
Chapter 13

Modalities, Topologies
and Algebras

13.1 Topological Boolean Algebras

We pack the above properties in the following definition:

Definition 13.1.1. Let 〈U, Ω(U)〉 be a topological space. Then the pair
〈B(U), I〉 is said to be a topological Boolean algebra of sets.

Corollary 13.1.1. Let 〈B(U), LR〉 be a pre-monadic Boolean algebra
of the powersets of a set U , such that R is a preorder. Then 〈B(U), LR〉
is a topological Boolean algebra of sets.

In a more abstract setting, we can easily observe that taking into
account the formal properties of the operators I and C in a topological
space 〈U,Ω(U)〉, we obtain the following definition:

Definition 13.1.2. Let B be a Boolean algebra and I a monadic oper-
ator on B such that, for any a, b ∈ B

1. I(1) = 1.

2. I(a) ≤ a.

3. I(I(a)) = I(a).

4. I(a ∧ b) = I(a) ∧ I(b).

then the pair 〈B,I〉 is called a “ topological Boolean algebra, tBa”.
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From Definition 13.1.2, it follows immediately that I(a∨b) ≥ I(a)∨I(b).
Therefore, any tBa is a pre-monadic Boolean algebra with additional
features (namely (2) and (3) – cf. Definition 12.1.3).

Proposition 13.1.1. Let 〈B,I〉 be a tBa and C a monadic operator
such that for any a ∈ B,C(a) = ¬I(¬a). Then, for any a, b ∈ B,

1. C(0) = 0.

2. C(a) ≥ a.

3. C(C(a)) = C(a).

4. C(a ∨ b) = C(a) ∨ C(b).

The above abstraction is adequate in that the following proposition
holds:

Proposition 13.1.2. Let 〈U,Ω(U)〉 be a topological space, then
〈B(U), I〉 is a tBa.

Proof. straightforward. qed

Proposition 13.1.3. Any tBa is a model for the modal system S4.

For the complete proof see, for instance, Rasiowa [1974], Chapter XIII,
where S4 is called Sλ4. By going back from Corollary 12.8.4 through our
preceding discussion, we can easily obtain that S4 modal systems are
characterised by reflexive and transitive binary relations, i.e. preorders
(see Section 12.2).1

13.2 Monadic Topological Boolean Algebras

The equations stated in Corollary 12.8.5 give a partial answer to the
problem risen at the end of Section 12.1. To completely solve it we have
to understand when MR(X) =

⋂
{R(Z) : R(Z) ⊇ X}.

Immediately we observe that the second equation holds whenever
R = R�. So, let us specialize the above results for the case when the
binary relation at hand is an equivalence relation.

1However, if we are confined to finite partial orders we characterise the logic
S4GRZ – see above.
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Proposition 13.2.1. Let 〈U,ΩR(U)〉 be a topological space associated
with a relation R ⊆ U × U . Then IR(X ∪ IR(Y )) = IR(X) ∪ IR(Y ) if
and only if R is an equivalence relation.

Proof.
(A) �: Let R be an equivalence relation. Since IR(X ∪ IR(Y )) ⊇

IR(X) ∪ IR(IR(Y )), from idempotence of IR we have IR(X ∪ IR(Y )) ⊇
IR(X) ∪ IR(Y ). Therefore we have to prove the reverse inclusion. So,
let a ∈ IR(X ∪ IR(Y )); we prove that a ∈ IR(X) or a ∈ IR(Y ). We
recall that IR(X ∪ IR(Y )) = {x : R(x) ⊆ X ∪ IR(Y )} = {x : R(x) ⊆
X ∪ {y : R(y) ⊆ Y }}. Thus, R(a) ⊆ X ∪ {y : R(y) ⊆ Y }, so that for
any a′ ∈ R(a), a′ ∈ X ∪{y : R(y) ⊆ Y }. Therefore, let a′ ∈ {y : R(y) ⊆
Y }, then R(a′) ⊆ Y . But R(a′) = R(a), because R is an equivalence
relation. Hence, in this case, a ∈ IR(Y ). Otherwise R(a′) ∩ Y = ∅. But
in this case we must have R(a) ⊆ X and a ∈ IR(X).

(B) �: Assume now that IR(X ∪ IR(Y )) ⊆ IR(X)∪ IR(Y ). We have
to prove that R is an equivalence relation. Suppose IR(X ∪ IR(Y )) is
not included in IR(X) ∪ IR(Y ). We show that in this case R cannot
be an equivalence relation. So, assume (i) a ∈ IR(X ∪ IR(Y )) and (ii)
a /∈ IR(X) ∪ IR(Y ). Therefore, a ∈ {x : R(x) ⊆ X ∪ IR(Y )}. However,
R(a) cannot be included in X, otherwise a ∈ IR(X). It follows that
there is an a′ ∈ R(a) such that a′ ∈ IR(Y ). This means that R(a′) ⊆
Y . Suppose R(a′) = R(a). In this case R(a) ⊆ Y and a ∈ IR(Y ),
which contradicts our assumption (ii). Henceforth, R(a) �= R(a′) (if R
is transitive, R(a′) �⊆ R(a)). It follows immediately that R is not an
equivalence relation. qed

Proposition 13.2.2. Let 〈U,ΩE(U)〉 be a topological space associated
with an equivalence relation E ⊆ U × U . Then,

1. ΩE(U) = ΓE(U).

