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HANDLING PERFORMANCE

25.1 LOW SPEED OR KINEMATIC STEERING

25.1.1 Two-axle vehicles without trailer

Low speed or kinematic steering is, as already stated, defined as the motion of
a wheeled vehicle determined by pure rolling1 of the wheels. The velocities of
the centres of all the wheels lie in their midplane, that is the sideslip angles αi

are vanishingly small. In these conditions, the wheels cannot exert any cornering
force to balance the centrifugal force due to the curvature of the path. Kinematic
steering is possible only if the velocity is vanishingly small.

Kinematic steering of two-axle vehicles without trailer was dealt with in
detail in Chapter 4 (Section 4.2). Here only the value of the path curvature gain
needs be recalled

1
Rδ

=
1
l

. (25.1)

Remark 25.1 The path curvature gain is a linearized value, holding only if
the radius of curvature of the path R is much larger than the wheelbase. It is
independent of the steering angle and of the curvature of the path.

1The term ‘pure rolling’ is often used to indicate rolling without slip. ‘Free rolling’, as
opposed to ‘tractive rolling’, is used to indicate rolling without exerting tangential forces (K.L.
Johnson, Contact Mechanics, Cambridge University Press, Cambridge, 1985). Here the two
terms are considered as equivalent, because a tire must operate in slip (longitudinal or side
slip) conditions to produce a tangential force.
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248 25. HANDLING PERFORMANCE

Another important transfer function of the vehicle is ratio β/δ, usually
referred to as sideslip angle gain. The sideslip angle of the vehicle, referred to
the centre of mass, may be expressed as a function of the radius of the path R as

β = arctan
(

b√
R2 + b2

)
. (25.2)

By linearizing Eq. (25.2) and introducing the expression (25.1) linking R to
δ, it follows:

β

δ
=

b

l
. (25.3)

As seen in Chapter 6, the optimal condition for kinematic steering of a 4
wheel steering vehicle (4WS) is equal and opposite steering angles of the two
axles: the radius of the path is thus halved with respect to the same vehicle with
a single steering axle.

Particularly in the case of long vehicles, the off-tracking distance, i.e. the
difference of the radii of the trajectories of the front and the rear wheels, is an
important parameter. If Ra is the radius of the path of the front wheels, the
off-tracking distance is

Ra − R1 = Ra

{
1 − cos

[
arctan

(
l

R1

)]}
. (25.4)

If the radius of the path is large when compared to the wheelbase, Eq. (25.4)
reduces to

Ra − R1 ≈ R

[
1 − cos

(
l

R

)]
≈ l2

2R
. (25.5)

In the same way, it is possible to define a minimum steering radius between
walls, that is the diameter of the largest circle described by any point of the
vehicle at maximum steering. If the point following the curve with the largest
radius is point A in Fig. 25.1 (note that the figure refers to a vehicle with 3
axles), the minimum steering radius is

Dv = 2
√

(R1 + yA)2 + x2
A. (25.6)

25.1.2 Vehicles with more than two axles without trailer

True kinematic steering of vehicles with more than two axles is possible only if
the wheels of several axles (all except one) can steer, and if the steering angles
comply with conditions similar to those seen in Chapter 6 for the steering axle
of a two-axle vehicle. In order to avoid serious wear to the tires, it is possible to
lift one axle from the ground in certain conditions: In some countries it is legal
to design the suspensions in such a way that not all axles are on the ground
when the vehicle is unloaded, while in others this is not allowed. Some axles can
be lifted for low-speed manoeuvring while being in contact with the ground in
normal driving.
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FIGURE 25.1. Low speed steering of industrial vehicles; approximate kinematic
condition for a truck with three axles.

Some axles may also be self-steering, i.e. the wheels are allowed to orient
themselves to minimize sideslip. An axle of this type clearly cannot exert side
forces and reduce the overall cornering ability of the vehicle. Different laws hold
in different countries, sometimes allowing the use of self-steering axles in normal
driving and sometimes specifying that self-steering axles be blocked except in
low speed manoeuvres. In the case of a three-axle vehicle with non-steering axles
close to each other, an approximation such as the one shown in Fig. 25.1 can be
used to study low speed steering.

25.1.3 Vehicles with trailer

If the vehicle has a trailer with one or two axles, with the front axle on a dolly
attached to the draw bar, kinematic steering is always possible if the tractor
allows it.

Generally speaking, if the wheels of the trailer are fixed, the trailer follows
a path which is internal to that of the tractor. In the case of the vehicle of
Fig. 25.2a radius RR is

RR =
√

R2
1 + l2A − l2R . (25.7)

If these equations can be linearized, the value of ratio θ/δ, i.e. the trailer
angle gain, is

θ

δ
=

lA + lR
l

, (25.8)

where lA is positive if point A is outside the wheelbase. Distance lA + lR is the
distance between the axle of the trailer and the rear axle of the tractor.
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FIGURE 25.2. Low speed steering of vehicles with trailer. (a) steering of a vehicle with
a trailer with one axle or an articulated vehicle; (b) steering of a vehicle with a trailer
with two axles.

In the case of Fig. 25.2b, the radius of the path of the trailer can be
obtained by considering the latter as two subsequent trailers of the type already
considered.

The radii of the trajectories of the centers of the axles of the two trailers are

RR1 =
√

R2
1 + l2A − l2R1

,

RR2 =
√

R2
R1

− l2R2
=

√
R2

1 + l2A − l2R1
− l2R2

.
(25.9)

The only way to prevent the trailer from following a path internal to that of
the tractor is to provide its wheels with a steering mechanism (Fig. 25.3). The
steering angle of the last axle must be opposite to the one of the tractor.
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FIGURE 25.3. Kinematic steering of a vehicle with a trailer with a steering angle.

If the average steering angle of the wheels of the trailer is δR, the relationship
linking the radii of the trajectories of points A and R is

RA =
√

R2
R + l2R − 2lRRR sin (δR) . (25.10)

The radius of the path of the trailer is then

RR =
√

R2
1 + l2A − l2R + 2lRRR sin (δR) . (25.11)

The difference between the radii of the trajectories of the trailer and the
tractor can thus be reduced, allowing the space needed by the vehicle in a bend
to be reduced. However, this method is not free from drawbacks, since the driver
cannot visually control the rear part of the trailer that, at the beginning of the
bend, seems to moves outwards.

This last problem is sometimes solved by placing a second driver in the rear
of the trailer to control the relevant steering mechanism, or better, by using an
actuator controlled by a suitable control law from the steering control, to steer
the trailer. The dynamic problems linked with the steering of trailers will be
dealt with later.

The trailer angle gain is

θ

δ
=

lA + lR
l

− δR

δ
. (25.12)
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The value of the steering angle of the trailer allowing its axle to follow the
same path as the rear axle of the tractor is

sin (δR) =
1

RR

l2R − l2A
2lR

. (25.13)

If the radius of the path is much larger than the wheelbase, the radius of
the path of the rear axle R1 and of the center of mass R of the tractor are
practically coincident and the linearized relationship linking the steering angles
of the tractor and of the trailer is

δR = δ
l2R − l2A

2llR
. (25.14)

This relationship is actually between the moduli of the angles, since they
must have opposite signs.

The trailer angle gain is then

θ

δ
=

(lA + lR)2

2llR
. (25.15)

The mechanism controlling the steering of the trailer is usually not driven
by the steering wheel but by the drawbar, because of which angle δR does not
depend on δ but on θ. Assuming a linear relationship between the two angles

δR = KRθ , (25.16)

the trajectories of the trailer and of the tractor are the same if

KR =
l2R − l2A

(lA + lR)2
. (25.17)

Remark 25.2 The path of the trailer is circular only after a certain time: When
the tractor starts to follow a circular path there is an initial transient in which
the path of the trailer starts to bend, followed by the period of time needed to
reach the steady state conditions.

The path of the trailer, or better of point R in Fig. 25.2a, can be computed
as follows. In Fig. 25.4a the vehicle is sketched in its initial configuration with
the trailer and tractor aligned; the generic configuration at time t is shown in
Fig. 25.4b. In the second figure, the tractor is rotated by an angle α and the
trailer is rotated by an angle β. Note that angle φ is positive if A lies between B
and C.

The positions of the centre of rotation of the tractor O and of the trailer O1

at time t and t+dt are shown in Fig. 25.5. Distances RR′, AA′ and RR′′ are very
small if compared with AR and A′R′. Neglecting vanishingly small quantities, it
follows that

AA′ = RAdα

A′A′′ = lRdβ = AA′ sin(α + φ − β) .
(25.18)
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FIGURE 25.4. Vehicle with two axles pulling a trailer with one axle. (a) Situation at
time t = 0 with the vehicle in straight position; (b) Situation at time t.

FIGURE 25.5. Position of the vehicle of Fig. 25.4 at time t and t + dt.

Equations (25.18) yield

dβ

dα
=

RA

lR
sin(α + φ − β) . (25.19)
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Since α = β = 0 at time t = 0, Eq. (25.19) can be easily integrated numeri-
cally. The radius of the path of the trailer RR is

RR =
lR

tan(α + φ − β)
. (25.20)

A long trailer on a narrow bend requires a change of direction of more
than 90◦ before steady state conditions are reached and its path becomes almost
circular.

The low-speed steering of a vehicle with a trailer with two axles like the
one shown in Fig. 25.1b can be dealt with using the same equations seen above,
applied to both the simple trailers modelling the actual two-axle trailer. The
path of the first trailer (the dolly) is initially not circular, and this must be
taken into account while integrating numerically Eq. (25.19).

Example 25.1 Study the conditions for kinematic steering of the articulated vehicle

of Appendix E.9. Assume a value of the radius of the centre mass of the tractor of 10 m

and compute the path of the trailer. Assume that the trailer has a single axle, coinciding

with the third axle of the actual trailer.

The radius of the trajectories of the front and rear axles of the tractor is easily

computed as 9.730 and 10.335 m; the off-tracking of the tractor is thus 605 mm. The

approximated expression (25.5) for the off-tracking yields 607 mm, very close to the

correct value even if the radius of the path is not actually very large compared to the

wheelbase (10 m versus 3.485 m).

The steering angles of the front wheels are 17.99 ◦ and 21.77 ◦, with an average

value of 19.71 ◦. This value is also very close to the correct value of 19.88 ◦, obtained

without any linearization, and to the linearized value of 19.77 ◦.

The steady state radius of the path of the trailer is 5.446 m, yielding a value of

4.889 m for the total off-tracking distance.

The path of the trailer has been computed by numerically integrating Eq. (25.19)

for α included between 0 and 450◦, with a step of 0.5◦. The values of φ and RA are,

respectively, of 2.648◦ and 9.740 m. The path and the locus of points O′ are shown in

Fig. 25.6. Note that after a rotation of 90◦ the radius of the path is still larger than

that in steady state conditions.

Example 25.2 Repeat the previous example, assuming that the trailer axle is steering

with a mechanism realizing law (25.17).

The value of K is 1, 118. The equation allowing the path of the trailer to be

computed is the same as in the previous example, the only difference being that reference

is made to point H in Fig. 25.3 instead of point R in Fig. 25.4.

The radius of the steady-state path of the trailer is 9.942 m , very close to that of the

trailer. The steering angle of the trailer is δR= 20.02◦ and the angle between the trailer

and the tractor is θ = 19.76◦. The path of the trailer was computed by numerically

integrating the relevant equation for values of α from 0 and 450◦, withincrements of



25.2 Ideal steering 255

FIGURE 25.6. Path and locus of the centres of curvature of the path of the trailer for
an articulated vehicle. The positions of the vehicle before starting on the curved path
and after a rotation of the tractor of 90◦ are reported.

0.5 ◦, as in the previous example. The path and the locus of points O′ are plotted in

Fig. 25.7. Note that steady-state conditions are quickly reached and that at the beginning

the trailer moves outwards.

25.2 IDEAL STEERING

If the speed is not vanishingly small, the wheels must move with suitable sideslip
angles to generate cornering forces. A simple evaluation of the steady state steer-
ing of a vehicle in high-speed or dynamic2 steering conditions may be performed

2The term dynamic steering is used here to denote a condition in which the path is deter-
mined by the balance of forces acting on the vehicle, as opposed to kinematic steering in which
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FIGURE 25.7. Path and locus of the centers O’ of the path of the trailer with steering
axle. The positions at the beginning of the maneouvre and after a 90◦ rotation are also
reported.

as follows. Consider a rigid vehicle moving on level road with transversal slope
angle αt and neglect the aerodynamic side force. Define a η-axis parallel to the
road surface, passing through the centre of mass of the vehicle and intersecting
the vertical for the centre of the path, which in steady-state condition is circular
(Fig. 25.8). Axis η does not coincide with the y axis, except at one particular
speed.

25.2.1 Level road

Assume that the road is flat and neglect aerodynamic forces. The equilibrium
equation in η direction can be written by equating the centrifugal force mV 2/R
to forces Pη due to the tires

the path is determined by the direction of the midplane of the wheels. Note that dynamic
steering applies to both steady state and unstationary turning.
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FIGURE 25.8. Simplified model for dynamic steering.

mV 2

R
=

∑
∀i

Pηi
. (25.21)

For a first approximation study, forces Pη may be conflated with the cor-
nering forces Fy of the tires and all wheels may be assumed to work with the
same side force coefficient μy. As the last assumption is similar to that seen for
braking in ideal conditions, this approach will be referred to as ideal steering .
These two assumptions lead to substituting the expression

∑
∀i Pηi

with μyFz.
Force

Fz =
∑

Fzi

exerted by the vehicle on the road is

Fz = mg . (25.22)
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By introducing Eq. (25.22) into Eq. (25.21) the ratio between the lateral
acceleration and the gravitational acceleration g is

V 2

Rg
= μy (25.23)

By introducing the maximum value of the side force coefficient μyp
into Eq.

(25.23), it is possible to obtain the maximum value of the lateral acceleration
(

V 2

R

)
max

= gμyp
. (25.24)

The maximum speed at which a bend with radius R can be negotiated is

Vmax =
√

Rg
√

μyp
, (25.25)

The limitation to the maximum lateral acceleration due to the cornering
force the tires can exert is, however, not the only limitation, at least theoretically.
Another can come from the danger of rollover occurring if the resultant of forces
in the yz plane crosses the road surface outside point A (Fig. 25.8).

The moment of the forces applied to the vehicle in the ηz-plane about point
A is

MA = − t

2
mg + hG

mV 2

R
. (25.26)

The limit condition for rollover can then be computed by equating moment
MA to zero (

V 2

R

)
max

= g
t

2hG
. (25.27)

The rollover condition is identical to the sliding conditions, once ratio

t

2hG

has been substituted for μyp
.

The maximum lateral acceleration is then
(

V 2

R

)
max

= g min
{

μyp
,

t

2hG

}
. (25.28)

Whether the limit condition first reached is that related to sliding, with
subsequent spin out of the vehicle, or related to rolling over depends on the
relative magnitude of μyp

and t
2hG

. If the former is smaller than the latter, as
often occurs, the vehicle spins out. This condition can be written in the form

μyp
<

t

2hG
.
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25.2.2 Effect of aerodynamic lift

If aerodynamic lift is accounted for, Eq. (25.22) becomes:

Fz = mg − 1
2
ρV 2SCZ . (25.29)

By introducing ratio

M =
ρSCz

2mg
,

expressing the ratio between aerodynamic lift at unit speed and weight, it follows
that

Fz = mg
(
1 − MV 2

)
. (25.30)

Note that M is negative if the lift is directed downwards. To take aerody-
namic lift into account it is sufficient to multiply the expressions seen in the
previous section by 1 − MV 2.

The maximum lateral acceleration is now(
V 2

R

)
max

= g
(
1 − MV 2

)
min

{
μyp

,
t

2hG

}
. (25.31)

Term MV 2 is usually very small and often negligible, with the exception
of racing cars. For instance, let ρ = 1.22 kg/m3 (value at sea level in standard
atmosphere), S = 1.7 m2, Cz = −0.5 (an already high value) and m = 1000 kg.
It follows that M = −5.3 × 10−5 s2/m2 and thus, at 100 km/h, the value of the
additional term is 0.05. To change things radically high speeds must be reached:
at 300 km/h the additional term becomes −MV 2 = 0.37, i.e. the maximum
lateral acceleration increases by 37%.

The negative value of Cz is very high in racing cars, and at high speed strong
lateral accelerations are possible.

25.2.3 Transversal slope of the road

The equilibrium equation in η direction may be written by equating the compo-
nents of weight mg and of the centrifugal force mV 2/R acting in that direction
with forces Pη due to the tires

mV 2

R
cos(αt) − mg sin(αt) =

∑
∀i

Pηi
. (25.32)

By introducing the previously discussed assumptions characterizing ideal
steering, substituting expression

∑
∀i Pηi

with μyFz, force Fz =
∑

Fzi
exerted

by the vehicle on the road becomes

Fz = mg cos(αt) +
mV 2

R
sin(αt) −

1
2
ρV 2SCZ . (25.33)
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By introducing Eq. (25.33) into Eq. (25.32), the latter yields the following
value for the ratio between the lateral acceleration and the gravitational accel-
eration g

V 2

Rg
=

tan(αt) + μy(1 − MV 2)
1 − μy tan(αt)

. (25.34)

Ratio M can be redefined as

M =
ρSCz

2mg cos(αt)

so that MV 2 is the ratio between the aerodynamic lift and the component of
weight in a direction perpendicular to the road.

By introducing the maximum value of the side force coefficient μyp
into

Eq.(25.34), the maximum value of the lateral acceleration is obtained
(

V 2

R

)
max

= gfs , (25.35)

where the so-called sliding factor fs can be defined as3

fs =
tan(αt) + μyp

(1 − MV 2)
1 − μyp

tan(αt)
; (25.36)

and is in general a function of the speed, if the aerodynamic lift is accounted for.
Note that on level road and with no aerodynamic lift the sliding factor

reduces to μyp
.

The sliding factor is reported as a function of μyp
for different values of the

transversal slope of the road in Fig. 25.9a and for different values of ratio MV 2

in Fig. 25.9b. Note that if the road is flat and the aerodynamic lift is neglected
it reduces to the maximum value of the side force coefficient μyp

.
The maximum speed at which a bend with radius R can be negotiated is

Vmax =
√

Rg

√
tan(αt) + μyp

1 − μyp
[tan(αt) − RgM ]

, (25.37)

i.e.
Vmax =

√
Rg

√
fs . (25.38)

The rollover condition can also be modified to take into account the transver-
sal slope of the road and aerodynamic lift. The moment of all forces applied to
the vehicle in ηz plane about point A (Fig. 25.8) is

3The sliding factor is more commonly defined as the square root of the same quantity con-
sidered here. The present definition, which refers directly to the lateral acceleration instead of
the speed at which a given turn may be negotiated, is here preferred as in particular conditions
it reduces to the side force coefficient.
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FIGURE 25.9. Sliding and rollover factors as functions of μyp
and of t/2hG respectively

for roads with different transversal slope (a) and for vehicles with different values of
ratio MV 2 (b).

MA = − t

2

[
mg cos(αt) +

mV 2

R
sin(αt) −

1
2
ρV 2SCZ

]
+

+hG

[
mV 2

R
cos(αt) − mg sin(αt)

]
. (25.39)

The limit condition for rollover can be obtained by equating moment MA

to zero, obtaining (
V 2

R

)
max

= gfr , (25.40)

where the rollover factor can be defined as

fr =
tan(αt) + t

2hG
(1 − MV 2)

1 − t
2hG

tan(αt)
. (25.41)

The expression of the rollover factor is identical to that of the sliding factor,
once ratio t/2hG has been substituted for μyp

(Fig. 25.9). It depends on speed
because of the effects of aerodynamic lift.

The maximum lateral acceleration is then(
V 2

R

)
max

= g min{fs, fr} . (25.42)

Whether the limit condition first reached is that related to sliding, with
subsequent spin out of the vehicle, or rolling over depends on whether fs is
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larger or smaller than fr. If fs < fr, as often occurs, the vehicle spins out. This
condition can be written in the form

μyp
<

t

2hG
,

and coincides with that seen on level road. Neither aerodynamic lift nor a
transversal road slope have any influence on the possibility of rollover.

25.2.4 Considerations in ideal steering

The value of μyp
at which rollover may occur is as high as 1.2 ÷ 1.7 for sports

cars, 1.1÷1.6 for saloon cars, 0.8÷1.1 for pickup and passenger vans and 0.4÷0.8
for heavy and medium trucks. Only in the latter case does rollover seem to be a
possibility, at least if the lateral forces acting on the vehicle are restricted to the
cornering forces of the tires.

The present model is only a rough approximation of the actual situation,
as it is based on the assumption that the side force coefficients μy of all wheels
are equal, implying that all wheels work with the same sideslip angle α. It also
ignores the effect of the different directions of the cornering forces of the various
wheels, which should be considered as perpendicular to the midplanes of the
wheels and not directed along the η axis. The load transfer between the wheels
of the same axle and the presence of the suspensions have also been neglected,
two other assumptions contributing to the lack of precision of this model.

If the maximum speed at which a circular path can be negotiated is measured
in a steering pad test and the value of the lateral force coefficient is computed
through Eq. (25.25), a value of μyp

, well below that obtained from tests on the
tires, is obtained.

Remark 25.3 The cornering force coefficient obtained in this way is that of
the vehicle as a whole, and the difference between its value and that related to
the tires gives a measure of how well the vehicle is able to exploit the cornering
characteristics of its wheels.

The side force coefficient measured on the whole vehicle also depends on
the radius of the path, with a notable decrease on narrow bends. The majority
of industrial and passenger vehicles are able to use only a fraction, from 50% to
80%, of the potential cornering force of the tires, with higher values found only
in sports cars. This reduction of the lateral forces makes the danger of rollover
more remote.

Actually rolling over in a quasi-static condition is impossible for most
vehicles, notwithstanding the fact that rollover actually occurs in many road
accidents. Rollover can usually be ascribed to dynamic phenomena in nonsta-
tionary conditions or to lateral forces caused by side contacts, e.g. of the wheels
with the curb of the road, that rule out the possibility of side slipping while
causing far stronger lateral forces to be exerted on the wheels. The presence of
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FIGURE 25.10. Evolution in time of the maximum lateral acceleration for saloon cars,
sports cars and racers. Note that for the latter the change of racing rules caused sharp
changes in the maximum lateral acceleration

the suspensions also contributes to this picture, making rollover a likely outcome
of many accidents.

