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Summary. Pricing American options using partial (integro-)differential equation
based methods leads to linear complementarity problems (LCPs). The numerical
solution of these problems resulting from the Black–Scholes model, Kou’s jump-
diffusion model, and Heston’s stochastic volatility model are considered. The finite
difference discretization is described. The solutions of the discrete LCPs are ap-
proximated using an operator splitting method which separates the linear problem
and the early exercise constraint to two fractional steps. The numerical experiments
demonstrate that the prices of options can be computed in a few milliseconds on
a PC.

1 Introduction

Since 1973 Black, Scholes, and Merton developed models for pricing options in
[BS73, Mer73] and, on the other hand, the Chicago Board Options Exchange
started to operate, the trading of options has grown to tremendous scale. Basic
options give either the right to sell (put) or buy (call) the underlying asset
with the strike price. European options can be exercised only at the expiry
time while American options can be exercised anytime before the expiry. The
Black–Scholes partial differential equation (PDE) describes the evolution of
the option price in time for European options. In order to avoid arbitrage
opportunities with an American option, the so-called early exercise constraint
has to be posed on its value. Combining this constraint with the PDE leads to
a linear complementarity problem (LCP). For European options it is generally
possible to derive formulas for their price, but American options usually need
to be priced numerically. This paper considers the solution of these pricing
problems. For the general discussion on these topics, we refer to the books
[AP05, CT04, TR00, Wil98].

The Black–Scholes model [BS73] assumes a constant volatility for all op-
tions with different strike prices and expiry times on the same underlying
asset. In practice, this does not hold in the markets. One possibility to make
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the prices consistent with the markets is to define the volatility as a func-
tion of time and the value of the underlying asset, and then calibrate this
function; see [Dup94], for example. In 1976, Merton suggested to add jumps
to the model of the underlying asset in [Mer73]. This jump-diffusion model
helps to explain a good part of difference between the market prices and the
ones given by the Black–Scholes model with a constant volatility. Since then
there has been growing activity to incorporate jumps to the model; see [CT04]
and references therein. One of the models used in this paper is Kou’s jump-
diffusion model. Another generalization is to make the volatility a stochastic
process. Several such multifactor models have been proposed; see [FPS00], for
example. Here Heston’s stochastic volatility model [Hes93] is used. One can
also combine stochastic volatility and jump models like in [Bat96, DPS00], for
example.

Several ways to solve the discretized LCPs resulting from pricing American
options have been described in the literature. Maybe the most common
method is the project SOR iteration proposed in [Cry71]. This method is
fairly generic and easy to implement, but its convergence rate degrades as
grids are refined. For one-dimensional PDE models the resulting LCPs can
be solved very efficiently using the direct algorithm in [BS77] if the matrix is
a tridiagonal M-matrix and the solution has suitable form. The full matrices
resulting from jump-diffusion models require special techniques in order to
obtain efficient algorithms. The papers [AO05, AA00, CV05, MSW05] study
the numerical pricing of European options, and in [dFL04, dFV05, Toi06]
the pricing of American options is considered. For higher-dimensional prob-
lems like the ones resulting from Heston’s model multigrid methods have been
considered in [BC83, CP99, Oos03, RW04], for example. An alternative way
is to approximate the LCPs using a penalty method [FV02, ZFV98]. This
leads to a sequence system of linear equations with varying matrices. With
this approach the constraints are always slightly violated. With a fairly similar
Lagrange multiplier method [AP05, HIK03, IK06, IT06b] it can be guaranteed
that the constraints are satisfied.

This paper considers an operator splitting method proposed for the Black–
Scholes model in [IT04a]. The method was applied to Heston’s model and
analyzed in [IT04b], and for Kou’s model it was applied in [Toi06]. The basic
idea of this method is to split a time step with a LCP to two fractional time
steps. The first fractional step requires a system of linear equations to be
solved and the second one enforces the early exercise constraint. The update
to satisfy the constraint is simple and, thus, the main computational burden
will be the solution linear systems. A similar approach is commonly used to
treat the incompressibility condition in the computational fluid dynamics; see
[Glo03], for example. The operator splitting method has two obvious bene-
fits. There are several efficient methods available for solving resulting systems
of linear equations while only a few methods are available for the original
LCPs and they usually cannot compete in the efficiency. Secondly the opera-
tor splitting method is easier to implement than an efficient LCP solver. This
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paper demonstrates that the operator splitting method is suitable for pricing
American options with different models and that the computation of a suffi-
ciently accurate price for most purposes requires only a few milliseconds on a
contemporary PC.

