHΣ′

)
+ . . . . (8.127)

As before, the terms that are linear in the fluctuations should be zero

−h̄Tr[−GHΣ′]− (κ ′|V H−1|〈κ〉) = 0, (8.128)

such that 〈κ(x)〉 is indeed the minimum of Seff[κ]. This actually results in (8.121)
for the Hartree contribution to the selfenergy.

Next, we expand the effective action Seff[κ] in (8.123) up to quadratic terms in
the fluctuations κ ′. Doing so, we find

Seff[κ ′] = −1
2

(
κ ′|V−1|κ ′)+

h̄
2

Tr
[
GHΣ′GHΣ′

]≡− h̄
2

(
κ ′|G−1

κ ′ |κ ′
)
, (8.129)

where we introduced the inverse Green’s function G−1
κ ′ for the κ ′-field, which is by

definition the quadratic part of Seff[κ ′]. It is diagrammatically represented by Fig.
8.8, as we soon find. Writing out the trace from (8.129) explicitly, we find



186 8 Interactions and Feynman Diagrams

G¡1
·

V ¡1 ¦

= −
’

Fig. 8.8 Diagramatic representation of the (inverse) Green’s function of the density fluctuations,
which describes the screening of the Coulomb interaction. The diagram on the right-hand side is
also called the bubble diagram.

Tr
[
GHΣ′GHΣ′

]
= ∑

α ,α ′
∑

α ′′,α ′′′

∫ h̄β

0
dτ dτ ′ dτ ′′ dτ ′′′

∫
dx dx′ dx′′ dx′′′

×GH
α ,α ′(x,τ;x′,τ ′)Σ′α ′,α ′′(x

′,τ ′;x′′,τ ′′)

×GH
α ′′,α ′′′(x

′′,τ ′′;x′′′,τ ′′′)Σ′α ′′′,α(x′′′,τ ′′′;x,τ)

= ∑
α

∫ h̄β

0
dτ

∫
dx

∫ h̄β

0
dτ ′

∫
dx′

×GH
α ,α(x,τ,x′,τ ′)

κ ′(x′,τ ′)
h̄

GH
α ,α(x′,τ ′,x,τ)

κ ′(x,τ)
h̄

, (8.130)

where in the last step we used h̄Σ′α,α ′(x,τ;x′,τ ′) = κ ′(x,τ)δ (x−x′)δ (τ− τ ′)δα,α ′ .
In Fourier space, the above quadratic effective action becomes

Seff[κ ′] (8.131)

=−1
2 ∑

k,n
κ ′∗k,n

{
V−1(k)− 1

h̄2βV ∑
α,k′,n′

GH
α (k+k′, iωn + iωn′)G

H
α (k′, iωn′)

}
κ ′k,n,

where we used that κ ′−k,−n = κ ′∗k,n because κ ′(x,τ) is real. To explicitly Fourier
transform the Coulomb potential, it is convenient to consider first

V (x−x′) =
e2

4πε0

e−η |x−x′|

|x−x′| (8.132)

and take the limit η → 0 at the end of the calculation. Introducing the relative coor-
dinate r = x−x′, we find

V (k) =
e2

4πε0

∫
dr

e−ik·re−ηr

r
=

e2

4πε0

∫ ∞

0
dr

∫ π

0
dϑ

∫ 2π

0
dϕ r sinϑe−ikr cosϑ e−ηr

=
e2

2ε0

∫ ∞

0
dr

∫ 1

−1
dy re−ikrye−ηr =

e2

ε0

∫ ∞

0
dr

sin(kr)
k

e−ηr

=
e2

ε0

1
k2 +η2 , (8.133)
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where the limit η → 0 thus yields V (k) = e2/ε0k2, such that V−1(k) = ε0k2/e2.
For the other term in the effective action of (8.131) we need the Fourier transform
of the Green’s function GH

α ,α ′(k, iωn), which is given by

GH
α ,α ′(k, iωn) =

−h̄
−ih̄ωn + εk−µ

δα,α ′ , (8.134)

where we note that in the above Green’s function the expectation value 〈κ〉 has
cancelled against the contribution coming from the positively charged background
given by (8.120). This follows from comparing (8.126) and (8.121) with (8.120) and
remembering that the density of the jellium ne is equal to the total electron density.
Using (8.134), we then calculate the product of Green’s functions in (8.131). First,
we introduce

h̄Π(k, iωn)≡ 1
h̄β ∑

α
∑
n′

∫ dk′

(2π)3 GH
α (k+k′, iωn + iωn′)G

H
α (k′, iωn′), (8.135)

where we note that ωn and ωn′ are bosonic and fermionic Matsubara frequencies,
respectively. The diagrammatic representation of Π(k, iωn) is shown in Fig. 8.8,
where we remark that it is commonly referred to as the bubble diagram. To further
evaluate the expression for the bubble diagram we perform the Matsubara sum in
(8.135) by first splitting the fraction, namely

∑
n′

∫ dk′

(2π)3 GH
α (k′, iωn′)G

H
α (k′+k, iωn + iωn′) (8.136)

= ∑
n′

∫ dk′

(2π)3
−h̄

−ih̄ωn + εk+k′ − εk′

{
GH

α (k′, iωn′)−GH
α (k′+k, iωn + iωn′)

}
.

Now, the sum over Matsubara frequencies can be performed with the use of the
techniques developed in Sect. 7.2.2, giving

Π(k, iωn) = 2
∫ dk′

(2π)3
NFD(εk+k′)−NFD(εk′)

εk+k′ − εk′ − ih̄ωn
, (8.137)

where NFD(ε) is the Fermi distribution and the factor of 2 follows from evaluating
the sum over the spin variable α . This implies that

G−1
κ ′ (k, iωn) =

1
h̄

{
1

V (k)
−Π(k, iωn)

}
. (8.138)

By inverting this expression, we obtain the Green’s function for the density fluctua-
tions, i.e. for the κ ′ field

Gκ ′(k, iωn) =
h̄V (k)

1−V (k)Π(k, iωn)
. (8.139)
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8.7.3 Dispersion and Screened Coulomb Interaction

Next, we want to examine the poles of Gκ ′(k,ω), which should in this case give us
the dispersion for the density fluctuations. We are primarily interested in the low-
energy physics, which means that we make an expansion around k = 0 to work in
the long-wavelength limit. To first order, we obtain

NFD(εk+k′)' (8.140)

NFD(εk′)+
∂NFD(εk′)

∂k′
·k = NFD(εk′)+

h̄2

m
∂NFD(ε)

∂ε

∣∣∣∣
ε=εk′

k′ ·k+ . . . .

Substituting this into (8.137), we obtain for k → 0

Π(k,ω)' 2
∫ dk′

(2π)3
h̄2k ·k′

h̄2k ·k′−mh̄ω
∂NFD(ε)

∂ε

∣∣∣∣
ε=εk′

. (8.141)

In the limit when k/ω → 0, we can expand the denominator of the above equation,
giving

Π(k,ω)'−2
∫ dk′

(2π)3

(
1+

h̄2

m
k ·k′
h̄ω

)
h̄2

m
k ·k′
h̄ω

∂NFD(ε)
∂ε

∣∣∣∣
ε=εk′

. (8.142)

First, note that the integral linear in k ·k′, vanishes because the integrand is antisym-
metric. Second, since ∂NFD(ε)/∂ε is strongly peaked at low temperatures around
the chemical potential, we have that

∂NFD(ε)/∂ε '−δ (µ− ε). (8.143)

As a result, we find that

Π(k,ω) = − 2k2

(2π)2

(
h̄

mω

)2 ∫
k′4dk′

∫ π

0
dϑ sin(ϑ) cos2 (ϑ)

∂NFD(ε)
∂ε

∣∣∣∣
ε=εk′

' 2
√

2
3π2

k2

(h̄ω)2

√
m

h̄
µ3/2. (8.144)

Using that the chemical potential is equal to the Fermi energy for the low tempera-
tures in the present case, we have that µ ' εF = (h̄2/2m)(3π2ne)2/3, giving

Π(k,ω) =
nek2

mω2 . (8.145)

As a result, for long wavelengths we indeed have a pole in the Green’s function
Gκ ′(k,ω) at the plasma frequency ω = ωp = (e2ne/mε0)1/2, as follows from com-
bining (8.133), (8.138) with (8.144).
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Example 8.4. Note that if the particles are neutral with a repulsive interaction that
can be considered constant V0 > 0 for low momenta, we find that (8.138) now be-
comes

Gκ ′(k,ω) = h̄
{

1
V0
− nek2

mω2

}−1

. (8.146)

The dispersion that follows from this is ω = ck, which is the familiar dispersion for
phonons and

c =

√
neV0

m
(8.147)

is the speed of sound in the gas. Note that we actually need strong interactions
for this result to be valid, because we have considered the limit k/ω → 0 in the
evaluation of Π(k,ω).

The diagrammatic result from Fig. 8.8, can be interpreted as follows. The cou-
pling between the density fluctuations, which is described by G−1

κ ′ , is not simply
given by the Coulomb potential because the presence of the medium also plays
a role. Indeed, the Coulomb potential is screened by the presence of particle-
hole excitations, which are described by the bubble diagram in Fig. 8.8. To dis-
cuss this screening more explicitly we calculate the static screened interaction
V sc(k)≡ Gκ ′(k,0)/h̄ between the electrons, for which the long-wavelength behav-
ior follows from setting ω = 0 in (8.141), such that

Π(k,0)' 2
∫ dk′

(2π)3
∂NFD(ε)

∂ε

∣∣∣∣
ε=εk′

'−
√

2
π2

(
m
h̄2

)3/2√
εF. (8.148)

As a result, the screened interaction is in this limit determined by

Gκ ′(k,0) = h̄

{
ε0k2

e2 +
√

2
π2

(
m
h̄2

)3/2√
εF

}−1

. (8.149)

Using also that εF = (h̄2/2m)(3π2ne)2/3, this Green’s function can also be written
as

Gκ ′(k,0) = h̄
e2

ε0

{
k2 +

e2

ε0

3
2

ne

εF

}−1

. (8.150)

To find the screened interaction in real space V sc(x− x′), we perform the Fourier
transform

V sc(x−x′) =
∫ dk

(2π)3
1
h̄

Gκ ′(k,0)eik·(x−x′), (8.151)
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which we have encountered before, such that from Exercise 2.5 we obtain that

V sc(x−x′) =
e2

4πε0

1
|x−x′|e

−|x−x′|/λTF , (8.152)

where the Thomas-Fermi screening length λTF of the electron gas is at low temper-
atures given by

λTF =
(

2ε0εF

3nee2

)1/2

. (8.153)

8.8 Problems

Exercise 8.1. Considering a homogeneous noninteracting spinless Bose gas at zero
temperature, show that the Lehmann representation of (8.11) leads to the famil-
iar expression of the noninteraction Green’s function from (8.12). What does the
ground state look like? What is the value of the chemical potential?

Exercise 8.2. By making use of Exercise 7.2, calculate

〈ψ̂α(x,τ)ψ̂†
α(x,τ)〉=−Gα,α(x,τ+;x,τ) (8.154)

in the same way as (8.2). Where does the difference with (8.2) come from?

Exercise 8.3. Show with the use of Feynman diagrams that up to second order in
the interaction the interacting Green’s function contains no disconnected diagrams.

Exercise 8.4. Calculate the Hartree-Fock selfenergy for spinless particles with a
point-like interaction V (x−x′) = V0δ (x−x′). Express your answer in terms of the
average particle density n(x). Do you understand why the selfenergy vanishes for
the fermionic case?

Exercise 8.5. Hubbard-Stratonovich Transformation I
a) Show that the Hubbard-Stratonovich transformation to the collective λ (x,x′,τ)
field of (8.80) gives rise to

〈λ (x,x′,τ)〉= V (x−x′)〈φ ∗(x′,τ)φ(x,τ)〉. (8.155)

b) Perform the Hubbard-Stratonovich transformation leading to (8.121)

Exercise 8.6. Spin Exchange
(a) Show that 〈α ′,β ′|P̂12|α,β 〉 = (1 + σσσβ ′,β ·σσσα ′,α)/2 are indeed the matrix ele-
ments of the spin-exchange operator, for which P̂12|α,β 〉= |β ,α〉.
Hint: use the spin raising and lowering operators σ̂± = σ̂x± iσ̂y.
(b) Prove that (8.89) and (8.90) satisfy (8.87) and (8.88).



8.8 Problems 191

Exercise 8.7. Hubbard-Stratonovich Transformation II
In this exercise, we explicitly show with an example that the Hubbard-Stratonovich
transformation can also be used to decouple quadratic terms in the action, whereas it
is usually used to decouple quartic terms. Consider a noninteracting gas of N bosons
in a box with volume V , such that the action in frequency-momentum representation
is given by

S0[φ ∗,φ ] = ∑
k,n

φ ∗k,n (−ih̄ωn + εk−µ)φk,n , (8.156)

where ωn are the bosonic Matsubara frequencies and εk = h̄2k2/2m is the kinetic
energy of a boson with momentum h̄k. We want to perform a Hubbard-Stratonovich
transformation to the field Φk,n that decouples the kinetic energy term in the ac-
tion, such that on average it obeys 〈Φk,n〉 = 〈φk,n〉. To still be able to calculate the
exact bosonic Green’s function G0(k, iωn) = 〈φ ∗k,nφk,n〉0, even after the Hubbard-
Stratonovich transformation and integrating out the bosonic field φ , we also add
current terms to the action to obtain

S[φ ∗,φ ;J,J∗] = S0[φ ∗,φ ]− h̄∑
k,n

(
φ ∗k,nJk,n + J∗k,nφk,n

)
. (8.157)

(a) Perform the desired Hubbard-Stratonovich transformation and integrate out the
field φ to determine the effective action for the Φ field, S[Φ∗,Φ;J,J∗], where in
first instance you may omit terms that do not depend on Φ, Φ∗, J and J∗. Note that
the Hubbard-Stratonovich transformation follows directly from requiring that the
kinetic energy term φ ∗k,nεkφk,n is cancelled from the original action, and by requiring
that 〈Φk,n〉= 〈φk,n〉. Show in particular that

S[Φ∗,Φ;J,J∗] (8.158)

=−h̄∑
k,n

{
Φ∗

k,nG−1
Φ (k, iωn)Φk,n +Φ∗

k,nJk,n + J∗k,nΦk,n + h̄
Jk,nJ∗k,n

εk

}
,

where

−h̄G−1
Φ (k, iωn) =−εk− ε2

k
−ih̄ωn−µ

. (8.159)

(b) Prove now from S[Φ∗,Φ;J,J∗] that the exact bosonic Green’s function G0 equals

G0(k, iωn) =
−h̄

−ih̄ωn + εk−µ
, (8.160)

as expected.
(c) Show also that the thermodynamic potential of the gas can be written as

Ω =
1
β ∑

k,n

{
log[β (−ih̄ωn−µ)]+ log[−h̄βG−1

Φ (k, iωn)]
}

. (8.161)
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(d) Calculate from this result the total average density n = N/V of the gas and show
that it gives the same answer as obtained from the exact bosonic Green’s function
determined in question (b).

Additional Reading

• For a introductory text on Feynman diagrams in the many-body problem the
reader is referred to
R. D. Mattuck, A guide to Feynman Diagrams in the Many-Body problem,
(Dover, New York, 1992).

• D. Pines, The Many-Body Problem, Addison-Wesley, New York, 1997.
• H. Kleinert, Forts. Phys. 26, 565 (1978).



Chapter 9
Landau Theory of Phase Transitions

Of course, I found what had long been known. However close
are physics and mathematics their connection can be most
different. In particular, it is possible to make progress in
theoretical physics using but a very modest mathematical
apparatus, for instance, not exceeding the limits of what is
taught at physical departments of universities. By contrast, in
some cases theoretical physicists both use most complicated
modern mathematics and develop it.
–Vitaly L. Ginzburg

A phase transition is the phenomenon that a many-body system may suddenly
change its properties in a rather drastic way due to the change of an externally con-
trollable variable. Familiar examples in everyday life are the transitions from gases
to liquids or from liquids to solids, due to for example a change in the temperature
or the pressure. Another example is the transition from a disordered to a magnetized
state in a ferromagnetic material as a function of temperature or magnetic field. One
property that all these transitions share is that the order of the system, described
for example by the density or the magnetization, differs at each side of the tran-
sition. We consider as an example an Ising-like spin system at a low, but nonzero
temperature, such that the ferromagnetic state with many spins pointing in the same
direction corresponds to an absolute minimum of the free energy. Upon applying a
magnetic field in the opposite direction, the equilibrium state may change to a state
where most spins point in the opposite direction. As a result, the system is initially
in a local minimum of the free energy, and it has to overcome a large energy bar-
rier in order to reach the new equilibrium state. Still, eventually the system reaches
the new equilibrium state due to the thermal activation of random spin flips in the
system, such that the corresponding transition can be said to be driven by thermal
fluctuations. Note that the magnetization makes a large jump by going from one
equilibrium state to the other. Such a transition, when the parameter describing the
order in the system is discontinuous, we call a first-order phase transition.

Phase transitions can also be continuous, which is the case when the order pa-
rameter changes from zero to a nonzero value in a continuous way. Continuous, or
second-order, phase transitions can be very spectacular, because we will see that
they give rise to a diverging correlation length and hence to behavior known as crit-
ical phenomena. The infinite correlation length implies that fluctuations extend over
the whole many-body system, such that they are present at each length scale. As a
result, the system looks similar at every length scale, i.e. it is scale invariant, which
can be used to recursively describe the critical system at increasing wavelengths.
This leads to the very powerful renormalization group method, which is able to go
far beyond mean-field theory and which is the topic of Chap. 14. Finally we remark
that phase transitions can also occur at zero temperature, and are then called quan-
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tum phase transitions because they are solely driven by quantum fluctuations. We
will see a detailed example of a quantum phase transition in Chap. 16.

In this chapter, we discuss the Landau approach to phase transitions. As an intro-
duction, we start with a mean-field treatment of the d-dimensional Ising model in
order to discuss an explicit example of a phase transition. This allows us to introduce
various important concepts, such as the order parameter and the critical temperature.
Then, we formalize the theory of phase transition using the Landau free-energy
functional, which is an effective functional for both the equilibrium value of the or-
der parameter and the fluctuations around this equilibrium. Also, we show how the
Landau free-energy functional is directly related to the effective action for the order
parameter that can be obtained by using the Hubbard-Stratonovich transformation.
Finally, we discuss the effect of fluctuations and the phenomenon of spontaneous
symmetry breaking. In this chapter, we mostly consider the ferromagnetic transition
in the Ising model as a concrete example, whereas in the following chapters we en-
counter more exotic phase transitions, such as the normal-superfluid transition in an
ultracold quantum gas.

9.1 Ising Model in d Dimensions

In more than one dimension, the Ising model is one of the simplest microscopic
models that gives rise to a second-order phase transition at a nonzero temperature.
The model describes a system of spins Ŝz,i on lattice sites xi, that can take on values
mi =±h̄/2, and which are coupled to their nearest neighbors with strength J. In one
dimension, the lattice is a chain and the number of nearest neighbors is two, in two
dimensions, the lattice is square and the number of nearest neighbors is four, and
in three dimensions, the lattice is cubic and the number of nearest neighbors is six.
The Hamiltonian of the d-dimensional Ising model is given by

Ĥ =−2J
h̄2 ∑

〈i, j〉
Ŝz,i · Ŝz, j, (9.1)

where 〈i, j〉 denotes the summation over all nearest-neighbors. From the Hamilto-
nian, we see that for positive J, the system lowers its energy by having adjacent spins
with the same eigenvalue of the spin operator Ŝz. On the other hand, for negative J
the spins tend to be aligned in an antiparallel manner. From now on, we consider the
case of positive J, which leads to ferromagnetic order. To be able to describe this,
we introduce the magnetization 〈M〉, which is defined as the expectation value of
the average spin, i.e.
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〈M〉 =
1
N

〈
∑

i
Ŝz,i

〉

=
1
Z

Tr

[(
1
N ∑

i
Ŝz,i

)
exp

{
2J

h̄2kBT ∑
〈i, j〉

Ŝz,i · Ŝz, j

}]
, (9.2)

where the trace is over all microstates of the d-dimensional Ising model, Z is the
canonical partition function, and N the total number of spins. We have seen that
the partition function for the one-dimensional Ising model, which we discussed in
Chap. 4, can be solved exactly. It turns out that in two dimensions an exact solution
is also possible, although it is much more difficult to obtain than for one dimension.
In three dimensions, however, an exact solution is not known and we have to resort
to approximate methods.

The standard approach is to start with a fluctuation expansion around a certain
fixed magnetization M, i.e.

Ŝz,i = M + Ŝ′z,i, (9.3)

where this magnetization M has to be determined selfconsistently at the end of the
calculation. After this expansion the fluctuation effects due to Ŝ′z,i are usually as-
sumed to be small, such that these effects are taken into account up to linear order,
leading to a mean-field approximation. Substituting the fluctuation expansion into
the Hamiltonian, we find up to first order in the fluctuations

−2J
h̄2 ∑

〈i, j〉
Ŝz,i · Ŝz, j = −2J

h̄2 ∑
〈i, j〉

(
M + Ŝ′z,i

) · (M + Ŝ′z, j
)

= −2J
h̄2 zNM2− 4J

h̄2 zM∑
i

Ŝ′z,i +O((Ŝ′z)
2), (9.4)

where z = 2d denotes the number of nearest neighbors in d dimensions. Neglect-
ing the higher-order terms in the fluctuations, and using (9.3) to express the above
Hamiltonian in terms of Ŝz,i again, we find

−2J
h̄2 ∑

〈i, j〉
Ŝz,i · Ŝz, j ' 2J

h̄2 zNM2− 4J
h̄2 zM∑

i
Ŝz,i. (9.5)

Note that the second term in the above equation can be regarded as a Zeeman in-
teraction caused by the effective magnetic field that is generated by the presence of
a nonzero magnetization in the system. Using the Hamiltonian from (9.5), we find
that
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Fig. 9.1 Qualitative sketch of the Landau free energy for the Ising model as a function of the
magnetization M for temperatures above and below the critical temperature Tc

Z(M) ' Tr

[
exp

{
−2zJNM2

h̄2kBT
+

4zJM
h̄2kBT ∑

i
Ŝz,i

}]

= exp
{
−2zJNM2

h̄2kBT

}
∏

i
∑

mi=±h̄/2
exp

{
4zJMmi

h̄2kBT

}
.

= exp
{
−2zJNM2

h̄2kBT
+N log

(
exp

{
2zJM
h̄kBT

}
+ exp

{
−2zJM

h̄kBT

})}

≡ e−FL(M)/kBT , (9.6)

where in the second line of the above equation mi =±h̄/2 denotes the two possible
values for the quantum number belonging to the spin operator Ŝz,i. In the last line of
the above equation, we introduced the Landau free energy

FL(M) =
2zJNM2

h̄2 −NkBT log
(

exp
{

2zJM
h̄kBT

}
+ exp

{−2zJM
h̄kBT

})
, (9.7)

where we still have to determine the equilibrium value of the magnetization 〈M〉,
that is actually realized by the many-body system. This then gives us the actual
free energy F = FL(〈M〉) in the mean-field approximation. To this end, we should
determine the minimum of FL(M) with respect to M, which we can do directly by
differentiating the above equation.

However, to gain more insight into the ferromagnetic phase transition, it is more
instructive to expand the Landau free energy in powers of M such that we obtain

FL(M) = −kBT N log(2)

+
1
h̄2

(
2JNz− 2J2Nz2

kBT

)
M2 +

1
h̄4

4J4Nz4

3(kBT )3 M4 + . . . , (9.8)
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where the first term in the above expansion is the entropy contribution to the free
energy at zero magnetization. Since it is independent of M, it is not relevant to us in
the following. The second term is then seen to be quadratic in M and its coefficient
we designate with α(T )/2, while the third term is quartic in M and its coefficient
we designate with β (T )/4. If α(T ) and β (T ) are both positive, then we have a
minimum of FL(M) at M = 〈M〉 = 0, which in this case is also a global minimum.
We call the corresponding thermodynamic phase the paramagnetic or disordered
phase, because there is no ferromagnetic order. However, if α(T ) changes sign,
then FL(M = 0) actually becomes a maximum and the minimum of the Landau
free energy occurs at a nonzero value of the magnetization, as also illustrated by
Fig. 9.1. Since we now have ferromagnetic ordering in the system, described by
the nonzero expectation value |〈M〉| > 0, a phase transition has occurred. It is a
continuous phase transition, because the evolution to a nonzero order parameter has
happened in a continuous manner. The transition is also commonly referred to as
being of second order, for which the reason will become clear in Sect. 9.2. Note that
the transition takes place at the critical temperature Tc, which is determined by the
quadratic coefficient α(T ) changing sign, i.e. by α(Tc) = 0. As a result, we have
that

kBTc = Jz, (9.9)

for the critical temperature determined within mean-field theory. Moreover, close to
the critical temperature, the coefficients for the Landau free energy

FL(M) =−kBT N log(2)+
1
2

N
{

α(T )M2 +
1
2

β (T )M4 + . . .

}
, (9.10)

are given by

α(T ) =
4Jz
h̄2

(
1− Jz

kBT

)
' 4kB

h̄2 (T −Tc) (9.11)

and

β (T )' 16
3h̄4 kBTc. (9.12)

Slightly below the critical temperature T < Tc, when the order parameter 〈M〉
is small, the corresponding minimum of the free energy is determined by the first
two terms in the expansion of (9.10), such that the Landau free energy is minimized
when

〈M〉=

√
|α(T )|
β (T )

' h̄

√
3|T −Tc|

4Tc
. (9.13)

To obtain 〈M〉 also further below the critical temperature, we can determine it self-
consistently. This is achieved by using (9.2) with the Hamiltonian from (9.5), such
that
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Fig. 9.2 Graphical solution to (9.16). The dashed line is given by y = 2〈M〉/h̄. The top curve
corresponds to y = tanh(2zJ〈M〉/h̄kBT ) with zJ/kBT > 1, while the bottom curve has zJ/kBT < 1.

〈M〉 =
1
N

〈
∑

i
Ŝz,i

〉
=

1
N ∑

i

〈
Ŝz,i

〉
, (9.14)

where we have in mean-field theory that

〈
Ŝz, j

〉
=

1
Z

Tr

[
Ŝz, j exp

{
−2zJN〈M〉2

h̄2kBT
+

4zJ〈M〉
h̄2kBT ∑

i
Ŝz,i

}]
(9.15)

= ∑
m j=±h̄/2

{
m j exp

{
4zJ〈M〉
h̄2kBT

m j

}}/
∑

m j=±h̄/2
exp

{
4zJ〈M〉
h̄2kBT

m j

}
,

such that we finally obtain

〈M〉 =
h̄
2

tanh
(

2zJ〈M〉
h̄kBT

)
. (9.16)

Note that this result also follows directly from solving

dFL(M)
dM

∣∣∣∣
M=〈M〉

= 0, (9.17)

where FL(M) is given by (9.7). In Fig. 9.2, we show how the solution to (9.16) can
be obtained graphically. We see that 〈M〉= 0 is the only solution, when zJ/kBT < 1.
However, another solution at nonzero 〈M〉 sets in when the slope on the right-hand
side of (9.16) becomes larger than one at 〈M〉= 0. This leads again to the previously
obtained condition

kBTc = zJ. (9.18)
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9.2 Landau Approach

The mean-field treatment of the Ising model gives us some important insights into
the theory of phase transitions. For example, we have seen how the ferromagnetic
phase and the paramagnetic phase are distinguished by the value of the magneti-
zation 〈M〉. This is an example of an order parameter that discriminates between
the two phases involved in the phase transition. Most phase transitions can be de-
scribed with an appropriate order parameter, although a rare exception to this rule is
found in the Kosterlitz-Thouless transition whose treatment is therefore postponed
to Chap. 15. In the Landau approach to phase transitions, the central role is played
by the Landau free-energy functional FL[m], which, as we show next, corresponds
to an effective Hamiltonian that describes the system on a macroscopic scale after
the microscopic fluctuations have been integrated out.

To make this statement more concrete, we apply the Landau approach to the
particular case of the Ising model. The Landau free-energy functional can then be
obtained from the Ising Hamiltonian of (9.1) in the following way. First, we define
the continuous spin density

ŝz(x) = ∑
i

δ (x−xi)Ŝz,i, (9.19)

where the summation is over all lattice sites. Moreover, we introduce the following
formal identity for the Dirac delta functional

1̂ =
∫

d[m]δ [m(x)− ŝz(x)] , (9.20)

where the functional integral is over all possible functions m(x). If the Ising lattice
would consist of a single point, then (9.20) would correspond to the ordinary delta
function δ (m− ŝz) integrated over the variable m. In general, the relation from (9.20)
can be considered as an infinite dimensional integral over infinitely many delta func-
tions, namely one for each spatial point x. Inserting (9.20) into the partition function,
we find

Z = exp{−βF}= Tr
[∫

d[m] δ [m(x)− ŝz(x)]exp
{−β Ĥ

}]
, (9.21)

after which we interchange the order of the summation and integration and perform
the sum over all spin configurations that are consistent with the position-dependent
magnetization m(x) as set by the delta functional. This then defines the Landau free
energy functional, such that it is given by

Z =
∫

d[m]exp
{
− 1

kBT
FL[m]

}
. (9.22)

Although this rather formal derivation is exact, it might seem that it does not help
us much, because we are often not able to perform the microscopic sum over spins
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exactly to obtain an explicit form for the Landau free energy. Progress can, how-
ever, be made by using phenomenological approaches to obtain the correct form of
the Landau free energy functional, and by using appropriate approximations such
as for example the mean-field approximation, which only takes into account the
largest contribution to the partition function Z from (9.22). This maximal contribu-
tion comes from the equilibrium configuration 〈m〉 of the order parameter, which
minimizes the Landau free energy and is given by

δFL[m]
δm(x)

∣∣∣∣
m=〈m〉

= 0. (9.23)

We thus have Z ' e−FL(〈m〉)/kBT , which is sometimes also called the Landau approx-
imation.

Looking in more detail at the Ising model, we start by noting that near the critical
temperature for the second-order phase transition to the ferromagnetic phase, the
order parameter 〈m〉 is small, such that the minimum can be found most easily by
expanding the Landau free energy in powers of m(x) and ∇∇∇m(x). Moreover, we have
that the symmetries that are present in the microscopic model continue to exist in
the Landau free energy. Due to spin reversal symmetry, there are only even powers
of m(x) and ∇∇∇m(x) in the expansion for the Landau free energy of the Ising model,
such that we only keep

FL[m] (9.24)

=
1
2

∫
dx

{
γ(T )(∇∇∇m(x))2 +α(T )m(x)2 +

β (T )
2

m(x)4 +
δ (T )

3
m(x)6 + . . . .

}
,

where the expansion coefficients in general depend on temperature. Furthermore,
it can be shown that γ(T ) is positive in the case of a positive J, which reflects the
fact that it costs energy to have spins in the system that are not aligned due to a
spatially varying magnetization. This implies that the minimum of the Landau free
energy 〈m〉 should be independent of position, such that we only have to determine
the scalar 〈m〉 that minimizes

FL[m] = V fL(m) =
V
2

{
α(T )m2 +

β (T )
2

m4 +
δ (T )

3
m6 + . . .

}
(9.25)

with V the volume of the system and fL(m) the Landau free-energy density.
In general, if a phase transition occurs, the behavior of the corresponding Landau

free-energy density fL(m) falls into two different categories. First, we consider the
case for which the expansion coefficients of the free-energy density are positive for
all terms that are of higher order than quadratic in m. Then, if the quadratic coeffi-
cient α(T ) is also positive, we have a minimum at m = 〈m〉= 0. However, if α(T )
becomes negative, the minimum shifts away in a continuous manner to a nonzero
value of 〈m〉, resulting in a continuous phase transition. Note that the Landau free-
energy density fL(m) has a single minimum and that the order parameter has no
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Fig. 9.3 Qualitative behavior of a) the Landau free energy density fL(m) and b) the order parameter
〈m〉 for a continuous phase transition.

discontinuity at the critical temperature Tc, as illustrated in Fig. 9.3. Close to the
critical temperature, when the quadratic coefficient changes sign, we have

α(T )' αckB(T −Tc) and β (T )' βc, (9.26)

as we also explicitly found in the mean-field treatment of the previous section. As
a result, we find from (9.25) that the order parameter slightly below the critical
temperature is given by

〈m〉=

√
−α(T )

β (T )
'

√
αckB|T −Tc|

βc
. (9.27)

Note that the corresponding free-energy density f yields

f = fL(〈m〉) =−α(T )2

2βc
=− α2

c

2βc
k2

B(T −Tc)2, (9.28)

such that there is a discontinuity in the second derivative of the free-energy density
with respect to the temperature. For example, we have from mean-field theory that
in the disordered phase this second derivative is zero, whereas in the ferromagnetic
phase it is−(kBαc)2/βc. This kind of nonanalytic behavior is historically the reason
why this transition is referred to as a second-order phase transition.

We may compare these results with the behavior of the free-energy density and
the order parameter for the second class of phase transitions, namely the discontinu-
ous or first-order phase transitions. The corresponding behavior is illustrated in Fig.
9.4. At temperatures very high compared to the critical temperature Tc, the system is
fully disordered and the Landau free energy density fL(m) has a single minimum at
m = 0 corresponding to an order parameter 〈m〉 equal to zero. However, by bringing
the temperature closer to Tc the free energy may develop a second local minimum
which is initially higher than the minimum at m = 0, such that the equilibrium value
of 〈m〉 is still zero and no phase transition has occurred. Lowering the temperature
even further, the value of the free energy in the second minimum decreases until,
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Fig. 9.4 Qualitative behavior of a) the Landau free energy density fL(m) and b) the order parameter
〈m〉 for a discontinuous or first-order phase transition.

precisely at the critical temperature Tc, it is equal to the free energy at m = 0. For
temperatures below this critical value, the second minimum has actually become the
global minimum of the free energy, which implies that 〈m〉 6= 0 and we are in the
ordered phase. In this scenario, the order parameter has always a discontinuity at
the critical temperature, such that it corresponds to a discontinuous, or first-order,
phase transition.

To make the discussion of the first-order phase transitions more quantitative, we
look again at a Landau free energy density of the form of (9.25), where we consider
δ to be positive. Then, for minima of fL(m) both at a zero and a nonzero value
of m, we need α to be positive and β to be negative. The first-order transition is
determined by the condition that the two minima give rise to an equal free energy
density, i.e

αm2 +
β
2

m4 +
δ
3

m6 = 0, (9.29)

while for a minimum also the first derivative needs to vanish, namely

αm+βm3 +δm5 = 0. (9.30)

Dividing out the trivial solution m = 0 and consequently eliminating m, we find a
relation between α and β at the first-order transition, i.e. β =−(16αδ/3)1/2, as is
also illustrated in Fig. 9.5. A special point in this phase diagram occurs when both
the second-order coefficient α as well as the fourth-order coefficient β are equal
to zero. Then, the transition changes its nature from second-order to first-order and
from Fig. 9.5, we see that three phases acquire the same free energy. This point is
therefore also called a tricritical point. It is interesting to note that the behavior at
the tricritical point is different from the behavior at the second-order critical points,
although the order parameter still vanishes continuously. Indeed, if the coefficients
α(T ) and β (T ) vanish near the tricritical temperature Tc3 as (T − Tc3), we have
from from (9.30) that 〈m〉 vanishes as (T −Tc3)1/4, which is qualitatively different
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Fig. 9.5 Phase diagram for a system described by the Landau free energy density fL(m) from
(9.25) as a function of the quadratic coefficient α and the quartic coefficient β , while the sextic
coefficient δ is positive. Continuous, or second-order transitions occur along the positive β axis,
where α changes sign, while discontinuous, or first-order transitions occur along the line β =
−(16δα/3)1/2. These two lines are connected by a tricritial point. For each region in the phase
diagram also a sketch of the Landau free energy as a function of m is given.

from (9.27). The power with which the order parameter vanishes is an example of a
critical exponent.

9.3 Hubbard-Stratonovich Transformation

In the previous chapter, we used the Hubbard-Stratonovich transformation to arrive
at the Hartree-Fock theory of an interacting quantum gas. As we discuss next, the
transformation is also a very powerful tool for describing phase transitions. First,
remember that for a homogeneous gas consisting of two spin species with a spin-
independent interaction, we find with the use of perturbation theory up to any finite
order that the interacting Green’s function satisfies

Gα,α ′(x,τ;x,τ+) =∓nδα,α ′/2, (9.31)

where n is the total density. This follows from Wick’s theorem and the form of
the noninteracting Green’s function G0;α,α ′(x,τ;x,τ+), which are discussed more
extensively in Sect. 8.2. More generally speaking, the result of (9.31) is the con-
sequence of both the translational invariance as well as the rotational symmetry in
spin space of the action describing the many-body system.

However, we can imagine that a state with a constant particle density, as de-
scribed by (9.31), is not always the energetically most favorable state for the inter-
acting quantum gas. For example, in the case of strong repulsive long-range inter-
actions, it is under certain conditions expected that at a (Wigner) crystalline phase
is energetically more favorable, because it minimizes the interaction energy. We
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then have a spontaneous breaking of the translational symmetry, where we can in-
troduce a corresponding order parameter to describe the associated phase transition
in the system. Although spontaneous symmetry breaking cannot be described with
perturbation theory, it can very conveniently be taken into account by using the
Hubbard-Stratonovich transformation to bring the corresponding order parameter
into the action.

Consider for example a Hubbard-Stratonovich transformation for an interacting
Fermi gas to the collective field ρα,α ′(x,τ) that is on average related to the single-
particle density matrix by 〈ρα ,α ′(x,τ)〉 = 〈φ ∗α ′(x,τ+)φα(x,τ)〉. Indeed, the corre-
sponding transformation would be achieved by inserting

1 =
∫

d[ρ]exp
{

1
2h̄

(ρ−φ ∗φ |V |ρ−φ ∗φ)
}

, (9.32)

into the partition sum for the interacting Fermi gas, analogous to the discussion from
Sect. 8.6. Since this results in a quadratic action for the atomic field φ(x,τ), we can
integrate this atomic field out exactly and obtain an effective action for the col-
lective field ρα ,α ′(x,τ) = n(x,τ)δα,α ′/2 + m(x,τ) ·σσσα,α ′ . It is not at all necessary
that the minimum of the resulting effective action is given by the expectation value
〈ρα,α ′(x,τ)〉= nδα ,α ′ as would be the conclusion from perturbation theory. Depend-
ing on for example the strength of the interaction and the temperature, the minimum
of the effective action could perfectly well be given by a position-dependent expec-
tation value

〈ρα,α ′(x,τ)〉= Gα,α ′(x,τ;x,τ+) = n(x)δα,α ′/2, (9.33)

which could describe a Wigner crystal or a charge-density wave, for which the parti-
cle density oscillates in space. If on the other hand, the Green’s function is constant
in space, but the minimum of the effective action for ρα,α ′(x,τ) is given by

〈ρα,α ′(x,τ)〉= Gα,α ′(x,τ;x,τ+) = nδα ,α ′/2+m ·σσσα,α ′ , (9.34)

then the gas is in the ferromagnetic phase with a nonzero magnetization m. More-
over, for a position-dependent magnetization m(x), we say that the system gives rise
to a spin-density wave, such that we have

m(x) = 〈s(x)〉= 〈ψ̂†
α(x,τ)σσσα,α ′ψ̂α ′(x,τ)〉/2, (9.35)

where the vector σσσ consists of the three Pauli matrices. The possibility of a phase
transition to a spin-density wave in an ultracold atomic gas is the topic of Exercise
9.2.

The main message of the above discussion is that with an appropriate Hubbard-
Stratonovich transformation, the order parameter is introduced in an exact manner
into the many-body theory. Often, it is then also possible to integrate out the atomic
fields exactly, leading to an exact effective action for the collective field, which then
in a natural way gives rise to the appropriate Landau theory of the phase transition.
As an example, we note that after integrating out the atomic fields, the Hubbard-
Stratonovich transformation of (9.32) would lead to
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Z =
∫

d[n] d[m] e−Seff[n,m]/h̄ =
∫

d[m] e−Seff[m]/h̄ , (9.36)

where in the second step we also integrated out the particle-density fluctuations. A
minimum of the effective action at the expectation value 〈m(x,τ)〉 = m 6= 0, then
signals a phase transition to a ferromagnetic phase with the magnetization m as the
order parameter for this transition. For a space and time-independent magnetization
m, we compare (9.22) with (9.36), such that in mean-field theory the effective action
Seff[m] is then directly related to h̄FL(m)/kBT = h̄βV fL(m), where fL(m) is the
Landau free-energy density introduced in the previous section. To go beyond mean-
field theory, we can proceed by taking for instance quadratic fluctuations around
the minimum into account when evaluating the functional integral in (9.22). This
approach is discussed in the next section. Taking higher-order fluctuations into ac-
count turns out to be a difficult task which requires renormalization group methods
to be discussed in Chap. 14.

9.4 Gaussian Fluctuations

In the Landau-Ginzburg theory of second-order phase transitions, the fluctuations
around the order parameter are considered up to quadratic order. In the case of the
Ising model, we start by writing

m(x) = 〈m〉+m′(x) (9.37)

which we substitute into the functional integral from (9.22). Using also the expan-
sion in (9.24), we obtain

Z =
∫

d[m] exp
{
− 1

kBT
FL[m]

}

=
∫

d[m′]exp
{
− 1

2kBT

∫
dx

{
γ(∇∇∇m′(x))2 +α(T )

(〈m〉+m′(x)
)2

+
β
2

(〈m〉+m′(x)
)4

}}
. (9.38)

We may introduce the length scale ξ (T ) for the Ising model

ξ (T ) =





√
γ

|α(T )| T > Tc√
γ

2|α(T )| T < Tc
, (9.39)

which we call the correlation length for reasons that soon become clear. Note that
close to Tc, the correlation length diverges as a function of temperature according to
ξ (T ) ∝ |T −Tc|−ν , where ν = 1/2, due to the fact that |α(T )| goes linearly to zero.
The exponent ν with which the correlation length diverges is the second example of
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a critical exponent that we encounter. We come back to critical exponents in Chap.
14, when we treat critical phenomena more extensively. From (9.38) and (9.39), we
obtain to second order in the fluctuations that

Z = exp
{
− 1

kBT
FL(〈m〉)

}
(9.40)

×
∫

d[m′]exp
{
− γ

2kBT

∫
dx

{
(∇∇∇m′(x))2 +

1
ξ (T )2 m′(x)2

}}
,

where we also used (9.27).
We further evaluate this functional integral by making use of the Fourier expan-

sion

m′(x) = ∑
k

m′
k

eik·x
√

V
, (9.41)

for which we have that m′∗
k = m′

−k, because the magnetization m(x) is real. Substi-
tuting the Fourier expansion into the functional integral of (9.40) and performing
the integration over position, we obtain the Gaussian integral

∫
d[m′]exp

{
− γ

2kBT ∑
k

m′∗
k

(
k2 +ξ−1(T )2)m′

k

}
,

which can be performed exactly. Note that in the above expression not all variables
are independent, because m′∗

k = m′
−k. As a result, we should perform the functional

integration only over half of the Fourier space in order to be able to use (2.67).
Moreover, from the above expression, we can also read off the correlation function

〈m′∗
k m′

k〉=
kBT

γ
1

k2 +ξ−1(T )2 . (9.42)

By performing the inverse Fourier transform, we determine the correlation function
for the fluctuations in real space

〈m′(x)m′(x′)〉 =
kBT

γ

∫ dk
(2π)3

eik·(x−x′)

k2 +ξ−1(T )2

=
kBT
4πγ

e−|x−x′|/ξ (T )

| x−x′ | , (9.43)

using the result from Exercise 2.5. We thus find that the correlation length sets the
length scale over which the correlations between the spins decay, thereby explaining
its name.

In our treatment of the Gaussian approximation for the fluctuations, we have not
answered yet the important question of the validity of this procedure. To obtain an
estimation for the answer to this question, we start by noting that the divergence for
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small separations in (9.43) is actually an artefact of the approximation that we have
used. In particular, we have performed a gradient expansion in (9.24), where we
only took into account second-order gradients, leading to the 1/k2 dependence for
large momenta of the Green’s function from (9.42). Taking higher-order gradients
into account would lead to more rapid decay at higher momenta of the Green’s
function, which would consequently remove the divergence for small separations
present in (9.43). As a result, we expect that the gradient expansion is valid for the
physics at momenta smaller than h̄/ξ or equivalently at separations larger than ξ .
Then, to determine whether or not the fluctuations become important, we compare
the correlation function 〈m′(x)m′(x′)〉 at the typical separation of |x− x′| ' ξ (T )
with the square of the mean order parameter, i.e. 〈m〉2. Fluctuations are considered
not to be important as long as we satisfy

〈m′(x)m′(x′)〉 ¿ 〈m〉2, (9.44)

for |x− x′| ' ξ (T ). This criterium is known as the Ginzburg criterium. Working
out both sides of (9.44), the criterium can be written in the vicinity of the critical
temperature as

kBTc

4πγ
ξ (T )−1 ¿ 〈m〉2 =

|α(T )|
β

. (9.45)

Ignoring the factor of two difference in the definition of ξ (T ) for T < Tc and T > Tc,
we see that the Ginzburg criterium becomes

ξ (T )¿ 4πγ2

βkBTc
. (9.46)

Note that we have derived the above results for the specific case of the Ising model.
In Chap. 14, we find with more sophisticated methods that the criterium is generally
correct for quantum theories with a phase transition at Tc 6= 0. For ultracold atomic
gases, the effects of fluctuations are then seen to be important only in a small tem-
perature interval around the critical temperature, such that for many applications it
is possible to neglect them. What usually cannot be neglected is the effect of the
inhomogeneity of the gas due to the presence of an external potential. In the con-
text of Landau theory, this would imply that the expansion coefficients α(T ), β (T )
and γ(T ) become dependent on the spatial position in the trapping potential, which
leads to the possibility of having different (homogeneous) thermodynamic phases as
a function of position in the trap. For example, the bimodality of the middle velocity
distribution in Fig. 4.4 was caused by such an inhomogeneity, because a condensate
could only form in the center of the trap where the density was highest, while for
the low densities in the outer regions of the cloud the gas was still normal.
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9.5 Spontaneous Symmetry Breaking

Above the critical temperature, the minimum of the Landau free energy from (9.24)
is given by 〈m〉 = 0. Below the critical temperature we have that 〈m〉 is nonzero,
which therefore results in 〈m〉 6= 〈−m〉, although the Landau free energy itself still
satisfies reflection symmetry, FL[m] = FL[−m]. This is an example of a phenomenon
called spontaneous symmetry breaking, where the phase of the system breaks a sym-
metry of the underlying microscopic Hamiltonian. For the case of a one-component
real scalar order parameter 〈m〉, the Landau free energy FL[m] has precisely two
minima located at ±〈m〉, as shown in Fig. 9.1. In cooling the system below the crit-
ical temperature, the system arbitrarily has to choose one of the two minima. For
the more general case, when the order parameter becomes an n-component vector
m and the Landau free energy has an O(n) symmetry, there is actually a continuum
of minima that are connected by a rotation of the order parameter. In this case, the
Landau free energy in (9.24) can be expanded as

FL[m] =
1
2

∫
dx

{
γ(∇∇∇m(x))2 +α(T )m(x)2 +

β
2

m(x)4 + . . . .

}
. (9.47)

Then, analogous to the calculation for the single-component case, we may expand
the order parameter as m = 〈m〉+m′(x) and calculate the correlation function

〈m′
i(x)m′

j(x
′)〉 ≡ −Gi j(x−x′). (9.48)

When the temperature is above Tc, the quadratic part of the Landau free en-
ergy simply becomes the sum of three separate Landau free energy contributions
FL[m′(x)] = ∑i FL[m′

i(x)], such that we can copy our calculation of the previous
section to obtain

Gi j(x−x′) =−δi j
kBT
4πγ

e−|x−x′|/ξ (T )

| x−x′ | . (9.49)

The interesting case is when T < Tc, as we show now. Writing down the fourth-order
term explicitly and keeping only the quadratic terms in the fluctuations yields

β
4 ∑

i, j

∫
dx

{
2〈mi〉2m′2

j (x)+4〈mi〉〈m j〉m′
i(x)m′

j(x)
}

.

Making again a Fourier expansion and combining the above terms with the other
quadratic terms from (9.47), we find that the second-order contribution of the fluc-
tuations to the partition function is given by the functional integral

∫
d[m′]exp

{
1
2 ∑

k
m′∗

k G−1(k) m′
k,

}
,

where the matrix elements of G−1 are given by
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G−1
i j (k) =− 1

kBT
δi, j

(
γk2 +α(T )+β 〈m〉2)− 2β

kBT
〈mi〉〈m j〉. (9.50)

Introducing the unit vector v along the direction of the magnetization

v =
〈m〉
|〈m〉| , (9.51)

the matrix element (9.50) becomes

G−1
i j (k) =− 1

kBT

(
γk2−2α(T )

)
viv j− γk2

kBT
(δi, j− viv j) , (9.52)

where we have used that 〈m〉2 =−α(T )/β , and where we have explicitly separated
the propagator for fluctuating modes that are parallel and orthogonal to v. To see
this, we can consider the three-dimensional case with the magnetization in the z di-
rection. Then, the first term on the right-hand side of (9.52) describes G−1

zz , whereas
the second term describes G−1

xx and G−1
yy . Moreover, note that the matrix product of

the tensors viv j and δi, j− viv j is zero as can be seen from

viv j
(
δ j,i′ − v jvi′

)
= vivi′ − vivi′ = 0, (9.53)

where repeated indices are summed over, such that viv jv jvi′ = vivi′ for v a unit
vector. As a result, we also have that

(δi, j− viv j)
(
δ j,i′ − v jvi′

)
=

(
δi,i′ − vivi′

)
. (9.54)

With this decomposition of G−1 into longitudinal and transverse contributions, we
find that the Green’s function G is given by

Gi j(k) =− kBT
γk2−2α(T )

viv j− kBT
γk2 (δi, j− viv j) . (9.55)

We thus have found that the correlation function of the longitudinal fluctuations
behaves analogously to the scalar case, whereas the fluctuations m′ that are perpen-
dicular to the magnetization 〈m〉 are described by the propagator

Gi j(k) =
−kBT
γk2 (δi, j− viv j) . (9.56)

In real-space, we have that this transverse part of the correlation function is given
by

〈m′
i(x)m′

j(x
′)〉 = −

∫ dk
(2π)3 Gi j(k)eik·(x−x′)

=
kBT

4πγ |x−x′| (δi, j− viv j) . (9.57)
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The last line of the previous equation shows that the correlation function of the
transverse fluctuations no longer falls off exponentially, but only algebraically. This
is a general feature of a phase transition that spontaneously breaks a continuous
symmetry and is embodied in the Goldstone theorem. It states that with each spon-
taneously broken continuous symmetry there is an associated massless or Goldstone
mode. The reason for calling the transverse Goldstone mode massless comes from
high-energy physics, where the Green’s functions or propagators of the elementary
particles are typically of the form

G(k) ∝
1

(h̄ck)2 +m2c4 ,

with c the speed of light and m the rest mass of the particle. In our case, we find that
after the spontaneous symmetry breaking the system develops transverse modes that
behave just like an elementary particle with zero mass.

For the propagator of the longitudinal modes, we have that

Gi j(k) =− kBT
γk2 + γ/ξ (T )2 viv j, (9.58)

such that we obtain

〈m′
i(x)m′

j(x
′)〉 = −

∫ dk
(2π)3 Gi j(k)eik·(x−x′)

=
kBT
4πγ

e−|x−x′|/ξ (T )

| x−x′ | viv j. (9.59)

Combining (9.57) and (9.59), we see that the total correlation function of the order
parameter field is given by

〈mi(x)m j(x′)〉 = 〈m〉2viv j +
kBT
4πγ

e−|x−x′|/ξ (T )

| x−x′ | viv j +
kBT

4πγ |x−x′| (δi, j− viv j)

= 〈m〉2
{

viv j +
kBT βξ (T )2

2πγ2
e−|x−x′|/ξ (T )

| x−x′ | viv j

+
kBT βξ (T )2

2πγ2|x−x′| (δi, j− viv j)
}

, (9.60)

from which we see that at very large separations, the correlation function approaches
the constant 〈m〉2viv j. This property is also known as long-range order. In Chap. 13
we discuss several more aspects of symmetries and symmetry breaking, including
conservation laws and the Ward identities.
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9.6 Problems

Exercise 9.1. Calculate the correlation function 〈m′(x)m′(x′)〉 for the case when the
order parameter m(x) in the Landau free energy from (9.38) is complex valued.

Exercise 9.2. Spin-Density Wave
Consider an interacting gas of N spin-1/2 fermions on a one-dimensional line with
length L. The action for this gas at temperature T = 1/kBβ and chemical potential
µ is given by

S[φ ∗,φ ] = ∑
α

∫ h̄β

0
dτ

∫
dx φ ∗α(x,τ)

{
h̄

∂
∂τ
− h̄2

2m
∂ 2

∂x2 −µ
}

φα(x,τ) (9.61)

+
1
2 ∑

α 6=α ′

∫ h̄β

0
dτ

∫
dx

∫
dx′ φ ∗α(x,τ)φ ∗α ′(x

′,τ)V (x− x′)φα ′(x
′,τ)φα(x,τ) ,

where m is the mass of the fermions and V (x− x′) the interaction potential. Even
though the above action is translationally invariant, the gas can in principle undergo
a phase transition to a phase in which the spin density oscillates with a wavelength
given by 2π/Q. This phase is called a spin-density wave. To explore this possibility,
we can imagine that we have performed a Hubbard-Stratonovich transformation to
the field κα(x,τ), which on average is related to the spin densities of the gas by∫

dx′ V (x− x′)nα(x′).
(a) Argue on physical grounds, i.e. without explicit calculations, that in the case of
a spin density wave the average of the auxiliary field κα(x,τ) has the form

〈κα(x,τ)〉= V0
n
2

+
α
2

(
∆eiQx +∆∗e−iQx

)
, (9.62)

with V (k) =
∫

dx V (x)e−ikx the Fourier transform of the interaction potential, n =
N/L the total average density of the gas, and α =±1. The complex number ∆ is the
order parameter of the spin-density wave.
(b) Using the above expression for the mean field, give the momentum-space action
for the fermions in mean-field theory. Use φα(x,τ) = ∑k φk,α(τ)eikx/

√
L and the

notation εk = h̄2k2/2m. Note that the spin-density wave can transfer a wavevector
±Q to the fermions.
(c) Assuming that the spin-density wave can only exist at temperatures far below the
Fermi temperature, argue that the most likely value of Q is equal to twice the Fermi
wavevector, i.e. 2kF.
(d) In an excellent approximation we can, therefore, consider only the coupling
between left-moving states with k < 0 and right-moving states with k > 0. Determine
in this approximation the dispersion h̄ωk of the single-particle excitations in the
presence of a spin-density wave.
(e) Finally, show that in general the mean-field critical temperature is determined by
the condition
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V (Q)
L ∑

p

NFD(εQ+p)−NFD(εp)
εQ+p− εp

=−1 , (9.63)

To this end, take the following steps: 1) Perform the desired Hubbard-Stratonovich
transformation to the collective κα fields, 2) integrate out the atomic fields to ob-
tain the partition sum and the effective action in terms of the collective fields,
3) neglect fluctuations and consider the effective action up to quadratic order in
〈κα(x,τ)〉 ≡ κα(x), 4) transform to momentum space and note that you obtain a
2× 2 matrix structure in spin-space that can be diagonalized by introducing new
variables, namely the density modes ρk ≡ (κk,+ +κk,−)/

√
2 and the magnetization

modes mk ≡ (κk,+−κk,−)/
√

2, 5) the condition for the critical temperature of the
second-order phase transition to the spin-density wave is then ultimately obtained
by demanding that the quadratic coefficient for the magnetization mode mQ changes
sign.

Additional Reading

• An alternative introduction to the Landau theory of phase transitions can be
found in J. W. Negele and H. Orland, Quantum Many-Particle Systems, (West-
view Press, Boulder, 1998).

• See also the introductory chapters in E. Fradkin, Field Theories of Condensed
Matter Systems, (Addison-Wesley, Redwood City, 1991).



Chapter 10
Atomic Physics

Joy in looking and comprehending is Nature’s most beautiful
gift.
–Albert Einstein

Ultracold quantum gases are like man-made universes that allow us, as we will see,
to study interesting quantum many-body phenomena in detail. Although it turns
out that these quantum gases are extremely well suited for manipulation by ex-
perimentalists, there are some limitations. A typical trapped alkali gas consists of
about 105 − 109 atoms and has, for realistic trap parameters, a central density of
n' 1012−1015 cm−3. This is many orders of magnitude less dense than air, which
has a typical density of about 1019 cm−3. Nevertheless, the gas can be cooled down
to such low temperatures that it reaches the quantum degenerate regime where the
thermal de Broglie wavelength Λ = (2π h̄2/mkBT )1/2 is on the same order as the
average interatomic distance n−1/3. For the densities quoted this means that the
temperature has to be as low as 1−100 nK. This makes ultracold gases the coldest
objects in the universe. The physics of how to cool dilute alkali gases to quantum
degeneracy is extensively described elsewhere [40, 41] and we do not cover this sub-
ject here. A crucial ingredient, however, is that the gas is trapped in an external po-
tential to keep the gas away from physical walls that can never be cooled to such low
temperatures. The traps used in practice can almost always be well approximated by
an anisotropic harmonic oscillator potential with frequencies of about 1− 100 Hz.
The associated energy level splittings h̄ωi are then typically much smaller than the
thermal energy kBT or the chemical potential µ . However, this is not always the
case, and it turns out to be also possible to create such steep potentials in certain
directions, that in these directions only the quantum state with the lowest energy
can be occupied by the atoms. As a result, the atomic motion is essentially frozen
out in these directions, which allows for the creation of effectively one-dimensional
and two-dimensional quantum gases.

In this chapter, we look at the relevant atomic physics that is necessary to un-
derstand the microscopic origin of the relevant physical parameters for interacting
atomic quantum gases. In the following chapters, we then combine this knowledge
with the quantum field theory formalism developed in the previous chapters to de-
scribe realistic ultracold atomic many-body systems. We start with discussing the
fine and hyperfine structure of the atomic energy levels, as well as the Zeeman ef-
fect, because these are crucial for the ability to trap atoms by applying external
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magnetic or electric fields. The electric fields that are generated by a laser can also
be used to create periodic trapping potentials, called optical lattices, which are dis-
cussed in Chap. 16. Next, we treat two-body scattering of atoms, which is the dom-
inant interaction mechanism in ultracold atomic gases. We first discuss two-body
scattering in vacuum, and then generalize the treatment to include also the presence
of a medium. Finally, we end this chapter with a detailed discussion of the different
physical regimes that we can explore with ultracold atomic gases, depending on the
atomic density, the temperature and the interaction strength.

10.1 Atomic Structure

The understanding of the atomic structure resulted primarily from studying the ab-
sorption and emission of light by atoms. Roughly speaking, it was found that an
atom is composed of a nucleus and a surrounding cloud of electrons which interact
with each other and with the nucleus through the Coulomb interaction. Additional
effects, such as the coupling of the electron spins with their orbital angular momen-
tum and the weaker coupling of the nuclear spin with the electron spins, give rise
to a more detailed and more complex picture of the atom. In fact, the atomic level
structure is affected quantitatively by even more exotic physical effects, such as
relativistic corrections to the kinetic energy of the electrons and the Lamb shift aris-
ing from the quantization of the electromagnetic field. These effects are, however,
neglected in the following.

To make the above sketched picture a bit more concrete, we consider the for us
relevant case of an alkali atom, which can be considered as a hydrogen-like atom
with an inner core of charge e and a single outer electron with charge −e and mass
me. The dominant interaction is the Coulomb interaction between the electron and
the core, which depends in a good approximation only on the relative coordinate r
between the two. The Hamiltonian is then given by

Ĥ =
p̂2

2me
− e2

4πε0r̂
, (10.1)

where ε0 is the permittivity of free space. Moreover, we have considered the core
to be fixed in space because it is much heavier than the electron. If desired, this ap-
proximation can be easily relaxed by interpreting me as the reduced electron mass.
Most textbooks on quantum mechanics show how the resulting time-independent
Schrödinger equation can be solved. The spherical symmetry of the Coulomb po-
tential allows for a factorization of the wavefunction ψn`m(r) = Rn`(r)Y`m(ϑ ,ϕ)
into a radial and an angular part respectively. The angular part Y`m(ϑ ,ϕ) is given
by the spherical harmonics from (3.60), while the radial solution can is of the form
Rn`(r) = fn`(r)e−r/(n+1)a0 with n = 0,1,2, . . . . Here, the function fn`(r) is a poly-
nomial of order n and a0 = 4πε0h̄2/mee2 is called the (first) Bohr radius. In this
chapter, particularly relevant are the s (` = 0) and p (` = 1) orbitals with lowest
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energy, for which we have f00(r) = 2/a3/2
0 and f11(r) = r/2

√
6a5/2

0 respectively. To
see that these s and p orbitals have indeed the lowest energy, we remember that the
energy eigenvalues of the hydrogenic atom are given by

En =−1
2

meα2c2 1
(n+1)2 , (10.2)

where α = e2/4πε0h̄c' 1/137 is the fine-structure constant. The angular momen-
tum ` can take on integer values between 0 and n and the magnetic quantum number
m runs from −` to `. As a result, the above energy levels are degenerate in both `
and m. These degeneracies are lifted when we take into account the spin degrees of
freedom and the associated spin-dependent corrections to the Hamiltonian, which
are typically small. However, understanding the spin structure of the alkali atoms is
crucial in order to explain the trapping of ultracold atoms. Moreover, the Zeeman
effect and the hyperfine structure of the atoms are the fundamental ingredients for
the precise tuning of the interatomic interaction strength. The corresponding mech-
anism, called a Feshbach resonance, is explained in Chap. 17.

10.1.1 Fine Structure

For the Coulomb Hamiltonian from (10.1), both the electronic orbital angular mo-
mentum and the electronic spin angular momentum are separately conserved, be-
cause both quantities commute with the Hamiltonian. In reality, however, this is not
the case, because the electronic orbital angular momentum operator L̂ and the elec-
tronic spin angular momentum operator Ŝ are coupled by the spin-orbit coupling
Hamiltonian

Ĥso =
αso

h̄2 L̂ · Ŝ , (10.3)

where the constant αso determines the strength of the coupling. Because of this
additional term, only the total electronic angular momentum Ĵ = L̂ + Ŝ commutes
with the Hamiltonian and is conserved, where we note that also L̂2 and Ŝ2 still
give rise to good quantum numbers. The splitting of the electronic states due to the
spin-orbit coupling is known as the fine-structure splitting of the atom. For alkali
atoms, the fine-structure eigenstates can be written more precisely as |n;(`s) jm j〉,
with s = 1/2 the electron spin, j the total electronic angular momentum, and m j its
projection on the quantization axis. To find the fine-structure splitting explicitly, we
note that the square of the total angular momentum operator is given by

Ĵ2 = L̂2 + Ŝ2 +2L̂ · Ŝ . (10.4)

Using this observation, we can determine the fine structure energy shift of an atom
in state |n;(`s) jm j〉, which is given by
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∆E j = 〈n;(`s) jm j|Ĥso|n;(`s) jm j〉
=

αso

2
( j( j +1)− `(`+1)− s(s+1)) . (10.5)

For our purposes, the fine structure splitting of a p orbital is most important. In that
case, we have ` = 1, and we find ∆E3/2 = αso/2 and ∆E1/2 =−αso. We examine the
consequences of this fine-structure splitting further in Chap. 16 when we discuss the
interaction of atoms with light, which is important for understanding optical lattices.

10.1.2 Hyperfine Structure

Now, we recall that in the ground state of the alkali atoms all electrons in the core
occupy closed shells, whereas the outer valence electron is in a s orbital. Since the
total orbital angular momentum is thus zero for ground-state alkali atoms, i.e. ` = 0
and j = s, they do not have a fine-structure splitting due to the spin-orbit coupling.
However, a splitting of this ground state does nevertheless occur, when we also
include the coupling of the nuclear spin with the electron spin due to the magnetic
dipole-dipole interaction. This coupling is described by the hyperfine interaction

Ĥhf =
αhf

h̄2 Î · Ŝ, (10.6)

where αhf yields the strength of the coupling and Î is the total nuclear spin. As a
result, only the total angular momentum F̂ = Î + Ĵ is conserved and the resulting
level splitting is known as the hyperfine structure. Recalling that we are considering
the special case for which L = 0, we have that the hyperfine spin state is completely
determined by the total spin quantum number f , its projection on the quantization
axis m f , and the nuclear and electronic spin quantum numbers i and s, respectively.
As their names suggest, the fine structure leads to a small splitting of the eigenstates
for the Coulomb problem, whereas the hyperfine structure leads to an even smaller
splitting of the fine-structure energy levels.

For the s-orbital ground state of an alkali atom, the hyperfine eigenstates can thus
be written as |n`;(is) f m f 〉= |00;(is) f m f 〉. To find the hyperfine structure, we note
that

F̂2 = Î2 + Ŝ2 +2Î · Ŝ, (10.7)

where we have used that Ĵ = Ŝ for the orbital ground state of the alkali atoms. As a
result, the hyperfine energy shift of an atom in state |00;(is) f m f 〉 is given by

∆E f = 〈00;(is) f m f |Ĥhf|00;(is) f m f 〉
=

αhf

2
( f ( f +1)− i(i+1)− s(s+1)) . (10.8)
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Since for alkali atoms s = 1/2, the allowed values for f are i± 1/2 in the orbital
ground state, where from now on we simply write | f m f 〉 to specify the hyperfine
states of interest. The manifold f = i + 1/2 contains the states with m f = −(i +
1/2), . . . ,(i + 1/2) and the manifold with total hyperfine spin f = i−1/2 contains
the states with m f =−(i−1/2), . . . ,(i−1/2). Note that in the absence of an external
magnetic field, the states within each of these two manifolds are degenerate. The
energy difference between the two manifolds f = i±1/2 is known as the hyperfine
splitting h̄ωhf. From (10.8), it follows that

h̄ωhf = αhf(i+
1
2
). (10.9)

Note that for atomic hydrogen the hyperfine splitting of 1420 MHz corresponds
precisely to the famous 21-cm emission line, whose detailed study across the sky
has led to most of what is known about the distribution of cold gases in our galaxy,
including the mapping of the nearby spiral arms.

10.2 Zeeman Effect

Of particular experimental relevance is the case of an atom in the presence of an
applied magnetic field. The coupling of both the nuclear and electron spin mag-
netic moments to the external magnetic field causes an energy shift of the hyperfine
states known as the Zeeman shift. As a result, the degeneracy in m f of the hyper-
fine states is lifted. Put differently, by controlling the applied magnetic field it is
possible to control the energies of the atoms, and this is widely used for many in-
teresting applications and experiments with ultracold gases. To make this statement
more concrete, we consider an alkali atom in a magnetic field of strength B directed
along the quantization axis. Considering again only the s-orbital groundstate, the
relevant Hamiltonian for the hyperfine structure becomes

Ĥ = Ĥhf− γNBÎz + γBŜz, (10.10)

where we have taken into account both the Zeeman coupling of the magnetic field
to the electronic spin with coupling strength γ and to the nuclear spin with coupling
strength γN. In practice, we have that γN ¿ γ , which comes about because the Zee-
man coupling is inversely proportional to the mass, and the nucleus is much heavier
than an electron. By diagonalizing the Hamiltonian of (10.10), we then obtain the
magnetic field dependence of the atomic energy levels.

First, we solve the Hamiltonian for the simplest nontrivial case when i = 1/2,
which corresponds to atomic hydrogen. It is convenient to rewrite the hyperfine
interaction by using

Î · Ŝ = ÎxŜx + ÎyŜy + ÎzŜz = ÎzŜz +
1
2

(
Î+Ŝ−+ Î−Ŝ+

)
, (10.11)



218 10 Atomic Physics

where in the last line we introduced the familiar raising and lowering operators
Î± = Îx± iÎy and Ŝ± = Ŝx± iŜy, respectively. They have the property that for i = 1/2
we have

Î±|imi〉= h̄|imi±1〉, (10.12)

where a similar equation holds for Ŝ±. In the basis of the states |imi,sms〉 ≡ |mi,ms〉,
the matrix elements of the Hamiltonian from (10.10) are given by

〈mi,ms|Ĥ|m′
i,m

′
s〉 = (αhfmims− h̄γNmiB+ h̄γmsB)δmi,m′iδms,m′s

+
αhf

2
δmi,m′i+1δms,m′s−1 +

αhf

2
δmi,m′i−1δms,m′s+1. (10.13)

From this, we see that the two states | − 1/2,−1/2〉 and |1/2,1/2〉 are uncoupled
and have energies αhf/4∓ h̄(γ − γN)B/2. These states thus show a linear Zeeman
effect with a magnetic moment equal to h̄(γ − γN)m f /2. The other two states mix,
but the associated Hamiltonian is easily diagonalized by writing down its matrix
representation. Explicitly, we find

1
2

(−αhf
2 + h̄γNB+ h̄γB αhf

αhf −αhf
2 − h̄γNB− h̄γB

)
,

whose eigenvalues are given by

E =−αhf

4
± αhf

2

√
1+

(
h̄(γN + γ)B

αhf

)2

. (10.14)

For small magnetic fields, these states show a quadratic Zeeman effect, which is
caused by the fact that m f = 0 and the magnetic moment vanishes. Note that by
making the magnetic field position dependent, also the energy of the atoms in the
various hyperfine states become position dependent. Put differently, the magnetic
field acts as a potential energy for the atoms, which has been used to confine ultra-
cold atomic gases in space. Note that this potential energy then also depends on the
specific hyperfine state, which can be used to trap atoms in a selected number of
quantum states.

The above calculation can be generalized to more involved cases, where the nu-
cleus has a higher spin. For example, the alkali fermion 6Li has a nuclear spin i = 1,
such that for its ground state, we can have either f = 3/2 or f = 1/2, which are
split by the hyperfine splitting discussed in the previous section. For a weak mag-
netic field, the Zeeman interaction can be considered as a perturbation to the hyper-
fine interaction and the Zeeman splitting is therefore determined by the hyperfine
states | f m f 〉. The states with f = 3/2 split up into four levels, whereas the states
with f = 1/2 split up into two, where initially the splittings go proportional to Bm f .
At large values of the magnetic field, we should not use the hyperfine states | f m f 〉
anymore, because now the hyperfine interaction has become a perturbation to the
eigenstates of the Zeeman interaction, given by |imi,sms〉. Since γ À γN , the Zee-
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Fig. 10.1 Energy level diagram of the s-orbital ground state for a) fermionic 6Li, which has a
nuclear spin i = 1, and b) bosonic 7Li, which has a nuclear spin i = 3/2. For both isoptopes, the
hyperfine structure is shown, as well as the Zeeman splitting due to the applied magnetic field B.

man splitting is dominated by ms for large magnetic field strengths. In between the
weak and strong-field limit, some of the eigenstates then have to bend in energy as
a function of magnetic-field strength, as observed in Fig. 10.1.

The boson 7Li has nuclear spin i = 3/2, such that either f = 2 or f = 1, both sep-
arated initially by the hyperfine splitting. As a function of magnetic field strength,
the states with f = 2 split into five levels, whereas the states with f = 1 into three, as
is seen in Fig. 10.1. Many important experiments have been performed with atomic
lithium in these ground states, where nowadays fermionic 6Li is a particular favorite
of the experimentalists. This is because it gives rise to an experimentally easily ac-
cessible Feshbach resonance with which the atomic interactions are very accurately
tuned.

10.3 Two-body Scattering in Vacuum

Knowing only the properties of a single atom is of course not sufficient to describe
an interacting quantum gas of atoms. At the end of Chap. 3, we gave an argument
that for dilute gases the two-body interactions are most important. Here, we consider
in more detail the scattering properties of two atoms in vacuum and show that for an
ultracold gas of atoms the two-body interactions are characterized by a single pa-
rameter. This parameter is called the s-wave scattering length, and can be measured
experimentally. Furthermore, we also show how to take into account the many-body
corrections due to the presence of a medium. In first instance, we assume that the
atoms in the gas are prepared in an initial state that does not change during the scat-
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tering process. We relax this assumption in Chap. 17 when we discuss Feshbach
resonances.

10.3.1 Two-Body Transition Matrix

In Sect. 3.11 we encountered the Lippmann-Schwinger equation, where it was used
to determine the general form of the scattering wavefunction, which was seen to
consist of an incoming plane wave and an outgoing spherical wave at large sepa-
rations between the colliding particles. Now, instead of dealing with the scattering
states |ψ(+)

p 〉 explicitly, we solve the scattering problem in a more convenient way
[42]. To this end we introduce the operator T̂ 2B, which is called the two-body tran-
sition or T matrix, and is defined by

V̂ |ψ(+)
p 〉 ≡ T̂ 2B|p〉. (10.15)

The matrix elements of the two-body T matrix are directly related to the scattering
amplitudes f (p′,p) that were introduced in (3.124). Indeed, substituting (10.15) into
(3.124), we find

f (p′,p) =− 1
4π

(2π h̄)3 m
h̄2 〈p′|T̂ 2B|p〉, (10.16)

where the plane waves are normalized as 〈x|p〉 = eip·x/h̄/(2π h̄)3/2, which is con-
ventional in the treatment of two-body scattering. However, it turns out that for the
many-body generalization of two-body scattering, which is of interest for the rest
of this book, it is actually more convenient to introduce the wavevector k ≡ p/h̄
and use from now on the normalization 〈x|k〉= eik·x for the plane waves. Doing so,
(10.16) becomes

f (k′,k) =− 1
4π

m
h̄2 〈k′|T̂ 2B|k〉, (10.17)

while the Lippmann-Schwinger equation (3.118) is given by

T̂ 2B|k〉= V̂ |k〉+V̂
1

E− Ĥ0 + i0
T̂ 2B|k〉, (10.18)

which has to be satisfied for any incoming plane wave |k〉. Therefore, we find for
T̂ 2B the operator equation

T̂ 2B = V̂ +V̂
1

E− Ĥ0 + i0
T̂ 2B, (10.19)

where (E− Ĥ0 + i0)−1 is an operator that gives rise to a noninteracting propagator
similar to (7.50). To see this, we first note that by definition
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(
E− Ĥ0 + i0

) 1
E− Ĥ0 + i0

= 1̂. (10.20)

Multiplying with 〈x| on the left and |x′〉 on the right and inserting a completeness
relation gives

δ (x−x′) =
∫

dx′′〈x|E− Ĥ0 + i0|x′′〉〈x′′| 1
E− Ĥ0 + i0

|x′〉

≡
{

E− h̄2∇∇∇2

m

}
G0(x,x′), (10.21)

where we also used the position representation of Ĥ0.
The Lippmann-Schwinger equation (10.19) for the two-body T matrix can be

solved iteratively, resulting in the Born series, which is given by

T̂ 2B(z) = V̂ +V̂ Ĝ0(z)V̂ +V̂ Ĝ0(z)V̂ Ĝ0(z)V̂ + · · · , (10.22)

where the operator

Ĝ0(z) =
1

z− Ĥ0
(10.23)

corresponds to the noninteracting propagator of the atoms at a (complex) energy z.
A common approximation for the two-body T matrix is to take only the first term of
the Born series into account, which is called the Born approximation. From (10.22)
we see that the T matrix physically describes the outcome of a collision process,
in which the particles interact quantum mechanically an arbitrary number of times,
such that the T matrix sums over all elementary interaction processes that take place
during a collision. We note that the formal solution of the operator equation for the
transition matrix is given by

T̂ 2B(z) = V̂ +V̂
1

z− Ĥ
V̂ , (10.24)

where Ĥ = Ĥ0 +V̂ , whose complete set of eigenstates we denote by |ψα〉. Inserting
this set, we find

T̂ 2B(z) = V̂ +∑
α

V̂
|ψα〉〈ψα |

z− εα
V̂ , (10.25)

where the summation over α is discrete for possible bound states of the interaction
potential with energies εα < 0, while the summation becomes an integration for the
continuum of scattering states with energies εα > 0. Explicitly, we thus have that

T̂ 2B(z) = V̂ +∑
κ

V̂
|ψκ〉〈ψκ |

z− εκ
V̂ +

∫ dk
(2π)3 V̂

|ψ(+)
k 〉〈ψ(+)

k |
z−2εk

V̂ , (10.26)
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which shows that the two-body T matrix has poles in the complex-energy plane that
corresponding to the bound states of the interaction potential, while it has also a
branch cut on the positive real axis due to the continuum of scattering states.

