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COMFORT PERFORMANCE

The definition of comfort in a motor vehicle is at once complex and subjective,
changing not only with time (cars considered comfortable just twenty years
ago are nowadays considered unsatisfactory) but also from user to user. The
same user may change his appraisal depending on circumstances and his psycho-
physical state. But comfort remains an increasingly important parameter in cus-
tomer choice and strongly competitive factor among manufacturers.

This chapter will deal primarily with vibrational comfort, although it is dif-
ficult to separate it from acoustic comfort without entering into details linked
more with the driveability and handling of the vehicle. Not just driving com-
fort, but vibrational and acoustic comfort as well (the latter deeply affects the
conditions in which the driver operates), all have a strong impact on vehicle
safety.

It is possible to distinguish between vibrational and acoustic comfort −
linked with the vibration and noise produced inside vehicles by mechanical de-
vices or on its surface by the air − and ride comfort, which is linked primarily
with the ability of the tires and the suspensions to filter out vibration caused by
motion on a road that is not perfectly smooth.

With this distinction in mind, SAE defines:

• ride, low frequency (up to 5 Hz) vibration of the vehicle body

• shake, vibration at intermediate frequency (between 5 and 25 Hz), at which
some natural frequencies of subsystems of the vehicle occur
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350 26. COMFORT PERFORMANCE

• harshness, high frequency vibration (between 25 and 100 Hz) of the struc-
ture and its components, felt primarily as noise

• noise, acoustic phenomena occurring between 100 Hz and 22 kHz, i.e. up
to the threshold of human hearing.

26.1 INTERNAL EXCITATION

The sources of vibration on board a vehicle are essentially three: The wheels,
the driveline and the engine. All contain rotating parts and, as a consequence,
a first cause of dynamic excitation is imbalance. A rotor is perfectly balanced
when its rotation axis coincides with one of its principal axes of inertia; however,
this condition can only be met approximately and balancing tolerances must be
stated for any rotating object1. As a consequence of the residual imbalance a
rotating object exerts on its supports, a force whose frequency is equal to the
rotational speed Ω and its amplitude is proportional to its square Ω2. Because
the engine, the driveline and the wheels rotate at different speeds, the excitations
they cause are characterized by different frequencies.

Apart from the excitation due to imbalance, there are other effects that are
peculiar to each element. Wheels may show geometrical and structural irregular-
ities. The outer shape of the tires cannot be exactly circular and is characterized
by a runout (eccentricity) having the same effect as mass imbalance, exciting
vibrations with a frequency equal to the rotational speed, plus other harmonic
components which excite higher harmonics. An ovalization of the shape excites
a vibration with frequency equal to 2Ω, a triangular shape with frequency 3Ω,
etc. The very presence of the tread excites higher frequencies, which are usually
found in the acoustic range; to avoid a strong excitation with a period equal to
the time of passage of the single tread element, the pattern of the tread is usually
made irregular, with randomly spaced elements.

The same effect occurs for variations of stiffness; these induce dynamic forces
with frequencies equal to the rotational speed and its multiples. As various har-
monics are present in differing degrees in different tires, the spectrum of the
dynamic force exerted by the tire on the unsprung mass depends upon each tire.
As is common in the dynamics of machinery, such a typical spectrum is referred
to as the mechanical signature of the tire.

When the wheel is called upon to exert longitudinal and transversal forces,
the irregularities, both geometrical and structural, also introduce dynamic com-
ponents in these directions. The tire-wheel assembly, however, is a complex me-
chanical element with given elastic and damping properties that can filter out
some of the frequencies produced at the road-tire interface. High frequencies are

1G. Genta, Vibration of structures and machines, Springer, New York, 1995, G. Genta,
Dynamics of rotating systems, Springer, New York, 2005.
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primarily filtered out by the tire itself, before being further filtered by the sus-
pension. These frequencies are felt onboard primarily as airborne vibration, i.e.
noise.

The excitation due to driveline imbalance is usually transferred to the vehicle
body through its soft mountings. The transmission is, however, made of flexible
elements and, particularly at high frequency, these may have resonances. A long
drive shaft has its own critical speeds, and in the case of a two-span shaft with
a central joint (common in front-engine, rear-drive layouts), a critical speed,
corresponding to a mode in which the two spans behave as rigid bodies on a
compliant central support, is usually located within the working range. If the
balancing of the central joint is poor, strong vibration occurs when crossing this
critical speed.

When Hooke’s joints are present, torque pulsations occurring when the input
and output shaft are at an angle can be a major problem. In modern front
wheel drive cars, the joints near the wheels are of the constant-speed type to
avoid vibration, but care must be taken to design the driveline layout to avoid
excitations from these joints.

The engine is a major source of vibration and noise caused by imbalance of
rotating parts, inertial forces from reciprocating elements and time variations of
the driving torque. The excitation due to imbalance of rotating parts, mostly the
crankshaft, has the frequency of the engine speed Ω. To reduce it, the crankshaft
must be balanced accurately. The reciprocating masses produce forcing functions
with frequencies that are equal to Ω and its multiples, in particular 2Ω and 4Ω.

The components with frequency Ω interact with those due to imbalance and
can be reduced by using counter-rotating shafts with eccentric masses. Their
compensation depends on the architecture of the engine, and above all on the
number of cylinders; they are particularly strong in single cylinder engines, such
as those used on many motor cycles. The simplest way to partially compensate
for them is to use a counterbalance slightly larger than that used to compensate
for the imbalance of rotating masses (this technique is usually referred to as
overbalancing). To reduce components with frequency 2Ω, it is possible to use
shafts counter-rotating at a speed twice the speed of the crankshaft, a practice
fairly common on the engines of luxury cars.

Torsional vibration of the engine is another important source of vibration.
Torsional vibrations of the engine were traditionally regarded as having little
effect on comfort, important only for the structural survival of the mechanical
components of the engine, in particular the crankshaft. This is, however, increas-
ingly unrealistic, and the excitation caused by torsional vibration is increasingly
seen as important for vehicle comfort.

The reason for this is the increasing number and mass of the ancillary de-
vices, such as larger generators for coping with the increasing electrical needs
of the vehicle, air conditioning compressors, power steering pumps, etc., that
are located on brackets and driven by belts. Torsional vibration from the engine
can set the system made by accessories, their brackets, belts covers, etc. into
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vibration These vibrations are then transferred to both engine and structure,
producing noise both inside the vehicle and outside, because these accessories
are usually located close to the cooling air intakes.

The use of diesel engines makes things worse, because the more abrupt
changes of pressure in the combustion chamber lead to strong high order har-
monics in torsional vibration. All vehicular diesel engines, and nowadays also
spark ignition engines, have torsional vibration dampers, of the viscous (on in-
dustrial vehicles) or elastomeric type (passenger vehicles), but they may be not
enough. More complex dampers have been introduced, both for reducing vibra-
tion of the crankshaft and for insulating the accessories. Moreover, the geometry
of the engine is such that it is impossible to distinguish, at least as a first ap-
proximation, between torsional, axial and flexural vibration of the crankshaft.

Vibrations linked to the thermodynamic cycle have a fundamental frequency
which, in four-stroke engines, is equal to half the rotational speed but a large
number of harmonics are usually present. Because a reciprocating engine usually
has a number of torsional critical speeds, its dynamics is quite complicated. It
has been the object of many studies and the subject of many books2.

The harmonics whose order is equal to the number of cylinders and its
multiples are usually referred to as major harmonics; these often are the most
dangerous. In the case of a four-in-line engine the frequency of the lowest major
harmonics is 2Ω, coinciding with one of the forcing functions due to reciprocating
masses. A partial compensation is often performed by setting the shaft counter-
rotating at a speed 2Ω in unsymmetrical position.

The design of the engine suspension system is a complex issue. The elimi-
nation of the sources of vibration, e.g. using dampers on the crankshaft or coun-
terbalance shafts spinning at twice the rotational speed, properly insulating the
engine from the vehicle structure by using adequate soft mountings and dampers,
and insulating the passenger compartment for noise, are all useful provisions for
increasing ride comfort. The engine suspension should be soft, to insulate the
vehicle from vibration due to the engine, but must be stiff enough to avoid large
relative motion between engine and vehicle.

The engine suspension is subject to a constant load, the weight of the engine,
and to variable loads, such as inertia forces due to reciprocating parts and the
motion of the vehicle, and a torque equal and opposite to the engine torque. The
latter changes rapidly from zero to its maximum value, but can also change its
sign when the engine is used to brake the vehicle.

Engine and gearbox are often in one piece, and in this case the torque acting
on the engine suspension is the torque at the output of the gearbox (3 − 5 times
the engine torque). If the differential is also inside the gearbox, the torque is that
at the output of the final reduction, which may be as large as 10 − 14 times the
engine torque.

2See, for instance, W. Thompson, Fundamental of automobile engines balancing, Mech.
Eng. Publ. Ltd., 1978.
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The solution once universally accepted, based on three elastomeric supports,
is nowadays often replaced by a solution based on two elastomeric supports plus
a connecting rod, hinged at its ends by two elastomeric supports, that reacts to
the driving torque

The engine suspension must be designed with the aim of reducing, as much
as possible, the transmission of engine vibration to the vehicle, but also allowing
for the fact that the stresses in the engine components are influenced by how the
engine is attached to the vehicle. The transmission the commands to the engine
and, in particular, to the gearbox, is important in reducing the transmission of
vibration to the vehicle. Instead of using rigid rods to transfer commands to
the gearbox, it is convenient to use flexible cables or even to avoid mechanical
transmission of commands altogether (servo-controlled gearbox).

Together with the conventional solutions based on elastomeric supports,
more advanced and even active solutions in which it is possible to change the
relevant parameters are now used.

The engine suspension can be used as a kind of dynamic vibration absorber.
The engine mass, the compliance and the damping of its support constitute a
damped vibration absorber that can be tuned on the main wheel hop resonance,
about 12 – 15 Hz, to control vertical shake vibration due to wheel excitation.

The contribution to overall noise due to aerodynamics can be large and of-
ten, as discussed in Chapter 21, has specific causes that may be different from
those causing aerodynamic drag. Aerodynamic noise is primarily caused by vor-
tices and detached flow on the front part of the vehicle, generally in the zone
close to the windshield and the first strut (pillar A). The wake and aerodynamic
field at the rear of the vehicle, important in causing aerodynamic drag, usually
make a limited contribution to overall noise.

Active noise cancellation is a promising way to increase acoustic comfort.
Already applied in aeronautics, the first automotive applications in the form
of active engine mufflers and passenger compartment noise control are due to
appear soon. With the introduction of active noise control, more advanced goals
than pure noise suppression can be achieved. As an example, experience in the
field of rail transportation has shown that complete noise suppression is not
considered satisfactory by most passengers, as it decreases privacy by allowing
others to listen to what people are saying. A completely noiseless machine may
seem unnatural (in the field of domestic appliances there have been cases of
dishwashers considered too quiet by their users), and may even be dangerous in
some automotive applications. The ultimate goal may not be to suppress noise,
but to achieve a noise that users find pleasant.

Similarly, absolute vibration suppression may be undesirable because vibra-
tion conveys useful information to the driver and can give warning symptoms of
anomalies. Here again the goal seems more to supply a vibrational environment
the user finds satisfactory than to completely suppress all vibrational input.
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26.2 ROAD EXCITATION

Knowledge of the excitation due to motion on uneven road is important for the
study of riding comfort. Road excitation reduces the ability of the tires to exert
forces in the x and y direction, because it causes a variable normal load Fz,
and increases the stressing of the structural elements. Because such excitation
cannot be studied with a deterministic approach, the methods used for random
vibrations must be applied.

A number of studies have been devoted to characterizing road profiles ex-
perimentally and interpreting the results statistically. From experimental mea-
surements of the road profile (Fig. 26.1), a law h(x) can be defined and its power
spectral density obtained through harmonic analysis. Note that the profile is
a function of space and not of time, and the frequency referred to space ω is
expressed in rad/m or cycles/m and not in rad/s or in Hz. The power spectral
density S of law h(x) is thus expressed in m2/(rad/m) or in m2/(cycles/m).

The law S(ω) can be expressed by a straight line on a logarithmic plot, i.e.
by the law

S = cω−n , (26.1)

where n is a nondimensional constant while the dimensions of c depend on n (if
n = 2, c is expressed in m2(cycles/m), for instance).

An old I.S.O. proposal3 suggested n = 2 for road undulations, i.e. for dis-
turbances with a wavelength greater than 6 m, and n = 1.37 for irregularities,
with a wavelength smaller than the mentioned value. The proposal stated various
values of c depending on the type of road.

FIGURE 26.1. Examples of road profiles

3B.S.I. Proposal for Generalized Road Inputs to Vehicles, ISO/TC 108/WG9 Document 5,
1972.
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A more recent approach is to abandon the distinction between undulations
and irregularities. Often used values are

c = 4.7 × 10−6 m3 n = 2.1 highway,
c = 8.1 × 10−7 m3 n = 2.1 road in poor conditions (26.2)

A4 recent ISO proposal subdivides road profiles into 8 classes, indicated by
letters from A to H, stating an exponent always equal to 2 for Eq. (26.1). The
values of constant c for the various profiles are shown in Table 26.1. Classes from
A to D are for hard-surfaced roads, with A for very smooth roads. Classes E
and F are for natural surface roads or roads in bad conditions, such as a badly
maintained pavé. G and H are for highly irregular surfaces. The power spectral
density is defined in a frequency range from 0,01 to 10 cycles/m (wavelength
from 100 m to 100 mm).

Some examples of power spectral density S for tarmac, concrete and pavé
roads5 are shown in Fig. 26.2 as functions of ω together with the old ISO recom-
mendation and ISO 8606:1995 standard.

If the vehicle travels with velocity V , it is possible to transform the law
h(x) into a law h(t) and compute a frequency ω and a power spectral density S
(measured in m2/(rad/s) or m2/Hz) referred to time from ω and S defined with
respect to space ⎧⎪⎨

⎪⎩
ω = V ω ,

S =
S

V
.

(26.3)

The dependence of S from ω is thus

S = cV n−1ω−n . (26.4)

TABLE 26.1. Minimum, average and maximum values of constant c for the various
classes of road following ISO 8606:1995 standard.

Class cmin (m2cycles/m) caverage (m2cycles/m) cmax (m2cycles/m)
A − 1.6 × 10−7 3.2 × 10−7

B 3.2 × 10−7 6.4 × 10−7 1.28 × 10−6

C 1.28 × 10−6 2.56 × 10−6 5.12 × 10−6

D 5.12 × 10−6 1.024 × 10−5 2.048 × 10−5

E 2.048 × 10−5 4.096 × 10−5 8.192 × 10−5

F 8.192 × 10−5 1.6384 × 10−4 3.2768 × 10−4

G 3.2768 × 10−4 6.5536 × 10−4 1.31072 × 10−3

H 1.31072 × 10−3 2.62144 × 10−3 −

4ISO 8606:1995, Mechanical vibration - Road surface profiles - Reporting of measured data,
1/9/1995.

5G.H. Tidbury, Advances in Automobile Engineering, part III, Pergamon Press, Londra,
1965.
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FIGURE 26.2. Power spectral density of some road profiles, ISO/TC 108/RS9
Document 5, 1972 recommendation (dashed lines) and ISO 8606:1995 standard
(full lines)

Remark 26.1 If n = 2, as is suggested by the most recent ISO standards, the
power spectral density of the displacement is proportional to ω−2 and thus the
power spectral density of the vertical velocity is constant: Road excitation is then
equivalent to white noise in terms of vertical velocity of the contact point.

The law S(ω) at various speeds for a road at the limit between the B and C
classes (a fair but not very good road) following ISO standards is plotted in
Fig. 26.3.

Once the power spectral density S(ω) of the excitation (namely of function
h(t)) and the frequency response H(ω) of the vehicle are known, the power
spectral density of the response Sr(ω) is easily computed as

Sr(ω) = H2(ω)S(ω) . (26.5)

The root mean square (r.m.s.) value of the response is the square root of
the power spectral density integrated in the relevant frequency range. If, for
instance, the frequency response H(ω) is the ratio between the amplitude of the
acceleration of the sprung mass and that of the displacement of the contact point,
the response in terms of r.m.s. acceleration in the frequency range between ω1

and ω2 is

arms =

√∫ ω2

ω1

Sr (ω) dω . (26.6)
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FIGURE 26.3. Power spectral density of the displacement h(t) as a function of the
frequency ω at various speeds for road at the border between the B and C classes
following ISO standards

To summarize the quality of a road profile in a single figure an International
Roughness Index (IRI), referring not to the road itself but to the way a given
standard quarter car model (see below) reacts to it, was introduced. Because
it refers to a particular model, the so-called quarter car with two degrees of
freedom, it will be dealt with when we discuss suspension models.

26.3 EFFECTS OF VIBRATION ON THE HUMAN
BODY

The ability of the human body to withstand vibration and related discomfort has
been the object of countless studies and several standards on the subject have
been stated. ISO 2631 standard (Fig. 26.4)6, distinguishes between vibrations
with a frequency in the range between 0,5 Hz and 80 Hz that may cause a reduc-
tion of comfort, fatigue, and health problems, and vibrations with a frequency
in the range between 0,1 Hz and 0.5 Hz that may cause motion sickness.

6ISO Standards 2631, 1997, Mechanical vibration and shock - Evaluation of human expo-
sure to whole-body vibration. The standards are older, but were revised in 1997.
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FIGURE 26.4. rms value of the vertical acceleration causing reduced physical efficiency
to a sitting subject as a function of the frequency. The curves for different exposure
times have been reported (ISO 2631 standard)

Standards refer to the acceleration due to vibration and suggest weight-
ing functions of the frequency to compute the root mean square values of the
acceleration. Such functions depend both on the point of the body where the
acceleration is applied and the direction along which it acts.