2. ΩE(U), is a Boolean algebra.

3. 〈U,ΩE〉 = 〈U,AS(U/E)〉.

Proof. (1) X ∈ ΩE(U) if and only if X = IE(X) = κ

E(X) if and only
if X = E(X), if and only if X = E�(X), if and only if X = εE(X) =
CE(X), if and only if X ∈ ΓE(U). (2) Since IE and CE are dual,
from point (1) we have that if X ∈ ΩE(U), then X = IE(X), so that
−X = −IE(X) = CE(−X). Therefore, −X ∈ ΓE(U) = ΩE(U). So,
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ΩE(U) is closed under complementation. Moreover, from Proposition
12.5.5 and point (1), if X,Y ∈ ΩE(U), then both X ∪ Y and X ∩ Y
belong to ΩE(U). Moreover, κE(U) = U and κE(∅) = ∅. Therefore
ΩE(U) is a Boolean algebra of sets. (3) From the definitions of ΩE and
AS(U/E). qed

So far, we have distilled the topological features of Approximation
Spaces. Now we have enough material in order to understand why
the pair 〈B(U), LE〉, where LE is induced by an Approximation Space
〈U,ΩE〉 = 〈U,AS(U/E)〉, is a particular kind of topological Boolean
algebra of sets.

As we have seen, this term applies, more in general, to any pair
〈B(U), L〉 where L is the interior operator of any topology on U . In
particular, it applies to the pair 〈B(U), LR〉 where LR is induced by
the topology {κR(X) : X ⊆ U} for some transitive and reflexive rela-
tion R. The distinguishing properties of Approximation Spaces, qua
topological Boolean algebra of sets, are consequences of the fact that
Approximation Spaces are induced not just by generic preorders, but
by equivalence relations:

Corollary 13.2.1. Let 〈B(U), LR〉 be a pre-monadic Boolean algebra
of the powersets of a set U . Let R be an equivalence relation and X ⊆ U .
Then,

1. LR(X) =
⋃
{R(Z) : R(Z) ⊆ X}.

2. MR(X) =
⋂
{R(Z) : R(Z) ⊇ X}.

Proof. Straightforward, from Corollary 12.8.5. qed

The above result completes the answer to the problem risen at the end
of Section 12.1.

We summarize the properties of pre-monadic Boolean algebras
induced by topological spaces associated with equivalence relations,
in the following corollary:

Corollary 13.2.2. Let 〈B(U), LR〉 be a pre-monadic Boolean algebra
of the powersets of a set U , such that R is an equivalence relation. Then
〈B(U), LR〉 is a monadic topological Boolean algebra of sets.
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Proof. Straightforwardly from Definition 12.1.6 and Proposition 13.2.1.
qed

In abstraction we set:

Definition 13.2.1. If 〈B,I〉 is a tBa such that, for any a, b ∈ B,
I(a∨I(b)) = I(a)∨I(b), then it is called a “ monadic topological Boolean
algebra (mtBa)”.

Corollary 13.2.3. Any monadic Boolean algebra of sets 〈B(U), LR〉
is a mtBa of sets.

Proof. From Definition 12.1.6.(2) and Proposition 13.2.1 the proof fol-
lows. qed

Proposition 13.2.3. For all tBa 〈A, L〉, L(A) is a sublattice of A.

Proof. Let x, y ∈ L(A). Then x∧y = L(x)∧L(y) (from idempotence of
L. Thus x∧ y = L(x∧ y). Since for all a, b ∈ A, L(a)∨L(b) ≤ L(a∨ b),
if x, y ∈ L(A), x ∨ y ≤ L(x ∨ y). But L(x ∨ y) ≤ x ∨ y (because L is
deflationary). It follows that x ∨ y = L(x ∨ y). qed

Proposition 13.2.4. For all mtBa 〈A, L〉, L(A) is a Boolean algebra.

Proof. We have to prove that L(A) is closed under complementation.
Let x ∈ L(A). Since x ∧ −x = 0 we have L(x ∧ −x) = 0 (from the
deflationary property). Thus, L(x ∧ −x) = L(x) ∧ L(−x) = 0. More-
over, x ∨ −x = 1 so that L(L(x) ∨ −x) = 1 (because x = L(x)). From
monadicity, L(x) ∨ L(−x) = x ∨ L(−x) = 1. Thus L(−x) is the com-
plement of x, because L(A) is a sublattice of A. We conclude that
L(−x) = x and L(A) is closed under complementation. qed

Corollary 13.2.4. In any mtBa 〈A, L〉, M(A) = {M(x) : x ∈ A}
coincides with L(A).

