
31
MODELS FOR TILTING BODY
VEHICLES

The models seen in the previous chapters dealt with vehicles that maintain their
symmetry plane more or less perpendicular to the ground; i.e. they move with a
roll angle that is usually small. Moreover, the pitch angle was also assumed to
be small, with the z axis remaining close to perpendicular to the ground. Since
pitch and roll angles are small, stability in the small can be studied by linearizing
the equations of motion in a position where θ = φ = 0.

Two-wheeled vehicles are an important exception. Their roll angle is defined
by equilibrium considerations and, particularly at high speed, may be very large.
To study the stability in the small, it is still possible to resort to linearization of
the equations of motion, but now about a position with θ = 0, φ = φ0, where
φ0 is the roll angle in the equilibrium condition. An example of this method is
shown in Appendix B, where the equation of motion of motorcycles is discussed.

Two-wheeled vehicles aside, this condition also occurs when the body of
the vehicle is inclined with respect to the perpendicular to the road; this may
be accomplished manually, as in motorcycles, or by devices (usually an active
control system) that hold the roll angle to a value determined by a well-defined
strategy. Vehicles of this type are usually defined as tilting body vehicles.

The most common application of tilting body vehicles today is in rail trans-
portation, but road vehicles following the same strategy, particularly those with
three wheels, have been built.

Rolling may be controlled according to two distinct strategies: by keeping
the z-axis in the direction of the local vertical or by insuring that the load shift
between wheels of the same axle vanishes. In the case of two-wheeled vehicles, the
latter strategy results in maintaining roll equilibrium The two strategies coincide
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618 31. MODELS FOR TILTING BODY VEHICLES

only if the roll axis is located on the ground and no rolling moments act on the
vehicle, so that the wheels in particular produce no gyroscopic moment.

Tilting body vehicles arouse much interest because they allow us to build
tall vehicles that, although having a limited width (or better having a large
height/width ratio), have good dynamic performance, particularly in terms of
high speed handling. It is thus possible to build vehicles that combine the typical
advantages of motorcycles (good handling in heavy traffic conditions, low road
occupation, ease of parking) with those of cars (ease of driving, active and passive
safety, shelter from bad weather, no equilibrium problem when operating with
frequent stops, etc.).

As always occurs when new concepts are experimented with, many config-
urations are considered both for geometry and mechanical solutions as well as
hardware and software for the tilt control. No mutually agreed upon solution has
yet arisen.

Most such vehicles are three-wheeled, both for legal and fiscal reasons (in
many countries vehicles with three wheels have particular fiscal advantages).
They are also much simpler and potentially lower in cost. If a two-wheel axle is
needed to control tilting (solutions using a gyroscope to control tilting and thus
do away with the need for an axle with two wheels, were proposed but seldom
tested), having a single wheel on the other axle simplifies the mechanical layout,
reducing weight, cost and size. Body tilting eliminates the stability problems
typical of three-wheeled vehicles by reducing or eliminating load shift. In some
solutions the single wheel is at the front, while in others it is at the back.

There are solutions where the roll axis is physically identified by a true
cylindrical hinge located between a rigid axle and the vehicle body. The two-
wheeled axle may be a solid axle or made by two independent suspensions with
limited excursion, particularly for roll motions, connected to a frame that in turn
carries the cylindrical hinge connected to the body (Fig. 31.1a). If the vehicle
has four wheels, the roll centers of the two axles, materialized by two cylindrical
hinges, identify the roll axis. If the vehicle has three wheels, the roll axis is

FIGURE 31.1. Prototypes of tilting vehicles. a): BMW C.L.E.V.E.R; b) Mercedes
F 300. http://it.cars.yahoo.com/06062006/254/t/bmw-c-l-v-r-concept.html; http://
www.3wheelers.com/mercedes.html.
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identified by the center of the tire-road contact zone of the single wheel and the
center of the cylindrical hinge on the two-wheeled axle. In this way the roll axis
remains in a more or less fixed position in roll motion.

Usually, however, a different solution is found: The axle with two wheels
has an independent suspension that allows large roll rotations of the body and
behaves like a roll hinge (Fig. 31.1b). The roll center of the suspension is virtual,
because it is not physically identified by a hinge; its position changes during roll
motion. The roll center is then a fixed point only for small angles about the
symmetric position (vanishing roll angle). In the case of large roll angles the roll
center, and the roll axis as well, lies outside the symmetry plane of the body.

31.1 SUSPENSIONS FOR HIGH ROLL ANGLES

The wheels remain more or less perpendicular to the ground (the inclination
angle of the wheels, here confused with the camber angle, is small) in those cases
where the roll axis is defined by a physical hinge located between the frame
carrying the suspension and the vehicle body. When independent suspensions
directly attached to the vehicle body are used, on the other hand, it is possible
to maintain the midplane of the wheels parallel to the symmetry plane of the
body, i.e. φ = γ, or ∂γ/∂φ = 1 or, at least, to obtain a large camber angle.

In such cases the possibility of setting the wheels at a large camber angle is
interesting: Since the vehicle tilts towards the inside of the turn, camber forces
add to sideslip forces, as in two-wheeled vehicles. Moreover, it is possible to
exploit the difference in camber angles of the wheels of the two axles to modify
the handling characteristics of the vehicle.

In the following sections two layouts will be considered: Trailing arms and
transversal quadrilateral suspensions1.

31.1.1 Trailing arms suspensions

Suspensions of this kind are characterized by

∂t

∂z
=

∂γ

∂z
=

∂t

∂φ
= 0 ,

∂γ

∂φ
= 1

for small angles about the symmetrical conditions.
The track, defined as the distance between the centers of the contact areas

of the two wheels of an axle, and the camber angle remain constant even at large
vertical displacements. The camber angle also remains equal to the roll angle for
large values of the latter. Indeed, the track is no longer constant at large roll
angles, but becomes

1The term SLA suspension does not apply here, since the upper and lower arms have
roughly the same length.
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t =
t0

cos (φ)
.

The changes in track, which are negligible for small values of the roll angle,
increase with φ. When φ = 45◦ (a value still reasonable in motorcycles), the track
increases by 40%. The roll center remains on the ground, so that a suspension
of this type behaves like a single wheel in the symmetry plane, except for the
changes of track. However, the wheels move in a longitudinal direction, both
for vertical and roll displacements, and changes in the direction of the kingpin
axis also occur, if the suspension is used for steering wheels. Such displacements
depend on the length of the arms and their position in the reference conditions.

31.1.2 Transversal quadrilateral suspensions

If the wheels must be maintained parallel to the symmetry plane, the transversal
quadrilaterals must actually be parallelograms: the upper and lower arms must
have the same length and be parallel to each other. In this case it follows that

∂γ

∂z
= 0 ,

∂γ

∂φ
= 1,

in any condition. If the links connecting the body with the wheel hub are hori-
zontal (Fig. 31.2a), the roll center of the suspension lies on the ground for φ = 0.

As usual, the suspension has two degrees of freedom, designated as φ1 and
φ2 in Fig. 31.2b.

FIGURE 31.2. Transversal parallelograms suspension. a): Roll axis located on the
ground and geometrical definitions; b) skew-symmetric deformation corresponding to
roll; c): suspension in high roll conditions; d) configuration equivalent to a).
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If angles φi are positive when the wheel moves in the up direction (with
respect to the body), the roll angle and the displacement in the direction of the
z axis of the body is easily computed:

φ = artg
(

l1 [sin (φ1) − sin (φ2)]
2 (d + d1) + l1 [cos (φ1) + cos (φ2)]

)
,

Δz = −l1
(d + d1) [sin (φ1) + sin (φ2)] + l1 sin (φ1 + φ2)

2 (d + d1) + l1 [cos (φ1) + cos (φ2)]
.

(31.1)

It is also possible to identify a symmetrical mode, linked with vertical dis-
placement, and a skew-symmetrical mode, linked with roll. The former is charac-
terized by φ2 = φ1, the latter by φ2 = −φ1. The skew symmetrical mode causes
no vertical displacements of the body and the symmetrical one causes no roll,
even for angle values that go beyond linearity.

Remark 31.1 The possibility of expressing a generic motion as the sum of a
symmetric and a skew-symmetrical mode is limited to conditions where the super-
imposition principle holds, that is, to conditions where it is possible to linearize
the trigonometric functions of the angles.

Let
t0 = 2 (d + d1 + l1)

be the reference value for the track; in a symmetrical mode the track depends
on φ1 through the relationship

t = 2 [d + d1 + l1 cos(φ1)] = t0 − 2l1 [1 − cos(φ1)] . (31.2)

Only when φ1 = 0 do the track variations vanish, i.e.,

∂t

∂z
= 0 .

Because the vertical displacement is

z = −l1 sin(φ1) (31.3)

it follows that

t = t0 − 2l1

⎡
⎣1 −

√
1 −

(
z

l1

)2
⎤
⎦ . (31.4)

In the skew-symmetrical roll mode, the relationship between φ and φ1 is

tan (φ) =
l1 sin (φ1)

d + d1 + l1 cos(φ1)
(31.5)

and the track is

t = 2
[d + d1 + l1 cos(φ1)]

cos (φ)
. (31.6)
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Equation (31.5) may be inverted, producing an equation allowing φ1 to be
computed as a function of φ,

tan2

(
φ1

2

)
− 2

l1
(d + d1 − l1) tan(φ)

tan
(

φ1

2

)
+

d + d1 + l1
d + d1 − l1

= 0. (31.7)

In the ideal case where d + d1 = 0, it follows that

φ1 = φ , (31.8)

and the track remains constant even for large values of the roll angle

∂t

∂φ
= 0 ;

otherwise the track remains constant only for small deviations from the symmet-
rical condition.

As already stated, the roll center remains on the ground only if in the
reference condition the upper and lower links are horizontal, that is, if angle φ1

and φ2 have equal moduli and opposite signs. If, on the contrary, the symmetrical
reference condition is characterized by positive values of φ1 and φ2 (the body is
in a lower position with respect to the situation mentioned above), the roll center
is below the road surface and vice-versa. These considerations are based on the
assumption that the tire can be considered as a rigid disk; if, on the contrary, the
compliance of the tire is accounted for, the position of the roll center is lower.
If the transversal profile of the tires is curved, so that in roll motion they roll
sideways on the ground, the roll center remains on the ground but is displaced
sideways, outside the symmetry plane of the tire.

If the vehicle is controlled so that the local vertical remains in the symmetry
plane, the load on the suspension changes with the roll angle (if, for instance,
φ = 45◦, the centrifugal force is equal to the weight. The load is then equal
to the static load multiplied by

√
2 ≈ 1, 4). The suspension is compressed with

increasing φ and the roll center goes deeper in the ground. To prevent this from
occurring, devices able to control the compression of the suspensions must be
used.

If the direction of the upper and lower links of the suspension is important in
the kinematics of the suspension, the direction of the links modelling the vehicle
body and the wheel hub is immaterial. The suspensions of Figs. 31.2a and 31.2d
behave in the same way.

31.1.3 Tilting control

Consider a vehicle equipped with a tilting control system. Assume that such a
device is integrated with the suspension springs, as shown in Fig. 31.3a: A rotary
actuator with axis at point C rotates the arm CB to which the suspension springs
AB and A′B are connected. Consider the rotation φc of the actuator arm as the
control variable.
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FIGURE 31.3. Sketch of the control of the transversal parallelograms suspension.