Figure 26.4, shows the r.m.s. value of the acceleration causing, in a given
time, a reduction of physical efficiency. The exposure limits can be obtained by
multiplying the values reported in the figure by 2, while the “reduced comfort
boundary” is obtained by dividing the same values by 3.15 (i.e., by decreasing
the r.m.s. value by 10 dB). From the plot it is clear that the frequency range in
which humans are more affected by vibration lies between 4 and 8 Hz.

As already stated, frequencies lower than 0.5 − 1 Hz produce sensations
that may be associated with motion sickness. They depend on many parameters
other than acceleration and vary among individuals. Between 1 and 4 Hz, the
ability of humans to tolerate acceleration decreases with the frequency, reaching a
minimum between 4 and 8 Hz. Between 8 and 80 Hz this tolerance increases again
in a practically linear law with frequency. In practice, what creates discomfort
in that range is not so much acceleration, but the ratio between acceleration and
frequency.

Above 80 Hz the effect of vibration depends upon the part of the body
involved, as local vibrations become the governing factor, making impossible to
give general guidelines. There are also resonance fields at which some parts of
the body vibrate with particularly large amplitudes. As an example, the thorax-
abdomen system has a resonant frequency at about 3−6 Hz, although all resonant
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FIGURE 26.5. Curves of constant discomfort, following BSI 6472 (a) and VDI 2057 (b)

frequency values depend strongly upon individual characteristics. The head-neck-
shoulder system has a resonant frequency at about 20 − 30 Hz, and many other
organs have more or less pronounced resonances at other frequencies (e.g., the
eyeball at 60 − 90 Hz, the lower jaw-skull system at 100 − 220 Hz, etc.).

Essentially similar results are plotted in Fig. 26.5. The plots are related to
equal discomfort lines following BSI 6472 (a) and VDI 2057 (b).

Other curves related to vertical and horizontal vibration from various
sources and reported by M.W. Sayers, S.M. Karamihas, The Little Book of Pro-
filing, The University of Michigan, 1998, are plotted in Fig. 26.6.

Remark 26.2 The lower natural frequencies, those linked with the motion of
the sprung mass, must be high enough to avoid motion sickness, but low enough
to be well below 4 Hz. A common choice is to locate them in the range between
1,2 and 1,6 Hz. Higher frequencies, those due to the motion of unsprung masses,
should be well above 8 − 10 Hz. A good choice could be to locate them around
15 − 20 Hz.

26.4 QUARTER-CAR MODELS

The simplest model for studying the suspension motions of a vehicle is the so-
called quarter car model , including a single wheel with related suspension and the
part of the body whose weight is imposed on it. Often, in four wheeled vehicles,
the quarter vehicle including the suspension and the wheels is called a corner of
the vehicle. The quarter car model may be more or less complex, including not
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FIGURE 26.6. Comparison between discomfort limits from ISO and other sources for
vertical (a) and horizontal (b) vibration

FIGURE 26.7. Quarter-car models with one (a), two (b) and three (c) degrees of free-
dom

only the compliance of the suspension, but the compliance of the tire and also
that of the rubber mounts connecting the frame carrying the suspension to the
body. It may even include the inertia of the tire.

Three models based on the quarter car approach are shown in Fig. 26.7.
The first model has a single degree of freedom. The tires are considered rigid

bodies and the only mass considered is the sprung mass. This model holds well
for motions taking place at low frequency, in the range of the natural frequency
of the sprung mass (in most cases, up to 3 − 5 Hz, in the range defined as ride
by SAE).

The second model has two degrees of freedom. The tire is considered as a
massless spring, and both the unsprung and the sprung masses are considered.
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This model holds well for frequencies up to the natural frequency of the unsprung
mass and slightly over (in most cases, up to 30 − 50 Hz, including the ranges
ride, shake and partially harshness).

The third model has three degrees of freedom. The tire is modelled as a
spring-mass-damper system, representing its dynamic characteristics in the low-
est mode. This model allows us to study motions taking place at frequencies in
excess of the first natural frequency of the tires (up to 120 − 150 Hz, including
then harshness).

If higher frequencies must be accounted for, it is possible to introduce a
higher number of tire modes by inserting other masses. These models, essen-
tially based on the modal analysis of the suspension-tire system, are clearly
approximated because a tire can be considered a damped system and one that
is usually nonlinear.

26.4.1 Quarter-car with a single degree of freedom

Consider the simplest quarter-car model shown in Fig. 26.7a. It is a simple mass-
spring-damper system that, among other things, has been used in the past to
demonstrate that the shock absorber must be a linear, symmetrical viscous
damper7.

The equation of motion of the system is simple. Using the symbols shown
in the figure it is

mz̈ + cż + Kz = cḣ + Kh , (26.7)

where z (t) is the displacement from the static equilibrium position, referred to
an inertial frame, and h (t) is the vertical displacement of the supporting point
due to road irregularities8.

The frequency response of the quarter car can be obtained simply by stating
a harmonic input of the type

h = h0e
iωt .

The output is itself harmonic and can be expressed as

z = z0e
iωt ,

where both amplitudes h0 and z0 are complex numbers to account for the dif-
ferent phasing of response and excitation due to damping.

By introducing the time histories of the forcing function and the excitation
into the equation of motion, an algebraic equation is obtained:(

−ω2m + iωc + K
)
z0 = (iωc + K) h0 . (26.8)

7Bourcier De Carbon C.: Théorie mathématiques et réalisation pratique de la suspension
amortie des vehicules terrestres, Proceedings SIA Conference, Paris, 1950.

8The z coordinate must be considered as the displacement from the static equilibrium
position. By doing this, the static problem of finding the equilibrium position is separated
from the dynamic problem here dealt with. This can only be done because of the linearity of
the system.
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It links the amplitude of the response to that of the excitation, and yields

z0 = h0
iωc + K

−ω2m + iωc + K
. (26.9)

If h0 is real (that is, if the equation is written in phase with the excitation),
the real part of the response (the in phase component of the response) can be
separated easily from its imaginary part (in quadrature component)

⎧⎪⎪⎨
⎪⎪⎩

Re (z0)
h0

=
K

(
K − mω2

)
+ c2ω2

(K − mω2)2 + c2ω2

Im (z0)
h0

=
−cmω3

(K − mω2)2 + c2ω2
.

(26.10)

The amplification factor, i.e. the ratio between the absolute values of the
amplitudes of the response and the excitation and the phase of the first with
respect to the second, can be easily shown to be (Figures 26.8a and 26.8c)

FIGURE 26.8. Quarter car with a single degree of freedom, response to harmonic exci-
tation. Ratios between the amplitudes of the displacement (linear (a) and logarithmic
(c) scales) and (d) the acceleration of the sprung mass, and the amplitude of the ground
displacement and (b) phase, for different values of shock absorber damping. The re-
sponses are plotted as functions of the non-dimensional frequency ω∗ = ω

√
m/K
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|z0|
|h0|

=

√
K2 + c2ω2

(K − mω2)2 + c2ω2

Φ = arctan
(

−cmω3

K (K − mω2) + c2ω2

)
.

(26.11)

More than the frequency response expressing the ratio between the
amplitudes of response and excitation, what matters in motor vehicle suspensions
is the ratio between the amplitudes of the acceleration of the sprung mass and
that of the displacement of the supporting point. Because in harmonic motion
the amplitude of the acceleration is equal to the amplitude of the displacement
multiplied by the square of the frequency, it follows that:

|(z̈)0|
|h0|

= ω2 |z0|
|h0|

.

Both frequency responses are plotted in Fig. 26.8 for different values of the
damping of the shock absorber, together with the phase Φ. The responses are
plotted as functions of the nondimensional frequency

ω∗ = ω

√
m

K

and damping is expressed as a function of the optimum damping defined below.
All curves pass through point A, located at a frequency equal to

√
2K/m.

Because the acceleration of the sprung mass must be kept to a minimum to
produce a comfortable ride, a reasonable way to optimize the suspension is to
choose a value of shock absorber damping that leads to a relative maximum, or
at least a stationary point, at point A on the curve related to acceleration. By
differentiating the expression of

ω2 |z0|
|h0|

with respect to ω and equating the derivative to zero at point A, the following
value of the optimum damping is obtained

copt =

√
Km

2
=

ccr

2
√

2
, (26.12)

where
ccr = 2

√
Km

is the critical damping of the suspension.
Although this method for optimizing the suspension can be readily crit-

icized, because the comfort of a suspension is far more complex than simple
reduction of the vertical acceleration (the so-called “jerk”, i.e. the derivative of
the acceleration with respect to time d3z/dt3 also plays an important role), it
nonetheless gives important indications.
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The dynamic component of the force the tire exerts on the ground is

Fz = c
(
ż − ḣ

)
+ K(z − h) = −mz̈ . (26.13)

Remark 26.3 Minimizing the vertical acceleration leads to minimizing the dy-
namic component of the vertical load on the tire, which has a negative influence
on the ability of the tire to exert cornering forces. The condition leading to op-
timum comfort seems, then, to coincide with that leading to optimum handling
performance.

Equation (26.12) allows one to choose the value of the damping coefficient c.
For the value of the stiffness K there is no such optimization: To minimize both
the acceleration and the dynamic component of the force, K should be kept as
low as possible. The only limit to the softness of the springs is the space available.

Remark 26.4 This reasoning has, however, the following limitation: The softer
the springs, the larger the oscillations of the sprung mass. Large displacements
must be avoided because they may cause large errors in the working angles of the
tire, causing the tires to work in conditions that may be far from optimal.

An empirical rule states that soft suspensions improve comfort while hard
suspensions improve handling. This is even more true if aerodynamic devices are
used to produce negative lift: suspensions allowing a large degree of travel cause
major changes of vehicle position with respect to the airflow, producing changes
of the aerodynamic force that are detrimental.

Moreover, at a fixed value of the sprung mass, the lower the stiffness of
the spring, the lower the natural frequency. Very soft suspensions easily lead to
natural frequencies of about 1 Hz or even less, which may cause motion sickness
and a reduction in comfort that varies from person to person. Cars with soft
suspensions with large travel, typical of some manufacturers, are popular with
some customers but considered uncomfortable by others.

The optimum value of the damping expressed by Eq. (26.12) is lower than
the critical damping. The quarter car is then underdamped and may undergo
free oscillations, even if these generally damp out quickly because the damping
ratio ζ = c/ccr is not very low:

copt

ccr
=

1
2
√

2
≈ 0, 354 . (26.14)

Example 26.1 Consider a quarter car model with the following characteristics:

sprung mass m = 250 kg; stiffness K = 25 kN/m; damping coefficient c = 2,150 Ns/m.

Compute the natural frequency of the suspension and its frequency response. As-

sume that the vehicle travels at 30 m/s on a road that may be classified, following ISO

standards, at the limit between class B and class C, and compute the power spectral

density of the acceleration of the sprung mass and its root mean square value. Assess

the performance of the quarter car in these conditions.
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Frequency response. The natural frequency is

ω =

√
K

m
= 10 rad/s = 1.59 Hz

The value of the optimum damping is

copt=

√
mK

2
= 1, 770 Ns/m

and thus the suspension has a damping higher than the optimum value.

The dynamic compliance, that is the ratio between the displacement of the sprung

mass and that of the supporting point,

|H(ω)|= |z0|
|h0|

=

√
K2+c2ω2

(K − mω2)2 +c2ω2
(26.15)

is plotted in Fig. 26.9, together with the inertance ω2H, that is the ratio between the

acceleration of the sprung mass and the displacement of the supporting point.

Response to road excitation. The power spectral density is plotted in Fig. 26.2 in

m2/(cycles/m) as a function of the frequency ω′ in cycles/m. The equation of the

line dividing zone B from zone C is

S′ = cω′n ,

where the frequency with respect to space is expressed in cycles/m and the power spectral

density in m2/(cycles/m); constants c and n are

c = 1.28 × 10−6 m , n = −2

FIGURE 26.9. Dynamic compliance and inertance of the quarter car model with a
single degree of freedom. Power spectral density of the acceleration due to motion on
a road at the boundary between ISO classes B and C at a speed of 30 m/s
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Computing the quantities referred to time from those referred to space at a speed of 30

m/s it follows that

S = c′ωn

where, expressing ω in Hz and S in m2/Hz,

c′ =
c

V n+1
= 3.84 × 10−5 m3 s−2

The power spectral density of the acceleration of the sprung mass can thus be

immediately computed by multiplying the square of the inertance by the power spectral

density of the road profile, obtaining the result reported in Fig. 26.2. The r.m.s. value

of the acceleration can be computed by integrating the power spectral density. The limits

of integration referred to the space frequency are 0,01 and 10 cycles/m. By referring

them to time, the frequency range extends from 0,3 to 300 Hz, obtaining

arms = 5.84 m/s2 = 0, 60 g

This is a high value that causes reduced physical efficiency in less than 1 s at a

frequency between 1 and 2 Hz, where the resonance of the sprung mass is located. This

result should not surprise us, for the quarter car model has only one degree of freedom

and no tire. From the power spectral density it is clear that the largest contribution to

the integral is due to the range between 10 and 300 Hz, because the response is still

quite high even with increasing frequency. The computation, performed by neglecting

the ability of the tire to filter out the excitation at medium-high frequency, has little

meaning.

What the example shows is that the suspension alone is unable to filter out road

excitation, and that the presence of the tire is compulsory.

Because the quarter car model is linear, the damper was assumed to be
acting both in the jounce and in the rebound stroke (double effect damper)
and to be symmetrical (having the same damping coefficient for motion in both
directions). Dampers used in early automotive suspensions acted only in rebound
and are today double effect, but they are not symmetrical because the damping
coefficient in the jounce stroke is much lower than in the rebound stroke.

To understand the advantages of symmetrical double effect dampers9, con-
sider a quarter car with a single degree of freedom, passing at high speed over a
bump or pothole (Fig. 26.10). If the time needed to cross the road irregularity
is far shorter than the period of oscillation of the sprung mass (for instance, a
bump 0.3 m long is crossed in 0.01 s at a speed of 30 m/s), an impulsive model
can be used to compute the trajectory of the sprung mass. The effects of the
perturbation to its motion can be considered as a variation of the vertical com-
ponent of the momentum applied instantly. The trajectory of the sprung mass

9Bourcier De Carbon C.: Théorie mathématiques et r éalisation pratique de la suspension
amortie des vehicules terrestres, Proceedings SIA Conference, Paris, 1950.
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FIGURE 26.10. Quarter car with a rigid wheel crossing a ditch

deviates by an angle α:
tan(α) =

w

u
,

where w is the vertical component of the velocity. It can be computed using the
momentum theorem

mw =
∫ t2

t1

Fdt . (26.16)

The integral in Eq. (26.16) is the impulse of the forces due to the spring and
to the damper from time t1, when the wheel enters the ditch, to time t2 when it
gets out

w =
1
m

(∫ t2

t1

Fmdt +
∫ t2

t1

Fadt

)
. (26.17)

The force due to the spring is the part exceeding the static value compen-
sating for the weight. If the integrals on the right hand side of Eq. (26.17) vanish,
the suspension completely absorbs the irregularity, without any perturbation be-
ing transmitted to the sprung mass. The first of the two integrals is assumed to
be far smaller than the second, because in a small amplitude, high frequency
disturbance the force due to the spring, which is proportional to the displace-
ment, is negligible compared to the force due to the shock absorber, which is
proportional to the velocity. By neglecting the first integral and assuming that
the damper is symmetrical, the expression for the vertical velocity becomes

w =
1
m

∫ t2

t1

−cḣdt = − c

m
(h2 − h1) , (26.18)

where h(x) is the law expressing the road profile.
From Eq. (26.18) it is clear that if h2 = h1 the suspension is able to insulate

the sprung mass perfectly from the road irregularity, a result that is due to the
fact that the damping coefficient in rebound is equal to that in jounce.

This result, however, is compromised by the oversimplification of the model.
It is well known that, while the shock absorber must act in both the up- and
the down-stroke, the damping coefficients must be unequal for best performance.



368 26. COMFORT PERFORMANCE

This is easily explained by noting that while the instant value of the force due to
the shock absorber is larger than that due to the spring, the same inequality does
not hold for the integrals, particularly when the first one vanishes. Another factor
is that the road-wheel constraint is unilateral. The disturbance when crossing a
bump at high speed is higher than when crossing over a hole. In the first case,
the force due to the spring acts upwards; in the second a damping coefficient
higher in the downstroke gives a negative value of the second integral of Eq.
(26.17), which may compensate for the positive value of the first one. Some
approximations are also linked to the use of the impulsive model, particularly
because if the unsprung mass and its natural frequency are accounted for, the
time needed to cross the obstacle is no longer much smaller than the period of
the free oscillations of the system.

Example 26.2 Consider the quarter car with a single degree of freedom studied in
Example 26.1, crossing at a speed V=30 m/s over an obstacle with harmonic profile
similar to the usual obstacles (Fig.26.11c). Let the profile be

h = h0 sin

[
π

x − x1

x2 − x1

]
. (26.19)

with h0 = 100 mm and a length (x2 − x1) of 300 mm. Because

x = V t , (26.20)

the vertical velocity is

ḣ =
πV h0

x2 − x1
cos

[
π

x − x1

x2 − x1

]
. (26.21)

Eq. (26.7) was numerically integrated, with the results shown in Fig.26.11a in

terms of displacements and in Fig. 26.11b in terms of velocity. The quarter car with

FIGURE 26.11. Response in terms of displacement (a) and velocity (b) of a single
degree of freedom quarter car model crossing at 30 m/s a bump 300 mm wide and 100
mm high (c). Full line: symmetric damper; dashed line: the contribution of the spring
to the impulse has been neglected; dotted line: asymmetric damper
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symmetric damper (full line curve) succeeds well at filtering out the obstacle, with a

maximum displacement of 6 mm. (6% of the displacement of the supporting point). The

plot of the velocity shows that the negative impulse in the second part of the obstacle

practically balances the positive impulse in the first one.