10.3.2 Partial-Wave Expansion

For spherically symmetric interaction potentials, the potential depends only on the
distance between the atoms. As a result, the elastic scattering amplitude is deter-
mined by the magnitude of the incoming momentum k and a single angle ϑ with
the outgoing momentum. To further evaluate the scattering wavefunction that we
derived in Sect. 3.11, namely

ψ(+)
k (r) = eik·r + f (k′,k)

eikr

r
, (10.27)

we decompose its scattering amplitudes f (k′,k) with the method of partial waves.
We have that

f (k′,k) =
∞

∑̀
=0

(2`+1) f`(k)P̀ (cosϑ), (10.28)

where P̀ (x) are the Legendre polynomials. To see the meaning of the partial-wave
amplitudes f`(k) more clearly, we first note that the plane-wave part of the scattering
wavefunction can be written as a sum of incoming and outgoing spherical waves.
To this end, we use the identity

eik·r = ∑̀(2`+1)i` j`(kr)P̀ (cosϑ), (10.29)

where, for large separation r, we are allowed to use the asymptotic behavior of the
spherical Bessel functions j`(kr). We obtain

eik·r ' ∑̀(2`+1)P̀ (cosϑ)

(
eikr− e−i(kr−`π)

2ikr

)
, (10.30)

which is indeed a superposition of outgoing and incoming spherical waves. Combin-
ing (10.27), (10.28) and (10.30), we see that the presence of an interaction potential
changes the coefficient of the outgoing spherical wave according to

eikr

r
→ (1+2ik f`(k))eikr

r
,

where, due to the conservation of probability flux, the magnitude of the coefficient
(1+2ik f`(k)) has to be equal to one. This can explicitly be incorporated by writing
the coefficient as an exponential
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1+2ik f`(k)≡ e2iδ`(k), (10.31)

where we have defined the phase shifts δ`(k). The conclusion is that, at large dis-
tances, the change in the wavefunction due to the collision process is solely given
by a shift in the phase of every outgoing partial wave.

It is remarkable that ultracold gases can be cooled to the point where only one
partial wave is dominant and all the others can be neglected. Roughly speaking,
at low enough temperatures the atoms cannot overcome the centrifugal barrier for
nonzero angular momentum scattering, such that the collision process is fully deter-
mined by the part with zero angular momentum. To quantify this statement some-
what, we estimate the typical angular momentum h̄` of two scattering atoms as the
range of the interaction R times their relative momentum, which is determined by
the thermal de Broglie wavelength Λ. We find that typically

h̄`' h̄
R
Λ

, (10.32)

where, in practice, we have for ultracold atomic gases that R/Λ ¿ 1. As a result,
the dominant phase shift is given by the partial wave with zero angular momentum,
` = 0, which we use to define the s-wave scattering length a as

a =− lim
k↓0

δ0(k)
k

. (10.33)

With the use of (10.31), we then find that

f (k,k′)' f0(k) =
1

k cotδ0(k)− ik
, (10.34)

where we note that this expression is spherically symmetric, i.e. independent of the
zenith angle ϑ . We may evaluate the above expression further by using the following
expansion

k cot(δ0(k)) =−1
a

+
1
2

reffk2 + · · · , (10.35)

where the quadratic coefficient reff is called the effective range. Using (10.17) and
(10.35), we obtain

〈k′|T̂ 2B|k〉= T 2B(k) =−4π h̄2

m
1

k cotδ0(k)− ik
' 4π h̄2

m
a

1−areffk2 + iak
, (10.36)

which we can express explicitly in terms of the small positive energies E as

T 2B(E + i0) ' 4πah̄2

m
1

1+ ia
√

mE/h̄2−areffmE/2h̄2
. (10.37)

By analytic continuation, we generalize the above result to
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T 2B(z)' 4πah̄2

m
1

1−a
√
−mz/h̄2−areffmz/2h̄2

, (10.38)

where for large and positive s-wave scattering length, the two-body T matrix is seen
to have a pole at the negative energy Em = −h̄2/ma2. Remembering the general
form of the T matrix from (10.26), we see that this pole signals the presence of a
two-body bound state with a small binding energy Em. To understand the important
general results of this section better, we consider the following explicit example.

10.3.3 Scattering from a Square-Well Potential

We illustrate the physical meaning of the s-wave scattering length by calculating
it for the simplified case that the interparticle potential is a square well [42]. The
advantages of treating this model is that it can be solved exactly and that its prop-
erties are very common to scattering processes in general. We take the interaction
potential of the form

V (r) =
{

V0 if r < R;
0 if r > R,

(10.39)

with R > 0. Note that this is a spherically symmetric potential and that the radial
wavefunction R(r) = u(r)/r for ` = 0 is determined by the radial Schrödinger equa-
tion

{
d2

dr2 −
mV (r)

h̄2 + k2
}

u(r) = 0. (10.40)

The general solution to (10.40) is given by

u<(r) = Aeik<r +Be−ik<r, for r < R,
u>(r) = Ceikr +De−ikr, for r > R,

(10.41)

with k< =
√

k2−mV0/h̄2. Since the radial wavefunction R(r) has to obey the
Schrödinger equation at the origin, we demand that u<(r) vanishes at this point.
This leads to the boundary condition B = −A. By comparing the explicit form of
u>(r) with the s-wave component of the general scattering wavefunction for r→∞,
we find that

e2iδ0(k) =−C
D

. (10.42)

We determine the s-wave phase shift by demanding that the wavefunctions for r < R
and r > R join smoothly. This leads to the equations
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A
(

eik<R− e−ik<R
)

= −e2iδ0(k)eikR + e−ikR,

A
(

k<eik<R + k<e−ik<R
)

= −e2iδ0(k)keikR− ke−ikR , (10.43)

where we have chosen the normalization such that D = 1. Multiplication of the
above equations with e−iδ0(k) and dividing the result leads to

k tan(k<R) = k< tan(δ0(k)+ kR) , (10.44)

from which it follows that

δ0(k) =−kR+ tan−1
[

k
k<

tan(k<R)
]

. (10.45)

Note that for a repulsive hard-core potential, we have that V0 → ∞ and therefore,
with the use of the definition in (10.33), that the scattering length a = R. This gives
rise to a physical picture for the s-wave scattering length in the case that a is positive.
Namely, for low energies and long wavelengths, we have that the details of a short-
ranged potential are not probed and therefore unimportant. We are then allowed to
model any short-ranged interaction potential as an effective hard-core potential with
radius R = a, because they both lead to exactly the same scattering wavefunctions
at large distances. As a result, the scattering length is sometimes also called the
effective hard-core radius of the potential. We remark that for a fully repulsive po-
tential the scattering length is always positive. However, for a (partially) attractive
potential, the scattering length can be both negative and positive, corresponding to
attractive and repulsive effective interactions, respectively.

This can be made explicit by calculating the scattering length for a square well
with V0 < 0. From (10.33) and (10.45), we find that the scattering length is given by

a = R
(

1− tanγ
γ

)
, (10.46)

with γ = R
√

m|V0|/h̄2 a dimensionless constant. The effective range, which the
second-order coefficient in the expansion from (10.35), is in this example given by

reff = R
[

1+
3tanγ− γ(3+ γ2)

3γ(γ− tanγ)2

]
. (10.47)

In Fig. 10.2, the scattering length is shown as a function of γ by the solid lines.
We indeed find that the scattering length can be both negative and positive, while
it becomes equal to zero when γ = tanγ . In the same figure, the effective range
is shown by the dashed line. Note that the effective range diverges when the scat-
tering length becomes equal to zero. This comes about because the expansion in
(10.35) is ill defined for a = 0. Indeed for |a| ¿ R, we find that δ0(k) behaves as
−ka +(kR)3/6 at small energies. When γ = (n + 1/2)π with n a positive integer,
the scattering length diverges and changes sign. This behavior is called a potential
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Fig. 10.2 Scattering length a (solid line) and effective range reff (dashed line) for an attractive
square well in units of the radius of the potential R as a function of the dimensionless parameter

γ = R
√

m|V0|/h̄2. Figure adapted from [32].

or shape resonance and in fact occurs each time the potential is just deep enough to
support a new bound state. We find that for large and positive scattering length, the
square well has a bound state with an energy just below the continuum threshold.
It turns out that there is an important relationship between the energy of this bound
state and the scattering length.

To find this relation, we have to determine the bound-state energy by solving the
Schödinger equation for negative energy V0 < E < 0. This leads to the solutions

u<(r) = A
(

eik<r− e−ik<r
)

, for r < R,

u>(r) = Be−κr, for r > R,
(10.48)

with k< =
√

m(E−V0)/h̄2 and κ =
√

m|E|/h̄2. Demanding that these solutions
join smoothly at r = R, we find the equation for the bound-state energy

√
m
h̄2 |Em|=−

√
m
h̄2 (Em−V0)cot

(√
m
h̄2 (Em−V0)R

)
. (10.49)

It is possible to show that for values of γ given by (n−1/2)π < γ < (n+1/2)π , this
equation has n solutions for V0 < Em < 0. For small binding energy |Em| ¿ |V0|, we
have from the equation for the bound-state energy that

√
m
h̄2 |Em| ' − γ

R
cot(γ)' 1

a
, (10.50)
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where we also made use of (10.46) and the fact that γ has to be close to the resonant
values (n+1/2)π in this case. This leads to the desired relation between the energy
of the molecular state and the scattering length, given by

Em =− h̄2

ma2 . (10.51)

This relation turns out to be general, such that it does not depend on the specific
details of the interaction potential, as can also be seen from our derivation of the
same result using the two-body T matrix of (1.34). We conclude that any potential
with a large positive scattering length has a bound state just below the continuum
threshold with an energy given by (10.51).

10.4 Two-Body Scattering in a Medium

In the previous sections, we considered two-body scattering in vacuum using the
T matrix approach. In this section, we generalize this approach to the case of an
interacting many-body system consisting of bosonic atoms, where we approximate
the interaction potential by a point interaction

V (x−x′)'V0δ (x−x′), (10.52)

which is valid when the interactions are short ranged and when the interacting parti-
cles have a large de Broglie wavelength, i.e. a small relative momentum. As a result,
the action from (8.61) becomes

S[φ ∗,φ ] =
∫ h̄β

0
dτ

∫
dx φ ∗(x,τ)

{
h̄

∂
∂τ
− h̄2∇∇∇2

2m
−µ

}
φ(x,τ)

+
V0

2

∫ h̄β

0
dτ

∫
dx φ ∗(x,τ)φ ∗(x,τ)φ(x,τ)φ(x,τ) ,

= ∑
k,n

φ ∗k,n(−ih̄ωn + εk−µ)φ ∗k,n

+
V0

2h̄βV ∑
k,k′,K
n,n′,m

φ ∗K/2−k′,m−n′φ
∗
K/2+k′,n′φK/2+k,nφK/2−k,m−n , (10.53)

where we used the expansion from (7.22) and we see that the contact interaction is
constant in momentum space.

To investigate the properties of this point interaction a bit further, we consider
its Lippmann-Schwinger equation at zero energy z = 0. Multiplying both sides in
(10.18) by 〈k′| and inserting a completeness relation in the second term on the right-
hand side, we obtain
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Fig. 10.3 Many-body T matrix approximation to the exact effective interatomic interaction, where
the dot represents the point interaction potential. a) Ladder diagrams contributing to the many-body
T matrix, leading to b) the many-body Lippmann-Schwinger or Bethe-Salpeter equation.

1
T 2B(0)

=
m

4π h̄2a
=

1
V0

+
∫ dk

(2π)3
1

2εk
, (10.54)

where we also used (10.36). The second term on the right-hand side of (10.54)
is seen to contain an ultraviolet divergence, and this directly results from the un-
physical behavior of a point interaction at high momenta. A true atomic interaction
potential would decay as 1/k2, which would lift the ultraviolet divergence in the
Lippmann-Schwinger equation. Although this explicitly shows that we should be
careful with the high-momentum behavior of a point interaction, we note that this is
usually not a problem because at ultralow temperatures we are primarily interested
in the long-wavelength physics. Furthermore, there are various ways to deal with
the encountered ultraviolet divergence by introducing a cutoff or using an improved
potential. However, there is an even simpler way, as we see explicitly soon.

Next, we show how we can obtain an equation that generalizes the two-body
Lippmann-Schwinger equation, such that it also takes into account many-body cor-
rections due to the medium in which the atoms scatter. To this end, we use the dia-
grammatic perturbation theory for the many-body system, which was developed in
Chap. 8. We remember that in Sect. 8.4, a nonperturbative approximation to the ex-
act irreducible two-point vertex G−1 was obtained by summing over certain classes
of diagrams, which led to Hartree-Fock theory. We now try to apply a similar ap-
proach to the exact irreducible four-point vertex, which is also known as the ex-
act effective interaction. The approach amounts to summing over a certain class of
one-particle irreducible Feynman diagrams, which are called the ladder diagrams.
Diagrammatically the procedure is summarized in Fig. 10.3, and it goes under the
name of the (many-body) T matrix approximation. The reason for summing over
this class of diagrams is that in the zero-density or vacuum limit, the approach re-
duces to the two-body Lippmann-Schwinger equation, as we show next. As a result,
the procedure is seen to contain the relevant two-body physics exactly. In Chap. 13,
we discuss one-particle irreducible actions in a more general context.

Example 10.1. It is instructive to calculate a single ladder diagram, which remains
when we take away the four outer legs and the two interaction dots from the middle
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Feynman diagram of Fig. 10.3a. Note the difference in the direction of the arrows
compared to the bubble diagram from Fig. 8.8. The ladder diagram is given in real
space by

−h̄Ξ(x,τ;x′,τ ′) = G0(x,τ;x′,τ ′)G0(x,τ;x′,τ ′) (10.55)

which we may Fourier transform as

Ξ(K, iΩn) =
∫ h̄β

0
dτ dτ ′

∫
dx dx′ Ξ(x,τ;x′,τ ′)

e−iK(x−x′)

V
eiΩn(τ−τ ′)

h̄β

=
−1

h̄2βV ∑
k′,n′,

G0(k′, iωn′)G0(K−k′, iΩn− iωn′)

=
1

h̄βV ∑
n′,k′

G0(k′, iωn′)+G0(K−k′, iΩn− iωn′)
−ih̄Ωn + εK−k′ + εk′ −2µ

=
1
V ∑

k′

1+NBE(εK−k′)+NBE(εk′)
ih̄Ωn− εK−k′ − εk′ +2µ

, (10.56)

where NBE(εk) = 1/{eβ (εk−µ) − 1} is the Bose-Einstein distribution. To obtain
(10.56), we used (7.31), (7.54) and the result from problem 7.2.

Noting that the interaction is independent of momentum and frequency, while the
ladder diagram only depends on the center-of mass momentum K and frequency Ωn,
we have that the T -matrix equation from Fig. 10.3b is given in momentum space by

T MB(K, iΩn) = V0 +
V0

V ∑
k′

1+NBE(εK−k′)+NBE(εk′)
ih̄Ωn− εK−k′ − εk′ +2µ

T MB(K, iΩn) , (10.57)

where we used the result from Example 10.1. (10.57) is then solved by

1
T MB(K, iΩn)

=
1

V0
− 1

V ∑
k′

1+NBE(εK−k′)+NBE(εk′)
ih̄Ωn− εK−k′ − εk′ +2µ

. (10.58)

At zero center-of-mass momentum K and frequency Ωn, we take the two-body limit
as NBE(εk)→ 0 and µ → 0, so that we retrieve the two-body Lippmann-Schwinger
equation (10.54). Moreover, we have that the momentum sum on the right-hand side
of (10.58) has an ultraviolet divergence, and that it is exactly the same unphysical
divergence that we encountered in (10.54) from using the point-interaction approxi-
mation. The argument for using this approximation was that the thermal de Broglie
wavelength Λ of the atoms is for the ultralow temperatures of interest always much
larger than the typical range of the interaction. We can see that this argument is not
fully correct because, if we calculate corrections in perturbation theory, we have
to deal with momentum sums which are not always restricted to momenta of or-
der h̄/Λ. Then, to deal with the resulting divergence most conveniently, we note
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that the same ultraviolet divergence is present in (10.54) and (10.58). Therefore, by
subtracting the two equations, the divergence precisely cancels and we find that the
many-body T matrix obeys

1
T MB(K, iΩn)

=
m

4πah̄2 −
1
V ∑

k′

{
1+NBE(εK−k′)+NBE(εk′)

ih̄Ωn− εK−k′ − εk′ +2µ
+

1
2εk′

}
. (10.59)

Note that this renormalization procedure is rather elegant, because we do not have
to introduce an arbitrary cutoff by hand. Also note that we have eliminated V0 in
terms of a, where the latter is the experimentally more relevant quantity because it
can be measured very precisely. As a result, we often use this convenient procedure
when calculating ladder diagrams with a point interaction.

10.5 Physical Regimes

We are now in the position to quantify the possible physical regimes that can be
explored with ultracold atomic quantum gases. We start by considering the homo-
geneous ideal gas, which only gives rise to two physical length scales, namely the
thermal de Broglie wavelength Λ of the particles and the average interparticle dis-
tance n−1/3. Equivalently, this implies that the only two energy scales are the ther-
mal energy kBT and the kinetic energy (h̄2/2m)(2πn1/3)2, where for a Fermi gas,
the latter energy scale is proportional to the Fermi energy. From these two length
or energy scales only one dimensionless parameter can be formed, which is usually
taken to be nΛ3. This leads to two different physical regimes for the ideal gas. In
the nondegenerate regime, nΛ3 ¿ 1, the occupation numbers of all the one-particle
states are small compared to one and the statistical properties are the same for a Bose
gas and a Fermi gas. To be more precise, the atomic gas behaves as a classical ideal
gas, whose occupation numbers are given by the Maxwell-Boltzmann distribution
of (4.41). In what is called the degenerate regime, nΛ3 À 1, the fundamental dif-
ference in quantum statistics between bosons and fermions becomes clearly visible,
since the occupation numbers follow the Bose-Einstein and Fermi-Dirac distribu-
tions from (4.40) and (4.41) respectively. While the ideal Bose gas condenses in
the degenerate regime, the ideal Fermi gas gives rise to an incompressible Fermi
surface.

For an interacting gas, two new length scales enter the many-body problem,
where we first consider the range R of the interaction. The typical value of this range
is for alkali gases around 100a0, where the Bohr radius is given by a0' 0.529 ·10−10

m. There are now two more dimensionless parameters to consider, namely nR3

and R/Λ. Under realistic conditions, the densities and the temperatures of ultra-
cold atomic quantum gases are always such that nR3 ¿ 1 and R/Λ ¿ 1. These
conditions imply that atoms only interact with each other if they have a zero rela-
tive angular momentum `, i.e. via s-wave interactions. This is because the highest
relative kinetic energy with which the atoms can scatter of each other is either the
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Fig. 10.4 Physical regimes that can be explored with ultracold atomic gases as a function of the
density n, the thermal de Broglie wavelength Λ and the s wave scattering length a

thermal energy kBT or the kinetic energy (h̄2/2m)(2πn1/3)2. However, under the
above conditions, both energies are not high enough to overcome the centrifugal
barrier `(`+1)h̄2/mR2. This means that two atoms for which ` 6= 0, do not experi-
ence the interatomic potential at distances r < R. As a result, the scattering of atoms
is always a quantum-mechanical process that cannot be described classically, such
that in this sense the ultracold atomic gases are always quantum gases even in the
nondegenerate regime where their statistical properties are purely classical.

On the basis of the above arguments, it appears that the presence of an atomic
interaction potential does not lead to any new physical regimes to explore. However,
it turns out that the situation is more interesting. In the previous sections, we have
seen that the scattering wavefunction of two atoms can be affected by the interaction
at separations that are much bigger than the range of the interaction R if the s-wave
scattering length a is much bigger than R. This shows that the relevant physical pa-
rameters of the gas are n|a|3 and |a|/Λ. In Sect. 10.3.3 we found that the magnitude
of the scattering length |a| is usually on the same order as the range of the interaction
R, but can become much bigger than R if the scattering process shows a resonance.
This happens when there is a bound state in the interaction potential close to the
continuum of scattering states. Unfortunately, the interatomic potentials are set by
nature and their depths cannot be manipulated easily by external electromagnetic
fields. Nevertheless, when we discuss Feshbach resonances in Chap. 17 we explain
how it is still possible to experimentally shift a bound state through the scattering
continuum, such that we can essentially tune the scattering length at will. The im-
portant point for now is that by using these Feshbach resonances it is possible to
explore the full range of both the parameters n|a|3 and |a|/Λ.
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What, then, is the physical significance of these two parameters? If n|a|3 ¿ 1,
then it is very unlikely that there is a third atom present when two atoms are inter-
acting with each other. As a result, only two-body scattering processes take place
and the gas is said to be weakly interacting. If n|a|3 À 1, more-body scattering pro-
cesses can take place and the gas is said to be strongly interacting. If we neglect
the effective range reff of the potential, the two-body T matrix from (10.38) simply
becomes

T 2B(z) =
4π h̄2

m


 1

1/a−
√
−mz/h̄2


 . (10.60)

In realistic equilibrium calculations, the typical energy at which the T matrix has to
be evaluated is given by the maximum of kBT and (h̄2/2m)(2πn1/3)2. In the regime
where either n|a|3 À 1 or |a|/ΛÀ 1, the T matrix is thus well approximated by

T 2B(z) =−4π h̄2

m
1√

−mz/h̄2
. (10.61)

When the two-body T matrix becomes independent of the scattering length we are
said to be in the unitarity limit, which is formally given by the limit |a| → ∞. In this
regime the properties of the gas become universal, meaning that they do not depend
on the scattering length anymore, but only on nΛ3. This particular feature is similar
to the ideal-gas case, but now the gas is actually strongly interacting. We have also
seen explicitly in Sect. 10.3.3 that the effective range reff is typically of order R near
a resonance. Therefore, the corrections to universality are expected to be small in
ultracold atomic gases, since the conditions nR3 ¿ 1 and R/Λ¿ 1 are always well
satisfied. A summary of these results is shown in Fig. 10.4.

10.6 Problems

Exercise 10.1. Repeat the calculation of Sect. 10.2 for the case of a nuclear spin
I = 3/2, which corresponds to the bosonic isotope 7Li

Exercise 10.2. Calculate, in a similar manner as for the Bose case, the many-body T
matrix for two fermions in different hyperfine states | ↑,↓〉 interacting with the con-
tact interaction V0δ (x−x′). Note that only fermions with opposite spin interact, as
will be explained in Sect. 12.2, so that the interacting action is given by (12.2). Note
that, similar to Example 10.1, you have to calculate the ladder diagram G0,↑G0,↓
which ultimately gives rise to

Ξ(K, iΩn) =
1
V ∑

k′

1−NFD(εK−k′)−NFD(εk′)
ih̄Ωn− εK−k′ − εk′ +2µ

. (10.62)



10.6 Problems 233

Express your result for the T matrix in terms of the scattering length a as was done
in (10.59).

Additional Reading

• More extensive discussions on elementary atomic structure and atomic physics
can be found, for example, in G. K. Woodgate, Elementary Atomic Structure,
(Oxford University Press, Oxford, 1989), and also in

• B. H. Bransden and C. J. Joachain, Physics of Atoms and Molecules, (Longman,
New York, 1983).

• More detailed discussions of two-body scattering can be found in W. Glöckle,
The Quantum Mechanical Few-Body Problem, (Springer Verlag, Berlin, 1983),
and also in

• J. J. Sakurai, Modern Quantum Mechanics, (Addison-Wesley, Reading, 1994),
or in

• B. H. Bransden and C. J. Joachain, Quantum Mechanics, (Prentice Hall, New
York, 2000).

• Relevant atomic physics for ultracold Bose gases is discussed in the introductory
chapters of C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute
Gases, (Cambridge University, Cambridge, 2002).



Chapter 11
Bose-Einstein Condensation

Superfluidity and lasing were two of my favorite topics in
physics, but each was surrounded by a vast thicket of lore and
literature.
– Eric A. Cornell

States of matter, such as the familiar gas, liquid and solid phases, are charac-
terized by certain specific correlations between particles. For instance, the solid
phase is characterized by the existence of a periodicity in the atomic density
n(x) = 〈ψ̂†(x)ψ̂(x)〉, such that the Fourier transform of n(x) signals the periodic lat-
tice structure of the solid. This kind of order is called diagonal long-range order, be-
cause the periodic structure that extends over the whole size of the solid shows itself
in the diagonal elements of the one-particle density matrix n(x,x′) = 〈ψ̂†(x)ψ̂(x′)〉.
As we soon see, in the state of matter that is known as a Bose-Einstein conden-
sate the long-range order is actually off-diagonal in the one-particle density matrix,
which makes the Bose-Einstein condensed gas behave very differently from the
other phases of matter that we have encountered so far. In particular, the intrinsic
quantum-mechanical nature of this many-body state results in intriguing properties
such as the possibility for the gas to flow without friction, i.e. superfluidity.

The subjects of this chapter are the Bose-Einstein condensation (BEC) and the
superfluidity of ultracold atomic Bose gases, as first observed in gases of rubidium
[10], lithium [11], sodium [12] and hydrogen [43]. The experimental realization
of BEC for rubidium is shown in Fig. 4.4. We can describe Bose-Einstein con-
densed gases elegantly using statistical field theory, allowing for a treatment of in-
teraction effects, which leads to a quantitative comparison with experiments. We
start with a discussion of the order parameter for Bose-Einstein condensation, after
which we give a criterion due to Landau, telling us when a quasiparticle dispersion
gives rise to superfluid flow. Using the functional form of the Bogoliubov theory
for Bose-Einstein condensation, we then derive the quasiparticle dispersion for ex-
citations above the ground state, showing that it satisfies the Landau criterion. We
also obtain the celebrated Gross-Pitaevskii equation for the condensate wavefunc-
tion, the Bogliubov-de Gennes equation that describes the inhomogeneous case, the
Popov theory that takes fluctuations into account, and the collective modes using a
hydrodynamic-like approach. Finally, we briefly discuss what happens when we try
to bring the Bose-Einstein condensed gas into rotation, and what happens when the
condensate has effectively attractive interactions, such that it is metastable.

235
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11.1 Definitions for a Bose-Einstein Condensate

As discussed in Sect. 4.3.2, Bose-Einstein condensation corresponds to a macro-
scopic occupation of the same single-particle quantum state, where macroscopic
means that the density 〈N0〉/V does not go to zero in the thermodynamic limit. As
a result, we expect that a Bose-Einstein condensed gas develops strong correlations
over the size of the system. Formally, this can be made explicit by considering the
one-particle density matrix [44, 45, 46], which is given by

n(x,x′) = 〈ψ̂†(x)ψ̂(x′)〉. (11.1)

This density matrix tells us whether or not the presence of a particle at position x′
is correlated with the presence of a particle at position x. Typically, as for instance
in an ordinary gas or liquid, this kind of correlation decays exponentially fast with
increasing separation |x− x′|, where the length scale associated with the exponen-
tial decay is called the correlation length. Since the above density matrix, whose
elements are labelled by the continuous variables x and x′, is a Hermitian matrix,
it can be diagonalized with real eigenvalues. This means that there exists a set of
single-particle eigenfunctions χ ′n(x) of n(x,x′) with eigenvalues λn, that satisfy

∫
dx′′ n(x,x′′)χ ′∗n (x′′) = λnχ ′∗n (x). (11.2)

Multiplying this last equation on both sides with χ ′n(x′) and summing over n, we
obtain

∑
n

∫
dx′′ n(x,x′′)χ ′n(x′)χ ′∗n (x′′) = n(x,x′) = ∑

n
λnχ ′∗n (x)χ ′n(x′), (11.3)

where we also used the completeness of the eigenfunctions χ ′n(x).
The system is now called Bose-Einstein condensed if one of the eigenvalues λ0

is on the order of the number of particles 〈N〉 and all the other eigenvalues are of
order one. If this occurs, then λ0 = 〈N0〉 is the number of condensate particles and
the density matrix is also said to have off-diagonal long-range order [47]. To get
more insight in the above order parameter, we consider the noninteracting homoge-
neous Bose gas. Since the system is now translationally invariant, the single-particle
density matrix depends only on the difference in the coordinates x−x′. As a result,
this density matrix is given by

n(x,x′) = 〈ψ̂†(x)ψ̂(x′)〉=
1
V ∑

k
e−ik·(x−x′)〈ψ̂†

kψ̂k〉, (11.4)

and the eigenstates of the density matrix are just plane waves. This follows from

∫
dx′′

1
V ∑

k′
〈Nk′〉e−ik′·(x−x′′) e−ik·x′′

√
V

= 〈Nk〉e−ik·x
√

V
, (11.5)
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where the corresponding eigenvalues λk are thus simply the average occupation
numbers 〈Nk〉 = 〈ψ̂†

kψ̂k〉, as given by the Bose-Einstein distribution. For the ideal
Bose gas, we found in Sect. 4.3.2 that the largest eigenvalue is given by 〈N0〉 =
NBE(ε0). This becomes on the order of 〈N〉 below the critical temperature Tc, at
which the chemical potential reaches ε0 → 0 in the thermodynamic limit. To see
more clearly that this corresponds to off-diagonal long-range order, we consider
the density matrix near Tc when the chemical potential is slightly below or equal
to zero. Separating explicitly the zero-momentum contribution and writing the sum
over momenta as an integral, this expression becomes

n(x,x′) =
〈ψ̂†

0 ψ̂0〉
V

+
∫ dk

(2π)3 e−ik·(x−x′) 1
eβ (εk−µ)−1

' 〈ψ̂†
0 ψ̂0〉
V

+
1
β

∫ dk
(2π)3

e−ik·(x−x′)

εk−µ

' 〈ψ̂†
0 ψ̂0〉
V

+
mkBT

2π|x−x′|e
−
√

2m|µ ||x−x′|/h̄, (11.6)

where in the first step we substituted the Bose distribution from (4.40). Since we
are particularly interested in the limit |x−x′| → ∞, we focus in the second step on
the low-momentum or long-wavelength modes for which β (εk−µ) is small. As the
chemical potential becomes zero and the occupation of the ground state becomes
macroscopic, we have that 〈ψ̂†

0 ψ̂0〉/V = 〈N0〉/V is nonzero in the thermodynamic
limit. Then, we find from (11.6) that the first term, which describes physically the
constant nonzero density of Bose-Einstein condensed atoms, does not vanish at large
separations |x− x′|. This is the off-diagonal long-range order in the single-particle
density matrix.

Next, consider the zero-temperature limit of the homogeneous Bose gas with a
weak repulsive interaction. The case of an attractive interaction actually only al-
lows for a metastable condensate, whose discussion we leave for Sect. 11.9. Then,
the ground state wavefunction of the interacting Bose gas is in general a compli-
cated linear superposition of states |N0, ...〉, where the occupation number of the
zero-momentum state N0 fluctuates around the average value 〈N0〉 but is always a
substantial fraction of the total number of atoms 〈N〉À 1. As a result, we have from
(6.14) and (6.15) that within the subspace of these relevant states both ψ̂†

0 ψ̂0|N0, ...〉
and ψ̂0ψ̂†

0 |N0, ...〉 are very well approximated by 〈N0〉|N0, ...〉. This seems to suggest
that we can neglect the fact that the operators ψ̂0 and ψ̂†

0 do not commute and replace
them by the ordinary complex numbers

√
〈N0〉eiθ and

√
〈N0〉e−iθ , which is called

the Bogoliubov substitution. This implies that the operators obtain a nonzero expec-
tation value in the Bose-Einstein condensed phase, i.e. 〈ψ̂0〉=

√
〈N0〉eiθ =

√
λ0eiθ ,

or 〈ψ̂(x)〉= 〈ψ̂0〉χ0(x) =
√
〈n0〉eiθ with 〈n0〉= 〈N0〉/V , which shows that we may

use 〈ψ̂(x)〉 as the order parameter for the transition.
Now, why would such a replacement be a useful thing to do? An important rea-

son is that we cannot solve the interacting quantum gas exactly, and we have to
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make approximations that take the dominant physics into account. As we see next,
the above substitution allows us to reduce the fourth-order interaction term to a
number of quadratic terms, which take the dominant interaction of the noncon-
densed particles with the condensate into account. We can then deal analytically
with the resulting Gaussian action, which is the essence of the Bogoliubov the-
ory, giving rise to the famous Bogoliubov dispersion for the quasiparticles above
the condensate. Moreover, the Bogoliubov replacement is easily generalized to the
inhomogeneous interacting Bose gas at nonzero temperatures, for which it yields
〈ψ̂(x)〉=

√
λ0χ ′0(x) =

√
〈N0〉χ ′0(x). In general, we may thus define 〈ψ̂(x)〉 ≡ φ0(x)

as the order parameter, where its normalization is given by
∫

dx|φ0(x)|2 = 〈N0〉 such
that φ0(x) is also known as the macroscopic wavefunction of the Bose-Einstein con-
densate.

Having introduced the definition of the order parameter, we can immediately
apply Landau theory that was developed in Chap. 9. In Sect. 9.5, we discussed a
Landau free energy with an O(n) symmetry for a real n-component order parameter
m, such that this free energy had a continuum of minima connected by a rotation
of the order parameter. The phase transition to a specific phase where 〈m〉 6= 0 was
then seen to spontaneously break the continuous O(n) symmetry and give rise to
Goldstone modes. We will see that Bose-Einstein condensation actually gives rise to
a phase that spontaneously breaks a U(1) symmetry of the microscopic action. The
effects of this symmetry and the corresponding symmetry breaking are discussed in
more detail in Chap. 13.

11.2 Superfluidity

Closely related to the phenomenon of Bose-Einstein condensation is the phe-
nomenon of superfluidity, which is the ability of the Bose-Einstein condensed gas
to flow without experiencing friction. In this section we present a physical argument
due to Landau, showing that a gas with a quasiparticle dispersion that is linear in
momentum gives rise to a critical flow velocity below which it behaves as a super-
fluid. Later this chapter, when we have set up the quantum field theory to describe
Bose-Einstein condensation, we show that the dispersion of the condensed gas is
indeed linear in momentum. However, we hasten to remark that the correspondence
between superfluidity and Bose-Einstein condensation is not one to one. To illus-
trate this we note that in Chap. 15, where we consider low-dimensional systems, the
two-dimensional Bose gas is seen to give rise to superfluidity without actually being
Bose-Einstein condensed.
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11.2.1 Landau Criterion

To study the physical meaning of superfluidity, we consider a body of mass M with
no internal degrees of freedom that is moving with a momentum p = Mv through an
atomic gas that resides in its ground state. This body can then experience friction by
creating excitations in the gas, which must occur in such a manner that both momen-
tum and energy are conserved in the process. For a process creating an excitation
with momentum p′, the condition of energy conservation yields

∆E =
(p−p′)2

2M
+ h̄ωp′ −

p2

2M
=
−p ·p′

M
+

p′2

2M
+ h̄ωp′ = 0, (11.7)

where h̄ωp′ is the energy of the excitation, which by definition is positive. Since
p′2/2M is also positive, we have that −p ·p′/M should be negative in order to obey
energy conservation. We can rewrite (11.7) in a slightly more illuminating way,
namely

vcos(ϑ) =
h̄ωp′

p′
+

p′

2M
, (11.8)

where ϑ is the angle between the two momenta and we also used v = p/M. For
convenience, we consider the mass M to be very large such that the second term in
the right-hand side can be neglected. We then immediately find the desired Landau
criterion, which states that there is a critical velocity vc of the body below which it
cannot create excitations in the atomic gas, where the critical velocity is given by
the minimum of h̄ωp′/p′. Considering, for example, sound waves with h̄ωp′ = cp′
and c the speed of sound, we find that it is not possible to satisfy (11.8) for velocities
v smaller then the speed of sound c. As a result, the body fails to cause excitations
in the gas, because this would violate energy conservation. Since the object now
simply moves through the gas as if the latter were not there, the gas does not exert
any friction on the body, and the gas is said to be superfluid. Note that for velocities
larger than the critical velocity, it is always possible to find angles ϑ and momenta
p′ such that (11.8) is satisfied. Then, the body can dissipate its energy by causing
excitations in the gas and therefore the superfluid behavior of the gas breaks down.

Although the above argument turns out to be not fully rigorous, superfluid flow
has been observed for Bose-Einstein condensates, as well as critical velocities be-
yond which the superfluidity breaks down. Note that when the excitation spectrum
is gapped, for example when h̄ωp′ = ∆ +(p′− p0)2/2m∗ with the energy gap ∆ a
positive nonzero energy, then the minimum h̄ωp′/p′ is also nonzero, yielding again
a critical velocity below which the gas is superfluid. In the next chapter we find
that this kind of dispersion occurs in Bose-Einstein condensates of Cooper pairs,
which occur in atomic Fermi gases with an attractive interaction. The superfluidity
of these atomic Fermi gases is analogous to the conventional superconductivity in
metals, where the electrons can form Cooper pairs due to a mutual attractive inter-
action generated by lattice vibrations, i.e. by phonons.
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11.2.2 Superfluid Density

We can extend the discussion of the previous paragraph a bit further to determine the
superfluid density. To this end, we look at a partly Bose-Einstein condensed ideal
Bose gas of volume V that enters a tube with a velocity−v, or, equivalently, we look
at a stationary Bose gas in a tube whose walls are moving with the velocity v. As
explained in the previous paragraph, below a critical velocity the superfluid part of
the gas with density ns is not affected by the motion of the tube, whereas the normal
part with density nn eventually equilibrates at the tube’s velocity v due to friction
with the walls. As a result, the total momentum of the gas in the rest frame for the
condensate is after equilibration given by

〈P〉= V nnmv = ∑
k

h̄k
1

eβ (Ek−µ)−1
, (11.9)

where we have for Ek

Ek =
1

2m
(h̄k−mv)2. (11.10)

The latter is the kinetic energy of a particle in the frame moving with the tube, where
the normal part is in equilibrium. In the limit v → 0, we may look at the linear
response of the system by expanding the obtained expressions up to first order in v,
giving for the kinetic energy

Ek ' h̄2k2

2m
− h̄k ·v. (11.11)

Substitution of the above result in (11.9) then yields to first order in v

〈P〉= ∑
k

β h̄2k
eβ (εk−µ)

(eβ (εk−µ)−1)2
k ·v. (11.12)

Converting the sum over k into an integral, we see that the integral vanishes if the
integrand is proportional to kik j with i 6= j, because then the integrand is odd. For k2

i
we have that the integration over angles leads to 4πk2/3, such that the combination
of (11.9) with (11.12) yields

nn =
∫ dk

(2π)3
β
3

h̄2k2

m
eβ (εk−µ)

(eβ (εk−µ)−1)2
. (11.13)

Now that we have obtained an expression for the normal part of the gas, the
superfluid density is given by the difference between the total density n and the
normal density nn. We thus have for the ideal Bose gas that

ns = n0 +
∫ dk

(2π)3
1

(eβ (εk−µ)−1)
−

∫ dk
(2π)3

2
3

βεk
eβ (εk−µ)

(eβ (εk−µ)−1)2
. (11.14)
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The last two integrals on the right-hand side turn out to be equal to each other. To
show this, we call the first integral I1 and the second I2, and we note that

I2 =−2
3

{
β

∂ I1

∂β
−µ

∂ I1

∂ µ

}
, (11.15)

where in Sect. 4.3.2.1, we showed that I1 = g3/2(eβ µ)/Λ3. From the expression for
the thermal de Broglie wavelength Λ = (2π h̄2β/m)1/2, it immediately follows that
the right-hand side of the above equation is indeed equal to I1. As a result, (11.14)
shows that for the ideal Bose gas, the superfluid density ns is equal to the condensate
density n0.

However, in obtaining this result we used explicitly the ideal gas dispersion εk−
µ for the noncondensed atoms. This changes in the presence of interactions, as we
show explicitly in the next section. If we denote the dispersion in the interacting
case by h̄ωk, we find in the same manner as before that the normal density of the
gas is given by

nn =
∫ dk

(2π)3
β
3

h̄2k2

m
eβ h̄ωk

(eβ h̄ωk −1)2 =
1
3

∫ dk
(2π)3

h̄2k2

m

(
−dNBE(h̄ωk)

dh̄ωk

)
. (11.16)

Then, in general, the normal density does not cancel against the noncondensed den-
sity as in (11.14), such that the condensate density deviates from the superfluid den-
sity ns = n− nn. An extreme example of this is the strongly-interacting superfluid
helium-4. The condensate fraction amounts at low temperatures only to about 10%
of the total liquid, while the superfluid fraction is essentially 100%.

11.3 Field-Theory Approach

To treat Bose-Einstein condensation within the functional-integral formalism, we
start from the following action for an ultracold gas of bosonic atoms

S[φ ∗,φ ] =
∫ h̄β

0
dτ

∫
dx φ ∗(x,τ)

{
h̄

∂
∂τ
− h̄2∇∇∇2

2m
+V ex(x)−µ

}
φ(x,τ)

+
1
2

∫ h̄β

0
dτ

∫
dx T 2Bφ ∗(x,τ)φ ∗(x,τ)φ(x,τ)φ(x,τ) , (11.17)

where we have replaced the true interatomic potential V (x− x′) by the pseudopo-
tential of the form T 2Bδ (x− x′). The two-body T matrix was introduced in Sect.
10.3.1, and we have T 2B ≡ T 2B(0) = 4π h̄2a/m in terms of the interatomic scatter-
ing length a. The use of the pseudopotential is allowed when the thermal de Broglie
wavelength Λ = (2π h̄2/mkBT )1/2 of the atoms is much larger than the range of the
interatomic interaction, such that the atoms only probe the long-wavelength, or low-
momentum behavior of the true interaction. In Sect. 10.3.1 we found that for low
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momenta the true interatomic interaction is fully characterized by the s-wave scat-
tering length a. Since the Fourier transform of the above pseudopotential is equal
to 4π h̄2a/m, this pseudopotential is seen to yield the exact result for the scattering
amplitude of the true interatomic potential already in the Born approximation. Put
differently, the first term of the Born series from (10.22) now effectively incorpo-
rates all higher order terms of the true interaction. This also means that we should be
careful with using the pseudopotential in higher orders of perturbation theory since
this could lead to double-counting problems. We will see some examples of this
shortly. For that reason, the pseudopotential considered here is quite different from
the contact potential V0δ (x−x′) considered in Sect. 10.4. The latter is related to the
exact two-body scattering properties via the Lippmann-Schwinger equation, rather
then immediately in the Born approximation. In the next chapter, we find that the
latter contact potential is more convenient to study fermionic condensates. Finally,
we remark that an ab-initio calculation for the s-wave scattering length a is quite dif-
ficult in practice because it depends sensitively on the details of the true interatomic
potential, which is often not precisely known. However, the value of the s-wave
scattering length can be measured experimentally, and the result of the experiment
is then consequently used as an input parameter for our many-body theory.

As explained in Sect. 11.1, the order parameter for Bose-Einstein condensation
is given in field-theory language by 〈φ(x,τ)〉 ≡ 〈φ0(x)〉. Using this information, we
note that for time-independent fields, the action of (11.17) leads to a Landau ‘free
energy’ for the order parameter, given by

FL[φ ∗,φ ] =
∫

dx
{

h̄2

2m
|∇∇∇φ(x)|2 +(V ex(x)−µ)|φ(x)|2 +

T 2B

2
|φ(x)|4

}
, (11.18)

where, although we are now explicitly working grand-canonically, we still call the
above functional a ‘free energy’ to establish a direct link with the discussion of Lan-
dau theory in Chap. 9. There, it was also explained how the critical temperature for
a second-order phase transition is determined by the change of sign in the quadratic
coefficient of the Landau free energy. To determine the critical temperature for Bose-
Einstein condensation to lowest (zeroth) order in the interaction, we expand the field
φ(x) into the single-particle eigenstates for the external potential as given by (6.3).
Then, considering the part proportional to the single-particle ground state φ0χ0(x)
and neglecting the interaction terms, we find that the corresponding quadratic part of
the Landau free energy becomes (ε0−µ)|φ0|2. Upon lowering the temperature, the
critical temperature is reached when µ(Tc) = ε0, such that the quadratic coefficient
vanishes. This result for the critical temperature makes sense, because it is precisely
the condition that we encountered in Sect. 4.3.2 when we discussed Bose-Einstein
condensation for an ideal Bose gas. Note that we must have that T 2B > 0 for the
Landau theory to be stable. This case with repulsive interactions we discuss first,
since it is most relevant for experiments with ultracold alkali gases. The case of at-
tractive interactions with a negative scattering length is sometimes also realized, but
is postponed until Sect. 11.9.
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11.3.1 Bogoliubov Theory and the Gross-Pitaevskii Equation

To be able to determine the corrections to the critical temperature for the ideal Bose
gas, we start by performing the following fluctuation expansion

φ(x,τ) = φ0(x)+φ ′(x,τ), (11.19)

which is the field-theory equivalent of the Bogoliubov substitution discussed in Sect.
11.1. To consistently define the fluctuations φ ′(x,τ) in this manner, we have to re-
quire ∫

dx φ ∗0 (x)φ ′(x,τ)+
∫

dx φ0(x)φ ′∗(x,τ) = 0 , (11.20)

such that the fluctuations φ ′(x,τ) contain all configurations that are orthogonal to
the condensate φ0(x)≡ 〈φ(x,τ)〉. This condition can be understood better once we
have obtained the Bogoliubov theory of Bose-Einstein condensation, so we come
back to this condition in Sect. 11.5. Note that (11.20) even allows for fluctuations
that only multiply φ0(x) by a global phase factor eiθ(τ). These kind of fluctuations
turn out to give rise to the phenomenon of phase diffusion, which is discussed in
more detail in Sect. 13.5. There, we also find that these subtle fluctuations do not
influence the thermodynamics, so in this chapter we consider the fluctuations to
occupy only states with n 6= 0.

After substituting (11.19) into the action of (11.17), we find that

S[φ ′∗,φ ′] = h̄βFL[φ ∗0 ,φ0]+SBog[φ ′
∗
,φ ′]+Sint[φ ′

∗
,φ ′] , (11.21)

where the linear and quadratic terms are given by

SBog[φ ′
∗
,φ ′]

=
∫ h̄β

0
dτ

∫
dx φ ′∗(x,τ)

{
− h̄2∇∇∇2

2m
+V ex(x)−µ +T 2B|φ0(x)|2

}
φ0(x)

+
∫ h̄β

0
dτ

∫
dx φ ′(x,τ)

{
− h̄2∇∇∇2

2m
+V ex(x)−µ +T 2B|φ0(x)|2

}
φ ∗0 (x)

+
∫ h̄β

0
dτ

∫
dx φ ′∗(x,τ)

×
{

h̄
∂

∂τ
− h̄2∇∇∇2

2m
+V ex(x)−µ +2T 2B|φ0(x)|2

}
φ ′(x,τ)

+
1
2

∫ h̄β

0
dτ

∫
dx T 2B(φ0(x))2φ ′∗(x,τ)φ ′∗(x,τ)

+
1
2

∫ h̄β

0
dτ

∫
dx T 2B(φ ∗0 (x))2φ ′(x,τ)φ ′(x,τ) , (11.22)

and the cubic and quartic terms by
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Sint[φ ′
∗
,φ ′] =

∫ h̄β

0
dτ

∫
dx T 2Bφ0(x)φ ′∗(x,τ)φ ′∗(x,τ)φ ′(x,τ) (11.23)

+
∫ h̄β

0
dτ

∫
dx T 2Bφ ∗0 (x)φ ′∗(x,τ)φ ′(x,τ)φ ′(x,τ)

+
1
2

∫ h̄β

0
dτ

∫
dx T 2Bφ ′∗(x,τ)φ ′∗(x,τ)φ ′(x,τ)φ ′(x,τ) .

Note that we used partial integrations in (11.22) to bring all the terms that are linear
in the fluctuations into the same form.

In the Bogoliubov approximation, we neglect all the terms in the action that are
higher than second-order in the fluctuations [48]. This thus means that we simply
ignore Sint[φ ′∗,φ ′], which consists of the third and fourth-order terms. Moreover,
since we want φ0(x) to describe the Bose-Einstein condensate, i.e. φ0(x) = 〈φ(x,τ)〉
and 〈φ ′(x,τ)〉 = 0, we need to make sure that in the action the linear terms in the
fluctuations φ ′ and φ ′∗ vanish such that φ0(x) really minimizes the action. In the
Bogoliubov approximation, we then require that the linear terms in φ ′ and φ ′∗ should
be zero in the action S0[φ ′∗,φ ′], which is the case when

{
− h̄2∇∇∇2

2m
+V ex(x)+T 2B|φ0(x)|2

}
φ0(x) = µφ0(x) . (11.24)

In the context of trapped atomic gases, this nonlinear differential equation is better
known as the Gross-Pitaevskii equation [49, 50]. Note that it can also be obtained
by minimizing the Landau ‘free-energy’ FL[φ ∗,φ ] of (11.18) with respect to φ ∗(x).
Satisfying the Gross-Pitaevskii equation makes sure that our fluctuation expansion
has been performed correctly around the minimum of the action, while at the same
time it also determines the macroscopic wavefunction of the condensate φ0(x). As
mentioned previously, the reason for calling φ0(x) a macroscopic wavefunction fol-
lows from the fact that the total density of the gas obeys

n(x) = 〈φ(x,τ)φ ∗(x,τ+)〉= |φ0(x)|2 + 〈φ ′(x,τ)φ ′∗(x,τ+)〉 , (11.25)

where the total number of condensate atoms equals 〈N0〉 =
∫

dx |φ0(x)|2, which is
macroscopic in the case of Bose-Einstein condensation. From (11.25), it thus fol-
lows that 〈N0〉 is typically smaller than the total number of atoms 〈N〉 due to the
presence of fluctuations. Note that the average 〈φ ′(x,τ)φ ′∗(x,τ+)〉 not only de-
scribes the depletion of the condensate due to the thermal occupation of excited
states, which happens already for the ideal Bose gas, but also the depletion due to
interaction effects. As we see later, due to the presence of interactions the average
〈φ ′(x,τ)φ ′∗(x,τ+)〉 is nonzero even at zero temperature. This depletion clearly can-
not be caused by thermal fluctuations, and is thus entirely caused by quantum fluc-
tuations. In Chap. 16, we find that these quantum fluctuations can even drive phase
transitions at zero temperature, just like thermal fluctuations drive phase transitions
at nonzero temperature. These kinds of phase transitions are therefore appropriately
called quantum phase transitions.
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11.3.2 Dyson Equation

As follows from (11.22), the fluctuation effects are described in Bogoliubov theory
by a quadratic action of the form

SBog[φ ′
∗
,φ ′] = (11.26)

− h̄
2

∫ h̄β

0
dτ dτ ′

∫
dx dx′

[
φ ′∗(x,τ),φ ′(x,τ)

] ·G−1(x,τ;x′,τ ′) ·
[

φ ′(x′,τ ′)
φ ′∗(x′,τ ′)

]
,

where we have assumed that we have solved the Gross-Pitaevskii equation, such
that the linear terms are zero. The Green’s function G has now an additional 2× 2
matrix structure, because not only the normal average 〈φ ′(x,τ)φ ′∗(x′,τ ′)〉, but also
the anomalous average 〈φ ′(x,τ)φ ′(x′,τ ′)〉, is unequal to zero. This additional 2×2
matrix structure is also called Nambu space. We then have that

−G(x,τ;x′,τ ′) =
〈[

φ ′(x,τ)
φ ′∗(x,τ)

]
· [φ ′∗(x′,τ ′),φ ′(x′,τ ′)

]〉
, (11.27)

where it follows from (11.22) that in the Bogoliubov approximation we find

G−1(x,τ;x′,τ ′) = G−1
0 (x,τ;x′,τ ′) (11.28)

−1
h̄

[
2T 2B|φ0(x)|2 T 2B(φ0(x))2

T 2B(φ ∗0 (x))2 2T 2B|φ0(x)|2
]

δ (x−x′)δ (τ− τ ′) ,

with the noninteracting Green’s function matrix G0 defined by

G−1
0 (x,τ;x′,τ ′) =

[
G−1

0 (x,τ;x′,τ ′) 0
0 G−1

0 (x′,τ ′;x,τ)

]
, (11.29)

where, as before, we have

G−1
0 (x,τ;x′,τ ′) =−1

h̄

{
h̄

∂
∂τ
− h̄2∇∇∇2

2m
+V ex(x)−µ

}
δ (x−x′)δ (τ− τ ′) . (11.30)

Note that (11.28) is actually the lowest-order result for the Green’s function of the
fluctuations in the Bose-Einstein condensed phase. This is because we have ne-
glected Sint[φ ′∗,φ ′], whose perturbative treatment would then lead to all higher-order
corrections. However, it turns out that the exact Dyson equation can always be writ-
ten in the form

[
G11 G12
G21 G22

]−1

=
[

G−1
0 0
0 G−1

0

]
−

[
Σ11 Σ12
Σ21 Σ22

]
, (11.31)

where the Dyson equations for G11 and G21 are diagrammatically given by Fig. 11.1.
As mentioned before, the off-diagonal elements are called anomalous, because they
are not present in the normal phase of the gas. The selfenergy in the Bogoliubov
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Fig. 11.1 Exact Dyson equation for the interacting a) normal and b) anomalous Green’s functions.
The thin lines represent G0, whereas the thick lines represent G11 (one arrowhead) and G12 (two
arrowheads).

approximation is then given by

h̄Σ(x,τ;x′,τ ′) =
[

2T 2B|φ0(x)|2 T 2B(φ0(x))2

T 2B(φ ∗0 (x))2 2T 2B|φ0(x)|2
]

δ (x−x′)δ (τ− τ ′) . (11.32)

Since we have completely neglected the cubic and quartic terms in the fluctua-
tions to obtain the above selfenergy, the Bogoliubov approach is only expected to
be valid if the fluctuations are sufficiently small, which also implies that the deple-
tion of the condensate should be small. As a result, it can not be applied to liquid
helium-4, for which the condensate fraction is only on the order of 10%. How-
ever, it is expected to be valid for a weakly-interacting dilute atomic Bose gas at
ultralow temperatures, where the condensate fraction is nearly 100%. Under these
conditions, the Bogoliubov theory not only predicts the condensate density profile
n0(x) = |φ0(x)|2, but also the quasiparticle dispersion and the collective modes of
the condensate. In the next paragraph we study the quasiparticle excitation spec-
trum, and in Sect. 11.9.2 we discuss the collective modes.

11.3.3 Quasiparticle Dispersion

In order to simplify our discussion, we turn to the homogeneous Bose gas in a box
with volume V = L3 and periodic boundary conditions. The single-particle wave-
functions are then equal to χk(x) = eik·x/

√
V , and are characterized by the wavevec-

tor k = 2πn/L with ni = 0,±1, . . . . The corresponding single-particle energies are
given by εk = h̄2k2/2m. For the homogenous case, the Gross-Pitaevskii equation
is easily solved by considering the constant solution φ0(x) = φ0, which leads to
T 2B|φ0|2 = µ . Moreover, we can consider the Fourier transform of the Green’s func-
tion matrix from (11.28), which is given by
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−h̄G−1(k, iωn) = −h̄
∫ h̄β

0
dτ dτ ′

∫
dx dx′ G−1(x,τ;x′,τ ′)

e−ik(x−x′)

V
eiωn(τ−τ ′)

h̄β

=
[−ih̄ωn + εk +T 2B|φ0|2 T 2Bφ 2

0
T 2Bφ∗0

2 ih̄ωn + εk +T 2B|φ0|2
]

, (11.33)

where we used (7.55) and eliminated the chemical potential µ with the use of the
homogeneous Gross-Pitaevskii equation. Note that the different signs in front of the
Matsubara frequencies come from the reversed order of the imaginary-time argu-
ments in (11.29). We can invert (11.33) to obtain the Green’s function G−1(k, iωn),
given by

G(k, iωn) (11.34)

=
−h̄

h̄2ω2
n + ε2

k +2T 2B|φ0|2εk

[
ih̄ωn + εk +T 2B|φ0|2 −T 2Bφ 2

0
−T 2Bφ ∗0

2 −ih̄ωn + εk +T 2B|φ0|2
]

.

There are poles in the Green’s function G(k,ω), when

h̄ω = h̄ωk ≡
√

ε2
k +2T 2B|φ0|2εk =

√
ε2

k +2T 2Bn0εk , (11.35)

where it was explained in Sect. 8.1 that the poles of G(k,ω) correspond to the el-
ementary, or single-particle, excitations of the system. As a result, (11.35) gives us
the famous Bogoliubov dispersion for the quasiparticle excitations in the presence of
a Bose-Einstein condensate. In Sect. 8.1.3, it was mentioned that collective excita-
tions are described by poles in the correlation function of the form 〈φ ∗φ∗φφ〉. Since
this two-particle correlation function contains also the contribution |φ0|2〈φ ′∗φ ′〉, the
poles in the Green’s function of (11.34) are also poles of the two-particle correla-
tion function, and we have that the Bogoliubov quasiparticle excitations can also be
interpreted as collective excitations. In the following, we use both names for the ex-
citations associated with the dispersion from (11.35). Note that for small momenta,
or large wavelengths, the dispersion of (11.35) is of the phonon-like form ωk = ck
with c = (T 2Bn0/m)1/2, which according to the Landau criterion indeed gives rise
to superfluid flow.

To finish the calculation, we still wish to obtain the condensate density n0 = |φ0|2
in term of the total density n of the atomic Bose gas. The expression for the total
density is given by (11.25), such that

n = n0 +n′ = |φ0|2−G11(x,τ;x,τ+) , (11.36)

where n′ is the density of noncondensed particles. This density is equal to
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n′ = lim
η↓0

h̄
V h̄β ∑

k6=0,n
eiωnη ih̄ωn + εk +T 2Bn0

(h̄ωn)2 +(h̄ωk)2

= lim
η↓0

1
V h̄β ∑

k6=0,n

{ −eiωnη

iωn−ωk
+

εk +T 2Bn0− h̄ωk

2h̄ωk

( −eiωnη

iωn−ωk
+

eiωnη

iωn +ωk

)}

=
1
V ∑

k6=0

(
εk +T 2Bn0

h̄ωk

1
eβ h̄ωk −1

+
εk +T 2Bn0− h̄ωk

2h̄ωk

)
, (11.37)

where in the last step we used the results of the Matsubara summation from (7.31)
and Exercise 7.2. For a given density and temperature, the last two equations thus
fully determine the condensate density. Note that (11.37) explicitly shows that the
condensate is indeed depleted both by thermal effects, described by the first term in
the last line, as well as quantum effects, described by the second term, which does
not depend explicitly on temperature.

11.4 Thermodynamic Potential for Bosons

Next, we calculate the thermodynamic potential Ω for the homogeneous condensed
Bose gas in the Bogoliubov approximation. From Chap. 4, we know that various
thermodynamic quantities of interest can be calculated from this thermodynamic
potential. To carry out the calculation we have to remember a subtlety explained in
Example 7.2 from Chap. 7, on which we elaborate further in the following example.

Example 11.1. In Example 7.2, we found how the equal-time commutation relation
between the creation and annihilation operators is encoded in the functional formal-
ism by using the correct time ordering. Considering the same partition sum as in
(7.38), we can introduce the following inverse Green’s function

G−1(τ,τ ′) =−1
h̄

{
h̄

∂
∂τ

+ ε−µ
}

δ (τ− τ ′), (11.38)

such that we have for the partition sum from (7.38)

Z =
∫

d[φ ∗]d[φ ]exp
{∫ h̄β

0
dτ dτ ′φ ∗(τ+)G−1(τ,τ ′)φ(τ ′)

}
(11.39)

=
∫

d[φ ∗]d[φ ]exp
{∫ h̄β

0
dτ dτ ′

[
φ ∗(τ+),φ(τ)

] G−1(τ,τ ′)
2

[
φ(τ ′)

φ ∗(τ ′+)

]}

= eβ (ε−µ)/2
∫

d[φ ∗]d[φ ]exp
{∫ h̄β

0
dτ dτ ′ [φ ∗(τ),φ(τ)]

G−1(τ,τ ′)
2

[
φ(τ ′+)
φ ∗(τ ′+)

]}

with the corresponding Green’s function matrix
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G−1(τ,τ ′) =
[

G−1(τ,τ ′) 0
0 G−1(τ ′,τ)

]
. (11.40)

In the last step of (11.39), we had to add a factor eβ (ε−µ)/2 to compensate for the
change of limits, as follows from Example 7.2. The reason for wanting the elements
of the Nambu-space vectors to be at equal time is that in the following, we often
perform operations on the vectors as a whole, such as Fourier transforming and
rotating in Nambu space. Also note that in the last line of (11.39) we could even
omit the imaginary-time limiting procedure, because in this symmetric form there
is no discontinuity at equal time.

Using (11.18), (11.21), (11.22), and (11.33), we find for the total action in the
Boguliobov approximation

SBog[φ ∗,φ ] = − h̄β
2

T 2Bn0N0− h̄β
2 ∑

k6=0

(
εk +T 2Bn0

)
+

1
2 ∑

k6=0,n

[
φ ′∗k,n,φ ′−k,−n

]

·
[−ih̄ωn + εk +T 2Bn0 T 2Bn0

T 2Bn0 ih̄ωn + εk +T 2Bn0

]
·
[

φ ′k,n
φ ′∗−k,−n

]
, (11.41)

where the second term on the right-hand side is explained by the discussion from
Example 11.1. Note that the linear terms have been cancelled by satisfying the ho-
mogeneous Gross-Pitaevskii equation µ = T 2Bn0, which was also used to eliminate
the chemical potential in the above equation. Moreover, the expression for the chem-
ical potential can also be understood physically, because the energy needed to add
a particle to the condensate is in the presence of interactions given by the Hartree
contribution T 2Bn0.

The matrix in (11.41) can be diagonalized by a Bogoliubov transformation. To
this end, we introduce new fields ψ∗

k,n and ψk,n via the transformation

[
ψk,n

ψ∗
−k,−n

]
=

[
uk vk
v∗k u∗k

]
·
[

φ ′k,n
φ ′∗−k,−n

]
. (11.42)

Since the part of the matrix depending on the Matsubara frequency iωn is already
diagonal, it is most convenient that it remains invariant under this transformation.
This is achieved by demanding that the coefficients obey

|uk|2−|vk|2 = 1. (11.43)

In the operator formalism, this condition ensures that the operators associated with
the fields ψ∗

k,n and ψk,n still obey the standard commutation relations for bosonic
creation and annihilation operators. Using this normalization, we find that the in-
verse transformation is given by

[
φk,n

φ ∗−k,−n

]
=

[
u∗k −vk
−v∗k uk

]
·
[

ψk,n
ψ∗
−k,−n

]
. (11.44)
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If we now substitute the transformation from (11.44) into (11.41) and demand
that the resulting quadratic part of the action reduces to the diagonal form

∑
k6=0,n

(−ih̄ωn + h̄ωk)ψ∗
k,nψk,n,

we obtain the following equations for uk, vk and h̄ωk

(
u2

k + v2
k
)

T 2Bn0−2ukvk(εk +T 2Bn0) = 0,

(11.45)(|uk|2 + |vk|2
)
(εk +T 2Bn0)− (u∗kvk +ukv∗k)T

2Bn0 = h̄ωk.

Using the normalization from (11.43), we find that these equations are solved by

h̄ωk =
√

ε2
k +2T 2Bn0εk,

|vk|2 = |uk|2−1 =
1
2

(
εk +T 2Bn0

h̄ωk
−1

)
. (11.46)

As a result, the action from (11.41) becomes

S[ψ∗,ψ] = − h̄β
2

T 2Bn0N0 +
h̄β
2 ∑

k6=0

[
h̄ωk−

(
εk +T 2Bn0

)]

+ ∑
k6=0,n

(−ih̄ωn + h̄ωk)ψ∗
k,nψk,n, (11.47)

where the additional h̄ωk in the second term on the right-hand side again comes
from interchanging the order of the fields and the corresponding time-limiting pro-
cedure, which in the operator formalism corresponds to commuting the correspond-
ing creation and annihilation operator. In terms of the transformed fields the action
is diagonal, and we can thus perform the corresponding Matsubara sum, which then
gives the ideal gas result from (7.30).

However, note that the second term on the right-hand side of (11.47) actually does
not converge at high momenta. This is most easily seen by expanding the summant
in powers of T 2Bn0/εk and converting the sum into an integral, which gives

1
V ∑

k6=0

[
h̄ωk−

(
εk +T 2Bn0

)]
=

∫ dk
(2π)3

{
− (T 2Bn0)2

2εk
+ . . .

}
. (11.48)

We find that after integration over the angles the integrand becomes a nonzero con-
stant for large k, meaning that we encounter an ultraviolet divergence. This diver-
gence is an artifact from the use of the pseudopotential T 2Bδ (x−x′), whose Fourier
transform is a constant for all momenta. A realistic interatomic potential always falls
off as 1/k2 at high momenta, which would result in a finite integral. Moreover, there
is another issue with the use of the pseudopotential. Note that both the first term on
the right-hand side of (11.47) and on the right-hand side of (11.48) are proportional
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to n2
0. If we would have used a true interatomic potential, then the term from (11.47)

would have corresponded to the first-order term in the Born series from (10.22),
whereas the term from (11.48) would have corresponded to the second-order term
in the Born series. However, in Sect. 11.3 it was explained how the pseudopoten-
tial conveniently incorporates in the first term of the Born series the information of
all the higher-order terms. As a result, we have a double-counting problem in the
contributions to the thermodynamic potential that are proportional to n2

0. This can
be avoided by cancelling the first term on the right-hand side of (11.48). Then, the
momentum sum becomes finite and the thermodynamic potential is finally given by

Ω
V

= − 1
β

log(Z) =−1
2

n2
0T 2B +

1
2V ∑

k6=0

(
h̄ωk− εk−n0T 2B +

(T 2Bn0)2

2εk

)

+
1

βV ∑
k6=0

log
(

1− e−β h̄ωk
)

= −1
2

n2
0T 2B

(
1− 128

15

√
n0a3

π

)
+

1
βV ∑

k6=0
log

(
1− e−β h̄ωk

)
, (11.49)

where in the last step we converted the sum over momenta of the ground-state contri-
bution into an integral, which is analytically solvable. The correction to the ground-
state energy proportional to

√
n0a3 is also called the Lee-Huang-Yang correction. It

is usually the smallest term in the thermodynamic potential. Note that from (4.35)
we find that the thermodynamic potential immediately also gives us the pressure of
the Bose-Einstein condensed gas. Neglecting the small Lee-Huang-Yang correction,
the pressure of the condensate is p = n2

0T 2B/2. From the discussion in Sect. 8.7, we
recall that the speed of sound for the propagation of density fluctuations equals
c =

√
(dp/dn)/m =

√
n0T 2B/m, which agrees with the result h̄ωk = h̄ck for the

long-wavelength limit of the Bogoliubov dispersion. This shows explicitly that the
quasiparticle and collective excitations are identical in a Bose-Einstein condensed
gas.

11.5 Bogoliubov-de Gennes Equation

The generalization of the field-theory approach presented in the previous section to
the inhomogeneous case is straightforward. First, we have to solve the inhomoge-
neous Gross-Pitaevskii equation at a fixed chemical potential, such that our fluctua-
tion expansion is again correctly performed around the true minimum of the action.
Given the condensate wavefunction, we can then calculate the quasiparticle disper-
sion by finding the poles of G or, equivalently but more conveniently, the zero’s
of Det[G−1]. This quasiparticle dispersion then also describes collective modes, as
mentioned in the previous section. The zeroes of Det[G−1] are found by solving the
eigenvalue equation
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∫
dx′G−1(x,x′,ω) ·

[
un(x′)
vn(x′)

]
= 0, (11.50)

where un(x) and vn(x) are the nontrivial eigenvectors of the inverse Green’s function
matrix with eigenvalue zero. We thus find that the poles of the Green’s function
matrix are located at h̄ω = h̄ωn, where h̄ωn is found from

[
K̂ +2T 2B|φ0(x)|2 T 2B(φ0(x))2

T 2B(φ ∗0 (x))2 K̂ +2T 2B|φ0(x)|2
]
·
[

un(x)
vn(x)

]
= (11.51)

h̄ωn

[
1 0
0 −1

]
·
[

un(x)
vn(x)

]
,

where we used (11.28) and (11.50), and introduced the operator

K̂ =−h̄2∇∇∇2/2m+V ex(x)−µ. (11.52)

(11.51) is the Bogoliubov-de Gennes equation that has been applied with great suc-
cess to the collective modes of a Bose-Einstein condensed rubidium and sodium gas
[51, 52], where the collective modes are discussed in more detail in the next section
from a somewhat different perspective. Note that a special solution with h̄ω0 = 0 is
given by [u0(x),v0(x)] = [φ0(x),−φ ∗0 (x)], which physically describes the dynamics
of the global phase of the condensate [53]. Due to the U(1) symmetry of the ac-
tion from (11.17), i.e. its invariance under the transformation φ(x,τ)→ eiθ φ(x,τ)
and φ ∗(x,τ)→ e−iθ φ∗(x,τ) that changes the global phase, this solution essentially
does not influence the thermodynamic properties of the macroscopic quantum gas
and is therefore usually safely neglected. Nevertheless, this zero mode has from a
fundamental point of view some interesting consequences which we study in more
detail in Sect. 13.5. By noting that the left-hand side of the Bogoliubov-de Gennes
equation involves a Hermitian operator, it follows that the solutions obey

∫
dx φ ∗0 (x)un(x)+

∫
dx φ0(x)vn(x) = 0 , (11.53)

corresponding to the orthogonality condition imposed in (11.20). Moreover, it is also
possible to show that the solutions with h̄ωn > 0 can always be properly normalized
as [54] ∫

dx (|un(x)|2−|vn(x)|2) = 1 , (11.54)

such that the quasiparticle creation and annihilation operators also have bosonic
commutation relations in the inhomogeneous case. Knowing the eigenstates of G−1,
we can perform the inversion and determine the density profile of the noncondensed
atoms for the inhomogeneous case. Ultimately, we find

n′(x) = ∑
n6=0

{
(|un(x)|2 + |vn(x)|2) 1

eβ h̄ωn −1
+ |vn(x)|2

}
, (11.55)



11.6 Popov Theory 253

which, together with (11.54), are to be directly compared with (11.37) and (11.46)
for the homogeneous case.

11.6 Popov Theory

At temperatures near absolute zero, we have to a good approximation that n′(x) = 0
and the Bogoliubov theory is valid. However, at nonzero temperatures we ther-
mally excite particles and n′(x) becomes nonzero, so the resulting fluctuation ef-
fects are not negligible anymore. In Chap. 8, we used three different methods
to derive the celebrated Hartree-Fock theory for the interacting quantum gas at
nonzero temperature. We now apply this theory to treat the effect of the non-
condensed part of the gas in the Hartree-Fock approximation. First note that for
a point interaction the Hartree and Fock approximations are equal, which is di-
agrammatically readily understood because for a point interaction the direct and
the exchange diagram from Fig. 8.7 are exactly the same. We saw how to per-
form the Hartree and the Fock theory simultaneously for fermions in Sect. 8.6.3,
which amounted to a self-consistent mean-field theory in the collective κ and λ
fields that were both introduced by a Hubbard-Stratonovich transformation. For
the present point interaction, this would simply yield 〈κ(x,τ)〉 = T 2Bn(x) and
〈λ ((x,x′,τ))〉 = T 2Bn(x,x′)δ (x− x′) = T 2Bn(x)δ (x− x′), leading for the bosonic
case to the following effect on the interacting part of the action

T 2B

2

∫ h̄β

0
dτ

∫
dx φ ∗(x,τ)φ(x,τ)φ ∗(x,τ)φ(x,τ)→

2T 2B
∫ h̄β

0
dτ

∫
dx n(x)φ ∗(x,τ)φ(x,τ)−T 2B

∫ h̄β

0
dτ

∫
dx n2(x). (11.56)

This shows that the prescription is to reduce the fourth-order interaction term to the
quadratic level by taking all four possible normal averages 〈φ ∗φ〉, and subtract a
zeroth-order term to avoid double-counting problems in the partition sum.

Applying this procedure to the interacting action for the fluctuations Sint[φ ′∗,φ ′]
from (11.23), we find that the fields that are of third and fourth order in the fluctua-
tions, give rise to the following terms that are linear and quadratic in the fluctuations

SHF
int [φ

′∗,φ ′] = 2
∫ h̄β

0
dτ

∫
dx T 2Bn′(x)φ ′∗(x,τ)φ0(x)

+2
∫ h̄β

0
dτ

∫
dx T 2Bn′(x)φ ′(x,τ)φ ∗0 (x)

+2
∫ h̄β

0
dτ

∫
dx T 2Bn′(x)φ ′∗(x,τ)φ ′(x,τ) . (11.57)

The new Gross-Pitaevskii equation thus directly follows from the new action in the
fluctuations when the above terms are added to S0[φ ′∗,φ ′] from (11.22). In Fig.
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Fig. 11.2 Hartree-Fock corrections to a) the linear and b) the quadratic interaction terms of the
Bogoliubov theory. The black dot denotes the point interaction with strength T 2B. The thick line
represents the interacting Green’s function, yielding the density of noncondensed particles. The
open circles represent a source for noncondensed particles. We note that condensed particles are
not explicitly shown in the diagrams, since they only give rise to a multiplicative factor. This
represents the Popov theory.

11.2 we show how this can be represented diagrammatically, indicating that we
are indeed performing a Hartree-Fock theory for the Bose-Einstein condensed case.
Performing the same analysis as in Sect. 11.3, we then conclude that the Gross-
Pitaevskii equation is modified to

{
− h̄2∇∇∇2

2m
+V ex(x)+2T 2Bn′(x)+T 2B|φ0(x)|2

}
φ0(x) = µφ0(x) , (11.58)

while the diagonal or normal selfenergies from (11.32) are changed into

2T 2B|φ0(x)|2 +2T 2Bn′(x) = 2T 2Bn(x).

As a result, the Bogoliubov-de Gennes equation for the elementary excitations is
now given by

[
K̂ +2T 2Bn(x) T 2B(φ0(x))2

T 2B(φ ∗0 (x))2 K̂ +2T 2Bn(x)

]
·
[

un(x)
vn(x)

]
= h̄ωn

[
1 0
0 −1

]
·
[

un(x)
vn(x)

]
. (11.59)

These last two equations in combination with (11.55) are known as the Popov
theory [55], which has been studied extensively in the context of Bose-Einstein
condensation in ultracold atomic Bose gases. It has been successfully applied to the
equilibrium density profile of the condensed gas below the critical temperature [56].
The theory has also been used to determine the collective mode frequencies of the
gas at nonzero temperatures, however, with much less success [57, 58]. The reason
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for the failure of the Popov theory in this case is that the Bogoliubov-de Gennes
equation, (11.59), describes physically only the motion of the condensate in the
presence of a static noncondensed cloud and not the dynamics of the noncondensed
cloud itself. The correct description of the condensate’s collective modes just be-
low the critical temperature then turns out to be a difficult nonequilibrium problem.
However, at very low temperatures, when Bogoliubov theory applies, the collec-
tive modes of a condensate can be studied conveniently using a hydrodynamic-like
approach. This is the topic of the next section.

11.7 Hydrodynamic-Like Approach

As we have seen several times before, the equilibrium quantum field theory in terms
of imaginary time τ and Matsubara frequencies ωn can also be used to obtain in-
formation on the dynamical properties of the system, achieved via the substitution
ωn →−iω or, equivalently, τ → it. Indeed, the imaginary-time evolution operator
e−Ĥτ/h̄, which we use to incorporate the appropriate statistical averaging into our
many-body theory, then becomes the familiar real-time evolution operator e−iĤt/h̄

which is known to describe the dynamics of a quantum system. However, we should
sometimes be careful with this procedure, since the example of Popov theory for
Bose-Einstein condensation tells us that we may not always end up with the cor-
rect physics needed for the full description of a particular experiment. A possible
problem with the substitution ωn →−iω is that we never perform both the full sta-
tistical averaging and the complete dynamics at the same time. For some situations,
it is important to take both the statistical averaging and the dynamics accurately into
account, meaning that we need to use a truly nonequilibrium statistical field theory.
This can be achieved by using the Keldysh formalism, which is, however, beyond
the scope of this book [59]. Still, there are many interesting situations where we do
not need the Keldysh formalism in order to still correctly describe the dynamics.
This is, for example, the case when we only have to deal with the time evolution
of mean-field quantities, such as the collective modes of the condensate at very low
temperatures, for which the Bogoliubov theory is valid.

