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Summary. A numerical method for the simulation of fluid flows with complex free
surfaces is presented. The liquid is assumed to be a Newtonian or a viscoelastic
fluid. The compressible effects of the surrounding gas are taken into account, as
well as surface tension forces. An Eulerian approach based on the volume-of-fluid
formulation is chosen. A time splitting algorithm, together with a two-grids method,
allows the various physical phenomena to be decoupled. A chronological approach is
adopted to highlight the successive improvements of the model and the wide range
of applications. Numerical results show the potentialities of the method.

1 Introduction

Complex free surface phenomena involving Newtonian and/or non-Newtonian
flows are nowadays a topic of active research in many fields of physics, engi-
neering or bioengineering. The literature contains numerous models for com-
plex liquid-gas free surfaces problems, see, e.g., [FCD+06, SZ99]. For instance,
when considering the injection of a liquid in a complex cavity initially filled
with gas, an Eulerian approach is generally adopted in order to catch the
topology changes of the liquid region.

Such two-phases flows are computationally expensive in three space di-
mensions since (at least) both the velocity and pressure must be computed at
each grid point of the whole liquid-gas domain.

The purpose of this article is to review a numerical model in order to
compute complex free surface flows in three space dimensions. The features
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of the model are the following. A volume-of-fluid method is used to track
the liquid domain, which can exhibit complex topology changes. The velocity
field is computed only in the liquid region. The incompressible liquid can be
modeled either as a Newtonian or as a viscoelastic fluid. The ideal gas law is
used to compute the external pressure in the surrounding gas and the resulting
force is added on the liquid-gas free surface. Surface tension effects can also
be taken into account on the liquid-gas free surface. The complete description
of the model can be found in [MPR99, MPR03, CPR05, Cab06, BPL06].

The numerical model is based on a time-splitting approach [Glo03] and a
two-grids method. This allows advection, diffusion and viscoelastic phenomena
to be decoupled, as well as the treatment of the liquid and gas phases. Finite
element techniques [FF92] are used to solve the diffusion phenomena using an
unstructured mesh of the cavity containing the liquid. A forward characteristic
method [Pir89] on a structured grid allows advection phenomena to be solved
efficiently.

The article is structured as follows. In Section 2, the simplest model is
presented: the liquid is an incompressible Newtonian fluid, the effects of the
surrounding gas and surface tension are neglected. The effects of the surround-
ing gas are described in Section 3, those of the surface tension in Section 4.
Finally, the case of a viscoelastic liquid is considered in Section 5. Numerical
results are presented throughout the text and illustrate the capabilities and
improvements of the model.

2 Modeling of an Incompressible Newtonian Fluid
with a Free Surface

2.1 Governing Equations

The model presented in this section has already been published in [MPR99,
MPR03]. Let Λ, with a boundary ∂Λ, be a cavity of R

3 in which a liquid
must be confined, and let T > 0 be the final time of simulation. For any given
time t ∈ (0, T ), let Ωt, with a boundary ∂Ωt, be the domain occupied by
the liquid, let Γt = ∂Ωt \ ∂Λ be the free surface between the liquid and the
surrounding gas and let QT be the space-time domain containing the liquid,
i.e. QT = {(x, t) : x ∈ Ωt, 0 < t < T}.

In the liquid region, the velocity field v : QT → R
3 and the pressure

field p : QT → R are assumed to satisfy the time-dependent, incompressible
Navier–Stokes equations, that is

ρ
∂v
∂t

+ ρ(v · ∇)v − 2 div (µD(v)) +∇p = f in QT , (1)

div v = 0 in QT . (2)

Here D(v) = 0.5 · (∇v +∇vT ) denotes the rate of deformation tensor, ρ the
constant density and f the external forces.
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The dynamic viscosity µ can be constant or, in order to take into account
turbulence effects, a turbulent viscosity µT = µT (v) = αT ρ

√
2D(v) : D(v),

where αT is a parameter to be chosen, is added. The use of a turbulent
viscosity is required when large Reynolds numbers and thin boundary lay-
ers are involved. Otherwise, in order to consider Bingham flows (when con-
sidering mud flows or avalanches, for instance), a plastic viscosity µB =
α0ρ/

√
2D(v) : D(v), where α0 is a parameter to be chosen, can be added.

Let ϕ : Λ× (0, T ) → R be the characteristic function of the liquid domain
QT . The function ϕ equals one if the liquid is present, zero if it is not, thus
Ωt = {x ∈ Λ : ϕ(x, t) = 1}. In order to describe the kinematics of the free
surface, ϕ must satisfy (in a weak sense)

∂ϕ

∂t
+ v · ∇ϕ = 0 in Λ× (0, T ), (3)

where the velocity v is extended continuously in the neighborhood of QT .
At initial time, the characteristic function of the liquid domain ϕ is given,
which defines the initial liquid region Ω0 = {x ∈ Λ : ϕ(x, 0) = 1}. The initial
velocity field v is prescribed in Ω0.

