
Chapter 5

Logic and Rough Sets:
An Overview

“Any specific object has a specific logic” K. Marx.

Since the present Part has a certain complexity, it is worth introduc-
ing, with some details, the intuitive motivations of the entire picture
and their connections with the mathematical machinery which will be
used.

5.1 Foreword

Thus, let us sum up what we have discussed and discovered as far as
now.

In Rough Set Theory, the starting point is a collection of observa-
tions which are stored in an Information System I and which induces
an indiscernibility space 〈U,E〉. We denote the family of all basic cate-
gories by IND(I).

We have seen that from any Information System I one can compute
the extension �D� on the universe U of a basic property D which we
call a I-basic property, because it can be formulated using the linguistic
material from I.1

I-basic properties make it possible to classify the objects from U

into different disjoint equivalence classes which are to be intended as

1For instance, if I is an Attribute Systems, a deterministic property is a conjunc-
tion of sentences of the form “ai = vj”, where ai ranges on the set of parameters
At, vj ranges on the set of values V .
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the gnoseological co-ordinates interpreting the universe U , the basis of
the organization of U from a conceptual point of view. In a literal math-
ematical sense, IND(I) is a basis for a topological space that provides
the “gnoseological geometry” of our world. Objects belonging to the
same class are indiscernible by means of our system of information I.
Moreover, from the hypotheses about P-systems and A-systems, stated
in Part I, every object from U will belong to the extension of some
I-basic property. So we obtain the first important characteristic for our
analysis:

Axiom 5.1.1. The set IND(I) = {�D� : D is a I−basic property} is
a partition of U .

These classes, or blocks, are the atoms of more complex conceptual
constructions. In Rough Set Theory, they are called “elementary” (or
“basic”) “classes” (or “categories”) and we adopt this use.

As noted at the very beginning of the Introduction, this construc-
tion is fundamental. Call it “grouping”, “association”, “categorization”,
we hardly can find an analysis of human knowledge leaving it out of
consideration: “When you learn a concept, you learn how to treat differ-
ent things as instances of the same category. Without this classification
procedure, thinking would be impossible because each event or entity
would be unique” (Johnson-Laird [1988], page 132).

Because IND(I) coincides with the family of the equivalence classes
modulo the equivalence relation induced by the Information System I,
on a more abstract level we can start from any generic Indiscernibility
Space 〈U,E〉, where E ⊆ U × U is an arbitrary equivalence relation.

The topological space for which the family U/E forms a basis, is
called an Approximation Space. Nonetheless, in the present book we
also use this term to denote the frame (complete distributive lattice)
of its open subsets, denoted by AS(U/E) (the context shall avoid
any confusion). Any open set is the union of basic sets. Therefore,
they are extensions of disjunctions of basic properties, called thereafter
“I-properties”. So, given an Information System I, the Approximation
Space AS(U/E) induced by I, represents in fact this kind of linguistic
description of concepts. This intuitively explains why an Approxima-
tion Space is defined as the set of all the unions of elementary classes
plus the empty-set ∅ (an arbitrary I -property could have an empty
extension).
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Thus, from an algebraic point of view, we have:

Axiom 5.1.2. For any Indiscernibility Space 〈U,E〉, the Approxima-
tion Space AS(U/E) is the Boolean algebra of sets for which U/E is
the set of atoms.

Now, as we know, the second basic maneuver is to contrast AS(U/E)
with the result of another categorization, say the Indiscernibility Space
〈U,E′〉. However, for the sake of maximal generalization, we shall
assume that any arbitrary subset of U can be brought in contrast with
AS(U/E), so that the second categorization will be assumed to be the
discrete one (〈x, y〉 ∈ E′ if and only if x = y), if not otherwise stated.
In other terms, any subset of U can play the role of a pre-figure. Thus
we assume that the foreground Approximation Space will always be
the powerset ℘(U).2

For this reason the structure of AS(U/E′) does not count and we
shall reserve by now the name “Approximation Space” to the back-
ground space, and the term “datum” to the elements of the foreground
space.

With respect to this structure we have the following fact:

Axiom 5.1.3. For any Indiscernibility Space 〈U,E〉, the Approxima-
tion Space AS(U/E) is a subalgebra of the Boolean algebra of sets B(U)
defined on the powerset ℘(U) of the universe U .

In accordance with these assumptions, Approximation Spaces are given
a more general interpretation. In fact, if we assume that a generic subset
of elements of U is the extension of a generic “datum” virtually defin-
able on U , then the fact that an Approximation Space AS(U/E) is
generally a strict subalgebra of ℘(U), displays the popular observation
that usually we do not have a complete information about any situation
we face with, in a pretty “concrete” and “tangible” manner. In other
words, the granularity of the knowledge represented by our properties,
generally does not allow the exact representation of arbitrary concepts,

2For the sake of generalisation, but also because we are working within the
monological approach. From this point of view, the foreground space is always sub-
ordinated to the background. Otherwise stated, the foreground space is inert, so that
any subset of this space may be conceived of as a “crude” datum to be analysed,
but not to be questioned. In the dialogical approach we do not have “crude data”
any longer, but interacting categories.
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but just an approximation depending on the gnoseological material at
our disposal. Hence the term “Approximation Space”.

Let us then consider an arbitrary set X ⊆ U . Obviously, either X ∈
AS(U/E) or not. In the first case X can be exactly described by means
of an I-property, which can be named a background property, in view
of the discussion in the Introduction. In the second case we cannot use
I-properties for a direct description ofX, which can be approximated by
means of an upper approximation, (uE)(X), and a lower approximation,
(lE)(X). If 〈U,AS(U/E)〉 is intended as a topological space, we know
that (uE)(X) is the closure C(X) and (lE)(X) is the interior I(X).

