
24
BRAKING DYNAMIC
PERFORMANCE

The study of braking on straight road is performed using mathematical models
similar to those seen in Chapter 23 for longitudinal dynamics. But in this case,
the presence of suspensions and the compliance of tires are neglected and the
motion is described by the longitudinal equilibrium equation (23.1) alone

mẍ =
∑
∀i

Fxi
.

Apart from cases in which the vehicle is slowed by the braking effect of the
engine, which can dissipate a non-negligible power (lower part of the graph of
Fig. 22.2), and by regenerative braking in electric and hybrid vehicles, braking
is performed in all modern vehicles on all wheels. Subscript i thus extends to all
wheels or, when thinking in terms of axles, as is usual for motion in symmetrical
conditions, on all axles.

24.1 BRAKING IN IDEAL CONDITIONS

Ideal braking can be defined as the condition in which all wheels brake with the
same longitudinal force coefficient μx.

The study of braking forces the vehicle can exert will follow the same scheme
seen in Section 23.5, the only obvious difference being that braking forces, like
the corresponding longitudinal force coefficients and the longitudinal slip, are
negative. Normal forces between road and tires can be computed using the equa-
tions seen in Chapter 23.1, remembering here as well that the acceleration is
negative.
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232 24. BRAKING DYNAMIC PERFORMANCE

The total braking force Fx is thus

Fx =
∑
∀i

μxi
Fzi

, (24.1)

where the sum extends to all the wheels. The longitudinal equation of motion of
the vehicle is then

dV

dt
=

∑
∀i μxi

Fzi
− 1

2ρV 2SCX − f
∑

∀i Fzi
− mg sin(α)

m
, (24.2)

where m is the actual mass of the vehicle and not the equivalent mass, and α is
positive for uphill grades. The rotating parts of the vehicle are slowed directly by
the brakes, and hence do not enter into the evaluation of the forces exchanged
between vehicle and road. These parts must be accounted for when assessing the
required braking power of the brakes and the energy that must be dissipated.

Aerodynamic drag and rolling resistance can be neglected in a simplified
study of braking, since they are usually far smaller than braking forces. Also,
rolling resistance can be considered as causing a braking moment on the wheel
more than a direct braking force on the ground.

Since in ideal braking all force coefficients μxi
are assumed to be equal, the

acceleration is

dV

dt
= μx

[
g cos(α) − 1

2m
ρV 2SCZ

]
− g sin(α) . (24.3)

On level road, for a vehicle with no aerodynamic lift, Eq. (24.3) reduces to

dV

dt
= μxg . (24.4)

The maximum deceleration in ideal conditions can be obtained by introduc-
ing the maximum negative value of μx into Eq. (24.3) or (24.4).

The assumption of ideal braking implies that the braking torques applied
on the various wheels are proportional to the forces Fz, if the radii of the wheels
are all equal.

As will be seen later, this may occur in only one condition, unless some
sophisticated control device is implemented to allow braking in ideal conditions.
If μx can be assumed to remain constant during braking, the deceleration of
the vehicle is constant, and the usual formulae hold for computing the time and
space needed to slow from speed V1 to speed V2:

tV1→V2 =
V1 − V2

|μx|g
, sV1→V2 =

V 2
1 − V 2

2

2|μx|g
. (24.5)

The time and the space to stop the vehicle from speed V are then

tarr =
V

|μx|g
, sarr =

V 2

2|μx|g
. (24.6)
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The time needed to stop the vehicle increases linearly with the speed while
the space increases quadratically.

