
Chapter 12

Modalities and Relations

12.1 Modal Systems and Binary Relations

Definition 12.1.1. Let U be a set and R a binary relation on U , a map
f : ℘(U)�−→℘(U) is said to be connected with R if for any X ∈ ℘(U),
f(X) = R(X) = {y ∈ U : ∃x(x ∈ X & 〈x, y〉 ∈ R)}.

In view of this definition we can say that finite distributive modal
systems can be made into isomorphic k-modal systems and can be
represented by k-modal systems where the standard knowledge map k∗

is connected with a preorder relation. In fact, k∗(X) =↑� X =$ (X).
In this way we have, partially, answered the questions:
(A) “Given an abstract modal system 〈S,S′〉 is there a k-modal

system 〈S, k(S)〉 isomorphic to it?”
(B) “Given a k-modal system 〈S, k(S)〉 is there a representation

〈A, k∗(A)〉 such that A is an algebra of subsets of a universe U and
the knowledge map k∗ is connected with a binary relation R on U?”

Now we reverse the starting point:
(A’) “Given an algebra A of subsets of a universe U , a binary rela-

tion R on U , and a function f connected with R, is the pair 〈A, f(A)〉
a k-modal system? If yes, how do its modal properties vary, depending
upon the properties of R?”.

(B’) “Given a k-modal system 〈A, k(A)〉 such that A is an algebra
of subsets of a universe U , is there a relation R on U such that the
knowledge map k is connected with R?”.

In other terms, we want to know (i) what relationships exist between
binary relations and knowledge maps, (ii) what relationships exist
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390 12 Modalities and Relations

between the properties of a binary relation and the k-modal system
connected with it (if any).

In view of our main topic, Approximation Spaces, we shall solve
limited instances of the above problems, namely when A is a Boolean
algebra of sets.

Therefore, henceforth, if not otherwise stated, the role of A will be
played by the Boolean algebra of sets B(U) = 〈℘(U),∩,∪,−, U, ∅〉 for
some universe U and R will denote a binary relation on U : R ⊆ U×U .

Terminology and Notation. From now on the entities that populate

the elements of an algebra of sets will be called “points” (or “elements”

when they appear in sentences mentioning the set they belong to). The

set of all points will be denoted by means of our familiar notation U (for

“universe of discourse”; indeed, U plays the role of G in Part I. Here

instead of the set of “Gegenstände”, we prefer the more abstract notion

of a “universe”).

Now it is worthwhile recalling some properties of R-neighborhoods,
R( ) i.e. 〈R�〉, from Part I:

Proposition 12.1.1.

1. Given a binary relation R ⊆ U × U , the R-neighborhood R( ) =
〈R�〉 is lower adjoint of [R] with respect to the structure (small
category) 〈℘(U),⊆〉. Hence,

2. R( ) is continuous: R(X) ∪R(Y ) = R(X ∪ Y ),

3. R is normal: R(∅) = ∅,

4. R is isotonic: X ⊆ Y implies R(X) ⊆ R(Y ). Moreover,

5. R is co-discontinuous: R(X ∩ Y ) ⊆ R(X) ∩R(Y ).

Point 2 is a direct consequence of Proposition 1.4.8.(2), because R( ) is
a lower adjoint.

Obviously, the same holds for R�−neighborhoods, i.e. 〈R〉.
In modal contexts, points are usually called possible worlds, infor-

mation states or states of affairs.1 The binary relation R, generally has
the following meaning: if 〈x, x′〉 ∈ R, then x′ is a possible evolution of

1Or, sometimes, “knowledge states” (of a subject). However we use the term
“knowledge” to denote a particular pattern of information states.
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the state x (or x′ represents a world that is conceivable from x, or an
enrichment of the information in x). Usually if 〈x, x′〉 ∈ R, then we say
that x′ is accessible from x. However, we shall see interpretations which
are more perspicuous for our context. We shall develop this point later
on. By now, consider that R induces a particular geometry on the set
of points U , which is well represented by the space 〈U,R〉, which, for
historical reasons, is called a Kripke frame (cf. Frame 4.13 of Part I).2

We hardly can deny, at this point, that at the end of this story we
shall find not a generic relation R, but our familiar equivalence relation
E. This is obvious. However it is better we reach that point gradually,
passing through some preliminary steps illustrating how an equivalence
relation is only one among a number of other interesting possibilities.

From the definitions of R-neighborhoods and R�-neighborhoods,
it is clear that for any X ⊆ U there is only one X ′ such that X ′ =
R(X) and only one X ′′ such that X ′′ = R�(X). So we can define two
functions from ℘(U), qua carrier of B(U), to ℘(U), qua range of the
relation R, as follows:

• f : ℘(U)�−→℘(U), f(X) = R(X) – that is, f is connected with R.

• h : ℘(U)�−→℘(U), g(X) = R�(X) – that is, h is connected with
R�.

Now, the first three points of Proposition 12.1.1 tell us that any func-
tion connected with a binary relation is a knowledge map. In view of
this fact, we can restate the definitions of the modal operators Lk and
Mk using R−neighborhoods to provide these operators with a specific
meaning based on the properties exhibited by the binary relation which
is connected with k.3

Lemma 12.1.1. Let 〈B(U), k(B(U))〉 be a k-modal system such that
k is connected with some relation R ⊆ U ×U , i.e. k(B(U)) = {R(X) :

2For some specific purposes, also ternary relations are used (cf. [Allwein-Dunn
1993] as to Kripke models for Linear Logic or [Anderson et al. 1992] as to Kripke
models for Relevant Logics). In these cases, the sentence “〈x, y, z〉 ∈ R” usually
reads: “the information in x combined with the information in y, outputs the infor-
mation in z”. That is, z = x◦y where “◦” is a monoidal operator. Also, this approach
is connected with Phase Semantics for Linear Logic (see [Abrusci 1991]).

3If we do not assume S = B(U), but we let S be a sublattice of B(U), then
f : S �−→ ℘(U) and it may happen, for some X ⊆ U , that R(X) /∈ S or R�(X) /∈ S
(we recall that S is the carrier of S). So these definitions must be generalised. For
instance, we can adopt (i) f(X) =

⋃
{X′ ∈ S : X ′ ⊆ R(X)} and (ii) g(X) =

⋃
{X ′ ∈

S : X ′ ⊆ R�(X)}.
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X ⊆ U}, and g is connected with R�. Then, ∀X,Y,Z ∈ B(U),∀x, y ∈
U :

1. Lk(X) =
⋃
{Z : R(Z) ⊆ X}.

2. x ∈ Lk(X) iff ∀y ∈ U(〈x, y〉 ∈ R� y ∈ X).

3. Mk(X) =
⋃
{{x} : R({x}) ∩X �= ∅}.

4. x ∈Mk(X) iff ∃y ∈ U(〈x, y〉 ∈ R & y ∈ X).

Proof. (1): From Definition 11.5.2.(1), by substituting X for a, Z for p
and ⊆ for ≤.
(2): From (1) we obtain Lk(X) =

⋃
{Z : ∀x ∈ Z,∀y ∈ U(〈x, y〉 ∈ R�

y ∈ X)}. Since we have no restrictions on Z, we get Lk(X) = {x : ∀y ∈
U(〈x, y〉 ∈ R� y ∈ X)}. Hence the thesis. (3) and (4): From Definition
11.5.2.(2), Mk(X) =

⋃
{Z : ∃Z ′(g(Z ′) ⊇ Z & Z ′ ⊆ X)} =

⋃
{Z :

∃Z ′(R�(Z ′) ⊇ Z & Z ′ ⊆ X)}. But if Z ′ ⊆ X, from monotonicity
R�(Z ′) ⊆ R�(X), so that if Z ⊆ R�(Z ′) then Z ⊆ R�(X). Therefore,
Mk(X) =

⋃
{z : ∀z(z ∈ Z � ∃x(〈z, x〉 ∈ R & x ∈ X))}. But the

condition on z is equivalent to ∀z(z ∈ Z � R(z) ∩X �= ∅). Henceforth
we have: Mk(X) =

⋃
{{x} : R({x}) ∩ X �= ∅} and x ∈ Mk(X) iff

∃y ∈ U(〈x, y〉 ∈ U & y ∈ X).4 qed

Corollary 12.1.1. ∀X ∈ B(U):
(a) Lk(X) = [R](X); (b) Mk(X) = 〈R〉(X) (where [R] and 〈R〉 are the
operators defined in Section 2.1.2 of Chapter 2).

Definition 12.1.2. Given a modal system connected with a relation R,
the modal operators Lk and Mk will be denoted by LR and MR or [R]
and, respectively, 〈R〉. Moreover, the modal operators will be denoted
by L and M when any reference to the relation R is understood or
irrelevant.

4In the general case, that is, when we deal with a system 〈S, k(S)〉 where S is
a sublattice of B(U), not every subset of U is an element of S. Hence we can have
elements Z such that although R(Z) is included in X, Z is not an element of S.
Therefore points 1 and 3 of the Lemma are valid only with the additional constraint:⋃
{Z : Z ∈ S & . . . }, and so on. Moreover, in this case points 2 and 4 are valid only

from left to right:
(2’) If x ∈ Lk(X) then ∀y ∈ U(〈x, y〉 ∈ R� y ∈ X).
(4’) If x ∈ Mk(X) then ∃y ∈ U(〈x, y〉 ∈ R & y ∈ X).
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From the results of Part I and Corollary 12.1.1 we have:

Corollary 12.1.2. For any X ∈ B(U),−MR(−X) = LR(X);
−LR(−X) = MR(X).

Now we translate the forcing clauses over algebraic structures into forc-
ing clauses over Kripke frames. Since we are dealing with modal systems
where the algebraic operations form a Boolean algebra (of sets) B(U),
we shall use Proposition 11.3.1.(4) in order to understand what hap-
pens to forcing at a point level. Therefore, given an evaluation φ from a
modal language L to B(U), the translation will be lead by the obvious
idea that a point x forces a formula α, in symbols x � α if x belongs
to an element X of B(U) that algebraically forces α, X � α.

The translation will be accomplished through two Lemmata: the
first will link the algebraic operations induced by an evaluation φ with
the forcing relation � between points and formulas, the second Lemma
will use this link to list the forcing clauses of � for any logical constants.
The result will be summed up in Window 12.1.

Terminology and Notation. From now on, by L we shall intend a

propositional language with Boolean constants ∧,∨,¬,→, 0, 1 and modal

constants L and M , while α,α′, β, β′ and so on, will vary over well-

formed formulas. Notice that results on the material implication → will

be sometimes omitted since it fulfills the definition α→ β =def ¬α ∨ β.

Lemma 12.1.2. Let 〈U,R〉 be a Kripke frame, φ an evaluation map
from a modal language L to a k-modal system 〈B(U), k(B(U))〉, and let
k be connected with R. For any element x ∈ U , for any formula α ∈ L,
let us set: x � α if and only if there is an element X of B(U) such that
x ∈ X and X � α. Then, for any formula α,α′ ∈ L, for all x ∈ U :

1. x � α ∧ α′ iff x ∈ φ(α) ∩ φ(α′).

2. x � α ∨ α′ iff x ∈ φ(α) ∪ φ(α′).

3. x � ¬α iff x ∈ −φ(α).

4. x � α→ α′ iff x ∈ −φ(α) ∪ φ(α′).

5. x � LR(α) iff x ∈ {x′ : ∀y ∈ U(〈x′, y〉 ∈ R� y ∈ φ(α)}.

6. x �MR(α) iff x ∈ {x′ : ∃y ∈ U(〈x′, y〉 ∈ R & y ∈ φ(α)}.
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Proof.
(A) Boolean part of the proof:

by means of Proposition 11.3.1.(4) and the definition of function φ

(see Window 11.1), we obtain the result straightforwardly. The detailed
proof is left to the reader. (Hints: first, notice that the thesis’ assump-
tion reads x � α iff x ∈

⋃
{X : X ⊆ φ(α)}, so that from Proposition

11.3.1.(4), after substituting ⊆ for ≤ we obtain x � α iff x ∈ φ(α).
Therefore, for instance, from the definition of function φ in Window
11.1, x � α ∧ α′ iff x ∈ φ(α ∧ α′), iff x ∈ φ(α) ∩ φ(α′), and so on. The
reader must only pay attention that in B(U) “¬” is the set-theoretical
complementation).

(B) Modal part of the proof (actually a corollary of Lemma 12.1.1):
x � LR(α) iff x ∈

⋃
{X : k(X) � α}, iff x ∈

⋃
{X : k(X) ⊆ φ(α)},

iff x ∈
⋃
{{X : R(X) ⊆ φ(α)}, iff ∀y ∈ U(〈x, y〉 ∈ R � y ∈ φ(α));

x � MR(α) iff x ∈
⋃
{X : ∃X ′(g(X ′) ⊇ X & X ′ ⊆ φ(α)}, iff x ∈

⋃
{X : ∃X ′(R�(X ′) ⊇ X & X ′ ⊆ φ(α)}, iff ∃y ∈ U(〈x, y〉 ∈ R & y ∈

φ(α)). qed

Proposition 12.1.2. Under the assumptions of Lemma 12.1.2, for any
formula α,α′ ∈ L, for all x ∈ U :

1. x � α ∧ α′ iff x � α & x � α′.

2. x � α ∨ α′ iff x � α or x � α′.

3. x � ¬α iff x �� α.

4. x � α→ α′ iff x � ¬α or x � α′.

5. x � LR(α) iff ∀y ∈ U(〈x, y〉 ∈ R� y � α).

6. x �MR(α) iff ∃y ∈ U(〈x, y〉 ∈ R & y � α).

7. x � LR(α) iff x � ¬MR(¬α); x �MR(α) iff x � ¬LR(¬α).

Proof. From the preceding Lemma: (1) x � α ∧ α′ iff x ∈ φ(α) ∩ φ(α′),
iff x ∈ φ(α) and x ∈ φ(α′), iff for some X,X ′ ∈ B(U) such that X � α
and X ′ � α′, x ∈ X and x ∈ X ′, iff x � α & x � α′. (2) dually,
by substituting ∪ for ∩ and ∨ for ∧. (3) x � ¬α iff x ∈ −φ(α), iff
x /∈ φ(α), iff x �� α. (4) straightforward from (2) and (3) and the fact
that φ(α → α′) = −φ(α) ∪ φ(α′). (5) x � L(α) iff ∀y ∈ U(〈x, y〉 ∈
R � y ∈ φ(α)), iff ∀y ∈ U(〈x, y〉 ∈ R � y � α). (6) x � MR(α) iff
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∃y ∈ U(〈x, y〉 ∈ R & y ∈ φ(α)), iff ∃y ∈ U(〈x, y〉 ∈ R & y � α). (7)
The proof is left to the reader [Hints: use the first order equivalences
∀ ≡ ¬∃¬ and ¬∀¬ ≡ ∃]. qed

Therefore, thanks to the above Proposition 12.1.2, we have the following
set of forcing clauses over Kripke frames:

Let L be a propositional modal language and let 〈U,R〉 be a Kripke
frame.
Let φ be a set-up: φ̂ : L �−→ ℘(U).
For any point x ∈ U , for any formula α,α′ ∈ L we set the following
forcing clauses:

1. x � α iff x ∈ φ̂(α), for α atomic.
2. x � α ∧ α′ iff x � α & x � α′.
3. x � α ∨ α′ iff x � α or x � α′.
4. x � ¬α iff x �� α.
5. x � LR(α) iff ∀y ∈ U(〈x, y〉 ∈ R� y � α).
6. x �MR(α) iff ∃y ∈ U(〈x, y〉 ∈ R & y � α).

The triple 〈U,R,�〉, with the above clauses for �, is called a Kripke
model for modal logic

Window 12.1. Forcing over Kripke frames

From Lemmata 12.1.1 and 12.1.2, it follows that once again we can con-
fine our attention to the Boolean set-theoretical operations and define
two monadic operators LR and MR ranging on subsets of U . In this
way, we avoid any reference to the language L and its formulae.

Otherwise stated, we can associate to Kripke models Boolean alge-
bras of sets with additional monadic operators:

Definition 12.1.3. Let B(U) be the Boolean algebra of ℘(U). Let R ⊆
U ×U . Then 〈B(U), LR,MR〉 is called a Pre-monadic Boolean algebra
of sets.