However, in general in between (lE)(X) and (uE)(X) we have the
topological boundary of X: B(X) = C(X) ∩ −I(X) = (uE)(X) ∩
−(lE)(X). Notice that the boundary of X is the set of points which
are neither in the lower approximation, nor in the complement of the
upper approximation of X: B(X) = C(X) ∩ −I(X) = −(−C(X) ∪
I(X)) = −(−(uE)(X) ∪ (lE)(X)). From the point of view of Approx-
imation Spaces, two sets that have exactly the same upper and lower
approximations can be considered equivalent, and one obtains:

Definition 5.1.1. A rough set of 〈U,E〉 is an equivalence class of sub-
sets of U modulo the equality of their upper and lower approximations.
Such an equivalence relation is called a rough equality.

The family of all rough sets induced by an Approximation Space
AS(U/E) is called a Rough Set System and is denoted by RS(U/E).

5.2 Rough Set Systems and Three-Valued

Logics

As we have mentioned in the Introduction, one can give a logical
interpretation to this machinery. The upper approximation (uE)(X)
is the set of elements that possibly belong to X since they share the
same I-properties with some element actually in X. In other words, if
x ∈ (uE)(X), then we can associate it to X, even if it does not actually
belong to this set, since some “twin” of x belongs to X already. On the
other hand (lE)(X) is the set of elements of X that necessarily belong
to X since there are not elements outside of X which are describable
by means of the same I-properties. In negative terms: if x ∈ X but
there is an x′ belonging to −X which is indiscernible from x, then in
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order to obtain the lower approximation of X, we discard x too, since
its membership is accidental, according to the conceptual background
represented by AS(U/E).

Example 5.2.1. Possibility and necessity in an information system
Consider the information system of Example 2.4 in the Introduction. Let X be
the set {d, e, f, g}, which in AS(U/A′) is characterized by the property “Com-
fort = medium”. We can notice that in AS(U/A) the patient c may be associated
to X since patient d belongs to X and is indiscernible from c which is as like as
any patient having Temperature = normal, Hemoglobin = good, Blood Pressure = low
and Oxygen Saturation = good. So we can assume that it is not impossible for these
patients to have Comfort = medium because we have examples of patients with the
same attribute-values that have this rate. In fact (uEA)(X) = {c, d, e, f, g}. On the
other hand, all the patients with Temperature = low, Hemoglobin = good, Blood Pres-
sure = normal and Oxygen Saturation = fair, have Comfort = medium. This means,
for instance, that e necessarily belongs to X, since we do not have counterexamples
of patients with the same characteristics but with Comfort �= medium. This fact is
reflected by the equation (lEA)(X) = {e, f, g}.

From this point of view, for any set X we have two definite or certain

states: the lower approximation (interior of X, necessary part of X),
which means “definitely yes”, and the complement of the upper approx-
imation, −(uE)(X) = −C(X), (exterior of X, impossible part of X)
which means “definitely no”. Since −C(X) = I(−X), this element coin-
cides with the complementary figure ¬X. Everything that is neither in
(lE)(X) nor in the complementary figure, ¬X, is in the boundary of
X, B(X). Indeed a boundary is a region of doubt: if x ∈ B(X), then
we can say nothing certain about the membership of x in X. We can-
not say either that x is certainly (or necessarily) in X, or that x has
certainly nothing to do with X: in fact it could belong to X, since it is
indiscernible from some element of X; but it could belong to −X, too,
because it is indiscernible from some element of −X.

It follows that, generally, between (lE)(X) and its complementary
figure ¬X, there is not an empty region and that the union of (lE)(X)
and ¬X does not give the unit universe U . In other words, the law of
Excluded Middle is not uniformly valid for rough sets.

So we begin to see that the classical two-valued characteristic func-
tion must be generalized by a three-valued one, if we want to grasp this
situation. It follows that in general Rough Set Systems are likely to
have strict relationships with some three-valued logico-algebraic sys-
tem. Actually, more than one of these systems are related to this
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information analysis and the reason depends on the deeper meaning
of our construction.

In fact, the topological space 〈U,AS(U/E)〉 may fulfill different sep-
aration properties depending on the granularity of our knowledge. In
turn, this depends on the level of accuracy of the attributes. We have
the best separation properties when AS(U/E) = ℘(U). In this case our
topology is the discrete topology (which is Hausdorff and completely
disconnected) and one can single out each element of U . Otherwise
stated, in a sense we have enough properties for “naming ” any single
element of U . On the contrary, when no object can be discerned from
the others, we have the trivial topology: AS(U/E) = {∅, U}. Using the
famous sentence of the German philosopher G. W. F. Hegel, this is like
the “night in which all cows are black”. Indeed in this case we have the
weakest separation property.

However, usually we shall have intermediate cases in which some
elements can be singularly “named ”, while others cannot be individ-
ualised by the information at our disposal: in general in 〈U,E〉 some
equivalence classes are singletons while others are not.

5.3 Exact and Inexact Local Behaviours
in Rough Set Systems

Let us denote by B∗ the family of the equivalence classes that are
singletons, and by P ∗ the family of the equivalence classes that have
cardinality strictly greater than 1. As mentioned in the introduction.
B∗ and P ∗ do not have the same logical role in the construction of
a Rough Set System. In fact the elements in B∗ are exact in nature,
because they do not have any boundary, any region of doubt, so that
they should enjoy the principle that in Classical Logic reflects com-
pleteness and exactness: Excluded Middle.3 Indeed, given a set X and
an open singleton {s}, either {s} is included in (lE)(X) or it is included
in −(uE)(X).4 On the contrary any basic open set with at least two
elements may be included in the boundaries of at least two different
sets. This means that if there is no singleton in AS(U/E), then there
are at least two sets X such that (uE)(X) = U and (lE)(X) = ∅. In
other words, there are at least two undefinable sets.

