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Summary. Fixed domain methods have well-known advantages in the solution of
variable domain problems, but are mainly applied in the case of Dirichlet boundary
conditions. This paper examines a way to extend this class of methods to the more
difficult case of Neumann boundary conditions.

1 Introduction

Starting with the well-known monograph of Pironneau [Pir84], shape opti-
mization problems are subject to very intensive research investigations. They
concentrate several major mathematical difficulties: unknown and possibly
non-smooth character of optimal geometries, lack of convexity of the func-
tional to be minimized, high complexity and stiff character of the equations
to be solved numerically, etc. Accordingly, the relevant scientific literature is
huge and we quote here just the books of Mohammadi and Pironneau [MP01]
and of Neittaanmäki, Sprekels and Tiba [NST06] for an introduction to this
domain of mathematics.

In this paper, we study the model optimal design problem

Min
∫

Ω

j(x, y(x)) dx (1)

subject to the Neumann boundary value problem

∫
Ω

⎡⎣ d∑
i,j=1

aij
∂y

∂xi

∂v

∂xj
+ a0yv

⎤⎦ dx =
∫

Ω

fv (2)

for any v ∈ H1(Ω).
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Here, Ω ⊂ D ⊂ R
d is an unknown domain (the minimization parameter),

while D is a fixed smooth open set in the Euclidean space R
d. The functions

a0 and aij are in L∞(D) and f ∈ L2(D), that is (2) makes sense for any Ω
admissible and defines, as it is well known, the unique weak solution y = yΩ ∈
H1(Ω) of the second order elliptic equation

−
d∑

i,j=1

∂

∂xj

(
aij

∂y

∂xi

)
+ a0y = f in Ω (3)

with Neumann boundary conditions for the conormal derivative

∂y

∂nA
=

d∑
i,j=1

aij
∂y

∂xj
cos(n̄, xi) = 0 on ∂Ω. (4)

In the classical formulation (3), (4), ∂Ω has to be assumed smooth and n̄
is the (outward) normal to ∂Ω in the considered points x = (x1, x2, ..., xd).
Non-homogeneous Neumann problems (i.e. with the right-hand side non-zero
in (4)) may be considered as well by a simple translation argument reducing
everything to the homogeneous case.

The functional j : D × R → R is a general convex integrand in the sense
of Rockafellar [Roc70] – more assumptions will be added when necessary.

The open set Ω will be “parametrized” by some continuous function g :
D → R by

Ω = Ωg = int{x ∈ D | g(x) ≥ 0} (5)

and g ∈ C(D̄) will be the true unknown of the optimization problem (1),
(2). The parametrization is, of course, non-unique, but this does not affect
the argument. Arbitrary Caratheodory open sets Ω ⊂ D may be expressed
in the form Ωg if g is the signed distance function (at some power). Further
constraints on Ω = Ωg (beside Ω ⊂ D) may be imposed in the abstract form

g ∈ C, (6)

where C ⊂ C(D̄) is some convex closed subset. For instance, if E ⊂ D is a
given subset and C = {g ∈ C(D̄) | g(x) ≥ 0, x ∈ E}, then the constraint
g ∈ C is equivalent with the condition E ⊂ Ω. Other cost functionals may be
studied as well: ∫

E

j(x, y(x)) dx

(if the constraint E ⊂ Ω is imposed) or∫
Γ

j(x, y(x)) dx,

where Γ ⊂ D is a smooth given manifold and Ω ⊃ Γ for all admissible Ω.
Robin boundary conditions (instead of (4)) may be also discussed by our
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method. In the case of Dirichlet boundary conditions other approaches may
be used [NPT07, NT95, Tib92].

In Section 2 we recall some geometric controllability properties that are at
the core of our approach, while Section 3 contains the basic arguments. The
paper ends with some brief Conclusions.