Strictly speaking, in order to denote a Pre-monadic Boolean algebra
of sets, 〈B(U), LR〉 (or 〈B(U),MR〉) suffices, since the two monadic
operators are dual via the Boolean complementation.

Remarks. Pay attention that in general LR (i.e. [R]) and MR (i.e. 〈R〉)
are not adjoint to each other, because [R] is adjoint to 〈R�〉 and [R�] is

adjoint to 〈R〉
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From the above results we have the following statement, linking alge-
braic forcing and point-based forcing:

Proposition 12.1.3. Let 〈B(U), LR〉 be a Pre-monadic Boolean alge-
bra of the powerset of a set U . Let φ be an evaluation map from a modal
language L to B(U). Then for any formula α ∈ L, φ(α) = U if and
only if ∀x ∈ U, x � α.

It is not difficult to derive the abstract (i.e. algebraic) properties of the
modal operators, thanks to the following results:

Proposition 12.1.4. Let 〈B(U), LR〉 be a Pre-monadic Boolean alge-
bra of sets. Then, for any X,Y ⊆ U ,

L1. LR(U) = U .

L2. LR(X ∩ Y ) = LR(X) ∩ LR(Y ).

L3. LR(X ∪ Y ) ⊇ LR(X) ∪ LR(Y ).

L4. if X ⊆ Y then LR(X) ⊆ LR(Y ).

M1. MR(∅) = ∅.

M2. MR(X ∩ Y ) ⊆MR(X) ∩MR(Y ).

M3. MR(X ∪ Y ) = MR(X) ∪MR(Y ).

M4. if X ⊆ Y then MR(X) ⊆MR(Y ).

Proof. In view of Corollary 12.1.1, from the adjunction relations MR� �
LR and MR � LR� that can be derived from Proposition 2.1.1 of Chap-
ter 2. qed

Therefore, in a more abstract framework we shall set:

Definition 12.1.4. Let A be a Boolean algebra. Let L be a monadic
operator on A such that:

1. L(1) = 1 – L-conormality.

2. L(a ∧ b) = L(a) ∧ L(b) – L-cocontinuity (or multiplicativity).

3. L(a) ∨ L(b) ≤ L(a ∨ b) – L-discontinuity.

Then the structure 〈A, L〉 is called a Pre-monadic Boolean algebra.



12.1 Modal Systems and Binary Relations 397

Proposition 12.1.5. Let 〈A, L〉 be a Pre-monadic Boolean algebra.
Let M be a monadic operator defined, for any a ∈ A, by M(a) =
¬L(¬a). Then for any a, b ∈ A:

1. M(0) = 0 – M -normality.

2. M(a ∨ b) = M(a) ∨M(b) – M -continuity (or additivity).

3. M(a ∧ b) ≤M(a) ∧M(b) – M -codiscontinuity.

4. a ≤ b implies M(a) ≤M(b) and L(a) ≤ L(b) – monotonicity.

Thus L and M are comodal and, respectively, modal operators in the
sense of Definition 1.4.3 of Chapter 1.

Definition 12.1.5. Given a Pre-monadic Boolean algebra 〈A, L〉, set
L(A) = {L(a) : a ∈ A}, ∧L = ∧ � L(A) and ∨L = ∨ � L(A). Then we
set L(A) = 〈L(A),∧L,∨L, 1, 0〉.

Now we can notice that the sublattice L(A) is not necessarily distribu-
tive.

At this point we add stronger properties to the monadic operator,
obtaining the notion of a Monadic Boolean algebra, that will be of
central importance in our story:

Definition 12.1.6. Let 〈A, L〉 be a Pre-monadic Boolean algebra such
that:

1. L(a ∨ L(b)) = L(a) ∨ L(b) – monadic L-continuity.

2. L(a) ∧ a = L(a) – L-deflationary property.

Then 〈A, L〉 is called a Monadic Boolean algebra.

We have to notice that Property 12.1.4.(2) is now derivable from the
others.

Let us list other important properties of Monadic Boolean algebras:

Proposition 12.1.6. Let 〈A, L〉 be a Monadic Boolean algebra. Define,
for all a ∈ A M(a) as −L(−a). Then:

1. M(a ∧M(b)) = M(a) ∧M(b) – monadic M cocontinuity.

2. a ∧M(a) = a – M -inflationary property.
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Example 12.1.1. Modal operators induced by R-neighborhoods
As an example of a structure equipped with a binary relation consider the set

U = {x, y, z} and the following relation R ⊆ U × U :

R x y z

x 0 1 1
y 0 1 0
z 0 0 1

Just by inspecting rows, we can see examples of some definitions and properties:

(a) R-neighborhoods: R(x) = {y, z}, R({x, z}) = {y, z}.
(b) Monotonicity: {y} ⊆ {x, y}. R({y}) = {y} ⊆ {y, z} = R({x, y}).
(c) Continuity: R({x}) ∪R({y}) = {y, z} ∪ {y} = {y, z} = R({x, y}) = R({x} ∪

{y}).
(d) 0-preservation: R(∅) = ∅ (on the contrary, R(U) = {y, z} �= U).

Let us now compute some applications of the operators LR and MR:

(*)LR({x, z}) = {z}. Indeed: R({z}) = {z} ⊆ {x, z}, R({y}) = {y} � {x, z},
R({x}) = {y, z} � {x, z}.

Notice that thanks to the continuity property, we obtain the result by gathering
all the element of U whose R-neighborhoods are included in {y, z}. A better way in
order to compute LR is based on the duality LR(X) = −MR(−X), any X.

(**) MR({x}) = ∅, MR({z}) = {x, z},−MR(−{x, z}) = −MR({y}) = −{x, y} =
LR({x, z}).
Now, consider the following set-up φ̂(A) = {x, z}, φ̂(B) = {z, y}, φ̂(C) = {x, y}.
From it we have:

- z, y |= B, z, x |= A, x, y |= C;

- z |= A ∧B (because z ∈ φ̂(A) and z ∈ φ̂(B)):
- y |= LR(C) (because R({y}) = {y} and {y} ⊆ {x, y} = φ̂(C). Otherwise

stated, all the elements R-accessible from y force C. In this case the only element
accessible from y is y itself). On the contrary, although x |= C, x �|= LR(C) because
R(x) = {y, z} � φ̂(C) (indeed, z �|= C).

- x |= MR(A ∧B) (because 〈x, z〉 ∈ R and z ∈ φ(A) ∩ φ(B), so that z |= A ∧B.
Otherwise stated, there is an element R-accessible from x that forces A ∧B).

Exercise 12.1. Let 〈U, R〉 be a relational structure. Without using the adjunction
properties of R(), but pure logical deductions, prove isotonicity, normality, continuity
and co-discontinuity of R().

Example 12.1.2. Example of a Boolean algebra with operator which is
not pre-monadic
Consider the Boolean algebra A depicted below in the diagram on the left. Let us
suppose that we are given the following table for an operator L0. Then on the right
we draw the resulting substructure L0 = L(A), embedded in A:
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The structure 〈A, L0〉 is a not a pre-monadic Boolean algebra. In fact, from the
above table we can easily verify that L0(1) = 1 and that the monotonicity property
holds. But L−co-continuity fails: L0(d ∧ e) = 0 �= b = d ∧ f = L0(d) ∧ L0(e).

Exercise 12.2. (a) Compute M0(x) for any ∈ A. (b) Find an example of M−codiscon-
tinuity. (c) Can you find a Boolean algebra of sets A′ such that LR(A′) isomorphic
to L0 for some binary relation R ⊆ A×A?

Example 12.1.3. Example of a pre-monadic Boolean algebra
Consider the Boolean algebra A depicted in Example 12.1.2. Let us suppose that
we are given the following table for an operator L1. Then on the right we draw the
resulting substructure L1 = L(A):

x L1(x)

0 0
a 0
b a
c 0
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1 1
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It is evident that L1 is not distributive. By easy inspection we see that L is monotonic
(for instance, b ≤ f and L(b) = L(f) = a).

Let us verify a case of L−cocontinuity and a case of L−discontinuity:
L1(d ∧ f) = L1(b) = a = d ∧ a = L1(d) ∧ L1(f).
L1(d ∨ f) = L1(1) = 1 ≥ d ∨ a = L1(d) ∨ L1(f).
However, 〈A, L1〉 is not a Monadic Boolean algebra.
- Let us verify that L(x) ≤ x is not uniformly valid: L1(b) = a � b.
- Let us verify that the equality L(x∨L(y)) = L(x)∨L(y) is not uniformly valid:

L1(a ∨ L1(f)) = L1(a ∨ a) = L1(a) = 0 �= a = 0 ∨ a = L1(a) ∨ L1(f).

Exercise 12.3.
(a) Compute the table of M1.
(b) Find a case of M−co-discontinuity.
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(c) Find a case which invalidates the monadic M−co-continuity Property.
(d) Find a Boolean algebra of sets A′ with top element a set U , such that A′ is
isomorphic to the above Boolean algebra A and a relation R ⊆ U × U such that
LR(A′) is isomorphic to L1.
(e) Classify R according to the following properties: reflexivity, transitivity, symme-
try.

Example 12.1.4. Example of a pre-monadic operator L inducing a sub-
lattice
Consider the Boolean algebra A of Example 12.1.2. Consider the following table for
L (on the right we draw the resulting sublattice L2 = L(A)):

x L2(x)

0 0
a 0
b b
c c
d b
e c
f f
1 1

L2 1

...
...

...
...

..

�
�

· ·

...........
f

..........
...

...
...

..

�
�
�
�.......

·

...........
b c

....... �
�
�
�

0

Exercise 12.4.
(a) Verify that 〈A, L2〉 is a Pre-monadic Boolean algebra.
(b) Verify that L2 is distributive by computing a representation 〈LA, k∗(LA)〉 of
〈A,L2〉 by means of the Representation Procedure.
(c) Classify the specialization preorder that you find during the Representation Pro-
cedure according to the following properties: reflexivity, transitivity, symmetry.
(d) Is 〈A, L2〉 a Monadic Boolean algebra?

Example 12.1.5. Example of a monadic Boolean algebra
Consider on the Boolean algebra A the following monadic operator Lm on A (as
usual, on the right we draw the resulting substructure Lm = L(A), which is a
sublattice, in this case):

x Lm(x)

0 0
a 0
b 0
c 0
d b
e e
f b
1 1

Lm

1

�
� �

�
b e

�
� �

�

0

The system 〈A, Lm〉 is a monadic Boolean algebra. It is worth noticing that Lm is
a Boolean algebra, too.
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Exercise 12.5.
(a) Compute a representation 〈LA, k∗(LA)〉 of 〈A,Lm〉 by means of the Represen-
tation Procedure.
(b) Classify the specialization preorder that you find during the Representation Pro-
cedure according to the following properties: reflexivity, transitivity, symmetry.

If 〈A, LR〉 happens to be a Monadic Boolean algebra, where the oper-
ator LR is induced by a binary relation R, we can ask if R enjoys some
particular property. The answer is positive and will be given at the end
of the present Section. Indeed we are going to see that the notions of a
Pre-monadic Boolean algebra and Monadic Boolean algebra are the two
extremes of a path that leads from operators associated with arbitrarily
generic relations to operators connected with relations exhibiting the
strongest properties, passing through intermediate cases.

For the reader’s convenience, let us resume and align the definitions
introduced so far in Table 12.1.

Table 12.1: Modalities, relations, forcing and algebraic structures
Operator Definition Context
a � Lk(α) ∀a′(a′ ≤ k(a)� a′ � α) Forcing on algebraic

structures
X ⊆ φ(Lk(α)) ∀X ′(X ′ ⊆ R(X)� X ′ ⊆

φ(α))
Lattice of sets with
k(X) = R(X)

x � LR(α) ∀y ∈ U(〈x, y〉 ∈ R� y �
α)

Forcing on Kripke
frames

LR(X) {x : ∀y ∈ U(〈x, y〉 ∈
R� y ∈ X)}

Pre Monadic Boolean
algebras of sets

a �Mk(α) ∃a′(g(a′) ≥ a & a′ � α) Forcing on algebraic
structures

X ⊆ φ(Mk(α)) ∃X ′(R�(X ′) ⊇
X & X ′ ⊆ φ(α))

Lattice of sets with
g(X) = R�(X)

x �MR(α) ∃y ∈ U(〈x, y〉 ∈ R & y �
α)

Forcing on Kripke
frames

MR(X) {x : ∃y ∈ U(〈x, y〉 ∈
R & y ∈ X)}

Pre Monadic Boolean
algebras of sets

We know that, LR(X) and MR(X) equal {x : R(x) ⊆ X} and,
respectively, {x : R(x) ∩X �= ∅}. Hence, using the distributivity prop-
erty of R-neighborhoods, we obtain LR(X) =

⋃
{Z : R(Z) ⊆ X} and,



402 12 Modalities and Relations

dually, MR(X) =
⋂
{−Z : X ⊆ −R(Z)} (the duality of the two equa-

tions will be proved in Frame 15.1). Therefore, if we compare the last
definitions with the definitions of lower and, respectively, upper approx-
imations, by substituting [x]R for R(x), for R an equivalence relation,
we observe that they differ slightly but in a significant way. We under-
line this difference by adding in Table 12.2 the intermediate definition
of two hypothetical operators L∗R and M∗

R.
We can notice that the passage from LR and MR to L∗R and, respec-
tively, M∗

R surely requires some extra features, as well as that from L∗R
and M∗

R to (lR) and, respectively, (uR). In what follows we analyse
these extra features and their contexts of application.

Table 12.2: Three degrees of R−modal operators
R-modal Necessity Possibility
operators
normal LR(X) =

⋃
{Z : R(Z)

⊆ X}
MR(X) =

⋂
{−Z :

X ⊆ −R(Z)}
with extra
features

L∗R(X) =
⋃
{R(Z) :

R(Z) ⊆ X}
M∗

R(X) =
⋂
{R�(Z) :

X ⊆ R�(Z)}
approximation (lR)(X) =

⋃
{[x]R : [x]R

⊆ X}
(uR)(X) =

⋂
{[x]R :

X ⊆ [x]R}

12.2 From Loosely Structured Spaces
to Structured Spaces: A Variety
of Modal Properties

Now we analyse the properties of the monadic operators LR and MR

as dependent on the properties of the relation R.
If we do not impose any particular property on R, we cannot predict

interesting uniform relationships between X and LR(X) – or MR(X)
– nor special nice behaviours of the two modal operators.

What we can predict derives just from the fact that our operators
happen to be Diodorean modalities, as one can see from Proposition
12.1.2.(6) above (viz it is valid to assert the possibility of α at point x
if there is some state of affair accessible from x in which α is true).
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What we can say without adding extra hypothesis is listed in Propo-
sition 12.1.4, and we denote this basic set of properties with the symbol
K (after the fact that they characterise a modal system usually denoted
by this symbol). A modal logic with at least the same properties as K,
is called normal.

Indeed a relation between elements of U without any specific con-
straints, reflects, in a obvious sense, empirical and variable relationships
between pieces of information. But we can impose particular constraints
toR according to theoretical intuitions or, as it happens for Approxima-
tion Spaces, according to a particular organisation of data. In Table 12.3
one can see how do specific constraints transform the properties of the
modelled logic.

