Chapter 13

Modalities, Topologies and Algebras

13.1 Topological Boolean Algebras

We pack the above properties in the following definition:

Definition 13.1.1. Let $\langle U, \Omega(U) \rangle$ be a topological space. Then the pair $\langle \mathbf{B}(U), \mathbb{I} \rangle$ *is said to be a* topological Boolean algebra of sets.

Corollary 13.1.1. Let $\langle \mathbf{B}(U), L_R \rangle$ be a pre-monadic Boolean algebra *of the powersets of a set* U, such that R *is a preorder. Then* $\langle \mathbf{B}(U), L_R \rangle$ *is a topological Boolean algebra of sets.*

In a more abstract setting, we can easily observe that taking into account the formal properties of the operators $\mathbb I$ and $\mathbb C$ in a topological space $\langle U, \Omega(U) \rangle$, we obtain the following definition:

Definition 13.1.2. *Let* **^B** *be a Boolean algebra and* ^I *a monadic operator on* **B** *such that, for any* $a, b \in \mathbf{B}$

- *1.* $\mathbb{I}(1) = 1$ *.*
- 2. $\mathbb{I}(a) \leq a$.
- $3. \mathbb{I}(\mathbb{I}(a)) = \mathbb{I}(a).$
- 4. $\mathbb{I}(a \wedge b) = \mathbb{I}(a) \wedge \mathbb{I}(b)$.

then the pair $\langle \mathbf{B}, \mathbb{I} \rangle$ *is called a "topological Boolean algebra, tBa".*

From *Definition* 13.1.2, it follows immediately that $\mathbb{I}(a \lor b) > \mathbb{I}(a) \lor \mathbb{I}(b)$. Therefore, any *tBa* is a pre-monadic Boolean algebra with additional features (namely (2) and (3) – cf. *Definition* 12.1.3).

Proposition 13.1.1. Let $\langle \mathbf{B}, \mathbb{I} \rangle$ be a tBa and \mathbb{C} a monadic operator *such that for any* $a \in \mathbf{B}$, $\mathbb{C}(a) = \neg \mathbb{I}(\neg a)$ *. Then, for any* $a, b \in \mathbf{B}$ *,*

- *1.* $\mathbb{C}(0) = 0$.
- 2. $\mathbb{C}(a) > a$.
- *3.* $\mathbb{C}(\mathbb{C}(a)) = \mathbb{C}(a)$.
- *4.* $\mathbb{C}(a \vee b) = \mathbb{C}(a) \vee \mathbb{C}(b)$.

The above abstraction is adequate in that the following proposition holds:

Proposition 13.1.2. Let $\langle U, \Omega(U) \rangle$ be a topological space, then $\langle \mathbf{B}(U), \mathbb{I} \rangle$ *is a* tBa.

Proof. straightforward. QED

Proposition 13.1.3. *Any* tBa *is a model for the modal system* **S***4.*

For the complete proof see, for instance, Rasiowa [1974], Chapter XIII, where $S4$ is called $S_{\lambda 4}$. By going back from *Corollary* 12.8.4 through our preceding discussion, we can easily obtain that **S**4 modal systems are characterised by reflexive and transitive binary relations, i.e. preorders (see Section 12.2).¹

13.2 Monadic Topological Boolean Algebras

The equations stated in *Corollary* 12.8.5 give a partial answer to the problem risen at the end of Section 12.1. To completely solve it we have to understand when $M_R(X) = \bigcap \{ R(Z) : R(Z) \supseteq X \}.$

Immediately we observe that the second equation holds whenever $R = R^{\sim}$. So, let us specialize the above results for the case when the binary relation at hand is an equivalence relation.

¹However, if we are confined to finite partial orders we characterise the logic S4**GRZ** – see above.

13.2 Monadic Topological Boolean Algebras 473

 $\bf{Proposition~13.2.1.}$ *Let* $\langle U, \Omega_R(U) \rangle$ *be a topological space associated with a relation* $R \subseteq U \times U$ *. Then* $\mathbb{I}_R(X \cup \mathbb{I}_R(Y)) = \mathbb{I}_R(X) \cup \mathbb{I}_R(Y)$ *if and only if* R *is an equivalence relation.*

Proof.