Assuming angles φi as positive when the suspensions move upwards with
respect to the body, the coordinates of points A, A′ and B in a system with
origin in C and whose axes are parallel to the y and z axes are

(A − C) =
{

d + l2 cos (φ1)
l2 sin (φ1)

}
,

(
A′ − C

)
=

{
−d − l2 cos (φ2)

l2 sin (φ2)

}
, (31.9)

(B − C) =
{

−r1 sin (φc)
r1 cos (φc)

}
. (31.10)

The length of the springs is then

A − B = lR =
√

β1 + β2 cos (φ1) + β3 sin (φc) − β4 sin (φ1 − φc) ,

A′ − B = lL =
√

β1 + β2 cos (φ2) − β3 sin (φc) − β4 sin (φ2 + φc) ,
(31.11)

where subscripts L and R designate the left and right suspensions and

β1 = d2 + r2
1 + l22 , β3 = 2dr1 ,

β2 = 2dl2 , β4 = 2l2r1 .
(31.12)

The length of the springs in the reference condition (φ1 = φ2 = φc = 0) is

l20 = l20L = l20R = β1 + β2 . (31.13)

First consider the springs as rigid bodies. The relationships yielding angles
φ1and φ2 as functions of φc may be obtained equating lR and lL to l0 :

−β2 + β2 cos (φ1) + β3 sin (φc) − β4 sin (φ1 − φc) = 0 ,

−β2 + β2 cos (φ2) − β3 sin (φc) − β4 sin (φ2 + φc) = 0 .
(31.14)

Equations (31.14) may be solved in φ1and φ2 obtaining

tan
(

φ1

2

)
=

β4 cos (φc) −
√

β2
4 − β2

3 sin2 (φc) + 2β2 (β3 + β4) sin (φc)

(β3 − β4) sin (φc) − 2β2

,

(31.15)
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tan
(

φ2

2

)
=

β4 cos (φc) −
√

β2
4 − β2

3 sin2 (φc) − 2β2 (β3 + β4) sin (φc)

(β4 − β3) sin (φc) − 2β2

.

(31.16)
A rotation φc causes not only a rolling motion, but in general produces a

displacement in the z direction as well. An exception is the case with d = 0 and
thus β2 = β3 = 0. In this case

φ1 = −φ2 = φc . (31.17)

Remark 31.2 If d = 0 a rotation of the control actuator produces a roll rotation
of the vehicle (skew-symmetrical mode) but no displacement in the z direction.
This statement amounts to saying that the roll center remains on the ground for
all roll angles. The center of mass obviously lowers, because the roll center is on
the ground, but the suspension behaves like a motorcycle wheel.

Example 31.1 Consider a transversal parallelogram suspension with the following

data: d1 = 81.5 mm, r1 = 138 mm, l1 = 414 mm, l2 = 388 mm.

Compute angles φ1and φ2 as functions of φc and the displacements of the roll

center along the z axis for three values of d, namely 0, 25 and 50 mm.

The results, computed using the above mentioned equations, are shown in Fig. 31.4.

As expected, if d = 0 rotation φc causes rolling of the vehicle body about the roll

center that remains on the ground. If, on the contrary, d 	= 0, φ1 is not equal to φ2

and a displacement along the z direction (positive, in the sense that the body moves in

the direction of the positive z axis) occurs. This displacement may reach 100 mm for

d = 50 mm and φc = 50◦.

The center of mass obviously moves downwards when the vehicle rolls, but less

than when d is zero.

FIGURE 31.4. Transversal parallelograms suspension. a) Angles φ1 and φ2; b) roll
angle φ and c) displacement in z direction of the roll center as a function of φc for
three values of d: d = 0; d = 25 mm and d = 50 mm.
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31.1.4 Suspension stiffness

The elastic potential energy of the springs, referred to the condition with φ1 =
φ2 = φc = 0, is

Um =
1
2
K

[
(lR − l0)

2 + (lL − l0)
2
]

, (31.18)

where K is the stiffness of the springs.
First consider a suspension with d = 0. In this case φ1 = −φ2 and Δz = 0,

when the springs are in the reference condition.
Let angles φ1 and φ2 vary about this condition by the small quantities dφ1

and dφ2. The roll angle and the displacement in the z direction may be obtained
from Eq. (31.1):

tg (φ + dφ) =
l1 [sin (φ1 + dφ1) − sin (φ2 + dφ2)]

2d1 + l1 [cos (φ1 + dφ1) + cos (φ2 + dφ2)]
, (31.19)

Δz+dΔz= l1
d1 [sin (φ1 + dφ1) + sin (φ2 + dφ2)] + l1 sin (φ1 + dφ1 + φ2 + dφ2)

d1 + l1 [cos (φ1 + dφ1) + cos (φ2 + dφ2)]
.

(31.20)

Rolling motion

Assume that
dφ1 = −dφ2 . (31.21)

Because angle dφ1 and dφ2 are small and Δz = 0, it follows that

tg (φ + dφ) =
l1 sin (φ1) + l1dφ1 cos (φ1)

d1 + l1 cos (φ1) − l1dφ1 sin (φ1)
, (31.22)

dΔz = 0 . (31.23)

The motion of the suspension is then rolling. Some computations are needed
to obtain a relationship linking dφ to dφ1. They yield

dφ1

dφ
=

d2
1 + l21 + 2d1l1 cos (φ1)

l21 + d1l1 cos (φ1)
. (31.24)

The derivative dUm/dφ, i.e. the restoring moment due to the spring sys-
tem, is

dUm

dφ
= K

[
(lR − l0)

dlR
dφ1

+ (lL − l0)
dlL
dφ2

dφ2

dφ1

]
dφ1

dφ
(31.25)

where
∂lR
∂φ1

=
1

2lR
[−β4 cos (φ1 − φc)] ,

dlL
dφ2

dφ2

dφ1

=
1

2lL
[β4 cos (φ1 − φc)] .

(31.26)
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Because it has been assumed that d = 0, the above mentioned equations
may be simplified, obtaining

∂Um

∂φ
= Kl2r1l0 cos (φ1 − φc)

∂φ1

∂φ
×

×
√

β1 + β4 sin (φ1 − φc) −
√

β1 − β4 sin (φ1 − φc)√
β2

1 − β2
4 sin2 (φ1 − φc)

.
(31.27)

As expected, if φ1 = φc the moment due to the springs vanishes, i.e.,

∂Um

∂φ
= 0 .

If the configuration is changed by a small angle about this equilibrium po-
sition, i.e. if

φ1 = φc + Δφ1 ,

the rolling moment is

∂Um

∂φ
= Kl2r1l0

∂φ1

∂φ

√
β1 + β4Δφ1 −

√
β1 − β4Δφ1

β1

(31.28)

and then
∂Um

∂φ
= 2K

l22r
2
1

l22 + r2
1

d2
1 + l21 + 2d1l1 cos (φ1)

l21 + d1l1 cos (φ1)
Δφ1. (31.29)

The rolling moment is proportional to angle Δφ1 and thus to the roll angle
φ about the reference position. The rolling stiffness of the suspension is then

Kφ =
1
φ

∂Um

∂φ
=

1
Δφ1

∂φ1

∂φ

∂Um

∂φ
, (31.30)

i.e.,

Kφ = 2K
l22r

2
1

l22 + r2
1

(
d2
1 + l21 + 2d1l1 cos (φ1)

l21 + d1l1 cos (φ1)

)2

. (31.31)

If d1 is also equal to zero,
∂φ1

∂φ
= 1

and the vehicle tilts, when there is no rolling moment, until an angle equal to φc

has been reached.

Motion in the z direction

If the deformation is symmetrical, i.e. if

dφ1 = dφ2, (31.32)
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it is possible to write
tg (φ + Δφ) = tg (φ) , (31.33)

dΔz = l1dφ1

d1 cos (φ1) + l1
d1 + l1 cos (φ1)

. (31.34)

The derivative dUm/dΔz, i.e. the force in the z direction due to the suspen-
sion springs, is

dUm

dΔz
= K

[
(lR − l0)

dlR
dφ1

+ (lL − l0)
dlL
dφ2

]
dφ1

dΔz
. (31.35)

Remembering that φ1 = −φ2, it follows that

dlL
dφ2

=
1

2lL
[β4 cos (φ1 − φc)] ,

dφ1

dΔz
=

d1 + l1 cos (φ1)
l1d1 cos (φ1) + l21

.

(31.36)

This result may also be simplified, obtaining

∂Um

∂Δz
= Kl2r1l0 cos (φ1 − φc)

∂φ1

∂Δz
×

×
√

β1 + β4 sin (φ1 − φc) −
√

β1 − β4 sin (φ1 − φc)√
β2

1 − β2
4 sin2 (φ1 − φc)

.
(31.37)

Because condition φ1 = φc was assumed to be an equilibrium condition, the
force in the z direction vanishes if φ1 = φc. Operating in the same way as a
rolling condition, assuming that

φ1 = φc + Δφ1 ,

the value of the force in the z direction is obtained:

∂Um

∂Δz
= 2K

l22r
2
1

l22 + r2
1

d1 + l1 cos (φ1)
l1d1 cos (φ1) + l21

Δφ1. (31.38)

The force in the z direction is then proportional to angle Δφ1 and thus to
the displacement Δz. The stiffness of the suspension in the z direction is then

Kz =
1

Δz

∂Um

∂Δz
=

1
Δφ1

∂φ1

∂Δz

∂Um

∂Δz
, (31.39)

i.e.,

Kz = 2K
l22r

2
1

l22 + r2
1

(
d1 + l1 cos (φ1)

l1d1 cos (φ1) + l21

)2

. (31.40)
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FIGURE 31.5. Transversal parallelograms suspension. a): Restoring moment due to
the suspension springs versus the roll angle φ for various values of the control variable
φc. b): Relationship between φ and φc. c): Stiffness for small roll oscillations about the
static equilibrium condition.

Example 31.2 Consider a transversal parallelogram suspension with the following

data: d = 0, d1 = 81.5 mm, r1 = 138 mm, l1 = 414 mm, l2 = 388 mm.

Compute the relationship linking φ to φ1 and plot the restoring moment due to the

suspension springs ∂Um/∂φ versus φ, for various values of φc and the stiffness of the

suspension Kφ versus φc.

The results are reported in Fig. 31.5.

From Fig. 31.5a it is clear that the restoring moment ∂Um/∂φ is linear with the

roll angle φ, while the stiffness depends only slightly on the position about which the

motion occurs (Fig. 31.5c). Also the dependence of φ1 from φ is almost linear, as shown

by Fig. 31.5b. Because d = 0, it follows that in the equilibrium condition φ1 = φc.

31.1.5 Roll damping of the suspension

Consider a damper system made by two shock absorbers located in parallel to
the springs between points A and B and points A′ and B.

The dissipation function of the suspension is then

F =
1
2
c

⎧⎪⎨
⎪⎩
[

d
(
A − B

)
dt

]2

+

⎡
⎣d

(
A′ − B

)
dt

⎤
⎦

2
⎫⎪⎬
⎪⎭ . (31.41)

Remembering that lengths lD =
(
A − B

)
and lL =

(
A’ − B

)
are functions

of φc and φ1, the dissipation function can be computed as

F =
1
2
c

{[(
∂lR
∂φ1

∂φ1

∂φ
φ̇ +

∂lR
∂φc

φ̇c

)]2

+
[(

∂lL
∂φ1

∂φ1

∂φ
φ̇ +

∂lL
∂φc

φ̇c

)]2
}

. (31.42)

The previous equation may be written in the form

F =
1
2

(
c11φ̇

2
+ c22φ̇

2

c + 2c12φ̇φ̇c

)
, (31.43)
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where

c11 = c

[(
∂lR
∂φ1

)2

+
(

∂lL
∂φ1

)2
](

∂φ1

∂φ

)2

,

c12 = c

(
∂lR
∂φ1

∂φ1

∂φ

∂lR
∂φc

+
∂lL
∂φ1

∂φ1

∂φ

∂lL
∂φc

)
,

c22 = c

[(
∂lR
∂φc

)2

+
(

∂l2
∂φc

)2
]

.