Table 12.3: Relational properties and modal properties

Properties of R and derived Modelled modal Label
set-theoretical characteristics properties on top of K
Reflexivity
∀x(〈x, x〉 ∈ R) L(α) → α T
X ⊆ R(X) α→M(α)
Seriality
∀x,∃y(〈x, y〉 ∈ R) L(α) →M(α) D
X �= ∅ implies R(X) �= ∅
Symmetricity
∀x, y(〈x, y〉 ∈ R� α→ L(M(α))
〈y, x〉 ∈ R);Y ⊆ R(X) iff M(L(α)) → α B
X ⊆ R(Y );R(X) = R�(X)
Transitivity
∀x, y, z(〈x, y〉 ∈ R & 〈y, z〉 L(α) → L(L(α))
∈ R� 〈x, z〉 ∈ R); R(R(X)) M(M(α)) →M(α) 4
⊆ R(X);Y ⊆ R(X)
implies R(Y ) ⊆ R(X)
Euclidean property
∀x, y, z(〈x, y〉 ∈ R & 〈x, z〉 M(L(α)) → L(α)
∈ R� 〈y, z〉 ∈ R);Y ⊆ R(X) M(α) → L(M(α)) 5
implies R(X) ⊆ R(Y )
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Example 12.2.1. Property D implies L(α) → M(α); L(α) −→ α
implies T
Suppose that (a) there is at least an element y such that xRy and (b) for all y′,
if xRy′ then y′ |= α. Then �L(α)� ⊆ �M(α)�, because there is at least an element
accessible form x that forces A, so that x forces �M(α)� whenever x forces �L(α)�.
So, L(α) → M(α). But if we drop hypothesis (a), that is, if we drop seriality, hypoth-
esis (b) is vacuously true if there is no element accessible form x that forces α. In
this case x |= �L(α)� but x �|= α. Hence either �M(α)� ⊂ �L(α)� or �M(α)� and
�L(α)� are incomparable. Example:

R x y
x 0 1
y 0 0

y |= A

x

R

�

y |=′ A

x |=′ A

R

�

According to the model with forcing |=, �M(A)� = {x}, while �L(A)� = {y} (since

no element is accessible from y). Since R is not reflexive (i.e. x � x), this prove that

if �L(α)� ≤ �Lα� then T (reflexivity) must hold.

Example 12.2.2. Example of a non symmetric relation where α →
L(M(α)) fails
According to the model with forcing |=′ of Example 12.2.1, we have:

|=′ A |=′ M(A) |=′ L(M(A))

y yes (set-up) no (no accessible element
forces A)

yes (void precondition
“∀y′(yRy′ . . .))”

x yes (set-up) yes (because y |=′ A) no (because y �|=′ M(a))

Therefore, �A� = {x, y} and �L(M(A))� = {y}.
Next we verify that adding seriality to a non-symmetric relation does not change

the effect:

R′ x y z

x 0 1 1
y 0 1 0
z 0 0 1

z y |= A

��
�
�
�

R′

�
�
�
�

R′



x |= A

Therefore in this model we have �A� = {x, y}, �M(A)� = {x, y} and �L(M(A))� =

{y}.
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Example 12.2.3. �L(A)� −→ �LL(A)� implies property 4
Consider the relation

R′′ x y z

x 1 1 0
y 1 1 1
z 0 1 1

R′′ is reflexive and symmetric. However it is not transitive. We leave to the reader

the verification of instances of property B. We show that property 4 does not hold.

Let z, y |= A. Then �L(A)� = {z} but �LL(A)� = ∅, because 〈z, y〉 ∈ R′′ and

y �|= L(A).

Exercise 12.6.
(a) Prove that property T (reflexivity) implies L(α) → α.
(b) Prove that property 4 (transitivity) implies L(α) → L(L(α)).

Some combinations of the above properties are equivalent. For instance,
KT5, KTB4, KDB4, KDB5 are equivalent (the reader should try and
prove it – in Frame 15.2 it is possible to find some hints).

Indeed, the following result is folklore in Modal Logic:

Proposition 12.2.1. For any relation R ⊆ U × U , the following are
all the possible distinct combinations of the properties D, T, B, 4, 5,
on top of K:
K, KD, KT, KB, K4, K5, KDB, KD4, KD5, K45, KTB, KT4,
KD45, KB4, KT5.

Some of the above combinations have received a particular atten-
tion in modal logic literature, because of their philosophical and/or
mathematical importance.5 As such they are known by means of tra-
ditional names: KT = T, KTB = B, KT4 = S4, KT5 = S5 A number

5Nonetheless, in many cases, properties are adopted not because they reflect
specific intuitions about the way states of affairs are organised, but only in view of
the formal properties that the modelled Logical system must feature. For instance,
if L has to model a doxastic operator (i.e. “subject S believes that . . . ”), then
since an opinion is not guaranteed to be true, the reflexive property cannot be
adopted, otherwise we should have L(A) → A, that is read “If subject S believes A,
then A is true”. On the contrary, this property is required for modelling epistemic
operators, such as “Subject S knows that ..”, according to the classical definition
advocating that “knowledge” is true and justified belief (cf. [Halpern, Moses 1985]
for a technical overview. Cf. [Ellis 76] for a philosophical introduction and Box
“Logico-philosophical remarks. 1” of Section 9.2 of Chapter 9).
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of coarser/finer relationships between these systems are well-known in
logical literature, as well as some intermediate systems. We address the
reader to the References, for details.

However, the reader has surely noticed that, as a matter of fact,
the properties of system S4 have been analysed in Part I, because
any IQRS is a Kripke frame with reflexive and transitive accessibility
relation.6 Here we want to mention that Proximity Spaces are models
for system B: in fact, Proximity Spaces are relational spaces 〈U,R〉
where R is reflexive and symmetric.7 And it is clear now, that S5 is
about to be adopted as the referent modal logic for Approximation
Spaces, because S5 models are characterised by reflexive, transitive
and symmetric relations. Actually, this will be the starting point for
understanding the modal features of Rough Set Systems.

For the time being, we shall investigate some further formal proper-
ties of relational spaces connected with pre-topological and topological
spaces.

12.3 Relations, Pre-Topologies and Topologies

Our interest in studying relations is the fact that the main concern in
Rough Set Analysis is the way “perceptions” are connected in order to
form conceptually meaningful patterns. Henceforth, a single element of
the domain of concern is not interesting by its own (“an sich”), but
to the extent it is connected (or not) with other elements. Otherwise
stated, we are interested in the geometry that relations impose on a

6More precisely, since IQRS are finite, hence they fulfill the so-called McKin-
sey condition ∀x∃y(〈x,y〉 ∈ R & ∀z(〈y, z〉 ∈ R � y = z)), they are Kripke
frames adequate to the system S4.1, which is obtained by adding to S4 the axiom
L(M(a)) → M(L(A)).

7The symbol “B” is after the name of L. E. J. Brouwer, founder of the Intu-
itionistic school (cf. Introduction). This traditional use is justified by a translation
of the intuitionistic negation ¬ as L ∼ (here “∼” is the Boolean complementation
of the modal system). In accordance with it, the intuitionistically admissible low
a =⇒ ¬¬a becomes a → L(∼L(∼a)), i.e. a → L(M(a)) (which characterises modal
operators modelled by symmetric relations) which is the characteristic axiom of the
“Brouwerian” system. On the contrary, the intuitionistically invalid law ¬¬a =⇒ a
becomes L(M(a)) → a, which is invalidated by models with relations fulfilling TB.
However, the “real” modal system connected with Intuitionistic Logic is S4 + Grz,
where Grz is Segerberg’s translation L(L(p → L(p)) → p) → p of the principle
introduced by Andrzej Grzegorczyk for a modal interpretation of Heyting’s logic
(cf. [Grzegorczyk 1967] and [Segerberg 1971]).
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universe of possible perceptions/stimulations (or “empirical results”,
“uninterpreted data” and the like).

Of course, we shall not remain at the abstraction level of a point-
like geometry for ever. We are more interested in the general, universal
properties of a “perception system”. Therefore the abstraction level
shall be lifted to a sort of pointless geometry. This more abstract
level was discussed at the end of the Introduction and constituted
already the playground of our algebraic analysis of Rough Set Sys-
tems. Here we are going to reach the same abstraction level for the
modal interpretation.

Indeed, in case of the algebraic analysis, first we started noticing
that a concrete Approximation Space on U is induced by a subalgebra
of the Boolean algebra B(U), so that it was possible to define the
notion of an abstract Approximation System as a pair 〈B,B′〉 made up
of a Boolean subalgebra B′ of a given Boolean algebra B. Secondly, B
was transformed into a new algebraic structure (namely, a Rough Set
System), embedding the transformation of the elements of B induced
by B′. In the modal analysis, we shall follow the same strategy: the
only difference is that we shall transform B into a modal system in
accordance with the way its elements are modalised by means of an
operator LB′ (or MB′), which is the abstract companion of LR (of
MR).

This analysis will not mention the population of the elements of
B. However, we shall again reach this abstraction level starting from
the intuitive ground of a “concrete” analysis of universes populated by
“real” elements connected by “operating” relations.

12.4 Pre-Topological Spaces

We shall approach topological spaces from more general structures,
called “pre-topological spaces”. This choice is suggested by the fact
that pre-topological spaces are widely (although often implicitly) used
in Rough Set Theory in order to generalise the basic concepts of lower
and upper approximation (as one is able to verify in the Frame section).
Intuitively, whereas in Kripke frames any single world is linked with a
set of accessible world, in pre-topologies any point x is associated with
a family of sets, its neighborhood system n(x). Each element of n(x)
may be intended as representing a collection of points that are relevant
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to x. Or, from another perspective, n(x) is the family of observable
phenomena connected with x. Therefore a formula α is necessarily valid
at point x if the set of points validating α is relevant to x, i.e. x � L(α)
iff �α� ∈ n(x). This is the basic intuition leading to the definition of a
core map (see below).

Clearly if �¬α� ∈ n(x), then α is unnecessary at point x. So, since
α is possible at point x if it is not unnecessary at x, we can define
x � M(α) iff �¬α� /∈ n(x). This leads to the notion of a vicinity map
dual of the core map.

Obviously, a vicinity map (a core map) is a generalisation of the
usual notion of a closure map (interior map). The main difference,
intuitively, is that vicinity maps reflect the notion of “x is close to a set
X” under one or more possible points of view, while closure operators
account for single cumulative points of view, by gluing all the elements
of n(x) through the imposition for n(x) to be a filter.

Moreover, neighborhoods of points of U are not required to be sub-
sets of U . Indeed, in a more general setting, we can think of situations
in which n(x) ⊆ ℘(U ′) for x ∈ U and U ′ �= U . Hence U ′ acts as a
“medium”, via a map f : U �−→ U ′, in the evaluation of a closeness
relation between a point x from U and another point y of U . In fact, a
certain closeness criterion might not be applicable directly on the ele-
ments of U , but can be applicable on their f -images in U ′ (for instance
we cannot understand if professor Smith’s and professor Brown’s scien-
tific interests are similar by looking at the list of the pure names of the
academic body of San Jose University. However, this is possible when
we map Smith and Brown onto the set of academic disciplines).

In this case x will belong to the core of a subset X ⊆ U if f(X)
belongs to n(x). Below we illustrate this more general situation:

In Figure 12.1, x is related to y,w,w′, from the point of view of a
criterion α acting between their f -images on U ′. On the other hand, x
is related to z, q, z′, z′′ through a different criterion β. The collection of
these aggregations forms n(x). It follows that x belongs to the core of the
set {y,w,w′, x} and of the set {z, q, z′, z′′} because both f({y,w,w′, x})
and f({z, q, z′, z′′}) belong to n(x). Moreover, x belongs, for instance,
to the vicinity of {y, z} because −{y, z} does not belong to n(x). Notice
that f(x) does not belong to f→({z, q, z′, z′′}).

So, let U,U ′ be sets. We can consider that the elements of U are con-
nected (classified, characterised, labeled, perceived, . . . ) by means of
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Figure 12.1: Observations and pre-topological spaces

the relationships that occur between the elements of another set U ′.
Therefore, according to this connection, any element p of U can be
associated with one ore more elements of ℘(U ′), obtaining thereby a
family of subsets of U ′, denoted by n(p), so that each N ∈ n(p), links
p with other elements of U under a specific respect.

We summarize these intuitions in the following definitions:

Definition 12.4.1. Let U,U ′ be sets, X ′ ⊆ U ′, u ∈ U and f : U �−→ U ′

a total function. Then,

1. A neighborhood map is a total function n : U �−→ ℘(℘(U ′)), such
that f(x) = f(y) implies n(x) = n(y).

2. • n(u) is called a concrete neighborhood family of u.

• If N ∈ n(u), then N is called a concrete neighborhood of u.

• If u′ ∈ N ∈ n(u), then u′ is called a concrete neighbor of u.

• The family N (U) = {n(x) : x ∈ U} is called a concrete
neighborhood system.

• The pair 〈U,N (U)〉 is called a concrete neighborhood space.

3. If G(X ′) = {x : X ′ ∈ n(x)}, then G is called the core map
induced by N (U).

4. If F (X ′) = −G(−X ′) = {x : −X ′ /∈ n(x)}, then F is called the
vicinity map induced by N (U).



410 12 Modalities and Relations

5. The set F (X ′) ∩ −G(X ′) = {x : ∀N ∈ n(x)(N ∩ X ′ �= ∅ �=
N ∩ −X ′)} is called the boundary of X ′, denoted by ∂(X ′).

We can notice the reason why the notion of a core map (a vicinity
map) is a generalisation of the notion of an interior (closure) operator.
Indeed, if U = U and f is the identity map then, as we shall prove
in Lemma 12.4.1, x ∈ G(X) if and only if X ∈ n(x), that is, if and
only if X itself is a neighborhood of x, whereas in topological spaces
x ∈ I(X) (the interior of X) if and only if there is a neighborhood of x
included in X. We shall see that the two definitions coincide just under
some specific assumptions. Under the same assumptions we shall prove
that x ∈ F (X) if and only if X has no void intersection with all of the
neighborhoods of x.

Example 12.4.1. A simple neighborhood system
Let U = {x, y, z, w}, U ′ = {a, b, c}, f(x) = a, f(y) = b, f(z) = f(w) = c. Consider
the following neighborhood system: n(x) = {{a, c}, {a, b, c}}, n(y) = {{b}, {a, b}},
n(z) = n(w) = {{c}}. Then, G({b}) = {u : {b} ∈ n(u)} = {y}, G({b, c}) = ∅, and so
on;
F ({b}) = {u : −{b} /∈ n(u)} = {u : {a, c} /∈ n(u)} = {y, z, w}, F ({a, b}) = {x, y}
and so on.
Notice that neither G nor F are isotonic.

Terminology and Notation. Given p ∈ U , from now on the image

n(p) of p along n will be usually denoted by Np.

Consider the following conditions on N (U), for any x ∈ U , A,N,N ′ ⊆
U ′:

1. U ′ ∈ Nx.
0. ∅ /∈ Nx.
Id. if x ∈ G(A) then f→(G(A)) ∈ Nx.
N1. f(x) ∈ N , for all N ∈ Nx.
N2. if N ∈ Nx and N ⊆ N ′, then N ′ ∈ Nx.
N3. if N,N ′ ∈ Nx, then N ∩N ′ ∈ Nx.
N4. there is an N �= ∅ such that Nx =↑⊆ N .

Because function f occurs in the definitions of Id and N1, the two
conditions will be said to be “point-dependent”.

From a practical point of view the distinction between U and U ′

is relevant (think, for instance, of the different attributes in relational
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databases). However, on a theoretical side, dealing with a single uni-
verse is more comfortable and does not cause any information short-
coming, because instead of x′ ∈ N ∈ Nx we can consider the inverse
image f←({x}) (this is what we usually do in relational databases
when we move from a set of attribute-values V to the entities identified
by V ).

Definition 12.4.2. If U = U ′ and f is the identity map, then the pair
〈U,N (U)〉 is called a Fréchet space.

Remarks. From now on we shall deal only with Fréchet spaces. In a

Fréchet space, N1 reads: “x ∈ N , for all N ∈ Nx” and Id turns into

“∀A ⊆ U,∀x ∈ G(A), G(A) ∈ Nx”. A neighborhood system N (U) will

be denoted also by N if the set U is understood.

Example 12.4.2. A simple Fréchet space
Consider the universe U = {a, b, c}. The following is a Fréchet neighborhood system:
Na = {{b}, {a, c}, U},Nb = {{a, b}, {b, c}, U},Nc = {{b}, {a, c}, {a, b}, U}. Clearly
in N (U) 0 and 1 hold. On the contrary, N1 does not hold because, for instance,
a /∈ {b} ∈ n(a).

The above conditions carry particular properties that reflect on the
operators G and F :

Lemma 12.4.1. Let N (U) be a neighborhood system. Then, for any
X,Y ⊆ U , x ∈ U :

(G1) x ∈ G(X) iff X ∈ Nx; (G2) Gx =def {X : x ∈ G(X)} = Nx.