Outline of the paper is the following. We begin by describing the three
models and the resulting P(I)DEs for European options. After this we formu-
late linear complementarity problems for the value of American options. Next
we sketch finite difference discretizations for the partial differential operators.
Then the operator splitting method is described and after this methods for
solving the resulting systems of linear equations are discussed. The paper ends
with numerical examples with all of the considered models and conclusions.

2 Models

2.1 Black–Scholes Model

By assuming that the value of the underlying asset denoted by x follows a
geometric Brownian motion with a drift, the Black–Scholes PDE [BS73]

vt = ABSv = −1
2
(σx)2vxx − rxvx + rv (1)

can be derived for the value of an option denoted by v, where σ is the volatility
of the value of the asset and r is the risk free interest rate. In practice, the
market prices of options do not satisfy (1). One possible way to make the
model to match the markets is to use a volatility function σ which depends
on the value of the underlying asset and time; see [AP05, Dup94], for example.
In this case, the volatility function has to be calibrated with the market data.

2.2 Jump-Diffusion Models

When there is a high market stress like the crash of 1987 the value of assets
can move faster than a geometric Brownian motion would predict. Partly due
to this, models which allow also jumps for the value of asset have become more
common; see [CT04] and references therein. Already in 1976 Merton consid-
ered such a model in [Mer76]. With independent and identically distributed
jumps a partial integro-differential equation (PIDE)

vt = AJDv = −1
2
(σx)2vxx−(r−µζ)xvx+(r+µ)v−µ

∫
R+

v(t, xy)f(y) dy (2)

can be derived for the value of an option, where µ is the rate of jumps,
the function f defines the distributions of jumps, and ζ is the mean jump
amplitude.
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Merton used a Gaussian distribution for jumps in [Mer76]. Kou considered
in [Kou02] a log-double-exponential distribution for jumps which leads a more
flexible and tractable model. In this case, the density is

f(y) =

{
qα2y

α2−1, y < 1,
pα1y

−α1−1, y ≥ 1,
(3)

where p, q, α1 > 1, and α2 are positive constants such that p + q = 1. The
mean jump amplitude is ζ = pα1

α1−1 + qα2
α2+1 − 1. We will employ this model in

the numerical experiments. Also in this case one possible way to calibrate the
model is to let the volatility σ be a function of time and asset value like in
[AA00].

2.3 Stochastic Volatility Models

In practice, the volatility of the value of an asset is not a constant over time.
Several models have been also developed for the behavior of the volatility.
Among several stochastic volatility models probably the one developed by
Heston in [Hes93] is the most popular. It assumes the volatility to be a mean-
reverting process. Under the assumption that the market price of risk is zero
Heston’s model leads to the two-dimensional PDE

vt = ASV v = −1
2
yx2vxx− ργyxvxy −

1
2
γ2yvyy − rxvx−α(β− y)vy + rv, (4)

where y is the variance, that is, the square of the volatility, β is the mean
level of the variance, α is the rate of reversion on the mean level, and γ is the
volatility of the variance. The correlation between the price of the underlying
asset and its variance is ρ.

3 Linear Complementarity Problems

The value of an option at the expiry time T is given by

v(T, x) = g(x), (5)

where the payoff function g depends on the type of the option. For example,
for a put option with a strike price K it is

g(x) = max{K − x, 0}. (6)

The value v of an American option satisfies a linear complementarity prob-
lem (LCP) {

(vt −Av) ≥ 0, v ≥ g,
(vt −Av)(v − g) = 0,

(7)
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where A is one of the operators ABS , AJD, or ASV defined by (1), (2), and
(4), respectively.

The operator splitting method is derived from a formulation with a
Lagrange multiplier λ after a temporal discretization. In the continuous level,
the formulation with the Lagrange multiplier reads{

(vt −Av) = λ, λ ≥ 0, v ≥ g,
λ(v − g) = 0.

(8)

4 Discretizations

4.1 Spatial Discretizations

The LCPs are posed on infinite domain as there is no upper limit for the value
of the asset and also for variance in the case of Heston’s stochastic volatility
model. In order to use finite difference discretizations for the spatial deriva-
tives, the domain is truncated from sufficiently large values of x and y which
are denoted by X and Y , respectively. The choice of X for the Black–Scholes
model is considered in [KN00], for example. On the truncation boundaries a
suitable boundary condition needs to be posed. For the one-dimensional mod-
els for put options, we use homogeneous Dirichlet boundary condition v = 0
at x = X. For Heston’s model homogeneous Neumann boundary conditions
are posed. While these are fairly typical choices for boundary conditions there
are also other choices.