The boundary conditions for the velocity field are the following. On the
boundary of the liquid region being in contact with the walls (that is to say
the boundary of Λ), inflow, slip or Signorini boundary conditions are enforced,
see [MPR99, MPR03]. On the free surface Γt, the forces acting on the free
surface are assumed to vanish, when both the influence of the external media
and the capillary and surface tension effects are neglected on the free surface.
If these influences are not neglected, we have to establish the equilibrium of
forces on the free surface. In the first case, the following equilibrium relation
is then satisfied on the liquid-gas interface:

−pn + 2µD(v)n = 0 on Γt, t ∈ (0, T ), (4)

where n is the unit normal of the liquid-gas free surface oriented toward the
external gas.

The mathematical description of our model is complete. The model un-
knowns are the characteristic function ϕ in the whole cavity, the velocity v
and pressure p in the liquid domain only. These unknowns satisfy the equa-
tions (1)–(3). Simplified problems extracted from this model of incompress-
ible liquid flow with a free surface have been investigated theoretically in
[CR05, Cab05], in one and two dimensions of space, and existence results and
error estimates have been obtained.

2.2 Time Splitting Scheme

An implicit splitting algorithm is proposed to solve (1)–(3) by splitting the
advection from the diffusion part of the Navier–Stokes equations. Let 0 =
t0 < t1 < t2 < . . . < tN = T be a subdivision of the time interval [0, T ], define
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Fig. 1. The splitting algorithm (from left to right). Two advection problems are
solved to determine the new approximation of the characteristic function ϕn+1, the
new liquid domain Ωn+1 and the predicted velocity vn+1/2. Then, a generalized
Stokes problem is solved in the new liquid domain Ωn+1 in order to obtain the
velocity vn+1 and the pressure pn+1.

δtn = tn+1− tn the n-th time step, n = 0, 1, 2, . . . , N , δt the largest time step.
Let ϕn, vn, pn, Ωn be approximations of ϕ, v, p, Ωt at time tn, respectively.
Then the approximations ϕn+1, vn+1, pn+1, Ωn+1 at time tn+1 are computed
by means of an implicit splitting algorithm, as illustrated in Figure 1.

Two advection problems are solved first, leading to a prediction of the
new velocity vn+1/2 together with the new approximation of the characteristic
function ϕn+1 at time tn+1, which allows to determine the new liquid domain
Ωn+1 and the new liquid interface Γn+1. Then a generalized Stokes problem is
solved on Ωn+1 with the boundary condition (4) on the liquid interface Γn+1,
Dirichlet, slip or Signorini-type conditions on the boundary of the cavity Λ
and the velocity vn+1 and pressure pn+1 in the liquid are obtained.

This time-splitting algorithm introduces an additional error on the veloc-
ities and pressures which is of order O(δt), see, e.g., [Mar90]. This algorithm
allows the motion of the free surface to be decoupled from the diffusion step,
which consists in solving a Stokes problem in a fixed domain [Glo03].
Advection Step. Solve between the times tn and tn+1 the two advection prob-
lems:

∂v
∂t

+ (v · ∇)v = 0,
∂ϕ

∂t
+ v · ∇ϕ = 0 (5)

with initial conditions vn and ϕn. This step is solved exactly by the method of
characteristics [Mau96, Pir89] which yields a prediction of the velocity vn+1/2

and the characteristic function of the new liquid domain ϕn+1:

vn+1/2(x+ δtnvn(x)) = vn(x) and ϕn+1(x+ δtnvn(x)) = ϕn(x) (6)

for all x belonging to Ωn. Then, the new liquid domain Ωn+1 is defined as
the set of points such that ϕn+1 equals one.

Diffusion Step. The diffusion step consists in solving a generalized Stokes
problem on the domain Ωn+1 using the predicted velocity vn+1/2 and the
boundary condition (4). The following backward Euler scheme is used:
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ρ
vn+1 − vn+1/2

δtn
− 2 div

(
µD(vn+1)

)
+∇pn+1 = f(tn+1) in Ωn+1, (7)

div vn+1 = 0 in Ωn+1, (8)

where vn+1/2 is the prediction of the velocity obtained with (6) after the
advection step. The boundary conditions on the free surface are given by (4).
The weak formulation corresponding to (7), (8) and (4), therefore, consists in
finding vn+1 and pn+1 such that vn+1 is vanishing on ∂Λ and

ρ

∫
Ωn+1

vn+1 − vn+1/2

δtn
·w dx + 2

∫
Ωn+1

µD(vn+1) : D(w) dx

−
∫

Ωn+1
pn+1 div w dx−

∫
Ωn+1

f ·w dx−
∫

Ωn+1
q div vn+1 dx = 0, (9)

for all test functions (w, q) such that w vanishes on the boundary of the cavity
where essential boundary conditions are enforced.

2.3 A Two-Grids Method for Space Discretization

Advection and diffusion phenomena being now decoupled, the equations (5)
are first solved using the method of characteristics on a structured mesh of
small cells in order to reduce numerical diffusion of the interface Γt between
the liquid and the gas, and have an accurate approximation of the liquid
region, see Figure 2 (left).

