
23
DRIVING DYNAMIC PERFORMANCE

When computing the performance of a vehicle in longitudinal motion (maximum
speed, gradeability, fuel consumption, braking, etc.), the vehicle is modelled as
a rigid body, or in an even simpler way, as a point mass.

The presence of suspensions and the compliance of tires are then neglected
and motion is described by a single equation, the equilibrium equation in the
longitudinal direction. If the x-axis is assumed to be parallel to the ground, the
longitudinal equilibrium equation reduces to

mẍ =
∑
∀i

Fxi
, (23.1)

where Fxi
are the various forces acting on the vehicle in the longitudinal direction

(aerodynamic drag, rolling resistance, traction, braking forces, etc.).
As will be seen later, Eq. (23.1) is quite a rough model for various reasons.

For one thing, when the vehicle is accelerated, a number of rotating masses must
be accelerated as well; this, however, can be accounted for easily. Other approx-
imations come from the fact that the vehicle does not travel under symmetrical
conditions, particularly when the trajectory is not straight and the direction of
the x-axis does not coincide with the direction of the velocity or, in other words,
the sideslip angle β is in general different from zero.

23.1 LOAD DISTRIBUTION ON THE GROUND

Longitudinal dynamics is influenced by the distribution of normal forces at the
wheels-ground contact. A vehicle with more than three wheels is statically in-
determinate, and the load distribution is determined by characteristics of the
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186 23. DRIVING DYNAMIC PERFORMANCE

suspensions which, as seen in Part I, also have the task of distributing the load
on the ground in proper way. However, if the system is symmetrical with respect
to the xz plane, all loads are equally symmetrical, and the velocity is contained
in the symmetry plane, then the two wheels of any axle are equally loaded. In
this case, it is possible to think in terms of axles rather than wheels, and a
two-axle vehicle may be considered as a beam on two supports which is, then,
a statically determined system. In this case, the forces on the ground do not
depend on the characteristics of the suspensions and the vehicle can be modelled
as a rigid body.

23.1.1 Vehicles with two axles

Consider the vehicle as a rigid body and neglect the compliance of the suspensions
and of the body. As previously stated, if the vehicle is symmetrical with respect
to the xy-plane1, it can be modelled as a beam on two supports, and normal
forces Fz1 and Fz2 acting on the axles can be computed easily.

With the vehicle at a standstill on level road the normal forces are
{

Fz1 = mgε01

Fz2 = mgε02

where
{

ε01 = b/l
ε02 = a/l .

(23.2)

The forces acting on a two-axle vehicle moving on straight road with longi-
tudinal grade angle α (positive when moving uphill) are sketched in Fig. 23.1.
Note that the x-axis is assumed to be parallel to the road surface.

Taking into account the inertia force −mV̇ acting in x direction on the
centre of mass, the dynamic equilibrium equations for translations in the x and
z direction and rotations about point O are
⎧⎨
⎩

Fx1 + Fx2 + Fxaer − mg sin(α) = mV̇
Fz1 + Fz2 + Fzaer − mg cos(α) = 0

Fz1(a + Δx1) − Fz2(b − Δx2) + mghG sin(α) − Maer + |Fxaer |hG = −mhGV̇ .

(23.3)
If the rolling resistance is ascribed completely to the forward displacement of

the resultant Fzi
of contact pressures σz, distances Δxi can be easily computed

as
Δxi = Rlif = Rli(f0 + KV 2) . (23.4)

Except in the case of vehicles with different wheels on the various axles,
such as F-1 racers, the values of Δxi are all equal.

1In the present section on longitudinal dynamics, a complete symmetry with respect to the
xz plane is assumed: The loads on each wheel are respectively Fz1/2 and Fz2/2 for the front
and the rear wheels. To simplify the equations, the x-axis is assumed to be parallel to the
road surface.
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FIGURE 23.1. Forces acting on a vehicle moving on an inclined road.

The second and third equation (23.3) can be solved in the normal forces
acting on the axles, yielding

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Fz1 = mg
(b − Δx2) cos(α) − hG sin(α) − K1V

2 − hG

g
V̇

l + Δx1 − Δx2

Fz2 = mg
(a + Δx1) cos(α) + hG sin(α) − K2V

2 +
hG

g
V̇

l + Δx1 − Δx2
,

(23.5)

where ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

K1 =
ρS

2mg

[
CxhG − lCMy

+ (b − Δx2)Cz

]

K2 =
ρS

2mg

[
− CxhG + lCMy

+ (a + Δx1)Cz

]
.

The values of Δxi are usually quite small (in particular, their difference
is usually equal to zero) and can be neglected. If considered, they introduce a
further weak dependence of the vertical loads on the square of the speed, owing
to the term KV 2 in the rolling resistance.

Example 23.1 Compute the force distribution on the ground of the small car
of Appendix E.1 at sea level, with standard pressure and temperature, in the
following conditions:
a) at standstill on level road;
b) driving at 100 km/h on level road;
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c) driving at 70 km/h on a 10% grade;
d) braking with a deceleration of 0.4 g on level road at a speed of 100 km/h.

The air density in the mentioned conditions is 1.2258 kg/m3.
a) Using Eq. (23.2), the static load distribution between the axles is

ε01 = 0.597, ε02 = 0.403.

The forces acting on the axles are then

Fz1 = 4863 N, Fz2 = 3280 N.

b) From Eq. (23.4), at 100 km/h = 27.78 m/s the value of Δx is 4.6 mm for
all tires. This value is so small that it could be neglected; it will, however, be
considered in the following computations.

Constants K1 and K2 are easily computed

K1 = 8.505 × 10−6 s2/m, K2 = −5.869 × 10−5 s2/m.

The forces acting on the axles are then

Fz1 = 4820 N, Fz2 = 3491 N.

c) A 10% grade corresponds to a grade angle α = 5.7◦. Operating in the same
way, at 70 km/h = 19.44 m/s the value of Δx is 4.0 mm for all tires. The other
results are

K1 = 8.490 × 10−6 s2/m, K2 = −5.867 × 10−5 s2/m,

Fz1 = 4643 N, Fz2 = 3542 N.

d) The acceleration is V̇ = −3.924 m/s2. As the speed is the same as in case b),
the same values for Δx, K1 and K2 hold. The forces are

Fz1 = 5498 N, Fz2 = 2813 N.

23.1.2 Vehicles with more than two axles

If more than two axles are present, even in symmetrical conditions the system
remains statically indeterminate and it is necessary to take into account the
compliance of the suspensions (Fig. 23.2a). The equilibrium equations (23.3)
still hold, provided that the terms

Fx1 + Fx2 , Fz1 + Fz2 , Fz1(a + Δx1) − Fz2(b − Δx2)
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FIGURE 23.2. Forces acting on an articulated vehicle moving on an inclined road. (a)
Tractor or vehicle with more than two axles; (b) trailer.

are substituted by

∑
∀i

Fxi
,

∑
∀i

Fzi
,

∑
∀i

Fz1(xi + Δxi) ,

where distances xi are positive for axles located forward of the centre of mass
and negative otherwise.

For computation of normal loads on the ground a number (n − 2) of
equations, where n is the total number of axles, must be added. Each one of
them simply expresses the condition that the vertical displacement of the point
where each intermediate suspension is attached to the body is compatible with
the displacement of the first and the last.

To account for possible nonlinearities of the force-displacement curves of
the suspension, it is advisable to compute a reference position in which each
suspension exerts a force (Fzi

)0. The linearized stiffness of the ith suspension,
possibly taking into account the compliance of the tires as well, is Ki. The vertical
displacement of the point where the ith suspension is attached is

Δzi = − 1
Ki

[Fzi
− (Fzi

)0] . (23.6)

With reference to Fig. 23.3, the vertical displacement of the vehicle body in
the point where the ith suspension is attached can be expressed as a function of
the displacement of the first and nth suspension by the equation

1
l

(Δzn − Δz1) =
1

a − xi
(Δzi − Δz1) . (23.7)
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FIGURE 23.3. Compatibility condition for vertical displacements of the points where
the suspensions are attached. In the figure, the ith axle is behind the center of mass
and its coordinate xi is negative.

By eliminating displacements Δzi between equations (23.6) and (23.7), the
required equation is obtained,

b + xi

K1
[Fz1 − (Fz1)0] +

a − xi

Kn
[Fzn

− (Fzn
)0] −

l

Ki
[Fzi

− (Fzi
)0] = 0 , (23.8)

for i = 2, . . . , n − 1 .

The mentioned reference condition can be referred to any value of the load
or any position of the centre of gravity, provided that the values of the linearized
stiffnesses are the same as those in the actual condition. Forces (Fzi

)0 can all be
set to zero if the springs are linear and the suspensions are such that a position
(i.e. a vertical and a pitch displacement) exists in which all wheels just touch
the ground, exerting on it vanishing forces (neglecting the weight of the axles).

Equations (23.8), together with the second and third equation (23.3), form
a set of n equations that can be solved to yield the n normal forces acting on
the axles.