(31.44)

Some of the derivatives are reported in Eq. 31.26; the others are
∂lR
∂φc

= − ∂lL
∂φc

=
1

2lL
[β3 cos (φc) + β4 cos (φ1 − φc)] . (31.45)

With the control locked, i.e. with φ̇c = 0, the damping coefficient of the
suspension coincides with c11.

If
d = 0 ,

it can immediately be derived that

c11 = c22 = −c12 = k
c

K
, (31.46)

where k is the roll stiffness of the suspension, while c and K are the characteristics
of the damper and the spring.

Example 31.3 Compute the rolling damping coefficient of the suspension of the pre-

vious example, with locked controls, as a function of the static equilibrium position.

The result is shown in Fig. 31.6. The linearized characteristics of the suspension

depend little on the position, in terms of damping.

FIGURE 31.6. Damping cefficient of the suspension of the previous example for small
movements about the equilibrium position.
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31.2 LINEARIZED RIGID BODY MODEL

The simplest model for a tilting body vehicle is one with four degrees of freedom.
It may be obtained from the model with 10 degrees of freedom of Fig. 29.3
(Section 29.2.2), locking the degrees of freedom θ and Z of the sprung mass and
the symmetrical motions of the suspensions.

In the case of a two-wheeled vehicle, the kinematics is much simplified be-
cause:

• the mid-plane of the wheels remains parallel to the symmetry plane of the
vehicle (actually coinciding with it);

• the roll axis is on the ground and in a fixed position, at least as a first ap-
proximation, if the effect of the transversal profile of the tires is neglected.

These considerations do not hold in the case of tilting body vehicles with
more than two wheels. The roll axis is determined by the characteristics of the
suspensions or by the position of a true cylindrical hinge: In the first case the
very concept of a roll is inappropriate because of the large roll angles vehicles
of this type can manage. The roll axis is an axis of instantaneous rotation, one
that has no meaning in case of large rotations.

Assume that the suspensions are designed so that the mid-plane of the
wheels remains parallel to the symmetry plane of the vehicle and the roll axis
remains on the ground, at the intersection of the symmetry plane and the ground
plane, as in simplified motorcycle models (See Appendix B).

The roll axis now coincides with the x∗-axis of the x∗y∗z∗ reference frame,
seen in the previous section (Fig. 31.7). In this case the generalized coordinates
for translations are the coordinates XH , YH (coordinate ZH vanishes) of point
H, instead of the coordinates of the center of mass. Point H is on the ground,
on the perpendicular to the roll axis passing through the center of mass G. Such
coordinates are defined in the inertial reference frame OXiYiZi. To simplify the
notation, subscript H will be dropped (X = XH and Y = YH).

FIGURE 31.7. Reference frames for the sprung mass and definition of point H.
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The generalized coordinates for rotations are the yaw angle ψ and the roll
angle φ. As usual, the assumption of small angles (particularly for the sideslip
angle β) allows the component of the velocity vx∗ to be confused with the forward
velocity V . Angular velocities ψ̇ and φ̇ will be considered small quantities as well.

31.2.1 Kinetic and potential energy

Because the pitch rotation is not included in the model, the roll axis is horizontal.
The rotation matrix allowing us to change from the body-fixed frame Gxyz to
the inertial frame XiYiZi is

R = R1R2 , (31.47)

where

R1 =

⎡
⎣ cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0
0 0 1

⎤
⎦ , R2 =

⎡
⎣ 1 0 0

0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

⎤
⎦ .

The derivative of the rotation matrix is

Ṙ = Ṙ1R2 + R1Ṙ2 . (31.48)

The components of the angular velocity in the direction of the body-fixed
axes are linked with the derivatives of the coordinates by the equation

⎧⎨
⎩

Ωx

Ωy

Ωz

⎫⎬
⎭ =

⎡
⎣ 1 0

0 sin(φ)
0 cos(φ)

⎤
⎦
{

φ̇

ψ̇

}
. (31.49)

The vector of the generalized coordinates is

q =
[

X Y φ ψ
]T . (31.50)

The generalized velocities for translational degrees of freedom are the com-
ponents of the velocity in the x∗y∗z∗ frame. The derivatives of coordinates φ and
ψ, that will be referred to as vφ and vψ, will be used for the rotational degrees
of freedom. The generalized velocities are then

w =
[

vx vy vφ vψ

]T . (31.51)

The relationship between generalized velocities and derivatives of the gen-
eralized coordinates may be written in the usual form

w = AT q̇ , (31.52)



632 31. MODELS FOR TILTING BODY VEHICLES

where matrix A2 is

A =

⎡
⎢⎢⎣

cos(ψ) − sin(ψ) 0 0
sin(ψ) cos(ψ) 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ . (31.53)

Because in this case A is a rotation matrix, the inverse transformation is

q̇ = Bw = Aw .

The vector defining the position of the center of the sprung mass GS with
respect to point H is, in the body-fixed frame,

r1 = h
[

0 0 1
]T . (31.54)

In the inertial frame the position of the same point is

(GS−O’) = (H − O’) + Rr1. (31.55)

Because r1 is constant, the velocity of point GS is

VGS =
[

Ẋ Ẏ 0
]T

+ Ṙr1 , (31.56)

i.e.
VGS = R1V + Ṙr1 , (31.57)

and then the translational kinetic energy of the sprung mass is

Tt =
1
2
m

(
VT V + r1T ṘT Ṙr1+2VT RT

1 Ṙr1
)

. (31.58)

Because plane xz is a symmetry plane for the sprung mass, its inertia tensor
is

J =

⎡
⎣ Jx 0 −Jxz

0 Jy 0
−Jxz 0 Jz

⎤
⎦ . (31.59)

The rotational kinetic energy of the sprung mass is then

Tr =
1
2
ΩT JΩ . (31.60)

By performing the relevant computations, expressing the components of the
angular velocity as functions of the derivatives of the coordinates and neglecting
the terms containing powers of small quantities higher than the second, it follows
that

2Matrix A here defined must not be confused with the dynamic matrix in the state space,
which is also usually referred to as A.
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T = 1
2m

(
v2

x + v2
y

)
+ 1

2J∗
x φ̇

2
+ 1

2

[
J∗

y sin2 (φ) + Jz cos2 (φ)
]
ψ̇

2

−Jxz cos (φ) ψ̇ φ̇ + mvx hψ̇ sin (φ) − mvyhφ̇ cos (φ) ,
(31.61)

where
J∗

x=mh2 + Jx , J∗
y = mh2 + Jy .

The height of the center of mass of the sprung mass on the ground is

ZG = h cos (φ) , (31.62)

and then the gravitational potential energy of the vehicle is

Ug = mgh cos (φ) . (31.63)

The potential energy reduces to its gravitational components in the case of
a two-wheeled vehicle. In vehicles with three or more wheels with suspensions,
the elastic potential energy due to the springs must also be accounted for. In
the following study the elastic potential energy will be assumed to depend only
on the roll angle; however, it is not a simple quadratic function as in the case of
linearized models, because the roll angle may be large. In general, it is possible
to state that

Us = Us (φ) . (31.64)

If the vehicle has suspensions for the roll motion and the latter are provided
with dampers, a dissipative function may be defined,

F = F
(
φ, φ̇

)
. (31.65)

It must be expressly stated that the equations above were obtained without
resorting to the assumption that all variables of motion, with the exception of
the roll angle φ, are small quantities. Moreover, these equations are more general
and hold even if the roll axis does not lie on the ground or is exactly horizontal,
provided that the angle between the roll axis and the ground plane (referred to
as θ0 in the previous chapters) is a small angle and that h is the distance between
the center of mass and the roll axis instead of its height on the ground.

31.2.2 Rotation of the wheels

Because it has been assumed that, as in the case of vehicles with two wheels (see
Appendix B), the rotation axis of the wheels is perpendicular to the symmetry
plane, the absolute angular velocity of the ith wheel expressed in the reference
frame of the sprung mass is

Ωi =

⎧⎨
⎩

Ωx

Ωy + χ̇i

Ωz

⎫⎬
⎭ , (31.66)

where χi is the rotation angle of the wheel.
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If the wheel steers, the reference frame of the ith wheel will be rotated
by a steering angle δi about an axis, the kingpin axis, that in general is not
perpendicular to the ground. If ek is the unit vector of the kingpin axis (its
components will be indicated as xk, yk and zk)3, the rotation matrix Rki to
rotate the reference frame fixed to the sprung mass in such a way that its z axis
coincides with the kingpin axis of the ith wheel is

Rki =
1√

x2
k + z2

k

⎡
⎣ zk −xkyk xk

√
x2

k + z2
k

0
(
x2

k + z2
k

)
yk

√
x2

k + z2
k

−xk −zkyk zk

√
x2

k + z2
k

⎤
⎦ . (31.67)

The caster and the inclination angles of the kingpin are usually small in
suspensions for two-wheeled axles and, as seen in the previous sections, rotation
matrix Rki reduces to

Rki ≈

⎡
⎣ 1 0 xk

0 1 yk

−xk −yk 1

⎤
⎦ , (31.68)

where xk and yk are the caster and the inclination angles (the latter changed in
sign) of the kingpin axis. For symmetry reasons

xkD
= xkS

, ykD
= −ykS

. (31.69)

In motorcycles yk is zero, while the caster angle xk may be large. In the
following parts of this section this possibility will not be considered.

A further rotation matrix

R4i =

⎡
⎣ cos(δi) − sin(δi) 0

sin(δi) cos(δi) 0
0 0 1

⎤
⎦ (31.70)

can be defined for the rotation of the wheel about the kingpin axis.
The angular velocity of the wheel in the reference frame of the sprung mass

is then
Ωwi = Ω+δ̇iRkie3 + χ̇iRkiR4iRT

kie2 . (31.71)

Eq. (31.71) must be premultiplied by (RkiR4iRT
ki)

T to obtain the angular
velocity of the wheel in its own reference frame. Remembering that R4ie3 = e3,
it follows that

Ωwi = χ̇ie2 + δ̇iα1 + α2Ω , (31.72)

where
α1 = Rkie3 , α2 = RkiRT

4iR
T
ki . (31.73)

3Obviously
√

x2
k + y2

k + z2
k = 1.
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Because the wheel is a gyroscopic body (two of its principal moments of
inertia are equal) with a principal axis of inertia coinciding with its rotation
axis, its inertia matrix is diagonal and has the form

Jwi = diag
([

Jti Jpi Jti

])
, (31.74)

where Jpi is the polar moment of inertia and Jti is the transversal moment of
inertia of the ith wheel.

The rotational kinetic energy of the ith wheel is

Twri = 1
2Ω

T αT
2 Jwiα2Ω + 1

2 χ̇2
i e

T
2 Jwie2 + 1

2 δ̇
2

i α
T
1 Jwiα1+

+χ̇iδ̇ieT
2 Jwiα1 + χ̇ie

T
2 Jwiα2Ω + δ̇iα

T
1 Jwiα2Ω .

(31.75)

By performing the relevant computations and assuming that all variables of
motion, except for φ and χi, are small, it follows that

Twri = 1
2Jtiφ̇

2
+ 1

2

[
Jpi sin2 (φ) + Jti cos2 (φ)

]
ψ̇

2
+ 1

2Jpiχ̇
2
i +

+ 1
2 δ̇

2

i Jti − Jpiδiφ̇χ̇i + Jpi ykiχ̇iδ̇i + Jpi sin (φ) ψ̇χ̇i + Jti cos (φ) ψ̇δ̇i .
(31.76)

The first two terms express the rotational kinetic energy of the wheel due
to angular velocity of the vehicle and thus have already been included in the
expression of the kinetic energy of the vehicle, if the moments of inertia of the
wheels have been taken into account when computing the total inertia.