To compute the forces Fx the wheels must exert to perform an ideal braking
manoeuvre, forces Fz on the wheels must be computed first. This can be done
using the formulae in Section 23.1. However, for vehicles with low aerodynamic
vertical loading, such as all commercial and passenger vehicles with the excep-
tion of racers and some sports cars, aerodynamic loads can be neglected. Drag
forces can also be neglected and, in the case of a two-axle vehicle, the equations
reduce to

Fz1 =
m

l

[
gb cos(α) − ghG sin(α) − hG

dV

dt

]
, (24.7)

Fz2 =
m

l

[
ga cos(α) + ghG sin(α) + hG

dV

dt

]
. (24.8)

Since the values of μx are all equal in ideal braking, the values of longitudinal
forces Fx can be immediately computed by introducing Eq. (24.3)

dV

dt
= μxg cos(α) − g sin(α)

into equations (24.7) and (24.8)

Fx1 = μxFz1 = μx

mg

l
cos(α) (b − hGμx) , (24.9)

Fx2 = μxFz2 = μx

mg

l
cos(α) (a + hGμx) . (24.10)

By adding Eq. (24.9) to Eq. (24.10), it follows that:

Fx1 + Fx2 = μxmg cos(α) , (24.11)

and then:
μx =

Fx1 + Fx2

mg cos(α)
. (24.12)

By introducing the value of μx into equations (24.9) and (24.10) and sub-
tracting the second equation from the first, it follows that

Fx1 − Fx2 =
b − a

l
(Fx1 + Fx2) −

2hG

lmg cos(α)
(Fx1 + Fx2)

2 . (24.13)

A relationship between Fx1 and Fx2 is readily obtained. It is an equation
expressing the relationship between the forces at the front and rear axles that
must hold to make ideal braking possible,

(Fx1 + Fx2)
2 + mg cos(α)

(
Fx1

a

hG
− Fx2

b

hG

)
= 0 . (24.14)

The plot of Eq. (24.14) in the Fx1 ,Fx2 plane is a parabola whose axis is
parallel to the bisector of the second and fourth quadrants if a = b (Fig. 24.1).
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FIGURE 24.1. Braking in ideal conditions. Relationship between Fx1 and Fx2 for ve-
hicles with the centre of mass at mid-wheelbase (a = b), forward (a < b) and backward
(a > b) of that point. Plots obtained with m = 1000 kg; l = 2.4 m, hG = 0.5 m, level
road.

The parabola is thus the locus of all pairs of values of Fx1 and Fx2 leading to
ideal braking.

Only a part of this plot is actually of interest: That with negative values of
the forces (braking in forward motion) and with braking forces actually achiev-
able, i.e. with reasonable values of μx (Fig. 24.2).

On the same plot it is possible to draw the lines with constant μx1
, μx2

and
acceleration. On level road, the first two are straight lines passing, respectively,
through points B and A, while the lines with constant acceleration are straight
lines parallel to the bisector of the second quadrant.

Remark 24.1 All forces here relate to the axles and not to the wheels: In the
case of axles with two wheels their values are then twice the values referred to
the wheel.

The moment to be applied to each wheel is approximately equal to the
braking force multiplied by the loaded radius of the wheel: If the wheels have
equal radii, the same plot holds for the braking torques as well. If this condition
does not apply, the scales are simply multiplied by two different factors and the
plot, though distorted, remains essentially unchanged.
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FIGURE 24.2. Enlargement of the useful zone of the plot of Fig. 24.1. The lines with
constant μx1

, μx2
and acceleration are also reported.

FIGURE 24.3. Plots Mb2(Mb1) for ideal braking. (a) typical plot for a rear drive car
with low ratio hG/l; (b) typical plot for a front drive saloon car with higher ratio hG/l;
(c) plot for a small front drive car, sensitive to the load conditions and with high value
of ratio hG/l.
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Remark 24.2 To perform a more precise computation, the rolling resistance,
which is a small correction, should be accounted for and the torque needed for
decelerating the rotating inertias should be added. This correction is important
only for driving wheels and braking in low gear, but in this case the braking effect
of the engine, which is even more important and has the opposite sign, should be
considered.

As stated before, the law linking Fx1 to Fx2 , i.e. Mb1 to Mb2 to allow braking
in ideal conditions, depends on the mass and the position of the centre of mass.
For passenger vehicles, it is possible to plot the lines for the minimum and
maximum load and to assume that all conditions are included between them; for
industrial vehicles, the position of the centre of mass can vary to a larger extent,
and a larger set of load conditions should be considered.