From the equations it is also clear that only the use of aerodynamic devices
able to exert a strong negative lift allows high values of lateral acceleration, well
above 1 g in the case of racers, to be reached (Fig. 25.10).

25.2.5 Vehicles with two wheels

The cornering dynamics of a vehicle with two wheels are radically different from
those of four wheeled vehicles (Fig. 25.11). If the gyroscopic moments of the
wheels are neglected, the equation expressing rolling equilibrium can be used to
compute the roll angle the vehicle must maintain in order not to capsize, since
a two-wheeled vehicle is a system underconstrained in roll.

The limitation on lateral acceleration and speed on a curved path is solely
the result of lateral sliding, with a further geometric limitation on the maximum
roll angle that can be reached before the vehicle or the driver touches the road on
one side. Equation (25.24) yielding the maximum lateral acceleration still holds,
the difference being that the global side force coefficient is usually higher.
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FIGURE 25.11. High speed steering of a two wheeled vehicle. Point G is the centre of
mass of the vehicle-driver system and can be displaced from the plane of symmetry of
the former if the latter is displaced to one side, as usually occurs in bends.

The roll angle is easily computed

φ = arctan
(

V 2

Rg

)
, (25.43)

and the geometrical limitation

φ ≤ π/2 + αt − γ

(Fig. 25.11) usually does not induce further limitations.

Remark 25.4 Since motor cycles roll into the curve, the lateral forces due to
camber add to those due to sideslip, instead of subtracting as in the case of motor
vehicles that roll towards the outside of the curve.

Further terms must be introduced into the relevant equations if gyroscopic
moments of the wheels are considered . When the vehicle runs on a circular path
with radius R, the gyroscopic moment, due to the ith wheel with radius Ri and
moment of inertia Jpi

about its spin axis, is equal to

Jpi
V 2 cos(φ)
RRi

.

The equation expressing the equilibrium for rolling motions is then

mghG sin(φ) − V 2

R
cos(φ)

[
mhG +

∑
∀i

(
Jpi

Ri

)]
= 0 . (25.44)



25.3 High speed cornering: simplified approach 265

The roll angle is

φ = arctan

{
V 2

Rg

[
1 +

1
mhG

∑
∀i

(
Jpi

Ri

)]}
. (25.45)

The added term in Eq. 25.45 is positive and thus the roll angle needed to
manage a certain bend at a certain speed is increased by gyroscopic moments.

Remark 25.5 Generally speaking, the effect of the gyroscopic moment of the
wheels on the dynamic behavior of the whole vehicle is small even in the case of
vehicles with two wheels. Gyroscopic moments are usually important only in the
dynamics of the steering device.

25.3 HIGH SPEED CORNERING: SIMPLIFIED
APPROACH

To go beyond the extremely simplified model of ideal steering, the distribution of
cornering forces between the axles, the sideslip angle of the vehicle on the path
and the sideslip angles of the wheels must be taken into account.

Assume that the vehicle is moving at constant speed on a circular path and
that the road is level. Moreover, assume that the radius of the path R is much
larger than the wheelbase l and, as a consequence, all sideslip angles are small.
The small size of all angles allows the “monotrack” or “bicycle” model to be
used.

Neglecting aerodynamic forces and aligning torques, the forces acting in the
xy plane at the tire-road interface in a monotrack vehicle are shown in Fig. 25.12.

The equilibrium equation in the direction of the y axis is similar to
Eq.( 25.21), except for the presence of the sideslip and steering angles

mV 2

R
cos (β) =

∑
∀i

Fxi
sin(δi) +

∑
∀i

Fyi
cos(δi) . (25.46)

The equilibrium to rotations about point G can be expressed as
∑
∀i

Fxi
sin(δi)xi +

∑
∀i

Fyi
cos(δi)xi = 0 . (25.47)

Since angles β and δi are assumed to be small, the terms containing the
longitudinal forces of the tires can be neglected and the equilibrium equations
reduce to ⎧⎨

⎩
∑

∀i Fyi
= mV 2

R

∑
∀i Fyi

xi = 0 .

(25.48)
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FIGURE 25.12. Simplified model (monotrack vehicle) for studying the handling of a
two axle vehicle.

For a two axle vehicle, they can be immediately solved, yielding

Fy1 =
mV 2

R

b

l
, Fy2 =

mV 2

R

a

l
. (25.49)

Assuming that the cornering forces of the axles are proportional to the
sideslip angles through their cornering stiffness, it follows that

α1 = −mV 2

R

b

lC1
, α2 = −mV 2

R

a

lC2
, (25.50)

where Ci is the cornering stiffness of the ith axle, and is equal to the cornering
stiffness of the wheels multiplied by the number of wheels of the axle.

A relationship between the sideslip and steering angles can be found with
simple geometrical considerations from Fig. 25.12

δ − α1 + α2 =
l

R
. (25.51)

Introducing the expressions of the sideslip angles into Eq. (25.51), it follows that

δ =
l

R
+

mV 2

Rl

(
b

C1
− a

C2

)
, (25.52)
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or, in terms of path curvature gain,

1
Rδ

=
1
l

1
1 + Kus

V 2

gl

, (25.53)

where

Kus =
mg

l2

(
b

C1
− a

C2

)
(25.54)

is the so-called understeer coefficient or understeer gradient of the vehicle. The
understeer coefficient is a non-dimensional quantity, and is often expressed in
radians.

As already stated, in kinematic conditions(
1

Rδ

)
kin

=
1
l

. (25.55)

The expression 1 + KusV
2/gl can be considered as a correction factor giv-

ing the response of the vehicle in dynamic conditions as opposed to kinematic
conditions.

From Eq.(25.52) it follows that

δ − δkin =
V 2

Rg
Kus , (25.56)

i.e.
Kus =

g

ay
(δ − δkin) . (25.57)

The understeer coefficient can thus be interpreted as the difference between
the steering angles in kinematic and dynamic conditions divided by the centrifu-
gal acceleration expressed as a multiple of the gravitational acceleration.

Sometimes, instead of the understeer coefficient, a stability factor

K =
m

l2

(
b

C1
− a

C2

)
. (25.58)

is defined.
As a first approximation, K and K∗ may be considered as constant for a

given vehicle and load condition. As will be seen below, however, in many cases
their dependence on speed cannot be neglected for more precise assessments.

It is possible to define a lateral acceleration gain as the ratio between the
lateral acceleration and the steering input:

V 2

Rδ
=

V 2

l

1
1 + Kus

V 2

gl

. (25.59)

The sideslip angle can be obtained through simple geometrical considerations,
yielding

β =
b

R
− α2. (25.60)
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A sideslip angle gain, expressing the ratio between the sideslip angle and
the steering angle can be defined as well. Its value is

β

δ
=

b

l

(
1 − maV 2

blC2

)
1

1 + Kus
V 2

gl

, (25.61)

25.4 DEFINITION OF UNDERSTEER
AND OVERSTEER

If Kus = 0 the value of 1/Rδ is constant and equal to the value characterizing
kinematic steering; i.e. the response of the vehicle to a steering input is, at any
speed, equal to that in kinematic conditions. This does not mean, however, that
the vehicle is in kinematic conditions, since the value of the sideslip angle β is
not equal to its kinematic value and the values of the sideslip angles of the wheels
are not equal to zero.

A vehicle behaving in this way is said to be neutral-steer (Fig. 25.13a).
If Kus > 0 the value of 1/Rδ decreases with increasing speed. The response

of the vehicle is then smaller than in kinematic conditions and, to maintain
a constant radius of the path, the steering angle must be increased as speed
increases.

A vehicle behaving in this way is said to be understeer .
A quantitative measure of the understeering of a vehicle is given by the

characteristic speed , defined as the speed at which the steering angle needed to

FIGURE 25.13. Steady state response to a steering input. Plot of the path curvature
gain as a function of speed (a) and handling diagram (b) for an oversteer, an understeer
and a neutral steer vehicle. The understeer factor is assumed to be independent of speed.
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negotiate a turn is equal to twice the Ackerman angle, i.e. the path curvature
gain is equal to 1/2l.

Using the simplified approach outlined above, the characteristic speed is

Vcar =
√

gl

Kus
=

√
1
K

. (25.62)

If Kus < 0 the value of 1/Rδ increases with increasing speed until, for a
speed

Vcrit =
√

− gl

Kus
=

√
− 1

K
(25.63)

the response tends to infinity, i.e., the system develops an unstable behavior.
A vehicle behaving in this way is said to be oversteer , and the speed given

by Eq. (25.63) is called the critical speed . The critical speed of any oversteer
vehicle must be well above the maximum speed it can reach, at least in normal
road conditions.

Instead of plotting the path curvature gain as a function of the speed, it is
possible to plot the handling diagram, i.e. the plot of the lateral acceleration ay

as a function of δkin − δ (Fig. 25.13b). If the vehicle is neutral steer, the plot is
a vertical straight line, if it is oversteer it is a straight line sloping to the right,
while in case of an understeer vehicle it slopes to the left.

The value of β, or better, of β/δ, decreases with the speed from the kinematic
value up to the speed

(V )β=0 =

√
blC2

am
. (25.64)

at which it vanishes. At higher speed it becomes negative, tending to infinity
when approaching the critical speed for oversteer vehicles and tending to

aC1

aC1 − bC2

when the speed tends to infinity in the case of understeering vehicles.
The sideslip angles of the front and rear wheels are equal in neutral-steer

vehicles. In oversteer vehicles, the rear wheels have a larger sideslip angle (in
absolute value, since the sideslip angles are negative when the radius of the
path is positive), while the opposite holds in understeer vehicles. It follows that
oversteer vehicles can be expected to reach limit conditions at the rear wheels
and understeer vehicles at the front wheels, even if the present model cannot be
applied when the sideslip angles increase, approaching limit conditions.

A graphical interpretation of this result, for a vehicle with a single steering
axle, is shown in Fig. 25.14. The vehicle is modelled as a steering front axle and a
fixed rear axle. Kinematic steering applies if the speed tends to zero: the sideslip
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FIGURE 25.14. Geometrical definition of the behavior of a vehicle with a single steering
axle.

angles vanish and the center of path is point O. It follows immediately that
l

R
= tan(δ) ≈ δ .

With increasing speed the wheels work with increasing sideslip angles α1

and α2. If α1 = α2 angle BO’A is still equal to δ (its value is |α2|+ δ− |α1|) and
thus O’ lies on a circle through points A, B and O.

Since l � R′, O’ is in a position almost opposite to A and B and then
R′ ≈ R. The radius of the path is still equal to that characterizing kinematic
steering, and the vehicle is neutral steer.

If |α1| > |α2| the center of the path moves to O” and radius R′′ is larger thus
R. The vehicle is then understeer. If, on the other hand, |α1| < |α2|, the center
of the path is O′′′, radius R′′′ is smaller than R′ and the vehicle is oversteer.
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25.5 HIGH SPEED CORNERING

25.5.1 Equations of motion

The study of the handling of the vehicle seen in the previous sections was based
on the assumption of steady-state operation. Moreover, only the cornering forces
acting on the tires were considered.

A simple mathematical model for the handling of a rigid vehicle that
overcomes the above limitations can, however, be built.

To keep the model as simple as possible, the following assumptions may be
made

1. The sideslip angle of the vehicle β and of the wheels α are small. The yaw
angular velocity ψ̇ can also be considered a small quantity.

2. The vehicle can be assumed to be a rigid body moving on a flat surface,
i.e. roll and pitch angles are neglected as well as the vertical displacements
due to suspensions.

If a motor vehicle is considered as a rigid body moving on a surface, a model
with three degrees of freedom is needed for the study of its motion. If the road is
considered as a flat surface, the motion is planar. By using the inertial reference
frame4 XY shown in Fig. 25.15, it is possible to use the coordinates X and Y of
the centre of mass G of the vehicle and the yaw angle ψ between the x and X
axes as generalized coordinates.

The equations of motion of the vehicle are
⎧⎨
⎩

mẌ = FX

mŸ = FY

Jzψ̈ = Mz ,

(25.65)

where FX , FY and Mz are the total forces acting in the X and Y directions and
the total yawing moment. For the latter, subscript z has been used instead of Z
since the directions of the two axes coincide.

Equations (25.65) are very simple but include the forces acting on the vehicle
in the direction of the axes of the inertial frame. They are clearly linked with
the forces acting in the directions of axes x and y of the vehicle by the obvious
relationship {

FX

FY

}
=

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]{
Fx

Fy

}
. (25.66)

If the model is used to perform a numerical integration in time, they can be
used directly without any difficulty.

4As already stated, such a reference frame is not, strictly speaking, inertial, since it is fixed
to the road surface and hence follows the motion of Earth. It is, however, inertial “enough” for
the problems here studied, and this issue will not be dealt with any further.
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FIGURE 25.15. Reference frame for the study of the motion of a rigid vehicle. The
vehicle has three degrees of freedom, and the coordinates X and Y of the centre of
mass G and the yaw angle ψ can be used as generalized coordinates.

However, if the model has to be used to obtain linearized equations in order
to gain a general insight into the behavior of the vehicle, it is better to write
the equations of motion with reference to the non-inertial xy frame, to avoid
dealing with the trigonometric functions of angle ψ, which in general is not a
small angle, and would make linearizations impossible.

To write the equations of motion with reference to the body-fixed frame
xyz, it is expedient to use the components u and v of the speed in the directions
of the x and y axes and the yaw angular velocity

r = ψ̇ .

There are many ways to obtain the mathematical model, but perhaps the
simplest is to remember that the derivative with respect to time of a generic
vector �A, expressed in the body-fixed frame, but performed in the inertial frame

d �A

dt

∣∣∣∣∣
i

can be expressed starting from the derivative performed in the body fixed frame

d �A

dt

∣∣∣∣∣
m

,

as
d �A

dt

∣∣∣∣∣
i

=
d �A

dt

∣∣∣∣∣
m

+ �Ω ∧ �A , (25.67)



25.5 High speed cornering 273

where �Ω is the absolute angular velocity of the body fixed frame.
In the present case, the velocity and the angular velocity vectors, in the

body-fixed frame, are

�V =

⎧⎨
⎩

u
v
0

⎫⎬
⎭ , �Ω =

⎧⎨
⎩

0
0
r

⎫⎬
⎭ . (25.68)

The derivative of the velocity of the vehicle is then

d�V

dt

∣∣∣∣∣
i

=
d�V

dt

∣∣∣∣∣
m

+ �Ω ∧ �V =

⎧⎨
⎩

u̇ − rv
v̇ + ru

0

⎫⎬
⎭ . (25.69)

The equations of motion of the vehicle, expressed with reference to the xyz
frame, are ⎧⎨

⎩
m(u̇ − rv) = Fx

m(v̇ + ru) = Fy

Jz ṙ = Mz .
(25.70)

As an alternative, a procedure based on Lagrange equations can be followed.
Although apparently more complicated, it will be shown here, since it is consis-
tent with what will be done later for more complex models. In the present case
other approaches are more straightforward.

The kinetic energy of the vehicle is

T =
1
2
m

(
u2 + v2

)
+

1
2
Jzr

2 . (25.71)

The rotational kinetic energy of the wheels has been neglected: No
gyroscopic effect of the wheels will be obtained in this way.

Velocities u, v and r are linked to the derivatives of the generalized coordi-
nates Ẋ, Ẏ and ψ̇ by the relationship:

⎧⎨
⎩

u
v
r

⎫⎬
⎭ =

⎡
⎣ cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0
0 0 1

⎤
⎦
⎧⎨
⎩

Ẋ

Ẏ

ψ̇

⎫⎬
⎭ , (25.72)

i.e.
w = AT q̇ , (25.73)

where
w =

[
u v r

]T

is the vector containing the generalized velocities, and

q̇ =
[

Ẋ Ẏ ψ̇
]T

is the vector containing the derivatives of the generalized coordinates.
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Since matrix A is a rotation matrix,

AT = A−1 (25.74)

and the inverse transformation is

q̇ = Aw . (25.75)

The equations of motion are

d

dt

(
∂T
∂q̇i

)
− ∂T

∂qi
= Qi , (25.76)

where coordinates qi are X, Y and ψ and forces Qi are the corresponding gen-
eralized forces FX , FY and Mz.

The derivatives needed to write the equations of motion are
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂T
∂Ẋ

=
∂T
∂u

∂u

∂Ẋ
+

∂T
∂v

∂v

∂Ẋ
+

∂T
∂r

∂r

∂Ẋ

∂T
∂Ẏ

=
∂T
∂u

∂u

∂Ẏ
+

∂T
∂v

∂v

∂Ẏ
+

∂T
∂r

∂r

∂Ẏ

∂T
∂ψ̇

=
∂T
∂u

∂u

∂ψ̇
+

∂T
∂v

∂v

∂ψ̇
+

∂T
∂r

∂r

∂ψ̇
.

(25.77)

i.e. {
∂T
∂q̇

}
= A

{
∂T
∂w

}
, (25.78)

where {
∂T
∂q̇

}
=
[

∂T
∂Ẋ

∂T
∂Ẏ

∂T
∂ψ̇

]T

is the vector containing the derivatives with respect to the derivatives of the
generalized coordinates, while

{
∂T
∂w

}
=
[

∂T
∂u

∂T
∂v

∂T
∂w

]T

is the vector containing the derivatives with respect to the generalized velocities.
By differentiating with respect to time, it follows that

∂

∂t

({
∂T
∂q̇

})
= A

∂

∂t

({
∂T
∂w

})
+ Ȧ

{
∂T
∂w

}
, (25.79)

where

Ȧ = ψ̇

⎡
⎣ − sin(ψ) − cos(ψ) 0

cos(ψ) − sin(ψ) 0
0 0 0

⎤
⎦ . (25.80)



25.5 High speed cornering 275

The computation of the derivatives with respect to the generalized coordi-
nates

{
∂T
∂q

}
5 is more complex. The generic derivative ∂T

∂qk
is

∂T ∗

∂qk
=

∂T
∂qk

+
n∑

i=1

∂T
∂wi

∂wi

∂qk
=

∂T
∂qk

+
n∑

i=1

∂T
∂wi

n∑
j=1

∂Aij

∂qk
q̇j , (25.81)

where T ∗ is the kinetic energy expressed as a function of the generalized co-
ordinates and their derivatives (the expression to be introduced into Lagrange
equations in their original form), while T is expressed as a function of the gen-
eralized coordinates and the velocities in the body fixed frame. It is possible to
show that

∂T ∗

∂qk
=

∂T
∂qk

+ wT AT ∂A
∂qk

{
∂T
∂w

}
. (25.82)

Note that product

wT AT ∂A
∂qk

is a row matrix of order n (3 in the present case) that, multiplied by the column{
∂T
∂w

}
, yields the required number.

To use a more synthetic notation, those row matrices can be superimposed,
yielding a square matrix [

wT AT ∂A
∂qk

]
.

and thus {
∂T ∗

∂qk

}
=

{
∂T
∂qk

}
+

[
wT AT ∂A

∂qk

]{
∂T
∂w

}
. (25.83)

The equation of motion is thus

A
∂

∂t

({
∂T
∂w

})
+ Ȧ

{
∂T
∂w

}
−

{
∂T
∂qk

}
−

[
wT AT ∂A

∂qk

]{
∂T
∂w

}
=

⎧⎨
⎩

FX

FY

Mz

⎫⎬
⎭ .

(25.84)

By premultiplying all terms of matrix AT = A−1, it follows that

∂

∂t

({
∂T
∂w

})
+ AT

(
Ȧ−

[
wT AT ∂A

∂qk

]){
∂T
∂w

}
+ (25.85)

−AT

{
∂T
∂qk

}
= AT

⎧⎨
⎩

FX

FY

Mz

⎫⎬
⎭ .

5For details on this part of the analysis, see L. Meirovitch, Methods of Analytical Dynamics,
Mc Graw-Hill, New York, 1970.
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By performing the derivatives of the kinetic energy and all products, the
equation becomes⎧⎨

⎩
mu̇
mv̇
Jzr

⎫⎬
⎭ +

⎡
⎣ 0 −r 0

r 0 0
0 0 0

⎤
⎦
⎧⎨
⎩

mu
mv
Jzψ

⎫⎬
⎭ =

⎧⎨
⎩

Fx

Fy

Mz

⎫⎬
⎭ , (25.86)

where forces Fx and Fy refer to the body fixed frame. The final expression of the
equations of motion is then ⎧⎨

⎩
m(u̇ − rv) = Fx

m(v̇ + ru) = Fy

Jz ṙ = Mz ,
(25.87)

which obviously coincides with that obtained previously.
Velocities u and v are not derivatives of true coordinates, but nevertheless

they can be used to write the equations of motion. They are actually derivatives
of pseudo-coordinates, and the procedure here followed can also be used in cases
where the kinematic equation (25.72) is more complicated, and where, in partic-
ular, the equation contains a matrix AT that does not satisfy the relationship

AT = A−1 .

Equations (25.87) are nonlinear in the velocities u, v and r but, since the
sideslip angle β is small and its trigonometric functions can be linearized, the
linearization of the equations is possible. The components of velocity V can
be written as {

u = V cos(β) ≈ V
v = V sin(β) ≈ V β .

(25.88)

Product ψ̇v can be considered the product of two small quantities and it is
thus of the same order as the first term ignored in the series for the cosine. It is
therefore cancelled.