31.2.3 Lagrangian function

The Lagrangian function of the vehicle is then

L = 1
2m

(
v2

x + v2
y

)
+ 1

2J∗
x φ̇

2
+ 1

2

[
J∗

y sin2 (φ) + Jz cos2 (φ)
]
ψ̇

2
+

−Jxz cos (φ) ψ̇ φ̇ + mvx hψ̇ sin (φ) − mvyhφ̇ cos (φ) +
+
∑

∀i

[
1
2Jpiχ̇

2
i + 1

2 δ̇
2

i Jti − Jpiδiφ̇χ̇i + Jpi ykiχ̇iδ̇i+

+Jpi sin (φ) ψ̇χ̇i + Jti cos (φ) ψ̇δ̇i

]
− mgh cos (φ) − Us (φ) .

(31.77)

If the longitudinal slip of the wheels is neglected, their angular velocity is

χ̇i =
V

Rei

. (31.78)

In a way similar to our treatment of the four-wheeled vehicle, the kinetic
energy linked with the steering velocity δ̇ may be neglected in the locked control
motion. The Lagrangian reduces to

L = 1
2matV

2 + 1
2mv2

y + 1
2J∗

x φ̇
2

+ 1
2

[
J∗

y sin2 (φ) + Jz cos2 (φ)
]
ψ̇

2
+

−Jxz cos (φ) ψ̇ φ̇ + V Jsψ̇ sin (φ) − mvyhφ̇ cos (φ) +
−V

∑
∀i

Jpi

Rei
δiφ̇ − mgh cos (φ) − Us (φ) ,

(31.79)
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where

mat = m +
∑
∀i

Jpi

R2
ei

, Js = mh +
∑
∀i

Jpi

Rei

,

J∗
x = mh2 + Jx , J∗

y = mh2 + Jy .

The derivatives of the Lagrangian function are then

∂L
∂V

= matV + Jsψ̇ sin (φ) , (31.80)

∂L
∂vy

= mvy − mhφ̇ cos (φ) , (31.81)

∂L
∂φ̇

= J∗
x φ̇ − Jxz cos (φ) ψ̇ − mvyh cos (φ) − V

∑
∀i

Jpi

Rei

δi , (31.82)

∂L
∂ψ̇

=
[
J∗

y sin2 (φ) + Jz cos2 (φ)
]
ψ̇ − Jxz cos (φ) φ̇ + V Jsh sin (φ) . (31.83)

The derivative with respect to time of the derivatives with respect to the
generalized velocities contains products that are themselves the products of two
or more small quantities, and thus must be neglected in the linearization process.
Also V̇ may be considered as a small quantity, and then terms containing, for
instance, product V̇ δ may be neglected. It then follows that

d

dt

(
∂L
∂V

)
= matV̇ + Jsψ̈ sin (φ) , (31.84)

d

dt

(
∂L
∂vy

)
= mv̇y − mhφ̈ cos (φ) , (31.85)

d

dt

(
∂L
∂φ̇

)
= J∗

x φ̈ − Jxz cos (φ) ψ̈ − mv̇yh cos (φ) , (31.86)

d

dt

(
∂L
∂ψ̇

)
=

[
J∗

y sin2 (φ) + Jz cos2 (φ)
]
ψ̈ − Jxz cos (φ) φ̈+

+JsV̇ sin (φ) + JsV cos (φ) φ̇ ,

(31.87)

∂L
∂x∗ =

∂L
∂y∗ =

∂L
∂ψ

= 0 , (31.88)

∂L
∂φ

= JsV ψ̇ cos (φ) + mgh sin (φ) − ∂Us (φ)
∂φ

. (31.89)
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31.2.4 Kinematic equations

Matrix A is what we have already seen for the model with 10 degrees of freedom,
except that the last six rows and columns are not present here.

The equation of motion in the configuration space is

∂

∂t

({
∂L
∂w

})
+ BTΓ

{
∂L
∂w

}
− BT

{
∂L
∂q

}
+

{
∂F
∂w

}
= BT Q . (31.90)

The column matrix BT Q containing the four components of the generalized
forces vector will be computed later, when the virtual work of the forces acting
on the system is described. In the following its elements will be written as Qx,
Qy, Qφ, Qψ.

As usual, the most difficult part is writing matrix BTΓ. By performing
somewhat complex computations, following the procedure outlined in Appendix
A, it follows that

BTΓ =

⎡
⎢⎢⎣

⎡
⎢⎢⎣

0 −ψ̇

ψ̇ 0
0 0

−vy vx

⎤
⎥⎥⎦ 04×2

⎤
⎥⎥⎦ .

By introducing the values of the derivatives and linearizing, it follows that

BT Γ
{

∂L
∂w

}
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0
matV ψ̇

0
V

[
−mhφ̇ cos (φ) − vy

∑
∀k

(
Jpr

1
R2

e

)]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (31.91)

Finally

BT

{
∂L
∂q

}
=

{
∂L
∂q

}
. (31.92)

31.2.5 Equations of motion

First equation: longitudinal translation

matV̇ + Jsψ̈ sin (φ) = Qx . (31.93)

Second equation: lateral translation

mv̇y + matV ψ̇ − mhφ̈ cos (φ) = Qy . (31.94)
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Third equation: roll rotation

J∗
x φ̈ − Jxz cos (φ) ψ̈ − mv̇yh cos (φ) − JsV ψ̇ cos (φ) +

−mgh sin (φ) + ∂Us(φ)
∂φ +

∂F(φ,φ̇)
∂φ̇

= Qφ .
(31.95)

Fourth equation: yaw rotation

[
J∗

y sin2 (φ) + Jz cos2 (φ)
]
ψ̈ − Jxz cos (φ) φ̈+

+JsV̇ sin (φ) + V cos (φ) φ̇
∑

∀i
Jpi

Rei
− V vy

∑
∀k

Jpi

R2
ei

= Qψ .
(31.96)

31.2.6 Sideslip angles of the wheels

The sideslip angles of the wheels may be computed from the components of the
velocities of the centers of the contact areas of the wheels in the x∗y∗z frame.
If the roll axis lies on the ground, some simplifications may be introduced: The
roll angle and the roll velocity do not appear in the expression of the velocity of
the wheel-ground contact points, if the track variations due to roll are neglected.
The expression of the sideslip angle coincides with that seen for the rigid vehicle,
except for the term containing the steering angle. Assuming that the sideslip
angle is small, it follows that

αk =
vy

V
+ ψ̇

xPk

V
− δk cos (φ) − δk (φ) cos (φ) , (31.97)

where subscript k refers to the axle, because the two wheels of the same axle
have the same sideslip angle.

The term cos (φ) multiplying the steering angle is linked to the circumstance
that the steering loses its effectiveness with increasing roll angle, and was com-
puted assuming that the kingpin axis is, when the roll angle vanishes, essentially
perpendicular to the ground. If it is not, the caster and inclination angles had
to be taken into account, together with their variation with the roll angle. The
term δk (φ) is roll steer that, in case of large roll angles, may be too large to be
linearized.

31.2.7 Generalized forces

The generalized forces Qk to be introduced into the equations of motion include
the forces due to the tires, the aerodynamic forces and possible forces applied on
the vehicle by external agents.
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The virtual displacement of the center of the contact area of the left (right)
wheel of the kth axle is

{δsPkL(R)}x∗y∗z =

⎧⎨
⎩

δx∗ − δψyPk

δy∗ + δψxPk

0

⎫⎬
⎭ , (31.98)

where xPk and yPk are the coordinates of the center of the contact area in the
reference frame x∗y∗z∗.

By writing as F ∗
x and F ∗

y the forces exerted by the tire in the direction of
the x∗ and y∗ axes, assuming that the longitudinal forces acting on the wheels
of the same axle are equal, the expression of the virtual work is

δLk = δx∗F ∗
x + δy∗F ∗

y + δψ
[
F ∗

y xPk + Mz

]
. (31.99)

Because of the small steering angle, forces F ∗
x and F ∗

y will be confused in the
following sections with the forces expressed in the reference frame of the wheel.

In a similar way, the virtual displacement of the center of mass for the
computation of the aerodynamic forces is, in the x∗y∗z∗ frame,

{δsGS
}x∗y∗z∗ =

⎧⎨
⎩

δx∗ + h sin (φ) δψ
δy∗ − h cos (φ) δφ

−h sin (φ) δφ

⎫⎬
⎭ . (31.100)

The aerodynamic forces and moments are referred to the xyz frame and not
to the x∗y∗z∗ frame. Force Fza, for example, lies in the symmetry plane of the
vehicle and is not perpendicular to the road. In this way it may be assumed that
aerodynamic forces do not depend on the roll angle φ. A rotation of the reference
frame is then needed:⎧⎨

⎩
F ∗

xa

F ∗
ya

F ∗
za

⎫⎬
⎭ =

⎧⎨
⎩

Fxa

Fya cos (φ) − Fza sin (φ)
Fya sin (φ) + Fza cos (φ)

⎫⎬
⎭ , (31.101)

⎧⎨
⎩

M∗
xa

M∗
ya

M∗
za

⎫⎬
⎭ =

⎧⎨
⎩

Mxa

Mya cos (φ) − Mza sin (φ)
Mya sin (φ) + Mza cos (φ)

⎫⎬
⎭ . (31.102)

The virtual work of the aerodynamic forces and moments is then

δLa = Fxaδx∗ + [Fya cos (φ) − Fza sin (φ)] δy∗+

+ (M ′
xa − Fyah) δφ + [(Fxah + Mya) sin (φ) + Mza cos (φ)] δψ .

(31.103)

It then follows that

Q =

⎧⎪⎪⎨
⎪⎪⎩

∑
∀k Fxk + Fxa∑

∀k Fyk+Fya cos (φ) − Fza sin (φ)
M ′

xa − Fyah∑
∀k

(
F ∗

y xPk + Mz

)
+ (Fxah + Mya) sin (φ) + Mza cos (φ)

⎫⎪⎪⎬
⎪⎪⎭

.

(31.104)
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Because of the linearization of the model, forces Fxa and Fza may be con-
sidered as constant, while Fya, Mxa and Mza may be considered as linear with
angle βa, or if there is no side wind, angle β.

The force Fyk on the kth axle may be considered as a linear function of the
sideslip angle and a more complex function of the camber angle, because the
latter was assumed to coincide with the roll angle φ and is therefore not small.
It then follows that

Fypk = −Ckαk + Fyγk (φ) , (31.105)

where both Ck and Fyγk (φ) are referred to the whole axle.
In the following the camber thrust will be assumed to be linear with the

camber angle, even for large values of the latter, and the side force will be
written as

Fypk = −Ckαk + Cγkφ . (31.106)

This is doubtless an approximated expression, but it must be made if search-
ing for closed form results. Roll steer will also be neglected.

31.2.8 Final form of the equations of motion

First equation: longitudinal translation

matV̇ + Jsψ̈ sin (φ) = Fx1 + Fx2 −
1
2
ρV 2SCx . (31.107)

Second equation: lateral translation

mv̇y + matV ψ̇ − mhφ̈ cos (φ) = [Yv + cos (φ) Yv1] vy + Yψ̇ψ̇+

+Yφφ + cos (φ) Yδδ − 1
2ρV 2SCz sin (φ) + Fye ,

(31.108)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yv = − 1
V

∑
∀k Ck ,

Yv1 = 1
2ρVaS(Cy),β ,

Yψ̇ = − 1
V

∑
∀k xPkCk ,

Yφ =
∑

∀k Cγk ,

Yδ =
∑

∀k K ′
kCk .

