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Summary. In this paper we consider the numerical solution of a linear wave equa-
tion with discontinuous coefficients. We divide the computational domain into two
subdomains and use explicit time difference scheme along with piecewise linear fi-
nite element approximations on semimatching grids. We apply boundary supported
Lagrange multiplier method to match the solution on the interface between subdo-
mains. The resulting system of linear equations of the “saddle-point” type is solved
efficiently by a conjugate gradient method.

1 Problem Formulation

Let Ω ⊂ R
2 be a rectangular domain with sides parallel to the coordinate

axes and boundary Γext (see Fig. 1). Now let Ω2 ⊂ Ω be a proper subdomain
of Ω with a curvilinear boundary and Ω1 = Ω \ Ω̄2.

We consider the following linear wave problem:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ε
∂2u

∂t2
−∇ · (µ−1∇u) = f in Ω × (0, T ),√

ε µ−1
∂u

∂t
+ µ−1 ∂u

∂n
= 0 on Γext × (0, T ),

u(x, 0) =
∂u

∂t
(x, 0) = 0.

(1)
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Fig. 1. Computational domain.

Here ∇u = ( ∂u
∂x1
, ∂u

∂x2
), n is the unit outward normal vector on Γext. We

suppose that µi = µ|Ωi
, εi = ε|Ωi

are positive constants for all i = 1, 2 and
fi = f |Ωi

∈ C(Ω̄i × [0, T ]).
Let

ε(x) =

{
ε1 if x ∈ Ω1,

, ε2 if x ∈ Ω2,
and µ(x) =

{
µ1 if x ∈ Ω1,

µ2 if x ∈ Ω2.

We define a weak solution of problem (1) as a function u such that

u ∈ L∞(0, T ;H1(Ω)),
∂u

∂t
∈ L∞(0, T ;L2(Ω)),

∂u

∂t
∈ L2(0, T ;L2(Γext)) (2)

for a.a. t ∈ (0, T ) and for all w ∈ H1(Ω) satisfying the equation∫
Ω

ε(x)
∂2u

∂t2
wdx+

∫
Ω

µ−1(x)∇u · ∇wdx+
√
ε1µ

−1
1

∫
Γext

∂u

∂t
wdΓ =

∫
Ω

fwdx

(3)
with the initial conditions

u(x, 0) =
∂u

∂t
(x, 0) = 0.

Note that the first term in (3) means the duality between (H1(Ω))∗ and
H1(Ω).

Now, using the Faedo–Galerkin method (as in [DL92]), one can prove the
following:

Theorem 1. Under the assumptions (2) there exists a unique weak solution
of problem (1).
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Let

E(t) =
1
2

∫
Ω

ε(x)
∣∣∣∣∂u∂t

∣∣∣∣2 dx+
1
2

∫
Ω

µ−1(x)|∇u|2dx

be the energy of the system. We take w = ∂u
∂t in (3) and obtain:

dE(t)
dt

+
√
ε1µ

−1
1

∫
Γext

(
∂u

∂t
)2dΓ =

∫
Ω

f
∂u

∂t
dx ≤ ‖f‖L2(Ω)‖

∂u

∂t
‖L2(Ω),

since E(0) = 0, the following stability inequality holds:

E(t) ≤ constT‖f‖L2(Ω×(0,T )), ∀t ∈ (0, T ).

In order to use a structured grid in a part of the domain Ω, we introduce
a rectangular domain R with sides parallel to the coordinate axes, such that
Ω2 ⊂ R ⊂ Ω with γ the boundary of R (Fig. 1).

Define Ω̃ = Ω \ R̄ and let the subscript 1 of a function v1 mean that
this function is defined over Ω̃ × (0, T ), while v2 is a function defined over
R× (0, T ).