The bounding box of the cavity Λ is meshed into a structured grid made
out of small cubic cells of size h, each cell being labeled by indices (ijk). Let
ϕn

ijk and vn
ijk be the approximate values of ϕ and v at the center of cell number

(ijk) at time tn. The unknown ϕn
ijk is the volume fraction of liquid in the cell

ijk and is the numerical approximation of the characteristic function ϕ at

Fig. 2. Two-grids method. The advection step is solved on a structured mesh of
small cubic cells composed of blocks whose union covers the physical domain Ωh

(left), while the diffusion step is solved on a finite element unstructured mesh of
tetrahedra (right).
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time tn, which is piecewise constant on each cell of the structured grid. The
advection step for the cell number (ijk) consists in advecting ϕn

ijk and vn
ijk by

δtnvn
ijk and then projecting the values on the structured grid, to obtain ϕn+1

ijk

and a prediction of the velocity vn+ 1
2

ijk . A simple implementation of the SLIC
(Simple Linear Interface Calculation) algorithm, described in [MPR03] and
inspired by [NW76], allows to reduce the numerical diffusion of the domain
occupied by the liquid by pushing the fluid along the faces of the cell before
advecting it. The choice of how to push the fluid depends on the volume
fraction of liquid of the neighboring cells. The cell advection and projection
with SLIC algorithm are presented in Figure 3, in two space dimensions for
the sake of simplicity. We refer to [AMS04] for a recent improvement of the
SLIC algorithm.

Remark 1. A post-processing technique allows to avoid the compression effects
and guarantees the conservation of the mass of liquid. Related to global repair
algorithms [SW04], this technique produces final values ϕn+1

ijk which are be-
tween zero and one, even when the advection of ϕn gives values strictly larger
than one. The technique consists in moving the fraction of liquid in excess in
the cells that are over-filled to receiver cells in a global manner by sorting the
cells according to ϕn+1. Details can be found in [MPR99, MPR03].

Once values ϕn+1
ijk and vn+1/2

ijk have been computed on the cells, values of

the fraction of liquid ϕn+1
P and of the velocity field vn+ 1

2
P are computed at the

nodes P of the finite element mesh with approximated projection methods. We
take advantage of the difference of refinement between a coarse finite element
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mesh and a finer structured grid of cells. Let Th be the triangulation of the
cavity Λ. For any vertex P of Th, let ψP be the corresponding finite element
basis function (i.e. the continuous, piecewise linear function having value one
at P , zero at the other vertices). Then, ϕn+1

P , the volume fraction of liquid at
vertex P and time tn+1 is computed by:

ϕn+1
P =

⎛⎜⎝ ∑
K∈Th
P∈K

∑
ijk

Cijk∈K

ψP (Cijk)ϕn+1
ijk

⎞⎟⎠/⎛⎜⎝ ∑
K∈Th
P∈K

∑
ijk

Cijk∈K

ψP (Cijk)

⎞⎟⎠ , (10)

where Cijk is the center of the cell (ijk). The same kind of formula is used to
obtain the predicted velocity vn+ 1

2 at the vertices of the finite element mesh.
When these values are available at the vertices of the finite element mesh, the
approximation of the liquid region Ωn+1

h used for solving (9) is defined as the
union of all elements of the mesh K ∈ Th with (at least) one of its vertices P
such that ϕn+1

P > 0.5, the approximation of the free surface being denoted by
Γn+1

h .
Numerical experiments reported in [MPR99, MPR03] have shown that

choosing the size of the cells of the structured mesh approximately 5 to 10
times smaller than the size of the finite elements is a good choice to reduce
numerical diffusion of the interface Γt. Furthermore, since the characteristics
method is used, the time step is not restricted by the CFL number (which
is the ratio between the time step times the maximal velocity divided by the
mesh size). Numerical results in [MPR99, MPR03] have shown that a good
choice generally consists in choosing CFL numbers ranging from 1 to 5.

Remark 2. In number of industrial mold filling applications, the shape of the
cavity containing the liquid (the mold) is complex. Therefore, a special, hier-
archical, data structure has been implemented in order to reduce the memory
requirements, see [MPR03, RDG+00]. The cavity is meshed into tetrahedra
for the resolution of the diffusion problem. For the advection part, a hierar-
chical structure of blocks, which cover the cavity and are glued together, is
defined. A computation is performed inside a block if and only if it contains
cells with liquid. Otherwise the whole block is deactivated.