For the interval [0, X], we define subintervals [xi−1, xi], i = 1, 2, . . . ,m,
where xis satisfy 0 = x0 < x1 < · · · < xm = X. For Heston’s model, the
interval [0, Y ] is similarly divided by the points 0 = y0 < y1 < · · · < xn = Y .
Finite difference discretizations seek approximations for the value of v at the
grid points xis for one-dimensional models and (xi, yj) for Heston’s model. The
spatial partial derivatives appearing in (7) and (8) needs to be approximated
using the grid point values. For the second-order derivative with respect to x,
we use a finite difference approximation

vxx(t, xi) ≈
2

∆xi−1(∆xi−1 +∆xi)
v(t, xi−1)−

2
∆xi−1∆xi

v(t, xi)

+
2

∆xi(∆xi−1 +∆xi)
v(t, xi+1), (9)

where ∆xi−1 = xi − xi−1 and ∆xi = xi+1 − xi. For the first-order derivative,
one possible approximation is

vx(t, xi) ≈ −
∆xi

∆xi−1(∆xi−1 +∆xi)
v(t, xi−1) +

∆xi −∆xi−1

∆xi−1∆xi
v(t, xi)

+
∆xi−1

∆xi(∆xi−1 +∆xi)
v(t, xi+1). (10)
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For Heston’s model the approximations for the partial derivatives with respect
to y can be defined analogously. The approximations (9) and (10) can be shown
to be second-order accurate with respect to the grid step size when the step
size varies smoothly; see [MW86], for example.

When the coefficient for the first-order derivative is large compared to the
coefficient of the second-order derivative, the above discretizations lead to ma-
trices with positive off-diagonal entries. In this case the matrix cannot have
the M-matrix property and the resulting numerical solutions can have oscil-
lations. This situation can be avoided by using locally one-sided differences
for the first-order derivative. The drawback of this approach is that it reduces
the order of accuracy to be first-order with respect to the grid step size. Nev-
ertheless we will use this choice to ensure that the spatial discretizations lead
to M-matrices and, thus, stable discretizations.

Special care must be taken when discretizing the cross derivative vxy in
Heston’s model if M-matrices are sought. In [IT05], a seven-point stencil lead-
ing an M-matrix is described. With strong correlation between the value of
asset and its volatility there can be severe restrictions on grid step sizes in
order to obtain M-matrices and accurate discretizations.

The discretization of the integral term in the jump-diffusion model (2)
leads to a full matrix; see [AO05, dFL04, MSW05], for example. Computa-
tionally it is expensive to operate with the full matrix and, due to this, different
fast ways have been proposed for operating with it in the above mentioned
articles. Fortunately, with Kou’s log-double-exponential f in (2) is possible to
derive recursive formulas with optimal computational complexity for evaluat-
ing quadratures for the integrals. This has been described in [Toi06] and we
will employ this approach with our numerical experiments.

The grid point values of v are collected to a vector v. Similarly we define a
vector g containing the grid point values of the payoff function g. The spatial
discretization leads to a semi-discrete form of the LCP (7) given by{

(vt −Av) ≥ 0, v ≥ g,
(vt −Av)T (v − g) = 0,

(11)

where the matrix A is defined by the used finite differences and the inequali-
ties of vectors are componentwise. The semi-discrete form with the Lagrange
multiplier λ corresponding to (8) reads{

(vt −Av) = λ, λ ≥ 0, v ≥ g,
λT (v − g) = 0,

(12)

where the vector λ contains the grid point values of the Lagrange multiplier.

4.2 Temporal Discretization

For the temporal discretization the time interval [0, T ] is divided into subin-
tervals which are defined by the times 0 = t0 < t1 < · · · < tl = T . The vector
containing the grid point values of v at tk is denoted by v(k).
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Usually in option pricing problems the backward time stepping is started
from a non-smooth final value. Due to this, the time stepping scheme should
have good damping properties in order to avoid oscillations. For example,
the popular Crank–Nicolson method does not have good damping properties
and it can lead to approximations with excessive oscillations. Instead of it we
employ the Rannacher time-stepping scheme [Ran84]. In the option pricing
context it has been analyzed recently in [GC06].

In the Rannacher time-stepping scheme a few first time steps are performed
with the implicit Euler method and then the Crank–Nicolson method is used.
This leads to second-order accuracy and good damping properties. For the
semi-discrete LCP (11) the scheme reads{

B(k)v(k) −C(k)v(k+1) − f (k) ≥ 0, v(k) ≥ g,(
B(k)v(k) −C(k)v(k+1) − f (k)

)T (
v(k) − g

)
= 0,

(13)

for k = l − 1, . . . , 0, where

B(k) = I + θk∆tkA, C(k) = I− (1− θk)∆tkA, (14)

and f (k) is due to possible non-homogeneous Dirichlet boundary conditions.
When the first four time steps are performed with the implicit Euler method
the parameter θk is defined by

θk =

{
1, k = l − 1, . . . , l − 4,
1
2 , k = l − 5, . . . , 0.