11.7.1 Time-Dependent Gross-Pitaevskii Equation

The time evolution of the Bose-Einstein condensed gas can be derived in various
ways. We have seen that for time-independent fields φ(x) the action from (11.17)
takes the form of a Landau free energy. The time-independent Gross-Pitaevskii
equation is then conveniently obtained by minimizing the Landau free energy with
respect to φ ∗(x). Analogously, by considering the action from (11.17) in real time
and by minimizing it with respect to the field φ ∗(x, t), we obtain the time-dependent
Gross-Pitaevskii equation, given by



256 11 Bose-Einstein Condensation

ih̄
∂φ0(x, t)

∂ t
=

{
− h̄2∇∇∇2

2m
+V ex(x)−µ +T 2B|φ0(x, t)|2

}
φ0(x, t). (11.60)

This result can also be obtained with operator methods in the language of second-
quantization. Then, the appropriate second-quantized Hamiltonian Ĥ corresponding
to the action used above is given by (6.29). The imaginary-time evolution of the field
operator ψ̂(x,τ) is determined by the Heisenberg equation of motion in (6.43). Sim-
ilar to how we treated Bose condensation in the functional formalism, we can then
also expand the field operator as a sum of its expectation value and fluctuations, i.e.
use the Bogoliubov shift ψ̂(x,τ) = φ0(x,τ)+ ψ̂ ′(x,τ). Performing the substitution
τ → it, then also leads to the time-dependent Gross-Pitaevskii equation given by
(11.60).

Noting the analogy between the time-dependent Gross-Pitaesvkii equation and
the time-dependent Schrödinger equation, we can obtain a continuity equation for
the condensate wavefunction in the usual way as for a single-particle wavefunction.
This then leads to the familiar expression

∂
∂ t
|φ0(x, t)|2 +∇∇∇ ·J(x, t) = 0, (11.61)

where the current density is given by

J(x, t) =
h̄

2mi
{φ ∗0 (x, t)∇∇∇φ0(x, t)−φ0(x, t)∇∇∇φ ∗0 (x, t)} . (11.62)

The above current density is seen to describe the current of condensed particles,
such that we may introduce the concept of the superfluid velocity vs(x, t) via

J(x, t) = n0(x, t)vs(x, t). (11.63)

Since we can always represent the complex-valued condensate wavefunction in
terms of its real amplitude and phase, we have that φ0(x, t) = eiθ(x,t)

√
n0(x, t). Sub-

stituting this expression in (11.62), then yields for the superfluid velocity

vs(x, t) =
h̄
m

∇∇∇θ(x, t). (11.64)

An intriguing property that follows immediately from this result is that the flow of
the superfluid is irrotational, i.e.

∇∇∇×vs = 0, (11.65)

showing that the superfluid cannot support rigid-body rotation. The behavior of the
condensate in the presence of rotation is the topic of the next section.

An important and experimentally relevant case for which we can solve the Gross-
Pitaevskii equation is when the kinetic energy is small with respect to the interaction
energy, which is also called the Thomas-Fermi limit [60, 61]. In this limit, which
physically boils down to N0a/lÀ 1 with l the effectively isotropic harmonic oscilla-
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tor length, we are allowed to neglect the kinetic-energy term. The time-independent
Gross-Pitaevskii equation simply becomes

{
V ex(x)+T 2B|φ0(x)|2}φ0(x) = µφ0(x). (11.66)

The solution to this equation is immediately obtained as [62]

|φ0(x)|2 =
µ−V ex(x)

T 2B , (11.67)

which for the case of a harmonic external trapping potential shows that the shape
of the condensate is thus described by an upside-down parabolic density profile. Of
course, the density should be taken equal to zero whenever the right-hand side of
(11.67) becomes negative. In particular, for an isotropic harmonic trapping potential
with frequency ω ,

V ex(x) =
1
2

mω2x2, (11.68)

the condensate wavefunction has to vanish for x > RTF, where the Thomas-Fermi
radius RTF is given by

RTF =

√
2µ

mω2 . (11.69)

Note that, because the interaction energy is proportional to the density, the cen-
tral assumption for the Thomas-Fermi approach is no longer satisfied near the edge
of the gas cloud where the condensate density goes to zero. Here, the Thomas-
Fermi approximation breaks down and the kinetic energy operator should be in-
cluded again in order to describe the behavior near the edges realistically. However,
this region is usually rather small, and the Thomas-Fermi approximation is quite
accurate for by far the largest part of the condensate density profile.

11.7.2 Collective Modes

To study the possible collective excitations around the equilibrium Thomas-Fermi
profile, we derive the hydrodynamic-like equations for the condensate [63]. We start
by substituting φ0(x, t) = eiθ(x,t)

√
n0(x, t) into (11.60), after which we perform the

corresponding derivatives and divide out eiθ(x,t). Then, the real part of the resulting
equation is seen to satisfy

h̄
∂θ
∂ t

=
h̄2

2m
√

n0
∇∇∇2√n0− 1

2
mv2

s −V ext + µ−T 2Bn0, (11.70)
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where we also used (11.64) and omitted the explicit dependence on the temporal
and spatial coordinates for notational convenience. As in the Thomas-Fermi approx-
imation, the first kinetic term on the right-hand side is considered to be negligible
compared to the last three terms. As a result, the dynamics of the condensate is gov-
erned by the continuity equation and the equation for the superfluid velocity, given
by

∂n0
∂ t

= −∇∇∇ · (n0vs) (11.71)

m
∂vs

∂ t
= −∇∇∇

(
1
2

mv2
s +V ext +T 2Bn0−µ

)
, (11.72)

where the last equation was found by combining (11.64) and (11.70). The sec-
ond equation is of the same form as the Euler equation from fluid mechanics
that describes the flow of a fluid without viscosity, which thus shows that the
condensate indeed behaves as a superfluid. In order to find analytic solutions to
these hydrodynamic-like equations, we proceed by expanding the condensate den-
sity n0(x, t) = n0(x)+ δn0(x, t) around the equilibrium profile n0(x) given by the
Thomas-Fermi result from (11.67). Both the fluctuations around the equilibrium
profile as well as the superfluid velocity are then assumed to be small, such that we
may consider the hydrodynamic equations up to linear order in these two quantities,
giving

m
∂ 2δn0

∂ t2 −T 2B∇∇∇ · (n0∇∇∇δn0) = m
∂ 2δn0

∂ t2 −T 2B∇∇∇n0 ·∇∇∇δn0−T 2Bn0∇∇∇2δn0

= 0 . (11.73)

Note that in the absence of a trap, we have that ∇∇∇n0(x) = 0 and the above equation
reduces to a wave equation with a speed of sound equal to

√
T 2Bn0/m as expected.

We may try to solve this equation also in the inhomogeneous case for solutions
that oscillate periodic in time δn0(x, t) = δn0(x)eiωt . For the experimentally rele-
vant case of a cylindrically symmetric trap V ext(x) = m(ω2

ρ ρ2 + ω2
z z2)/2, we then

obtain

ω2δn0 =
{

ω2
ρ ρ

∂
∂ρ

+ω2
z z

∂
∂ z

}
δn0− 1

2
(µ−ω2

ρ ρ2−ω2
z z2)∇∇∇2δn0. (11.74)

We only study the solutions to the above equation that are of the simple form

δn0(ρ,ϕ,z) ∝ ρ`ei`ϕ ∝ r`Y`,`, (11.75)

where Y`,` are the spherical harmonics from (3.60), such that the Laplacian on the
right-hand side of (11.74) gives zero. Solutions with angular momentum ` = 0 are
called monopole or breathing modes, with ` = 1 are called dipole modes, with ` = 2
quadrupole modes, and so on. The solutions of (11.75) have the property that their
oscillation frequencies are related to the radial frequency of the trap via ω =

√
`ωρ .
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Fig. 11.3 Experimental
observation of collective
quadrupole oscillations. The
dots are measurements of
the oscillation frequency ω
in units of the radial trap
depth ωρ performed by Jin
et al. as a function of the
number of 87Rb atoms N
[64]. The dashed line at

√
2

is the analytic result in the
hydrodynamic limit [63],
while the solid line results
from a Bogoliubov-de Gennes
approach [52].
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The prediction for the frequencies of the collective modes [63], and in particular
for the quadrupole mode with ` = 2, i.e. ω =

√
2ωρ , has been beautifully con-

firmed by experiments [64, 65, 66, 67], where the results from Jin et al. are shown
in Fig. 11.3. Note that the important ingredients in obtaining the collective-mode
frequencies are the time-dependent Gross-Pitaesvkii equation and the presence of
interactions that are strong enough to validate the Thomas-Fermi approximation.
As a result, we would have obtained very different quantitative behavior for a non-
interacting condensate. The quadrupole frequency would then be 2ωρ , as we will
see in Sect. 11.9.2. This means that the agreement with experiments is an important
verification of the many-body theory for Bose-Einstein condensation in the presence
of interactions.

11.8 Rotating Bose-Einstein Condensates

In the previous section, we found that the condensate wavefunction φ0(x) = eiθ(x)√
n0(x) gives rise to a superfluid velocity, given by

vs =
h̄
m

∇∇∇θ(x). (11.76)

An important property that follows from this expression is that the flow of the su-
perfluid is irrotational, i.e.

∇∇∇×vs = 0. (11.77)

This last equation determines the system’s response to an externally applied torque
and shows that the superfluid cannot support rigid-body rotation. However, as we
show next, the condensate can store angular momentum by forming singularities in
the density around which the phase winds by a integer multiple of 2π , i.e. by form-
ing vortices. This multiple of 2π comes about from demanding that the condensate
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wavefunction is single valued, such that we have for any closed contour

∆θ =
∮

∇∇∇θ(x) ·dl = 2π j (11.78)

with j an integer, which is also called the Onsager-Feynman quantization condition.
To study vortices, we derive the Gross-Pitaevski equation for a Bose-Einstein

condensate subject to rotation. To this end, it is convenient to consider the Gross-
Pitaevskii equation in a frame that is rotating around the z axis with frequency Ω.
The coordinates x′ and y′ of the rotating frame are related to the coordinates in the
lab frame by

x′ = cos(Ωt)x+ sin(Ωt)y,
y′ = cos(Ωt)y− sin(Ωt)x. (11.79)

Next, we perform the coordinate transformation to the rotating frame and express
the condensate wavefunction φ(x,y,z, t) = φ ′(x′,y′,z, t) in terms of the rotating co-
ordinates. Then, we have for the temporal derivative that

ih̄
∂
∂ t

φ(x,y,z, t) = ih̄
∂
∂ t

φ ′(x′(x,y, t),y′(x,y, t),z, t) (11.80)

= −ih̄Ω
(

x′
∂

∂y′
− y′

∂
∂x′

)
φ ′(x′,y′,z, t)+ ih̄

∂
∂ t

φ ′(x′,y′,z, t),

which is readily shown from (11.79) and the chain rule for differentiation. Further-
more, we have that the spatial derivatives satisfy

(
∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2

)
=

(
∂ 2

∂x′2
+

∂ 2

∂y′2
+

∂ 2

∂ z2

)
. (11.81)

Considering a trapping potential V (x′(x,y, t),y′(x,y, t),z) that is rotating in the lab
frame, but stationary in the rotating frame, we find from (11.60), (11.80) and (11.81)
that the Gross-Pitaevskii equation in the rotating frame becomes

ih̄
∂φ(x, t)

∂ t
=

{
− h̄2∇∇∇2

2m
−ΩL̂z +V ex(x)−µ +T 2B|φ(x, t)|2

}
φ(x, t), (11.82)

where all the primes are omitted for notational convenience. The angular momentum
operator L̂z in the rotating frame is then given by

L̂z =−ih̄
(

x
∂
∂y
− y

∂
∂x

)
. (11.83)

It is interesting to note that the Gross-Pitaevskii equation, (11.82), can be rewritten
in the form [68]
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ih̄
∂φ(x, t)

∂ t
= (11.84)

{
(p̂−mΩez×x)2

2m
+V ex(x)− 1

2
mΩ2(x2 + y2)−µ +T 2B|φ(x, t)|2

}
φ(x, t),

which in the absence of interactions is similar to the Schrödinger equation for a
particle with charge e in a homogeneous magnetic field, described by the vector
potential A(x) = cmΩez×x/e.

To understand the structure of possible solutions to (11.82) it is instructive to look
at the noninteracting case, such that Bose-Einstein condensation occurs for µ = ε0 in
the absence of rotation. Furthermore, we consider a spherically symmetric harmonic
trap, whose eigenstates we studied in Sect. 3.6. Note that the wavefunctions ψn`m(x)
from (3.65) are also eigenstates of the L̂z operator, such that we find

{
− h̄2∇∇∇2

2m
−ΩL̂z +V ex(x)

}
ψn`m(x) = En`mψn`m(x), (11.85)

with eigenenergies En`m = (2n+`+3/2)h̄ω−mh̄Ω . Here m is the quantum number
belonging to L̂z, which is not to be confused with the mass of the atoms. As a result,
we find that for slow rotation Ω < ω the ground state of the rotating system is given
by φ(x) =

√
N0ψ000(x) of the harmonic trap with the chemical potential given by

µ = 3h̄ω/2. However, at the critical rotation Ωc = ω the ground state changes to

φ(r,ϑ ,ϕ) =
√

N0ψ011(r,ϑ ,ϕ) =

√
N0

l3π3/2

r
l
e−r2/2l2

sin(ϑ)eiϕ , (11.86)

which corresponds to a vortex with angular momentum ` = 1, and the chemical
potential is then given by µ = 5h̄ω/2− h̄Ω. The superfluid velocity field of this
vortex solution is seen to yield azimuthal flow, namely

vs =
h̄
m

∇∇∇θ(r,ϑ ,ϕ) =
h̄
m

∇∇∇ϕ =
h̄

mr sin(ϑ)
eϕ , (11.87)

where l =
√

h̄/mω is the harmonic oscillator length and eϕ the unit vector in the
azimuthal direction. Note that the condensate density |φ(r,ϑ ,ϕ)|2 vanishes in the
core of the vortex, which is directed along the z axis, where the superfluid velocity
diverges. The energy level structure, the density profile and the velocity field of the
vortex solution from (11.86) are shown in Fig. 11.4.

It turns out that in the presence of interactions the above discussion remains qual-
itatively the same. However, the size of the vortex is no longer given by the harmonic
oscillator length l, but rather by the coherence or healing length ξ = 1/

√
16πn0a,

which is much smaller than l in the Thomas-Fermi limit. Beautiful experiments,
performed by rotating Bose-Einstein condensates, have indeed shown the presence
of vortices beyond a critical rotation speed [69]. Since applying angular momen-
tum to a normal viscous gas would simply give rise to rigid-body rotation, the onset
of a vortex is seen to be the smoking gun for the presence of the superfluid state.
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Fig. 11.4 a) Energy levels En`m for a harmonically-trapped rotating condensate in the absence of
interactions. When the rotation frequency Ω becomes equal to the trap frequency ω , the ground
state becomes a vortex state, for which we show b) the azimuthally symmetric density profile
|φ(r)|2 = N0|ψ011(r,π/2,ϕ)|2 in the xy plane and c) the corresponding superfluid velocity field.

In fact, whole lattices of vortices have been observed experimentally by rotating
Bose-Einstein condensates faster and faster [70], where the lattice structure can be
understood from the repulsive long-range interaction between like vortices. This
interaction is studied in Chap. 15 in the context of low-dimensional quantum gases.

11.9 Attractive Interactions

Up to now, we have considered an atomic Bose gas with repulsive interactions, i.e.
a positive scattering length. However, experiments with attractive atomic gases have
also been performed [11, 71]. In this section, we briefly discuss the very different
physics that occurs in this case. We first discuss the homogeneous situation. From
Bogoliubov theory, we know that small density fluctuations in a homogeneous Bose-
Einstein condensate evolve according to

δn0(x, t) =
1
V ∑

k
δN0(k)eik·x−iωkt , (11.88)

where h̄ωk =
√

ε2
k +2T 2Bn0εk is the Bogoliubov dispersion. If the scattering length

is positive, we have that T 2B > 0, and the Bogoliubov dispersion is real for all mo-
menta. As a result, the magnitude of the density fluctuations |δn0(x, t)| does not
grow and the Bose-Einstein condensate is stable. However, if the scattering length
is negative, the two-body T -matrix is also negative, and the Bogoliubov disper-
sion is imaginary for momenta obeying εk < 2|T 2B|n0. This implies that the os-
cillating behavior of δn0(x, t) becomes exponential behavior, so the magnitude of
long-wavelength density fluctuations will grow exponentially in time and the Bose-
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Einstein condensate is therefore now unstable. Another way to physically under-
stand this instability is by considering the pressure of the condensate p = T 2Bn2

0/2.
For repulsive interactions, the pressure increases if the density increases, which op-
poses a further increase of the density. For attractive interactions, however, a small
increase in the density leads to a reduction of the pressure in the gas which results
in a further increase of the density.

The conclusion thus appears to be that a Bose-Einstein condensate with attractive
interactions is always unstable and cannot be realized in an experiment. The situ-
ation is actually more interesting. We have just seen that only density fluctuations
with wavenumbers obeying kξ < 1 are unstable, where ξ = 1/

√
16πn0|a|. There-

fore, if we can confine the Bose-Einstein condensate in a box with hard walls of size
L ≡ V 1/3 < πξ , it actually becomes stable, because the unstable long-wavelength
fluctuations are no longer possible due to the small size of the confining box. Since
the density of the Bose-Einstein condensate is given by n0 = N0/L3, the above sta-
bility condition is satisfied if the number of atoms in the condensate is sufficiently
small, i.e.

N0 <
π
16

L
|a| . (11.89)

If the number of atoms is larger than this maximum, the Bose-Einstein condensate
will collapse. Note that the physics here is somewhat analogous to the physics of
white dwarfs and neutron stars which, due to the gravitational attraction, also be-
come unstable and collapse if the total mass of the compact object becomes too
large. In actual experiments ultracold atoms are not trapped in a box, but in an
harmonic oscillator potential. This does not affect our qualitative discussion, but
quantitatively some differences occur, as we now show explicitly.

11.9.1 Effective Action

As just explained, a condensed Bose gas with effectively attractive interactions, i.e.
with a negative scattering length a, has the tendency to collapse to a high-density
state [72] such that the most important question in this context is if a condensate
can exist sufficiently long to be experimentally observed. To address this question,
we neglect the variation of the noncondensate density over the size of the conden-
sate [73, 74] and we use the functional-integral formalism to describe the quantum
dynamics of the collapse. We start from the grand-canonical partition function

Z(µ) =
∫

d[φ ∗]d[φ ] exp
{
−1

h̄
S[φ ∗,φ ]

}
, (11.90)

with the Euclidian action
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S[φ ∗,φ ] =
∫ h̄β

0
dτ

∫
dx φ ∗(x,τ)

{
h̄

∂
∂τ
− h̄2∇∇∇2

2m

+ V ex(x)−µ +
2πah̄2

m
|φ(x,τ)|2

}
φ(x,τ) . (11.91)

Next, we introduce explicitly the density fluctuations ρ(x,τ) and the phase fluctua-
tions θ(x,τ) of the condensate by performing the canonical variable transformation
[55]

φ(x,τ) =
√

ρ(x,τ)eiθ(x,τ)

in the functional integral for the partition function. As a result, we find

Z(µ) =
∫

d[ρ ]d[θ ] exp
{
−1

h̄
S[ρ,θ ; µ]

}
, (11.92)

with

S[ρ ,θ ; µ ] =
∫ h̄β

0
dτ

∫
dx

{
ih̄ρ(x,τ)

∂θ(x,τ)
∂τ

+
h̄2ρ(x,τ)

2m
(∇∇∇θ(x,τ))2 (11.93)

+
h̄2

8mρ(x,τ)
(∇∇∇ρ(x,τ))2 +(V ex(x)−µ)ρ(x,τ)+

2πah̄2

m
ρ2(x,τ)

}
.

We notice that this action is quadratic in the phase fluctuations, such that the field
θ(x,τ) can be integrated out exactly.

Compared to ordinary Gaussian integrals there is, however, one slight compli-
cation, which is associated with the fact that θ(x,τ) is a phase variable. This im-
plies that the periodicity of the original field φ(x,τ) only constraints the phase field
θ(x,τ) to be periodic up to a multiple of 2π . To evaluate the grand-canonical parti-
tion function in (11.92) we must therefore first integrate over all fields θ(x,τ) that
obey the boundary condition θ(x, h̄β ) = θ(x,0)+ 2π j and subsequently sum over
all possible integers j. Because 2π j is independent of x, it affects only the zero-
momentum part of θ(x,τ). Therefore, we start with evaluating the sum

∑
j

∫ θ0(h̄β )=θ0(0)+2π j
d[θ0] exp

{
−i

∫ h̄β

0
dτ N0(τ)

∂θ0(τ)
∂τ

}
,

where N0(τ)≡ ∫
dx ρ(x,τ). After performing a partial integration in the exponent,

we may carry out the path integration over θ0(τ) to obtain

∑
j

e2πiN0 jδ
[

∂N0(τ)
∂τ

]
.

As expected, the integration over the global phase of the condensate leads to the
constraint of a constant number of condensate particles, i.e. N0(τ) = N0. Moreover,
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we have ∑ j e2πiN0 j = ∑ j δ (N0− j), which restricts the number of condensate parti-
cles to an integer. As a result we find that the integration over the zero-momentum
part of ρ(x,τ) is only a sum over the number of condensate particles, such that

Z(µ) = ∑
N0

eβ µN0ZN0 . (11.94)

Here, we introduced the canonical partition function of the condensate, which is
apparently equal to the functional integral

ZN0 =
∫

d[ρ]d[θ ] exp
{
−1

h̄
S[ρ ,θ ;0]

}
(11.95)

over all the nonzero momentum components of the density and phase fields.
Now the integration over the nonzero momentum components of the phase field

θ(x,τ) is readily performed, because it involves an ordinary Gaussian integral. In-
troducing the Green’s function for the phase fluctuations G(x,x′;ρ) by

h̄
m

(
(∇∇∇ρ) ·∇∇∇+ρ∇∇∇2

)
G(x,x′;ρ) = δ (x−x′) , (11.96)

we obtain the effective action for the density field

Seff[ρ] =
∫ h̄β

0
dτ

∫
dx

∫
dx′

{
− h̄

2
∂ρ(x,τ)

∂τ
G(x,x′;ρ)

∂ρ(x′,τ)
∂τ

}

+
∫ h̄β

0
dτ

∫
dx

{
h̄2

8mρ(x,τ)
(∇∇∇ρ(x,τ))2 +V ex(x)ρ(x,τ)

+
2πah̄2

m
ρ2(x,τ)

}
+

h̄
2

Tr[log(−G−1)] , (11.97)

where it turns out that it is allowed for our purposes to neglect the last term of the
effective action. Being an action for the collective density fluctuations of the con-
densate, Seff[ρ] also describes the collective modes of the condensate. This is im-
portant for our purposes because we wish to describe how an attractive condensate
collapses, and this is determined by the mode that becomes unstable first. Moreover,
this mode also yields the probability for the collapse, because the energy barrier is
the smallest in the corresponding direction of configuration space.

11.9.2 Breathing Mode

We start our discussion of the collective modes with the ideal Bose gas, i.e. a = 0,
and consider the time-dependent Gaussian profile
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ρ(x;q(τ)) = N0

(
1

πq2(τ)

)3/2

exp
{
− x2

q2(τ)

}
, (11.98)

which we expect to describe a collisionless mode of the condensate, where colli-
sionless refers to the fact that we are considering the noninteracting limit. This is
expected, because we can make a density fluctuation by taking one particle from the
condensate and putting it in one of the excited states of the external potential. The
corresponding density fluctuation then obeys in real time

δρ(x, t) ∝ e−i(εn−ε0)t/h̄χ∗n(x)χ0(x) . (11.99)

For the experimentally relevant case of an isotropic harmonic oscillator of strength
h̄ω it is convenient to use the two angular-momentum quantum numbers ` and m,
and the quantum number n that counts the number of nodes in the radial wavefunc-
tion Rn`(r). The density fluctuation then becomes

δρ(x, t) ∝ e−i(2n+`)ωtRn`(r)Y ∗`m(x̂)
e−r2/2l2

(πl2)3/4 , (11.100)

with r = |x| and with

εn`m− ε000 = (2n+ `)h̄ω (11.101)

the excitation energy and l = (h̄/mω)1/2 the size of the condensate wavefunction.
Expanding the Gaussian profile in (11.98) around the ground-state density profile,
which boils down to substituting q(τ) = l +δq(τ), we find that

δρ(x,τ) =−
√

6N0
δq(τ)

l
R10(r)Y ∗00(x̂)

e−r2/2l2

(πl2)3/4 , (11.102)

which has a similar form to (11.100) for the case that (n`m) = (100).
To show that the Gaussian profile from (11.98) indeed describes a breathing mode

with a frequency equal to 2ω , as expected from (11.100), we evaluate the effective
action Seff[ρ ] and in particular the Green’s function G(x,x′;ρ) for the Gaussian
density profile. Substituting (11.98) into (11.96) leads to

G(x,x′;ρ) = G(x,x′;q)/ρ(x′;q), (11.103)

where
h̄
m

{
− 2

q2 x ·∇∇∇+∇∇∇2
}

G(x,x′;q) = δ (x−x′) . (11.104)

To solve the latter equation, we first consider the eigenvalue problem
{

∇∇∇2− 2r
q2

∂
∂ r

}
ξ (x) = λξ (x) , (11.105)
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which upon substitution of

ξn`m(x) = ξn`(r)
er2/2q2

r
Y`m(x̂) (11.106)

yields the radial Schrödinger equation for an isotropic harmonic oscillator with fre-
quency ωq = h̄/mq2, i.e.

λn`ξn`(r) = (11.107)

−2m
h̄2

{
− h̄2

2m
∂ 2

∂ r2 +
1
2

mω2
q r2 +

h̄2`(`+1)
2mr2 − 3

2
h̄ωq

}
ξn`(r).

The desired eigenfunctions are therefore

ξn`m(x;q) = ψn`m(x)er2/2q2
, (11.108)

where ψn`m(x) are the harmonic oscillator states with energies (2n + `+ 3/2)h̄ωq,
so that

λn`(q) =−2(2n+ `)/q2. (11.109)

Introducing also

ξ̄n`m(x;q)≡ ψ∗
n`m(x)e−r2/2q2

, (11.110)

we find that the Green’s function G(x,x′;q) is given by

G(x,x′;q) = ∑
n`m

′ξn`m(x;q)
m

h̄λn`(q)
ξ̄n`m(x′;q) , (11.111)

where the primed sum means that (n`m) = (000) is excluded. This is because
the corresponding eigenfunction ξ000(x;q) is a constant and does not contribute to
G(x,x′;ρ), which is defined as the Green’s function for all phase fluctuations with
nonvanishing momenta.

Putting everything together, we ultimately find that the dynamics of the collective
variable q(τ) is determined by the action

Seff[q] =
∫ h̄β

0
dτ

{
3mN0

4

(
dq
dτ

)2

+N0

(
3h̄2

4mq2 +
3
4

mω2q2
)}

≡
∫ h̄β

0
dτ

{
1
2

m∗
(

dq
dτ

)2

+V (q)

}
, (11.112)

which is equivalent to the action of a particle with effective mass m∗ = 3mN0/2 in
a potential
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V (q) = N0

(
3h̄2

4mq2 +
3
4

mω2q2
)

. (11.113)

This potential has a minimum for q = l, around which it is expanded as

V (q)' 3
2

N0h̄ω +
1
2

m∗(2ω)2(δq)2 , (11.114)

so that the Gaussian profile indeed describes a breathing mode with frequency 2ω
around an equilibrium density profile that is given by

ρ(x; l) = N0|ψ000(x)|2. (11.115)

11.9.3 Metastability of the Condensate

The next question is how the interactions affect this result. It turns out that for the
Gaussian density profile of (11.98), the action Seff[q] is again that of a particle with
effective mass m∗ = 3mN0/2, but now in the potential [75]

V (q) = N0

(
3h̄2

4mq2 +
3
4

mω2q2− N0√
2π

h̄2|a|
mq3

)
. (11.116)

The most important feature of this potential is that it is unbounded from below,
because V (q) → −∞, if q ↓ 0. Hence, the condensate always has the tendency to
collapse to the high-density state limq↓0 ρ(x;q) = N0δ (x). However, if the number
of condensate particles is sufficiently small, or more precisely if [76]

N0 <
2
√

2π
55/4

l
|a| ' 0.68

l
|a| , (11.117)

then the condensate has to overcome a macroscopic energy barrier before it can col-
lapse. Under these conditions, the condensate is really metastable and can in prin-
ciple be observed experimentally. The most important question is how metastable
the condensate actually is. Within the Gaussian approximation this question can be
readily answered, because the dynamics of the condensate is then equivalent to the
dynamics of a particle in an unstable potential. The corresponding tunneling rate can
thus be evaluated using the WKB expression for the penetration through a (macro-
scopic) energy barrier, while the rate of decay due to thermal fluctuations is given
by [77]

Γ =
ω
2π

e−{V (qmax)−V (qmin)}/kBT , (11.118)

where qmin and qmax denote the position of the metastable minimum and the unstable
maximum of V (q) respectively. For realistic conditions of experiments with atomic
7Li [78], it turns out that the thermal rate is dominant over the tunneling rate, and
that a small condensate can indeed live long enough to be observed.
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11.10 Problems

Exercise 11.1. Gross-Pitavskii Equation
Using a variational approach, we may show that the Gross-Pitaevskii equation is
equivalent to the Hartree approximation. To this end, we assume that the ground
state wavefunction of the system is a product of one-particle states χ ′0 with an energy
ε ′0, which we both want to determine variationally. We thus consider the many-body
groundstate |0;N〉, where all atoms are in the same state χ ′0 with energy ε ′0.
a) Calculate the average energy 〈0;N|Ĥ|0;N〉 for this ground state, where Ĥ is the
Hamiltonian from (6.29).
b) Minimize the average energy by introducing the Lagrange multiplier ε ′0 that takes
into account the fact that the state χ ′0 should be properly normalized. In this manner,
you arrive at a Schrödinger-like equation that determines the one-particle wavefunc-
tion and energy.
c) By introducing φ0 =

√
N0χ ′0 and using V (x−x′) =V0δ (x−x′), show that you ob-

tain the Gross-Pitaevskii equation. Do you understand why ε ′0 should be interpreted
as the chemical potential?

Exercise 11.2. Show that the exact normal and anomalous Green’s functions for a
homogeneous Bose-Einstein condensed gas obey G22(k, iωn) = G11(−k,−iωn) and
G12(k, iωn) = G∗

21(−k,−iωn). What do these relations imply for the exact normal
and anomalous selfenergies?

Exercise 11.3. Determine the dispersion relation h̄ωk for the collective excitations
of the homogeneous Bose gas with Popov theory. Is it gapless?

Exercise 11.4. Charged Bose Gas
Consider a charged gas of 〈N〉 spinless bosons in an external trapping potential
V ex(x). The action for this gas at temperature T = 1/kBβ and chemical potential µ
is given by

S[φ ∗,φ ] =
∫ h̄β

0
dτ

∫
dx φ ∗(x,τ)

{
h̄

∂
∂τ
− h̄2∇∇∇2

2m
+V ex(x)−µ

}
φ(x,τ)

+
1
2

∫
dτ

∫
dx

∫
dx′ φ ∗(x,τ)φ ∗(x′,τ)V (x−x′)φ(x′,τ)φ(x,τ) ,

(11.119)

where m is the mass of the bosons and V (x− x′) = e2/4πε0|x− x′| the Coulomb
potential between the particles. Note that this is a long-range potential that cannot
be approximated by a delta function.
(a) We first consider the gas at sufficiently low temperatures that we can apply
the Bogoliubov approximation to the gas. Put φ(x,τ) = φ0(x) + φ ′(x,τ), where
φ0(x) ≡ 〈φ(x,τ)〉 is the condensate wavefunction. Determine from the above ac-
tion the Gross-Pitaevskii equation for the condensate wavefunction.
(b) At higher temperatures, we have to use the Popov approximation. Determine the
Gross-Pitaevskii equation for the condensate wave function in this case. Express the
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answer in terms of the single-particle density matrix n′(x,x′) ≡ 〈φ ′∗(x,τ)φ ′(x′,τ)〉
of the fluctuations, i.e. of the thermal particles that are not in the condensate.
Now we consider the homogeneous case, for which the gas is in a box with volume
V . In this case, we can make use of Fourier transformation. In particular, we have
for the Coulomb potential that V (k) = e2/ε0k2.
(c) Determine now the Bogoliubov dispersion h̄ωk of the excitations of the Bose-
Einstein condensed gas, by considering the Gaussian (quadratic) fluctuations around
φ0(x). Sketch the behaviour of this dispersion as a function of momentum h̄k.
(d) Can you physically understand your result for k = 0?

Exercise 11.5. Supersymmetric Bose-Fermi Mixture
Consider an interacting mixture of spinless fermions and bosons. The fermions are
described by the field operator ψ̂(x) and the bosons by the field operator φ̂(x). The
Hamiltonian for this system is given by

Ĥ =
∫

dx φ̂ †(x)
{
− h̄2

2m
∂ 2

∂x2 −µ
}

φ̂(x)+
∫

dx ψ̂†(x)
{
− h̄2

2m
∂ 2

∂x2 −µ
}

ψ̂(x)

+
U
2

∫
dx

{
φ̂ †(x)φ̂(x)+ ψ̂†(x)ψ̂(x)

}2
,

where m is the mass of both the fermions and the bosons and U gives the interaction
strength. Consider first the noninteracting case, i.e. U = 0.
a) Perform a Fourier transform of all the field operators and determine the dispersion
relations εB,F

k for the bosons and the fermions, respectively. If the dispersions of the
bosons and fermions are the same, then the mixture is supersymmetric. Is that the
case here?

Consider now the case with interactions, i.e. U 6= 0. Assume that µ > 0, so we
have a Bose-Einstein condensation of the bosons, which we are going to treat in the
Bogoliubov approximation.
(b) Give the action corresponding to the above Hamiltonian and determine the ex-
pression for 〈φ〉 in the Bogoliubov approximation, which for the present case means
that only terms up to quadratic order in both the bosonic fluctuation fields and the
fermionic fields are considered.
(c) Determine also the Green’s functions GB,F of the bosons and fermions in the
Bogoliubov approximation.
(d) Using the result obtained in the previous question, derive the dispersion rela-
tions of the bosons and the fermions. Are the dispersions gapped? Is the system still
supersymmetric?
(e) Reconsider question (c), but now treat the fermions in the Hartree-Fock approx-
imation. How are the results for 〈φ〉 and the dispersions changed?

Exercise 11.6. Condensate in a Harmonic Trap
For very low temperatures, the Bose-Einstein condensate wavefunction φ0(x) is the
solution of the Gross-Pitaevskii equation
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{
− h̄2∇∇∇2

2m
+V ex(x)+T 2B|φ0(x)|2

}
φ0(x) = µφ0(x), (11.120)

where the condensate wavefunction φ0(x) is normalized to the number of conden-
sate atoms N0. This is a nonlinear equation, which is in general hard to solve analyt-
ically. However, there are certain limits, where analytic expressions can be obtained.
We want to solve this equation for the case of the harmonic potential

V ex(x) =
1
2

mω2(x2 + y2 + z2). (11.121)

a) Suppose that the gas is weakly interacting, such that we can neglect the interaction
term. Then the Gross-Pitaevskii equation reduces to the Schrödinger equation for a
three-dimensional harmonic oscillator. Solve the Gross-Pitaevskii equation for this
case and give the condensate wavefunction. What is the chemical potential µ? Can
you understand your result? Does the condensate size depend on the number of
condensate atoms? Give the physical reason for your answer.
b) For a weakly-interacting gas, the interaction term can be treated in perturbation
theory. Calculate the first-order correction to the chemical potential. What is the
physical interpretation of this correction term?
c) When the gas is strongly interacting, the kinetic term −h̄2∇∇∇2/2m can be ne-
glected. Solve the Gross-Pitaevskii equation in this approximation and prove that
the condensate density can be written as

n0(x) = φ ∗0 (x)φ0(x) =

{
15N0
8πR3

(
1− r2

R2

)
if r ≤ R;

0 if r > R.
(11.122)

This is called the Thomas-Fermi profile and R is called the Thomas-Fermi radius.
d) Express the Thomas-Fermi radius R and the chemical potential µ in terms of
the number of condensate atoms N0 and the interaction strength T 2B. What do you
expect for the dependence of R and µ as a function of N0?
c) Give an estimate for the magnitude of the kinetic term in the Gross-Pitaevskii
equation within the Thomas-Fermi approximation. This term should be small com-
pared to the interaction term. Use this to prove that the Thomas Fermi approximation
is valid if the number of condensate atoms obeys

N0 À h̄2R
mT 2B . (11.123)

Additional Reading

• M. Inguscio, S. Stringari, and C. E. Wieman, Eds., Bose-Einstein Condensa-
tion in Atomic Gases, Proceedings of the International School of Physics Enrico
Fermi, Course CXL, (IOS, Amsterdam, 1999), and references therein.
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• F. Dalfolvo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71,
463 (1999) and references therein.

• A. J. Leggett, Rev. Mod. Phys. 73, 307 (2001) and references therein.
• C.J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases, (Cam-

bridge University, Cambridge, 2002).



Chapter 12
Condensation of Fermionic Pairs

Our present understanding of superconductivity has arisen from
a close interplay of theory and experiment. It would have been
very difficult to have arrived at the theory by purely deductive
reasoning from the basic equations of quantum mechanics. Even
if someone had done so, no one would have believed that such
remarkable properties would really occur in Nature.
– John Bardeen

In this chapter, we discuss the many-body theory for fermions with an attractive in-
teraction. We focus in particular on the phase transition to the superfluid state. To
this end, we use the functional formalism to elegantly incorporate the Bardeen-
Cooper-Schrieffer order parameter into our theory by means of the Hubbard-
Stratonovich transformation. The traditional approach used by Bardeen, Cooper,
and Schrieffer, which is based on a variational wavefunction to minimize the second-
quantized Hamiltonian for interacting fermions, has been left as Exercise 6.6. We
determine the critical temperature, the gapped quasiparticle dispersion and the ther-
modynamic potential of the superfluid state with the use of mean-field theory. Since
the interatomic interaction between fermionic atoms is precisely tunable with the
use of a Feshbach resonance, which is discussed in more detail in Chap. 17, it turns
out to be possible to study both experimentally and theoretically a crossover be-
tween a Bardeen-Cooper-Schrieffer (BCS) superfluid and a Bose-Einstein conden-
sate (BEC) of diatomic molecules. This is the last topic of the chapter.

12.1 Introduction

Two identical fermions cannot occupy the same quantum state due to the Pauli prin-
ciple. As a result, the ideal Fermi gas does not undergo Bose-Einstein condensation
and form a superfluid state, unlike the ideal Bose gas. However, in the presence of an
(effective) attractive interaction between the fermions, no matter how weak, the be-
havior of the many-body Fermi gas changes drastically. The physical reason for this
change was first pointed out by Cooper, who showed that in the presence of a filled
Fermi sea it is actually energetically favorable for two electrons that interact via an
attractive phonon-mediated interaction to form a bound pair, also called a Cooper
pair. As a result, the Fermi sea turns out to be unstable against the formation of a
new many-body ground state consisting, loosely speaking, of a Bose-Einstein con-
densate of Cooper pairs. This many-body ground state was introduced by Bardeen,
Cooper, and Schrieffer as

273
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|ΨBCS〉= ∏
k

{
uk + vkψ̂†

k,↑ψ̂
†
−k,↓

}
|0〉, (12.1)

which shows explicitly that the Cooper pairs form between electrons with opposite
momentum and spin. This ansatz formed the basis of their celebrated microscopic
theory of ordinary superconducting metals, which has become known as Bardeen-
Cooper-Schrieffer (BCS) theory. Almost fifty years after the discovery of super-
conductivity by Kamerlingh Onnes in 1911, BCS theory was finally able to mi-
croscopically account for the second-order phase transition to the superconducting
phase and make quantitative statements about the critical temperature. Furthermore,
the theory could explain the Meissner effect that an applied magnetic field is com-
pletely expelled from the interior of the superconductor. Another great success was
the derivation of the observed energy gap in the single-particle excitation spectrum,
and the associated exponentially suppressed specific heat below the critical temper-
ature. Much later, in 1986, it was discovered that certain ceramic materials become
superconducting at temperatures much higher than metals. Critical temperatures of
above 100 K have now been observed. However, the properties of these materials
are not described with ordinary BCS theory, and the microscopic mechanism behind
this high-temperature superconductivity is arguably the biggest unsolved problem in
condensed-matter physics.

In recent years, the equivalent of the BCS transition has also been observed in
neutral ultracold atomic Fermi gases with an attractive s-wave interaction, lead-
ing to a fermionic superfluid state consisting of paired atoms. The big excitement
in the study of atomic Fermi gases is caused by the impressive amount of exper-
imental control that is achievable in manipulating these fundamental many-body
quantum gases. Various important parameters, such as the interaction strength be-
tween the fermions, the experienced external potential and the number of fermions
in each quantum state, are under full experimental control. Note that this is not the
case in a typical condensed-matter system, such as an ordinary metal or a high-
temperature superconductor, where these parameters are unchangeable properties
of the material being used. As a result, fundamental questions about the properties
of strongly-correlated quantum many-body systems are systematically addressable
with unprecedented experimental detail. This provides accurate tests for quantum
many-body theory.

12.2 Thouless Criterion

To study BCS theory we start from the action for interacting fermions in two differ-
ent hyperfine states, which we label with a spin index α =↑,↓. Since the hyperfine
space is now only two dimensional, it is often also referred to as an effective or
pseudo spin-1/2 space. We consider atomic fields φα(x,τ) that interact only via
s-wave interactions, because this is the dominant scattering mechanism at the low
momenta or ultralow temperatures of interest, as explained in Sect. 10.3.1. It is im-
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portant to note that s-wave scattering only occurs between two identical fermions if
they are in different spin states. This is most easily understood by considering the
two-particle scattering problem, where for identical fermions the total wavefunction
describing the scattering process must be antisymmetric. However, the spatial part
of a wavefunction with zero angular momentum is symmetric, such that in order
to obtain an antisymmetric wavefunction we should have antisymmetry in the spin
part of the wavefunction. With two fermions in the same spin state it is impossible
to make an antisymmetric spin state, which implies that two fermionic particles in
identical spin states cannot interact via s-wave scattering and obey the Pauli princi-
ple at the same time. In the case of two fermionic particles in different spin states it
is of course possible to make an antisymmetric combination, and s-wave scattering
is then consequently allowed. From the above discussion, it thus follows that the
interacting fermionic action is given by

S[φ ∗,φ ] = ∑
α=↑,↓

∫ h̄β

0
dτ

∫
dx φ ∗α(x,τ)

{
h̄

∂
∂τ
− h̄2∇∇∇2

2mα
−µα

}
φα(x,τ)

+
∫ h̄β

0
dτ

∫
dx V0φ ∗↑ (x,τ)φ ∗↓ (x,τ)φ↓(x,τ)φ↑(x,τ) , (12.2)

where µα is the chemical potential for particles with mass mα in spin state |α〉, while
the short-ranged interaction V0δ (x−x′) was discussed in more detail in Sect. 10.4.
In this chapter we discuss interacting particles with identical masses, so m↑ = m↓ =
m, and we consider an equal amount of particles in each hyperfine state, which is
achieved by considering equal chemical potentials µ↑ = µ↓ = µ . In Sect. 14.3.1 we
then discuss the interesting consequences of an imbalance in the spin populations,
which turns out to have profound effects on the Cooper pairing that preferably takes
place for equal spin densities. Moreover, the case of unequal masses is relevant for
strongly-interacting quarks in neutron stars, which are also believed to undergo a
transition to the superfluid paired state. However, the latter case is beyond the scope
of this text. In the first instance we focus on the homogeneous case, while we later
show how the effect of the external trapping potential is conveniently incorporated
by using the local-density approximation which we encountered in Sect. 4.3.1.2.

As mentioned in the previous section, the ground state for the noninteracting
Fermi gas, i.e. the filled Fermi sea, is unstable towards a nontrivial many-body
ground state in the presence of an attractive interaction V0 < 0. To discuss this
instability more quantitatively, we consider the many-body T matrix, which was
introduced in Sect. 10.4 as the many-body generalization of the two-body T ma-
trix discussed in Sect. 10.3.1. There, it was shown that for large and positive s-
wave scattering length a, the two-body T -matrix from (10.38) has a pole located at
z =−h̄2/ma2 which then corresponded precisely to the energy of a two-body bound
state in the interaction potential. This observation may be generalized to the many-
body case, such that the onset of a pole in the many-body T matrix corresponds to
long-lived pairs occurring in the system. This is also known as the Thouless cri-
terion. We apply the Thouless criterion to the above described system of effective
spin-1/2 fermions interacting via s-wave scattering with a negative scattering length
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a, such that the two-body interaction potential does not give rise to a bound state.
We recall that the inverse many-body T -matrix is given by (10.59), which for the
fermionic case yields

1
T (K, iΩn)

=
m

4πah̄2 −
1
V ∑

k

{
1−NFD(εK/2+k)−NFD(εK/2−k)

ih̄Ωn− εK/2+k− εK/2−k +2µ
+

1
2εk

}
, (12.3)

where K is the center-of-mass momentum of the scattering particles, iΩn the corre-
sponding bosonic Matsubara frequencies, and NFD(εk) = 1/{exp(β (εk− µ))+ 1}
the Fermi-Dirac distribution. To study the possibility of a pole at zero frequency, we
note that the right-hand side is maximal for K = 0, such that the pole occurs first in
the many-body T -matrix, when

1
T (0,0)

= 0 =
m

4πah̄2 +
1
V ∑

k

{
1−2NFD(εk)

2(εk−µ)
− 1

2εk

}
, (12.4)

which then, according to the Thouless criterion, corresponds to a new bound state
that has become accessible to the interacting fermions. In Sect. 12.4, we find that
the above equation indeed gives the critical temperature for the transition to the
superfluid state. Note that the pairing of fermions and the occurrence of a pole in
the many-body T matrix is truly a many-body effect induced by the presence of the
Fermi sea, in the sense that the two-body limit of the T matrix does not yield a pole,
since the considered two-body potential has no bound states.

12.3 Hubbard-Stratonovich Transformation

BCS theory can be physically interpreted as the Bose-Einstein condensation of
Cooper pairs, meaning that the corresponding order parameter is proportional to
the expectation value 〈φ↓(x,τ)φ↑(x,τ)〉 in analogy to the order parameter 〈φ(x,τ)〉
for Bose-Einstein condensation. For the transition to the BCS state we require that
the two-body interaction potential is attractive, because otherwise the formation of
pairs would not be energetically favorable. From now on, we therefore consider an
attractive potential. Note that this does not necessarily mean that the corresponding
scattering length a needs to be negative. In Sect. 10.3.1, we saw that attractive po-
tentials can also give rise to a positive scattering length when there is a two-body
bound state present in the potential. To introduce the BCS order parameter elegantly
into our theory, we use the Hubbard-Stratonovich transformation, with which we in-
troduce a complex pairing field ∆(x,τ) that on average is related to the expectation
value of φ↓(x,τ)φ↑(x,τ) through

〈∆(x,τ)〉= V0〈φ↓(x,τ)φ↑(x,τ)〉. (12.5)

In analogy with the discussion of the Hubbard-Stratonovich transformation for the
Hartree-Fock theory in Sect. 8.6, this is achieved by inserting the following identity
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into the integrand of the partition function

1 =
∫

d[∆∗]d[∆] exp
{

1
h̄

(
∆−V0φ↓φ↑|V−1

0 |∆−V0φ↓φ↑
)}

, (12.6)

where the measure contains conveniently the factor exp{Tr[log(−V−1
0 /h̄)]} that

cancels the outcome of the functional integral and where the inner product in the
exponent is a short hand for

∫ h̄β

0
dτ

∫
dx

(
∆∗(x,τ)−φ ∗↑ (x,τ)φ ∗↓ (x,τ)V0

)
V−1

0
(
∆(x,τ)−V0φ↓ (x,τ)φ↑ (x,τ)

)

as explained in Sect. 7.2.3.
As a result, upon inserting the Hubbard-Stratonovich transformation into the par-

tition sum, the fourth-order term in the fermionic fields coming from the transforma-
tion exactly cancels the interaction term from the original action S[φ ∗,φ ] in (12.2).
The resulting action S[∆∗,∆,φ ∗,φ ] determining the partition function then depends
only quadratically on the atomic fields φα(x,τ). Explicitly, it is given by

S[∆∗,∆,φ ∗,φ ] =−
∫ h̄β

0
dτ

∫
dx
|∆(x,τ)|2

V0
(12.7)

−h̄ ∑
α=↑,↓

∫ h̄β

0
dτ

∫
dx

∫ h̄β

0
dτ ′

∫
dx′ φ ∗α(x,τ)G−1

0;α(x,τ;x′,τ ′)φα(x′,τ ′)

+
∫ h̄β

0
dτ

∫
dx

{
φ ∗↑ (x,τ)φ ∗↓ (x,τ)∆(x,τ)+∆∗(x,τ)φ↓(x,τ)φ↑(x,τ)

}
,

where the noninteracting Green’s function for atoms with spin index α =↑,↓ is
given by

G−1
0;α(x,τ;x′,τ ′) =−1

h̄

{
h̄

∂
∂τ
− h̄2∇∇∇2

2m
−µ

}
δ (x−x′)δ (τ− τ ′). (12.8)

We can write the action more compactly as a matrix multiplication, namely

S[∆∗,∆,φ ∗,φ ] =−
∫ h̄β

0
dτ

∫
dx
|∆(x,τ)|2

V0
(12.9)

−h̄
∫ h̄β

0
dτ

∫
dx

∫ h̄β

0
dτ ′

∫
dx′

[
φ ∗↑ (x,τ),φ↓(x,τ)

] ·G−1 ·
[

φ↑(x′,τ ′)
φ ∗↓ (x

′,τ ′)

]
.

Note that by interchanging the fermionic fields and the corresponding equal-time
limiting procedure, we pick up a constant term as explained in Sect. 11.4. This is
important for determining the thermodynamic potential, such that we discuss this
point more carefully in Sect. 12.7. However, for the present discussion it does not
play a role. Expressing the interacting Green’s function matrix in terms of the non-
interacting part and the selfenergy part, we have
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G−1(x,τ;x′,τ ′) = G−1
0 (x,τ;x′,τ ′)−ΣΣΣ(x,τ;x′,τ ′) (12.10)

where the noninteracting Green’s function matrix G0 yields

G−1
0 (x,τ;x′,τ ′) =

[
G−1

0;↑(x,τ;x′,τ ′) 0
0 −G−1

0;↓(x
′,τ ′;x,τ)

]
. (12.11)

Note the minus sign in the G−1
0;22 component, which comes about from interchanging

the fermionic Grassmann variables, such that it is absent in the bosonic counterpart
from (11.29). The selfenergy is then given by

ΣΣΣ(x,τ;x′,τ ′)≡
[

Σ11 Σ12
Σ21 Σ22

]
=

1
h̄

[
0 ∆(x,τ)

∆∗(x,τ) 0

]
δ (x−x′)δ (τ− τ ′) . (12.12)

12.4 Bardeen-Cooper-Schrieffer Theory

Since the action is quadratic in the fermion fields we can integrate them out exactly,
such that we obtain the effective action for the pairing field, given by

Seff[∆∗,∆] =−
∫ h̄β

0
dτ

∫
dx
|∆(x,τ)|2

V0
− h̄Tr[log(−G−1)] . (12.13)

Next, we expand the effective action in powers of ∆(x,τ) by using

G−1 = G−1
0 −ΣΣΣ = G−1

0 (1−G0ΣΣΣ), (12.14)

where the selfenergy is given by (12.12). We use

−h̄Tr[log(−G−1)] =−h̄Tr[log(−G−1
0 )]+ h̄

∞

∑
m=1

1
m

Tr[(G0ΣΣΣ)m] . (12.15)

where the trace is to be taken over real space, imaginary time, and the 2×2 matrix
structure of the Green’s function and the selfenergy, which is also called Nambu
space. Note that the first-order term, m = 1, vanishes because it only gives rise to
off-diagonal terms in the 2×2 matrix G0ΣΣΣ. The second-order term in the expansion
of the logarithm yields

h̄
2

Tr
[
(G0ΣΣΣ)2

]
=

h̄
2

∫ h̄β

0
dτ dτ ′ dτ ′′ dτ ′′′

∫
dx dx′ dx′′ dx′′′ (12.16)

tr
[
G0(x,τ;x′,τ ′)ΣΣΣ(x′,τ ′;x′′,τ ′′)G0(x′′,τ ′′;x′′′,τ ′′′)ΣΣΣ(x′′′,τ ′′′;x,τ)

]
,

where the reduced trace operation tr[. . .] means that we still have to take the trace
over the two-dimensional Nambu space, i.e. we have to sum the diagonal elements
of the 2× 2 matrix G0ΣΣΣG0ΣΣΣ. Substituting the expression for the selfenergy from
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(12.12) and evaluating the trace over Nambu space, we find for the second-order
term

h̄
2

Tr
[
(G0ΣΣΣ)2

]
(12.17)

=
1
h̄

∫ h̄β

0
dτ dτ ′

∫
dx dx′ G0;11(x,τ;x′,τ ′)∆(x′,τ ′)G0;22(x′,τ ′;x,τ)∆∗(x,τ),

where from (12.11) we have that G0;22(x′,τ ′;x,τ) =−G0;↓(x,τ;x′,τ ′). In the same
way, we can also compute the higher-order terms in the expansion, where all the odd
terms are seen to give zero while the even terms lead to higher-order generalizations
of (12.17).

So far we have not made any approximations, since we have performed an exact
rewriting of the partition function with the use of the Hubbard-Stratonovich trans-
formation to the collective ∆(x,τ) field. Considering the Fourier transform ∆(k, iωn)
of ∆(x,τ) we expect physically that the collective paring field with zero-momentum
corresponds to the lowest energy state for the Cooper pairs, because the nonzero
momentum components ∆(k, iωn) describe Cooper pairing with additional kinetic
energy. This zero-momentum pairing field is constant in space. By performing a
fluctuation expansion around the mean-field, i.e. ∆(x,τ) = 〈∆(x,τ)〉+ ∆′(x,τ), we
are in the position to set up a self-consistent mean-field theory for the introduced ex-
pectation value. We then show that by considering a space-independent expectation
value we obtain the functional formulation of the traditional BCS theory, which we
study for the rest of this chapter. Condensates of Cooper pairs with nonzero momen-
tum have also been considered in the literature. Under more exotic circumstances,
for example in the case of low dimensionality and a high population imbalance in
the spin species, such condensates have been theoretically predicted to yield the
groundstate of the quantum system. They are also known as the Fulde-Ferrel [79]
and the Larkin-Ovchinnikov [80] phases. Presently there is much interest to observe
such exotic superfluids experimentally in ultracold atomic Fermi gases, so far with-
out success.

To continue our discussion of BCS theory, we note that for a space and time-
independent collective field ∆ the effective action from (12.13) becomes a ‘free-
energy’ density of the form known from the Landau theory of second-order phase
transitions discussed in Chap. 9. It is given by

fL(|∆|) = α(T )|∆|2 +β (T )|∆|4 + . . . , (12.18)

where the Landau ‘free-energy’ density is related to the effective action via

Seff[∆∗,∆] = h̄βV fL(|∆|), (12.19)

so that the microscopic derivation of the effective action from (12.13) makes it pos-
sible to calculate the coefficients α(T ) and β (T ) in terms of the inverse temperature
β , the chemical potential µ and the interaction parameter V0. Comparing (12.10),
(12.13) and (12.17) with (12.18) and (12.19), we find that the coefficient α(T ) is
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given by

α(T ) = − 1
V0
− 1

h̄2βV

∫ h̄β

0
dτ dτ ′

∫
dx dx′ G0;↑(x,τ;x′,τ ′)G0;↓(x,τ;x′,τ ′)

= − 1
V0
− 1

h̄2βV ∑
n,n′

∑
k,k′

G0;↑(k, iωn)G0;↓(k′, iωn′)δk,−k′δn,−n′

= − 1
V0
− 1

h̄2βV ∑
n

∑
k

−h̄
−ih̄ωn + εk−µ

−h̄
ih̄ωn + εk−µ

, (12.20)

where we substituted the Fourier expansion for the homogeneous noninteracting
Green’s functions, as discussed in Example 7.3, after which the integrals over po-
sition and imaginary time give rise to the Kronecker deltas δk,−k′ and δn,−n′ . Next,
we split the fraction and perform the sum over Matsubara frequencies, giving

α(T ) = − 1
V0
− 1

h̄2βV ∑
k

∑
n

−h̄
2(εk−µ)

{ −h̄eiωnη

−ih̄ωn + εk−µ
+

−h̄eiωnη

ih̄ωn + εk−µ

}

= − 1
V0
− 1

V ∑
k

1
2(εk−µ)

{
1− 2

eβ (εk−µ) +1

}
, (12.21)

where we used (7.31) and the result from Exercise 7.2. As explained in Sect. 10.4,
the interaction parameter V0 is related to the experimentally known s-wave scattering
length a. Using (10.54), we finally arrive at [81]

α(T ) = − m
4πah̄2 −

1
V ∑

k

{
1

2(εk−µ)

(
1− 2

eβ (εk−µ) +1

)
− 1

2εk

}

= − m
4πah̄2 −

1
V ∑

k

[
tanh(β (εk−µ)/2)

2(εk−µ)
− 1

2εk

]
. (12.22)

12.5 Critical Temperature

As explained in Chap. 9, the second-order coefficient α(T ) of the Landau free en-
ergy fL(|∆|) determines the critical temperature for a second-order phase transition.
It is this term that changes sign at the critical temperature, such that the minimum of
the Landau free energy shifts away from zero, yielding a nonzero order parameter
〈∆〉. As a result, the critical temperature kBTc ≡ 1/βc is determined by the condi-
tion α(kBTc) = 0. As we now show, in the weakly-interacting limit when the critical
temperature is low, we can obtain an analytic expression for the critical temperature
from BCS theory. We start with converting the sum on the right-hand side of (12.22)
into an integral such that it becomes
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∫ dk
(2π)3

{
tanh(β (εk−µ)/2)

2(εk−µ)
− 1

2εk

}

=
2
√

2
(2π)2

m3/2

h̄3

∫ ∞

0
dε
√

ε
{

(tanh(β (ε−µ)/2))
2(ε−µ)

− 1
2ε

}

=
mkF

2π2h̄2

∫ ∞

0

√
x dx

{
tanh(y(x−1))

2(x−1)
− 1

2x

}
. (12.23)

Here we introduced x = ε/µ and y = β µ/2, where the latter is a large number for
the present case of interest. Furthermore, for a weakly-interacting Fermi gas near
zero temperature, the chemical potential is well approximated by the Fermi energy
µ ' εF = h̄2k2

F/2m, since the two are equal in the noninteracting zero-temperature
limit as explained in Sect. 4.3.3. Moreover, we have for large y that tanh(y(x−1))'
1−2θ(1−x) with θ(u) the step function, such that θ(u) = 0 for u < 0 and θ(u) = 1
for u > 0.

To further evaluate the integral from (12.23), we first use that
√

x
x−1

=
1√

x+1
+

1
x−1

, (12.24)

such that we have two integrals to perform. The first integral is given by

mkF

2π2h̄2

∫ xM

0
dx

{
tanh(y(x−1))

2(
√

x+1)
− 1

2
√

x

}

' mkF

4π2h̄2

{∫ 1

0
dx

( −1√
x+1

− 1√
x

)
+

∫ xM

1
dx

(
1√

x+1
− 1√

x

)}

=
mkF

2π2h̄2 {−2− log(4)+ log(1+
√

xM)} , (12.25)

where we take the limit xM → ∞ at the end of the calculation, when we have also
taken the other term from (12.23) and (12.24) into account. Then we find that the
above divergent term is exactly cancelled, as is expected, because the original inte-
gral from (12.23) is finite. The other contribution from (12.23) and (12.24) is given
by

mkF

2π2h̄2

∫ xM

0
dx

tanh(y(x−1))
2(x−1)

=
mkF

4π2h̄2

∫ xM−1

−1
dx

tanh(yx)
x

, (12.26)

which we can further evaluate by using
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∫ xM−1

−1
dx

tanh(yx)
x

=
∫ 1

0
dx

tanh(yx)
x

+
∫ xM−1

0
dx

tanh(yx)
x

= log(xM−1)−
∫ 1

0

y log(x)dx
cosh2(yx)

−
∫ xM−1

0

y log(x)dx
cosh2(yx)

= log(xM−1)−
∫ y

0

log(z/y)dz
cosh2(z)

−
∫ ∞

0

log(z/y)dz
cosh2(z)

= log(xM−1)+2{γ− log(π/4y)}, (12.27)

where we have used partial integration and the result from the standard integral∫ ∞
0 dz log(z/y)/cosh2(z) = log(πe−γ/4y) and γ = 0.5772 is Euler’s constant. Note

that in the last step we also used that for large y it is allowed to extend the range of
the integral to infinity, since the integrand’s tail is exponentially suppressed.

The critical temperature Tc then follows from the condition α(Tc) = 0, such that
from (12.22), (12.25), (12.26) and (12.27) we obtain that

− m
4πah̄2 =

mkF

2π2h̄2

(
−2+ log4− log(1+

√
xM)+ log(

√
xM−1)+ γ− log(π/4y)

)

=
mkF

2π2h̄2 (−2+ log4+ γ− log(π/2βcεF)) , (12.28)

where we finally took the limit xM → ∞. The above equation can be solved for Tc,
giving in the case of a small negative scattering length a the analytic result

Tc =
8
π

εF

kB
eγ−2e−π/2kF|a|. (12.29)

Note that at various moments during the calculation we assumed that the tempera-
ture was low, such that β µ was a large number and the Fermi distribution could be
approximated by a step function. From (12.29) we see that this working assump-
tion is justified in the case of weak interactions |a| → 0, because then the criti-
cal temperature becomes exponentially small. In the weakly-interacting limit we
can also ignore selfenergy effects, such that the zero-temperature ideal gas result
µ = h̄2(3π2n)2/3/2m ≡ εF is justified to a very good approximation, where n is
the total number of particles. An effect that cannot be ignored, even in the weakly-
interacting limit, is the screening of the interaction by the bubble diagram which we
encountered in Sect. 8.7. It turns out that this effect reduces the critical tempera-
ture by another factor of 2.2, which is also called the Gor’kov correction [82, 83].
In Sect. 14.3.1 we find that screening effects naturally enter the treatment of the
interacting Fermi gas with the use of renormalization-group techniques, such that
we then come back to the Gor’kov correction. The powerful renormalization-group
approach can also be applied to the strongly-interacting regime, when the critical
temperature becomes on the order of εF, and when selfenergy effects are important.

It is left as an exercise to calculate the coefficient of the fourth-order term β (T )
in the expansion for the Landau free energy in the weakly-interacting limit. It is
given by
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β (T ) =
D(εF)

V
7ζ (3)

16(πkBTc)2 , (12.30)

where D(εF) = mkFV/(2π2h̄2) is the density of states for a single spin state at the
Fermi-energy εF = h̄2k2

F/2m. As a result, β (T ) is always positive, validating our
discussion of a second-order phase transition.

12.6 Gap Equation

To perform a fully selfconsistent BCS theory, we can perform a treatment analogous
to the treatment for Bose-Einstein condensation of Sect. 11.3.1, where we start with
the fluctuation expansion ∆(x,τ) = ∆+∆′(x,τ) and demand that the terms linear in
the fluctuations are zero to obtain a selfconsistent equation for ∆. If the linear terms
in the fluctuations are zero then we have performed the fluctuation expansion around
the minimum of the action, giving rise to the correct equilibrium expectation value.
To this end, it is useful to slightly reformulate the Green’s function from (12.10) as

G−1(x,τ;x′,τ ′) = G−1
∆ (x,τ;x′,τ ′)−ΣΣΣ∆(x,τ;x′,τ ′), (12.31)

where the BCS propagator is defined through

G−1
∆ (x,τ;x′,τ ′) = (12.32)[

G−1
0;↑(x,τ;x′,τ ′) −∆δ (x−x′)δ (τ− τ ′)/h̄

−∆∗δ (x−x′)δ (τ− τ ′)/h̄ −G−1
0;↓(x

′,τ ′;x,τ)

]
,

whereas the new selfenergy matrix now only contains the fluctuations of the pairing
field

ΣΣΣ∆(x,τ;x′,τ ′) =
1
h̄

[
0 ∆′(x,τ)

∆′∗(x,τ) 0

]
δ (x−x′)δ (τ− τ ′) . (12.33)

Following the same lines as the discussion from Sect. 12.4, we find from the
action of (12.13) that the linear terms in the fluctuations are given by

S[∆′∗,∆′] = h̄Tr[G∆ΣΣΣ∆]−
∫ h̄β

0
dτ

∫
dx

∆′(x,τ)∆∗+∆′∗(x,τ)∆
V0

. (12.34)

The condition for the terms linear in ∆′∗(x,τ) to vanish, yields therefore

∫ h̄β

0
dτ

∫
dx

{
− ∆

V0
+G∆;12(x,τ;x,τ)

}
∆′∗(x,τ) = 0 (12.35)

with a similar equation for ∆′(x,τ). From (12.35), we thus find the following self-
consistency equation for the BCS order parameter ∆≡ 〈∆(x,τ)〉
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∆ = V0G∆;12(x,τ;x,τ) = V0〈φ↓(x,τ)φ↑(x,τ)〉, (12.36)

which we can also write as

∆ =
V0

h̄βV ∑
k,n

G∆;12(k, iωn), (12.37)

where we still have to determine G∆;12(k, iωn). This equation is also known as the
BCS gap equation, for reasons which becomes clear soon. The off-diagonal element
G∆;12(k, iωn) can be obtained by inverting the inverse BCS propagator in Fourier
space, given by

−h̄G−1
∆ (k, iωn) =

[−ih̄ωn + εk−µ ∆
∆∗ −(ih̄ωn + εk−µ)

]
, (12.38)

which gives rise to

G∆(k, iωn) =
−h̄

(h̄ωn)
2 +(h̄ωk)2

[
ih̄ωn + εk−µ ∆

∆∗ ih̄ωn− (εk−µ)

]
, (12.39)

where we also introduced the notation h̄ωk =
√

(εk−µ)2 + |∆|2.
As a result, we find that there are poles in the Green’s function G∆(k,ω), when

h̄ω = ±h̄ωk. As we see in the next section, these (eigen)values describe the time
dependence of the Grassmann fields ψα and ψ∗

α respectively, corresponding to the
Bogoliubov quasiparticles of the superfluid state. Therefore, the dispersion for the
Bogoliubov quasiparticles is given by

h̄ω = h̄ωk =
√

(εk−µ)2 + |∆|2, (12.40)

which describes the fermionic single-particle excitations in the presence of a Bose-
Einstein condensate of Cooper pairs. Note that the minimum of the excitation spec-
trum, which is located at εk = µ , is given by |∆| such that the excitation spectrum
is gapped. As a result, it costs a nonzero amount of energy to make an elementary
excitation. The physical interpretation of this result is that the minimum amount of
energy needed to break up a Cooper pair is equal to 2∆. Note that in Sect. 11.2.1, we
saw that the application of the Landau criterion to a gapped dispersion indeed leads
to a nonzero critical velocity below which the quantum gas behaves as a superfluid.

Now that we have obtained an expression for G∆;12(k, iωn), we can substitute
this result into (12.37) to obtain

− 1
V0

=
1

h̄βV ∑
k,n

h̄
(h̄ωn)2 +(h̄ωk)2 (12.41)

=
1

2h̄2βV ∑
k,n

1
ωk

{
h̄

−ih̄ωn + h̄ωk
+

h̄
ih̄ωn + h̄ωk

}
=

1
V ∑

k

1−2NFD(h̄ωk)
2h̄ωk

,
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with NFD(h̄ωk) = 1/{exp(β h̄ωk) + 1} the Fermi-Dirac distribution for the quasi-
particles. Note that in the last step it does not matter which convergence factor we
use to perform the Matsubara sum, because either choice gives the same result. This
is because G∆;12(x,τ;x,τ ′), unlike G∆;11(x,τ;x,τ ′), does not contain a discontinuity
at equal times, which simply reflects the fact that ψ̂α(x,τ) and ψ̂−α(x,τ ′) anticom-
mute at equal times whereas ψ̂α(x,τ) and ψ̂†

α(x,τ ′) do not. To relate the interaction
potential to the scattering length, which is the experimentally known quantity, we
use (10.54) to finally obtain

− 1
T 2B =

1
V ∑

k

{
1−2NFD(h̄ωk)

2h̄ωk
− 1

2εk

}
. (12.42)

This is indeed an equation for the gap or BCS order parameter |∆|, and represents the
gap equation in its most practical form. Note that at the BCS transition temperature,
we have that ∆ = 0 and we recover the equation for Tc. Given µ , a and T , we can
solve the gap equation for the order parameter |∆|.

It is instructive to study (12.42) first in the zero-temperature limit, such that
NFD(h̄ωk) = 0. Then, we obtain for the gap equation

m
4π|a|h̄2 =

1
V ∑

k

{
1

2
√

(εk−µ)2 + |∆|2 −
1

2εk

}

=
2
√

2
(2π)2

m3/2

h̄3

∫ ∞

0
dε
√

ε

{
1

2
√

(ε−µ)2 + |∆|2 −
1

2ε

}
, (12.43)

which we may write as

π
kF|a| =

∫ ∞

0
dx
√

x

{
1√

(x−1)2 + |∆/εF|2
− 1

x

}
, (12.44)

where x = ε/εF is the dimensionless integration variable. Note that we have used
µ ' εF again, which is the result for the noninteracting gas and thus only valid in
the weakly-interacting limit, when |∆| is small as we see next. The integral on the
right-hand side can be performed as follows

∫ ∞

0
dx
√

x

[
1√

(x−1)2 + |∆/εF|2
− 1

x

]
(12.45)

'
∫ ∞

0
dx

(√
x−1

)
[

1√
(x−1)2

− 1
x

]
+

∫ ∞

0
dx

[
1√

(x−1)2 + |∆/εF|2
− 1

x

]

= 5log2−4− log
(
−1+

√
1+ |∆/εF|2

)
' 6log2−4−2log(|∆/εF|),

for small |∆/εF|. Substituting this into (12.44), we finally obtain



286 12 Condensation of Fermionic Pairs

|∆|= 8
e2 εFe−π/2kF|a|. (12.46)

Note that the critical temperature is thus related to the zero-temperature value of the
gap by the convenient relation kBTc = (eγ/π)|∆|, which is a universal result of BCS
theory.

12.7 Thermodynamic Potential for Fermions

To complete our study of the thermodynamic properties of the BCS superfluid, we
calculate the mean-field thermodynamic potential. For a homogeneous system, the
mean-field action resulting from (12.9), which is quadratic in the atomic fields, can
be written in momentum space as

S[φ ∗,φ ] = −h̄βV
|∆|2
V0

+ h̄β ∑
k

(εk−µ)

−h̄∑
k,n

[
φ ∗k,n,↑,φ−k,−n,↓

] ·G−1
∆ (k, iωn) ·

[
φk,n,↑

φ ∗−k,−n,↓

]
, (12.47)

where the sum ∑k(εk−µ) comes from interchanging the fermionic spin-down fields
and the corresponding equal-time limiting procedure in order to write the above
action in matrix form. This was more extensively explained in Sect. 11.4. As we
show now, it is possible to diagonalize the above action by making a Bogoliubov
transformation of the atomic fields, very similar to the transformation we performed
for the Bose-Einstein condensed phase of the Bose gas. We introduce the fields
ψk,n,α , with α =↑,↓, which are related to the fields φk,n,α by means of the unitary
transformation

[
ψk,n,↑

ψ∗
−k,−n,↓

]
=

[
uk −vk
v∗k u∗k

]
·
[

φk,n,↑
φ ∗−k,−n,↓

]
. (12.48)

Note the minus sign that is absent in the bosonic case. This transformation is indeed
unitary if

|uk|2 + |vk|2 = 1, (12.49)

which, in the operator formalism, ensures that the operators associated with the
fields ψ†

k,n,α and ψk,n,α still obey the anticommutation relations for fermionic cre-
ation and annihilation operators. Using this normalization, we find that the inverse
transformation is given by

[
φk,n,↑

φ ∗−k,−n,↓

]
=

[
u∗k vk
−v∗k uk

]
·
[

ψk,n,↑
ψ∗
−k,−n,↓

]
. (12.50)
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Inserting this Bogoliubov transformation into (12.47) and demanding that the
resulting expression is diagonal in terms of the new fields, we have the condition
that the coefficient of ψ∗

k,n,α ψ∗
−k,−n,−α has to be equal to zero, which gives

2(εk−µ)ukvk− v2
k∆∗+u2

k∆ = 0. (12.51)

For the same reason, the coefficient of ψk,n,α ψ−k,−n,−α has to be zero, which leads
to the complex conjugate of the above equation. We have that that (12.49) and
(12.51) are solved by

|uk|2 = 1−|vk|2 =
1
2

(
1+

εk−µ
h̄ωk

)
, (12.52)

where h̄ωk is the quasiparticle dispersion from (12.40). Moreover, it is useful to note
that

|uk|2−|vk|2 = 2|uk|2−1 =
εk−µ
h̄ωk

=−dh̄ωk

dµ
. (12.53)

In terms of the Bogoliubov fields, the action in (12.47) thus becomes

S[ψ∗,ψ] = −h̄βV
|∆|2
V0

+ h̄β ∑
k

(−h̄ωk + εk−µ)

+ ∑
α,k,n

(−ih̄ωn + h̄ωk)ψ∗
k,n,α ψk,n,α , (12.54)

where the additional term h̄ωk in the first sum again comes about because we have
interchanged the Bogoliubov fields ψ∗

↓ and ψ↓ together with the corresponding
equal-time limiting procedure. In terms of the Bogoliubov fields, the effective ac-
tion is diagonal and it is therefore straightforward to determine the thermodynamic
potential Ω. Eliminating also the interaction parameter for the two-body scattering
matrix, we ultimately find

Ω
V

= −|∆|
2

T 2B +
1
V ∑

k

{
−h̄ωk + εk−µ +

|∆|2
2εk

}
(12.55)

− 2
βV ∑

k
log

(
1+ e−β h̄ωk

)
. (12.56)

The thermodynamic potential can now be used to calculate the density using 〈N〉=
−dΩ/dµ . Working out the derivative and using (12.53), we obtain

n =
2
V ∑

k

{(|uk|2−|vk|2
)

NFD(h̄ωk)+ |vk|2
}

, (12.57)

which can be compared with (11.37), (11.46) and (11.55) for the Bose case.
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12.8 The BEC-BCS Crossover

Consider an ultracold Fermi gas at zero temperature under the influence of a weak
attractive interacting potential that does not support a two-body bound state, and
which gives rise to a small negative scattering length. Then we can use BCS theory
to calculate the BCS order parameter ∆, which is exponentially small as shown
in (12.46). In analogy with the macroscopic wave function for the Bose-Einstein
condensed Bose gas φ0(x) = 〈φ(x,τ)〉, we can define the macroscopic Cooper-pair
wave function φ0(x−x′) as

φ0(x−x′) = 〈φ↓(x,τ)φ↑(x′,τ)〉= G∆;12(x′,τ;x,τ)

=
1

V h̄β ∑
k,n

G∆;12(k, iωn)e−ik(x−x′) =− 1
V ∑

k

∆
2h̄ωk

e−ik(x−x′)

= − 1
V ∑

k
ukvke−ik(x−x′), (12.58)

where we used (12.36), (12.39) and (12.52). In the weakly-interacting case, the
Fourier transform ukvk of the Cooper-pair wavefunction is sharply peaked around
the Fermi momentum kF with a width that is on the order of m|∆|/h̄2kF. This means
that the spatial extent of the Cooper-pair wavefunction is on the order of h̄2kF/m|∆|,
which can thus be interpreted as the average size of a Cooper pair. As a result this
average size of the Cooper pairs is typically very large in the weakly-interacting
limit, much larger than the interatomic distance between fermions, showing the ex-
otic nature of the pairs in the BCS limit.