Now we formulate the problem (3) variationally as follows: Let

W1 =
{
v ∈ L∞(0, T ;H1(Ω̃)),

∂v

∂t
∈L∞(0, T ;L2(Ω̃)),

∂v

∂t
∈L2(0, T ;L2(Γext))

}
,

W2 =
{
v ∈ L∞(0, T ;H1(R)),

∂v

∂t
∈ L∞(0, T ;L2(R)))

}
,

Find a pair (u1, u2) ∈ W1 ×W2, such that u1 = u2 on γ × (0, T ) and for a.a.
t ∈ (0, T )⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω̃

ε1
∂2u1

∂t2
w1dx+

∫
Ω̃

µ−1
1 ∇u1 · ∇w1dx+

∫
R

ε(x)
∂2u2

∂t2
w2dx

+
∫

R

µ−1(x)∇u2 · ∇w2dx+
√
ε1µ

−1
1

∫
Γext

∂u1

∂t
w1dΓ=

∫
Ω̃

f1w1dx+
∫

R

f2w2dx,

for all (w1, w2) ∈ H1(Ω̃)×H1(R) such that w1 = w2 on γ,

u(x, 0) =
∂u

∂t
(x, 0) = 0.

(4)
Now, introducing the interface supported Lagrange multiplier λ (a function

defined over γ× (0, T ) ), the problem (4) can be written in the following way:
Find a triple (u1, u2, λ) ∈ W1 ×W2 × L∞(0, T ;H−1/2(γ)), which for a.a.

t ∈ (0, T ) satisfies
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Ω̃

ε1
∂2u1

∂t2
w1dx+

∫
Ω̃

µ−1
1 ∇u1 · ∇w1dx+

∫
R

ε(x)
∂2u2

∂t2
w2dx

+
∫

R

µ−1(x)∇u2 · ∇w2dx+
√
ε1µ

−1
1

∫
Γext

∂u1

∂t
w1dΓ +

∫
γ

λ(w2 − w1)dγ

=
∫

Ω̃

f1w1dx+
∫

R

f2w2dx for all w1 ∈ H1(Ω̃), w2 ∈ H1(R), (5)∫
γ

ζ(u2 − u1)dγ = 0 for all ζ ∈ H−1/2(γ), (6)

and the initial conditions from (1).

Remark 1. We selected the time dependent approach to capture harmonic
solutions since it substantially simplifies the linear algebra of the solution
process. Furthermore, there exist various techniques to speed up the conver-
gence of transient solutions to periodic ones (see, e.g., [BDG+97]).

2 Time Discretization

In order to construct a finite difference approximation in time of the problem
(5), (6), we partition the segment [0, T ] into N intervals using a uniform
discretization step ∆t = T/N . Let un

i ≈ ui(n∆t) for i = 1, 2, λn ≈ λ(n∆t).
The explicit in time semidiscrete approximation to the problem (5), (6) reads
as follows:

u0
i = u1

i = 0

for n = 1, 2, . . . , N − 1. Find un+1
1 ∈ H1(Ω̃), un+1

2 ∈ H1(R) and λn+1 ∈
H−1/2(γ) such that∫

Ω̃

ε1
un+1

1 − 2un
1 + un−1

1

∆t2
w1dx+

∫
Ω̃

µ−1
1 ∇un

1 · ∇w1dx+

+
∫

R

ε(x)
un+1

2 − 2un
2 + un−1

2

∆t2
w2dx+

∫
R

µ−1(x)∇un
2 · ∇w2dx+

+
√
ε1µ

−1
1

∫
Γext

un+1
1 − un−1

1

2∆t
w1dΓ +

∫
γ

λn+1(w2 − w1)dγ =

=
∫

Ω̃

fn
1 w1dx+

∫
R

fn
2 w2dx for all w1 ∈ H1(Ω̃), w2 ∈ H1(R), (7)∫

γ

ζ(un+1
2 − un+1

1 )dγ = 0 for all ζ ∈ H−1/2(γ). (8)

Remark 2. The integral over γ is written formally; the exact formulation re-
quires the use of the duality pairing 〈·, ·〉 between H−1/2(γ) and H1/2(γ).
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3 Fully Discrete Scheme

To construct a fully discrete space-time approximation to the problem (5), (6),
we will use a lowest order finite element method on two grids semimatching
on γ (Fig. 2) for the space discretization. Namely, let T1h and T2h be triangu-
lations of Ω̃ and R, respectively. Further we suppose that both triangulations
are regular in the sense that

r(e)
h(e)

≤ q = const

for all e ∈ T1h and e ∈ T2h, where q does not depend on e; r(e) is the radius
of the circle inscribed in e, while h(e) is the diameter of e.