The speed V can be considered a known function of time, which amounts to
studying the motion with a given law V (t) (in many cases at constant speed) and
assuming as an unknown the driving or the braking force needed to follow such
a law. The unknown for the degree of freedom related to translation along the
x-axis in this case is the force Fxd

exerted by the driving wheels. When braking,
force Fxd

is the total braking force exerted by all wheels.
Equation (25.87) reduces to the linear form in Fx, v and r:⎧⎨

⎩
mV̇ = Fx

m (v̇ + rV ) = Fy

Jz ṙ = Mz .
(25.89)

If the interaction between longitudinal and transversal forces due to the tires
is neglected or accounted for in an approximate way, the first equation of mo-
tion, which has already been studied in the section dealing with the longitudinal
performance of the vehicle, uncouples from the other two.
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This amounts to saying that the lateral behavior is uncoupled from the
longitudinal behavior and can be studied using just two variables, either velocities
v and r: {

m (v̇ + rV ) = Fy

Jz ṙ = Mz ,
(25.90)

or β and r if the equations are written in the equivalent form
{

mV
(
β̇ + r

)
+ mβV̇ = Fy

Jz ṙ = Mz .
(25.91)

25.5.2 Sideslip angles of the wheels

The sideslip angles of the wheels may be expressed easily in terms of the gen-
eralized velocities. With reference to Fig. 25.16, the velocity of the centre Pi of
the contact area of the ith wheel, located in a point whose coordinates are xi

and yi in the reference frame of the vehicle, is

�VPi
= �VG + ψ̇Λ(Pi − G) =

{
u − ψ̇yi

v + ψ̇xi

}
. (25.92)

Angle βi between the direction of the velocity of point Pi and x-axis is

βi = arctan
(

vi

ui

)
= arctan

(
v + ψ̇xi

u − ψ̇yi

)
. (25.93)

FIGURE 25.16. Position and velocity of the centre Pi of the contact area of the i-th
wheel.
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If the ith wheel has a steering angle δi, its sideslip angle is

αi = βi − δi = arctan

(
v + ψ̇xi

u − ψ̇yi

)
− δi . (25.94)

Equation (25.94) can be easily linearized. By noting that yiψ̇ is far smaller
than the speed V , it follows that

αi = βi − δi ≈
v + rxi

V
− δi = β +

xi

V
r − δi . (25.95)

Coordinate yi of the centre of the contact area of the wheel does not appear
in the expression for the sideslip angle αi. If the differences between the steering
angles δi of the wheels of the same axle are neglected, the values of their sideslip
angles are then equal. This allows one to work in terms of axles instead of single
wheels and to substitute a model of the type of Fig. 4.1b to that of Fig. 4.1a.
This approach is very common and is often referred to as the monotrack vehicle
or bicycle model.

The explicit expressions of the sideslip angles of the front and rear axles of
a vehicle with two axles are then⎧⎪⎨

⎪⎩
α1 = β +

a

V
r − δ1

α2 = β − b

V
r − δ2 .

(25.96)

In the majority of cases only the front axle can steer and δ2 = 0.

Remark 25.6 The assumption of a rigid vehicle prevents one from considering
roll steering.

25.5.3 Forces acting on the vehicle

Normal forces acting on the vehicle in symmetrical conditions were obtained in
Chapter 23. When lateral accelerations are present, the vehicle is not in symmet-
rical conditions and the forces on the ground are not equally subdivided between
the two wheels of each axle. However, the assumption of a small sideslip angle
β and the subsequent linearization and uncoupling between lateral and longi-
tudinal behavior allow one to use the same values of the forces on the ground
previously seen. Moreover, to investigate how forces are subdivided between the
wheels of the same axle has little meaning in a monotrack vehicle.

The forces acting in the xy plane at the tire-road interface in a monotrack
vehicle are shown in Fig. 25.12

Since the lateral behavior is uncoupled from the longitudinal one, only the
resultants of the side force Fy and of the yaw moment Mz need to be computed:

Fy =
∑
∀i

Fxi
sin(δi) +

∑
∀i

Fyi
cos(δi) +

1
2
ρV 2

r SCy + Fye
, (25.97)
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where the external force Fye
may be mg sin(αt) in the case of a road with

transversal slope αt, and

Mz =
∑
∀i

Fxi
sin(δi)xi+

∑
∀i

Fyi
cos(δi)xi+

∑
∀i

Mzi
+

1
2
ρV 2

r SCMz
+Mze

, (25.98)

where xi and yi are the coordinates of the center of the contact zone, Mzi
repre-

sents the aligning moments of the wheels and Mze
is a yawing moment applied

to the vehicle. Subscript i indicates the axle, and thus if the vehicle has two axles
i = 1, 2. If the rear axle does not steer, δ2 = 0.

Cornering forces

Owing to linearization, equation (25.97) reduces to

Fy =
∑
∀i

Fxi
δi +

∑
∀i

Fyi
+

1
2
ρV 2

r SCy + Fye
, (25.99)

where products Fxit
δi can usually be neglected, since they are far smaller than

the other forces included in the equation.
Since the model has been linearized, cornering forces can be expressed as

the product of the cornering stiffness by the sideslip angle

Fyi
= −Ciαi = −Ci

(
β +

xi

V
r − δi

)
. (25.100)

Equation (25.100) is written in terms of axles. The cornering stiffness is
then that of the axle and not of the single wheel. In this way no allowance is
taken for the camber force as, owing to the assumption of a rigid vehicle, no roll
is considered and the wheels of a given axle have opposite camber. The camber
forces then cancel each other.

Nor is allowance made for toe in and transversal load transfer. If the de-
pendence of the cornering stiffness were linear with the load Fz, this would be
correct since the increase of cornering stiffness of the more loaded wheel would
exactly compensate for the decrease of the other wheel. As this is not exactly the
case, the load transfer causes a decrease of the cornering stiffness of each axle,
but this effect is usually considered negligible, at least for lateral accelerations
lower than 0.5 g6. Toe in causes an increase of the cornering stiffness of the axle
if it is positive, a decrease if it is negative.

By linearizing also the value of the aerodynamic coefficient Cy

Cy = (Cy),ββ

and assuming that the steering angles of the various axles can be expressed as

δi = K ′
iδ, (25.101)

6L. Segel, Theoretical Prediction and Experimental Substantiation of the Response of the
Automobile to Steering Control, Cornell Aer. Lab., Buffalo, N.Y.
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the expression of the total lateral force (25.99) can be reduced to the linear
equation

Fy = Yββ + Yrr + Yδδ + Fye
, (25.102)

where ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Yβ = −
∑
∀i

Ci +
1
2
ρV 2

r S(Cy),β

Yr = − 1
V

∑
∀i

xiCi

Yδ =
∑
∀i

K ′
i (Ci + Fxi

) .

(25.103)

Equation (25.102) can be considered as a Taylor series for the force
Fy (β, r, δ) about the condition β = r = δ = 0, truncated after the linear terms.
Coefficients Yβ , Yr and Yδ are the derivatives of the force with respect to the
three variables β, r and δ and may be obtained in any way, even experimentally,
if possible.

In the case of vehicles with only one steering axle, all K ′
i vanish except

K ′
1 = 1, while in other cases they can be functions of many parameters. If the

variables of motion β or r enter such equations the model is no longer linear.
The first Eq. (25.98) has been obtained conflating the sideslip angle of the

vehicle β with the aerodynamic sideslip angle βa, as occurs when no side wind
is present, and in the third equation the terms in Fxit

are usually neglected.

Yawing moments

Equation (25.98) can be linearized yielding

Mz =
∑
∀i

Fxi
δixi +

∑
∀i

Fyi
xi +

∑
∀i

Mzi
+

1
2
ρV 2

r SCMz
+ Mze

. (25.104)

The aligning torque can be expressed as a linear function of the sideslip
angle,

Mz = (Mz),αα , (25.105)

holding only in a range of α smaller than that for which the side force can be
linearized.

The same considerations seen for the cornering force hold here; moreover,
the aligning torque is far less important and the errors in its evaluation affect the
global behavior of the vehicle far less than errors in the cornering force. In the
following equations the values of (Mz),α are referred to the whole axle.

Acting similarly to what seen for the cornering forces, the linearized expres-
sion for the yawing moments is

Mz = Nββ + Nrr + Nδδ + Mze
, (25.106)
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where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nβ =
∑
∀i

[−xiCi + (Mzi
),α] +

1
2
ρV 2

r S(CMz
),β

Nr =
1
V

∑
∀i

[
−x2

i Ci + (Mzi
),αxi

]

Nδ =
∑
∀i

K ′
i [Cixi − (Mzi

),α + Fxi
xi] .

(25.107)

In this case the terms in Fxit
are usually neglected.

25.5.4 Derivatives of stability

As already stated, the terms Yβ , Yr, Yδ, Nβ , Nr and Nδ are nothing but the
derivatives ∂Fy/∂β, ∂Fy/∂r, etc. They are usually referred to as derivatives of
stability. Nr is sometimes referred to as yaw damping, as it is a factor that,
multiplied by an angular velocity, yields a moment, like a damping coefficient.

In a simplified study of the handling of road vehicles, aerodynamic forces are
usually neglected, as is the interaction between the longitudinal and transversal
forces of the tires. In these conditions, Yβ , Yδ, Nβ and Nδ are constant while Yr

and Nr are proportional to 1/V . Note that they are strongly influenced by the
load and road conditions through the cornering stiffness of the tires.

If aerodynamic forces are considered, the airspeed Vr is often substituted by
the groundspeed V . These forces introduce a strong dependence with V 2 in Yβ

and Nβ and with V in Nr.

Example 25.3 Compute the derivatives of stability at 100 km/h of the vehicle of

Appendix E.2, using the simplified and the complete formulations. Plot the derivatives

of stability as functions of the speed for the same vehicle. In the whole computation

neglect the longitudinal forces on the tires.

The normal forces on the ground are first computed. At 100 km/h, at constant

velocity on level road, they are 4.804 and 3.536 kN for the front and rear axles respec-

tively.

From these values the cornering and aligning stiffness can be computed as C1 =

67, 369 N/rad, C2 = 63, 411 N/rad, (Mz1),α = 2, 010 Nm/rad and (Mz2),α = 1, 366

Nm/rad.

These values refer to the axles; the normal load on each wheel must be first com-

puted and introduced into the “magic formula”; the results are then multiplied by the

number of wheels on the axles.

By taking into account only the cornering forces of the tires, the following values

of the derivatives of stability at 100 km/h are obtained:
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Yβ Yr Yδ Nβ Yr Yδ

N/rad Ns/rad N/rad Nm/rad Nms/rad Nm/rad

−130, 570 824.62 67, 374 22, 906 −5, 622 58, 615

If the complete expressions, including aligning torques, aerodynamic forces and

load shift between the wheels of the same axle are used, the values of the derivatives of

stability at 100 km/h are:

Yβ Yr Yδ Nβ Yr Yδ

N/rad Ns/rad N/rad Nm/rad Nms/rad Nm/rad

−132, 340 824.62 67, 374 26, 488 −5, 630 55, 962

The derivatives of stability are plotted as functions of the speed in Fig. 25.17.

The values obtained from the complete expressions are reported as full lines while the

dashed lines are the constant values (proportional to 1/V for Yr and Nr) obtained when

considering the cornering forces only, computed at 100 km/h.

Note that Nβ is the only derivative of stability strongly affected by load shift, align-

ing torques and the other effects. Here an apparently strange result is obtained: From

the formula a decrease in Nβ seems to occur with increasing speed, as the aerodynamic

term is negative, while the plot shows an increase.

The latter is due to the longitudinal load shift which, while causing an increase of

the load on the rear axle, produces an increase of Nβ that is larger than the decrease

due to the aerodynamic moment Mz.

FIGURE 25.17. Derivatives of stability as functions of the speed. Full lines: Values
obtained from the complete expressions; dashed lines: Constant values (proportional to
1/V for Yr and Nr) obtained considering the cornering forces only, computed at 100
km/h.
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25.5.5 Final expression of the equations of motion

The final expression of the linearized equations of motion for the handling model
is thus {

mV
(
β̇ + r

)
+ mV̇ β = Yββ + Yrr + Yδδ + Fye

Jz ṙ = Nββ + Nrr + Nδδ + Mze
.

(25.108)

These are two first order differential equations for the two unknown β and r.
These equations are apparently first order equations: the variables β and

r are actually an angular velocity (r) or a quantity linked with a velocity (β
was introduced instead of velocity v); their derivatives are thus accelerations.
The missing term is therefore not the second derivative (acceleration), but the
displacement.

Alternatively, a set of two first order differential equations in v and r could
be written.

The steering angle δ can be considered as an input to the system, together
with the external force and moment Fye

and Mze
. This approach is usually

referred to as the “locked controls” behavior.
Alternatively, it is possible to study the “free controls” behavior, in which

the steering angle δ is one of the variables of the motion and a further equation
expressing the dynamics of the steering system is added.

In the first case, β and r can be considered as state variables and Eq. (25.108)
can be written directly as a state equation

ż = Az + Bcuc + Beue , (25.109)

where the state and input vectors z, uc and ue are

z =
{

β
r

}
, uc = δ , ue =

{
Fye

Mze

}
,

the dynamic matrix is

A =

⎡
⎢⎢⎢⎣

Yβ

mV
− V̇

V

Yr

mV
− 1

Nβ

Jz

Nr

Jz

⎤
⎥⎥⎥⎦

and the input gain matrices are

Bc =

⎡
⎢⎢⎢⎣

Yδ

mV

Nδ

Jz

⎤
⎥⎥⎥⎦ , Be =

⎡
⎢⎢⎢⎣

1
mV

0

0
1
Jz

⎤
⎥⎥⎥⎦ .

The block diagram corresponding to the state equation is shown in
Fig. 25.18.
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FIGURE 25.18. Block diagram for the rigid vehicle handling model.

The study of the system is straightforward: The eigenvalues of the dynamic
matrix allow one to see immediately whether the behavior is stable or not, and
the study of the solution to given constant inputs yields the steady state response
to a steering input or to external forces and moments.

There is, however, an interesting analogy. If the speed is kept constant in
such a way that the derivatives of stability are constant in time, there is no
difficulty in obtaining r from the first Eq. (25.108) and substituting it into the
second, which becomes a second order differential equation in β. Similarly, solving
the second in β and substituting it in the first one, an equation in r is obtained.
The result is

P β̈ + Qβ̇ + Uβ = S′δ + T ′δ̇ − NrFye
+ JzḞye

− (mV − Yr)Mze
(25.110)

or

P r̈ + Qṙ + Ur = S′′δ + T ′′δ̇ + NβFye
− YβMze

+ mV Ṁze
, (25.111)

where

⎧⎨
⎩

P = JzmV
Q = −JzYb − mV Nr

U = Nβ (mV − Yr) + NrYβ

⎧⎪⎪⎨
⎪⎪⎩

S′ = −Nδ (mV − Yr) − NrYδ

S′′ = YδNβ − NδYβ

T ′ = JzYδ

T ′′ = mV Nδ .

If the simplified expressions of the derivatives of stability are used, the ex-
pressions for P , Q, etc., for a vehicle with two axles reduce to

⎧⎪⎨
⎪⎩

P = JzmV
Q = Jz(C1 + C2) + m(a2C1 + b2C2)

U = mV (−aC1 + bC2) + C1C2
l2

V

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S′ = C1

(
−amV + C2

bl

V

)

S′′ = lC1C2

T ′ = JzC1

T ′′ = mV aC1 .

Each of equations (25.110) and (25.111) is sufficient for the study of the
dynamic behavior of the vehicle.
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FIGURE 25.19. Formal analogy of the motor vehicle with a mass-spring-damper system
(mass P, stiffness U , damper Q). Force F includes the different forcing functions.

The equations are formally identical to the equation of motion of a spring-
mass-damper system (Fig. 25.19).

The linearized behavior of a rigid motor vehicle at constant speed is thus
identical to that of a mass P suspended from a spring with stiffness U and a
damper with damping coefficient Q, excited by the different forcing functions
stated above (the command δ and the external disturbances).

Remark 25.7 The analogy here suggested is only a formal one: as already
stated, the state variables β and r are dimensionally an angular velocity (r)
or are related to velocities (β has been introduced to express the lateral velocity
v) and not displacements, and thus P , Q and U are dimensionally far from being
a mass, a damping coefficient and a stiffness.

25.6 STEADY-STATE LATERAL BEHAVIOR

In steady state driving the radius of the path is constant, i.e. the path is circular.
The relationship linking the angular velocity r to the radius R of the path is thus

r =
V

R
. (25.112)

Computing the steady state response to a steering angle δ is the same as
computing the equilibrium position of the equivalent mass-spring-damper system
under the effect of a constant force S′δ or S′′δ since in steady state motion δ̇ = 0

⎧⎪⎪⎨
⎪⎪⎩

β =
S′

U
δ =

−Nδ (mV − Yr) − NrYδ

Nβ (mV − Yr) + NrYβ
δ

r =
S′′

U
δ =

YδNβ − NδYβ

Nβ (mV − Yr) + NrYβ
δ .

(25.113)

The transfer functions of the vehicle are thus the
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• path curvature gain

1
Rδ

=
YδNβ − NδYβ

V [Nβ (mV − Yr) + NrYβ ]
, (25.114)

expressing the ratio between the curvature of the path and the steering
input; the

• lateral acceleration gain

V 2

Rδ
=

V [YδNβ − NδYβ ]
Nβ (mV − Yr) + NrYβ

, (25.115)

expressing the ratio between the lateral acceleration and the steering input:
the

• sideslip angle gain

β

δ
=

−Nδ (mV − Yr) − NrYδ

Nβ (mV − Yr) + NrYβ
, (25.116)

expressing the ratio between the sideslip angle and the steering angle; and
the

• yaw velocity gain
r

δ
=

YδNβ − NδYβ

Nβ (mV − Yr) + NrYβ
, (25.117)

expressing the ratio between the yaw velocity and the steering angle.

If a simplified expression of the derivatives of stability, including only the
cornering forces of the tires, is introduced in the above expressions, the same
values of the gains reported in equations from (25.53) to (25.61) are obtained.

When the dependence of the derivatives of stability on the speed is accounted
for, the law 1/Rδ as a function of V is no more monotonic as those shown
in Fig. 25.13a and the behavior may change from understeer to oversteer (or
viceversa)

The aerodynamic yawing moment produces a strong effect. If ∂CMz
/∂β

is negative (the side force Fy acts forward of the centre of mass), the effect
is increasing oversteer or decreasing understeer, at increasing speed. If a critical
speed exists, such an aerodynamic effect lowers it and has an overall destabilizing
effect, increasing with the absolute value of (CMz

),β . The opposite occurs if
(CMz

),β is positive.
The longitudinal load shift produces another important effect. If the load

on the rear axle increases more, or decreases less, than that on the front axle,
the understeer increases with increasing speed.

The case of a vehicle that is oversteer at low speed and understeer at high
speed, as it can be caused by a positive value of (CMz

),β , is shown in Fig. 25.20.
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FIGURE 25.20. Steady state response to a steering input. Plot of the path curvature
gain as a function of speed (a) and handling diagram (b) for a vehicle that at low speed
is oversteer and then becomes understeer at high speed.

Following the definition seen above, the speed at which neutral-steer is obtained
is identified by point B.

If the simplified expressions for the derivatives of stability are not used, a
new definition of a neutral-steer, and hence under- and oversteer, vehicle may
be introduced. Instead of referring to the condition

1
Rδ

=
1
l

,

neutral-steering can be defined by the relationship

d

dV

(
1

Rδ

)
= 0 . (25.118)

On the plot of Fig. 25.20 the speed at which neutral-steering is obtained is
point A, where the curve reaches its maximum.

Remark 25.8 In case the derivatives of stability are constant (Yr and Nr are
proportional to 1/V ) the first definition, which can be said to be absolute and
the second, which can be said to be incremental, coincide.

Remark 25.9 The incremental definition corresponds to the sensations of the
driver, who perceives the vehicle as oversteering if an increase of speed is accom-
panied by a decrease in radius of the path and vice versa. The driver clearly has
no way of sensing the kinematic value of the radius of the path and hence the ab-
solute definition has little meaning for him. From the viewpoint of the equations
of motion, on the other hand, the absolute definition is more significant.
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The generalized definition (25.57) of the understeer fator

Kus =
g

ay
(δ − δkin) ,

and the corresponding definition of the stability factor holds in the present case as
well. They are essentially the difference between the steering angle needed to keep
the vehicle on a given trajectory in dynamic conditions and that corresponding
to kinematic steering, multiplied by a suitable factor proportional to 1/V 2.

Generally speaking, they depend on the speed and on other conditions, like
acceleration.

Also for the understeer factor it is, however, possible to introduce an incre-
mental definition

1
Kus

=
1
g

day

d (δ − δkin)
. (25.119)

In this case the point in which the understeer factor vanishes and the vehicle
is neutral steer is point A in Fig. 25.20b instead of being point B

25.7 NEUTRAL POINT AND STATIC MARGIN

The neutral-steer point of the vehicle is usually defined as the point on the plane
of symmetry on which is applied the resultant of the cornering forces due to the
tires as a consequence of a sideslip angle β, obviously with δ = 0 and r = 0. The
cornering forces under these conditions, computed through the linearized model,
are simply −C1β and −C2β and the x coordinate of the neutral point is

xN =
aC1 − bC2

C1 + C2
. (25.120)

A better definition of neutral-steer point may, however, be introduced. If all
forces and moments due to a sideslip angle β, with δ = 0 and r = 0 are considered,
the resultant force and moment are simply Yββ and Nββ respectively7. The x
coordinate of the neutral-steer point, defined as the point of application of the
resultant of all lateral forces is thus

xN =
Nβ

Yβ
. (25.121)

The static margin Ms is the ratio between the x coordinate of the neutral
point and the wheelbase

Ms =
xN

l
. (25.122)

An external force applied to the neutral-steer point does not cause any
steady-state yaw velocity, as will be seen when dealing with the response to

7Yβ may be considered as a sort of cornering stiffness of the vehicle.
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TABLE 25.1. Directional behavior of the vehicle.
Behavior K Kus Ms xN |α1| − |α2| Nβ

Understeer > 0 > 0 < 0 < 0 > 0 > 0
Neutral steer 0 0 0 0 0 0
Oversteer < 0 < 0 > 0 > 0 < 0 < 0

external forces and moments. Owing to the mathematical model used in the
present chapter, the height of the neutral-steer point cannot be defined.

Note that to obtain a neutral-steer response, the neutral-steer point must
coincide with the centre of mass, i.e.

xN = 0 , Ms = 0 , Nβ = 0 .

If they are positive the vehicle is oversteer8 (centre of gravity behind the
neutral point); the opposite applies to understeer vehicles.

The signs of parameters K, Kus, Ms, xN , |α1|− |α2| and Nβ corresponding
to oversteer, understeer or neutral-steer behavior are reported in Table 25.1.

Since Nβ = 0 in case of neutral-steer, the second equation of motion (25.108)
uncouples from the first and simplifies as

Jz ṙ = Nrr + Nδδ + Mze
. (25.123)

The behavior of a neutral-steer motor vehicle is thus that of a first order
system rather than a second order system.

Example 25.4 Study the directional behavior of the vehicle of Appendix E.2, using

the simplified and the complete formulations.

The value of Nβ is positive and hence the vehicle is understeer. Using the values of

the derivatives of stability computed from the cornering stiffness at 100 km/h, the values

of the coordinate of the neutral-steer point and of the static margin are xN = −175

mm, Ms = −0.081, while the values obtained, always at 100 km/h, using a complete

expression of the derivatives of stability are xN = −200 mm, Ms = −0.093.