Now suppose that we can manipulate the interatomic interaction potential, such
that we can make the attraction stronger, leading to a larger gap and a smaller size
of the Cooper pairs. If we keep increasing the strength of the attractive interacting
potential, it will at some point give rise to a two-body bound state in the potential.
From Sect. 10.3.1, we know that then the scattering length diverges. By making the
interaction even more attractive the molecular bound state becomes more deeply
bound, such that its size becomes smaller. In this limit, the zero-temperature ground
state consists of a Bose-Einstein condensate of tightly-bound diatomic molecules,
whose size is much smaller than the average interparticle distance. This is called
the BEC limit. We note that the two limits are at first sight physically very different,
because for example the bosonic molecules in the BEC limit are already stable at the
two-body level, whereas the stability of the pairs in the BCS limit is truly a many-
body effect caused by the presence of a Fermi sea. In Fig. 12.1, we show the relative
two-body wavefunctions χ0(r) for the condensed pairs both in the BCS regime and
in the BEC regime, where the latter leads to

χ0(r) =− e−r/a

r
√

2πa
, (12.59)
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as follows from (10.48) and (10.51). The question now arises how this evolution
between the extreme BCS limit of loosely bound Cooper pairs and the extreme BEC
limit of tightly confined bosonic molecules actually takes place.

12.8.1 Theoretical Results

As first realized by Eagles [24] and later by Leggett [25], the evolution from the BEC
to the BCS limit is smooth, meaning that there is no symmetry change or other rea-
son for nonanalytic thermodynamic behavior as the Bose-Einstein condensed pairs
become more tightly bound. As a result this evolution is known as the BEC-BCS
crossover. This also implies that the wavefunction from (12.1) and the correspond-
ing BCS theory can be used to qualitatively describe the whole crossover. Before
we do this we remark that the BEC-BCS crossover can actually be studied experi-
mentally with the use of ultracold atomic Fermi gases, since here the change in the
interaction potential can be mimicked with the use of a Feshbach resonance, which
allows for the control of the scattering length by applying an external magnetic field.
This important tool for manipulating ultracold atomic quantum gases is discussed
extensively in Chap. 17.

At zero temperature and at a fixed particle density n = 2nα ≡ k3
F/3π2, we can

study the BEC-BCS crossover as a function of the dimensionless parameter 1/kFa
by solving for each value of 1/kFa both the equation for the density

n =
1
V ∑

k

{
1− εk−µ

h̄ωk

}
, (12.60)

and the equation for the gap parameter

− m
4π h̄2a

=
1
V ∑

k

{
1

2h̄ωk
− 1

2εk

}
, (12.61)

which follow from (12.42) and (12.57) by taking the zero-temperature limit. By
converting the above sums into integrals and numerically solving the two equations
to find both the chemical potential µ and the BCS order parameter ∆, we obtain
the results shown in Fig. 12.1. In the extreme BCS limit, 1/kFa→−∞, we retrieve
the analytic exponential behavior of the gap from (12.46) together with µ = εF, as
expected for the weakly-interacting Fermi gas.

Upon increase of the interaction strength |a| we enter the strongly-interacting
regime 1/kF|a| < 1, where there is no longer a natural small parameter in the
theory, such that perturbation theory, and in particular mean-field theory, is no
longer expected to hold quantitatively. This is especially true for the unitarity limit,
1/kF|a| → 0, when the scattering length diverges. It is interesting to note that in this
limit, the scattering length no longer yields a physical length scale, and the thermo-
dynamics cannot depend on a anymore. As a result, thermodynamic quantities only
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Fig. 12.1 The BEC-BCS crossover at zero temperature. a) Two-body condensed pair wavefunction
χ0(r) in the BEC regime, 1/kFa = 3, where the pairs are smaller than the interparticle distance
n−1/3. b) Two-body condensed pair wavefunction χ0(r) in the BCS regime, 1/kFa =−3, where the
pairs are larger than n−1/3. c) The order parameter ∆ and d) the chemical potential µ as a function
of −1/kFa at a fixed particle density n = k3

F/3π2. The dashed lines show the analytic results in
the BEC and BCS limit, respectively. Note that there is no nonanalytic behavior, indicating that
mean-field BCS theory predicts a smooth crossover as a function of 1/kFa.

depend on the Fermi energy εF, such that we have for example µ = (1 + β )εF and
∆ = ξ εF where β an ξ are dimensionless constants which are not to be confused
with the inverse temperature and the correlation length. This statement is called the
universality hypothesis [84], and it has been tested by experiments and Monte-Carlo
calculations [85, 86, 87]. Both have converged to β '−0.6 and ξ ' 0.5, where the
latter shows that the gap becomes on the order of the Fermi energy. We can also cal-
culate these quantities within BCS theory, leading to β =−0.4 and ξ = 0.7, as can
be read off from Fig. 12.1. As expected, BCS theory is quantitatively not fully cor-
rect at unitarity. However, even in the strongly-interacting regime it gives answers
that are on the right order of magnitude.

Upon entering the BEC regime, i.e. 1/kFa > 1, a two-body bound state has
entered the interaction potential with a molecular binding energy given by Em =
−h̄2/ma2 as explained in Sect. 10.3.1. The chemical potential describing the con-
densation of diatomic molecules is expected to behave as 2µ ' Em, which is indeed
the behavior observed in Fig. 12.1d. Moreover, the gap behaves in this regime as
∆ ' (16/3πkFa)1/2εF. This can be understood by considering the two-body wave-
function from (12.59) and from the general expression for the gap as the integral
of the (macroscopic) paired condensate wavefunction multiplied by the interaction,



12.8 The BEC-BCS Crossover 291

i.e.

∆ =
∫

dr V (r)
√

N
2V

χ0(r) =
∫

dr V (r)
(

1− a
r

) √
n

a
√

4πa

=
4πah̄2

m

√
n

a
√

4πa
=

√
16

3πkFa
εF, (12.62)

where in the first step we used that the number of pairs is N/2, while the center-
of-mass part of the Cooper pair wavefunction is 1/

√
V , because the pairs have no

momentum. In the second step, we used that the interaction potential is short ranged,
allowing us to expand the relative wavefunction for the small separations r of inter-
est. In the third step we used the definition of the two-body T matrix from (10.15),
which we can write as

lim
k→0

∫
dr V (r)ψ(+)

k (r) = lim
k→0

∫
dr T 2B(r)eikr =

4πah̄2

m
, (12.63)

where, for small r and k, we have ψ(+)
k (r) = 1− a/r as follows from (10.27),

(10.34), and (10.35).
We may thus conclude that, at zero temperature, BCS theory leads to very rea-

sonable results for the theoretical study of the BEC-BCS crossover. However, at
nonzero temperatures, the results become less reliable. In particular, the study of the
critical temperature as a function of 1/kFa leads to an incorrect behavior in the BEC
limit. The reason for this is that the critical temperature obtained from BCS theory
describes physically the temperature at which pairs break up into separate fermions.
However, deep in the BEC limit when the molecules are tightly bound, the break-
down of superfluidity is caused not by the break-up of pairs but rather by the thermal
occupation of the nonzero momentum states of the molecules and the associated
thermal depletion of the Bose-Einstein condensate. Therefore the correct behavior
of the critical temperature can only be obtained by incorporating also the effect of
noncondensed pairs, the fluctuations of the pairing field ∆′(x,τ), which are com-
pletely neglected in BCS theory. Taking fluctuations into account up to quadratic
order around the normal state solution ∆ = 0 is called the Nozières-Schmitt-Rink
approximation [88], which leads to an additional term ΩNSR in the thermodynamic
potential

ΩNSR =− 1
β

log
(∫

d[∆′∗]d[∆′]e(∆′|G−1
∆′ |∆

′)
)

=
1
β

Tr[log(−G−1
∆′ )], (12.64)

where we have from (12.13) and (12.17) that in real space G−1
∆′ is given by

G−1
∆′ =

1
h̄V0

δ (x−x′)δ (τ− τ ′)+
1
h̄2 G0;↑(x,τ;x′,τ ′)G0;↓(x,τ;x′,τ ′), (12.65)

which yields the following expression for ΩNSR in momentum space
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ΩNSR =
1
β ∑

K,n
log

(
− 1

h̄T 2B −
1

h̄V ∑
k′

{
1−NFD(εK−k′)−NFD(εk′)
−ih̄Ωn + εK−k′ + εk′ −2µ

− 1
2εk′

})
,

(12.66)
where we used the result for the fermionic ladder diagram obtained in Exercise
10.2. The additional Nozières-Schmitt-Rink term in the thermodynamic potential
then changes the number equation calculated from n = ∂Ω/∂ µ , which physically
stems from taking also noncondensed pairs into account. This consequently modi-
fies the ratio Tc/TF, and gives a rather good description of the critical temperature
throughout the whole crossover [81].

12.8.2 Comparison with Experiment

So far, we have discussed BCS theory and the BEC-BCS crossover for the homoge-
neous interacting Fermi gas. However, to perform an actual experiment, the atoms
always need to be confined in space and be kept away from material walls. This
can be done by applying an electric or magnetic field to create an external trapping
potential. The easiest situation in which we can study the effects of an external po-
tential is when the local-density approximation applies, which we already encoun-
tered in Sect. 4.3.1.2. In this approximation the external potential is simply absorbed
in the chemical potential, such that we can locally perform the homogeneous the-
ory, however, with a spatially varying chemical potential. Since we have already
obtained the homogeneous theory, this procedure thus conveniently implies that we
have also automatically obtained the inhomogeneous theory. Such an approach is
only valid if the correlation length of the gas is smaller than the typical length scale
associated with variations of the external potential. We found previously that the
typical size of the correlated Cooper pairs is h̄2kF/m|∆|. In the strongly-interacting
regime, when ∆ is on the order of εF, we find for the correlation length ξ ' 1/kF. In
this case the local-density approximation is indeed well justified for realistic trapped
gases. Another way to obtain the same condition is by thinking of the local-density
approximation as a WKB approximation. The WKB approximation is valid when
the de Broglie wavelength for a particle is small compared to the length scale over
which the potential varies. For degenerate fermions, the typical de Broglie wave-
length of the atoms is also given by 1/kF. Finally, if the local-density approximation
fails, then we need to perform a truly inhomogeneous calculation. This can be done
by using the Bogoliubov-de Gennes formalism from Sect. 11.5, which can be im-
mediately generalized to the fermionic case.

As mentioned in the introductory chapter, many experiments have been per-
formed recently on the BEC-BCS crossover using ultracold atomic gases [18, 19,
20, 21, 22, 23]. Here. we highlight the measurement of the density profiles for con-
densed 6Li clouds as a function of the interaction strength by Bartenstein et al.
[21]. The results are shown in Fig. 12.2. For 6Li the scattering length a diverges
at 834 G, where larger magnetic fields correspond to the BCS side, while lower
magnetic fields correspond to the BEC side. We remark that all profiles in Fig. 12.2
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Fig. 12.2 Measured axial density profiles of atomic 6Li clouds in the strongly-interacting regime.
At 834 G the scattering length diverges, where for lower/higher magnetic field strengths the
BEC/BCS side is approached. The evolution as a function of magnetic field is smooth, indicat-
ing a crossover, while at 850 G the predicted unitary density profile is shown by the solid line.
Reprinted figure with permission from M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin,
J. Hecker Denschlag, and R. Grimm, Phys. Rev. Lett. 92, 203201 (2004). Copyright 2008 by the
American Physical Society.

are actually in the strongly-interacting regime, for which |kF a| > 1. Note that the
three density profiles look both qualitatively and quantitatively very similar, which
strongly suggests that there is a smooth evolution through the point where the scat-
tering length diverges, a crossover rather than a phase transition. To study the inho-
mogeneous Fermi gas in the strongly-interacting regime we can use the universality
hypothesis µ = (1+β )εF in combination with the local-density approximation from
Sect. 4.3.1.2. Determining the integrated density nz(z) along the z axis as in Sect.
4.3.3.1, we find in the unitarity limit

nz(z) ≡
∫ 2π

0
dϕ

∫
dρ n(ρ ,z,φ) =

∫
ρ dρ

2
3π

(
2mµ(ρ ,z)
(1+β )h̄2

)3/2

=
2(1+β )
15πmω2

ρ

(
m
h̄2

)3/2 (
2µ−mω2

z z2

1+β

)5/2

, (12.67)

where we have an additional factor of 2 compared to (4.92) due to the presence of
two spin species. Note that the strong attractions among the atoms act as an en-
hancement of the trapping potential and narrow the atomic cloud. The profile from
(12.67) was compared with the measured axial profile in Fig. 12.2b, giving rise to
the measured value β '−0.7±0.1 in good agreement with the Monte-Carlo result
of −0.6. Finally, we remark that the density profile from Fig. 4.5 was actually also
measured in the superfluid state, but then in the BCS regime, for which kFa < −1
and the gap parameter is exponentially suppressed. As a result, the density profiles
on the far BCS side are indistinguishable from the ideal gas profiles, making the su-
perfluid state hard to detect. As mentioned in the introductory chapter, this problem
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can be overcome by either using Feshbach resonances to convert the BCS state into
a BEC of molecules, or by using other means to probe superfluidity, such as rotating
the gas to observe vortices [89].

12.9 Problems

Exercise 12.1. Prove (12.30). You can make use of the identity

∑
n

1
|h̄ωn|3 =

7ζ (3)
4

1
(πkBT )3 ,

where ωn are the fermionic Matsubara frequencies and ζ (3)' 1.202.

Exercise 12.2. Show by calculating the commutation relations of the Cooper pairs
in second quantization that they behave very much like bosons, i.e. show that the
commutator of the composite particle b†

k ≡ c†
k,↑c

†
−k,↓ is given by

[bk,b
†
k′ ]− = δk,k′

(
1− c†

−k′,↓c−k,↓− c†
k′,↑ck,↑

)
. (12.68)

Also calculate the commutators, [bk,bk′ ]− and [b†
k,b

†
k′ ]−. Note that in the func-

tional integral approach, the order parameter introduced through the Hubbard-
Stratonovich transformation is exactly a bosonic field.

Exercise 12.3. In principle, a BCS-like transition to a paired state could also oc-
cur in a Bose gas with attractive interactions, i.e. V0 < 0. Show that the dispersion
relation of the single-particle excitations is

h̄ωk =
√

(εk−µ)2−|∆|2

in that case. What happens if µ = |∆|?
Exercise 12.4. Imbalance in Spin Populations.
Recently, experimentalists have been able to study two-component Fermi gases as
a function of spin polarization, which is defined as P≡ (N↑−N↓)/(N↑+N↓) where
Nα is the number of particles in spin-state |α〉. So for P > 0, we have more spin-up
particles than spin-down. We can describe a system with a population imbalance
by taking different chemical potentials µα for the two spin species, leading to the
following action

S[φ ∗α ,φα ] =
∫ h̄β

0
dτ

∫
dx ∑

α=↑,↓
φ ∗α(x,τ)

{
h̄∂τ − h̄2∇∇∇2

2m
−µα

}
φα(x,τ)

+
∫ h̄β

0
dτ

∫
dxV0 φ∗↑ (x,τ)φ ∗↓ (x,τ)φ↓(x,τ)φ↑(x,τ), (12.69)
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where we have to find a way to deal with the interaction term. An elegant way to do
this, is by applying a Hubbard-Stratonovich transformation.

a) Perform a Hubbard-Stratonovich transformation to the fields ∆ and ∆∗, such that
∆ is on average given by

〈∆(x,τ)〉= V0〈φ↓(x,τ)φ↑(x,τ)〉, (12.70)

and show that the resulting action in terms of the fields ∆, ∆∗, φ ∗α , an φα can be
written in the form

S[∆,∆∗,φ ∗α ,φα ] = −
∫ h̄β

0
dτ

∫
dx
|∆(x,τ)|2

V0
− h̄

∫ h̄β

0
dτ dτ ′

∫
dx dx′

×[
φ ∗↑ (x,τ),φ↓(x,τ)

] ·G−1 ·
[

φ↑(x′,τ ′)
φ ∗↓ (x

′,τ ′)

]
. (12.71)

Give the two-by-two matrix G−1 in terms of G−1
0;α , ∆ and ∆∗.

If the polarization is not too large, then below a certain critical temperature, the
gas is in a phase, where the field ∆ has a nonzero expectation value 〈∆(x,τ)〉 = ∆.
In the following, we simply approximate the field ∆(x,τ) by its average value ∆.
b) Transform the action from (12.71) to momentum space and frequency space.
Show that the Green’s function matrix has poles, when

h̄ωk =−h±
√

(εk−µ)2 + |∆|2, (12.72)

where we introduced µ = (µ↑+ µ↓)/2 and h = (µ↑− µ↓)/2. Show that this means
that the quasiparticle dispersions become

h̄ωk,↑ =−h+
√

(εk−µ)2 + |∆|2. (12.73)

and
h̄ωk,↓ = h+

√
(εk−µ)2 + |∆|2. (12.74)

It is interesting to note that for h > |∆|, the majority species has a gapless excitation
spectrum. This exotic superfluid state is also called the superfluid Sarma phase.

Exercise 12.5. Josephson Junction
A Josephson junction is a layer of isolating material between two superconductors.
Consider a circular shaped superconducting wire coupled by a Josephson junction
as shown in Fig. 12.3, where a thick dot denotes the Josephson junction. Denote
the radius of the circle by R and the angular coordinate along the wire by ϕ . The
Josephson junction is located at ϕ = 0. In second quantization, the Hamiltonian of
the system contains the usual kinetic and interaction terms for the Cooper pairs,
but contains also a term describing effectively the tunnelling of Cooper pairs at the
Josephson junction. The latter is given by
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ĤT =−π Rt
(
∆̂†(2π)∆̂(0)+ ∆̂†(0)∆̂(2π)

)
, (12.75)

where ∆̂†(ϕ) and ∆̂(ϕ) can be seen as creation and annihilation operators of Cooper
pairs in the wire, respectively. In addition, t is the effective tunnelling amplitude for
the Josephson junction.

&%

'$

∆

s

Φ

Fig. 12.3 A circular superconducting wire coupled by a Josephson junction. There is a flux Φ
through the circle. Here, ∆ is the Cooper pair wavefunction.

The action of the system can then be written as

S[∆∗,∆] = S0[∆∗,∆]+ST[∆∗,∆] , (12.76)

where S0[∆∗,∆] is the effective Ginzburg-Landau action for the collective field
∆(ϕ, t) with expectation value ∆0 = 〈∆(ϕ, t)〉, namely

S0[∆∗,∆] =

D(εF)
8πR

∫
dt

∫ 2π

0
dϕ R

{
h̄2

|∆0|2
∣∣∣∣
∂∆
∂ t

∣∣∣∣
2

− h̄2v2
F

3|∆0|2 |∇∆|2 +2|∆|2
(

1− |∆|2
2|∆0|2

)}
.

Here D(εF) is the density of states for one spin projection at the Fermi energy,
and vF is the Fermi velocity. In the presence of a vector potential A, the derivative
∇ ≡ (1/R)∂/∂ϕ is replaced by the covariant derivative ∇− i(q/h̄)A, with q the
charge of the field ∆. Here, the vector potential A is given by A = Φ/2πR with Φ
the magnetic flux through the circle.
a) What is the charge q of the field ∆ in terms of the electron charge−e? Write down
the action SΦ for the superconducting wire in the presence of the flux Φ.

Assume now that the system is in equilibrium, i.e. that |∆| takes its vacuum ex-
pectation value |∆0|. Denote the phase of ∆ by θ .
b) What is the effective action for the phase θ in the presence of the magnetic flux
Φ?

Assume now that the phase θ is static, i.e. that it has no time dependence. Note
that in general the phase is inhomogeneous, i.e. it depends on the angle ϕ .
c) How does θ(ϕ) depend on the flux Φ when the superconducting wire is in equi-
librium and we neglect the effect of the tunnelling Hamiltonian?
d) Express the tunnelling energy in terms of the phases θ(0) and θ(2π). When
is it minimal? Write down the total energy of the superconducting wire and the
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Josephson junction. What are the values of the flux Φ for which the total energy is
minimal?
The current flowing through the Josephson junction is given by

Ĵ =
2iπeRt

h̄

(
∆̂†(2π)∆̂(0)− ∆̂†(0)∆̂(2π)

)
. (12.77)

e) In the mean-field approximation, what is the expectation value of the current J
through the Josephson junction? What is the current J through the wire in terms of
the flux Φ? Give the maximum amplitude of the current Jmax. For what values of Φ
is the amplitude of the current minimal? Give an interpretation of this result in view
of your answer to question d).
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Chapter 13
Symmetries and Symmetry Breaking

In physics, your solution should convince a reasonable person.
In math, you have to convince a person who’s trying to make
trouble. Ultimately, in physics, you’re hoping to convince
Nature. And I’ve found Nature to be pretty reasonable.
– Frank Wilczek

Symmetries play an important role in modern physics. For instance, the Standard
Model of high-energy physics is to a large extent specified by its local symmetry
group U(1)×SU(2)×SU(3). Apart from the esthetic beauty of having a symmetric
description of physical phenomena, the presence of a symmetry in the problem also
often leads to useful practical simplifications. For example, the energy-level struc-
ture of a Hamiltonian, and in particular the degeneracies, can often be understood on
the basis of the symmetry of the Hamiltonian without doing any calculations. An-
other use of symmetries was seen in Chap. 3, where the rotational symmetry of an
isotropic harmonic potential allows for a separation of variables in the Schrödinger
equation and an expansion of the wavefunction into spherical harmonics. This last
example illustrates the fact that symmetries lead to conservation laws, in this case
the conservation of angular momentum.

In condensed-matter physics symmetries also play a crucial role, because many
phase transitions can be seen as a spontaneous breakdown of symmetry, i.e. the
Hamiltonian has a certain symmetry which is not shared by a particular ground
state of the many-body system. If this occurs, the application of the symmetry oper-
ation onto this ground state leads to another eigenstate of the system with the same
energy. As a result, the ground state must be degenerate. This leads to the funda-
mental problem of how the system chooses a particular ground state when it goes
through a phase transition. In atomic gases, the answer to this question is related
to the interesting phenomena of phase diffusion that we discuss at the end of this
chapter. In addition, we have seen in the previous chapters how phase transitions
can be described by making use of a Landau free-energy functional. In the case
of the Ising model, we explicitly showed that the Landau free energy is an effec-
tive Hamiltonian that comes about by integrating out the microscopic degrees of
freedom. Moreover, starting from a microscopic action, we demonstrated how the
Hubbard-Stratonovich transformation can be used to introduce the order parameter
into the problem and to obtain the effective long-wavelength action of the system.
In this chapter, we formalize the concept of effective actions and study some of their
symmetry properties.

299
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13.1 Effective Actions

One of the central quantities of interest in a quantum field theory is the generating
functional Z[J,J∗] of all the possible correlation functions of the system, which we
encountered previously in (7.67) for the case of an ideal gas. To study the general
case, we consider a field theory for an atomic gas that is described by the micro-
scopic action S[ψ∗,ψ], with ψ(x,τ) being the atomic field. For notational simplicity
we neglect the possible spin degrees of freedom of the atoms, such that the generat-
ing functional in imaginary time is determined by

Z[J,J∗] =
∫

d[ψ∗]d[ψ] exp
{
−1

h̄
S[ψ∗,ψ]+SJ [ψ∗,ψ]

}
, (13.1)

where the source currents couple to the fields according to,

SJ [ψ∗,ψ] =
∫ h̄β

0
dτ

∫
dx(ψ∗(x,τ)J(x,τ)+ J∗(x,τ)ψ(x,τ)) . (13.2)

We see from (13.1) and (13.2) that by taking functional derivatives of Z[J,J∗] with
respect to the currents we can calculate all the correlation functions of the theory.
However, instead of working with Z[J,J∗], we usually prefer to work with the gen-
erating functional W [J,J∗] of all the connected Green’s functions. This is related to
Z[J,J∗] through

Z[J,J∗] = exp{W [J,J∗]}. (13.3)

The functional derivatives of W [J,J∗] with respect to the currents then immediately
yield the expectation values of the fields, i.e.

δW [J,J∗]
δJ(x,τ)

= ±〈ψ∗(x,τ)〉 ≡ ±φ ∗(x,τ)

δW [J,J∗]
δJ∗(x,τ)

= 〈ψ(x,τ)〉 ≡ φ(x,τ), (13.4)

where we established in Chap. 8 that expectation values only depend on connected
Green’s functions.

It is also possible to define a functional Γ[φ ∗,φ ] that depends explicitly on the
expectation values φ(x,τ), which is related to W [J,J∗] by means of a Legendre
transformation, i.e.

Γ[φ ∗,φ ] =−W [J,J∗]+
∫

dτ
∫

dx (φ ∗(x,τ)J(x,τ)+ J∗(x,τ)φ(x,τ)) . (13.5)

From Γ[φ ∗,φ ], we introduce the exact effective action as

Seff[φ ∗,φ ] = h̄Γ[φ ∗,φ ]. (13.6)
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To understand the meaning of this effective action, we note that Γ[φ ∗,φ ] is the gen-
erating functional of all one-particle irreducible vertex functions, which can be seen
as follows

δΓ[φ ∗,φ ]
δφ(x,τ)

= −
∫ h̄β

0
dτ ′

∫
dx′

{
δJ∗(x′,τ ′)
δφ(x,τ)

δW [J,J∗]
δJ∗(x′,τ ′)

+
δJ(x′,τ ′)
δφ(x,τ)

δW [J,J∗]
δJ(x′,τ ′)

}

+
∫ h̄β

0
dτ ′

∫
dx′

{
±φ ∗(x,τ)

δJ(x′,τ ′)
δφ(x,τ)

+
δJ∗(x′,τ ′)
δφ(x,τ)

φ(x,τ)
}

±J∗(x,τ) =±J∗(x,τ), (13.7)

where we used (13.4) and (13.5). For the second-order derivative, we then have

δ 2Γ[φ ∗,φ ]
δφ(x′,τ ′)δφ ∗(x,τ)

∣∣∣∣
φ∗=φ=0

=
δJ∗(x′,τ ′)
δφ ∗(x,τ)

∣∣∣∣
φ∗=φ=0

=
(

δφ ∗(x,τ)
δJ∗(x′,τ ′)

)−1
∣∣∣∣∣
J∗=J=0

= ±
(

δ 2W [J,J∗]
δJ∗(x′,τ ′)δJ(x′,τ ′)

)−1
∣∣∣∣∣
J∗=J=0

= −G−1(x,τ;x′,τ ′)
= −G−1

0 (x,τ;x′,τ ′)+Σ(x,τ;x′,τ ′), (13.8)

where we used that differentiating W [J,J∗] with respect to the currents generates the
exact interacting Green’s function. This proves our claim for the quadratic term of
Γ[φ ∗,φ ], because we have seen in Chap. 8 that the selfenergy by definition contains
all one-particle irreducible diagrams. By further differentiation, the same can be
proven for all higher-order terms containing the vertex functions Γ(2n) with n ≥ 3,
such that we have

Seff[φ ∗,φ ] =−
∫ h̄β

0
dτ

∫
dx

∫ h̄β

0
dτ ′

∫
dx′ φ ∗(x,τ)h̄G−1(x,τ;x′,τ ′)φ(x′,τ ′)

+
1
2

∫ h̄β

0
dτ

∫
dx

∫ h̄β

0
dτ ′

∫
dx′

∫ h̄β

0
dτ ′′

∫
dx′′

∫ h̄β

0
dτ ′′′

∫
dx′′′

×φ ∗(x,τ)φ ∗(x′,τ ′)h̄Γ(4)(x,τ;x′,τ ′;x′′,τ ′′;x′′′,τ ′′′)φ(x′′,τ ′′)φ(x′′′,τ ′′′)
+ . . . , (13.9)

where G(x,τ;x′,τ ′) is the exact propagator of the atoms and where the four-point
vertex Γ(4)(x,τ;x′,τ ′;x′′,τ ′′;x′′′,τ ′′′) is the exact effective interaction. The dots de-
note all 2n-point one-particle irreducible vertices Γ(2n) with n ≥ 3, which turn out
to be less relevant for our purposes since they correspond to three and higher-body
processes that are usually negligible for dilute atomic quantum gases.

Although the formal definition of the exact effective action is in terms of the gen-
erating functional of all one-particle irreducible vertex functions, we have used the
term effective action rather loosely. Typically, we have called any action effective
that arises from the microscopic action S[ψ∗,ψ] after having integrated out micro-
scopic degrees of freedom of ψ(x,τ). In practice it is often impossible to find the
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exact effective action, and we are forced to make some approximation. This is, for
example, the case when we sum only over a certain class of Feynman diagrams in
calculating the effective action, as in Hartree-Fock theory. However, we need to be
careful when using such approximations, because they can have consequences for
the symmetry properties of the action and the conservation laws of the system. As
we show in the next sections, an action that is invariant under continuous symme-
tries satisfies conservation laws that correspond to these symmetries. Explicitly, we
will demonstrate that an action S[ψ∗,ψ] that is invariant under a U(1) transforma-
tions of the field ψ(x,τ) obeys particle number conservation. If we do not carefully
construct the approximate effective action, we can easily violate such conservation
laws. To be able to ensure that we always satisfy the appropriate conservation laws
of the system, we then derive the Ward identities between the various exact vertex
functions in Sect. 13.3.

Example 13.1. As an example of a system where we can calculate the exact effective
action, we consider again the homogeneous ideal gas. Using (7.71) and performing
a Fourier transform, we see that the generating functional Z[J,J∗] is given by

Z[J,J∗] = Z[0,0]exp

{
−∑

k,n
J∗k,nG(k, iωn)Jk,n

}
, (13.10)

where the Green’s function is given by (7.57)

G(k, iωn) =
−h̄

−ih̄ωn + εk−µ
. (13.11)

The effective action given in (13.5) now becomes

Γ[φ ∗,φ ] = ∑
k,n

{
J∗k,nG(k, iωn)Jk,n +φ ∗k,nJk,n + J∗k,nφk,n

}
, (13.12)

where Jk,n and J∗k,n must be eliminated by means of

±φ ∗k,n =
δW [J,J∗]

δJk,n
=∓J∗k,nG(k, iωn) , φk,n =

δW [J,J∗]
δJ∗k,n

=−G(k, iωn)Jk,n.

This gives the desired result

Γ[φ ∗,φ ] =−∑
k,n

φ ∗k,nG−1(k, iωn)φk,n. (13.13)

Because there are by definition no interactions, the exact effective action in this case
only has a quadratic term.



13.2 Noether’s Theorem 303

13.2 Noether’s Theorem

In this section, we show that symmetries of the action are related to conservation
laws of the system. To start the discussion, we first consider an action S[ψ∗,ψ]
which has a global U(1) symmetry, i.e. the action is invariant under the global phase
transformation

ψ(x,τ)→ eiθ ψ(x,τ) and ψ∗(x,τ)→ e−iθ ψ∗(x,τ).

The action for the interacting quantum gases of the form of (8.22) satisfies such a
global U(1) symmetry. Let us look at the implications of this global symmetry by
considering the more general case of a local U(1) transformation, i.e. with a phase
θ(x,τ) that depends on space and imaginary time. Under such a local transforma-
tion, the action of (8.22) is not invariant and the transformed action

S[(1− iθ)ψ∗,(1+ iθ)ψ]

can be expanded to first order in θ(x,τ) as

S[ψ∗,ψ]→ S[ψ∗,ψ]+ h̄
∫ h̄β

0
dτ

∫
dx Jµ(x,τ)∂µ θ(x,τ), (13.14)

where the linear coefficient of the expansion is by definition called the current
Jµ(x,τ). Moreover, we have introduced here the relativistic four-vector notation
∂µ ≡ ∂/∂xµ with x0 = cτ = ict, where c is the speed of light, and the spatial com-
ponents satisfy x j = x j. As a result, we thus have xµ = (cτ,x), and to facilitate the
notation we use in this chapter the convention that repeated space-time indices are
summed over. The convenience of this four-vector notation becomes clear shortly.
Note that the expression of (13.14) is a direct consequence of the global U(1) sym-
metry, and that in general more terms would be generated. Indeed, if we take the
phase θ(x,τ) constant in (13.14), then we find that the action is invariant under the
transformation, as desired for a global U(1) symmetry.

As we show now, the current Jµ(x,τ) actually corresponds to a conserved quan-
tity. By performing a partial integration, the induced infinitesimal change in the
action by the local phase transformation can be written as

∆S =−h̄
∫ h̄β

0
dτ

∫
dx θ(x,τ)∂µ Jµ(x,τ). (13.15)

We remember that under a general variation ψ(x,τ) + δψ(x,τ) the induced first-
order change in the action vanishes if ψ(x,τ) obeys the Euler-Lagrange equation
δS[ψ∗,ψ]/δψ(x,τ) = 0. Since the local phase transformation is just a special case
of this general variation, we conclude that automatically we must have that

∂µ Jµ(x,τ) = 0, (13.16)
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if the atomic field ψ(x,τ) obeys the equation of motion. This result is a manifesta-
tion of Noether’s theorem, which states that there is a conservation law associated
with each symmetry of the system.

As an explicit example, we consider a system of free atoms whose action is given
by

S[ψ∗,ψ] (13.17)

=
∫ h̄β

0
dτ

∫
dx ψ∗(x,τ)

{
h̄

∂
∂τ
− h̄2∇∇∇2

2m
+V ex(x)−µ

}
ψ(x,τ).

Under the infinitesimal transformation

ψ(x,τ)→ (1+ iθ(x,τ))ψ(x,τ) and ψ∗(x,τ)→ (1−iθ(x,τ))ψ∗(x,τ),

we obtain to first order in θ(x,τ) the result

S[ψ∗,ψ]→ S[ψ∗,ψ]+
∫ h̄β

0
dτ

∫
dx

{
iψ∗(x,τ)ψ(x,τ)h̄

∂
∂τ

θ(x,τ) (13.18)

−2iψ∗(x,τ)
h̄2

2m
∇∇∇ψ(x,τ) ·∇∇∇θ(x,τ)− iψ∗(x,τ)ψ(x,τ)

h̄2∇∇∇2

2m
θ(x,τ)

}
.

Performing the partial integrations on the time-derivative and the gradient terms, we
obtain

∆S = −h̄
∫

dτ
∫

dx
∂

∂τ
(iψ∗(x,τ)ψ(x,τ))θ(x,τ) (13.19)

+h̄
∫

dτ
∫

dx ∇∇∇ ·
{

i
h̄

2m
(ψ∗(x,τ)∇∇∇ψ(x,τ)−∇∇∇ψ∗(x,τ)ψ(x,τ))

}
θ(x,τ).

Comparing this result with (13.15), we see that the source current Jµ(x,τ) is given
by

J0(x,τ) = icψ∗(x,τ)ψ(x,τ)

J(x,τ) =− ih̄
2m

(ψ∗(x,τ)∇∇∇ψ(x,τ)−∇∇∇ψ∗(x,τ)ψ(x,τ)) , (13.20)

which, according to Noether’s theorem, gives rise to the conservation law

∂µ Jµ(x,τ) = i
∂

∂τ
n(x,τ)+∇∇∇ · JJJ(x,τ) = 0 (13.21)

for the total atomic density n(x,τ) = ψ∗(x,τ)ψ(x,τ). Performing a Wick rotation
to real time, the conservation law in (13.21) becomes

∂
∂ t

ψ∗(x, t)ψ(x, t)− ih̄
2m

∇∇∇ · {ψ∗(x, t)∇∇∇ψ(x, t)−∇∇∇ψ∗(x, t)ψ(x, t)}= 0, (13.22)



13.3 Ward Identities 305

which we recognize as the continuity equation, (8.108),

∂
∂ t

n(x, t)+∇∇∇ ·J(x, t) = 0 (13.23)

for the conservation of the total number of atoms. It is left as an exercise to show
that it holds if ψ(x, t) obeys its equation of motion

ih̄
∂
∂ t

ψ(x, t) =
{
− h̄2

2m
∇∇∇2 +V ex(x)−µ

}
ψ(x, t). (13.24)

The generalization of the discussion to more complicated symmetries is then straight-
forward.

13.3 Ward Identities

In this section, we generalize the system of atoms with a global U(1) symmetry to
systems that are also invariant under local U(1) transformations by including a cou-
pling to a gauge field. Perhaps the most well-known example of a locally symmetric
U(1) theory is quantum electrodynamics, or QED. This quantum theory for electro-
magnetism is based on the coupling between charged particles, which are described
by the fields ψ(x,τ), and the quantized electromagnetic field, which is described
in terms of the photon field Aµ(x,τ) also called a gauge field. Using the minimal-
coupling prescription, local U(1) invariance is achieved by replacing the derivatives
h̄∂/∂τ and ih̄∇∇∇ in (13.17) by

h̄
∂

∂τ
→ h̄

∂
∂τ

+ eφ(x,τ) and ih̄
∂
∂x

→ ih̄
∂
∂x
− e

c
A(x,τ). (13.25)

The first line of the previous equation tells us for instance that the interaction with
the scalar electromagnetic potential is given by eφ(x,τ)ψ∗(x,τ)ψ(x,τ), as desired.
In four-vector notation, the minimal-coupling prescription for a particle with a pos-
itive charge e can be written as

ih̄
∂

∂xµ → ih̄
∂

∂xµ −
e
c

Aµ(x,τ),

where Aµ(x,τ) = (−iφ(x,τ),A(x,τ)). The action for nonrelativistic particles with
charge e is then given by

S[ψ∗,ψ,Aµ ] =
∫

dτ
∫

dx ψ∗(x,τ)
{

h̄
∂

∂τ
+ ieA0(x,τ)+

1
2m

(
ih̄∇∇∇− e

c
A(x,τ)

)2

+V ex(x)−µ +
1
2

∫
dx′ V (x−x′)|ψ(x′,τ)|2

}
ψ(x,τ). (13.26)
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In the theory of quantum electrodynamics there is also a free term S0[Aµ ] for the
gauge field Aµ(x,τ) in the above action, which we have not included here. The
reason is that it is not our goal to consider charged systems in the presence of real
fluctuating electromagnetic fields, as we only wish to explore consequences of a
local U(1) invariance of the theory by introducing an external gauge field. As a
result, in the applications to ultracold atomic gases that we discuss later on, the term
S0[Aµ ] will not be present. Note that the action from (13.26) is indeed invariant
under local U(1) transformations if the fields are transformed according to

ψ(x,τ)→ eiθ(x,τ)ψ(x,τ) and Aµ(x,τ)→ Aµ(x,τ)− h̄c
e

∂θ(x,τ)
∂xµ . (13.27)

Proceeding in the same spirit as we did for the derivation of Noether’s theorem, we
now show that invariance of the action under a local U(1) symmetry actually leads
to a relation between the selfenergy of the particles and the (three-point) vertex
between the particles and the gauge fields. This relation is also known as a Ward
identity.

Let us start the discussion by giving a sketchy example of the relationship be-
tween selfenergies, vertex corrections, and gauge invariance. Suppose we want to
calculate corrections to the photon propagator in QED. Then, the first Feynman dia-
gram that we should include is the bubble diagram shown in Fig. 13.1a. It describes
an incoming photon that turns into a particle-hole (electron-positron) pair, which
then annihilates again to form a photon. It turns out that after including this dia-
gram into the photon propagator, we still obey gauge invariance. If we go further
in our calculations by also including Fock-like selfenergy corrections to the particle
propagators, as shown in Fig. 13.1b, then we actually break gauge invariance. This
breakdown of the gauge invariance is only because we have taken into account a
limited set of Feynman diagrams, whereas inclusion of all diagrams would lead to a
gauge-invariant result. However, it turns out that at this level of perturbation theory
we can already restore the gauge invariance by adding only one diagram, namely
that shown in Fig. 13.1c, which can be viewed as a correction to the three-point
vertex between the particles and the gauge field. How all this comes about is what
we want to show next.

To generalize the above discussion, we derive the relation between the vertex cor-
rections and the selfenergies that allows us to preserve gauge invariance at any level
in perturbation theory. Let S[ψ∗,ψ,Aµ ] be a locally U(1) gauge-invariant action,
such as the action from (13.26). By introducing the source currents J(x,τ) for the
atomic fields and Jµ(x,τ) for the gauge field, we obtain the generating functional
function Z[J,J∗,Jµ ], given by

Z[J,J∗,Jµ ] =
∫

d[ψ∗]d[ψ]d[Aµ ]exp
{
−1

h̄
S[ψ∗,ψ,Aµ ]+SJ

}
(13.28)

where we have
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a) b) c)

Fig. 13.1 Example of corrections to the noninteracting photon propagator, which is represented by
the dashed line. a) Bubble correction to the propagator, where the noninteracting particle and hole
propagators are represented by solid lines. b) Additional first-order Fock selfenergy corrections
to the particle propagator, where the interparticle interaction is represented by a wiggly line. c)
First-order vertex correction.

SJ = (13.29)
∫ h̄β

0
dτ

∫
dx

(
ψ∗(x,τ)J(x,τ)+ J∗(x,τ)ψ(x,τ)+ Jµ(x,τ)Aµ(x,τ)

)
.

If we now apply an infinitesimal version of the gauge transformation from (13.27)
the action itself is invariant, but the term SJ containing the source currents is not. As
a result, we obtain to first order in the local phase θ(x,τ) the following transformed
partition function

Z′[J,J∗,Jµ ] =
∫

d[ψ∗]d[ψ]d[Aµ ]exp
{
−1

h̄
S[ψ∗,ψ,Aµ ]+SJ

}

×
{

1+
∫ h̄β

0
dτ

∫
dx

(
−iθ(x,τ)ψ∗(x,τ)J(x,τ)+ iθ(x,τ)J∗(x,τ)ψ(x,τ)

− h̄c
e

Jµ(x,τ)
∂

∂xµ θ(x,τ)
)}

, (13.30)

where we have assumed that the integration measure remains invariant under the
transformation. Since we have merely performed a transformation of integration
variables, we must have that Z = Z′, which gives

∫
d[ψ∗]d[ψ]d[Aµ ] e−S[ψ∗,ψ,Aµ ]/h̄+SJ

∫ h̄β

0
dτ

∫
dx

{
−iθ(x,τ)ψ∗(x,τ)J(x,τ)

+iθ(x,τ)J∗(x,τ)ψ(x,τ)− h̄c
e

Jµ(x,τ)
∂

∂xµ θ(x,τ)
}

= 0. (13.31)

Using the identities

ψ∗(x,τ)eSJ =± δ
δJ(x,τ)

eSJ and ψ(x,τ)eSJ =
δ

δJ∗(x,τ)
eSJ , (13.32)
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we can write (13.31) more compactly as

∫ h̄β

0
dτ

∫
dx

{
−iθ(x,τ)J(x,τ)

δ
δJ(x,τ)

+ iθ(x,τ)J∗(x,τ)
δ

δJ∗(x,τ)

+
h̄c
e

θ(x,τ)
∂

∂xµ Jµ(x,τ)
}

Z[J,J∗,Jµ ] = 0, (13.33)

where we also used partial integration. Because this equation is valid for all fields
θ(x,τ), we obtain the identity

{
−iJ(x,τ)

δ
δJ(x,τ)

+ iJ∗(x,τ)
δ

δJ∗(x,τ)
+

h̄c
e

∂
∂xµ Jµ(x,τ)

}
Z[J,J∗,Jµ ] = 0.

(13.34)

To proceed, we introduce as before the generating functional W [J,J∗,Jµ ] =
logZ[J,J∗,Jµ ] of all connected Green’s functions, whose derivatives with respect
to the source currents are the expectation values of the atomic and electromagnetic
fields, i.e.

δW [J,J∗,Jµ ]
δJµ(x,τ)

= Aµ(x,τ),
δW [J,J∗,Jµ ]

δJ∗(x,τ)
≡ φ(x,τ) = 〈ψ(x,τ)〉,

δW [J,J∗,Jµ ]
δJ(x,τ)

≡±φ ∗(x,τ) =±〈ψ∗(x,τ)〉, (13.35)

where we note that we use the same notation for the photon field and its expectation
value, with which we do not mean to imply that the two are necessarily equal. More-
over, we define h̄Γ[φ ∗,φ ,Aµ ] as the effective action for the averaged fields φ ∗(x,τ),
φ(x,τ), and Aµ(x,τ) via the Legendre transform

Γ[φ ∗,φ ,Aµ ] ≡
∫ h̄β

0
dτ

∫
dx

(
φ ∗(x,τ)J(x,τ)+ J∗(x,τ)φ(x,τ)+ Jµ(x,τ)Aµ(x,τ)

)

−W [J,J∗,Jµ ]. (13.36)

We can use these definitions to rewrite (13.34), namely we have
{
−J(x,τ)

δ
δJ(x,τ)

+ J∗(x,τ)
δ

δJ∗(x,τ)

}
W [J,J∗,Jµ ] = i

h̄c
e

∂
∂xµ Jµ(x,τ), (13.37)

where with the use of (13.35) and

δΓ[φ ∗,φ ,Aµ ]
δφ ∗(x,τ)

= J(x,τ),
δΓ[φ ∗,φ ,Aµ ]

δφ(x,τ)
=±J∗(x,τ),

δΓ[φ ∗,φ ,Aµ ]
δAµ(x,τ)

= Jµ(x,τ). (13.38)

we find that the exact effective action satisfies
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{
−φ ∗(x,τ)

δ
δφ ∗(x,τ)

+φ(x,τ)
δ

δφ(x,τ)

}
Γ[φ ∗,φ ,Aµ ] = i

h̄c
e

∂
∂xµ

δΓ[φ ∗,φ ,Aµ ]
δAµ(x,τ)

.

(13.39)

This is a Ward identity, which the effective action satisfies exactly due to the un-
derlying U(1) symmetry of the microscopic action. If we approximate the exact
effective action by using perturbation theory, this equation can be used to tell us
whether or not we are still satisfying the exact gauge symmetry, or if we have ar-
tificially broken it with our approximation. Moreover, in the latter case, the Ward
identity can also be used to find the Feynman diagrams that should be included to
restore the gauge symmetry again. As a result, the Ward identities are not only im-
portant from a fundamental point of view but also have practical applications. They
can be used to establish exact connections between experimentally relevant quan-
tities, for example to correctly describe atom-light interactions, which is important
for understanding spectroscopy experiments. We will see examples of this in the
following sections.

13.3.1 Hugenholtz-Pines Theorem

We start with considering the case Aµ = 0, which is of interest in the case of ul-
tracold atomic gases, where we usually only have a global U(1) symmetry. From
(13.39), we then find that the expansion of the effective action Γ[φ ∗,φ ] must be a
functional of the form Γ[φ ∗,φ ] = f (φ ∗φ). This is also expected from the general
arguments developed in the Landau theory of Chap. 9, where the effective Landau
free energy functional always preserved the symmetry of the microscopic Hamil-
tonian, in this the case global U(1) symmetry. A particularly useful application of
these considerations is the derivation of the Hugenholtz-Pines theorem for a homo-
geneous interacting Bose gas, which can be written as

µ = h̄Σ11(0,0)− h̄Σ12(0,0), (13.40)

such that the chemical potential is seen to be exactly equal to the difference of
the diagonal and off-diagonal selfenergies evaluated at zero momentum and zero
frequency.

To show this, we first realize from the above discussion that the effective action
for the Bose gas after integrating over all Fourier modes with momenta and frequen-
cies unequal to zero is given by

Seff[φ ∗0 ,φ0] = h̄βV
∞

∑
n=1

Γ(2n)
0
n
|φ0|2n, (13.41)

where Γ(2n)
0 denote the exact 2n-point vertex functions with all 2n−1 external mo-

mentum and frequency arguments equal to zero. The free energy of the system ac-
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quires a minimum in a stationary point of the effective action, i.e. a solution of
δSeff/δφ ∗0 = 0. One possible solution, which corresponds to the symmetric phase,
is always φ0 = 0. However, at low-enough temperatures this stationary point actually
becomes a maximum and a second solution is possible that obeys

∞

∑
n=1

Γ(2n)
0 |φ0|2n−2 = 0. (13.42)

Expanding the effective action around an arbitrary solution of (13.42) by means of
φ0 =

√
n0 +φ ′0,0/

√
h̄βV gives for the quadratic part in the fluctuations

Seff[φ ∗0 ,φ0] = Snφ ′∗0,0φ ′0,0 +Sa
(
φ ′0,0φ ′0,0 +φ ′∗0,0φ ′∗0,0

)
, (13.43)

with

Sn =
∞

∑
n=1

n2(n0)n−1 Γ(2n)
0
n

, (13.44)

Sa =
∞

∑
n=2

n(n−1)
2

(n0)n−1 Γ(2n)
0
n

. (13.45)

From the definition of the normal and anomalous selfenergies from (11.26) and
(11.31), on the other hand, we have that Sn ≡ h̄Σ11(0,0)−µ and Sa ≡ h̄Σ12(0,0)/2.
Therefore, the Hugenholtz-Pines theorem is proven by

Sn−2Sa =
∞

∑
n=1

(n0)n−1Γ(2n)
0 = 0 (13.46)

as follows from the stationary condition (13.42) for the solution φ0 =
√

n0.

13.3.2 Bragg Scattering

To investigate the properties of ultracold gases we typically make use of some ex-
ternal probe to disturb the system, and its response then tells us something about the
state it is in. In the following, we consider two examples of common experimen-
tal techniques that are used to make high-precision measurements. The effective
action formalism and the Ward identities derived in this chapter then turn out to
be very useful, and sometimes indispensable, for the correct theoretical analysis of
such experiments. The first example is called Bragg spectroscopy, which in the field
of ultracold atoms refers to the diffraction of an atomic cloud by a light grating. It
can be seen as the matter-wave analogue of the same process known from optics.
It has found many applications, such as coherently splitting a Bose-Einstein con-
densate into two momentum components [90], measuring the excitation spectrum
of a trapped Bose-Einstein condensate [91], and measuring the light-shifted energy
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levels of an atom in an optical lattice [92]. In Chap. 16, we show how Bragg spec-
troscopy can also be used to probe the excitation spectrum of what is known as the
Mott-insulator state.

In the traditional X-ray Bragg spectroscopy experiments, the momentum of an
incoming electromagnetic wave is changed by diffraction from a periodic structure.
Analogously, in experiments with ultracold gases, matter waves are diffracted from
a periodic light grating. To this end, the setup from Fig. 16.10 is used, where two
laser beams with a slight mismatch in wavevector and frequency create an intensity
pattern that propagates in space. On the microscopic level, these two laser beams
make excitations in the atoms, which allows for a controllable momentum and en-
ergy transfer. When an atom absorbs a photon from beam two, it is stimulated to
emit a photon either back into beam two or into beam one, where the latter causes
the atom to undergo a change of momentum h̄q = h̄k2− h̄k1 and a change of en-
ergy h̄ω = h̄ω2− h̄ω1. The magnitude of the momentum kick to the atom is then
to a good approximation given by h̄q = 2h̄kph sin(θ/2), where h̄kph = 2π h̄/λ is the
photon momentum in both lasers, λ is the wavelength of the laser light, and θ is
the angle between the two laser beams. By varying the angle between the two laser
beams any momentum between zero and 2h̄kph can be transferred, while by varying
the relative frequency between the beams the amount of energy that is transferred to
the atoms can be controlled. Note that even though this kind of Bragg scattering is a
two-photon or Raman process, it can also be thought of as an effective single-photon
scattering process similar to Compton scattering.

For a theoretical treatment of Bragg spectroscopy, we describe the (effective)
photons by gauge fields that are coupled to a gas of atoms, as given by the following
effective action h̄Γ[φ ∗,φ ,Aµ ]

h̄Γ[φ ∗,φ ,Aµ ] = −
∫ h̄β

0
dτ

∫
dx

∫ h̄β

0
dτ ′

∫
dx′φ ∗(x,τ)h̄G−1(x,τ;x′,τ ′)φ(x′,τ ′)

+
∫ h̄β

0
dτ

∫
dx

∫ h̄β

0
dτ ′

∫
dx′

∫ h̄β

0
dτ ′′

∫
dx′′

×γµ(x,τ;x′,τ;x′′,τ ′′)φ ∗(x,τ)Aµ(x′,τ ′)φ(x′′,τ ′′)
+ . . . , (13.47)

where we introduced the exact effective atom-photon vertex γµ(x,τ;x′,τ ′;x′′,τ ′′).
Let us now assume that, with the use of diagrammatic perturbation theory, we have
obtained an approximate expression for the atomic selfenergy h̄Σ(x,τ;x′,τ ′) by tak-
ing into account only certain classes of Feynman diagrams. In that case, (13.39) can
be seen as a defining equation for the vertex γµ(x,τ;x′,τ ′;x′′,τ ′′), which it has to
satisfy in order to preserve the local U(1) symmetry of the action at this particular
level of perturbation theory. Differentiating this equation with respect to φ(x′,τ ′)
and φ ∗(x′′,τ ′′) and consequently putting all fields equal to zero, we obtain
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δ (τ− τ ′′)δ (x−x′′)
δ 2Γ[φ ∗,φ ,Aµ ]

δφ(x′,τ ′)δφ ∗(x,τ)
−δ (τ− τ ′)δ (x−x′)

δ 2Γ[φ ∗,φ ,Aµ ]
δφ(x,τ)δφ ∗(x′′,τ ′′)

=−i
h̄c
e

∂
∂xµ

δ 3Γ[φ ∗,φ ,Aµ ]
δφ(x′,τ ′)δφ ∗(x′′,τ ′′)δAµ(x,τ)

. (13.48)

This result can be further evaluated by using the expansion in (13.47), such that we
find

δ (τ− τ ′′)δ (x−x′′)h̄G−1(x,τ;x′,τ ′)−δ (τ− τ ′)δ (x−x′)h̄G−1(x′′,τ ′′;x,τ)

= i
h̄c
e

∂
∂xµ γµ(x′′,τ ′′;x,τ;x′,τ ′), (13.49)

where the left-hand side is the difference between the exact atomic propagators and
the right-hand side is the sum of derivatives of the atom-photon vertex.

Fig. 13.2 An incoming pho-
ton with four-momentum k′µ
couples to an incoming par-
ticle with four-momentum
kµ , whose four-momentum is
changed to kµ + k′µ

’

(k+k ; i!n + i!n)i

(k; i!n)

(k ;i!n)

’

’

’

For a homogeneous system we can conveniently express this equation in momen-
tum space, which yields

−c
e

k′µ γµ(k, iωn;k′, iωn′) = G−1(k+k′, iωn + iωn′)−G−1(k, iωn), (13.50)

where we have introduced the four-vector notation k′µ =
(−ωn′/c, k′

)
, and where

the momentum and Matsubara frequency labels are depicted in Fig. 13.2. Using that
the propagators can be written as the sum of a noninteracting part and a selfenergy
contribution, we obtain

−c
e

k′µ γµ(k, iωn;k′, iωn′) = G−1
0 (k+k′, iωn + iωn′)−G−1

0 (k, iωn)

+Σ(k, iωn)−Σ(k+k′, iωn + iωn′). (13.51)

The lowest-order contribution γµ
0 (k, iωn;k′, iωn′) to the vertex γµ(k, iωn;k′, iωn′)

can be calculated from the microscopic action in (13.26), and is given by

γ0
0 (k, iωn;k′, iωn′) = ie,

γ j
0(k, iωn;k′, iωn′) =

e
c

h̄
2m

(k′j +2k j). (13.52)



13.4 RF Spectroscopy 313

The difference of the noninteracting Green’s functions on the right-hand side of
(13.51) is then seen to be exactly equal to the lowest-order contribution on the left-
hand side, which formally proves that the lowest-order Feynman diagram in Fig.
13.1a leads to a gauge-invariant or conserving approximation. We make use of this
result by writing the full vertex as

γµ(k, iωn;k′, iωn′) = γµ
0 (k, iωn;k′, iωn′)+∆γµ(k, iωn;k′, iωn′). (13.53)

We obtain the following identity for the vertex correction ∆γµ :

c
e

k′µ ∆γµ(k, iωn;k′, iωn′) = Σ(k+k′, iωn + iωn′)−Σ(k, iωn). (13.54)

A direct application of this equation to a physical system is postponed until Sect.
16.7, where we theoretically investigate the possibility of probing the excitation
spectrum of the Mott-insulator phase using Bragg spectroscopy.

13.4 RF Spectroscopy

A second well-established tool to probe ultracold atomic gases is radio-frequency
(RF) spectroscopy, which, unlike Bragg spectroscopy, makes explicit use of the in-
ternal hyperfine structure of the atoms by inducing coherent transfer between dif-
ferent internal states. The possibility of coherently transferring atoms from one hy-
perfine state to another by means of the RF photon field is described by adding an
interaction term SRF to the microscopic action, namely

SRF[ψ∗,ψ,Aµ ] = ∑
α,β

∫ h̄β

0
dτ

∫
dx γµ

0;αβ ψ∗
α(x,τ)Aµ(x,τ)ψβ (x,τ), (13.55)

where 2γµ
0;αβ /h̄ = 2(γµ

0;βα)∗/h̄ is the (single-photon) Rabi frequency. It is defined
more precisely in (16.11), and determines the strength of the coherent coupling be-
tween the RF photon field and the atoms in the internal states |α〉 and |β 〉. The
wavelength of the RF field is usually much larger than the size of the atomic cloud,
such that we are able to take the momentum of the RF photons equal to zero. A more
detailed account of the origin of this interaction term is left for Chap. 16, where we
consider explicitly the interaction between atoms and radiation. Interestingly, the
high accuracy of RF spectroscopy is actually used to provide the standard of time,
while it has also been applied to precisely determine the size and temperature of
ultracold atomic gas clouds [93, 94]. In addition, RF pulses can be used to break
up tightly-bound molecules or loosely-bound Cooper pairs, allowing for an exper-
imental study of the binding energy or excitation gap of fermionic pairs [95, 96]
throughout the BEC-BCS crossover.

In the following, we consider an interacting Fermi mixture consisting of atoms
in the two hyperfine states |1〉 and |2〉 with a temperature above the superfluid criti-
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Fig. 13.3 Schematic of the mean-field shift experiment of Gupta et al. [97]. (a) First a mixture of
atoms in state |1〉 and |2〉 is created. (b) A RF field with a variable frequency ν = ω/2π drives
transitions between state |2〉 and state |3〉. (c) An atom in state |2〉 that interacts with atoms in
state |1〉 has a density of states ρ2(ε), while an atom in state |3〉 has a different density of states
ρ3(ε) due to the different interaction potential with atoms in state |1〉. The noninteracting energy
difference between states |2〉 and |3〉 is denoted by ∆23.

cal temperature Tc. By means of a RF field with a tunable frequency h̄ω , a transfer
of atoms between state |2〉 and a third state |3〉 is induced, where the resonance
frequency for the transfer is sensitive to the interatomic interaction potentials. This
comes about because the energy of atoms in state |2〉 is shifted due to interactions
with atoms in state |1〉, where a simple Hartree estimate for the shift is given by
4π h̄2a21n1/m with n1 the density of particles in state |1〉 and a21 the scattering
length characterizing the strength of the interactions. Similarly, atoms in state |3〉
are then estimated to experience an energy shift of 4π h̄2a31n1/m due to interactions
with state |1〉, so that the energy h̄ω needed to induce transitions from |2〉 to |3〉 is
now estimated as h̄ω = ∆23 + 4π h̄2(a31− a21)n1/m, where ∆23 is the unperturbed
difference in energy between state |2〉 and |3〉. More generally speaking, because
the interaction potential between atoms in states |1〉 and |3〉 is different from that
between atoms in states |1〉 and |2〉, the density of states in the hyperfine states |2〉
and |3〉 is also different. As a result, the resonant RF frequency may vary with inter-
action strength and is in general not equal to the noninteracting value ∆23, where the
difference is also called a mean-field shift or clock shift. This situation is sketched
in Fig. 13.3.

We remark that in the absence of atoms in state |1〉 no mean-field shifts can
occur, even if there are interactions between atoms in state |2〉 and |3〉. The physical
reason is that the RF pulse coherently rotates the atomic spin, such that all atoms
that initially are in state |2〉 are always in the same rotating spin state, which after
the pulse is given by some coherent superposition of states |2〉 and |3〉. We have
explained in Sect. 12.2 that the Pauli principle forbids s-wave interactions between
atoms in the same spin state, explaining the absence of a mean-field shift in this
particular case. Mathematically, this absence can also be shown rigorously by taking
into account the proper vertex corrections [98]. However, here we do not wish to
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consider this problem in detail, so we simply ignore the presence of interactions
between atoms in states |2〉 and |3〉.

Fig. 13.4 The fraction of atoms transferred from hyperfine state |2〉 to hyperfine state |3〉 as a
function of the RF frequency h̄ω relative to the energy difference ∆23 between the two atomic
states in vacuum. The difference h̄ω −∆23 is also called the detuning. The solid circles represent
data when atoms in state |1〉 are absent. As a result, the measured RF peak is narrow and unshifted.
The open circles represent data when atoms in state |1〉 are present. Due to interaction effects, the
peak is broadened and shifted. From S. Gupta, Z. Hadzibabic, M. W. Zwierlein, C. A. Stan, K.
Dieckmann, C. H. Schunck, E. G. M. van Kempen, B. J. Verhaar, and W. Ketterle, Science 300,
1723 (2003). Reprinted with permission from AAAS.

The sensitivity of the transition frequency between states |2〉 and |3〉 to the pres-
ence of atoms in state |1〉 can be probed with high precision using RF spectroscopy,
as shown in Fig. 13.4 for a 6Li cloud. The transferred fraction of atoms from state
|2〉 to |3〉 is obtained as a function of the frequency of the RF field h̄ω relative to
∆23, where h̄ω −∆23 is also called the detuning. In the absence of atoms in state
|1〉 the experiment observes a strong peak around zero detuning, such that there is
no mean-field shift, as mentioned above. In the presence of atoms in state |1〉, a
clear broadening and a shift in the maximum of the RF spectrum is observed due
to the presence of interactions. In Chap. 17, we explain how the interaction strength
between the atoms can be tuned experimentally by applying an external magnetic
field. In the case of 6Li atoms, the dependence of the s-wave scattering lengths on
the applied magnetic field has been determined by a combination of experimental
and theoretical methods and is shown in Fig. 13.5. By recording the values of the
shifted RF peak for many different values of the magnetic field, Gupta et al. [97]
measured the mean-field shift of the spectrum from the weakly-interacting to the
strongly-interacting regime. The results are shown in Fig. 13.6. The most surprising
feature of these results is that the mean-field shift completely disappears above 650
Gauss, even though there are atoms in state |1〉 present.
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Fig. 13.5 The scattering lengths a31, a32, and a21 for the interactions between atoms in the three
lowest hyperfine levels |1〉, |2〉, and |3〉 of 6Li as a function of magnetic field.

A simple explanation for the vanishing of the interaction shifts may be based on
the observation that beyond 650 G the scattering lengths a21 and a31 both become
very large, as can be seen from Fig. 13.5. As a result, the corresponding two-body
T matrices both become unitary limited, such that they do not depend on their scat-
tering lengths anymore as explained in Sect. 10.5. This means that they actually de-
scribe identical scattering processes. Let us then consider for convenience the case
when the two s-wave scattering lengths a21 and a31 are exactly equal. A rotation of
the many-body wavefunction in spin space from state |2〉 to |3〉 now yields exactly
the same interaction energy with state |1〉, such that the interaction shift is absent.
If we ignore the energy difference ∆23, the absence of interaction shifts can also be
studied using the global SU(2) symmetry of the interacting Hamiltonian under ro-
tation in spin space. The Ward identity associated with this SU(2) symmetry can be
derived in the same manner as for the U(1) case of Sect. 13.3. Since it is technically
somewhat more involved, we present here only the for our purposes relevant final
result, which reads

k′µ ∆γµ
32(k, iωn;k′, iωn′) =

γ0;32

c
{Σ3(k+k′, iωn + iωn′)−Σ2(k, iωn)}. (13.56)

In the case of zero momentum for the RF pulse, it becomes

−ωn′∆γ0
32(k, iωn;0, iωn′) = γ0;32{Σ3(k, iωn + iωn′)−Σ2(k, iωn)}, (13.57)

where in the following section we apply this fundamental identity to the RF experi-
ments discussed here.
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Fig. 13.6 Measurement of the clock shift in the RF spectrum for the transfer of atoms in state
|2〉 to state |3〉 as a function of magnetic field. Varying the magnetic field causes a change in the
interaction strengths a21 and a31, so that also the corresponding clock shift changes. From S. Gupta,
Z. Hadzibabic, M. W. Zwierlein, C. A. Stan, K. Dieckmann, C. H. Schunck, E. G. M. van Kempen,
B. J. Verhaar, and W. Ketterle, Science 300, 1723 (2003). Reprinted with permission from AAAS.

13.4.1 Second-Order Perturbation Theory

To make the connection between theory and experiment, we first have to identify
the observable of the experiment. The RF field induces the transfer of atoms from
state |2〉 to state |3〉, and we observe the total number of atoms in the final state after
applying the RF pulse. This total number of atoms in state |3〉 depends on the rate at
which the RF photons are absorbed by the atomic gas, i.e. it depends on the inverse
lifetime of the photon. This is a convenient way to think about the measurement,
because it shows that the experiment measures the imaginary part of the photon
selfenergy Π(0,ω + i0), for which the Feynman diagram is shown in Fig. 13.7a. This
Feynman diagram shows that we need to determine the exact atomic propagators,
i.e. the exact atomic selfenergies, and the exact three-point vertex. Although we
cannot obtain these quantities exactly, we can try to find a reliable approximation
that builds upon the fact that we have an exact relation between the selfenergies and
the three-point vertices at our disposal in the SU(2)-symmetric case, namely the
Ward identity from (13.57).

In the next section we determine the selfenergy in the ladder or many-body T
matrix approximation, which sums over all two-body scattering processes and is
therefore a commonly used approximation. We then use the Ward identity to find
the suitable vertex corrections that preserve the SU(2) symmetry, such that we are
not artificially breaking any conservation laws. As an example of how this works,
we start by considering only the contributions up to second-order in the interaction,
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Fig. 13.7 a) Feynman diagram determining the photon selfenergy Π(0,ω + i0), where the thick
lines correspond to the exact atomic propagators and the black triangle denotes the exact atom-
photon vertex. b) Feynman diagrams contributing to the exact atomic propagator in the ladder
approximation up to second order. The interatomic interactions V0;α1 = V0 are denoted by a black
dot. c) Vertex corrections up to second order in the ladder approximation.

where the corresponding Feynman diagrams for the atomic propagator are shown
in Fig. 13.7b. The first-order selfenergy diagram is seen to be momentum and fre-
quency independent, such that it cancels in (13.57). The second-order selfenergy
contribution, as shown in Fig. 13.7b, is given by

h̄Σα(k, iωn + iωn′) = −V 2
0

h̄2
h̄

(h̄βV )2 ∑
k′,m′

∑
k′′,m′′

G0;1(k′, iωm′) (13.58)

×G0;1(k+k′−k′′, iωm′ − iωm′′)G0;α(k′′, iωm′′ + iωn + iωn′).

Here, the subscript α = 2,3 refers to the spin state of the atom and V0 ≡V0;α1 is the
atomic interaction between atoms in state |α〉 and state |1〉, where we use a point
interaction. The difference of the two selfenergies h̄Σ3(k, iωn + iωn′)− h̄Σ2(k, iωn)
is written as

− V 2
0

h̄(h̄βV )2 ∑
k′,m′

∑
k′′,m′′

G0;1(k′, iωm′)G0;1(k+k′−k′′, iωm′ − iωm′′)

×{
G0;3(k′′, iωm′′ + iωn + iωn′)−G0;2(k′′, iωm′′ + iωn)

}

= h̄ωn′
iV 2

0
(h̄2βV )2 ∑

k′,m′
∑

k′′,m′′
G0;1(k′, iωm′)G0;1(k+k′−k′′, iωm′ − iωm′′)

×G0;3(k′′, iωm′′ + iωn + iωn′)G0;2(k′′, iωm′′ + iωn). (13.59)

The latter expression is exactly −h̄ωn′/γ0;32 times the vertex correction in second-
order perturbation theory, which is the second diagram shown in Fig. 13.7c. As a
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Fig. 13.8 The relevant Feynman diagrams for the calculation of the RF spectrum in the ladder or
many-body T matrix approximation. a) The equation for the T matrix. b) Diagrammatic represen-
tation of the selfenergy. c) Diagrammatic representation of the vertex corrections.

result, up to second order in the interaction we still satisfy the Ward identity from
(13.57).

13.4.2 Ladder Summations

We can then generalize the approach of the previous section by incorporating the
complete ladder sum, such that the selfenergy is given by Fig. 13.8b. The spirit is
precisely the same, only the notation becomes somewhat more cumbersome. Let us
consider the jth-order contribution h̄Σ( j)

α (k, iωn + iωn′) to the selfenergy, for which
we have

h̄Σ( j)
α (k, iωn + iωn′) =

−h̄
(−V0

h̄

) j ( 1
h̄βV

) j

∑
k1,n1,...,k j−1,n j−1

∑
k′,m′

{
j−1

∏
p=1

G0;α(kp, iωnp + iωn + iωn′)

×G0;1(k+k′−kp, iωm′ − iωnp)

}
G0;1(k′, iωm′) . (13.60)

The Ward identity tells us that the appropriate vertex correction corresponding to
the above jth-order selfenergy contribution is proportional to h̄Σ( j)

3 (k, iωn + iωn′)−
h̄Σ( j)

2 (k, iωn). To obtain a more insightful expression, we add and subtract from this
difference the term
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−h̄
( −V0

h̄2βV

) j

∑
k1,n1,...,k j−1,n j−1

∑
k′,m′

×
{

m

∏
p=1

G0;3(kp, iωnp + iωn + iωn′)G0;1(k+k′−kp, iωm′ − iωnp)

×
j−1

∏
p=m+1

G0;2(kp, iωnp + iωn)G0;1(k+k′−kp, iωm′ − iωnp)

}
G0;1(k′, iωm′)

with m = 1, . . . , j−2. For two subsequent values of m, where h̄Σ( j)
2 corresponds to

m = 0 and h̄Σ( j)
3 to m = j−1, the obtained expression is rewritten as a common mul-

tiplier times the difference G0;3(kp, iωnp + iωn + iωn′)−G0;2(kp, iωnp + iωn), which
is expressed as the product −iωn′G0;3(kp, iωnp + iωn + iωn′)G0;2(kp, iωnp + iωn).
Diagramatically this means that, starting from a Feynman diagram contributing to
the selfenergy h̄Σ2, we are cutting every one of the internal lines associated with
an atom in state |2〉 that carries an energy iωnp + iωn and gluing it back together
with a bare vertex that changes the spin state of the atom and adds an additional
energy h̄ωn′ . As a result, the suitable vertex correction is given diagramatically in
Fig. 13.8c, while its algebraic expression yields

∆γ0
32(k, iωn;0, iωn′)

γ0;32
=− 1

(h̄2βV )2 ∑
k′,m′

∑
k′′,m′′

×G0;3(k′′, iωm′′ + iωn + iωn′)G0;2(k′′, iωm′′ + iωn)
×G0;1(k′, iωm′)G0;1(k+k′−k′′, iωm′ − iωm′′)
×T MB

31
(
k+k′, iωm′ + iωn + iωn′

)
T MB

21
(
k+k′, iωm′ + iωn

)
. (13.61)

13.4.3 Absence of Clock Shift

To summarize the result of the previous section, we now know explicitly what the
correct vertex correction is when the selfenergy is given by a sum of ladder dia-
grams. If the gas is SU(2) invariant, this correction ensures that the Ward identity
is satisfied and that the corresponding conservation law is obeyed. The goal is now
to use these results to determine the photon selfenergy and the desired photon scat-
tering rate, which determines the RF spectrum. The photon selfenergy, which is
also known as the polarization, was diagrammatically shown in Fig. 13.7a, and the
corresponding algebraic expression is given by

Π(0, iωn′) = (13.62)

|γ0;32|2
h̄2βV ∑

k,n
G3(k, iωn + iωn′)G2(k, iωn)

(
1+

∆γ0
32(k, iωn;0, iωn′)

γ0;32

)
.
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Next, we will show that in the nearly SU(2) symmetric case it can be rewritten as

Π(0, iωn′)

=
|γ0;32|2
h̄2βV ∑

k,n

−h̄
ih̄ωn′ −∆32

{G3(k, iωn + iωn′/2)−G2(k, iωn− iωn′/2)} , (13.63)

which implies that the single-photon absorption spectrum equals

I(ω) =−2V
h̄

Im{Π(0,ω + i0)}=
2π
h̄
|γ0;32|2δ (h̄ω−∆32){N2−N3} , (13.64)

as is also expected from a Fermi’s Golden Rule calculation. Note that this equation
tells us again that there is no mean-field shift in the nearly SU(2) symmetric case,
where we are not fully SU(2) symmetric due to the energy difference ∆32 between
spin state |2〉 and |3〉. The factor N2−N3 can be understood from the Pauli blocking
that occurs when the state |3〉 is not empty at the beginning of the RF pulse. The
net rate for transferring atoms from state |2〉 to state |3〉 is then proportional to
N2(1−N3)−N3(1−N2) = N2−N3. As we see next, (13.63) is not only valid when
the interactions are exactly SU(2) symmetric, but also when 1/T 2B

α1 is negligible
compared to Ξα1(K, iΩn). At low temperatures, when the balanced Fermi mixture
is degenerate with a Fermi momentum kF, the conditions T 2B

α1 Ξα1(K, iΩn)À 1 can
be translated into the conditions kFaα1 À 1.

To summarize, from the many-body T matrix expression for the selfenergy, we
can derive the corresponding vertex corrections that satisfy the Ward identity for the
exactly SU(2) symmetric case. This results in an absorption spectrum with no mean-
field shift. Using these same vertex corrections also for strong, but not necessarily
exactly SU(2) symmetric interactions, we will find that equation (13.63) still holds.
This means that then the mean-field shifts are still absent, in agreement with the
observations in Fig. 13.6 for the strongly-interacting regime. The main thing left to
do is to prove (13.63), which requires some algebra associated with summing ladder
diagrams.

Proof. The first step in proving (13.63) is to substitute (13.61) into (13.62) and
recast the result into the more symmetric form

Π(0, iωn′)

=
|γ0;32|2
h̄2βV ∑

k,n

−h̄
ih̄ωn′ −∆32

{G3(k, iωn + iωn′/2)−G2(k, iωn− iωn′/2)}

× ih̄ωn′ −∆32− h̄Σ̃3(k, iωn + iωn′/2)+ h̄Σ̃2(k, iωn− iωn′/2)
ih̄ωn′ −∆32− h̄Σ3(k, iωn + iωn′/2)+ h̄Σ2(k, iωn− iωn′/2)

, (13.65)

where we used

Gα(k, iωn) =
−h̄

−ih̄ωn + εk,α −µ + h̄Σα(k, iωn)
, (13.66)
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and where we have introduced the definitions

h̄Σ̃3(k, iωn + iωn′/2) =− h̄
(h̄2βV )2 ∑

k′,m′
G0;1(k′, iωm′)

×T MB
31

(
k+k′, iωm′ + iωn + iωn′/2

)
T MB

21 (k+k′, iωm′ + iωn− iωn′/2)

× ∑
k′′,m′′

G0;3(k′′, iωm′′ + iωn′/2)G0;1(k+k′−k′′, iωm′ − iωm′′ + iωn), (13.67)

as well as

h̄Σ̃2(k, iωn− iωn′/2) =− h̄
(h̄2βV )2 ∑

k′,m′
G0;1(k′, iωm′)

×T MB
31

(
k+k′, iωm′ + iωn + iωn′/2

)
T MB

21 (k+k′, iωm′ + iωn− iωn′/2)

× ∑
k′′,m′′

G0;2(k′′, iωm′′ − iωn′/2)G0;1(k+k′−k′′, iωm′ − iωm′′ + iωn) . (13.68)

Thus, we now have to show that the last factor on the right-hand side of
(13.65) equals unity. To this end, we start with considering h̄Σ3(k, iωn + iωn′/2)−
h̄Σ2(k, iωn− iωn′/2), which in the ladder approximation is given by

h̄Σ3(k, iωn + iωn′/2)− h̄Σ2(k, iωn− iωn′/2)

=
1

h̄βV ∑
k′,m′

{
T MB

31 (k+k′, iωm′ + iωn + iωn′/2)

−T MB
21 (k+k′, iωm′ + iωn− iωn′/2)

}
G0;1(k′, iωm′) , (13.69)

and where from Exercise (10.2) and Sect. 10.4, we recall that the many-body transi-
tion matrices can be expressed as T MB

α1 (K, iΩn) = T 2B
α1 /(1−T 2B

α1 Ξα1(K, iΩn)) with
T 2B

α1 = 4πaα1h̄2/m. Next, we rewrite (13.69) as

h̄Σ3(k, iωn + iωn′/2)− h̄Σ2(k, iωn− iωn′/2) =
1

h̄βV ∑
k′,m′

G0;1(k′, iωm′) (13.70)

×T MB
31 (k+k′, iωm′ + iωn + iωn′/2)T MB

21 (k+k′, iωm′ + iωn− iωn′/2)

×
{

1
T MB

21 (k+k′, iωm′ + iωn− iωn′/2)
− 1

T MB
31 (k+k′, iωm′ + iωn + iωn′/2)

}
.