Proof. For all x ∈ A, M(x) ∈ L(A). In fact, M(x) = −L(−x). But
from Proposition 13.2.4 −L(−x) ∈ L(A). For all y ∈ A, L(x) ∈ L(A):
dually. qed

Corollary 13.2.5. In any mtBa 〈A, L〉, (a) ML(x) = L(x); (b) LM
(x) = M(x), any x ∈ A.

Proof. (a) From Proposition 13.2.4, for all x ∈ A, −L(x) ∈ L(A).
Therefore, −L(x) = L − L(x) = −ML(x). It follows that L(x) =
ML(x). (b) By duality. qed
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Proposition 13.2.5. Any mtBa is a model for the modal system S5.

As to the proof see, for instance, Rasiowa [1974], Chapter XIII, where
S5 is called Sλ5. This result confirms what we have discussed in Section
12.2: S5 modal systems are characterised by symmetric, reflexive and
transitive binary relations, i.e., equivalence relations.

The following results link the definitions of lower and upper approx-
imations to the fact that 〈B(U),ΩE(U)〉 is a modal system:

Corollary 13.2.6. Let 〈U,ΩE(U)〉 be a topological space associated
with an equivalence relation E ⊆ U × U and let 〈U,E〉 be the Indis-
cernibility Space based on E. Then for any X ∈ B(U),

1. LE(X) = IE(X) =
⋃
{Y : Y ∈ ΩE & Y ⊆ X} =

⋃
{[x]E : [x]E ⊆

X} = (lE)(X).

2. ME(X) = CE(X) =
⋂
{Y : Y ∈ ΩE & Y ⊇ X} =

⋂
{[x]E : X ⊆

[x]E} = (uE)(X).

3. (i) LE(ME(X)) = ME(X); (ii) ME(LE(X)) = LE(X).

Proof. (1) and (2) come straightforward from the above results. (3)
LE(X) is an open set. Thus it has the form E(Y ) for some Y ⊆
U (namely Y =

⋃
{E(x) : E(x) ⊆ X}. Therefore, ME(LE(X)) =

ME(E(Y )) = E�(E(Y )) = E(E(Y )) = E(Y ) = LE(X). Dually for
the first equation. qed

Corollary 13.2.7. Let 〈U,AS(U)〉 be an Approximation Space. Then
〈B(U), (lE)〉 (or 〈B(U), (uE)〉) is a mtBa of sets.

The two axioms which characterise S5, that is L(M(α)) ←→M(α) and
M(L(α)) ←→ L(α) say, in logical terms, that any string (m1, ...,mn)
of nested modal operators mi ∈ {[R], 〈R〉}, collapses into the one-term
string mn. In our Rough Set reading, this collapse says that any single
approximation of a subset of the universe of discourse provides an exact
set, that is a set invariant under further approximations.

At this point we can list a series of connections between some
fundamental results we have proved so far.

• From a topological point of view, in any mtBa, for all x ∈ L(A),
x = IC(x) (from Corollary 13.2.5). Hence any x ∈ L(A) is a
regular element [cf. Subsection 7.3.1 of Chapter 7].
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• Any Approximation Space AS(U/E) is a Boolean subalattice of
the Boolean algebra of ℘(U).

• In S5 modal systems, ML(α) ←→ L(a) and LM(α) ←→ M(a),
any formula α) [cf. Table 12.3 of Section 12.2].

• In any Approximation Space AS(U/E), for any X ⊆ U, (uE)(X)
and (lE)(X) are exact elements. Hence, (lE)(uE)(X) = (uR)(X)
and (uR)(lE)(X) = (lE)(X).

• MR � LR (because R = R�, from Proposition 13.2.1 and Propo-
sition 13.2.1) [cf. Corollary 8.2.1 of Chapter 8].

Example 13.2.1. A topological Boolean algebra and a monadic topo-
logical Boolean algebra

The pre-monadic Boolean algebra 〈A, L2〉 of Example 12.1.4 is a topological Boolean
algebra. The structure 〈A, L′〉 with the operator L′ below, is a monadic topological
Boolean algebra:

x 0 a b c d e f 1

L′(x) 0 0 b 0 b e b 1

The sublattices L′(A) of the images of the operator L′ coincides with that of the
monadic Boolean algebra 〈A, Lm〉 of Example 12.1.5. However, 〈A, Lm〉 is not
topological because, for instance, LmLm(d) = 0 �= b = Lm(d) (i.e. Lm is not
idempotent).