3If {x} is a singleton, then x is an isolated point, in topological terms.
4In topological terms: an isolated element cannot be a member of any boundary.
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Therefore, it is not difficult to understand why the class of the unde-
finable sets can play the role of intermediate value: this class represents
situations in which everything could be true, or everything could be
false. Thus, the rough set of all the undefinable sets is another “night
in which all cows are black”.

Example 5.3.1. Exact and inexact information
In the Approximation Space induced by the set A of attributes in the Information
System of Example 2.4 discussed in the Introduction, we have two non singleton
atoms, {c, d} and {e, f}, and five singletons, {a}, {b}, {g}, {h}, {i}. The singleton
{a}, for instance, is uniquely defined by the property “Temperature = low, Hemoglo-
bine = fair, Blood Pressure = low, Oxygen Saturation = fair”. This property applies
only to the element a so that we have complete and unique information about a,
because the attribute-values we are dealing with make it possible to distinguish a
from all the other elements of U .

On the contrary, the element c fulfills the same property as the element d, so
that we do not have enough information in At to distinguish c (or d).

Clearly, as far as we deal with the set of attributes A, we do not have subsets
of U that are undefinable, because for instance if {a} is included in the upper
approximation of a subset of U , then it is included in its lower approximation, too.
It follows that there are not sets X such that (uEA)(X) = U and (lEA) = ∅.

Now consider, instead, the following sub-table of the same Information System,
where U∗ = {a, b, c, d, e, f} and A∗ = {Temperature,Hemoglobin}:

v Temperature Hemoglobin

a low fair

b low fair

c normal good

d normal good

e low good

f low good

Clearly E/A∗ = {{a, b}, {c, d}, {e, f}}. So the induced Approximation Space has
three atoms and none of them is a singleton. If we contrast the set X = {a, c, e}
against E/A∗ then we find (uEA∗)(X) = U∗ and (lEA∗)(X) = ∅. In fact it is
impossible to find a disjunction of basic properties exactly describing some member
of X but not all the members of U . Hence X is an undefinable set. Indeed, the
process of peaking up an element out of each (non singleton) equivalence class gives
us a combination of eight undefinable sets:

{{a, c, e}, {a, c, f}, {a, d, e}, {a, d, f}, {b, c, e}, {b, c, f}, {b, d, e}, {b, d, f}}

This collection is therefore the rough set of all sets X such that (uEA∗)(X) = U∗

and (lEA∗) = ∅. Therefore, it represents all the undefinable sets.
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Therefore, we may suppose that for any rough set there are two distinct
local logical behaviours: one is classical and localized on B =

⋃
B∗,

whereas the other one, localized on P =
⋃
P ∗, is purely three-valued.

It is the combination of these local behaviours that defines the over-
all logical features of rough sets. It follows that the construction of
RS(U/E) will depend on the parameter B (or, equivalently, P ).

Moreover, in RS(U/E), any rough set induced by an element of
the Approximation Space AS(U/E) has a particular logical behaviour
too: such an element corresponds to an exactly definable subset of U ,
hence, again, it should fulfill Classical Logic, but within the logical
environment determined by the overall Rough Set System. And, as
just seen, this environment might be three-valued.

Thus we have two levels of local logical behaviours: one is related
to the internal definition of rough sets, the other deals with the global
logical properties of Rough Set Systems.

The first level completely depends on the parameter B (or P ). These
parameters cannot be recovered from the “geometrical” shape of the
Approximation Space AS(U/E), except for trivial cases. It follows that
in general an inspection of the atoms is unavoidable in order to define
RS(U/E). Because the information provided by this inspection does
not have any theoretic content, we call B and P external parameters

or empirical parameters and we say that they are able to distinguish
the classical local behaviour within an Approximation Space.

On the contrary, we can analyse the lattice structure of RS(U/E)
from a pure abstract point of view. In fact, also in this case we have to
use a particular parameter, but curiously enough, though it is induced
by the empirical parameter B, nevertheless it is definable in RS(U/E)
by means of a mere lattice-theoretic definition. For this reason we
call it an internal parameter or theoretical parameter and we shall see
that it distinguishes a classical local behaviour within a Rough Set
System.

It follows that Rough Set Systems should be analysed using some
notion able to manage the concept of “it is locally the case that”.

For this purpose we shall exploit the mathematical notions of a
“Grothendieck topology” and a “Lawvere-Tierney operator” which have
been introduced to deal with local properties.
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5.4 Representing Rough Sets

A rough set is an equivalence class of sets modulo the equality of their
approximations. Thus a rough set from U belongs to ℘(℘(U)).

However a rough set is naturally and more comfortably representable
by a pair 〈X1,X2〉 of elements of AS(U/E), where X1 and X2, are the
two approximations.

So, consider the (by now informal) family

Definition 5.4.1. RS(U/E) = {〈X1,X2〉 ∈ AS(U/E) × AS(U/E):
〈X1,X2〉 is a Rough Set in AS(U/E)}.

We immediately have the problem of the formal and abstract char-
acterization of the sentence “is a Rough Set in AS(U/E)”. A first
sub-problem is:

Problem 5.4.1. For any Approximation Space AS(U/E), determine
the internal formal characteristics that must be satisfied by an ordered
pair to represent a rough set.

The answer depends on the intuitive motivations that drive our reading
of the nature of rough sets. A first, and in a sense the most immediate
and “naive”, solution is considering pairs of the form

〈(uE)(X), (lE)(X)〉 (5.4.1)

This ordered pair uniquely describes the equivalence class in question.
From this point of view, the “internal property” to be fulfilled by a

pair 〈X1,X2〉 in order to belong to RS(U/E) is necessarily:

X2 ⊆ X1 (5.4.2)

because the first element X1 stands for the upper approximation of a
set X and X2 stands for its lower approximation. Thereafter we call
such a representation the decreasing representation of a rough set.