The dashed line was computed by neglecting the contribution of the spring to the

impulse.

The dotted line was computed assuming that the damper has a coefficient in the

jounce stroke equal to 80% of that in the rebound stroke. It is clear that the best per-

formance are obtained with a symmetric damper. This consideration is, however, de-

pendent on the extreme simplification of the model. Among other simplifications, the

mono-lateral nature of the road-wheel contact has been neglected.

26.4.2 Quarter-car with two degrees of freedom

The following model is that shown in Fig. 26.7b. It is well suited for the study
of the behavior of vehicle suspensions in a frequency range beyond the natural
frequency of the unsprung mass.

With reference to Fig. 26.7b, the equation of motion of the model is
[

ms 0
0 mu

]{
z̈s

z̈u

}
+

[
c −c
−c c + cp

]{
żs

żu

}
+

+
[

K −K
−K K + P

]{
zs

zu

}
=

{
0

cpḣ + Ph

}
,

(26.22)

where zs and zu are the displacements from the static equilibrium position and
are referred to an inertial frame.

The response to a harmonic excitation h(t) is readily obtained in the same
way used for the previous model and yields a harmonic oscillation, not in phase
with the excitation. The relationship linking the complex amplitudes of the re-
sponse and the excitation is

{
−ω2

[
ms 0
0 mu

]
+ iω

[
c −c
−c c + cp

]
+

+
[

K −K
−K K + P

]}{
zs0

zu0

}
= h0

{
0

iωcp + P

}
,

(26.23)

By neglecting the damping of the tire cp, which is usually small, the ampli-
fication factors of the sprung and unsprung masses are

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|zs0 |
|h0|

= P

√
k2 + c2ω2

f2 (ω) + c2ω2g2 (ω)

|zu0 |
|h0|

= P

√
(k − mω2)2 + c2ω2

f2 (ω) + c2ω2g2 (ω)
,

(26.24)
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where ⎧⎨
⎩

f (ω) = msmuω4 − [Pms + K(ms + mu)] ω2 + KP

g (ω) = (ms + mu)ω2 − P .

The dynamic component of the force exerted by the tire on the ground in
the z direction may be easily computed in a similar way. The force in the z
direction is

Fz = −P (zu − h) (26.25)

and thus
|Fz0 | = P (|zu − h|) . (26.26)

The modulus of zu − h is not coincident with the difference between the
modulus of zu and that of h because the two time histories are out of phase with
each other. By performing the relevant computations, it follows that

|Fz0 |
|h0|

= Pω2

√
[K(ms + mu) − msmuω2]2 + c2(ms + mu)ω2

f2 (ω) + c2ω2g2 (ω)
. (26.27)

The frequency responses related to both the sprung and the unsprung masses
are plotted in Fig. 26.12a and b for a system with P = 4K and ms = 10mu. The
plots, shown using the non-dimensional frequency

ω∗ = ω

√
m

K
, (26.28)

include curves obtained with different values of damping c; all curves lie in the
non-shaded region of the graph.

If c = 0 the natural frequencies are two and the peaks are infinitely high.
Also for c → ∞ the peak, corresponding to the natural frequency of the whole
system, which is now rigid, over the spring simulating the tire, goes to infinity.

The frequency responses of Fig. 26.12a and b multiplied by ω∗2
are shown in

Fig. 26.12c and d; they give the non-dimensional ratio between the accelerations
of the two masses and the displacement of the supporting point (suitably made
non-dimensional). All curves pass through points O, A, B and C. Between O
and A and between B and C the maximum acceleration of the sprung mass
increases with decreasing damping, while between A and B and from C upwards
it increases with damping

An optimum value of damping can be found by trying to keep the accelera-
tion as low as possible in a large range extending up to the natural frequency of
the unsprung mass, i.e. by looking for a curve having a relative maximum or a
stationary point in A. Operating as seen with the previous model, the following
value is obtained

copt =

√
Km

2

√
P + 2K

P
. (26.29)
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FIGURE 26.12. Quarter car with two degrees of freedom, response to harmonic ex-
citation. Ratios between the amplitudes of the displacements of the sprung and the
unsprung masses (a, b) and of the accelerations (c, d) to the amplitude of the displace-
ment of the ground, for different values of the damping of the shock absorber. The
responses are plotted as functions of the nondimensional frequency ω∗ = ω

√
m/K

Because P is much larger than K, the value of
√

(P + 2K)/P is close to
unity (in the case of Fig. 26.12

√
(P + 2K)/P = 1.22 ) and the optimum damping

is only slightly larger than that computed for the model with a single degree of
freedom (Eq. (26.12)). From Fig. 26.12c it is clear that this value of damping is
effective in keeping the acceleration low in a wide frequency range.

The amplitude of the dynamic component of force Fz (Eq. (26.29)) is plotted
in non-dimensional form (divided by P |h0|) as a function of the nondimensional
frequency in Fig. 26.13. The value of the optimum damping expressed by Eq.
(26.29) is also effective in keeping the maximum value of the dynamic component
of force Fz as low as possible, at least at low frequencies. At higher frequencies,
a slightly higher value of damping could be effective, even if it would result in a
larger acceleration of the sprung mass.

The maximum value of the non-dimensional amplitude of force Fz has been
plotted as a function of ratio c/copt in Fig. 26.14a. When the damping goes



372 26. COMFORT PERFORMANCE

FIGURE 26.13. Quarter car with two degrees of freedom, response to harmonic excita-
tion. Ratio between the amplitude of the dynamic component of force Fz between tire
and road and the displacement of the ground, made non-dimensional by dividing it by
the stiffness of the tire P , for different values of the damping of the shock absorber.
The response is plotted as a function of the non-dimensional frequency ω∗ = ω

√
m/K

FIGURE 26.14. (a) Maximum value of the amplitude of the dynamic component of
force Fz in a frequency range between 0 and 30

√
K/m as a function of ratio c/copt.

Same characteristics as the system studied in the previous figures. (b) Minimum value
of the ground force (static force minus amplitude of the dynamic component) as a
function of ratio c/copt for a quarter car model with parameters typical for a small car:
ms = 238 kg; mu = 38kg; K = 15.7 kN/m; P = 135 kN/m; actual value of c/copt equal
to 1.53
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beyond the optimum value computed above, a certain decrease of the maximum
amplitude of the force at high frequency is clearly obtained.

The minimum value of the force on the ground (computed as the static
component minus the amplitude of the dynamic component) has been plotted
as a function of ratio c/copt in Fig. 26.14b, using data similar to those related to
the front suspension of a small car. The curves refer to different amplitudes of
the excitation h0. If the damping is small enough the wheel can bounce on the
road. Clearly, when this occurs the present linear model is no longer applicable.

Example 26.3 Repeat the computations of example 26.1 using a quarter car model

with two degrees of freedom. To the data already considered (sprung mass ms = 250

kg; stiffness of the spring K = 25 kN/m; damping coefficient of the damper c = 2,150

Ns/m.) add the following: unsprung mass mu = 25 kg; stiffness of the tire kt = 100

kN/m.

Compute the r.m.s. value of the acceleration as a function of the speed.

Natural frequencies. The optimum damping is

copt = 2,170 Ns/m,

a value very close to the actual one.
The characteristic equation allowing the natural frequencies of the undamped sys-

tem to be computed is
ω4 − 5.100ω2 + 400.000 = 0.

The values of the natural frequencies are then
{

ω1 = 8.93 rad/s = 1.421 Hz
ω2 = 70.85 rad/s = 11.28 Hz.

Frequency response. The dynamic compliance H(ω) and the inertance are plotted in

Fig.26.15.

Response to road excitation. The power spectral density can be computed in a way

similar to what seen in the previous example. The result is plotted in Fig. 26.15.
The r.m.s. value of the acceleration is

arms = 1.34 m/s2 = 0.136 g.

By comparing the results of the two examples it is clear that the presence of the

tire is effective in filtering out high frequency disturbances, while the transmissibility at

the natural frequency is slightly higher. At any rate, the r.m.s. value of the acceleration

is now acceptable, even if it is not optimal. From the plot of Fig. 26.4, it is clear that

this value causes reduced physical efficiency in 3 hours; however, the driver and the

passengers are also insulated from vibration from the road by the seats.

Considering the integral between a wavelength of 0,1 and 100 m is practically equiv-

alent to considering the whole spectrum from 0 to infinity, because the power spectral

density vanishes outside this range.
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FIGURE 26.15. Dynamic compliance and inertance of the quarter car model with two
degrees of freedom. Power spectral density of the acceleration due to motion on a road
at a speed of 30 m/s

FIGURE 26.16. Power spectral density of the acceleration of the sprung mass (a) and
its r.m.s. value (b) at different values of the speed of the vehicle

The computation has been repeated for various values of the speed and the results

are shown in Fig. 26.16. The r.m.s. value of the acceleration grows with increasing speed.

From the considerations above it is possible to draw the conclusion that
the value of the damping coefficient expressed in Eq. (26.29) is optimal both
from the viewpoint of comfort and handling, because it leads to low variations
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in the forces on the ground. A slightly higher damping may, however, somewhat
improve handling because it slightly reduces the variable component of the force
on the ground.

This conclusion, obtained from a highly simplified model, is not in good
accordance with experimental evidence stating that the value of damping for
optimizing riding comfort is lower than that for optimizing handling.

To optimize the value of the damping coefficient of the suspension it is
possible to consider motion on a road profile of the type defined by ISO 8606:1995
standard and expressed by Eq. (26.1) with n = 2. An excitation of this type may
be considered, as already stated, as a white noise in terms of velocity, defined in
the frequency range between 0,01 and 10 cycles/m.

The power spectral density of the vertical displacement of the contact point
with the ground can be expressed as

S = cV ω−2 . (26.30)

In S.I. units (rad/s), the value of coefficient c is that reported in Table
26.1 multiplied by 2π. The frequency range in which the spectrum is defined is
between frequencies ω1 and ω2, where:

ω1 = 0, 01 ∗ 2πV , ω2 = 10 ∗ 2πV . (26.31)

The r.m.s. value of the vertical acceleration of the sprung mass is

arms =

√∫ ω2

ω1

ω4H2S dω =
√

cV

√∫ ω2

ω1

ω2H2 dω , (26.32)

where H is the frequency response yielding the displacement of the sprung mass.
In a similar way the r.m.s. value of the variable component of the vertical

road-tire force on the ground is

Fzrms
=

√∫ ω2

ω1

H2
F S dω =

√
cV

√∫ ω2

ω1

H2
F

ω2
dω , (26.33)

where HF is the frequency response yielding the variable component of the force.
The r.m.s. values of the acceleration and of the dynamic component of force

Fz are easily computed for different values of the damping coefficient of the
shock absorber. The plot of the former versus the latter allows some interesting
conclusions to be drawn on the choice of the value of the damping (Fig. 26.17).

It must be remembered that ratios arms/
√

cV and Fzrms
/
√

cV are inde-
pendent from c, that is from the characteristics of the road, but not completely
independent from the speed. Actually they would be so if the integrals where
computed in a frequency range from 0 to infinity, but the speed is included in
the integration limits here defined.

Remark 26.5 The conditions leading to optimum comfort (in the sense of min-
imum acceleration) and to optimum handling (in the sense of minimum force
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FIGURE 26.17. Ratio arms/
√

cV versus Fzrms/
√

cV for the quarter car model with
two degrees of freedom with the same data as in Fig. 26.14b (ms = 238 kg; mu = 38kg;
K = 15.7 kN/m; P =135 kN/m). Computation referred to a speed of 30 m/s

variations) are readily identified: The first is obtained with a damping lower
than the optimum damping defined above, while the second for a damping value
that is higher. This result is in better accordance with experimental results than
the previous one.

As already stated, the presence of the tires has a negligible effect on the
frequency response at low frequency, while at higher frequencies their stiffness
must be accounted for. A comparison between the results obtained using the
quarter car models with one and two degrees of freedom is shown in Fig. 26.18.

26.4.3 International Roughness Index

As already stated, the International Roughness Index (IRI) is defined with refer-
ence to a particular quarter car with two degrees of freedom moving at a specified
speed. The data of the quarter car, often defined as golden car, are:

K

ms
= 63, 3 s−2 ,

P

ms
= 653 s−2 ,

mu

ms
= 0, 15 ,

c

ms
= 6 s−1 .

The value of the optimum damping is
copt

ms
= 6, 147 s−1

and thus the model has a damping that is close to optimal.
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FIGURE 26.18. Acceleration of the sprung mass as a function of the frequency for a
unit displacement input. Comparison between the quarter car model with one and two
degrees of freedom (in the latter case P = 4K, ms = 10mu). 1): 2 degrees of freedom; 2):
1 degree of freedom, damping defined by Eq. (26.29); 3): 1 degree of freedom, damping
defined by Eq. (26.12).

The reference speed is 80 km/h.
To define the Roughness Index of a given road profile, the motion of the

quarter car is simulated and the cumulative travel of the sprung mass with
respect to the unsprung mass is calculated over time. The index is the total
value of the travel divided by the distance travelled by the vehicle

IRI =
1

V T

∫ T

0

|żs − żs| dt . (26.34)

The index so defined is a non-dimensional quantity, but one that is often
measured in non-consistent units, [m/km] or [in/mi]. A correlation between the
road characteristics and the roughness index is shown in Fig. 26.19.

Remark 26.6 The Roughness Index may also be interpreted as the average
value of the absolute value of the relative speed of the two masses divided by
the vehicle speed.

The use of an index to define the quality of the road surface, one based on
the ratio between the total motion of the suspension and the distance travelled,
dates back to the 1940s. It is used at present by many international organizations.
Since 1982 the World Bank has used it to compare of road conditions in various
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FIGURE 26.19. Correlation between the road characteristics and the roughness index

Countries. It has been shown that a good correlation exists between the index
and both the vertical acceleration and the variation of the force on the ground;
this property allows the comfort and the performance on a given road to be
understood.

26.4.4 Quarter car with secondary suspension (three degrees
of freedom)

In many vehicles the suspensions are not assembled directly to the body, but
are mounted on a secondary frame, one that often carries other elements with
a non-negligible mass as well. This auxiliary frame is connected to the chassis
with a secondary suspension made by elastomeric mounts. A quarter car of this
type is shown in Fig. 26.7c).

Its equation of motion is

⎡
⎣ ms 0 0

0 mt 0
0 0 mu

⎤
⎦
⎧⎨
⎩

z̈s

z̈t

z̈u

⎫⎬
⎭ +

⎡
⎣ c −c 0

−c c + ct −ct

0 −ct ct + cp

⎤
⎦
⎧⎨
⎩

żs

żt

żu

⎫⎬
⎭+ (26.35)
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+

⎡
⎣ K −K 0

−K K + Kt −Kt

0 −Kt Kt + P

⎤
⎦
⎧⎨
⎩

zs

zt

zu

⎫⎬
⎭ =

⎧⎨
⎩

0
0

cpḣ + Ph

⎫⎬
⎭ .

The response to a harmonic excitation can be computed as with previous
models.

Example 26.4 Repeat the computations of the previous example assuming that a

secondary suspension is located between the sprung and unsprung masses. The data are:

sprung mass ms = 250 kg; mass of the auxiliary frame mt = 10 kg; unsprung mass mu

= 25 kg; stiffness of the spring K = 25 kN/m; stiffness of the spring of the auxiliary

suspension Kt = 100 kN/m; stiffness of the tire kt = 100 kN/m; damping coefficient

of the damper c = 2,150 Ns/m; damping coefficient of the auxiliary suspension ct =

5,000 Ns/m.

The values of the natural frequencies are

⎧⎨
⎩

ω1 = 8.30 rad/s = 1.32 Hz
ω2 = 59.68 rad/s = 9.50 Hz
ω3 = 130.28 rad/s = 20.73 Hz

The dynamic compliance H(ω) and the inertance ω2H are plotted in Fig. 26.20,

along with the power spectral density of the acceleration of the sprung mass when the

vehicle travels at 30 m/s on a road defined as in-between classes B and C ISO 8606:

1995.

The r.m.s. value of the acceleration is

arms = 1.21 m/s2 = 0.12 g.

FIGURE 26.20. Dynamic compliance and inertance of the quarter car model with three
degrees of freedom. Power spectral density of the acceleration due to motion on a road
at a speed of 30 m/s
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The auxiliary suspension improves comfort slightly. By comparing the plots, however,

it is clear that the improvement is concentrated in the medium-high frequency range.

If the comparison were done at a higher speed, in a condition in which high frequency

excitation were more significant, the improvement would be larger.

26.4.5 Quarter-car model with dynamic vibration absorber

A dynamic vibration absorber essentially consists of a mass connected to the
system through a spring and possibly a damper (Fig. 26.21a). If properly tuned,
it can reduce the amplitude substantially at one of the resonances of the origi-
nal system, but it introduces an additional resonance whose peak amplitude is
controlled by the value of its damping cd.

The frequency response of the system of Fig. 26.21a is shown in Fig. 26.21c
for 3 different values of damping: If cd is low, two resonance peaks are present,

FIGURE 26.21. Dynamic vibration absorber, applied to a spring-mass system (a) and
to a quarter car model (b). Frequency response of the first of the two systems for
different values of cd and with md/m = 0.2 (c) and value of the peak amplitude with
optimum damping as a function of the mass ratio md/m (d)
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while if cd is high, there is only one peak. If the damping tends to zero the two
peaks have an infinite height, while if it tends to infinity the system reduces to
an undamped system with a single degree of freedom and thus a single peak with
infinite height. It is possible to demonstrate that the stiffness kd which reduces
the amplitude of the motion of mass m to a minimum is10

(Kd)opt = K
mmd

(m + md)2
. (26.36)

The value (cd)opt of the damping necessary to obtain such a minimum and
the peak amplitude are respectively

(cd)opt =
md

m + md

√
K

3mmd

2(m + md)
,

∣∣∣∣ z0

h0

∣∣∣∣
max

=
√

1 +
2m

md
. (26.37)

Sometimes the vibration absorber may have no elastic element or may be
provided with a damper whose behavior is modelled better by dry friction than
by viscous damping.

