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1 Introduction

During his outstanding career, Olivier Pironneau has addressed the solution
of a large variety of problems from the Natural Sciences, Engineering and
Finance to name a few, an evidence of his activity being the many articles
and books he has written. It is the opinion of these authors, and former col-
laborators of O. Pironneau (cf. [DGP91]), that this chapter is well-suited to
a volume honoring him. Indeed, the two pillars of the solution methodology
that we are going to describe are: (1) a nonlinear least squares formulation in
an appropriate Hilbert space, and (2) a mixed finite element approximation,
reminiscent of the one used in [DGP91] and [GP79] for solving the Stokes
and Navier–Stokes equations in their stream function-vorticity formulation;
the contributions of O. Pironneau on the two above topics are well-known
world wide. Last but not least, we will show that the solution method dis-
cussed here can be viewed as a solution method for a non-standard variant of
the incompressible Navier–Stokes equations, an area where O. Pironneau has
many outstanding and celebrated contributions (cf. [Pir89], for example).

The main goal of this article is to discuss the numerical solution of the
Dirichlet problem for the prototypical two-dimensional elliptic Monge–Ampère
equation, namely

detD2ψ = f in Ω, ψ = g on Γ. (E-MA-D)

In (E-MA-D): (1) Ω is a bounded domain of R
2 and Γ is its boundary; (2)

f and g are given functions with f > 0; D2ψ = (∂2ψ/∂xi∂xj)1≤i,j≤2 is
the Hessian of the unknown function ψ. The partial differential equation in
(E-MA-D) is a fully nonlinear elliptic one (in the sense of, e.g., Gilbarg and
Trudinger [GT01] and Caffarelli and Cabré [CC95]). The mathematical analy-
sis of problems such as (E-MA-D) has produced a quite abundant literature;
let us mention, among many others, [GT01, CC95, Aub82, Aub98, Cab02]
and the references therein. On the other hand, and to the best of our knowl-
edge, the numerical analysis community has largely ignored these problems,
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so far, some notable exceptions being provided by [BB00, OP88, CKO99] (see
also [DG03, DG04]). Indeed we can not resist quoting [BB00] (an article dedi-
cated to the numerical solution of the celebrated Monge–Kantorovitch optimal
transportation problem):

“It follows from this theoretical result that a natural computational
solution of the L2 MKP is the numerical resolution of the Monge–
Ampère equation (6). Unfortunately, this fully nonlinear second-order
elliptic equation has not received much attention from numerical an-
alysts and, to the best of our knowledge, there is no efficient finite-
difference or finite-element methods, comparable to those developed
for linear second-order elliptic equations (such as fast Poisson solvers,
multigrid methods, preconditioned conjugate gradient methods, . . . ).”

We will show in this article that, actually, fully nonlinear elliptic problems
such as (E-MA-D) can be solved by appropriate combinations of fast Pois-
son solvers and preconditioned conjugate gradient methods. However, unlike
the (closely related) Dirichlet problem for the Laplace operator, the problem
(E-MA-D) may have multiple solutions (actually, two at most; cf., e.g., [CH89,
Chapter 4]), and the smoothness of the data does not imply the existence of a
smooth solution. Concerning the last property, suppose that Ω = (0, 1)×(0, 1)
and consider the special case where (E-MA-D) is defined by

∂2ψ

∂x2
1

∂2ψ

∂x2
2

−
∣∣∣∣ ∂2ψ

∂x1∂x2

∣∣∣∣2 = 1 in Ω, ψ = 0 on Γ. (1)

The problem (1) can not have smooth solutions since, for those solutions, the
boundary condition ψ = 0 on Γ implies that the product (∂2ψ/∂x2

1)(∂
2ψ/∂x2

2)
and the cross-derivative ∂2ψ/∂x1∂x2 vanish at the boundary, implying in turn
that detD2ψ is strictly less than one in some neighborhood of Γ . The above
(non-existence) result is not a consequence of the non-smoothness of Γ , since
a similar non-existence property holds if in (1) one replaces the above Ω by
the ovöıd-shaped domain whose C∞-boundary is defined by

Γ =
4⋃

i=1

Γi,

with

Γ1 = {x | x = {x1, x2}, x2 = 0, 0 ≤ x1 ≤ 1},
Γ3 = {x | x = {x1, x2}, x2 = 1, 0 ≤ x1 ≤ 1},
Γ2 = {x | x = {x1, x2}, x1 = 1− ln 4/(lnx2(1− x2)), 0 ≤ x2 ≤ 1},
Γ4 = {x | x = {x1, x2}, x1 = ln 4/(lnx2(1− x2)), 0 ≤ x2 ≤ 1}.

Actually, for the above two Ωs the non-existence of solutions for the problem
(1) follows from the non-strict convexity of these domains. Albeit the problem
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(1) has no classical solution it has viscosity solutions in the sense of Crandall–
Lions, as shown in, e.g., [CC95, Cab02, Jan88, Urb88, CIL92]. The Crandall–
Lions viscosity approach relies heavily on the maximum principle, unlike the
variational methods used to solve, for example, the second order linear elliptic
equations in divergence form in some appropriate subspace of the Hilbert
space H1(Ω). The least-squares approach discussed in this article operates in
the space H2(Ω) × Q where Q is the Hilbert space of the 2 × 2 symmetric
tensor-valued functions with component in L2(Ω). Combined with mixed finite
element approximations and operator-splitting methods it will have the ability,
if g has the H3/2(Γ )-regularity, to capture classical solutions, if such solutions
exist, and to compute generalized solutions to problems like (1) which have
no classical solution. Actually, we will show that these generalized solutions
are also viscosity solutions, but in a sense different from Crandall–Lions’.