 $(A) \Rightarrow$: Let R be an equivalence relation. Since $\mathbb{I}_R(X \cup \mathbb{I}_R(Y)) \supseteq$ $\mathbb{I}_R(X) \cup \mathbb{I}_R(\mathbb{I}_R(Y))$, from idempotence of \mathbb{I}_R we have $\mathbb{I}_R(X \cup \mathbb{I}_R(Y)) \supseteq$ $\mathbb{I}_R(X) \cup \mathbb{I}_R(Y)$. Therefore we have to prove the reverse inclusion. So, let $a \in \mathbb{I}_R(X \cup \mathbb{I}_R(Y));$ we prove that $a \in \mathbb{I}_R(X)$ or $a \in \mathbb{I}_R(Y)$. We recall that $\mathbb{I}_R(X \cup \mathbb{I}_R(Y)) = \{x : R(x) \subseteq X \cup \mathbb{I}_R(Y)\} = \{x : R(x) \subseteq$ $X \cup \{y : R(y) \subseteq Y\}$. Thus, $R(a) \subseteq X \cup \{y : R(y) \subseteq Y\}$, so that for any $a' \in R(a)$, $a' \in X \cup \{y : R(y) \subseteq Y\}$. Therefore, let $a' \in \{y : R(y) \subseteq Y\}$ Y, then $R(a') \subseteq Y$. But $R(a') = R(a)$, because R is an equivalence relation. Hence, in this case, $a \in \mathbb{I}_R(Y)$. Otherwise $R(a') \cap Y = \emptyset$. But in this case we must have $R(a) \subseteq X$ and $a \in I_R(X)$.

 (B) \Leftarrow : Assume now that $\mathbb{I}_R(X \cup \mathbb{I}_R(Y)) \subseteq \mathbb{I}_R(X) \cup \mathbb{I}_R(Y)$. We have to prove that R is an equivalence relation. Suppose $\mathbb{I}_R(X \cup \mathbb{I}_R(Y))$ is not included in $\mathbb{I}_R(X) \cup \mathbb{I}_R(Y)$. We show that in this case R cannot be an equivalence relation. So, assume (i) $a \in I_R(X \cup I_R(Y))$ and (ii) $a \notin \mathbb{I}_R(X) \cup \mathbb{I}_R(Y)$. Therefore, $a \in \{x : R(x) \subseteq X \cup \mathbb{I}_R(Y)\}$. However, $R(a)$ cannot be included in X, otherwise $a \in \mathbb{I}_R(X)$. It follows that there is an $a' \in R(a)$ such that $a' \in \mathbb{I}_R(Y)$. This means that $R(a') \subseteq$ Y. Suppose $R(a') = R(a)$. In this case $R(a) \subseteq Y$ and $a \in I_R(Y)$, which contradicts our assumption (ii). Henceforth, $R(a) \neq R(a')$ (if R is transitive, $R(a') \nsubseteq R(a)$). It follows immediately that R is not an equivalence relation. QED

 $\bf{Proposition 13.2.2.}$ *Let* $\langle U, \Omega_E(U) \rangle$ *be a topological space associated with an equivalence relation* $E \subseteq U \times U$. Then,

- *1.* $\Omega_E(U) = \Gamma_E(U)$.
- 2. $\Omega_E(U)$, *is a Boolean algebra.*
- $\langle U, \Omega_E \rangle = \langle U, \mathbf{AS}(U/E) \rangle.$

Proof. (**1**) $X \in \Omega_E(U)$ if and only if $X = \mathbb{I}_E(X) = \varkappa^E(X)$ if and only if $X = E(X)$, if and only if $X = E^{\sim}(X)$, if and only if $X = \varepsilon^{E}(X)$ $\mathbb{C}_E(X)$, if and only if $X \in \Gamma_E(U)$. (2) Since \mathbb{I}_E and \mathbb{C}_E are dual, from point (1) we have that if $X \in \Omega_E(U)$, then $X = \mathbb{I}_E(X)$, so that $-X = -\mathbb{I}_E(X) = \mathbb{C}_E(-X)$. Therefore, $-X \in \Gamma_E(U) = \Omega_E(U)$. So, $\Omega_E(U)$ is closed under complementation. Moreover, from *Proposition* 12.5.5 and point (1), if $X, Y \in \Omega_E(U)$, then both $X \cup Y$ and $X \cap Y$ belong to $\Omega_E(U)$. Moreover, $\varkappa^E(U) = U$ and $\varkappa^E(\emptyset) = \emptyset$. Therefore $\Omega_E(U)$ is a Boolean algebra of sets. (3) From the definitions of Ω_E and $\mathbf{AS}(U/E)$. QED

So far, we have distilled the topological features of Approximation Spaces. Now we have enough material in order to understand why the pair $\langle \mathbf{B}(U), L_E \rangle$, where L_E is induced by an Approximation Space $\langle U, \Omega_E \rangle = \langle U, \mathbf{AS}(U/E) \rangle$, is a particular kind of *topological Boolean algebra of sets*.