2 A Controllability-Like Result

In the classical book of Lions [Lio68], it is shown that, when u ∈ L2(Γ1) is
arbitrary and yu is the unique solution (in the transposition sense) of

−∆y = 0 in G,

y = u on Γ1, y = 0 on Γ2,

then the set of normal traces {∂yu

∂n | u ∈ L2(Γ1)} is linear and dense in the
space H−1(Γ2). Notice that ∂yu

∂n ∈ H−1(Γ2) due to some special regularity
results, Lions [Lio68]. Here G ⊂ R

d is an open connected set such that its
boundary ∂G = Γ1 ∪ Γ2 and Γ̄1 ∩ Γ̄2 = ∅. This density result may be in-
terpreted as an approximate controllability property in the sense that the
“attainable” set of normal derivatives ∂yu

∂n (when u ranges in L2(Γ1)) may
approximate any element in the “image” space H−1(Γ2). Constructive ap-
proaches, results involving constraints on the boundary control u are reported
in [NST06, Ch. 5.2].

We continue with a distributed approximate controllability property, which
is a constructive variant of Theorem 5.2.21 in [NST06]. We consider the equa-
tion (2) in D and with a modified right-hand side:∫

D

⎡⎣ d∑
i,j=1

aij
∂ỹ

∂xi

∂ṽ

∂xj
+ a0ỹṽ

⎤⎦ dx =
∫

D

χ0uṽ dx ∀ṽ ∈ H1(D), (7)

where u ∈ L2(D) is a distributed control and χ0 is the characteristic function
of some smooth open set Ω0 ⊂ D such that ∂D ⊂ Ω̄0. That is, Ω0 is a relative
neighborhood of ∂D and we denote Γ = ∂Ω0 \ ∂D. Clearly, Γ̄ ∩ ∂D = ∅.
Theorem 1. Let w ∈ H1/2(Γ ) be given and let [uε, yε] be the unique optimal
pair of the control problem:

Min
u∈L2(Ω0)

{
1
2
|y − w|H1/2(Γ ) +

ε

2
|u|2L2(Ω0)

}
, ε > 0, (8)

∫
Ω

⎡⎣ d∑
i,j=1

aij
∂y

∂xi

∂z

∂xj
+ a0yz

⎤⎦ dx =
∫

Ω0

uz dx ∀z ∈ H1(Ω0). (9)

Then, we have
yε|Γ −→

ε→0
w strongly in H1/2(Γ ). (10)
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Proof. The existence and the uniqueness of the optimal pair [uε, yε] ∈
L2(Ω0) × H1(Ω0) of the control problem (8), (9) is obvious. The pair [0,0]
is clearly admissible and, for any ε > 0, we obtain

1
2
|yε − w|2H1/2(Γ ) +

ε

2
|uε|2L2(Ω0)

≤ 1
2
|w|2H1/2(Γ ).

Therefore, {yε} and {ε1/2uε} are bounded respectively in H1/2(Γ ), L2(Ω0).
We denote by l ∈ H1/2(Γ ) the weak limit (on a subsequence) of {yε − w}.

Let us define the adjoint system by:

∫
Ω0

⎡⎣ d∑
i,j=1

aij
∂z

∂xi

∂pε

∂xj
+ a0zpε

⎤⎦ dx =
∫

Γ

(yε − w)z dσ ∀z ∈ H1(Ω0), (11)

which is a non-homogeneous Neumann problem and pε ∈ H1(Ω0). We also
introduce the equation in variations

∫
Ω0

⎡⎣ d∑
i,j=1

aij
∂µ

∂xi

∂z

∂xj
+ a0µz

⎤⎦ dx =
∫

Ω0

νz dx ∀z ∈ H1(Ω0), (12)

which defines the variations yε + λµ, uε + λν for any ν ∈ L2(Ω0) and λ ∈ R.
A standard computation using (11), (12) and the optimality of [uε, yε]

gives

0 = ε(uε, ν)L2(Ω0) + (yε − w, µ)H1/2(Γ )

= ε(uε, ν)L2(Ω0) +
∫

Ω0

⎡⎣ d∑
i,j=1

aij
∂µ

∂xi

∂pε

∂xj
+ a0µpε

⎤⎦ dx
= ε(uε, ν)L2(Ω0) + (pε, ν)L2(Ω0). (13)

Due to the convergence properties of the right-hand side in (11), {pε} is
bounded in H1(Ω0) and we can pass to the limit (on a subsequence) pε → p
weakly in H1(Ω0), to obtain

∫
Ω0

⎡⎣ d∑
i,j=1

aij
∂z

∂xi

∂p

∂xj
+ a0zp

⎤⎦ dx =
∫

Γ

lz dσ ∀z ∈ H1(Ω0). (14)

The passage to the limit in (13), as {ε1/2uε} is bounded, gives that p ≡ 0 in
Ω0 and (14) shows that l = 0 in Γ .