Remark 23.1 Forces Fzi
can never become negative: If a negative value is ob-

tained, it means that the relevant axle loses contact with the ground and the
computation must be repeated after setting the force to zero due to the relevant
axle. The procedure is repeated until no negative force is present.
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23.1.3 Articulated vehicles

In the case of articulated vehicles with a tractor with two axles and one or more
trailers with no more than a single axle each (Fig. 23.2), the computation is
straightforward. In this case, the equilibrium equations of the tractor are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
i=1

Fxi
− Fxt

+ Fxaer
− mg sin(α) = mV̇

n∑
i=1

Fzi
− Fzt

+ Fzaer
− mg cos(α) = 0

n∑
i=1

Fzi
(xi + Δxi) + Fzt

c + Fxt
ht + mghG sin(α) − Maer+

+|Fxaer
|hG = −mhGV̇ ,

(23.9)

where forces Fxt
and Fzt

are those the tractor exerts on the trailer, as in the
figure, the number of axles of the tractor is assumed to be n (in the present
case n = 2), the moments are computed with reference to point O, and the
aerodynamic forces and moments are those exerted on the tractor only.

Similarly, the equilibrium equation of the trailer are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑
i=1

Fxi
+ Fxt

+ FxRaer
− mRg sin(α) = mRV̇

m∑
i=1

Fzi
+ Fzt

+ FzRaer
− mRg cos(α) = 0

m∑
i=1

Fzi
(xi + Δxi) − Fxt

ht + mRghGR
sin(α) + mRgaR cos(α) − MRaer

+

+|FxRaer
|hGR

= −mRhGR
V̇ ,

(23.10)

where the number of axles of the trailer is assumed to be m (in the present case
m = 1), the moments are computed with reference to point O′, the aerodynamic
forces and moments are those exerted on the trailer only and xi are the coordi-
nates of the axle in the reference frame centred in O′. Note that all xi are usually
negative.

The last two equations (23.9), together with the last two equations (23.10)
are sufficient only on level road at a standstill, when force Fxt

vanishes. If it is
other than zero the first equation (23.9) must also be used. However, the forces
Fxi

it contains are not known since they depend on the normal forces Fzi
. A

simple iterative scheme can be used, to compute the normal forces with Fxt
= 0,

repeating the computation until a stable solution is found. If the wheels of the
trailer exert driving or braking forces, these forces must also be introduced into
the computation.

If the tractor has more than two axles or the trailer has more than one,
additional equations must be introduced. The additional (n − 2) equations of
the tractor (n is the number of axles of the tractor), are equations (23.8) while
the additional (m − 1) equations for the trailer, where m is the number of its
axles, are
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(a + c)(xm − xi)
lK1

[Fz1 − (Fz1)0] +
(b − c)(xm − xi)

lKn
[Fzn

− (Fzn
)0] +

+
xi

KRm

[
FzRm

− (FzRm
)0
]
− xm

KRi

[
FzRi

− (FzRi
)0
]

= 0 ,
(23.11)

for i = 1, . . . ,m − 1 ,

where Kti
and Fzti

are the linearized stiffness of the ith suspension of the trailer
and the force acting on it and (Fzti

)0 is the normal force in the same axle in any
reference condition.

The first two terms of Eq. (23.11) are linked to the vertical displacement
of the hitch, and the equation expresses the displacements of the hitch, the last
axle and the relevant axle.

The number of unknowns and equations is then equal to the total number
of axles plus one, since the normal force the two parts of the vehicle exchange is
also unknown. When force Fxt

does not vanish, it must be computed iteratively,
as seen above.

Example 23.2 Compute the force distribution on the ground of the five-axle
articulated truck of Appendix E.9 at sea level, with standard pressure and tem-
perature, in the following conditions:
a) at standstill on level road;
b) at standstill on a 10% grade;
c) driving at 70 km/h on a 10% grade;

The air density in the mentioned conditions is 1.2258 kg/m3.
a) The static load distribution on level road can be computed directly, as the
horizontal force exchanged between the two parts of the vehicle vanishes. The un-
knowns are six, the loads of the five axles and the vertical force exchanged between
tractor and trailer. These can be computed from the set of linear equations

⎡
⎢⎢⎢⎢⎢⎢⎣

1.000 1.000 0 0 0 −1.000
1.175 −2.310 0 0 0 1.860

0 0 1.000 1.000 1.000 1.000
0 0 −6135 −7.395 −8.715 0

−1, 070 −0, 1109 4, 054 0 −4, 446 0
−0, 5474 −0, 06087 0 4, 054 −5, 359 0

⎤
⎥⎥⎥⎥⎥⎥⎦
×10−3

×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Fz1

Fz2

FzR1

FzR2

FzR3

Fzt

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

70.100
0

313.900
−1.597.900

0
0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

The forces acting on the axles are then 58.660 kN, 105.700 kN, 80.060
kN, 83.600 kN and 56.050 kN. The force at the tractor-trailer connection is
94.210 kN.
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b) A 10% grade corresponds to a grade angle α = 5.7◦. In this case the load
distribution can also be computed directly, since the horizontal force exchanged
between the two parts of the vehicle does not depend on the normal forces. Op-
erating as in the previous case, the forces acting on the axles are 45.050 kN,
115.720 kN, 78.900 kN, 84.490 kN and 58.000 kN. The forces at the tractor-
trailer connection are 90.980 kN in the vertical direction and 31.236 kN in the
horizontal direction.
c) At 70 km/h = 19.44 m/s the value of Δx is 3.7 mm for all tires. In this case,
owing to rolling resistance, an iterative solution must be obtained. However, the
convergence is very fast, as only five iterations are needed to reach a difference
between the results at the i -th and at the (i− 1 )-th iteration smaller than 10−6

in relative terms. The other results are not dissimilar to those obtained in the
previous case: The forces on the axles are 43.980 kN, 116.970 kN, 78.710 kN,
84.440 kN and 58.060 kN; those at the tractor-trailer connection are 91.150 kN
in the vertical direction and 33.440 kN in the horizontal direction.

Note that the matrix of the coefficients of the relevant set of equations is the
same in all cases.

23.2 TOTAL RESISTANCE TO MOTION

Consider a vehicle moving at constant speed on a straight and level road. The
forces that must be overcome to maintain a constant speed are aerodynamic drag
and rolling resistance.

By using the simplified formula seen in Part I to express the dependence of
rolling resistance on speed, the modulus of the first is

Rr =
∑
∀i

Fzi

(
f0 + KV 2

)
, (23.12)

where Fzi
is the force acting in a direction perpendicular to the ground on the

ith wheel.
Assuming that the rolling coefficient f is the same for all wheels2, the sum

of all normal forces can be brought out from the sum and, taking into account
aerodynamic lift as well, it follows that

Rr =
(
f0 + KV 2

)∑
∀i

Fzi
=

[
mg cos(α) − 1

2
ρV 2

r SCz

]
(f0 + KV 2) . (23.13)

Aerodynamic drag (or, better, the aerodynamic force in the x direction,
Eq.(21.11)) has a value (always as an absolute value) of

Ra =
1
2
ρVr

2SCx . (23.14)

2This assumption holds only as a first approximation, since it does not take into account
the dependence of f on the driving or braking conditions or other variables.



194 23. DRIVING DYNAMIC PERFORMANCE

With increasing speed, the importance of the former grows; at a given value
of the speed aerodynamic drag becomes more important than rolling resistance.
This speed is lower for small cars while for larger vehicles, particularly for trucks
at full load, rolling resistance is the primary form of drag. Another factor is that
usually the mass of the vehicle grows with its size more rapidly than the area of
its cross section.

If the road is not level, the component of weight acting in a direction parallel
to the velocity V , i.e. the grade force

Rp = mg sin(α) (23.15)

must be added to the resistance to motion.
The grade force becomes far more important than all other forms of drag

even for moderate values of grade (Fig. 23.1). Since the force acting in a direction
perpendicular to the ground on a sloping road is only the component of weight
perpendicular to the road, the total resistance to motion, or road load, as it is
commonly referred to, can be written in the form

R =
[
mg cos(α) − 1

2
ρV 2SCz

]
(f0 + KV 2) +

1
2
ρV 2SCx + mg sin(α) , (23.16)

where, assuming that the air is still, the velocity with respect to air Vr becomes
conflated with velocity V.

To highlight its dependence on speed, the road load can be written as

R = A + BV 2 + CV 4 , (23.17)

where
A = mg [f0 cos(α) + sin(α)] ,

B = mgK cos(α) +
1
2
ρS[Cx − Czf0] ,

C = −1
2
ρSKCz .

The last term in Eq. (23.17) becomes important only at very high speed in
the case of vehicles with strong negative lift: It is usually neglected except in
racing cars.

Since the grade angle of roads open to vehicular traffic is usually not very
large, it is possible to assume that

cos(α) ≈ 1 , sin(α) ≈ tan(α) ≈ i ,

where i is the grade of the road. In this case coefficient B is independent of the
grade of the road and

A ≈ mg(f0 + i)

depends linearly on it. C never depends on grade.
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23.3 POWER NEEDED FOR MOTION

The power needed to move at constant speed V is obtained simply by multiplying
the road load given by Eq. (23.17) by the value of the velocity

Pn = V R = AV + BV 3 + CV 5 . (23.18)

Example 23.3 Plot the curves of the road load of the car of Appendix E.1 on
level road and on a 10% grade. Plot the curve of the power needed for constant
speed driving on level road.

The results obtained through Eq. (23.16) are shown in Fig. 23.4.

Example 23.4 Plot the curves of the road load of the articulated truck of
Appendix E.9 on level road and on a 10% grade.