Condition Equivalent Equivalent
properties of G properties of F

1 G(U) = U F (∅) = ∅
0 G(∅) = ∅ F (U) = U

Id G(X) ⊆ G(G(X)) F (F (X)) ⊆ F (X)
N1 G(X) ⊆ X X ⊆ F (X)

N2
X ⊆ Y � G(X) ⊆ G(Y )
G(X ∩ Y ) ⊆ G(X) ∩G(Y )

X ⊆ Y � F (X) ⊆ F (Y )
F (X ∪ Y ) ⊇ F (X) ∪ F (Y )

N3 G(X ∩ Y ) ⊇ G(X) ∩G(Y ) F (X ∪ Y ) ⊆ F (X) ∪ F (Y )
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Proof. (G2) {X : x ∈ G(X)} = {X : x ∈ {y : X ∈ Ny}} = {X : X ∈
Nx} = Nx. From (G2) we straightforwardly obtain (G1). (1) Trivial.
(0) Trivial. (Id) Assume Id holds and x ∈ G(X). From Id, G(X) ∈ Nx,
so from (G1) x ∈ G(G(X)). Conversely, if G(X) ⊆ G(G(X)) then from
(G1) X ∈ Nx implies G(X) ∈ Nx, so that Id holds. (N1) Assume
N1 holds. If x ∈ G(X), from (G1) X ∈ Nx and from N1 x ∈ X.
Vice-versa, assume G(X) ⊆ X. But G(X) = {x : X ∈ Nx}; thus from
(G1) x ∈ G(X), hence x ∈ X. Henceforth x ∈ X. Thus N1 holds.
(N2) (a) Assume N2. If X ∈ Nx and X ⊆ Y then Y ∈ Nx. From
(G1) we deduce that if x ∈ G(X) and X ⊆ Y then x ∈ G(Y ), that
is, G(X) ⊆ G(Y ). Conversely, if X ⊆ Y implies G(X) ⊆ G(Y ), then
from (G1) X ∈ Nx implies Y ∈ Nx. Hence N2 holds. (b) Assume
N2. If x ∈ G(X ∩ Y ) then X ∩ Y ∈ Nx. But X ∩ Y ⊆ X and X ∩
Y ⊆ Y . Thus, from N2 X ∈ Nx and Y ∈ Nx, so that x ∈ G(X)
and x ∈ G(Y ). Conversely, assume G(X ∩ Y ) ⊆ G(X) ∩ G(Y ), X ∈
Nx and X ⊆ Y . Then G(X ∩ Y ) = G(X) ⊆ G(X) ∩ G(Y ). This
means that G(X) ⊆ G(Y ), from (G1), so that Y ∈ Nx, and N2 holds.
(N3) Assume N3 and x ∈ G(X) ∩ G(Y ). From (G1) we obtain X ∈
Nx and Y ∈ Nx. Therefore in view of N3, X ∩ Y ∈ Nx, and again
from (G1) x ∈ G(X ∩ Y ). Henceforth, G(X) ∩ G(Y ) ⊆ G(X ∩ Y ).
Conversely, assume X ∈ Nx, Y ∈ Nx and G(X) ∩G(Y ) ⊆ G(X ∩ Y ).
From the latter assumption if x ∈ G(X) ∩ G(Y ) then x ∈ G(X ∩ Y ).
Therefore, from (G1), if X and Y ∈ Nx, then X ∩ Y ∈ Nx, so that
N3 holds. As to F we obtain the results by duality. Here we prove
only (i) G(X ∩ Y ) ⊆ G(X) ∩ G(Y ) � F (X) ∪ F (Y ) ⊆ F (X ∪ Y )
and (ii) G(X) ⊆ G(G(X)) � F (F (X)) ⊆ F (X). (i) Indeed G(X ∩
Y ) ⊆ G(X)∩G(Y ) iff −(G(X)∩G(Y )) ⊆ −G(X ∩Y ), iff −(G(−X)∩
G(−Y )) ⊆ −G(−X ∩−Y ), iff −G(−X) ∪−G(−Y )) ⊆ −G− (X ∪ Y ),
iff F (X) ∪ F (Y ) ⊆ F (X ∪ Y ). (ii) G(X) ⊆ G(G(X)) iff −G(G(X)) ⊆
−G(X) iff −G(G(−X)) ⊆ −G(−X) iff −G − (−G(−X)) ⊆ −G(−X)
iff F (F (X)) ⊆ F (X). qed

8

Remarks. One should not confuse G1 with the principle “X ∈ Nx �
x ∈ X” which holds if N (U) fulfills N1.

8Note that if U �= U ′, then property 1 turns into G(U ′) = U , property 0 turns
into F (U ′) = U and, finally, N1 turns into G(X) ⊆ f←(X) [in the proof of N1
substitute “f(x) ∈ X” for “x ∈ X” and “G(X) ⊆ f←(X)” for “G(X) ⊆ X”, and
notice that f(X) ∈ X iff x ∈ f←(X)].
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Example 12.4.3. A neighborhood system satisfying Id but not N1,
whose core map G is not idempotent
Consider the universe U = {a, b, c} and the neighborhood system N (U) given by:

x a b c

Nx {{a}, {a, b}, {b, c}, U} {{b}, {a, b}, {b, c}, U} {{a, b}, U}

Let us check that in this neighborhood system property Id is satisfied. Indeed the
core map G is given by:

x ∅ {a} {b} {c} {a, b} {a, c} {b, c} U

G(x) ∅ {a} {b} ∅ U ∅ {a, b} U

It is easy to verify that if X ∈ Nx then G(X) ∈ Nx (for instance G({b, c}) = {a, b}
because {b, c} belongs to Na and Nb. However G(G({b, c})) = U �= G({b, c}). Also,
we can observe that N (U) does not fulfill N1 ({a, b} ∈ Nc but c /∈ {a, b}). Actually,
had N (U) fulfilled N1, G would have been idempotent (cf. Proposition 12.4.5 and
Example 12.4.5 below).

Example 12.4.4. A neighborhood system satisfying Id but not N1,
whose core map G is idempotent

Consider the universe U = {a, b, c} and the neighborhood system N (U) given by:

x a b c

Nx {{a, b}, {a, c}, U} {{a}, {b}, {a, b}, {b, c}, U} {{c}, {a, c}, U}

In this neighborhood system property Id is satisfied, but N1 is not ({a} ∈ Nb but
b /∈ {a}). However the core map G is idempotent:

x ∅ {a} {b} {c} {a, b} {a, c} {b, c} U

G(x) ∅ {b} {b} {c} {a, b} {a, c} {b} U

Example 12.4.5. A neighborhood system which satisfies 0, 1, N1 and
Id
Consider the universe U = {a, b, c} and the neighborhood system N (U) given by:

x a b c

Nx {{a, b}, {a, c}, U} {{b}, {a, b}, {b, c}, U} {{c}, {a, c}, U}

It is easy to check that in this neighborhood system 0, 1, N1 and Id hold. The core
map is idempotent:

x ∅ {a} {b} {c} {a, b} {a, c} {b, c} U

G(x) ∅ ∅ {b} {c} {a, b} {a, c} {b} U

However, N2 does not hold. In fact, Nc is not an order filter (for instance, {c} ∈
Nc, {c} ⊆ {b, c} but {b, c} /∈ Nc).
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The following is a very simple but useful statement:

Proposition 12.4.1. Let N (U) be a neighborhood system. Then N (U)
fulfills Id if and only if for all X ⊆ U and x ∈ U , X ∈ Nx implies
G(X) ∈ Nx.

Proof. Suppose Id holds and X ∈ Nx. From G1 x ∈ G(X). Hence from
Id, G(X) must belong to Nx, too. Conversely, suppose X ∈ Nx �
G(X) ∈ Nx and x ∈ G(X). Again from G1, X ∈ Nx. Therefore
G(X) ∈ Nx. We conclude that Id holds. qed

Notice that if N2 is assumed, then N3 is equivalent to the following
weaker condition:

if X ∈ Nx and Y ∈ Nx then ∃Z ∈ Nx such that Z ⊆ X ∩ Y (N3−)

Proposition 12.4.2. Assume N2 and N3−. Then for any X,Y ⊆ U ,
G(X ∩ Y ) ⊇ G(X) ∩G(Y ).

Proof. If x ∈ G(X) ∩G(Y ), then x ∈ G(X) and x ∈ G(Y ). Thus, from
G1 X,Y ∈ Nx. Therefore from N3− there exists Z ⊆ X ∩Y such that
Z ∈ Nx. But from N2, X ∩ Y must belong to Nx, too. qed

(Notice that in literature even weaker conditions are studied, such as
the so-called “connection condition”: if X ∈ Nx and Y ∈ Nx then
X ∩ Y �= ∅. An example of the use of this condition in modal logic can
be found in Frame 15.13.3).

Moreover, if N2 is assumed then Id is equivalent to the following
weaker condition:

if N ∈ Nx, then ∃N ′ ∈ Nx such that for any y ∈ N ′, N ∈ Ny (τ)

This is the familiar topological property usually explained by the sen-
tence: “if X is a neighborhood of a point x, then it is also a neighbor-
hood of all those points that are sufficiently close to x”.

Proposition 12.4.3. Let N (U) be a neighborhood system. Then if
N (U) satisfies Id, it satisfies (τ), too.

Proof. Suppose p ∈ U and N ∈ Np. From Id, G(N) belongs to Np.
But from definition of G(N), N ∈ Nx for any x ∈ G(N). Hence
(τ) holds. qed
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The converse implication does not hold without N2, as is illustrated in
Example 12.4.6 below.

Proposition 12.4.4. Let N (U) be a neighborhood system satisfying
N2. Then an element Nx of N (U) satisfies (τ) if and only if it satisfies
Id.

Proof. From Proposition 12.4.3, Id implies (τ). Conversely, let (τ) hold.
Consider any neighbor N ∈ Nx. From (τ) there is an element N ′ ∈ Nx

such that for any y ∈ N ′, N ∈ Ny. Clearly the set G(N) = {z : N ∈
Nz} includes N ′ because it is the largest collection of elements z such
that N ∈ Nz. Therefore in view of N2, G(N) ∈ Nx. qed

Condition Id alone does not guarantee the idempotence of G and F

(for a counterexample see Example 12.4.3). We have idempotence by
adding N1 to Id:

Proposition 12.4.5. Let N (U) be a neighborhood system satisfying
N1 and Id. Then for any X ⊆ U , G(G(X)) = G(X) and F (F (X)) =
F (X).

Proof. Immediate from Lemma 12.4.1. qed

Proposition 12.4.6. If G is idempotent, then Id holds.

Proof. Suppose Id does not hold. Then ∃x ∈ U,X ⊆ U such that
X ∈ Nx but G(X) /∈ Nx. Therefore, x /∈ G(G(X)), although x ∈ G(X).
It follows that G(G(X)) �= G(X). qed

Example 12.4.6. A neighborhood system fulfilling N1 and (τ) but nei-
ther Id nor N2
Let U = {a, b, c, d}. LetN (U) be given byNa = {{a}, {a, b, c}, U},Nb = {{b}, {a, b},
{a, b, c}, U}, and Nc = {{c}, U}. Then property (τ ) is fulfilled by all the elements
of N (U). However, {a, b, c} ∈ Na but G({a, b, c}) = {a, b} /∈ Na. Hence Na does
not satisfy Id. According to Corollary 12.4.1 it follows that in the pre-topological
space induced by N (U) the operator G is not idempotent (G({a, b, c}) = {a, b}, but
G({a, b}) = {b}).

Notice that N2 does not hold in N (U) (for instance {a, b} ⊇ {a} ∈ Na, but
{a, b} /∈ Na). Henceforth (τ ) plus N1 does not imply N2.

In general idempotence of G does not imply N1. However we have,

Corollary 12.4.1. In the presence of N1, G is idempotent if and only
if Id holds.
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In general G and F are not required to be idempotent. Intuitively,
the lack of idempotence reflects a sort of flowing situation in which
boundaries are not fixed once for ever, so that by adding the boundary
∂(X) to a subset X by means of the vicinity map F we do not gain a
stable situation, since a new boundary could appear.
Now we list various combinations of the above properties that shall
dealt with in this section. The right column displays their main rela-
tional characteristics, that will be proved in this Chapter:9

If all the
elements of
N (U) satisfy

N (U) is said

to be of type

Elements of
N (U)

Relational

properties

0, 1 NS

0, Id NId

0,1,N1 N1

0,1,N1, Id N1Id

0,1,N2 NB proper order
filter w. r. t. ⊆

Induced by
systems of
serial relations

0, 1, N1, N2 N2 proper order
filter w. r. t. ⊆

Induced by
systems of
reflexive
relations

0, 1, N1, N2, τ N2Id proper order
filter w. r. t. ⊆

Induced by
systems of
preorders

0, 1, N1, N2,
N3

N3 proper filter

0, 1,N1, N2,
N3, τ

N3Id proper filter

0, 1, N1, N2,
N3, N4

N4 principal filter Induced by
single reflexive
relations

0, 1, N1, N2,
N3,N4, τ

N4Id principal filter Induced by
single
preorders

9In some papers these properties are denoted by different names (for instance in
[Stadler & Stadler 2001] we have: 1 = K0, N1 = K2, N2 = K1, N3 = K3). Also, the
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Remarks. If N (U) is finite and of type N3 then it is also of type N4.

The resulting picture, that we shall justify throughout this Section, will
be the following:

systems of topological

preorders spaces preorders
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�
�
�
�

finite

NId
+N1� N1Id

+N2� N2Id
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general

NB systems of relations relations

Terminology and Notation.
In what follows, we shall deal only with spaces of type at least N1. There-

fore, by abuse of language we shall refer to a neighborhood system at least

of type N1 as a “neighborhood system” tout-court. Moreover, since we

shall typically deal with finite spaces, N3 systems will stand also for N4

systems. A distinct use will be generally adopted for systematic purposes

(introduction of notions, an so on). In the Frame section we shall illustrate

some applications of the most general form of neighborhood systems.

Now we shall see that vicinity maps in neighborhood systems of type
N1 reflect, so to say, a process of extension. An extension is a pro-
cess that applied to a set X collects all the elements of X plus those
elements that, under some point of view, are connected with them

terms used to refer to types of pre-topological spaces may vary (in the quoted
paper we have NB = Extended topology, N1 = Brissaud space, N2 = Neighborhood
space, N3 = pre-topology, N2Id = Convex closure space). Other combinations have
been studied. For instance, neighborhood systems satisfying 1 + N2 + N3, which
induce the so called “Smith spaces”. Spaces induced by neighborhood systems sat-
isfying N2 + Id are called “intersection spaces”, while N2Id spaces are also called
“topped intersection structures” or “closure systems”. Notice that some authors call
neighborhood systems satisfying N1 and N3− “neighborhood basis” and neigh-
borhood systems of type N3 “neighborhood filters”. Neighborhood systems of type
N4 are usually called “binary neighborhood systems”, because they are univocally
related to binary relations (as we shall widely see in this Chapter).
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(if any). Therefore such a process is an increasing map f between
subsets of U and we call it an “expansion process”:

Definition 12.4.3. Let U be a set. An expansion process is any map
f : ℘(U) �−→ ℘(U) such that for any X ⊆ U , X ⊆ f(X).

Dually, we can think of a process of erosion which cuts down some
connections between elements of U , just leaving the elements from a
subset X that are strictly connected each others. We call such a process
a “contraction”.

Definition 12.4.4. Let U be a set. A contraction process is any map
g : ℘(U) �−→ ℘(U) such that for any X ⊆ U , g(X) ⊆ X.

Proposition 12.4.7. Let U be a set and f an expansion process. If for
any X ⊆ U, g(X) = −f(−X), then g is a contraction process, called
the dual of f .

Proof. For any X ⊆ U,−X ⊆ f(−X). Hence −f(−X) ⊆ − −X = X.
qed

From now on, by 〈ε,κ〉 we shall indicate a pair of duals: expansion and,
respective, contraction maps.

Definition 12.4.5. A pre-topological space is a triple 〈U, ε,κ〉 such
that: (i) U is a set, (ii) ε : ℘(U) �−→ ℘(U) is an expansion map such
that ε(∅) = ∅, (iii) κ : ℘(U) �−→ ℘(U) is a contraction map dual to ε.

Proposition 12.4.8. If 〈U, ε,κ〉 is a pre-topological space, then
κ(U) =U .

The proof is left to the reader.