(31.109)

Third equation: roll rotation

J∗
x φ̈ − Jxz cos (φ) ψ̈ − mv̇yh cos (φ) − JsV ψ̇ cos (φ) +

−mgh sin (φ) + ∂Us(φ)
∂φ +

∂F(φ,φ̇)
∂φ̇

= Lvvy ,
(31.110)
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where
Lv =

1
2
ρV S [−h(Cy),β + t(CMx

),β ] . (31.111)

Fourth equation: yaw rotation

[
J∗

y sin2 (φ) + Jz cos2 (φ)
]
ψ̈ − Jxz cos (φ) φ̈+

+JsV̇ sin (φ) + V cos (φ) φ̇
∑

∀i
Jpi

Rei
=

= [Nv + cos (φ) Yv1] vy + Nψ̇ψ̇ + Nφφ + cos (φ) Nδδ+

+ 1
2ρV 2S(−hCx + lCMy

) sin (φ) + Mze ,

(31.112)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nv = 1
V

∑
∀k

[
−xPkCk + (Mzk),α + 2Jpr

(
V
Re

)2
]

,

Nv1 = 1
2ρVaSl(C ′

Mz
),β ,

Nψ̇ = 1
V

∑
∀k

[
−x2

PkCk + xrk
(Mzk

),α

]
,

Nφ =
∑

∀k xrkCγk ,

Nδ =
∑

∀k [xPkK ′
kCk − (Mzk),α] .

(31.113)

31.2.9 Steady-state equilibrium conditions

Consider a vehicle in which control of the roll angle is performed in such a way
that the transversal load vanishes. The condition that must be stated is that the
equilibrium to roll rotations is granted without the suspension exerting any roll
torque.

In steady-state conditions accelerations V̇ , v̇y, φ̈ and ψ̈ and velocity φ̇ vanish,
and the condition in which the suspension exerts no roll torques is

∂Us (φ)
∂φ

=
∂F

(
φ, φ̇

)
∂φ̇

= 0 .

The equilibrium equation to roll becomes

−JsV ψ̇ cos (φ) − mgh sin (φ) = Lvvy . (31.114)

In steady-state, the yaw velocity ψ̇ is linked to the forward velocity V and
to the radius of the path (which is circular) R by the usual relationship

ψ̇ =
V

R
, (31.115)
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and then the equilibrium equation reduces to

−Js
V 2

R
cos (φ) − mgh sin (φ) = Lvvy . (31.116)

By introducing the value of Js into the last equation, it follows that(
mh +

∑
∀i

Jpi

Rei

)
V 2

R
cos (φ) + mgh sin (φ) + Lvvy = 0 . (31.117)

The third term, due to aerodynamic actions, is small when compared with
the others and may, at least initially, be neglected. Eq. (31.117) then allows the
steady-state roll angle to be computed:

φ0 = −artg

[
V 2

Rg

(
1 +

1
mh

∑
∀i

Jpi

Rei

)]
, (31.118)

which coincides with the expression obtained from the simplified ideal steering
model.

31.2.10 Motion about the steady-state equilibrium position

Consider a vehicle working in a condition close to the above computed equilib-
rium condition. The roll angle may be expressed as

φ = φ0 + φ1 ,

where φ1 is a small angle. The trigonometric functions of the roll angle may then
be approximated as

sin (φ0 + φ1) ≈ sin (φ0) + φ1 cos (φ0) ,
cos (φ0 + φ1) ≈ cos (φ0) − φ1 sin (φ0) .

The elastic and damping behavior of the suspension may be linearized about
the equilibrium position, stating

∂Us (φ)
∂φ

= k(φ0)φ1 ,
∂F

(
φ, φ̇

)
∂φ̇

= c(φ0)φ̇1 . (31.119)

Neglecting the term in Lv, the equations of motion become

matV̇ + Jsψ̈ sin (φ0) = Fx1 + Fx2 −
1
2
ρV 2SCx , (31.120)

mv̇y + matV ψ̇ − mhφ̈1 cos (φ0) = Yvvy + Yψ̇ψ̇+

+Yφφ0 + Yφφ1 + cos (φ0) Yv1vy + cos (φ0) Yδδ+

− 1
2ρV 2SCz sin (φ0) − 1

2ρV 2SCzφ1 cos (φ0) + Fye ,

(31.121)
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J∗
x φ̈1 − Jxz cos (φ0) ψ̈ − mv̇yh cos (φ0) +

−mghφ1 cos (φ0) + k(φ0)φ1 + C(φ0)φ̇1 = 0 ,
(31.122)

[
J∗

y sin2 (φ0) + Jz cos2 (φ0)
]
ψ̈ − Jxz cos (φ0) φ̈1 + JsV̇ sin (φ0) +

+V cos (φ0) φ̇1

∑
∀i

Jpi

Rei
= Nvvy + Nψ̇ψ̇ + Nφφ0 + Nφφ1+

+ cos (φ0) Nδδ + Nv1vy cos (φ0) + 1
2ρV 2S(−hCx + lCMy

) sin (φ0) +

+ 1
2ρV 2S(−hCx + lCMy

)φ1 cos (φ0) + Mze .

(31.123)

In a more synthetic way, it is possible to write

Mq̈ + Cq̇ + Kq = F + F1 , (31.124)

where
q1 =

[
x∗ y∗ φ1 ψ

]T ,

M =

⎡
⎢⎢⎣

mat 0 0 Js sin (φ0)
m −mh cos (φ0) 0

J∗
x −Jxz cos (φ0)

symm. J∗
y sin2 (φ0) + Jz cos2 (φ0)

⎤
⎥⎥⎦ ,

C =

⎡
⎢⎢⎣

0 0 0 0
0 −Yv − cos (φ0) Yv1 0 matV − Yψ̇

0 0 c(φ0) 0
0 −Nv − Nv1 cos (φ0) V cos (φ0)

∑
∀i

Jpi

Rei
−Nψ̇

⎤
⎥⎥⎦ ,

K =

⎡
⎢⎢⎣

0 0 0 0
0 0 −Yφ + 1

2ρV SCz cos (φ0) 0
0 0 −mgh cos (φ0) + k(φ0) 0
0 0 1

2ρVaS(−hCx + lCMy
) cos (φ0) − Nφ 0

⎤
⎥⎥⎦ ,

F =

⎧⎪⎪⎨
⎪⎪⎩

Fx1 + Fx2 − 1
2ρV 2SCx

Yφφ0 − 1
2ρV 2SCz sin (φ0)

0
+Nφφ0 + 1

2ρV 2S(−hCx + lCMy
) sin (φ0)

⎫⎪⎪⎬
⎪⎪⎭

,

F1 = δ

⎧⎪⎪⎨
⎪⎪⎩

0
cos (φ0) Yδ

0
cos (φ0) Nδ

⎫⎪⎪⎬
⎪⎪⎭

+

⎧⎪⎪⎨
⎪⎪⎩

0
Fye

0
Mze

⎫⎪⎪⎬
⎪⎪⎭

.

As already stated, coordinates x∗, y∗ and ψ are present only in the form of
their derivatives: The order of the differential set of equations is then 5 rather
than 8.

The mass matrix is symmetrical, as could be easily predicted, while the two
other matrices are not.
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31.2.11 Steady-state handling

In steady-state conditions, the first equation reduces to

Fx1 + Fx2 −
1
2
ρV 2SCx = 0 ,

which coincides with the equation seen for the motor vehicle working with small
roll angles.

As expected, the third equation yields simply

φ1 = 0 .

The other two equations reduce to
[ −Yv − cos (φ0) Yv1 matV − Yψ̇

−Nv − Nv1 cos (φ0) −Nψ̇

]{
vy

ψ̇

}
= δ cos (φ0)

{
Yδ

Nδ

}
+ (31.125)

+
{

Yφφ0 − 1
2ρV S2Cz sin (φ0)

+Nφφ0 + 1
2ρV 2S(−hCx + lCMy

) sin (φ0)

}
+

{
Fye

Mze

}
.

Because in steady-state

vy = V β , ψ̇ =
V

R
,

the radius of the trajectory and the sideslip angle may be computed at any
given steering angle. As an alternative, the steering and sideslip angles may be
computed as functions of the radius of the trajectory. In the latter case, it follows
that[

−Yv − cos (φ0) Yv1 −Yδ cos (φ0)
−Nv − Nv1 cos (φ0) −Nδ cos (φ0)

]{
vy

δ

}
= −V

R

{
matV − Yψ̇

−Nψ̇

}
+

(31.126)

+
{

Yφφ0 − 1
2ρV 2SCz sin (φ0)

+Nφφ0 + 1
2ρV 2S(−hCx + lCMy

) sin (φ0)

}
+

{
Fye

Mze

}
.

The model is nonlinear at φ0, making it impossible to compute gains inde-
pendent from the conditions of motion.

It is, at any rate, interesting to write Eq. (31.126) assuming that angle φ0

is small enough to linearize its trigonometric functions and that the gyroscopic
effect of the wheels is negligible. In this case

φ0 = −artg
(

V 2

Rg

)
≈ −V 2

Rg

and, if no external forces and moments act on the vehicle, Eq. (31.126) becomes
[

−Y ∗
v −Yδ

−N∗
v −Nδ

]{
vy

δ

}
=

V

R

{
Yψ̇ − matV

Nψ̇

}
− V 2

Rg

{
Y ∗

φ

N∗
φ

}
, (31.127)
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where

Y ∗
v = Yv + Yv1 , Y ∗

φ = Yφ − 1
2ρV S2Cz ,

N∗
v = Nv + Nv1 , N∗

φ = Nφ + 1
2ρV S2(−hCx + lCMy

) . (31.128)

The path curvature gain is then

1
Rδ

=
1
V

N∗
v Yδ − NδY

∗
v[

Y ∗
v Nψ̇ + N∗

v

(
matV − Yψ̇

)]
+ V

g

[
N∗

v Y ∗
φ − N∗

φY ∗
v

] . (31.129)

The result is identical to that seen for the non-tilting vehicle (Y ∗
v and N∗

v

also coincide with the values computed in Chapter 25) except for the term in
braces at the denominator, containing terms Y ∗

φ and N∗
φ due to the camber

stiffness of the tires, plus some aerodynamic terms. It is interesting to note that
the tilt of the vehicle and thus the camber thrust (because it has been assumed
that γ = φ) affects its behavior even if the roll angle tends to zero.

Remark 31.3 This outcome should be obvious: If the vehicle does not tilt, the
side force is due only to the sideslip of the wheels, while if γ = φ, roll produces
a camber thrust that adds to the sideslip force. If R → ∞, both the components
of the side force tend to zero, but their ratio remains constant.

Example 31.4 Consider a three-wheeled vehicle with two wheels at the front axle,

with the following characteristics:

Geometrical data: l = 1.720 m, a = 0.77 m, h = 576 mm, Re1 = Re2 = 310 mm.

Inertial data: m = 358 kg, Jx = 31 kg m2, Jy = 125 kg m2, Jz = 111 kg m2,

Jxz = 0, Jp1 = Jp2 = 0.18 kg m2.

Aerodynamic data: ρ = 1.29 kg/m3, S = 1 m2, Cx = 0.35, CMy = (CMx),β =

(CMz),β = Cz = 0, (Cy),β = 0.026.

Tire data: f0 = 0.01, K = 4 × 10−6 s2/m2, C1/Fz = C2/Fz = 17.9 1/rad,

(Mz1),α/Fz = (Mz2),α/Fz = 0.21 m/rad, Cγ1/Fz = Cγ2/Fz = −1.1 1/rad.

Compute the steady state roll angle as a function of the ratio between centrifugal

and gravitational accelerations, and the path curvature gain for different values of the

radius of the trajectory.