The path curvature gain, the lateral acceleration gain, the sideslip angle gain and

the yaw velocity gain are plotted as functions of the speed in Fig. 25.21. The values

obtained from the complete expressions of the derivatives of stability are shown as full

lines, while the dashed lines refer to the simplified expressions for the derivatives of

stability (constant or proportional to 1/V for Yr and Nr) obtained by considering only

the cornering forces computed at 100 km/h. The dotted lines refer to a neutral-steer

vehicle.

The vehicle has a strong understeer behavior, even more so if the complete ex-

pression of the derivatives of stability is considered. However, the simplified approach

allows one to obtain a fair approximation of the directional behavior of the vehicle.

8Sometimes the position of the neutral-steer point and the static margin are defined with
different sign conventions: Instead of referring to the position of the neutral- steer point with
respect to the centre of mass, the position of the latter with respect to the former is given. In
this case the signs of xN and Ms are changed and an understeer vehicle has a positive static
margin.
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FIGURE 25.21. Example 25.4: path curvature gain, lateral acceleration gain, sideslip
angle gain and yaw velocity gain as functions of the speed. Full lines: Values obtained
from the complete expressions of the derivatives of stability; dashed lines: Simplified ap-
proach (constant derivatives of stability, Yr and Nr proportional to 1/V , obtained con-
sidering only the cornering forces computed at 100 km/h); dotted lines: Neutral-steer
vehicle.

25.8 RESPONSE TO EXTERNAL FORCES
AND MOMENTS

From the equivalent mass-spring-damper model the steady state response to an
external force Fye

or an external moment Mze
is immediately obtained. The

relevant gains are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
RFye

=
Nβ

V U

V 2

RFye

=
V Nβ

U

β

Fye

=
−Nr

U

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
RMze

=
−Yβ

V U

V 2

RMze

=
−V Yβ

U

β

Mze

=
−mV + Yr

U
.

(25.124)
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FIGURE 25.22. I. Response to a force Fye applied to the centre of mass; (a)
neutral-steer, (b) understeer and (c) oversteer vehicle. II. Response to a lateral wind;
point of application of the side force in the neutral-steer point (a), forward (b) and
after the neutral-steer point (c) and (d).

If the vehicle is neutral-steer, Nβ = 0 and consequently

1
RFye

= 0 .

In neutral steer vehicles, then, the path remains straight under the effect of
an external force (Fig. 25.22Ia). This may be easily understood considering that
the neutral-steer point lies in the centre of mass, i.e. in the point of application
of the external force.

Actually, this condition can be used to define the neutral-steer point as the
point in which the application of an external force does not cause a yaw rotation
of the vehicle. If the presence of the suspension is accounted for, it is possible
to define, instead of a neutral-steer point, a neutral-steer line as the locus of the
points in the xz plane in which an external force applied in the y direction does
not cause any yaw rotation.

The path is, however, changed from the one preceding the application of
force Fye

: The deviation is equal to angle β, i.e. to −Fye
/Yβ . The lateral velocity

of the vehicle is simply

v = V β = −V
Fye

Yβ
.

Remark 25.10 It is very important that Yβ be as large as possible in order to
avoid large lateral velocities, particularly in the case of fast vehicles.

If the vehicle is understeer, the neutral-steer point is behind the centre of
mass and the path bends as in Fig. 25.22Ib. The opposite effect can be found in
the case of oversteer vehicles. Note that the trajectories so computed are steady-
state trajectories, and when the force is applied an unstationary motion occurs
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(dashed lines in the figure). This first part of the path cannot be computed with
the above mentioned equations.

All the gains expressed by Eq. (25.124) tend to infinity when approaching
the critical speed if the vehicle is oversteer, while they decrease with the speed
in case of understeer vehicles.

The effect of a crosswind may be considered as the combined effect of a force
and a moment. If the relative velocity is changed by angle ψw with respect to
the velocity in still air, the force and the moment acting on the vehicle due to
crosswind are

Fyw
= (Fyaer

),βψw , Mzw
= (Mzaer

),βψw . (25.125)

Note that this approach, essentially a linearization of aerodynamic forces,
holds only for small values of ψw, or, better, for values causing angle β + ψw

to remain within the range where the side force and the yawing moment can
be linearized. This occurs either for feeble crosswinds or for head- or tailwinds.
If the wind velocity is not small, the aerodynamic terms of the derivatives of
stability must be computed using Vr instead of V .

The response in terms of curvature of the path, computed as the sum of the
response to a force and to a moment, is

1
R

=
Fyw

Nβ − Mzw
Yβ

V [Nβ (mV − Yr)NrYβ ]
=

Fyw
Yβ

V U

(
Nβ

Yβ
− Mzw

Fyw

)
. (25.126)

Ratio Mzw
/Fyw

is nothing but the distance of the point of application of
the aerodynamic side force from the centre of mass. If it is equal to Nβ/Yβ ,
the aerodynamic force is applied to the neutral steer point and a straight path
occurs. The deviation angle is

β =
Mzw

Yβ
= −Fyw

xN

Nβ
. (25.127)

In general, the value of β is

β =
Fyw

U

[
−Mzw

Fyw

(mV − Yr) − Nr

]
. (25.128)

The trajectories are shown in Fig. 25.22II.
Usually the point of application of the aerodynamic force is in front of

both the centre of mass and the neutral-steer point. In this case the path bends
downwind (curve b).

The path bends upwind (curves c and d) on the other hand, if the point of
application of aerodynamic forces is behind the neutral-steer point . If this effect
is not too strong (curve d3), it is beneficial since very little correction is needed,
but if the result resembles that of curve d1 a large correction may be required
in a direction opposite to the instinctive reaction of the driver.
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Remark 25.11 It must be noted again that the present steady-state model has
limited application in the case of wind gusts, which involve primarily unsteady
phenomena.

The application of a side force to the centre of mass is easy: It is sufficient to
use a road with a transversal slope fashioned in a proper way. Wind gusts may
be simulated using jet engines and suitable ducts to distribute the gust with the
required profile.

25.9 SLIP STEERING

As stated in Chapter 4, the trajectory of a vehicle on pneumatic tires may be
controlled by applying differential longitudinal forces to the tires on the right
and left side instead of steering some of the wheels. This method of driving a
vehicle is usually referred to as slip steering: While it is the usual strategy for
controlling tracked vehicles, it is used as a primary strategy for wheeled vehicles
only on some light construction machines. In the automotive field, however, it
is increasingly used as an additional control in connection with VDC (Vehicle
Dynamics Control) systems (see Chapter 27).

Consider the mathematical model of the vehicle expressed by equations
(25.108), and add a control yawing torque Mzc

to the second equation
{

mV
(
β̇ + r

)
+ mV̇ β = Yββ + Yrr + Yδδ + Fye

Jz ṙ = Nββ + Nrr + Nδδ + Mze
+ Mzc

.
(25.129)

If the two wheels of the ith axle, whose track is ti, produce a longitudinal
force

FxiL,R,
=

Fxi

2
± ΔFxi

, (25.130)

where subscripts L and R designate the left and right wheel, the control torque is

Mzc
=

∑
∀i

ΔFxi
ti . (25.131)

If the longitudinal slip σ of the tires is small enough, the longitudinal force is
proportional to the slip through the slip stiffness Cσ (see Section 2.6). Assuming
that the differential longitudinal slip Δσ is the same on all axles, the yawing
moment can thus be expressed as

Mzc
= NσΔσ , (25.132)

where
Nσ =

∑
∀i

Cσi
ti . (25.133)
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The equation of motion is still Eq. (25.109)

ż = Az + Bcuc + Beue ,

but now

uc =
{

δ
Δσ

}
, Bc =

⎡
⎢⎢⎢⎣

Yδ

mV
0

Nδ

Jz

Nσ

Jz

⎤
⎥⎥⎥⎦ .

In steady-state conditions, it is possible to define a path curvature gain for
slip steering

1
RΔσ

=
−NσYβ

V [Nβ (mV − Yr) + NrYβ ]
, (25.134)

expressing the ratio between the curvature of the path and the differential lon-
gitudinal slip. If the simplified expressions for the derivatives of stability are
accepted, it follows that

1
RΔσ

=
C1 + C2

C1C2l2

∑
∀i

Cσi
ti

1 + Kus
V 2

gl

, (25.135)

Remark 25.12 This approach to slip steering assumes that the differential lon-
gitudinal slip is imposed. Different equations would be obtained for cases in which
the differential velocity of the wheels is imposed.

Remark 25.13 The formulae above are based on the assumption that the radius
of the trajectory is much larger than the wheelbase: They do not hold when slip
steering is used for very sharp turns, or even for turning on the spot.

Remark 25.14 Even when the speed tends to zero no kinematic conditions exist:
By definition slip steering implies that the wheels operate with both longitudinal
and side slip.

25.10 INFLUENCE OF LONGITUDINAL FORCES
ON HANDLING

A vehicle’s directional behavior is strongly influenced by the presence of longi-
tudinal forces between tires and road. Any longitudinal force causes a reduction
of cornering stiffness: If applied to the front axle, it reduces the value of C1 and
consequently makes the vehicle more understeer or less oversteer. The opposite
effect is caused by a longitudinal force applied to the rear axle.

In the linearized model this can be easily accounted for by using the elliptical
approximation which, if a complete linearization of the behavior of the tires is
assumed, can be applied directly to each axle
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Ci = C0i

√
1 −

(
Fxi

μpFzi

)2

. (25.136)

Note that the forces and the cornering stiffness refer to the whole axle.
The driving force needed to maintain a constant speed increases with the

latter and, as a consequence, the cornering stiffness of the tires of the driving
axle decreases. The effect is felt particularly if road conditions are poor, since in
Eq. (25.136) the ratio between the actual and the maximum value of the driving
force is present.

The variation of static margin for a front-wheel and a rear-wheel drive saloon
car with the speed due to the effect of the driving forces is shown in Fig. 25.23.
It is clear that the effect is minor in the whole practical speed range of the car
if the road conditions are good while, if μp is low, the change in handling of the
car due to traction is quite strong.

In the case of rear-wheel drive vehicles driving forces increase oversteer or
decrease understeer. The critical speed, if it exists, decreases or a critical speed
may appear. In bad road conditions, a rear-wheel drive vehicle may have a very
low critical speed and the driver may be required to limit the speed for stability
reasons, to avoid spinout. Starting and accelerating the vehicle may be difficult
and the driver has to exert a great care in operating the accelerator control;
antispin or TCS devices are very useful in these conditions.

FIGURE 25.23. Variation of the stability margin due to the longitudinal forces on the
tires in the cases of front- and rear-wheel drive saloon cars. Various values of μp; a
completely linearized model has been used.
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Front-wheel drive vehicles, on the other hand, have a tendency toward un-
dersteering and become more stable with increasing speed or decreasing μp and
an increasingly large steering angle is needed to maintain the vehicle on a given
path. The limit condition is that of an infinitely stable vehicle, i.e. a vehicle that
can only move on a straight line.

In vehicles with more than one driving axle, and when braking, handling
depends upon how the longitudinal forces are distributed between the axles.
If the front axle is working with a larger longitudinal force coefficient μx than
the rear axle, which does not necessarily imply that force Fx is larger but that
the ratio Fx/Fz of the front wheels is larger than that of the rear wheels, the
vehicle becomes more understeering and is, in a sense, more stable. When the
limit conditions are reached and the front wheels slip (lock in braking or spin in
traction) the vehicle cannot be steered and follows a straight path.

A larger ratio Fx/Fz at the rear wheels makes the vehicle more oversteer
and readily introduces a critical speed. When reaching limit conditions a spinout
occurs, unless the driver promptly reduces the longitudinal forces and counter-
steers, a manoeuvre that can be expected only from very proficient drivers. To
avoid this situation the braking system must be such that the working point on
the Fx1 ,Fx2 plane is not found above the curve for ideal braking. Antispin and
antilock devices are very important from this viewpoint.

When all values of μx are equal, the behavior should theoretically not be
affected by the longitudinal forces; however, when limit conditions occur, the
vehicle can spin out or go straight depending on small changes in many pa-
rameters, such as the conditions of the individual wheels and brakes, the load
transfer, etc.

Example 25.5 Study the directional behavior of the vehicle of Appendix E.2, taking

into account the reduction of the cornering stiffness of the driving wheels caused by the

longitudinal forces needed to move at constant speed. Repeat the computation for two

values of μp, namely 1 and 0.2.

The study is performed by computing, at each speed, the values of the longitudinal

and normal component of the tire forces, using the “magic formula” for the cornering

stiffness and then reducing it through the elliptic expression (25.136).

The results, in terms of path curvature gain, lateral acceleration gain, sideslip

angle gain and yaw velocity gain, are plotted as functions of the speed in Fig. 25.24 for

both values of the maximum longitudinal force coefficient. The dashed lines refer to the

simplified expressions for the derivatives of stability (constant or proportional to 1/V

for Yr and Nr) obtained considering only the cornering forces computed at 100 km/h;

the dotted lines refer to a neutral-steer vehicle.

By comparing Fig. 25.24 with Fig. 25.21, it is clear that the effect of the driving

force is almost negligible throughout the entire speed range if the road conditions are good

(μp = 1): The lines of the two figures are almost completely superimposed. However, if

μp is lowered to 0.2, the understeer behavior becomes much more marked, particularly

at high speed.
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FIGURE 25.24. Example 25.5: path curvature gain, lateral acceleration gain, sideslip
angle gain and yaw velocity gain as functions of the speed. Values obtained from the
complete expressions of the derivatives of stability, with the effect of the driving forces
accounted for; (1): μt = 1; (2): μt = 0.2; (3): Simplified approach (constant derivatives
of stability, Yr and Nr proportional to 1/V , obtained considering only the cornering
forces computed at 100 km/h, assuming no longitudinal force effects); (4): Neutral-steer
vehicle.

25.11 TRANSVERSAL LOAD SHIFT

No allowance has yet been taken for the transversal load shift. If the dependence
on the load of the cornering stiffness of a single wheel is of the type shown in
Fig. 25.25, this does not introduce errors if the load transfer ΔFz is small, lower
than (ΔFz)lim in the figure (condition a).

But if the load shift is larger, as in the case of ΔFzb, the increase in stiffness of
the more loaded wheel cannot compensate for the decrease in the other wheel and
the cornering stiffness of the axle is reduced. This effect introduces a nonlinearity
in the behavior of the vehicle.

The simultaneous presence of longitudinal forces and load transfer makes
things more complicated. Even if the cornering stiffness is still in the linear
part of the plot of Fig. 25.25, i.e. the load transfer is smaller than (ΔFz)lim,
the combined effect yields a nonlinear behavior. Assuming that the longitudinal
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FIGURE 25.25. Effect of load transfer on the cornering stiffness.

force splits equally on its two wheels, the cornering stiffness of the axle, computed
using the elliptical approximation, is

C =
1
2

(
C0 + ΔFz

∂C

∂Fz

)√
1 −

[
Fx

μp(Fz + 2ΔFz)

]2

+

+
1
2

(
C0 − ΔFz

∂C

∂Fz

)√
1 −

[
Fx

μp(Fz − 2ΔFz)

]2

,

(25.137)

where forces Fx and Fz refer to the whole axle.
Owing to the presence of the square root, the decrease in cornering stiffness

of the less loaded wheel is greater, particularly if μx is low, than the increase at
the other wheel.

Load transfer on the driving axle thus increases the effect of longitudinal
forces; this combined action can be reduced by introducing an anti-roll bar on the
other axle. Operating in this way, the increased load transfer on the non-driving
axle also reduces its cornering stiffness, reducing the overall effect of longitudinal
forces on handling.

Anti-roll bars affect the distribution of transversal load shift between the
axles, increasing the load shift on the relevant one while decreasing that on the
other axles. They can be used to correct the behavior of the vehicle, particularly
in conditions approaching the limit lateral acceleration, as their effect on the
cornering stiffness increases when the latter increases.
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Remark 25.15 A large rear-wheel drive saloon car can benefit from the ap-
plication of an anti-roll bar at the front axle to correct the strong oversteering
tendency when the rear wheels approach their traction limit, while a small front
wheel car can use an anti-roll bar at the rear axle to reduce its understeering
behavior.

It is impossible to state the effect of anti-roll bars on the gains defined in
the previous sections since they introduce a strong nonlinearity into the math-
ematical model of the vehicle and the very definition of the gains is based on
a complete linearization. It is only possible to study a number of specific cases
where the lateral acceleration is defined, and to compute the response of the
vehicle in such conditions.

25.12 TOE IN

Consider an axle (e.g., the front axle), in which the midplanes of the wheels are
not exactly parallel and assume that the x-axes of the reference frames of the
wheels converge in a point lying forward with respect to the axle 9.

Let αc be the angle each wheel makes with the symmetry plane of the vehicle,
positive when the toe-in is positive. With reference to Fig. 4.1, the steering angle
of the wheel on the right side of the vehicle is increased by an angle equal to αc,
while the steering angle of the wheel on the left side is decreased by the same
quantity.

If the usual linearization assumptions are accepted, the sideslip angles of
the two wheels of the axle are then⎧⎪⎪⎨

⎪⎪⎩
αir

= β +
xi

V
r − δi − αc = αi − αc

αil
= β +

xi

V
r − δi + αc = αi + αc ,

(25.138)

where subscripts r and l refer to the right and left wheels respectively and i
refers to the ith axle.

Consider a vehicle negotiating a bend to the left; the sideslip angle αi is
negative while the side force is positive. The transversal load shift causes an
increase of the load on the wheels on the right, the sideslip angle αi is negative
and the side force is positive.

If C is the total stiffness of the axle, the cornering force the axle exerts is

Fy = −1
2

[
(αi − αc)

(
C + ΔFz

∂C

∂Fz

)
+ (αi + αc)

(
C − ΔFz

∂C

∂Fz

)]
, (25.139)

9Toe in is usually defined as the difference between the distance of the front part and the
rear part of the wheels of an axle, measured at the height of the hub, when the steering is in
its central position. It is positive when the midplanes converge forward.
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i.e.
Fy = C|αi| + αcΔFz

∂C

∂Fz
. (25.140)

If transversal load shift is not taken into account, and the two wheels have
the same cornering stiffness, toe in has no effect within the validity of the lin-
earized model. The situation is different if load shift is included into the model:
then toe in causes an increase of the cornering force due to the axle. This has
the effect of increasing the cornering stiffness of the axle, depending on the load
shift. Toe-in at the front wheels or toe-out of the rear ones thus has an oversteer
effect.

The effect of toe in is complicated since αc depends on the steering angle
due to steering error, on suspension geometry and on the relative roll stiffness
of the suspensions that affect the total shift of the various axles.

25.13 EFFECT OF THE ELASTO-KINEMATIC
BEHAVIOR OF SUSPENSIONS
AND OF THE COMPLIANCE
OF THE CHASSIS

In the present chapter the vehicle is modelled as a rigid body moving on a plane.
Suspensions, apart from causing inertial effects that cannot be studied using
the present model, also change all working angles of the tires and thus affect
the forces acting on the vehicle. The effects introduced by the elasto-kinematic
characteristics of suspensions may be of two different types: some of these effects
may be studied using linearized models, at least for small motion about a nominal
configuration, while others must be studied by considering their nonlinear effects,
even for small displacements

An example of the first type is roll steer. The characteristics δ(φ) can be
linearized, and a steering angle

(δ),φ φ

can easily be added to the steering angle of the various wheels, or the various
axles in monotrack models.

When, on the contrary, the compliance of the suspensions is accounted for,
the characteristic angles of the wheels depend in a nonlinear way on the variables
of motion and the resulting effects are nonlinear. No general results can thus be
obtained and numerical simulation must be used.

Even if it is possible to remain within linearity limits, the mathematical
models seen in this chapter are too simplified to depict how the elasto-kinematic
characteristics of the suspensions affect the behavior of the vehicle. Some more
complex models taking suspensions into account will be seen in Part V.

Similar considerations also hold for the compliance of the chassis or the
body. In this case, the displacements due to compliance are usually considered



25.14 Stability of the vehicle 301

small and the models describing their flexibility are linearized. However, although
linear, these models are complex owing to the large number of deformation de-
grees of freedom involved, together with the rigid body degrees of freedom typical
of the rigid-body models. Some models of this kind will be studied in Part V.

In general, we can say that the compliance of the chassis in its plane has
little influence on the handling of the vehicle. On the other handy, its torsional
deformations can strongly affect handling and lateral behavior.

25.14 STABILITY OF THE VEHICLE

It is customary to define a static and a dynamic stability. A system is statically
stable in a given equilibrium condition if, when its state is perturbed, it tends to
return to the previous situation. If the motion following this tendency towards
the previous state of equilibrium succeeds, at least asymptotically, at restoring it,
then the system is dynamically stable. This motion can tend to the equilibrium
condition monotonically or through a damped oscillation. If, on the contrary, the
equilibrium conditions are not reached, usually because a divergent oscillation
takes place, the system is dynamically unstable. If an undamped oscillation oc-
curs, as in the case of an undamped spring-mass system, the dynamic stability
is neutral.

Remark 25.16 If the system is linear, such definitions hold in the entire range
in which the state variables are defined. If, on the contrary, the system is non-
linear, this definition holds “in the small”, i.e. for small variations of the state
variables about the values corresponding to an equilibrium point in the state space.
The linearized model here studied is then a linearization suitable for the stability
“in the small”.

The definition of stability above refers to the state of the system; in the
case of the handling model with two degrees of freedom the state variables are β
and r (or v and r). A motor vehicle is thus stable if, when in motion with given
values β0 and r0 of β and r, after a small external perturbation, it follows that

β(t) → β0 , r(t) → r0 .

No reference is made to the path: After a perturbation the vehicle cannot
return to the previous path, and a correction by the driver or by an automatic
control system is required in order to maintain the vehicle on the road.

25.14.1 Locked controls

If the steering wheel is kept in a position that allows the vehicle to maintain
the required path, the stability can be studied simply by using the homogeneous
equation of motion

ż = Az .
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The eigenvalues of the dynamic matrix A are readily found and the stabil-
ity is assessed from the sign of their real part, which must be negative. If the
imaginary part is nonzero the behavior is oscillatory, which does not necessarily
imply that the path is oscillatory but only that the time histories β(t) and r(t)
are.

The analogy with the spring-mass-damper system allows a simpler approach
to the study of the stability at constant speed.