We still have to prove that h̄Σ̃3(k, iωn + iωn′/2)− h̄Σ̃2(k, iωn − iωn′/2) is equal
to h̄Σ3(k, iωn + iωn′/2)− h̄Σ2(k, iωn− iωn′/2), where we start with exactly SU(2)
symmetric interactions, i.e. V0;31 = V0;21. Consider to this end the last factor on the
right-hand side of (13.67). The sum over Matsubara frequencies can be evaluated as
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− 1
h̄2βV ∑

k′′,m′′
G0;3(k′′, iωm′′ + iωn′/2)G0;1(k+k′−k′′, iωm′ − iωm′′ + iωn)

=− 1
h̄βV ∑

k′′,m′′

G0;3(k′′, iωm′′ + iωn′/2)+G0;1(k+k′−k′′, iωm′ − iωm′′ + iωn)
ih̄ωm′ + ih̄ωn + ih̄ωn′/2− εk′′ − εk+k′−k′′ +2µ−∆32

= Ξ31(k+k′, iωm′ + iωn + iωn′/2)− 1
V ∑

k′′

1
2εk′′

, (13.71)

where we note that the second term in the last line of the above equation is divergent
due to the use of the point interaction. Fortunately this divergence cancels, because
in the same manner we find for the last factor in (13.68) the result

Ξ21(k+k′, iωm′ + iωn + iωn′/2)− 1
V ∑

k′′

1
2εk′′

,

such that we have for the difference

h̄Σ̃3(k, iωn + iωn′/2)− h̄Σ̃2(k, iωn− iωn′/2) =
1

h̄βV ∑
k′,m′

G0;1(k′, iωm′) (13.72)

×T MB
31 (k+k′, iωm′ + iωn + iωn′/2)T MB

21 (k+k′, iωm′ + iωn− iωn′/2)
×{

Ξ31(k+k′, iωm′ + iωn + iωn′/2)−Ξ21(k+k′, iωm′ + iωn− iωn′/2)
}

.

This we may finally write as

h̄Σ3(k, iωn + iωn′/2)− h̄Σ2(k, iωn− iωn′/2) = (13.73)
h̄Σ̃3(k, iωn + iωn′/2)− h̄Σ̃2(k, iωn− iωn′/2)

+
{

1
T 2B

21
− 1

T 2B
31

}
1

h̄βV ∑
k′,m′

G0;1(k′, iωm′)

×T MB
31 (k+k′, iωm′ + iωn + iωn′/2)T MB

21 (k+k′, iωm′ + iωn− iωn′/2) .

We have thus indeed proven that h̄Σ̃3− h̄Σ̃2 is equal to h̄Σ3− h̄Σ2 when V0;31 =V0;21,
because then T 2B

21 = T 2B
31 . Consequently, the last factor of (13.65) is equal to one, as

required. Note that we come to exactly the same conclusion if 1/T 2B
α1 is negligible

compared to Ξα1(K, iΩn), such that T MB
α1 (K, iΩn)'−1/Ξα1(K, iΩn).

Using the results from (13.69) and (13.72) we can also consider the weakly-
interacting limit, for which kFaα1 À 1. In that case, we have h̄Σ̃α ' 0, while h̄Σα =
T 2B

α1 n1. Hence, we then find

Π(0, iωn′) = |γ0;32|2 n2−n3

ih̄ωn′ −∆32− (T 2B
31 −T 2B

21 )n1
(13.74)

and a RF absorption spectrum of
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I(ω) =
2π
h̄
|γ0;32|2δ (h̄ω−∆32− (T 2B

31 −T 2B
21 )n1){N2−N3} , (13.75)

which shows that the transition line has a mean-field shift equal to (T 2B
31 −T 2B

21 )n1 =
4π h̄2(a31−a21)n1/m, as was mentioned in the beginning of Sect. 13.4 and was also
visible in Fig. 13.6 at magnetic fields that corresponded to the weakly-interacting
regime in Fig. 13.5.

13.4.4 Absence of Vertex Corrections

Fig. 13.9 RF measurements for a unitarity-limited Fermi mixture of 6Li in the hyperfine states |1〉
and |3〉 as measured by C. H. Schunck et al. [99]. The interactions with state |2〉 are negligible,
so that there are no vertex corrections. The solid line represents the calculated RF spectrum from
(13.77).

The previous subsection revealed that a theoretical interpretation of the RF spec-
trum for interacting Fermi gases can become rather complicated if we insist on sat-
isfying the fundamental Ward identity corresponding to SU(2) symmetry. The full
analysis is particularly difficult when both selfenergy effects and vertex corrections
have to be taken accurately into account, which is the case when states |2〉 and |3〉
are strongly interacting with state |1〉. By changing the applied magnetic field other
physical regimes can be explored, as can be seen explicitly from Fig. 13.5. In par-
ticular, by starting out from a mixture of atoms in states |1〉 and |3〉 and using RF
pulses to induce transitions from |3〉 to |2〉 [99], it is possible to end up in a situation
where the interactions of state |2〉 with both other states are negligible, while the
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interactions between state |1〉 and |3〉 are strong. This happens at around 650 Gauss
according to Fig. 13.5. In that case, we have that the vertex corrections disappear
and (13.62) becomes

Π(0, iωn′) =
|γ0;32|2
h̄2βV ∑

k,n
G0;2(k, iωn + iωn′)G3(k, iωn). (13.76)

Performing again the Matsubara sum by a contour integration that takes into account
the branch cut of G3(k, iωn) on the real axis leads ultimately to the result that the RF
spectrum can be conveniently expressed in terms of the spectral function ρ3(k,ω)
of the atoms in state |3〉 by means of

I(ω) =
2π
h̄
|γ0;32|2 ∑

k
ρ3(k,(εk +∆23)/h̄−ω)NFD(εk +∆23−µ− h̄ω) , (13.77)

where we have assumed that state |2〉 is empty, as is the case in experiment. The
theoretical analysis of (13.77) has recently been carried out [100] and the resulting
RF spectrum is shown in Fig. 13.9. The agreement with measurements performed
by Schunck et al. is seen to be rather good, especially at higher frequencies. The
discrepancy at low frequencies is probably due to the fact that the experiments are
performed in the superfluid state, whereas we have considered the normal phase
here.

13.5 Phase Diffusion

In this section, we discuss the striking phenomenon of phase diffusion [53], which is
a direct consequence of the spontaneous U(1) symmetry breaking in the superfluid
phase and the finite size of a realistic condensate. In Chap. 11, we described a Bose-
Einstein condensate as a coherent state which has a fixed phase and a nonzero ex-
pectation value of the atomic field operators. Having a fixed phase, however, implies
that there are atom-number fluctuations in the condensate, so that if the number of
atoms in the condensate is fixed, the phase of the condensate necessarily undergoes
diffusion. This kind of behavior is common to phase transitions that spontaneously
break a symmetry. For example, in the case of ferromagnetism, the direction of the
magnetization turns out to be diffusing due to the conservation of the total spin
angular momentum.

Before discussing the case of a trapped Bose gas, we first consider the same
phenomenon for a neutral and homogeneous superconductor, which is technically
slightly simpler. Using the approach of Chap. 12, it can be shown that at zero tem-
perature the dynamics of the BCS gap parameter ∆(x, t) is to a good approximation
determined by a time-dependent Ginzburg-Landau theory [101, 102, 103, 104] with
the action
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Seff[∆∗,∆] =
D(εF)

4V

∫
dt

∫
dx

{
h̄2

|∆0|2
∣∣∣∣
∂∆
∂ t

∣∣∣∣
2

− h̄2v2
F

3|∆0|2
|∇∇∇∆|2 +2|∆|2

(
1− |∆|2

2|∆0|2
)}

, (13.78)

where D(εF) is the density of states for one spin projection at the Fermi energy
εF = mv2

F/2 and ∆0 is the equilibrium value of the order parameter. Writing the
complex order parameter in terms of an amplitude and a phase, we observe that the
amplitude fluctuations are gapped and can, therefore, be safely neglected at large
length scales. The long-wavelength dynamics of the superconductor is then domi-
nated by the phase fluctuations, for which we obtain the action

Seff[θ ] =
D(εF)h̄2

4V

∫
dt

∫
dx

{(
∂θ
∂ t

)2

− v2
F
3

(∇∇∇θ)2

}
. (13.79)

This implies that the global phase θ0(t) =
∫

dx θ(x, t)/V of the superconductor has
a dynamics that is governed by

Seff[θ0] =
D(εF)h̄2

4

∫
dt

(
dθ0
dt

)2

. (13.80)

Up to now, our discussion has been semiclassical. To consider quantum fluctua-
tions, we have to quantize this theory by applying the usual rules of quantum me-
chanics. In the present case, the effective action in (13.80) describes the dynamics
of the noninteracting degree of freedom θ0(t). Just like the Feynman path integral
for a free particle leads to the Schrödinger equation, we have that (13.80) leads to
the wavefunction Ψ(θ0; t), which obeys

ih̄
∂
∂ t

Ψ(θ0; t) =− 1
D(εF)

∂ 2

∂θ 2
0

Ψ(θ0; t) , (13.81)

with a ‘diffusion’ constant 1/D(εF) that is proportional to 1/N. In the thermody-
namic limit N →∞, a state with a well-defined stationary phase is clearly a solution,
which leads to a system with a spontaneously broken U(1) symmetry. However, for
a finite (and fixed) number of particles, the global phase cannot be well defined at
all times and always has to ‘diffuse’ in accordance to the above Schrödinger equa-
tion. Also note that in the ground state the phase is actually fully undetermined, with
|Ψ(θ0; t)|2 = 1/2π .

Perhaps surprisingly, the same calculation is somewhat more complicated for
a Bose gas, because the amplitude fluctuations of the order parameter cannot be
neglected even at the largest length scales. However, taking these amplitude fluctu-
ations into account, we nevertheless arrive at an action that is equivalent to (13.80)
and hence again leads to the phenomenon of phase diffusion. This is what we show
next. We start from the action S[ρ,θ ; µ] of (11.93), where the difference with Sect.
11.9 is that now we are not so much interested in the dynamics of the density, but
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rather in the dynamics of the phase. As a result, we now wish to integrate out the
density field ρ(x,τ), which cannot be done exactly. Therefore, we consider here
only the strong-coupling or Thomas-Fermi limit, which was treated by Lewenstein
and You [53]. In that limit, we are allowed to neglect the gradient of the average
density profile [62] and the action S[ρ ,θ ; µ ] is for the longest wavelengths well
approximated by

S[ρ,θ ; µ ] =
∫ h̄β

0
dτ

∫
dx

{
ih̄ρ(x,τ)

∂θ(x,τ)
∂τ

+ V ex(x)ρ(x,τ)−µρ(x,τ)+
2πah̄2

m
ρ2(x,τ)

}
. (13.82)

In equilibrium, the average density profile of the condensate obeys

〈ρ(x)〉=
m

4πah̄2 (µ−V ex(x))Θ(µ−V ex(x)) . (13.83)

Performing the shift ρ(x,τ) = 〈ρ(x)〉+ δρ(x,τ), we find for the zero-momentum
part of the action [105]

S[δN0,θ0; µ ] = h̄βE0(µ)+
∫ h̄β

0
dτ

{
ih̄δN0

dθ0
dτ

+
2πah̄2

mV0(µ)
(δN0)2

}
, (13.84)

where E0(µ) and V0(µ) correspond to the energy and the volume of the conden-
sate in the Thomas-Fermi approximation [60, 61], while δN0(τ) =

∫
dx δρ(x,τ)

represents the fluctuations in the total number of condensate particles.
Performing the integration over the number fluctuations δN0(τ) and Wick rotat-

ing to real times τ → it, we find that the effective action for the global phase of the
condensate has precisely the same form as in (13.80), i.e.

Seff[θ0; µ] =
mV0(µ)

8πa

∫
dt

(
dθ0
dt

)2

, (13.85)

where the appropriate ‘diffusion’ constant is therefore equal to 2πah̄/mV0(µ). This
constant can be shown to equal (1/2h̄)∂ µ/∂N0, if we make use of the the Thomas-
Fermi approximation, such that the chemical potential obeys µ = mω2R2

TF/2 and
the radius of the condensate is given by [75]

RTF = (15ah̄2N0/m2ω2)1/5.

Hence, the ‘diffusion’ constant is proportional to 1/N3/5
0 . For a large number of

atoms, it thus takes a very long time for the condensate to diffuse. This calculation
therefore explicitly shows why it is a good approximation to describe finite-sized
condensates of ultracold atoms as symmetry-broken phases in the thermodynamic
limit.
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13.6 Problems

Exercise 13.1. Show that the continuity equation, (13.23), holds.

Exercise 13.2. Show explicitly by using the action (13.26) that the diagrams in Fig.
13.1 constitute all the diagrams to first order that contribute to the propagator of the
gauge field.

Exercise 13.3. The effective action Seff[θ0; µ] in principle also contains the topo-
logical term ih̄N0(µ)

∫
dt dθ0/dt, with N0(µ) =

∫
dx 〈ρ(x)〉 the average number of

condensate atoms. Add this topological term to the effective action in (13.85) and
derive the Schrödinger equation for the wave function Ψ(θ0; t). What is the wave
function of the ground state?

Additional Reading

• For a detailed account of effective actions and Ward identities, see J. Zinn-Justin,
Quantum Field Theory and Critical Phenomena, (Oxford, New York, 1989).



Chapter 14
Renormalization Group Theory

I may not understand the microscopic phenomena at all, but I
recognize that there is a microscopic level and I believe it
should have certain general, overall properties especially as
regards locality and symmetry: Those than serve to govern the
most characteristic behavior on scales greater than atomic.
– Michael E. Fisher

In this chapter, we discuss the renormalization-group (RG) approach to quantum
field theory. As we will see, renormalization group theory is not only a very power-
ful technique for studying strongly-interacting problems, but also gives a beautiful
conceptual framework for understanding many-body physics in general. The latter
comes about because in practice we are often interested in determining the physics
of a many-body system at the macroscopic level, i.e. at long wavelengths or at low
momenta. As a result we need to eliminate, or integrate out, the microscopic degrees
of freedom with high momenta to arrive at an effective quantum field theory for the
long-wavelength physics. The Wilsonian renormalization group approach is a very
elegant procedure to arrive at this goal. The approach is a transformation that maps
an action, characterized by a certain set of coupling constants, to a new action where
the values of the coupling constants have changed. This is achieved by performing
two steps. First, an integration over the high-momentum degrees of freedom is car-
ried out, where the effect of this integration is absorbed in the coupling constants of
the action that are now said to flow. Second, a rescaling of all momenta and fields is
performed to bring the relevant momenta of the action back to their original domain.
By repeating these two steps over and over again, it is possible to arrive at highly
nonperturbative approximations to the exact effective action.

At a continuous phase transition the correlation length diverges, which im-
plies that the critical fluctuations dominate at each length scale and that the sys-
tem becomes scale invariant. This critical behavior is elegantly captured by the
renormalization-group approach, where a critical system is described by a fixed
point of the above two-step transformation. By studying the properties of these
fixed points, it is possible to obtain accurate predictions for the critical exponents
that characterize the nonanalytic behavior of various thermodynamic quantities near
the critical point. In particular we find that the critical exponent ν , associated with
the divergence of the correlation length, is in general not equal to 1/2 due to crit-
ical fluctuations that go beyond the Landau theory of Chap. 9. It has recently been
possible to beautifully confirm this theoretical prediction with the use of ultracold
atomic gases. Moreover, the renormalization-group approach also explains univer-
sality, which is the observation that very different microscopic actions give rise to

329
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exactly the same critical exponents. It turns out that these different microscopic ac-
tions then flow to the same fixed point, which is to a large extent solely determined
by the dimensionality and the symmetries of the underlying theory. As a result, crit-
ical phenomena can be categorized in classes of models that share the same critical
behavior. In condensed-matter physics, many phase transitions of interest fall into
the XY universality class, such as the transition to the superfluid state in interacting
atomic Bose gases and liquid 4He, and the transition to the superconducting state
in an interacting Fermi gas. Therefore, we mainly focus on this universality class in
the following.

14.1 The Renormalization-Group Transformation

As we have seen in Chap. 9, the order parameter is the central concept in the Lan-
dau theory of phase transitions. In the case of a continuous phase transition, two
phases are separated by a critical point, and the physics of the system near the crit-
ical point are collectively known as critical phenomena. So far, we have made use
of effective actions within the language of quantum field theory to describe these
critical phenomena. Explicitly, we have seen that we can derive these effective ac-
tions from the underlying microscopic action by summing over certain classes of
diagrams or by making use of a Hubbard-Stratonovich transformation. Generally
speaking, to derive an effective description of the system at the low energy scales of
interest, we have to integrate out physical processes that are associated with higher
energy scales. In the following we develop another powerful tool to achieve this
goal, namely the renormalization group theory of Wilson [106, 107].

We start our discussion of the Wilsonian renormalization group by considering
the Landau free energy FL[φ ∗,φ ] = F0[φ ∗,φ ]+Fint[φ ∗,φ ] with

F0[φ ∗,φ ] =
∫

dx
{

h̄2

2m
|∇∇∇φ(x)|2−µ |φ(x)|2

}
= ∑

k
(εk−µ)φ ∗k φk (14.1)

Fint[φ ∗,φ ] =
∫

dx
V0

2
|φ(x)|4 =

V0

2V ∑
K,k,k′

φ ∗K−kφ ∗k φK−k′φk′ , (14.2)

where, as we see soon, FL[φ ∗,φ ] is a free-energy functional that describes phase
transitions that belong to the XY universality class, which includes the superfluid-
normal transition in liquid helium-4, in the interacting Bose gas and in the inter-
acting Fermi gas. The above free energy only incorporates explicitly the classical
fluctuations, which do not depend on imaginary time and do not incorporate the
quantum statistics of the interacting particles. Since the interacting Bose and Fermi
gases share many critical properties, we may expect that these common classical
fluctuations are most important near the critical point. We show more rigorously
that this is really the case in Sect. 14.2. Initially, we focus on the superfluid tran-
sition for bosons, whereas the fermionic case is left for Sect. 14.3.1. Moreover, to
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facilitate the discussion, we introduce a cutoff Λ for the wavevectors k of the order
parameter field φ(x) such that we have

φ(x) =
1√
V ∑

k<Λ
φkeik·x, (14.3)

where we find later that the universal critical properties actually do not depend on
this cutoff. Moreover, to keep the discussion as general as possible, we consider the
Landau free energy in an arbitrary number of dimensions d. The partition function
of the theory is as usual given by

Z =
∫

d[φ ∗]d[φ ]e−βFL[φ∗,φ ]. (14.4)

If we want to calculate this partition function with the use of perturbation theory, as
developed in Sect. 8.2, then it turns out that we run into severe problems near the
critical point. This is readily seen for the condensation of the ideal Bose gas, where
µ → 0, such that the noninteracting Green’s function behaves as G0(k) ∝ 1/k2. This
leads to low-momentum, or infrared, divergencies in various Feynman diagrams
and, as a result, the perturbative expansion breaks down.

To overcome this serious problem, we pursue the following renormalization-
group procedure. First, we split the order parameter into two parts, i.e.

φ(x) = φ<(x)+φ>(x), (14.5)

with the lesser and greater fields defined by

φ<(x) = ∑
k<Λ/s

φk
eik·x
√

V
, and φ>(x) = ∑

Λ/s<k<Λ
φk

eik·x
√

V
(14.6)

with s > 1. Then, we integrate in the partition function over the high-momentum
part φ>(x), so that we obtain in the normal phase

Z =
∫

d[φ ∗<]d[φ<]
∫

d[φ ∗>]d[φ>]e−βFL[φ∗<+φ∗>,φ<+φ>]

=
∫

d[φ ∗<]d[φ<]e−βF0[φ∗<,φ<]
∫

d[φ ∗>]d[φ>]e−βF0[φ∗>,φ>]e−βFint[φ∗<,φ<,φ∗>,φ>]

=
∫

d[φ ∗<]d[φ<]e−βF0[φ∗<,φ<]Z0;>

〈
e−βFint[φ∗<,φ<,φ∗>,φ>]

〉
0;>

≡
∫

d[φ ∗<]d[φ<]e−βF ′[φ∗<,φ<;s], (14.7)

where we defined the effective free energy F ′[φ ∗<,φ<;s] as the outcome of the inte-
gration over the high-momentum part φ>(x). Moreover, we introduced the average
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〈
eA[φ∗>,φ>]

〉
0;>

≡ 1
Z0;>

∫
d[φ ∗>]d[φ>]e−βF0[φ∗>,φ>]eA[φ∗>,φ>]

= e〈A[φ∗>,φ>]〉0;>+(〈A2[φ∗>,φ>]〉0;>−〈A[φ∗>,φ>]〉20;>)/2+..., (14.8)

where Z0;> is the noninteracting partition function of the greater field and for-
mally defined by the condition 〈1〉0;> = 1. The second step in the above equation
is also known as the cumulant expansion, which is left as an exercise to show up to
quadratic order in the exponent. The integration over the high-momentum degrees
of freedom is the most important step of the renormalization group, and we perform
it in more detail soon.

The next step is calculationally simpler. We perform a scaling transformation
k → k/s, which brings the cutoff Λ/s back to Λ. As a result, the free energy after
the renormalization group transformation is defined on the same momentum interval
as before. We still have the freedom to scale the integration variables φ ∗< and φ< in
a convenient way, to which we come back in a moment. At the end of this second
scaling step the partition function is again of the same form as in (14.4), but now
with a new free energy F [φ ∗,φ ;s]. We may iterate the above two-step procedure
over and over again, where it is convenient to parameterize the result of the jth

iteration by the flow parameter l ≡ logs j. All calculated quantities that depend on
the parameter l, in particular the free energy F [φ ∗,φ ; l], are then said to flow. Note
that for the flow of the free energy, we have that F [φ ∗,φ ;0] is equal to FL[φ ∗,φ ],
whereas we have calculated the exact free energy if l → ∞, so F [φ ∗,φ ;∞]≡ F .

There are two important reasons for performing the above two steps. The first
step turns out to solve our previously mentioned infrared divergences, because we
are always integrating over momentum shells Λ/s < k < Λ that do not contain
the origin. The second step is convenient, because it leads to an important rela-
tion between critical points and fixed points of the renormalization group. To see
this we consider the correlation length ξ , which gives the distance over which the
order-parameter correlations 〈φ ∗(x′)φ(x)〉 decay. Note that this correlation length
is a property of the system, so calculating it from an exact effective free-energy
functional should give the same result as calculating it from the corresponding mi-
croscopic functional. In particular, this implies that the correlation length does not
change by only integrating out high-momentum modes. However, it does change
due to the scaling transformation, with which we enhance all momenta and decrease
all lengths in the system. This implies that the flowing correlation length ξ (l) is re-
lated to the actual correlation length ξ according to

ξ (l) = e−lξ , (14.9)

such that for a nonzero and finite correlation length, we have that ξ (l) goes expo-
nentially to zero. However, as we will see, the renormalization-group transformation
also gives rise to fixed points, for which the free energy F [φ ∗,φ ; l] = F∗[φ ∗,φ ] is
independent of l. This in particular means that ξ (l) = ξ ∗, which can only be recon-
ciled with (14.9) if either ξ = 0 or ξ = ∞. The latter case is of particular interest,
since then we are exactly at a critical point. Our conclusion is, therefore, that we
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can study the critical properties of our system by studying the fixed points of the
renormalization-group transformations.

14.1.1 Scaling

Let us focus first in more detail on the second step of the renormalization-group
transformation, namely the scaling step, by making the approximation that integra-
tion over φ>(x) has no effect on the effective free energy F ′[φ ∗<,φ<;s] for the low-
momentum degrees of freedom. This is exact for the noninteracting case, for which
Fint[φ ∗,φ ] = 0, so the lesser and greater fields are uncoupled and the integration over
fast degrees of freedom only gives rise to a constant shift in the free energy of the
slow degrees of freedom. After integrating out the high-momentum part φ>(x), we
now simply have that

F ′[φ ∗<,φ<;s] = FL[φ ∗<,φ<], (14.10)

after which we perform the scaling transformation x→ sx to obtain

F [φ ∗<,φ<;s] =
∫

dx
{

sd−2 h̄2

2m
|∇∇∇φ<|2− sd µ|φ<|2 + sd V0

2
|φ<|4

}
, (14.11)

where for notational convenience we omit the coordinates on which the fields de-
pend. Next, we may also scale the fields as φ< → φ/s(d−2)/2, which leads to

F [φ ∗,φ ; l] =
∫

dx
{

h̄2

2m
|∇∇∇φ |2−µe2l |φ |2 +

V0

2
e(4−d)l |φ |4

}
, (14.12)

where we also substituted l = log(s). The reason for choosing this scaling of the
fields is that for µ = V0 = 0 we know that we are at a critical point, namely the
one that describes the superfluid transition of the ideal Bose gas. As a result, we
also expect to be at a fixed point of the renormalization group, as explained in the
previous section. This is indeed clearly seen from (14.12). By defining also µ(l) =
µe2l and V0(l) = V0e(4−d)l , the renormalization-group equations for µ(l) and V0(l)
are given by

dµ(l)
dl

= 2µ(l), (14.13)

dV0(l)
dl

= (4−d)V0(l). (14.14)

What do these equations tell us? First of all, we see that if d > 4, then V0(l) goes
exponentially to zero if l→∞. In that case, V0 is called an irrelevant variable, and we
expect that the critical behavior of the system is just determined by the free energy
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0=*µ

µa) b)

V0

Fig. 14.1 a) Flow diagram for the running chemical potential µ(l), when V0 = 0. b) Flow diagram
for the running chemical potential µ(l) and the running interaction V0(l) in d > 4, where the
interaction is irrelevant.

F [φ ∗,φ ; l] =
∫

dx
{

h̄2

2m
|∇∇∇φ |2−µ(l)|φ |2

}
. (14.15)

This free energy is fixed for µ(l) = µ∗ = 0, which is also known as the Gaus-
sian fixed point. The renormalization-group flow is now determined by dµ(l)/dl =
2µ(l), which is graphically represented by Fig. 14.1a. If µ(l) is initially not exactly
zero, then it increasingly deviates from the fixed point under the renormalization-
group transformation, and for this reason it is called a relevant variable.

Next, we investigate what happens to the correlation length ξ = elξ (l) as the
chemical potential approaches its critical value µ∗ = 0. Since we know from Landau
theory that for a free energy of the form of (14.15) we have that ξ (l) ∝ 1/

√
|µ(l)|,

we find the behavior

ξ ∝
el

√
|µ(l)| =

1√
|µ−µ∗| . (14.16)

Introducing the deviation from criticality ∆µ(0) = µ − µ∗ = µ , this behavior can
also be understood more formally from the observation that ξ = elξ (µ(l)) =
elξ (∆µ(0)e2l) for any value of l. Therefore, we may evaluate the correlation length
ξ at the specific value l = log(∆µ0/|∆µ(0)|)/2, where ∆µ0 is an arbitrary energy
scale larger than zero. This leads to

ξ =

√
∆µ0

|∆µ(0)| ξ (±∆µ0) ∝
1√

|µ−µ∗| , (14.17)

such that on approach of the critical point, the correlation length diverges as |µ −
µ∗|−ν with a critical exponent ν = 1/2. We find in the next section how this result
changes, when we further include the effects of interactions. To end this section, we
draw the general flow diagram for d > 4 in Fig. 14.1b, where we already remark that
for d < 4 the flow turns out to be very different. Moreover, the case d = 4 is special
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because now V0 does not flow in the present approximation, such that it is called a
marginal variable.

14.1.2 Interactions

To study the critical properties for the case d ≤ 4, we also need to perform the first
step of the renormalization-group transformations. To first order in V0, we find from
(14.2), (14.7) and (14.8) the following correction to the free energy

〈
V0

2

∫
dx|φ<(x)+φ>(x)|4

〉

0;>
,

where the average is taken with respect to the Gaussian free energy F0[φ ∗>,φ ∗>] and
only the high-momentum degrees of freedom are averaged over. The above average
gives rise to 16 terms. One term has only lesser fields, namely Fint[φ ∗<,φ ∗<], and
one has only greater fields, which yields a constant shift for the slow degrees of
freedom. Four terms have one greater field, which evaluates to zero after averaging
over F0[φ ∗>,φ ∗>] as explained in Example 7.4 for the more general case of an action
that also depends on imaginary time. The four terms with three greater fields also
average to zero, after which there remain 6 terms with two greater fields. One term
contains φ ∗>φ ∗> and one φ>φ>, which both average to zero as explained in Example
7.4. Finally, there are four nonzero terms that give rise to

2V0

∫
dxφ ∗<(x)φ<(x)〈φ ∗>(x)φ>(x)〉0;> ,

which we may further evaluate using the Fourier transform of (14.6), such that

〈φ ∗>(x)φ>(x)〉0;> =
1
V ∑

Λ/s<k<Λ
〈φ ∗k φk〉0;> =

1
V ∑

Λ/s<k<Λ

1
β (εk−µ)

, (14.18)

where in the first step we used translational invariance, while in the second step we
used (2.50) and (14.1) and (14.4).

+  4b)a)  2

Fig. 14.2 Diagrammatic representation of the correction to a) the chemical potential µ(l) and b)
the interaction V0(l)
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As a result, we have found to first order in V0 that the integration over high-
momentum shells gives a correction to the chemical potential µ , which is diagram-
matically represented in Fig. 14.2a. Converting the sum into an integral, we find for
the first step of the renormalization group

µ ′ = µ−2V0

∫ Λ

Λ/s

dk
(2π)d

kBT
εk−µ

, (14.19)

which after rescaling the momenta and iterating j times, becomes

µ j = µ j−1−2V0

∫ Λ

Λ/s

s−d jdk
(2π)d

kBT
s−2 jεk−µ j−1

. (14.20)

We take the continuum limit of this discrete result by renaming s j = el and integrat-
ing out each time a momentum shell of infinitesimal width dΛ = Λdl and an area
2πd/2 Λd−1/ Γ(d/2), where 2πd/2/Γ(d/2) is the solid angle in d dimensions. Here,
Γ(z) is the Gamma function, and in three dimensions we recover the familiar solid
angle of 4π . Substituting the above results in (14.20), we obtain

dµ =−2V0
Λd

(2π)d
2πd/2

Γ(d/2)
kBT

εΛe−2l −µ
e−lddl, (14.21)

We may transform the above equation to a more convenient set of variables by using
the same scaling as before, namely µ → µe−2l and V0 →V0e−(4−d)l , so that we get

dµ
dl

= 2µ−2V0
Λd

(2π)d
2πd/2

Γ(d/2)
kBT

εΛ−µ
, (14.22)

where for notational convenience we omitted writing explicitly the l dependence of
the flowing variables. Note that, by using the above scaling, we have that the renor-
malization of the physical chemical potential due to selfenergy effects is determined
by µe−2l . Also note that if we are integrating out infinitesimal momentum shells we
only have to incorporate the effect of one-loop Feynman diagrams, because each
additional loop would introduce another factor of dΛ. For the renormalization of V0,
we need to go to second order in the interaction to find the one-loop corrections. It
is left as an exercise to show that this leads to the Feynman diagrams of Fig. 14.2b,
which give rise to

dV0

dl
= (4−d)V0− Λd

(2π)d
2πd/2

Γ(d/2)
V 2

0

[
kBT

(εΛ−µ)2 +4
kBT

(εΛ−µ)2

]

= (4−d)V0−5
Λd

(2π)d
2πd/2

Γ(d/2)
V 2

0
kBT

(εΛ−µ)2 . (14.23)

We find that the second term on the right-hand side of (14.23) is negative, so that
for d ≥ 4 we have V0(l →∞) = 0. As a result, the present treatment does not change
the conclusions from the previous section for d ≥ 4, so that we have the same flow
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Fig. 14.3 Flow diagram of the
running chemical potential µ
and the running interaction
V0 for spatial dimensions
d < 4, where the interaction is
relevant and another nontrivial
fixed point exists in the flow
diagram.

µ

V
0

diagram as shown in Fig. 14.1b, which only contains the Gaussian fixed point. Note
that in the special case of d = 4, the decay of V0 is actually not exponential, and
the interaction is now called a marginally irrelevant variable. We thus come to the
conclusion that the critical behavior in these dimensions is determined by the non-
interacting theory, so that we find the critical exponent ν = 1/2 for the divergence
of the correlation length. However, for d < 4, we find the flow diagram shown in
Fig. 14.3, which has a new, nontrivial fixed point determined by the equations

µ = V0
Λd

2d−1
1

πd/2Γ(d/2)
kBT

εΛ−µ
,

(4−d)V0 = 5V 2
0

Λd

2d−1
1

πd/2Γ(d/2)
kBT

(εΛ−µ)2 , (14.24)

which are solved by

µ∗ =
(4−d)
(9−d)

εΛ,

V ∗
0 =

5(4−d)
(9−d)2

2d−1πd/2Γ(d/2)
Λd

ε2
Λ

kBT
. (14.25)

Having found the fixed point (µ∗,V ∗
0 ), we can further investigate the behavior of

the critical system by looking at small deviations ∆µ and ∆V0 around the fixed point
and linearizing the renormalization-group equations (14.22) and (14.23) in these
perturbations. The right-hand side of (14.22) and (14.23) are commonly known as
the β functions βµ(µ,V0) and βV0(µ,V0) respectively, such that we have

d∆µ
dl

=
∂βµ

∂ µ

∣∣∣∣
µ∗,V ∗0

∆µ +
∂βµ

∂V0

∣∣∣∣
µ∗,V ∗0

∆V0, (14.26)

d∆V0

dl
=

∂βV0

∂ µ

∣∣∣∣
µ∗,V ∗0

∆µ +
∂βV0

∂V0

∣∣∣∣
µ∗,V ∗0

∆V0, (14.27)
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where it is important to note that the derivatives of the β functions actually do not
depend on the cutoff Λ. Moreover, we can diagonalize the above linear differential
equations, so that the new coordinates ∆µ ′(l) and ∆V ′

0(l) belonging to the eigenval-
ues λ+ and λ−, behave as ∆µ ′(l) = eλ+l∆µ ′(0) and ∆V ′

0(l) = eλ−l∆V ′(0), where λ+
is positive and λ− is negative.

What can we learn from these results? As mentioned before, integrating out mo-
mentum shells does not change the correlation length. Therefore, we have that

ξ = elξ (µ(l),V0(l)) , (14.28)

which we may also express near the fixed point as

ξ = elξ (∆µ ′(l),∆V ′
0(l)) . (14.29)

Since the eigenvalue λ− turns out to be negative, we have for large values of l that

ξ ' elξ (eλ+l∆µ ′(0),0) . (14.30)

Taking in particular l = log(∆µ ′0/|∆µ ′(0)|)/λ+ with ∆µ ′0 an arbitrary but nonzero
energy scale, for example µ∗, we finally obtain the desired result

ξ '
(

∆µ ′0
|∆µ ′(0)|

)1/λ+

ξ (±∆µ ′0,0)≡
(

µ∗

|µ−µ∗|
)1/λ+

ξ± , (14.31)

where the different signs distinguish between the behavior on the two sides of the
critical point. We see that when |∆µ ′(0)| goes to zero, the correlation length diverges
with the power 1/λ+, where if d < 4 the critical exponent ν is different from the
mean-field value 1/2. In the case of most interest, d = 3, we find λ+ = 1.878 which
implies that ν = 1/λ+ = 0.532 > 1/2. Even though the difference with the mean-
field value may seem small, we note that this is a highly nontrivial result, because
all theories we have encountered so far would have predicted ν = 1/2. We also see
explicitly that the critical exponent ν does not depend on the cutoff Λ or interac-
tion strength, but only on the dimension d. This is an illustration of the important
phenomenon of universality that we alluded to before. In fact, critical exponents
in general depend essentially only on the dimensionality and the symmetry of the
order parameter. As a result, many physical systems that are microscopically very
different share the same critical properties and are therefore said to be in the same
universality class.

Similar, but more involved, renormalization group calculations give that ν =
0.613 [108]. At a fixed density, the chemical potential varies as a function of tem-
perature, and our result for the divergence of the correlation length near the critical
point can also be expressed as

ξ (T ) =
(

Tc

|T −Tc|
)ν

ξ±. (14.32)
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Recently, Donner et al. tested this fundamental relationship by measuring the critical
exponent ν in an ultracold trapped atomic gas of rubidium-87, which was prepared
slightly above the critical temperature [109]. Using radio-frequency fields, the spin
of the trapped rubidium atoms was flipped at two different positions in the cloud,
where the spin flip was from a trapped state to a state that was not trapped. In this
way, atoms were extracted from the trapped cloud, after which they were free to ex-
pand and to interfere. The performed experiment can be seen as a modern version of
a Young two-slit experiment. The interference pattern directly measured the corre-
lation function, 〈ψ̂†(x)ψ̂(x′)〉, where x and x′ denote the positions where the atoms
were extracted from the cloud. By changing the distance between these positions,
it was possible to determine the correlation length from the exponential decay at
large separations. Performing the same experiment at different temperatures led to
the results in Fig. 14.4, which beautifully confirms the theoretical prediction and in
particular clearly shows that ν 6= 1/2.

Fig. 14.4 Measurement of the diverging correlation length ξ as a function of temperature in a
nearly critical gas of rubidium-87 atoms. The solid line is a fit using (14.32) and gives ν ' 0.67±
0.13. From T. Donner, S. Ritter, T. Bourdel, A Öttl, M. Köhl, and T. Esslinger, Science 315, 1556
(2007). Reprinted with permission from AAAS.

To end this section, let us make a brief connection with the approach to renor-
malization group theory that is used in high-energy physics. In condensed-matter
and statistical physics, we use the renormalization-group approach to regulate the
infrared (long-wavelength) behavior of the system, whereas in high-energy physics
it is used to regulate the ultra-violet (short-wavelength) behavior of the theory. The
latter comes about because in high-energy physics the high-momentum degrees of
freedom often lead to divergencies in the Feynman diagrams, which consequently
have to be removed by an appropriate renormalization procedure in order to ob-
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tain predictive power. To make the translation between these two seemingly very
different approaches, we may construct the following table for |φ |4 theory, where
it should be noted that our classical |φ |4 theory in d dimensions corresponds to the
imaginary-time action of a Lorentz invariant |φ |4 theory in d−1 spatial dimensions.

Condensed-matter physics High-energy physics
d > 4 Irrelevant theory Nonrenormalizable theory
d = 4 Marginal theory Renormalizable theory
d < 4 Relevant theory Superrenormalizable theory

To explain this table, we first recall that a nonrenormalizable theory contains an
infinite number of divergent Feynman diagrams that can only be absorbed by renor-
malizing an infinite number of coupling constants. An important example of such
a theory is the quantum version of Einstein’s theory of gravity. A renormalizable
theory also contains an infinite number of divergent diagrams, but it requires only
a renormalization of a finite number of coupling constants to absorb the infinities.
The Standard Model is the ultimate example of a renormalizable theory. Finally,
a superrenormalizable theory contains only a finite number of divergent diagrams.
From these observations, we may infer that all quantum field theories of high-energy
physics are thus actually effective theories, with all (usually unknown) high-energy
degrees of freedom integrated out. The resulting theory is then finite at the long-
wavelength scales of interest, where these wavelengths are actually still very short
compared to the scales considered usually in condensed matter. Note that such an
effective high-energy theory does not contain terms that are irrelevant in the long-
wavelength limit, because their effect has been integrated out. Since we have seen
that the |φ |4 term is not irrelevant only in d ≤ 4, we can only obtain an effective
renormalized |φ |4 theory in these dimensions.

14.2 Quantum Effects

Up to now we have considered only classical fluctuations, which we have mentioned
to be most important close to the phase transition. To actually show this, we gener-
alize our renormalization-group equations to also include quantum effects. To this
end, we consider the partition function

Z =
∫

d[φ ∗]d[φ ]e−SL[φ∗,φ ]/h̄, (14.33)

with φ(x,τ) the bosonic order parameter that is periodic in the imaginary-time in-
terval [0, h̄β ], and SL[φ ∗,φ ] the Euclidean action of the order parameter field. This
means that we now also consider the quantum dynamics of the order parameter,
which was not incorporated in the classical case. More specifically, for our example
of interacting bosonic alkali gases or liquid 4He, we look at
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SL[φ ∗,φ ] =
∫ h̄β

0
dτ

∫
dx

{
φ ∗(x,τ)h̄

∂
∂τ

φ(x,τ)+
h̄2

2m
|∇∇∇φ(x,τ)|2−µ |φ(x,τ)|2

+
V0

2
|φ(x,τ)|4

}
≡ S0[φ ∗,φ ]+Sint[φ ∗,φ ] (14.34)

where S0 is the quadratic part and Sint is the quartic part. We Fourier transform
φ(x,τ) as

φ(x,τ) =
1√
h̄βV

∑
n

∑
k<Λ

φk,nei(k·x−ωnτ), (14.35)

with ωn = 2πn/h̄β the even Matsubara frequencies. We now set up a renormalization-
group calculation in the same way as before, where we split the order parameter in
lesser and greater fields as

φ(x,τ) = φ<(x,τ)+φ>(x,τ)

and integrate over φ>(x,τ), which contains only the momenta in the shell Λ/s <
k < Λ, but all Matsubara frequencies ωn.

The next step is to perform a scaling transformation k→ k/s, ω →ω/sz, where z
is called a dynamical critical exponent and is determined as follows. First, we make
again the approximation that integrating over φ>(x,τ) has no effect, which is exact
for the noninteracting theory, such that we have

S′[φ ∗<,φ<;s] = SL[φ ∗<,φ<]. (14.36)

We perform the transformations x→ sx and τ → szτ , which give

S′[φ ∗<,φ<;s] =
∫ h̄β s−z

0
dτ

∫
dx

{
sdφ ∗<h̄

∂
∂τ

φ< + sz+d−2 h̄2

2m
|∇∇∇φ<|2

−sz+d µ |φ<|2 + sz+d V0

2
|φ<|4

}
. (14.37)

If we now take z = 2 and perform also φ< → φ/sd/2, we obtain

S[φ ∗,φ ; l] =
∫ h̄βe−2l

0
dτ

∫
dx

{
φ ∗h̄

∂
∂τ

φ +
h̄2

2m
|∇∇∇φ |2

−µe2l |φ |2 + e(2−d)l V0

2
|φ |4

}
, (14.38)

where the reason for this scaling is again that it brings about explicitly the criticality
of the ideal Bose gas when µ = V0 = 0. Transforming variables according to µ(l) =
µe2l , V0(l) = V0e(2−d)l , and β (l) = βe−2l we now have three renormalization group
equations, namely
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Fig. 14.5 a) Flow diagram and b) resulting phase diagram of the ideal Bose gas near its quantum
critical point in d > 2.

dµ(l)
dl

= 2µ(l), (14.39)

dV0(l)
dl

= (2−d)V0(l), (14.40)

dβ (l)
dl

=−2β (l), (14.41)

where the quantity β (l) is the flowing upper boundary of the imaginary-time inte-
gration, and can be rewritten in terms of a running temperature T (l) = e2lT as

dT (l)
dl

= 2T (l). (14.42)

We thus conclude that for d > 2, there is a fixed point for µ(l) = µ∗ = 0 and
T (l) = T ∗ = 0 where V0 always renormalizes exponentially to zero and is thus irrel-
evant. This fixed point actually describes a quantum phase transition because it lies
at zero temperature, where we have only quantum fluctuations. Its critical properties
are determined by the action

S[φ ∗,φ ; l] =
∫ h̄β (l)

0
dτ

∫
dx

{
φ ∗h̄

∂
∂τ

φ +
h̄2

2m
|∇∇∇φ |2−µ(l)|φ |2

}
, (14.43)

where the corresponding flow diagram is shown in Fig. 14.5a. Using similar argu-
ments as in obtaining (14.17), we find that the correlation length ξ for the decay of
the equal-time spatial correlations 〈φ ∗(x,τ)φ(x′,τ)〉 diverges as

ξ = elξ (l) ∝

√
1

|µ−µ∗| , (14.44)

whereas the correlation time τc for the decay of the equal-position temporal corre-
lations 〈φ ∗(x,τ)φ(x,τ ′)〉 diverges as
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τc = e2lτc(l) ∝
1

|µ−µ∗| ∝
1

|T −T ∗| ∝ ξ z (14.45)

with z = 2. As a result, we find the phase diagram of the ideal Bose gas in Fig. 14.5b
as a function of the chemical potential and temperature. The meaning of the clas-
sical and quantum regimes for this phase diagram were explained in Sect. 4.3. In
our present language the crossover between quantum and classical behavior is de-
termined by the condition τc ' h̄β . The phase diagram of Fig. 14.5b is a restricted
version of the more general phase diagram shown in Fig. 14.6, which results when
interactions are not taken strictly zero for d > 2. The effect of interactions is dis-
cussed next.

14.2.1 Interactions

To start our discussion of interaction effects, we explain the phase diagram of Fig.
14.6 more explicitly with the use of the Popov theory for Bose-Einstein conden-
sation. Starting from a maximally condensed state at zero temperature, this theory
predicts a phase transition to the normal state upon increasing the temperature, when
n0(Tc) = 0 and µ = 2T 2Bn with n the atomic density. Since the critical temperature
in Popov theory is still given by the ideal gas result, we obtain for the critical line

Tc =
2π h̄2

mkB

(
µ

2T 2Bζ (3/2)

)2/3

. (14.46)

Taking the limit of T 2B ↓ 0, we recover the somewhat pathological phase diagram
of the ideal Bose gas shown in Fig. 14.5, where the superfluid area of the phase
diagram collapses into the single line µ = 0. We now focus on the case that T > 0,
where we have seen in Sect. 14.1.2 that there is a (classical) phase transition, for
which we have argued that quantum effects are unimportant to obtain the critical
properties. To actually show this, we derive the renormalization-group equation for
the quantum theory in the same manner as for the classical theory in Sect. 14.1.2.

Fig. 14.6 Phase diagram
around the quantum crit-
ical point of the weakly-
interacting Bose gas. The
solid line for positive values
of the chemical potential dis-
tinguishes between the normal
state and the superfluid state.
The dashed diagonal line for
negative chemical potential
shows the crossover between
the classical regime and the
quantum regime.

NormalQuantum

Classical

T

SF

µ0
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This leads to exactly the same Feynman diagrams as before, only now we have to
sum over all the Matsubara frequencies in each momentum shell. More explicitly,
rather than the expression from (14.18), we now of course find

〈φ ∗>(x,τ)φ>(x,τ)〉0;> =
1

h̄βV ∑
n

∑
Λ/s<k<Λ

〈
φ ∗k,nφk,n

〉
0;> (14.47)

=
1

h̄βV ∑
n

∑
Λ/s<k<Λ

h̄
−ih̄ωn +(εk−µ)

=
1
V ∑

Λ/s<k<Λ
NBE(εk−µ),

with NBE(x) = 1/(ex − 1) the Bose-Einstein distribution function. In the limit of
infinitesimal momentum-shells, we then obtain after rescaling the renormalization-
group equations [110]

dβ
dl

= −2β , (14.48)

dµ
dl

= 2µ−2V0
Λd

(2π)d
2πd/2

Γ(d/2)
NBE(β (εΛ−µ)), (14.49)

dV0

dl
= −V0−V 2

0
Λd

(2π)d
2πd/2

Γ(d/2)
(14.50)

×
[

1+2NBE(β (εΛ−µ))
2(εΛ−µ)

+4βNBE(β (εΛ−µ))(NBE(β (εΛ−µ))+1)
]
,

where for notational convenience we omitted writing explicitly the l dependence of
the flowing variables.

The above one-loop corrections for the case of infinitesimal momentum shells are
particularly convenient to obtain with the use of the following procedure. The crucial
observation here is that all one-loop corrections can be obtained by performing a
Gaussian integral. Therefore, we use that in the Gaussian approximation for the
greater field φ>(x,τ)

Z =
∫

d[φ ∗<]d[φ<]e−S0[φ∗<,φ<]/h̄
∫

d[φ ∗>]d[φ>]e−S0[φ∗>,φ>]/h̄e−Sint[φ∗<,φ<,φ∗>,φ>]/h̄

=
∫

d[φ ∗<]d[φ<]e−SL[φ∗<,φ<]/h̄
∫

d[φ ∗>]d[φ>]exp
{∫ h̄β

0
dτ dτ ′

∫
dx dx′

× 1
2

[φ ∗>(x,τ),φ>(x,τ)] ·G−1
> (x,τ;x′,τ ′) ·

[
φ>(x′,τ ′)
φ ∗>(x′,τ ′)

]}
,

=
∫

d[φ ∗<]d[φ<]e−SL[φ∗<,φ<] exp
{−Tr[log(−G−1

> )]/2
}

, (14.51)

where the trace is over Nambu space, all Matsubara frequencies and the high-
momentum shell, while the inverse Green’s function matrix G−1

> is given by
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G−1
> (x,τ;x′,τ ′) ≡

[
G−1

0;>(x,τ;x′,τ ′) 0
0 G−1

0;>(x′,τ ′;x,τ)

]
(14.52)

−1
h̄

[
2V0|φ<(x)|2 V0(φ<(x))2

V0(φ ∗<(x))2 2V0|φ<(x)|2
]

δ (x−x′)δ (τ− τ ′) .

Note that in the second step of (14.51) we have neglected the linear terms in φ>

and φ ∗>. This is allowed in the limit of infinitesimal momentum shells, because only
the quadratic part leads to one-particle irreducible one-loop corrections. We can
then expand the logarithm from (14.51) in terms of the interaction, just as we did
in Sects. 8.7.2 and 12.4, so that to first order in the interaction we obtain the one-
loop correction to the chemical potential. Expanding the logarithm to second order
yields the one-loop corrections to the interaction, namely the ladder diagram and
the bubble diagram from Fig. 14.2. This second-order calculation is analogous to
those performed in Sects. 8.7.2 and 12.4, with the main difference that now the in-
ternal momenta are restricted to stay in the high-momentum shell. Moreover, for the
present calculation we may set the external momenta equal to zero, because we are
calculating the renormalization of the momentum-independent coupling V0. In Sect.
14.3.1, we discuss the role of the external momentum in more detail. It turns out
that the above procedure is also very convenient for extending the renormalization
group to more difficult situations, such as to the superfluid phase [110].

Returning to the derived renormalization-group equations, we find that (14.48) is
easily solved as β (l) = βe−2l , which shows that for large l the temperature always
flows to infinity for a nonzero initial temperature. This means that in the vicinity of
the critical point the Bose distribution reduces for large values of l to

N(β (ε(Λ)−µ))' 1
β (εΛ−µ)

− 1
2

=
kBT e2l

εΛ−µ
− 1

2
, (14.53)

with which we almost reproduce the classical renormalization-group equations from
(14.22) and (14.23). To obtain exactly the same equations we must use the appropri-
ate classical scaling of V0 again, i.e. V0(l) =V0el , instead of the scaling V0(l) =V0e−l

appropriate for the quantum Gaussian fixed point. The reason why we reproduce the
classical renormalization-group equations with the quantum theory near the critical
point can be understood by considering the correlation time τc, which diverges as
1/|µ − µ∗|νz. For T 6= 0, we have that the time interval in the original functional
integral is restricted to the finite interval [0, h̄β ], so that near the critical point we are
in the regime τc À h̄β . Then, the partition function is dominated by contributions
from the fluctuations φk,n with zero Matsubara frequencies, where for these fluctu-
ations we have that SL[φ ∗,φ ] = h̄βFL[φ ∗,φ ]. This is the reason why near a classical
critical point the quantum theory reduces to the classical theory.
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14.2.2 Nonuniversal Quantities

Although we have introduced the renormalization-group equations for their use in
studying critical phenomena, they are actually much more general and can be used at
any temperature to include both quantum and thermal fluctuations beyond the Popov
theory. In this manner it is also possible to determine nonuniversal quantities with
the renormalization group, such as the shift in the critical temperature due to the
interatomic interactions. Unfortunately, the nonuniversal quantities usually turn out
to depend explicitly on the arbitrary high-momentum cutoff Λ that is used to start
the renormalization-group flow. However, this problem can be solved by choosing
the correct initial conditions for the renormalization-group equations, as we show
next.

The initial conditions for the flow of the chemical potential and the temperature
are simply equal to the actual physical chemical potential µ and temperature of
interest to us. To determine the appropriate initial condition for the interaction V0(0)
we consider the case of two atoms scattering in vacuum, so that N(β (εΛ−µ)) = 0,
µ = 0, and the temperature does not play a role. Then, we obtain for the three-
dimensional case d = 3 that

dV0

dl
= −V0−V 2

0
Λ3

2π2
1

2εΛ
, (14.54)

which, after removing the trivial scaling by substituting V0 → e−lV0, becomes

d
dl

1
V0

=
Λ3

4π2
e−l

εΛ
. (14.55)

This equation is readily integrated to give

1
V0(∞)

=
1

V0(0)
+

Λ3

4π2
1
εΛ

. (14.56)

Finally, we make use of the fact that for two atoms we know that the exact effective
interaction at low energies is given by the two-body T matrix. As a result, we use
V0(∞) = T 2B = 4π h̄2a/m, so that the corresponding initial condition yields

V0(0) =
4π h̄2a

m
1

1−2aΛ/π
. (14.57)

The exact knowledge of the initial condition for the two-body interaction can conse-
quently also be used for the many-body renormalization-group equations from the
previous section. This turns out to eliminate the previously mentioned cutoff de-
pendence, and gives us the possibility to determine with the renormalization group
nonuniversal quantities that may be directly compared with experiments. A par-
ticularly interesting observable to determine is the shift in the critical temperature
due to the interaction effects. It turns out that to study this subtle effect most accu-
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rately we need to go beyond the renormalization group equations from the previous
section. This goes beyond the scope of this book, but is discussed at length in ref-
erences [110, 111]. Next, we discuss another application of the possibility to study
nonuniversal quantities with the renormalization group, determining the homoge-
neous phase diagram of a strongly-interacting imbalanced Fermi mixture.

14.3 Renormalization Group for Fermions

In Sect. 12.8 we considered an atomic Fermi gas in two different hyperfine states,
which were populated by an equal number of particles. The mixture was at zero
temperature and the scattering length between the particles with different spin could
be tuned at will. This allowed us to study both theoretically and experimentally
the crossover between a Bardeen-Cooper-Schrieffer (BCS) superfluid and a Bose-
Einstein condensate (BEC) of diatomic molecules. In between these two extremes
there is a region where the scattering length diverges, which is called the unitarity
limit. In this strongly-interacting regime, there is no rigorous basis for perturbation
theory because there is no natural small parameter. As a result, we found in Sect.
12.8 that the mean-field theory could not be trusted quantitatively, so that more so-
phisticated theoretical methods have to be invoked in order to get accurate results. In
this section, we apply the Wilsonian renormalization-group method to the interact-
ing atomic Fermi mixture, discussing both the weakly and the strongly-interacting
case. Moreover, we consider both zero and nonzero temperatures, while we also
look at the balanced and the imbalanced case, where the latter means that we have a
different number of particles in each of the two hyperfine states.

The two-component Fermi mixture with an unequal number of particles in each
spin state is actually a topic of great interest in atomic physics, condensed matter,
nuclear matter, and astroparticle physics. Therefore, the landmark atomic-physics
experiments with a trapped imbalanced mixture of 6Li, performed at MIT by Zwier-
lein et al. [112] and at Rice University by Partridge et al. [113], have received a
large amount of attention. It turned out that both experiments agree with a phase
diagram for the trapped gas that has a tricritical point. This tricritical point sepa-
rates the second-order superfluid-to-normal transitions from the first-order transi-
tions that occur as a function of temperature and population imbalance [114, 115].
Moreover, the experiments at MIT turned out to be in agreement with predictions
using the local-density approximation [116], which implies that the Fermi mixture
can be seen as being locally homogeneous. As a result, the MIT group is in the
unique position to also map out experimentally the homogeneous phase diagram
by performing local measurements in the trap. Most recently, this important experi-
ment was performed by Shin et al. [117], obtaining for the homogeneous tricritical
point in the unitarity limit Pc3 = 0.20(5) and Tc3 = 0.07(2) TF,↑, with P the local
polarization given by P = (n↑−n↓)/(n↑+n↓), nα the density of atoms in spin state
|α〉, and εF,α = kBTF,α = (6π2nα)2/3h̄2/2m the Fermi energies with m the atomic
mass. In this section, we use the Wilsonian renormalization-group approach to find
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Pc3 = 0.24 and Tc3 = 0.06 TF,↑ [118], in good agreement with the experiment by
Shin et al. [117].

14.3.1 Renormalization-Group Equations

As we have seen, the central idea of Wilsonian renormalization is to subsequently
integrate out degrees of freedom in shells at high momenta Λ of infinitesimal width
dΛ, and absorb the result of the integrations into various coupling constants, which
are therefore said to flow. The first step is to calculate the Feynman diagrams renor-
malizing the coupling constants of interest, while keeping the integration over the
internal momenta restricted to the considered high-momentum shell. Only one-loop
diagrams contribute to the flow, because the thickness of the momentum shell is
infinitesimal and each loop introduces a factor dΛ. In order to obtain the exact par-
tition sum, it is then needed to consider an infinite number of coupling constants.
Although this is not possible in practice, the renormalization group is still able to
distinguish between the relevance of the various coupling constants, such that a care-
fully selected set of them already leads to highly accurate results. If we wish to treat
critical phenomena by looking at renormalization-group fixed points, it is useful to
also perform the second step of the renormalization group, which is the rescaling of
the momenta, frequencies, and fields. In this section, however, we use the renormal-
ization group to calculate nonuniversal quantities such as the critical temperature
for which rescaling is not particularly useful. As a result, we use the renormaliza-
tion group mainly as a nonperturbative method to iteratively solve a many-body
problem.

Consider the action of an interacting Fermi mixture of two different hyperfine
states in momentum space, namely

S[φ ∗,φ ] = ∑
k,n,α

φ ∗k,n,α(−ih̄ωn + εk−µα)φk,n,α (14.58)

+
1

h̄βV ∑
k,k′,K
n,n′,m

VK,mφ ∗K−k′,m−n′,↑φ
∗
k′,n′,↓φK−k,m−n,↓φk,n,↑ ,

where n and n′ are odd, m is even, µα is the chemical potential for spin state |α〉,
VK,m is the interaction vertex, and α =↑,↓. Note that by using two different chemical
potentials we are in the position to also discuss the imbalanced Fermi gas. More-
over, we consider an interaction VK,m that in general depends on the center-of-mass
frequency iΩm and the center-of-mass momentum K, for which the reason soon
becomes clear.

In Fig. 14.7, we have drawn the by now familiar Feynman diagrams renormaliz-
ing µα and VK,m. To start with a simple Wilsonian renormalization group, we take
the interaction vertex to be frequency and momentum independent. If we then con-
sider the three coupling constants µα and V0,0, we obtain in a similar manner as for



14.3 Renormalization Group for Fermions 349

Va) +b)

σ

σ

− σ

VV

V

V

Fig. 14.7 Feynman diagrams renormalizing a) the chemical potentials and b) the interatomic
interaction.

the Bose case that

dV−1
0,0

dΛ
=

Λ2

2π2

[
1−N↑−N↓
2(εΛ−µ)

− N↑−N↓
2h

]
, (14.59)

dµα
dΛ

= − Λ2

2π2
N−α

V−1
0,0

, (14.60)

where we have introduced µ = (µ↑+µ↓)/2, h = (µ↑−µ↓)/2 and the Fermi distribu-
tions Nα = 1/{exp{β (εΛ−µα)}+1}. These expressions are readily obtained from
the diagrams in Fig. 14.7 by setting all external frequencies and momenta equal to
zero and by performing in each loop the full Matsubara sum over internal frequen-
cies, while integrating the internal momenta over the infinitesimal shell dΛ. The first
term in (14.59) corresponds to the ladder diagram and describes the scattering be-
tween particles. The second term corresponds to the bubble diagram and describes
screening of the interaction by particle-hole excitations. Also note that due to the
coupling of the differential equations for µα and V−1

0,0 we automatically generate an
infinite number of Feynman diagrams, showing the nonperturbative nature of the
renormalization group.

When the Fermi mixture becomes critical, the inverse many-body vertex V−1
0,0

flows to zero according to the Thouless criterion discussed in Sect. 12.2. This unfor-
tunately leads to anomalous behavior in (14.60), where the chemical potentials are
seen to diverge. To solve this issue and calculate the critical properties realistically
we need to go beyond our simple renormalization group, which can be achieved by
taking also the frequency and momentum dependence of the interaction vertex into
account. Although the two-body interaction in ultracold atomic gases is to a very
good approximation constant in Fourier space, the renormalization-group transfor-
mation still generates momentum and frequency dependence of the interaction ver-
tex due to many-body effects. The ladder and the bubble diagrams renormalizing
the two-body interaction are both momentum and frequency dependent, where the
ladder diagram was treated in more detail in Exercise 10.2. It depends only on the
center-of-mass coordinates K and iΩm, so that its contribution to the renormaliza-
tion of V−1

K,m is given by
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dΞ(K2, iΩm) =
∫

dΛ

dk
(2π)3

1−N↑(εk)−N↓(εK−k)
ih̄Ωm− εk− εK−k +2µ

, (14.61)

where during integration both k and K−k have to remain in the infinitesimal
shell dΛ. Since the ladder diagram is already present in the two-body limit, it
is most important for two-body scattering properties. For this reason, the inter-
action vertex is mainly dependent on the center-of-mass coordinates, so we may
neglect the dependence of the vertex on other frequencies and momenta. We will
return to the validity of this approximation later. The way to treat the external fre-
quency and momentum dependence in a Wilsonian renormalization group is to in-
troduce new couplings by expanding the (inverse) interaction in the following way:
V−1

K,m = V−1
0,0 − Z−1

K K2 + Z−1
Ω ih̄Ωm. The flow equations for the additional coupling

constants Z−1
K and Z−1

Ω are then obtained by

dZ−1
K =

∂dΞ(K2,Ω)
∂K2

∣∣∣∣
K=Ω=0

(14.62)

and

dZ−1
Ω =− ∂dΞ(K2,Ω)

∂ h̄Ω

∣∣∣∣
K=Ω=0

. (14.63)

14.3.2 Extremely-Imbalanced Case

First, we apply the renormalization group to one spin-down particle in a Fermi sea
of spin-up particles at zero temperature in the unitarity limit. The full equation of
state for the normal state of a strongly-interacting Fermi mixture was obtained at
zero temperature using Monte-Carlo techniques [116]. For large imbalances, the
dominant feature in this equation of state is the selfenergy of the spin-down atoms
in the sea of spin-up particles [116, 119]. We can also calculate this selfenergy with
the renormalization group, where we consider the extreme imbalanced limit, which
means that we have only one spin-down particle. The equations are now simplified,
because N↓ can be set to zero and thus µ↑ is not renormalized. Next, we have to
incorporate the momentum and frequency dependence of the interaction in the one-
loop Feynman diagram for the renormalization of µ↓. In this particular case, the
external frequency dependence of the ladder diagram can be taken into account
exactly. It is namely possible to show with the use of contour integration that the
one-loop Matsubara sum simply leads to the substitution ih̄Ωm → εK−µ↑ in (14.61)
[119]. The external momentum dependence is accounted for by the coupling Z−1

K ,
giving
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dV−1
0,0

dΛ
=

Λ2

2π2

[
1−N↑

2εΛ−µ↓
− N↑

2h

]
, (14.64)

dµ↓
dΛ

=
Λ2

2π2
N↑

−Γ−1
0,0 +Z−1

K Λ2
, (14.65)

dZ−1
K

dΛ
= − h̄4Λ4

6π2m2
1−N↑

(2εΛ−µ↓)3 . (14.66)

Note that these equations only have poles for positive values of µ↓. Since this will
not occur, we can use Λ(l) = Λ0e−l and dΛ =−Λ0e−ldl to integrate out all momen-
tum shells, where we note that an additional minus sign is needed, because we are
integrating from high to low momenta. We then obtain a system of three coupled
ordinary differential equations in l which are easily solved numerically. In the uni-
tarity limit, the initial condition from (14.57) becomes V−1

0,0 (0) =−mΛ0/2π2h̄2. The
other initial conditions are µ↓(0) = µ↓ and Z−1

K (0) = 0, because the interaction starts
out as being momentum independent. Note that in this calculation µ↓(0) = µ↓ is ini-
tially negative and increases during the flow due to the strong attractive interactions.
The quantum phase transition from a zero density to a nonzero density of spin-down
particles occurs for the initial value µ↓ that at the end of the flow precisely leads to
µ↓(∞) = 0. This happens when µ↓ = −0.598µ↑, which is therefore the selfenergy
of a strongly-interacting spin-down particle in a sea of spin-up particles. It is in ex-
cellent agreement with the most recent Monte-Carlo result µ↓ = −0.594µ↑ [120],
although it is obtained with much less numerical effort. In particular, this result also
implies that we agree with the prediction of a first-order quantum phase transition
from the normal phase to the superfluid phase at a critical imbalance of P = 0.39,
which was shown to follow from the Monte-Carlo calculations [116, 120].
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Fig. 14.8 a) Position of the momentum shells (dashed lines) and flow of the chemical potentials
(solid lines) for a) the strongly-interacting extremely-imbalanced case, b) the weakly-interacting
balanced case, and c) the strongly-interacting imbalanced case.
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14.3.3 Homogeneous Phase Diagram

Next, we determine the critical properties of the strongly-interacting Fermi mixture
at nonzero temperatures, and in particular the location of the tricritical point in the
homogeneous phase diagram. Since it is not exact to make the substitution ih̄Ωm →
εK−µ−α at nonzero temperatures, we take the frequency dependence of the ladder
diagram into account through the renormalization of the coupling Z−1

Ω . While the
flow of V−1

0,0 is still given by (14.59), the expressions for the flow of µα and Z−1
Ω

become

dµα
dΛ

=
Λ2

2π2
N−α +NB

−V−1
0,0 +Z−1

K Λ2−Z−1
Ω (εΛ−µ−α)

, (14.67)

dZ−1
Ω

dΛ
=

Λ2

2π2
1−N↑−N↓
4(εΛ−µ)2 , (14.68)

with NB = 1/{exp[βZΩ(−V−1
0,0 +Z−1

K Λ2)]−1} coming from the bosonic frequency
dependence of the interaction. The flow equation for Z−1

K can be obtained analyti-
cally from (14.62), but is too cumbersome to write down explicitly. The initial condi-
tions are the same as for the extremely imbalanced case with in addition µ↑(0) = µ↑
and Z−1

Ω (0) = 0. As mentioned before, the critical condition is that the inverse of
the fully renormalized vertex V−1

0,0 (∞), which can be seen as the inverse many-body
T matrix at zero external momentum and frequency, goes to zero. Physically, this
implies that a (many-body) bound state is entering the system. From (14.67) we
see that incorporating the coupling constants Z−1

K and Z−1
Ω , and thereby taking the

dependence of the interaction on the center-of-mass momentum and frequency into
account, is crucial to solve the previously mentioned problem of the diverging chem-
ical potential.

We see that in the above renormalization group equations there is only a pole at
the average Fermi level µ = (µ↑ + µ↓)/2. For fermions, the excitations of lowest
energy lie near their Fermi energies, which is therefore the natural end point for a
renormalization group flow [121]. A notorious problem for interacting fermions is
that under renormalization the Fermi levels also flow to a priori unknown values,
making the Wilsonian renormalization group difficult to perform in practice. Next,
we show how to obtain renormalization-group equations that automatically flow to
the final value of the renormalized average Fermi level. To this end, we integrate out
all momentum shells with the following procedure. First, we start at a high momen-
tum cutoff Λ0 and flow to a momentum Λ′0 at roughly two times the average Fermi
momentum, with the individual Fermi momenta given by kF,α =

√
2mεF,α/h̄. This

integrates out the high-energy two-body physics, but hardly affects the chemical
potentials. Then, we start integrating out the rest of the momentum shells symmet-
rically with respect to the flowing average Fermi level. This is achieved by using
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Λ+(l) =

(
Λ′0−

√
2mµ
h̄2

)
e−l +

√
2mµ(l)

h̄2 (14.69)

and by

Λ−(l) =−
√

2mµ
h̄2 e−l +

√
2mµ(l)

h̄2 . (14.70)

Note that, as desired, Λ+(l) starts at Λ′0 and automatically flows from above to√
2mµ(∞)/h̄, whereas Λ−(l) starts at 0 and automatically flows from below to√
2mµ(∞)/h̄. By substituting Λ+(l), Λ−(l) and their derivatives in (14.59), (14.62),

(14.67) and (14.68) we obtain a set of coupled differential equations in l that can be
solved numerically.

We first apply the above procedure to study the equal density case, i.e. h = 0,
as a function of negative scattering length a. The scattering length enters the cal-
culation through the initial condition of V−1

0,0 . To express our results in terms of the
Fermi energy εF = εF,α , we calculate the densities of atoms with the flow equation
dnα/dΛ = Λ2Nα/2π2. In the weak-coupling limit, a→ 0−, the chemical potentials
hardly renormalize, so that only (14.59) is important. The critical temperature be-
comes exponentially small, which allows us to integrate (14.59) exactly with the
result kBTc = 8εFeγ−3 exp{−π/2kF|a|}/π and γ Euler’s constant. Compared to the
standard BCS result, we have an extra factor of 1/e coming from the screening effect
of the bubble diagram that is not present in BCS theory. It is to be compared with the
Gor’kov correction, which is known to reduce the critical temperature by a factor
of 2.2 in the weak-coupling BCS-limit [83]. The difference with our present result
is that we have only allowed for a nonzero center-of-mass momentum, whereas to
get precisely the Gor’kov correction we would also need to include the relative mo-
mentum. We see that due to our approximation of neglecting the relative momenta
in the bubble diagram we are only off by 20%.

At larger values of |a|, the flow of the chemical potential becomes important and
we obtain higher critical temperatures. In the unitarity limit, when a diverges, we
obtain Tc = 0.13TF and µ(Tc) = 0.55εF in good agreement with the Monte-Carlo
results Tc = 0.152(7)TF and µ(Tc) = 0.493(14)εF [87]. Note that, both in the weak
and in the strong-coupling regime, our critical temperature seems to be only 20%
too low at equal densities. However, upon increasing the imbalance, the effect of
the bubble diagram becomes less pronounced and we expect to be even closer to the
exact result. Keeping this in mind, we are in the unique position with our renormal-
ization group approach to calculate the critical temperature as a function of polar-
ization P and compare with the recent experiment of Shin et al.. The result is shown
in Fig. 14.9. The inset of this figure shows the one-loop diagram determining the
position of the tricritical point. If it changes sign, then the fourth-order coefficient
in the Landau theory for the superfluid phase transition changes sign and the nature
of the phase transition changes from second order to first order. This yields finally
Pc3 = 0.24 and Tc3 = 0.06 TF,↑ in good agreement with the experimental data. Our
previous confirmation of the Monte-Carlo equation of state at T = 0 implies that we
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Fig. 14.9 The phase diagram of the homogeneous two-component Fermi mixture in the unitarity
limit [118], consisting of the superfluid phase (S), the normal phase (N) and the forbidden region
(FR). The solid black line is the result of the Wilsonian renormalization group calculations. The
Monte-Carlo result of Lobo et al. [116], which is recovered by the renormalization group, is in-
dicated by a cross. The open circles and squares are data along the phase boundaries from the
experiment of Shin et al. [117]. The dashed lines are only guides to the eye. Also shown is the
Feynman diagram determining the tricritical point.

also agree with the prediction of a quantum phase transition from the superfluid to
the normal phase at a critical imbalance of Pc = 0.39 [116, 120]. To conclude, we
would like to emphasize that the power of the Wilsonian renormalization group is
rather impressive when we realize that so far no analytical theory has been able to
yield a value for the tricritical point that fits on the scale of Fig. 14.9. Moreover,
Monte-Carlo calculations, which are numerically very involved, have up to now
been restricted to zero temperature or to the balanced case. However, our present
calculations find good agreement with the experiments of Shin et al. in all limits.

14.4 Problems

Exercise 14.1. Show that the cumulant expansion from (14.8) is valid to second
order in the interaction.

Exercise 14.2. Determine the trivial scaling of U0 if the Landau free energy contains
a term

∫
dx U0|φ |6/3. In what dimension is this a marginal variable?

Exercise 14.3. Derive the renormalization group equation for the interaction V0, i.e.
derive (14.23).
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Additional Reading

• A review on renormalization group theory in statistical physics is given by K. G.
Wilson and J. Kogut, The renormalization group and the ε-expansion, Phys. Rep.
C 12, 75 (1974) and M. E. Fisher, Renormalization Group Theory: Its Basis and
Formulation in Statistical Physics, Rev. Mod. Phys. 70, 653 (1998).

• A functional-integral formalism approach to the theory of critical phenomena is
given by J. J. Binney, N. J. Dowrick, A. J. Fisher, and M. E. J. Newman, The
Theory of Critical Phenomena, an Introduction to the Renormalization Group,
(Clarendon Press, Oxford, 2001).

• D. J. Amit, Field Theory, the Renormalization Group, and Critical Phenomena,
(World Scientific, Singapore, 1984).

• For a detailed account of quantum phase transitions in condensed-matter physics,
see S. Sachdev, Quantum Phase Transitions, (Cambridge University Press, Cam-
bridge, 2001).
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Chapter 15
Low-Dimensional Systems

The idea is if you use those two shapes and try to colour the
plane with them so the colours match, then the only way that you
can do this is to produce a pattern which never repeats itself.
– Roger Penrose

In this chapter [122], we consider Bose-Einstein condensation in low-dimensional
atomic quantum gases. The first low-dimensional Bose-Einstein condensates were
created in the experiments of Görlitz et al. [123], where a magnetic trap was used.
By lowering the mean-field interaction energy in a three-dimensional condensate
below the energy splitting of the harmonic trap in one or two directions, the quan-
tum states in these directions were not populated anymore. Since the dynamics in
one or two directions was now frozen out, the experiment effectively realized a two-
dimensional or a one-dimensional Bose-Einstein condensate respectively. Nowa-
days, low-dimensional Bose-Einstein condensates are more conveniently created in
an optical trap [124], an optical lattice, or on an atom chip [125, 126].

The recent experimental and theoretical interest in these low-dimensional quan-
tum gases stems from the fact that their physics is fundamentally different from the
physics in three-dimensions quantum gases, primarily due to the enhanced impor-
tance of phase fluctuations [127, 128, 129, 130]. Because of these phase fluctua-
tions, Bose-Einstein condensation cannot take place in a one-dimensional homoge-
neous Bose gas, while in a two-dimensional homogeneous Bose gas it only occurs
at zero temperature. This is formalized in the Mermin-Wagner-Hohenberg theo-
rem [131, 132], which we will prove by an argument ad absurdum. However, the
one-dimensional Bose gas at zero temperature and the two-dimensional Bose gas
below the famous Kosterlitz-Thouless temperature are still superfluid [133]. This
shows that superfluidity does not require the presence of a Bose-Einstein conden-
sate, for which the phase is truly coherent over a distance on the order of the system
size, but requires only a “quasicondensate” [55], where the phase is coherent over a
distance much less than the system size. This chapter aims at providing the theoret-
ical background for a quantitative description of all these phenomena.

359
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15.1 Modified Popov Theory

In the Popov theory for three-dimensional (partially) condensed Bose gases, which
we discussed in Sect. 11.3, the phase fluctuations are taken into account up to second
order around the mean field. In view of the above-mentioned importance of phase
fluctuations in lower dimensions, this is in general insufficient and leads to infrared,
i.e. low-momentum or long-wavelength, divergences. As we show next, it is possible
to formulate a modified Popov theory that takes into account phase fluctuations up
to all orders around the mean field. This results in a mean-field theory that is free
of infrared divergences in every dimension. Moreover, both quantum and thermal
depletion of the (quasi)condensate are taken into account and the theory is valid at
temperatures where the condensate depletion, and therefore the thermal component
in the gas, is not negligible.