We denote by T1h a coarse triangulation and by T2h a fine one. Every edge
∂e ⊂ γ of a triangle e ∈ T1h is supposed to consist of me edges of triangles
from T2h, 1 ≤ me ≤ m for all e ∈ T1h

Moreover, let a triangulation T2h be such that the curvilinear boundary
∂Ω2 is approximated by a polygonal line consisting of the edges of triangles
from T2h whose vertices belong to ∂Ω2. Further, we say that a triangle e ∈ T2h

lies in Ω2 if its larger part lies in Ω2, i.e. meas(e ∩Ω2) > meas(e ∩ (R \Ω2)),
otherwise this triangle lies in R \Ω2.

Let V1h ⊂ H1(Ω̃) be the space of the functions globally continuous, and
affine on each e ∈ T1h, i.e. V1h = {uh ∈ H1(Ω̃) | uh ∈ P1(e) ∀e ∈ T1h}.
Similarly, V2h ⊂ H1(R) is the space of the functions globally continuous, and
affine on each e ∈ T2h.

For approximating the Lagrange multipliers space Λ = H−1/2(γ) we pro-
ceed as follows. Assume that on γ, T1h is two times coarser than T2h. Then
let us divide every edge ∂e of a triangle e from the coarse grid T1h, which is
located on γ (∂e ⊂ γ), into two parts using its midpoint. Now, we consider the
space of the piecewise constant functions, which are constant on every union
of half-edges with a common vertex (see Fig. 3).

Further, we use quadrature formulas for approximating the integrals over
the triangles from T1h and T2h, as well as over Γext. For a triangle e we set

R

Ω

γ

Fig. 2. Semimatching mesh on γ.
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R

Ω

γ

Fig. 3. Space Λ is the space of the piecewise constant functions defined on every
union of half-edges with common vertex.

∫
e

φ(x)dx ≈ 1
3

meas(e)
3∑

i=1

φ(ai) ≡ Se(φ),

where the ai’s are the vertices of e and φ(x) is a continuous function on e.
Similarly, ∫

∂e

φ(x)dx ≈ 1
2

meas(∂e)
2∑

i=1

φ(ai) ≡ S∂e(φ),

where ai’s are the endpoints of the segment ∂e and φ(x) is a continuous
function on this segment.

We use the notations:

Si(φ) =
∑

e∈Tih

Se(φ), i = 1, 2, and SΓext(φ) =
∑

∂e⊂Γext

S∂e(φ).

Now, the fully discrete problem reads as follows: Let u0
ih = u1

ih = 0,
i = 1, 2. For n = 1, 2, . . . , N − 1, find (un+1

1h , un+1
2h , λn+1

h ) ∈ V1h × V2h × Λh

such that
ε1
∆t2

S1((un+1
1h − 2un

1h + un−1
1h )w1h) + S1(µ−1

1 ∇un
1h · ∇w1h)+

+
1
∆t2

S2(ε(x)(un+1
2h − 2un

2h + un−1
2h )w2h) + S2(µ−1(x)∇un

2h · ∇w2h)+

+

√
ε1µ

−1
1

2∆t
SΓext((u

n+1
1h − un−1

1h )w1h) +
∫

γ

λn+1
h (w2h − w1h)dγ =

= S1(fn
1 w1h) + S2(fn

2 w2h) for all w1h ∈ V1h, w2h ∈ V2h, (9)∫
γ

ζh(un+1
2h − un+1

1h )dγ = 0 for all ζh ∈ Λh. (10)