Assuming a solution of the type

β(t) = β0e
st , r(t) = r0e

st ,

the characteristic equation yielding the poles of the system is

Ps2 + Qs + U = 0 . (25.141)

Since P , Q and U depend in general on the speed V , it is possible to com-
pute the roots locus at various speed. By using the simplified expression for the
derivatives of stability, the characteristic equation reduces to

JzmV s2 +
[
Jz(C1 + C2) + m(a2C1 + b2C2)

]
s+

+mV (−aC1 + bC2) + C1C2
l2

V
= 0 . (25.142)

At any rate, the analogy allows to state that

• to ensure static stability the stiffness U must be positive,

• to ensure dynamic stability the damping coefficient Q must be positive,

• if Q is lower than the critical damping 2
√

PU the system has an oscillatory
behavior.

Using the simplified expression of the derivatives of stability, the following
expression of the “stiffness” U can be readily obtained

U =
C1C2l

2

V
(1 + KV 2) , (25.143)

where K is the stability factor defined by Eq. (25.58).
U is thus always positive for understeer and neutral-steer vehicles, and in

the latter case it tends to zero when the speed tends to infinity. In the case
of oversteer vehicles, it is positive up to the critical speed, where it vanishes
to become negative at higher speed. The critical speed is thus the threshold
of instability for oversteer vehicles. Similar results are obtained if the complete
expressions for the derivatives of stability are used.

It is also easy to verify that Q is always positive: If the vehicle is statically
stable it is also dynamically stable. If the simplified expression for the derivatives
of stability is accepted, the value of Q is independent of the speed

Q = Jz(C1 + C2) + m(a2C1 + b2C2) . (25.144)
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The critical damping of the equivalent system Qcrit is, under the same sim-
plifying assumptions

Qcrit = 2
√

PU = 2
√

C1C2Jzml2(1 + KV 2) . (25.145)

It is a constant in the case of neutral-steer vehicles, increases with speed
for understeer vehicles, and decreases, vanishing at the critical speed, in case of
oversteer ones.

By comparing the actual with the critical damping, it follows that under-
steer vehicles tend to develop an oscillatory behavior with a frequency which
increases with the speed (similar to a spring-mass-damper system with constant
damping and increasing stiffness). Oversteer vehicles, on the other hand, tend to
return to the original state without oscillations, but in a way that slows with in-
creasing speed, similar to a spring-mass-damper system with constant damping
and decreasing stiffness.

In a neutral-steer vehicle, under the same assumptions seen above, when
K = 0 and

C1a = C2b ,

the values of Qcrit and Q are

Qcrit = 2
C1lJz

b

√
mab

Jz
,

Q =
C1lJz

b

(
1 +

mab

Jz

)
. (25.146)

In many cases ratio
mab

Jz

is not far from unity. By writing

mab

Jz
= 1 + ε,

and expanding the above expressions in a power series in ε it follows

Q =
C1lJz

b
(2 + ε) . (25.147)

Qcrit = 2
C1lJz

b

√
1 + ε =

C1lJz

b

(
2 + ε − ε2

4
+ ...

)
.

Thus it is clear that the damping coefficient Q has its critical value with an
error as small as a term in ε2. A neutral-steer vehicle is then critically damped,
at least in an approximate way, while understeer and oversteer vehicles are,
respectively, underdamped and overdamped: The free behavior of the former
can then be expected to be oscillatory. It must be noted, however, that the
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TABLE 25.2. Example 25.6. Values of P , Q, U , Qcrit and of the real and imaginary parts
of the roots at 100 km/h (27.78 m/s). Column 1: Simplified expression of the derivatives
of stability; 2: Complete expressions, with no allowance for the effect of driving forces;
3: With driving forces with μp = 1; 4: With driving forces with μp = 0.2.

1 2 3 4

P [kg2m3/s] 2.790 × 107 2.790 × 107 2.790 × 107 2.790 × 107

Q [kg2m3/s2] 2.876 × 108 2.899 × 108 2.897 × 108 2.829 × 108

U [kg2m3/s3] 1.243 × 109 1.334 × 109 1.335 × 109 1.369 × 109

Qcrit [kg2m3/s2] 3.725 × 108 3.858 × 108 3.860 × 108 3.908 × 108

�(s) [1/s] -5.155 -5.196 -5.192 -5.070
�(s) [1/s] ±4.242 ±4.562 ±4.573 ±4.834

issue of whether a given vehicle has an oscillatory behavior or not cannot be
satisfactorily resolved using the present rigid body model since the presence of
rolling motions, which are neglected here and are almost always underdamped
and thus oscillatory, can also induce an oscillatory behavior for β and r. This is
particularly true for vehicles whose suspensions exhibit roll steer.

Example 25.6 Study the stability with locked controls of the vehicle of Appendix E.2,

taking into account the reduction of the cornering stiffness of the driving wheels caused

by the longitudinal forces needed to move at constant speed.

The parameters of the equivalent spring-mass-damper system are evaluated first

and then the poles of the system are computed. The values obtained at 100 km/h (27.78

m/s) are reported in Table 25.2.

It is clear that the effect of driving forces on stability at 100 km/h is not great,

even if the available traction is quite low, and that the simplified formulae already yield

satisfactory results.

The values of P , Q and U are reported, together with that of Qcrit, as functions of

the speed in Fig. 25.26a. In the same figure, the real and imaginary parts of s and the

roots locus are also shown. The figure has been obtained using the complete expressions

of the derivatives of stability, but neglecting the effect of driving forces.

Note that the stiffness U reduces with speed without tending to zero as in the case

of neutral vehicles, and that the vehicle is almost always underdamped, except for very

low speed, when Q > Qcrit.

25.14.2 Free controls

If the steering wheel is not controlled, motion of the vehicle with free controls
occurs. The steering angle δ then becomes not an input to the system but one
of its state variables, and a new equation stating the equilibrium of the steering
system has to be included.

The same approach could be followed in the study of motion with locked
controls, since what is locked is actually not the steering angle δ but the position
of the steering wheel and, if the compliance of the steering system is accounted
for, steering angle and position of the wheel do not coincide.
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FIGURE 25.26. Example 5.5: Study of the stability. (a) Parameters of the equivalent
spring-mass-damper system as functions of the speed. (b) Real and imaginary parts of
the eigenvalues as functions of the speed. (c) Roots locus at varying speed. Complete
expressions of the derivatives of stability, with the effect of driving forces neglected.

However, if the compliance of the steering system is considered, oscillatory
motions with high frequency can usually be found, and it is unrealistic to consider
the driver as a device that inputs a position signal δ to the vehicle. It is more
correct to consider the driver as a device supplying a driving torque on the
steering wheel. The motion thus occurs in conditions closer to a free than a
locked control situation.

The actual situation is mixed: at low frequencies, such as those typical of
the motion of the vehicle as a whole, the locked control model is adequate, while
for high frequency modes the free control model is more suitable.

At any rate, since the motion of the vehicle includes high frequency compo-
nents, the dynamic behavior of the tires cannot be neglected. The simplest way
to include it into a linearized model is to use relationships of the type

Fy = −C (α − Bα̇) ,
Mz = (Mz),α (α − B′α̇) ,

(25.148)

for the cornering force and the aligning torque.
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The time derivatives of the sideslip angles are obviously

α̇i = β̇ +
xi

V
ṙ − δ̇i . (25.149)

The equations of motion (25.109) modify as
{

mV
(
β̇ + r

)
+ mV̇ β = Yββ + Yrr + Yδδ + Yβ̇ β̇ + Yṙ ṙ + Yδ̇ δ̇ + Fye

Jz ṙ = Nββ + Nrr + Nδδ + Nβ̇ β̇ + Nṙ ṙ + Nδ̇ δ̇ + Mze
,

(25.150)

where the expressions of the derivatives of stability already seen still hold while
those of the others are ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yβ̇ =
∑
∀i

CiBi

Yṙ =
1
V

∑
∀i

xiCiBi

Yδ̇ = −
∑
∀i

K ′
iCiBi ,

(25.151)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nβ̇ =
∑
∀i

[
xiCiBi − (Mzi

),αB′
i

]

Nṙ =
1
V

∑
∀i

[
x2

i CiBi − (Mzi
),αxiB

′
i

]

Nδ̇ =
∑
∀i

[
− K ′

iCixiBi + K ′
i(Mzi

),αB′
i

]
.

The equation that must be added to equations (25.150) states the equi-
librium to rotation of the steering system, assumed to be a rigid system. The
geometry of the steering system is sketched in Fig. 25.27. The wheel rotates
about an axis, the kingpin axis, which is neither perpendicular to the ground
nor passing through the centre of the contact area: The caster angle ν, the lat-
eral inclination angle λ and the longitudinal and lateral offset at the ground dl

and dt are reported in the figure. In the figure, the kingpin axis intersects with
the rotation axis of the wheel, a very common situation. The case in which the
two axes are skewed will not be dealt with here.

If the kingpin axis were perpendicular to the ground and no offset were
present, the torque acting on the wheel as a consequence of the road-tire interac-
tion forces would be the aligning torque alone. The actual situation is different,
however, and the torque about the kingpin axis contains all forces and moments
acting on the wheel.

With geometrical reasoning, assuming that all angles are small, the total
moment Mk about the kingpin axis of both wheels of a steering axle may be
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FIGURE 25.27. Simplified geometry of the steering system and definition of the caster
angle ν, the lateral inclination angle λ and the offset at the ground dl and dt. The right
wheel is sketched and ν, λ and dt are positive. The kingpin axis is assumed to intersect
the rotation axis of the wheel.

approximated as10

Msr = −(Fzl
+ Fzr

)dt sin(λ) sin(δ) + (Fzl
− Fzr

)dt sin(ν) cos(δ)+
+(Fyl

+ Fyr
)rs tan(ν) + (Fxl

− Fxr
)dt + (Mzl

+ Mzr
) cos

(√
λ2 + ν2

)
,

(25.152)
where r and l indicate the right and left wheels respectively.

In symmetrical conditions, the forces on the ground at the two wheels are
equal. By assuming that the steering angle is small, Eq. (25.152) reduces to

Msr = −Fzdt sin(λ)δ + Fyrs tan(ν) + Mz cos
(√

λ2 + ν2
)

, (25.153)

where forces and moments refer to the whole axle.
By introducing expressions (25.148) into Eq. (25.153) the following lin-

earized expression of the moment about the kingpin is obtained

Msr = Mβ̇ β̇ + Mṙ ṙ + Mδ̇ δ̇ + Mββ + Mrr + Mδδ , (25.154)

where

Mβ̇ = CBrs tan(ν) − (Mz),αB′ cos
(√

λ2 + ν2
)

,

Mṙ = Mβ̇

a

V
, Mδ̇ = −Mβ̇ ,

Mβ = −Crs tan(ν) + (Mz),α cos
(√

λ2 + ν2
)

,

Mr = Mβ
a

V
, Mδ = −Mβ − Fzdt sin(λ) .

(25.155)

10 T. D. Gillespie, Fundamentals of Vehicle Dynamics, SAE, Warrendale, 1992.
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The linearized equation of motion of the steering system is then

Jsδ̈ + csδ̇ = Mβ̇ β̇ + Mṙ ṙ + Mδ̇ δ̇ + Mββ + Mrr + Mδδ + Msτs, (25.156)

where Ms, τs, cs and Js are, respectively, the torque exerted by the driver on
the steering wheel, the steering ratio (the ratio between the rotation angle of the
wheel and that of the kingpin), the damping coefficient of the steering damper
and the moment of inertia of the whole system, the latter two reduced to the
kingpin. Note that the steering ratio is often not constant and that the compli-
ance of the mechanism, here neglected, may have a large effect on it.

No gyroscopic effect of the wheels has been accounted for, which is consistent
with the assumption of a rigid vehicle, even if a weak gyroscopic effect should
be present if the kingpin axis is not perpendicular to the road.

Equation (25.156) holds also when more complicated geometries are ac-
counted for, provided that a linearization about a reference position is performed.
In this case, the expressions of the derivatives of stability Mβ , Mr etc. also con-
tain the longitudinal offset at the ground.

Since the second derivative of the state variable δ enters the equations of
motion, a further state variable

vδ = δ̇

must be introduced and a further equation stating the mentioned identity must
be added. The state equation is still Eq. (25.109)

ż = Az + Bcuc + Beue ,

where the state and input vectors z, uc and ue are

z =

⎧⎪⎪⎨
⎪⎪⎩

β
r
vδ

δ

⎫⎪⎪⎬
⎪⎪⎭

, uc = Ms , ue =
{

Fye

Mze

}
,

the dynamic matrix is

A =

⎡
⎢⎢⎣

mV − Yβ̇ −Yṙ −Yδ̇ 0
−Nβ̇ Jz − Nṙ −Nδ̇ 0
−Mβ̇ −Mṙ Js 0

0 0 0 1

⎤
⎥⎥⎦
−1

×

⎡
⎢⎢⎣

Yβ −mV + Yr 0 Yδ

Nβ Nr 0 Nδ

Mβ Mr (Mδ̇ − cs) Mδ

0 0 1 0

⎤
⎥⎥⎦

and the input gain matrices are

Bc =

⎡
⎢⎢⎣

mV − Yβ̇ −Yṙ −Yδ̇ 0
−Nβ̇ Jz − Nṙ −Nδ̇ 0
−Mβ̇ −Mṙ Js 0

0 0 0 1

⎤
⎥⎥⎦
−1 ⎡

⎢⎢⎣
0
0
τ s

0

⎤
⎥⎥⎦ ,
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Be =

⎡
⎢⎢⎣

mV − Yβ̇ −Yṙ −Yδ̇ 0
−Nβ̇ Jz − Nṙ −Nδ̇ 0
−Mβ̇ −Mṙ Js 0

0 0 0 1

⎤
⎥⎥⎦
−1 ⎡

⎢⎢⎣
1 0
0 1
0 0
0 0

⎤
⎥⎥⎦ .

The state equation can be used to study the stability of the vehicle and
the response to any given law Ms(t). In a similar way, it is possible to study the
steady-state performance simply by assuming that all derivatives are vanishingly
small (the last state equation may then be dropped, since it reduces to the
identity 0 = 0)

⎡
⎣ −Yβ mV − Yr −Yδ

−Nβ −Nr −Nδ

−Mβ −Mr −Mδ

⎤
⎦
⎧⎨
⎩

β
r
δ

⎫⎬
⎭ =

⎧⎨
⎩

Fye

Mze

Msτs

⎫⎬
⎭ . (25.157)

The steering wheel torque gain Ms/δ with reference to the steering angle
and that referring to the curvature of the path MsR, may be easily computed.

The eigenproblem
det(A − sI) = 0 (25.158)

allows one to study stability. Since the size of the dynamic matrix A is only
four, it is possible to write the characteristic equation and to solve it using the
formula for 4-th degree algebraic equations. However, no closed form solution
from which to draw general conclusions is available. The eigenvalues are either
a pair of complex conjugate solutions − yielding damped oscillations (if both
real parts are negative), one usually at low frequency and the other at high
frequency − or two nonoscillatory solutions and one high frequency oscillation.
The high frequency solution is usually linked with the dynamics of the steering
device while the others are linked primarily to the behavior of the vehicle.

The vibrations of the steering system were of concern in the past, particu-
larly in the 1930s, when they were referred to as steering shimmy . Such vibra-
tions were also present in the tailwheel of aircraft undercarriages. The use of tires
with lower pneumatic trail and, above all, the introduction of damping in the
steering mechanism has completely rectified the problem. Both viscous damp-
ing and dry friction have been used with success, but the latter decreases the
reversibility of the steering system and thus decreases its precision and its cen-
tering characteristics.

The, now common, use of servosystems in the steering control implies the
presence of non-negligible damping with viscous characteristics in the steering
device.

The present model is, however, too imprecise for a detailed study of this
phenomenon, since the compliance of the steering system and the lateral com-
pliance of the suspension are important causal factors in this type of vibration
that may become self-excited.

If only the low-frequency overall behavior of the vehicle is studied, it is
possible to neglect the dependence of the tire forces on the time derivative of
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the sideslip angle. In this case, the expressions of the dynamic matrix and of the
input gain matrix simplify as follows

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Yβ

mV

Yr

mV
− 1 0

Yδ

mV

Nβ

Jz

Nr

Jz
0

Nδ

Jz

Mβ

Js

Mr

Js

−cs

Js

−Mδ

Js

0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Bc =

⎡
⎢⎢⎢⎣

0
0
τ s

Js
0

⎤
⎥⎥⎥⎦ , Be =

⎡
⎢⎢⎢⎢⎢⎣

1
mV

0

0
1
Jz

0 0
0 0

⎤
⎥⎥⎥⎥⎥⎦

.

If the inertia and the damping of the steering system are likewise neglected,
Eq. (25.156) can be solved in δ. By introducing this value into the equations of
motion, an approximate model for the behavior of the vehicle with free controls
is obtained.

By assuming that the speed V is constant, the homogeneous state equation
for a vehicle with front axle steering only is then

{
β̇
ṙ

}
=

⎡
⎢⎢⎢⎣

Yβ + Yδ

mV

Yr + Yδ
a
V

mV
− 1

Nβ + Nδ

Jz

Nr + Nδ
a
V

Jz

⎤
⎥⎥⎥⎦
{

β
r

}
. (25.159)

The equation is formally identical to the homogeneous Eq. (25.108) and in
this case as well, it is possible to resort to a spring-mass-damper analogy and to
study the constant speed stability in a simple way. It can be shown that both
the stiffness and the damping coefficient are always positive, denoting both static
and dynamic stability.

By introducing only the cornering forces due to the tires, the vehicle is
overdamped at low speed, up to

V =
1
2

(
b2 +

Jz

m

)√
C2

Jzb
.

Above that speed the behavior becomes more and more underdamped, with
an increasingly oscillatory behavior.

Note, however, that the last simplification is usually too rough: In most
cases, the high value of the steering ratio τ s makes the inertia of the steering
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wheel when reduced to the kingpin axis non-negligible and the use of equation
(25.159) can lead to non-negligible errors. Other errors may be introduced by
neglecting steering damping since a certain amount of damping is present in the
system, the neglect of which may cause dynamic instability.

Example 25.7 Compute the torque that must be exerted on the steering wheel nec-

essary to maintain the vehicle of Appendix E.2 on a circular path with a radius of 100

m and to counteract a transversal slope of 1◦ at constant speed.

The additional data for the steering system are: λ = 11◦, ν = 3◦, d = 5 mm and

τs = 16.

The steering wheel torque gain MsR can be computed from Eq. (25.157). By stating

Fye = 0, Mze = 0 and Ms = 1, it is possible to obtain the yaw velocity r that follows

the application of a unit torque to the steering wheel.

Since R = V/r, the gain MsR may be immediately computed and thus the value of

the torque needed to maintain any given circular path. The results for R = 100 m are

reported in Fig. 25.28a.
To obtain the steering torque needed to counteract a transversal road slope, Eq.

(25.156) needs to be rearranged. The slope αt is felt by the vehicle as a side force

Fye = mg sin(αt).

If the path is straight, r = 0 and also Mze is equal to zero, as no external moment

acts on the vehicle. The unknowns are β, δ and Ms.
The equation is rearranged as

⎡
⎣ −Yβ −Yδ 0

−Nβ −Nδ 0
−Mβ −Mδ τs

⎤
⎦
⎧⎨
⎩

β
δ

Ms

⎫⎬
⎭ =

⎧⎨
⎩

mg sin(αt)
0
0

⎫⎬
⎭ .

FIGURE 25.28. Example 25.7: Steering wheel torque needed to maintain the vehicle
on a circular path with a radius of 100 m (a) and to counteract a transversal slope of
1◦ at constant speed (b).
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25.15 UNSTATIONARY MOTION

The response to a steering input in unstationary conditions may be computed
using the constant-speed linearized model expressed by equations (25.110) or
(25.111), reported here without the terms due to external forces and moments

P β̈ + Qβ̇ + Uβ = S′δ + T ′δ̇,

P r̈ + Qṙ + Ur = S′′δ + T ′′δ̇ .
(25.160)

If the variable for motion in the y direction is the lateral velocity v instead
of the sideslip angle β, the first equation becomes

P v̈ + Qv̇ + Uv = V S′δ + V T ′δ̇ . (25.161)

If an input of the type
δ = δ0e

st

is assumed, the solution takes the form

β = β0e
st , r = r0e

st , v = v0e
st.

The algebraic equations into which the differential equations transform are(
Ps2 + Qs + U

)
β0 = (T ′s + S′) δ0,(

Ps2 + Qs + U
)
r0 = (T”s + S”) δ0,(

Ps2 + Qs + U
)
v0 = V (T ′s + S′) δ0.

(25.162)

The transfer functions are then

β0

δ0
=

T ′s + S′

Ps2 + Qs + U
, (25.163)

r0

δ0
=

T”s + S”
Ps2 + Qs + U

, (25.164)

v0

δ0
= V

β0

δ0
= V

T ′s + S′

Ps2 + Qs + U
. (25.165)

In non-stationary conditions, the lateral acceleration is

ay = v̇ + rV (25.166)

and thus the relevant transfer function is

ay0

δ0
= V

T ′s2 + (T” + S′) s + S”
Ps2 + Qs + U

. (25.167)

By using the simplified expressions of the derivatives of stability, the de-
nominator of all transfer functions is

Δ = JzmV s2 +
[
Jz(C1 + C2) + m(a2C1 + b2C2)

]
s+

+mV (−aC1 + bC2) + C1C2
l2

V .
(25.168)
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The equation Δ = 0 allows the poles of the system to be computed, as seen
in section 6.13.1.

Assuming only front axle steering, the transfer functions are

r0

δ0
=

mV aC1s + lC1C2

Δ
, (25.169)

ay0

δ0
=

JzV C1s
2 + C1C2bls + lV C1C2

Δ
. (25.170)

By equating the numerator of the transfer functions (25.169) and (25.170)
to zero it is possible to find their zeros. For functions (25.169) the result is
straightforward, and the only zero is real and negative

s = − lC2

mV a
. (25.171)

The computation for function (25.170) is not as simple. The zeros are

s =
−blC2 ±

√
b2l2C2

2 − 4V 2lJzC2

2JzV
. (25.172)

At low speed, i.e. if

V ≤

√
b2lC2

4Jz
, (25.173)

the two solutions are both real and negative. They are distinct if Eq. (25.173)
holds with (<), coincident if it holds with (=).