The diffusion step consists in solving the Stokes problem (9) with finite
element techniques. Let vn+1

h (resp. pn+1
h ) be the piecewise linear approxima-

tion of vn+1 (resp. pn+1). The Stokes problem is solved with stabilized P1−P1

finite elements (Galerkin Least Squares, see [FF92]) and consists in finding
the velocity vn+1

h and pressure pn+1
h such that:



194 A. Bonito et al.

ρ

∫
Ωn+1

h

vn+1
h − vn+1/2

h

δtn
w dx + 2

∫
Ωn+1

h

µD(vn+1
h ) : D(w) dx

−
∫

Ωn+1
h

fw dx−
∫

Ωn+1
h

pn+1
h div w dx−

∫
Ωn+1

h

div vn+1
h q dx

−
∑

K⊂Ωn+1
h

αK

∫
K

(
vn+1

h − vn+1/2
h

δtn
+∇pn+1

h − f

)
· ∇q dx = 0, (11)

for all w and q the velocity and pressure test functions, compatible with
the boundary conditions on the boundary of the cavity Λ. The value of the
parameter αK is discussed in [MPR99, MPR03].

The projection of the continuous piecewise linear approximation vn+1
h back

on the cell (ijk) is obtained by interpolation of the piecewise finite element
approximation at the center Cijk of the cell. It allows to obtain a value of the
velocity vn+1

ijk on each cell ijk of the structured grid for the next time step.

2.4 Numerical Results

The classical “vortex-in-a-box” test case widely treated in the literature is
considered here [RK98]. The initial liquid domain is a circle of radius 0.015
with its center located in (0.05, 0.075). It is stretched by a given velocity, given
by the stream function ψ(x, y) = 0.01π sin2(πx/0.1) sin2(πy/0.1) cos(πt/2).
The velocity being periodic in time, the initial liquid domain is reached after
a time T = 2. Figure 4 illustrates the liquid-gas interface for three structured
meshes [CPR05]. The interface with maximum deformation and the interface
after one period of time are represented. Numerical results show the efficiency
and convergence of the scheme.

An S-shaped channel lying between two horizontal plates is filled. The
channel is contained in a 0.17m × 0.24 m rectangle. The distance between
the two horizontal plates is 0.008 m. Water is injected at one end with

Fig. 4. Single vortex test case, representation of the computed interface at times
t = 1 (maximal deformation) and t = 2 (return to initial shape). Left: coarser mesh,
middle: middle mesh, right: finer mesh.
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Fig. 5. S-shaped channel: 3D results when the cavity is initially filled with vacuum.
Time equals 8.0 ms, 26.0 ms, 44.0 ms and 53.9 ms.

constant velocity 8.7 m/s. Density and viscosity are taken to be respectively
ρ = 1000 kg/m3 and µ = 0.01 kg/(ms).

Slip boundary conditions are enforced to avoid boundary layers and a
turbulent viscosity is added, the coefficient αT being equal to 4h2, as proposed
in [CPR05]. Since the ratio between Capillary number and Reynolds number
is very small, surface tension effects are neglected.

The final time is T = 0.0054 s and the time step is τ = 0.0001 s. The mesh
is made out of 96030 elements. In Figure 5, 3D computations are presented
when a valve is placed at the end of the cavity, thus allowing the gas to exit.
The CPU time for the simulations in three space dimensions is approximately
319 minutes for 540 time steps. Most of the CPU time is spent to solve the
Stokes problem. A comparison with experimental results shows that the bub-
bles of gas trapped by the liquid vanish too rapidly. In order to obtain more
realistic results, the effect of the gas compressibility onto the liquid must be
considered. This is the scope of the next section.

3 Extension to the Modeling of an Incompressible
Liquid Surrounded by a Compressible Gas

3.1 Extension of the Model

In Section 2, the zero force condition (4) was applied on the liquid-gas in-
terface. Going back to the simulation of Figure 5, this corresponds to filling
with liquid a cavity under vacuum. When considering industrial mold filling
processes, the mold is not initially under vacuum, but contains some com-
pressible air that interacts with the liquid. Therefore, the model has to be
extended. The velocity in the gas is disregarded here, since it is CPU time
consuming to solve the Euler compressible equations in the gas domain. The
model presented in Section 2 is extended by adding the normal forces due to
the gas pressure on the free surface Γt, still neglecting tangential and capillary
forces. The relationship (4) is replaced by
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−pn + 2µD(v)n = −Pn on Γt, t ∈ (0, T ), (12)

where P is the pressure in the gas. For instance, consider the experiment of
Figure 5 where the cavity is being filled with liquid. The gas present in the
cavity at initial time can either escape if a valve is placed at the end of the
cavity (in which case the gas does exert very little resistance on the liquid)
or be trapped in the cavity. When a bubble of gas is trapped by the liquid,
the gas pressure prevents the bubble to vanish rapidly, as it is the case for
vacuum.

The pressure in the gas is assumed to be constant in space in each bubble
of gas, that is to say in each connected component of the gas domain. Let k(t)
be the number of bubbles of gas at time t and let Bi(t) denote the domain
occupied by the bubble number i (the i-th connected component). Let Pi(t)
denote the pressure in Bi(t). At initial time, Pi(0) is constant in each bubble
i. The gas is assumed to be an ideal gas. If Vi(t) is defined as the volume of
Bi(t), the pressure in each bubble at time t is thus computed by using the
law of ideal gases at constant temperature:

Pi(t)Vi(t) = constant i = 1, . . . , k(t). (13)

The above relationship is an expression of the conservation of the number of
molecules of trapped gas (gas that cannot escape through a valve) between
time t and t+ δt. However, this simplified model requires the tracking of the
position of the bubbles of gas between two time steps.