A second reading, probably less “naive” but still intuitive, is sug-
gested by the application of Rough Set Theory to some semantics for
Logics of Knowledge and Learning (see the Frame section of Part III
and is connected with the following intuition: any rough set represents
what definitely is known to satisfy a concept and what definitely is
known not to satisfy it. Between the two areas, eventually, there is a
doubtful region which is due to the incompleteness of our knowledge.
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Thereafter, from this point of view the “internal property” of a pair
〈X1,X2〉 is necessarily:

X1 ∩X2 = ∅ (5.4.3)

and we call it the disjoint representation of a rough set.
We have already seen that in a more logical setting, the upper

approximation (uE)(X) corresponds to the modal application M(X) –
“what possibly belongs to X” – and the lower approximation (lE)(X)
corresponds to the modal application L(X) – “what necessarily belongs
to X”. According to this reading, the decreasing representation of a
rough set is of the type

〈M(X), L(X)〉 (5.4.4)

However, consider −M(X). Since −M(X) means “it is impossible to
belong to X”, we have that L(X) and −M(X) are the only statements
expressing “certainty”. Thus a definite knowledge about a specific phe-
nomenon will be expressed by a pair

〈L(X),−M(X)〉 (5.4.5)

that is to say, 〈maximal internal body, complementary body〉. In order
to make rough sets reflect the above intuition, one must represent them
as a pair

〈(lE)(X),−(uE)(X)〉 (5.4.6)

that is exactly the disjoint representation of a rough set.
So we shall set:

Definition 5.4.2 (Decreasing representation of rough sets). For any
Approximation Spaces AS(U/E) and X ⊆ U : rs(X) = 〈(uE)(X),
(lE)(X)〉.

Definition 5.4.3 (Disjoint representation of rough sets). For any
Approximation Spaces AS(U/E) and X ⊆ U : rs′(X) = 〈(lE)(X),
−(uE)(X)〉.

The application rs will be called a “rough set map”.
From the involution property of “−”, one easily shows that the two

representations are interchangeable.
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Although a choice between the two representations is somewhat
arbitrary, since we prefer to deal with the two standard modalities
(Necessity and Possibility) we adopt the decreasing representation.5

Therefore, we assume by default the decreasing representation until
the disjoint representation is explicitly considered. Moreover, when the
context is clear, with the term “rough set” we shall denote the decreas-
ing (disjoint) representations of a rough set (which, actually, is an
equivalence class).

Example 5.4.1. Representing rough sets
Let us represent some rough sets induced by the Approximation Space
X ∈ AS(U/EA) of Example 1.2.3 (cf. also Example 1.2.5).

Disjoint representation:

{{a}, {c}} −→ 〈∅, {b, d}〉; {{b, a}, {b, c}} −→ 〈{b}, {d}〉;
{{d, a}, {d, c}} −→ 〈{d}, {b}〉; {{b, d, a}, {b, d, c}} −→ 〈{b, d}, ∅〉.

and any X ∈ AS(U/EA) is represented by 〈X,−X〉.

Decreasing representation:

{{a}, {c}} −→ 〈{a, c}, ∅〉; {{b, a}, {b, c}} −→ 〈{a, b, c}, {b}〉;
{{d, a}, {d, c}} −→ 〈{a, c, d}, {d}〉; {{b, d, a}, {b, d, c}} −→ 〈U, {d, b}〉.

and any X ∈ AS(U/EAt) is represented by 〈X, X〉.

A second sub-problem is:

Problem 5.4.2. For any Approximation Space AS(U/E), determine
the internal empirical characteristics of the ordered pairs representing
a rough set.

More precisely, this problem is related to the previous discussion about
singleton and non singleton basic categories. If we assume the decreas-
ing representation we have to notice that not every pairs of elements
fulfilling the formal property (5.4.2) are legal. In other words, (5.4.2) is
a necessary but not sufficient condition for a pair to represent a rough
set of an Information System I.

5Other reasons supporting this choice can be found in the Frame section of Part
II. However, from a strictly mathematical point of view the disjoint representation
is to be preferred because it has more general applications – see Example 9.6.1 of
Section 9.6.
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In fact, as we already know, if an elementary class S is a singleton
then for any X ⊆ U , S is included either in (lE)(X) or in −(uE)(X).
Thus S belongs to (lE)(X) whenever S is included in (uE)(X). This
is the required general characteristic. It follows, for instance, that the
pair 〈S, ∅〉 it is not a legal one although it fulfills property 5.4.2, while,
for example, 〈S, S〉 is.

In the same case, if we assume the disjoint representation, we have
to discard, for instance, the pair 〈∅, ∅〉: indeed it enjoys property 5.4.3
but it is clear that the singleton S must necessarily be included either
in X1 or in X2, for any pair 〈X1,X2〉. Again 5.4.3 is only a necessary
condition.

The problem becomes thereafter:

Problem 5.4.3. For any Approximation Space AS(U/E) characterize
the set RS(U/E) within the family of elements of the Cartesian product
AS(U/E) × AS(U/E) which fulfill property (5.4.2) (or (5.4.3) if we
prefer the disjoint representation).

The solution of this problem will be given within the following more
general:

Problem 5.4.4. Determine if there is some logico-algebraic structure
behind Rough Sets Systems.