At higher speeds, the two solutions are complex conjugate

s =
−blC2

2JzV
±

√
4V 2lJzC2 − b2l2C2

2

4J2
z V 2

, (25.174)

with a negative real part: the zeros lie in the left part of the Argand plane.
The situation may be different for the sideslip angle: S′ may be either posi-

tive or negative depending on the values of the parameters. By using the simpli-
fied expressions of the derivatives of stability, the value of the relevant transfer
function is

β0

δ0
=

JzV C1s + C1C2bl − maV 2C1

V Δ
. (25.175)

The expression of the zero is obtained by equating to zero the numerator

s =
maV 2C1 − C1C2bl

JzV C1
. (25.176)

At low speed the zero is negative and real, but if

V >

√
blC2

am
(25.177)
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it moves to the positive part of the Argand plane and then the system is a
non-minimum phase system.

From Eq. (25.110) and following it is clear that the response to steering is
a linear combination of the laws δ(t) and δ̇(t). If the numerator of the transfer
function is linear in s, and if the zero of the transfer function (which is always
real since the numerator is linear) is negative, the coefficients of the linear com-
bination have the same sign and the sign of the response does not change in
time.

Example 25.8 Plot the roots locus of the transfer function related to the lateral ac-

celeration at varying speed for the vehicle in Appendix E.2, taking into account both the

simplified and the complete expressions of the derivatives of stability used in Example

25.5. Compute the speed at which the transfer function β0/δ0 becomes a non-minimum

phase function.

Then compute the response to a step steering input at a speed of 100 km/h.

The transfer function ay0/δ0 has two real zeros up to a speed of 24.67 km/h; it

then has two complex conjugate poles. The locus of the zeros is reported in Fig.25.29a.

The two formulations yield practically the same results. Function β0/δ0 has a

negative real zero up to a speed of 56.22 km/h; than has a positive real zero.
If function δ(t) is a unit step function

{
δ = 0 per t < 0
δ = 1 per t ≥ 0 ,

FIGURE 25.29. a): Locus of the zeros of the transfer function ay0/δ0. Full line: complete
expression of the derivatives of stability; dashed line: simplified expression. b) and c):
response to a step steering input computed in closed form.
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its derivative δ̇ is an impulse function(Dirac’s δ):

⎧⎨
⎩

δ̇ = 0 per t < 0

δ̇ = ∞ per t = 0

δ̇ = 0 per t > 0

∫ ∞

−∞
δ̇dt = 1 .

Since the vehicle is understeer, the step and impulse responses g(t) and h(t) are
both oscillatory and are

h(t) = 1

mωn

√
1−ζ2

e−ζωnt sin
(√

1 − ζ2ωnt
)

g(t) = 1
k
− e−ζωnt

k

[
cos

(√
1 − ζ2ωnt

)
+ ζ√

1−ζ2
sin

(√
1 − ζ2ωnt

)]
,

where

m = P , ωn =

√
U

P
, ζ =

Q

2
√

PU
.

The total response is a linear combination of the step and impulse responses

β(t) = S′g(t) + T ′h(t)
r(t) = S”g(t) + T”h(t) .

At 100 km/h the mass-spring-damper system is underdamped, since the damping

ratio has a value ζ = 0.77. The natural frequency of the undamped system is ωn= 6.67
rad/s = 1.06 Hz, while the frequency of the free damped oscillations is ωp= 4.24
rad/s = 0.68 Hz.

The results are reported in Fig. 25.29b) and c).

The step and impulse responses have the same sign for the yaw velocity,
and they simply add in modulus. In the response for the sideslip angle they have
opposite sign and initially the second one prevails. When, after some time, the
first one begins to prevail, the sign of the response changes.

This is typical for non-minimum phase systems: the system initially reacts in a

direction opposite to that of the steady state response, then goes to zero and changes

its sign.

Once law r(t) has been obtained, it is possible to integrate it to yield the
yaw angle

ψ(t) =
∫ t

0

r(u)du . (25.178)

The path can then be obtained directly in the inertial frame X,Y . The
velocities Ẋ and Ẏ can be expressed in terms of angles β and ψ

{
Ẋ

Ẏ

}
= V

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]{
cos(β)
sin(β)

}
. (25.179)
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By integrating equations (25.179) the path is readily obtained

⎧⎪⎪⎨
⎪⎪⎩

X =
∫ t

0

V [cos(β) cos(ψ) − sin(β) sin(ψ)] du

Y =
∫ t

0

V [cos(β) sin(ψ) + sin(β) cos(ψ)] du .

(25.180)

The integration to obtain the path must actually be performed numerically
even in the simplest cases where laws β(t) and r (t) may be computed in closed
form owing to the fact that angle ψ is usually too large to allow linearizing its
trigonometric functions even when using the linearized model. In general, it is
more convenient to integrate the equations of motion numerically, since there
is no difficulty in doing so for Eq. (25.109) once laws δ(t), Fye

(t), Mze
(t) and

V (t) have been stated. Nowadays numerical integration is so straightforward
that closed form solutions that are too complicated to allow a quick qualitative
understanding of the phenomena to be obtained are considered of little use.

Example 25.9 Study the motion with locked controls of the vehicle of Appendix E.2

following a step steering input.

Assume that the value of the steering angle is that needed to obtain a circular path

with a radius of 200 m at a speed of 100 km/h.

At 100 km/h the path curvature gain 1/Rδ is equal to 0.2472 1/m. To perform a

curve with a radius of 200 m a steering angle δ = 0.0202 rad = 1.159◦ is needed.

In kinematic conditions, the radius of the path corresponding to the same value of

δ is 106.8 m. The fact that it is almost half the above was easily predictable, since 100

km/h is only slightly less than the characteristic speed.

The steady state values of r and β are respectively 0.1389 rad/s and −0.0131 rad =

−0.749◦.

The equation of motion of the vehicle was integrated numerically for a duration of

30 s. The results are plotted in Fig. 25.30. The time histories of the yaw velocity and

sideslip angle are shown along with the path.

The steady-state conditions are reached after a few seconds, with a slightly under-

damped behavior.

Example 25.10 Study the motion with locked controls of the vehicle of Appendix E.2

following a wind gust. Assume a step lateral gust, like the one encountered when exiting

a tunnel. Assume an ambient wind velocity va = 10 m/s and a vehicle speed of 100

km/h.

The driver does not react to the gust and the steering angle is kept equal to zero.
The presence of a cross-wind is accounted for by adding a side force Fye and a

yawing moment Mze equal to

⎧⎪⎪⎨
⎪⎪⎩

Fye =
1

2
ρV 2S(Cy),βψw

Mye =
1

2
ρV 2Sl(CMz ),βψw ,
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FIGURE 25.30. Example 25.9: Response to a step steering input. (a) Time histories of
the yaw velocity and sideslip angle and (b) path.

where ψw is the angle between the direction of the relative velocity and the tangent to the

path. This is clearly an approximation since it relies on the linearity of the aerodynamic

forces and moments with the aerodynamic sideslip angle and holds only if angle β +ψw

remains small.
As the path of the vehicle curves after the manoeuvre, the components of the rel-

ative velocity along the path and in a direction perpendicular to it are{
V‖ = V − va sin(ψ + β)
V⊥ = −va cos(ψ + β) ,

yielding

ψw = arctan

(
−va cos(ψ + β)

V − va cos(ψ + β)

)
.

The above relationships may be approximated by neglecting angle β.

Another approximation is neglecting the contribution of the wind velocity to the

airspeed, which is always considered at 100 km/h.

The equation of motion of the vehicle has been integrated numerically for a duration

of 10 s. The results are plotted in Fig. 25.31. The time histories of the yaw velocity and

sideslip angle are shown along with the path.

Quasi steady-state conditions are again reached after a few seconds, with a slightly

underdamped behavior. The conditions are not actually steady-state since the direction

of the wind is fixed, while the direction of the vehicle axes change. However, this effect

is minimal for the duration of the manoeuvre, and a good approximation could have

been obtained by assuming a constant value for angle ψw (ψw increases from 19.8◦ to

20.9◦ for t = 0 to t = 10 s).

At the end of the manoeuvre, the values of r and β are, respectively, 0.0505 rad/s

and −0.0036 rad = −0.2073◦. The errors linked to neglecting β in the above expression

are thus negligible. The response in terms of β in this case is that typical of a non-

minimum phase system.



318 25. HANDLING PERFORMANCE

FIGURE 25.31. Example 25.10: Response to a cross-wind gust. (a) Time histories of
the yaw velocity and sideslip angle and (b) path.

Example 25.11 The following manoeuvre is often performed by test drivers to assess

the handling and stability of a car: A step steering input is supplied and the steering

wheel is kept in position for a short time. The driver then releases the wheel and the

vehicle returns to a straight path. The whole manoeuvre is performed at constant speed.

Study the motion of the vehicle of Appendix E.2 following a manoeuvre of this kind

with a 45 ◦ steering wheel input held for 1.5 s at 100 km/h.

The data for the steering system are Js = 15 kg m2, cs = 150 Nms/rad, λ = 11◦,

ν = 3◦, d = 5 mm and τs = 16.

The first part of the manoeuvre is the same as in Example 25.9, only with a greater

value of δ: 2.81◦.

The integration in time is performed in two parts: A locked controls model is used

for the first 1.5 s; a free control model is used after the driver releases the wheel.

This second part of the simulation is performed using two alternative models: One

in which the dependence of tire forces on the derivative α̇ is neglected, and a second in

which the inertia and damping of the steering system are also not considered.

The time histories of the yaw velocity, sideslip angle and steering angle are reported

together with the path in Fig. 25.32.

The inertia of the steering system plays an important role in the response, since it

slows the recovery of the vehicle, thus affecting the path. It also increases the oscillatory

behavior of the vehicle, and if no damping is considered, an unstable behavior emerges.

The effect of neglecting the inertia of the steering system can be verified by com-

paring the poles of the system: If neither inertia nor damping is accounted for, the two

eigenvalues are −3.011± 7.709i, while the more complete model yields four eigenvalues

−9.129 ± 8.2921i and −1.065 ± 5.563i. The first is quite damped and is not important

in the motion, but the second is clearly different from that obtained from the simpler

model. The high value of the steering ratio, whose square enters the computation of the

equivalent inertia of the steering wheel, is responsible for this effect.



25.16 Vehicles with two steering axles (4WS) 319

FIGURE 25.32. Example 25.11: Response to a step steering input and a subsequent
recovery of the straight path with free controls. (a) Time histories of the yaw velocity
and sideslip angle and (b) of the steering angle; (c) path. The inertia and damping of
the steering system are considered (full lines) and then neglected (dashed lines).

25.16 VEHICLES WITH TWO STEERING
AXLES (4WS)

In the majority of vehicles with two axles, only the front wheels are provided with
a steering system. However, beginning in the 1980s, an increasing number of cars
with steering on all four wheels (4WS) appeared on the market, in the beginning
most of them Japanese. The primary goal was to improve manoeuvrability and
handling characteristics both in low- and high-speed steering. 4WS system were
dealt with in Part I, Chapter 6.

Simple four-wheel steering may be implemented by equipping the rear axle
with a compliance purposely designed to provide the required steering action
under the effect of road loads without adding an actual steering device. This
approach is defined as passive steering. Active steering occurs when the rear
axle is provided with a second steering device, operated by the driver along with
that of the front axle through adequate actuators.

To reduce the radius of the path in low-speed (kinematic) conditions, the
rear axle must steer in a direction opposite to the front; if the absolute values of
the steering angles are equal, the radius is halved and the off-tracking of the rear
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axle is reduced to zero. Using the notation introduced in the preceding sections,
this situation is characterized by

K ′
1 = 1 , K ′

2 = −1

(in the following it will always be assumed that K ′
1 = 1).

In practical terms, this value is too high since the rear axle would initially
be displaced too far to the outside of the line connecting the centres of the wheels
in the initial position, particularly when starting the motion with the wheels in
a steered position. It would be difficult, for example, to move a vehicle parked
near a curb or, worse, near a wall.

Assuming that K ′
1 = 1 and K ′

2 is constant, the path curvature gain and the
off-tracking distance are

1
Rδ

≈ 1 + K ′
2

l
, Ra − R1 ≈ l2(1 − K ′

2)
2R(1 + K ′

2)
. (25.181)

In high-speed cornering the situation is different. The equation of motion
is still Eq. (25.108) and, if the speed V is constant, it is possible to use the
spring-mass-damper analogy (either equation (25.110) or (25.111)).

To study the effect of rear steer, consider the simplified expression of the
derivatives of stability. The expression of P , Q and U do not change, while

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S′ = mV (−aC1K
′
1 + bC2K

′
2) + C1C2

l

V
(K ′

1b + K ′
2a)

S′′ = lC1C2 (K ′
1 − K ′

2)
T ′ = Jz (K ′

1C1 + K ′
2C2)

T ′′ = mV (aK ′
1C1 − bK ′

2C2) .

The expressions of the gains in steady state conditions become:

• path curvature gain
1

Rδ
=

1
l

(K ′
1 − K ′

2)
1 + KV 2

, (25.182)

• lateral acceleration gain

V 2

Rδ
=

V 2

l

(K ′
1 − K ′

2)
1 + KV 2

, (25.183)

• sideslip angle gain

β

δ
=

b

l

[
K ′

1 + K ′
2

a

b
− mV 2

l

(
aK ′

1

bC2
− K ′

2

C1

)]
1

1 + KV 2
, (25.184)

• yaw velocity gain
r

δ
=

V

l

(K ′
1 − K ′

2)
1 + KV 2

. (25.185)
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From the equations above it is clear that opposite steering (K ′
1 and K ′

2

with opposite signs) produces an increase of the gains related to the curvature
of the path, while steering with the same sign allows larger cornering forces to
be produced for the same steering angle

However, the most important advantages of 4WS are felt in non-steady state
conditions, making it important to assess the transfer functions in these condi-
tions. Equations from (25.162) to (25.167) still hold. If the simplified expressions
of the derivatives of stability are used, it follows that

r0

δ0
=

mV (aK ′
1C1 − bK ′

2C2) s + lC1C2 (K ′
1 − K ′

2)
Δ

, (25.186)

ay0

δ0
=

JzV (K ′
1C1 + K ′

2C2) s2 + C1C2l (aK ′
1 + bK ′

2) s + lV C1C2 (K ′
1 − K ′

2)
Δ

,

(25.187)
where Δ is still expressed by Eq. (25.168).

Opposite steering also makes the vehicle more responsive about the yaw
axis in non-steady state conditions. The second transfer function shows how
steering in the same direction increases the response at the highest frequencies, in
particular for lateral acceleration due to motion in the y direction, while opposite
steering increases the contribution due to centrifugal acceleration, especially at
low frequency.

Strong rear axle steering may cause some of the zeros of the transfer func-
tions to lie into the positive half-plane of the complex plane, making the system a
non-minimum phase system. This will be studied in greater detail in Chapter 27.

The limiting case of same sign steering is, for a vehicle with the center of
mass at mid-wheelbase, that with equal steering angles

K ′
1 = K ′

2 = 1 .

Remark 25.17 This is, however, too theoretical, since the vehicle would be quick
in a lane change, moving sideways, but would never be able to move on a curved
path. Instead of turning, it would move sideways.

Thus it is clear that the steering mechanism must adapt the value of K ′
2 to

the external conditions and to the requests of the driver. As seen in Part I, the
simplest strategy is to use a device, possibly mechanical, to link the two steering
boxes with a variable gear ratio: When angle δ is small, as typically occurs in
high speed driving, K ′

2 is positive and the steering angles have the same direction
while when δ is large, as occurs when manoeuvring at low speed, K ′

2 is negative.
Obviously, K ′

2 must be much smaller than K ′
1.

However, more complicated control laws for the steering of the rear axle must
be implemented to fully exploit the potential advantages of 4WS. The parameters
entering such laws are numerous, e.g. the speed V , the lateral acceleration, the
sideslip angles αi, etc. Such devices must be based on electronic controllers and
actuators of different types, and their implementation enters into the important
field of autronics (Chapter 27).
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From the viewpoint of mathematical modelling, the situation is, at least
in principle, simple. There is no difficulty in introducing a suitable function
K ′

2(V, δ, . . . ) into the equations (actually it would appear only in the derivatives
of stability Yδ and Nδ) and in modifying the equations of the rigid-body model
seen above accordingly. The more advanced models of the following sections
can be modified along the same lines. If function K ′

2 includes some of the state
variables, the modifications can be larger but no conceptual difficulty arises.

Except in the latter case, locked control stability is not affected by the
introduction of 4WS, while stability with free controls can be affected by it.

Generally speaking, the advantages of 4WS are linked with an increase in
the quickness of the response of the vehicle to a steering input, but this cannot
be true for all types of manoeuvres: Steering all axles in the same direction may
make the vehicle quick in lane change manoeuvres but slower in acquiring a
given yaw velocity. The sensations of the driver may be strange and, at least at
the beginning, unpleasant. A solution may be a device that initially steers the
rear wheels in the opposite direction for a short time, to initiate a yaw rotation,
and then steers them in the same direction as the front wheels, to generate
cornering forces. This requires a more complicated control logic, possibly based
on microprocessors.

As a final consideration, most applications are based on vehicles already
designed for conventional steering to which 4WS is then added, normally as an
option. In this case, the steering of the rear wheel is limited to 1◦÷2◦ or even less
since the rear wheel wells lack the space required for larger movement. Even if the
car is designed from the beginning for 4WS, a trade-off between its advantages
and the loss of available space in the trunk due to 4WS will take place.

25.17 MODEL WITH 4 DEGREES OF FREEDOM
FOR ARTICULATED VEHICLES

25.17.1 Equations of motion

An articulated vehicle modelled as two rigid bodies hinged to each other has,
in its motion on the road surface, four degrees of freedom (Fig. 25.33). The
assumption of rigid bodies implies that the hinge is cylindrical and that its axis
is perpendicular to the road: In practice different setups are used, but if rolling
is neglected the present one is the only possible layout.

There is no difficulty in writing the six equations of motion of the two rigid
bodies (each has three degrees of freedom in the planar motion on the road)
and then in introducing the two equations for the constraints due to the hinge
to eliminate two of the six. The forces exchanged between the two bodies are
explicitly introduced.

Here a different approach is followed and the equations of motion are
obtained through Lagrange equations. To this end, a set of four generalized
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FIGURE 25.33. Articulated vehicle. Reference frames and generalized coordinates.

coordinated is first stated: X and Y are the inertial coordinates of the centre of
mass of the tractor and ψ is its yaw angle. They are the same coordinates used
in the study of the insulated vehicle. The added coordinate is angle θ between
the longitudinal axes x of the tractor and xR of the trailer. Positive angles are
shown in Fig. 25.33.

Instead of angle θ, it is possible to use the yaw angle of the trailer ψR, i.e.
the angle between the inertial X-axis and the body-fixed axis xR.

The model can be simplified and linearized, as seen for the model of the
isolated vehicle, by assuming that the motion occurs in a condition not much
different from the symmetrical, which implies that the trailer angle θ and the
sideslip angles are small. Moreover, the vehicle will be assumed to be a monotrack
vehicle, i.e. the sideslip angles of the wheels of each axle will be assumed to be
equal. The model will be built in terms of axles rather than wheels.

As a damper with damping coefficient Γ may be attached to the hinge
between tractor and trailer, a Raleigh dissipation function must be written along
with the kinetic energy. No conservative forces act in the plane of the road,
assuming the hinge has no elastic restoring force, and hence no potential energy
need be computed.

The position of the centre of mass of the trailer is

(
GR − O

)
=

{
X − c cos(ψ) − aR cos(ψ − θ)
Y − c sin(ψ) − aR sin(ψ − θ)

}
. (25.188)
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The velocity of the centre of mass of the tractor is simply

VG =
{

Ẋ

Ẏ

}
, (25.189)

while that of point GR is

VGR
=

⎧⎨
⎩

Ẋ + ψ̇c sin(ψ) +
(
ψ̇ − θ̇

)
aR sin(ψ − θ)

Ẏ − ψ̇c cos(ψ) −
(
ψ̇ − θ̇

)
aR cos(ψ − θ)

⎫⎬
⎭ . (25.190)

The kinetic energy of the system is then:

T =
1
2
mT V 2

G +
1
2
mRV 2

GR
+

1
2
JT ψ̇

2
+

1
2
JR

(
ψ̇ − θ̇

)2

, (25.191)

where mT , mR, JT and JR are, respectively, the masses and the baricentric
moments of inertia about an axis of the tractor and the trailer perpendicular to
the road.

By introducing the expressions for the velocities into Eq. (25.191) and ne-
glecting the terms containing squares and higher powers of small quantities, also
in the series for trigonometric functions, it follows

T = 1
2m

(
Ẋ2 + Ẏ 2

)
+ 1

2J1ψ̇
2

+ 1
2J3θ̇

2 − J2ψ̇θ̇+

+mR

[
cψ̇ + aR

(
ψ̇ − θ̇

)][
Ẋ sin(ψ) − Ẏ cos(ψ)

]
+

−mRaRθ
(
ψ̇ − θ̇

)[
Ẋ cos(ψ) − Ẏ sin(ψ)

]
,

(25.192)

where ⎧⎪⎪⎨
⎪⎪⎩

m = mT + mR ,
J1 = JT + JR + mR

[
a2

R + c2 + 2aRc
]

,
J2 = JR + mR

[
a2

R + aRc
]

,
J3 = JR + mRa2

R .

The components of the velocity in the tractor reference frame may be used
⎧⎪⎪⎨
⎪⎪⎩

u
v
r
vθ

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎣

cos(ψ) sin(ψ) 0 0
− sin(ψ) cos(ψ) 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

Ẋ

Ẏ

ψ̇

θ̇

⎫⎪⎪⎬
⎪⎪⎭

, (25.193)

where r is the yaw angular velocity of the tractor and vθ is the relative yaw an-
gular velocity of the trailer with respect to the tractor. The relationship between
angular velocities and derivatives of the generalized coordinates is

w = AT q̇ , (25.194)
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where the structure of A is that of a rotation matrix, and then

AT = A−1 (25.195)

The final expression of the kinetic energy is then

T = 1
2m

(
u2 + v2

)
+ 1

2J1r
2 + 1

2J3vθ
2 − J2rvθ+

−mRv

[
cr + aR (r − vθ)

]
− mRaRθu (r − vθ) .

(25.196)

The rotation kinetic energy of the wheels has been neglected: No gyroscopic
effect of the wheels will be obtained in this way.