When δt is small enough, three situations appear between two time steps:
first, a single bubble remains a single bubble; or a bubble splits into two
bubbles, or two bubbles merge into one. Combinations of these three situations
may appear.

For instance, in the case of a single bubble, if the pressure P (t) in the
bubble at time t and the volumes V (t) and V (t + δt) are known, the gas
pressure at time t+δt is easily computed from the relation P (t+δt)V (t+δt) =
P (t)V (t). The other cases are described at the discrete level in the following.
Details can be found in [CPR05].

The additional unknowns in our model are the bubbles of gas Bi(t) and
the constant pressure P = Pi(t) in the bubble of gas number i. The equations
(1)–(3) are to be solved together with (12), (13).

3.2 Modification of the Numerical Method

The tracking of the bubbles of gas and the computation of their internal pres-
sure introduce an additional step in our time splitting scheme. This procedure
is inserted between the advection step (6) and the diffusion step (7), (8), in
order to compute an approximation of the pressure to plug into (12).

Let us denote by kn, Pn
i , Bn

i , i = 1, 2, . . . , kn, the approximations of k,
Pi, Bi, i = 1, 2, . . . , k, respectively at time tn. Let ξ(t) be a bubble numbering
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function, defined as negative in the liquid region Ωt and equal to i in bubble
Bi(t). The approximations kn+1, Pn+1

i , Bn+1
i , i = 1, 2, . . . , kn+1 and ξn+1 are

computed as follows.

Numbering of the Bubbles of gas

Given the new liquid domain Ωn+1, the key point is to find the number of
bubbles kn+1 (that is to say the number of connected components) and the
bubbles Bn+1

i , i = 1, . . . , kn+1. Given a point P in the gas domain Λ \Ωn+1,
we search for a function u such that −∆u = δP in Λ \ Ωn+1, with u = 0 on
Ωn+1 and u continuous. Since the solution u to this problem is strictly positive
in the connected component containing point P and vanishes outside, the first
bubble is found. The procedure is repeated iteratively until all the bubbles
are recognized. The algorithm is written as follows:

Set kn+1 = 0, ξn+1 = 0 in Λ \Ωn+1 and ξn+1 = −1 in Ωn+1, and Θn+1 =
{x ∈ Λ : ξn+1(x) = 0}.
While Θn+1 �= ∅, do:
1. Choose a point P in Θn+1;
2. Solve the following problem: Find u : Λ→ R which satisfies:⎧⎪⎨⎪⎩

−∆u = δP , in Θn+1,

u = 0, in Λ \Θn+1,

[u] = 0, on ∂Θn+1,

(14)

where δP is Dirac delta function at point P , [u] is the jump of u through
∂Θn+1;

3. Increase the number of bubbles kn+1 at time tn+1: kn+1 = kn+1 + 1;
4. Define the bubble of gas number kn+1: Bn+1

kn+1 = {x ∈ Θn+1 : u(x) �= 0};
5. Update the bubble numbering function ξn+1(x) = kn+1, for all x ∈
Bn+1

kn+1 ;
6. Update Θn+1 for the next iteration: Θn+1 = {x ∈ Λ : ξn+1(x) = 0}.
The cost of this original numbering algorithm is bounded by the cost of

solving kn+1 times a Poisson problem in the gas domain. The corresponding
CPU time used to solve the Poisson problems is usually less than 10 percent
of the total CPU time. This numbering algorithm is implemented on the finite
element mesh. The Poisson problems (14) are solved on Th, using standard
continuous, piecewise linear finite elements.

Computation of the Pressure in the Gas

Once the connected components of gas are numbered, an approximation
Pn+1

i of the constant pressure in bubble i at time tn+1 has to be com-
puted with (13). In the case of a single bubble in the liquid, (13) yields
Pn+1

1 V n+1
1 = Pn

1 V
n
1 . In the case when two bubbles merge, this relation be-

comes Pn+1
1 V n+1

1 = Pn
1 V

n
1 + Pn

2 V
n
2 . When a bubble Bn

1 splits onto two,
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each of its parts at time tn contributes to bubbles Bn+1
1 and Bn+1

2 . The
volume fraction of bubble Bn

1 which contributes to bubble Bn+1
j is noted

V
n+1/2
1,j , j = 1, 2. The pressure in the bubble Bn+1

j is computed by taking
into account the compression/decompression of the two fractions of bubbles
Pn+1

j = Pn
1 V

n+1/2
1,j /V n+1

j , j = 1, 2.
Details of the implementation require to take into account several situa-

tions, when two bubbles at time tn and tn+1 do or do not intersect between
two time steps, and are detailed in [CPR05]. The value of the pressure can be
inserted as a boundary term in (9) for the resolution of the generalized Stokes
problem (7), (8).