Dynamic vibration absorbers are sometimes used in motor vehicle suspen-
sions, as in the quarter car model of Fig. 26.21b, in which a standard shock
absorber is also represented. The equation of motion of the system is⎡

⎣ ms 0 0
0 md 0
0 0 mu

⎤
⎦
⎧⎨
⎩

z̈s

z̈d

z̈u

⎫⎬
⎭ +

⎡
⎣ c 0 −c

0 cd −cd

−c −cd c + cd + cp

⎤
⎦
⎧⎨
⎩

żs

żd

żu

⎫⎬
⎭+

+

⎡
⎣ K 0 −K

0 Kd −Kd

−K −Kd K + Kd + P

⎤
⎦
⎧⎨
⎩

zs

zd

zu

⎫⎬
⎭ =

⎧⎨
⎩

0
0

cpḣ + Ph

⎫⎬
⎭ .

(26.38)

The various frequency responses may be obtained immediately as with the
other quarter car models. Some results are reported in Fig. 26.22. Because no at-
tempt has been made to optimize the suspension, the figure has only a qualitative
interest.

Curve 1 deals with a conventional quarter car model as studied in the pre-
vious section. Curves 2 and 3 refer to a system in which a vibration absorber is
applied to the unsprung mass, tuned on the first and the second natural frequency
(
√

kd/md = 0.89 and
√

kd/md = 7.09). The mass of the vibration absorber is
1/20 of the sprung mass and the damping cd is 2

√
kdmd.

To add a vibration absorber to a conventional suspension changes its per-
formance only slightly, both in terms of acceleration of the sprung mass and
of forces on the ground. But vibration absorbers are interesting because of the
possibility of using them instead of conventional shock absorbers, as in the case
shown by curve 4.

10J.P. Den Hartog, Mechanical vibrations, McGraw Hill, New York, 1956.
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FIGURE 26.22. Quarter car model with dynamic vibration absorber: Non-dimen-
sional amplitude of the acceleration (a) and of the dynamic component of the force
Fz (b) as functions of the non-dimensional frequency ω∗ (P = 4K; ms = 10mu;
c =

√
6mK/8). Line 1: Quarter car without vibration absorber; line 2: md = 0.05ms,√

kd/md = 0.89, cd = 2
√

kdmd; line 3: md = 0.05ms,
√

kd/md = 7.09, cd = 2
√

kdmd;

line 4: md = 0.05ms, c = 0,
√

ks/ms = 4.8, cs = 0.8
√

ksms

In the case shown, in which the values of the parameters were obtained by
trial and error without a true optimization, the acceleration of the sprung mass
is quite low in the entire frequency range, except for a strong resonance peak at
low frequency.

Remark 26.7 The height of the peak is obviously limited, however, because some
damping is present, and in practice is further limited by the other forms of damp-
ing present in the actual system, such as that due to the tire.

If the stiffness of the springs K is low, the peak occurs at very low frequency,
where its importance may be marginal, and the advantages of the vibration
absorber, primarily linked to lower cost and complexity of the system due to
elimination of the need for an element mounted between the body and the wheel,
add to its excellent suspension performance.

Dynamic vibration absorbers, used instead of conventional shock absorbers,
proved advantageous on several low cost small cars with soft suspensions; they
may also, however, be added to conventional luxury cars to further increase ride
comfort.

26.4.6 Quarter car with many degrees of freedom to study
the suspension-tire interaction

In the model of Fig. 26.7c, an additional degree of freedom has been included to
account for the compliance of the tire. To proceed in a more comprehensive way it
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is possible to use the component mode synthesis approach, which is theoretically
applicable only if the tire is a linear elastic system, or at least a lightly damped
but nonetheless linear system.

The part of the system that may be considered a substructure can be iden-
tified. When the system is discretized and the generalized coordinates are the
displacements of a certain number of points (the nodes), it is possible to subdi-
vide the nodes into two groups: the connection nodes, that are common to the
substructure and to other parts of the system, and the internal nodes. The vector
of the generalized coordinates and the stiffness matrix of the substructure may
be accordingly partitioned

q =
{

q1

q2

}
, K =

[
K11 K12

K21 K22

]
, (26.39)

where subscripts 1 and 2 refer respectively to the boundary and the internal
degrees of freedom. The other matrices (mass and damping matrices) may be
partitioned in the same way.

In the present case, if the tire is a substructure, the connection nodes are
located on the wheel rim and the internal nodes are all others. If the rim is a rigid
body and, as in the case of the quarter car model, only the vertical displacement
is considered, the only generalized coordinate that is common to the tire and the
other parts of the system is displacement zu (q1 has just one element).

Consider the tire in its deformed configuration under the static forces due
to the load applied to the suspension and linearize its behavior about this con-
figuration. Neglecting the forces applied to the internal nodes in the static con-
figuration, vector q2 is

q2 = K−1
22 K21q1 . (26.40)

To express the dynamic deflected configuration it is ideally possible to lock
the boundary nodes (in this case by constraining the rim of the wheel) and per-
form dynamic analysis. The natural frequencies and the mode shapes of the tire
are then obtained by solving the eigenproblem related to matrices K22 and M22:

det
(
−ω2M22 + K22

)
= 0.

Once the eigenproblem has been solved, it is possible to use the eigenvector
matrix Φ to perform the modal transformation

q2 = Φη2 .

The generalized coordinates of the substructure can thus be expressed as
{

q1

q2

}
=

{
q1

−K−2
22 K21q1 + Φη2

}
=

=
[

I 0
−K−1

22 K21 Φ

]{
q1

η2

}
= Ψ

{
q1

η2

}
.

(26.41)
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Equation (26.41) is a coordinate transform, allowing the deformation of
the internal part of the substructure to be expressed in terms of constrained and
internal modes. Matrix Ψ expressing this transformation can be used to compute
new mass, stiffness and, if needed, damping matrices and a force vector

K∗ = ΨT KΨ , M∗ = ΨT MΨ , C∗ = ΨT CΨ , f∗ = ΨT f . (26.42)

If the constrained coordinates are m (in the present case m = 1) and the
internal coordinates are n and only k modes of the constrained substructure are
considered (k < n), the size of the original M, K, etc. matrices is m + n, while
that of matrices M∗, K∗, etc. is m + k.

Remark 26.8 If all internal modes are considered (k = n) the method does not
introduce errors, but there is no simplification. Both approximation and simpli-
fication increase while decreasing the number of modes considered.

The substructure so obtained can be easily assembled to the other parts of
the system. If, for instance, only one boundary degree of freedom (the vertical
displacement of the unsprung mass) and only one vibration mode of the tire are
considered, the quarter car model has three degrees of freedom, two ‘physical’
ones (displacements of the sprung and unsprung masses) plus a modal one.

Example 26.5 Consider the quarter car model of the previous examples, taking into

account the inertia of the tire as well. A realistic model of the tire not being available,

consider it as made of a number of rigid rings, the first being attached to the rim and

the last connected to the ground, connected to each other by linear springs and dampers

(Fig. 26.23a, where the rigid rings are 4). The dynamic model of the quarter car is

shown in Fig. 26.23b.

Assume the following data: sprung mass ms= 250 kg; unsprung mass mu = 23

kg; masses of the 4 rings modelling the tire mi= 1 kg (i = 0, ..., 3), stiffness of the

suspension spring K= 25 kN/m; stiffness of the springs simulating the tire ki = 300
kN/m (i = 0,..., 3); damping coefficient of the shock absorber c = 2 150 Ns/m; damping

coefficient of the dampers simulating the tire ci= 100 Ns/m (i = 0, ..., 3 ).
The values of kiwere chosen so that, in static conditions, the stiffness of the tire

(that is, the stiffness of the three springs in series) is the same as in the previous exam-

ples. A certain damping of the tire must be introduced in the present model; otherwise,

the response tends to infinity at the resonance of the latter. The value chosen is, how-

ever, low enough not to influence the results at other frequencies, and it allows the tire

to be studied with the assumption of small damping.
The tire is a system with three degrees of freedom; its mass, stiffness and damping

matrices and the forcing vector due to the motion of the contact point are

M = m0

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ , K = k0

⎡
⎣ 1 −1 0

−1 2 −1
0 −1 2

⎤
⎦ ,

C = c0

⎡
⎣ 1 −1 0

−1 2 −1
0 −1 2

⎤
⎦ , f = h

⎧⎨
⎩

0
0

iωc0 + k0

⎫⎬
⎭ .
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FIGURE 26.23. a): Simplified dynamic model of a tire made of 4 rigid rings connected
to each other by springs. b): Dynamic model of a quarter car with the tire simulated
as in a). c) and d): Response of the quarter car model with three degrees of freedom
based on the model in b)

The first degree of freedom coincides with the vertical displacement of the unsprung

mass and is thus a constrained degree of freedom; the other two are internal degrees of

freedom of the tire. The stiffness matrix must then be partitioned as

K11= k0 , K12 =
[
−k0 0

]
, K21 =

[
−k0

0

]
, K22 = k0

[
2 −1

−1 2

]
.

The other matrices are partitioned in the same way. Modal analysis of the internal
modes yields the following values for the natural frequencies and the eigenvectors

{
ω1 = 457 rad/s = 87 Hz
ω1 = 949 rad/s = 151 Hz

Φ =

⎡
⎢⎣

√
2

2

−
√

2

2√
2

2

√
2

2

⎤
⎥⎦ .
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The transformation matrix Ψ is

Ψ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0

2

3

√
2

2

−
√

2

2

1

3

√
2

2

√
2

2

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The transformed matrices are then

M∗ = m0

⎡
⎣ 1.556 0.7071 −0.2357

0.7071 1 0
−0.2357 0 1

⎤
⎦ ,

K∗= k0

⎡
⎣ 0.3333 0 0

0 1 0
0 0 3

⎤
⎦ ,

C∗ = c0

⎡
⎣ 0.3333 0 0

0 1 0
0 0 3

⎤
⎦ , f∗ = h (iωc0 + k0)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

3
−
√

2

2√
2

2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

If a model with three degrees of freedom is required, just one of the internal modes
of the tire is needed. The third row and column of the transformed matrices may then
be cancelled and the tire can be assembled to the quarter car model, obtaining⎡

⎣ ms 0 0
0 mu + 1.556m0 0.7071m0

0 0.7071m0 m0

⎤
⎦
⎧⎨
⎩

z̈s

z̈u

η̈

⎫⎬
⎭+

+

⎡
⎢⎣

c −c 0
−c c + 0.3333c0 0
0 0 c0

⎤
⎥⎦
⎧⎪⎨
⎪⎩

żs

żu

η̇

⎫⎪⎬
⎪⎭+

+

⎡
⎣ K −K 0

−K K + 0.3333k0 0
0 0 k0

⎤
⎦
⎧⎨
⎩

zs

zu

η

⎫⎬
⎭ = h (iωc0 + k0)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0
1

3
−
√

2

2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

The values of the natural frequencies are⎧⎨
⎩

ω1 = 8.93 rad/s = 1.42 Hz
ω2 = 72.97 rad/s = 11.61 Hz
ω3 = 553.74 rad/s = 88.13 Hz .

The dynamic compliance H(ω) and the inertance ω2H are reported in Fig. 26.23

together with the power spectral density of the acceleration of the sprung mass.
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The r.m.s. value of the acceleration is

arms = 1.36 m/s2 = 0.14 g.

The inertia of the tire has no major effect on the results, except in a narrow

frequency range about its natural frequency, where a small peak can be seen in the

frequency responses. The r.m.s. value of the acceleration is slightly higher and, because

of the presence of high frequency components, an auxiliary suspension may be useful.

Because of the approximate tire model here used, this example is simply an indication

of how the component modes synthesis approach can be used.

26.4.7 Effect of the suspension kinematics

In the previous cases the motion of the unsprung mass is only a vertical trans-
lation, as if the suspension kinematism were a prismatic guide with axis parallel
to the body-fixed z-axis. This model for an independent suspension is, however,
quite rough, because no actual suspension is made with a prismatic guide. Each
type of suspension has its own kinematics, or better elasto-kinematics because
the various linkages are rigid only as a first approximation.

Usually the deviations of the trajectory of the unsprung mass from a straight
line parallel to the z-axis are considered shortcomings of the guiding kinematic
arrangement, as if straight motion were the ideal situation. But it is actually
advisable, on the contrary, that when the wheel gets a shock in the horizontal
direction the suspension allows it to move backwards, reducing the excitation in
the x-direction transferred to the vehicle body. Moreover, as seen in Part I and
in a later section, only by accepting that the wheel does not move exactly in the
z-direction is it possible to counteract the dive effects that occur when braking,
and the lift (or squat) effects found when driving.

The first of these effects, the ability to absorb horizontal shocks, may be
obtained in two ways: by using a kinematic arrangement to produce a suitable
trajectory, as in the case of trailing arms (note that the opposite arrangements,
which could be defined as leading arms, cause a forward displacement of the wheel
when the latter moves upwards and for this reason are seldom used today); or
by giving a suitable horizontal compliance to the suspension.

In the first case, it is still possible to use the quarter car model, while in
the second the model must include a further degree of freedom for each wheel,
namely horizontal displacement.

While a knowledge of the exact elasto-kinematics of the suspension is es-
sential for stating the position of the wheel with respect to the ground and thus
for assessing contact forces, its actual effect on the inertia forces acting on the
elements of the suspension and on the forces due to the spring and the shock
absorber is limited. Thus it is possible to neglect the compliance of the guiding
elements and proceed to a first approximation study related to comfort by using
models based on the quarter car approach.
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FIGURE 26.24. Quarter car model with two degrees of freedom. The dashed lines are
the trajectories of points G, A and M in the xz plane (functions fG, fA and fM)

It is possible to define the trajectories of points G, M and A (Fig. 26.24),
i.e. of the center of mass of the unsprung mass and the attachment points of the
spring and of the shock absorber in a reference frame x1y1z1 fixed to the sprung
mass. The trajectory of a generic point P of the unsprung mass is

{
f1P (x1, y1, z1) = 0
f2P (x1, y1, z1) = 0 .

(26.43)

The motion of the unsprung mass occurs mostly in the z1 direction, and
thus it is expedient to transform Equations (26.43) by solving them in x1 and y1.
The coordinates of point P are then linked to each other by the relationships

{
x1P = fP (z1P)
y1P = gP (z1P) .

(26.44)

Using geometrical considerations it is possible to obtain a third equation
expressing coordinate z1P of point P as a function of the coordinate z1G of the
center of mass of the unsprung mass

z1P = hP (z1G) . (26.45)

The inertial coordinate zu of the center of mass of the unsprung mass is

zu = zs + z1G . (26.46)

The kinematics of the suspension is then completely defined.
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To write a linearized equation of motion for studying small oscillations about
a reference position (for instance, that of static equilibrium), the equations ex-
pressing the trajectory of the generic point P may be linearized as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1P = x1P0 +
(

dfP
dz1P

)
0
z1P

y1P = y1P0 +
(

dgP
dz1P

)
0
z1P

z1P = z1P0 +
(

dhP
dz1G

)
0
z1G ,

(26.47)

that is ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1P = x1P0 +
(

dfP
dz1P

)
0
z1P0 +

(
dfP

dz1P

)
0

(
dhP
dz1G

)
0
z1G

y1P = y1P0 +
(

dgP
dz1P

)
0
z1P0 +

(
dgP
dz1P

)
0

(
dhP
dz1G

)
0
z1G

z1P = z1P0 +
(

dhP
dz1G

)
0
z1G .