Example 5.4.2. Local validity in Rough Set Systems – 1
Let us consider the information system of Example 2.3. According to it, the pair
〈{a, b, c, d}, {a, c, d}〉 is not a legal rough set (in decreasing representation). In fact
if b ∈ (uEA)(X), for some X ⊆ U , then for some x ∈ X, 〈x, b〉 ∈ EA But since {b}
is a singleton we have 〈b, x〉 ∈ EA if and only if x = b, so that b ∈ X too. It follows
that {b} ⊆ X. Hence, {b} ⊆ (lEAt)(X) and b ∈ (lEAt)(X).

The union B of all the singletons is {b, d} and we have that for any x ∈ B, either
x ∈ (lEAt)(X) or x ∈ −(uEAt)(X). Otherwise stated, x ∈ (uEAt)(X) if and only if
x ∈ (lEAt)(X). This means that for any rough set 〈X1, X2〉, X1 ∩ B = X2 ∩B.

In disjoint representation, the above considerations lead to the fact that for any
X ⊆ U , for any rough set 〈X1, X2〉, X1 ∪X2 ⊇ B, i.e. (lEAt)(X) ∪ −(uEAt)(X) ⊇
{b, d}.

Let us depict the situation in Figures 5.1 and 5.2 below.
Given the universe U , a usual set X has a complement −X such that X ∪−X = U
(Figure 5.1 left). In an Approximation Space, on the contrary we have (lE)(X) ∪
−(uE)(X) ⊆ U (Figure 5.1 right). The intermediate area is the boundary of X.

But if the union B of all the singletons is not void (Figure 5.2 left), we have a
different situation: any subset B′ of B is a sub-body with it own complement −B′

as complementary body. Indeed, (lE)(B′) ∪ −(uE)(B′) = B ∪ B′ = B (Figure 5.2
right).



5.5 Rough Set Systems, Local Validity, and Logico-Algebraic Structures 181

Figure 5.1: An empty union B of singletons

Figure 5.2: A non-empty union B of singletons – subsets of B behave
as usual

5.5 Rough Set Systems, Local Validity,

and Logico-Algebraic Structures

Notwithstanding its “practical” motivations, Rough Set Theory hap-
pens to be able to model a number of logical systems.

Indeed, Rough Set Systems have many connections with Heyting
and bi-Heyting algebras, �Lukasiewicz algebras, Post algebras, Stone
algebras, Chain Based Lattices and P -algebras. In what follows we
provide the overall picture of these connections.

First of all we have to show that the language-oriented operations
provided by Logic are meaningful in Rough Set Systems. As a matter of
fact, this is partially true on the part of the operations “and” and “or”.

Indeed, let X,Y,Z be subsets of U . We have:

• Interpretation of the operation ∧: if rs(X)∧ rs(Y ) = rs(Z), then
Z is a maximal set in the class {X ′ ∩ Y ′ : rs(X ′) = rs(X) and

rs(Y ′) = rs(Y )}.

• Interpretation of the operation ∨: if rs(X)∨ rs(Y ) = rs(Z), then
Z is a minimal set in the class {X ′ ∪ Y ′ : rs(X ′) = rs(X) and

rs(Y ′) = rs(Y )}.
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It follows that rs distributes over ∨ just with respect to the upper
approximations and, dually, it distributes over ∧ just with respect to
the lower approximations (details later in the text). Hence, the two
binary connectives ∨ and ∧ make sense in defining a Rough Set Logic,
under the limitations of the above proviso.

Now, it is well known that the set B[n] = {〈a1, . . . , an−1〉 ∈ Bn−1 :
ai ≥ aj for i ≤ j}, where B is a Boolean algebra, is an example of
n-valued �Lukasiewicz algebra (see Boicescu et al. [1991]).

Thus AS(U/E)[3] is a three-valued �Lukasiewicz algebra.
From this consideration it follows that RS(U/E) is a substructure of

AS(U/E)[3] if we assume the decreasing representation.
On the side of the disjoint representation, if D is a finite distributive

lattice with least element ⊥, then the set K(D) = {〈a1, a2〉 ∈ D2 :
a1 ∧ a2 = ⊥} is an example of De Morgan algebra. In particular if D
is a finite Boolean algebra, then K(D) is a Post algebra of order three.
Since AS(U/E) is a Boolean algebra, from the above considerations it
follows that if we assume the disjoint representation, then RS(U/E) is
a substructure of the Post algebra of order three, K(AS(U/E)).

Our last problem can now be restated in the following way:

Problem 5.5.1. For any Approximation Space AS(U/E), character-
ize within AS(U/E)[3] and within K(AS(U/E)) the logical status of
the substructure RS(U/E) using only information-oriented parameters
depending on AS(U/E).

In this Part we shall start answering these questions by representing
RS(U/E) as a semi-simple Nelson algebra. We decide to start with
this interpretation for a couple of reasons. First, although David Nelson
introduced his systems in order to circumvent some non constructivistic
features of intuitionistic negation (in connection with Kleene’s notion
of “Recursive Realizability”), Nelson’s deep intuitive motivations can
be completely framed in our context:

“In general, an experimental verification of a statement consists of
an operation followed by an observation of a property. [. . . ] However,
if we have not observed the property, there remains an ambiguous sit-
uation insofar as the truth of a statement is concerned. The failure to
observe the property may be significant of the falsity of the statement
or may merely be an indication of some deficiency on the part of the
observer. [. . . ] In view of this ambiguity, it might be maintained that
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every significant observation must be an observation of some property
and further that the absence of a property P if it may be established
empirically at all, must be established by the observation of (another)
property N which is taken as a token for the absence of P .” (Nelson
[1959], page 208).

On the basis of these intuitions, in the quoted paper David Nelson
introduced a logical system named S, which makes it possible to distin-
guish concepts such as “from A a contradiction is provable” and “the
negation of A is established”, which are usually unified.