(15)

The temporal discretization of the semi-discrete form with the Lagrange
multiplier (12) leads to{

B(k)v(k) −C(k)v(k+1) − f (k) = ∆tkλ(k), λ(k) ≥ 0, v(k) ≥ g,(
λ(k)

)T (
v(k) − g

)
= 0,

(16)

for k = l − 1, . . . , 0.

5 Operator Splitting Method

Here we describe an operator splitting method [IT04a] which approximates the
solution of the LCP in (16) by two fractional time steps. The first step requires
the solution of a system of linear equations and the second step updates
the solution and Lagrange multiplier to satisfy the linear complementarity
conditions. The advantage of this approach is that it simplifies the solution
procedure and allows to use any efficient method for solving linear systems.
More precisely, the steps in the operator splitting method are

B(k)ṽ(k) = C(k)v(k+1) + f (k) +∆tkλ(k+1) (17)
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and{
v(k) − ṽ(k) −∆tk(λ(k) − λ(k+1)) = 0, λ(k) ≥ 0, v(k) ≥ g,(
λ(k)

)T (
v(k) − g

)
= 0.

(18)

The first step (17) uses the Lagrange multiplier vector λ(k+1) from the previ-
ous step and not λ(k) which leads to the decoupling of the linear system and
the constraints. The second step does not have any spatial couplings and the
update can be made quickly by going through components of the vectors v(k)

and λ(k) one by one. Due to this, the main computational cost is the solution
of the linear system in the first step (17). Under reasonable assumptions it
can be shown that the difference between the solutions of the original time
stepping and the operator splitting time stepping is second-order with respect
to the time step size [IT04b]. Hence, it does not reduce the order of accuracy
compared to second-order accurate time stepping method like the Rannacher
scheme.

6 Solution of Linear Systems

In each time step with the operator splitting method it is necessary to solve
a system of linear equations with the matrix B defined in (14). Here and
in the following we have omitted the subscript (k) in order to simplify the
notations. The Black–Scholes PDE leads to a tridiagonal B with the above
finite difference discretization. In this case the linear systems can be solved
efficiently using the LU decomposition.

With the jump-diffusion models B is a full matrix and the use of LU de-
composition would be computationally too expensive. We adopt the approach
proposed in [AO05, dFV05] which is an iterative method based on a regular
splitting of B. We use the splitting

B = T−R, (19)

where R is the full matrix resulting from the integral term and, thus, T is
a tridiagonal matrix defined by other terms. Now the iterative method for a
system Bv = b reads

vl+1 = T−1
(
b + Rvl

)
, l = 0, 1, . . . , (20)

where v0 is the initial guess taken to be the solution from the previous time
step. The solutions with T, that is, multiplications with T−1 can be com-
puted efficiently using LU decomposition. The multiplications with R can
be performed using the fast recursion formulas in [Toi06] when Kou’s model
is used. Furthermore, it has been shown in [dFV05] that the iteration (20)
converges fast. As the numerical experiments will demonstrate, usually two
or three iterations are enough to obtain the solution with sufficient accuracy.
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With Heston’s model B is a block tridiagonal matrix corresponding to a
two-dimensional PDE. Furthermore, B is usually not well conditioned partly
due to varying coefficient in the PDE. In order to obtain a method with opti-
mal computational complexity, we will employ a multigrid method. The analy-
sis in [Oos03] shows that a multigrid with an alternating direction smoother is
robust with respect to all parameters in the problem and discretization. This
smoother is computationally more expensive and complicated to implement
than point smoothers, but we used it as it guarantees a fast multigrid conver-
gence. The grid transfers are performed using full weighting restriction and
bilinear prolongation.

7 Numerical Results

In our numerical examples we price American put options with the parameters

σ = 0.25, r = 0.1, T = 0.25, and K = 10. (21)

The additional parameters for Kou’s and Heston’s models are defined in the
subsequent sections. In Table 1, we have collected reference option prices for
three asset values. They are computed with very fine discretizations for the
one-dimensional models on the interval [0, 40] and the prices under Heston’s
model are from [IT06b] with y = 0.0625. Fig. 1 shows the price of the option
as a function of x computed with the different models in the interval 8.5 ≤
x ≤ 12.5.

In the following tables all CPU times are given in milliseconds on a PC
with 3.8 GHz Intel Xeon processor and implementations have been made using
Fortran.