The curves for three different types of passenger vehicles are shown in
Fig. 24.3 as an example. The curve Mb2(Mb1) defined by CEE standards and
the lines at constant acceleration are reported on the same plot.

24.2 BRAKING IN ACTUAL CONDITIONS

The relationship between the braking moments at the rear and front wheels is in
practice different from that stated in order to comply with the conditions needed
to obtain ideal braking, and is imposed by the parameters of the actual braking
system of the vehicle.

A ratio
Kb =

Mb1

Mb2

between the braking moments at the front and rear wheels can be defined. If
all wheels have the same radius, its value coincides with the ratio between the
braking forces.

Remark 24.3 This statement neglects the braking moment needed to decelerate
rotating parts. This can be adjusted by considering Mb as the part of the braking
moment that causes braking forces on the ground; the fraction of the braking
moment needed to decelerate the wheels and the transmission must be added to it.

For each value of the deceleration a value of Kb allowing braking to take
place in ideal conditions can be easily found from the plot of Fig. 24.2. Kb

depends on the actual layout of the braking system, and in some simple cases is
almost constant.

In hydraulic braking systems, the braking torque is linked to the pressure
in the hydraulic system by a relationship of the type

Mb = εb(Ap − Qs) , (24.15)

where εb, sometimes referred to as the efficiency of the brake, is the ratio between
the braking torque and the force exerted on the braking elements and hence has
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the dimensions of a length. A is the area of the pistons, p is the pressure and Qs

is the restoring force due to the springs, when they are present.
The value of Kb is thus

Kb =
εb1(A1p1 − Qs1)
εb2(A2p2 − Qs2)

, (24.16)

or, if no spring is present as in the case of disc brakes,

Kb =
εb1A1p1

εb2A2p2
. (24.17)

In disc brakes, εb is almost constant and is, as a first approximation, the
product of the average radius of the brake, the friction coefficient and the number
of braking elements acting on the axle, since braking torques again refer to the
whole axle. If the pressure acting on the front and rear wheels is the same, the
value of Kb is constant and depends only on geometrical parameters.

The behavior of drum brakes is more complicated, as restoring springs are
present and the dependence of εb on the friction coefficient is more complex. As
stated in Part I, shoes can be of the leading or of the trailing type. If leading,
the braking torque increases more than linearly with the friction coefficient and
there is even a value of the friction coefficient for which the brake sticks and the
wheel locks altogether.

The opposite occurs with trailing shoes and εb increases less than linearly
with the friction coefficient.

The efficiency of the brakes is a complex function of both temperature and
velocity and, during braking, it can change due to the combined effect of these
factors. When the brake heats up there is usually a decrease of the braking torque,
at least initially. Later an increase due to the reduction of speed can restore the
initial values. This “sagging” in the intermediate part of the deceleration is more
pronounced in drum than in disc brakes. With repeated braking, the overall
increase of temperature can lead to a general “fading” of the braking effect.

If Kb is constant, the characteristic line on the plane Mb1 , Mb2 is a straight
line through the origin (Fig. 24.4).

The intersection of the characteristics of the braking system with the curve
yielding ideal braking defines the conditions in which the system performs in
ideal conditions. On the left of point A, i.e. for low values of deceleration, the
rear wheels brake less than required and the value of μx2

is smaller than that of
μx1

. If the limit conditions occur in this zone, i.e. for roads with poor traction,
the front wheels lock first.

On the contrary, all working conditions beyond point A are characterized by

μx2
> μx1

and the rear wheels brake more than required, i.e., the braking capacity of the
front wheels is underexploited. In this case, when the limit conditions are reached,
the rear wheels lock first, as in the case of Fig. 24.4.
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FIGURE 24.4. Conditions for ideal braking, characteristic line for a system with con-
stant Kb and zones in which the front or the rear wheels lock. In the case shown the
value of μp is high enough to cause sliding beyond point A.