Remark 3. By using the divergence theorem in the variational formulation (9)
and the fact that Pn+1 is piecewise constant, the integral on the free surface
Γn+1

h is transformed into an integral on Ωn+1
h and, therefore, an approxima-

tion of the normal vector n is not explicitly needed.

3.3 Numerical Results

Numerical results are presented here for mold filling simulations in order
to show the influence of the gas pressure and to compare with results in
Section 2.4.

The same S-shaped channel is initially filled with gas at atmospheric pres-
sure P = 101300 Pa. A valve is located at the upper extremity of the channel
allowing gas to escape. Numerical results (cf. Figure 6) show the persistence
of the bubbles. The CPU time for the simulations is approximately 344 min
with the bubbles computations (to compare with 319 min in Section 2).

Fig. 6. S-shaped channel: 3D results when the cavity is initially filled with com-
pressible gas at atmospheric pressure. Time equals 8.0 ms, 26.0 ms, 44.0 ms and
53.9 ms.
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4 Extension to the Modeling of Incompressible
Liquid-Compressible Gas Two-Phases Flows
with Surface Tension Effects

4.1 Extension of the Model

Surface tension effects are usually neglected for high Reynolds numbers.
However, for creeping flows (with low Reynolds number and high Capillary
number), the surface tension effects become relevant. The model presented in
Section 3 is extended, so that tangential and capillary forces are still neglected
on the free surface, but the normal forces due to the surface tension effects are
added. Details can be found in [Cab06]. The relationship (12) is replaced by

−pn + 2µD(v)n = −Pn + σκn on Γt, t ∈ (0, T ), (15)

where κ = κ(x, t) is the mean curvature of the interface Γt at point x ∈ Γt

and σ is a constant surface tension coefficient which depends on both media
on each side of the interface (namely the liquid and the gas). The continuum
surface force (CSF) model, see, e.g., [BKZ92, RK98, WKP99], is considered
for the modeling of surface tension effects.

4.2 Modification of the Numerical Method

The relationship (15) on the interface requires the computation of the cur-
vature κ and the normal vector n. An additional step is added in the time
splitting scheme to compute these two unknowns before the diffusion part.
The approximations κn+1 and nn+1 of κ and n respectively are computed at
time tn+1 on the interface Γn+1 as follows.

Since the characteristic function ϕn+1 is not smooth, it is first mollified,
see, e.g., [WKP99], in order to obtain a smoothed approximation ϕ̃n+1, such
that the liquid-gas interface Γn+1 is given by the level line {x ∈ Λ : ϕ̃n+1(x) =
1/2}, with ϕ̃n+1 < 1/2 in the gas domain and ϕ̃n+1 > 1/2 in the liquid
domain. The smoothed characteristic function ϕ̃n+1 is obtained by convolution
of ϕn+1 with the fourth-order kernel function Kε described in [WKP99]:

ϕ̃n+1(x) =
∫

Λ

ϕn+1(y)Kε(x− y) dy ∀x ∈ Λ. (16)

The smoothing of ϕn+1 is performed only in a layer around the free surface.
The parameter ε is the smoothing parameter that describes the size of the
support of Kε, i.e. the size of the smoothing layer around the interface. At
each time step, the normal vector nn+1 and the curvature κn+1 on the liquid-
gas interface are given respectively by nn+1 = −∇ϕ̃n+1/‖∇ϕ̃n+1‖ and κn+1 =
−div(∇ϕ̃n+1/‖∇ϕ̃n+1‖), see, e.g., [OF01, Set96].

Instead of using the structured grid of cells to compute the curvature,
see, e.g., [AMS04, SZ99], the computation of κn+1 is performed on the finite
element mesh, in order to use the variational framework of finite elements.
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The normal vector nn+1
h is given by the normalized gradient of ϕ̃n+1

h at
each grid point Pj , j = 1, . . . ,M where M denotes the number of nodes
in the finite element discretization. Details can be found in [Cab06]. The
curvature κn+1 is approximated by its L2-projection on the piecewise linear
finite elements space with mass lumping and is denoted by κn+1

h . The basis
functions of the piecewise linear finite element space associated to each node
Pj in the cavity being denoted by ψPj

, κn+1
h is given by the relation∫

Λ

κn+1
h ψPj

dx =
∫

Λ

−div
∇ϕ̃n+1

h∥∥∇ϕ̃n+1
h

∥∥ψPj
dx, for all j = 1, . . . ,M.

The left-hand side of this relation is computed with mass lumping, while the
right-hand side is integrated by parts. Explicit values of the curvature of the
level lines of ϕ̃n+1

h are obtained at the vertices of the finite element mesh being
in a layer around the free surface. The restriction of κn+1

h to the nodes lying
on Γn+1

h is used to compute (15).