Note that in S2(ε(x)(un+1
2h − 2un

2h + un−1
2h )w2h) we take ε(x) = ε2 if a

triangle e ∈ T2h lies in Ω2 and ε(x) = ε1 if it lies in R \Ω2, and similarly for
S2(µ−1(x)∇un

2h∇w2h).
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Denote by u1, u2 and λ the vectors of the nodal values of the corresponding
functions u1h, u2h and λh. Then, in order to find un+1

1 , un+1
2 and λn+1 for a

fixed time tn+1, we have to solve a system of linear equations such as

Au + BT λ = F, (11)
Bu = 0, (12)

where matrix A is diagonal, positive definite and defined by

(Au,w) =
ε1
∆t2

S1(u1hw1h) +
1
∆t2

S2(ε(x)u2hw2h) +

√
ε1µ

−1
1

2∆t
SΓext(u1hw1h),

and where the rectangular matrix B is defined by

(Bu,λ) =
∫

γ

λh(u2h − u1h)dΓ,

and vector F depends on the nodal values of the known functions un
1h, un

2h,
un−1

1h and un−1
2h .

Eliminating u from the equation (11), we obtain

BA−1BT λ = BA−1F, (13)

with a symmetric matrix C ≡ BA−1BT . Let us prove that C is positive
definite. Obviously, kerC = kerBT . Suppose, that BT λ = 0, then a function
λh ∈ Λh corresponding to vector λ satisfies

I ≡
∫

γ

λhuhdγ = 0

for all uh ∈ V1h. Choose uh equal to λh in the nodes of T1h located on γ.
Direct calculations give

I =
1
2

Nλ∑
i=1

[
hi + hi+1

2
λ2

i + hi+1
(λi + λi+1)2

2

]
,

where Nλ is the number of edges of T1h on γ, hi is the length of i-th edge and
hNλ+1 ≡ h1, λNλ+1 ≡ λ1. Thus, the equality I = 0 implies that λ = 0, i.e.
kerBT = {0}.

As a consequence we have

Theorem 2. The problem (9), (10) has a unique solution (uh, λh).

Remark 3. A closely related domain decomposition method applied to the
solution of linear parabolic equations is discussed in [Glo03].
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4 Energy Inequality

Theorem 3. Let hmin denote the minimal diameter of the triangles from T1h∪
T2h. There exists a positive number c such that the condition

∆t ≤ c min{√ε1µ1,
√
ε2µ2}hmin (14)

ensures the positive definiteness of the quadratic form

En+1 =
1
2
ε1S1

((
un+1

1h − un
1h

∆t

)2
)

+
1
2
S2

(
ε

(
un+1

2h − un
2h

∆t

)2
)

+

+
1
2
S1

(
µ−1

1

∣∣∣∣∇(un+1
1h + un

1h

2

)∣∣∣∣2
)

+
1
2
S2

(
µ−1

∣∣∣∣∇(un+1
2h + un

2h

2

)∣∣∣∣2
)
−

−∆t
2

8
S1

(
µ−1

1

∣∣∣∣∇(un+1
1h − un

1h

∆t

)∣∣∣∣2
)
−∆t

2

8
S2

(
µ−1

∣∣∣∣∇(un+1
2h − un

2h

∆t

)∣∣∣∣2
)
,

(15)

which we call the discrete energy.
The system (9), (10) satisfies the energy identity

En+1 − En +

√
ε1µ

−1
1

4∆t
SΓext((u

n+1
1h − un−1

1h )2) =

=
1
2
S1(fn

1 (un+1
1h − un−1

1h )) +
1
2
S2(fn

2 (un+1
2h − un−1

2h )) (16)

and the numerical scheme is stable: There exists a positive numberM = M(T )
such that

En ≤M∆t
n−1∑
k=1

(S1((fk
1 )2) + S2((fk

2 )2)), ∀n. (17)

Proof. Let n ≥ 1. From the equation (10) written for tn+1 and tn−1 we obtain∫
γ

ζh((un+1
2h − un−1

2h )− (un+1
1h − un−1

1h ))dγ = 0 for all ζh ∈ Λh. (18)