We have proved (10) in the weak topology of H1/2(Γ ). The strong con-
vergence is a consequence of the Mazur theorem [Yos80] and of a variational
argument.
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Remark 1. The Mazur theorem alone and the linearity of (9) produces a
sequence ũε (of convex combinations of uε) such that the corresponding se-
quence of states ỹε satisfies (10). Theorem 1 gives a constructive answer to
the approximate controllability property.

If Ω0 is smooth enough and w ∈ H3/2(Γ ), then the trace theorem ensures
the existence of ŷ ∈ H2(Ω0) such that ∂ŷ

∂nA
= 0 (null conormal derivative)

and ŷ|Γ = w. That is, the control

û = −
d∑

i,j=1

∂

∂xj

(
aij

∂ŷ

∂xi

)
+ a0ŷ

ensures the exact controllability property. Notice that û is not unique since any
element in H2

0 (Ω0) may be added to ŷ with all the properties being preserved.

3 A Variational Fixed Domain Formulation

We assume that Ω = Ωg, where g ∈ C(D̄), is as in (5). Motivated by the result
in the previous section, we consider the following homogeneous Neumann
problem in D:

−
d∑

i,j=1

∂

∂xj

(
aij

∂ỹ

∂xi

)
+ a0ỹ = f + (1−H(g))u in D, (15)

∂y

∂nA
= 0 on ∂D. (16)

HereH(·) is the Heaviside function in R andH(g) is, consequently, the charac-
teristic function ofΩg. Under conditions of Theorem 1, the restriction y = ỹ|Ωg

is the solution of (2) in Ω = Ωg. Moreover, since g = 0 on ∂Ωg, under smooth-
ness conditions, ∇g is parallel to n̄, the normal to ∂Ωg. Then, we can rewrite
(4) as

d∑
i,j=1

aij
∂y

∂xj
∇g · ei = 0 on ∂Ωg, (17)

where we use that cos(n̄, xi) = cos(∇g, xi) and ei is the vector of the axis xi.
If the elliptic operator is the Laplace operator, then (17) becomes simply

∇g · ∇y = 0 on ∂Ωg.

In order to fix a unique u ∈ L2(D) satisfying to (15), (16), (17), we define the
following optimal control problem with state constraints:

Min
u∈L2(D)

{
1
2

∫
D

u2 dx

}
, (18)

governed by the state system (15), (16) and subject to the state constraint
(17).
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The discussion in Section 2 shows the existence of infinitely many admissi-
ble pairs [u, y] for the constrained control problem (15)–(18). (Here g is fixed
satisfying the necessary smoothness properties.)

In case g and Ωg ⊂ D are variable and unknown, we say that (15)–(18) is
the variational fixed domain (in D!) formulation of the Neumann boundary
value problem. One can write the optimality conditions that give a system of
equations equivalent with (15)–(18) and extend the Neumann problem from
Ωg to D.

We introduce the penalized control problem, for ε > 0, as follows (here
[g ≡ 0] denotes ∂Ωg):

Min
u∈L2(D)

{
1
2

∫
D

u2 dx+
1
2ε

∫
[g≡0]

F (yε)2 dσ

}
(19)

subject to

−
d∑

i,j=1

∂

∂xj

(
aij
∂yε

∂xi

)
+ a0yε = f + (1−H(g))u in D, (20)

∂yε

∂nA
= 0 on ∂D. (21)

Above,

F (y) =
d∑

i,j=1

aij
∂y

∂xj
∇g · ei

and the problem (19)–(21), which is unconstrained, remains a coercive and
strictly convex control problem. That is, we have the existence and the unique-
ness of the approximating optimal pair [uε, yε] ∈ L2(D) × H2(D) (if ∂D is
smooth enough).

Proposition 1. We have

|F (yε)|L2(∂Ωg) ≤ Cε
1
2 , (22)

uε → û strongly in L2(D), (23)

yε → ŷ strongly in H2(D), (24)

where C is a constant independent of ε > 0 and [û, ŷ] ∈ L2(D) × H2(D) is
the unique optimal pair of (15)–(18).