Remark 1. Suppose that Ω is simply connected. Let us define a vector-valued
function u by u = { ∂ψ

∂x2
,− ∂ψ

∂x1
} (= {u1, u2}). The problem (E-MA-D) takes

then the equivalent formulation⎧⎨⎩
det ∇u = f in Ω, ∇ · u = 0 in Ω,

u · n =
dg

ds
on Γ,

(2)

where n denotes the outward unit vector normal at Γ , and s is a counter-
clockwise curvilinear abscissa. Once u is known, one obtains ψ via the solution
of the following Poisson–Dirichlet problem:

−�ψ =
∂u2

∂x1
− ∂u1

∂x2
in Ω, ψ = g on Γ.

The problem (2) has clearly an incompressible fluid flow flavor, ψ playing
here the role of a stream function. The relations (2) can be used to solve the
problem (E-MA-D) but this approach will not be further investigated here.

Remark 2. As shown in [DG05], the methodology discussed in this article ap-
plies also (among other problems) to the Pucci–Dirichlet problem

αλ+ + λ− = 0 in Ω, ψ = g on Γ, (PUC-D)

with λ+ (resp., λ−) the largest (resp., the smallest) eigenvalue of D2ψ and
α ∈ (1,+∞). (If α = 1, one recovers the linear Poisson–Dirichlet problem.)

Remark 3. A shortened version of this article can be found in [DG04].

Remark 4. The solution of (E-MA-D) by augmented Lagrangian methods is
discussed in [DG03, DG06a, DG06b].
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2 A Least Squares Formulation of the Problem
(E-MA-D)

From now on, we suppose that f > 0 and that {f, g} ∈ {L1(Ω),H3/2(Γ )},
implying that the following space and set are non-empty:

Vg = {ϕ | ϕ ∈ H2(Ω), ϕ = g on ∂Ω},
Qf = {q | q ∈ Q, detq = f},

with
Q = {q | q ∈ (L2(Ω))2×2, q = qt}.

Solving the Monge–Ampère equation in H2(Ω) is equivalent to looking for
the intersection in Q of the two sets D2Vg and Qf , an infinite dimensional
geometry problem “visualized” in Figures 1 and 2.

If D2Vg ∩ Qf �= ∅ as “shown” in Figure 1, then the problem (E-MA-D)
has a solution in H2(Ω). If, on the other hand, it is the situation of Figure 2
which prevails, namely D2Vg ∩Qf = ∅, (E-MA-D) has no solution in H2(Ω).
However, Figure 2 is constructive in the sense that it suggests looking for a
pair {ψ,p} which minimizes, globally or locally, some distance between D2ϕ
and q when {ϕ,q} describes the set Vg ×Qf .

According to the above suggestion, and in order to handle those situations
where (E-MA-D) has no solution in H2(Ω), despite the fact that neither Vg

nor Qf are empty, we suggest to solve the above problem via the following
(nonlinear) least squares formulation:{

Find {ψ,p} ∈ Vg ×Qf such that
j(ψ,p) ≤ j(ϕ,q), ∀{ϕ,q} ∈ Vg ×Qf ,

(LSQ)

where, in (LSQ) and below, we have (with dx = dx1dx2):

j(ϕ,q) = 1
2

∫
Ω

|D2ϕ− q|2 dx (3)

and
|q| = (q211 + q222 + 2q212)

1/2, ∀q(= (qij)1≤i,j≤2) ∈ Q. (4)

Qf

Q
Qf

Vg
2D

p=D2ψ

Fig. 1. Problem (E-MA-D) has a solu-
tion in H2(Ω).

Q

Q

f
Vg

f

Q

D

p

D ψ2

2

Fig. 2. Problem (E-MA-D) has no so-
lution in H2(Ω).
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Remark 5. The results (described in [DG05]), concerning the numerical solu-
tion of the Pucci’s problem (PUC-D) (see Remark 2), suggest that defining
|q| by

|q| = (q211 + q222 + q212)
1/2, ∀q(= (qij)1≤i,j≤2) ∈ Q, (5)

instead of (4), may improve the convergence of the algorithms to be described
in the following sections. We intend to check this conjecture in a near future.

In order to solve (LSQ) by operator-splitting techniques it is convenient to
observe that (LSQ) is equivalent to{

{ψ,p} ∈ Vg ×Q,
jf (ψ,p) ≤ jf (ϕ,q), ∀{ϕ,q} ∈ Vg ×Q,

(LSQ-P)

where
jf (ϕ,q) = j(ϕ,q) + If (q), ∀{ϕ,q} ∈ Vg ×Q, (6)

with

If (q) =

{
0, if q ∈ Qf ,

+∞, if q ∈ Q \Qf ,

i.e., If (·) is the indicator functional of the set Qf .

3 An Operator-Splitting Based Method for the Solution
of (E-MA-D) via (LSQ-P)

We can solve the least-squares problem (LSQ) by a block relaxation method
operating alternatively between Vg and Qf . Such relaxation algorithms are
discussed in, e.g., [Glo84]. Closely related algorithms are obtained as follows:

Step 1. Derive the Euler-Lagrange equation of (LSQ-P).
Step 2. Associate to the above Euler-Lagrange equation an initial value prob-

lem (flow in the Dynamical System terminology) in Vg ×Q.
Step 3. Use operator-splitting to time discretize the above flow problem.