Choosing

w1h =
un+1

1h − un−1
1h

2
, w2h =

un+1
2h − un−1

2h

2

in (9) and

ζh = −λ
n+1
h

2
in (18), we add these equalities. Using the identities
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(un+1
ih − 2un

ih + un−1
ih )(un+1

ih − un−1
ih ) = (un+1

ih − un
ih)2 − (un

ih − un−1
ih )2

and
un

ihu
n+1
ih =

1
4
((un+1

ih + un
ih)2 − (un+1

ih − un
ih)2),

after several technical transformations we obtain

En+1 − En +

√
ε1µ

−1
1

4∆t
SΓext((u

n+1
1h − un−1

1h )2) =

1
2
S1(fn

1 (un+1
1h − un−1

1h )) +
1
2
S2(fn

2 (un+1
2h − un−1

2h )).

Therefore,

En+1 ≤ En +
1
2
∆tS

1/2
1

(
(fn

1 )2
) [
S

1/2
1

((
un+1

1h − un
1h

∆t

)2
)

+

+S1/2
1

((
un+1

1h − un
1h

∆t

)2
)]

+
1
2
∆tS

1/2
2

(
(fn

2 )2
) [
S

1/2
2

((
un+1

2h − un
2h

∆t

)2
)

+

+S1/2
2

((
un+1

2h − un
2h

∆t

)2
)]

. (19)

Now, we will show that under the condition (14) the quadratic form En is
positive definite; more precisely, that there exists a positive constant δ such
that

En ≥ δ
(
S1

((
un+1

1h − un
1h

∆t

)2
)

+ S2

((
un+1

2h − un
2h

∆t

)2
))

. (20)

Obviously, it is sufficient to prove the inequality

4εeµeSe(v2h) ≥ ∆t2Se(|∇vh|2) ∀e ∈ T1h ∪ T2h, ∀vh ∈ P1(e), (21)

where εe and µe are defined by εe = ε1 or εe = ε2 (respectively, µe = µ1 or
µe = µ2). It is known that for a regular triangulation

Se(|∇vh|2) ≤ 1/c21h
−2
e Se(v2h) (22)

with a positive constant c1, universal for all triangles e, where he is the minimal
length of the sides of e. Combining (21) and (22), we observe that the time
step ∆t should satisfy the inequality

∆t ≤ c√εeµe he, (c =
√

2c1), (23)

for all e ∈ T1h ∪ T2h. Evidently, (14) ensures the validity of (23).
Further, using the relation (20), E1 = 0 and summing the inequalities (19),

one obtains the stability inequality (17):

En ≤M∆t
n−1∑
k=1

(S1((fk
1 )2) + S2((fk

2 )2)), ∀n.
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5 Numerical Experiments

In order to solve the system of linear equations (11)–(12) at each time step
we use a Conjugate Gradient Algorithm in the form given by Glowinski and
LeTallec [GL89]:

Step 1. λ0 given.
Step 2. Au0 = F−Bλ0.
Step 3. g0 = −BT u0.
Step 4. If ‖g0‖ ≤ ε0 take λ = λ0,

else w0 = g0.
Step 5. For m ≥ 0, assuming that λm, gm, wm are known,

Aūm = Bwm.
ḡm = BT ūm.

ρm =
|gm|2

(ḡm, w̄m)
.

λm+1 = λm − ρmwm.
um+1 = um + ρmv̄m.
gm+1 = gm − ρmḡm.

Step 6. If
gm+1 · gm+1

g0 · g0
≤ ε then take λ = λm+1,

else γm =
gm+1 · gm+1

gm · gm
.

Step 7. wm+1 = gm+1 + γmwm.
Step 8. Do m = m+ 1 and go to Step 5.