As we have seen, this term applies, more in general, to any pair $\langle \mathbf{B}(U), L \rangle$ where L is the interior operator of any topology on U. In particular, it applies to the pair $\langle \mathbf{B}(U), L_R \rangle$ where L_R is induced by the topology $\{x^R(X): X \subseteq U\}$ for some transitive and reflexive relation R. The distinguishing properties of Approximation Spaces, *qua* topological Boolean algebra of sets, are consequences of the fact that Approximation Spaces are induced not just by generic preorders, but by equivalence relations:

Corollary 13.2.1. Let $\langle \mathbf{B}(U), L_R \rangle$ be a pre-monadic Boolean algebra *of the powersets of a set* U. Let R *be an equivalence relation and* $X \subseteq U$. *Then,*

$$
1. L_R(X) = \bigcup \{ R(Z) : R(Z) \subseteq X \}.
$$

$$
\mathcal{Z}.\, M_R(X) = \bigcap \{ R(Z) : R(Z) \supseteq X \}.
$$

Proof. Straightforward, from *Corollary* 12.8.5. QED

The above result completes the answer to the problem risen at the end of Section 12.1.

We summarize the properties of pre-monadic Boolean algebras induced by topological spaces associated with equivalence relations, in the following corollary:

Corollary 13.2.2. Let $\langle \mathbf{B}(U), L_R \rangle$ be a pre-monadic Boolean algebra *of the powersets of a set* U*, such that* R *is an equivalence relation. Then* $\langle \mathbf{B}(U), L_R \rangle$ is a monadic topological Boolean algebra of sets.

13.2 Monadic Topological Boolean Algebras 475

Proof. Straightforwardly from *Definition* 12.1.6 and *Proposition* 13.2.1. QED

In abstraction we set:

Definition 13.2.1. *If* $\langle \mathbf{B}, \mathbb{I} \rangle$ *is a* tBa *such that, for any* $a, b \in \mathbf{B}$ *,* $\mathbb{I}(a \vee \mathbb{I}(b)) = \mathbb{I}(a) \vee \mathbb{I}(b)$, then it is called a "monadic topological Boolean" algebra (mtBa)*".*

Corollary 13.2.3. Any monadic Boolean algebra of sets $\langle \mathbf{B}(U), L_R \rangle$ *is a mtBa of sets.*

Proof. From *Definition* 12.1.6.(2) and *Proposition* 13.2.1 the proof follows. QED

Proposition 13.2.3. For all tBa $\langle \mathbf{A}, L \rangle$, $\mathbf{L}(\mathbf{A})$ is a sublattice of \mathbf{A} *.*

Proof. Let $x, y \in \mathbf{L}(\mathbf{A})$. Then $x \wedge y = L(x) \wedge L(y)$ (from idempotence of L. Thus $x \wedge y = L(x \wedge y)$. Since for all $a, b \in \mathbf{A}$, $L(a) \vee L(b) \leq L(a \vee b)$, if $x, y \in L(\mathbf{A}), x \vee y \leq L(x \vee y)$. But $L(x \vee y) \leq x \vee y$ (because L is deflationary). It follows that $x \vee y = L(x \vee y)$. QED

Proposition 13.2.4. For all mtBa $\langle \mathbf{A}, L \rangle$, $\mathbf{L}(\mathbf{A})$ is a Boolean algebra.

Proof. We have to prove that $L(A)$ is closed under complementation. Let $x \in$ **L(A)**. Since $x \wedge -x = 0$ we have $L(x \wedge -x) = 0$ (from the deflationary property). Thus, $L(x \wedge -x) = L(x) \wedge L(-x) = 0$. Moreover, $x \vee -x = 1$ so that $L(L(x) \vee -x) = 1$ (because $x = L(x)$). From monadicity, $L(x) \vee L(-x) = x \vee L(-x) = 1$. Thus $L(-x)$ is the complement of x, because $L(A)$ is a sublattice of A. We conclude that $L(-x) = x$ and $L(A)$ is closed under complementation. QED

Corollary 13.2.4. *In any mtBa* $\langle \mathbf{A}, L \rangle$, $\mathbf{M}(\mathbf{A}) = \{M(x) : x \in \mathbf{A}\}\$ *coincides with* **L**(**A**)*.*

Proof. For all $x \in \mathbf{A}$, $M(x) \in \mathbf{L}(\mathbf{A})$. In fact, $M(x) = -L(-x)$. But from *Proposition* 13.2.4 $-L(-x) \in L(A)$. For all $y \in A$, $L(x) \in L(A)$: dually. QED

Corollary 13.2.5. In any mtBa $\langle A, L \rangle$, (a) $ML(x) = L(x)$; (b) LM $(x) = M(x)$ *, any* $x \in \mathbf{A}$ *.*

Proof. (a) From *Proposition* 13.2.4, for all $x \in \mathbf{A}$, $-L(x) \in \mathbf{L}(\mathbf{A})$. Therefore, $-L(x) = L - L(x) = -ML(x)$. It follows that $L(x) =$ $ML(x)$. (b) By duality. QED **Proposition 13.2.5.** *Any* mtBa *is a model for the modal system* **S***5.*

As to the proof see, for instance, Rasiowa [1974], Chapter XIII, where **S**5 is called $S_{\lambda 5}$. This result confirms what we have discussed in Section 12.2: **S**5 modal systems are characterised by symmetric, reflexive and transitive binary relations, i.e., equivalence relations.