15.1.1 Phase Fluctuations

In order to explain the infrared problems associated with the phase fluctuations of
the condensate most clearly, we first treat a homogeneous Bose gas with 〈N〉 atoms
in a box of volume V . Later, we generalize our discussion to the inhomogeneous
case. The starting point is thus the grand-canonical action

S[φ ∗,φ ] =
∫ h̄β

0
dτ

∫
dx φ ∗(x,τ)

{
h̄

∂
∂τ
− h̄2

2m
∇∇∇2−µ

}
φ(x,τ)

+
1
2

∫ h̄β

0
dτ

∫
dx V0|φ(x,τ)|4 , (15.1)

where µ is the chemical potential and V0 the atomic two-body interaction poten-
tial. The mass of the atoms is denoted by m. In the presence of a Bose-Einstein
condensate, we use the Bogoliubov shift φ(x,τ) =

√
n0 + φ ′(x,τ), where n0 is the

condensate density and the field φ ′(x,τ) describes the fluctuations. Expressions for
the density n and the chemical potential µ , known as the one-loop expressions,
are then obtained in the following manner. After a quadratic approximation to the
action in (15.1), we perform the Gaussian integral over the fluctuations to obtain
the thermodynamic potential Ω(n0,µ). We then use the thermodynamic identity
〈N〉 = −∂Ω(n0,µ)/∂ µ and the equilibrium condition for the condensate density
∂Ω(n0,µ)/∂n0 = 0 to find, respectively,

n = n0 +
1
V ∑

k

{
εk +n0V0− h̄ωk

2h̄ωk
+

εk +n0V0

h̄ωk
NBE(h̄ωk)

}
, (15.2)

µ
V0

= n0 +
1
V ∑

k

{
2εk +n0V0−2h̄ωk

2h̄ωk
+

2εk +n0V0

h̄ωk
NBE(h̄ωk)

}
, (15.3)



15.1 Modified Popov Theory 361

where the zero-loop (Hartree) results n = n0 and µ = V0n0 have been substituted
into the expressions for the fluctuation corrections. Furthermore, the Bogoliubov
dispersion h̄ωk = (ε2

k +2n0V0εk)1/2, NBE(x) = 1/(eβx−1) is the Bose-Einstein dis-
tribution function, and β = 1/kBT is the inverse thermal energy.

The momentum sums in (15.2) and (15.3) contain terms that are infrared diver-
gent at all temperatures in one dimension and at any nonzero temperature in two
dimensions. In fact, all the divergent terms are proportional to n0, which allows for
an ad absurdum proof of the Mermin-Wagner-Hohenberg theorem stating that a true
condensate cannot exist at nonzero temperatures in one and two dimensions. As-
suming the existence of a Bose-Einstein condensate, we arrived at the inconsistent
result that the density of the gas is infinite, which invalidates our initial assumption.
The physical reason for these divergences is that the above expressions have been
derived by taking into account only quadratic fluctuations around the classical re-
sult n0, i.e. by writing the atomic field as φ(x,τ) =

√
n0 + φ ′(x,τ) and neglecting

terms in the action of third and fourth order in φ ′(x,τ). As a result, the phase fluc-
tuations of the condensate give the quadratic contribution n0〈θ(x,τ)θ(x,τ)〉 to the
right-hand side of (15.2) and (15.3), whereas an exact approach that sums up all the
higher-order terms in the expansion would clearly give no contribution at all to these
local quantities because

n0〈e−iθ(x,τ)eiθ(x,τ)〉= n0 (1+ 〈θ(x,τ)θ(x,τ)〉+ . . .) = n0. (15.4)

To correct for this, we thus need to subtract the quadratic contribution of the phase
fluctuations, which from (15.2) and (15.3) is seen to be given by

n0〈θ(x,τ)θ(x,τ)〉=
1
V ∑

k

n0V0

2h̄ωk
{1+2NBE(h̄ωk)} , (15.5)

which we show more rigorously later on. Note that all the infrared divergences that
occur in the one and two-dimensional cases are removed by performing this sub-
traction.

After having removed the spurious contributions from the phase fluctuations of
the condensate, the resulting expressions turn out to be ultraviolet divergent. These
divergences are removed by the standard renormalization of the bare coupling con-
stant V0. Apart from a subtraction, this essentially amounts to replacing the bare
two-body potential V0 by the two-body T matrix evaluated at zero initial and fi-
nal relative momenta and at the energy −2µ , which we denote from now on by
T 2B(−2µ). Generalizing (10.54) to nonzero energy, we have that

1
T 2B(−2µ)

=
1

V0
+

1
V ∑

k

1
2εk +2µ

. (15.6)

Note that the energy argument of the T matrix is −2µ , because this is precisely the
energy it costs to excite two atoms from the condensate [134, 135]. After renormal-
ization, the density and chemical potential are



362 15 Low-Dimensional Systems

n = n0 +
1
V ∑

k

{
εk− h̄ωk

2h̄ωk
+

n0T 2B(−2µ)
2εk +2µ

+
εk

h̄ωk
NBE(h̄ωk)

}
, (15.7)

µ = (2n−n0)T 2B(−2µ) = (2n′+n0)T 2B(−2µ) , (15.8)

where n′ = n− n0 represents the depletion of the condensate due to quantum and
thermal fluctuations and the Bogoliubov quasiparticle dispersion now equals

h̄ωk =
√

ε2
k +2n0T 2B(−2µ)εk. (15.9)

The most important feature of (15.7) and (15.8) is that they contain no infrared and
ultraviolet divergences and therefore can be applied in any dimension and at all
temperatures, even if no condensate exists.

Note that (15.5) is also ultraviolet divergent. The ultraviolet divergence is re-
moved by the renormalization of the bare interaction V0 and the final result is

〈θ(x,τ)θ(x,τ)〉 =
T 2B(−2µ)

V ∑
k

{
1+2NBE(h̄ωk)

2h̄ωk
− 1

2εk +2µ

}
. (15.10)

We will return to the physics of this important expression in Sect. 15.1.3 below.

15.1.2 Many-Body T Matrix

In the previous section, we presented the modified Popov theory that takes the phase
fluctuations into account exactly. The final results in (15.7), (15.8), and (15.10) in-
volve the two-body T matrix, which takes into account successive two-body scat-
tering processes in vacuum. However, it neglects the many-body effects of the sur-
rounding gas. In order to take this into account as well, we must use the many-body
T matrix instead of the two-body T matrix in (15.7), (15.8) and (15.10). Many-body
effects have been shown to be appreciable in three dimensions only very close to
the transition temperature [110], but turn out to be much more important in one and
two dimensions [136]. Since the effects of the medium on the scattering proper-
ties of the atoms is only important at relatively high temperatures, we can apply a
Hartree-Fock approximation to obtain for the many-body T matrix

T MB(−2µ) = (15.11)

T 2B(−2µ)

{
1+T 2B(−2µ)

1
V ∑

k

NBE(εk +n0T MB(−2µ))
εk + µ

}−1

.

The situation is in fact slightly more complicated, because now we actually need
two coupling constants in the equation for the chemical potential, which is the ho-
mogeneous version of the Gross-Pitaevskii equation. When two atoms in the con-
densate collide at zero momentum, they both require an energy µ to be excited from
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the condensate, and thus their coupling is evaluated at −2µ . This is the coupling
that multiplies n0 in the Gross-Pitaevskii equation. On the other hand, the coupling
that multiplies n′ in the Gross-Pitaevskii equation involves one condensate atom and
one atom in the thermal cloud, so that this coupling should now be evaluated at−µ .
The equation for the chemical potential thus becomes

µ = 2n′T MB(−µ)+n0T MB(−2µ). (15.12)

15.1.3 Long-Wavelength Physics

We have given physical arguments for how to identify and subtract the contribution
to (15.2) and (15.3) from the phase fluctuations of the condensate. At this point,
we would like to give a somewhat more rigorous field-theoretical argument. If we
substitute φ(x,τ) =

√
n+δn(x,τ)eiθ(x,τ) into (15.1), we obtain the action

S[δn,θ ] =
∫ h̄β

0
dτ

∫
dx

{
1
2

h̄
∂δn
∂τ

+ ih̄(n+δn)
∂θ
∂τ

+
h̄2

2m
n(∇∇∇θ)2 +

1
2

δn
(
− h̄2

4mn
∇∇∇2 +V0

)
δn

}
. (15.13)

Here, n is the average total density of the gas and δn(x,τ) represents the fluctu-
ations. At zero temperature, this action is exact in the long-wavelength limit, if(
h̄2k2/4mn+V0

)
is replaced by χ−1

nn (k), where χnn(k) is the exact static density-
density correlation function.

By using the classical equation of motion to eliminate the phase θ(x,τ), we
obtain the following action for the density fluctuations δn(x,τ)

S[δn] =
∫ h̄β

0
dτ

∫
dx

{
− m

n
∂δn
∂τ

∇∇∇−2 ∂δn
∂τ

+
1
2

δnχ−1
nn (−i∇∇∇)δn

}
. (15.14)

The density fluctuations are therefore determined by

〈δn(x,τ)δn(x′,τ)〉 =
1
V ∑

k,n

nεk

β
1

(h̄ωn)2 +(h̄ωk)2 eik·(x−x′), (15.15)

where ωn = 2πn/h̄β are the even Matsubara frequencies and h̄ωk =
√

nεk/χnn(k).
Summing over these Matsubara frequencies, we obtain

〈δn(x,τ)δn(x′,τ)〉 =
1
V ∑

k
nεk

1+2NBE(h̄ωk)
2h̄ωk

eik·(x−x′).
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Similarly, by using the classical equation of motion for δn(x,τ), we obtain from
(15.13) the following action for the phase fluctuations

S[θ ] =
∫ h̄β

0
dτ

∫
dx

{
h̄2 ∂θ

∂τ
χnn(−i∇∇∇)

∂θ
∂τ

+
h̄2n
2m

(∇∇∇θ)2

}
. (15.16)

From this action, it is straightforward to calculate the propagator for the field θ(x,τ)
and thereby the equal-time correlation function 〈θ(x,τ)θ(x′,τ)〉. The result is

〈θ(x,τ)θ(x′,τ)〉 =
1
V ∑

k

1
χnn(k)

1+2NBE(h̄ωk)
2h̄ωk

eik·(x−x′) . (15.17)

Setting x′ = x, we recover (15.10) in the long-wavelength limit if we use

χnn(k)' 1/T MB(−2µ) (15.18)

for the static density-density correlation function in this limit. It is important to men-
tion that (15.17) is often used for the short-wavelength part of the phase fluctuations
as well [129, 130]. This is, however, problematic because it contains ultraviolet
divergences due to the fact that the above procedure neglects interaction terms be-
tween density and phase fluctuations that are only irrelevant at large wavelengths.
The appropriate short-wavelength behavior is given in (15.10).

15.2 Comparison with Popov Theory

We proceed to compare predictions based on (15.7), (15.8), and (15.10) with exact
results in one dimension and results based on the Popov theory in two and three
dimensions. We consider only the homogeneous case here and discuss the inhomo-
geneous Bose gas in Sect. 15.5.

15.2.1 One Dimension

To understand the physical meaning of the quantity n0 in (15.7) and (15.8), i.e.
whether it is the quasicondensate density or the true condensate density, we must
determine the off-diagonal long-range behavior of the one-particle density matrix.
Because this is a nonlocal property of the Bose gas, the phase fluctuations contribute
and we find in the large-separation limit

〈φ ∗(x,0)φ(0,0)〉 ' n0〈e−i(θ(x,0)−θ(0,0))〉
= n0e−

1
2 〈[θ(x,0)−θ(0,0)]2〉 . (15.19)
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Using (15.10), we obtain for the exponent in (15.19)

〈[θ(x,0)−θ(0,0)]2〉 =
T MB(−2µ)

V ∑
k

{
1+2NBE(h̄ωk)

h̄ωk
− 1

εk + µ

}

×{1− cos(k·x)} . (15.20)

Writing the sum over wavevectors k as an integral, the phase fluctuations at zero
temperature can be written as

〈[θ(x,0)−θ(0,0)]2〉=
∫ ∞

0
dk

1− cos(kx/ξ )
2πn0ξ

{
1

k
√

k2 +1
− 2

2k2 +1

}
, (15.21)

where ξ = h̄/[4mn0T 2B(−2µ)]1/2 is the correlation length and we have also per-
formed the substitution kξ → k for convenience. Note that we have used that
T MB(−2µ) = T 2B(−2µ) at zero temperature and that the chemical potential, as
we show shortly, is to a good approximation equal to n0T 2B(−2µ). The integration
can be performed analytically and the result is

〈[θ(x,0)−θ(0,0)]2〉 =
1

2πn0ξ

(
πx
2ξ 1F2(1/2;1,3/2;x2/4ξ 2)

− x2

2ξ 2 2F3(1,1;3/2,3/2;2x2/4ξ 2)

)
, (15.22)

where iFj(α1,α2, ...αi;β1,β2, ...β j;x) are hypergeometric functions. In the limit
|x| → ∞, (15.22) reduces to

〈[θ(x,0)−θ(0,0)]2〉 ' 1
2πn0ξ

log(x/ξ ) . (15.23)

Using (15.23), we find that the one-particle density matrix behaves for |x| → ∞, as

〈φ ∗(x,0)φ(0,0)〉 ' n0

(x/ξ )1/4πn0ξ . (15.24)

A few remarks are in order. First, the asymptotic behavior of the one-particle den-
sity matrix at zero temperature proves that the gas is not Bose-Einstein condensed
and that n0 should be identified with the quasicondensate density. Second, in the
weakly-interacting limit 4πnξ À 1 the depletion is small so, to first approximation,
we can use n0 ' n in the exponent η = 1/4πn0ξ . Indeed, from (15.7) and (15.8), we
obtain the following expression for the fractional depletion of the quasicondensate

n−n0

n
=

1
4πnξ

(√
2

4
π−1

)
. (15.25)
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We see that the expansion parameter is 1/4πnξ and, therefore, that the depletion is
very small. Keeping this in mind, (15.24) is in complete agreement with the exact
result obtained by Haldane [137]. Note that our theory cannot describe the strongly-
interacting case 4πnξ ¿ 1, where the one-dimensional Bose gas behaves as a Tonks
gas [138, 139].

Finally, our results show that at a nonzero temperature the phase fluctuations
increase as 〈[θ(x,0)−θ(0,0)]2〉 ∝ |x| for large distances, and thus that the off-
diagonal one-particle density matrix vanishes exponentially. Hence, at nonzero tem-
peratures, not even a quasicondensate exists and we can use the equation of state for
the normal state to describe the gas, i.e.

n =
1
V ∑

k
NBE(εk + h̄Σ−µ) , (15.26)

where the Hartree-Fock selfenergy satisfies

h̄Σ = 2nT MB(−h̄Σ ) , (15.27)

and the many-body T matrix obeys

T MB(−h̄Σ) = T 2B(−h̄Σ)

{
1+T 2B(−h̄Σ)

1
V ∑

k

N(εk + h̄Σ−µ)
εk + h̄Σ/2

}−1

. (15.28)

Note that the last three equations for the description of the normal phase of the Bose
gas are again valid for an arbitrary number of dimensions.

15.2.2 Two Dimensions

By analogy with (15.21), we obtain for the phase fluctuations in two dimensions at
zero temperature

〈[θ(x,0)−θ(0,0)]2〉=
∫ ∞

0
dk

1− J0(kx/ξ )
πn0ξ 2

{
1√

k2 +1
− 2k

2k2 +1

}
, (15.29)

where Jn(z) is the Bessel function of the first kind. Therefore, we now find in the
limit |x| → ∞ that

〈[θ(x,0)−θ(0,0)]2〉=
log2
2π

mT 2B(−2µ)
h̄2 (15.30)

and
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〈φ ∗(x)φ(0,0)〉= n0 exp
{
− log2

4π
mT 2B(−2µ)

h̄2

}
. (15.31)

Clearly, the condensate density nc of the gas is given by the right-hand side of this
result and thus smaller than the quantity n0. On the basis of (15.7) and (15.8) we
have at zero temperature that

n−n0

n
=

1
4π

(1− log2)
mT 2B(−2µ)

h̄2 , (15.32)

where the chemical potential satisfies µ = nT 2B(−2µ). Making use of the fact that
for a weakly-interacting gas the argument of the exponent in (15.31) is small, the
fractional depletion of the condensate in this case becomes

n−nc

n
=

1
4π

mT 2B(−2µ)
h̄2 , (15.33)

which was first calculated by Schick [134] using the Popov approximation. How-
ever, at nonzero temperatures, no Bose-Einstein condensate exists because the cor-
relation function behaves as

〈φ ∗(x,0)φ(0,0)〉 ' n0

(x/ξ )1/n0Λ2 , (15.34)

where Λ =
√

2π h̄2/mkBT is the thermal de Broglie wavelength. Here, n0 corre-
sponds again to the quasicondensate density.

In a number of applications, we need to calculate many-body correlators. For in-
stance, in order to calculate how a quasicondensate modifies the two-body relaxation
constants of a spin-polarized two-dimensional Bose gas, we need to know

K(2)(T )≡ 〈φ ∗(x,τ)φ ∗(x,τ)φ(x,τ)φ(x,τ)〉/2n2. (15.35)

This correlator was considered in [140] using the many-body T matrix theory with
an appropriate cutoff to remove the infrared divergences. An exact treatment of the
phase fluctuations leads however directly to an infrared finite result as we show now.
Using the same parametrization for the atomic fields as before, we obtain first of all

〈φ ∗(x,τ)φ ∗(x,τ)φ(x,τ)φ(x,τ)〉 = n2
0 +n0

(
〈φ ′(x,τ)φ ′(x,τ)〉

+〈φ ′∗(x,τ)φ ′∗(x,τ)〉+4〈φ ′∗(x,τ)φ ′(x,τ)〉
)

+2〈φ ′∗(x,τ)φ ′(x,τ)〉2
+〈φ ′(x,τ)φ ′(x,τ)〉〈φ ′∗(x,τ)φ ′∗(x,τ)〉 . (15.36)

The normal average is given by 〈φ ′∗(x,τ)φ ′(x,τ)〉 = n′ + n0〈θ(x,τ)θ(x,τ)〉 and
the anomalous average obeys 〈φ ′(x,τ)φ ′(x,τ)〉 = −n0〈θ(x,τ)θ(x,τ)〉, as we have
seen. Using this, (15.36) can then be written as
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〈φ ∗(x,τ)φ ∗(x,τ)φ(x,τ)φ(x,τ)〉 = n2
0 (1+2〈θ(x,τ)θ(x,τ)〉

+3〈θ(x,τ)θ(x,τ)〉2)

+4n0 (1+ 〈θ(x,τ)θ(x,τ)〉)n′+2(n′)2 . (15.37)

Writing the correlator in this form, we explicitly see that the infrared divergences
are due to spurious contributions from the phase fluctuations. Removing them, we
obtain for the renormalized correlator

K(2)
R (T ) =

1
2n2

{
n2

0 +4n0n′+2
(
n′

)2
}

. (15.38)

We would like to point out that critical fluctuations are not treated within our
mean-field theory. This is of course essential in the study of the Kosterlitz-Thouless
phase transition and we return to this issue in Sect. 15.4. Another important issue
in ultracold atomic gases is the finite lifetime of the gas, which is often caused
by the three-body recombination reaction A + A + A → A2 + A. The decay of the
atomic density n is then described by the rate equation dn/dt = −3Ln3, because
after the recombination event both the molecule and the atom have obtained too
much energy to remain trapped. The three-body recombination rate constant L is an
example of a physical observable where phase fluctuations are not important. We
are therefore already in the position to determine the reduction of the three-body
recombination rate constant due to the presence of a quasicondensate. This can be
expressed as [140]

LN

L(T )
'

{(
T 2B(−2µ)
T 2B(−2h̄Σ)

)6

K(3)
R (T )

}−1

, (15.39)

where LN is the recombination rate constant in the normal phase, which is essentially
independent of temperature, and the selfenergy satisfies

h̄Σ = 2nT 2B(−h̄Σ).

The renormalized three-body correlator

K(3)
R (T ) =

1
6n3

{
n3

0 +9n2
0n′+18n0(n′)2 +6(n′)3

}
(15.40)

is obtained from the expression for the correlation function

〈φ ∗(x,τ)φ ∗(x,τ)φ ∗(x,τ)φ(x,τ)φ(x,τ)φ(x,τ)〉

by removing, as before, the spurious contributions from the phase fluctuations.
Moreover, in two dimensions the two-body T matrix depends logarithmically on
the chemical potential as



15.2 Comparison with Popov Theory 369

T 2B(−2µ) =
4π h̄2

m
1

log(2h̄2/µma2)
, (15.41)

where a is the two-dimensional s-wave scattering length. In the case of atomic hy-
drogen adsorbed on a superfluid helium film, the scattering length was found to be
a = 2.4a0 [141], where a0 is the Bohr radius. However, there is some uncertainty in
this number because the hydrogen wave function perpendicular to the helium sur-
face is not known very accurately. In order to compare with experiment, we may
therefore allow a to vary somewhat.
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Fig. 15.1 Reduction of the three-body recombination rate as a function of the density for a temper-
ature of T = 190 mK and three different values of the scattering length. The dotted line corresponds
to a = 2.4a0, the long-dashed line to a = 1.2a0, and the dashed line to a = 0.6a0, respectively.

In Fig. 15.1, we show the reduction of the three-body recombination rate as a
function of the density at a fixed temperature T = 190 mK for three different values
of a. As can clearly be seen, the reduction of the three-body recombination rate is
very sensitive to the value of a. Our calculation shows that there is a large reduction
of the recombination rate at high densities, which has also been observed experi-
mentally by Safonov et al. [142]. However, a direct comparison between the results
of our theory and the measurements of Safonov et al. cannot be made, since the
density and temperature of the adsorbed hydrogen gas were not measured directly
but instead inferred from the properties of the three-dimensional buffer gas. Because
this procedure requires knowledge of the equation of state of the two-dimensional
Bose gas absorbed on the superfluid helium film, the raw experimental data needs to
be reanalyzed with the theory presented in this Chapter. We can, however, compare
the density at which the recombination rate starts to deviate considerably from the
result in the normal state. For the temperature of T = 190 mK, where most of the
experimental data is taken, this is at a density of about 1.0×1013 cm−2, which is in
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excellent agreement with experiment. In view of this and the above-mentioned prob-
lems we thus conclude that our results present a compelling theoretical explanation
of the experimental findings.

15.2.3 Three Dimensions

The Popov theory has been very successful in describing the properties of di-
lute three-dimensional trapped Bose gases. Therefore, the exact treatment of the
phase fluctuations in the three-dimensional case is expected to lead at most to small
changes in the predictions compared to Popov theory. At zero temperature, the frac-
tional depletion within the Popov theory was first calculated by Lee and Yang [143]
and is given by

n−nc

n
=

8
3

√
na3

π
, (15.42)

where a is the s-wave scattering length and we have used

T 2B(−2µ) =
4πah̄2

m
. (15.43)

The result that follows from (15.7) and (15.8) is

n−n0

n
=

(
32
3
−2

√
2π

)√
na3

π
. (15.44)

However, we find again that the phase fluctuations give a nonzero contribution to
the density matrix at large separations. More precisely, we find for |x| → ∞ that

〈[θ(x,0)−θ(0,0)]2〉= (2−
√

2π)

√
na3

π
(15.45)

and thus

nc = n0 exp

{
−

(
1−

√
2π
2

)√
na3

π

}
. (15.46)

For a weakly-interacting Bose gas, the depletion of the condensate therefore exactly
reduces to the result of Lee and Yang.

The critical temperature Tc is found by taking the limit n0→ 0 in (15.7) and (15.8).
These expressions then reduce to the same expressions for the density and chemical
potential as in the Popov theory. This implies that our critical temperature for Bose-
Einstein condensation coincides with that obtained in Popov theory, i.e. the ideal
gas result
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Tc =
2π h̄2

mkB

(
n

ζ (3/2)

)2/3

, (15.47)

where ζ (3/2)' 2.612.

15.3 Vortices in Two Dimensions

In the previous section we have seen that in two dimensions there is a superfluid to
normal phase transition at a nonzero temperature, even though a Bose-Einstein con-
densate only exists in the gas at zero temperature. The transition between the super-
fluid and normal phases was first analyzed by Berezinskii, Kosterlitz, and Thouless
and is of a topological nature, because it physically turns out to correspond to the
unbinding of vortex pairs and the proliferation of unbound vortices. In Sect. 11.8,
we briefly discussed the onset of a vortex solution in a three-dimensional conden-
sate under rotation. To understand this physics better, we note that in a superfluid
gas the kinetic energy due to a superfluid flow is given by

Es =
1
2

mns

∫
dx (vs(x))2 , (15.48)

where ns is the superfluid density. For a vortex in the origin, the circulating su-
perfluid velocity obeys vs(x) = (h̄/m|x|2) ez× x and the total energy of the vortex
becomes

Ev =
π h̄2

m
ns log(R/ξ ) . (15.49)

Note that we have introduced the unit vector ez perpendicular to the two-dimensional
plane, and we have approximated the effect of the core of the vortex by simply using
the correlation or healing length ξ as the lower bound on the radial integral.

The most important feature of the vortex energy is that it diverges logarithmically
with the radius R of the system. This implies that for the large system sizes RÀ ξ
of interest to us, it is impossible to thermally excite vortices at low temperatures
T ¿ π h̄2ns/mkB. At higher temperatures, however, we should not look at the energy
of the vortex but at its free energy. The entropy of a vortex can be estimated as
2kB log(R/ξ ), since, roughly speaking, the number of positions to place a vortex in
the gas is πR2/πξ 2. We therefore find for the free energy

Fv =
(

π h̄2

m
ns−2kBT

)
log(R/ξ ) , (15.50)

and see that for temperatures above the critical temperature

Tc =
π h̄2ns

2mkB
(15.51)
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the free energy of a vortex is negative. Hence, the gas can lower its free energy
by a proliferation of free vortices. This is the simplest argument for the Kosterlitz-
Thouless transition based on noninteracting vortices, but it has nevertheless lead us
to the exact critical condition nsΛ2

c = 4 that we obtain from renormalization group
theory in Sect. 15.4 below.

A more precise picture can be obtained by also considering the interactions
between vortices. Because of the above-mentioned logarithmic divergence of the
energy of a single vortex, it is at low temperature only possible to excite vortex-
antivortex pairs, where for the antivortex the circulation of the superfluid flow is
precisely opposite to that of the vortex. By adding the superfluid velocity profiles of
a vortex at position x and of an antivortex at position x′, and substituting this into
(15.48), we find that the energy for such a pair is

Vv(x−x′) =
2π h̄2

m
ns log(|x−x′|/ξ ) . (15.52)

A nice physical understanding of this result can be obtained by rotating all velocities
in the velocity profile of the vortices by ninety degrees. Then, the velocity profiles
become exactly equal to the electric-field configurations of a positive and negative
point charge, and we know that two such point charges do indeed attract each other
logarithmically in two dimensions.

Having obtained the attractive interaction potential between a vortex and an an-
tivortex, we can now determine the average distance between two such vortices
bound together into a pair. We have in first instance that

〈r2〉=

∫ ∞

ξ
dr r3 e−βVv(r)

∫ ∞

ξ
dr r e−βVv(r)

, (15.53)

which results in

〈r2〉=
nsΛ2−2
nsΛ2−4

. (15.54)

We thus again conclude that the unbinding of vortices occurs when nsΛ2
c = 4, be-

cause then their average separation diverges. This famous Kosterlitz-Thouless tran-
sition and the associated unbinding of vortices has recently been observed in an
atomic Bose gas by Hadzibabic et al. [144]. In this experiment, the proliferation
of free vortices is directly imaged by letting two two-dimensional clouds expand
and interfere with each other. The free vortices can then be counted individually by
looking at the number of defects in the interference pattern [145, 146]. The result
is shown in Fig. 15.2. In an optical lattice the same transition was also seen by V.
Schweikhard et al. [147], using the usual absorption imaging of the vortex cores.
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Fig. 15.2 Proliferation of free vortices as measured by Hadzibabic et al. [144]. a) Example of
an interference pattern showing a sharp dislocation that is attributed to the presence of a free
vortex in one of the interfering clouds. b) Interference pattern showing several dislocations. c)
Fraction of images showing at least one dislocation, where the average central contrast c0 is a
measure for the degeneracy of the system. An average central contrast of c0 = 0.15 corresponds to
n0Λ2 = 6± 2. For a lower contrast, i.e. a higher temperature, there are free vortices, whereas for
a higher contrast, i.e. a lower temperature, there are no free vortices. Adapted by permission from
Macmillan Publishers Ltd: Nature 441, 1118 (2006), copyright (2006).

15.4 Kosterlitz-Thouless Phase Transition

In Sect. 15.2 we have compared our results using the modified many-body T ma-
trix theory with established results in one, two, and three dimensions in the Popov
approximation. Due to the mean-field nature of the modified many-body T matrix
theory, the Kosterlitz-Thouless transition is absent. In this section, we improve upon
this by explicitly including the effects of vortex pairs in the phase fluctuations. The
idea is to use the modified many-body T matrix theory to determine the initial values
of the superfluid density and the vortex fugacity, and to carry out a renormalization-
group calculation to find the fully renormalized values of these quantities. In this
manner, we can for example calculate the critical temperature Tc for the Kosterlitz-
Thouless transition given the scattering length a and density n.

Let us for completeness first sketch the derivation of the renormalization group
equations for the superfluid density and the vortex fugacity. Consider the velocity
field of a vortex where the core is centered at the positions xi, which we for simplic-
ity take to lie on a lattice with an area of the unit cell equal to Ω. By rotating the
velocity field by ninety degrees, we have seen that we can map it onto the electric
field of a point charge in two dimensions. Since the total energy in both systems
is proportional to the square of the field integrated over space, there is complete
analogy between a system of vortices and a two-dimensional Coulomb gas. This



374 15 Low-Dimensional Systems

analogy is very useful and we will take advantage of it in the following. The total
vorticity corresponds to the total charge of the Coulomb gas. For the analogous two-
dimensional neutral Coulomb gas on a square lattice, the partition function can be
written as

Z = ∑
x1,x2,...

∑
n1,n2,...

exp

{
−β

(
∑
i6= j

V (xi−x j)nin j−Ec ∑
j

n2
j

)}
, (15.55)

where V (xi− x j) = −(2π h̄2ns/m) log(|xi− x j|/ξ ) is the Coulomb interaction be-
tween two unit point charges in two dimensions, ns is the superfluid density, and
Ec is the energy associated with the spontaneous creation of a charge, i.e. the
core energy of the vortices. The summation is over all possible configurations of
charges ni at positions xi on the lattice. The partition function can be rewritten in a
field-theoretic fashion in terms of the electrostatic potential φ(x) and the fugacity
y = e−βEc as

Z = ∑
x1,x2,...

∑
n1,n2,...

∫
d[φ ]e−

1
2

∫
dxK′(∇∇∇φ(x))2

e−iβΣ jn jφ(x j)yΣ jn2
j , (15.56)

where K′ = (2π)2m/h̄2kBT ns. In the limit where y ¿ 1, the charge density is very
low, and thus only n j = 0,±1 contribute to the partition function. We can then write

Z '
∫

d[φ ] e−
1
2

∫
dxK′(∇∇∇φ)2

∏
j

{
1+ yexp(iβφ(x j))

+yexp(−iβφ(x j))+ . . .
}

'
∫

d[φ ] e−
∫

dx{ 1
2 K′(∇∇∇φ)2−gcos(βφ)} , (15.57)

where g = 2y/Ω. It is convenient to introduce a dimensionless dielectric constant
K that is related to K′ by K = β 2/4π2K′ = nsΛ2/2π , where Λ is the thermal wave-
length.

The renormalization group equations for K, which is thus proportional to the
superfluid density and the fugacity y, can now be obtained by performing the usual
momentum-shell integrations. For the Sine-Gordon model derived in (15.57), this
results in

dK−1(l)
dl

= 4π3y2(l)+O(y3) , (15.58)

dy(l)
dl

= {2−πK(l)}y(l)+O(y2) . (15.59)

The renormalization group equations to leading order in the variables K(l) and y(l)
were first obtained by Kosterlitz [148], while the next-to-leading order terms were
derived by Amit et al. [149]. The flow equations are not significantly changed by
including the higher-order corrections and we do not include them in the following.
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The renormalization group equations (15.58) and (15.59) can be solved analyti-
cally by separation of variables, and the solution is

y2(l)− 1
2π3

{
2

K(l)
+π log(K(l))

}
= C , (15.60)

where the integration constant C is determined by the initial conditions. For the
critical trajectory it can be calculated by evaluating the left-hand side at the fixed
point (y(∞),K(∞)) = (0,2/π). In this manner, we find C = [log(π/2)− 1]/2π2 '
−0.0278. In Fig. 15.3, we show the flow of the Kosterlitz renormalization group
equations. There is a line of fixed points y(∞) = 0 and K(∞) ≥ 0. The fixed point
(y(∞),K(∞)) = (0,2/π) corresponds to the critical condition for the Kosterlitz-
Thouless transition, where the vortices start to unbind and superfluidity disappears.
Physically this can be understood from the fact that below the transition the fugacity
renormalizes to zero, which implies that at the largest length scales, single vortices
cannot be created by thermal fluctuations. They are therefore forced to occur in
pairs.

The initial conditions for the renormalization group equations are

K(0) =
h̄2n0

mkBT
, (15.61)

y(0) = e−βEc , (15.62)

where n0 is the quasicondensate density and Ec is the core energy of a vortex. Both
are obtained from the modified many-body T matrix theory considered previously.
Writing the order parameter for a vortex configuration as ψ0(x) =

√
n0 f (x/ξ )eiϑ ,
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Fig. 15.3 Renormalization group flow for the coupling constants y and K. These curves are given
by (15.60) for different values of C.
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Fig. 15.4 The critical tem-
perature for the Kosterlitz-
Thouless transition as a
function of the density for
spin-polarized atomic hydro-
gen with a = 2.4a0.

n (10
13

cm−2)

0

0.1

0.2

0.3

0.4

0.5

T
c

( 
 K

)

2 4 6 8 10

where ϑ is the azimuthal angle, the core energy of a vortex follows from the Gross-
Pitaevskii energy functional. It reads

Ec =
h̄2

2m
n0π

∫ ∞

0
dx x

{
(
1− f 2)2

+2
(

d f
dx

)2
}

. (15.63)

The dimensionless integral was evaluated by Minnhagen and Nylén, and takes the
value 1.56 [150]. Using the solution to the flow equations (15.60) and the initial
conditions, we can calculate the temperature for the Kosterlitz-Thouless transition
given the scattering length a and the density of the system. In the following, we
consider again atomic hydrogen. In Fig. 15.4, we show the critical temperature as a
function of density for a = 2.4a0. We see that the critical temperature is essentially
proportional to the density of the system. This can be seen in more detail in Fig. 15.5,
where we plot nΛ2

c as a function of n. It is clear from this figure that nΛ2
c indeed

changes only slightly over the density range considered.
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Fig. 15.5 The critical degeneracy parameter nΛ2
c as a function of the density for spin-polarized

atomic hydrogen with a = 2.4a0.
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To understand the physics of the calculation better, we show in Fig. 15.6 the
quasicondensate fraction n0/n following from the many-body T matrix theory as
a function of temperature for a total density n = 1.25× 1013cm−2. In addition, we
show the superfluid density ns as calculated from the renormalization-group proce-
dure explained previously. The Kosterlitz-Thouless transition takes place when ns
lies on the line given by nsΛ2 = 4. Noticing that the left-hand side of (15.60) is
a function of n0Λ2 only and solving the equation with respect to n0Λ2 using the
value of C at the transition, we obtain the condition n0Λ2 ' 6.65 for the Kosterlitz-
Thouless transition. It is therefore also seen in fig. 15.6 that the Kosterlitz-Thouless
transition takes place when the line given by n0Λ2 ' 6.65 intersects with the curve
for n0.
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Fig. 15.6 Quasicondensate density n0 (solid curve) and superfluid density ns (dashed curve) as a
function of temperature. Also plotted are the Kosterlitz-Thouless condition nsΛ2 = 4 (dotted line)
and the condition n0Λ2 = 6.65 (dash-dotted line). The Kosterlitz-Thouless transition takes place
when the dash-dotted line intersects the solid curve. At the intersection point, the dashed curve
reaches the dotted line.

15.5 Trapped Bose Gases

In this section, we generalize the theory presented in Sects. 15.1 and 15.2 to inho-
mogeneous Bose gases. We also apply the results to a trapped one-dimensional Bose
gas. We start by generalizing our previous expressions for the total density, (15.7),
and the phase fluctuations, (15.10), to the inhomogeneous case. To do so we first
consider the Gross-Pitaevskii equation
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{
− h̄2

2m
∇∇∇2 +V ex(x)+T MB(−2µ(x))|φ0(x)|2

+ 2T MB(−µ(x))n′(x)

}
φ0(x) = µφ0(x) , (15.64)

which generalizes (15.7) to trapped Bose-Einstein condensates. Here the local
chemical potential equals µ(x) = µ −V ext(x). The noncondensed density n′(x) is
to be determined by solving the Bogoliubov-de Gennes equations

h̄ω ju j(x) =
{
− h̄2

2m
∇∇∇2 +V HF(x)−µ

}
u j(x)

+T MB(−2µ(x))n0(x)v j(x) , (15.65)

−h̄ω jv j(x) =
{
− h̄2

2m
∇∇∇2 +V HF(x)−µ

}
v j(x)

+T MB(−2µ(x))n0(x)u j(x) , (15.66)

where n0(x) = |φ0(x)|2 and the Hartree-Fock potential V HF(x) is given by

V HF(x) = V ex(x)+2T MB(−µ(x))n′(x)
+2T MB(−2µ(x))n0(x) . (15.67)

The functions u j and v j are the usual Bogoliubov particle and hole amplitudes re-
spectively, which are chosen to be real here. In some cases, for instance when φ0
describes a vortex, we cannot choose these amplitudes real, however, our equations
are readily generalized to incorporate this fact.

In terms of the Bogoliubov amplitudes, the expression for the total density in
(15.7) reads

n(x) = n0(x)+∑
j

{
(u j(x)+ v j(x))2 N(h̄ω j)

+v j(x)(v j(x)+u j(x))+
T MB(−2µ(x))n0(x)

2ε j +4µ(x)
(χ j(x))2

}
. (15.68)

Here, χ j is the large- j or high-energy limit of u j which can be obtained by neglecting
the interaction terms in (15.65), namely

ε jχ j(x) =
{
− h̄2

2m
∇∇∇2 +V ex(x)−µ

}
χ j(x) . (15.69)

In the large- j limit, we also have

v j(x) =−T MB(−2µ(x))n0(x)
2ε j

χ j(x) . (15.70)
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It is clear that the expression of (15.68) for the total density is ultraviolet finite,
because the second and third term cancel each other in the large- j limit.

Finally, the phase fluctuations in the trapped case are determined by the equal-
time correlation function 〈θ(x,τ)θ(x′,τ)〉 which is given by

〈θ(x,τ)θ(x′,τ)〉 = −∑
j

1
2
√

n0(x)n0(x′)

{
u j(x′)v j(x)

{
1+2NBE(h̄ω j)

}
(15.71)

+
T MB(−2µ(x))n0(x)

2ε j +4µ(x)
χ j(x′)χ j(x)+u j(x)v j(x′)

×{
1+2NBE(h̄ω j)

}
+

T MB(−2µ(x′))n0(x′)
2ε j +4µ(x′)

χ j(x)χ j(x′)

}
.

In particular the normalized form of the off-diagonal one-particle density matrix of
(15.19) becomes for large distances |x−x′| equal to

g(1)(x,x′) = exp
{−〈[θ(x,τ)−θ(x′,τ)]2〉/2

}
. (15.72)

15.5.1 Density Profiles

We are now ready to calculate the total density profile by solving (15.64) and (15.68)
selfconsistently. In the rest of the Chapter, we restrict ourselves to one-dimensional
harmonic traps with, therefore,

V ex(z) =
1
2

mω2
z z2 . (15.73)

For simplicity we use the local-density approximation, which allows us to calculate
the densities directly using the many-body generalization of (15.7), and (15.12). In
Fig. 15.7, the total density profile is shown at four different values of the tempera-
ture.

For the four different temperatures each of the four curves is composed of two
parts. The first part near the center of the trap represents the superfluid part of the
gas and contains the (quasi)condensate. The other part consists only of the noncon-
densed atoms. The small discontinuity between the two parts is caused by the use
of two different equations of state for the superfluid and thermal phases of the gas.
In the following we call the position of the discontinuity the temperature-dependent
Thomas-Fermi radius of the (quasi)condensate. For distances below the discontinu-
ity we use the above-mentioned equations, while for distances above the disconti-
nuity, we simply use

n(z) =
∫ ∞

−∞

dk
2π

NBE
(
εk +mω2

z z2/2+2nT MB(−h̄Σ(z))−µ
)

. (15.74)
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Fig. 15.7 Density profile of a trapped one-dimensional Bose gas at four different temperatures.
The quantities lz and κ are defined in the text.

For all these curves µ = 30h̄ωz. The remaining parameters used here are those of
the experiment of Görlitz et al. [123]. In particular, we have used 23Na in the trap
with ωz = 2π×3.5 rad/sec, lz =

√
h̄/mωz ' 1.12×10−5 m. The three-dimensional

s-wave scattering length is a' 2.75 nm which is related to the one-dimensional scat-
tering length κ−1 defined by T 2B(−2µ) = 4πκ h̄2/m. For harmonic confinement, we
have κ = a/2πl2

⊥, where l⊥ is the harmonic oscillator length of the axially symmet-
ric trap in the direction perpendicular to the z-axis. We have used ω⊥ = 2π × 360
rad/sec and l⊥ =

√
h̄/mω⊥ ' 1.10×10−6 m.

As expected, the temperature-dependent Thomas-Fermi radius decreases with
increasing temperature. At the temperature for which this radius vanishes the
one-dimensional system reaches the crossover temperature for the formation of a
(quasi)condensate. We have calculated this crossover temperature for different val-
ues of the scattering length at a constant value of the number of atoms, the latter
being fixed by adjusting the chemical potential.

In Fig. 15.8 we show the result of this calculation, and plot the crossover tem-
perature TQC and the chemical potential against the scattering length. The inset in
Fig. 15.8 shows that on a double logarithmic scale the temperature TQC is clearly
not a straight line, indicating that the relation between TQC and κ is not a simple
power law and may contain logarithmic dependence. It is shown in [151] that for
a = 0, the transition temperature TQC should satisfy TQC = Nh̄ωz/kB log(2N), where
N is the number of atoms. In the case of Fig. 15.8 we have N = 950, which leads
to TQC ' 164T0 for an ideal gas. Of course, this limit is not obtained in Fig. 15.8
because our calculation is based on a local-density approximation, which will al-
ways break down for sufficiently small values of κ . On the other hand, the curve
for the chemical potential becomes almost a straight line on a double logarithmic
scale. A calculation of the slope of this line shows that the slope starts at a value
slightly larger than 2/3 at the lower end of the curve and saturates at this value
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Fig. 15.8 The crossover temperature TQC is shown with the solid curve, and the chemical potential
at this temperature is shown with the dashed curve, both as a function of the coupling constant. The
temperature is scaled to T0 = h̄2/mkBl2

z . The inset shows the same curves on a double logarithmic
scale.

near the upper end. The value 2/3 is what we expect, since in the Thomas-Fermi
limit it is easy to show that µ = (3π/

√
2)2/3(Nκ)2/3h̄ωz ' 3.5(Nκ)2/3h̄ωz. Cal-

culating similar curves for different values of N we actually find numerically that
µ ' 3.2(Nκ)2/3h̄ωz.

15.5.2 Phase Fluctuations

The aim of this section is to calculate the normalized off-diagonal density ma-
trix given by (15.72). This function expresses the coherence in the system. It is
calculated by solving the Bogoliubov-de Gennes equations in (15.65) and (15.66)
using the density profile calculated in the previous subsection. Specifically from
the (quasi)condensate density profile n0, we determine a temperature-dependent
Thomas-Fermi radius. This radius is then used to calculate the phase fluctuations
at that specified temperature in the following manner.

We start by employing the following scaling: lengths are scaled to the trap length
lz = (h̄/mωz)1/2, frequencies to ωz, energies to h̄ωz, and densities to 4π/lz. With
this scaling, the Bogoliubov-de Gennes equations take the dimensionless form

ω ju j =
(
−1

2
d2

dz2 +
1
2

z2−µ +2κn
)

u j−κn0v j , (15.75)

−ω jv j =
(
−1

2
d2

dz2 +
1
2

z2−µ +2κn
)

v j−κn0u j . (15.76)
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Using the same scaling, the Gross-Pitaevskii equation takes the form
{
−1

2
d2

dz2 +
1
2

z2−µ +κ(n0 +2n′)
}√

n0 = 0 . (15.77)

Next, we define Fj(z) = u j(z)+v j(z) and G j(z) = u j(z)−v j(z), and derive from
(15.75) and (15.76) two equations for Fj(z) and G j(z), namely

d4F
dz4 −2( f +g)

d2F
dz2 −4

dg
dz

dF
dz
−

(
4ω2

j +2
d2g
dz2 −4g f

)
F = 0 , (15.78)

d4G
dz4 −2( f +g)

d2G
dz2 −4

d f
dz

dG
dz
−

(
4ω2

j +2
d2 f
dz2 −4g f

)
G = 0 , (15.79)

where the functions f (z) and g(z) are given by

f =
1
2

z2 +2κn−µ +κn0 , (15.80)

g =
1
2

z2 +2κn−µ−κn0 . (15.81)

For our purposes, we can use the Thomas-Fermi approximation which neglects the
derivative term in (15.77). Hence

{
1
2

z2−µ +κ(n0 +2n′)
}√

n0 = 0 . (15.82)

In this limit, the functions f (z) and g(z) are given by f (z) = 2κn0(z) and g(z) = 0. In
the Thomas-Fermi approximation, we substitute these values for f (z) and g(z) into
(15.78) and (15.79) and neglect the fourth-order derivative terms. These equations
thus take the form

κn0
d2Fj

dz2 +ω2
j Fj = 0 , (15.83)

d2(κn0G j)
dz2 +ω2

j G j = 0 . (15.84)

In reference [152], it was shown that
√

κn0(z)G j(z) corresponds to density fluctu-
ations and Fj(z)/

√
κn0(z) corresponds to phase fluctuations in the hydrodynamic-

like approach [153]. We therefore define the function h j(z)

h j =
√

κn0G j = Fj/
√

κn0 . (15.85)

Substituting this back in (15.83) and (15.84), both equations reduce to a single equa-
tion for h j(z), namely

κn0
d2h j

dz2 +κ
dn0

dz
dh j

dz
+ω2

j h j = 0 . (15.86)
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This equation can finally be simplified using the Thomas-Fermi expression for
κn0(z) from (15.82), namely κn0(z) ' µ ′ − z2/2 where µ ′ = µ − 2κn′(0). Note
that we have made the approximation that we take n′(z) to be equal to its value at
the center, namely n′(0). This approximation is justified in view of the fact that the
presence of the condensate repels noncondensate atoms from the center of the trap.
This is also supported by a numerical solution of (15.7) and (15.12), where we find
that n′(z) ¿ n0(z), except at the Thomas-Fermi radius where they become of the
same order. Moreover, the slope of n′(z) is small for distances close to the center.
Thus, the last equation becomes

(1− y2)
d2

dy2 h j(y)−2y
d
dy

h j(y)+2ω2
j h j(y) = 0 , (15.87)

where y = z/RTF(T ) and RTF(T ) =
√

2µ ′(T ) is the Thomas-Fermi radius.
In the following, we reinstate the units. Interestingly, (15.87) is the Legendre

equation with the Legendre polynomials as solutions:

h j(z) = Pj(z/RTF) = Pj(y) , (15.88)

where the energy eigenvalues for j = 0,1,2, . . . are

h̄ω j =

√
j( j +1)

2
h̄ωz . (15.89)

The normalization condition for the Bogoliubov amplitudes is

∫ RT F

−RT F

dz
{|u j|2(z)−|v j|2(z)

}
= 1 , (15.90)

which leads to

Fj(z) =
1√
RTF

√
( j +1/2)µ ′

h̄ω j

√
1− y2Pj(y) , (15.91)

G j(z) =
1√
RTF

√
( j +1/2)h̄ω j

µ ′
Pj(y)√
1− y2

. (15.92)

These expressions are in agreement with those obtained in [154]. Consequently, we
find

u j(z) =
1
2

(
A j

√
1− y2 +

B j√
1− y2

)
Pj(y) , (15.93)

v j(z) =
1
2

(
A j

√
1− y2− B j√

1− y2

)
Pj(y) , (15.94)

where
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A j =
1√
RTF

√
( j +1/2)µ ′

h̄ω j
, (15.95)

B j =
1√
RTF

√
( j +1/2)h̄ω j

µ ′
. (15.96)

The expression for the phase fluctuations in (15.72) now reads, after neglect of the
quantum contribution,

〈[θ(z,τ)−θ(z′,τ)
]2〉 =

4πκ l4
z

R2
TF

∑
j

N(h̄ω j)

{
A2

j

(
Pj(y)−Pj(y′)

)2

−B2
j

(
Pj(y)
1− y2 −

Pj(y′)
1− y′2

)2
}

. (15.97)

It should be noted that the first term in this sum, j = 0, does not diverge as one
might think in first instance. It actually vanishes and the sum can start from j = 1.
Physically, this is a result of the fact that the global phase does not influence the
phase fluctuations.

For the four values of temperature used in Fig. 15.7, we insert the corresponding
RTF(T ) in (15.97) to calculate the phase correlation function g(1)(0,z). In Fig. 15.9,
we plot this quantity and we see that at sufficiently low temperatures the phase cor-
relation function decreases only slightly over the condensate size. This indicates that
a true condensate can exist at sufficiently low temperatures for interacting trapped
one-dimensional Bose gases.
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Fig. 15.9 Normalized first-order (phase) correlation function as a function of position for different
temperatures.
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15.5.3 Comparison with Exact Results

We next compare the above results to predictions based on a Langevin field equation
for the order parameter of a trapped, one-dimensional condensate in contact with a
three-dimensional Bose gas that acts as a “heat bath”. Such a situation can be created
experimentally in a magnetically trapped three-dimensional system by using a laser
beam to provide an additional optical potential along two of the directions. The
laser beam then needs to be focused such that the motion of the system freezes
out along these directions. The gas in the potential “dimple” provided by the laser
then becomes an effectively one-dimensional condensate, in contact with the three-
dimensional thermal cloud in the magnetic trap which acts as its heat bath. The
dynamics of the order parameter is governed in this case by [155, 156]

ih̄
∂Φ(z, t)

∂ t
=

{
− h̄2∇∇∇2

2m
+V ex(z)−µ− iR(z, t)

+g|Φ(z, t)|2
}

Φ(z, t)+η(z, t) , (15.98)

where the external trapping potential in the weakly-confined direction V ex(z) is
given in (15.73) and µ is the effective chemical potential of the one-dimensional
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Fig. 15.10 Comparison of the mean-field density profiles (solid curves) to numerical solutions
of the Langevin equation in (15.98) (noisy curves). All the above curves are calculated using the
classical approximation of the Bose-Einstein distribution function. For the T = 50 nK case, we have
also plotted the corresponding density profile calculated using the full Bose-Einstein distribution
function (dashed curve) in order to show the difference between the classical and quantum mean-
field approximations.
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system. The one-dimensional coupling constant g is related to κ by g = 4πκ h̄2/m.
Physically, the function iR(z, t) describes the pumping of the one-dimensional con-
densate from the surrounding thermal cloud, and η(z, t) corresponds to the asso-
ciated noise with Gaussian correlations. Both these quantities depend on the one-
dimensional Keldysh selfenergy h̄ΣK(z), as discussed in detail in reference [156].
For our purposes, we only need that

iR(z, t) = −β
4

h̄ΣK(z)

(
− h̄2∇∇∇2

2m
+V ex(z)−µ +T 2B|Φ(z, t)|2

)
, (15.99)

and

〈η∗(z, t)η(z′, t ′)〉 =
ih̄2

2
ΣK(z)δ (z− z′)δ (t− t ′) , (15.100)

where 〈...〉 denotes averaging over the realizations of the noise η(z, t). The numeri-
cal techniques employed are discussed in reference [156], where it also was shown
that with the last two expressions the trapped gas relaxes to the correct equilib-
rium, as ensured by the fluctuation-dissipation theorem. To simplify the numerics,
the noncondensed part in the dimple is here allowed to relax to the “classical” value
N(ε) = {β (ε − µ)}−1, and the comparison to the previous mean-field predictions
is therefore carried out by making the same approximation in the calculation of
both n0(z) and n′(z). The normalized first-order correlation function at equal time
g(1)(0,z), corresponding to the previously computed phase correlation function, is
calculated via numerical autocorrelation measurements i.e.
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Fig. 15.11 Comparison of the normalized first-order (phase) correlation functions calculated using
the present mean-field approach, given by the solid curves, and the numerical solution of the noisy
Langevin equation in (15.98), shown by the noisy curves.
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g(1)(0,z, t) =
〈Φ∗(0, t)Φ(z, t)〉√
〈|Φ(0, t)|2〉〈|Φ(z, t)|2〉 , (15.101)

where the brackets again denote averaging over the different realizations of the
noise. Of course, the time t must be sufficiently large so that the gas has relaxed
to thermal equilibrium and g(1)(0,z, t) is independent of time.

In Figs. 15.10 and 15.11, we show the comparison of the many-body T matrix
theory to the above Langevin calculations for the same temperatures used in Figs.
15.7 and 15.9. In Fig. 15.10, we compare the Langevin densities 〈|Φ(z, t)|2〉 to our
classical mean-field density n(z). This yields excellent agreement at low tempera-
tures, except for a small region around the discontinuity in the mean-field theory,
which can be understood from the fact that the local-density approximation always
fails in a small region near the edge of the Thomas-Fermi radius. As expected, this
region increases with increasing temperature. For T = 50 nK, Fig. 15.10 further
shows the deviation of the “classical” prediction of our mean-field theory from the
“quantum” one calculated previously in Sect. 15.5.1 and displayed in Fig. 15.7. Fi-
nally, Fig. 15.11 shows the corresponding phase correlation functions as a function
of position. Here we find very good agreement in the entire temperature range. Note
that the phase correlation functions are essentially indistinguishable for both classi-
cal and quantum treatments of the thermal cloud.

Finally it is worth mentioning again that, in obtaining our analytical expressions
for the phase fluctuations and the density in Sects. 15.1 and 15.5, we have used the
many-body T matrix for the interatomic interactions. As mentioned in Sect. 15.1.2,
the many-body effects are important in one and two dimensions. To appreciate this
importance, we recalculate the density profiles and phase fluctuations using the two-
body T matrix. Thus for distances below RTF the differences are due to (15.11),
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Fig. 15.12 Study of the many-body renormalization effects on the density profiles. The exact re-
sults are shown by the noisy curves.
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Fig. 15.13 Study of the many-body renormalization effects on the phase correlation function. The
exact results are also shown with the noisy curves.

whereas for distances above RTF they are a result of (15.28). In Figs. 15.12 and 15.13
it is clearly seen that the inclusion of many-body effects has led to a better agreement
with the exact Langevin results. Moreover, the many-body corrections become more
pronounced at higher temperatures. In Fig. 15.14, we show how the renormalized
interatomic interaction strength T MB(−2µ(z)) depends on position. We notice that
the effects of this renormalization becomes most significant near the edge of the
condensate and for temperatures closer to the transition temperature, as expected
from the results of references [110, 157].
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Fig. 15.14 The many-body transition matrix T MB as a function of the distance from the center of
the trap, for four different temperatures.
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15.6 Problems

Exercise 15.1. Derive the one-loop results for the density and the chemical potential
given in (15.2) and (15.3).

Exercise 15.2. Derive the logarithmic interaction potential between two vortices,
two antivortices, and a vortex and an antivortex.



Chapter 16
Optical Lattices

The reductionist hypothesis does not by any means imply a
“constructionist” one: The ability to reduce everything to
simple fundamental laws does not imply the ability to start from
those laws and reconstruct the universe.
–P. W. Anderson

In this chapter [158], we consider gases of ultracold atoms that are trapped in pe-
riodic potentials created by standing waves of laser light known as optical lattices.
We start by considering in detail the atom-light interaction and derive from first
principles the potential that an alkali atom experiences in an optical field. Then, we
turn to many-body physics by showing that gases of ultracold atoms in a sufficiently
deep optical lattice are described by the Hubbard models [159], which are very im-
portant in the fields of solid-state and condensed-matter physics. In particular, the
high-temperature superconductors are often thought to be described by such a Hub-
bard model, so that a balanced Fermi mixture in an optical lattice might shed some
new light in this unsolved problem of high-temperature superconductivity.

In this chapter we focus primarily on the Bose-Hubbard model, which applies
to a Bose gas in an optical lattice. We show that this model contains a new quan-
tum phase of matter called the Mott-insulator phase, as first discussed by Fisher et
al. [160]. Moreover, the Bose gas is predicted to undergo a quantum phase transi-
tion from the superfluid state to the Mott-insulator state as a function of the potential
depth of the optical lattice, i.e. as a function of the intensity of the lattice laser beams
[159]. This quantum phase transition has recently been observed in a beautiful ex-
periment by Greiner et al. [31], and has attracted much attention. It showed that
ultracold atoms in an optical lattice can be used to simulate various lattice models
of fundamental importance to condensed-matter physics, which are very difficult, if
not impossible, to study in a controlled way in solid-state materials. At present, a
large amount of effort from the community working on ultracold atoms is therefore
directed on these exciting possiblities. Our recent proposal to create an ultracold
superstring in the laboratory is motivated in the same spirit, namely with the aim
of exploring high-energy physics problems with ultracold-atom experiments. In that
proposal, a one-dimensional optical lattice plays a pivotal role, while the ultracold
superstring is described by a supersymmetric version of the Bose-Hubbard model
[161, 162].
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16.1 Introduction

Before we discuss the interaction of atoms with light in the next section, we con-
sider first the interference pattern caused by a set of crossed laser beams. A laser
with wavelength λ emits photons with energy 2π h̄c/λ . Although the photons are
quantum-mechanical entities, it is often possible to treat the laser beam and the cor-
responding electromagnetic field classically in the first instance. For a single plane
wave travelling in the positive z direction, the electric field is given by

E(x, t) = εεεE0 cos(kz−ωt)exp
{
−x2 + y2

2w2(z)

}
, (16.1)

where we have ω = 2πc/λ for the frequency and k = 2π/λ for the wavenumber.
The polarization of the laser beam is described by εεε , which is a unit vector in the
x− y plane. It is a constant if the light is linearly polarized, or rotating around the
z axis if the light is circularly polarized. The quantity w(z) is called the waist of
the Gaussian laser beam and defines its extension in the radial direction. The waist
depends in general on the z coordinate, in particular when the laser beam is focussed,
which is used experimentally to create an optical trap for atoms. However, for our
purposes we can take the waist to be a constant, i.e. w(z) = w.

As we show more precisely in the next section, a single laser beam gives rise to a
potential that is constant in the axial direction and Gaussian in the radial direction.
This potential can be both repulsive and attractive depending on the frequency of
the laser. In the latter case, atoms can be trapped in the laser beam and form a one-
dimensional gas, as we considered in detail in Chap. 15. A single laser beam can also
be used to rotate an atomic cloud, which has been used to create vortices in a Bose-
Einstein condensate [69]. By superimposing two counter-propagating laser beams
of the same wavelength and frequency, we can create a standing wave, which acts
as a periodic potential for the atoms. This is known as an optical lattice. Assuming
that the laser beams also have the same linear polarization, the electric field is given
by

E(x, t) = 2εεεE0 cos(ωt)cos(kz)exp
{
−x2 + y2

2w2

}
. (16.2)

By writing this as

E(r, t)≡ εεεE(x)
(

eiωt + e−iωt

2

)
, (16.3)

we obtain the quantized version of the laser field by simply replacing
√〈Nph〉e−iωt

by the annihilation operator of a photon â, where 〈Nph〉= 〈â†â〉 denotes the average
number of photons present in the standing wave. Interestingly, we are here making
use of the fact that a laser can be seen as a Bose-Einstein condensate of photons if
the number of photons 〈Nph〉 is much larger than one, which is the appropriate limit
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for our purposes. As a result, the electric-field operator in the Schrödinger picture is
given by

Ê(x) = εεεE(x)

(
â+ â†

2
√〈Nph〉

)
. (16.4)

In addition, the Hamiltonian for the photons is

Ĥph = h̄ω â†â. (16.5)

It is straightforward to generalize this discussion to an electric field that is periodic
in two or three directions. By having two counter-propagating laser beams in the z
direction and two in the x direction, it is then possible to make a two-dimensional
optical lattice in the x− z plane such that atoms are confined in one-dimensional
tubes along the y direction. If in addition two counter-propagating laser beams are
placed along the y axis, we obtain a three-dimensional optical lattice.

16.2 Coupling between Atoms and Light

Ground-state alkali atoms couple to the electromagnetic field because of the quadratic
Stark effect, i.e. via an induced electric dipole moment. The induced dipole moment
is given by d(x) = α(ω)E(x), where α(ω) is the polarizability of the atom, which
in general depends on the frequency of the electric field, as we will see shortly.
In principle, there is also a coupling to the magnetic dipole moment of the atom,
but this is usually a negligible effect in the study of optical lattices. The resulting
potential is then classically expected to be

V ex(x) =−d(x) ·E(x) =−α(ω)E2(x), (16.6)

which can be either attractive or repulsive depending on the sign of the polarizabil-
ity. In quantum mechanics, the above potential is obtained by taking into account
laser-induced virtual excitations to an excited state. We first give the derivation for
the simplest case of a two-level atom. After that, we take into account the fine struc-
ture of the alkali atoms, which means that we have to consider two excited states
with a different total electronic angular momentum.

16.2.1 Two-Level Approximation

First, we consider a two-level atom whose ground state |g〉 has energy Eg and whose
single excited state |e〉 has energy Ee. The interaction between the atom and the
electric field is described by the Hamiltonian
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Ĥ =−d̂ · Ê(x). (16.7)

where d̂ is the quantum-mechanical dipole operator. It is given by

d̂ =−e∑
i

r̂i, (16.8)

where −e is the electron charge and r̂i are the position operators of the electrons
relative to the nucleus of the atom. Usually, only the electrons in the outer shell
are important, where the alkali atoms have only one electron in the outer shell. We
denote the state of the atom and the electric field by |g,〈Nph〉〉with 〈Nph〉 the average
number of photons.

Next, we treat this interaction Hamiltonian in perturbation theory. Since for the
atomic s-wave ground state the electronic orbital angular momentum is zero, we
have that the first-order correction vanishes, i.e.

〈g,〈Nph〉|Ĥ|g,〈Nph〉〉= 0. (16.9)

In the case of a p-wave excited state, the orbital angular momentum is one, which
gives rise to a nonzero transition matrix element for the dipole operator. In second-
order perturbation theory, this results in a potential for the atoms that is given by

V ex(x) =
|〈g|d̂ · εεε|e〉|2

4

(
1

Eg−Ee + h̄ω
+

1
Eg−Ee− h̄ω

)
E2(x). (16.10)

Physically, the two-level approximation is based on the assumption that the energy
of the photon h̄ω is close to the energy difference Ee−Eg, so that this contribution
dominates the expression for the energy shift in second-order perturbation theory,
as given by 3.115. This then a posteriori justifies our neglect of the interaction of
the light with the magnetic moment of the atom. In the next section, we will discuss
what happens if there are two excited states with a small energy splitting due to the
fine structure of the atom.

The first term on the right-hand side of (16.10) has the physical interpretation of
the stimulated absorption of a photon, whereas the second term corresponds to the
stimulated emission of a photon. The expectation value 〈g|d̂ · εεε|e〉 depends on the
precise details of the atom and the polarization of the light, which is all conveniently
lumped together into the Rabi frequency. The Rabi frequency for a single laser is
defined as

h̄Ω = |〈g|d̂ · εεε|e〉|E0, (16.11)

where E0 is the maximum amplitude of the electric field as in (16.1). Moreover, it is
customary to define the detuning from resonance δ as

δ = ω− (Ee−Eg)/h̄. (16.12)
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When the detuning is small, the first term in (16.10) is much bigger than the second
and the latter can thus be neglected. This corresponds to the rotating-wave approxi-
mation and the potential is then given by

V ex(x) =
Ω2

δ
cos2(2πz/λ )exp

{
−x2 + y2

w2

}
. (16.13)

From this expression, we see that the potential can indeed be attractive or repulsive,
depending on the sign of the detuning. When the detuning is negative, the atoms
are attracted to the maxima of the laser intensity, where the potential energy of the
atoms is minimal. In this case, the Gaussian profile of the laser beam automatically
traps the atoms in the radial direction, and the laser light is also said to be red-
detuned with respect to the atomic transition. When the detuning is negative, the
atoms are attracted to the minima of laser intensity, where the potential energy of
the atoms is also minimal. The laser light is then said to be blue-detuned with respect
to the atomic transition. In this case, the Gaussian profile of the laser beam repels
the atoms in the radial direction, so that an additional trapping mechanism has to be
provided. This can be achieved by either a magnetic potential or by adding a second
red-detuned laser beam.

To also take into account the finite lifetime of the excited state due to spontaneous
emission of photons, we should add the imaginary part−ih̄Γe/2 to the excited-state
energy in (16.10). The real part of the resulting expression then corresponds to the
experienced potential, which is typically only slightly modified if the detuning is
not too close to resonance. The imaginary part can be written as

h̄Γeff = (16.14)

(h̄Ω)2h̄Γe

(
1

(h̄δ )2 +(h̄Γe/2)2 +
1

(Eg−Ee− h̄ω)2 +(h̄Γe/2)2

)
,

where Γeff is the effective rate of photon emission. The inverse 1/Γeff is the average
time it takes to absorb one photon. This results in heating of the gas and eventually
leads to the loss of atoms. The lifetime of the gas can therefore be estimated to be
on the order of 1/Γeff. In the rotating-wave approximation and for a relatively large
detuning, we have Γeff = (Ω/δ )2Γe ¿ Γe, so that the lifetime in the optical lattice
is much longer than the natural lifetime of the excited state.

16.2.2 Fine Structure

The two-level model that was introduced in the previous section explains how laser
light gives rise to an external potential for atoms. For realistic alkali gases, how-
ever, this two-level model is often too simplistic. Then, it is important to include
also the fine structure or even the hyperfine structure of the atoms to be sufficiently
accurate. Next, we show how the fine structure can be taken into account, where we



396 16 Optical Lattices

`,m` s,ms j,m j 〈`m`;sms| jm j〉
0,0 1/2,1/2 1/2,1/2 1
1,0 1/2,1/2 1/2,1/2 1/

√
3

1,0 1/2,1/2 3/2,1/2
√

2/3
1,1 1/2,−1/2 1/2,1/2 −

√
2/3

1,1 1/2,−1/2 3/2,1/2 1/
√

3

Table 16.1 Relevant Clebsch-Gordan coefficients for the D1 and D2 optical transitions in alkali
atoms.

assume that the laser is far enough detuned so that the hyperfine structure is not re-
solved and can be neglected. For alkali atoms, the ground state has a total electronic
angular momentum of j = 1/2. The lowest-lying excited states have a total angular
momentum j = 1/2, associated with the so called D1 line, or a total angular momen-
tum j = 3/2, which is associated with the D2 line. The terminology D1 and D2 for
the absorption lines is historical and originates from spectroscopy measurements.

In order to calculate the quadratic Stark effect again, we have to rewrite the total
electronic angular momentum in terms of the electronic orbital angular momentum
and the electron spin angular momentum using the Clebsch-Gordan coefficients for
the addition of angular momentum. This means that we make the following basis
transformation

| jm j〉= ∑
`,m`

∑
s,ms

|`m`〉|sms〉〈`m`;sms| jm j〉, (16.15)

where the Clebsch-Gordan coefficients of relevance to us are given in Table 16.1.
Neglecting lifetime effects, we find in the case of two counterpropagating laser
beams with the same linear polarization that

V ex(r) =
(h̄Ω)2

3
cos2(2πz/λ )exp

{
−x2 + y2

w2

}
(16.16)

×
(

1
Eg−ED1 + h̄ω

+
1

Eg−ED1 − h̄ω
+

2
Eg−ED2 + h̄ω

+
2

Eg−ED2 − h̄ω

)
.

The D2 line is thus seen to contribute twice as much as the D1 line, due to the
difference in the Clebsch-Gordon coefficient of the transition. We note that when
the detuning obeys h̄δ À |ED1 −ED2 |, the two different contributions add, such that
we retrieve the previous two-level approximation of (16.10). This means that then
the fine structure is not resolved and is safely neglected. In the same manner, the
neglect of the hyperfine structure can also be justified.
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16.3 Band Structure

The wavefunction of a free atom is a plane wave eik·x/
√

V and has an energy dis-
persion relation εk = h̄2k2/2m. Interestingly, this result does not change too much
for noninteracting atoms in a periodic optical-lattice potential. The relevant wave-
functions are now called Bloch waves and, as we will see, the dispersion develops
a band structure. Indeed, the wavefunction can be written as a product of a plane
wave and a function un,k(x) that is periodic with the lattice period, i.e.

χn,k(x) = eik·xun,k(x), (16.17)

which is the well-known result from Bloch’s theorem [163, 164]. Accordingly, the
dispersion relation is no longer quadratic with the momentum but develops gaps at
specific locations determined by the lattice structure. As a concrete example, for
a weak one-dimensional optical lattice in the z-direction with lattice constant λ/2
the dispersion looks like the free-particle dispersion for small momenta. When the
momentum approaches the boundary of the first Brillouin zone at kz = ±2π/λ ,
with λ the wavelength of the laser light, the dispersion starts to deviate from the
quadratic result. In fact, this happens around every value of kz that is an odd multiple
of ±2π/λ . If the momentum is increased past the boundary of the first Brillouin
zone, the dispersion has a discontinuity and the difference in energy is the band gap.
Equivalently, by folding the dispersion into the first Brillouin zone, the energy of an
atom can be specified by a band index nz and a momentum kz that takes on values
within the first Brillouin zone only.

Consider now an atom in an optical lattice with potential minima located at the
lattice sites xi. It can be shown that for each band a set of Wannier functions wn(x−
xi) exists, such that the exact Bloch wavefunctions can be written [163, 164] as

χn,k(x) = ∑
i

eik·xi wn(x−xi). (16.18)

The Wannier functions are orthogonal for different bands n as well as for different
sites i. For deep optical lattices we can use the tight-binding limit, in which we
approximate the lattice potential near each site xi with a harmonic potential. Then,
the exact Wannier functions wn(x− xi) are actually to a very good approximation
given by the harmonic oscillator wavefunctions χn(x−xi).

16.4 Hubbard Models

We have seen in the previous sections that, by using standing waves of laser light, we
can create a periodic potential for atoms. The imaginary-time action that describes
a gas of atoms in such a periodic potential is given by
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S[ψ∗,ψ] =
∫ h̄β

0
dτ

∫
dx ψ∗(x,τ)

(
h̄

∂
∂τ
− h̄2∇∇∇2

2m
+V ex(x)

)
ψ(x,τ) (16.19)

+
1
2

∫ h̄β

0
dτ

∫
dx

∫
dx′ ψ∗(x,τ)ψ∗(x′,τ)V (x−x′)ψ(x′,τ)ψ(x,τ),

where the (isotropic) optical-lattice potential is described by

V ex(x) = ∑
j

V0 cos2 (2πx j/λ ), (16.20)

with λ the wavelength of the laser light. Using the Wannier functions introduced in
the previous section, we can expand the atomic fields as

ψ(x,τ) = ∑
n,i

an,i(τ)wn(x−xi). (16.21)

where the expansion coefficients a∗n,i(τ) and an,i(τ) correspond to the creation and
the annihilation operator respectively of an atom in the Wannier state wn(x− xi)
at site i. In the tight-binding limit, the Wannier functions of the optical lattice are
replaced by harmonic oscillator states on each site which, in Cartesian coordinates,
depend on the three quantum numbers nx, ny and nz. At sufficiently low temperatures
and for sufficiently small interaction energies, the atoms only occupy the lowest
n = 0 state of the lattice. As a result, we find the following lattice action

S[a∗,a] =
∫ h̄β

0
dτ

{
∑
i j

a∗i (τ)h̄
∂

∂τ
a j(τ)

∫
dx w∗0(x−xi)w0(x−x j) (16.22)

+∑
i j

a∗i (τ)a j(τ)
∫

dx w∗0(x−xi)

(
− h̄2∇∇∇2

2m
+V ex(x)−µ

)
w0(x−x j)

+
1
2 ∑

ii′ j j′
a∗i (τ)a∗i′(τ)a j(τ)a j′(τ)

×
∫

dx dx′ w∗0(x−xi)w∗0(x
′−xi′)V (x−x′)w0(x

′−x j)w0(x−x j′)
}

,

where for notational convenience we have omitted the now redundant band index of
the atomic fields. We can rewrite the above action more compactly as

S[a∗,a] = S0[a∗,a]+Sint[a∗,a], (16.23)

with the noninteracting part given by

S0[a∗,a] = (16.24)
∫ h̄β

0
dτ

{
∑

i
a∗i (τ)

(
h̄

∂
∂τ

+ εi−µ
)

ai(τ)−∑
i6= j

a∗i (τ)ti, ja j(τ)

}
,
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Here, we have used the orthonormality of the Wannier functions in the same band,
i.e.

∫
dx w∗0(x−xi)w0(x−x j) = δi, j. We have also introduced the on-site energy

εi =
∫

dx w∗0(x−xi)

{
− h̄2∇∇∇2

2m
+V ex(x)

}
w0(x−xi), (16.25)

and the tunnelling or hopping amplitude between sites i and j

ti, j =−
∫

dx w∗0(x−xi)

{
− h̄2∇∇∇2

2m
+V ex(x)

}
w0(x−x j). (16.26)

The double summation in the tunnelling or hopping term in (16.24) is over all com-
binations i, j for which i 6= j. For a deep lattice, the hopping energy ti, j will be
exponentially suppressed for all sites that are not nearest neighbors. Therefore we
restrict the summation to nearest neighbors only, where the corresponding summa-
tion is denoted by ∑〈i, j〉, while the nearest-neighbor hopping amplitude is denoted
by t.

The interactions between the atoms are determined by the matrix elements
∫

dx
∫

dx′ w∗0(x−xi)w∗0(x
′−xi′)V (x−x′)w0(x

′−x j)w0(x−x j′),

which not only include on-site interactions but also interactions between atoms that
are on remote sites. However, the latter interactions are typically exponentially sup-
pressed, and for practical purposes it usually suffices to take only the on-site inter-
actions into account. We then have

Sint[a∗,a] =
∫ h̄β

0
dτ

U
2 ∑

i
a∗i (τ)a∗i (τ)ai(τ)ai(τ), (16.27)

where we have defined the on-site interaction strength U as

U =
∫

dx
∫

dx′ w∗0(x−xi)w∗0(x
′−xi)V (x−x′)w0(x

′−xi)w0(x−xi). (16.28)

For bosons, the Hamiltonian that corresponds to the action in (16.23) is known as
the Bose-Hubbard model and is given by

Ĥ =−t ∑
〈i, j〉

â†
i â j +∑

i
(εi−µ)â†

i âi +
U
2 ∑

i
â†

i â†
i âiâi. (16.29)

For fermions, the on-site interaction disappears due to the Pauli principle if all the
fermionic atoms are in the same hyperfine state. In that case, a mixture of two hy-
perfine states is more interesting, so that the relevant Hubbard Hamiltonian becomes

Ĥ =−tα ∑
α

∑
〈i, j〉

â†
i,α â j,α +∑

α
∑

i
(εi,α −µα)â†

i,α âi,α +U ∑
i

â†
i,↑â

†
i,↓âi,↓âi,↑. (16.30)
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where α =↑,↓.
For deep lattices, we can work in the tight-binding limit, where the optical-lattice

potential that we derived in Sect. 16.2 is approximated by its second-order expansion
around a lattice site with coefficient h̄ω . To determine the hopping strength, we note
that it is possible to solve the single-particle Schrödinger equation exactly in the
tight-binding limit, where the final expression is given by [165]

t =
4√
π

Er

(
V0

Er

)3/4

exp

{
−2

(
V0

Er

)1/2
}

, (16.31)

with Er = 2π2h̄2/mλ 2 the recoil energy. The recoil energy gives the kinetic energy
of an atom initially at rest after the absorption of a single photon, and is a commonly
used energy scale in experiments with optical lattices. To determine the on-site in-
teraction strength we make use of the pseudopotential approximation, such that we
have

V (x−x′) =
4πah̄2

m
δ (x−x′). (16.32)

We substitute this expression into (16.27) and evaluate the integrals in the tight-
binding limit, so that the Wannier functions are given by the harmonic-oscillator
wavefunctions. This leads to

U =
2h̄ωa
l
√

2π
, (16.33)

where λ is the wavelength of the laser light that is used to create the optical lattice, a
is the s-wave scattering length, and l =

√
h̄/mω = (Er/V0)1/4λ/4π is the harmonic

oscillator length. From this, we explicitly see that both the hopping strength and
the interaction energy depend on the depth of the optical lattice potential and can
therefore be easily tuned experimentally by varying the intensity of the laser beams.