The results obtained through Eq. (23.16) are shown in Fig. 23.5. Note that
in this case aerodynamic drag amounts to a relatively small part of the road load
and that on a 10% grade the grade force is very high.

Motion at constant speed is possible only if the power available at the wheels
at least equals the required power given by Eq. (23.18). This means that the

FIGURE 23.4. Resistance (a), and power (b) needed for motion at constant speed for
the small car of Appendix E.1. Road load on the same car driving on a 10% slope (c).
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FIGURE 23.5. Aerodynamic drag (curve 1), rolling resistance (2), grade force (3) and
total road load (4) for the articulated truck of Appendix E.9 on level road (a) and on
a 10% grade (b).

engine must supply sufficient power, taking into account losses in the trans-
mission as well, and that the road-wheel contact must be able to transmit this
power.

When assessing the longitudinal performance of motor vehicles, it is of-
ten expedient to plot the power required for motion as a function of speed on
a logarithmic plot. If the term CV 5 is neglected, the two remaining terms of
Eq. (23.18) are represented by straight lines with slopes respectively equal to
1 and 3. The two straight lines cross in a point whose x-coordinate is the so
called characteristic speed, easily obtained from Eq. (23.18)

Vcar =

√
A

B
. (23.19)

Its y-coordinate is the logarithm of half the corresponding characteristic
power (Fig. 23.6), whose value is:

Pcar = AVcar + BV 3
car = 2A

√
A

B
. (23.20)

The plot of the power required for motion cannot be obtained directly by
adding the ordinates of the two straight lines of Fig. 23.6: the power must be
computed from its logarithm, the values of the powers given by the straight lines
added to each other, and the logarithm computed once again.

How to plot the curve Pn(V ) on a logarithmic plot is described in detail by
M. Bencini3. Once the curve for α = 0 has been obtained, all other curves for
any value of α can be obtained by moving the curve on the P (V ) plane. The

3M. Bencini, Dinamica del veicolo considerato come punto, Tamburini, Milano, 1956.
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FIGURE 23.6. Power needed for motion. Logarithmic plot.

curve must be moved by

Δ1 =
1
2

log
[
f0 + tan(α)

f0

]
+

1
2

log
[
cos(α)

2gK + λ

2gK cos(α) + λ

]
, (23.21)

where
λ = ρSCx/m ,

in the horizontal direction, and by

Δ2 =
3
2

log
[
f0 + tan(α)

f0

]
+

1
2

log
[
cos3(α)

2gK + λ

2gK cos(α) + λ

]
, (23.22)

in the vertical direction. For values of the road slope small enough to accept the
approximation cos(α) ≈ 1, equations (23.21) and (23.22) simplify as

Δ1 =
1
2

log
(

f0 + i

f0

)
, Δ2 =

3
2

log
(

f0 + i

f0

)
, (23.23)

where i = tan(α). The curves move along a straight line with slope 3 and the
displacement depends only on the value of f0, and obviously on the slope i of
the road.

It is then possible to obtain a single logarithmic plot containing a set of
curves Pn(V ) for different values of α that can be used for any vehicle in the
range where cos(α) ≈ 1. Such a plot must be adapted to any particular vehicle
by computing the values of characteristic speed and power (Vcar, Pcar) on level
road. If the value of the rolling coefficient f0 coincides with the reference value
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f0r
used to plot the diagram, the reference value of the slope ir shown on the

plot is the actual one, otherwise

i = irf0/f0r
. (23.24)

The plot Pn(V ) obtained for the values reported in the caption is shown
in Fig. 23.7. Such a plot holds for any vehicle in the zone characterized by low
values of α. The error made using Fig. 23.7 for other vehicles increases with
increasing α, but remains negligible for values of i up to 0.3 ÷ 0.4.

23.4 AVAILABLE POWER AT THE WHEELS

The engine drives the wheels through a mechanical transmission whose task is
essentially that of reducing the angular velocity of the engine to that required at
the wheels. If a reciprocating internal combustion engine is used, the transmission
also has the task of uncoupling the engine from the wheels at a stop or at low
speed, for which reason the driveline includes a clutch or a torque converter as
well.

It is possible, at least as a first approximation, to state a value of the effi-
ciency ηt for any type of driveline. The power available at the wheels is then

Pa = Peηt . (23.25)

Depending on the type of transmission, the efficiency can be considered as
a constant (obviously only as a first approximation), or may be computed, but
only after assessing the working conditions of the driveline and above all of the
torque converter, if present.

To compute the efficiency of the driveline, or the power it dissipates, see the
relevant section of Part II.

The equation linking the speed of the engine to that of the wheels is simply

V = ΩeReτ t , (23.26)

where τ t is the overall gear ratio, defined as the ratio between the speed of the
wheels and that of the engine shaft, and is usually smaller than 1. Once the gear
ratios of all parts of the transmission are known, the power available at the
wheels can be plotted as a function of the speed of the vehicle on the same plot
where the power needed for motion at constant speed is reported.

If the curves of the required and available power are plotted on a logarithmic
plot, any change of the gear ratio causes a translation of the curve related to
the available power along the V -axis, while a change in the efficiency of the
driveline causes a translation of the same curve along the P -axis (Fig. 23.8). If a
continuous transmission (CVT) is present, the position of the curve is a function
of the gear ratio, and then it is possible to define a zone on the V P -plane where
all possible working conditions are included.

See Part II for situations where a torque converter is present.
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FIGURE 23.7. Logarithmic plot of the power needed for motion. The characteristic
speed and power refer to a level road with f0 = 0.013. For high values of the slope the
plot holds only if m = 1000 kg; S = 1.7 m2; Cx = 0.42; K = 6.5×10−6 s2/m2; g = 9.81
m/s2; ρ = 1.22 kg/m3.

23.5 MAXIMUM POWER THAT CAN BE
TRANSFERRED TO THE ROAD

The power needed to overcome the road load must be transferred through the
road-wheel contact. As it increases with both increasing speed and the grade of
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FIGURE 23.8. Curves of maximum engine power and power available at the wheels
plotted with logarithmic scales. Changing the efficiency of the transmission and the
overall transmission ratio.

the road, there is a limit on the maximum speed that can be reached and the
maximum grade that can be managed because of this limit on the driving force
the vehicle can exert, even if no limit to the power supplied by the engine exists.

The maximum power that can be transferred by the vehicle is

Pmax = V
∑
∀i

Fzi
μip

, (23.27)

where the sum is extended to all the driving wheels.

Remark 23.2 If the maximum longitudinal force coefficient μip
and the load

acting on the driving wheels were independent of speed, the maximum power
would increase linearly with V . The optimum engine characteristic Pe(Ωe) for a
vehicle with a transmission with fixed ratio would be a linear characteristic. This
is not the case, however, as the situation is far more complicated.

To begin with, consider the case of a vehicle with two axles, all of which
are driving and assume that all wheels work with the same longitudinal slip, i.e.
that the values of μi are equal. This situation will be referred here to as “ideal
driving force”.

The maximum power that can be transferred to the road is then

Pmax = V μip

(
mg cos(α) − 1

2
ρV 2SCz

)
. (23.28)
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23.5.1 Vehicles with all wheels driving

When all wheels are driving wheels, it is possible to assume that the rolling
resistance of the wheels is due only to the forward displacement of force Fz at
the road-wheel contact, and hence is overcome directly by the driving torque
exerted by the engine.

To compute the maximum grade that can be managed at low speed, it is
possible to assume that the only road load that must be overcome at the wheel-
road contact at such speeds is the grade load. By equating the power required for
motion (Eq. 23.18) to the maximum power that can be transferred (Eq. 23.28),
the maximum grade is readily obtained,

tan(αmax) = imax = μxp
. (23.29)

To compute the maximum speed that can be reached, the decrease of trac-
tion at the road-wheel contact occurring with increasing speed must be modelled.
A very simple way is to assume a linear law

μip
= c1 − c2V . (23.30)

By equating the power required for motion at constant speed (except that
related to rolling resistance) to Eq. (23.28) and using Eq. (23.30) for expressing
the decrease of the available driving force with the speed, the maximum speed
can be obtained from the cubic equation

Czc2V
3 +

(
Czc1 + Cx

)
V 2 − 2mg

ρS

[
(c1 − c2V ) cos(α) − sin(α)

]
= 0 . (23.31)

The values of the maximum grade and of the maximum speed can only be
achieved in ideal conditions, since the longitudinal slip of all wheels has been
assumed to be the same. The forces acting on the driving axles can be computed
by using the procedure already seen: They generally depend not only on the
static load distribution but also on the speed and the acceleration.

In the case of a vehicle with two axles, both driving, the ratio

KT =
Fx1

Fx2

between the driving force at the front wheels and that at the rear wheels is
usually a constant. If the wheels all have the same diameter, it coincides with
the ratio between the driving torques supplied to the two axles. Assume that the
two axles have tires of the same type and operate on patches of road with the
same characteristics. If

KT
Fz2

Fz1

> 1 ,

the limit conditions occur at the front wheels. At the onset of slipping, the power
that can be transferred to the road is then

Pmax = V μxp
Fz1

1 + KT

KT
. (23.32)
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By plotting the maximum power obtained by Eq. (23.32) versus the speed
together with the power required given by Eq. (23.17) multiplied by V , the
maximum speed at which the vehicle is able to transfer enough power to maintain
its speed is readily obtained. It must be remembered that rolling resistance must
be neglected in the computation of the required power.