Steady-state roll angle. The result, computed both by taking gyroscopic moments

into account and neglecting them, is reported in Fig. 31.8.

From the plot it is clear that the gyroscopic effect of the wheels has little influence

in determining the steady-state roll angle and that the conditions of no load shift and

local vertical aligned with the z axis coincide.

Trajectory curvature gain. The results, computed on a trajectory with a radius

tending to infinity, and equal to 1,000, 500, 200, 100 and 50 m are reported in Fig. 31.9,

together with the roll angle on the same radii. The dashed line, labelled φ0 = 0, refers

to a non-tilting vehicle.

The non-tilting vehicle is strongly understeer (traction has not been accounted

for). Tilting allows the vehicle to travel on the curve with smaller sideslip angles of the

wheels. At large radii, the vehicle even becomes oversteer.
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FIGURE 31.8. Steady state roll angle as a function of centrifugal acceleration, com-
puted both by considering the gyrosoping moments of the wheels and neglecting them.

FIGURE 31.9. Path curvature gain 1/Rδ and steady-state roll angle φ0 versus the
speed V on trajectories with different radii.

With decreasing path radius (and then at equal speed with increasing centrifugal

acceleration and roll angle) the vehicle first becomes less oversteer and then increasingly

understeer, the result of the term in cos (φ0) multiplying the steering angle δ. In the

figure the tilt is limited to 45◦, with the curve stopping at a given speed in the case of

a path with small radius.
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31.2.12 Stability about the steady-state condition

Assume that the vehicle is travelling at a constant speed V on a circular trajec-
tory in steady-state conditions characterized by the values vy0,

ψ̇0 =
V

R

and φ0 of the variables of motion and by the corresponding value δ0 of the
steering angle. Assume also that the external forces Fye

and Mze
vanish. The

small perturbations vy1, ψ̇1 and φ1 add to the above mentioned values of the
parameters.

Uncoupling, at least as a first approximation, the first equation dealing with
longitudinal motion, the remaining three equations of motion (31.124) become

mv̇y1 − mh cos (φ0) φ̈1 − [Yv + cos (φ0) Yv1] (vy1 + vy0) +

+
(
matV − Yψ̇

)(
ψ̇1 + ψ̇0

)
+ [Yφ + Yφ1 cos (φ0)] φ1 =

= Yφφ0 − 1
2ρV S2Cz sin (φ0) + cos (φ0) Yδδ0 ,

(31.130)

−mh cos (φ0) v̇y1 + J∗
x φ̈1 − Jxz cos (φ0) ψ̈1+

+c(φ0)φ̇1 + [−mgh cos (φ0) + k(φ0)] φ1 = 0 ,
(31.131)

−Jxz cos (φ0) φ̈1 +
[
J∗

y sin2 (φ0) + Jz cos2 (φ0)
]
ψ̈1+

+ [−Nv − Nv1 cos (φ0)] (vy1 + vy0) + V cos (φ0)
∑

∀i
Jpi

Rei
φ̇1+

−Nψ̇

(
ψ̇1 + ψ̇0

)
− [Nφ1 cos (φ0) + Nφ] φ1 = Nφφ0+

+ 1
2ρV 2S(−hCx + lCMy

) sin (φ0) + cos (φ0) Nδδ0 ,

(31.132)

where

Nφ1 =
1
2
ρV 2S(−hCx + lCMy

) ,

Yφ1 = −1
2
ρV 2SCz .

Because motion takes place about the static equilibrium condition, it is
possible to eliminate the parameters related to the latter by using Equations
(31.125) and (31.124), obtaining

mv̇y1 − mh cos (φ0) φ̈1 − [Yv + cos (φ0) Yv1] vy1+

+
(
matV − Yψ̇

)
ψ̇1 − [Yφ + Yφ1 cos (φ0)] φ1 = 0 ,

(31.133)
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−mh cos (φ0) v̇y1 + J∗
x φ̈1 − Jxz cos (φ0) ψ̈1+

+c(φ0)φ̇1 + [−mgh cos (φ0) + k(φ0)] φ1 = 0 ,
(31.134)

−Jxz cos (φ0) φ̈1 +
[
J∗

y sin2 (φ0) + Jz cos2 (φ0)
]
ψ̈1+

− [Nv + Nv1 cos (φ0)] vy1 + V cos (φ0)
∑

∀i
Jpi

Rei
φ̇1+

−Nψ̇ψ̇1 − [Nφ1 cos (φ0) + Nφ] φ1 = 0 .

(31.135)

The equations may then be written in the state space in the form

A2ż = A1z , (31.136)

where
z =

[
vy vφ vψ φ

]T ,

vφ = φ̇ , vψ = ψ̇ ,

and

A2 =

⎡
⎢⎢⎣

m −mh cos (φ0) 0 0
−mh cos (φ0) J∗

x −Jxz cos (φ0) 0
0 −Jxz cos (φ0) J∗

y sin2 (φ0) + Jz cos2 (φ0) 0
0 0 0 1

⎤
⎥⎥⎦ ,

A1 =

⎡
⎢⎢⎣

Y ∗
v 0 −matV + Yψ̇ Yφ + Yφ1 cos (φ0)
0 −c(φ0) JsV cos (φ0) mgh cos (φ0) − k(φ0)

N∗
v N∗

φ̇
Nψ̇ Nφ1 cos (φ0) + Nφ

0 1 0 0

⎤
⎥⎥⎦ ,

Y ∗
v = Yv + Yv1 cos (φ0) , N∗

v = Nv + Nv1 cos (φ0) ,

N∗
φ̇

= −V cos (φ0)
∑
∀i

Jpi

Rei

.

The dynamic matrix, whose eigenvalues allow the stability to be studied, is
then

A = A−1
2 A1 . (31.137)

Example 31.5 Study the stability of the vehicle of the previous example, assuming

that the stiffness and the damping of the suspension are constant with varying roll angle.

Use the values k = 4.000 Nm/rad and c = 90 Nms/rad.

The real and imaginary parts of the eigenvalues are plotted versus the speed together

with the roots locus for various path curvature radii in Fig. 31.10. As can be seen, the

vehicle is stable in all conditions.
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FIGURE 31.10. Real (a) and imaginary (b) parts of the eigenvalues of the dynamic
matrix versus the speed and (c) roots locus for various path curvature radii (R = 50,
100, 200, 500, 1000 m and R → ∞).

31.3 DYNAMIC TILTING CONTROL

Assume that the vehicle is provided with a tilt control device able to maintain
load shift at a zero value or to keep the local vertical in the symmetry plane. In
the previous section it was shown that in steady state conditions these two goals
almost coincide, at least with the usual values of the gyroscopic moments of the
wheels and of aerodynamic actions (the two curves in Fig. 31.8 are practically
superimposed upon each other).

If it is easy to define the roll angle to satisfy this requirement in steady state
conditions, it is much more difficult to identify a control strategy to do the same
in non-steady state conditions.

Assume that the actuator dynamics may be expressed by the equation

Jaφ̈c + c22φ̇c − c21φ̇s + k22φc − k21φs = Mc , (31.138)

where φs is the rotation angle of the actuator corresponding to roll angle φ when
the spring exerts no force, Ja is the moment of inertia of the actuator, Mc is
the torque it exerts, both reduced to its output shaft, and cij and kij are the
suspension damping coefficients and stiffnesses, which obviously are functions of
φ and φc.

If the error is defined as

e = φ + artg
(

ψ̇
V Js

gmh

)
, (31.139)
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a proportional, integrative and derivative (PID) strategy leads to a moment Mc

equal to

Mc = −Kp

[
φ + artg

(
ψ̇

V Js

gmh

)]
− Kd

(
φ̇ + ψ̈

V Js

gmh

)
+

−Ki

∫ [
φ + artg

(
ψ̇

V Js

gmh

)]
dt .

(31.140)

where Kp, Kd and Ki are the proportional, derivative and integrative gains. The
error for the derivative gain was simplified by conflating the arctangent with its
argument.

Because φs is a known function of φ, it is possible to add the control equation
to those of the vehicle, thus studying the dynamics of the controlled system.

In the following pages it will be assumed for simplicity that d = d1 = 0, and
then φs = φ. In this case c22 = c21 = cφ and k22 = k21 = kφ and the equation of
motion of the controlled actuator becomes

Jaφ̈c + Kdψ̈
V Js

gmh
+ cφφ̇c − (cφ − Kd) φ̇ + Kpartg

(
ψ̇

V Js

gmh

)
+

+kφφc − (kφ − Kp) φ + Ki

∫ [
φ + artg

(
ψ̇

V Js

gmh

)]
dt = 0 .

(31.141)

The equation of motion of the controlled system in the state space may be
written in the form

A2ż = A1z + f , (31.142)

where to the states of the vehicle

V , vy , vφ = φ̇ , vψ = ψ̇ , φ ,

other states must be added, namely φc and its derivative vφc = φ̇c plus a state
linked with the error of the derivative branch of the control

ei =
∫ [

φ + artg
(

ψ̇
V Js

gmh

)]
dt .

The state vector is then

z =
[

V vy vφ vψ vφc φ φc ei

]T .

The other terms included in the state space equation are

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mat 0 0 Js sin (φ) 0 0 0 0
m −mh cos (φ) 0 0 0 0 0

J∗
x −Jxz cos (φ) 0 0 0 0

J∗
z 0 0 0 0

Kd
V Js

gmh Ja 0 0 0
1 0 0

1 0
symm. 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,



31.3 Dynamic tilting control 651

where
J∗

z = J∗
y sin2 (φ) + Jz cos2 (φ) ,

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 Y ∗

v 0 −matV + Yψ̇ 0 Yφ 0 0
0 Lv −cφ JsV cos (φ) cφ −kφ kφ 0
0 N∗

v N∗
φ̇

Nψ̇ 0 Nφ 0 0
0 0 (cφ − Kd) Kp

V
g −cφ kφ − Kp −kφ −Ki

0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Y ∗
v = Yv + Yv1 cos (φ) , N∗

v = Nv + Nv1 cos (φ) ,

N∗
φ̇

= −V cos (φ)
∑
∀i

Jpi

Rei

,

and

f =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fx1 + Fx2 − 1
2ρV 2SCx

cos (φ) Yδδ − 1
2ρV 2SCz sin (φ) + F ye

mgh sin (φ)
cos (φ) Nδδ + 1

2ρV 2S(−hCx + lCMy
) sin (φ) + Mze

−Kpatan
(
ψ̇ V Js

gmh

)
0
0

atan
(
ψ̇ V Js

gmh

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Note that matrix A2 is not fully symmetrical owing to the term Kd in
position 5,4.

Example 31.6 Using the vehicle of the previous example, study the response to a

steering step, assuming that the actuator’s moment of inertia, reduced to the output

shaft, is Ja = 0.001 kg/m2. Assume control gains Kp = 60, 000 Nm/rad, Kd = 6, 000

Nms/rad, Ki = 10, 000 Nm/(s rad). The manoeuvre is performed at a speed of 120

km/h and the steering angle δ = 1◦ is given at t = 0.

Because the manoeuvre is performed at constant speed, the first equation may be

considered uncoupled from the others and is therefore not considered.

The results are reported in Fig. 31.11. From the plot it is clear that the vehicle

reaches steady-state conditions in about 1 s. After 2 s the values of φ and φc are

respectively 39.85◦ and 39.98◦, while the steady state value on the same path (R =

136.24 m) is 39.98◦ for both. The values of β (0.175◦) and ψ̇ (0.2447 rad/s) at the end

of the manoeuvre coincide with those computed for steady-state operation.