From the viewpoint of handling, it is advisable that

μx2
< μx1

,

since this increases the stability of the vehicle; the characteristics of the braking
system should lie completely below the line for ideal braking. Locking of the rear
wheels is a condition that must be avoided since it triggers directional instability.

In A the ideal conditions are obtained: If the limit value of the longitudinal
force coefficient occurs at that point, simultaneous locking of all wheels occurs.

The values of ratio Kb for which the ideal conditions occur at a given value
of the longitudinal force coefficient μ∗

x are immediately computed,

K∗
b =

b + hG|μ∗
x|

a − hG|μ∗
x|

. (24.18)

It is possible to define an efficiency of braking as the ratio between the
acceleration obtained in actual conditions and that occurring in ideal conditions,
obviously at equal value of the coefficient μx of the wheels whose longitudinal
force coefficient is higher,

ηb =
(dV/dt)actual

(dV/dt)ideal
=

(dV/dt)actual

μxg
, (24.19)

where the last expression holds only on level road for a vehicle with negligible
aerodynamic loading.

The total braking force acting on the vehicle when the rear wheels lock is

Fx1 + Fx2 = Fx2 (1 + Kb) , (24.20)

and thus the deceleration on level road is

dV

dt
=

Fx2 (1 + Kb)
m

. (24.21)
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Eq. (24.8) yields

Fx2 =
μx2

g

l
[am + hGFx2 (1 + Kb)] , (24.22)

and then
Fx2 =

μx2
gam

l − μx2
hG (1 + Kb)

, (24.23)

dV

dt
= g

μx2
a (1 + Kb)

l − μx2
hG (1 + Kb)

. (24.24)

If on the contrary the front wheels lock, the total braking force acting on
the vehicle is

Fx1 + Fx2 = Fx1

(
1 +

1
Kb

)
. (24.25)

Operating as already seen with rear wheels lock, the value of the acceleration
can be found,

dV

dt
= g

μx1
b (1 + Kb)

lKb − μx1
hG (1 + Kb)

. (24.26)

The braking efficiency is then

ηb = min
{

a(Kb + 1)
l − μphG(Kb + 1)

,
b(Kb + 1)

lKb + μphG(Kb + 1)

}
. (24.27)

The first value holds when the rear wheels lock first (above point A in Fig.
24.4), the second when the limit conditions are reached at the front wheels first.

A typical plot of the braking efficiency versus the peak braking force coeffi-
cient is plotted in Fig. 24.5.

FIGURE 24.5. Braking efficiency ηb as a function of the limit value of μx for a vehicle
without (a) and (b) and with (c) pressure proportioning valve.
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The value of the maximum longitudinal force coefficient μp at which the
condition ηb = 1 must hold can be stated and the value of ratio Kb can be easily
computed. For values of |μp| lower than the chosen one, the rear wheels lock first
while for higher values locking occur at the front wheels.

Once Kb is known, the braking system can easily be designed. The curve
ηb(μx) can be plotted by assigning increasing values to the pressure in the hy-
draulic system, computing Kb and then the values of μx and ηb referred to the
front and rear wheels. The result is of the type shown in Fig. 24.5, curve (a) or (b).

Operating in this way, the rear wheels lock when the road is in good condi-
tion. To postpone the locking of the rear wheels, curves of the type of line (b)
can be used, but this reduces efficiency when the road conditions are poor.

To avoid locking of the rear wheels without lowering efficiency at low values
of μx, a pressure proportioning valve, i.e. a device that reduces the pressure in
the rear brake cylinders when the overall pressure in the system increases above
a given value, may be used. A linear reduction of the pressure on the rear brakes
with increasing pressure in the front ones above a certain pressure pi,{

p2 = p1 for p1 ≤ pi,
p2 = p1 + ρc (p1 − pi) for p1 > pi,

(24.28)

where ρc is a characteristic constant of the valve, can be assumed.
Pressure pi and constant ρc must be chosen in such a way that the device

starts acting when the efficiency ηb gets close to unity. The reduction of the
rear pressure must be such that it does not cause locking of the rear wheels;
nor should it be so high as to substantially lower the efficiency (see Fig. 24.5,
curve (c)).