16.5 Superfluid-Mott Insulator Transition

As we show in this section, a Bose-Einstein condensate in an optical lattice at zero
temperature can undergo a quantum phase transition to a new quantum state of mat-
ter, namely via the superfluid-Mott insulator transition. The two competing ground
states are a superfluid, with a well-defined global phase for the atoms, and a Mott
insulator, which has the same integer occupation number at each lattice site such
that the phase is fully undetermined. To gain a rough understanding of the physics,
we show in Fig. 16.1 a one-dimensional optical lattice. Qualitatively we expect that,
when there is an equal integer number of particles at each site i and t ¿ U , then
the strong repulsive interaction between the particles will make it energetically un-
favorable for a particle to move from one site to another. As a result there is also
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t

U

~!

Fig. 16.1 In the Bose-Hubbard model, two bosons on the same site have an interaction energy U ,
while the probability to tunnel to a neighboring site is given by the hopping parameter t. A typical
optical lattice is well approximated by a harmonic potential of strength h̄ω for its lowest-lying
quantum states.

a nonzero energy penalty to create an excitation, and the system is incompressible.
In this situation the gas is said to be in the Mott insulator phase [166]. In the oppo-
site limit the interactions are negligibly small, i.e. t ÀU , so that the atoms can hop
freely around and minimize their energy by hybridizing over the optical lattice. The
(nearly) ideal Bose gas then Bose-Einstein condenses in the lowest momentum state
of the lowest Bloch band and becomes superfluid.

Suppose we are in the Mott phase at equal filling and that we add one particle
to the system. Then this particle also minimizes its energy by delocalizing because
its interaction energy is now the same on each site and it cannot occupy a free
site. For this reason a gas which has, on average, a noninteger number of bosons
at each site will also be in a superfluid phase at zero temperature. This qualitative
picture has theoretically been investigated using Quantum Monte Carlo calculations
[167] and several mean-field approaches [159, 168, 169]. Moreover, the superfluid-
Mott insulator transition has also been observed experimentally in an pioneering
experiment [31] and various additional experiments have investigated more detailed
features of the transition [170, 171, 172, 173]. We come back to the experiments in
Sect. 16.5.2 after we have more quantitatively discussed the phase diagram of the
Bose-Hubbard model.

To do so, we use two different mean-field approaches with the aim of obtaining
the phase diagram of an ultracold atomic Bose gas in an optical lattice. We deter-
mine the phase diagram using either perturbation theory in the interaction strength
or perturbation theory in the hopping or kinetic energy. As we will see, the phase
diagram indeed consists of various insulating phases and a superfluid phase. As our
starting point, we consider the action of the Bose-Hubbard model, such that the
grand-canonical partition function is given by

Z = Tr
[
e−β Ĥ

]
=

∫
d[a∗]d[a]exp

{
−1

h̄
S[a∗,a]

}
(16.34)

with the action
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S[a∗,a] =
∫ h̄β

0
dτ

{
∑

i
a∗i (τ)

(
h̄

∂
∂τ
−µ

)
ai(τ)

− ∑
〈i, j〉

ti ja∗i (τ)a j(τ)+
U
2 ∑

i
a∗i (τ)a∗i (τ)ai(τ)ai(τ)

}
. (16.35)

In order to describe the zero-temperature phase transition from the superfluid to the
Mott-insulating phase analytically, we need to make some appropriate mean-field
approximation to the action in (16.34). In the following two subsections, we will
follow two different approaches to bring out the physics and the problems involved
more clearly.

16.5.1 Bogoliubov Approximation

In Chap. 11 we discussed the Bogoliubov theory to describe weakly-interacting
atomic Bose gases. Here, we generalize the corresponding concepts to the presence
of a lattice. For a Bose-Einstein condensed gas the average number of condensate
atoms 〈N0〉 is a number much larger then one, and we have that 〈a∗i (τ)〉= 〈ai(τ)〉=√
〈N0〉/Ns, where Ns is the number of lattice sites and where we have chosen these

expectation values to be real for simplicity. Therefore, we Fourier-transform the
action of the Bose-Hubbard model by introducing the field amplitudes ak,n given by

ai(τ) =
1√

h̄βNs
∑
k,n

ak,nei(k·xi−ωnτ), (16.36)

where xi is the coordinate of site i. The wavevector k runs only over the first Bril-
louin zone. For mathematical convenience we take only a finite volume V , so that
the momenta h̄k are discretized, which allows us to write sums instead of inte-
grals in (16.36). Later we take the continuum limit V → ∞. Using the fact that
∑i e−i(k−k′)·xi = Nsδk,k′ it is easily shown that the normalization factor 1/

√
Ns

ensures that the average total number of atoms obeys 〈N〉 = ∑i〈ai(τ)a∗i (τ+)〉 =
∑k,n〈ak,na∗k,n〉/h̄β , as desired. We also limit our description to cubic lattices with
lattice distance λ/2, so V = Ns(λ/2)d with d the number of dimensions. Substitut-
ing explicitly

a∗0,0 →
√
〈N0〉h̄β +a∗0,0 and a0,0 →

√
〈N0〉h̄β +a0,0 (16.37)

we find that up to quadratic order in the fluctuations the action is given by
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S[a∗,a] = h̄β
(
−zt−µ +

1
2

Un0

)
〈N0〉+(−zt−µ +Un0)

√
〈N0〉h̄β (a∗0,0 +a0,0)

+∑
k,n

(−ih̄ωn + εk−µ)a∗k,nak,n

+
1
2

Un0 ∑
k,n

(
ak,na−k,−n +4a∗k,nak,n +a∗−k,−na∗k,n

)
, (16.38)

where for a cubic lattice the number of nearest neighbors is z = 2d, the condensate
fraction is defined by n0 = 〈N0〉/Ns, and the lattice dispersion reads

εk =−2t
d

∑
j=1

cos(k jλ/2). (16.39)

Note that for small momenta this term can be written as

εk '−zt + t
d

∑
j=1

(k jλ/2)2 =−zt +
tλ 2

4
k2. (16.40)

Comparing this with the dispersion εk = h̄2k2/2m∗ of a free particle in a homo-
geneous system, we see that the second term describes an atom moving with an
effective mass m∗ = 2h̄2/tλ 2.

As before, the terms linear in the fluctuations must be put to equal zero, which
implies that the chemical potential has to satisfy

µ = Un0− zt. (16.41)

This expression can be easily understood since the chemical potential is the energy
needed to add one particle to the system. Adding one particle results in an energy
increase due to the Hartree interaction with the n0 particles already at each site, and
an energy decrease due to the possible hopping to one of z nearest-neighbor sites.
Substituting this result, the action thus becomes

S[a∗,a] = −1
2

h̄βUn2
0Ns− 1

2
h̄β ∑

k
(ε̄k +Un0) (16.42)

+
1
2 ∑

k,n

[
a∗k,n,a−k,−n

][
ih̄ωn + ε̄k +Un0 Un0

Un0 −ih̄ωn + ε̄k +Un0

][
ak,n

a∗−k,−n

]
,

where the lattice dispersion with respect to the lower band edge is ε̄k = εk + zt and
the extra zeroth-order terms are again generated by the different time ordering of
a∗−k(τ) and a−k(τ). The matrix in (16.42) can be diagonalized by the Bogoliubov
transformation

[
bk,n

b∗−k,−n

]
=

[
uk vk
v∗k u∗k

][
ak,n

a∗−k,−n

]
, (16.43)



404 16 Optical Lattices

where we properly normalize the new quasiparticle fields by requiring that the co-
efficients of this transformation obey

|uk|2−|vk|2 = 1. (16.44)

If we now substitute (16.43) into (16.42) and demand that the result reduces to the
diagonal action

S[b∗,b] = −1
2

h̄βUn2
0Ns +

1
2

h̄β ∑
k

(h̄ωk− ε̄k−Un0)

+∑
k,n

(−ih̄ωn + h̄ωk)b∗k,nbk,n, (16.45)

we find that uk and vk must be solutions of the following two equations
(
u2

k + v2
k
)

Un0−2ukvk(ε̄k +Un0) = 0,

(16.46)(|uk|2 + |vk|2
)
(ε̄k +Un0)− (u∗kvk +ukv∗k)Un0 = h̄ωk.

Using the normalization in (16.44), we then find the solution

h̄ωk =
√

ε̄2
k +2Un0ε̄k,

|vk|2 = |uk|2−1 =
1
2

(
ε̄k +Un0

h̄ωk
−1

)
. (16.47)

To also obtain the condensate fraction n0, which until now has been arbitrary,
we next need to calculate the total filling fraction n = 〈N〉/Ns that follows from our
action. The total filling fraction is given by

n =
1

h̄βNs
∑
k,n
〈a∗k,nak,n〉, (16.48)

where as usual in the technical literature the appropriate convergence factor is left
implicit. For a Bose-Einstein condensed gas, this filling fraction consists of two
parts. These are the fraction associated with the macroscopic occupation of the one-
particle ground state, i.e. the Bose-Einstein condensate, and the filling fraction due
to the occupation of the energetically higher-lying one-particle states. In this case,
the condensate filling fraction equals the parameter n0 and the contribution of the
noncondensate part is determined by the average over the quadratic fluctuations,
which will be a function of n0. Calculating the average over the quadratic fluctua-
tions by means of (16.43) yields first of all

n = n0 +
1

h̄βNs
∑
k6=0

{(|uk|2 + |vk|2
) 1

eβ h̄ωk −1
+ |vk|2

}
. (16.49)
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If we then also use (16.47) we find that

n = n0 +
1
Ns

∑
k6=0

(
ε̄k +Un0

h̄ωk

1
eβ h̄ωk −1

+
ε̄k +Un0− h̄ωk

2h̄ωk

)
. (16.50)

In the zero-temperature limit β →∞, the first term in the summant is zero. Taking
the continuum limit by using ∑k →V ∏ j

∫ 2π/λ
−2π/λ dk j/(2π), changing from momenta

k to q = kλ/4π , and realizing that Ns = V (2/λ )d , we arrive at the expression

n = n0 +
1
2

∫ 1/2

−1/2
dq

(
ε̄q +Un0

h̄ωq
−1

)
, (16.51)

with

ε̄q = 2t
d

∑
j=1
{1− cos(2πq j)}. (16.52)

We can now obtain the condensate density by solving (16.51) for n0 for a fixed value
of n. We expect that at integer n, for a fixed value of U/t there will be no superfluid
solution and this will mark the phase transition to the insulating phase as predicted
by [159, 167, 168, 169].

In Fig. 16.2a we plot the result of this calculation for a two-dimensional lattice.
We see from this figure that there is only a marginal difference between the case
that n = 0.5 and n = 1.0. In Fig. 16.2b we plotted the result for a three-dimensional
lattice. In this case the difference between half filling and integer filling is somewhat
larger, but there is clearly no critical value of U/t for which the condensate density
goes to zero. These results lead to the suspicion that the phase transition to the

0 10 20
0

1

(a)

0 10 20

(b)

U/tU/t

n
0
/n

Fig. 16.2 The condensate fraction n0/n (a) in a two-dimensional optical lattice and (b) a three-
dimensional optical lattice, both as a function of U/t for n = 0.5 (dashed line) and n = 1.0 (dotted
line).

insulating phase is not present in this approximation. To verify this, we investigate
the limit of U/t → ∞ in some detail.
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When U/t →∞ we intuitively expect the system to become an insulator, because
it effectively means that the hopping parameter goes to zero. We therefore expect
that there are no superfluid solutions as U/t → ∞. We can see that in this limit the
integrand on the right-hand side of (16.51) behaves as (Un0/2ε̄q)1/2. One can also
prove that ε̄q ≤ 4π2|q|2t. This means that

∫ 1/2

−1/2
dq

ε̄q +Un0√
ε̄2

q +2U ε̄qn0

≥ 1
2π

√
Un0

2t

∫ 1/2

−1/2

dq
|q| . (16.53)

The integral at the right-hand side of (16.53) can be done analytically in two dimen-
sions and numerically in three dimensions. When we call the result of the integration
in d dimensions Id , we see that (16.51), for U/t → ∞, reduces to

n' n0 +
1

4π

√
Un0

2t
Id − 1

2
, (16.54)

where I2 = 2.22322 and I3 = 2.38008. This is a quadratic equation in
√

n0 which
always yields a positive solution for n0 given by

n0 =


1

2

√
Id

2

16π2
U
2t

+4n+2− Id

8π

√
U
2t




2

. (16.55)

We can correct for the error we made in (16.53) by using a higher value for Id
but, while this may change the value of n0, it will still yield a positive solution.
We see from (16.55) that only in the limit U/t → ∞ we have that n0 = 0, which
leads us to the conclusion that the Bogoliubov approximation as described above
does not predict the phase transition to the Mott-insulator phase in two and three
dimensions. The reason for this is that the Bogoliubov approach only approximately
treats the interactions. As a result, the Bogoliubov approach cannot describe large
depletions of the condensate. We also see from (16.53) that in one dimension I1
diverges. Substituting this into (16.54), we see that in one dimension there are no
Bose-Einstein-condensed solutions, i.e. solutions with n0 6= 0. This is in accordance
with the Mermin-Wagner-Hohenberg theorem [131, 132] which we discussed in
Chap. 15. As the Bogoliubov approximation fails to predict the phase transition to
the Mott-insulator phase, we now consider a different mean-field theory that treats
the interactions exactly and approximates the kinetic energy of the atoms in the
optical lattice.

16.5.2 Decoupling Approximation

In the next two sections we show how to arrive at a mean-field approach capable
of describing the Mott-insulating phase. First we will use the Hamiltonian formal-
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ism, but in Sect. 16.46 we show how this mean-field theory can also be obtained
by means of a Hubbard-Stratonovich transformation. The latter approach is actually
more convenient because it will also allow us to analytically calculate the quasipar-
ticle dispersions in the Mott insulator. We start with the Hamiltonian of the Bose-
Hubbard model as given in (16.29). By analogy to the Bogoliubov approach, we
introduce the superfluid order parameter

ψ =
√

n0 = 〈â†
i 〉= 〈âi〉, (16.56)

where n0 is the condensate fraction 〈N0〉/Ns at site i. Note that we take the expecta-
tion values to be real, as before. We now, however, construct a consistent mean-field
theory by making the substitution

â†
i â j ' 〈â†

i 〉â j + â†
i 〈a j〉−〈â†

i 〉〈â j〉= ψ
(

â†
i + â j

)
−ψ2 (16.57)

in the hopping term. Doing so, we obtain

Ĥeff = ztψ2Ns− zt ∑
i

ψ
(

âi + â†
i

)
+

1
2

U ∑
i

â†
i â†

i âiâi−µ ∑
i

â†
i âi. (16.58)

This Hamiltonian is diagonal with respect to the site index i, and as a result we can
use an effective on-site Hamiltonian. If we introduce Ū = U/zt, µ̄ = µ/zt and the
number operator n̂i = â†

i âi, we find Ĥeff ≡ zt ∑i Ĥi and

Ĥi =
1
2

Ū n̂i (n̂i−1)− µ̄ n̂i−ψ
(

â†
i + âi

)
+ψ2, (16.59)

which is valid on each site i. We will therefore drop the subscript i in the following.
Note that we scaled all the energies by a factor 1/zt, making this Hamiltonian a
dimensionless operator.

After writing (16.59) in matrix form with respect to an occupation number basis,
we can solve the on-site problem numerically by explicitly diagonalizing the part
of the matrix with occupation number below a certain maximum value [169]. Later
we also follow this procedure, but we first determine the phase diagram analytically
using second-order perturbation theory. As usual, we write the Hamiltonian as a
sum of an exactly solvable part and a perturbation. Here we have Ĥ = Ĥ(0) + ψV̂ ,
where

Ĥ(0) =
1
2

Ū n̂(n̂−1)− µ̄ n̂+ψ2, (16.60)

and the perturbation is given by

V̂ = −(
â† + â

)
. (16.61)

From the above Hamiltonian we see that in an occupation-number basis the odd
powers of the expansion of the energy in ψ will always be zero. If we denote the
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unperturbed energy of the state with exactly n particles by E(0)
n , we find that the

unperturbed ground-state energy is given by

E(0)
g =

{
E(0)

n |n = 0,1,2, ...
}

min
.

Comparing E(0)
n and E(0)

n+1 yields

E(0)
g =

{
0 if µ̄ < 0,
1
2Ūg(g−1)− µ̄g if Ū(g−1) < µ̄ < Ūg.

(16.62)
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Fig. 16.3 Phase diagram of the Bose-Hubbard Hamiltonian as obtained from second-order pertur-
bation theory (solid lines). The dotted lines indicate the zeroth-order phase diagram. Later on, Fig.
16.7 is taken along the dashed line in this figure.

Next, we calculate the second-order correction to the energy with the well-known
expression

E(2)
g = ψ2 ∑

n 6=g

|〈n|V |g〉|2
E(0)

g −E(0)
n

, (16.63)

where |n〉 denotes the unperturbed wavefunction with n particles, of which the state
with n = g particles is the ground state. Since the interaction V couples only to states
with one more or one less atom than in the ground state, we find

E(2)
g = ψ2

[
g

Ū(g−1)− µ̄
+

g+1
µ̄−Ūg

]
. (16.64)
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Fig. 16.4 Density distributions of ultracold atoms released from an optical lattice after time-of-
flight expansion as measured by Greiner et al. [31]. The different pictures correspond to different
lattice depths V0, where the values of V0 were: a, 0 Er; b, 3 Er; c, 7Er; d, 10 Er; e, 13 Er; f, 14 Er;
g, 16 Er; and h, 20 Er. Reprinted by permission from Macmillan Publishers Ltd: Nature 415, 39
(2002), copyright (2002).

If we now follow the usual Landau procedure for second-order phase transitions by
writing the ground-state energy as an expansion in ψ , i.e.

Eg(ψ) = a0(g,Ū , µ̄)+a2(g,Ū , µ̄)ψ2 +O(ψ4), (16.65)

and minimize it as a function of the superfluid order parameter ψ , we find that
〈ψ〉 = 0 when a2(g,Ū , µ̄) ≥ 0 and that 〈ψ〉 6= 0 when a2(g,Ū , µ̄) < 0. This means
that a2(g,Ū , µ̄) = 0 signifies the boundary between two phases. One of these has
〈ψ〉 6= 0 and corresponds to the superfluid phase. The other phase has 〈ψ〉 = 0
and, as we will see shortly, corresponds to a Mott-insulator phase. The boundary
is obtained by solving

a2(g,Ū , µ̄) =
g

Ū(g−1)− µ̄
+

g+1
µ̄−Ūg

+1 = 0, (16.66)

which yields

µ̄± =
1
2

(Ū(2g−1)−1)± 1
2

√
Ū2−2Ū(2g+1)+1, (16.67)

where the subscript ± denotes the upper and lower halves of the Mott-insulating
regions of phase space. In Fig. 16.3 we show a plot of (16.67) for g = 1,2,3. By
equating µ̄+ and µ̄− we can find the point of smallest Ū for each lobe. Denoting this
critical value of Ū by Ūc we have

Ūc = 2g+1+
√

(2g+1)2−1. (16.68)

which yields Ūc ' 5.83 for the g = 1 insulator.
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Experimentally, the transition from the superfluid to the Mott insulator was first
observed by Greiner et al. [31]. In this experiment a Bose-Einstein condensate was
loaded into an optical lattice of variable potential depth. For each potential depth
the phase coherence of the atoms was measured by suddenly switching of the lattice
potential and letting the atoms evolve and interfere with each other for some time
before imaging the density distribution. The experimental results are shown in Fig.
16.4. For an infinitely deep optical lattice which has the same integer number of
atoms in each site, there can be no phase coherence between different sites and no
interference is expected when the density distribution is measured after a time-of-
flight expansion. This is the case for pictures g and h in Fig. 16.4. For a superfluid
in a shallow optical lattice there is a strong phase coherence between the atoms,
since the atoms are Bose-Einstein condensed, and as a result the density distribution
after time-of-flight expansion shows a clear interference pattern. By changing the
depth of the optical lattice, the experiment interpolates between these two limits. A
detailed interpretation of the phase coherence of the atomic Mott insulator can be
found in [174] and [175], which is complicated by the fact that the experiment is
performed in a trap and the gas is therefore inhomogeneous. We come back to the
consequences of the trap after we have also discussed the superfluid region of the
phase diagram.

To find out more about the phase transition we need to perform also fourth-order
perturbation theory to find the slope with which the particle density increases as a
function of µ̄ in the superfluid state. Doing so we can write the ground-state energy
as

Eg(ψ) = a0(g,Ū , µ̄)+a2(g,Ū , µ̄)ψ2 +a4(g,Ū , µ̄)ψ4 +O(ψ6), (16.69)

with
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Fig. 16.5 Ground-state energy as a function of ψ for (a) Ū = 11 and µ̄ = 8.9 and for (b) Ū =
11 and µ̄ = 7.8. The solid line represents fourth-order perturbation theory whereas the dotted
line represents a numerical diagonalization of the effective Hamiltonian. The dashed line is the
difference between the two, plotted with the scale on the right.
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a4(g,Ū , µ̄) = (16.70)
g(g−1)

(Ū(g−1)− µ̄)2 (Ū(2g−3)−2µ̄)
+

(g+1)(g+2)

(µ̄−Ūg)2 (2µ̄−Ū(2g+1))

−
(

g
Ū(g−1)− µ̄

+
g+1

µ̄−Ūg

)(
g

(Ū(g−1)− µ̄)2 +
g+1

(µ̄−Ūg)2

)
.

In Figs. 16.5a and b, we show plots of (16.69) together with the result of an exact
numerical diagonalization of the effective Hamiltonian. As can be seen, the overlap
is very good near the boundary given by (16.67). In Fig. 16.6, it can be seen that
the numerical result exhibits a cusp when Ū = µ̄ , which is not predicted by (16.69).
This is due to the fact that in this particular case we need to use first-order degenerate
perturbation theory, because at µ̄ = nŪ the states with n−1 and n particles per site
form a doubly degenerate ground state. The resulting expression for the ground-state
energy is now nonanalytic and given by

Eg(ψ)
∣∣
µ̄=nŪ =−1

2
Ūn(n+1)+ψ2−|ψ|√n+1, (16.71)

which is the solid line in Fig. 16.6. Note that the occurence of a cusp is analogous
to the well-known Jahn-Teller effect in solid-state physics [176] and presents an
interesting way in which a system can violate the general arguments of Landau
theory.

We now continue by calculating the average number of particles per site in the
grand-canonical ensemble by

n =−∂ 〈Ĥ〉
∂ µ

=−∂Eg(〈ψ〉)
∂ µ̄

= g− ∂
∂ µ̄

(
a2(g,Ū , µ̄)2

4a4(g,Ū , µ̄)

)
, (16.72)
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Fig. 16.6 Groundstate energy as a function of ψ for Ū = µ̄ = 11, as obtained from first-order
perturbation theory (solid line) and from numerical diagonalization of the effective Hamiltonian
(dotted line).
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where

〈ψ〉=

√
−a2(g,Ū , µ̄)
2a4(g,Ū , µ̄)

(16.73)

is the minimum of (16.69). Making use of the previous results, we can now plot the
filling fraction as a function of µ̄ for a fixed value of Ū . Between the edges µ̄±,
the filling fraction will remain constant because 〈ψ〉= 0 and the second term in the
right-hand side of (16.72) does not contribute. Outside that region, the density will
start to change with a nonzero slope. In Fig. 16.7 this is plotted for Ū = 11. The solid
line shows the result of the calculation described above and the dash-dotted line is
a numerical result obtained by exact diagonalization. As can be seen, the analytical
results are in good agreement with the numerical calculation.

-10 0 10 20 30

0

1

2

3

n

¹¹

Fig. 16.7 The density as a function of chemical potential µ̄ = µ/zt for an interaction strength of
Ū = U/zt = 11, i.e. along the dashed line in Fig. 16.3.

For realistic gases we also need to take into account the effect of an external
trapping potential. In a first approximation, we can describe the effect of a slowly
varying trapping potential by substituting for µ̄ in (16.72)

µ̄(x) =
µ−V ex(x)

zt
, (16.74)

where V ex(x) is the external trapping potential. Taking the trapping potential into
account in this way is also known as the local-density approximation. Combining
this with Fig. 16.7 yields the density profile for an optical lattice plus external trap-
ping potential. For the case of a harmonic trapping potential, the density profile is
now given by a wedding-cake profile. Moving outwards from the center we move
through rings of Mott-insulating phases with decreasing density. Between two such
rings there is a superfluid. This result had already been confirmed numerically in
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[159]. Recent experiments have also directly investigated and confirmed the pres-
ence of this shell structure in the inhomogeneous trap [177, 178].

16.5.3 Hubbard-Stratonovich Transformation

An important property of the Mott-insulating phase is that the fluctuations in the
average number of particles per site goes to zero at zero temperature. Since these
fluctuations can be described as quasiparticle and quasihole excitations, we will
study these now. We calculate the quasiparticle and quasihole dispersions using the
functional-integral formalism. We consider again the action in (16.35). To decouple
the hopping term, we perform a Hubbard-Stratonovich transformation to the action,
which then becomes

S[a∗,a,ψ∗,ψ] = S[a∗,a]

+
∫ h̄β

0
dτ ∑

i, j
(ψ∗

i (τ)−a∗i (τ)) ti j (ψ j(τ)−a j(τ)) (16.75)

with tii = 0. Here, ψi(τ) is the complex order-parameter field. To obtain an effective
action as a function of this field, we rewrite (16.75) as

S[a∗,a,ψ∗,ψ] =
∫ h̄β

0
dτ ∑

i

{
a∗i (τ)

(
h̄

∂
∂τ
−µ

)
ai(τ)+

U
2

a∗i (τ)a∗i (τ)ai(τ)ai(τ)
}

+
∫ h̄β

0
dτ ∑

i, j

{−ti j (a∗i (τ)ψ j(τ)+ψ∗
i (τ)a j(τ))+ ti jψ∗

i (τ)ψ j(τ)
}

, (16.76)

and integrate over the original atomic field ai(τ). If we denote by S(0)[a∗,a] the
action for ti j = 0, we have explicitely that

exp
{
−1

h̄
Seff[ψ∗,ψ]

}
≡ exp

{
−1

h̄

∫ h̄β

0
dτ ∑

i, j
ti jψ∗

i (τ)ψ j(τ)

}
(16.77)

×
∫

d[a∗]d[a]exp
{
−1

h̄
S(0)[a∗,a]

}

×exp

{
−1

h̄

∫ h̄β

0
dτ

(
−∑

i, j
ti j (a∗i (τ)ψ j(τ)+ψ∗

i (τ)a j(τ))

)}
.

We can now calculate Seff[ψ∗,ψ] perturbatively by performing a Taylor expan-
sion of the exponent in the integrand of (16.77) and subsequently evaluating the
various correlation functions of the field theory given by the action S(0)[a∗,a]. The
quadratic part of the effective action is given by
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S(2)[ψ∗,ψ] = − 1
2h̄

〈(∫ h̄β

0
dτ ∑

i, j
ti j (a∗i (τ)ψ j(τ)+ψ∗

i (τ)a j(τ))

)2〉

0

+
∫ h̄β

0
dτ ∑

i, j
ti jψ∗

i (τ)ψ j(τ) (16.78)

If we perform the multiplication in the first term in the right-hand side and use the
information we have about the correlations in the unperturbed system, i.e.

〈
a∗i (τ)a∗j(τ)

〉
0 =

〈
ai(τ)a j(τ)

〉
0 = 0,

〈
a∗i (τ)a j(τ)

〉
0 =

〈
ai(τ)a∗j(τ)

〉
0 = 〈ai(τ)a∗i (τ)〉0 δi, j, (16.79)

we obtain

S(2)[ψ∗,ψ] =
∫ h̄β

0
dτ

{
∑
i, j

ti jψ∗
i (τ)ψ j(τ) (16.80)

− 1
h̄

∫ h̄β

0
dτ ′ ∑

i, j,i′, j′
ti jti′ j′ψ∗

j (τ)
〈
ai(τ)a∗i′(τ

′)
〉

0 ψ j′(τ ′)

}
.

Because we will only consider nearest-neighbor hopping, we also use

ti j = t ji =
{

t for nearest neighbours
0 otherwise. (16.81)

First, we treat the part of (16.80) that is linear in ti j. We have

∑
i, j

ti jψ∗
i (τ)ψ j(τ) = ∑

i
tψ∗

i (τ)ψi±{1}(τ), (16.82)

where ±{1} denotes all possible jumps to nearest neighbors. In the case of one
dimension this would simply be ±1. If we call the lattice spacing λ/2 again and
introduce Cartesian momentum components ki with i = 1, · · · ,d, where d is again
the number of dimensions, we find

∑
i, j

ti jψ∗
i (τ)ψ j(τ) = ∑

k
2tψk(τ)ψ∗

k(τ)
d

∑
j=1

cos(k jλ/2). (16.83)

Next we calculate the part that is quadratic in ti j. We can treat this part by looking
at double jumps. The expectation value of

〈
ai(τ)a∗i′(τ)

〉
0 is proportional to δi,i′ and

independent of the site i according to (16.79). This means that we find, with similar
notation as before,
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∑
j,i′, j′

ti jti′ j′ψ∗
j (τ)

〈
ai(τ)a∗i′(τ

′)
〉

0 ψ j′(τ ′)

=
〈
ai(τ)a∗i (τ

′)
〉

0 ∑
j, j′

ti jti j′ψ∗
j (τ)ψ j′(τ ′)

= t2 〈
ai(τ)a∗i (τ

′)
〉

0 ∑
j

{
zψ∗

j (τ)ψ j(τ ′)

+ ψ∗
j (τ)ψ j±{2}(τ ′)+ψ∗

j (τ)ψ j±{√2}(τ
′)
}

, (16.84)

with z again the number of nearest neighbors. The first term in the summand is a
jump in each direction, followed by a jump back. The second term indicates two
jumps in the same direction and the third term is a jump in each direction followed
by a jump in a perpendicular direction. Note that the third term is absent in one
dimension. It can be shown that the complete double-jump term reduces to

∑
j,i′, j′

ti jti′ j′ψ∗
j (τ)

〈
ai(τ)a∗i′(τ

′)
〉

0 ψ j′(τ ′)

=
〈
ai(τ)a∗i (τ

′)
〉

0 ∑
k

ψ∗
k(τ)ψk(τ ′)ε2

k , (16.85)

where we again used the lattice dispersion εk =−2t ∑d
j=1 cos(k jλ/2).

To translate the expectation value of the fields into the expectation value of oper-
ators, we introduce the imaginary time ordering operator T . As a result

〈
ai(τ)a∗i′(τ

′)
〉

0 =
〈

T
[
âi(τ)â†

i′(τ
′)
]〉

0
. (16.86)

The time ordering can be expressed by means of Heaviside functions as
〈

T
[
âi(τ)â†

i′(τ
′)
]〉

0
= θ(τ− τ ′)

〈
âi(τ)â†

i′(τ
′)
〉

0

+θ(τ ′− τ)
〈

â†
i′(τ

′)âi(τ)
〉

0
. (16.87)

If we use the unperturbed energies as given by (16.62), we thus find

〈
ai(τ)a∗i′(τ

′)
〉

0 = θ(τ− τ ′)(1+g)exp
{
−

(
E(0)

g+1−E(0)
g

)
(τ− τ ′)/h̄

}

+θ(τ ′− τ)gexp
{(

E(0)
g−1−E(0)

g

)
(τ− τ ′)/h̄

}
. (16.88)

Because E(0)
g is by definition the grand-canonical energy of the ground state, we

know that

E(0)
g+1−E(0)

g = −µ +gU > 0,

E(0)
g −E(0)

g−1 = −µ +(g−1)U < 0.
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Note that we here still use the parameters µ and U instead of µ̄ and Ū , because we
have not yet divided out the factor zt. Combining the above with (16.80) we find

S(2)[ψ∗,ψ] = −∑
k,n
|ψk,n|2εk

(
1+

εk

h̄

∫ 0

−∞
dτ ′(1+g)exp

{
(−ih̄ωn−µ +gU)τ ′/h̄

}

+
εk

h̄

∫ ∞

0
dτ ′gexp

{−(ih̄ωn + µ− (g−1)U)τ ′/h̄
})

. (16.89)

Performing the τ ′ integration, we then obtain

S(2)[ψ∗,ψ] = −h̄∑
k,n

ψ∗
k,nG−1(k, iωn)ψk,n, (16.90)

where the inverse Green’s function obeys

h̄G−1(k, iωn) =

εk + ε2
k

(
g+1

−ih̄ωn−µ +gU
+

g
ih̄ωn + µ− (g−1)U

)
. (16.91)

Note that this result is exact within our mean-field theory. If we want to make
the connection with the Landau theory considered previously, we can identify the
quadratic coefficient a2(g,U,µ) in (16.69) with −h̄G−1(0,0)/zt. We come back to
this in Sect. 16.6.2. The result in (16.91) contains all powers of the frequencies and
momenta and no gradient expansion has been applied. This is important because the
elementary excitations are gapped, as we will show in the next section. The energies
of the quasiparticle and quasihole excitations h̄ωqp

k and h̄ωqh
k , respectively, corre-

spond to the zeros of G−1(k,ω), where we have made the analytic continuation
iωn → ω . This implies that

1+ εk

(
g+1

−h̄ω−µ +gU
+

g
h̄ω + µ− (g−1)U

)
= 0. (16.92)

Solving this equation for h̄ω gives

h̄ωqp,qh
k =−µ +

U
2

(2g−1)+
εk

2
± 1

2

√
ε2

k +2(2g+1)Uεk +U2. (16.93)

In Fig. 16.8, we show for k = 0 a plot of the above equations. The dotted lines
indicate the asymptotes of (16.93), which are given by

lim
U→∞

h̄ωqp
0 = −µ +gU +(g+1)ε0 = E(0)

g+1−E(0)
g − (g+1)zt,

lim
U→∞

h̄ωqh
0 = −µ +(g−1)U−gε0 = E(0)

g −E(0)
g−1 +gzt, (16.94)

with E(0)
g+1−E(0)

g and E(0)
g −E(0)

g−1 given by (16.89). The difference between (16.94)
and (16.89) is caused by the fact that (16.89) is calculated for t = 0. It can easily be
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Fig. 16.8 The quasiparticle and the quasihole energy for k = 0 in the g = 1 insulator lobe. The dot-
ted lines are the asymptotes of the curves. The inset shows the resulting first-order approximation
to the dispersion of the density fluctuations.

understood that for t 6= 0, the first-order correction is due to the hopping terms ta∗jai,
where site j is one of the nearest neighbors of site i. When we have g particles in all
lattice sites and we add one particle to site i, we have 〈a∗jai〉= g+1, so the effective
hopping parameter for a particle is (g + 1)t. However, when we remove a particle
from site i, we have 〈a∗i a j〉 = g, which represents a particle hopping to site i from
one of its nearest neighbors. The effective hopping parameter for a hole is therefore
only gt. In combination we see that, in the limit of U → ∞, (16.93) indeed reduces
to a physically intuitive result.

As shown above, the slopes of the asymptotes differ exactly by U , so in the limit
of U/zt →∞ the gap for the creation of a quasiparticle-quasihole pair is equal to U .
We can find a first approximation for the dispersion of the density fluctuations by
subtracting the two solutions, which yields

h̄ωk = h̄ωqp
k − h̄ωqh

k =
√

ε2
k +2(2g+1)Uεk +U2. (16.95)

In the inset of Fig. 16.8 we show, again for k = 0, a plot of the above equation as a
function of Ū = U/zt for g = 1. We can see that there is a band gap, which proves
that the Mott-insulator phase is indeed an insulator, and we also see that the band
gap disappears as we approach the critical value Ūc = Uc/zt ' 5.83 that was found
earlier. For smaller values of Ū we are in the superfluid phase, which according to
the Hugenholtz-Pines theorem is expected to always have gapless density fluctua-
tions.

As we have mentioned before, the superfluid-Mott insulator transition occurs,
strictly speaking, only at zero temperature. For nonzero temperatures there is a
‘classical’ phase transition, i.e. a phase transition induced by thermal fluctuations,
between a superfluid phase and a normal phase and there is only a crossover be-
tween the normal phase and the Mott insulator. It is important to mention here that a
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Mott insulator is by definition incompressible. In principle there exists, therefore, no
Mott insulator for any nonzero temperature where we always have a nonvanishing
compressibility. Nevertheless, there is a region in the phase diagram where the com-
pressibility is very close to zero and it is therefore justified to call this region a Mott
insulator for all practical purposes. Qualitatively, this phase diagram is sketched in
Fig. 16.9 for a fixed integer filling fraction. This figure shows how, if we start with

Fig. 16.9 Qualitative phase
diagram for a fixed and inte-
ger filling fraction in terms
of the temperature T and the
dimensionless coupling con-
stant U = U/zt (SF), normal
and Mott insulating phases
(MI). Only at T = 0 a true
Mott insulator exists.

Normal

SF
"MI"

T

UcU

a superfluid for a small positive on-site interaction U and at a sufficiently small but
nonzero temperature, we first encounter a phase transition to a normal phase as the
interaction strength increases, and ultimately cross over to a Mott insulator for even
higher values of the interaction strength.

16.6 Fluctuations

In this section, we study the effects of the Gaussian fluctuations and derive an iden-
tity between the atomic Green’s function and the superfluid order-parameter Green’s
function in (16.91). We start again with the action of the Bose-Hubbard model in-
troduced in (16.35)

S[a∗,a] =
∫ h̄β

0
dτ

{
∑

i
a∗i (τ)

(
h̄

∂
∂τ
−µ

)
ai(τ)−∑

i, j
ti ja∗i (τ)a j(τ)

+
U
2 ∑

i
a∗i (τ)a∗i (τ)ai (τ)ai (τ)

}
. (16.96)

We are interested in calculating the 〈ai(τ)a∗i′(τ
′)〉 correlation function. Therefore we

add currents Ji(τ), and J∗i (τ) that couple to the a∗i (τ) and ai(τ) fields as

Z[J∗,J] =
∫

d[a∗]d[a]exp

{
−1

h̄
S0[a∗,a]+

1
h̄

∫ h̄β

0
dτ ∑

i, j
a∗i (τ)ti ja j(τ)

+
∫ h̄β

0
dτ ∑

i
{J∗i (τ)ai(τ)+a∗i (τ)Ji(τ)}

}
. (16.97)
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Here S0[a∗,a] denotes the action for ti j = 0. The most important step in the remain-
der of the calculation is to again perform a Hubbard-Stratonovich transformation by
adding a complete square to the action. The latter can be written as

∫ h̄β

0
dτ ∑

i, j

(
a∗i (τ)−ψ∗

i (τ)+ h̄J∗i′ (τ)t−1
i′i

)
ti j

(
a j(τ)−ψ j(τ)+ h̄t−1

j j′′J j′′(τ)
)

,

where the sums over i′ and j′ are left implicit for simplicity. Straightforward algebra
yields

Z[J∗,J] =
∫

d[ψ∗]d[ψ]exp

{
∑
k,n

(
ψ∗

k,nG−1(k, iωn)ψk,n

+J∗k,nψk,n + Jk,nψ∗
k,n +

h̄
εk

J∗k,nJk,n

)}
. (16.98)

Differentiating twice with respect to the currents gives then the desired relation

1
Z[J∗,J]

δ 2

δJ∗k,nδJk,n
Z[J∗,J]

∣∣∣∣∣
J∗,J=0

= 〈ak,na∗k,n〉= 〈ψk,nψ∗
k,n〉+

h̄
εk

. (16.99)

This is very useful indeed since the correlator 〈ψk,nψ∗
k,n〉=−G(k, iωn). At zero

temperature the retarded Green’s function can be written as

−1
h̄

G(k,ω) =
Zk

−h̄ω + h̄ωqp
k

+
1−Zk

−h̄ω + h̄ωqh
k

− 1
εk

, (16.100)

where the wavefunction renormalization factor is

Zk =
U(2g+1)+ εk +

√
ε2

k +2(2g+1)Uεk +U2

2
√

ε2
k +2(2g+1)Uεk +U2

, (16.101)

and

h̄ωqp,qh
k =−µ +

U
2

(2g−1)+
εk

2
± 1

2

√
ε2

k +2(2g+1)Uεk +U2. (16.102)

Note that Zk is always positive and in the limit where U → ∞ we have that Zk →
g+1. The quasiparticle dispersion h̄ωqp

k is always greater than or equal to zero and
h̄ωqh

k is always smaller than or equal to zero, in full agreement with our expectations
based on the Lehmann representation discussed in Sect. 8.1.1.
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16.6.1 Mott Insulator

In the Mott-insulator state, where n0 ≡ |〈ψ0,0〉|2/h̄βNs = 0, the thermodynamic po-
tential is now easily calculated by integrating out the superfluid order parameter in
Gaussian approximation. This gives

Ω = Ω0 +
1
β

Tr
[
log

(−h̄βG−1)] , (16.103)

where Ω0 = NsE
(0)
g at zero temperature. Note that in the above expression for

the thermodynamic potential we have omitted the contribution from the Hubbard-
Stratonovich transformation, which is due to the fact that the functional integral
over the Hubbard-Stratonovich fields that we used to obtain (16.75) is not equal to
one. However, this term does not depend on the chemical potential and in this sec-
tion we are particularly interested in the density expression which follows from the
thermodynamic potential by differentiating with respect to the chemical potential.
Therefore, we are now allowed to neglect this point.

We differentiate minus the thermodynamic potential in (16.103) with respect to
the chemical potential to find the average total number of atoms. Using the expres-
sion for E(0)

g from (16.62) we see that differentiating the zeroth-order term with
respect to the chemical potential gives −gNs, where g is the number of atoms per
site in the Mott lobe that we consider. Due to the contribution of the fluctuation term
we obtain in total

n = − 1
Ns

∂Ω
∂ µ

=− 1
Ns

∂Ω0

∂ µ
− 1

βNs

∂
∂ µ

Tr
[
log

(−h̄βG−1)]

= g− 1
βNs

∑
k,n

G(k, iωn)
∂G−1(k, iωn)

∂ µ
. (16.104)

To calculate the sum over the Matsubara frequencies in the above trace we first
rewrite it as a complex integral, making use of the Bose distribution N(z) =
1/(eh̄β z − 1) that has poles at the even Matsubara frequencies z = iωn, where
ωn = 2nπ/h̄β . The residue of the pole at z = iωn of the function h̄βN(z)G(k,z)
can be shown to be equal to G(k, iωn), and as a result the sum over Matsubara fre-
quencies in (16.104) is equal to the complex integral along the closed contour C that
encloses the imaginary axis. This is also shown in Fig. 7.2.

From (16.100) we find that the poles of G(k,z) are located at the quasiparticle
h̄ωqp

k and quasihole h̄ωqh
k dispersions respectively. Using (16.91), we find that the

derivative term ∂G−1(k,z)/∂ µ has two second-order poles located at z = (gU −
µ)/h̄ and z = ((g−1)U−µ)/h̄ respectively. Explicitly we thus have
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∑
n

G(k, iωn)
∂G−1(k, iωn)

∂ µ

= ∑
n

ε2
k

(
Zk

−ih̄ωn + h̄ωqp
k

+
1−Zk

−ih̄ωn + h̄ωqh
k

− 1
εk

)

×
(

g
(−ih̄ωn−µ +(g−1)U)2 −

g+1
(−ih̄ωn−µ +gU)2

)

=
h̄βε2

k
2πi

∮

C
dz N(z)

(
Zk

−h̄z+ h̄ωqp
k

+
1−Zk

−h̄z+ h̄ωqh
k

− 1
εk

)

×
(

g
(−z− (µ− (g−1)U)/h̄)2 −

g+1
(−z− (µ−gU)/h̄)2

)
. (16.105)

For the Mott-insulator state with filling fraction g, we have that µ lies between µ±,
as given in (16.67). This implies that for the poles that originate from the derivative
of G−1 we have that µ > (g−1)U and µ < gU . At zero temperature only the quasi-
hole pole is important, since only the quasihole dispersion is negative, and we find
that the residue of that pole is proportional to

(1−Zk)ε2
k

h̄2

(
− g+1

(−z− (µ−gU)/h̄)2 +
g

(−z− (µ− (g−1)U)/h̄)2

)

z=ωqh
= +1.

(16.106)

Similarly, the residue of the pole that is located at z = −(µ−gU)/h̄ is determined
by

−1 = (16.107)

−(g+1)ε2
k

h̄2
d
dz

{
N(z)

(
Zk

−z+ h̄ωqp
k /h̄

+
1−Zk

−z+ h̄ωqh
k /h̄

+
1

ε̄k/h̄

)}

z=−(µ−gU)/h̄

.

Adding these two contributions gives zero and as a result we have proven that the
density in the Mott-insulator is, as expected, still exactly given by the integer g.

16.6.2 Superfluid Phase

In the superfluid phase the order parameter |ψ0,0|2 has a nonzero expectation value.
We find this expectation value by calculating the minimum of the classical part of
the action, i.e.

−h̄G−1(0,0)|ψ0,0|2 +
zta4(g,U,µ)

h̄βNs
|ψ0,0|4.
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This minimum becomes nonzero when −h̄G−1(0,0) becomes negative, and is then
equal to

|〈ψ0,0〉|2
h̄βNs

=
h̄G−1(0,0)

2zta4(g,U,µ)
≡ n0 (16.108)

As we have seen in Sect. 16.5.2, it is possible to calculate the coefficient a4(g,U,µ)
of the fourth-order term |ψ0,0|4. We approximate the prefactor of the fourth-order
term, which in general depends on momenta and Matsubara frequencies, with the
zero-momentum and zero-frequency value zta4(g,U,µ) ≡ Ueff/2 so that the ap-
proximate action up to fourth order becomes

Seff[ψ∗,ψ] = h̄βΩ0− h̄∑
k,n

ψ∗
k,nG−1(k, iωn)ψk,n (16.109)

+
Ueff

2
1

h̄βNs
∑

k,k′,k′′
∑

n,n′,n′′
ψ∗

k,nψ∗
k′,n′ψk′′,n′′ψk+k′−k′′,n+n′−n′′ .

We now write the order parameter as the sum of its expectation value plus fluctua-
tions, i.e. ψ0,0 →

√
n0Nsh̄β +ψ0,0 and a similar expression for ψ∗

0,0. If we put this
into the action and only keep the terms up to second order, the contribution of the
fourth-order term is given by

Ueff

2
n0 ∑

k,n

(
ψk,nψ−k,−n +4ψ∗

k,nψk,n +ψ∗
k,nψ∗

−k,−n
)
.

There are also the contributions −h̄G−1(0,0)n0h̄βNs +Ueffn2
0h̄βNs/2, which, to-

gether with h̄βΩ0, correspond to the on-site mean-field theory discussed in Sect.
16.5.2. To summarize, in the superfluid phase we can write the action from (16.109)
to second order as

Seff[ψ∗,ψ] = h̄βΩ0− h̄2βG−1(0,0)n0Ns +
1
2

Ueffn2
0h̄βNs

− h̄
2 ∑

k,n

[
ψ∗

k,n ψ−k,−n
] ·G−1(k, iωn) ·

[
ψk,n

ψ∗
−k,−n

]
(16.110)

with

−h̄G−1(k, iωn) (16.111)

=
[−h̄G−1(k, iωn)+2Ueffn0 Ueffn0

Ueffn0 −h̄G−1(−k,−iωn)+2Ueffn0

]
.

Since (16.108) shows that the condensate fraction obeys h̄G−1(0,0) = Ueffn0, we
immediately have that Det

[
G−1(0,0)

]
= 0, which proves that the superfluid is gap-

less in contrast to the gapped Mott insulator. Moreover, the above result may be
directly compared with the result in (16.42). The difference between these two Bo-
goliubov theories is that (16.110) is derived in the strong-coupling limit, whereas
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Fig. 16.10 (a) Setup for the proposed experiment. (b) Particle and hole dispersions in units of the
tunneling parameter in a one dimensional lattice, for U/zt = 6. The horizontal arrow indicates
absorption of momentum, the vertical arrow absorption of energy.

(16.42) applies to the weak-coupling situation. Although these should be smoothly
connected to each other, at present it is not known how to formulate a mean-field
theory that interpolates between these two extremes.

16.7 Bragg Spectroscopy

In this section, we calculate the excitation spectrum of the Mott-insulator state as
probed by Bragg spectroscopy [179]. In particular, one can determine in this way the
value of the particle-hole gap in the excitation spectrum and study the behavior of
this gap as the system approaches the quantum critical point. Note that the excitation
spectrum obtained from Bragg spectroscopy will not yield what is generally referred
to as the Mott gap, because this gap is associated with single-particle excitations.
The value of the particle-hole gap is an interesting quantity in the study of quantum
critical phenomena, but it is also very important for the practical application of
these systems in quantum information processing, since the gap determines how
accurately one can experimentally realize the desired Mott ground state that can
be used, for instance, as a memory for quantum bits. It is important to realize that
the system of a Bose-Einstein condensate in an optical lattice is quite complicated,
because in this case many-body effects and strong correlations have to be taken into
account, as we will see.

In a Bragg spectroscopy experiment, two laser beams are used to make excita-
tions in the system as explained in Sect. 13.3.2 and as shown in Fig. 16.10a. When
an atom absorbs a photon from beam two and is stimulated to emit a photon into
beam one, the atom undergoes a change of momentum h̄q = h̄k2− h̄k1 and a change
of energy h̄ω = h̄ω2− h̄ω1. In principle various optical transitions could be used,
but here we use the same transition that is employed to create the lattice potential.
This means that the magnitude of the momentum is given by h̄q = 2h̄kph sin(θ/2),
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where to a good approximation h̄kph = 2π h̄/λ is the photon momentum of both the
lasers, λ is equal to the wavelength of the lattice laser light and θ is the angle be-
tween the two laser beams. By varying the angle between the two laser beams any
momentum between zero and 2h̄kph can be transferred, while by varying the relative
detuning between the beams the amount of energy that is transferred to the system
can be controlled.

Determining the scattering rate for a given momentum h̄q and energy h̄ω in-
volves, roughly speaking, counting the number of ways in which the requirements of
momentum and energy conservation can be met. To illustrate this process, we draw
in Fig. 16.10b the quasiparticle and quasihole dispersions in the Mott insulator. The
horizontal and vertical arrows in the figure indicate the transfer of momentum and
energy respectively. Since energy is deposited in the system, this scattering rate can
be measured in a trap loss experiment or by determining the increase in temperature
of the atoms. To calculate the desired two-photon scattering rate theoretically we
use Fermi’s Golden Rule. In linear response, this can be expressed as

I(q,ω) =−2Im [Π(q,ω)]/h̄, (16.112)

where Π(q,ω) is the polarizibility of the medium. The polarizibility can be written
as

Π(q,ω) = (h̄Ω/2)2 χ(q,ω), (16.113)

with Ω the effective Rabi frequency for the two-photon process and χ the suscepti-
bility. The retarded susceptibility is given by

χ(q,ω) = −V
h̄

∫
dx

∫ ∞

0
dte−i(q·x−ωt)

×〈[â†(x, t)â(x, t), â†(0,0)â(0,0)
]〉, (16.114)

with V the volume and â†(x, t) and â(x, t) creation and annihilation operators of the
atoms. To calculate the correlation function in (16.114) we have to be careful to do
it in such a way as to preserve particle-number conservation. As we have seen in
Sect. 13.3 this can be achieved by using the relevant Ward identity. Physically this
means that if the atom is dressed, we also have to dress the atom-photon coupling.
Diagrammatically this is illustrated in Fig. 16.11.

We have seen that for particle-number conservation the relevant Ward identity
for charged particles is given by (13.54)

c
e

k′µ ∆γµ(k, iωn;k′, iωn′) = Σ(k, iωn)−Σ(k+k′, iωn+n′). (16.115)

According to (16.99) the atomic propagator in the Mott-insulator phase is given by

−1
h̄

Ga(k,ω) =
Zk

−h̄ω+ + h̄ωqp
k

+
1−Zk

−h̄ω+ + h̄ωqh
k

, (16.116)
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where the probabilities Zk and 1−Zk account for the fact that an atomic excitation
contains both quasiparticle and quasihole contributions. The notation h̄ω+ is short-
hand for h̄ω + i0. The dispersions for the quasiparticle and quasihole excitations are
given by

h̄ωqp,qh
k = −µ +

U
2

(2g−1)+
1
2

(εk± h̄ωk) , (16.117)

where g is the filling fraction of the lattice and εk corresponds to the lattice disper-
sion for the case of a regular square lattice. The momentum h̄k is here and from now
on always written in units of 2h̄kph, which means that the first Brillouin zone runs
from k j =−1/2 to 1/2. The energy h̄ωk is given by

h̄ωk =
√

U2 +2(2g+1)Uεk + ε2
k

and the probability Zk is given by

Zk =
(2g+1)U + εk + h̄ωk

2h̄ωk
. (16.118)

Using the Green’s function in (16.116), we find in first approximation

χ0(q,ω) = t(q)
(
χ0

+(q,ω)−χ0
+(−q,−ω)

)
, (16.119)

where t(q) is a geometric factor that involves the appropriate overlap integral of the
relevant Wannier functions [180], but that is unimportant for our purposes so we
discuss it no further. Denoting integration over the first Brillouin zone as

∫
1BZ, the

contribution due to the creation of a particle-hole pair is given by

χ0
+(q,ω) =

1
2

∫

1BZ
dk

P(k,k+q,ω)

−h̄ω+ + h̄ωqp
k+q− h̄ωqh

k

, (16.120)

and the time-reverse process can be written as χ0−(q,ω) = χ0
+(−q,−ω). This equa-

tion contains the probability

P(k,k+q,ω) = (1−Zk)Zk+q (16.121)

for the creation of a hole with momentum k and a particle with momentum k + q,
and an energy denominator that is associated with the energy cost h̄ωqp

k+q − h̄ωqh
k

of that process. This can readily be verified by taking the imaginary part of the
susceptibility, which is proportional to

∫

1BZ
dk P(k,k+q,ω)δ (h̄ω− h̄ωqp

k+q + h̄ωqh
k )

and can be understood as Fermi’s Golden Rule. The actual computation of the above
integral is too complicated to do analytically, so we have to resort to numerical meth-
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ods. We achieve this by calculating the imaginary part of (16.120), which roughly
corresponds to integrating over the surface in the Brillouin zone where the energy
denominator vanishes. In practice, this amounts to numerically finding the poles of
the expression and determining their residue. The real part is calculated from the
imaginary part using a Kramers-Kronig relation [181].

a) b)

q ; ! q ; !

Fig. 16.11 Schematic representation of a) (16.120) and b) (16.123)

However, the results that one would obtain in this manner do not obey particle
conservation. Physically, a Raman process with momentum q couples to a density
fluctuation ρ(q). For zero-momentum transfer, ρ(0) corresponds to the total number
of particles and fluctuations are impossible due to particle-number conservation. If
we compute the imaginary part of (16.120) for q = 0 we find a spectrum which is
nonzero, which means that this approach is not sufficiently accurate. The problem is
due to the fact that in (16.116) not the bare atomic propagator is used, but a dressed
propagator which contains a large selfenergy correction given by

h̄Σ(k,ω) = 2gU +
g(g+1)U2

−h̄ω−U−µ
. (16.122)

The first term on the right-hand side is the Hartree-Fock contribution, which is also
present in a Bose-Einstein condensate. The second contribution is due to the cor-
relations in the Mott insulator. Essentially this means that an atom moving through
the Mott insulating background is dressed by all the other atoms.

Using the relevant Ward identity from (16.115), we can derive that the intuitive
probability function given above has to be replaced by

P(k,k+q,ω) =
2h̄ω− h̄ωqp

k+q + h̄ωqh
k

h̄ωk+q + h̄ωk
(Zk+q−Zk) . (16.123)

Note that the probability now vanishes when q→ 0, so that particle conservation is
indeed no longer violated. In fact, we can show that for small q and h̄ω just above
threshold P ∝ q2/∆2

0, where ∆0 is the gap for particle-hole excitations.
In Figs. 16.12 and 16.13 the result of a numerical integration is shown in two and

three dimensions respectively. Both calculations have been carried out for a regular
square lattice and the momentum q is chosen in a principal lattice direction. All
energies in the following figures are given in units zt, where z is the coordination
number of the lattice. The imaginary part of Fig. 16.12 clearly shows singularities
around h̄ω = U . These singularities are due to the fact that there are saddle points
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Fig. 16.12 Real and imaginary parts of the susceptibility for U/zt = 10 and q =
0.10,0.14,0.18,0.20 along a lattice direction, in two dimensions. The dotted line in the bottom
figure is the result for q = 0.001 multiplied by 250 to show the behaviour for small q.

in the dispersion and that a saddle point in the dispersion causes an integrable sin-
gularity in the density of states. These are called van Hove singularities [182]. It is
interesting to see that the van Hove singularities split up as the momentum is in-
creased, which is caused by the fact that the saddle-point energy in the direction of
q and the saddle-point energy in the orthogonal direction(s) are shifted by different
amounts. This is also visible in Fig. 16.13. However, it is less clear in this case,
because the van Hove singularities are more smeared out in three dimensions. The
opening of the threshold for the two-photon absorption in the three-dimensional case
is far less steep than in the two-dimensional case. To investigate possible collective
modes in this system, we determined higher-order corrections in the random-phase
approximation (RPA). It can be shown that in RPA the susceptibility is given by

χ(q,ω) =
χ0(q,ω)

1−Uχ0(q,ω)
. (16.124)

This means that there is a resonance in the scattering rate when the real part of
χ0(q,ω) is equal to 1/U . However, as can be seen from Figs. 16.12 and 16.13, the
real parts in both cases are rather small compared to 1/U and in practice, including
the RPA denominator does not qualitatively change our previous results.

In Fig. 16.14, we plot the imaginary part of χ0(q,ω) for a range of values for
the coupling constant U/zt and for a fixed momentum q = 0.10. We see that the
threshold behaviour becomes steeper as we approach the critical value of Uc/zt '
5.83. We also see that there remains a nonzero gap when U = Uc. This is due to
the fact that we are not considering a zero-momentum excitation, due to the reasons
given above. In the inset of Fig. 16.14, we plot this gap ∆q as a function of U/zt. For
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Fig. 16.13 Real and imaginary parts of the susceptibility for U/zt = 10 and q =
0.10,0.14,0.18,0.20 along a lattice direction, in three dimensions. The dotted line in the bottom
figure is the result for q = 0.001 multiplied by 250 to show the behaviour for small q.

large U the gap grows linearly with U , while for U close to Uc the gap closes more
rapidly. In the case of q = 0 the gap would in our mean-field approximation close
as
√

U−Uc when U ↓ Uc, but for small nonzero q it closes as
√

U−Uc +ηq4,
where the factor η is a positive function of Uc and t. In a recent experiment by
Stöferle et al. [170] the authors use a setup where the laser beams are perfectly
counterpropagating, which corresponds to a quasi-momentum transfer of zero. As
we have argued above, there should be no scattering in that case and the signal can
only be due to nonlinear response or to the fact that the system is inhomogeneous
and of finite size. We have found that, by measuring the threshold behavior of the
two-photon scattering rate at various quasi-momenta, it is possible to determine the
gap by extrapolation. We have shown that for a theoretical description of Bragg
spectroscopy on the Mott insulator it is absolutely essential to dress the photon-
atom coupling, which is in a way unexpected, as the corrections are zero in the case
of an harmonically trapped gas. As a result it turns out that although it is common
to use the language of solid-state physics to describe these systems, the physics is
qualitatively very different due to the many-body effects.

16.8 Problems

Exercise 16.1. Particle Density
In this problem, we first demonstrate for the noninteracting gas the equivalence
of the calculation of the total particle density through the thermodynamic relation
N = −∂Ω/∂ µ and through the use of source currents that couple to the atomic
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Fig. 16.14 Imaginary part of the susceptibility in a three dimensional lattice for q = 0.10 along a
lattice direction and U/zt = 5.83,7,8,9,10

fields. We consider a system of noninteracting bosons described by creation and
annihilation fields a∗i (τ) and ai(τ) on a lattice.
a) Write down the expression for the generating functional Z[J∗,J] for this system
and decouple the hopping term by adding the following complete square to the ac-
tion,

∑
i j

(
a∗i (τ)−ψ∗

i (τ)+ h̄∑
j′

t−1
i j′ J∗j′(τ)

)
ti j

(
a j(τ)−ψ j(τ)+ h̄∑

j′′
t−1
i j′′ J j′′(τ)

)
.

Integrate out the atomic fields a∗, a and show that one arrives at the following ex-
pression for the generating functional,

Z[J∗,J] =
∫

d[ψ∗]d[ψ]exp

{
∑
k,n

ψ∗
k,nG−1(k, iωn)ψk,n

+J∗k,nψk,n + Jk,nψ∗
k,n + h̄

Jk,nJ∗k,n

εk

}
, (16.125)

where h̄G−1(k, iωn) = εk + ε2
k (−ih̄ωn−µ)−1.

b) The total density may be calculated from this expression by first calculating the
correlator 〈ak,na∗k,n〉 through functional differentiation with respect to the source-
currents J, and then to sum over all momenta and Matsubara frequencies.
c) We can also calculate the density from the thermodynamic potential Ω, by using
the relation N = −∂Ω/∂ µ where N is the total number of particles. Calculate the
thermodynamic potential and demonstrate the equivalence of both methods.
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d) Show that for an interacting system where the selfenergy contains the chemical
potential, the above equivalence no longer holds.

Exercise 16.2. The Green’s function of the atoms Ga(k, iωn) is related to G(k, iωn)
according to (16.99). Show that the Green’s function of the atoms can also be written
as

Ga(k, iωn) =
−h̄

−ih̄ωn + εk−µ + h̄Σ(k, iωn)
, (16.126)

where the selfenergy is given by

h̄Σ(k, iωn) = 2gU +
g(g+1)U2

−ih̄ωn−µ−U
. (16.127)

Exercise 16.3. Estimate the temperature of an atomic gas that needs to be realized
for the single-band approach to be valid.

Exercise 16.4. Derive the expressions for the hopping t and the on-site interaction
U in (16.31) and (16.33).
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Chapter 17
Feshbach Resonances

We’re holding atoms in a laser beam, turn down the laser power
and those atoms turn into molecules... If Nature had knocked on
my door and said you have one free wish, wish for something
you want in science, I wouldn’t have been bold enough to ask
for that!
– Wolfgang Ketterle

In Sect. 10.3.3 we discussed the possibility of a shape resonance in the scattering
length of two atoms. Such a shape resonance occurs when the interatomic potential
has a bound state that is very weakly bound and, therefore, has an energy that lies
very close to the continuum threshold of the atoms. Because this bound state occurs
in the same potential with which the atoms interact, it is difficult to experimentally
control such a resonance, and thereby the scattering properties of atoms. To do so
would require changing the actual shape of the interatomic potential, which is im-
possible by a static magnetic bias field. Put differently, for a shape resonance the
magnetic moment of the weakly-bound molecule is exactly the same as the mag-
netic moment of the colliding atoms. As a result, an external magnetic field affects
the energy of the bound state in exactly the same manner as the energy of the collid-
ing atoms. One thus cannot change the energy difference between the bound state
and the atomic continuum, which would drastically affect the outcome of the scat-
tering process and therefore the effective interaction strength between the atoms. For
completeness, we should mention that in principle time-dependent electric fields can
be used to influence the scattering length of the atoms in this case, but the physics
then actually turns out to be very similar to the physics of Feshbach resonances that
we discuss next.

The crucial difference between a shape resonance and a Feshbach resonance is
that in the latter case, the molecular state responsible for the resonance has a mag-
netic moment that is different from the magnetic moment of the colliding atoms
[17, 183]. Therefore, the energy difference between the bound state and the atomic
continuum can now be easily controlled experimentally by an external magnetic
bias field. Theoretically this implies that the scattering process is not described by a
single-channel Schrödinger equation, as in the case of a shape resonance, but by a
multi-channel or matrix Schrödinger equation, because the scattering wavefunction
has now a nonzero amplitude in a number of different spin states.

In this chapter [42], we discuss both the two-body and the many-body physics
of ultracold atoms near a Feshbach resonance. To this end, we first present a simple
two-channel model for a Feshbach resonance between two alkali atoms, and then
show how this model can be captured by a quantum field theory. From this micro-

431
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scopic quantum field theory, we derive from first principles an effective quantum
field theory of atoms and molecules that includes the two-body Feshbach physics
exactly and can thus be used as a starting point to accurately discuss the many-body
physics of the gas. To prove the latter explicitly, we discuss in detail the internal
Josephson oscillations between an atomic and a molecular Bose-Einstein conden-
sate. It is important to realize that during these oscillations the spin state changes,
because the molecule has a different magnetic moment than the two colliding atoms.
For completeness, we mention that in the limit of a broad resonance, it turns out that
the amplitude in the molecular channel actually becomes very small, so that the
two-channel model reduces effectively to a single-channel model [23, 184]. Then,
the main effect of the Feshbach molecular state is to cause a magnetic-field depen-
dent scattering length, which we can use as an input parameter for the single-channel
model. Indeed, this was the approach in Sect. 12.8, where we discussed the BEC-
BCS crossover for fermions. Note that in this single channel model we still have the
possibility of forming tightly-bound states, which now have the same spin state as
the two colliding atoms.

17.1 Example of a Feshbach Resonance

Up to now we always considered atom-atom interactions that did not change the
internal states of the atoms. We consider now the more general, and more realistic,
situation of atom-atom scattering whereby the atoms have various internal states that
can change during the collision. In the case of alkali atoms, the simplest picture of
such collisions is the following. The spin states that are coupled correspond, roughly
speaking, to the eigenstates of the total spin operator of the valence electrons of the
alkali atoms. Indeed, if we neglect hyperfine interactions the effective interaction
potential between the atoms depends only on the state of the valence electrons of
the colliding atoms. If these form a singlet the electrons are in principle allowed to
be on top of each other. For a triplet this is forbidden. Hence, the singlet potential is
generally much deeper than the triplet potential.

Of course, in reality every atom has also a nucleus with spin I that interacts with
the spin S of a valence electron via the hyperfine interaction

Ĥhf =
αhf

h̄2 Î · Ŝ, (17.1)

with αhf the hyperfine constant. This hyperfine interaction couples the singlet
and triplet states. Moreover, in the presence of a magnetic field the different in-
ternal states of the atoms have a different Zeeman shift. In an experiment with
magnetically-trapped gases, the energy difference between these states is therefore
experimentally accessible. Putting these results together, we can write down the
simplest two-channel Schödinger equation that models the above physics
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[
− h̄2∇∇∇2

m +VT(r)−E Vhf

Vhf − h̄2∇∇∇2

m +∆µB+VS(r)−E

][
ψT(r)
ψS(r)

]
= 0 . (17.2)

Here, VT(r) and VS(r) are the interaction potentials of atoms with internal state
|T〉 and |S〉 respectively, and ∆µB is their difference in Zeeman energy due to the
interaction with the magnetic field B, with ∆µ the difference in magnetic moment.
Finally, Vhf = 〈T|Ĥhf|S〉 denotes the matrix element of the hyperfine coupling. In
agreement with the above remarks, |T〉 is referred to as the triplet channel, whereas
|S〉 is referred to as the singlet channel. The potentials VT(r) and VS(r) are the triplet
and singlet interaction potentials respectively.

As a specific example, we use for both interaction potentials square-well poten-
tials

VT,S(r) =
{−VT,S if r < R

0 if r > R , (17.3)

where VT,S > 0. For convenience we have taken the range the same for both poten-
tials. Furthermore, we assume that the potentials are such that VT < VS and that VS is
just deep enough such that it contains exactly one bound state. Finally, we assume
that 0 < Vhf ¿VT,VS,∆µB. The potentials are shown in Fig. 17.1.

To discuss the scattering properties of the atoms we have to diagonalize the
Hamiltonian for r > R in order to determine the incoming channels, which are su-
perpositions of the triplet and singlet states |T〉 and |S〉. Since the kinetic energy
operator is diagonal in the internal space of the atoms, we have to find the eigenval-
ues of the Hamiltonian

H> =
[

0 Vhf
Vhf ∆µB

]
. (17.4)

These are given by

ε>
± =

∆µB
2

± 1
2

√
(∆µB)2 +(2Vhf)2. (17.5)

The Hamiltonian H> is diagonalized by the matrix

Q(θ) =
[

cosθ sinθ
−sinθ cosθ

]
, (17.6)

according to

Q(θ>) ·H> ·Q−1(θ>) =
[

ε>− 0
0 ε>

+

]
, (17.7)

which determines tan2θ> =−2Vhf/∆µB. We define now the hyperfine states | ↑↑〉
and | ↓↓〉, the precise reason for this particular choice of notation will become clear
in the next section, according to
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[ | ↑↑〉
| ↓↓〉

]
= Q(θ>)

[ |T〉
|S〉

]
, (17.8)

which asymptotically represent the scattering channels. In this basis the Schrödinger
equation for all r reads

[
− h̄2∇∇∇2

m +V↑↑(r)−E V↑↓(r)
V↑↓(r) − h̄2∇∇∇2

m + ε>
+ − ε>− +V↓↓(r)−E

][
ψ↑↑(r)
ψ↓↓(r)

]
= 0 , (17.9)

where the energy E is measured with respect to ε>− and we have defined the poten-
tials according to

[
V↑↑(r) V↑↓(r)
V↑↓(r) V↓↓(r)

]
= Q(θ>) ·

[
VT(r) 0

0 VS(r)

]
·Q−1(θ>) . (17.10)

Since all these potentials vanish for r > R we can study scattering of atoms in the
states | ↑↑〉 and | ↓↓〉. Because the hyperfine interaction Vhf is small we have that
ε>
+ ' ∆µB and ε>− ' 0. Moreover, for the experiments with magnetically-trapped

gases we always have that ∆µB À kBT where kB is Boltzmann’s constant and T
is the temperature. This means that in a realistic atomic gas, in which the states
| ↑↑〉 and | ↓↓〉 are available, there are in equilibrium almost no atoms that scatter
via the latter state. Because of this, the effects of the interactions of the atoms will
be determined by the scattering amplitude in the state | ↑↑〉. If two atoms scatter
in this channel with energy E ' kBT ¿ ∆µB they cannot come out in the other
channel because of energy conservation. Therefore, the indices ↑↑ refer to an open
channel, whereas ↓↓ is associated with a closed channel of the scattering process.
The situation is further clarified in Fig. 17.1.

To calculate the s-wave scattering length in the open channel we have to solve
the Schrödinger equation. In the region r > R the solution is of the form

[
u>
↑↑(r)

u>
↓↓(r)

]
=

[
Ceikr +De−ikr

Fe−κr

]
, (17.11)

where κ =
√

m(ε>
+ − ε>− )/h̄2− k2 and, because we have used the same notation as

in (10.41), the s-wave phase shift is again determined by (10.42). In the region r < R
the solutions are of the form

[
u<
↑↑(r)

u<
↓↓(r)

]
=


 A

(
eik<

↑↑r− e−ik<
↑↑r

)

B
(

eik<
↓↓r− e−ik<

↓↓r
)


 , (17.12)

where

k<
↑↑ =

√
m(ε>− − ε<− )/h̄2 + k2 , k<

↓↓ =
√

m(ε>− − ε<
+ )/h̄2 + k2 , (17.13)

and
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Fig. 17.1 Feshbach resonance in a two-channel system with square-well interaction potentials.
The triplet potential VT(r) is indicated by the thick dashed line. The singlet potential that contains
the bound state responsible for the Feshbach resonance is indicated by the thin dashed line. Due
to the Zeeman interaction with the magnetic field, the energy difference between the singlet and
triplet is equal to ∆µB. The interactions in the open and closed hyperfine channels are indicated by
V↑↑(r) and V↓↓(r) respectively.

ε<
± =

∆µB−VT−VS

2
∓ 1

2

√
(VS−VT−∆µB)2 +(2Vhf)2 (17.14)

are the eigenvalues of the matrix

H< =
[−VT Vhf

Vhf ∆µB−VS

]
. (17.15)

In order to determine the phase shift we have to join the solution for r < R and
r > R smoothly. This is done most easily by transforming to the singlet-triplet basis
{|T〉, |S〉} since this basis is independent of r. Demanding the solution to be contin-
uously differentiable leads to the equations

Q−1(θ<)
[

u<
↑↑(R)

u<
↓↓(R)

]
= Q−1(θ>)

[
u>
↑↑(R)

u>
↓↓(R)

]
and

∂
∂ r

Q−1(θ<)
[

u<
↑↑(r)

u<
↓↓(r)

]∣∣∣∣
r=R

=
∂
∂ r

Q−1(θ>)
[

u>
↑↑(r)

u>
↓↓(r)

]∣∣∣∣
r=R

, (17.16)

where tan2θ< = 2Vhf/(VS−VT−∆µB). These four equations determine the coeffi-
cients A,B,C,D and F up to a normalization factor, and therefore also the phase shift
and the scattering length. Although it is possible to find an analytical expression for
the scattering length as a function of the magnetic field, the resulting expression is
rather formidable and is omitted here. The result for the scattering length is shown in
Fig. 17.2, for VS = 10h̄2/mR2, VT = h̄2/mR2 and Vhf = 0.1h̄2/mR2, as a function of
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Fig. 17.2 Scattering length for two coupled square-well potentials as a function of ∆µB. The depth
of the triplet and singlet channel potentials is VT = h̄2/mR2 and VS = 10h̄2/mR2 respectively. The
hyperfine coupling is Vhf = 0.1h̄2/mR2. The dotted line shows the background scattering length
abg.

∆µB. The resonant behavior is due to the bound state of the singlet potential VS(r).
Indeed, solving the equation for the binding energy in (10.49) with V0 = −VS we
find that |Em| ' 4.62h̄2/mR2, which is approximately the position of the resonance
in Fig. 17.2. The difference is due to the fact that the hyperfine interaction leads to
a shift in the position of the resonance with respect to Em.

The magnetic-field dependence of the scattering length near a Feshbach reso-
nance is characterized experimentally by a width ∆B and position B0 according to

a(B) = abg

(
1− ∆B

B−B0

)
. (17.17)

This explicitly shows that the scattering length, and therefore the magnitude of the
effective interatomic interaction, may be altered to any value by tuning the mag-
netic field. The first experimental proof of this fact is shown in Fig. 17.3, where
the magnetic-field dependence of the scattering length is indeed seen to be given
by (17.17). The off-resonant background scattering length is denoted by abg and is,
in our example, approximately equal to the scattering length of the triplet potential
VT(r). Using the expression for the scattering length of a square well in (10.46) for
γ = 1, we find that abg ' −0.56R. Furthermore, we have for our example that the
position of the resonance is given by B0 ' 4.64h̄2/m∆µR2 and that the width is
equal to ∆B'−0.05h̄2/m∆µR2.

Next we calculate the energy of the molecular state for the coupled-channel case,
which is found by solving (17.9) for negative energy. In particular, we are interested
in its dependence on the magnetic field. In the absence of the hyperfine coupling be-
tween the open and closed channel we simply have that εm(B) = Em + ∆µB. Here,
Em is the energy of the bound state responsible for the Feshbach resonance, which is
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Fig. 17.3 The first experimental observation of a Feshbach resonance by Inouye et al. [185]. (a)
The loss of atoms in a trap is greatly enhanced near a Feshbach resonance. (b) The characteristic
behavior of the scattering length as a function of magnetic field, where the solid line is a fit to
(17.17). Reprinted by permission from Macmillan Publishers Ltd: Nature 392, 151 (1998), copy-
right (1998).

determined by solving the single-channel Schödinger equation for the singlet poten-
tial. This bound-state energy as a function of the magnetic field is shown in Fig. 17.4
by the dashed line. A nonzero hyperfine coupling drastically changes this result. For
our example the bound-state energy is easily calculated. The result is shown by the
solid line in Fig. 17.4 for the same parameters as before. Clearly, close to the reso-
nance the dependence of the bound-state energy on the magnetic field is no longer
linear, as the inset of Fig. 17.4 shows. Instead, it turns out to be quadratic. This
was also seen in experiment, as shown in Fig. 17.5. Moreover, the magnetic field
B0 where the bound-state energy is equal to zero is shifted with respected to the
case where Vhf = 0. It is at this shifted magnetic field that the resonance is observed
experimentally. Moreover, for magnetic fields larger than B0 there no longer exists
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Fig. 17.4 Bound-state energy of the molecular state near a Feshbach resonance for two coupled
square-well interaction potentials. The solid line and the inset show the result for Vhf = 0.1h̄2/mR2.
The dashed line corresponds to Vhf = 0. The other parameters are the same as in figure 17.2.

a bound state and the molecule now decays due to the hyperfine coupling into two
free atoms, because its energy is above the two-atom continuum threshold.