Applying the above program, Step 1 provides us with the Euler–Lagrange
equation of the problem (LSQ-P). A variational formulation of this equation
reads as follows:⎧⎨⎩

{ψ,p} ∈ Vg ×Q,∫
Ω

(D2ψ − p) : (D2ϕ− q) dx+ 〈∂If (p),q〉 = 0, ∀{ϕ,q} ∈ V0 ×Q,
(7)

where ∂If (p) denotes a generalized differential of the functional If (·) at p.
Next, we have denoted by S :T the Fröbenius scalar product of the two 2× 2
symmetric tensors S (= (sij)) and T (= (tij)), namely
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S :T = s11t11 + s22t22 + 2s12t12

and, finally,
V0 = H2(Ω) ∩H1

0 (Ω).

Next, we achieve Step 2 by associating with (7) the following initial value
problem (flow), written in semi-variational form:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Find {ψ(t),p(t)} ∈ Vg ×Q for all t > 0 such that∫
Ω

[∂(�ψ)/∂t]�ϕdx+
∫

Ω

D2ψ :D2ϕdx =
∫

Ω

p :D2ϕdx, ∀ϕ ∈ V0,

∂p/∂t+ p + ∂If (p) = D2ψ,

{ψ(0),p(0)} = {ψ0,p0},
(8)

and we look at the limit of {ψ(t),p(t)} as t→ +∞. The choice of ψ0 and p0

will be discussed in Remark 6.
Finally, concerning Step 3 we advocate the following operator-splitting

scheme (à la Marchuk–Yanenko, see, e.g., [Glo03, Chapter 6] and the refer-
ences therein), but we acknowledge that other splitting schemes are possible:

{ψ0,p0} = {ψ0,p0}. (9)

Then, for n ≥ 0, {ψn,pn} being known, we obtain {ψn+1,pn+1} from the
solution of

(pn+1 − pn)/τ + pn+1 + ∂If (pn+1) = D2ψn, (10)⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ψn+1 ∈ Vg;∫
Ω

�
[(
ψn+1 − ψn

)
/τ
]
�ϕdx+

∫
Ω

D2ψn+1 :D2ϕdx =

=
∫

Ω

pn+1 :D2ϕdx, ∀ϕ ∈ V0;

(11)

above, τ (> 0) is a time-discretization step.
The solution of the sub-problems (10) and (11) will be discussed in Sections

4 and 5, respectively.

Remark 6. The initialization of the flow defined by (8) and of its time-discrete
variant defined by (9)–(11) are clearly important issues. Let us denote by λ1

and λ2 the eigenvalues of the Hessian D2ψ. It follows from (E-MA-D) that
λ1λ2 = f , implying in turn that√

λ1λ2 =
√
f. (12)

We have, on the other hand,

|�ψ| = |λ1 + λ2|. (13)
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Suppose that we look for a convex solution of (E-MA-D). We have then
λ1 and λ2 positive. Comparing (12) (geometric mean) and (13) (arithmetic
mean) suggests to define ψ0 as the solution of

�ψ0 = 2
√
f in Ω, ψ0 = g on Γ. (14)

If we look for a concave solution we suggest to define ψ0 as the solution of

−�ψ0 = 2
√
f in Ω, ψ0 = g on Γ. (15)

If {f, g} ∈ L1(Ω)×H3/2(Γ ), then {
√
f, g} ∈ L2(Ω)×H3/2(Γ ), implying that

each of the problems (14) and (15) has a unique solution in Vg (assuming of
course that Ω is convex and/or that Γ is sufficiently smooth). Concerning p0

an obvious choice is provided by

p0 = D2ψ0, (16)

another possibility being

p0 =
(√

f 0
0
√
f

)
. (17)

The symmetric tensor defined by (17) belongs clearly to Qf .

4 On the Solution of the Nonlinear Sub-Problems (10)

Concerning the solution of the sub-problems of type (10), we interpret (10)
as the Euler–Lagrange equation of the following minimization problem:{

pn+1 ∈ Qf ,

Jn(pn+1) ≤ Jn(q), ∀q ∈ Qf ,
(18)

with
Jn(q) =

1
2
(1 + τ)

∫
Ω

|q|2 dx−
∫

Ω

(pn + τD2ψn) : q dx. (19)

It follows from (19) that the problem (18) can be solved point-wise on Ω
(in practice, at the grid points of a finite element or finite difference mesh).
To be more precise, we have to solve, a.e. on Ω, a minimization problem of
the following type:⎧⎨⎩

min
z

[
1
2 (z21 + z22 + 2z23)− b1(x)z1 − b2(x)z2 − 2b3(x)z3

]
with z

(
= {zi}3i=1

)
∈
{
z | z ∈ R

3, z1z2 − z23 = f(x)
}
.