4.3 Numerical Results

We consider a bubble of gas at the bottom of a cylinder filled with liquid, un-
der gravity forces. The bubble rises and reaches an upper free surface between
water and air, see Figure 7. The physical constants are µ = 0.01 kg/(ms),
ρ = 1000 kg/m3 and σ = 0.0738 N/m. The mesh made out of 115200 tetra-
hedra. The size of the cells of the structured mesh used for advection step is
approximately 5 to 10 times smaller than the size of the finite elements and

Fig. 7. Three-dimensional rising bubble under a free surface: Representation of the
gas domain at times t = 100.0, 200.0, 230.0, 240.0., 300.0 and 320.0 ms (left to right,
top to bottom).
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the time step is chosen such that the CFL number is approximately one. The
smoothing parameter is ε = 0.005. The CPU time for this computation is
approximately 20 hours to achieve 1000 time steps.

5 Extension to the Modeling of Viscoelastic Flows
with a Free Surface

5.1 Extension of the Model

The total stress tensor for incompressible viscoelastic fluids is, by definition,
the sum of a Newtonian part 2µD(v)−pI and a non-Newtonian part denoted
by σ : QT → R

3×3. Owning this decomposition, the system (1)–(2) becomes

ρ
∂v
∂t

+ ρ(v · ∇)v − 2 div (µD(v) + σ) +∇p = f in QT , (17)

div v = 0 in QT . (18)

The simplest constitutive (or closure) equation for the extra-stress σ, namely
the Oldroyd-B model [Old50], is chosen to supplement the above system

σ + λ
(
∂σ

∂t
+ (v · ∇)σ − (∇v)σ − σ(∇v)T

)
= 2ηD(v) in QT . (19)

Here λ > 0 is the relaxation time (the time for the stress to return to zero
under constant-strain condition) and η > 0 is the polymer viscosity. The
extra-stress σ has to be imposed only at the inflow. For more details, we refer
to [BPL06].

Remark 4. The numerical procedures described in this section can be extended
to more general deterministic models such as Phan-Thien Tanner [PTT77],
Giesekus [Gie82] and stochastic models such as, e.g., FENE [War72], FENE-
P [BDJ80]. Two-dimensional computations of free surface flows with FENE
dumbbells have been performed in [GLP03].

5.2 Modification of the Numerical Procedure

The convective term in (19) is treated in the same fashion as (5). Con-
tinuous, piecewise linear finite elements are considered to approximate the
extra-stress tensor σ and an EVSS (Elastic Viscous Split Stress) procedure
[FGP97, BPS01, PR01] is used in order to obtain a stable algorithm even if
the solvent viscosity µ vanishes.

Advection Step. Together with (5), solve between the times tn and tn+1

∂σ

∂t
+ (u · ∇)σ = 0 (20)
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with initial conditions given by the value of the tensor σ at time tn. This
step is also solved using the characteristics method on the structured grid, see
Figure 2, using the relation σn+1/2(x+δtnvn(x)) = σn(x). As for the velocity
and volume fraction of liquid, the extra-stress tensor σn+1/2 is computed on
the structured grid of cells (ijk) leading to values σ

n+1/2
ijk . Then, values are

interpolated at the nodes of the finite element mesh using the same kind of
formula as in (10), which yields the continuous, piecewise linear extra-stress
σ

n+1/2
h .

Diffusion Step. The diffusion step consists in solving the so-called three-fields
Stokes problem on the finite element mesh. Following the EVSS method, we
define a new extra-tensor Bn+1/2

h : Ωn+1
h → R

3×3 as the L2-projection into
the finite element space of the predicted deformation tensor D(vn+1/2

h ), i.e.∫
Ωn+1

h

Bn+1/2
h : Eh dx =

∫
Ωn+1

h

D(vn+1/2
h ) : Eh dx,

for all test functions Eh. Then (9) is modified to take explicitly into account
the term coming from the extra-stress tensor. The extra term

2
∫

Ωn+1
h

ηD(vn+1
h ) : D(wh) dx− 2

∫
Ωn+1

h

ηBn+1/2
h : D(wh) dx,

which vanishes at continuous level, is also added. Thus, the weak formulation
(9) becomes, find the piecewise linear finite element approximations vn+1

h

and pn+1
h such that vn+1

h satisfies the essential boundary conditions on the
boundary of the cavity Λ and such that

ρ

∫
Ωn+1

h

vn+1
h − vn+1/2

h

δtn
·wh dx + 2

∫
Ωn+1

h

(µ+ η)D(vn+1
h ) : D(wh) dx

−
∫

Ωn+1
h

pn+1
h div wh dx +

∫
Ωn+1

h

σ
n+1/2
h : D(wh) dx

−2
∫

Ωn+1
h

ηBn+1/2
h : D(wh) dx−

∫
Ωn+1

h

f ·wh dx−
∫

Ωn+1
h

qh div vn+1
h dx = 0,

(21)

for all test functions wh, qh. Once the velocity vn+1
h is computed, the extra-

stress is recovered using (19). More precisely the continuous, piecewise linear
extra-stress σn+1

h satisfies the prescribed boundary conditions at inflow and
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Ωn+1

h

σn+1
h : τh dx + λ

∫
Ωn+1

h

σn+1
h − σ

n+1/2
h

δtn
: τh dx

= 2η
∫

Ωn+1
h

D(vn+1
h ) : τh dx

+ λ
∫

Ωn+1
h

(
(∇vn+1

h )σn+1/2
h + σ

n+1/2
h (∇vn+1

h )T
)

: τh dx, (22)

for all test functions τh. Finally, the fields un+1
h and σn+1

h are interpolated at
the center of the cells Cijk.