To comply with these conditions in all load conditions of the vehicle, pi and,
possibly, ρc must vary following the load. A possible way to achieve this is to
monitor the load on the rear axle, e.g. by monitoring the vertical displacement
of the rear suspension.

The characteristic line in the Mb1 , Mb2 plane of a device operating along
this line is reported in Fig. 24.6.

To prevent wheels from locking, antilock systems (ABS) act directly to re-
duce the pressure in the hydraulic cylinders of the relevant brakes when the need
to reduce the braking force arises. Modern devices are based on wheel speed sen-
sors allowing the actual speed of the wheels and the speed corresponding to the
velocity of the vehicle to be compared. If a slip that exceeds the allowable limits
is detected, the device acts to reduce the braking torque, restoring appropriate
working conditions.

As will be shown in detail in Chapter 27, ABS systems may work in differ-
ent ways, both in the physical characteristics of the system and in the control
algorithms.

The above braking efficiency holds only in the case of rigid vehicles. If the
presence of suspensions is accounted for, the load transfer from the rear to the
front wheels does not occur immediately, and at the beginning of the braking
manoeuvre the vertical loads on the wheels are the same as those at constant
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FIGURE 24.6. Characteristic of a braking system in which a pressure proportioning
valve operating following Eq. (24.28) is present. To take into account the variability of
the parameters of the system, specifically the friction coefficient, a band of character-
istics has been considered instead of a single line. The ideal braking lines at the two
different load conditions have also been plotted.

speed. The body of the vehicle then starts to dive and the load on front wheels
increases, until steady state conditions are reached and the loads take the values
given by Equations (24.7) and (24.8). This effect actually depends largely on the
characteristics of the suspensions: the rotation of the body can be very small
and load shift is almost immediate when antidive arrangements are used.

The load on the rear wheels is higher and the locking of the rear wheels is
more difficult at the beginning of the manoeuvre: This consideration explains
the practice of giving short brake pulses, effective when modern braking systems
designed to avoid rear wheel locking were not available.

Example 24.1 Plot the braking efficiency of the car of Appendix E.2, assuming that

the braking system is designed to reach the ideal conditions for a longitudinal force

coefficient μx = −0.4. Use a pressure proportioning valve in such a way that the front

wheels lock before the rear ones up to a value of μx equal to unity. Neglect aerodynamic

forces and rolling resistance.

The curve characterizing the conditions for ideal braking in plane Fx1 , Fx2 is plot-

ted (Fig. 24.7a). In order to obtain the ideal conditions at a value of the longitudi-

nal force coefficient μ∗
x = −0.4, ratio Kb is immediately computed from Eq. (24.18):

Kb = 2.283. The braking forces corresponding to the ideal conditions are Fx1 = 2.265

kN and Fx2 = 0.992 kN.

The pressure proportioning valve is assumed to start acting when values of the

forces, equal to 90% of those for ideal conditions, are reached: Fx1 = 2.038 kN and

Fx2 = 0.893 kN. As the point at which the ideal conditions with μx = 1 are reached is
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FIGURE 24.7. Braking characteristics of the vehicle of Appendix E.2. (a) Ideal braking
conditions and characteristics of the braking system. (b) Braking efficiency with and
without pressure proportioning valve. The dashed lines show the minimum conditions
stated by CEE standards.

easily computed (Fx1 = 6.861 kN and Fx2 = 1.282 kN), the equation expressing force

Fx2 as a function of Fx1 when the valve is operating is immediately found. From its

slope, the value of constant ρc = 0.184 is obtained. The characteristic of the braking

system is plotted in Fig. 24.7a.