(20)

Actually, if one looks for convex (resp., concave) solutions of (E-MA-D),
we should prescribe the following additional constraints: z1 ≥ 0, z2 ≥ 0
(resp., z1 ≤ 0, z2 ≤ 0). For the solution of the problem (20) (a constrained
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minimization problem in R3) we advocate those methods discussed in, e.g.,
[DS96] (after introduction of a Lagrange multiplier to handle the constraint
z1z2−z23 = f(x)). Other methods are possible, including the reduction of (20)
to a two-dimensional problem via the elimination of z3. Indeed, we observe
that (20) is equivalent to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min
z

[
1
2
(z1 + z2)2 − b1(x)z1 − b2(x)z2 − 2|b3(x)|(z1z2 − f(x))

1
2

]
with z(= {zi}3i=1) ∈

{
z | z ∈ R

3, z1z2 − f(x) ≥ 0,

z3 = sgn(b3(x))(z1z2 − f(x))
1
2

}
,

(21)

which leads to the above mentioned reduction; then we make “almost” trivial
the solution of the problem (21) by using the following change of variables
(reminiscent of the polar coordinate based technique used in [DG05] for the
solution of the Pucci’s equation (PUC-D), introduced in Remark 2):

z1 = ρ
√
feθ, z2 = ρ

√
fe−θ,

with θ ∈ R and ρ ≥ 1 (resp., ρ ≤ −1) if one looks for a convex (resp., concave)
solution of (E-MA-D).

5 On the Conjugate Gradient Solution of the Linear
Sub-Problems (11)

The sub-problems (11) are all members of the following family of linear vari-
ational problems:⎧⎨⎩

u ∈ Vg,∫
Ω

�u�v dx+ τ
∫

Ω

D2u :D2v dx = L(v), ∀v ∈ V0,
(22)

with the functional L linear and continuous from H2(Ω) into R; the problems
in (22) are clearly of the biharmonic type. The conjugate gradient solution of
linear variational problems in Hilbert spaces, such as (22), has been addressed
in, e.g., [Glo03, Chapter 3]. Following the above reference, we are going to
solve (22) by a conjugate gradient algorithm operating in the spaces V0 and
Vg, both spaces being equipped with the scalar product defined by

{v, w} →
∫

Ω

�v�w dx,

and the corresponding norm. This conjugate gradient algorithm reads as
follows:
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Algorithm 1

Step 1. u0 is given in Vg.
Step 2. Solve then⎧⎪⎪⎪⎨⎪⎪⎪⎩

g0 ∈ V0,∫
Ω

�g0�v dx =
∫

Ω

�u0�v dx+ τ
∫

Ω

D2u0 :D2v dx− L(v),

∀v ∈ V0,
(23)

and set w0 = g0.
Step 3. Then, for k ≥ 0, uk, gk, wk being known, the last two different from

0, we compute uk+1, gk+1, and if necessary wk+1, as follows:
Solve⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ḡk ∈ V0,∫
Ω

�ḡk�v dx =
∫

Ω

�wk�v dx+ τ
∫

Ω

D2wk :D2v dx,

∀v ∈ V0,

(24)

and compute

ρk =

∫
Ω
|�gk|2 dx∫

Ω
�ḡk�wk dx

, (25)

uk+1 = uk − ρkw
k, (26)

gk+1 = gk − ρkḡ
k. (27)

Step 4. If
∫

Ω
|�gk+1|2 dx/

∫
Ω
|�g0|2 dx ≤ tol take u = uk+1; else, compute

γk =

∫
Ω
|�gk+1|2 dx∫

Ω
|�gk|2 dx (28)

and
wk+1 = gk+1 + γkw

k. (29)

Step 5. Do k = k + 1 and return to Step 3.

Numerical experiments have shown that Algorithm 1 (in fact, its discrete
variants) has excellent convergence properties when applied to the solution of
(E-MA-D). Combined with an appropriate mixed finite element approxima-
tion of (E-MA-D) it requires the solution of two discrete Poisson problems at
each iteration.
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6 On a Mixed Finite Element Approximation
of the Problem (E-MA-D)

6.1 Generalities

Considering the highly variational flavor of the methodology discussed in Sec-
tions 2 to 5, it makes sense to look for finite element based methods for the
approximation of (E-MA-D). In order to avoid the complications associated
to the construction of finite element subspaces of H2(Ω), we will employ a
mixed finite element approximation (closely related to those discussed in, e.g.,
[DGP91, GP79] for the solution of linear and nonlinear biharmonic problems).
Following this approach, it will be possible to solve (E-MA-D) employing ap-
proximations commonly used for the solution of the second order elliptic prob-
lems (piecewise linear and globally continuous over a triangulation of Ω, for
example).

6.2 A Mixed Finite Element Approximation

For simplicity, we suppose that Ω is a bounded polygonal domain of R
2. Let

us denote by Th a finite element triangulation of Ω (like those discussed in,
e.g., [Glo84, Appendix 1]). From Th we approximate spaces L2(Ω), H1(Ω)
and H2(Ω) by the finite dimensional space Vh defined by

Vh = {v | v ∈ C0(Ω̄), v|T ∈ P1, ∀T ∈ Th}, (30)

with P1 the space of the two-variable polynomials of degree ≤ 1. A function
ϕ being given in H2(Ω) we denote ∂2ϕ

∂xi∂xj
by D2

ij(ϕ). It follows from Green’s
formula that∫

Ω

∂2ϕ

∂x2
i

v dx = −
∫

Ω

∂ϕ

∂xi

∂v

∂xi
dx, ∀v ∈ H1

0 (Ω), ∀i = 1, 2, (31)∫
Ω

∂2ϕ

∂x1∂x2
v dx = −1

2

∫
Ω

[
∂ϕ

∂x1

∂v

∂x2
+
∂ϕ

∂x2

∂v

∂x1

]
dx, ∀v ∈ H1

0 (Ω). (32)