Theoretical investigations for a simplified problem without advection and
free surface have been performed in [BCP07]. Using an implicit function the-
orem, existence of a solution and convergence of the finite element scheme
have been obtained. We refer to [BCP06b, BCP06a] for an extension to the
stochastic Hookean dumbbells model.

5.3 Numerical Results

Two different simulations are provided here, the buckling of a jet and the
stretching of a filament. In the first simulation, different behaviors between
Newtonian and viscoelastic fluids are observed and the elastic effect of the
relaxation time λ is pointed out. In the second simulation, fingering instabili-
ties can be observed, which corresponds to experiments. More details and test
cases can be found in [BPL06].

Jet buckling

The transient flow of a jet of diameter d = 0.005 m, injected into a paral-
lelepiped cavity of width 0.05 m, depth 0.05 m and height 0.1 m, is repro-
duced. Liquid enters from the top of the cavity with vertical velocity U = 0.5
m/s. The fluids parameters are given in Table 1, the effects of surface tension
being not considered.

The finite element mesh has 503171 vertexes and 2918760 tetrahedra. The
cells size is 0.0002 m and the time step is 0.001 s thus the CFL number of the
cells is 2.5. A comparison of the shape of the jet with Newtonian flow is shown
in Figure 8. This computation takes 64 hours on a AMD Opteron CPU with
8Gb memory. The elastic effects in the liquid are clearly observed: when the
viscoelastic jet starts to buckle, the Newtonian jet has already produced many

Table 1. Jet buckling. Liquid parameters.

ρ [kg/m3] µ [Pa·s] η [Pa·s] λ [s] De = λU/d

Newtonian 1030 10.3 0 0 0
Viscoelastic 1030 1.03 9.27 1 100
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Fig. 8. Jet buckling in a cavity. Shape of the jet at time t = 0.125 s (col. 1), t = 0.45
s (col. 2), t = 0.6 s (col. 3), t = 0.9 s (col. 4), t = 1.15 s (col. 5), t = 1.6 s (col. 6),
Newtonian fluid (row 1), viscoelastic fluid (row 2).

folds. For a discussion on the condition for a jet to buckle and comparison
with results obtained in [TMC+02], we refer to [BPL06].

Fingering instabilities

The numerical model is capable to reproduce fingering instabilities, as re-
ported in [RH99, BRLH02, MS02, DLCB03] for non-Newtonian flows. The
flow of an Oldroyd-B fluid contained between two parallel coaxial circular
disks with radius R0 = 0.003 m is considered. At the initial time, the dis-
tance between the two end-plates is L0 = 0.00015 m and the liquid is at
rest. Then, the top end-plate is moved vertically with velocity L0ε̇0e

ε̇0t where
ε̇0 = 4.68 s−1. The liquid parameters are ρ = 1030 kg/m3, µ = 9.15 Pa·s,
η = 25.8 Pa·s, λ = 0.421 s. Following [MS02, Section 4.4], since the aspect
ratio R0/L0 is equal to 20, the Weissenberg number We = DeR2

0/L
2
0 is large.

The finite element mesh has 50 vertexes along the radius and 25 vertexes
along the height, thus the mesh size is 0.00006 m. The cells size is 0.00001 m
and the initial time step is δt = 0.01 s thus the CFL number of the cells is
initially close to one. The shape of the filament is reported in Figure 9 and
2D cuts in the middle of the height are reported in Figure 10. Fingering insta-
bilities can be observed from the very beginning of the stretching, leading to
branched structures, as described in [MS02, BRLH02, DLCB03]. These insta-
bilities are essentially elastic, without surface tension effects [RH99]. Clearly,
such complex shapes cannot be obtained using Lagrangian models, the mesh
distortion being too large.
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Fig. 9. Fingering instabilities. Shape of the liquid region at times t = 0 s (left) and
t = 0.745 s (right).

Fig. 10. Fingering instabilities. Horizontal cuts through the middle of the liquid
region at times t = 0.119 s, t = 0.245 s, t = 0.364 s, t = 0.49 s (first row) and times
t = 0.609 s, t = 0.735 s, t = 0.854 s, t = 0.98 s (second row).

6 Conclusions

An efficient computational model for the simulation of two-phases flows has
been presented. It allows to consider both Newtonian and non-Newtonian
flows. It relies on an Eulerian framework and couples finite element techniques
with a forward characteristics method. Numerical results illustrate the large
range of applications covered by the model. Extensions are being investigated
(1) to couple viscoelastic and surface tension effects, (2) to reduce the CPU
time required to solve Stokes problems, and (3) to improve the reconstruction
of the interface and the computation of surface tension effects.

Acknowledgement. The authors wish to thank Vincent Maronnier for his contribu-
tion to this project and his implementation support.
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