If, on the contrary,

KT
Fz2

Fz1

< 1 ,

the limit conditions occur at the rear wheels and the maximum power that can
be transferred to the road is

Pmax = V μxp
Fz2(1 + KT ) . (23.33)

The maximum grade that can be managed is also easily obtained. Since
in this case the speed can be set to zero, it follows that, for an all-wheel drive
vehicle,

tan(αmax) = imax =
bc1μxp

(
1 + 1

KT

)

l + zGμxp

(
1 + 1

KT

) ,

tan(αmax) = imax =
aμxp

(1 + KT )
l + zGμxp

(1 + KT )
,

(23.34)

respectively if the rear wheels slip first, i.e. if

KT <
b − hG tan(αmax)
a + hG tan(αmax)

,

or if this condition does not hold. It is, however, unlikely that the rear wheels
are in a critical condition on a very steep grade, since this would require an
abnormally low value of KT . The value of μxp

is that for a vanishingly small
speed.

23.5.2 Vehicles with a single driving axle

If not all axles are driving, the power that can be transferred to the ground is
smaller. Aerodynamic drag increases the load on the rear wheels, as does a posi-
tive grade of the road: The power that can be transferred by a rear-wheels drive
vehicle thus increases with speed, due to drag, and with the slope. Aerodynamic
moment and lift have different effects depending on the sign of the moments and
the position of the centre of mass. The maximum power is then

Pmax = V μxp
Fz1 , Pmax = V μxp

Fz2 , (23.35)

respectively for the cases of front and rear wheel drive. Only the rolling resis-
tance of the free wheels must be accounted for in the computation of the power
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needed for constant speed driving ; this is easily done by introducing Fz2 or Fz1 ,
respectively for front- and rear-wheels drive, in the expression of the road load
instead of the total load on the ground.

Equations (23.34) could still be used for the computation of the maxi-
mum grade that can be managed. The first equation holds for front-wheel drive
(1/KT = 0) and the second for rear-wheel drive, (KT = 0) but they do not
include the rolling resistance of the free wheels.

If this effect is accounted for, the equations are modified as

tan(αmax) = imax =
bμxp

− af0

l + zG

(
μxp

+ f0

) ,

tan(αmax) = imax =
aμxp

− bf0

l − zG

(
μxp

+ f0

) .

(23.36)

Example 23.5 Plot the curves of maximum transmissible and required power
for the vehicle of Appendix E.2 on dry and wet road. Compute the maximum
speed and the maximum grade that can be managed.

Repeat the computations assuming that the same vehicle has rear-wheel
drive, without changing the static load distribution on the ground.

Assume that c1 = 1.1 and c2 = 6 × 10−3 s/m on dry road and c1 = 0.8 and
c2 = 8 × 10−3 s/m on wet road.

The curves of the maximum transmissible power are shown in Fig. 23.9,
together with those of the required power. The vehicle of the example can thus
reach a maximum speed of 225 km/h (wet road) or 308 km/h (dry road) for
reasons linked only to the wheel driving force.

The computations were repeated assuming that the driving wheels are the
rear ones. In this case, the maximum power that can be transferred to the ground

FIGURE 23.9. Maximum transmissible power and required power on level road in the
case of Example 23.5.
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at low speed is lower than in the previous case, since the static load distribution
was specified in order to obtain good performance with front-wheel drive.

The load on the rear wheels increases with increasing speed and eventually
gets larger than that on the front wheels. On dry road, the maximum speed is then
higher for the vehicle with rear-wheel drive, despite the fact that at standstill the
front wheels are loaded by about 60% of the weight.

The values of the maximum speed for the rear-wheel drive vehicle are of 218
km/h on wet road or 328 km/h on dry road.

Note that the required power curve includes only the rolling resistance of the
non-driving wheels, and is slightly different in the two cases.

Also note that the curves do not take into consideration the load shift due
to acceleration, so for speeds lower than the maximum speed, where the vehicle
would accelerate if the maximum power is applied, they are not realistic.

The maximum grade angle that can be managed when only the wheel driving
force is considered may be computed using Eq. (23.36), obtaining 28.0◦ on dry
road and 22.1◦ on wet road, corresponding to grades of 53.1% and 40.6% respec-
tively. If the driving wheels were the rear ones the values would have been 29.4◦

(56.3%) and 20.6◦ (37.6%).

In the case of rigid axles in which the final gear is directly mounted on the
axle and the propeller shaft is in the longitudinal direction, the drive torque Md

applied to the axle causes a transversal load shift between the driving wheels of
the same axle.

With reference to Fig. 23.10 the load shift ΔFz could be determined easily as

ΔFz =
Md

ti
where Md = FxRlτf , (23.37)

FIGURE 23.10. Transversal load shift due to the driving torque Td.
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Fx is the longitudinal force exerted by the axle on the ground and τf is the gear
ratio of the final drive, defined as the ratio between the speed of the wheels and
that of the propeller shaft (it is usually smaller than unity).

Equation (23.37) is not, however, usually correct as under the action of
the driving torque the vehicle body is subject to a roll rotation, which in turn
produces an added torque on the axle through the suspension system. If the roll
stiffness of the ith suspension is Kti

, the roll angle is

φ = − Md∑
∀i Kti

.

The torque exerted on the axle is then equal to

φKt = − MdKt∑
∀i Kti

,

where Kt is the roll stiffness of the relevant suspension.
The load shift is thus

ΔFz =
FxRlτf

ti

(
1 − Kt∑

∀i Kti

)
. (23.38)

If the vehicle has a standard differential gear, the maximum driving force
which can be exerted by the driving axle is equal to twice that which can be
exerted by the less loaded wheel, i.e.

Fxmax
= μp(Fz − 2ΔFz) . (23.39)

If, on the contrary, a locking differential is used, within the limits of the
assumption that the force coefficient μp is independent of the load, the transversal
load shift does not affect the maximum driving force.

Example 23.6 Consider the articulated truck of Appendix E9. Compute
a) the maximum driving force at a constant speed of 70 km/h on level road;
b) the same as in a), but on a 10% grade;
c) the maximum grade that can be managed at 10 km/h.

All the above computations must be performed taking into account the
transversal load shift and repeated for the case of a locking differential. Assume
that the maximum longitudinal force coefficient is μp = 1.
a) At 70 km/h = 19.44 m/s the load on the driving axle is 106.940 kN while the
required driving force is 3.187 kN. Taking into account the gear ratio of the final
drive, the driving torque on the axle is 344 Nm, yielding a roll angle of 2.67◦.
The transversal load shift is ΔFz = 96.4N , and the maximum longitudinal force
is 106.75 kN. This value compares with the 106.94 kN that could be exerted if a
locking differential were used, showing that the latter would improve the ability
to exert longitudinal forces only marginally in this case.
b) At 70 km/h on a 10% grade the load on the driving axle is 116.97 kN and
the required driving force is 91.15 kN, corresponding to a driving torque on the
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axle of 4453 Nm. A very large roll angle, namely 34.6◦, results from the values
of the stiffness of the axles, but this is an unrealistic result as for large torques
the nonlinear nature of the suspensions would limit rotations. Assuming that the
stiffness distribution between the suspensions in the nonlinear range is the same
as in the linear range, the transversal load shift is ΔFz = 1249N , yielding a
maximum longitudinal force of 114.47 kN; if a locking differential were used, a
force of 116.97 kN would have been exerted.
c) By computing the force required for motion and the maximum force that can
be exerted by the driving wheels at 10 km/h = 2.78 m/s for different values of
the grade, it is possible to find the value of the latter at which the two are equal.
This procedure allows one to find the maximum value of the grade as 34.9%, i.e.
a grade angle of 19.2◦.

Note that the driving torque is very large on that grade and the suspensions
operate clearly outside their linear range: The load shift can thus be far smaller
than that computed. If no load shift was accounted for, a value of the grade of
37.8%, i.e. a grade angle of 20.7◦, would have been found.

23.6 MAXIMUM SPEED

The maximum speed that can be reached on level road with a given transmission
ratio can be found by intersecting the curve of the available power at the wheels
with that of the required power on level road. The transmission ratio causing
this intersection to occur at the maximum available power allows the highest
speed that can be attained by a given vehicle-engine combination (curve 1 in
Fig. 23.11) to be reached.

The computation of the maximum speed and of the overall gear ratio τ t

necessary to reach it is straightforward. By intersecting the required power curve
with the horizontal straight line

P = Pamax
= Pemax

ηt ,

a fifth degree equation is obtained

AV + BV 3 + CV 5 = Pemax
ηt , (23.40)

whose solution directly yields the maximum value of the speed.
If aerodynamic lift is neglected (actually it is sufficient to neglect the contri-

bution to rolling resistance proportional to the square of the speed due to lift),
C vanishes and the equation is cubic. Its solution can be obtained in closed form

Vmax = A∗
(

3
√

B∗ + 1 − 3
√

B∗ − 1
)

, (23.41)

where

A∗ = 3

√
Pemax

ηt

2mgK + ρSCX
= 3

√
Pemax

ηt

2B
,
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B∗ =

√
1 +

8m3g3f3
0

27P 2
mmax

η2
t (2mgK + ρSCX)

=

√
1 +

4A3

27P 2
mmax

η2
t B

.