Proof. As in Section 2, by the trace theorem, we may choose ỹ ∈ H2(D \Ωg)
with the property that ∂ỹ

∂nA
= 0 in ∂(D \ Ωg) and ỹ may be extended to the

solution of (2) inside Ωg. We can compute ũ ∈ L2(D \Ωg) by (20) and extend
it by 0 inside Ωg. Then [ũ, ỹ] is an admissible pair for the control problem
(19)–(21) and, by the optimality of [uε, yε], we get
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1
2

∫
D

u2
ε dx+

1
2ε

∫
[g≡0]

F (yε)2 dσ ≤
1
2

∫
D

ũ2 dx (25)

since F (ỹ) = 0 in ∂Ωg.
The inequality (25) gives (22) and {uε} bounded in L2(D). By (20), (21),

{yε} is bounded in H2(D) and, on a subsequence, we have yε → ŷ, uε →
û weakly in H2(D), respectively in L2(D), where [û, ŷ] again satisfy (20),
(21). Moreover, one can pass to the limit in (22) with ε → 0, to see that
F (ŷ) = 0 in ∂Ωg. This shows that [û, ŷ] is an admissible pair for the original
state constrained control problem (15)–(18). For any admissible pair [µ, z] ∈
L2(D) × H2(D) of (15)–(18), we have F (z) = 0 on ∂Ωg and the inequality
(25) is valid with ũ replaced by µ and we infer

1
2

∫
D

u2
ε dx ≤

1
2

∫
D

µ2 dx.

The weak lower semicontinuity of the norm gives

1
2

∫
D

(û)2 dx ≤ 1
2

∫
D

µ2 dx,

that is, the pair [û, ŷ] is, in fact, the unique optimal pair of (15)–(18) and we
also have

lim
ε→0

∫
D

u2
ε dx =

∫
D

(û)2 dx.

Then uε → û strongly in L2(D) and yε → ŷ strongly in H2(D) by the strong
convergence criterion in uniformly convex spaces. The convergence is valid
without taking subsequences due to the uniqueness of [û, ŷ].

Remark 2. One can further regularize H in (20), by replacing it with a mollifi-
cationHε of the Yosida approximationHε of the maximal monotone extension
of H.

Remark 3. One may take in D even null Dirichlet boundary conditions instead
of (16). Similar distributed controllability properties (approximate or exact)
may be established in very much the same way.

To write shortly, we consider the case of the Laplace operator. The penal-
ized and regularized problem is the following:

Min
u∈L2(D)

{
1
2

∫
D

u2 dx+
1
2ε

∫
[g≡0]

[∇y · ∇g]2 dσ
}
,

−∆y + y = f + (1−Hε(g))u in D,

y = 0 on ∂D.

Here, the control u ensures the “transfer” from Dirichlet to Neumann (null)
conditions on ∂Ωg and all the results are similar as for the Neumann–Neumann
case.
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Theorem 2. The gradient of the cost functional (19) with respect to u ∈
L2(D) is given by

∇J(uε) = uε + (1−H(g))pε in D, (26)

where pε ∈ L2(D) is the unique solution of the adjoint equation

∫
D

pε

⎡⎣− d∑
i,j=1

∂

∂xj

(
aij

∂z

∂xi

)
+ a0z

⎤⎦ dx =
1
ε

∫
[g≡0]

F (yε)F (z) dσ

∀z ∈ H2(D),
∂z

∂nA
= 0 on ∂D, (27)

in the sense of transpositions.

Proof. We discuss first the existence of the unique transposition solution
to (27).

The equation in variations corresponding to (20), (21) is

−
d∑

i,j=1

∂

∂xj

(
aij

∂z

∂xi

)
+ a0z = (1−H(g))v in D, (28)

∂z

∂nA
= 0 on ∂D, (29)

for any v ∈ L2(D). By regularity theory for differential equations, the unique
solution of (28), (29) satisfies z ∈ H2(D).

We perturb this equation by adding δv, δ > 0, in the right-hand side
and we denote by zδ the corresponding solution, zδ ∈ H2(D). The mapping
v → zδ, as constructed above, is an isomorphism Tδ : L2(D) → W = {z ∈
H2(D) | ∂z

∂nA
= 0 on ∂D}.