(26.48)

The velocity of point P can be expressed in x1y1z1 reference frame as

VP =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
dfP

dz1P

)
0

(
dhP
dz1G

)
0
ż1G(

dgP
dz1P

)
0

(
dhP
dz1G

)
0
ż1G(

dhP
dz1G

)
0
ż1G

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (26.49)

where
ż1G = żu − żs . (26.50)

In the case of point G, function hG and its derivative are

hG (z1G) = z1G ,
dhG

dz1G

= 1 (26.51)

and thus the velocity of the unsprung mass is

VG =

⎧⎪⎪⎨
⎪⎪⎩

(
dfG

dz1G

)
0
(żu − żs)(

dgG
dz1G

)
0
(żu − żs)

żu

⎫⎪⎪⎬
⎪⎪⎭

. (26.52)

The translational kinetic energy of the quarter car with two degrees of free-
dom is then

T =
1
2
msż

2
s +

1
2
muż2

u +
1
2
mu

[(
dfG

dz1G

)2

+
(

dgG

dz1G

)2
]

(żu − żs)
2 , (26.53)

i.e.:

T =
1
2

(ms + muβ) ż2
s +

1
2
mu (1 + β) ż2

u + muβżużs , (26.54)
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where β is a constant whose value is

β =
(

dfG

dz1G

)2

0

+
(

dgG

dz1G

)2

0

. (26.55)

The mass matrix can be immediately obtained from the kinetic energy

M =
[

ms + muβ muβ
muβ mu (1 + β)

]
. (26.56)

Distance MM’ must be computed to obtain the potential energy of the
spring. The coordinates of point M’ are constant in the x1y1z1 frame. They can
be written as x0M’ , y0M’ , z0M’ . The potential energy of the spring is then

U =
1
2
K

[
(xM − xM’)

2 + (yM − yM’)
2 + (zM − zM’)

2
]

, (26.57)

where the system has been assumed to behave linearly about its static equilib-
rium position. Only the quadratic terms of the potential energy enter the stiffness
matrix. The linear terms actually produce constant terms (generalized forces) in
the equation of motion that do not affect the dynamic behavior about the equi-
librium position, and these constant terms are arbitrary. Taking into account
only the quadratic terms, the potential energy reduces to

U =
1
2
Kγz2

1G
=

1
2
Kγ (zu − zs) , (26.58)

where

γ =
(

dhM

dz1G

)2

0

[
1 +

(
dfM

dz1M

)2

0

+
(

dgM

dz1M

)2

0

]
. (26.59)

Taking into account also the deformation potential energy of the tire

UP =
1
2
Pz2

u

(after neglecting constant and linear terms), the stiffness matrix of the system is

K =
[

Kγ −Kγ
−Kγ Kγ + P

]
. (26.60)

By substituting subscript M with subscript A, Eq. (26.49) yields directly
the relative velocity of point A with respect to the sprung mass, i.e. to point A’.
However, what matters for the computation of the forces due to the shock ab-
sorber is not the relative velocity but only its component in the direction AA’.
Distance AA’ is:

AA
′
=

√
(xA − xA’)

2 + (yA − yA’)
2 + (zA − zA’)

2 . (26.61)
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The Raleigh dissipation function of the shock absorber is then

F =
1
2
c

(
dAA

′

dt

)2

. (26.62)

The dissipation function can be simplified by linearizing it about the equi-
librium position, as

F =
1
2
cδ (żu − żs)

2 , (26.63)

where

δ =
(

dhA

dz1G

)2

0

[
(xA0 − xA0’)

(
dfA

dz1A

)
0

+ (yA0 − yA0’)
(

dgA
dz1A

)
0

+ (zA0 − zA0’)
]2

(xA0 − xA0’)
2 + (yA0 − yA0’)

2 + (zA0 − zA0’)
2 ,

(26.64)

By also inserting the term due to the damping of the tire into the expression
of the dissipation function, the damping matrix of the system is obtained

C =
[

cδ −cδ
−cδ cδ + cP

]
. (26.65)

As far as the elastic and damping terms are concerned, the linearized equa-
tion of motion is still Eq. (26.22), except for the values of the stiffness of the spring
or the damping coefficient of the shock absorber which are ‘reduced’ through co-
efficients γ and δ. The mass matrix is, on the other hand, different, because it is
not diagonal. An inertial coupling proportional to the value of the unsprung mass
is then present. It will cause a larger motion of the sprung mass at frequency
ranges typical of the motion of the unsprung mass.

In any case, the quarter car model assumes that the sprung mass moves
along the z direction, an approximation that is increasingly unrealistic with
increasing coupling of horizontal and vertical motion of the unsprung mass due
to the kinematics of the suspension. In particular, a motion of the sprung mass
in the x direction due to a motion in the z direction may be detrimental to
comfort, and cannot be studied using such simple models.

Example 26.6 Consider the quarter car with two degrees of freedom shown in Fig.

26.25. The trailing arm suspension is hinged about an axis parallel to y-axis of the

vehicle. The data are: sprung mass ms= 250 kg; unsprung mass mu = 25 kg; stiffness

of the spring K= 700 kN/m; damping coefficient c = 19.35 kNs/m; Data of the tire:

P = 100 kN/m; cP = 0. Geometrical data: l = 500 mm, lA = 300 mm, lM = 100 mm;

position of C:
[

200 0 −300
]T

mm; position of M’:
[
−200 0 −360

]T
mm;

position of A’:
[

200 0 0
]T

mm.
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FIGURE 26.25. Trailing arm quarter car: geometrical definitions

The functions f1 and f2 defining the trajectory of a point P of the suspension are

{
(x1 − x0)

2 + (z1 − z0)
2 − l2P = 0

y1 − y0 = 0 ,

where x0, y0 and z0 are the coordinates of point C. The corresponding functions fP and
gP are {

fP = x0 ±
√

lP2 − (z1P − z0)
2

gP = y0 .

The double sign does not give problems, because it is determined by the geometry of

the system: Sign (+) must be used if point P is forward of the axis of the hinge. Because

the suspension lies in a plane parallel to the xz plane, coordinate y of all points can be

assumed as zero (y0 = 0).
The derivative

(
df
dz

)
0

is then

(
dfP

dz1P

)
0

=

⎛
⎝ − (z1P − z0)√

l2P − (z1P − z0)
2

⎞
⎠

0

The static equilibrium position is defined by

{
x1G0 = x0 + l cos (θ0) = 633 mm
z1G0 = z0 − l sin (θ0) = −550 mm

and thus (
dfG

dz1G

)
0

= 0.577 , β = 0.333 .

The mass matrix is then

M =

[
258, 33 8, 33
8, 33 33, 33

]
.
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By remembering that triangles CMH’ are CGH similar, the coordinate z1 of point
M is obtained:

z1M = z0 −
lM
l

√
l2 − (z1G − z0)

2

and then (
dhM

dz1G

)
0

= − lM
l

⎛
⎝ (z1G − z0)√

l2 − (z1G − z0)
2

⎞
⎠

0

.

Thus it follows that(
dfM

dz1P

)
0

= 1.732 ,

(
dhM

dz1G

)
0

= 0.116 , γ = 0.0364 .

The coordinate of point A is obtained in a similar way

z1A = z0 +
lA
l

(z1G − z0)

and thus (
dhA

dz1G

)
0

=
lA
l

= 0.6 .

Finally, it follows that(
dfM

dz1G

)
0

= 0.577 , δ = 0.111 .

Note that the values of K and c were chosen in such a way that the reduced values

Kγ and cδ were practically identical to those of example 26.3.

The dynamic compliance H(ω) and the inertance ω2H are plotted in Fig. 26.26

together with the power spectral density of the acceleration of the sprung mass.

FIGURE 26.26. Dynamic compliance and inertance of the trailing arm quarter car
model. Power spectral density of the acceleration due to motion on a road at a speed
of 30 m/s
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The r.m.s. value of the acceleration is

arms = 1.34 m/s2 = 0.14 g.

By comparing the plot with that obtained for the simple two degrees of freedom

quarter car model, it will be noted that the peak of the response is higher, and also that

the response is in general higher at frequencies close to the resonances of both sprung

and unsprung masses. At higher frequencies the response is lower, primarily because the

inertia is in some way increased by the coupling of longitudinal and vertical motion,

causing the suspension to behave as if it were softer. The reduction of the r.m.s. value

of the acceleration is, however, minimal.

26.5 HEAVE AND PITCH MOTION

26.5.1 Simplified models with rigid tires

The heave motion of the vehicle is strictly coupled with pitch motion. The sim-
plest model for studying the heave-pitch coupling is shown in Fig. 26.27a. Its
equation of motion is that of a beam on two elastic and damped supports

[
mS 0
0 Jy

]{
Z̈s

θ̈

}
+

[
c1 + c2 −ac1 + bc2

−ac1 + bc2 a2c1 + b2c2

]{
Żs

θ̇

}
+

+

[
K1 + K2 −aK1 + bK2

−aK1 + bK2 a2K1 + b2K2

]{
Zs

θ

}
=

=

{
c1ḣA + c2ḣB + K1hA + K2hB

−ac1ḣA + bc2ḣB − aK1hA + bK2hB

}
.

(26.66)

The overturning moment due to weight (term −mSgh to be added in
position 22 in the stiffness matrix) is not included in Eq. (26.66), because no
assumption has been made on the height of the pitch center over the road plane.
Nor is any aerodynamic term is introduced into the equation of motion. The
longitudinal position of the springs and the shock absorbers has been assumed
to be the same.

The forcing functions were written in a form that considers only the vertical
motion of points A and B, neglecting horizontal forces at the ground-wheels
interface and the possible coupling between vertical and horizontal motions due
to suspensions.

If mass ms and moment of inertia Jy are those of the whole sprung mass,
the stiffnesses Ki and the damping coefficients ci are those of a whole axle and
are then twice those of a single spring or shock absorber.

The compliance of the tires was neglected in the beam model shown in Fig.
26.27a. It may thus be considered an evolution of the quarter car with a single
degree of freedom. In some cases it can be reduced to a pair of quarter cars,
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FIGURE 26.27. Beam models for heave and pitch motions

as shown in Fig. 26.27b. To compare the two models, it is possible to use the
coordinates ZA and ZB instead of Zs and θ to describe the motion of the beam.
The coordinate transformation may be expressed as:

{
Zs

θ

}
=

1
l

[
b a
−1 1

]{
ZA

ZB

}
. (26.67)

The mass matrix to be included in the equation of motion when using the
new coordinates is

M′ = TT MT,

where T is the transformation matrix defined by Eq. (26.67). All other matrices
can be obtained in the same way. Eq. (26.66) then becomes

mS

l2

[
b2 + r2

y ab − r2
y

ab − r2
y a2 + r2

y

]{
Z̈A

Z̈B

}
+

[
c1 0
0 c2

]{
ŻA

ŻB

}
+

+

[
K1 0
0 K2

]{
ZA

ZB

}
=

{
c1ḣA + K1hA

c2ḣB + K2hB

}
,

(26.68)

where ry is the radius of gyration of the sprung mass about the y-axis.
A dynamic index Id of the sprung mass can thus be defined as

Id =
r2
y

ab
. (26.69)

If Id is equal to unity, i.e. if

Jy = mSab ,

that is
r2
y = ab ,
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the two equations uncouple from each other, yielding the two equations of motion
of two separate quarter cars with sprung masses

mS
b

l
and mS

a

l
,

and the model of Fig. 26.27a reduces to that of Fig. 26.27b.
This condition is usually not verified in practice. The tendency to increase

the wheelbase for stability reasons leads to values of the dynamic index usually
smaller than 1, even smaller than 0.8.

The natural frequencies of the undamped system may be computed using
the homogeneous equation associated with Eq. (26.66) or (26.68), after cancelling
the damping term. If the solution

{
ZA

ZB

}
=

{
ZA0

ZB0

}
eiωt , (26.70)

is introduced in the second of the mentioned equations, the characteristic
equation

det
[
−ω2 mS

l2

[
b2 + r2

y ab − r2
y

ab − r2
y a2 + r2

y

]
+

[
K1 0
0 K2

]]
= 0 (26.71)

is obtained.
The natural frequencies are then the roots of equation

ω4 − ω2
K1(r2

y + a2) + K2(r2
y + b2)

mSr2
y

+ K1K2
l2

m2
Sr2

y

= 0 , (26.72)

that yields

ωi =

√(
b2 + r2

y

)
K2 +

(
a2 + r2

y

)
K1 ± Δ

ry

√
2mS

, (26.73)

where

Δ =
√(

b2 + r2
y

)2
K2

2 + 2K1K2

[(
ab − r2

y

)2 − r2
yl2

]
+

(
a2 + r2

y

)2
K1

2 .

The corresponding eigenvectors are

qi =

⎧⎨
⎩

(
b2 + r2

y

)
K2 −

(
a2 + r2

y

)
K1∓Δ

2K1

(
ab − r2

y

)
1

⎫⎬
⎭ .

The solution with (+) sign yields two positive values, that generally are
not equal to each other. The motion of the beam is neither a rotation about its
center of mass (pitch) nor a translational motion in the z direction (heave), but
the very fact that the displacements at the front and rear axles have the same
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FIGURE 26.28. Heave and pitching motions. (a) and (b): General case; primarily heave
(a) and primarily pitching (b) motions. (c) and (d): Case with Id = 1. (e) and (f): Case
with aK1 = bK2.

sign means that the node (the point with zero displacement) lies outside of the
wheelbase, and thus the motion is primarily translational (heave, Fig. 26.28a).
The solution with (−) sign (Fig. 26.28b) yields a positive and a negative value:
the displacements of the front and rear axles are one positive and one negative
and the node is within the wheelbase. The motion is primarily rotational, even
if not about the center of mass, and it is primarily a pitching motion.

If the dynamic index Id has a unit value (Fig. 26.28c e d), it follows that

Δ =
(
b2 + r2

y

)
K2 −

(
a2 + r2

y

)
K1 = l (bK2 − aK1)

and then

ω1 =
√

lK2

amS
, ω2 =

√
lK1

bmS
. (26.74)

As previously stated, the natural frequencies in this case are those of the
two separate quarter cars of Fig. 26.27b. The corresponding eigenvectors are

q1 =
{

0
1

}
, q2 =

{
1
0

}
,

and the free oscillations of the sprung mass are rotations about the points where
the suspensions are connected to the body. It is impossible to identify a heave
and a pitch mode; it is more accurate to speak about a front-axle and a rear-axle
mode. The limiting case is where the node internal to the wheelbase and that
external to it tend to the ends of the wheelbase.
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The other limiting case (Fig. 26.28e and f) is when

aK1 = bK2 . (26.75)

From Eq. (26.66) without damping terms it is clear that the two equations
of motion uncouple: the heave motion uncouples from the pitch motion. The
first is translational, while the second is rotational and occurs about the center
of mass. The natural frequencies are then

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ω1 =
√

lK1

bmS
bounce,

ω2 =

√
laK1

r2
ymS

= ω1

√
ab

r2
y

pitch.
(26.76)

The two limiting cases may also occur simultaneously. From Eq. (26.76) it
follows that when this is the case the two natural frequencies have the same
value.

Remark 26.9 This solves an apparent inconsistency; if

aK1 = bK2 ,

the centers of rotation are one in the centre of mass (pitch mode) and one at
infinity (heave mode), while when the dynamic index has an unit value they
are at the end of the wheelbase. When both conditions occur simultaneously,
the two natural frequencies coincide; in this case, any linear combination of the
eigenvectors is itself an eigenvector. Thus in the case of a rigid beam, any point
of the beam (or better, of the straight line constituting the beam axis) may be
considered as a center of rotation.

Example 26.7 Consider a vehicle having the following characteristic: sprung mass

ms = 1,080 kg; pitching moment of inertia Jy = 1,480 kg m2; stiffness of the suspen-

sions (referred to the axles) K1 = 45 kN/m; K2 = 38 kN/m; a = 1.064 m; b = 1.596

m, ( l = 2.66 m). Study the pitching oscillations of the vehicle, using a beam model.
The pitching radius of gyration and the dynamic index are

ry =

√
Jy

m
= 1.17 m , Id =

r2
y

ab
= 0.807 . (26.77)

The sprung mass may be subdivided into two masses, one at the front axle and one
at the rear

m1 =
bms

l
= 648 kg , m2 =

ams

l
= 432 kg . (26.78)

The two natural frequencies of the independent quarter car models are

ω1 = 1.33 Hz , ω2 = 1.49 Hz . (26.79)
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Because the dynamic index is different from 1, the approximation so obtained is
a rough one. By solving the characteristic equation, the correct natural frequencies are
obtained

ω1 = 1.36 Hz , ω2 = 1.62 Hz . (26.80)

The corresponding eigenvectors, normalized so that the largest element has a unit value,
are

q1 =

{
1

−0.32

}
, q2 =

{
0.44
1

}
,

The node of the first mode lies within the wheelbase and, because it is 2,015 m

from the front axle, is behind the center of mass. This is essentially a pitching mode.

The node of the second mode, a heave mode, is in front of the vehicle, 2,09 m from the

front axle.

26.5.2 Pitch center

No guiding linkage is considered in the model of Fig. 26.27a, but it is implicitly
assumed that the connection points of the suspension to the body may move
only in a vertical direction. The wheelbase of the vehicle is then not affected
either by bounce or pitch motion. Moreover, it is assumed that the inertia of the
unsprung masses does not affect the motion of the body.

It is, in any caser, possible to find a point along the x-axis such that a vertical
force applied to it produces a vertical motion but no pitching. This point is the
pitch center.

To define the position of the pitch center, a static force F can be applied to
the body in a vertical direction at in a point on the x-axis at a generic distance
d from the center of mass. Equation (26.66) becomes

[
K1 + K2 −aK1 + bK2

−aK1 + bK2 a2K1 + b2K2

]{
Zs

θ

}
= F

{
1
d

}
. (26.81)

Solving for the pitch angle θ, it follows that

θ =
aK1 − bK2 − d (K1 + K2)

K1K2l2
. (26.82)

Equating the numerator to zero, it follows that if

d =
aK1 − bK2

K1 + K2
(26.83)

angle θ vanishes. This value of d is the distance in the x direction of the pitch
center from the center of mass; it is positive if the pitch center is forward of the
mass center. In the majority of cases, d is positive. If Eq. (26.75) holds, d = 0
and the mass center is above or below the mass center.

The presence of kinematic guides for suspensions does not change things:
Eq. (26.66) still holds, even if the meaning of the terms may vary. Consider, for
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FIGURE 26.29. Vehicle with longitudinal swing arm suspensions. a): sketch of the
system; b) position during bounce and pitch motion

instance, a vehicle with longitudinal swing arm suspensions and springs located
below the floor. Linearize the equations of motion about a reference position
(Fig. 26.29).

Assume that the suspended mass moves vertically by a distance Δz and
rotates in pitch by an angle θ. Points A and B move vertically by

{
ΔzA = Δz − cθ
ΔzB = Δz + dθ . (26.84)

By linearizing the system about the horizontal position, rotations φi of the
two swing arms are

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δφ1 =
ΔzA

a − c
ΔxA =

Δz − cθ

a − c

Δφ2 = − ΔzB

b − d
ΔxA = −Δz + dθ

b − d
.

(26.85)

The springs stretch by
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δl1 = −Δφ1h = −h
Δz − cθ

a − c

Δl2 = Δφ2h = −h
Δz + dθ

b − d
.