Consider now ϕ ∈ Vh. Taking advantage of the relations (31) and (32), we
define the discrete analogues of the differential operators D2

ij by⎧⎨⎩
∀i = 1, 2, D2

hii(ϕ) ∈ V0h,∫
Ω

D2
hii(ϕ)v dx = −

∫
Ω

∂ϕ

∂xi

∂v

∂xi
dx, ∀v ∈ V0h,

(33)

⎧⎪⎨⎪⎩
D2

h12(ϕ) ∈ V0h,∫
Ω

D2
h12(ϕ)v dx = −1

2

∫
Ω

[
∂ϕ

∂x1

∂v

∂x2
+
∂ϕ

∂x2

∂v

∂x1

]
dx, ∀v ∈ V0h,

(34)

where the space V0h is defined by
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V0h = Vh ∩H1
0 (Ω) (= {v | v ∈ Vh, v = 0 on Γ}). (35)

The functions D2
hij(Ω) are uniquely defined by the relations (33) and (34).

However, in order to simplify the computation of the above discrete second or-
der partial derivatives we will use the trapezoidal rule to evaluate the integrals
in the left hand sides of (33) and (34). Owing to their practical importance,
let us detail these calculations:

1. First we introduce the set Σh of the vertices of Th and then Σ0h =
{P | P ∈ Σh, P /∈ Γ}. Next, we define the integers Nh and N0h by
Nh = Card(Σh) and N0h = Card(Σ0h). We have then dimVh = Nh

and dimV0h = N0h. We suppose that Σ0h = {Pk}N0h

k=1 and Σh =
Σ0h ∪ {Pk}Nh

k=N0h+1.
2. To Pk ∈ Σh we associate the function wk uniquely defined by

wk ∈ Vh, wk(Pk) = 1, wk(Pl) = 0, if l = 1, · · ·Nh, l �= k. (36)

It is well known (see, e.g., [Glo84, Appendix 1]) that the sets Bh =
{wk}Nh

k=1 and B0h = {wk}N0h

k=1 are vector bases of Vh and V0h, respectively.
3. Let us denote by Ak the area of the polygonal which is the union of

those triangles of Th which have Pk as a common vertex. Applying the
trapezoidal rule to the integrals in the left hand side of the relations (33)
and (34), we obtain:⎧⎨⎩

∀i = 1, 2, D2
hii(ϕ) ∈ V0h,

D2
hii(ϕ)(Pk) = − 3

Ak

∫
Ω

∂ϕ

∂xi

∂wk

∂xi
dx, ∀k = 1, 2, · · · , N0h,

(37)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
D2

h12(ϕ)(= D2
h21(ϕ)) ∈ V0h,

D2
h12(ϕ)(Pk) = − 3

2Ak

∫
Ω

[
∂ϕ

∂x1

∂wk

∂x2
+
∂ϕ

∂x2

∂wk

∂x1

]
dx,

∀k = 1, 2, · · · , N0h.

(38)

Computing the integrals in the right hand sides of (37) and (38) is quite
simple since the first order derivatives of ϕ and wk are piecewise constant.

Taking the above relations into account, approximating (E-MA-D) is now a
fairly simple issue. Assuming that the boundary function g is continuous over
Γ , we approximate the affine space Vg by

Vgh = {ϕ | ϕ ∈ Vh, ϕ(P ) = g(P ), ∀P ∈ Σh ∩ Γ}, (39)

and then (E-MA-D) by{
Find ψh ∈ Vgh such that for all k = 1, 2, . . . , N0h,

D2
h11(ψh)(Pk)D2

h22(ψh)(Pk)− |D2
h12(ψh)(Pk)|2 = fh(Pk).

(E-MA-D)h

The iterative solution of the problem (E-MA-D)h will be discussed in the
following paragraph.
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Fig. 3. A uniform triangulation of Ω = (0, 1)2 (h = 1/8)

Remark 7. Suppose that Ω = (0, 1)2 and that triangulation Th is like the one
shown in Figure 3.

Suppose that h = 1
I+1 , I being a positive integer greater than 1. In this

particular case, the sets Σh and Σ0h are given by{
Σh = {Pij | Pij = {ih, jh}, 0 ≤ i, j ≤ I + 1},
Σ0h = {Pij | Pij = {ih, jh}, 1 ≤ i, j ≤ I},

(40)

implying that Nh = (I + 2)2 and N0h = I2. It follows then from the relations
(37) and (38) that (with obvious notation):

D2
h11(ϕ)(Pij) =

ϕi+1,j + ϕi−1,j − 2ϕij

h2
, 1 ≤ i, j ≤ I, (41)

D2
h22(ϕ)(Pij) =

ϕi,j+1 + ϕi,j−1 − 2ϕij

h2
, 1 ≤ i, j ≤ I, (42)

and

D2
h12(ϕ)(Pij) =

(ϕi+1,j+1 + ϕi−1,j−1 + 2ϕij)
2h2

− (ϕi+1,j + ϕi−1,j + ϕi,j+1 + ϕi,j−1) /(2h2), 1 ≤ i, j ≤ I. (43)

The finite difference formulas (41)–(43) are exact for the polynomials of degree
≤ 2. Also, as expected,

D2
h11(ϕ)(Pij) +D2

h22(ϕ)(Pij) =
ϕi+1,j + ϕi−1,j + ϕi,j+1 + ϕi,j−1 − 4ϕij

h2
;

(44)
we have recovered, thus, the well-known 5-point discretization formula for the
finite difference approximation of the Laplace operator.