Now we have to note that the notion of an expansion (contraction)
cannot be immediately related with that of a R-neighborhood. In fact,
given a generic relation R ⊆ U × U , we do not have either R(X) ⊆ X

or X ⊆ R(X), for any X ⊆ U (the same happens for R�, of course).
Indeed, as we have seen in Section 12.2, X ⊆ R(X) is valid only if
R is reflexive. Moreover, both ε and κ lack the isotonicity law which,
on the contrary, is valid for R-neighborhoods. Finally, differently from
R-neighborhoods, neither the definition of ε, nor that of κ make any
assumption about the distribution over disjunctions or conjunctions.
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Also, notice that neither ε nor κ are required to be idempotent in a
pre-topological space (anyway, the same happens forR-neighborhoods).
As already pointed out, this reflects a floating situation.

Example 12.4.7. Expansions and contractions
In the following figure we depict an example of a floating boundary:

Figure 12.2: Example of a floating boundary

In Figure 12.2, point x belongs to the boundary of A, ∂(A), while y /∈ ∂(A). Therefore
x ∈ ε(A), while y /∈ ε(A). However, y ∈ ∂(ε(A)). It follows that ε(ε(A)) 	 ε(A),
ε(ε(ε(A))) � ε(ε(A)), and so on up to an eventual fix point of the operator ε.

Suppose to process a set A = {x, y, z}. In A, the elements x and y are tightly
linked, while x and z are loosely linked. Moreover, z is connected with the elements
a and b, and y with the element c, that lies all outside of A. When we apply the
expansion process ε to A, we gather together all the elements of A (x, y and z),
plus the elements they are connected with, that is, a, b and c. When we contract
A, we keep just the tight connected elements inside A, (x and y) and miss the
elements which are loosely connected with these “core” elements of A. Therefore,
ε(A) = {x, y, z, a, b, c} and κ(A) = {x, y}.

Definition 12.4.6. Let 〈U, ε,κ〉 be a pre-topological space, X ⊆ U .
Then,

1. X is said to be “closed” iff ε(X) = X.

2. X is said to be “open” iff κ(X) = X.
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3. The intersection of all closed sets containing X, whenever it is a
closed set, is called “ε−closure of X” and denoted by Cε(X).

4. The union of all open sets contained in X, whenever it is an open
set, is called “κ−interior of X” and denoted by Iκ(X).

Proposition 12.4.9. Let 〈U, ε,κ〉 be a pre-topological space. Then, for
any X,Y ⊆ U , if Iκ(X) and Iκ(Y ) exist, then Iκ(X)∩ Iκ(Y ) ⊆ X ∩Y .

Proof. From the very definition of this operator, Iκ(X) ⊆ X and
Iκ(Y ) ⊆ Y . Hence Iκ(X) ∩ Iκ(Y ) ⊆ X ∩ Y . qed

In general, the existence of the closure (of the interior) of a set X is
not guaranteed, since it is not guaranteed, in a pre-topological space,
that the intersection (union) of a family of closed (open) sets is a closed
(open) set. In turn, this situation is related to the fact that in a generic
pre-topological space, as we have seen, isotonicity fails for both ε and κ.

In fact, assume that X and Y are open. By definition of a contraction
map, κ(X ∪ Y ) ⊆ X ∪ Y , but although X ⊆ X ∪ Y and Y ⊆ X ∪ Y
we have neither X = κ(X) ⊆ κ(X ∪ Y ) nor Y = κ(Y ) ⊆ κ(X ∪ Y ).
Therefore we cannot obtain the converse inclusion X ∪ Y = κ(X) ∪
κ(Y ) ⊆ κ(X ∪ Y ). Hence, X ∪ Y may fail to be open since κ(X ∪ Y )
may be different from X ∪ Y .10 By duality we obtain that X and Y

closed do not imply that X ∩ Y is closed.
Therefore, in pre-topological spaces, neighborhood systems are more

important than open set systems.
Now we reveal the obvious fact that κ is the core map induced by

a neighborhood system of type (at least) N1.

Definition 12.4.7. Given a contraction κ : ℘(U) �−→ ℘(U), for any
x ∈ U the family

κx = {Z ⊆ U : x ∈ κ(Z)}

is called the family of κ-neighborhoods of x. We set Nκ(U) = {κx}x∈U

and call Nκ(U) a κ−neighborhood system.

10The reader is invited not to confuse the equation κ(X) ∪ κ(Y ) = κ(Y ∪ Y ),
when both X and Y are open (hence κ(X) = X and κ(Y ) = Y ), which is a situation
that does not hold without the isotonicity law, with the same equation when X and
Y are generic sets (not necessarily open), which may fail also in the presence of
isotonicity.
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Intuitively, by means of κx we obtain all the subsets Z such that x is
strictly connected with some element of Z.

Proposition 12.4.10. Let 〈U, ε,κ〉 be a pre-topological space. Then,

1. The family Nκ(U) is a neighborhood system of type N1.

2. κ is the core map induced by Nκ(U).

Proof. (1) If Z ∈ κx, then x ∈ κ(Z) ⊆ Z. Hence, x ∈ Z. Thus N1
holds in Nκ(U).
(2) G(Z) = {x : Z ∈ κx} = {x : x ∈ κ(Z)} = κ(Z). 0 and 1 follow
from Definition 12.4.5. qed

Conversely, in view of Lemma 12.4.1.(N1), we have:

Proposition 12.4.11. Given a neighborhood system N (U) of type N1,
the core map G induced by N (U) is a contraction operator, which is
said to be induced by N (U).

Terminologyand Notation. If in a pre-topological space P = 〈U, ε,κ〉
the operator κ is induced by a neighborhood system N (U), then P itself

is said to be induced by N (U).

Now we shall prove that a neighborhood system of type (at least) N1

induces a pre-topological space and, viceversa, that a pre-topological
space induces an N1 neighborhood system.

Corollary 12.4.2. Let P = 〈U, ε,κ〉 be a pre-topological space induced
by a neighborhood system N (U) of type N1, then Nκ(U) = N (U).

Proof. Immediate, fromProposition 12.4.10,Definition 12.4.7 andLemma
12.4.1.(G2).

Proposition 12.4.12. Let 〈U, ε,κ〉 be a pre-topological space. Then,
for any X ⊆ U , X is open if and only if X belongs to κx for any x ∈ X.

Proof. If X is open, then X = κ(X). Hence for any element x ∈ X,x ∈
κ(X). It follows that X belongs to κx. The converse is trivial in view
of N1. qed

Therefore, a set is open if and only if it is a neighborhood for all its
own elements. But this is exactly what condition Id requires for G(X)
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(alias κ(X)), any X ⊆ U . Indeed, it is immediate to verify that a
neighborhood system N (U) is of type N1Id if and only if for anyX ⊆ U ,
G(X) is an open set.

Remarks. The bi-implication of Proposition 12.4.12 holds because in

every pre-topological space Nκ(U) is a neighborhood system of at least

type N1.

Example 12.4.8. A sample pre-topology
Consider the universe U = {a, b, c}. Suppose we are given the following contraction
map:

x ∅ {a} {b} {c} {a, b} {a, c} {b, c} U

κ(x) ∅ ∅ {b} {c} {a, b} {a, c} {b} U

If we compute the family Nκ (U) = {κx}x∈U , we obtain that Nκ (U) = N (U),
where N (U) is the neighborhood system of Example 12.4.5 (for instance, κa = {Z ⊆
U : a ∈ κ(Z)} = {{a, b}, {a, c}, U}).

We know that this neighborhood system is of type N1Id but not of type N2.
Linked to this fact, we note that the contraction operator κ (i.e. G) is not isotone:
{c} ⊆ {b, c}, but κ({c}) = {c} �⊆ {b} = κ({b, c}).

We note immediately that κ is a co-discontinuous contraction operator:
κ({a, b}) ∩ κ({a, c}) = {a} �= ∅ = κ({a}) = κ({a, b} ∩ {a, c}).
Given Nκ (U) we can recover the contraction map κ using the equation κ(X) =

{z : X ∈ κz}. Let us compute, for instance, κ({b, c}) and κ({a, b}):
κ({b, c}) = {x : {b, c} ∈ κx} = {b} (indeed, {b, c} belongs only to κb);

κ({a, b}) = {x : {a, b} ∈ κx} = {a, b} (indeed, {a, b} belongs to κb and to κa).

Example 12.4.9. Open sets
In the pre-topology 〈U,κ, ε〉 of Example 12.4.8, the sets {b}, {c}, {a, b}, {a, c}, U and
∅ are open, because they are fix points of the contraction map κ. On the contrary,
κ({b, c}) = {b}.

We have seen that a set X is open if it is a κ-neighborhood of all its points; that
is, if for any x ∈ X, X ∈ κx. Therefore, we can verify also in this way that {b, c} is
not open: indeed, {b, c} /∈ κc. Moreover, the set {b, c} does not have an interior: the
set of all open subsets of {b, c} is {∅, {b}, {c}} whose union is {b, c} itself, which is
not open.11

This example shows that in the above pre-topological space not every union of
open sets is an open set: {b} and {c} are open; however, {b} ∪ {c} = {b, c} is not
open.

11One should not confuse the fact that a set X is a κ-neighborhood of all its
points, which is always true of open sets, with the existence of a subset Y of X such
that X is a κ-neighborhood of all the elements of Y , which is related to topological
spaces – see further in the text.
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Exercise 12.7. Given a pre-topological space:
(a) Is the family κx closed with respect to intersections (unions), for
any x?
(b) Is the family κx closed with respect to supersets, for any x?
(c) Compute the table for the dual expansion map ε of the pre-topological
space of Example 12.4.8. (i) Is this map continuous?
(ii) Find a subset of U which does not have a closure.

12.4.1 Excursus. Dynamics 1: The Failure
of the Isotonicity Law

We want to recall again that the failure of the isotonicity law prevents
us from using generic pre-topologies in order to provide the knowledge
order embedded in a relation R over a universe U with a pre-topological
interpretation, even if R is reflexive. In fact, for any X ⊆ U we cannot
coherently set R(X) = ε(X) or R(X) = κ(X), because if X ⊆ Y we
have R(X) ⊆ R(Y ), but both κ(X) ⊆ κ(Y ) and ε(X) ⊆ ε(Y ) may fail.

Intuitively this difference reflects the fact that a single relation R on
U is a static representation of the relationships between the elements
of U , while ε and κ may account for a dynamic evaluation of these
relationships. In fact, if X ⊆ Y but ε(X) � ε(Y ) we can imagine a
situation in which an element x of X fulfills a connection with some
element x′ as far as x is considered just within the set X (which is
recorded by the fact x′ ∈ ε(X)), but whenever x is associated, by
expandingX to a superset Y by means of ε, with other elements outside
of X, then the connection between x and x′ is lost, because of a sort
of incompatibility between x′ and some new element in Y ∩ −X.

Here is an example.
In Figure 12.3 we have a set A = {x, y, z} and a superset of A,

B = {x, y, z, w}. Assume that (i) y is connected with c, (ii) z is con-
nected with b, (iii) w is connected with a, and (iv) that w and b are
incompatible. If we expand A, we obtain ε(A) = {x, y, z, b, c}. But
if we extend A to B, then b, which is incompatible with the new
entry w, breaks its alliance with z. Therefore, the expansion of B will
be ε(B) = {x, y, z, w, c, a} which is not even comparable with ε(A).
Therefore, expansion is not a monotonic (isotonic) operator, in general.

Moreover, one might have the case in which z and w are incompat-
ible. So that after enlarging A to B, the connection between z and the
other elements of A is lost. Therefore, when we expand B to ε(B) we
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Figure 12.3: A non-isotonic expansion

obtain {x, y, z, c, w, a}, but if we contract ε(B) we obtain a set in which
z does not appear any longer. It follows that κ(ε(B)) and B are not
comparable, in this case. Differently, consider the fact that the rela-
tion IC(X) ⊇ X is always valid in topological spaces. For an extremely
simple example of a pre-topology where κ(ε(X)) � X, take 〈U, ε,κ〉,
where U = {a, . . .},κ({a}) = ∅ and ε({a}) = {a}. In this pre-topology
κ(ε({a})) = ∅ � {a}.

As a concrete simple example, consider the following three binary
tables:

R1 a b c

a 1 1 0
b 0 1 0
c 0 0 1

R2 a b c

a 1 0 1
b 0 1 0
c 0 0 1

R3 a b c

a 1 0 1
b 1 1 0
c 0 0 1

Suppose this is the behaviour of the same relation R under different
conditions. For instance R1(a) is the behaviour of R at point a when
this element is taken alone and b and c are not considered together;
R2(a) is the behaviour of R at point a when this element is taken
alone and b and c are considered together, or when it is joined with
b. R3(a) is the behaviour of R at point a when this element is taken
jointly with c. Going on with this interpretation, we can see that for
any x and i ∈ {1, 2, 3}, Ri(x) is the behaviour of R at x for a certain
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context. Here we display a possible context-sensitive set of evaluations,
distinguishing “internal contexts” containing the elements to which R

applies, and “external contexts” otherwise:

Internal contexts External contexts Element Applicable
version of R

{a} {{c}, {b}} a R1

{a} {{b, c}} a R2, R3

{a, b} {{c}} a, b R2

{a, c} {{b}} a, c R3

{b} {{a}, {c}} b R1

{b} {{a, c}} b R3

{b, c} {{a}} b, c R2

{c} {{a}, {b}, {a, b}} c R1, R2, R3

{a, b, c} ∅ a, b, c R1

Obviously, the fact that the behaviour of R changes along the contexts,
does not make R- neighborhood formation an isotonic process. For
instance, although {b} ⊆ {b, c}, if the external context of the evaluation
of R({b}) is {a, c}, then we have R({b}) = R3({b}) = {a, b}. But the
external context of evaluation of R({b, c}) is {a} so that R({b, c}) =
R2({b, c}) = {b, c}. Hence R({b}) � R({b, c}).

However, these three versions of R may represent other situations.
For instance they could be the results of three surveys about the same
relation R with respect to three different points in time t1, t2 and t3.

Along this line of interpretation we shall develop interesting dynamic
frameworks in information analysis, in which isotonicity is valid, altho-
ugh we have still to renounce other nice properties.

This point will be developed in Excursus 12.6.2 below. First, we
have to introduce other kinds of pre-topologies.

To sum up, a dynamic analysis is required by two basic situations
and a mixed one.

The first is when we fix the point in time and let the observation
process depend on contexts:

R at point in time tx

�
�
�
�
� �

�
�
�
�

Context C1 → R1 Context C2 → R2 Context Cn → Rn
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The second happens when we fix the context and let the observation
vary over time;

R in context C

�
�
�
�
� �

�
�
�
�

time t1 → R1 time t2 → R2 time tn → Rm

A third situation is given mixing the previous two:
R

�
�
�
�
� �

�
�
�
�

point in time t1 point in time t2 point in time tm

�
�
�
�
� �

�
�
�
�

Context C1 → R11Context C2 → R12Context tn → R1n

Classical Rough Set Theory does not account for this kind of dynamic
phenomena. Indeed, as far as we are confined to a single Information
System, we can deal just with a picture taken at a particular point in
time and at a particular point in space (meaning that the picture fixes
a situation in space and time). In this picture, relations are static and
definite.

Dynamics can be taken into account if we consider possible evo-
lutions of Information Systems over time and/or evolutions of these
behaviours of the analysed elements.

As we shall see, in all these cases pre-topologies are useful in order
to synthesize and represent evolution. For instance, we can think of a
collection of Approximation Spaces with operations which are able to
synthesise their different information.

12.5 Towards Topology 1

In what follows, we shall progressively impose new properties to a pre-
topological space in order to encompass the features required by our
analysis, like isotonicity and distribution.
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In this journey we still use examples taken from the dynamic
approach illustrated above, so that the reader will be able to appre-
ciate where approaches which use topological concepts are positioned
in data analysis, like Approximation Space.

Definition 12.5.1. A pre-topological space 〈U, ε,κ〉 is said to be of type
VId if and only if for all X ⊆ U the operator κ and ε are idempotent.

It is easy to check that if one of the two conjugate operators is idem-
potent, so is the other.

Proposition 12.5.1. A pre-topological space 〈U, ε,κ〉 is of type VId if
Nκ(U) is of type N1Id.

Proof. Immediate, from Proposition 12.4.5 and Proposition 12.4.10. qed

Notice that a pre-topological space of type VId is much weaker than
a topological space, although κ is idempotent. For instance κ is not
required to be isotonic.