(26.86)
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The change in elastic potential energy is then

ΔU = 1
2K1Δl21 + 1

2K2Δl22 =

=
1
2
K1

(
h

Δx − cθ

a − c

)2

+
1
2
K2

(
h

Δx + dθ

b − d

)2

.
(26.87)

By differentiating the potential energy with respect to the generalized dis-
placements, the following relationships linking the vertical force and the pitching
moment applied to the vehicle body with the generalized displacements emerge

{
Fz

My

}
=

[
K∗

1 + K∗
2 −cK∗

1 + dK∗
2

−cK∗
1 + dK∗

2 c2K∗
1 + d2K∗

2

]{
Δzs

θ

}
, (26.88)

where:

K∗
1 = K1

(
h

a − c

)2

, K∗
2 =

(
h

b − d

)2

.

As clearly seen, the structure of the stiffness matrix is identical to the general
case, even if it includes terms that are typical of the particular type of suspension.
The damping matrix may be obtained along the same lines.

The suspension type also affects the mass matrix to be introduced into
Eq. (26.66), because heave and pitch motions also cause some movements of
the unsprung masses, causing their inertial parameters to enter the mass matrix
as well.

The height of the pitch center becomes important when the wheels exert lon-
gitudinal forces, because the coupling between driving (or braking) and pitching
depend on it. The antidive and antilift (or antisquat) characteristics of the sus-
pensions also depend on the height of the pitch center.

If the wheels do not exert longitudinal forces, the pitch center is assumed to
lie roughly at the height of the centers of the wheels, which amounts to assuming
that the wheels travel at constant speed even when the body oscillates in heave
or pitch11.

26.5.3 Empirical rules for the design of suspensions

As already stated, the bounce and pitch dynamics of the suspended mass are
strictly related to each other. Some empirical criteria for the choice of the relevant
parameters are here reported: They date back to the 1930s and were introduced
by Maurice Olley12.

• The vertical stiffness of the front suspension must be about 30% lower than
that of the rear suspension;

11Milliken W.F., Milliken D.L., Chassis Design, Professional Engineering Publishing, Bury
St. Edmunds, 2002.

12T.D. Gillespie, Fundamentals of vehicle dynamics, SAE, Warrendale, 1992.
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• The pitch and bounce frequencies must be close to each other; the bounce
frequency should be less than 1.2 times the pitch frequency;

• Neither frequency should be greater than 1.3 Hz;

• The roll frequency should be approximately equal to the bounce and pitch
frequency.

The first rule states that the natural frequency of the rear suspension is
higher than that of the front, at least if the weight distribution is not such that
the rear wheels are far more loaded than those in front . The importance of
having a lower natural frequency for the front suspension may be explained by
observing that any road input reaches the front suspension first and then, only
after a certain time, the rear one. If the natural frequency of the latter is higher,
when the vehicle rides over a bump the rear part quickly “catches up” to the
motion of the front and, after the first oscillation, the body of the vehicle moves
in bounce rather than pitch, a favorable factor for ride comfort. Then the rear
part of the vehicle should lead the motion, but by that time damping has caused
the amplitude to decrease.

The second rule is easily fulfilled in modern cars. The problem here may be
that of having the pitch frequency much higher than the bounce one, and higher
than 1.3 Hz (third rule), as may happen when the dynamic index is smaller than
unity (vehicle with long wheelbase and small front/rear overhang). Generally
speaking, a dynamic index close to unity is considered a desirable condition for
good ride properties, while a complete bounce-ride uncoupling as occurs when
aK1 = bK2 is considered a nuisance. Coupling between bounce and pitching is
good as it tends to avoid strong pitch oscillations.

The fourth rule has nothing to do with pitch motion, and will be discussed
later.

Example 26.8 Check whether the vehicle studied in the previous example complies

with the criteria defined by Olley. Study the response of the vehicle when crossing a road

irregularity at a speed of 100 km/h = 27.8 m/s by using an impulsive model, assuming

that the impulse given by the irregularity first to the front axle and then to the rear axle

has a unit value.

To study the motion of the body after crossing the irregularity, assume that both

suspensions are damped with a damping coefficient equal to the optimum value computed

using a quarter car model with a single degree of freedom.

The natural frequencies of the suspensions, computed using the model with two

independent quarter cars, are 1.33 (front axle) and 1.49 Hz (rear axle). The second

is higher than the first by about 12%. By considering that the natural frequencies are

proportional to the square root of the stiffness, this corresponds to a stiffness of the rear

axle 24% greater than that of the front, a value not much different from the suggested

30%.

Because the dynamic index has no unit value (Id = 0.807 ), the model made by

two quarter cars is not accurate. If the system is considered as a coupled system, the
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frequencies for bounce and pitch motions are 1,36 and 1,62 Hz, which does not coincide

with those previously computed (the first is not much different, while the second is

greater by about 8%). The first is smaller than 1.2 times the second (actually smaller

than that) and the frequencies are relatively similar. However, the natural frequency in

pitch is greater than 1,3 Hz, and is higher than what has been suggested, even if not by

much.
The values of the damping of the shock absorbers, computed using the quarter car

model with a single degree of freedom, are

c1 =

√
K1m1

2
= 3,820 Ns/m , c2 =

√
K2m2

2
= 2,865 Ns/m . (26.89)

The delay between the instant the front axle is excited and that when the rear axle
is on the irregularity is, at 100 km/h,

τ =
l

V
= 0.096 s . (26.90)

To compute the response of the model made by two independent quarter car models
to a unit impulse, it is enough to compute the free responses of the two systems with the
initial conditions due to the impulse. The front suspension will start with the following
initial conditions

(zA)0 = 0 , (żA)0 =
I

mA
for t = 0 . (26.91)

In the same way, the initial conditions for the rear suspension are

(zB)0 = 0 , (żB)0 =
I

mB
for t = τ . (26.92)

The result is reported in Fig. 26.30a in terms of time histories. The vertical dis-

placement at the center of mass and the pitch angle may be computed through Eq.

(26.67) from the displacements of the points where the suspensions are attached. The

result is plotted in Fig. 26.30b, dashed curves. Because the natural frequency of the rear

axle is greater than that of the front axle, the two masses move synchronously after a

single oscillation is completed: pitch motions extinguish faster than bounce.

To avoid the approximations due to the model with two independent quarter cars, it

is possible to numerically integrate the system’s equations of free motion (homogeneous

equation associated to Eq. (26.66)) in two distinct intervals of time, between t = 0 and

t = τ and after t = τ . In the first interval the initial conditions are those following the

first impulse.

{
zG

θ

}
0

=
{

0
0

}
,

{
żG

θ̇

}
0

=

{ I
m

−aI
J

}
for t = τ . (26.93)
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FIGURE 26.30. Bounce and pitch response for a vehicle crossing an obstacle with the
front and the the rear axle at 100 km/h. The obstacle causes a unit vertical impulse.
Displacements of points A and B (a) and of the center of mass and rotation (b) com-
puted using the simplified (Fig. 26.27b) and complete (Fig. 26.27a) model

For the second interval, that following the second impulse, the initial conditions are

{
zG

θ

}
0

=

{
zG

θ

}
1

,

{
żG

θ̇

}
0

=

{
żG

θ̇

}
1

+

⎧⎨
⎩

I
m

bI
J

⎫⎬
⎭ for t = τ , (26.94)

where subscript 1 designates the condition at the end of the first part of the integration,

just before receiving the second impulse. The result is shown in Fig. 26.30b, full lines.

The errors due to the model made by two independent quarter cars are small, even if

the dynamic index is smaller than one.

26.5.4 Frequency response of the model with two degrees
of freedom

If, when using the quarter car model road, roughness excites only bounce mo-
tions, in a complete vehicle it excites both bounce and pitching motions, as
already seen. Neglecting roll, it is possible to use a model of the type seen in
Fig. 26.27a, assuming that laws hA (t) and hB (t) are identical, except for the
fact that the second is delayed with respect to the first by time

τ =
l

V
, (26.95)

needed to travel a distance equal to the wheelbase. To compute the frequency
response of the vehicle, the forcing functions to be introduced into equation
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(26.68) are then
{

hA = ho sin(ωt)
hB = ho sin[ω(t + τ)] = ho[sin(ωt) cos(ωτ) + cos(ωt) sin(ωτ)] .

(26.96)

Term ωτ is proportional to the ratio between the wheelbase l of the vehicle
and the wavelength of road irregularities λ. The frequency ω related to space
instead of time is linked with the wavelength by the relationship

λ =
2π

ω
(26.97)

and to the frequency related to time by the relationship

ω =
ω

V
. (26.98)

It follows then
ωτ =

ωl

V
= 2π

l

λ
. (26.99)

At low frequency, the excitation at the two axles occurs almost in phase,
with the result that pitch motions are little excited. In a similar way, if l is a
whole multiple of the wavelength λ (the wavelength is equal to the wheelbase
or to one of its whole sub-multiples), ωτ is a whole multiple of 2π and then
cos(ωτ) = 1 and sin(ωτ) = 0. The two axles are excited in phase: if the equations
of motion were uncoupled and the center of mass were at mid-wheelbase, only
bounce motion would be excited and no pitching would occur. Although this is
not exactly true due to coupling, the result is that the vehicle pitches much less
than it bounces.

If, on the contrary, l is an odd multiple of λ/2 (the wavelength of the irreg-
ularities is twice the wheelbase or is a whole multiple of twice the wheelbase), it
follows that cos(ωτ) = −1 and sin(ωτ) = 0, and the two axles are excited with
180◦ phasing. In this case, if the center of mass were at mid-wheelbase and the
system uncoupled, no bouncing would occur and the vehicle would only pitch.
This consideration holds qualitatively for actual cases.

This phenomenon, usually referred to as wheelbase filtering, introduces a
dependence between the response of the system and speed. If, for instance, the
wheelbase is 2 m and the speed is 20 m/s, the delay τ is 0,1 s. The maximum
pitch response, with a very low bounce, occurs when the irregularities have a
wavelength equal to twice the wheelbase or one of the odd submultiples of twice
the wheelbase, that is 4, 4/3, 4/5, . . . m. At 20 m/s, the corresponding frequencies
at which bounce motions are minimal are 5, 15, 25, . . . Hz. In the same way,
the maximum bounce motions with little pitching occur at wavelengths equal
to the wheelbase and its whole submultiples, 2, 1, 0,5, . . . m. At a speed of 20
m/s, the corresponding frequencies are 10, 20, 30, . . . Hz. Moreover, little pitch
excitation occurs at very low frequency, as already stated, and as a consequence
pitch excitation is minimal in highway driving.
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The situation may be different for industrial vehicles owing to the larger
wheelbase and lower speed coupled with high spring stiffness: wheelbase filtering
may lead to strong pitch response, accompanied by low bounce. The effect is fur-
ther worsened by the fact that in tall vehicles pitch excitation causes longitudinal
oscillation in points above the center of mass that may prove quite inconvenient.

In general, the expression of the excitation vector is

h0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
K1 + K2 cos(ωτ) − c2ω sin(ωτ)

]
sin(ωt)+

+
[
c1ω + c2ω cos(ωτ) + K2 sin(ωτ)

]
cos(ωt)[

− aK1 + bK2 cos(ωτ) − bc2ω sin(ωτ)
]

sin(ωt)+

+
[
− ac1ω + bc2ω cos(ωτ) + bK2 sin(ωτ)

]
cos(ωt)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (26.100)

The equation of motion (26.66) for vertical and pitch oscillations can then be
written as[

mS 0
0 Jy

]{
Z̈s

θ̈

}
+

[
c1 + c2 −ac1 + bc2

−ac1 + bc2 a2c1 + b2c2

]{
Żs

θ̇

}
+

+

[
K1 + K2 −aK1 + bK2

−aK1 + bK2 a2K1 + b2K2

]{
Zs

θ

}
=

= h0

{
f1(ωτ) sin(ωt) + g1(ωτ) cos(ωt)
f2(ωτ) sin(ωt) + g2(ωτ) cos(ωt)

}
,

(26.101)

where:
f1(ωτ) = K1 + K2 cos(ωτ) − c2ω sin(ωτ) ,
f2(ωτ) = −aK1 + bK2 cos(ωτ) − bc2ω sin(ωτ) ,
g1(ωτ) = c1ω + c2ω cos(ωτ) + K2 sin(ωτ) ,
g2(ωτ) = −ac1ω + bc2ω cos(ωτ) + bK2 sin(ωτ) .

(26.102)

Functions fi(ωτ) and gi(ωτ) may be considered as filters that, applied to
the sine and cosine components of the excitation due to the road profile, yield the
bounce and pitch excitation. However, because of coupling between the equations
of motion, all terms of the excitation contribute to both bouncing and pitching.

To obtain a first approximation evaluation of the effect of wheelbase filtering,
assume that the equations of motion are uncoupled (aK1 = bK2 and bc2 = ac1)
and that the center of mass is at mid wheelbase (a = b). To comply with both
these conditions the front and rear suspensions must have the same elastic and
damping characteristics (K1 = K2 and c2 = c1).

The two equations of motion uncouple, reducing to

mSZ̈s + 2c1Żs + 2K1Zs = h0 [f1(ωτ) sin(ωt) + g1(ωτ) cos(ωt)] , (26.103)

where
f1(ωτ) = K1 [1 + cos(ωτ)] − c1ω sin(ωτ) ,
g1(ωτ) = c1ω [1 + cos(ωτ)] + K1 sin(ωτ) ,

(26.104)
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for vertical motions, and

Jy θ̈ + 2a2c1θ̇ + 2a2K1θ = h0 [f2(ωτ) sin(ωt) + g2(ωτ) cos(ωt)] , (26.105)

where
f2(ωτ) = aK1 [−1 + cos(ωτ)] − ac1ω sin(ωτ) ,
g2(ωτ) = ac1ω [−1 + cos(ωτ)] + aK1 sin(ωτ) ,

(26.106)

for pitching motions.
If the phasing between bounce and pitch motion is not to be computed, it

is useless to obtain the sine and cosine components of the response separately:
what matters is solely its amplitude. The amplitude of the excitation for bouncing
motions is

h0

√
2 (K2

1 + c2
1ω

2)
√

1 + cos(ωτ) . (26.107)

The corresponding frequency response is then
∣∣∣∣Zs0

h0

∣∣∣∣ =

√
4 (K2

1 + c2
1ω

2)
(2K1 − mω2)2 + 4c2

1ω
2

√
1 + cos(ωτ)

2
. (26.108)

The first square root is nothing else than the amplification factor of a quarter
car with a single degree of freedom with mass m/2, stiffness K1 and damping c1.
The second term gives the wheelbase filtering effect for vertical motions. Function

√
1 + cos(ωτ)

2

is plotted in Fig. 26.31a versus the frequency, together with the frequency re-
sponse for the acceleration (inertance) of the quarter car model and their prod-
uct. The values of the speed and the wheelbase used to plot the figure are 30
m/s and 2.16 m respectively.

In a similar way, the amplitude of the excitation entering the second equa-
tion, that for pitching motions, is

h0

√
2a2 (K2

1 + c2
1ω

2)
√

1 − cos(ωτ) . (26.109)

The frequency response for pitch motion is
∣∣∣∣ θ0

h0

∣∣∣∣ =

√
4a2 (K2

1 + c2
1ω

2)
(2a2K1 − Jyω2)2 + 4a2c2

1ω
2

√
1 − cos(ωτ)

2
, (26.110)

that is, introducing the dynamic index Id,
∣∣∣∣ θ0

h0

∣∣∣∣ =

√
4 (K2

1 + c2
1ω

2)
(2K1 − mIdω2)2 + 4c2

1ω
2

√
1 − cos(ωτ)

2
. (26.111)

If the dynamic index has a unit value, the first square root coincides with
that seen for vertical motions, that is, it coincides with the amplification factor



408 26. COMFORT PERFORMANCE

FIGURE 26.31. Wheelbase filtering. (a): Function
√

2[1 + cos(ωτ)] (dashed line), iner-
tance of the quarter car model (dotted line) and product of the two (full line); (b): Same
as in (a), but for function

√
2[1 − cos(ωτ)]. V = 30 m/s; l = 2.16 m.

of a quarter car with a single degree of freedom with mass m/2, stiffness K1 and
damping c1; reference must otherwise be made directly to the pitching oscillations
of the beam constituting the model of the vehicle. The second term yields the
wheelbase filtering effect for pitching motions. Function

√
1 − cos(ωτ)

2

is plotted in Fig. 26.31b versus the frequency, together with the inertance of the
quarter car and their product, using the same values of V and l, as in Fig. 26.31a.

Remark 26.10 The subjective feeling of riding comfort is also affected by the
position of the passengers; when they are close to the centre of mass, pitching
oscillations are slight, but they may be a nuisance in points located a greater
distance from it. Bounce - pitch coupling due to suspensions may severely reduce
riding comfort.

Example 26.9 Compute functions fi(ωτ) and gi(ωτ) for the vehicle of the previous

examples at a speed of 100 km/h = 27.8 m/s and plot the frequency responses for bounce

and pitch oscillations.

The computation will be performed initially using a first approximation model (un-

coupling between bounce and pitch and unit dynamic index), and then factoring in the

actual value of the parameters.

To uncouple the equations, the actual values of a and b are substituted by l/2
and those of K1, K2, c1 and c2 by the mean values of the stiffnesses and damping

coefficients. Morover, Jy is assumed to be equal to mab.

The results are plotted in Fig. 26.32a and b. As expected, at vanishing frequency

and when l is equal to a whole multiple of λ (ω = 0, ω = 10.44 Hz, ... ) the pitching
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FIGURE 26.32. Functions fi(ωτ) and gi(ωτ) and frequency responses for bounce and
pitch motions for the vehicle of the previous examples at 100 km/h. (a) and (b): sim-
plified uncoupled model. (c) and (d): actual value of the parameters

response vanishes and only bounce is present. If l is an odd multiple of λ/2 (ω = 5.22
Hz, ω = 15.66 Hz, ... ) the bounce response vanishes and only pitch is present.