6.3 On the Least-squares Formulation of (E-MA-D)h

Inspired by Sections 3 to 5, we will discuss now the solution of (E-MA-D)h by
a discrete variant of the solution methods discussed there. The first step in
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this direction is to approximate the least-squares problem (LSQ). To achieve
this goal, we approximate the sets Q and Qf by

Qh = {q | q = (qij)1≤i,j≤2, q21 = q12, qij ∈ V0h} (45)

and

Qfh = {q | q ∈ Qh, q11(Pk)q22(Pk)− |q12(Pk)|2 = fh(Pk),
∀k = 1, 2, . . . , N0h}, (46)

respectively, the function fh in (46) (and in (E-MA-D)h) being a continuous
approximation of f . Next, we approximate the least-squares functional j(·, ·)
(defined by (3) in Section 2) by jh(·, ·) defined as follows:

jh(ϕ,q) = 1
2‖D

2
hϕ− q‖2h, ∀ϕ ∈ Vh, q ∈ Qh, (47)

with

D2
hϕ = (D2

hij(ϕ))1≤i,j≤2, (48)

((S,T))h =
1
3

N0h∑
k=1

AkS(Pk) :T(Pk)

(
=

1
3

N0h∑
k=1

Ak(s11t11 + s22t22 + 2s12t12)(Pk)
)
, ∀S,T ∈ Qh, (49)

and then
‖S‖h = ((S,S))1/2

h , ∀S ∈ Qh. (50)

From the above relations, we approximate the problem (LSQ) by the following
discrete least-squares problem:{

{ψh,ph} ∈ Vgh ×Qfh,

jh(ψh,ph) ≤ jh(ϕ,q), ∀{ϕ,q} ∈ Vgh ×Qfh.
(51)

6.4 On the Solution of the Problem (51)

To solve the minimization problem (51), we shall use the following discrete
variant of the algorithm (9)–(11):

{ψ0,p0} = {ψ0,p0}. (52)

Then, for n ≥ 0, {ψn,pn} being known, compute {ψn+1,pn+1} via the solu-
tion of

pn+1 = arg min
q∈Qfh

[
1
2 (1 + τ)‖q‖2h − ((pn + τD2

hψ
n,q))h

]
, (53)
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and ⎧⎪⎨⎪⎩
ψn+1 ∈ Vgh,

(�h[(ψn+1 − ψn)/τ ],�hϕ)h + ((D2
hψ

n+1,D2
hϕ))h

= ((pn+1,D2
hϕ))h, ∀ϕ ∈ V0h,

(54)

where we have

(1) �hϕ = D2
h11(ϕ) +D2

h22(ϕ), ∀ϕ ∈ Vh, (55)

(2) (ϕ1, ϕ2)h =
1
3

N0h∑
k=1

Akϕ1(Pk)ϕ2(Pk), ∀ϕ1, ϕ2 ∈ V0h, (56)

the associated norm being still denoted by ‖ · ‖h.
The constrained minimization sub-problems (53) decompose into N0h

three-dimensional minimization problems (one per internal vertex of Th)
similar to those encountered in Section 4, concerning the solution of the prob-
lem (10). The various solution methods (briefly) discussed in Section 4 still
apply here. For the solution of the linear sub-problems (54), we advocate
the following discrete variant of the conjugate gradient algorithm (23)–(29)
(Algorithm 1):

Algorithm 2

Step 1. u0 is given in Vgh.
Step 2. Solve⎧⎪⎨⎪⎩

g0h ∈ V0h,

(�hg
0,�hϕ)h = (�hu

0,�hϕ)h + τ((D2
hu

0,D2
hϕ))h − Lh(ϕ),

∀ϕ ∈ V0h,

(57)
and set

w0 = g0. (58)

Step 3. Then, for k ≥ 0, assuming that uk, gk and wk are known with the last
two different from 0, solve⎧⎪⎨⎪⎩

ḡk ∈ V0h,

(�hḡ
k,�hϕ)h = (�hw

k,�hϕ)h + τ((D2
hw

k,D2
hϕ))h,

∀ϕ ∈ V0h,

(59)

and compute

ρk = (�hg
k,�hg

k)h/(�hḡ
k,�hw

k)h, (60)

uk+1 = uk − ρkw
k, (61)

gk+1 = gk − ρkḡ
k. (62)



Elliptic Monge–Ampère Equation in Dimension Two 57

Step 4. If (�hg
k,�hg

k)h/(�hg
0,�hg

0)h ≤ tol. take u = uk+1; else, compute

γk = (�hg
k+1,�hg

k+1)h/(�hg
k,�hg

k)h (63)

and update wk via
wk+1 = gk+1 + γkw

k. (64)

Step 5. Do k + 1 → k and return to Step 3.

When solving the sub-problems (54), the linear functional Lh(·) encoun-
tered in (57) reads as follows:

Lh(ϕ) = (�hψ
n,�hϕ)h + τ((pn+1,D2

hϕ))h.

Concerning the solution of the discrete bi-harmonic problems (57) and
(59), let us observe that both problems are of the following type:{

Find uh ∈ V0h (or Vgh) such that

(�huh,�hv)h = Lh(v), ∀v ∈ V0h,
(65)

the functional Lh(·) being linear. Let us denote −�huh by ωh. It follows then
from (37), (55) and (56) that the problem (65) is equivalent to the following
system of two coupled discrete Poisson–Dirichlet problems:⎧⎪⎨⎪⎩

ωh ∈ V0h,∫
Ω

∇ωh · ∇v dx = Lh(v), ∀v ∈ V0h,
(66)

⎧⎪⎨⎪⎩
uh ∈ V0h(or Vgh),∫

Ω

∇uh · ∇v dx = (ωh, v)h, ∀v ∈ V0h.
(67)

Both problems are well-posed. Actually, the solution (by direct or itera-
tive methods) of discrete Poisson problems, such as (66) and (67), has mo-
tivated an important literature; some related references can be found in
[Glo03, Chapter 5].