Once the maximum speed has been obtained, the gear ratio allowing the
vehicle to reach it is

τ t =
Vmax

Re(Ωe)Pmax

, (23.42)

where (Ωe)Pmax
is the engine speed at which the peak power is obtained.

If the transmission is of the mechanical type, the overall gear ratio is
the product of the gear ratio at the gearbox (in the relevant gear) and that
of the final drive

τ t = τgτf .

The transmission ratio of the gearbox, which in top gear is usually close
to 1, can be stated and consequently the gear ratio τf at the final drive can be
computed.

Note that this procedure is based on the assumption that the intersection
in Fig. 23.11 occurs at the peak of the engine power curve. This can, however,
occur in only one given condition, since not only the load, but also the rolling
resistance coefficient and even the air density, affect the road load curve. Air
density also affects the engine power curve. If the intersection occurs in the
descending branch of the curve (situation 2 in Fig. 23.11) the vehicle is said to
be “undergeared”, i.e., the overall transmission ratio is “too short”. Conversely,
if the intersection occurs in the ascending branch of the curve (situation 3 in
Fig. 23.11), the vehicle is “overgeared” and the overall transmission ratio is “too
long”.

log(P)

Pdmax

Vmax

log(V)

a)

Pa

2
1

3
Pn

FIGURE 23.11. Maximum speed for a vehicle with internal combustion engine.
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The first situation can be purposely obtained to improve the acceleration
and grade performance of the vehicle, while the second allows fuel consumption
to be reduced. The degree of undergearing λu can be defined as

λu =
(Ω)Vmax

(Ω)Pmax

. (23.43)

It is greater than unity if the vehicle is undergeared and smaller than 1 in case
of overgearing.

There are thus two ways of choosing the top gear ratio: One has already
been stated, namely a “fast” gear ratio, with a degree of undergearing equal
to about unity, i.e., chosen in order to reach the maximum speed. A different
approach is to use a longer overgeared ratio, with the goal of reducing fuel
consumption (see below). In practical terms, this trade-off is typical of five or six
speed transmissions: Either the maximum speed is reached in fifth (sixth) gear
or in fourth (fifth) gear, the longest one being an overdrive gear.

Remark 23.3 This strategy works only in the case of vehicles with high power/
weight ratio: In low powered vehicles, this “economy” gear would be very diffi-
cult to use since any increase of the required power, e.g., due to a slight grade,
headwind, etc., would compel a shift to a shorter gear. Undergearing may be a
necessity in this case.

23.7 GRADEABILITY AND INITIAL CHOICE
OF THE TRANSMISSION RATIOS

The maximum grade that can be managed with a given gear ratio may be ob-
tained by plotting the curves of the required power at various values of the slope
and looking for the curve that is tangent to the curve of the available power
(Fig. 23.12). The slope so obtained is, however, only a theoretical result, since
it can be managed only at a single value of the speed: If the vehicle travels
at a higher speed, it slows down because the power is not sufficient, but if its
speed is reduced the power is insufficient and the vehicle slows down further:
The condition is therefore unstable and the vehicle stops.

To be able to manage a specified slope safely, the curve of the available power
must be above that of the required power in a whole range of speeds, starting
from a value low enough to assure that starting on that slope is possible. To
choose a value of the gear ratio of the bottom gear allowing the vehicle to start
on a given grade, it is possible to state a reference speed and to compute the
gear ratio in such a way that at that speed the Pa and Pn curves intersect.

As the vehicle is moving at low speed, only the first term of the required
power curve needs to be accounted for. As the power developed by the engine
can be written in the form

Pe = MeΩe = Me
V

Reτgτf
, (23.44)
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FIGURE 23.12. Maximum slope for a vehicle with internal combustion engine.

where Me is the engine torque, the equilibrium condition allows the overall gear
ratio to be computed as

τ t =
Meηt

Remg[f0 cos(α) + sin(α)]
. (23.45)

The value of the engine torque to be introduced into Eq. (23.45) can be the
maximum torque available at the minimum engine speed, possibly multiplied by
a number smaller than 1 for safety. The mass of the vehicle must be that at full
load, including the maximum trailer mass the vehicle is allowed to tow. For the
grade, values of 25% or even 33% for road vehicles can be considered, but it must
be kept in mind that in some cases, as in ferry ramps or private garage ramps,
very steep grades may be encountered. For off-road vehicles values up to 100%
can be considered.

Another consideration in the choice of the gear ratio for the bottom gear
is to assure a regular working of the engine at a speed chosen so as to avoid a
prolonged use of the clutch in very low speed driving. A reference value may be
6 or 8 km/h. Both criteria must be satisfied.

Once the ratios of the bottom and top gears have been chosen, the inter-
mediate ones can be stated using different criteria. The simplest is to set them
in geometric sequence, i.e., stating that the ratios between two subsequent gear
ratios are all equal. Operating in this way, the available power curves on the
P (V ) logarithmic plot are all equispaced.

There may be some advantages in having the curves a bit closer to each
other in the high speed range, so that the third gear (in a four speed gearbox)
is closer to the fourth. If this is required, it is possible to set in a geometric
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sequence not the gear ratios τ i but the ratios between them τ i/τ i+1. This can
give a feeling of sport driving, since the gear ratios are more crowded in the zone
of most common use.

The choice of the transmission ratios is much influenced by considerations
that are beyond the scope of the present section, being mostly linked to the
acceleration performance of the vehicle. This aspect was introduced in Part III
and will be dealt with in Section 23.10.

Remark 23.4 Since the values of the gear ratios have a large influence on the
performance of the vehicle and above all on the driver’s perception of them, the
trade-off dominating their choice is also a matter of subjective impressions and
the traditions of various manufacturers. The market sector a manufacturer aims
at may have more influence in deciding the matter than technical considerations
alone

Example 23.7 Choose the overall top gear ratio for the car of Appendix E.2
to reach the maximum speed in the load condition indicated. Choose the bottom
gear ratio to start on a 33% grade with a safety margin of 1.1 with respect to
the maximum engine torque. Compare the ratio obtained with those listed in the
Appendix.

Equation (23.40), solved numerically, yields a maximum speed of 42.6 m/s
= 153.4 km/h.

The overall transmission ratio τgτf allowing the intersection between
the two curves on the P (V ) plane to occur at the peak power is 0.3044. If a
value of 22/21 = 1.048 is accepted for the top gear ratio, the transmission ratio
of the final drive is 0.2906, which can be approximated as 18/62 with an error
of about 0.08%.

The actual ratio of the final drive is 0.284. By computing the maximum speed
with this value of the transmission ratio, a value of 41.2 m/s = 148.36 km/h is
found. The top speed is reached at 5147 rpm, yielding a degree of undergearing
λu = 0.99.

The overall transmission ratio of the bottom gear can be found using
Eq. (23.45). By dividing the maximum engine torque by a factor of 1.1, a value
of 0.1056 is obtained, corresponding to a value for the gearbox ratio of 0.3639.
This value is far longer than the actual one (0.2154), since the computation was
performed with the vehicle unloaded.

23.8 FUEL CONSUMPTION AT CONSTANT
SPEED

The energy needed to travel at constant speed can be immediately computed by
multiplying the power required for constant speed driving by the time

e = Pnt =
Pnd

V
, (23.46)
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where d is the distance travelled. Note that Eq. (23.46) gives the energy required
at the wheels: To obtain the energy actually required, it must be divided by the
various efficiencies (transmission, engine, etc.).

If the efficiency of the engine ηe and the thermal value H of the fuel are
known, the fuel consumption can be computed. Introducing the expression de-
rived from Eq. (23.16) for the total road load into the expression for the power,
the fuel consumption per unit distance Q is

Q =
A + BV 2 + CV 4

ηtηeHρf

, (23.47)

where ρf is the density of the fuel, introduced to obtain the consumption in
terms of volume of fuel per unit of distance. In S.I. units it is measured in m3/m,
while liters per 100 km is a more practical, although not consistent, unit. Often
the reciprocal of Q, expressed in km per liter or miles per gallon, is used.

From Eq. (23.47), if the aerodynamic lift is neglected, the fuel consumption
would be a quadratic function of the speed if the efficiency of the engine could
be considered as a constant. The plot Q(V ) for a car with a mass of 1,000 kg,
with H = 4.4 × 107 J/kg, ρ = 730 kg/m3 and ηe = 0.25 is shown in Fig. 23.13.

This is not the case, however, as the efficiency of the engine is strongly in-
fluenced by its rotational speed and above all by the power the engine is required
to supply.

To compute the consumption Q, the simplest procedure is to obtain the
power required at the wheels as a function of the speed and hence to compute
the power the engine must supply to travel at constant speed

FIGURE 23.13. Fuel consumption at constant speed as a function of the speed,
assuming that the efficiency of the engine is constant.
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Pe =
Pn

ηt

.

Once the transmission ratio has been stated, the rotational speed of the
engine is known and thus the working point on the map of the engine is located.
From it the efficiency ηe or, which is the same, the specific fuel consumption

q =
H

ηe

is obtained and the fuel consumption can be computed as

Q =
qPn

ηtV ρf

. (23.48)

The curves Q(V ) are of the type shown in Fig. 23.14. They usually have a
minimum at low speed, obtained in conditions in which the engine works at low
power with low efficiency.