Close to resonance the energy of the molecular state turns out to be related to the
scattering length by

εm(B) =− h̄2

ma2(B)
, (17.18)

as in the single-channel case. As we will see in the next sections, the reason for this
is that close to resonance the effective two-body T matrix again has a pole at the
energy in (17.18). This important result will be proven analytically in Sect. 17.4.2.
This is achieved by deriving the effective quantum field theory that offers a descrip-
tion of Feshbach-resonant interactions in terms of an atom-molecule action. For
simplicity we consider from now on only bosonic atoms, because this requires only
the introduction of two internal states. For fermions at least three internal states are
needed for a s-wave Feshbach resonance, which makes the calculation unnecessary
complicated. Nevertheless, the generalization to fermions is straightforward. To do
so, we start from a microscopic atomic action that involves atoms with two internal
states, i.e. we consider a situation with an open and a closed channel that are coupled
by the exchange interaction. By performing a Hubbard-Stratonovich transformation
we introduce a quantum field that incorporates into the theory the bound state in the
closed channel responsible for the Feshbach resonance.
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Fig. 17.5 Measurement of the binding energy of Feshbach molecules in atomic 40K by Regal et
al. [186]. The solid line shows the universal result εm(B) =−h̄2/ma2(B). Reprinted by permission
from Macmilan Publishers Ltd: Nature 427, 47 (2003), copyright (2003).

17.2 Bare Atom-Molecule Theory

Without loss of generality, we can consider the simplest situation in which a Fesh-
bach resonance arises, i.e. we consider a homogeneous gas of identical atoms in a
box of volume V . These atoms have two internal states, denoted by |↑〉 and |↓〉, that
are described by the fields φ↑(x,τ) and φ↓(x,τ) respectively. The atoms in these two
states interact via the potentials V↑↑(x− x′) and V↓↓(x− x′) respectively. The state
| ↓〉 has an energy ∆µB/2 with respect to the state |↑〉 due to the Zeeman interaction
with the magnetic field B. The coupling between the two states, which from the point
of view of atomic physics is due to the difference in singlet and triplet interactions,
is denoted by V↑↓(x−x′). Putting everything together we write the grand-canonical
partition function for the gas as a functional integral given by

Z =
∫

d[φ ∗↑ ]d[φ↑]d[φ ∗↓ ]d[φ↓]exp
{
−1

h̄
S[φ ∗↑ ,φ↑,φ

∗
↓ ,φ↓]

}
. (17.19)

Since we are dealing with bosons, the integration is over all fields that are periodic
on the imaginary-time axis ranging from zero to h̄β , with h̄ Planck’s constant and
β = 1/kBT the inverse thermal energy. The Euclidian action is given by

S[φ ∗↑ ,φ↑,φ
∗
↓ ,φ↓] =

∫ h̄β

0
dτ

{∫
dx

{
φ ∗↑ (x,τ)h̄

∂
∂τ

φ↑(x,τ)+φ ∗↓ (x,τ)h̄
∂

∂τ
φ↓(x,τ)

}

+H[φ ∗↑ ,φ↑,φ
∗
↓ ,φ↓]

}
, (17.20)
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Fig. 17.6 Illustration of a Feshbach resonance. The upper potential curve corresponds to the
closed-channel interaction potential V↓↓(x− x′) that contains the bound state responsible for the
Feshbach resonance, indicated by the dashed line. The lower potential curve corresponds to the
open-channel interaction potential V↑↑(x−x′).

with the grand-canonical Hamiltonian functional given by

H[φ ∗↑ ,φ↑,φ
∗
↓ ,φ↓] =

∫
dx φ ∗↑ (x,τ)

{
− h̄2∇∇∇2

2m
−µ (17.21)

+
1
2

∫
dx′ φ ∗↑ (x

′,τ)V↑↑(x−x′)φ↑(x′,τ)
}

φ↑(x,τ)

+
∫

dx φ ∗↓ (x,τ)

{
− h̄2∇∇∇2

2m
+

∆µB
2

−µ

+
1
2

∫
dx′φ ∗↓ (x

′,τ)V↓↓(x−x′)φ↓(x′,τ)
}

φ↓(x,τ)

+
1
2

∫
dx

∫
dx′φ ∗↑ (x,τ)φ ∗↑ (x

′,τ)V↑↓(x−x′)φ↓(x′,τ)φ↓(x,τ),

+
1
2

∫
dx

∫
dx′φ ∗↓ (x,τ)φ ∗↓ (x

′,τ)V↑↓(x−x′)φ↑(x′,τ)φ↑(x,τ),

where µ is the chemical potential of the atoms. Note that this Hamiltonian functional
is the grand-canonical version of the Hamiltonian in (17.9). The indices ↑ and ↓ now
refer again to single-particle states, and the two-particle hyperfine states are denoted
by | ↑↑〉 and | ↓↓〉 respectively. The closed-channel potential is assumed again to
contain the bound state responsible for the Feshbach resonance, as illustrated in
Fig. 17.6. To introduce the molecular field that describes the center-of-mass motion
of this bound state, we introduce the complex pairing field ∆(x,x′,τ) and perform a
Hubbard-Stratonovich transformation by inserting the identity
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exp
{
− 1

2h̄

∫ h̄β

0
dτ

∫
dx

∫
dx′φ ∗↓ (x,τ)φ ∗↓ (x

′,τ)V↓↓(x−x′)φ↓(x′,τ)φ↓(x,τ)
}

∝
∫

d[∆∗]d[∆]exp

{
− 1

2h̄

∫ h̄β

0
dτ

∫
dx

∫
dx′

(
∆∗(x,x′,τ)φ↓(x′,τ)φ↓(x,τ)

+ φ ∗↓ (x
′,τ)φ ∗↓ (x,τ)∆(x,x′,τ)−∆∗(x,x′,τ)V−1

↓↓ (x−x′)∆(x,x′,τ)

)}
.

The functional integral over the field φ↓(x,τ) has now become quadratic and we
write this quadratic part as

− h̄
2

∫ h̄β

0
dτ

∫
dx

∫ h̄β

0
dτ ′

∫
dx′

[
φ ∗↓ (x,τ),φ↓(x,τ)

] · G−1
↓↓ (x,τ;x′,τ ′) ·

[
φ↓(x′,τ ′)
φ ∗↓ (x

′,τ ′)

]
,

where the Nambu-space Green’s function for the closed channel obeys the Dyson
equation

G−1
↓↓ (x,τ;x′,τ ′) = G−1

0;↓↓(x,τ;x′,τ ′)−ΣΣΣ↓↓(x,τ;x′,τ ′) . (17.22)

The noninteracting Nambu-space Green’s function is given by

G−1
0;↓↓(x,τ;x′,τ ′) =

[
G−1

0;↓↓(x,τ;x′,τ ′) 0
0 G−1

0;↓↓(x
′,τ ′;x,τ)

]
, (17.23)

where
{

h̄
∂

∂τ
− h̄2∇∇∇2

2m
+

∆µB
2

−µ

}
G0;↓↓(x,τ;x′,τ ′) =−h̄δ (τ− τ ′)δ (x−x′), (17.24)

is the single-particle noninteracting Green’s function. The selfenergy is purely off-
diagonal in Nambu space and reads

h̄ΣΣΣ↓↓(x,τ;x′,τ ′) = δ (τ− τ ′) ·
[

0 σ(x,x′,τ)
σ∗(x,x′,τ) 0

]
, (17.25)

where σ(x,x′,τ)≡ ∆(x,x′,τ)+V↑↓(x−x′)φ↑(x,τ)φ↑(x′,τ). Note that a variation of
the action with respect to the pairing field shows that

〈∆(x,x′,τ)〉= V↓↓(x−x′)〈φ↓(x)φ↓(x′)〉 , (17.26)

which relates the auxiliary pairing field to the wavefunction of two atoms in the
closed channel. Roughly speaking, to introduce the field that describes a pair of
atoms in the closed-channel bound state we have to consider only contributions
from this bound state to the pairing field. Close to resonance it is this contribution
that dominates. Note that the average of the pairing field in (17.26) indeed shows
that the pairing field is similar to the macroscopic wavefunction of the Cooper-
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pair Bose-Einstein condensate. However, in this case we are interested in the phase
〈∆〉= 0 and therefore need to consider also fluctuations.

Since the integration over the field φ↓(x,τ) involves now a Gaussian integral, it
is easily performed. This results in an effective action for the pairing field and the
atomic fields that describes the open channel, given by

Seff[φ ∗↑ ,φ↑,∆
∗,∆] =

∫ h̄β

0
dτ

∫
dx

{
φ ∗↑ (x,τ)h̄

∂
∂τ

φ↑(x,τ)+φ ∗↑ (x,τ)

{
− h̄2∇∇∇2

2m
−µ

+
1
2

∫
dx′ φ ∗↑ (x

′,τ)V↑↑(x−x′)φ↑(x′,τ)
}

φ↑(x,τ)
}

−1
2

∫ h̄β

0
dτ

∫
dx

∫
dx′∆∗(x,x′,τ)V−1

↓↓ (x−x′)∆(x,x′,τ)

+
h̄
2

Tr
[
log(−G−1

↓↓ )
]

. (17.27)

Because we are interested in the bare atom-molecule coupling we expand the effec-
tive action up to quadratic order in the field ∆(x,x′,τ). Considering higher orders
would lead to atom-molecule and molecule-molecule interaction terms that will be
neglected here, since in our applications we always deal with a small density of
molecules relative to the atomic density.

Hence, we expand the effective action by making use of

Tr[log(−G−1
↓↓ )] = Tr[log(−G−1

0;↓↓)]−
∞

∑
m=1

1
m

Tr[(G0;↓↓ΣΣΣ↓↓)m] . (17.28)

This gives for the part of the effective action that is quadratic in ∆∗(x,x′,τ) and
∆(x,x′,τ) the following result

S[∆∗,∆] = −1
2

∫ h̄β

0
dτ

∫
dx

∫
dx′

∫ h̄β

0
dτ ′

∫
dy

∫
dy′

×∆∗(x,x′,τ)h̄G−1
∆ (x,x′,τ;y,y′,τ ′)∆(y,y′,τ ′) , (17.29)

where the Green’s function of the pairing field obeys the equation

G∆(x,x′,τ;y,y′,τ ′) = h̄V↓↓(x−x′)δ (x−y)δ (x′−y′)δ (τ− τ ′)

−1
h̄

∫ h̄β

0
dτ ′′

∫
dz

∫
dz′V↓↓(x−x′)G0;↓↓(x,τ;z,τ ′′)G0;↓↓(x′,τ;z′,τ ′′)

×G∆(z,z′,τ ′′;y,y′,τ ′) . (17.30)

From this equation we observe that the propagator of the pairing field is related to the
many-body T matrix in the closed channel. More precisely, introducing the Fourier
transform of the propagator to relative and center-of-mass momenta and Matsubara
frequencies Ωn = 2πn/h̄β , denoted by G∆(k,k′,K, iΩn), we have that
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G∆(k,k′,K, iΩn) = h̄T MB
↓↓ (k,k′,K, ih̄Ωn−∆µB+2µ) , (17.31)

where the many-body T matrix in the closed channel obeys the equation

T MB
↓↓ (k,k′,K,z) = V↓↓(k−k′)

+
1
V ∑

k′′
V↓↓(k−k′′)

1+NBE

(
εK/2+k′′−µ+ ∆µB

2

)
+NBE

(
εK/2−k′′−µ+ ∆µB

2

)

z− εK/2+k′′ − εK/2−k′′

×T MB
↓↓ (k′′,k′,K,z) . (17.32)

with NBE(x) = (eβx−1)−1 the Bose distribution function. Here,

V↓↓(k) =
∫

dx V↓↓(x)e−ik·x (17.33)

denotes the Fourier transform of the atomic interaction potential. This equation de-
scribes the scattering of a pair of atoms from relative momentum k′ to relative mo-
mentum k at energy z. Due to the fact that the scattering takes places in a medium
the many-body T matrix also depends on the center-of-mass momentum K, con-
trary to the two-body T matrix introduced in the previous section, which describes
scattering in vacuum. The kinetic energy of a single atom is equal to εk = h̄2k2/2m.
The factor that involves the Bose-Einstein distribution function arises because the
probability of a process where a boson scatters into a state that is already occupied
by N1 bosons is proportional to 1 + N1. The reverse process is only proportional to
N1. This explains the factor

1+N1 +N2 = (1+N1)(1+N2)−N1N2 , (17.34)

in the equation for the many-body T matrix [187].
The many-body T matrix is discussed in more detail in the next section when

we calculate the renormalization of the interatomic interactions. For now we only
need to realize that, for the conditions of interest to us, we are always in the situa-
tion where we are allowed to neglect the many-body effects in (17.32) because the
Zeeman energy ∆µB/2 strongly suppresses the Bose occupation numbers for atoms
in the closed channel. This is certainly true for the experimental applications of in-
terest because in the current experiments with magnetically-trapped ultracold gases
the Zeeman splitting of the magnetic trap is much larger than the thermal energy.
This reduces the many-body T -matrix equation to the Lippmann-Schwinger equa-
tion for the two-body T matrix in the closed channel T 2B

↓↓ (k,k′,z−εK/2), which, in
its basis-independent operator formulation, reads

T̂ 2B
↓↓ (z) = V̂↓↓+V̂↓↓

1
z− Ĥ0

T̂ 2B
↓↓ (z) , (17.35)

with Ĥ0 = p̂2/m. As we have seen in Sect. 10.3.1, this equation is formally solved
by
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T̂ 2B
↓↓ (z) = V̂↓↓+V̂↓↓

1
z− Ĥ↓↓

V̂↓↓ , (17.36)

with Ĥ↓↓ = Ĥ0 + V̂↓↓, where we also remember that the two-body T matrix has
poles at the bound states of the closed-channel potential. We assume that we are
close to resonance and hence that one of these bound states dominates. Therefore,
we approximate the two-body T matrix by

T̂ 2B
↓↓ (z)' V̂↓↓

|χm〉〈χm|
z−Em

V̂↓↓ , (17.37)

where the properly normalized and symmetrized bound-state wavefunction χm(x)≡
〈x|χm〉 obeys the Schrödinger equation

{
− h̄2∇∇∇2

m
+V↓↓(x)

}
χm(x) = Emχm(x) . (17.38)

It should be noted that this wavefunction does not correspond to the dressed, or
true, molecular state which is an eigenstate of the coupled-channel Hamiltonian and
determined by (17.9). Rather, it corresponds to the bare molecular wave function.
The coupling V↑↓(x−x′) of this bare state with the continuum renormalizes it such
that it contains also a component in the open channel. Moreover, as we have already
seen in the previous section, this coupling also affects the energy of this bound state.
Both effects are important near the resonance and are discussed in detail later on.

We are now in the position to derive the quadratic action for the quantum field that
describes the bare molecule. To do this, we consider first the case that the exchange
interaction V̂↑↓(x− x′) is absent. Within the above approximations, the two-point
function for the pairing field is given by

〈∆(k,K, iΩn)∆∗(k′,K, iΩn)〉=−2h̄
〈k|V̂↓↓|χm〉〈χm|V̂↓↓|k′〉

ih̄Ωn− εK/2−Em−∆µB+2µ
. (17.39)

We introduce the field φm(x,τ), that describes the bound state in the closed channel,
i.e, the bare molecule, by considering configurations of the pairing field such that

∆(x,x′,τ) =
√

2V↓↓(x−x′)χm(x−x′)φm((x+x′)/2,τ) . (17.40)

Using this we have that

〈φm(K, iΩn)φ ∗m(K, iΩn)〉=
h̄

−ih̄Ωn + εK/2+Em +∆µB−2µ
, (17.41)

which shows that the quadratic action for the bare molecular field is, in position
representation, given by
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S[φ ∗m,φm] =
∫ h̄β

0
dτ

∫
dx φ ∗m(x,τ)

×
{

h̄
∂

∂τ
− h̄2∇∇∇2

4m
+Em +∆µB−2µ

}
φm(x,τ) . (17.42)

In the absence of the coupling of the bare molecular field to the atoms, the dispersion
relation of the bare molecules is given by

h̄ωk(B) = εk/2+Em +∆µB . (17.43)

As expected, the binding energy of the bare molecule is equal to

εm(B) = Em +∆µB. (17.44)

The momentum dependence of the dispersion is due to the kinetic energy of the
molecule.

To derive the coupling of this bare molecular field to the field φ↑(x,τ) it is con-
venient to start from the effective action in (17.27) and to consider again only terms
that are quadratic in the selfenergy. Integrating out the pairing fields leads to an
interaction term in the action for the field describing the open channel, given by

1
2

∫ h̄β

0
dτ

∫
dx

∫
dx′

∫ h̄β

0
dτ ′

∫
dy

∫
dy′V↑↓(x−x′)φ ∗↑ (x,τ)φ ∗↑ (x

′,τ)

×G(4)
↓↓ (x,x′,τ;y,y′,τ ′)V↑↓(y−y′)φ↑(y,τ ′)φ↑(y′,τ ′),

where the two-atom four-point Green’s function is given diagrammatically in Fig.
17.7. For our purposes it is, for the same reasons as before, sufficient to neglect the
many-body effects on this propagator and to consider again only the contribution
that arises from the bound state in the closed channel. This gives for the Fourier
transform of this Green’s function

G(4)
↓↓ (k,k′,K, iΩn)' χ∗m(k)χm(k′)

ih̄Ωn− εK/2−∆µB−Em +2µ
, (17.45)

where χm(k) is the Fourier transform of the bound-state wavefunction. After sub-
stitution of this result into the above integral, the resulting interaction term is de-
coupled by introducing the field φm(x,τ) with the quadratic action given in (17.42).
This procedure automatically shows that the bare atom-molecule coupling constant
is equal to V↑↓(k)χm(k)/

√
2.

Summarizing, we have thus derived from a microscopic atomic Hamiltonian, a
bare atom-molecule theory for the description of a Feshbach resonance. It is deter-
mined by the action
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Fig. 17.7 Diagrammatic representation of the two-particle Green’s function in the closed channel.
The solid lines correspond to single-atom propagators.

S[φ ∗↑ ,φ↑,φ
∗
m,φm] =

∫ h̄β

0
dτ

{∫
dx

{
φ ∗↑ (x,τ)h̄

∂
∂τ

φ↑(x,τ)+φ ∗m(x,τ)h̄
∂

∂τ
φm(x,τ)

}

+ H[φ ∗↑ ,φ↑,φm,φ ∗m]
}

, (17.46)

where the bare or microscopic atom-molecule Hamiltonian functional is given by

H[φ ∗↑ ,φ↑,φm,φ ∗m] =
∫

dx φ ∗↑ (x,τ)

{
− h̄2∇∇∇2

2m
−µ +

1
2

∫
dx′φ ∗↑ (x

′,τ)V↑↑(x−x′)φ↑(x′,τ)

}
φ↑(x,τ)

+
∫

dx φ ∗m(x,τ)

{
− h̄2∇∇∇2

4m
+∆µB+Em−2µ

}
φm(x,τ)

+
∫

dx
∫

dx′g↑↓(x−x′)φ ∗m((x+x′)/2,τ)φ↑(x′,τ)φ↑(x,τ)

+
∫

dx
∫

dx′g↑↓(x−x′)φ ∗↑ (x,τ)φ ∗↑ (x
′,τ)φm((x+x′)/2,τ) , (17.47)

and the bare atom-molecule coupling is given by g↑↓(x) = V↑↓(x)χm(x)/
√

2, where
V↑↓(x) is the coupling between the open and closed atomic collision channel of the
Feshbach problem, that has its origin in the exchange interaction of the atoms. Note
also that the atom-molecule coupling is proportional to the wavefunction χm(x)
for the bound molecular state in the closed channel responsible for the Feshbach
resonance.

Physically, the microscopic Hamiltonian in (17.47) describes bosonic atoms in
the open channel of the Feshbach problem in terms of the field φ↑(x,τ). These atoms
interact via the interaction potential V↑↑(x− x′). Apart from this background inter-
action, two atoms in the gas can also form a molecular bound state in the closed
channel with energy Em that is detuned by an amount of ∆µB from the open chan-
nel. This bare molecular state is described by the field φm(x,τ). The most important
input in the derivation of (17.47) is that the energy difference between the various
bound states in the closed channel is much larger than the thermal energy, so that
near resonance only one molecular level is of importance. This condition is very
well satisfied for almost all the atomic gases of interest.
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In an application of the above microscopic atom-molecule action to realistic
atomic gases we have to do perturbation theory in the interaction V↑↑(x− x′) and
the coupling g↑↓(x− x′). Since the interatomic interaction is strong, this perturba-
tion theory requires an infinite number of terms. Progress is made by realizing that
the atomic and molecular densities of interest are so low that we only need to include
two-atom processes. This is achieved by summing all ladder diagrams as explained
in detail in the next section.

17.3 Ladder Summations

From the bare or microscopic atom-molecule theory derived in the previous sec-
tion we now intend to derive an effective quantum field theory that contains the
two-atom physics exactly. This is most conveniently achieved by renormalization of
the coupling constants. Moreover, the molecules acquire a selfenergy. Both calcula-
tions are done within the framework of perturbation theory to bring out the physics
involved most clearly. It is, however, also possible to achieve the same goal in a
nonperturbative manner by a second Hubbard-Stratonovich transformation.

Because we are dealing with a homogeneous system, it is convenient to perform
the perturbation theory in momentum space. Therefore, we Fourier transform to
momentum space, and expand the atomic and molecular fields according to

φa(x,τ)≡ φ↑(x,τ) =
1

(h̄βV )1/2 ∑
k,n

ak,neik·x−iωnτ , (17.48)

and

φm(x,τ) =
1

(h̄βV )1/2 ∑
k,n

bk,neik·x−iωnτ , (17.49)

respectively. The even Matsubara frequencies ωn = 2πn/h̄β account for the peri-
odicity of the fields on the imaginary-time axis. With this expansion, the grand-
canonical partition function of the gas is written as a functional integral over the
coefficients ak,n and bk,n and their complex conjugates. It is given by

Z =
∫

d[a∗]d[a]d[b∗]d[b]exp
{
−1

h̄
S[a∗,a,b∗,b]

}
, (17.50)

where the action S[a∗,a,b∗,b] is the sum of four terms. The first two terms describe
noninteracting atoms and noninteracting bare molecules respectively, and are given
by

Sa[a∗,a] = ∑
k,n

(−ih̄ωn + εk−µ)a∗k,nak,n , (17.51)

and
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Fig. 17.8 (a) Ladder diagrams that contribute to the renormalization of the interatomic interac-
tion. (b) Diagrammatic representation of the Lippmann-Schwinger equation for the many-body T
matrix. The solid lines correspond to single-atom propagators. The wiggly lines correspond to the
interatomic interaction V↑↑.

Sm[b∗,b] = ∑
k,n

(−ih̄ωn + εk/2+Em +∆µB−2µ)b∗k,nbk,n . (17.52)

The atomic interactions are described by the action

Sint[a∗,a] =
1
2

1
h̄βV ∑

K,k,k′
n,m,m′

V↑↑(k−k′)a∗K/2+k,n/2+ma∗K/2−k,n/2−m

×aK/2+k′,n/2+m′aK/2−k′,n/2−m′ , (17.53)

where V↑↑(k) is the Fourier transform of the interatomic interaction potential. This
Fourier transform vanishes for large momenta due to the nonzero range of the inter-
atomic interaction potential. The last term in the action describes the process of two
atoms forming a molecule and vice versa, and is given by

Scoup[a∗,a,b∗,b] =
1

(h̄βV )1/2 ∑
K,k
n,m

g↑↓(k)
{

b∗K,naK/2+k,n/2+maK/2−k,n/2−m

+a∗K/2−k,n/2−ma∗K/2+k,n/2+mbK,n

}
, (17.54)

where g↑↓(k) is the Fourier transform of the bare atom-molecule coupling constant.
This coupling constant also vanishes for large momenta since the bare molecular
wavefunction has a nonzero extent.

We first discuss the renormalization of the microscopic atomic interaction V↑↑(k),
due to nonresonant background collisions between the atoms. The first term that
contributes to this renormalization is of second order in the interaction. It is found
by expanding the exponential in the functional-integral expression for the grand-
canonical partition function in (17.50). To second order in the interactions this leads
to
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Z =
∫

d[a∗]d[a]
(

1− 1
h̄

Sint[a∗,a]+
1

2h̄2 S2
int[a

∗,a]+ · · ·
)

×exp
{
−1

h̄
Sa[a∗,a]

}
. (17.55)

After the decoupling of the eight-point function resulting from the square of the
action Sint[a∗,a] with the use of Wick’s theorem, it gives rise to various terms in
the perturbation theory which can be depicted by Feynman diagrams. As mentioned
already, we only take into account the ladder Feynman diagram. This diagram is
given by the second term of the Born series depicted in Fig. 17.8a, and corresponds
to the expression

− 1
h̄βV ∑

k′′,m
V↑↑(k−k′′)G0;a

(
K/2+k′′, iωn/2+m

)

×G0;a
(
K/2−k′′, iωn/2−m

)
V↑↑(k′′−k′) ,

where
G0;a(k, iωn) =

−h̄
−ih̄ωn + εk−µ

, (17.56)

is the noninteracting propagator of the atoms. After performing the summation over
the Matsubara frequencies we find that, to second order, the renormalization of the
interatomic interactions is given by

V↑↑(k−k′)→V↑↑(k−k′) (17.57)

+
1
V ∑

k′′
V↑↑(k−k′′)

1+NBE
(
εK/2+k′′−µ

)
+NBE

(
εK/2−k′′−µ

)

ih̄ωn− εK/2+k′′ − εK/2−k′′ +2µ
V↑↑(k′′−k′) ,

which is finite due to the use of the true interatomic potential. In comparing this
result with the first two terms of the Born series for scattering in vacuum in (10.22),
we see that the only difference between the two-body result and the above result is
the factor involving the Bose distributions. Called a statistical factor, this accounts
for the fact that the scattering takes place in a medium and is understood as follows.
The amplitude for a process where an atom scatters from a state with occupation
number N1 to a state with occupation number N2 contains a factor N1(1+N2). The
factor N1 simply accounts for the number of atoms that can undergo the collision,
and may be understood from a classical viewpoint as well. However, the additional
factor (1+N2) is a result of the Bose statistics of the atoms and is therefore called the
Bose-enhancement factor. For fermions this factor would correspond to the Pauli-
blocking factor (1−N2), reflecting the fact that a fermion is not allowed to scatter
into a state that is already occupied by an identical fermion. In calculating the Feyn-
man diagram we have to take into account the forward and backward scattering
processes, which results in the statistical factor in (17.57).

Continuing the expansion in (17.55) and taking into account only the ladder dia-
grams leads to a geometric series, which is summed by introducing the many-body
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Fig. 17.9 Renormalization of the atom-molecule coupling constant by interatomic interactions.
The solid lines correspond to single-atom propagators. The wiggly lines corresponds to the inter-
atomic interaction V↑↑.

T matrix in the open channel. It is given by

T MB
↑↑ (k,k′,K,z) = V↑↑(k−k′) (17.58)

+
1
V ∑

k′′
V↑↑(k−k′′)

1+NBE
(
εK/2+k′′−µ

)
+NBE

(
εK/2−k′′−µ

)

z− εK/2+k′′ − εK/2−k′′
T MB
↑↑ (k′′,k′,K,z) .

Its diagrammatic representation is given in Fig. 17.8b. For the moment we neglect
the many-body effects on the scattering atoms and put the Bose-distribution func-
tions equal to zero. As we have discussed in the single-channel case, this assump-
tion is valid at temperatures far below the critical temperature [110]. This reduces
the many-body T matrix to the two-body T matrix T 2B

↑↑ (k,k′,z−εK/2). For the low
temperatures of interest to us here, we are allowed to take the external momenta
equal to zero. For small energies we find, using the result in (10.38), that the effec-
tive interaction between the atoms reduces to

T 2B
↑↑ (0,0, ih̄ωn− εK/2+2µ) =

4πabgh̄2

m

× 1

1−abg

√
−m(ih̄ωn−εK/2+2µ)

h̄2 − abgrbgm(ih̄ωn−εK/2+2µ)
2h̄2

. (17.59)

Here, abg and rbg are the scattering length and the effective range of the open-
channel potential V↑↑(x) respectively. Although these could in principle be calcu-
lated with the precise knowledge of this potential, it is much easier to take them
from experiment. For example, the magnitude of the scattering length can be deter-
mined by thermalization-rate measurements [41]. The effective range is determined
by comparing the result of calculations with experimental data. We will encounter
an explicit example of this in Sect. 17.7.

The next step is the renormalization of the microscopic atom-molecule coupling
constant. Using the same perturbative techniques as before, we find that the effective
atom-molecule coupling is given in terms of the bare coupling by
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gMB(k,K,z) = g↑↓(k)+
1
V ∑

k′
T MB
↑↑ (k,k′,K,z) (17.60)

×1+NBE(εK/2+k′ −µ)+NBE(εK/2−k′ −µ)
z− εK/2+k′ − εK/2−k′

g↑↓(k′) ,

and is illustrated diagrammatically in Fig. 17.9. Again neglecting many-body ef-
fects, the coupling constant becomes g2B(k,z− εK/2) with

g2B(k,z) = g↑↓(k)+
1
V ∑

k′
T 2B
↑↑ (k,k′,z)

1
z−2εk′

g↑↓(k′) . (17.61)

From the above equation we infer that the energy dependence of this coupling con-
stant is the same as that of the two-body T matrix. This result is easily under-
stood by noting that for a contact potential V↑↑(k) = V0 and we simply have that
g2B = g↑↓T 2B

↑↑ /V0. Hence we have for the effective atom-molecule coupling

g2B(0, ih̄ωn− εK/2+2µ)

=
g

1−abg

√
−m(ih̄ωn−εK/2+2µ)

h̄2 − abgrbgm(ih̄ωn−εK/2+2µ)
2h̄2

. (17.62)

where g is the effective atom-molecule coupling constant at zero energy. The latter
is also taken from experiment. We come back to this point in Sect. 17.4.1 when we
discuss the two-atom properties of our effective many-body theory.

Finally, we have to take into account also the ladder diagrams of the resonant part
of the interaction. This is achieved by including the selfenergy of the molecules. It
is first given by the expression

ΠMB(K,z) =
2
V ∑

k
g↑↓(k)

1+NBE(εK/2+k−µ)+NBE(εK/2−k−µ)
z− εK/2+k− εK/2−k

×gMB(k,K,z) , (17.63)

and shown diagrammatically in Fig. 17.10. We neglect again many-body effects
which reduces the selfenergy in (17.63) to Π2B(z− εK/2) with

Π2B(z) = 〈χm|V̂↑↓Ĝ↑↑(z)V̂↑↓|χm〉 , (17.64)

where the propagator Ĝ↑↑(z) is given by

Ĝ↑↑(z) =
1

z− Ĥ↑↑
, (17.65)

with the Hamiltonian

Ĥ↑↑ =
p̂2

m
+V̂↑↑ ≡ Ĥ0 +V̂↑↑ . (17.66)
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Fig. 17.10 Molecular selfenergy. The solid lines correspond to single-atom propagators. The wig-
gly lines corresponds to the interatomic interaction V↑↑.

We insert in (17.64) a complete set of bound states |ψκ〉 with energies Eκ and
scattering states |ψ(+)

k 〉 that obey the Schrödinger equation for the Hamiltonian in
(17.66). This reduces the selfenergy to

Π2B(z) = ∑
κ

|〈χm|V̂↑↓|ψκ〉|2
z−Eκ

+
∫ dk

(2π)3
|〈χm|V̂↑↓|ψ(+)

k 〉|2
z−2εk

, (17.67)

where we replaced the sum over the momenta k by an integral. Using (17.61) and
the equation for the scattering states we have that

g2B(k,2ε+
k ) =

1√
2
〈χm|V̂↑↓|ψ(+)

k 〉 . (17.68)

Neglecting the energy dependence due to the contribution of the bound states since
their binding energies are usually large compared to the thermal energy, we have,
using the result for the atom-molecule coupling constant in (17.62), the intermediate
result

Π2B(z) = 2
∫ dk

(2π)3

∣∣g2B(0,2ε+
k )

∣∣2 1
z−2εk

. (17.69)

The remaining momentum integral yields the final result



17.4 Effective Atom-Molecule theory 453

h̄Σ2B
m (z) ≡ Π2B(z)−Π2B(0)≡Π2B(z)+(∆µB0 +Em) (17.70)

= − g2m
4π2h̄2




−2π

√
abg−2rbg

√−mz
h̄2

+i
√

abg

{
log

(
− i√abgrbg√

abg−2rbg

)
− log

(
i√abgrbg√
abg−2rbg

)}

× mz
h̄2

{
3rbg−2abg−

abgr2
bgmz

2h̄2

}



×
{

√
abg−2rbg

{
1+abg

(
abg−rbg

) mz
h̄2 +

(
abgrbgmz

2h̄2

)2
}}−1

,

where we have denoted the energy-independent shift Π2B(0) in such a manner that
the position of the resonance in the magnetic field is precisely at the experimen-
tally observed magnetic-field value B0. This shift is also shown in the results of the
calculation of the bound-state energy of the coupled square wells in Fig. 17.4.

17.4 Effective Atom-Molecule theory

Putting the results from the previous section together, we find that the atom-
molecule system is described by the effective action

Seff[a∗,a,b∗,b] = ∑
k,n

(−ih̄ωn + εk−µ)a∗k,nak,n (17.71)

+∑
k,n

{−ih̄ωn + εk/2+δ (B)−2µ + h̄Σ2B
m (ih̄ωn− εk/2+2µ)

}
b∗k,nbk,n

+
1
2

1
h̄βV ∑

K,k,k′
n,m,m′

T 2B
bg (ih̄ωn− εK/2+2µ)

×a∗K/2+k,n/2+ma∗K/2−k,n/2−maK/2+k′,n/2+m′aK/2−k′,n/2−m′

+
1

(h̄βV )1/2 ∑
K,k
n,m

g2B (ih̄ωn− εK/2+2µ)b∗K,naK/2+k,n/2+maK/2−k,n/2−m

+
1

(h̄βV )1/2 ∑
K,k
n,m

g2B∗ (ih̄ωn− εK/2+2µ)a∗K/2−k,n/2−ma∗K/2+k,n/2+mbK,n ,

where δ (B) ≡ ∆µ(B− B0) is the so-called detuning. From now on we use the
notation T 2B

bg (z) ≡ T 2B
↑↑ (0,0,z), and g2B(z) ≡ g2B(0,z). Since these coupling con-

stants are the result of summing all ladder diagrams, these diagrams should not be
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taken into account again. We next show that our effective field theory correctly con-
tains the two-atom physics of a Feshbach resonance. First, we show that the correct
Feshbach-resonant atomic scattering length is obtained after the elimination of the
molecular field. Second, we calculate the bound-state energy and show that it has
the correct threshold behavior near the resonance. We also investigate the molecular
density of states.

17.4.1 Scattering Properties

To calculate the effective interatomic scattering length, we have to eliminate the
molecular field from the action in (17.71). Since the scattering length is related to
the scattering amplitude at zero energy and zero momentum, we are allowed to put
ih̄ωn − εK/2 + 2µ equal to zero when performing the Gaussian integral over the
molecular field. This then leads to the semiclassical result

φm(x, t) =− g
δ (B)

φ 2
a (x, t). (17.72)

Substitution of this result into the action for the atomic field leads for the interaction
terms to

4πabgh̄2

m
φ ∗a (x, t)φ ∗a (x, t)φa(x, t)φa(x, t)+2gφ ∗a (x, t)φ ∗a (x, t)φm(x, t) =

(
4πabgh̄2

m
− 2g2

δ (B)

)
φ ∗a (x, t)φ ∗a (x, t)φa(x, t)φa(x, t) . (17.73)

From this result we observe that we have to take the renormalized atom-molecule
coupling constant at zero energy equal to g = h̄

√
2πabg∆B∆µ/m, so that we have

4πabgh̄2

m
− 2g2

δ (B)
=

4πa(B)h̄2

m
, (17.74)

where we recall that the scattering length near a Feshbach resonance is given by

a(B) = abg

(
1− ∆B

B−B0

)
≡ abg +ares(B). (17.75)

Since both the width ∆B and the background scattering length abg are known exper-
imentally, the knowledge of the difference in magnetic moment between the open
and the closed channel ∆µ completely determines the renormalized coupling con-
stant g. Since the open and the closed channel usually correspond to the triplet
and singlet potential respectively, we often have that |∆µ| ' 2µB, with µB the
Bohr magneton. More precise values of the difference in magnetic moments are
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obtained from coupled-channels calculations using the interatomic interaction po-
tentials [17, 188, 189, 190].

From the above analysis we see that the correct Feshbach-resonant scattering
length of the atoms is contained in our theory exactly. Next, we show that our effec-
tive theory also contains the correct bound-state energy.

17.4.2 Bound-State Energy

The energy of the molecular state is determined by the poles of the molecular prop-
agator Gm(k,ω). It is given by

Gm(k,ω) =
h̄

h̄ω− εk/2−δ (B)− h̄Σm(h̄ω− εk/2)
. (17.76)

For positive detuning δ (B) there only exists a pole with a nonzero and negative
imaginary part. This is in agreement with the fact that the molecule decays when
its energy is above the two-atom continuum threshold. The imaginary part of the
energy is related to the lifetime of the molecular state. For negative detuning the
molecular propagator has a real and negative pole corresponding to the bound-state
energy. More precisely, in this case the poles of the molecular propagator are given
by h̄ω = εm(B)+ εk/2, where the bound-state energy is determined by solving for
E in the equation

E−δ (B)− h̄Σm(E) = 0. (17.77)

In general this equation cannot be solved analytically, but it is easily solved numeri-
cally, and in Sect. 17.7 we discuss its numerical solution for the parameters of 85Rb.
Close to resonance, however, we are allowed to neglect the effective range of the
interactions. This reduces the selfenergy of the molecules to

h̄Σm(E)'−g2m3/2

2π h̄3
i
√

E

1− i|abg|
√

mE
h̄2

. (17.78)

Moreover, the bound-state energy is small in this regime and we are allowed to
neglect the linear terms in the energy with respect to the square-root terms. This
reduces the equation for the bound-state energy in equation (17.77) to

g2m3/2

2π h̄3
i
√

E

1− i|abg|
√

mE
h̄2

= δ (B) . (17.79)

This equation is easily solved analytically, and yields the result

εm(B) =− h̄2

m[a(B)]2
, (17.80)
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which analytically proves the numerical result in (17.18). This numerical result was
obtained for the specific case of two coupled attractive square wells. The above
analytic proof, which does not depend on the details of the potential, shows that the
result is general.

The same result is found by noting that after the elimination of the molecular
field the effective on-shell T matrix for the atoms in the open channel is given by

T 2B(E+) = T 2B
bg

(
E+)

+
2
h̄
|g2B(E+)|2Gm

(√
mE/h̄2,E

)
. (17.81)

Close to resonance this expression reduces to

T 2B(E)' 4πares(B)h̄2

m
1

1+ iares(B)
√

mE
h̄2

. (17.82)

The pole of this T matrix, which gives the bound-state energy, is indeed equal to the
result in (17.80) close to resonance.

17.4.3 Molecular Density of States

The molecular density of states is obtained by taking the imaginary part of the
molecular propagator, i.e.

ρm(k,ω) =− 1
π h̄

Im
[
Gm(k,ω+)

]
. (17.83)

For simplicity, we discuss here only the situation that we are close to resonance,
and therefore approximate the molecular selfenergy by the square-root term result-
ing from Wigner’s threshold law as given by h̄Σm(E) ' −ig2m3/2

√
E/2π h̄3. The

extension to situations further off resonance are straightforward.
For the case of negative detuning, the molecular density of states is shown by the

solid line in Fig. 17.11 and has two contributions. One arises from the pole at the
bound-state energy, and the other from the two-atom continuum. Within the above
approximation, it is given by

ρm(k,ω) = Z(B)δ (h̄ω− εk/2− εm(B)) (17.84)

+
1
π

θ(h̄ω− εk/2)
(g2m3/2/2π h̄3)

√
h̄ω− εk/2

(h̄ω− εk/2−δ (B))2 +(g4m3/4π2h̄6)(h̄ω− εk/2)
,

with Z(B) the wavefunction renormalization factor
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Fig. 17.11 Molecular density of states. The solid line shows the density of states for negative
detuning. Since there is a true bound state in this case there is a pole in the density of states. For
positive detuning the density of states is approximately a Lorentzian as shown by the dashed line.

Z(B) =
(

1− ∂Σm(h̄ω)
∂ω

)−1
∣∣∣∣∣
h̄ω=εm(B)

'
(

1+
g2m3/2

4π h̄3
√
|εm(B)|

)−1

. (17.85)

This factor goes to zero as we approach the resonance and it becomes equal to one
far off resonance. Physically, this is understood as follows. Far off resonance, the
bound state of the coupled-channels Hamiltonian in (17.9), i.e. the dressed molecule,
is almost equal to the bound state of the closed-channel potential and has zero ampli-
tude in the open channel. This corresponds to the situation where Z(B)' 1. As the
resonance is approached, the dressed molecule contains the closed-channel bound
state, i.e. the bare molecule, only with an amplitude

√
Z(B). Accordingly, the con-

tribution of the open channel becomes larger and gives rise to the threshold behavior
of the bound-state energy in (17.80). Of course, the square of the wavefunction of
the dressed molecule is normalized to one. This is expressed by the sum rule for the
molecular density of states,

∫
d(h̄ω)ρm(k,ω) = 1 . (17.86)

In detail, the dressed molecular state with zero momentum is given by

|χm;dressed〉= (17.87)
√

Z(B)b̂†
0|0〉+

√
1−Z(B)

√
8πa3

V ∑
k

1
1+k2a2 â†

kâ†
−k|0〉 .
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Here, the second-quantized operator b̂†
0 creates a molecule with zero momentum. It

acts on the vacuum state |0〉. The bare molecular state is therefore given by |χm〉=
b̂†

0|0〉. The operator â†
k creates an atom with momentum h̄k and hence the part of

the dressed molecule wavefunction in the open channel of the Feshbach problem is
given by e−r/a/

√
2πar.

For positive detuning the molecular density of states has only a contribution for
positive energy. For large detuning it is in first approximation given by

ρm(k,ω) =
1

2π
h̄Γm(B)

(h̄ω− εk/2−δ (B))2 +(h̄Γm(B)/2)2 , (17.88)

where the lifetime of the molecular state is defined by

Γm(B) =
g2m3/2

π h̄4

√
δ (B) . (17.89)

As expected, the density of states is, in the case of positive detuning, approximately
a Lorentzian centered around the detuning with a width related to the lifetime of the
molecule. It is shown in Fig. 17.11 by the dashed line.

17.5 Bogoliubov Theory for the Bose-Einstein Condensed Phase

In this section we derive the mean-field equations for the atomic and molecular
Bose-Einstein condensate wavefunctions. The mean-field equations for the atomic
and molecular condensate wavefunctions are derived most easily by varying the
effective action in (17.71) with respect to a∗k,n and b∗k,n respectively. Before doing
so, however, we remark that an important property of this effective action is its
invariance under global U(1) transformations. Any transformation of the form

ak,n → ak,neiθ , and bk,n → bk,ne2iθ , (17.90)

with θ a real parameter, leaves the action unchanged. The conserved quantity, the
Noether charge, associated with this invariance is the total number of atoms. The
appearance of the atomic and the molecular condensates breaks the U(1) invariance
since the wavefunctions of these condensates have a certain phase. According to
Goldstone’s theorem, an exact property of a system with a broken continuous sym-
metry is that its excitation spectrum is gapless [191]. Since our mean-field theory is
derived by varying a U(1)-invariant action, this property is automatically incorpo-
rated in the mean-field theory as we will see shortly.

To derive the time-independent mean-field equations that describe the equi-
librium values of the atomic and molecular Bose-Einstein condensate wavefunc-
tions, we substitute into the effective action a0,0 → φa

√
β h̄V + a0,0 and b0,0 →

φm
√

β h̄V + b0,0. Here, φa and φm correspond to the atomic and molecular con-
densate wavefunctions respectively. Requiring that the terms linear in a0,0 and b0,0
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vanish from the effective action leads to the equations

µφa=T 2B
bg

(
2µ−2h̄ΣHF) |φa|2φa +2

(
g2B (

2µ−2h̄ΣHF))∗ φ ∗a φm ,

2µφm=
(
δ (B)+ h̄Σ2B

m
(
2µ−2h̄ΣHF))φm +g2B (

2µ−2h̄ΣHF)φ 2
a . (17.91)

A crucial ingredient in these equations is the Hartree-Fock selfenergy of the non-
condensed atoms. This selfenergy is the mean-field energy felt by the noncondensed
atoms due to the presence of the atomic Bose-Einstein condensate. Taking into ac-
count the energy-dependence of the interactions, it is determined by the expression

h̄ΣHF =
4na

∣∣g2B
(
µ− h̄ΣHF

)∣∣2

h̄ΣHF + µ−δ (B)− h̄Σ2B
m (µ−h̄ΣHF)

+2naT 2B
bg

(
µ−h̄ΣHF) , (17.92)

with na = |φa|2 the density of the atomic Bose-Einstein condensate. Its diagrammatic
representation is given in Fig. 17.12. The overall factor of two comes from the con-
structive interference of the direct and exchange contributions. Far off resonance we
are allowed to neglect the energy-dependence of the effective atom-atom interac-
tions, and the Hartree-Fock selfenergy of the atoms is given by 8πa(B)h̄2na/m, as
expected. The Hartree-Fock selfenergy is essential for a correct description of the
equilibrium properties of the system. The physical reason for this is understood as
follows. In the Bose-Einstein condensed phase the chemical potential is positive.
The energy of a condensate molecule is equal to 2µ , which is therefore larger than
the continuum threshold of two atoms in vacuum. Without the incorporation of the
Hartree-Fock selfenergy, the molecular Bose-Einstein condensate would therefore
always decay and an equilibrium solution of the mean-field equations would not
exist. However, due to the presence of the atomic Bose-Einstein condensate, the
continuum threshold shifts by an amount 2h̄ΣHF and the molecular Bose-Einstein
condensate is stable.

Fig. 17.12 Hartree-Fock
selfenergy of the atoms. The
dotted lines correspond to
condensate atoms. The dashed
line corresponds to the full
molecular propagator.

Tbg
2B

+

To study the collective excitation spectrum over the ground state determined by
(17.91), we consider the effective action up to second order in the fluctuations,
which is known as the Bogoliubov approximation [48]. To facilitate the notation
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we introduce the vector uk,n by means of

uk,n ≡




ak,n
a∗−k,−n

bk,n
b∗−k,−n


 . (17.93)

With this definition, the quadratic part of the effective action is given by

SB[u†,u] =− h̄
2 ∑

k,n
u†

k,n ·G−1
B (k, iωn) ·uk,n , (17.94)

where the Green’s function of the fluctuations is determined by

G−1
B =

[
G−1

a G−1
coup

G−1
coup

∗ G−1
m

]
. (17.95)

The atomic part of this Green’s function is found from

G−1
a (k, iωn) =

[
G−1

0,a(k, iωn) 0
0 G−1

0,a(k,−iωn)

]
(17.96)

−1
h̄

[
2T 2B

bg (ih̄ωn− εk/2+2µ ′)na T 2B
bg (2µ ′)φ 2

a +2g2B(2µ ′)∗φm

T 2B
bg (2µ ′)φ ∗a 2 +2g2B(2µ ′)φ ∗m 2T 2B

bg (ih̄ωn− εk/2+2µ ′)na

]

where µ ′ ≡ µ − h̄ΣHF. Note that in the absence of the coupling to the molecular
condensate, this result reduces to the well-known result for the Green’s function
that describes phonon propagation in a weakly-interacting Bose-Einstein conden-
sate. We have in this case, however, also explicitly taken into account the energy
dependence of the coupling constants. Therefore we know that in the limit of van-
ishing coupling g2B the propagator in (17.96) has a pole that determines the gapless
dispersion relation for the phonons. For energy-independent interactions this Bo-
goliubov dispersion is given by

h̄ωk =

√
ε2

k +
8πabgh̄2na

m
εk . (17.97)

The molecular part of the Green’s function GB(k, iωn) is determined by

G−1
m (k, iωn) =

[
G−1

m (k, iωn) 0
0 G−1

m (k,−iωn)

]
, (17.98)

where the single-molecule propagator is given by

−h̄G−1
m (k, iωn) = −ih̄ωn + εk/2+δ (B)−2µ

+h̄Σ2B
m

(
ih̄ωn− εk/2+2µ−2h̄ΣHF) . (17.99)
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From the previous section we know that the Green’s function in (17.99) for nega-
tive detuning has a pole at the molecular binding energy. There are now, however,
mean-field effects on this binding energy due to the presence of the atomic conden-
sate, incorporated by the Hartree-Fock selfenergy h̄ΣHF [192]. Finally, the Green’s
function that describes the coupling between the atomic and molecular fluctuations
is given by

−h̄G−1
coup(k, iωn) =

[
2g2B (ih̄ωn−εk/2+2µ ′)∗ φ ∗a 0

0 2g2B (ih̄ωn−εk/2+2µ ′)φa

]
(17.100)

The spectrum of the collective excitations is determined by the poles of the re-
tarded Green’s function for the fluctuations GB(k,ω). This implies that we have to
solve for h̄ω in the equation

Det
[
G−1

B (k,ω)
]
= 0 . (17.101)

This is achieved numerically in the next section to determine the frequency of the
Josephson oscillations between the atomic and the molecular Bose-Einstein conden-
sates. However, we are already able to infer some general features of the excitation
spectrum of the collective modes. We have seen that in the absence of the coupling
between the atomic and molecular condensate, we have that one dispersion is equal
to the gapless Bogoliubov dispersion with scattering length abg. In the presence of
the coupling this branch corresponds again to phonons, but the dispersion is now ap-
proximately equal to the Bogoliubov dispersion for the full scattering length a(B).
There is a second dispersion branch that for small coupling g2B lies close to the
molecular binding energy. At nonzero coupling this branch corresponds to coherent
atom-molecule oscillations, i.e. pairs of atoms oscillating back and forth between
the atomic and molecular condensate. Physically, the difference between the two
branches is understood by realizing that for the phonon modes the phases of the
atomic and the molecular condensate are locked to each other and oscillate in phase.
Since the action is invariant under the transformations in (17.90) we conclude that
the phonons are indeed gapless and, in fact, correspond to the Goldstone mode asso-
ciated with the breaking of the U(1) symmetry by the condensates. For the coherent
atom-molecule oscillations the phases of the atomic and molecular condensate os-
cillate out of phase and hence the associated dispersion is gapped. As a final remark
we note that we indeed have

Det
[
G−1

B (0,0)
]
= 0 , (17.102)

which shows that there is indeed a gapless excitation, in agreement with Goldstone’s
theorem.
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17.6 Experiments

To compare the constructed many-body theory for an atomic Bose gas near a Fes-
hbach resonance with some beautiful experimental results, we are going to look in
more detail at two experiments performed in Wieman’s group at JILA, namely the
one by Donley et al. [193] and by Claussen et al. [194]. The Feshbach resonance of
interest is located at B0 = 155.041(18) G(auss) in the | f = 2;m f =−2〉 hyperfine
state of 85Rb. The width of this resonance is equal to ∆B = 11.0(4) G and the off-
resonant background scattering length is given by abg = −443a0, with a0 the Bohr
radius. The difference in the magnetic moment between the open channel and the
closed channel is given by ∆µ = −2.23µB, with µB the Bohr magneton [189]. In
both experiments, one starts from a stable and essentially pure condensate of about
Nc = 1× 104 atoms at a magnetic field such that the effective scattering length is
close to zero. This implies that, since the condensate is in the noninteracting limit, its
density profile is determined by the harmonic-oscillator ground-state wavefunction.
The harmonic external trapping potential is axially symmetric, with trapping fre-
quencies νr = 17.4 Hz and νz = 6.8 Hz in the radial and axial direction respectively.
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Fig. 17.13 Typical magnetic-field pulse sequence as used in the experiments of Donley et al. [193]
and Claussen et al. [194].

Starting from this situation, one quickly ramps the magnetic field to a value Bhold
close to the resonant value and keeps it there for a short time thold before ramping to
a value Bevolve. The magnetic field is kept at this last value for a time tevolve before
performing a similar pulse to go back to the initial situation. The duration of all four
magnetic-field ramps is given by tramp. A typical pulse is illustrated in Fig. 17.13.
Both the ramp time tramp and the hold time thold are kept fixed at values of 10−15
µs. The time tevolve between the pulses is variable. Such a double-pulse experiment
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is generally called a Ramsey experiment. Its significance is most easily understood
from a simple system of two coupled harmonic oscillators. Consider therefore the
Hamiltonian

Ĥ =
1
2

[
â† b̂†] ·

[
δ (t) Ω
Ω −δ (t)

]
·
[

â
b̂

]
, (17.103)

where â† and b̂† create a quantum in the oscillators a and b respectively, and Ω
denotes the coupling between the two oscillators.

We consider first the situation that the detuning δ (t) is time independent. The
exact solution is found easily by diagonalizing the Hamiltonian. We assume that
initially there are only quanta in oscillator a and none in b, so that we have that
〈b̂†b̂〉(0) = 0. The number of quanta in oscillator a as a function of time is then
given by

〈â†â〉(t) =
(

1− Ω2

(h̄ωR)2 sin2 (ωRt/2)
)
〈â†â〉(0) , (17.104)

with the frequency ωR given by

h̄ωR =
√

δ 2 +Ω2 . (17.105)

We see that the number of quanta in the oscillator a oscillates in time with frequency
ωR. Such oscillations are called Rabi oscillations. Note that the number of quanta in
oscillator b is determined by

〈b̂†b̂〉(t) =− Ω2

(h̄ωR)2 sin2 (ωRt/2)〈â†â〉(0) , (17.106)

so that the total number of quanta is indeed conserved.
Suppose now that we start from the situation with all quanta in the oscillator

a and none in b and that the detuning is such that δ (t) À Ω. Then we have from
(17.104) that 〈â†â〉(t)' 〈â†â〉(0) and 〈b̂†b̂〉(t)' 0. Starting from this situation, we
change the detuning instantaneously to a value δ (t) ' 0 and keep it at this value
for a time thold. During this hold time quanta in oscillator a will go to oscillator b.
Moreover, if thold is such that

thold ' π
2

h̄
Ω

, (17.107)

on average half of the quanta in oscillator a will go to oscillator b. Such a pulse is
called a π/2 pulse. The defining property of a π/2 pulse is that it creates a superpo-
sition of the oscillators a and b, such that the probabilities to be in oscillators a and
b are equal, and therefore equal to 1/2. This is indicated by the average 〈â†b̂〉(t). At
t = 0 this average is equal to zero because there is no superposition at that time. We
can show that after the above π/2 pulse the average 〈â†b̂〉(t) reaches its maximum
value. In detail, the state after the π/2 pulse is equal to
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1√
N!

(
â† + b̂†
√

2

)N

|0〉 , (17.108)

where the ground state is denoted by |0〉, and N = 〈â†â〉(0) .
We can now imagine the following experiment. Starting from the situation

δ (t)À Ω, we perform a π/2 pulse. Then jump to a certain value δevolve for a time
tevolve, and after this perform another π/2 pulse and jump back to the initial situa-
tion. The number of quanta in the oscillator a, a measurable quantity, then oscillates
as a function of tevolve with the oscillation frequency determined by (17.105) eval-
uated at the detuning δevolve. The second π/2 pulse enhances the contrast of the
measurement thus providing a method of measuring the frequency ωR as a function
of the detuning with high precision.

This is essentially the idea of the Ramsey experiments performed by Donley
et al. [193] and Claussen et al. [194]. Roughly speaking, the atomic condensate
corresponds to oscillator a and the molecular condensate to oscillator b. There-
fore, after performing the double-pulse sequence in the magnetic field one makes
a light-absorption image of the atomic density from which one extracts the number
of condensed and noncondensed atoms. Since this imaging technique is sensitive to
a specific absorption line of the atoms it does not measure the number of molecules.
From the above discussion we expect to observe oscillations in the number of con-
densate atoms. In the context of particle-number oscillations between Bose-Einstein
condensates, Rabi oscillations are referred to as Josephson oscillations and the as-
sociated frequency is called the Josephson frequency. Moreover, if the situation is
such that the detuning between the pulses is relatively large, the effect of the cou-
pling can be neglected and the frequency of the observed oscillations corresponds to
the energy difference between the atoms and the molecules, i.e. the molecular bind-
ing energy. This is indeed what is observed, thereby providing compelling evidence
for the existence of coherence between atoms and molecules.

In Fig. 17.14, the experimental results of Claussen et al. [194] are presented.
Fig. 17.14a and b show the number of atoms in the atomic Bose-Einstein condensate
as a function of tevolve after a double-pulse sequence. Clearly, there is an oscillation
in the number of atoms in both cases. In Fig. 17.14a the magnetic field between the
pulses is Bevolve = 156.840(25) G. In Fig. 17.14b, we have Bevolve = 159.527(19) G
which is further from resonance. This explains also the increase in frequency from
Fig. 17.14a to b, since further from resonance the molecular binding energy is larger.

What is also observed is that there is a damping of the oscillations and an overall
loss of condensate atoms. Experimentally, the number of atoms in the condensate is
fit to the formula

Nc(t) = Naverage−αt +Aexp(−β t)sin(ωet +φ) , (17.109)

where Naverage is the average number of condensate atoms, A and φ are the oscil-
lation amplitude and phase, respectively, and β is the damping rate of the oscil-
lations. The overall atom loss is characterized by a rate constant α . The experi-
mentally observed frequency is equal to ωe = 2π

√
ν2

e − [β/2π]2. By defining the
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Fig. 17.14 Experimental observation of coherent atom-molecule oscillations [194]. Figs. a)
and b) show the number of atoms in the atomic condensate as a function of the time between
the two pulses in the magnetic field. The solid line indicates the fit in (17.109). For a) we
have that Bevolve = 156.840(25) G. The frequency and damping rates are respectively given by
νe = 2π × 0.58(12) kHz, α = 7.9(4) atom/µs, and β = 2π × 0.58(12) kHz. For b) the magnetic
field Bevolve = 159.527(19) G and νe = 157.8(17) kHz. The damping is negligible for the time that
is used to determine the frequency. Note that the frequency has increased for the magnetic field fur-
ther from resonance. Figs. c) and d) show the observed frequency of the coherent atom-molecule
oscillations as a function of the magnetic field. The solid line is the result for the molecular bind-
ing energy found from a two-body coupled-channels calculation using the experimental results
for the frequency to accurately determine the interatomic potential [194]. Only the black points
were included in the fit. The inset shows that, close to resonance, the observed frequency devi-
ates from the two-body result. Reprinted figure with permission from N.R. Claussen, S.J.J.M.F.
Kokkelmans, S.T. Thompson, E.A. Donley, and C.E. Wieman, Phys. Rev. A 67, 060701R (2003).
Copyright 2008 by the American Physical Society.

frequency of the coherent atom-molecule oscillation in this way one compensates
for the effects of the damping on the frequency. For the results in Fig. 17.14a, we
have that β = 2π×0.58(12) kHz and α = 7.9(4) atom/µs. The frequency is equal
to νe = 9.77(12) kHz. For Fig. 17.14b, the frequency is equal to νe = 157.8(17)
kHz. The damping and loss rate are negligible for the short time used to determine
the frequency. It is found experimentally that both the damping rate and the loss rate
increase as Bevolve approaches the resonant value.
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In Fig. 17.14c and d, the results for the frequency as a function of Bevolve are pre-
sented. The solid line shows the result of a two-body coupled-channels calculation
of the molecular binding energy [194]. The parameters of the interatomic poten-
tials are fit to the experimental results for the frequency. Clearly, the frequency of
the coherent atom-molecule oscillations agrees very well with the molecular bind-
ing energy in vacuum over a large range of the magnetic field. Moreover, in the
magnetic-field range Bevolve ' 157−159 G the frequency of the oscillations is well
described by the formula |εm(B)| = h̄2/ma2(B) for the binding energy, derived in
Sect. 17.4.2. Close to resonance, however, the measured frequency deviates from
the two-body result. The deviating experimental points are shown by open circles
and are not taken into account in the determination of the interatomic potential. This
deviation is due to many-body effects [195].

Although some of the physics of these coherent atom-molecule oscillations can
roughly be understood by a simple two-level picture, it is worth noting that the
physics of a Feshbach resonance is much richer. First of all, during Rabi oscillations
in a simple two-level system one quantum in a state oscillates to the other state. In
the case of a Feshbach resonance pairs of atoms oscillate back and forth between
the dressed-molecular condensate and the atomic condensate. Therefore, the Hamil-
tonian is not quadratic in the annihilation and creation operators and the physics is
more complicated. In particular the dressed molecule may decay into two noncon-
densed atoms instead of forming two condensate atoms. This is a contribution to the
damping seen experimentally. Second, the observed atom-molecule oscillations are
oscillations between an atomic condensate and a dressed molecular condensate. The
fact that we are dealing with dressed molecules implies that by changing the mag-
netic field not only is the detuning altered, but also the internal state of the molecule
itself.

17.7 Josephson Frequency

To get a quantitative description of the experimentally observed magnetic-field
dependence of the Josephson frequency, we calculate this frequency in a linear-
response approximation, including the energy-dependence of the atom-molecule
coupling and the atom-atom interactions. With the mean-field theory derived in the
previous sections, we now calculate the magnetic-field and density dependence of
the Josephson frequency of the coherent atom-molecule oscillations, in a linear ap-
proximation. The only parameter that has not been determined yet is the effective
range of the interatomic interactions rbg. All other parameters are known for 85Rb.

The effective range is determined by calculating the molecular binding energy in
vacuum and comparing the result with the experimental data. We have seen that far
off resonance the Josephson frequency is essentially equal to the molecular binding
energy. Since the effect of a nonzero effective range only plays a role for large en-
ergies, and thus is important far off resonance, this comparison uniquely determines
the effective range. As explained in detail in Sect. 17.4.2, the molecular binding
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Fig. 17.15 Molecular binding energy in vacuum. The solid line shows the result of a calculation
with rbg = 185a0. The dashed line shows |ε(B)|= h̄2/ma2. The experimental points are taken from
[194]. The dotted line shows the detuning |δ (B)|.

energy is determined by solving for E in the equation

E−δ (B)− h̄Σm(E) = 0. (17.110)

For 85Rb the background scattering length is negative and the effective range turns
out to be positive. The molecular selfenergy is therefore given by

h̄Σm(E) =− g2m

2π h̄2
√

1−2 rbg
abg

i
√(

1−2 rbg
abg

)
mE
h̄2 − rbgmE

2h̄2

1+ iabg

√(
1−2 rbg

abg

)
mE
h̄2 − rbgabgmE

2h̄2

. (17.111)

In Fig. 17.15, the result of the numerical solution of (17.110) is shown for
rbg = 185a0. Also shown in this figure are the experimental data points. Clearly,
far off resonance there is good agreement between our results and the experimental
data points. Therefore, we use this value for the effective range from now on in all
our calculations. The absolute value of the detuning is shown by the dotted line,
and deviates significantly from the binding energy. The dashed line in Fig. 17.15
indicates the formula |εm| = h̄2/ma2. As we have derived in Sect. 17.4.2 this for-
mula should accurately describe the magnetic-field dependence of the binding en-
ergy close to resonance. Clearly, the solid line that indicates the result that includes
the nonzero effective range becomes closer to the dashed line as we approach res-
onance. However, there is a significant range of magnetic field where we need to
include the effective range in our calculations. Closer to the resonance, the experi-
mental points start to deviate from the two-atom binding energy. This deviation is
taken into account by considering many-body effects. Note, therefore, that the ex-
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pected oscillation frequency h̄2/ma2 never leads to a quantitative agreement with
experiment.
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Fig. 17.16 Hartree-Fock selfenergy (solid line) and chemical potential (dashed line) as a function
of the magnetic field for an atomic condensate density of na = 2×1012 cm−3. Both quantities are
shown in units of 4πa(B)h̄2na/m. Far off resonance, where the energy dependence of the inter-
actions can be safely neglected we have that h̄ΣHF = 8πa(B)h̄2na/m and µ = 4πa(B)h̄2na/m, as
expected. The inset shows the fraction of bare molecules as a function of the magnetic field.

As mentioned previously, we calculate the many-body effects on the frequency of
the coherent atom-molecule oscillations in linear approximation. Therefore, we first
need to determine the equilibrium around which to linearize. In detail, the equilib-
rium values of the atomic and molecular condensate wavefunctions are determined
by solving the time-independent mean-field equations in (17.91) together with the
equation for the Hartree-Fock selfenergy in (17.92) at a fixed chemical potential µ .
To compare with the experimental results it is more convenient to solve these equa-
tions at a fixed condensate density. The chemical potential is then determined from
these equations.

In Fig. 17.16, we show the result of this calculation for an atomic condensate den-
sity of na = 2×1012 cm−3. The solid line shows the Hartree-Fock selfenergy h̄ΣHF

and the dashed line the chemical potential as a function of the magnetic field, both in
units of the energy 4πa(B)h̄2na/m. Note that far off resonance, where the energy de-
pendence of the interaction may be neglected, we have that µ = 4πa(B)h̄2na/m and
h̄ΣHF = 2µ . This is the expected result. The inset of Fig. 17.16 shows the fraction of
bare molecules |φm|2/na. Note that this fraction is always very small. This justifies
neglecting the atom-molecule and molecule-molecule interactions since from this
figure we see that the mean-field energies associated with these interactions are at
least three orders of magnitude smaller.
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Fig. 17.17 The dispersion relation for the collective modes of an atom-molecule system for a
condensate density of na = 2× 1012 cm−3 at a magnetic field of B = 157 G. The momentum is
measured in units of the inverse coherence length ξ−1 =

√
16πa(B)na. The upper branch corre-

sponds to the gapless dispersion for phonons. The solid line is the result of the full calculation,
the dashed line shows the Bogoliubov dispersion for the scattering length a(B). The lower branch
corresponds to the coherent atom-molecule oscillations. The solid line is the result of the full cal-
culation whereas the dashed line shows the result with the same zero-momentum part, but with the
momentum dependence determined by h̄2k2/4m.

Since the coherent atom-molecule oscillations are a collective mode where the
amplitude of the atomic and molecular condensate wavefunctions oscillate out-
of-phase, we study the collective modes of the system. As explained in detail in
the previous section, the frequencies of the collective modes are determined by
(17.101). This equation is solved numerically and yields a dispersion relation with
two branches. The result of this calculation is shown in Fig. 17.17 for an atomic con-
densate density of na = 2×1012 cm−3 and a magnetic field of B = 157 G. The mo-
mentum is indicated in units of the inverse coherence length ξ−1 =

√
16πa(B)na.

The upper branch corresponds to the gapless phonon excitations. For small momenta
this branch has a linear momentum dependence. The upper dashed line indicates the
Bogoliubov dispersion in (17.97) evaluated at the scattering length a(B). For small
momentum the solid and the dashed line are almost identical. For larger momenta
the numerically exact result is smaller, due to the energy-dependence of the interac-
tions that effectively reduce the scattering length.

The lower branch corresponds to the coherent atom-molecule oscillations and is
gapped. The solid line indicates the result of the full calculations. For small mo-
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Fig. 17.18 Josephson frequency of coherent atom-molecule oscillations for various values of the
condensate density. The solid lines are the results of calculations for nonzero condensate density.
The different lines correspond from top to bottom to the decreasing condensate densities na = 5×
1012 cm−3, na = 2×1012 cm−3, and na = 1012 cm−3. The dashed line corresponds to the molecular
binding energy in vacuum, i.e. na = 0. The experimental data points, taken from reference [194],
are also shown.

menta it is well described by

h̄ωk '−h̄ωJ + εk/2 , (17.112)

where ωJ is the Josephson frequency. The dispersion resulting from this last equa-
tion is shown in the lower part Fig. 17.17 by the dashed line. This momentum de-
pendence is to be expected since sufficiently far from resonance the atom-molecule
oscillations reduce to a two-body excitation. The fact that the dispersion is negative
is due to the fact that we are linearizing around a metastable situation with more
atoms than molecules. Although this is the experimentally relevant situation, the
true equilibrium situation for negative detuning corresponds to almost all atoms in
the molecular state [196].

In Fig. 17.18, we present the results for the Josephson frequency as a function of
the magnetic field, for different values of the condensate density. The solid lines in
this figure show, from top to bottom, the results for an decreasing nonzero conden-
sate density. The respective condensate densities are given by na = 5×1012 cm−3,
na = 2×1012 cm−3, and na = 1012 cm−3. The dashed line shows the molecular bind-
ing energy in vacuum. The Josephson frequency reduces to the molecular binding
energy for all values of the condensate density, in agreement with previous remarks.
Nevertheless, sufficiently close to resonance there is a deviation from the two-body
result due to many-body effects. This deviation becomes larger with increasing con-
densate density.
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In order to confront our results with the experimental data we have to realize that
the experiments are performed in a magnetic trap. Taking only the ground states
φa(x) and φm(x) into account for both the atomic and the molecular condensates,
respectively, this implies effectively that the atom-molecule coupling g is reduced
by an overlap integral. Hence we define the effective homogeneous condensate den-
sity by means of na = Na

[∫
dxφ 2

a (x)φm(x)
]2 = 16

√
2Nam3/2νr

√νz/(125π3h̄3/2),
where Na denotes the number of condensed atoms and νr and νz the radial and ax-
ial trapping frequencies respectively. For the experiments of Claussen et al. we have
that Na ' 8×103 during the oscillations close to resonance, as seen from Fig. 17.14,
which results in an effective density of na ' 2×1012 cm−3. This agrees also with the
effective homogeneous density quoted by Claussen et al. [194]. The solid curve in
Fig. 17.18 clearly shows an excellent agreement with the experimentally observed
frequency for this density.

It is important to note that there are two hidden assumptions in the above compar-
ison. First, we have used that the dressed molecules are trapped in the same external
potential as the atoms. This is not obvious because the bare molecular state involved
in the Feshbach resonance is high-field seeking and therefore not trapped. However,
(17.87) shows that near resonance almost all the amplitude of the dressed molecule
is in the low-field seeking open channel and its magnetic moment is therefore al-
most equal to twice the atomic magnetic moment. Second, we have determined the
frequency of the coherent atom-molecule oscillations in equilibrium. In contrast, the
observed oscillations in the number of condensate atoms is clearly a nonequilibrium
phenomenon. This is, however, expected not to play an important role because the
Ramsey-pulse sequence is performed on such a fast time scale that the response of
the condensate wavefunction can be neglected. By variationally solving the Gross-
Pitaevskii equation for the atomic condensate wave function, we have explicitly
checked that after a typical pulse sequence its width is only a few percent larger
than the harmonic oscillator ground state.

17.8 Problems

Exercise 17.1. Molecular Selfenergy
Rederive (17.77) by solving the scattering problem for two atoms with a coupling
to a molecular state in the center-of-mass frame. The Hamiltonian for the coupled
atom-molecule system is given by

Ĥ = Ĥa + Ĥm +V̂am. (17.113)

Here, V̂am is the atom-molecule coupling potential, while the kinetic-energy part is
described by

Ĥa =− h̄2∇∇∇2

m
, (17.114)

and the molecular part equals
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Ĥm = δB|χm〉〈χm|, (17.115)

with δB the bare detuning.
(a) Derive the following equation for the eigenenergy of the coupled atom-molecule
system

E−δB = 〈χm|V̂am
1

E− Ĥa
V̂am|χm〉. (17.116)

(b) In the absence of the atom-molecule coupling, the energy difference of the
molecules with the atomic continuum is simply equal to the bare detuning δB. Due
to the coupling potential, the molecular binding energy is modified and the right-
hand-side of (17.116) can be interpreted as the selfenergy h̄Σ(E) of the molecules.
Since the spatial extent of the molecular wavefunction is small, we have that the
atom-molecule coupling potential can be approximated by the pseudopotential,

〈r|V̂am|φm〉=

{√
2gδ (r) Bosons

gδ (r) Fermions, Bose-Fermi mixture
. (17.117)

Here, g is the atom-molecule coupling constant that obeys

g =

{
h̄
√

2πabg∆µ∆B/m Bosons
h̄
√

4πabg∆µ∆B/m Fermions, Bose-Fermi mixture
. (17.118)

The eigenstates |φk〉 of Ĥa are plane waves with energies h̄2k2/m. Use this observa-
tion to obtain the selfenergy in the bosonic case, namely

h̄Σ(E) = −i
m3/2g2

2π h̄3

√
E− lim

r↓0
2g2

∫ dk
(2π)3

m eik·r

h̄2k2
. (17.119)

(c) Finally, show that the divergent term in the selfenergy can be written as,

lim
r↓0

2g2
∫ dk

(2π)3
m eik·r

h̄2k2
= lim

r↓0

mg2

2π h̄2r
. (17.120)

To deal with this divergence, we have to use the renormalized detuning instead of
the bare detuning. The former is defined as δ = δB− limr↓0 mg2/2π h̄2r, where we
have that δ = ∆µ(B−B0), which is determined by the experimental value of the
magnetic field B0 at resonance. For the case of fermions or a Bose-Fermi mixture,
the above expression for the selfenergy is a factor of two smaller and in those cases
the renormalized detuning is given by δ = δB− limr↓0 mg2/4π h̄2r.
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Aditional Reading

• For a detailed account on Feshbach resonances in ultracold gases, see E. Timmer-
mans, P. Tommasini, M. Hussein, and A. Kernan, Phys. Rep. 315, 199 (1999),
and R. A. Duine and H. T. C. Stoof, Phys. Rep. 396, 115 (2004).



References

1. P. Kapitsa, Nature 141, 74 (1938)
2. J.F. Allen, A.D. Misener, Nature 141, 75 (1938)
3. J.F. Allen, H. Jones, Nature 141, 243 (1938)
4. N.S. Bose, Z. Phys. 26, 178 (1924)
5. A. Einstein, Sitzber. Kgl. Preuss. Akad. Wiss., 261 (1924)
6. H.K. Onnes, Comm. Phys. Lab. Univ. Leiden, Nos. 119, 120, 122 (1911)
7. W. Meissner, R. Ochsenfeld, Naturwiss. 21, 787 (1933)
8. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)
9. J.G. Bednorz, K.A. Müller, Z. Phys. B 64, 189 (1986)

10. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198
(1995)

11. C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Phys. Rev. Lett. 75, 1687 (1995)
12. K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ket-

terle, Phys. Rev. Lett. 75, 3969 (1995)
13. E.L. Raab, M. Prentiss, A. Cable, S. Chu, D.E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987)
14. C. Monroe, W. Swann, H. Robinson, C.E. Wieman, Phys. Rev. Lett. 65, 1571 (1990)
15. N. Masuhara, J.M. Doyle, J.C. Sandberg, D. Kleppner, T.J. Greytak, Phys. Rev. Lett. 61, 935

(1988)
16. H.T.C. Stoof, M. Houbiers, C.A. Sackett, R.G. Hulet, Phys. Rev. Lett. 76, 10 (1996)
17. E. Tiesinga, B.J. Verhaar, H.T.C. Stoof, Phys. Rev. A 47, 4114 (1993)
18. C.A. Regal, M. Greiner, D.S. Jin, Phys. Rev. Lett. 92, 040403 (2004)
19. M.W. Zwierlein, C.A. Stan, C.H. Schunck, S.M.F. Raupach, A.J. Kerman, W. Ketterle, Phys.

Rev. Lett. 92, 120403 (2004)
20. J. Kinast, S.L. Hemmer, M.E. Gehm, A. Turlapov, J.E. Thomas, Phys. Rev. Lett. 92, 150402

(2004)
21. M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J.H. Denschlag, R. Grimm, Phys.

Rev. Lett. 92, 203201 (2004)
22. T. Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M. Teichmann, L. Tarruell,

S.J.J.M.F. Kokkelmans, C. Salomon, Phys. Rev. Lett. 93, 050401 (2004)
23. G.B. Partridge, K.E. Strecker, R.I. Kamar, M.W. Jack, R.G. Hulet, Phys. Rev. Lett. 95,

020404 (2005)
24. D.M. Eagles, Phys. Rev. 186, 456 (1969)
25. A.J. Leggett, Modern Trends in the Theory of Condensed Matter (Springer-Verlag, Berlin,

1980), p. 13
26. D. Bailin, A. Love, Phys. Rep. 107, 325 (1984)
27. P.S. Jessen, C. Gerz, P.D. Lett, W.D. Phillips, S.L. Rolston, R.J. Spreeuw, C.I. Westbrook,

Phys. Rev. Lett. 69, 49 (1992)
28. G.V. Chester, Phys. Rev. A 2, 256 (1970)

475



476 References

29. E. Kim, M.H.W. Chan, Nature 427, 225 (2004)
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