Because the input is a step, the sideslip angle becomes strongly negative at the

beginning and the center of mass moves to the outside of the curve, because the vehicle
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FIGURE 31.11. Response to a step steering input. Time histories of the roll angle φ
and rotation angle of the actuator φc (a) and of the sideslip angle β and yaw velocity
ψ̇ (b). (c): Path.

starts overturning. The controller immediately reacts with a high value of φc and starts

a correction that prevents the vehicle from rolling over: After several much damped

oscillations, equilibrium is restored.

31.4 HANDLING-COMFORT COUPLING

The dynamics of tilting body vehicles was studied in the previous sections in
terms of handling using a model with four degrees of freedom. However, this
approach can only be considered a rough approximation, because uncoupling
between handling and comfort is no longer applicable when the assumption of
small angles does not hold.

The present section will be devoted to developing a model similar to the
previous, but with two added degrees of freedom linked with comfort: heave and
pitch. It is thus a model with sixdegrees of freedom, still based on the assumption
of rigid tires, that could be extended to nine or 10 degrees of freedom (for vehicles
with three or four wheels respectively) by including the compliance of the tires.

The assumptions that the roll axis remains on the ground during heave
motion and that it remains in the same position shown for the vehicle without
suspension will be made. The displacement of the center of mass of the vehicle,
which will at any rate be considered a small quantity, will occur in the direc-
tion of the z axis of the body-fixed reference frame. Pitch rotation will occur
about the baricentric y axis, which is perpendicular to the symmetry plane in
its undeformed position.
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FIGURE 31.12. Reference frames for the sprung mass and definition of points G, G0

and H.

The roll axis will then display no pitch rotation. The generalized coordinates
for translations of the sprung mass will again be coordinates XH , YH of point H
located on the ground, on the perpendicular to the roll axis passing through the
centre of mass G. The z coordinate (Fig. 31.12), and the yaw ψ, roll φ and then
pitch θ, will be added as generalized coordinates. The three angles will be taken
in this order, with the latter considered as a small angle. Note that although the
order is different from the usual, these are still Tait−Bryan angles.

As usual, the assumption of small angles (particularly for the sideslip angle
β) allows the component vx∗ of the velocity to be conflated with the forward
velocity V . Linear velocities vy and ż and and angular velocities ψ̇, φ̇ and θ̇
will be considered as small quantities too. The small size of displacements z
and θ make the order in which these two displacements (linear and angular) are
performed immaterial.

31.4.1 Kinetic and potential energies

Because pitch rotation was not considered in the definition of the roll axis and
the latter is horizontal, the order of the rotations is now yaw, roll and pitch.
The rotation matrix allowing us to pass from the body-fixed frame Gxyz to the
inertial frame XiYiZi is:

R = R1R2R3 , (31.143)

where to matrices R1 and R2 seen in the previous section, a pitch matrix must
be added

R3 =

⎡
⎣ cos(θ) 0 sin(θ)

0 1 0
− sin(θ) 0 cos(θ)

⎤
⎦ .

The time derivative of the rotation matrix is

Ṙ = Ṙ1R2R3 + R1Ṙ2R3 + R1R2Ṙ3 . (31.144)
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The components of the angular velocity in the body-fixed frame are linked
with the derivatives of the coordinates by the relationship

⎧⎨
⎩

Ωx

Ωy

Ωz

⎫⎬
⎭ =

⎧⎨
⎩

0
θ̇
0

⎫⎬
⎭ + RT

3

⎧⎨
⎩

φ̇
0
0

⎫⎬
⎭ + RT

3 RT
2

⎧⎨
⎩

0
0
ψ̇

⎫⎬
⎭ , (31.145)

and then⎧⎨
⎩

Ωx

Ωy

Ωz

⎫⎬
⎭ =

⎡
⎣ cos(θ) 0 sin(θ) cos(φ)

0 1 sin(φ)
− sin(θ) 0 cos(θ) cos(φ)

⎤
⎦
⎧⎨
⎩

φ̇

θ̇

ψ̇

⎫⎬
⎭ . (31.146)

The vector of the generalized coordinates is

q =
[

X Y z φ θ ψ
]T . (31.147)

Let the generalized velocities for translational degrees of freedom be the
components of the velocity vx and vy, referred to frame x∗y∗z∗, plus component
vz in the direction of axis z. The velocities for the rotational degrees of free-
dom are SIMPLY the derivatives of the coordinates φ, θ and ψ. They will be
designated as vφ, vθ and vψ respectively.

The vector of the generalized velocities is then

w =
[

vx vy vz vφ vθ vψ

]T . (31.148)

The relationship between generalized velocities and derivatives of coordi-
nates is the usual one

w = AT q̇ , (31.149)

where matrix A4 is:

A =
[

R1 03×3

03×3 I3×3

]
. (31.150)

Because A is a rotation matrix, the inverse transformation is

q̇ = Bw = Aw .

The vector defining the position of the center of mass of the sprung mass
GS with respect to point H is

r1 = (h + z)
[

0 0 1
]T , (31.151)

and then the absolute position of GS is

(GS−O’) = (H − O’) + Rr1. (31.152)

4Again, matrix A has nothing to do with the dynamic matrix of the system in the
state space, usually referred to as A.
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The velocity of GS may be written as

VGS =
[

Ẋ Ẏ 0
]T

+ Ṙr1 + Rṙ1 , (31.153)

i.e.
VGS = R1V + Ṙr + Rṙ1 . (31.154)

The translational kinetic energy of the sprung mass is then

Tt = 1
2m

(
VT V + r1T ṘT Ṙr1 + ṙT1 RTRṙ1

)
+

+m
(
VT RT

1 Ṙr1 + V
T
RT

1 Rṙ1 + r1TṘTRṙ1
)

.
(31.155)

Because plane xz coincides with the symmetry plane of the sprung mass,
the inertia tensor of the latter is

J =

⎡
⎣ Jx 0 −Jxz

0 Jy 0
−Jxz 0 Jz

⎤
⎦ . (31.156)

The rotational kinetic energy of the sprung mass is

Tr =
1
2
ΩT JΩ . (31.157)

By performing the relevant computations, expressing the angular velocity as
functions of the variables of motion and neglecting all terms containing powers
of small quantities higher than the second, it follows that

T = 1
2m

(
v2

x + v2
y + v2

z

)
+ 1

2J∗
x φ̇

2
+ 1

2

[
J∗

y sin2 (φ) + Jz cos2 (φ)
]
ψ̇

2
+

−Jxz cos (φ) ψ̇ φ̇ + Jy sin (φ) ψ̇θ̇ + mvx

{
θż + (h + z)

[
θ̇ + ψ̇ sin (φ)

]}
+

+ 1
2J∗

y θ̇
2 − mvy

[
ż sin (φ) + hφ̇ cos (φ)

]
,

(31.158)
where

J∗
x = mh2 + Jx , J∗

y = mh2 + Jy .

Note that in the present model the unsprung mass is neglected, making m
both the total mass of the vehicle and the mass of the body.

It can easily be seen that the expression of the kinetic energy coincides with
the expression obtained for the model with four degrees of freedom (Eq. 31.61),
plus the term

ΔT = 1
2mv2

z + 1
2J∗

y θ̇
2
+Jy sin (φ) ψ̇θ̇+

+mvx

[
θvz + θ̇ (h + z) + zψ̇ sin (φ)

]
− mvy ż sin (φ) .

(31.159)
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The height of the center of mass on the ground is

ZG = (h + z) cos (φ) cos (θ) , (31.160)

and then the gravitational potential energy of the vehicle is, with the usual
approximations due to the smallness of θ,

Ug = mg (h + z) cos (φ)
(

1 − θ2

2

)
. (31.161)

While in the previous model the potential energy due to suspensions was a
function of the roll angle only, here it depends also on the pitch angle and the
vertical displacement. However, it can be assumed that the suspensions are such
that it is possible to keep the two contributions separate:

Us = Us1 (φ) + Us2 (z, θ) . (31.162)

The potential energy is then what was seen in the previous model, plus a
contribution due to the two additional degrees of freedom

ΔU = mgz cos (φ) − mg cos (φ)
θ2

2
+ Us2 (z, θ) . (31.163)

In a similar way, also the dissipation function may be modified by simply
adding the term

ΔF = F2

(
ż, θ̇

)
. (31.164)

Because generalized coordinates z and θ are small quantities, functions Us2

and F2 are those of a linear system. F2 in particular does not depend on z and θ,
but only on their derivatives.

It is possible to assume, at least as a first approximation, that the two added
degrees of freedom have no effect on the kinetic energy of the wheels. In that
case the total Lagrangian function of the system is that of the previous model,
to which the term

ΔL = ΔT −ΔU (31.165)

is added.
The derivatives of the added terms in the Lagrangian function are

∂ΔL
∂V

= mθ̇h ,
∂ΔL
∂vy

= −mvz sin (φ) , (31.166)

∂ΔL
∂vz

= mvz − mvy sin (φ) ,
∂ΔL
∂φ̇

= 0 , (31.167)

∂ΔL
∂θ̇

= J∗
y θ̇+Jy sin (φ) ψ̇ + mvx (h + z) , (31.168)

∂ΔL
∂ψ̇

= Jy sin (φ) θ̇ + mvxz sin (φ) . (31.169)
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Always remembering that no term containing the products of two or more
small quantities may be present in the equations of motion, it follows that

d

dt

(
∂ΔL
∂V

)
= mθ̈h ,

d

dt

(
∂ΔL
∂vy

)
= −mv̇z sin (φ) , (31.170)

d

dt

(
∂ΔL
∂vz

)
= mv̇z − mv̇y sin (φ) ,

d

dt

(
∂ΔL
∂φ̇

)
= 0 , (31.171)

d

dt

(
∂ΔL
∂θ̇

)
= J∗

y θ̈+Jy sin (φ) ψ̈ + mV̇ (h + z) + mV vz , (31.172)

d

dt

(
∂ΔL
∂ψ̇

)
= Jy sin (φ) θ̈ + mV̇ z sin (φ) + mV ż sin (φ) , (31.173)

∂ΔL
∂x∗ =

∂ΔL
∂y∗ =

∂ΔL
∂ψ

= 0 , (31.174)

∂ΔL
∂z

= −mg cos (φ) − ∂Us2 (z, θ)
∂z

, (31.175)

∂ΔL
∂θ

= +mV vz + mgh cos (φ) θ − ∂Us2 (z, θ)
∂θ

, (31.176)

∂ΔL
∂φ

= mgz sin (φ) . (31.177)

31.4.2 Equations of motion

Matrix BTΓ is identical to that of the previous model, apart from the different
number of rows and columns

BTΓ =

⎡
⎢⎢⎣

[
0 −ψ̇

ψ̇ 0

]
02×4

03×2 03×4[
−vy vx

]
01×4

⎤
⎥⎥⎦ .

Matrix BTΓ
{

∂L
∂w

}
is the same too, except for a term that must be intro-

duced in the last equation that may be written as

BTΓ
{

∂ΔL
∂w

}
=

{
05×1

−mV vz sin (φ)

}
. (31.178)

By adding the relevant terms, the following equations may be obtained:

First equation: Longitudinal translation

matV̇ + mθ̈h + Jsψ̈ sin (φ) = Qx . (31.179)
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Second equation: Lateral translation

mv̇y + matV ψ̇ − mv̇z sin (φ) + mvzφ̇ cos (φ) − mhφ̈ cos (φ) = Qy . (31.180)

Third equation: Translation in the z direction

mv̇z − mv̇y sin (φ) + mg cos (φ) +
∂F2

(
ż, θ̇

)
∂ż

+
∂Us2 (z, θ)

∂z
= Qz . (31.181)

Fourth equation: Roll rotation

J∗
x φ̈ − Jxz cos (φ) ψ̈ − mv̇yh cos (φ) − JsV ψ̇ cos (φ) +

−mgh sin (φ) − mgz sin (φ) +
∂Us (φ)

∂φ
+

∂F
(
φ, φ̇

)
∂φ̇

= Qφ .