The following results link the definitions of lower and upper approximations to the fact that $\langle \mathbf{B}(U), \Omega_E(U) \rangle$ is a modal system:

 $Corollary 13.2.6. Let $\langle U, \Omega_E(U) \rangle$ be a topological space associated$ with an equivalence relation $E \subseteq U \times U$ and let $\langle U, E \rangle$ be the Indis*cernibility Space based on* E. Then for any $X \in \mathbf{B}(U)$,

- *1.* $L_E(X) = \mathbb{I}_E(X) = \bigcup \{ Y : Y \in \Omega_E \& Y \subseteq X \} = \bigcup \{ [x]_E : [x]_E \subseteq$ X ² $=$ (*lE*)(*X*).
- 2. $M_E(X) = \mathbb{C}_E(X) = \bigcap \{Y : Y \in \Omega_E \& Y \supseteq X\} = \bigcap \{[x]_E : X \subseteq$ $[x]_E$ } = $(uE)(X)$.
- 3. (i) $L_E(M_E(X)) = M_E(X)$; (ii) $M_E(L_E(X)) = L_E(X)$.

Proof. (**1**) and (**2**) come straightforward from the above results. (**3**) $L_E(X)$ is an open set. Thus it has the form $E(Y)$ for some $Y \subseteq$ U (namely $Y = \bigcup \{E(x) : E(x) \subseteq X\}$. Therefore, $M_E(L_E(X)) =$ $M_E(E(Y)) = E^{\sim}(E(Y)) = E(E(Y)) = E(Y) = L_E(X)$. Dually for the first equation. QED

Corollary 13.2.7. Let $\langle U, AS(U) \rangle$ be an Approximation Space. Then $\langle \mathbf{B}(U), (lE) \rangle$ *(or* $\langle \mathbf{B}(U), (uE) \rangle$ *)* is a mtBa *of sets.*

The two axioms which characterise **S**5, that is $L(M(\alpha)) \longleftrightarrow M(\alpha)$ and $M(L(\alpha)) \longleftrightarrow L(\alpha)$ say, in logical terms, that any string $(m_1, ..., m_n)$ of nested modal operators $m_i \in \{[R], \langle R \rangle\}$, collapses into the one-term string m_n . In our Rough Set reading, this collapse says that any single approximation of a subset of the universe of discourse provides an *exact set*, that is a set invariant under further approximations.

At this point we can list a series of connections between some fundamental results we have proved so far.

• From a topological point of view, in any mtBa, for all $x \in L(A)$, $x = \mathbb{I}C(x)$ (from *Corollary* 13.2.5). Hence any $x \in \mathbf{L}(\mathbf{A})$ is a regular element [cf. Subsection 7.3.1 of Chapter 7].

13.2 Monadic Topological Boolean Algebras 477

- Any Approximation Space **AS**(U/E) is a Boolean subalattice of the Boolean algebra of $\varphi(U)$.
- In **S**5 modal systems, $ML(\alpha) \longleftrightarrow L(a)$ and $LM(\alpha) \longleftrightarrow M(a)$, any formula α) [cf. Table 12.3 of Section 12.2].
- In any Approximation Space $\mathbf{AS}(U/E)$, for any $X \subseteq U, (uE)(X)$ and $(lE)(X)$ are exact elements. Hence, $(lE)(uE)(X)=(uR)(X)$ and $(uR)(lE)(X)=(lE)(X)$.
- M_R ^{$+ L_R$} (because $R = R^{\sim}$, from *Proposition* 13.2.1 and *Proposition* 13.2.1) [cf. *Corollary* 8.2.1 of Chapter 8].

Example 13.2.1*.* A topological Boolean algebra and a monadic topological Boolean algebra

The pre-monadic Boolean algebra $\langle \mathbf{A}, L_2 \rangle$ of Example 12.1.4 is a topological Boolean algebra. The structure $\langle \mathbf{A}, L' \rangle$ with the operator L' below, is a monadic topological Boolean algebra:

$$
\begin{array}{c|cccccccccccc}\nx & 0 & a & b & c & d & e & f & 1 \\
\hline\nL'(x) & 0 & 0 & b & 0 & b & e & b & 1\n\end{array}
$$

The sublattices $\mathbf{L}'(\mathbf{A})$ of the images of the operator L' coincides with that of the monadic Boolean algebra $\langle \mathbf{A}, L_m \rangle$ of Example 12.1.5. However, $\langle \mathbf{A}, L_m \rangle$ is not topological because, for instance, $L_m L_m(d) = 0 \neq b = L_m(d)$ (i.e. L_m is not idempotent).