Definition 12.5.2. A pre-topological space 〈U, ε,κ〉 is said to be of
type VI if and only if for all X,Y ⊆ U,X ⊆ Y implies ε(X) ⊆ ε(Y ).

Proposition 12.5.2. A pre-topological space 〈U, ε,κ〉 is of type VI if
and only if for all X,Y ⊆ U,X ⊆ Y implies κ(X) ⊆ κ(Y ).

Therefore, a pre-topological space is of type VI if and only if its expan-
sion and contraction operators are isotonic. And this happens if every
κ−neighborhood system is a proper filter:

Proposition 12.5.3. Let P = 〈U, ε,κ〉 be a pre-topological space. Then
the following statements are equivalent:

1. P is of type VI .

2. The family Nκ(U) is a neighborhood system of type N2.

3. P is induced by a neighborhood system of type N2.

Proof. Immediate, from Lemma 12.4.1 and Proposition 12.4.10. qed

Given a neighborhood system of type N2 we can define a pre-topological
space of type VI in a manner that will be recognised to be very familiar.
Let us indeed define two new operators g and f on ℘(U).
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Definition 12.5.3. Let N (U) be a neighborhood system on U . Let us
set:

1. g(X) = {x ∈ U : ∃N(N ∈ Nx & N ⊆ X)}.

2. f(X) = {x ∈ U : ∀N(N ∈ Nx � N ∩X �= ∅)}.

Clearly, the maps g and f are dual (the proof is left to the reader
[hints: consider the set −g(−X); so, as usual, apply in sequence the
first order equivalences ¬∀x ≡ ∃x¬, ¬(A� B) ≡ A & ¬B and, finally,
¬(Y ∩ −X �= ∅) ≡ Y ⊆ X]). Moreover, these maps are weaker than
G and, respectively, F , because, obviously, for all X ∈ ℘(U), G(X) ⊆
g(X) (since X ⊆ X)

On the basis of this definition we have:

Proposition 12.5.4. Let U be a set. Let N (U) be a neighborhood
system. Then the following are equivalent:

1. N2 holds in N (U).

2. For any subset X of the universe, g(X) = G(X) and f(X) =
F (X).

Proof. Since G(X) ⊆ g(X), g(X) = G(X) if and only if ∀X ⊆ U ,
∀x ∈ U((∃N ∈ Nx & N ⊆ X) � X ∈ Nx), if and only if N2 holds.
Dually for F . qed

So, in case of neighborhood systems of type N2 the vicinity map (the
expansion operator) is defined in the usual topological way: a point x
is close to a set X if and only if all the elements of Nx have non null
intersection with X. A well-known intuitive picture is that displayed
by Figure 12.4.

Figure 12.4: Point x is close to the set A because all of its neighborhoods
have non empty intersections with A
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The above definitions sound familiar to the reader, since it is obvious
that as soon as we consider neighborhood systems N (U) such that
for all x, Nx is a filter with a least element l(x), then (1) and (2)
of Definition 12.5.3 turn into: (1’) g(X) = {x : l(x) ⊆ X} and (2’)
f(X) = {x ∈ U : l(x) ∩X �= ∅}.

Thus when this least element is an equivalence class [x]≈, we obtain
the definitions of upper and, respectively, lower approximations.

However, from this discussion it follows that a pre-topological space
must be equipped with additional structural properties in order to
exhibit the characteristics of Approximation Spaces.

Proposition 12.5.5. Let 〈U, ε,κ〉 be a pre-topological space of type
VI . Then,

1. If {Oi}i∈I is a family of open sets, then
⋃

i∈I
{Oi} is open.

2. If {Ci}i∈I is a family of closed sets, then
⋂

i∈I
{Ci} is closed.

3. U and ∅ are both closed and open.

Proof. (1) Let {Oi}i∈I be a family of open sets. For any element x ∈
⋃

i∈I

Oi there is a j ∈ I such that x ∈ Oj. But Oj is open, hence Oj =

x ∈ κ(Oj). Since Oj ⊆
⋃

i∈I

Oi, by isotonicity we have κ(Oj) ⊆ κ(
⋃

i∈I

Oi)

so that x ∈ κ(
⋃

i∈I

Oi). Therefore, for all x ∈
⋃

i∈I

Oi we have
⋃

i∈I

Oi ∈ κx

and from Proposition 12.4.12 we obtain the result. (2) By duality. (3)
Left to the reader. qed

Corollary 12.5.1. Let 〈U, ε,κ〉 be a pre-topological space of type VI .
Then for any X ⊆ U , the closure Cε(X) and the interior Iκ(X) always
exist.

Another way to interpret the above result is that isotonicity implies a
sort of fix-point property.

Although pre-topological spaces are spaces endowed with a rather
rich structure, nevertheless, they are not able to completely account for
the geometrical features of relational spaces. Let us consider again the
cause of this limitation.

On the one hand, a pre-topological space provides a decreasing map,
κ, and an increasing map, ε, while R−neighboring is neither, for an
arbitrary relation R. It is a decreasing map only if R is reflexive.
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On the other hand, R−neighboring distributes both on unions and
intersection, while this feature is not standard for generic pre-topological
spaces.

So, let us now analyse the meaning of reflexivity and distribution.

12.5.1 Excursus: Reflexivity, Distribution
and Perception

Since we are interested in how conceptual patterns are formed around
the perception of a “point” x (item, object, stimulation, event, . . . ),
we can assume that if a conceptual pattern is induced by a process π
that gathers together all the “points” that are related with the given
perceived “point” x, then x should belong to the result π(x) of this
process. Otherwise we should admit, rather metaphysically, that some
phenomena appear to our consciousness by means of perceptions related
with something which still remains a noumenon and not a part of the
induced phenomena (see Figure 12.5).

Figure 12.5: A non-reflexive phenomenological process may induce a
phenomenon in which it partially or totally disappears

In order to avoid this metaphysical drawback, we can assume reflexivity
on a quite intuitive basis.

As for distribution, we can have different attitudes. As a matter
of facts, there is no evidence for claiming that if a phenomenon P1

is the result of an inflationary (i.e. increasing) process π applied to
“point” x, P1 = π(x), and P2 is the result of the same process applied
to “point” y, P1 = π(y), then the result of the application of π to both
points, π(x+y), is P1 +P2. Indeed, the two points taken together could
carry more information than the sum of the two pieces of information
carried by the two “points” singularly taken. Proximity Spaces and
Concept Lattices are good examples of this situation (see Part I). On
the contrary, the classical upper approximation in Rough Set Theory
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is additive. Additivity is a symptom of phenomena that fulfill some
compositional property, in the sense that our ideal process π is additive:
π(x + y) = π(x) + π(y) (or, in a set-theoretical framework, π({x} ∪
{y}) = π({x}) ∪ π({y})).

Moreover, one might wonder if it is possible to have an inflationary
and distributive map avoiding isotonicity, i.e. monotonicity. We have
already seen that this is not possible: we can have inflationary isotonic
maps that are not additive. However, if a map is additive, then it is
isotonic with respect to the lattice order.

12.6 Towards Topology 2

So, we have done a step towards the direction of relational spaces
(Kripke frames) and Rough Sets by means of the concept of a pre-
topological space of type VI . Now we shall go further ahead, in order
to grasp the distribution features.

Definition 12.6.1. A pre-topological space 〈U, ε,κ〉 is said to be of
type VD if and only if for all X,Y ⊆ U, ε(X ∪ Y ) = ε(X) ∪ ε(Y ).

Proposition 12.6.1. A pre-topological space 〈U, ε,κ〉 is of type VD if
and only if for all X,Y ⊆ U,κ(X ∩ Y ) = κ(X) ∩ κ(Y ).

We have already seen that these distribution laws implies the isotonicity
law. So any pre-topological space of type VD is also of type VI . However
the converse implication is not valid, as we can see in Example 12.6.2
below.

It is possible to prove that in order for a pre-topology to be of type
VD, the structure of the κ-neighborhoods of any element of U must be
a filter and not only an order filter. That is, if X and Y belongs to κx,
any x, then X ∩ Y must belong to κx, too:

Proposition 12.6.2. Let P = 〈U, ε,κ〉 be a pre-topological space. Then
the following statements are equivalent:

1. P is of type VD.

2. The family Nκ(U) is a neighborhood system of type N3.

3. P is induced by a neighborhood system of type N3.

Proof. Immediate, from Lemma 12.4.1, Proposition 12.4.10 and Corol-
lary 12.4.2. qed
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Figure 12.6: In a neighborhood system of type N3, the elements of the
neighborhood family of any point x form a filter with respect to the
relation ⊆

Proposition 12.6.3. Let 〈U, ε,κ〉 be a pre-topological space of type
VD. Then,

1. If {Oi}i∈I is a finite family of open sets, then
⋂

i∈I
{Oi} is open.

2. If {Ci}i∈I is a finite family of closed sets, then
⋃

i∈I
{Ci} is closed.

3. For any X,Y ⊆ U : Iκ(X ∩ Y ) = Iκ(X) ∩ Iκ(Y ).

4. For any X,Y ⊆ U : Cε(X ∪ Y ) = Cε(X) ∪ Cε(Y ).

Proof. (1) If A and B are open sets, then κ(A) = A and κ(B) = B.
Since 〈U, ε,κ〉 is of type VD, κ(A ∩ B) = κ(A) ∩ κ(B) = A ∩ B. It
follows that A ∩B is an open set. (2) Dually. (3) From the first state-
ment we have that for any X,Y ⊆ U , Iκ(X) ∩ Iκ(Y ) is an open set;
moreover, from Proposition 12.4.9 we obtain that Iκ(X) ∩ Iκ(Y ) is an
open set included in X ∩ Y . On the other hand, since X ∩ Y ⊆ X

and X ∩ Y ⊆ Y , we have (i): Iκ(X ∩ Y ) ⊆ Iκ(X) ∩ Iκ(Y ). But
Iκ(X ∩ Y ) is the largest open set included in X ∩ Y , so that we have
(ii): Iκ(X) ∩ Iκ(Y ) ⊆ Iκ(X ∩ Y ). We conclude from (i) and (ii) that
Iκ(X) ∩ Iκ(Y ) = Iκ(X ∩ Y ). (4) From duality. qed

Therefore, a pre-topological space of type VD features properties very
close to those that characterise topological spaces. The remaining dif-
ference is that in a pre-topological space of type VD the two maps κ
and ε are not required to be idempotent. Anyway, before adding the
remaining clause and obtaining topological spaces, we have to intro-
duce a new element to the taxonomy of pre-topological spaces, that
will make it possible to associate reflexive relations with them.
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Definition 12.6.2. A pre-topological space 〈U, ε,κ〉 is said to be of
type VS, or an Alexandroff pre-topological space, if and only if for all
X ⊆ U, ε(X) =

⋃

x∈X

ε({x}).

A pre-topological space is of type VS only if any κ− neighborhood
system is a principal filter.

Proposition 12.6.4. Let P = 〈U, ε,κ〉 be a pre-topological space. Then
the following are equivalent:

1. P is of type VS.

2. P is of type VI and for any x, for any family {Xi}i∈I of elements
of κx,

⋂

i∈I
Xi ∈ κx.

3. The family Nκ(U) is a neighborhood system of type N4.

4. P is induced by a neighborhood system of type N4.

Proof. Immediate, from Lemma 12.4.1, Proposition 12.4.10 and Corol-
lary 12.4.2. qed

Therefore, if U is finite, then the notions of VS and VD pre-topological
spaces coincide.

Example 12.6.1. A pre-topological space not of type VI
We have seen that in the pre-topological space of Example 12.4.8, κ is idempotent
but not isotonic.

Example 12.6.2. A pre-topological space in which κ is isotonic and
idempotent but not multiplicative
We show that κ−distributivity is independent of κ−isotonicity and κ−idempotence.

Consider the pre-topology P1 = 〈U, ε,κ〉 such that U = {a, b, c} and κ and ε
are given by the following table:

x ∅ {a} {b} {c} {a, b} {a, c} {b, c} U

ε(x) ∅ {a} {b} {c} U {a, c} {b, c} U

κ(x) ∅ {a} {b} ∅ {a, b} {a, c} {b, c} U

By easy inspection we can verify that both κ and ε are isotonic. However,

• ε({a}) ∪ ε({b}) = {a} ∪ {b} = {a, b} �= U = ε({a, b}) = ε({a} ∪ {b}).
• κ({a, c})∩κ({b, c}) = {a, c}∩{b, c} = {c} �= ∅ = κ({c}) = κ({a, c}∩{b, c}).
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Indeed, κc = {{a, c}, {b, c}, U} is an order filter but not a filter because {a, c} ∩
{b, c} /∈ κc.

It should be noticed, moreover, that the family {κx}x∈U is a neighborhood
system of type N2Id. We can conclude that adding Id to N2 does not say anything
about N3.

Example 12.6.3. Contraction operators and order filters
We have seen that in the pre-topology P1 above, κc is an order filter but not a
filter. This is the reason why the cocontinuity law fails when κ is applied to the
intersection of {a, c} and {b, c}, and the continuity law fails when ε is applied to
their complements, {b} and respectively {a}.

The family of κ-neighborhoods is:

x a b c

κx {{a}, {a, b}, {a, c}, U} {{b}, {a, b}, {b, c}, U} {{a, c}, {b, c}, U}

Notice that κa and κb, incidentally, are filters. However, {κx}x∈U is not a neigh-
borhood system of type N3 because of κc.

Example 12.6.4. A pre-topological space P where κ is idempotent but
P is not of type VI : κ-isotonicity is independent of κ-idempotence
A simple example is given by the pre-topological space of Example 12.4.8

Example 12.6.5. A pre-topological space P where any intersection of
two open subsets is open, but not of type VD
Consider the neighborhood system N (U)

x a b c

Nx {{a, b}, {a, b, c}} {{b, c}, {a, b}, {a, b, c}} {{a, b, c}}

The open subsets are ∅, {a, b} and {a, b, c}, and it is easy to check that they are
closed under intersection. However, Nb is not a filter; thus N (U) is not of type VD.

12.6.1 Bases

Definition 12.6.3. Given a pre-topological space P = 〈U, ε,κ〉, the
family Ωκ(U) = {κ(A)}A⊆U will be called the pre-topology of U .

Terminology and Notation. From now on given a pre-topological

space P = 〈U, ε,κ〉, with the symbol P we shall mean, whenever conve-

nient and appropriate in the context, also its pre-topology Ωκ.

Definition 12.6.4. Let P1 = 〈U, ε′,κ′〉 and P2 = 〈U, ε′′,κ′′〉 be two
pre-topological spaces on the same universe U . Then we say that (the
pre-topology of) P1 is finer than (the pre-topology of) P2 (or P2 is
coarser than P1), in symbols P2 � P1, if for any X ⊆ U , κ′′(X) ⊆
κ

′(X).



12.6 Towards Topology 2 435

Proposition 12.6.5. Given two pre-topological spaces P1 and P2 on
the same universe U , P2 � P1 if and only if κ′′x ⊆ κ′x, any x ∈ U .

Proof. Suppose κ′′x ⊆ κ′x and x ∈ κ′′(Z). Hence Z ∈ κ′′x so that Z ∈ κ′x,
too. It follows that x ∈ κ

′(Z). Conversely, if κ′′x � κ

′
x there is an

F ∈ κ′′x such that F /∈ κ′x. Hence x ∈ κ′′(F ) but x /∈ κ′(F ). It follows
that κ′′(X) � κ′(X). qed

Terminology and Notations. If X is a family of subsets of a given set

U , then by ⇑ X we shall denote the set {Y ⊆ U : ∃X(X ∈ X & X ⊆ Y )}
(the order filter generated by X in ℘(U): ⇑ X = {↑⊆ X : X ∈ X}).

The following definition and properties will be useful.

Definition 12.6.5. Let U be a set, F , F1 and F2 order filters or
filters of elements of ℘(U). Moreover let B, B1 and B2 be families of
subsets of U . Then:

1. If F =⇑ B, then B is called a basis for F and we say that B
induces F . We call a collection B = {Bi}i∈I of bases, a basis
system.

2. If F1 ⊆ F2, then F2 is said to be a finer filter than F1.

Proposition 12.6.6. Let B1,B2⊆℘(U), F1 =⇑ B1,F2 =⇑ B2 and
B2 ⊆ B1. Then F1 is finer than F2.