We shall conclude this section by observing that via the algorithm (52)–
(54) we have thus reduced the solution of (E-MA-D)h to the solution of

1. a sequence of discrete (linear) Poisson–Dirichlet problems.
2. a sequence of minimization problems in R

3 (or R
2).
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7 Numerical Experiments

The least-squares based methodology discussed in the above sections has been
applied to the solution of three particular (E-MA-D) problems, with Ω =
(0, 1)2. The first test problem can be formulated as follows (with |x| = (x2

1 +
x2

2)
1/2 and R ≥

√
2):

detD2ψ =
R2

(R2 − |x|2) 1
2

in Ω, ψ = (R2 − |x|2) 1
2 on Γ. (68)

The function ψ defined by ψ(x) = (R2−|x|2)1/2 is a solution to the problem
(68). Its graph is a piece of the sphere of center 0 and radius R. We have
discretized the problem (68) relying on the mixed finite element approximation
discussed in Section 6, associated to a uniform triangulation of Ω (like the
one shown on Figure 3, but finer). The uniformity of the mesh allows us
to solve the various elliptic problems encountered at each iteration of the
algorithm (57)–(64) (Algorithm 2) by fast Poisson solvers taking advantage
of the decomposition properties of the discrete analogues of the biharmonic
problems (23) and (24). To initialize the algorithm (52)–(54), we followed
Remark 6 (see Section 3) and defined ψ0 as the solution of the discrete Poisson
problem ⎧⎨⎩ψ0 ∈ Vgh,∫

Ω

∇ψ0 ·∇v dx = 2(
√
fh, v)h, ∀v ∈ V0h

and p0 by p0 = D2
hψ0. The algorithm (52)–(54) diverges if R =

√
2 (which

is not surprising since the corresponding ψ /∈ H2(Ω)). On the other hand,
for R = 2 we have a quite fast convergence as soon as τ is large enough,
the corresponding results being reported in Table 1. (We stopped iterating as
soon as ‖D2

hψ
n
h − pn

h‖0,Ω ≤ 10−6.)
Above, {ψc

h,p
c
h} is the computed approximate solution, h the space dis-

cretization step, nit the number of iterations necessary to achieve conver-
gence, and ‖D2

hψ
c
h − pc

h‖0,Ω is a trapezoidal rule based approximation of

Table 1. First test problem: convergence results

h τ nit ‖D2
hψc

h − pc
h‖Q ‖ψc

h − ψ‖L2(Ω)

1/32 0.1 517 0.9813 × 10−6 0.450 × 10−5

1/32 1 73 0.9618 × 10−6 0.449 × 10−5

1/32 10 28 0.7045 × 10−6 0.450 × 10−5

1/32 100 21 0.6773 × 10−6 0.449 × 10−5

1/32 1, 000 22 0.8508 × 10−6 0.449 × 10−5

1/32 10, 000 22 0.8301 × 10−6 0.449 × 10−5

1/64 1 76 0.9624 × 10−6 0.113 × 10−5

1/64 10 29 0.8547 × 10−6 0.113 × 10−5

1/64 100 24 0.8094 × 10−6 0.113 × 10−5
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(
∫

Ω
|D2

hψ
c
h−pc

h|2 dx)1/2. Table 1 clearly suggests that: (1) For τ large enough
the speed of convergence is essentially independent of τ ; (2) The speed of con-
vergence is essentially independent of h; (3) The L2(Ω)-approximation error
is O(h2).

The second test problem is defined by

detD2ψ =
1
|x| in Ω, ψ =

2
√

2
3
|x| 32 on Γ. (69)

With these data, the function ψ defined by ψ(x) = 2
√

2
3 |x| 32 is a solution

of the problem (69). It is easily shown that ψ ∈ W 2,p(Ω) for all p ∈ [1, 4),
but does not have the C2(Ω̄)-regularity. Using the same approximation and
algorithms than for the first test problem, we obtain the results reported in
Table 2.

The various comments we have done concerning the solution of the first
test problem still apply here. The graphs of f and ψc

h (for h = 1/64) have
been visualized in Figures 4 and 5, respectively.

The third test problem, namely

detD2ψ = 1 in Ω, ψ = 0 on Γ, (70)

has no solution in H2(Ω), despite the smoothness of the data, making it,
by far, the more interesting (in some sense) of our test problems, from a
computational point of view. We have reported in Table 3 the results produced
by the algorithm (52)–(54) using ‖ψn+1

h − ψn
h‖L2(Ω) ≤ 10−7 as the stopping

criterion.
It is clear from Table 3 that the convergence is slower than for the first two

test problems, however, some important features remain such as: the number
of iterations necessary to achieve convergence is essentially independent of
τ , as soon as this parameter is large enough, and increases slowly with 1/h
(actually like h−1/2). In Figures 6, 7 and 8 we have shown, respectively, the
graph of ψc

h (for h = 1/64), the graph of the function x1 → ψc
h(x1, 1/2) when

x1 ∈ [0, 1], and the graph of the restriction of ψc
h to the line x1 = x2 (i.e., the