We call this difference the issue of “separation of concepts”, and we
record it by saying that in the former case the proof ends with a weak
form of negation, �α, and in the latter with a strong form of negation,
∼α. System S is strictly connected to semi-simple Nelson algebras, that
constitute a subvariety of the class of Nelson algebras, which in its turn
is connected with the system N introduced in Nelson [1949].6

The second reason to start with semi-simple Nelson algebras is the
fact that the duality theory of these algebras provides us with the
mathematical machinery that is needed in order to exhibit a rigor-
ous characterization of RS(U/E). The main result of this approach is
that for any Approximation Space AS(U/E) the Rough Set System
RS(U/E) can be made into a finite semi-simple Nelson algebra, which
is precisely definable by means of the parameter B (viz. the union of
all the singleton elementary classes) that was discussed in the previous
subsections. We shall use B for filtering RS(U/E) out of AS(U/E)[3]

and K(AS(U/E)).
This use of B will be completely framed within the theory of

Grothendieck Topologies, because it will be based on the notion of
“local validity”, as has been anticipated.

These Nelson algebras will be proved to be equipped with a pseudo-
complementation, ¬, which, in fact, can be defined by means of the
weak negation �and the strong negation ∼.

6One of the principal differences between N and S is that in S we have just
a restricted form of thinning, namely α,α,α�β

α,α�β
. As always happens, restrictions on

structural rules make formerly unified logical meanings split. The above restricted
form of thinning is shared also by three-valued �Lukasiewicz logic which may be
defined by consistently extending S by means of the axiom α ≡∼ α, for a suitable
formula α (cf. the discussion below about the connection between semi-simple Nelson
algebras and three-valued �Lukasiewicz algebras, and about central elements).
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What is the rough set interpretation of these negations?

• Strong negation “∼”: we have ∼rs(X) = rs(−X), so that the
strong negation of a rough set equals the rough set of its set-
theoretical complement. In other words, the strong negation faith-
fully represents the set-theoretical complement at the rough set
level.

• Pseudo-complementation “¬”: if ¬rs(X) = rs(Y ), then Y is the
greatest definable set disjoint from (uE)(X).

• Weak negation “ �”: if �rs(X) = rs(Y ), then Y is the greatest
definable set disjoint from (lE)(X).

Thus negations have a straightforward meaning in Rough Set Systems.
Moreover, the above algebraic structures may also be regarded as

bi-Heyting algebras. More precisely, on can show that the operator �

is the pseudo-complementation in the co-Heyting algebra RS(U/E)op

that is obtained by reversing the order, thus swapping ∧ and ∨, 1 and
0 (and defining a dual relative pseudo-complementation). Therefore in
RS(U/E), if we set 1 = 〈U,U〉 and 0 = 〈∅, ∅〉 we have, for any a:

a ∨ ¬a ≤ 1, a ∧ ¬a = 0;
a ∨ �a = 1, a ∧ �a ≥ 0;
a∨ ∼ a ≤ 1, a∧ ∼ a ≥ 0.

These failures of the laws of contradiction and excluded middle, have
an immediate informational interpretation, displayed by the following
symmetries, for a = 〈(uE)(X), (lE)(X)〉:

a ∨ ¬a = 〈U,−B(X)〉 = a∨ ∼ a

a ∧ �a = 〈B(X), ∅〉 = a∧ ∼ a.

So, it is absolutely evident that the lack of the classical principles is due
to the presence of the doubtful boundary region: the excluded middle
and the law of contradiction are valid up to the presence of a non-empty
boundary. Indeed, if B(X) = ∅, then 〈U,−B(X)〉 = 〈U,U〉, which is the
top element, while 〈B(X), ∅〉 = 〈∅, ∅〉, which is the bottom element.

Particular attention is given to the logico-algebraic characterization
of definable sets. It is possible to define, by means of the weak negation
and the pseudo-complementation, two operators ��and ¬¬. These
operators project any rough set X onto particular exact elements, that
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is elements 〈X1,X2〉 such that X1 = X2 (assuming X to be in decreas-
ing representation). More precisely, ¬¬ is a possibility operator , while��is a necessity modalizator.

The interpretation in Rough Set Theory of these modalities is:

• “Possibility” operator: if ¬¬rs(X) = rs(Y ), then Y is the least
definable set containing X. That is, ¬¬rs(X) = rs((uE)(X));

• “Necessity” operator: if ��rs(X) = rs(Y ), then Y is the greatest
definable set included in X. That is, ��rs(X) = rs((lE)(X)).

As it will more detailed in Frame 10.12.4, it is worth mentioning that
the operation �was exploited in Lawvere [1982] to give a logical account
for the notions of a “boundary”, “essential core of a body” and “sub-
body” or “body”, in the context of Continuum Physics. If we compare
our terminology with Lawvere’s, we can observe that the notion of
“essential core of a body” corresponds to our “maximal internal body”.
In our terminology, however, a “body” is so if it coincides with its own
essential core, that is to say if it is a regular element.7

It is clear that, because of their atomicity, singleton elementary
classes are sub-bodies that either belong to X or to its complemen-
tary figure ¬X, for any given subspace X of the universe of discourse.
Otherwise stated, B ⊆ X ∪ ¬X. There is no notion of a boundary
involving B: any point which can be isolated by an elementary class,
cannot belong to any boundary. It follows that for all a ∈ RS(U/E) we
have a∨¬a = 〈U,−B(X)〉 ≥ 〈U,B〉 and a∧ �a = 〈B(X), ∅〉 ≤ 〈−B, ∅〉,
so that the law of excluded middle and the law of contradiction are
valid with respect to the subspace B.