The converse of the above Proposition, generally does not hold. Con-
sider, indeed, U = {a, b, c}, B1 = {{a}}, B2 = {{a, b}}. Then, ⇑ B2 ⊆⇑
B1 although B1 � B2.

Corollary 12.6.1. Let B ⊆ ℘(U) and F =⇑ B. Then,
⋂

F =
⋂
B ∈ B (i.e.

⋂
B ∈ F ).

Proof. If F is a filter and A,B ∈ F , then A ∩ B ∈ F . So
⋂

F ∈ F .
Clearly, for any X ∈ F ,

⋂
F ⊆ X. Therefore, if F =⇑ B, then

⋂
F ⊆ B, for any B ∈ B. It follows that

⋂
F =

⋂
B. qed

In view of Definition 12.5.4, if we are given a family of filters induced by
a basis system, then in order to compute ε(X) and κ(X) it is sufficient
to consider the bases:

Proposition 12.6.7. Let U be a set. Let N (U) be a neighborhood
system of type (at least) N2 and N ′(U) a neighborhood system of type
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N4. Assume that, for any x, Nx = ⇑ Bx for some Bx ⊆ ℘(U) and N ′
x =

⇑ {Qx} for some Qx ⊆ U . Then for any X ⊆ U the following equations
hold:

1. {x ∈ U : ∃N(N ∈ Nx & N ⊆ X)} =
{x ∈ U : ∃A(A ∈ Bx & A ⊆ X)}.

2. {x ∈ U : ∀N(N ∈ Nx � N ∩X �= ∅) =
{x ∈ U : ∀A(A ∈ Bx � A ∩X �= ∅)}.

3. {x ∈ U : ∀N ′(N ′ ∈ N ′
x � N ′ ∩X �= ∅)} = {x ∈ U : Qx ∩X �= ∅}.

4. {x ∈ U : ∃N ′(N ′ ∈ N ′
x & N ′ ⊆ X)} = {x ∈ U : Qx ⊆ X}.

Proof. (1): Since Fx =⇑ Bx, if N is such that N ∈ Nx and N ⊆ X,
then there is a A ∈ Bx such that A ⊆ N ⊆ X. Therefore, since A ∈ Nx,
A itself satisfies the condition of the right term of the equation. The
converse is trivial. (2) If X ∩ A �= ∅ for A ∈ Bx, then X ∩ F �= ∅ for
any F ⊇ A. On the other hand, if X ∩ F �= ∅ for any F ∈ Nx, then
this holds of any A ∈ Bx. (3) Trivially because the left part of the
equation reduces to {x ∈ U :

⋂
Nx ∩X �= ∅)} and

⋂
Nx = Qx, because

N ′
x =⇑ {Qx}. (4) Trivial, because Qx is the least element of N ′

x. qed

Definition 12.6.6. Let N (U) be a neighborhood system of type at
least N2, B = {Bx}x∈U ⊆ ℘(℘(I)) and N (U) = {⇑ Bx}x∈U . If a pre-
topological space P is induced by N (U), then we say that it is induced
by B, too, and that B is a basis for P. In this case to define κ and ε

we shall also use the right side of the equations (1) and, respectively,
(2) of Proposition 12.6.7 above.

Trivially we have:

Proposition 12.6.8. In any neighborhood system induced by a basis,
1 and N2 hold.

Example 12.6.6. From order filters to contraction operators
Given a neighborhood system of type N2, we can recover the contraction operator of
a pre-topological space of type VI by means of the equations of Proposition 12.6.7.

Consider the family of neighborhood system N (U) on U = {a, b, c} given by
Na = {{a}, {a, b}, {a, c}, U}, Nb = {{a, b}, U} and Nc = {{b, c}, {a, c}, U}.

Each neighborhood family is an order filter. Thus N (U) is of type N2 and it is
induced by the basis B = {Ba = {{a}},Bb = {{a, b}},Bc = {{a, c}, {b, c}}}.
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Let us compute κ({a, b}):
(a) κ({a, b}) = {x : ∃A(A ∈ Bx & A ⊆ {a, b})}:
(a.1) a is OK: {a} ∈ Ba and {a} ⊆ {a, b}.
(a.2) b is OK: {a, b} ∈ Bb and {a, b} ⊆ {a, b}.
(a.3) c is not OK: none member of Bc is included in {a, b}.
Hence, κ({a, b}) = {a, b}.
Let us compute κ({c}): no element of Ba, Bb or Bc is included in {c}; hence

κ({c}) = ∅.

Exercise 12.8.
(a) Give an example of a pre-topological space not of type VI where
{x : A ∈ κx} �= {x : ∃X(X ∈ κx & X ⊆ A)}.
(b) Exploiting Proposition 12.6.7.(ii), compute ε(X) for any X ⊆ U in
the pre-topological space P1 of Example 12.6.2 above.
(c) Compute a minimal basis for the pre-topology P1.
(d) Find a minimal binary relation R ⊆ U × X, for some set X,
such that the expansion map ε of P1 coincides with the Galois closure
operator on ℘(U), modulo R.

Although bases are enough, in many examples below we shall also show
the entire family of filters or order filters inducing a pre-topology.

Proposition 12.6.9. If a pre-topological space P is induced by a basis
B = {Bx}x∈U such that for any x ∈ U , Bx is a singleton, then P is of
type VS.

Proof. If Bx = {X}, then ⇑ Bx =↑ X = {Y ⊆ U : X ⊆ Y )}, which is
obviously a filter, because

⋂
↑ X = X and X ∈↑ X. Therefore, from

Corollary 12.4.2 we have the result. qed

12.6.2 Excursus. Dynamics 2: The Failure
of the Distributivity Laws

In Excursus 12.4.1, we have seen that dynamics and monotonicity may
conflict. Here we shall exhibit examples of dynamic data analysis where
monotonicity holds. However, distributivity laws fails to hold because
of the intrinsic mechanism of these dynamic analyses.

Suppose we are given a universe U and a system of n binary relations
on U , R = {Ri}1≤i≤n.

As we have seen, we can think of R1, R2, . . . , Rn as the results of n
surveys about the same relation R with respect to n different points
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of time t1, t2, . . . , tn, respectively, or surveys about n different criteria
C1, C2, . . . , Cn, respectively.

Definition 12.6.7. Let U be a set and {Ri}i∈I a family of binary rela-
tions on U . Then the pair 〈U, {Ri}i∈I〉 is called a Dynamic Relational
System.

If each Ri is reflexive, then we can use pre-topology to develop inter-
esting information analyses in which the pre-topological operators are
isotonic, although we have still to renounce other nice properties, such
as κ-cocontinuity and ε-continuity.

Let us list n × 2 basic “use cases” of the above surveys. Given a
subset A of U , we have n use cases involving the expansion process,
and n use cases involving the contraction process:

1. (Contraction): We say that x ∈ κm(A), for 1 ≤ m ≤ n, if every y
such that 〈x, y〉 ∈ Ri belongs to A, at least in m cases. Otherwise
stated: x ∈ κm(A) if R1≤i≤n(x) ⊆ A for at least m indices. So,
for instance, assume n = 3, then x ∈ κ2(A) if R1(x) ⊆ A and
R2(x) ⊆ A, or if R1(x) ⊆ A and R3(x) ⊆ A, or if R2(x) ⊆ A and
R3(x) ⊆ A (i.e. if R1(x) ∪ R2(x) ⊆ A, or R1(x) ∪ R3(x) ⊆ A, or
R2(x) ∪R3(x) ⊆ A).

2. (Expansion): We say that x ∈ εm(A), for 1 ≤ m ≤ n, if A contains
at least a y such that 〈x, y〉 ∈ Ri in at least n + 1 − m cases.
Otherwise stated: x ∈ εm(A) if R1≤i≤n(x) ∩ A �= ∅ for at least
n+ 1−m indices. So, for instance, assume n = 3, then x ∈ ε3(A)
if R1(x) ∩ A �= ∅, or R2(x) ∩ A �= ∅, or R3(x) ∩ A �= ∅ (i.e. if
(R1(x) ∪R2(x) ∪R3(x)) ∩A �= ∅).

According to these use cases, we can compute the families of expan-
sion and contraction operators, ε1≤m≤n and κ1≤m≤n, by transforming
the various Ri−neighborhoods into appropriate bases and applying
eventually Proposition 12.6.7:

Definition 12.6.8. Let U be a set and let R = {Ri}1≤i≤n be a system
of n binary reflexive relations on U . For 1 ≤ m ≤ n, let Γm be the
family of combinations of m elements out of a set of n elements, γ a
combination from Γm. Then let us set:

1. εm : ℘(U) �−→ ℘(U); εm(A) = {x ∈ U : ∀F (F ∈ Fm
x � F ∩A �= ∅)}.
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2. κm : ℘(U) �−→ ℘(U);κm(A) = {x ∈ U : ∃F (F ∈ Fm
x & F ⊆ A)},

where: Fm
x is the (order) filter induced by the basis Bm

x , and Bm
x =

{Xγ : Xγ =
⋃

l∈γ Rl(x)}γ∈Γm .

Proposition 12.6.10. Let R be a system of n reflexive binary rela-
tions on a set U . Then, for each m, 1 ≤ m ≤ n, 〈U,κm, εm〉 is a
pre-topological space of type VI .

The proof is immediate. In fact, from Proposition 12.6.8, 1 and N2
hold in Nκ

m

. Moreover, Id and 0 hold because all relations in R are
reflexive.

Let us apply all the above definitions to a simple example.
Consider the Dynamic Relational System 〈U, {R1, R2, R3}〉, where

U = {a, b, c} and R1, R2 and R3 are the relations from the example of
Excursus 12.4.1.

In view of the above definitions we have:

m Γm Bm
x

1 {{1}, {2}, {3}} {R1(x), R2(x), R3(x)}
2 {{1, 2}, {1, 3}, {2, 3}} {R1(x) ∪R2(x), R1(x)

∪R3(x), R2(x) ∪R3(x)}
3 {{1, 2, 3}} {R1(x) ∪R2(x) ∪R3(x)}

In the following tables we show the basis Bm(U) = {Bm
x }x∈U , the

induced neighborhood system Fm(U) = {Fm
x }x∈U , and, finally the

operators εm and κm:

Bm
x Bm

a Bm
b Bm

c

B1
x {{a, b}, {a, c}} {{b}, {a, b}} {{c}}

B2
x {{a, c}, U} {{b}, {a, b}} {{c}}

B3
x {U} {{a, b}} {{c}}

Fm
x Fm

a Fm
b Fm

c

F 1
x {{a, b}, {a, c}, U} {{b}, {a, b}, {b, c}, U} {{c}, {a, c}, {b, c}, U}

F 2
x {{a, c}, U} {{b}, {a, b}, {b, c}, U} {{c}, {a, c}, {b, c}, U}

F 3
x {U} {{a, b}, U} {{c}, {a, c}, {b, c}, U}
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εm ∅ {a} {b} {c} {a, b} {a, c} {b, c} U

ε1 ∅ {a} {b} {c} {a, b} {a, c} U U

ε2 ∅ {a} {b} {a, c} {a, b} {a, c} U U

ε3 ∅ {a, b} {a, b} {a, c} {a, b} U U U

κ

m ∅ {a} {b} {c} {a, b} {a, c} {b, c} U

κ

1 ∅ ∅ {b} {c} {a, b} {a, c} {b, c} U

κ

2 ∅ ∅ {b} {c} {b} {a, c} {b, c} U

κ

3 ∅ ∅ ∅ {c} {b} {c} {c} U

Since each Ri is reflexive, 〈U,κ1, ε1〉 is a pre-topological space. However
we can notice, for instance, that F 1

a is not a filter, because {a, b} ∩
{a, c} /∈ F 1

a .
Hence the pre-topological space 〈U, ε1,κ1〉 is not of type VD.
Also, we can directly observe the relationship between ε and κ

distributivity and proper filters.
Indeed, since F 1

a is not a proper filter, there are two minimal distinct
elements A = {a, b} and B = {a, c} of F 1

a such that A∩B �= ∅ but A∩
B /∈ F 1

a . Let us set Y = B ∩−A = {b}, Z = A∩−B = {c}. Therefore,
the subset Y ∪ Z = {b, c} has empty intersection neither with A nor
with B; hence Y ∪Z has empty intersections with no members of F 1

a ,
because A and B are minimal. It follows that a belongs to ε1(Y ∪ Z).
But a /∈ ε1(Y ) and a /∈ ε1(Z). Henceforth ε1(Y ) ∪ ε1(Z) � ε1(Y ∪ Z).
Dually for κ-codiscontinuity. In fact, a ∈ κ1(A) because A ∈ F 1

a and
A ⊆ A. For the same reason a ∈ κ1(B). Therefore a ∈ κ1(A) ∩ κ1(B).
But A ∩ B � A and A ∩B � B (remember that A �= B). Since A and
B are minimal in F 1

a , there is not any F ∈ F 1
a such that F ⊆ A ∩ B.

Thus a /∈ κ1(A ∩ B). Henceforth κ1(A ∩ B) � κ

1(A) ∩ κ1(B). As a
side consequence, ε1 is not continuous. In our example:

κ

1({a, b} ∩ {a, c}) = κ

1({a}) = ∅ �= {a} = {a, b} ∩ {a, c} =
κ

1({a, b}) ∩ κ1({a, c}).

and

ε1({b}) ∪ ε1({c}) = {b, c} ⊆ {a, b, c} = ε1({b, c}) = ε1({b} ∪ {c})

[See the Frame section for further details.]
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Example 12.6.7. A pre-topological space of type VD which is not topo-
logical: κ-idempotence is independent of κ−distributivity and
isotonicity

Consider the pre-topological space P2 = 〈U, ε,κ〉 such that U = {a, b, c} and κ and
ε are given by the following table:

x ∅ {a} {b} {c} {a, b} {a, c} {b, c} U

ε(x) ∅ {a, b} U {c} U U U U

κ(x) ∅ ∅ ∅ ∅ {a, b} ∅ {c} U

By easy inspection we can verify that κ distributes over meets and ε distributes
over unions.

However, the two operators are not idempotent: ε({a}) = {a, b} �= {a, b, c} =
ε({a, b}); κ({b, c}) = {c} �= ∅ = κ({c}). So this is a case of distributive operators
that are not idempotent. Since distributivity implies isotonicity, we have the required
example. Therefore property (τ ) is not valid.

But (τ ) is a typical property of neighborhoods in topological spaces – see further
in the text.

The same happens for the structure 〈U, ε3,κ3〉 in Excursus Dynamics 2, § 12.6.2.
Indeed, consider the neighborhood systems F 3

a = {{a, b, c}}, F 3
b = {{a, b}, {a, b, c}},

F 3
c = {{c}, {a, c}, {b, c}, {a, b, c}}. Given the element {a, b} of F 3

b , there is not any
X ∈ F 3

b such that {a, b} ∈ F 3
x for any x ∈ X. In fact, clearly {a, b, c} is not such an

X. As for the remaining element of F 3
b , {a, b} itself, it does not belong to F 3

a . This
is the reason for κ3(κ3({a, b})) = ∅ �= {b} = κ

3({a, b}). Dually, this is the reason
for ε3(ε3({c})) = {a, b, c} �= {a, b} = ε3({c}).

Exercise 12.9.
(a) Compute the family F = {κa,κb,κc} from P2.
(b) Check that every member of F is a filter and not only an order
filter.
(c) Compute a minimal basis for the pre-topology P2.
(d) Verify that property (τ) fails to hold in P2.

12.7 Pre-Topological Spaces and Binary

Relations

Now we are in a good position for understanding how relations and
relation neighborhoods are connected with pre-topological spaces.

First of all, let us underline that not every pre-topological space is
connected with a binary relation and not every binary relation induces
a pre-topology. We know that pre-topologies can be associated with
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relations that are at least reflexive. Taking into account this proviso,
let us formalise in a definition the construction discussed in the above
Excursus 12.6.2:

Definition 12.7.1. Let U be a set and let R = {Ri}i∈I be a system of
reflexive binary relations on U .

(a) If N (U) = {Ri(x)}i∈R then we say that N (U) and the pre-topo-
logical space P(R) = 〈U, ε,κ〉 are connected with R, where for
any x ∈ U , κ(x) = G(x). In this case we shall also write N (R).