Table 2. Second test problem: convergence results

h τ nit ‖D2
hψc

h − pc
h‖Q ‖ψc

h − ψ‖L2(Ω)

1/32 1 145 0.9381 × 10−6 0.556 × 10−4

1/32 10 56 0.9290 × 10−6 0.556 × 10−4

1/32 100 46 0.9285 × 10−6 0.556 × 10−4

1/32 1, 000 45 0.9405 × 10−6 0.556 × 10−4

1/64 1 151 0.9500 × 10−6 0.145 × 10−4

1/64 10 58 0.9974 × 10−6 0.145 × 10−4

1/64 100 49 0.9531 × 10−6 0.145 × 10−4

1/64 1, 000 48 0.9884 × 10−6 0.145 × 10−4
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Fig. 4. Second test problem: graph
of f .

Fig. 5. Second test problem: graph of
ψc

h (h = 1/64)

Table 3. Third test problem: convergence results

h τ nit ‖D2
hψc

h − pc
h‖Q

1/32 1 4, 977 0.1054 × 10−1

1/32 100 3, 297 0.4980 × 10−2

1/32 1, 000 3, 275 0.4904 × 10−2

1/32 10, 000 3, 273 0.4896 × 10−2

1/64 1 6, 575 0.1993 × 10−1

1/64 100 4, 553 0.1321 × 10−1

1/64 1, 000 4, 527 0.1312 × 10−1

1/128 100 5, 401 0.1841 × 10−1

1/128 1, 000 5, 372 0.1830 × 10−1

Fig. 6. Third test problem: graph of ψc
h (h = 1/64)

graph of the function ξ → ψc
h(ξ, ξ) when ξ ∈ [0, 1]). In Figures 7 and 8, we

used − · −· (resp., − − − and — ) to represent the results corresponding to
h = 1/32 (resp., h = 1/64 and h = 1/128).

The results in Figures 7 and 8 suggest strongly that ψh converges to a limit
as h→ 0. They suggest also that the convergence is superlinear with respect
to h. The above limit can be viewed as a generalized solution of (E-MA-D)
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Fig. 7. Third test problem: graph of ψc
h

restricted to the line x2 = 1/2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Diagonal cross sections

Fig. 8. Third test problem: graph of ψc
h

restricted to the line x1 = x2

(in a least-squares sense). Actually, a closer inspection of the numerical results
shows that the curvature of the graph is negative close to the corners, implying
that the Monge–Ampère equation (70) is violated there (since the curvature
is given by detD2ψ/(1 + |∇ψ|2)2). Indeed, as expected, it is also violated
along the boundary, since ‖D2

hψ
c
h‖0,Ω ≈ 10−2, while ‖D2

hψ
c
h‖0,Ω1 ≈ 10−4 and

‖D2
hψ

c
h‖0,Ω2 ≈ 10−5, where Ω1 = (1/8, 7/8)2 and Ω2 = (1/4, 3/4)2. These

results show that in that particular case, at least, the Monge–Ampère equation
detD2ψ = 1 is verified with a good accuracy, sufficiently far away from Γ .

8 Further Comments

A natural question arising from the material discussed in the above sections
is the following one: Does our least-squares methodology provide viscosity so-
lutions?

We claim that indeed the solutions obtained by the least-squares method-
ology discussed in the preceding sections are (kind of) viscosity solutions. To
show this property, let us consider (as in Section 3) the flow associated with
the least-squares optimality conditions (7). We have then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find {ψ(t),p(t)} ∈ Vg ×Q for all t > 0 such that∫
Ω

∂(�ψ)/∂t �ϕdx+
∫

Ω

D2ψ :D2ϕ dx

=
∫

Ω

p :D2ϕdx, ∀ϕ ∈ V0,∫
Ω

∂p/∂t : q dx+
∫

Ω

p : q dx+ 〈∂IQf
(p),q〉

=
∫

Ω

D2ψ : q dx, ∀q ∈ Q,

{ψ(0),p(0)} = {ψ0,p0}.

(71)
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Assuming that Ω is simply connected, we introduce:

u = {u1, u2} = {∂ψ/∂x2,−∂ψ/∂x1},
v = {v1, v2} = {∂ϕ/∂x2,−∂ϕ/∂x1},
ω = ∂u2/∂x1 − ∂u1/∂x2,

θ = ∂v2/∂x1 − ∂v1/∂x2,

Vg = {v | v ∈ (H1(Ω))2, ∇ · v = 0, v · n = dg/ds on Γ},
V0 = {v | v ∈ (H1(Ω))2, ∇ · v = 0, v · n = 0 on Γ},

L =
(

0 1
−1 0

)
.

Above, n is the unit vector of the outward normal at Γ and s is a counter-
clockwise curvilinear abscissa on Γ . The formulation (71) is equivalent to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Find u(t) ∈ Vg for all t > 0 such that∫
Ω

∂ω/∂t θ dx+
∫

Ω

∇u :∇v dx =
∫

Ω

Lp :∇v dx, ∀v ∈ V0,

∂p/∂t+ p + ∂IQf
(p) + L∇u = 0,

{u(0),p(0), ω(0)} = {u0,p0, ω0}.

(72)

The problem (72) has a visco-elasticity flavor, −Lp playing here the role
of the so-called extra-stress tensor. As t→ +∞, we obtain thus at the limit a
(kind of) viscosity solution.
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