The results obtained from the actual values of the parameters are shown in

Fig. 26.32c and d. As is clear from the figure, the results differ from those obtained

by uncoupling the equations, but the difference is not large. In particular, the bounce

response never vanishes, even if at about 5 and 15 Hz it becomes quite small.

It must be noted that the model with stiff tires used here should not be used for

frequencies higher than 4 − 6 Hz.

26.5.5 Effect of tire compliance

If the compliance of tires is accounted for, the model must contain also the
unsprung masses. The minimum number of degrees of freedom needed to study
bounce and pitch motions is four (Fig 26.33a). If the dynamic index has a unit
value, the model of Fig 26.33a may be substituted by that of Fig 26.33b.
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FIGURE 26.33. Beam models with 4 degrees of freedom for the study of pitch and
bounce motions taking into account the compliance of tires

Remembering that the excitation due to the vertical motion of points
A and B can be expressed by equations (26.96), the equation of motion can
be written in the form

⎡
⎢⎢⎣

mS 0 0 0
0 J∗

y 0 0
0 0 m1 0
0 0 0 m2

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

Z̈s

θ̈

Z̈1

Z̈2

⎫⎪⎪⎬
⎪⎪⎭

+

+

⎡
⎢⎢⎣

c1 + c2 −ac1 + bc2 −c1 −c2

a2c1 + b2c2 ac1 −bc2

c1 + 2cp1 0
symm. c2 + 2cp2

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

Żs

θ̇

Ż1

Ż2

⎫⎪⎪⎬
⎪⎪⎭

+

(26.112)

+

⎡
⎢⎢⎣

K1 + K2 −aK1 + bK2 −K1 −K2

a2K1 + b2K2 aK1 −bK2

K1 + 2P1 0
symm. K2 + 2P2

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

Zs

θ
Z1

Z2

⎫⎪⎪⎬
⎪⎪⎭

=

= h0

⎧⎪⎪⎨
⎪⎪⎩

0
0

2P1 sin(ωt) + 2ωcp1 cos(ωt)
2f(ωτ) sin(ωt) + 2g(ωτ) cos(ωt)

⎫⎪⎪⎬
⎪⎪⎭

,

where m1 and m2 are the unsprung masses of the two axles.

f(ωτ) = P2 cos(ωτ) − cp2ω sin(ωτ) ,
g(ωτ) = cp2ω cos(ωτ) + P2 sin(ωτ) .

(26.113)

Example 26.10 Compute the frequency responses for bounce and pitch motion using

the model with 4 degrees of freedom. Compare the results with those obtained from the

model with two degrees of freedom.
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FIGURE 26.34. Frequency responses for displacements and accelerations in bounce and
pitch motions for the vehicle of the previous examples at 100 km/h. (a) and (b): model
with two degrees of freedom; (c) and (d): model with four degrees of freedom

Data of the unsprung masses: mn1= mn2= 65 kg, P1= P 2= 125 kN/m,

cp1= cp2= 0.

The results obtained using the model with 2 degrees of freedom are reported in

Fig. 26.34a and b, while those obtained using the model of 4 degrees of freedom are

reported in Fig. 26.34c and d. The values of the natural frequencies of the undamped

system are 1,25, 1,51, 10,61 e 10,74 Hz, while those of the simplified model are 1,36 e

1,62 Hz .

At low frequency the results obtained from the two models are similar, while at

frequencies higher than those of the unsprung masses the filtering effect of the tires

reduces the amplitude of the response.

26.5.6 Interconnected suspensions

If the value of the pitch natural frequency is too high when compared with
that of the bounce motions, ride comfort may be affected. To control the nat-
ural frequencies of pitch and bounce independently, without changing the wheel
positions and the inertial properties of the body, the suspensions can be inter-
connected. Pitching frequencies can be raised without increasing those in bounce
if the front and rear wheels are connected by a spring opposing pitching motions,
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FIGURE 26.35. Longitudinal interconnection of the suspensions. (a) Sketch of an ap-
plication; (b) model in which the interconnection is implemented using a beam hinged
to the sprung mass. The tires are considered as rigid bodies and not included into the
model

similar to the anti-roll bars used for rolling motions. This is however the opposite
of what is usually needed and, moreover, has the effect of decreasing the damping
of pitch.

Various types of mechanical, hydraulic or pneumatic interconnections may
be used, the latter particularly in the presence of air or hydraulic springs. A me-
chanical solution is shown in Fig. 26.35a: The vehicle is based on longitudinal
swing arm suspensions, with springs located longitudinally under the sprung
mass. The springs are connected to a further element, itself elastically connected
to the vehicle body. The system is functionally similar (even if simpler) to the
model shown in Fig. 26.35b, in which the intermediate element is a beam, hinged
to the vehicle body and connected to the unsprung masses through springs. The
tires are considered here as rigid bodies and have not been included in the model.

If the beam and springs with stiffness χ1 and χ2 were not included, the
equation of motion would have been Eq. (26.66), without the damping matrix,
as in the figure, if damping is neglected. If the inertia of the beam is neglected,
no further degree of freedom is needed, because the position of the beam is
determined by the displacement z and the rotation θ of the sprung mass. The
stiffness matrix may be obtained simply by adding the potential energy of springs
χ1 and χ2 and performing the relevant derivatives.

The positions of points P and Q are simply{
zP = z + cθ − l1γ
zQ = z + cθ + l2γ ,

(26.114)

where γ is the angle between line PQ and the horizontal and all relevant angles
are assumed to be small.

The potential energy due to the two added springs is

2U = χ1z
2
P + χ2z

2
Q = (χ1 + χ2)

(
z2 + c2θ2 + 2cθz

)
+

+γ2(l21χ1 + l22χ2) + 2γ(z + cθ)(l1χ1 − l2χ2) .
(26.115)
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The value of γ can be easily computed by stating

∂U
∂γ

= 0 ,

which yields

γ = −(z + cθ)
l1χ1 − l2χ2

l21χ1 + l22χ2

. (26.116)

The final expression for the potential energy is then

U =
1
2
(z + cθ)2

χ1χ2(l1 + l2)2

l21χ1 + l22χ2

. (26.117)

By performing the relevant derivatives, the stiffness matrix becomes

K =
[

K1 + K2 + χ −aK1 + bK2 + χc
−aK1 + bK2 + χc a2K1 + b2K2 + χc2

]
, (26.118)

where

χ =
χ1χ2(l1 + l2)2

l21χ1 + l22χ2

.

From Eq. (26.118) it is clear that the terms due to the interconnection
between front and rear suspensions affect in a different way the various elements
of the stiffness matrix and allow to modify independently the values of the bounce
and pitch natural frequencies, possibly lowering the latter without affecting the
former.

26.6 ROLL MOTION

26.6.1 Model with a single degree of freedom

As already stated, roll is coupled with handling and not with ride comfort. How-
ever it is also true that rolling can affect strongly the subjective feeling of riding
comfort.

The simplest model for studying roll motion is a rigid body, simulating the
sprung mass, free to rotate about the roll axis, constrained to the ground by a
set of springs and damper with a stiffness and a damping coefficient equal to
those of the suspensions (Fig. 26.36). If Jx, ms, χi and Γi are respectively the
moment of inertia about the roll axis, the sprung mass, the torsional stiffness
and the damping coefficient of the ith suspension, the equation of motion is

Jxφ̈ + (Γ1 + Γ2) φ̇ + (χ1 + χ2) φ − msghG sin (φ) = (26.119)

= Γ1α̇t1 + Γ2α̇t2 + χ1αt1 + χ2αt2 ,

where the forcing functions are those due to the transversal inclination of the
road αti

at the ith suspension.
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FIGURE 26.36. Model with a single degree of freedom for the study of roll motion.
Cross section in a plane containing the center of mass G of the sprung mass. The roll
axis goes through point CR

The inertia of the unsprung masses and the compliance of the tires are not
included in such a simple model, which is formally identical to the quarter car
with a single degree of freedom.

For small values of the roll angle, the model may be linearized, stating
sin (φ) ≈ φ. The roll natural frequency is then

ωroll =
√

χ1 + χ2 − msghG

Jx
. (26.120)

The optimum damping value may be obtained from Eq. (26.12):

Γopt =

√
Jx (χ1 + χ2 − msghG)

2
. (26.121)

This condition is generally not satisfied, particularly if the vehicle has anti-
roll bars. The torsional damping of the suspensions is supplied by the same shock
absorbers normally designed to optimize vertical motion; the roll damping they
supply is usually lower than needed. The increase in stiffness due to anti-roll bars
is not accompanied by an increase in damping. The effect is causes a decrease of
the damping ratio, together with an increase of the natural frequency.

The stiffer the suspension in torsion, the more underdamped the roll
behavior, if the increase in stiffness is due to anti-roll bars. Although reduc-
ing rolling in stationary conditions, they may increase it in dynamic conditions.
An overelongation in the step response, as when roll is due to a moment abruptly
applied (steering step input, wind gusts or other similar instances), may then
result. A large roll in dynamic conditions my cause rollover.

The stationary value of the roll angle on a road with transversal slope αt =
αt1 = αt2 is

φ = αt
χ1 + χ2

χ1 + χ2 − msghG
. (26.122)
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The importance of a center of mass not too high on the roll axis and stiff
suspensions (in roll) is then clear. The last condition contradicts the need for a
small roll in dynamic conditions.

Example 26.11 Consider the vehicle studied in Example 26.7, and assume that the

moment of inertia Jx is equal to 388.8 kg m2 and the sprung mass is 1,080 kg. Compute

the time history of the roll angle when the vehicle encounters a ramp leading from a

horizontal road to a transversal slope αt = 5◦ in a distance of 10 m at a speed of 30

m/s.

Other data: stiffnesses of the axles K1 = 45 kN/m, K2 = 38 kN/m, damping of

the axles c1 =3,820 Ns/m, c2 =2,865 Ns/m, distance of the springs and dampers from

the symmetry plane d = 0.5 m, wheelbase l = 2.66 m. Repeat the computation, adding

an anti-roll bar at the front axle, with a stiffness χb =4,000 Nm/rad.

Computation without anti-roll bar.
The stiffnesses and damping coefficients of the axles can be computed using for-

mulae of the type
χi = Kid

2
i . (26.123)

It then follows that: χ1 = 11.25 kNm/rad, χ2 = 9.5 kNm/rad, Γ1 = 955

Nms/rad, Γ2 = 716 Nms/rad. The total roll damping Γ1 + Γ2 = 1.671 Nms/rad is

then smaller than the optimum damping computed by neglecting the gravitational ef-

fect (2.008 Nms/rad), while only slightly smaller than that computed by taking it into

account (1.733 Nsm/rad).

The roll natural frequencies are then ω = 1.00 Hz (gravitational effect included)

or ω = 1.16 Hz.
The linearized, state space equation

{
v̇φ

φ̇

}
=

[
− (Γ1+Γ2)

Jx
− χ

Jx

1 0

]{
vφ

φ

}
+

1

Jx

[
Γ1 Γ2 χ1 χ2

0 0 0 0

]
⎧⎪⎪⎨
⎪⎪⎩

α̇t1

α̇t2

αt1

αt2

⎫⎪⎪⎬
⎪⎪⎭

(26.124)

where vφ = φ̇, can be written and then solved numerically to compute the time history

of the response.
The input to the system is given by angles αi and their derivatives. If the excitation

is due to motion at a speed V on a ramp having a length lr leading linearly to a
transversal slope αt, assuming that at time t = 0 the front axle meets the ramp, it
follows that

αt1 =

⎧⎨
⎩

0 for t ≤ 0

αtt
V
lr

for 0 < t < lr
V

αt for t ≥ lr
V

αt2 =

⎧⎨
⎩

0 for t ≤ l
V

αt

(
t − l

V

)
V
lr

for l
V

< t < lr+l
V

αt for t ≥ lr+l
V

(26.125)

α̇t1 =

⎧⎨
⎩

0 for t ≤ 0

αt
V
lr

for 0 < t < lr
V

αt for t ≥ lr
V

α̇t2 =

⎧⎨
⎩

0 for t ≤ l
V

αt
V
lr

for l
V

< t < lr+l
V

αt for t ≥ lr+l
V

(26.126)



416 26. COMFORT PERFORMANCE

FIGURE 26.37. Time history of the roll angle when the vehicle manages a ramp leading
from level road to a transversal slope αt. Model with 1 degree of freedom

Computation with anti-roll bar.

The computation is then repeated after adding the stiffness of the anti-roll bar to

that of the suspensions. The roll natural frequency is now ω = 1.13 Hz.

The results are reported in non-dimensional form in Fig. 26.37. Results obtained

with both the actual and the optimum damping are reported for the case without anti-roll

bar. In this case, the actual damping is smaller than the optimum and the difference

between the two results is small.

As expected, the steady state inclination of the body coincides with the transversal

slope of the road, if the effect of the weight is neglected. If weight is accounted for,

the final inclination of the body is greater. The nonlinear model has been integrated

numerically to check whether the results obtained are realistic: owing to the low values

of the angles, the difference between the linearized and the nonlinear results is negligible.

If an anti-roll bar is present the whole curve decreases, when the effect of weight is

taken into account. If the latter is neglected, the effect of the anti-roll bar is minimal.

26.6.2 Model with many degrees of freedom

A simple model with three degrees of freedom may be used to take rolling of
unsprung masses and compliance of the tires into account. The unsprung masses
are modelled as rigid bodies free to rotate about the roll axis of the vehicle.
It is clear that this model is a rough approximation, particularly if independent
suspensions are used. This further approximation, however, does not worsen mat-
ters, because the largest errors come from studying roll motion without taking
into account that they are coupled with handling motions.
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The linearized equation for the study of roll motion is

⎡
⎣ Jx 0 0

0 Jx1 0
0 0 Jx1

⎤
⎦
⎧⎨
⎩

φ̈

φ̈1

φ̈2

⎫⎬
⎭ +

⎡
⎣ Γ1 + Γ2 −Γ1 −Γ2

−Γ1 Γ1 + Γp1 0
−Γ2 0 Γ2 + Γp2

⎤
⎦×

×

⎧⎨
⎩

φ̇

φ̇1

φ̇2

⎫⎬
⎭ +

⎡
⎣ χ1 + χ2 − msghG −χ1 −χ2

−χ1 χ1 + χp1
0

−χ2 0 χ2 + χp2

⎤
⎦
⎧⎨
⎩

φ
φ1

φ2

⎫⎬
⎭ =

=

⎧⎨
⎩

0
Γp1 α̇t1 + χp1

αt1

Γp2 α̇t2 + χp2
αt2

⎫⎬
⎭ ,

(26.127)

where χi, χpi
, Γi, Γpi

are the stiffness and the damping of the suspensions and
of the tires. The excitation is given by the transversal slope of the road αt1 and
αt2 at the front and rear axles.

Equation (26.127) can be solved numerically and allows the natural frequen-
cies of roll oscillations to be computed.

To drastically simplify the model, the moment of inertia of the unsprung
masses and the damping of the tires can be neglected. The equations of motion
are thus a set of a second order equations plus two first order ones. The state
space equation so obtained is of the fourth order:⎧⎪⎪⎨

⎪⎪⎩

v̇φ

φ̇

φ̇1

φ̇2

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎣

0 msghG/Jx −χp1
/Jx −χp2

/Jx

1 0 0 0
1 χ1/Γ1 −

(
χ1 + χp1

)
/Γ1 0

1 χ2/Γ2 0 −
(
χ2 + χp2

)
/Γ2

⎤
⎥⎥⎦×

×

⎧⎪⎪⎨
⎪⎪⎩

vφ

φ
φ1

φ2

⎫⎪⎪⎬
⎪⎪⎭

+

⎡
⎢⎢⎣

χp1
/Jx χp2

/Jx

0 0
χp1

/Γ1 0
0 χp2

/Γ2

⎤
⎥⎥⎦
{

αt1

αt2

}
.

(26.128)

Example 26.12 Consider the vehicle of the previous example, assuming that the

stiffness of the tires is 125 kN/m. Assuming a value of 1.48 m for the track, the torsional

stiffness for the unsprung masses is χ1 = χ2 = 136.9 kNm/rad. The results are reported

in Fig. 26.38 in nondimensional form.

As is clear from the figure, the effect of the compliance of the tire is not large.

26.7 EFFECT OF NONLINEARITIES

26.7.1 Shock absorbers

As previously stated, shock absorbers are far from being linear viscous dampers.
In fact, most automotive shock absorbers are unsymmetrical, with a damping
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FIGURE 26.38. Time history of the roll angle when the vehicle manages a ramp leading
from level road to a transversal slope αt. Model with 3 degrees of freedom

which is larger in the rebound stroke. Apart from the nonlinearities in the be-
havior of the shock absorbers and those due to the geometry of the suspension,
along with asymmetries purposely built in, other unwanted nonlinear effects,
such as dry friction, are often present. Particular care must be devoted to the ef-
fects of lateral loads in McPherson suspensions, due to a more or less pronounced
dependence of the characteristics on temperature and cavitation. The latter phe-
nomenon is primarily felt at high temperature, and consists in the vaporization
of the fluid or the expansion of the gasses dissolved in it.

Moreover, even in cases where shock absorbers are assumed to act in the
same direction as other forces, some deviations may occur in practice, introducing
further nonlinearities that should be accounted for.