The Raleigh dissipation function due to the above mentioned viscous damper
is simply

F =
1
2
Γθ̇

2
. (25.197)

The equations of motion obtained in the form of Lagrange equations are

d

dt

(
∂T
∂q̇i

)
− ∂T

∂qi
+

∂F
∂q̇i

= Qi , (25.198)

where the coordinates qi are X, Y , ψ and θ and Qi are the corresponding gen-
eralized forces FX , FY and the moments related to rotations ψ and θ.

The velocities in the reference frame fixed to the tractor can be considered as
derivatives of pseudo-coordinates. Operating in the same way as for the isolated
vehicle, and remembering that the kinetic energy does not depend on coordinates
X and Y :

(
∂T
∂X

=
∂T
∂Y

= 0
)

,

that the dissipation function does not depend on the linear velocities

(
∂F
∂Ẋ

=
∂F
∂Ẏ

= 0
)
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and that angular velocities r and vθ coincide with ψ̇ and θ̇, the equation of
motion can be written in the form (A.126), with the derivatives of the dissipation
function added11

∂

∂t

({
∂T
∂w

})
+ AT

(
Ȧ−

[
wT AT ∂A

∂qk

]){
∂T
∂w

}
+

−AT
{

∂T
∂qk

}
+

{
∂F
∂w

}
= AT

⎧⎪⎪⎨
⎪⎪⎩

FX

FY

Qψ

Qθ

⎫⎪⎪⎬
⎪⎪⎭

.

(25.199)

The terms included in the equation of motion are

{
∂T
∂w

}
=

⎧⎪⎪⎨
⎪⎪⎩

mu − mRaRθ (r − vθ)
mv − mR [(c + aR) r − aRvθ]

J1r − J2vθ − mRaRθu − mRv (c + aR)
J3vθ − J2r + mRvaR + mRaRθu

⎫⎪⎪⎬
⎪⎪⎭

, (25.200)

d

dt

({
∂T
∂w

})
=

⎧⎪⎪⎨
⎪⎪⎩

mu̇ − mRaRvθ (r − vθ) − mRaRθ (ṙ − v̇θ)
mv̇ − mR [(c + aR) ṙ − aRv̇θ]

J1ṙ − J2v̇θ − mRaRθu̇ − mRaRuvθ − mRv̇ (c + aR)
J3v̇θ − J2ṙ + mRv̇aR + mRaRθu̇ + mRaRuvθ

⎫⎪⎪⎬
⎪⎪⎭

,

(25.201)

AT

(
Ȧ −

[
wT AT ∂A

∂qk

]){
∂T
∂w

}
=

=

⎧⎪⎪⎨
⎪⎪⎩

−r {mv − mR [(c + aR) r − aRvθ]}
r [mu − mRaRθ (r − vθ)]

−v [mu − mRaRθ (r − vθ)] + u {mv − mR [(c + aR) r − aRvθ]}
0

⎫⎪⎪⎬
⎪⎪⎭

,

(25.202)

AT

{
∂T
∂qk

}
=

⎧⎪⎪⎨
⎪⎪⎩

0
0
0

−mRaRu (r − vθ)

⎫⎪⎪⎬
⎪⎪⎭

, (25.203)

{
∂F
∂w

}
=

⎧⎪⎪⎨
⎪⎪⎩

0
0
0
Γθ̇

⎫⎪⎪⎬
⎪⎪⎭

, AT

⎧⎪⎪⎨
⎪⎪⎩

FX

FY

Qψ

Qθ

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

Qx

Qy

Qψ

Qθ

⎫⎪⎪⎬
⎪⎪⎭

. (25.204)

11In this case, the equation of motion is not written in its general form, but only for the
case with AT = A−1.
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The first two equations are then
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m (u̇ − vr) − mRaRθ (ṙ − v̇θ) − 2mRaRrvθ + mRaRvθ
2+

+ mR (c + aR) r2 = Qx

m (v̇ + ur) − mR [c + aR] ṙ + mRaRrv̇θ − mRaRθr (r − vθ) = Qy .
(25.205)

Remembering that, owing to the assumption of small angles, V ≈ u and
also that v is small, equations (25.205) may be linearized as

{
mV̇ = Qx

m (v̇ + V r) − mR (c + aR) ṙ + mRaRrθ̈ = Qy .
(25.206)

The third and forth equations, those for generalized coordinates ψ and θ,
once linearized, are

⎧⎨
⎩

J1ṙ − J2v̇θ − mR (c + aR) (v̇ + V r) − mRaRV̇ θ = Qψ

J3v̇θ − J2ṙ + mRaR (v̇ + V r) + mRaRθV̇ = Qθ .

(25.207)

where the damping term Γθ̇ is included in term Qθ.

25.17.2 Sideslip angles of the wheels

The sideslip angles of the wheels of the tractor are the same as for the insulated
vehicle. In a similar way, it is possible to write the sideslip angles of the wheels
of the trailer.

With reference to Fig.25.34, the coordinates of point Pi, the centre of the
contact zone of the ith wheel of the trailer, are

{
XPi

= X − c cos(ψ) − li cos (ψ − θ) − yRi
sin (ψ − θ)

YPi
= Y − c sin(ψ) − li sin (ψ − θ) + yRi

cos (ψ − θ) .
(25.208)

The velocity of the same point may be obtained by differentiating the expres-
sions of the coordinates. For the computation of the sideslip angle the velocity
of point Pi must be expressed in the reference frame GRxRyR of the trailer

{
ẊPi

ẎPi

}
R

=
[

cos (ψ − θ) sin (ψ − θ)
− sin (ψ − θ) cos (ψ − θ)

]{
ẊPi

ẎPi

}
. (25.209)

The velocity of the centre of the contact area can thus be expressed in the
reference frame of the trailer as⎧⎨

⎩
V̇xR

(Pi) = u cos(θ) − v sin(θ) + cψ̇ sin(θ) − yRi

(
ψ̇ − θ̇

)
V̇yR

(Pi) = u sin(θ) + v cos(θ) − cψ̇ cos(θ) − li

(
ψ̇ − θ̇

)
,

(25.210)
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FIGURE 25.34. Position of the centre Pi of the contact area of the i-th wheel of the
trailer.

or, remembering that some of the quantities are small,⎧⎨
⎩

V̇xR
(Pi) = V − yRi

(
ψ̇ − θ̇

)
V̇yR

(Pi) = V θ + v − cψ̇ − li

(
ψ̇ − θ̇

)
.

(25.211)

Since the sideslip angle of a steering wheel can be obtained as the arctangent
of the ratio of the y and x components of the velocity minus the steering angle
δ, it follows that

αi = arctan

⎡
⎣V θ + v − cψ̇ − li

(
ψ̇ − θ̇

)

V − yRi

(
ψ̇ − θ̇

)
⎤
⎦− δi . (25.212)

Using the monotrack vehicle model (yRi
= 0) and remembering that the

sideslip angle is small, it follows that

αi = θ + β − r

V
(c + li) +

θ̇

V
li − δi . (25.213)

The term in yRi
does not enter the expression of the sideslip angle: The

wheels of the same axle have the same sideslip angle, and it is also possible to
work in terms of axles instead of single wheels for the trailer.

The steering angle δi is either 0 or, if the axle can steer, is usually not
directly controlled by the driver but is linked with the variables of the motion,
e.g. with angle θ. If law δi(θ) is simply

δi = −K ′
iθ ,
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the expression for the sideslip angle is

αi = θ(1 + K ′
i) + β − r

V
(c + li) +

θ̇

V
li . (25.214)

If some of the wheels of the trailer are free to pivot about their kingpin,
an equilibrium equation for the relevant parts of the steering system of those
axles must be written, similar to the procedure for the study of motion with free
controls.

25.17.3 Generalized forces

The contributions to the generalized forces Qx, Qy and Qψ due to the tractor
are the same as those of the insulated vehicle. The tractor does not give any
contribution to force Qθ. To compute the contributions due to the ith wheel of
the trailer and the aerodynamic forces of the latter, the easiest method is to
write their virtual work δL due to a virtual displacement

{δs} = [δx, δy, δψ, δθ]T .

Using the assumption of small angles, it follows that
{

δxR(Pi) = δx − θδy + cθδψ − yRi
(δψ − δθ)

δyR(Pi) = θδx + δy − cδψ − li (δψ − δθ) .
(25.215)

If the ith wheel has a steering angle δi, the forces it exerts in the reference
frame GRxRyRzR, the same in which the virtual displacement has been written,
are simply

FxiR
= Fxip

cos(δi) − Fyip
sin(δi) ≈ Fxip

− Fyip
δi,

FyiR
= Fxip

sin(δi) + Fyip
cos(δi) ≈ Fxip

δi + Fyip
,

(25.216)

where Fxip
and Fyip

are the forces in the reference frame of the tire.
The virtual work can be computed by multiplying the forces and moments

(the aligning torque Mzi
) by the corresponding virtual displacement (for the

moment, rotation δψ − δθ)

δL =
[
Fxip

+ Fyip
(θ − δi)

]
δx +

[
−Fxip

(θ − δi) + Fyip

]
δy+

+
{

Fxip
[c(θ − δi) − yRi

− liδi] + Fyip
(−c + yRi

δi − li) + Mzi

}
δψ+

+
{

Fxip
(yRi

+ liδi) + Fyip
(−yRi

δi + li) − Mzi

}
δθ.

(25.217)
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The generalized forces due to the ith wheel of the trailer can be obtained
by differentiating the virtual work δL with respect to the virtual displacements
δx, δy, δψ and δθ:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qxi
=

∂δL
∂δx

= Fxip
+ Fyip

(θ − δi)

Qyi
=

∂δL
∂δy

= −Fxip
(θ − δi) + Fyip

Qψi
=

∂δL
∂δψ

= Fxip
[c(θ − δi) − yRi

− liδi] + Fyip
(−c + yRi

δi − li) + Mzi

Qθi =
∂δL
∂δθ

= Fxip
(yRi

+ liδi) + Fyip
(−yRi

δi + li) − Mzi
.

(25.218)

In a similar way, the generalized forces resulting from the aerodynamic forces
and moments acting on the trailer can be accounted for. It is usually difficult
to distinguish between the forces acting on the tractor and those acting on the
trailer, as what is measured in the wind tunnel are the forces acting on the whole
vehicle. In the following equations, it will be assumed that the forces acting on
the tractor are measured separately from those acting on the trailer, and that
they are applied at the centre of mass of the relevant rigid body and decomposed
along the axes fixed to it. The forces acting on the trailer are so decomposed
along axes xRyRzR.

The generalized forces due to aerodynamic forces acting on the tractor con-
tribute to Qx, Qy and Qψ just as they do for the insulated vehicle, while the
expression of the generalized aerodynamic forces applied on the trailer can be
obtained from equations (25.218), by substituting FxRaer

, FyRaer
, MzRaer

and
aR to Fxip

, Fyip
, Mzi

and li and by setting both yRi
and δi to zero.

The external force FyeR
acting on the centre of mass or the trailer and

the component of the weight mRg sin(α) due to a longitudinal grade α of the
road will be assumed to act in the directions of axes x and y of the tractor;
consequently the relevant equations must be modified accordingly.

25.17.4 Linearized expressions of the forces

The linearized expressions of the generalized forces Qx, Qy, Qψ and Qθ can be
obtained with the methods used for the isolated vehicle. Linearization can be
performed by introducing the cornering and aligning stiffnesses Ci and (Mzi

),α

of the axles (subscript i refers now to the ith axle and not to the ith wheel).
In the same way, the derivatives of the aerodynamic coefficients (Cy),β , etc. can
also be introduced.
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A simple expression for Qx is thus obtained:

Qx = Xm −
(
f0 + KV 2

) [
mg cos(α) − 1

2ρV 2 (SCz + SRCzR
)
]
+

− 1
2ρV 2 (SCx + SRCxR

) − mg sin(α),
(25.219)

where, as usual, Xm is the driving force of the driving axle, but may also be the
total braking force.

By substituting the sideslip angle β of the vehicle for ratio v/V , the expres-
sions of the forces appearing in the handling equations are

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Qy = (Qy),ββ + (Qy),rr + (Qy),θ̇ θ̇ + (Qy),θθ + (Qy),δδ + Fye
+ FyeR

Qψ = (Qψ),ββ + (Qψ),rr + (Qψ),θ̇ θ̇ + (Qψ),θθ + (Qψ),δδ + Mze
+

+MzeR
− (c + aR)FyeR

Qθ = (Qθ),ββ + (Qθ),rr + (Qθ),θ̇ θ̇ + (Qθ),θθ − MzeR
+ aRFyeR

.

(25.220)
The derivatives of stability entering the expression for Qy are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Qy),β = Yβ −
∑
∀iR

Ci +
1
2
ρV 2

r SR(CYR
),β

(Qy),r = Yr +
1
V

[∑
∀iR

(c + li)Ci +
1
2
ρV 2

r SR(c + aR)(CYR
),β

]

(Qy),θ̇ = − 1
V

[∑
∀iR

liCi −
1
2
ρV 2

r SRaR(CYR
),β

]

(Qy),θ = −
∑
∀iR

Ci +
1
2
ρV 2

r SR(CYR
),β

(Qy),δ = Yδ ,

(25.221)

where Yβ , Yr and Yδ are the derivatives of stability of the tractor expressed by
equations (25.103).

The derivatives of stability entering the expression for Qψ and Qθ are re-
spectively

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Qψ),β = Nβ +
∑
∀iR

C1 + (c + li)Ci + (Mzi
),α

(Qψ),r = Nr −
1
V

[∑
∀iR

(c + li)2Ci + (c + li)(Mzi
),α + (c + aR)Ca1

]

(Qψ),θ̇ =
1
V

[∑
∀iR

li(c + li)Ci + li(Mzi
),α + aRCa1

]

(Qψ),θ =
∑
∀iR

(c + li)Ci + (Mzi
),α + Ca1

(Qψ),δ = Nδ ,
(25.222)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Qθ),β =
∑
∀iR

C2 − liCi − (Mzi
),α

(Qθ),r =
1
V

[∑
∀iR

(c + li)liCi + (c + li)(Mzi
),α + (c + aR)Ca2

]

(Qθ),θ̇ = − 1
V

[∑
∀iR

l2i Ci + li(Mzi
),α + aRCa2

]
− Γ

(Qθ),θ = (Qθ),β

(Qθ),δ = 0 ,

(25.223)

where aerodynamic terms Ca1 and Ca2 are:

Ca1 =
1
2
ρV 2

r SR [lR(CNR
),β − (c + aR)(CYR

),β ] ,

Ca2 =
1
2
ρV 2

r SR [lR(CNR
),β − aR(CYR

),β ] .

Nβ , Nr and Nδ are the derivatives of stability of the tractor expressed by
equations (25.107). All axles of the trailer have been assumed as non-steering

If the axles of the trailer can steer and their steering angles δi are linked
with angle θ by the law

δi = −K ′
iθ ,

the expressions of the derivatives of stability reported above still hold, except
for (Qy),θ, (Qψ),θ and (Qθ),θ in which all terms in Ci and (Mzi

),α must be
multiplied by (1 + K ′

i).

25.17.5 Final expression of the equations of motion

As with the equations of the insulated vehicle, the linearization of the equations
allows the longitudinal behavior (first equation of motion) to be uncoupled from
the lateral, or handling behavior, which can be studied using only the three
remaining equations. This occurs if the law u(t), which can be confused with
V (t), is considered as a stated law, while the unknowns are the driving or braking
forces Fx for the longitudinal behavior and β, r and θ for handling.

The linearized equation for the longitudinal behavior

mV̇ = Qx (25.224)

can thus be studied separately.
The linearized equations for the lateral behavior of the articulated vehicle

can be expressed in the space of the configurations as

Mẍ + Cẋ + Kx = F , (25.225)

where the vectors of the generalized coordinates and of the forces are

x =

⎧⎨
⎩

y
ψ
θ

⎫⎬
⎭ , F =

⎧⎨
⎩

(Qy),δδ + Fye
+ FyeR

(Qψ),δδ + Mze
+ MzeR

− (c + aR)FyeR

−MzeR
+ aRFyeR

⎫⎬
⎭ (25.226)
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and the matrices are

M =

⎡
⎣ m −mR(c + aR) mRaR

−mR(c + aR) J1 −J2

mRaR −J2 J3

⎤
⎦ ,

C =

⎡
⎢⎢⎢⎢⎣

− (Qy),β

V
mV − (Qy),r −(Qy),θ̇

− (Qψ),β

V
−mRV (c + aR) − (Qψ),r −(Qψ),θ̇

− (Qθ),β

V
mRV aR − (Qθ),r −(Qθ),θ̇

⎤
⎥⎥⎥⎥⎦ , (25.227)

K =

⎡
⎣ 0 0 −(Qy),θ

0 0 −(Qψ),θ

0 0 −(Qθ),θ

⎤
⎦ .

The set of differential equations (25.225) is actually of the fourth order and
not of the sixth, since variables y12 and ψ appear in the equation only as first
and second derivatives (the first two columns of matrix K vanish). The equation
can thus be written in the state space in the form of a set of four first order
differential equations by introducing a fourth state variable vθ = θ̇

ż = Az + Bcuc + Beue . .

The state vector z is simply

z =
[

β r vθ θ
]T

,

the dynamic matrix is

A =

⎡
⎢⎢⎣ −M−1C M−1

⎧⎨
⎩

(Qy),θ

(Qψ),θ

(Qθ),θ

⎫⎬
⎭[

0 0 1
]

0

⎤
⎥⎥⎦ ,

the input gain matrices are

Bc =

⎡
⎢⎢⎣ M−1

⎡
⎣ (Qy),δ

(Qψ),δ

0

⎤
⎦

0

⎤
⎥⎥⎦ ,

Be =

⎡
⎢⎢⎣ M−1

⎡
⎣ 1 1 0 0

0 −(c + aR) 1 1
0 aR 0 −1

⎤
⎦

[
0 0 0 0

]

⎤
⎥⎥⎦ ,

12Actually, as already stated, v is the derivative of a pseudo-coordinate and thus y has no
physical meaning. It has been introduced into the equations only for completeness and, since
it is always multiplied by 0, its presence can be accepted.
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and the input vector is

uc = δ . ue =
[

Fye
FyeR

Mze
MzeR

]T
.

25.17.6 Steady-state motion

To study the steady-state behavior of the vehicle, Eq. (25.225) can be used, along
with the assumption that v̇ = ṙ = θ̇ = θ̈ = 0. The following equation is thus
obtained⎡

⎣ −(Qy),β mV − (Qy),r −(Qy),θ

−(Qψ),β −mRV (c + aR) − (Qψ),r −(Qψ),θ

−(Qθ),β mRV aR − (Qθ),r −(Qθ),θ

⎤
⎦
⎧⎨
⎩

β
r
θ

⎫⎬
⎭ =

=

⎧⎨
⎩

(Qy),δδ + Fye
+ FyeR

(Qψ),δδ + Mze
+ MzeR

− (c + aR)FyeR

−MzeR
+ aRFyeR

⎫⎬
⎭ .

(25.228)

There is no difficulty in solving such a set of equations. For instance, after
stating that δ = 1 and setting all other inputs to zero, the gains 1/Rδ, β/δ etc.
can be computed.

A particularly simple solution is obtained for a two-axle vehicle with a one-
axle trailer if only the cornering forces of the wheels are accounted for

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
Rδ

=
1
l

1
1 + KV 2

θ

δ
=

a + c + K ′V 2

l(1 + KV 2)
,

(25.229)

where the stability factor K and K ′ are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K =
1
l2

[(
mT + mR

lR − aR

lR

)(
b

C1
− a

C2

)
+

−mR
c(lR − aR)

lR

(
1
C1

+
1
C2

)]

K ′ =
1
l

{
m

a

C2
+

mR

lR

[
(a + c)(lR − aR)

C2
− lRaR

C1

]}
.

(25.230)

The same definitions used for the insulated vehicle also hold in this case and,
if the derivatives of stability are constant or proportional to 1/V , the sign of the
stability factor allows one to state immediately whether the vehicle is oversteer,
neutral-steer or understeer.

The simplified expression of the stability factor (25.230) is composed of two
terms: The first usually has the same sign of bC1 − aC2, i.e. of the factor that
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decides the behavior of the tractor alone. The second term is negative, unless
the product c(lR − aR) is negative, i.e. the centre of mass of the trailer is behind
its axle.

If
c(lR − aR) > 0 ,

the trailer increases the understeering character of the vehicle, more so if the
hinge is far from the centre of mass of the tractor and the centre of mass of
the trailer is close to the hinge. In the case of trailers with a single axle, like
caravans, this effect can be reduced by reducing the distance between its centre
of mass and the axle.

If the centre of mass is exactly on the axle, that is, if

lR − aR = 0 ,

the trailer has no effect on the steady state behavior of the tractor; it does,
however, affect its dynamic behavior and stability.

If the centre of mass of the trailer is behind its axle,

lR − aR < 0 ,

the trailer increases the oversteer behavior of the tractor. If the vehicle is over-
steer, the presence of a critical speed can be expected.

Remark 25.18 This way of comparing the behavior of the tractor alone with
that of the complete vehicle is not correct however: The presence of the trailer
can change the loads on the wheels of the former, thus affecting their cornering
stiffness.

Example 25.12 Study the steady state directional behavior of the articulated truck

of Appendix E.9. Compare the results obtained using the complete expressions of the

derivatives of stability with those computed considering only the cornering forces of the

tires.

The computation is straightforward. At each value of the speed the normal forces on

the ground must be computed, although they change little with the speed. The cornering

stiffness and the aligning stiffness of the axles are readily obtained from the normal

forces.

At 100 km/h, for instance, the normal forces on the axles are 57.25, 107.28, 79.83,

83.56 and 56.14 kN, yielding the following values for the cornering stiffness and the

aligning stiffness: 422.05, 806.64, 641.34, 665.89, 416.42 kN/rad and 22.724, 41.472,

26.102, 28.175, 22.116 kNm/rad.

The path curvature gain, the sideslip angle gain and the trailer angle gain θ/δ are

plotted as functions of the speed in Fig. 25.35. The values obtained from the complete

expressions of the derivatives of stability are shown as full lines while the dashed lines

refer to the simplified expressions for the derivatives of stability obtained by considering

only the cornering forces.
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FIGURE 25.35. Example 25.12: Path curvature gain, sideslip angle gain and trailer
angle gain as functions of the speed. Full lines: Values obtained from the complete
expressions of the derivatives of stability; dashed lines: Simplified approach obtained
considering only the cornering forces.