Since the conditions in which the engine works depend on the overall trans-
mission ratio, the fuel consumption is also largely influenced by the value of the
gear ratio. Usually the longer the ratio, the lower the consumption, as a “long”
ratio allows the engine to be used at low speed in conditions which are close to
the maximum power, where the specific fuel consumption is low.

As already stated, a transmission ratio longer than that needed to reach the
maximum speed can be used. It is possible to choose it in such a way that the

FIGURE 23.14. Fuel consumption with different gear ratios at constant speed on level
road. Passenger vehicle with five-speed gearbox.
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curve of the required power crosses that of the maximum efficiency at a given
cruise speed, e.g. at a speed equal to 3/4 of the top speed. The fuel consump-
tion at that speed is consequently the minimum possible value, with the added
advantages of a reduction in noise and engine wear due to the reduced engine
speed. Obviously, the performance in terms of maximum speed, acceleration and
gradeability is reduced with respect to that available with a shorter gear ratio.

If a CVT is used, it is possible to control it in such a way that the engine
works at conditions of maximum efficiency at all speeds, i.e. at all speeds the
working point on the map lies on the curve of the maximum efficiency. This is
really expedient, however, only if the increase in efficiency so obtained is greater
than the loss of efficiency, with respect to that of a simpler transmission, due to
the use of the CVT. Moreover, the control law for the transmission ratio of the
CVT is a trade-off among different requirements, which also take into account
acceleration and gradeability.

Example 23.8 Plot the fuel consumption curve in top gear for the car of
Appendix E.2.

The map of the engine is shown in Fig. 23.15a. The curves of the power
required at the engine, i.e. of the power required at the wheels divided by the
transmission efficiency, are plotted for the different gear ratio in the same figure.

The curves identify the working conditions of the engine.
The points at which the curve of the power required in top gear intersects the

curves at constant specific fuel consumption are reported in the first two columns
of the following table

Ω [rpm] P [kW] q [g/HPh] V [km/h] Q [l/100km] 1/Q [km/l]
2083 3.819 400 60.05 4.65 21.52
3157 9.711 300 91.02 5.85 17.10
4135 19.610 250 119.20 7.51 13.31
4664 27.152 240 134.46 8.85 11.30
5320 37.876 250 153.36 11.28 8.87

The other columns list the specific fuel consumption, the speed and the fuel
consumption (in l/100 km) and its reciprocal (in km/l). A value of 730 kg/m3

has been used for the density of the fuel. The fuel consumption is also reported
in Fig. 23.15b.

The experimental data do not allow the fuel consumption to be computed
directly in the other gears, since the required power curves do not cross the curves
of the map. Although there is no difficulty in repeating the tests and plotting
the specific fuel consumption in the relevant zone of the map, not having other
experimental data available it is still possible to interpolate linearily the values
of the efficiency between the lowest curve and the Ω-axis where the efficiency
is zero.



214 23. DRIVING DYNAMIC PERFORMANCE

FIGURE 23.15. Fuel consumption for the car of Appendix E.2. (a) Map of the engine
with superimposed curves of power required at the engine in various gears (1: bottom
gear; 2, 3: intermediate gears; 4: top gear). The specific fuel consumption is reported
in g/CVh. (b) Fuel consumption in l/100 km as a function of the speed (top gear). (c)
Zone of the engine map for low-power operation, with curves of power required at the
engine in various gears. (d) Fuel consumption in l/100 km as a function of the speed
in the various gears.

To interpolate the efficiency means to interpolate the reciprocal of the specific
fuel consumption4; consequently, the curve midway between the curve at 400
gCV/h and the Ω-axis is that related to a doubling of the fuel consumption, 800
gCV/h, and so on. The lower part of the plot of Fig. 23.15a, obtained in this
way, is shown in Fig. 23.15c.

The fuel consumption curves (Fig. 23.15d) were then obtained in the same
way seen above for the top gear. The results are only a rough approximation, but
at any rate their pattern is realistic.

4 To interpolate directly on the specific fuel consumption has little meaning, since the latter
tends to infinity on the Ω-axis.
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23.9 VEHICLE TAKE-OFF FROM REST

Since internal combustion engines cannot operate below a minimum speed Ωmin,
the vehicle cannot slow down below the speed

Vmin = ΩminReτfτg

with the engine connected to the driving wheels. Either a torque converter
or a friction clutch must be used, both for starting and stopping the vehicle and
to facilitate the shifting of gears.

The starting manoeuvre may be easily simulated in an approximate way by
accepting the following assumptions:

1. The manoeuvre is started with the engine running at a speed Ωe0 and the
clutch control is released gradually from time t = 0 to time t = ti in such
a way that the torque Mc it transmits increases linearly in time from 0
to the maximum value it can handle in slipping conditions M∗

c , and then
remains constant until time ts when no more slipping occurs;

2. the engine torque is maintained constant at the value Me;

3. if the vehicle starts on a sloping road, it is kept stationary by some external
means until the clutch torque is sufficient to produce motion;

4. the longitudinal slip of the wheels is small;

5. the terms in V 2 and V 4 of the road load are neglected owing to the low
speed at which the manoeuvre is performed.

The vehicle can be modelled in terms of two moments of inertia, one to model
the engine Je and one to model the vehicle Jv (Fig. 23.16a). The first includes

FIGURE 23.16. (a) Model of the vehicle for the starting manoeuvre. (b) Time history
of the torques acting on the vehicle.
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the moment of inertia of the engine, up to the flywheel, while the moments of
inertia of the clutch disks, of the shaft entering the gearbox, of all the rotating
parts (reduced to the engine shaft), and the mass of the vehicle as “seen” from
the engine are included in the second. For the computational details, see Section
23.10.

Torque Me, which has been assumed to be constant, acts on the moment of
inertia Je. On Jv a drag torque Mv is acting, whose value is simply

M∗
v = mg

[
f0 cos(α) + sin(α)

]
Re

τfτg

ηt

, (23.49)

when the vehicle is moving. When the vehicle is stationary, at the beginning of
the starting manoeuvre, the drag torque is simply equal to the torque the clutch
is supplying, if it is smaller than M∗

v ,

Mv = min(M∗
v , Mc) . (23.50)

The maximum torque the clutch can transfer to the vehicle M∗
c is usually

slightly larger, by 10% to 20%, than the maximum engine torque.
The torques acting on the system are plotted versus time in Fig. 23.16b.

The manoeuvre can thus be subdivided into three phases:

1. From t = 0 to

t = t0 = ti
M∗

v

M∗
c

,

in which the vehicle is at a standstill, since the torque transferred by the
clutch is not yet sufficient to overcome the drag. The engine speeds up.

2. From t = t0 to t = ti, the clutch slips, the vehicle accelerates and the
engine initially continues to speed up, but when M∗

c becomes greater than
Me, it starts to slow down.

3. From t = ti to t = ts, the clutch continues to slip until time ts, when
the transmission starts to behave as a rigid system and the acceleration
continues, as will be seen in Section 23.10.

The equation of motion of the system is simply

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ω̇e =
Me − Mc

Je

Ω̇v =
Mc − Mv

Jv

. (23.51)
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23.9.1 First phase

In the first phase the moments are⎧⎪⎨
⎪⎩

Me = M∗
e

Mc = Mv = M∗
c

t

ti
,

(23.52)

and then the equations of motion are⎧⎪⎪⎨
⎪⎪⎩

Ω̇e =
M∗

e

Je
− M∗

c

Je

t

ti

Ω̇v = 0 ,

(23.53)

with the initial conditions⎧⎨
⎩

Ωe = Ωe0

Ωv = 0
for t = 0. (23.54)

23.9.2 Second phase

In the second phase the moments are⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Me = M∗
e

Mv = M∗
v

Mc = M∗
c

t

ti
.

(23.55)

The equations of motion are then⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ω̇e =
M∗

e

Je
− M∗

i

Je

t

ti

Ω̇v =
M∗

c

Jv

t

ti
− M∗

v

Jv
,

(23.56)

with the initial conditions that can be obtained at the end of the first phase.

23.9.3 Third phase

In the third phase the moments are all constant and their values are M∗
e , M∗

c

and M∗
v . The equations of motion are⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Ω̇e =
M∗

e − M∗
c

Je

Ω̇v =
M∗

c − M∗
v

Jv
,

(23.57)
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while the initial conditions can be obtained from those at the end of the second
phase.

The manoeuvre ends when the condition Ωe = Ωv holds, i.e., when the
clutch does not slip any more.

By integrating Eq. (23.51) separately for the three phases, the following
time histories for the engine and for the vehicle are obtained:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ωe = Ωe0 +
1
Je

(
Met −

M∗
c

2ti
t2
)

for 0 < t < ti

Ωe = Ωe0 +
1
Je

[
t (Me − M∗

c ) − M∗
c

2
ti

]
for ti < t < ts ,

(23.58)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

V = 0 for 0 < t < t0

V =
Re

Jv

(
M∗

c

2ti
t2 − M∗

v t +
M∗2

v ti
2M∗

c

)
for t0 < t < ti

V =
Re

Jv

[
t (M∗

c − M∗
v ) +

M∗2
v ti

2M∗
c

(
M∗2

v − M∗2
c

)]
for ti < t < ts .