At this point, Grothendieck topologies display their power, as we
shall see in Chapter 7. Indeed, our use of Grothendieck topologies has
the objective to formally render, from a mathematical point of view,
that in a part of our universe we have to apply Classical Logic, while
in the remaining part we have to apply a three-valued Logic. Roughly
speaking, given the family G of open sets of a Grothendieck topology
over a universe U , we say that a property P is locally valid on a set X ⊆
U , if its domain of validity, �P�, has a large enough intersection with
X, where the meaning of “large enough” is given by the topology G;

7Therefore, we are not able to distinguish between a body and its essential core,
while we can distinguish the maximal internal body within a generic set (or pre-
figure). As a matter of fact, our topology is coarser than Lawvere’s.
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namely, if �P� ∩ X ∈ G. So we shall define a suitable Grothendieck
topology GB on AS(U/E)[3], depending on the parameter B, such
that the disjunction a ∨ �a is absolutely valid while a ∨ ¬a is greater
than or equal to the local top element 〈U,B〉 (i.e. the transformation via
GB of the absolute top element 〈U,U〉) and the conjunction a ∧ ¬a is
absolutely invalid, while a∧ �a is less than or equal to the local bottom
element 〈−B, ∅〉 (i.e. the transformation via GB of the absolute bottom
element 〈∅, ∅〉).

Hence Grothendieck topologies will code the fact that both excluded
middle and the law of contradiction are locally valid with respect to
the sub-universe B, according to the picture of Figure 5.3.

Figure 5.3: Local and global elements

Example 5.5.1. Local validity in Rough Set Systems – 2
Negations and boundaries:
Given a rough set x = 〈X1, X2〉 (in decr. repr.), ∼ x = 〈−X2,−X1〉 = 〈−(lE)(X),
−(uE)(X)〉 that is the rough set of −X.

�

x = 〈−X2,−X2〉 = 〈−(uE)(X),
−(uE)(X)〉 that is the rough set of (uE)(−X) (of −(lE)(X)). ¬x = 〈−X1,−X1〉 =
〈−(lE)(X),−(lE)(X)〉, that is the rough set of (lE)(−X) (of −(uE)(X)). If y =
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〈Y1, Y2〉, we define x ∧ y and x ∨ y point-wise:

x ∧ y = 〈X1 ∩ Y1, X2 ∩ Y2〉, x ∨ y = 〈X1 ∪ Y1, X2 ∪ Y2〉

(for all these operations see Window 7.1).
In the information system of Example 2.3, we have for instance that if a =

〈{a, c, b},
{b}〉 then a∧ ∼ a = 〈{a, c, b}, {b}〉 ∧ 〈{a, c, d}, {d}〉 = 〈{a, c}, ∅〉. Now, 〈{a, c, b}, {b}〉
represents the rough set {{a, b}, {c, b}}. Let us consider, for instance, {a, b}. The
boundary B({a, b}) is {a, b, c} ∩ −{b} = {a, c}. It follows that a∧ ∼ a = 〈B({a, b}),∅〉.
Hence ¬(a∧ ∼ a) = ¬(a ∧ �

a) = 〈−B({a, b}),−B({a, b})〉 = 〈{a, c}, {a, c}〉.
On the contrary, a∨ ∼ a = 〈{a, b, c, d}, {b, d}〉 = 〈U,−B({a, b})〉, so that

�

(a∨ ∼
a) =

�

(a ∨ ¬a) = 〈− − B({a, b}),−− B({a, b})〉 = 〈B({a, b}),B({a, b})〉.

Local Validity:
Let us consider again the rough set a = 〈{a, c, b}, {b}〉. Then a∨¬a = 〈{a, c, b}, {b}〉∨
〈{d}, {d}〉 = 〈U, {b, d}〉 = 〈U,B〉. However, if we take the illegal pair a′ = 〈{a, c, b},
∅〉, then a′ ∨ ¬a′ = 〈U, {d}〉 � 〈U, B〉. So the property x ∨ ¬x � 〈U, B〉 reflects our
constraint on the admissible forms of rough sets with decreasing representation.

On the other side, a ∧ �

a = a ∧ 〈{c, d}, {c, d}〉 = 〈{c}, ∅〉 ≤ 〈−B, ∅〉. Again,
a′∧ �

a′ = a′∧〈U, U〉 = a′ � 〈−B, ∅〉. Henceforth, also the property x∧¬x 
 〈−B, ∅〉
testifies for the legality of x.

Once we have accomplished this logico-algebraic interpretation of
Rough Set Systems, we can exploit well-known relationships between
the class of semi-simple Nelson algebras and the class of three-valued
�Lukasiewicz algebras in order to move from Nelson’s philosophical issues
concerning the separation of concepts to the standpoint of Multi-Valued
Logics. It will be proved that for any Approximation Space AS(U/E)
the Rough Set System RS(U/E) is a finite three-valued �Lukasiewicz
algebra. In this framework the projection operators correspond to the
two endomorphisms provided by these algebras.

The logical status of the intermediate value in these algebras is
worth being discussed.

Generally, three-valued �Lukasiewicz algebras lack the presence of a
central element. An element x is called central if ∼x = x. One can
prove that in RS(U/E), qua three-valued �Lukasiewicz algebra, there
is at most one central element. Now we show that there is a central
element only if there are not singleton elementary categories. In fact,
we know that in this case we have at least two undefinable sets whose
corresponding rough set is 〈U, ∅〉 (by definition of “undefinable set”,
the closure of these sets is the entire universe, while their interior is
empty). It happens that ∼〈U, ∅〉 = 〈U, ∅〉.
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Moreover, in this specific case RS(U/E) can be made into a Post
algebra of order three, characterized by the three-element chain

〈∅, ∅〉 ≤ 〈U, ∅〉 ≤ 〈U,U〉.