We consider the problem (9)–(10) with a source term given by the har-
monic planar wave

uinc = −eik(t−α·x), (24)

where {xj}2j=1, {αj}2j=1, k is the angular frequency and |α| = 1.
For our numerical simulation we consider two cases: the first with the

frequency of the incident wave f = 0.6 GHz and the second with f = 1.2 GHz,
which gives us wavelengths L = 0.5 meters and L = 0.25 meters, respectively.

We performed a series of numerical experiments: scattering by a perfectly
reflecting obstacle, wave propagation through a domain with an obstacle com-
pletely consisting of a coating material and scattering by an obstacle with
coating.

First, we consider the scattering by a perfectly reflecting obstacle. For the
experiment we have chosen Ω2 to be in a form of a perfectly reflecting airfoil,
and Ω is a 2 meter × 2 meter rectangle. We used a finite element mesh with
8019 nodes and 15324 elements in the case of f = 0.6 GHz (Fig. 4) and 19246
nodes and 37376 elements for f = 1.2 GHz.

Figure 5 shows the contour plot for the case when the incident wave is
coming from the left and Figure 6 shows the case when the incident wave is
coming from the lower left corner with an angle of 45◦. For all the experiments
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Fig. 4. Example of a finite element mesh.

Fig. 5. Contour plot of the real part of the solution for L = 0.5 (left) and L = 0.25
(right) meters. Incident wave coming from the left.

we chose the time step to be ∆t = T/50, where T = 1/f = 1.66 × 10−9 sec
is a time period corresponding to L = 0.5 meters and T = 1/f = 0.83× 10−9

sec for L = 0.25 meters.
The next set of numerical experiments contains the simulations of wave

propagation through a domain with an obstacle completely consisting of a
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Fig. 6. Contour plot of the real part of the solution for L = 0.5 (left) and L = 0.25
(right) meters. Incident wave coming from the lower left corner with an angle of 45
degrees.

coating material. We have taken the coating material coefficients to be ε2 = 1
and µ2 = 9, implying that the speed of propagation in the coating material is
three times slower than in air. As before Ω is a 2 meter × 2 meter rectangle
and Ω2 has the shape of an airfoil.

For the solution of this problem for an incident frequency f = 0.6 GHz we
have used a mesh with a total of 8435 nodes and 16228 elements. The time
step was taken to be ∆t = T/50, where T = 1/f = 1.66× 10−9 sec is a time
period. We used a mesh consisting of 20258 nodes (39514 elements) for solving
the problem for an incident wave with the frequency f = 1.2 GHz. The time
step was equal to T/50, T = 1/f = 0.83× 10−9 sec.

In Figures 7 and 8 we present the contour plot of the real part of the
solution for the incident frequency L = 0.5 and L = 0.25. We also performed
numerical computations for the case when the obstacle is an airfoil with a
coating (Figure 9). The coating region is moon shaped and, as before, ε2 = 1
and µ2 = 9. We show in Figure 10 the contour plot of the real part of the
solution for the incident frequency L = 0.5 meters and L = 0.25 meters for
the case when the incident wave is coming from the left. Figure 11 presents
the contour plot of the real part of the solution for incident frequency, L = 0.5
meters and L = 0.25 meters for the case when incident wave is coming from
the lower left corner with angle equal to 45◦.

An important observation for all of the numerical experiments mentioned
is that, despite the fact that a mesh discontinuity takes place over γ together
with a weak forcing of the matching conditions, we do not observe a discon-
tinuity of the computed fields.
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Fig. 7. Contour plot of the real part of the solution for L = 0.5 (left) and L = 0.25
(right). Incident wave coming from the left.

Fig. 8. Contour plot of the real part of the solution for L = 0.5 (left) and L = 0.25
(right). Incident wave coming from the lower left corner with an angle of 45 degrees.
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Fig. 9. Obstacle in a form of an airfoil with a coating.

Fig. 10. Contour plot of the real part of the solution for L = 0.5 (left) and L = 0.25
(right). Incident wave coming from the left.
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Fig. 11. Contour plot of the real part of the solution for L = 0.5 (left) and L = 0.25
(right). Incident wave coming from the left lower corner with a 45 degrees angle.
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