We define the linear continuous functional on L2(D) by

v −→ 1
ε

∫
[g≡0]

F (yε)F (Tδv) dσ ∀v ∈ L2(D). (30)

The Riesz representation theorem applied to (30) ensures the existence of a
unique p̃δ ∈ L2(D) such that∫

D

p̃δv =
1
ε

∫
[g≡0]

F (yε)F (Tδv) dσ ∀v ∈ L2(D). (31)

Choosing v = T−1
δ z, z ∈W arbitrary, the relation (31) gives

∫
D

p̃δ(1−H(g) + δ)−1

⎛⎝− d∑
i,j=1

∂

∂xj

(
aij

∂z

∂xi

)
+ a0z

⎞⎠ dx

=
1
ε

∫
[g≡0]

F (yε)F (z) dσ ∀z ∈W. (32)
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By redenoting pε = p̃δ(1 − H(g) + δ)−1 ∈ L2(D) (which conceptually may
depend on δ > 0) in (32) we have proved the existence for (27). The uniqueness
of pε may be shown by contradiction, directly in (27), as the factor multiplying
pε in the left-hand side of (27) “generates” the whole L2(D) when z ∈ W is
arbitrary.

Coming back to the equation in variations (28), (29) and to the definition of
the control problem (19)–(21), the directional derivative of the cost functional
(19) is given by

lim
λ→0

1
λ

[J(uε + λv)− J(uε)] =
∫

D

uεv dx+
1
ε

∫
[g≡0]

F (yε)F (z) dσ (33)

and the Euler equation is

0 =
∫

D

uεv dx+
1
ε

∫
[g≡0]

F (yε)F (z) dσ ∀v ∈ L2(D) (34)

with z defined by (28), (29). By using (27) in (34), since z given by (28), (29)
is an admissible test function, we get

0 =
∫

D

uεv dx+
∫

D

pε

⎡⎣− d∑
i,j=1

∂

∂xj

(
aij

∂z

∂xi

)
+ a0z

⎤⎦ dx
=
∫

D

uεv dx+
∫

D

pε(1−H(g))v dx. (35)

This proves (26) and ends the argument.

Remark 4. Theorem 2 may be applied for any control u ∈ L2(D). For the
optimal control uε, the directional derivative (and the gradient) is null and
we obtain uε = −pε(1−H(g)), that is, uε has support in D\Ωg. This relation
is the maximum (Pontryagin) principle applied to the control problem (19)–
(21). Moreover, one can eliminate uε and write the following system of two
elliptic equations:

−
d∑

i,j=1

∂

∂xj

(
aij
∂yε

∂xi

)
+ a0yε = f − (1−H(g))2pε in D, (36)

∂yε

∂nA
= 0 on ∂D,

∫
D

pε

⎡⎣− d∑
i,j=1

∂

∂xj

(
aij

∂z

∂xi

)
+ a0z

⎤⎦ =
1
ε

∫
[g≡0]

F (yε)F (z) dσ ∀z ∈W,

(37)
which constructs in an explicit manner the extension of the Neumann bound-
ary value problem from Ωg to D, modulo the approximation discussed in
Proposition 1.
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4 Conclusions

The shape optimization problem (1), (2) is transformed in this way into the
optimal control problem

Min
g∈C

∫
D

H(g)j(x, y(x)) dx (38)

subject to (15)–(17) which, in turn, may be approximated by (19)–(21) or,
equivalently, by (36)–(37). To obtain good differentiability properties with re-
spect to g in the optimization problem (38), one should replace H by Hε,
some regularization of H, as previously mentioned. Analyzing further approx-
imation properties and the gradient for (38) is a nontrivial task. However,
the application of evolutionary algorithms is possible since it involves just the
values of the cost (38) and no computation of the gradient with respect to g.

As initial population of controls g for the genetic algorithm, corresponding
to the finite element mesh in D, one may use the basis functions for the piece-
wise linear and continuous finite element basis. In case some supplementary
information is available on the desired shape (for instance, coming from the
constraints), this should be imposed on the initial population. Then, standard
procedures specific to evolutionary algorithms [Hol75] are to be applied.
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