When the speed tends to zero, the path curvature gain does not tend to the kine-

matic value 1/l of the tractor: The trailer has a number of axles greater than one and

correct kinematic steering is impossible. The vehicle is understeer, even if weakly.

The simplified approach allows one to obtain a fair approximation of the directional

behavior of the vehicle, the differences between the two results being due mostly to the

aligning torques of the tires and only marginally to aerodynamic forces and moments.

25.17.7 Stability and nonstationary motion

The study of the stability in the small, i.e., for small changes of the state of the
system around the equilibrium conditions, may be performed by computing the
eigenvalues of the dynamic matrix. The plot of the eigenvalues (their real and
imaginary parts) as functions of the speed and the plot of the roots locus give a
picture of the stability of the system that can be easily interpreted.

The eigenvalues of the system are four; two of these are usually complex
conjugate showing an oscillatory behavior; the corresponding eigenvector shows
that the motion of the trailer is primarily involved. These oscillations are usually
lightly damped, and can become, mainly at high speed, self excited leading to a
global instability of the vehicle.

Remark 25.19 The presence of an eigenvalue with positive real part, and hence
of an instability in the mathematical sense, is felt by the driver as a source of
discomfort rather than an actual instability. If the values of both the imaginary
and the real parts of the eigenvalue are small enough, i.e. if the frequency is
low and the amplitude grows slowly, the driver is forced to introduce continuous
steering corrections without actually recognizing the instability of the vehicle.
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The introduction of a damper at the trailer-tractor connection can solve
this problem, while the use of steering axles on the trailer makes things worse.
A steering axle, controlled so that the wheels steer in the direction opposite
to those of the tractor with a magnitude proportional to angle θ, provides a
restoring force to keep the trailer aligned with the tractor. The effect is similar
to that of increasing the stiffness of a system: If the damping is not increased
the underdamped character is magnified, while the natural frequency is also
increased.

For the study of motion in nonstationary conditions, the considerations
already seen for the insulated vehicle still hold. The more complicated nature of
the equations of motion, however, compels us to resort to numerical integration
in a larger number of cases.

Example 25.13 Study the stability with locked controls of the articulated truck of

Appendix E.9.

The plot of the real and imaginary parts of s and the roots locus are shown in

Fig. 25.36.

The figure has been obtained using the complete expressions of the derivatives of

stability, but neglecting the effect of driving forces. At 100 km/h the eigenvalues are

−2.3364 ± 1.5896i , −2.2698 ± 3.4037i;

the corresponding eigenvectors are

⎧⎪⎪⎨
⎪⎪⎩

−0.8723 ± 0.4849i
0.0305 ± 0.0424i

−0.0037 ∓ 0.0346i
0.0058 ± 0.0109i

⎫⎪⎪⎬
⎪⎪⎭

,

⎧⎪⎪⎨
⎪⎪⎩

−0.6448 ∓ 0.6533i
−0.0521 ± 0.0862i
−0.1322 ± 0.3429i

0.0518 ∓ 0.0734i

⎫⎪⎪⎬
⎪⎪⎭

.

FIGURE 25.36. Example 25.13: Study of the stability. (a) Real and imaginary parts of
s as functions of the speed. (b) Roots locus at varying speed. Complete expressions of
the derivatives of stability, with the effect of driving forces neglected.
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FIGURE 25.37. Example 25.14: Path curvature gain, sideslip angle gain and trailer an-
gle gain as functions of speed. Full lines: Values obtained from the complete expressions
of the derivatives of stability; dashed lines: Simplified approach obtained considering
only the cornering forces.

The vehicle has a strong oscillatory behavior, even if both modes are well damped

and no dynamic instability occurs; both modes involve the tractor as well as the trailer.

Example 25.14 Study the directional response and the stability with locked controls

of the car of Appendix E.5 with a caravan with a single axle. Assume the following data

for the caravan: Mass mR = 600 kg, moment of inertia JR = 800 kg m2, c = 2.87 m,

aR = l3 = 2.5 m, hR = 1 m, SR = 2.5 m2; (CYR),β = −1.5, (CNR),β = −0.6. Assume

that the trailer has the same tires used on the tractor.

The path curvature gain, sideslip angle gain and trailer angle gain are plotted

against the speed in Fig. 25.37. Both the complete and simplified expressions of the

derivatives of stability have been used, while the effect of driving forces has been ne-

glected.

Note that the curve obtained from the simplified expressions of the derivatives of

stability is completely superimposed on that describing the behavior of the insulated

vehicle, as was predictable since aR = l3. Note also that the path curvature gain tends

to the kinematic value for a speed tending to zero, since the trailer has a single axle

and correct kinematic steering is possible.

The plot of the real and imaginary parts of s and the roots locus are reported in

Figs. 25.38a and b. Here only the complete expressions of the derivatives of stability have

been used. The vehicle is stable, but the absolute value of the real part of the Laplace

variable s is quite low at high speed, denoting a strong and little damped oscillatory

motion, which occurs at low frequency.

To compare the behavior of the vehicle with and without trailer the computation

has been repeated without the latter and the results are shown in Figures 25.38c and d.

The comparison shows that the modes affecting primarily the vehicle are fairly

uncoupled from those primarily affecting the trailer, although a correct analysis of such

coupling demands a through analysis of the eigenvectors.



25.17 Articulated vehicles 339

FIGURE 25.38. Example 25.14: Study of the stability. (a) Real and imaginary parts of
s as functions of the speed. (b) Roots locus at varying speed. (c), (d): Same as (a), (b)
but for the vehicle without trailer. Complete expressions of the derivatives of stability,
with the effect of driving forces neglected.

The trailer mode with low frequency and low dynamic stability is superimposed

on the more stable tractor mode, which is not strongly affected by the presence of the

trailer. The motion of the tractor in the trailer mode can also be quite large, as this

mode affects the whole system.

Example 25.15 Study the stability with locked controls of the car of Appendix E.2

with the caravan of Example 25.14. Assume that the tires of the caravan are the same

as those used on the tractor. Then study the motion with locked controls of the same

vehicle following a step steering input at 80 and 140 km/h. Assume that the value of the

steering angle is that needed to obtain a circular path with a radius of 200 m, computed

neglecting the presence of the trailer.

The plot of the real and imaginary parts of s and the roots locus computed using

the complete expressions of the derivatives of stability are shown in Figures. 25.39a
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FIGURE 25.39. Example 25.15: Study of the stability. (a) Real and imaginary parts of
s as functions of speed. (b) Roots locus at varying speed. Note the instability threshold
at about 120 km/h. Complete expressions of the derivatives of stability, with the effect
of driving forces neglected.

and b. The vehicle is stable only up to a speed of about 120 km/h, where the real part

of the Laplace variable s related to one of the two modes vanishes, to become positive

at higher speed.

The absolute value of the real part of s is always quite low, denoting a marginal

dynamic stability at low speed and a marginal instability at higher speed.

This type of behavior is quite evident in the response to a step steering input. The

steering angle needed to obtain a radius of the path of 200 m is 0.9659◦ at 80 km/h

and 1.7271◦ at 140 km/h. The integration of the equation of motion was performed

numerically. At 80 km/h the response is stable but the step input excites a strong,

slowly damped, oscillatory behavior (Fig. 25.39a).

The strong oscillatory behavior is primarily due to the trailer, and the time history

showing more pronounced oscillations is that of the trailer angle θ. After 6 s the values

of r/V δ, βδ and θδ are almost stabilized at the values of 0.3018, −0.4056 and 0.3098

that characterize the steady state behavior (the former two are almost the same as those

obtained for the vehicle without trailer, except for a small difference due to the difference

in aerodynamic drag, which influences the loads on the road and hence the cornering

stiffness). The path is, however, not oscillatory.

At 140 km/h the vehicle is unstable and the oscillations of r, β and θ quickly

diverge. The path reported in Fig. 25.40b, however, is not strongly oscillatory.

This example is a limiting case since the trailer is not correctly matched to the

vehicle, nor are the tires correct for the trailer; it has been shown as an example of

unstable behavior occurring in an incorrectly designed vehicle with trailer.

Note that a step input is prone to excite strongly an unstable behavior and is the

worst thing to do with a marginally stable vehicle. The oscillations have a low frequency,

and it is possible that the driver may be able to stabilize the vehicle even at speeds at

which the real part of s is positive: A test driver would probably find the handling and
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FIGURE 25.40. Example 25.15: Response to a step steering input. (a) Time histories
of the yaw velocity, sideslip angle β and trailer angle θ at 80 km/h and (b) path at 80
and 140 km/h.

comfort of the vehicle poor rather than seeing the vehicle as unstable, owing to the need

for continuous steering corrections.

On the other hand, it is possible that a vehicle with a low negative real part of

s becomes unstable because of the action of the driver. Ultimately, the stability of the

vehicle-driver system is what counts, but intrinsic stability of the vehicle is necessary,

so that the driver is not forced to stabilize a system that is itself unstable.

25.18 MULTIBODY ARTICULATED VEHICLES

25.18.1 Equations of motion

Consider a vehicle with a trailer with two axles, one connected to its body,
the other connected to the draw bar (Fig. 25.41a). Its dynamic behavior may
be studied using the same kind of model seen in the previous section, where
the trailer is modelled as two simple trailers connected in sequence. The model
has five degrees of freedom, and the five generalized coordinates may be X Y , ψ,
θ1 and θ2. The first two coordinates can be substituted by displacements x and y
referred to the frame of the tractor and the first equation for longitudinal motion
may be decoupled from the others, if the equations of motion are linearized. The
transversal behavior can be studied using a set of four differential equations that
can be linearized under the usual conditions, yielding a set of linear differential
equations whose order is six.

This procedure can be generalized to a generic multibody vehicle made of
a tractor and a set of n trailers (Fig. 25.41b). Note that while in Europe no
vehicle with multiple trailers is legal for road use, in America and Australia
such vehicles are legal but subject to restrictions (Fig. 25.42). The model here
described, leading to a set of n + 3 differential equations (n + 2 for the lateral
behavior if the first equation is uncoupled), allows one to study the behavior of
any vehicle of this type.
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FIGURE 25.41. (a) Vehicle with a trailer with two axles. (b) model of a multibody
articulated vehicle; parameters for the i-th trailer.

With reference to Fig. 25.41b, the position of the centre of mass of the ith
trailer is

(
Gi − O

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X − c cos(ψ) −
i−1∑
k=1

lk cos(ψ − θk) − ai cos(ψ − θi)

Y − c sin(ψ) −
i−1∑
k=1

lk sin(ψ − θk) − ai sin(ψ − θi)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

(25.231)
The velocity of point Gi is

VGi
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ẋ + ψ̇c sin(ψ) +

i−1∑
k=1

(
ψ̇ − θ̇k

)
lk sin(ψ − θk) +

(
ψ̇ − θ̇i

)
ai sin(ψ − θi)

Ẏ − ψ̇c cos(ψ) −
i−1∑
k=1

(
ψ̇ − θ̇k

)
lk cos(ψ − θk) −

(
ψ̇ − θ̇i

)
ai cos(ψ − θi)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

(25.232)
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FIGURE 25.42. Examples of multibody vehicles; note that only the first three are road
legal in Europe.

The contribution to the kinetic energy due to the ith trailer with mass mi

and moment of inertia Ji about a baricentric axis parallel to z-axis is then

T i =
1
2
miV

2
i +

1
2
Ji

(
ψ̇ − θ̇i

)2

, (25.233)

i.e.

T i = 1
2m

[
ẋ′2 + ẏ′2 − 2

(
Ẋαi + Ẏ βi

)
cos(ψ)+

+2
(
Ẋβi − Ẏ αi

)
sin(ψ)

]
+ 1

2Ji

(
ψ̇ − θ̇i

)2

,
(25.234)

where

αi =
i∑

j=1

lij

(
ψ̇ − θ̇j

)
sin(θj) ,

βi = cψ̇ +
i∑

j=1

lij

(
ψ̇ − θ̇j

)
cos(θj),
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and constants lij are the elements of the matrix

l =

⎡
⎢⎢⎢⎢⎣

a1 0 0 0
l1 a2 0 0
l1 l2 a3 0
. . . . . . . . . . . .
l1 l2 l3 an

⎤
⎥⎥⎥⎥⎦ .

Here again the rotation kinetic energy of the wheels has been neglected and
no gyroscopic effect of the wheels can be obtained.

The Raleigh dissipation function due to a generic viscous damper located
between the (i − 1)-th and the ith trailer is simply

F =
1
2
Γ
(
θ̇i − θ̇i−1

)2

. (25.235)

Operating in the manner used for the insulated vehicle and linearizing the
result, the first equation of motion, related to the displacement in x direction, is

mV̇ = Qx , (25.236)

where

m = mT +
n∑

i=1

mi

is the total mass of the vehicle.
The second equation of motion, related to the displacement in the y direc-

tion, is

m
(
v̇ + V ψ̇

)
+

n∑
i=1

⎡
⎣−ψ̈

⎛
⎝c +

i∑
j=1

lij

⎞
⎠ +

i∑
j=1

lij θ̈j

⎤
⎦ = Qy . (25.237)

The third equation refers to the degree of freedom ψ

{
JT +

n∑
i=1

[
mi

(
S2

i + C2
i

)
+ Ji

]}
ψ̈ +

n∑
i=1

mi

{(
−u̇ + vψ̇

)
Si+

−
(
v̇ + uψ̇

)
Ci − Si

i∑
j=1

lij

[
θ̈j sin(θj) − θ̇j

(
ψ̇ − θ̇j

)2

cos(θj)
]

+

−Ci

i∑
j=1

lij

[
θ̈j cos(θj) + θ̇j

(
ψ̇ − θ̇j

)2

sin(θj)
]

+

+ψ̇Si

i∑
j=1

lij θ̇j cos(θj) −
(
ψ̇Ci + v

) i∑
j=1

lij θ̇j sin(θj)
}

= Qψ ,

(25.238)
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where

Si =
i∑

j=1

lij sin(θj) ,

Ci = c +
i∑

j=1

lij cos(θj) .

The third equation can also be linearized, yielding
{

JT +
n∑

i=1

[
miC

2
i + Ji

]}
ψ̈+ (25.239)

n∑
i=1

mi

⎡
⎣V̇ Si −

(
v̇ + V ψ̇

)
Ci − Ci

i∑
j=1

lij θ̈j

⎤
⎦ = Qψ ,

where

Si =
i∑

j=1

lijθj , Ci = c +
i∑

j=1

lij .

The following n equations refer to the rotational generalized coordinates θj

(for j = 1, 2, . . . , n). The generic equation for θk, i.e. the (3 + k)-th equation, is

n∑
i=k

milik

⎧⎨
⎩sin(θk)

⎡
⎣u̇ − vψ̇ + ψ̇

2
Ci − ψ̈Si −

i∑
j=1

lij θ̈j sin(θj)+

−2ψ̇

i∑
j=1

lij θ̇j cos(θj) +
i∑

j=1

lij θ̇
2

j cos(θj)

⎤
⎦+

+ cos(θk)

⎡
⎣v̇ + uψ̇ − ψ̈Ci + −ψ̇

2
Si +

i∑
j=1

lij θ̈j cos(θj) + 2ψ̇
i∑

j=1

lij θ̇j sin(θj)+

−
i∑

j=1

lij θ̇
2

j sin(θj)

⎤
⎦
⎫⎬
⎭ + Jk

(
θ̈k − ψ̈

)
= Qθk

.

(25.240)
By linearizing also these equations, it follows that

Jk

(
θ̈k − ψ̈

)
+

n∑
i=k

milik

⎛
⎝θkV̇ + v̇ + V ψ̇ − ψ̈Ci +

i∑
j=1

lij θ̈j

⎞
⎠ = Qθk

. (25.241)

The derivatives of the Raleigh dissipation function have not been included
in the equations: The generalized forces due to the dampers, if they exist at all,
will be included in the forces Qθk

.
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25.18.2 Sideslip angles of the wheels and generalized forces

The sideslip angles of the wheels of the trailer can be computed as they were for
the articulated vehicle. If the rth wheel of the ith trailer has a steering angle δir

,
using the monotrack vehicle model, the sideslip angle is

αir
= θi + β − ψ̇

V

⎛
⎝c +

i∑
j=1

l∗ij

⎞
⎠ +

i∑
j=1

l∗ij
θ̇i

V
− δir

. (25.242)

where l∗ij are equal to lij , but defined using distance bir
of the axle instead of ai.

The contributions to the generalized forces Qx, Qy and Qψ due to the tractor
are the same as for the insulated vehicle. As usual, the tractor does not give any
contribution to the forces Qθk

. To compute the contributions due to the rth
wheel of the ith trailer and to the aerodynamic forces of the latter, it is possible
to proceed as for the previous models, by writing their virtual work and then
differentiating with respect to the virtual displacements.

The results obtained for the wheels are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qxir
= Fxirt

+ Fyirt
(θi − δir )

Qyir
= −Fxirt

(θi − δir ) + Fyirt

Qψir
= Fxirt

[
c(θi − δri) +

∑i
j=1 l∗ij(θi − θj − δri) − yir

]
+

+ Fyirt

[
−c −

∑i
j=1 l∗ij + yir (δri)

]
+ Mzri

Qθkir
= Fxirt

l∗ik(θi − θk − δri) + Fyirt
l∗ik if k < i

Qθkir
= Fxirt

[yir + l∗ikδri ] + Fyirt
[−yir δri + l∗ik] − Mzri

if k = i

Qθkir
= 0 . if k > i

(25.243)
The generalized forces due to the aerodynamic forces and moments acting on

the trailers can be accounted for in a similar way. Assuming that it is possible to
distinguish between the forces acting on the various rigid bodies, the generalized
forces can be computed immediately from equations (25.243), using lij instead of
l∗ij , setting δir

to zero and using the aerodynamic forces and moments instead of
the forces acting between road and wheels.

The generalized forces due to dampers located between the various bodies
are⎧⎪⎪⎨

⎪⎪⎩

Qx = Qy = 0
Qψ = −Γ1ψ̇ + Γ1θ̇1

Qθ1 = Γ1ψ̇ − (Γ1 + Γ2) θ̇1 + Γ2θ̇2

Qθk
= Γkθ̇k−1 − (Γk + Γk+1) θ̇k + Γk+1θ̇k+1 k = 2, ..., n .

(25.244)

The external forces Fyei
acting in the centres of mass of the trailers and the

components of the weight mig sin(α) are assumed to act in the directions of axes
x and y of the tractor; the expressions of the generalized forces must therefore
be modified accordingly.

The equations of motion are n+3; together with the equations yielding the
sideslip angles of the wheels, those expressing the forces and moments of the tires
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as functions of the sideslip angles, the load, and the other relevant parameters,
they allow one to study the handling of the vehicle.

As was the case for all the previous models, the linearization of the equations
allows one to uncouple the longitudinal behavior (first equation of motion) from
the lateral behavior, which can be studied using the remaining n + 2 equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m
(
v̇ + uψ̇

)
− ψ̈

n∑
i=1

midi +

n∑
i=1

θ̈i

(
i∑

j=i

mj lji

)
=

= (Qy)ββ + (Qy)ψψ +
n∑

i=1

[(Qy)θiθi] + (Qy)θ̇i
θ̇i + (Qy)δδ + Fye +

n∑
i=1

Fyei

J ′ψ̈ −
n∑

i=1

J ′
i θ̈i +

n∑
i=1

mi

{
−V̇

i∑
j=1

lijθj −
(
v̇ + V ψ̇

)
di

}
=

= (Qψ)ββ + (Qψ)ψψ +
n∑

i=1

[
(Qψ)θiθi + (Qψ)θ̇i

θ̇i

]
+ (Qψ)δδ+

+Mze +
n∑

i=1

Mzei
−

n∑
i=1

Fyei
dj

n∑
i=k

milik

(
θkV̇ + v̇ + V ψ̇ − diψ̈ +

i∑
j=1

lij θ̈j

)
= (Qθk)ββ + (Qθk )ψψ+

+
n∑

i=1

[
(Qθk)θiθi + (Qθk)θ̇i

θ̇i

]
+ (Qθk )δδ − Mzei

+
k∑

i=1

Fyei
lik ,

(25.245)
where

di =
i∑

j=1

lij , J
′ = JT +

n∑
i=1

(Ji + mid
2
i )

and

J ′
i =

i∑
j=1

(Ji + midj lji) .

By linearizing the generalized forces Qx, Qy, Qψ and Qθk
as for the previous

models, the derivatives of stability entering Eq. (25.245) are readily computed.
The set of (n + 2) differential equations (25.245) is of the (2n + 2)-th order,

since variables y and ψ appear in the equation only as first and second derivatives.
The equation can thus be written in the state space in the form of a set of 2n+2
first order differential equations by introducing the state variables vθi

= θ̇i.

25.19 LIMITS OF LINEARIZED MODELS

Linearized models have some features that make them particularly useful. These
are namely

• They allow us to simplify the equations of motion to obtain closed form
solutions which, when simple enough, provide a general insight into the
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dynamic behavior of the vehicle, particularly in terms of the effect of
changes to its parameters.

• The possibility of studying the stability with the usual methods of linear
dynamics.

The disadvantages are also clear: Linearized models can be applied only
within a limited range of sideslip angles and lateral acceleration, and used for
trajectories whose radius is large with respect to the size of the vehicle. They
can thus be applied with confidence to the conditions corresponding to normal
vehicle use, while they fail for sport driving and above all for the motions involved
in road accidents.

Another consideration for the models seen in the present chapter is that
they are based on rigid body dynamics, with the presence of the suspensions
neglected. This assumption is well suited to describe the behavior of a vehicle
driven in a relaxed way: Although dependent on the stiffness of the suspensions,
the roll and pitch angles under these conditions are very small and may be
assumed to have little effect on the dynamic behavior.

It must, however, be stated that a linearization carried too far will lead to
results contradicting experimental evidence.

If the cornering stiffness is assumed to be proportional to the load Fz acting
on the wheel not only for the small load variations acting on each wheel but also
for the differences of load between front and rear axle, in the case of a vehicle
with two axles with equivalent tires it follows that

C1

C2
=

Fz1

Fz2

=
b

a
. (25.246)

If only the cornering forces of the tires are included in the formula for the
neutral-steer point, it follows that this point always coincides with the centre
of mass, leading to the conclusion, clearly incorrect, that all vehicles with four
equivalent wheels are neutral-steer.