By neglecting the inertia of moving elements and temperature variations,
the force exerted by a shock absorber may be considered as a function of both
relative displacement and relative velocity of its endpoints:

F = F (z, ż) . (26.129)

The experimental results are often reported in the form of a force-
displacement plot (Fig. 26.39a). If the force were proportional to velocity (viscous
damping) the plot obtained in harmonic motion conditions would be an ellipse,
with a ratio between its axes proportional to the frequency. If the characteris-
tics were linear but unsymmetrical (i.e. bilinear) the plot would be made by two
semi-ellipses, one above (the smallest) and one below (the largest) the abscissa’s
axis.
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FIGURE 26.39. (a): Force-displacement experimental plot for a shock absorber at var-
ious temperatures. Note the anomaly, likely due to cavitation, in the second quadrant.
(b): Force-speed plot for the same shock absorber, obtained in slightly different condi-
tions

The force-speed plot (characteristic plot) of the same shock absorber is
reported in Fig. 26.39b. If no cavitation occurs, the force depends only on the
speed, i.e. the intersections of the surface (26.129) with planes with ż constant
are horizontal straight lines, and the characteristic diagram is unique. In this
case, force F depends only on ż and may be written as the sum of a linear
characteristic (viscous damping), an odd function fo (ż) and an even function
fe (ż) of the speed ż:13

F = −c ż − fe (ż) − fo (ż) . (26.130)

The two functions are, respectively, the deviation from symmetry and the
deviation from linearity.

13G. Genta, P. Campanile, An Approximated Approach to the Study of Motor Vehicle Sus-
pensions with Nonlinear Shock Absorbers, Meccanica, Vol. 24, 1989, pp. 47-57.
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In the simplest case of bilinear characteristic, only the former is present and
the characteristic is

F = −cż [1 + μ sgn (ż)] . (26.131)

The characteristic of a shock absorber described by Eq. (26.131) is plotted
for various values of μ, in Fig. 26.40a.

The experimental characteristics of two automotive shock absorbers are plot-
ted in Fig. 26.41. The characteristic of the first is bilinear, and may be approxi-
mated with good precision using Eq. (26.131) with:

c = 3.25 kNs/m , μ = 0.3846 .

FIGURE 26.40. a): Characteristics of bi-linear shock absorbers (Eq. (26.131)), with
various values of μ. b) Effect of dry friction on the characteristics of a nonlinear non-
symmetric shock absorber

FIGURE 26.41. Characteristics of two shock absorbers, one bi-linear and the other one
nonlinear
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The characteristic of the second is more complicated and can be expressed
by Eq. (26.130) with

c = 1000 kNs/m , fo = 268.6
√

|ż| + 350 |ż| ,

fe = 268.6
√

|ż|sgn (ż) − 350ż ,

where ż is in m/s.
A step function centered in the origin can be added to fo (ż) to include dry

friction in the model. The characteristics of Fig. 26.41b with dry friction added
is shown in Fig. 26.40b.

Consider a quarter car model with a single degree of freedom with a non-
linear shock absorber whose characteristic is expressed by Eq. (26.130). The
equation of motion is

mz̈ + cż + Kz + fe

(
ż − ḣ

)
+ fo

(
ż − ḣ

)
= cḣ + Kh . (26.132)

In this case, it is easier to write the equation in terms of relative displacement

zr = z − h,

instead of the displacement z, obtaining

mz̈r + cżr + Kzr + feżr + fożr = −mḧ . (26.133)

Because the system is nonlinear, the response will be a generic periodic but
non-harmonic law even if the forcing function is harmonic. It may, at any rate,
be expressed by a Fourier series

zr = z0 +
∞∑

i=0

zi sin (iωt + φi) , (26.134)

where all harmonics, including that of order 0, may be present, because the
nonlinear function contains both even and odd terms. If the nonlinearities are
not too strong, a first approximation solution may be obtained by truncating
the series after the term with i = 1. Working in phase with the response and not
with the excitation, it is possible to write{

h = h0 sin (ωt − φ)
zr = z0 + z1 sin (ωt) . (26.135)

By introducing solution (26.135) into Eq. (26.133), the latter transforms
into the algebraic equation

F(t) = 0 , (26.136)

where

F(t) = z1

[(
K − mω2

)
sin (ωt) + cω cos (ωt)

]
+

+z0K + fe (ωz1 cos (ωt)) + fo (ωz1 cos (ωt)) + (26.137)
−ω2mh0 [cos (φ) sin (ωt) − sin (φ) cos (ωt)] .
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An approximated solution for z0 and z1 may be obtained by stating that
Eq. (26.136) holds as an average for a whole period, instead of holding in each
instant. This may be formalized by stating that the integral of the virtual work

F(t)δzr = F(t) [δz0 + δz1 sin (ωt)] (26.138)

for a period vanishes.
Because the virtual displacements δz0 and δz1 are arbitrary, this amounts

to stating ⎧⎪⎪⎨
⎪⎪⎩

∫ T

0

F(t)dt = 0∫ T

0

F(t) sin (ωt) dt = 0.

(26.139)

Since the integrals over a period of sine and cosine functions and of all odd
functions of any trigonometric function vanish, the first equation yields

z0KT +
∫ T

0

fe (ωz1 cos (ωt)) dt = 0 . (26.140)

It follows then that

z0 = − 1
2πK

∫ 2π

0

fe (ωz1 cos (ωt)) d (ωt) . (26.141)

In the case of the bi-linear shock absorber, from Eq. (26.131) it follows

fe = cżμ sgn (ż) = cωz1μ |cos (ωt)| (26.142)

and then

z0 = −cωz1μ

2πK

∫ 2π

0

|cos (ωt)| d (ωt) = −2cωz1μ

πK
. (26.143)

From simple symmetry considerations, it follows that
∫ T

0

fe (ωz1 cos (ωt)) sin (ωt) dt = 0∫ T

0

fo (ωz1 cos (ωt)) sin (ωt) dt = 0

and then the second Eq. (26.131) yields

z1

(
K − mω2

)
= ω2mh0 cos (φ) . (26.144)

The phasing between the forcing function and the harmonic component of
the response can be computed by stating that the energy dissipated in a cycle
by the damper is equal to the energy supplied by the forcing function

∫ T

0

[c ż + fe (ż) + fo (ż)] żdt =
∫ T

0

−mḧżdt , (26.145)
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that is ∫ T

0

[
cz1ω cos2 (ωt) + fe (ωz1 cos (ωt)) cos (ωt) + (26.146)

+ fo (ωz1 cos (ωt)) cos (ωt)] dt = −mh0ω
2

∫ T

0

cos2 (ωt) sin (φ) dt.

Because ∫ T

0

fe (ωz1 cos (ωt)) cos (ωt) dt = 0 , (26.147)

it follows that

cz1ω +
1
π

∫ 2π

0

fo (ωz1 cos (ωt)) cos (ωt) d (ωt) = −mh0ω
2 sin (φ) . (26.148)

Equations (26.144) and (26.148) allow the two remaining unknowns, z1 and
φ to be computed By adding the squares of the two equations, it follows that

z2
1

(
K − mω2

)2
+

[
cωz1 +

1
π2

∫ 2π

0

fo (ωz1 cos (ωt)) cos (ωt) d (ωt)
]2

= ω4m2h2
0 .

(26.149)
Once function fo (ż) has been stated, this equation allows the amplitude of

the motion z1 to be computed.
By dividing Eq. (26.148) by Eq. (26.144) it follows that

φ = artg

[
−

πcz1ω +
∫ 2π

0
fo (ωz1 cos (ωt)) cos (ωt) d (ωt)
πz1 (K − mω2)

]
. (26.150)

It is then possible to demonstrate that the even function (deviation from
symmetry) causes a displacement of the center of oscillation from the static
equilibrium position, but has little effect on the dynamic response of the system.
If the deviation from symmetry is neglected, the characteristics of the shock
absorber can be linearized in the origin, and it is possible to use the equivalent
linear viscous damping to study the small oscillations of the system. This explains
why linearized models may be used even when the effect of nonlinearities seems
to be important. This holds true even for small oscillations.

Example 26.13 Consider a quarter car with two degrees of freedom with the para-
meters typical of the suspension of a small car: ms = 240 kg, mu = 25 kg, K = 20, 8
kN/m, P = 125 kN/m. Assume that the shock absorber is nonlinear and asymmetrical,
and that its characteristics may be modeled using Eq. (26.131) with

c = 1.8 kNs/m , μ = 0.65 .

Moreover, dry friction is also present. It may be modeled using the following odd
function

fo = 60 sign (ż) N .
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Compute the response to harmonic excitation with amplitude h0 = 100 mm by

numerically integrating the equation of motion, and compare this result with the lin-

earized solution and with the approximated solution of the nonlinear equation. Repeat

the computation for an amplitude of the forcing function of 10 mm.
The equation of motion is Eq. (26.22), to which the nonlinear terms are added.

However, to simplify the equation, it is possible to substitute coordinates

{
z1 = zu − h
z2 = zs − zu .

(26.151)

to variables zs and zu.
Neglecting the damping of the tire, the equation of motion becomes

[
mT ms

ms ms

]{
z̈1

z̈2

}
+

[
0 0
0 c

]{
ż1
ż2

}
+

+

[
P 0
0 K

]{
z1

z2

}
+

{
0

fe (ż2) + fo (ż2)

}
=

{
mT ḧ

msḧ

}
,

(26.152)

where

mT = ms + mu , fe = −cμż sgn (ż) (26.153)

and fo is given by the above mentioned expression
A solution of the type of Eq. (26.135) is

⎧⎨
⎩

h = h0 sin (ωt − φ) = h0 [sin (ωt) cos (φ) − cos (ωt) sin (φ)]
z2 = z20 + z21 sin (ωt)
z1 = z10 + z11s sin (ωt) + z11c cos (ωt) .

(26.154)

By introducing this solution into the first equation of motion, which is linear, and
remembering that the damping of the tire has been neglected, it follows that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z10 = 0

z11s = ω2−mT h0 cos (ωt) + msz21

P − ω2mT

z11c = ω2 mT h0 sin (ωt)

P − ω2mT
.

(26.155)

By introducing the values of the unknowns so obtained into the second equation of
motion, an equation formally identical to that of a quarter car with a single degree of
freedom (Equations (26.136) and (26.137)) is obtained, once

z20 , ms
P − ω2mu

P − ω2mT
, h0

P

P − ω2mT
(26.156)

are substituted for z1, ms and h0.

The results for a forcing function with an amplitude of 100 mm are reported in

Fig. 26.42a. It is clear that the amplitude of the motion of both the sprung and unsprung

masses (in terms of zs and zu and not of z1 and z2) obtained using numerical integration

and the approximated nonlinear computations are close to each other. Moreover, the
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FIGURE 26.42. Response to a harmonic forcing function with amplitudes of 100 mm
(a) and 10 mm (b) as a function of frequency for a quarter car model with two degrees
of freedom provided with a nonlinear shock absorber

amplitude of the motion almost coincides with that obtained from the linearized model,

with the difference that in this case there is a displacement of the central position of the

oscillation.

The results obtained for an amplitude of the forcing function of 10 mm are shown

in Fig. 26.42b. In this case, there is some difference between the linearized and the

nonlinear solution at low frequency, due to dry friction that locks the suspension in this

condition. In general, however, the accuracy of the linearized model is confirmed.

26.7.2 Springs

Dry friction in leaf springs introduces hysteresis and an apparent increase of
stiffness in low amplitude motion. A qualitative force-deflection characteristics
of a leaf spring is shown in Fig. 26.43: The hysteresis cycle is readily visible. The
overall elastic behavior is practically linear, with a hysteresis cycle occurring
about the straight line representing the average stiffness. If small amplitude os-
cillations occur about the equilibrium position, the apparent stiffness is strongly
dependent on the amplitude, with a value tending to infinity when the amplitude
tends to zero. This behavior is typical of dry friction that causes the spring to
lock when very small movements are required. The stiffness for the small oscilla-
tions typical of ride behavior can then be much larger than the overall stiffness
of the spring.

The presence of dry friction makes linear models inapplicable, or at least
makes their results inaccurate, and causes a deterioration of the ride qualities of
the suspension.

Other nonlinearities may be introduced by nonlinear springs, which are
sometimes used for industrial vehicles in order to avoid large variations of the
natural frequencies with the load. Air springs are also widely used on industrial
vehicles, and their characteristics are strongly nonlinear. However, nonlinearities
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FIGURE 26.43. Load-deflection characteristics of a leaf spring exhibiting hysteretic
behavior. The hysteresis cycle for small displacements about the equilibrium position
is shown

of the behavior of the springs can be dealt with in the same way as those due
to the kinematics of the suspensions and, in the motion about any equilibrium
condition, a linearized study holds with good approximation.

26.8 CONCLUDING REMARKS ON RIDE
COMFORT

The linearized study of suspension motions, based primarily on quarter-car mod-
els, shows that the value of shock absorber damping for optimizing comfort is
the same as that for reducing the dynamic component of the force on the ground
to a minimum, and hence optimizing handling. However, some results obtained
considering the root mean square value of the acceleration and the dynamic com-
ponent of the force show that, even when using a simplified linearized model, the
value optimizing comfort is lower than that optimizing handling.

The last statement is also confirmed by other considerations. Firstly, the
reduction of the force is not the only goal in handling optimization. The dis-
placement of the sprung with respect to the unsprung masses is also important.
Every type of suspension has some deviations from a perfect kinematic guide,
thus causing the wheels to be set in a position different from the nominal (e.g.,
changes of the camber angles, roll steer etc.); this negatively affects the handling
characteristics of the vehicle. The larger the displacement of the sprung mass,
the worse the problem.
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Operating in the same way as for minimizing the acceleration, it can be
shown that the value of the damping minimizing displacement is

c =

√
m(P + K)(P + 2K)

2P
, (26.157)

which is higher than the optimum value computed above.
This also suggests an increase in the stiffness of the suspensions and goes

against the criterion of “the softer the better” deriving from consideration of the
vertical acceleration alone.

Another point is linked to roll oscillations. The damping of the shock ab-
sorbers is usually chosen with bounce in mind; this causes rolling motions in most
cases to be excessively underdamped. When anti-roll bars are used, the situation
becomes worse: By increasing roll stiffness without increasing the corresponding
damping, they cause a more marked underdamped behavior and a decrease of
the dynamic stability of roll motions. This not only increases the amplitude of
rolling motions and the dynamic load transfer, while lowering the roll angle in
steady state conditions, but also makes rollover in dynamic conditions easier.

The increase of shock absorber damping beyond the value defined above as
optimum is effective in reducing these effects, which affect handling more than
comfort.

On the other hand, the need for reducing jerk to increase comfort goes
in the opposite direction. The value of damping minimizing jerk is lower than
that minimizing acceleration, which leads to better comfort when damping is
decreased.

The effect of the stiffness of springs on comfort is in a way contradictory: On
one hand, as already stated, the need of reducing vertical accelerations suggests
that stiffness be reduced as much as possible, but this would lead to very low
natural frequencies which may, in turn, cause motion sickness and similar effects.

The compliance of the frame or of other parts of the vehicle may also affect
riding comfort. The effect of the compliance of those elements that, in simplified
models, are assumed to be stiff, is at any rate smaller than the effect the flexibility
of the same elements has on handling. While, as already stated, the compliance
of the body in bending in the xy plane and above all the torsional compliance
about the z axis may have a strong effect (usually reducing performance) on
handling, bending compliance in the xz plane may affect comfort, though not
always in a negative way.

The local compliance of the body and the frame may strongly affect acoustic
and vibrational comfort when it leads to natural frequencies that can be excited
by the forcing functions that are always present on a vehicle. A typical example is
the compliance of the supporting structure of the engine ancillaries (alternator,
air conditioning compressor, etc.) that may cause resonances of the system made
by the same elements, the supporting brackets, the belts and other elements
connected to them. Because such a system is located close to, or even directly
on, the engine, which is a strong source of excitations at various frequencies,
many resonant vibrations are possible.
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As usual, when local resonances are possible, there are many different cures:

• Increasing the damping of the system, usually by adding damping material,
to reduce the amplitude of vibration below acceptable limits. This is the
simplest cure, one that may induce a non-negligible increase of weight
and often gives only marginal improvements. A typical example is the
application of damping paints or sheet metal covered by damping material
on the floor or the firewall.

• Increasing the stiffness of the structure, so as to increase the natural fre-
quencies and thus move the resonance to frequencies at which there is little
excitation. The opposite method, reducing the stiffness to decrease the nat-
ural frequencies, is usually not applicable in the automotive field, because it
would cause excessive deformations and would, at any rate, induce several
low frequency resonances. This cure usually causes a weight penalty as well
and to increase the stiffness of a vibrating system without also increasing
the damping makes the system more underdamped, with the consequence
of increasing the amplitude of vibration in case a resonance occurs.

• Reducing the amplitude of the excitation at the source. Although this is
the most effective cure, it is seldom applicable. To reduce the vibration
caused by imbalance of rotating elements the best procedure is to improve
balancing, but the prescribed balancing grade is usually chosen compatibly
with constraints such as construction techniques and costs. Moreover, wear
can reduce balance over time and the compliance of rotating elements may
make it difficult to obtain good balancing in all operating conditions.

• Preventing vibration transmitted from the source to the resonant element.
This often requires design changes or innovative concepts. For instance, the
transmission of vibration from the engine to the passenger compartment
is drastically reduced, with improvements in acoustic and vibrational com-
fort, by substituting the standard rigid linkage for gearbox control with a
device bases on flexible cables.

• Adding dampers close to the zones affected by vibration. The use of dy-
namic vibration absorbers is widespread in automotive technology, both
on the chassis and in the engine (crankshaft dampers, etc.). Because the
components of the vehicle are excited by a number of frequencies in a wide
range, damped vibration absorbers (i.e. containing dissipative elements)
are usually used instead of purely dynamic absorbers. The example given
for the quarter car with dynamic vibration absorber can be extended to
other cases.