At each point a pair of values Fx1 and Fx2 are obtained. From them the deceleration

and the maximum value of the longitudinal force coefficient may be computed, ultimately

obtaining the braking efficiency. The results are plotted in Fig. 24.7b.

In the same figures the curves related to the CEE standards are also plotted (dashed

lines). Note that the position of the centre of mass results in the very low position of

the dashed line in Fig. 24.7a.

24.3 BRAKING POWER

The instantaneous power the brakes must dissipate is

|P | = |Fx|V = V

∣∣∣∣dV

dt
me + mg sin(α)

∣∣∣∣ , (24.29)

where all forms of drag have been neglected.
The brakes cannot dissipate this power directly; they usually work as a heat

sink, storing some of the energy in the form of thermal energy and dissipating
it in due time. Care must obviously be exerted to design the brakes in such a
way that they can store the required energy without reaching excessively high
temperatures and so that adequate ventilation for cooling is ensured. The average
value of the braking power must, at any rate, be lower than the thermal power
the brakes can dissipate.

Two reference conditions are usually considered: Driving in continuous
acceleration-braking cycles, and downhill running in which the speed is kept
constant with the use of brakes.
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In the first case, neglecting all resistance to motion, the energy to be dis-
sipated during braking from speed V to zero is equal to the kinetic energy of
the vehicle. The worst case is a number of accelerations from standstill to speed
V , performed in the lowest possible time, followed by braking to standstill. The
average power on an acceleration-deceleration cycle is

|P | =
meV

2

2(ta + tb)
. (24.30)

The acceleration time ta increases with V and can be computed with the
method used in the previous chapter. Braking time tb is, at least,

tb =
V

gηb|μxmax
| .

The average braking power first increases with the speed V , and then de-
creases again since the acceleration time increases far more than the braking
energy. When the vehicle is approaching its maximum speed ta tends to infinity
and the average power tends to zero.

In the case of downhill driving, the speed is assumed to be held constant
by the use of brakes. The average power is then coincident with the power to
be dissipated in each instant, since it is not possible that in the long run large
quantities of heat are stored in the brakes. It then follows:

|P | = |V mg sin(α)| . (24.31)

The power that must be dissipated increases linearly with V . The speed
must then be limited, and the braking effect of the engine must be exploited on
long downhill slopes.

Industrial vehicles are sometimes supplied with devices to maintain constant
the speed when driving downhill to prevent the brakes from over-heating. By
limiting the speed as a function of α, that is by stating a function V = V (α),
the average power can be expressed as a function of the speed of the type shown
in Fig. 24.8.

Acceleration-deceleration cycles are usually the critical condition for pas-
senger vehicles and, above all, for sports cars, while for industrial vehicles the
worst condition is downhill driving. Plots of the type seen in Fig. 24.8 give an
indication of the maximum value of the average power the brakes must dissipate,
making them useful for designing their cooling system.

If the road conditions or the driving style require significant use of the
brakes, they may be required to store much heat and become very hot, with con-
sequent thermo-mechanical problems. To give an idea of the magnitude of the
temperatures reached by some components of the braking system, some experi-
mental temperature readings obtained on mountain and hill roads are reported
in Fig. 24.9.

In vehicles with regenerative braking capabilities, the average power com-
puted above gives an idea of how much energy can be stored, and thus determines
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FIGURE 24.8. Power to be dissipated by brakes.

FIGURE 24.9. Time history of the temperature of the brakes and of the braking fluid
during testing of a car on different roads.

the capacity of the accumulator. An accumulator able to store braking energy is
large enough to provide true hybrid capabilities, i.e. to uncouple the requirements
of the vehicle from the instantaneous power of the engine.

At any rate, vehicles with regenerative braking must have a conventional
braking system as well. Regenerative braking is usually performed on only one
axle, usually the driving axle, with the exception of schemes such as that shown in
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Fig. 22.7a1. Braking power is limited by both the transmission and the ability of
the accumulator to accept high power levels. The conventional braking system
works in less demanding conditions, since it provides emergency braking only
rather than frequent slowing in normal use.