(31.182)

Fifth equation: Pitch rotation

J∗
y θ̈ + Jy sin (φ) ψ̈ + mV̇ (h + z) − mgh cos (φ) θ+

+
∂F2

(
ż, θ̇

)
∂θ̇

+
∂Us2 (z, θ)

∂θ
= Qθ .

(31.183)

Sixth equation: Yaw rotation

[
J∗

y sin2 (φ) + Jz cos2 (φ)
]
ψ̈ − Jxz cos (φ) φ̈ + Jy sin (φ) θ̈ + mV̇ z sin (φ) +

+JsV̇ sin (φ) + V cos (φ) φ̇
∑
∀i

Jpi

Rei

− V vy

∑
∀i

Jpi

R2
ei

= Qψ .

(31.184)

31.4.3 Final form of the equations of motion

The sideslip angles of the wheels and the generalized forces due to tires are
identical to those seen in the previous model.

The aerodynamic forces and moments are referred to the xyz frame: Because
the two added degrees of freedom cause a virtual displacement of the center of
mass in the z direction equal to δz, a virtual rotation δθ about the y axis and an
additional displacement proportional to δθ in the x direction, the virtual work
of aerodynamic forces and moments is
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δLa = Fxaδx∗ + [Fya cos (φ) − Fza sin (φ)] δy∗ + Fzaδz + (Fxah + Mya) δθ∗+

+ (M ′
xa − Fyah) δφ + [(Fxah + Mya) sin (φ) + Mza cos (φ)] δψ .

(31.185)
In the following equations the generalized aerodynamic forces included in

Qz and Qθ will be assumed to be constant.

First equation: Longitudinal translation

matV̇ + +mθ̈h + Jsψ̈ sin (φ) = Fx1 + Fx2 −
1
2
ρV 2SCx . (31.186)

Second equation: Lateral translation

mv̇y + matV ψ̇ − mv̇z sin (φ) + mvzφ̇ cos (φ) − mhφ̈ cos (φ) =

= [Yv + cos (φ) Yv1] vy + Yψ̇ψ̇ + Yφφ + cos (φ) Yδδ − 1
2ρV 2SCz sin (φ) + Fye ,

(31.187)
where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yv = − 1
V

∑
∀k Ck ,

Yv1 = 1
2ρVaS(Cy),β ,

Yψ̇ = − 1
V

∑
∀k xPkCk ,

Yφ =
∑

∀k Cγk ,

Yδ =
∑

∀k K ′
kCk .

(31.188)

Third equation: Translation in the z direction

mv̇z−mv̇y sin (φ)+mg cos (φ)+
∂F2

(
ż, θ̇

)
∂ż

+
∂Us2 (z, θ)

∂z
=

1
2
ρV 2SCz . (31.189)

Fourth equation: Roll rotation

J∗
x φ̈ − Jxz cos (φ) ψ̈ − mv̇yh cos (φ) − JsV ψ̇ cos (φ) +

−mgh sin (φ) − mgz sin (φ) +
∂Us (φ)

∂φ
+

∂F
(
φ, φ̇

)
∂φ̇

= Lvvy ,

(31.190)

where
Lv =

1
2
ρV S [−h(Cy),β + t(CMx

),β ] . (31.191)
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Fifth equation: Pitch rotation

J∗
y θ̈ + Jy sin (φ) ψ̈ + mV̇ (h + z) − mgh cos (φ) θ+

+
∂F2

(
ż, θ̇

)
∂θ̇

+
∂Us2 (z, θ)

∂θ
=

1
2
ρV 2S (hCz + lCMy) .

(31.192)

Sixth equation: Yaw rotation

[
J∗

y sin2 (φ) + Jz cos2 (φ)
]
ψ̈ − Jxz cos (φ) φ̈ + Jy sin (φ) θ̈+

+mV̇ z sin (φ) + JsV̇ sin (φ) + V cos (φ) φ̇
∑
∀i

Jpi

Rei

=

= [Nv + cos (φ) Yv1] vy + Nψ̇ψ̇ + Nφφ + cos (φ) Nδδ+

+ 1
2ρV 2S(−hCx + lCMy

) sin (φ) + Mze ,

(31.193)

where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nv = 1
V

∑
∀k

[
−xPkCk + (Mzk),α + 2Jpr

(
V
Re

)2
]

,

Nv1 = 1
2ρVaSl(C ′

Mz
),β ,

Nψ̇ = 1
V

∑
∀k

[
−x2

PkCk + xrk
(Mzk

),α

]
,

Nφ =
∑

∀k xrkCγk ,

Nδ =
∑

∀k [xPkK ′
kCk − (Mzk),α] .

(31.194)

31.4.4 Motion about the steady-state equilibrium configuration

Proceeding as in the previous model, a value for the roll angle in steady-state
conditions that coincides with that already computed is obtained. If the expres-
sions so obtained are directly compared, they appear different, because in the
present case there is a term

mgz sin (φ)

that was not present in the earlier model. However, this term has the same order
of magnitude of the term

mzV ψ̇ cos (φ) ,
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which was neglected, because it contained the product of two small quantities (z
and ψ̇) (actually, if the roll angle is less than 45◦ this product is even smaller).
The problem lies in the fact that once angle φ is no longer considered as a
small quantity, to consider other variables as such is no longer correct, leading
to problems that cannot be solved within the frame of models of this kind. The
only solution is to neglect the term mgz sin (φ) as well.

Assuming that the coordinates are expressed as the sum of a steady state
contribution (subscript 0) plus a contribution that varies in time (subscript 1),
the equations of motion may be written as

matV̇ + +mθ̈1h + Jsψ̈1 sin (φ0) = Fx1 + Fx2 −
1
2
ρV 2SCx , (31.195)

mv̇y1 + matV ψ̇1 + matV ψ̇0 − mv̇z1 sin (φ0) − mhφ̈1 cos (φ0) =

= [Yv + cos (φ0) Yv1] (vy0 + vy1) + Yψ̇

(
ψ̇0 + ψ̇1

)
+ Yφ (φ0 + φ1) +

+ cos (φ0) Yδ (δ0 + δ1) − 1
2ρV 2SCz sin (φ0) − 1

2ρV 2SCzφ1 cos (φ0) + Fye ,
(31.196)

mv̇z1 − mv̇y1 sin (φ0) + mg cos (φ0) − mgφ1 sin (φ0) +
∂F2

(
ż1, θ̇1

)
∂ż

+

+
∂Us2 (z0 + z1, θ0 + θ1)

∂z
=

1
2
ρV 2SCz ,

(31.197)

J∗
x φ̈1 − Jxz cos (φ0) ψ̈1 − mv̇y1h cos (φ0) − JsV ψ̇1 cos (φ0) +

−JsV ψ̇0 cos (φ0) − mgh sin (φ0) − mghφ1 cos (φ0) − mgz1 sin (φ0) +

+
∂Us (φ)

∂φ
+

∂F
(
φ, φ̇

)
∂φ̇

= Lv (vy0 + vy1) ,

(31.198)

J∗
y θ̈1+Jy sin (φ0) ψ̈1 + mV̇ (h + z0 + z1) − mgh cos (φ0) (θ0 + θ1) +

+
∂F2

(
ż, θ̇

)
∂θ̇

+
∂Us2 (z0 + z1, θ0 + θ1)

∂θ
=

1
2
ρV 2S (hCz + lCMy) ,

(31.199)
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[
J∗

y sin2 (φ0) + Jz cos2 (φ0)
]
ψ̈1 − Jxz cos (φ0) φ̈1 + Jy sin (φ0) θ̈1+

+mV̇ (z0 + z1) sin (φ0)+JsV̇ sin (φ0)+JsV̇ φ1 cos (φ0) + V cos (φ0) φ̇1

∑
∀i

Jpi

Rei
=

= [Nv + cos (φ) Yv1] (vy0 + vy1) + Nψ̇

(
ψ̇0 + ψ̇1

)
+ Nφ (φ0 + φ1) +

+ cos (φ0)Nδ (δ0 + δ1) + 1
2ρV 2S(−hCx + lCMy

) sin (φ0) +

+ 1
2ρV 2S(−hCx + lCMy

)φ1 sin (φ0) + Mze .
(31.200)

Steady-state conditions

Fx1 + Fx2 −
1
2
ρV 2SCx = 0 , (31.201)

matV ψ̇0 = [Yv + cos (φ) Yv1] vy0 + Yψ̇ψ̇0 + Yφφ0+

+ cos (φ0) Yδδ − 1
2ρV 2SCz sin (φ0) + Fye ,

(31.202)

mg cos (φ0) +
∂Us2 (z, θ)

∂z
=

1
2
ρV 2SCz , (31.203)

−JsV ψ̇ cos (φ0) − mgh sin (φ0) = Lvvy0 , (31.204)

−mgh cos (φ0) θ0 +
∂Us2 (z, θ)

∂θ
=

1
2
ρV 2S (hCz + lCMy) , (31.205)

[Nv + cos (φ) Yv1] vy0 + Nψ̇ψ̇0 + Nφφ0 + cos (φ0) Nδδ+

+ 1
2ρV 2S(−hCx + lCMy

) sin (φ0) + Mze = 0 .
(31.206)

The first, second, fourth and sixth equations coincide with those previously
seen, and may be used to compute first the driving forces needed to travel at
speed V , then the roll angle φ0 and vy0 (or, better, the sideslip angle β) and the
yaw velocity ψ̇0 (or better the radius of the path).

Finally, the third and fifth equations allow z0 and θ0 to be computed.

Remark 31.4 The steady-state condition is not influenced by the presence of
suspensions, even if the uncoupling between handling and comfort cannot be man-
aged because the roll angle is not small.

Motion about the steady-state condition

The equation of motion in the state space is

A2ż = A1z , (31.207)
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where:
z =

[
V vy vz vφ vθ vψ z φ θ

]T ,

vz = ż , vφ = φ̇ , vθ = θ̇ , vψ = ψ̇

and

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎣

mat 0 0 0 mh Jss
0 m −ms −mhc 0 0
0 −ms m 0 0 0
0 −mhc J∗

x 0 −Jxzc
m (h + z0) 0 0 0 J∗

y Jys
Jss 0 0 −Jxzc Jys J∗

y s2 + Jzc
2

⎤
⎥⎥⎥⎥⎥⎥⎦

06×3

I3×6 I3×3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 Y ∗

v 0 0 0 m′ 0 Yφ + Yφ1c 0
0 0 −c11 0 −c12 0 −k11 −mgφ1s −k12

0 Lv 0 −cφ 0 JsV c +mgs m′′ 0
0 0 −c12 0 −c22 0 mV̇ − k12 0 −k∗

22

0 N∗
v 0 N∗

φ̇
0 Nψ̇ mV̇ s N∗

φ 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

c = cos (φ0) , s = sin (φ0) , Y ∗
v = Yv + Yv1c , k∗

22 = k22 − mghc ,

m′ = −mat + Yψ̇ , m′′ = mghc − kφ ,

N∗
v = Nv + Nv1c , N∗

φ̇
= −V c

∑
∀i

Jpi

Rei

, N∗
φ = Nφ1c + Nφ − JsV̇ c .

Remark 31.5 As could be predicted, handling and comfort are not uncoupled,
but all coupling terms contain the sine of angle φ0, and thus vanish when the roll
angle is small.

The coupled handling and comfort model can also be used for the study of
the controlled system by adding the equations describing the behavior of the roll
controller.