7.1 Black–Scholes Model

Based on a few numerical experiments using the model parameters in (21) we
observed that the truncation boundary can be chosen to be X = 2K = 20
with the truncation error being so small that it does not influence the first
five decimals of the prices at x = 9, 10, and 11. We define the spatial grid as

xi =
(

1 +
sinh(β(i/n− γ))

sinh(βγ)

)
K, i = 0, 1, . . . ,m, (22)

Table 1. Reference prices for options with the different models

model \ asset value x = 9 x = 10 x = 11

Black–Scholes 1.030463 0.402425 0.120675
Kou 1.043796 0.429886 0.148625
Heston 1.107621 0.520030 0.213677
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Fig. 1. The price of the option with respect to the value of the underlying asset for
the three different models.

Table 2. Results for different grids with Black–Scholes model

l m error ratio time

10 20 0.01056 0.02
18 40 0.00208 5.1 0.06
34 80 0.00058 3.6 0.21
66 160 0.00022 2.7 0.79

130 320 0.00007 3.3 3.08

where we have chosen β = 6 and γ = 1/2 which leads to some refinement near
the strike price K. For the temporal discretization, we choose the approxima-
tion times to be

tk =
(
a−k/(l−2) − 1
a−1 − 1

)
T, k = 0, 1, . . . , l − 4, (23)

and

tk =
(
a−(k+l−4)/(2l−4) − 1

a−1 − 1

)
T, k = l − 3, . . . , l. (24)

The parameter a in (23) and (24) has been chosen to be a = 2 which leads to
a mild refinement near the expiry.

Table 2 reports the l2 errors computed using the reference prices in Table
1 at x = 9, 10, and 11 for five different space-time grids. The ratio column
in the table gives the ratios between two successive l2 errors. The time is the
CPU time in milliseconds needed to price the options.

7.2 Kou’s Jump-Diffusion Model

The parameters defining the jump probability and its distribution in Kou’s
model are chosen to be
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Table 3. Results for different grids with Kou’s model

l m error ratio iter time

10 20 0.01050 3.1 0.10
18 40 0.00231 4.5 3.0 0.29
34 80 0.00056 4.1 3.0 0.97
66 160 0.00022 2.6 2.3 2.95

130 320 0.00006 3.7 2.0 10.17

Table 4. Results for different grids with Heston’s model

l m n error ratio iter time

10 20 8 0.02576 1.0 0.7
18 40 16 0.00574 4.5 1.3 5.7
34 80 32 0.00420 1.4 2.0 59.4
66 160 64 0.00049 8.5 2.0 487.5

130 320 128 0.00012 4.1 2.0 4373.7

α1 = 3, α2 = 3, p =
1
3
, and µ = 0.1. (25)

We have used the same space-time grids as with the Black–Scholes model.
Table 3 reports the errors, their ratios and CPU times in milliseconds. The
column iter in the table gives the average number of the iterations (20). The
stopping criterion for the iterations was that the norm of the residual vector
is less than 10−11 times the norm of the right-hand side vector.

7.3 Heston’s Stochastic Volatility Model

In Heston’s model the behavior of the stochastic volatility and its correlation
with the value of the asset are described by the parameters

α = 5, β = 0.16, γ = 0.9, and ρ = 0.1. (26)

The values of these parameters are the same as in many previous studies in-
cluding [CP99, IT07, Oos03, ZFV98]. The computational domain is truncated
at X = 20 and Y = 1 like also in [Oos03, IT07], for example. We use the same
non-uniform grids as in [IT05] and the parameter w in the discretization of
the cross derivative (not discussed in this paper) is chosen using the formula
in [IT07]. For the time stepping we use uniform time steps.

Table 4 reports the errors, their ratios, the average number of multigrid it-
erations, and CPU times in milliseconds. The stopping criterion for the multi-
grid iterations was that the norm of the residual vector is less than 10−6 times
the norm of the right-hand side vector.
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8 Conclusions

We described an operator splitting method for solving linear complementar-
ity problems (LCPs) resulting from American option pricing problems. We
considered it in the case of the Black–Scholes model, Kou’s jump-diffusion
model, and Heston’s stochastic volatility model for the value of the underly-
ing asset. The numerical results demonstrated that with all these models the
prices can be computed in a few milliseconds on a PC.

As future research one could consider the construction of adaptive dis-
cretization; see [AP05, LPvST07], for example. Also the robustness and ac-
curacy of discretizations for Heston’s model with higher correlations could be
studied. A natural generalization would be to extent the methods for stochas-
tic volatility models including jumps like the ones in [Bat96, DPS00].
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