(23.59)
The starting time ts can be defined as the time at which the clutch stops

slipping: Ωv = Ωe. By equating the two angular velocities it follows that

ts =
2JeJvM∗

c Ωe0 + M∗2

c ti(Jv − Je) − tiM
∗2

v Je

2M∗
c [Je(M∗

c − M∗
v ) + Jv(M∗

c − Me)]
. (23.60)

To make the subsequent acceleration of the vehicle possible, the angular
velocity of the engine at time ts must be in excess of the minimum velocity at
which it can work regularly; otherwise, it stops. This can occur if the values of
Ωe0 or of Me are too low or if the clutch engages too quickly (ti too low).

If ts < ti the vehicle completes the starting manoeuvre before the clutch
is fully engaged: This poses no problem, but Eq. (23.60) fails to yield a correct
value of ts.

During the manoeuvre, the engine delivers an energy equal to the difference
between its kinetic energy at times 0 and ts added to the energy it produces in
the time interval

ee =
∫ ts

0

MeΩedt +
1
2
Je

(
Ω2

e0
− Ω2

es

)
. (23.61)

Similarly, the vehicle receives the energy

ev =
∫ ts

0

MvΩvdt +
1
2
JvΩ2

vs
. (23.62)

The difference
ec = ee − ev
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yields the energy which is dissipated by the clutch during the starting manoeuvre.
It is strictly linked to the quantity of friction material removed from the disc of
the clutch, i.e. with the wear of that element.

The overall efficiency of the clutch is

ηc =
ev

ee
. (23.63)

The space travelled during the take-off manoeuvre may be computed by
integrating the speed in time. As the vehicle speed follows a pattern that is
roughly quadratic, it may be approximated as

Vsts
3

.

Example 23.9 Simulate a starting manoeuvre for the car of Appendix E.2. As-
sume that the manoeuvre is started at 2000 rpm with the engine supplying a
torque equal to 60% of the maximum torque while the clutch can transfer a torque
equal to 120% of the maximum torque. Assume that ti = 0.5 s, but repeat the
computations for ti = 0.2 s and ti = 0.8 s.

With simple computations it follows that the moment of inertia simulating
the vehicle is Jv = 0.2113 kg m2 and that M∗

v = 1.829 Nm, Me = 52.2 Nm, M∗
c

= 104.4 Nm and Ωe0 = 209.4 rad/s. The results are shown in Fig. 23.17.
The angular velocity of the flywheel simulating the vehicle at the end of the

manoeuvre is 160.4 rad/s, corresponding to a vehicle speed V = 2.561 m/s =
9.22 km/h.

The engine speed, 1532 rpm, is low but sufficient for accelerating the vehicle.
The results obtained for the three cases are

FIGURE 23.17. Angular velocities of the engine and flywheel, simulating the vehicle
during a starting manoeuvre. Results for ti = 0.5 s, 0.2 s and 0.8 s.
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ti ts Ωes Ωvs Vs Vs ee ev ec η ss

[s] [s] [rpm] [rad/s] [m/s] [km/h] [kJ] [kJ] [kJ] [m]

0.2 0.36 1147 120.1 1.918 6.90 5.08 1.63 3.45 36% 0.257

0.5 0.59 1532 160.4 2.561 9.22 8.52 2.78 5.74 33% 0.494

0.8 0.83 1910 200.0 3.193 11.5 12.8 4.45 8.37 35% 0.863

Remark 23.5 The efficiency of the clutch is lower than the value 0.5 which is
often assumed. Actually, it would be 0.5 if the engine rotates at constant speed
with no drag acting on the inertia that has to be accelerated.

The assumptions made are quite rough, particularly those on the laws Me(t)
and Mc(t). However, the results do allow one to obtain reference values that are
independent of the actual behavior of the driver.

In cases where the transmission has a torque converter instead of a clutch,
the torque entering the gearbox may be computed using the equations discussed
in Part II. It is then possible to integrate the equations of motion numerically
and to obtain the time history of the speed.

In the case of a servo-controlled clutch, a procedure similar to the one shown
can be followed by introducing the relevant control laws.

23.10 ACCELERATION

If the curve of the required power lies, at a certain speed, below that of the
power available at the wheels, the difference Pa − Pn between the two is the
power available to accelerate the vehicle.

Remark 23.6 Note that the engine power Pe is usually measured in steady-
state running, in which case using it for acceleration is arbitrary; however,
the time scales of the acceleration of the crankshaft and of the thermodynamic
cycle are different by orders of magnitude, and thus the error introduced by using
the values obtained from the steady-state map is negligible. The driving torque is
then almost the same in steady-state conditions and in acceleration, but in the
latter case part of the engine torque is used to accelerate the engine itself.

Consider a vehicle with a mechanical transmission with a number of dif-
ferent gear ratios. During acceleration a number of rotating elements (wheels,
transmission, the engine itself) must increase their angular velocity, and it is
expedient to write an equation linking the engine power with the kinetic energy
T of the vehicle

ηtPe − Pn =
dT
dt

. (23.64)

The transmission efficiency should not be included for the part or the engine
power needed to accelerate the engine, but the error created as a result is usually
negligible.
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Once the transmission ratio has been chosen, Eq. (23.26) gives the relation-
ship between the speed of the vehicle and the rotational speed of the engine.
Similar relationships may be used for the other rotating elements that must be
accelerated when the vehicle speeds up.

The kinetic energy of the vehicle can then be expressed as

T =
1
2
mV 2 +

1
2

∑
∀i

JiΩ2
i =

1
2
meV

2 , (23.65)

where the sum extends to all rotating elements which must be accelerated when
the vehicle speeds up. The term me is the equivalent or apparent mass of the
vehicle, i.e., the mass of an object that, when moving at the same speed as the
vehicle, has the same total kinetic energy. Usually it is written in the form

me = m +
Jw

R2
e

+
Jt

R2
eτ

2
f

+
Je

R2
eτ

2
fτ2

g

, (23.66)

where Jw is the total moment of inertia of the wheels, which are assumed to
have the same radius and hence to rotate at the same speed, and of all elements
rotating at their speed, Jt is the moment of inertia of the propeller shaft and of
all elements of the transmission, and Je is the moment of inertia of the engine,
the clutch and all the elements rotating at speed Ωe.

To account for the fact that the engine is accelerated directly, at least in an
approximate way, the last term is sometimes multiplied by ηt. The modifications
to Eq. (23.66) to take the presence of different wheels on different axles into
account are obvious.

Of the three last terms the first is usually small, the second negligible, while
the third may become very important, particularly in low gear. As only the last
term depends on the transmission ratio at the gearbox, the equivalent mass can
be written in the form

me = F +
G

τ2
g

, (23.67)

where

F = m +
Jw

R2
e

+
Jt

R2
eτ

2
f

, G =
Je

R2
eτ

2
f

or, possibly

G =
Jeηt

R2
eτ

2
f

.

As the equivalent mass is a constant, once the gear ratio has been chosen,
Eq. (23.64) yields

ηtPe − Pn = meV
dV

dt
. (23.68)
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Equation (23.68) holds only in the case of constant equivalent mass. If a
CVT or a torque converter is used, the overall transmission ratio, and hence the
equivalent mass, changes in time and the equation should be modified as

ηtPe − Pn = meV
dV

dt
+

1
2
V 2 dme

dt
, (23.69)

and then

ηtPe − Pn =
(

me +
1
2
V

dme

dV

)
V

dV

dt
. (23.70)

The correction present in Eq. (23.69) is, however, usually very small, since
the equivalent mass does not change very quickly.

From Eq. (23.68), the maximum acceleration the vehicle is capable of at
various speeds is immediately obtained(

dV

dt

)
max

=
ηtPe − Pn

meV
, (23.71)

where the engine power Pe is the maximum power the engine can deliver at the
speed Ωe, corresponding to speed V .

The plot of maximum acceleration versus speed for a passenger vehicle with
a four speed gearbox is shown in Fig. 23.18.

The minimum time needed to accelerate from speed V1 to speed V2 can be
computed by separating the variables in Eq. (23.71)

dt =
meV dV

ηtPe − Pn
(23.72)

FIGURE 23.18. Maximum acceleration as a function of speed. Vehicle with a 4-speed
gearbox.
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and integrating

TV1→V2 =
∫ V2

V1

me

ηtPe − Pn
V dV . (23.73)

The integral must be performed separately for each velocity range in which
the equivalent mass is constant, i.e. the gearbox works with a fixed transmission
ratio. Although it is possible to integrate Eq. (23.73) analytically if the maximum
power curve is a polynomial, numerical integration is usually performed.

A graphical interpretation of the integration is shown in Fig. 23.19: The
area under the curve

V me

ηtPe − Pn
=

1
a

versus V is the time required for the acceleration.
The speeds at which gear shifting must occur to minimize acceleration time

are readily identified on the plot 1/a(V ). Since the area under the curve is the
acceleration time or the time to speed, the area must be minimized and gears
must be shifted at the intersection of the various curves. If they do not intersect,
the shorter gear must be used up to the maximum engine speed.

A criterion for choosing the gear ratios can also be evolved. The lower enve-
lope of the curves (dashed line in the figure) does not depend on the transmission
ratios and may be thought of as the curve that can be followed using a CVT

FIGURE 23.19. Function 1/a(V ) showing the optimum speeds for gear shifting. The
hatched area is the time to speed.
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having the same efficiency as the gearbox and optimized to obtain the maximum
acceleration. The area under the dashed curve is the minimum time to speed
under ideal conditions.