However, in general we do not have such a central element because
B �= ∅. In this case is it impossible to define an algebraic structure
exhibiting a three-element chain of values, in full generality? It is pos-
sible, if we conceive, once more, the concept of an intermediate value
in a relative manner, not in an absolute one. This means that the
property “to be an intermediate element” must be given a local, or
relative, meaning exactly as the notion of a “rough set” was given,
exploiting the Grothendieck topology GB , a meaning relative to the
sub-universe B of the exact pieces of information. In this way we enter
the realm of the generalizations of Post algebras called Chain Based
Lattices investigated by Epstein and Horn.

Particularly, we shall see that for any Approximation Space
AS(U/E), the Rough Set System RS(U/E) is a P2 − lattice of order
three characterized by means of the parameter B. Under this interpre-
tation, the above local top element 〈U,B〉 and local bottom element
〈−B, ∅〉 play the role of intermediate and, respectively, co-intermediate
elements.

If we compare the fact that 〈U, ∅〉 means “totally undefinable” with
the local top and bottom elements, we find a meaningful reading for the
intermediate value of a Rough Set Systems qua P2-lattices: the worst
informational situation is 〈U,B〉 which means “totally undefined up
to B”.

So one can pass from an extreme situation when B = U , to an
opposite extreme situation when B = ∅, through an intermediate one
when U �= B �= ∅. In the first case 〈U,B〉 = 〈U,U〉 = ∼〈∅, ∅〉 = 〈−B, ∅〉.
In the second 〈U,U〉 �= 〈U,B〉 = 〈−B, ∅〉 �= 〈∅, ∅〉. In the intermediate
case 〈U,U〉 �= 〈U,B〉 �= 〈−B, ∅〉 �= 〈∅, ∅〉.

We illustrate these situations in Figure 5.4 below.
Moreover we shall show that the pseudo-supplementation and the dual
pseudo-supplementation which are definable in P2-lattices play the same
roles as the projection operators in semi-simple Nelson algebras and the
two endomorphisms in �Lukasiewicz three valued algebras.

It will also be proved that any finite semi-simple Nelson algebra,
three-valued �Lukasiewicz algebra, Post algebra of order-three or
P2−lattice of order three, is isomorphic to the rough sets system induced
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Figure 5.4: Three-valued lattices connected with Rough Set Systems

by some Approximation Space AS(U/E). More importantly, we shall
exhibit a logico-algebraic decomposition of the structure of Rough
Sets Systems (hence of semi-simple Nelson algebras, three-valued
�Lukasiewicz algebras, Post algebra or P2−lattices of order three), based
on the distinction between locally exact (or Boolean) part and locally
inexact (or Postean) part of an Information System.
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The first section of the Part will run as follows.

• We formally define the sets B and P and explain why they induce
local logical behaviours in an Approximation Space.

• We introduce the mathematical notions of a “Grothendieck Topol-
ogy” and a “Lawvere-Tierney operator”, underlining their suit-
ability for managing the notion “to be locally valid”.

• The set B and its dual P will be exploited as information-
dependent logico-topological parameters in order to define a
Grothendieck topology for identifying RS(U/E) within the set
of all the ordered pairs of decreasing elements of AS(U/E).

• Via two Lawvere-Tierney operators, defined by means of B and
P and inherited from the previous step, we shall define two modal
operators M and L in RS(U/E) that parallel the upper and the
lower approximations, respectively. We shall see that M is an
example of a closure operator induced by a well-known
Grothendieck topology, namely the dense topology on the dual
space of RS(U/E) qua Heyting algebra while L is the closure
operator induced by the dense topology on the dual space of the
opposite Heyting algebra RS(U/E)op.

• Using the above machinery we shall be able to show when and
how a Rough Set System can be made into a Boolean algebra, a
�Lukasiewicz algebra, a Post algebra, a P2-lattice, a P -algebra or
a Nelson algebra. We shall see the roles played in these construc-
tions by the notions of a “central element” and an “intermediate
value”, and the knowledge-oriented content that they are given
in our setting.

• Finally by means of two additional Lawvere-Tierney operators
based on the parameters P and B, we define a couple of new
Grothendieck closure operators which make it possible to dis-
cover the double local logical nature of the above algebraic struc-
tures: the Post-like one (related to the inexact information of
a knowledge system) and the Boolean one (related to its exact
information).

In the second section of the Part the above results will be linked
with an analysis of the notion of a “constructive logical system”, by
discussing the following points:
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• The difference between the “truth-oriented” and the “knowledge-
oriented” approaches in Logic.

• Why a knowledge-oriented approach leads us to the rejection of
some classical principles and the assumption of new principles
such as explicit definability (any derivable existential sentence
must be explicitly instantiated by a closed term) and the dis-
junction principle (a disjunction is provable if at least one disjoint
sentence is explicitly derivable). These principles define what are
usually accepted as “constructive systems”.

• The limits of this understanding of a “constructive system” and
their relations with the classical definition of the concept of
“knowledge”.

• What is hidden in the knowledge-oriented approach. More pre-
cisely the difference between the logical status of atomic and
non-atomic sentences.

• As a consequence the need to make classical and constructive
systems coexist either by endowing constructive systems with
well-suited classical principles or by adopting “context opera-
tors” which are able to identify the logical environment of a
sentence, either classical or constructive, thus making the logical
understanding of a sentence explicit.

To conclude, we shall record two notable conclusions:

R1 The “context operators” are the starting points of an approach
to study maximal constructive logics, that is, constructive logics
embedding a maximal amount of classical principles, in the sense
that they cannot be augmented with any new principle without
making them collapse into a non constructive system.

R2 The “context operators” are tightly connected with the Lawvere-
Tierney operators which we use to formalise the notion of “local
validity” and to define Rough Set Systems, both from a philo-
sophical and a technical point of view.