The areas between the dashed and the continuous lines account for the time
which must be added due to the presence of a finite number of speeds: The
transmission ratios can be chosen in such a way as to minimize this area.

By increasing the number of speeds the acceleration time is reduced, since
the actual curve gets closer to the ideal dashed line. However, at each gear shifting
there is a time in which the clutch is disengaged and, consequently, the vehicle
does not accelerate: Increasing the number of speeds leads to an increase in the
number of gear shifts and thus of the time wasted without acceleration. This
restricts the use of a high number of gear ratios.

The speed-time curve at maximum power can be easily obtained by integrat-
ing Eq. (23.73). An example is shown in Fig. 23.20. The actual curve, obtained by
adding the time needed for gear shifting, is also reported. The speed is assumed
to be constant during gear shift.

By further integration it is possible to obtain the distance needed to accel-
erate to any value of the speed

sV1→V2 =
∫ t2

t1

V dt . (23.74)

It is, however, possible to obtain the acceleration space directly, by writing
the acceleration as

a =
dV

dt
=

dV

dx

dx

dt
= V

dV

dx
. (23.75)

By separating the variables and integrating it follows that

sV1→V2 =
∫ V2

V1

V

a
dV =

∫ V2

V1

me

ηtPe − Pn
V 2dV . (23.76)

FIGURE 23.20. Speed versus time curve for the vehicle studied in the previous figures.
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Instead of modelling the vehicle as an equivalent mass accelerated along the
road, it is sometimes modelled as an equivalent moment of inertia attached to
the flywheel of the engine, as seen in the previous section. Its value is

Je = F ′τ2
g + G′ , (23.77)

where
F ′ = FR2

eτ
2
f , G′ = Je .

The acceleration curves can thus be obtained in terms of acceleration of the
engine instead of acceleration of the vehicle.

It is possible to choose the gear ratio of the bottom gear to optimize the
acceleration at low speed. When the transmission ratio is shortened, the torque
available at the wheels increases; however, the equivalent mass also increases
and it is not convenient, from the viewpoint of acceleration, to use transmission
ratios that are too short.

Assuming that the engine torque Me is constant and discarding the terms
in V 3 and V 5 in the required power since at low speed their contribution is
negligible, Eq. (23.71), written for the case of level road, yields

(
dV

dt

)
max

=
ηtMeΩe − AV

meV
=

ηtMe − AReτfτg

Reτfτg

[
F + G

τ2
g

] . (23.78)

By differentiating Eq. (23.78) with respect to τg and equating the derivative
to zero, a quadratic equation in τg, yielding the value of the gear ratio which
maximizes the acceleration, is obtained. If the road load is neglected, which is
reasonable on level road when dealing with strong accelerations, the value of the
optimum gear ratio is

(τg)opt =

√
G

F
≈

√
Je

mR2
e

. (23.79)

The last value has been obtained by neglecting the terms representing the
inertia of the wheels and transmission in the expression of the equivalent mass.
Note that the value so obtained leads to equal contributions for the mass of the
vehicle and the inertia of the engine in the equivalent mass.

The value of the transmission ratio obtained with this criterion is, however,
too short: It usually yields driving torques exceeding the maximum torque that
may be transmitted by the driving wheels without slipping.

Example 23.10 Plot the acceleration curve for the vehicle in Appendix E.2 and
compute the time needed to reach 100 km/h. Compute also the time needed to
travel for 1 km from standstill.

Assume that the time needed for gear shifting is 0.5 s and that the takeoff
manoeuvre follows the results obtained in the previous example.

Constants F and G are F = 855.2 kg and G = 15.96 kg, leading to the
following values of the equivalent mass and moment of inertia:
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FIGURE 23.21. Speed and distance travelled as functions of time during a full power
acceleration. The initial take-off manoeuvre has also been considered.

me = 1199 kg = 1.45 m Je = 0.296 kg m2 in first gear,
me = 975 kg = 1.18 m Je = 0.692 kg m2 in second gear ,
me = 897 kg = 1.08 m Je = 1.823 kg m2 in third gear,
me = 870 kg = 1.05 m Je = 5.085 kg m2 in fourth gear.

The results of the numerical integration yielding the speed and the distance
travelled as functions of time during an acceleration are shown in Fig. 23.21.
They were computed based on the results obtained in the previous example with
a time ti = 0.5 s, namely a time of 0.59 s, a speed of 9.22 km/h and a distance
of 0.494 m.

The engine power was introduced in the computation through the best-fit
third degree polynomial found in Example 4.5, and the speeds at which gear shift-
ing occurs were determined as the minimum value between that corresponding to
the maximum speed of the engine (6000 rpm) and the speed at which the acceler-
ation obtainable in the following gear equals that obtainable with the gear under
consideration. They are

5784 rpm (V=34.3 km/h) for the first gear,
6000 rpm (V=60.6 km/h) for the second gear,
6000 rpm (V=102.3 km/h) for the third gear.

The time to reach a speed of 100 km/h is 16.3 s and that needed to reach
the 1 km mark is 38.1 s.

23.11 FUEL CONSUMPTION IN ACTUAL
DRIVING CONDITIONS

Fuel consumption at variable speed gives the customer a more reliable estimate
of the actual fuel consumption, but its determination is much more difficult. For
this reason, several simplifications are usually accepted.
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The first describes the actual use of the vehicle through a cycle, i.e. a time
history of the speed of the vehicle, that takes into account neither the behavior
of an actual driver nor the actual road and traffic conditions. This time history
is used for all vehicles.

This simplification is implicitly accepted by European standards, which es-
tablish an urban and a suburban cycle to evaluate fuel consumption. These cycles
were described in Part I. Fuel consumption measured in these cycles is the only
value that may be supplied to the customer, and must be expressly stated on
the data sheet of the vehicle.

Different cycles, obtained directly by manufacturers on similar vehicles in
actual operating conditions may give more realistic values, but they are useful
only to designers; this subject has also been covered in Part I.

A second simplification is that of computing the fuel consumption in a cy-
cle as the sum of the partial consumption obtained in the various parts that
approximate the chosen cycle assuming quasi-steady-state operation.

It is clear that the error so introduced decreases with decreased duration of
the parts of the cycle that are assumed to be steady state; the error, however,
is also due to the fact that fuel consumption in variable conditions is different
from the fuel consumption obtained by approximating them with a sequence of
steady state operations. This is due to the following reasons:

• In non-stationary operation, the thermal conditions of the engine are vari-
able, so that the thermal energy losses are different from those occurring
when the temperature has reached its steady-state value;

• in non-stationary conditions, part of the fuel burns with a lower efficiency
due to condensation of the vapor on the intake manifold in indirect injection
engines, or to a different evaporation rate of the fuel droplets in direct
injection engines.

The difference is never very large, particularly if the instant power required
by the cycle is much lower than the maximum engine power; this occurs often in
statistically relevant cycles, since traffic conditions are always such as to prevent
the engine from obtaining maximum performance. The comparison between mea-
sured and computed data always shows differences between 2 and 5%, with the
computed consumption always lower than the actual one, due to the mentioned
causes.

Following the above mentioned simplifications, the reference cycle is subdi-
vided into a series of short time intervals; experience shows that a duration of
about 1 s is acceptable for the intervals.

If Vi is the speed at instant ti of the cycle, the fuel consumption in the time
interval from ti to ti+1 will be

Δei =
1
ηt

(
A + BVmi + CV 4

mi + meVmi
Vi+1 − Vi

ti+1 − ti
)
)

(ti+1 − ti)
1

ηeHρf

,

(23.80)
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where:
Vmi =

Vi+1 + Vi

2
. (23.81)

This equation holds if the value of the first term in brackets is positive or
vanishes, that is if the vehicle accelerates or decelerates with a rate low enough
to compensate for the road load with inertia forces. If its value is negative, the
contribution must be set to zero, since controllers on all modern engines cut off
the fuel supply as the vehicle slows.

The contribution to fuel consumption when Vi = 0 is

Δei = Qi(ti+1 − ti) , (23.82)

where Qi is the fuel consumption at idle in liters/s.
The total fuel consumption in the cycle is

Q =
n∑

i=1

Δei . (23.83)

An idea of the relative importance of the various forms of resistance to
motion on fuel consumption in actual conditions is given by Fig. 23.22, where
two different driving conditions are considered. Although the figure was obtained
for a particular car (a medium sized saloon car), the results are typical. While in
motorway driving aerodynamic drag is important, most of the energy in urban
driving is expended to accelerate the vehicle.

The average was computed by using statistical data on average European
conditions. From the average it is clear that reducing the mass of the vehicle,
which affects both rolling resistance and the power needed to accelerate, is more
important than reducing aerodynamic drag, and that the possibility of recovering

FIGURE 23.22. Energy required for motion in two different driving conditions.
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FIGURE 23.23. Effect of the engine speed at which gear shifting occurs (a) and of the
average speed (b) on the fuel consumption in city driving.

braking energy, which allows a part of the energy used to accelerate the vehicle
to be recovered, allows important energy savings to be obtained.

Numerical simulations can be used to study the effects of driving style on
fuel consumption. In city driving, it is expedient to use the engine at the lowest
speed consistent with its regular operation and particularly to maintain it near
the speed of maximum torque and maximum efficiency. Prolonged use of low
gears increases consumption without increasing the average speed appreciably
(Fig. 23.23).