(b) The pre-topological space induced by the basis Bm(U) = {Bm
x }x∈U

is said to be m−associated with the system R and denoted by
Pm(R) = 〈U, εm,κm〉.

(c) In particular, if R = {R}, then the pre-topological space induced
by the basis {R(x)}x∈U is said to be associated with the relation
R and denoted by P(R) =

〈
U, εR,κR

〉
.

One should not confuse P(R) with P(R).

Example 12.7.1. Difference between pre-topological spaces using
{Ri(x)}i∈I,x∈U as a neighborhood system or as a basis for a neigh-
borhood system
Here we show the difference between pre-topological spaces connected with a system
R of reflexive binary relations, and pre-topological spaces induced by R.

Consider the following system of relations R = {R1, R2}:

R1 a b c

a 1 1 0
b 0 1 1
c 1 0 1

R2 a b c

a 1 0 1
b 1 1 0
c 0 1 1

If we intend {R1(x),R2(x)}x∈U as a neighborhood system for a pre-topological space
P(R) = 〈U, ε,κ〉, then κ({a, b, c}) = ∅. Actually, P(R) is not of type VI because
neither {R1(a), R2(a)} nor {R1(b), R2(b)} are filters. Therefore we must use the
definition κ(X) = G(X) = {x : X ∈ Nx}. But for all x ∈ U , {a, b, c} /∈ R1(x) or
R2(x). On the contrary, if we intend R as a basis then we obtain P1(R) = 〈U, ε1,κ1〉.
In this case κ1({a, b, c}) = {a, b, c}. One can observe that in P(R), κ(X) �= {x :
∃Ri(Ri(x) ⊆ X)} (indeed for any i ∈ {1, 2}, and for any x ∈ U , Ri(x) ⊆ {a, b, c}).
Indeed, P1(R) has type VCl while P(R) has type VId.

Therefore, in P1(R) we can apply Proposition 12.5.4 and Proposition 12.6.7,
while in P(R) we can just set κ = G.

However, since for any x ∈ U , {a, b, c} ∈⇑ (B1
x), we have that the relation

1 = U × U belongs to the pseudo-uniformity U(R) see below, because 1 ⊇ Ri, any
Ri ⊆ U × U . It follows that P(U(R)) = P(R).
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Proposition 12.7.1. Let P1(R) =
〈
U, ε1,κ1

〉
be a pre-topological

space 1-associated with a system of reflexive binary relations R =
{Ri}i∈I . Then;

1. P1(R) is of type VI .

2. B1(U) = {B1
x}x∈U = {Ri(x)}i∈I,x∈U .

3. κ1(X) = {x : ∃Ri(Ri ∈ R & Ri(x) ⊆ X)}.

4. ε1(X) =
⋂

i∈I
R�

i (X).

Proof. (1) Obvious. (2) Obvious. (3) In view of (1), P1(R) fulfills
N2, hence we can apply Proposition 12.6.7. Therefore, ε1(X) = {x :
∀Ri(Ri ∈ R � Ri(x) ∩ X �= ∅)}. But Ri(x) ∩ X �= ∅ if and only if
∃x′(x′ ∈ X & 〈x, x′〉 ∈ Ri). Thus, ε1(X) = {x : ∀Ri(Ri ∈ R � x ∈
R�(X))}. qed

Exercise 12.10.
(a) Consider the system R collecting the following two equivalence
relations on U4 = {a, b, c, d}:

E1 a b c d

a 1 1 1 0
b 1 1 1 0
c 1 1 1 0
d 0 0 0 1

E2 a b c d

a 1 1 0 0
b 1 1 0 0
c 0 0 1 1
d 0 0 1 1

(a.1) Compute the operators ε1, ε2, κ1 and κ2 starting from the two
bases {B1

x}x∈U4 and {B2
x}x∈U4.

(a.2) Consider the pre-topologies P1(R) = 〈U4, ε
1,κ1〉 and P2(R) =

〈U4, ε
2,κ2〉. Do P1(R) or P2(R) coincide with the Approximation

Space induced by 〈U4, E1 ∩ E2〉?
(b) Consider the following relations on U3 = {a, b, c, }:

R1 a b c

a 1 0 0
b 0 1 0
c 0 1 0

R2 a b c

a 1 1 0
b 1 1 0
c 0 0 1

(b.1) Compute ε1, ε2, κ1 and κ2 by starting with the two bases {B1
x}x∈U3

and {B2
x}x∈U3 .

(b.2) Are 〈U3, ε
1,κ1〉 and 〈U3, ε

2,κ2〉 pre-topological structures?
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We must distinguish pre-topological spaces that are connected with a
system of relations R and pre-topological spaces that are induced by
R. However, if P is induced by R we can find a system of relations R′

such that P is connected with it, in a straightforward way.
Indeed, so far we have discussed spaces generated by arbitrary fam-

ilies of binary reflexive relations. However we can prove that particular
types of spaces are generated by families of binary reflexive relations
organised in a specific manner.

If R = {Ri}i∈I is a system of binary reflexive relations and P1(R) =
〈U, ε1,κ1〉 is the pre-topological space 1-associated with R, then we
can regard any Ri as a vicinity (nearness) relation on U . Clearly, if
R′

i ⊇ Ri, then R′
i(x) ∈ κ1

x, because by definition Ri(x) ∈ κ1
x. Therefore

we can think of I principal filters of relations ordered by ⊆, generated by
R = {Ri}i∈I . The collection of these filters is called a pseudo-uniformity
generated by R, and denoted by U(R) (see Figure 12.7).

Figure 12.7: A pseudo-uniformity

Definition 12.7.2. Let R = {Ri}i∈I be a system of relations, then the
family U(R) =⇑ {Ri}i∈I is called a pseudo-uniformity.

Remarks. Notice that a pseudo-uniformity is a system of relations, not

a system of relation neighborhoods.

Proposition 12.7.2. Let U(R) be a pseudo-uniformity such that each
R ∈ R is reflexive. Then,

1. The pre-topological space P(U(R)) connected with U(R) coincides
with the pre-topological space P1(R) 1-associated with R.

2. P(U(R)) is a pre-topological space of type VI .

Proof. Directly from Definitions 12.7.2 and Proposition 12.7.1. qed
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So, pseudo-uniformities provide us with the intuitive concept of a family
of vicinity relations, or, under a slightly different point of view, they
provide us with a qualitative (non numerical) notion of nearness. In
this intuitive context, the requirement that in any pseudo-uniformity
U(R), if R ∈ U(R) and R ⊆ R′, then R′ ∈ U(R), rests on the intuition
that if two points x and y are estimated to be near with respect to a
given point of view (or resolution) then they are near also with respect
to a less refined point of view (i.e. with respect to a coarser resolution).
The opposite, of course, does not hold, because a better resolution can
separate x and y.

Moreover a different scenario is given by the requirement that if x
and y are estimated to be near with respect to both the relations R and
R′, then they must be estimated near also with respect to the relation
R ∩R′. This is the behaviour of pre-topological spaces of type VD, so
that the situation in which U(R) is closed under intersections needs a
new name:

Definition 12.7.3. If R = {Ri}i∈I is a system of relations, and U(R)
a pseudo-uniformity such that R,R′ ∈ R implies R ∩ R′ ∈ R, then
U(R) is called a pre-uniformity.

Notice that since both R and R′ are required to be reflexive, the so
called diagonal Δ(U) = {〈x, x〉 : x ∈ U} is always included in R∩R′, so
that the intersection of elements of R is never empty (see Figure 12.8).

Figure 12.8: A pre-uniformity

Corollary 12.7.1. Let U(R) be a pre-uniformity such that each R ∈ R

is reflexive and R′ = {R}, for R reflexive. Then,

1. P(U(R)) is a pre-topological space of type VD.

2. U(R′) =↑ R is a pre-uniformity.



446 12 Modalities and Relations

Proof. From Definitions 12.7.1, 12.7.3 and Proposition 12.6.2, because
if U(R) is a pre-uniformity then N (U(R)) is a filter. qed

The catalogue of the interesting pre-topologies does not reduces to
the above cases. Indeed, it is not complete if we miss the following
important case:

Definition 12.7.4. A pre-topological space P = 〈U, ε,κ〉 is said to be
of type VCl if the operator ε is a closure operator, that is, inflation-
ary, isotonic and idempotent and κ is an interior operator, that is,
deflationary, isotonic and idempotent.

The pre-topological space P1 of Example 12.6.2 is of type VCl (notice
that, however, it is not of type VD. Therefore, distributivity might not
hold).

Proposition 12.7.3. N (U) is a neighborhood system of type N2Id if
and only if its induced pre-topological space is of type VCl.

Proof. From Proposition 12.4.10 and Lemma 12.4.1.(N1) and (N2), G
is inflationary and isotonic if and only if N1 and N2 hold in N (U).
qed

Moreover,

Proposition 12.7.4. Let R = {Ri}i∈I be a system of preorder rela-
tions on U . Then,

1. In the pre-topological space P1(R) = 〈U, ε1,κ1〉 the operators ε1

and κ1 are isotonic and idempotent.

2. The family {⇑ B1
x}x∈U is a neighborhood system of type N2Id.

Proof. We prove only (1) because {κ1
x}x∈U = {⇑ B1

x}x∈U and (1) implies
that {κ1

x}x∈U is a neighborhood system of type N2Id.
Isotonicity derives from the construction of P1(R) via {⇑ B1

x}x∈U .
Let us prove the assertion about the idempotence of κ1 through its

contraposition. If κ1 is not idempotent then there is an A ⊆ U such
that κ1(A) � κ1(κ1(A)) (indeed, κ1(κ1(A)) ⊆ κ

1(A) always holds).
In this case there is a y ∈ κ1(A) such that y /∈ κ1(κ1(A)). Therefore
there is a set B ∈ B1

y such that B ⊆ A (so that y ∈ κ1(A)), but for
every B′ ∈ B1

y, B′
� κ

1(A) (so that y /∈ κ

1(κ1(A))). In particular
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B � κ1(A). It follows immediately that there is an element b ∈ B such
that b /∈ κ1(A). This means that for all B′′ ∈ B1

b , B′′
� A. But B has

the form Ri(y), for some index i, and B′′ has the form Rj(b), for every
index j. Therefore we can put i = j. To sum up, there is a y ∈ U such
that for all b ∈ Ri(y), b ∈ A but for some b ∈ Ri(y) there is a b′ ∈ Ri(b)
such that b′ /∈ A. It follows that b′ /∈ Ri(y). Hence Ri is not transitive,
so that it is not true that all the members of R are preorders. qed

The converse of the above Proposition does not hold because we can
have systems of relations R such that none of their components is
a preorder but, nonetheless, in P1(R) the operator κ1 (resp. ε1) is
idempotent.

Example 12.7.2. A system R of non-preorder relations, which induces
a pre-topological space of type VCl
Notice: Under the assumptions of Proposition 12.6.7, in what follows we shall work
on pre-topological bases, instead of induced filters.

Let R be the collection of relations of Example 12.7.1.
It is easy to check that neither relation is transitive (〈a, c〉 ∈ R2, 〈b, a〉 ∈ R2 but

〈b, c〉 /∈ R2; 〈a, b〉 ∈ R1, 〈b, c〉 ∈ R1 but 〈a, c〉 /∈ R1).
The basis B1 is given by

B1
x B1

a B1
b B1

c

B1
x {{a, b}, {a, c}} {{b, c}, {a, b}} {{a, c}, {b, c}}

Therefore the operator κ1 is given by:

x ∅ {a} {b} {c} {a, b} {a, c} {b, c} U

κ

1(x) ∅ ∅ ∅ ∅ {a, b} {a, c} {b, c} U

Hence κ1 is idempotent. Indeed, the family {κx}x∈U is a neighborhood system of
type N2Id.

So it is observed that the important mathematical notion of a clo-
sure (interior) operator is connected, in particular contexts, with pre-
topological spaces induced by systems of relations featuring specific
properties, namely preorders.

We sum-up the above results in Table 12.4.
The last row will be the target of what follows.
We recall that from Proposition 12.5.4, if 〈U, ε,κ〉 is of type VI , then
for any X ⊆ U , κ(X) = {x ∈ U : ∃N(N ∈ Nx & N ⊆ X)} and
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Table 12.4: Correspondence between pre-topology types and neighbor-
hood system types
〈U, ε,κ〉 Characteristic if Nκ(U)
is said of type: properties is of type:
VId κ(κ(X)) = κ(X) ε(ε(X)) = ε(X) N1Id

VI X ⊆ Y ⇒ κ(X) ⊆ κ(Y )
[resp. ε(X) ⊆ ε(Y )]

N2

VD ε(X ∪ Y ) = ε(X) ∪ ε(Y )
[resp. κ(X ∩ Y ) = κ(X) ∩ κ(Y )]

N3

VCl ε [resp. κ] is a closure
[resp. interior] operator

N2Id

VS ε(X) =
⋃

x∈X ε({x}) N4

topological ε [resp. κ] is a topological closure
[resp. interior] operator

N3Id, N4Id

ε(X) = {x ∈ U : ∀N(N ∈ Nx � N ∩X �= ∅)}, that is, in VI spaces the
contraction operator (the expansion operator) has the same definition
as the interior (closure) operator in usual topological spaces. Moreover,
notice that if U is finite, then the notions of VS and VD pre-topological
spaces coincide.

Remarks. If we think of a neighborhood system as the image of a relation

R ⊆ U × ℘(U), then we can ask what are the relationships between κ,

G and the perception operator int introduced in Chapter 2, and the role

played by Id, N1, N2 and so on in these relationships. This point will be

developed il Lemma 15.14.4 of Frame 15.14.

In what follows we abandon systems of relations and from now on we
shall focus on single relation based pre-topologies. About them we have
a first set of results:

Corollary 12.7.2. Let P(R) = 〈U, εR,κR〉 be a pre-topological space
associated with a reflexive binary relation R. Then for any X ⊆ U :

1. P(R) is of type VS.

2. κR(X) = {x : R(x) ⊆ X}.

3. κR(X) =
⋃
{Y : R(Y ) ⊆ X}.
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4. εR(X) = R�(X).

5. κR
x =⇑ {R(x)}, for all x ∈ U .

Proof. (1) Trivially, from Proposition 12.6.9 since R(x) is a single
subset of U . (2) From Proposition 12.7.1. (3) From the additivity of
R-neighborhoods. (4) From Proposition 12.7.1. (5) From Proposition
12.7.1 and the definition of a basis of a filter. qed

Notice that we cannot prove κR(X) = R(X), in contrast with εR(X) =
R�(X); conversely, we cannot prove εR(X) =

⋂
{Y : R�(Y ) ⊇ X}, in

contrast to κR(X) =
⋃
{Y : R(Y ) ⊆ X}.

Example 12.7.3. If R is not a preorder, then R�(X) �=
⋂
{R�(Z) :

X ⊆ R�(Z)}
We show that reflexivity is not enough in order to turn the above inequality into
equality. Consider the following reflexive but not transitive relation:

R a b c

a 1 0 1
b 1 1 1
c 0 1 1

{R�(Z) : {b} ⊆ R�(Z)} = {{a, b}, {b, c}, {a, b, c}}. Thus
⋂
{R�(Z) : {b} ⊆

R�(Z)} = {b} �= R�({b}) = {b, c}. Indeed, the problem is that b ∈ R(c), a ∈ R(b)
but a /∈ R(c). Thus c /∈ R�({a}) so that c /∈

⋂
{R�(Z) : {b} ⊆ R�(Z)}, although

R�({a, b}) ∈ {R�(Z) : {b} ⊆ R�(Z)}.

In view of Definition 12.1.2 we obtain immediately the following

Corollary 12.7.3. Let P(R) = 〈U, εR,κR〉 be a pre-topological space
associated with a reflexive binary relation R. Then for any X ⊆ U ,

1. κR(X) = LR(X).

2. εR(X) = MR(X).

12.7.1 Excursus: Pre-topological Spaces
and Modal Algebras

Let us set ΩκR(U) = {X ⊆ U : κR(X) = X}. We should now ask
if the system 〈B(U),ΩκR(U)〉 is a modal system. From the point of
view of Definition 11.5.4 the answer is negative because in general we
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cannot define κR(X) (i.e. LR(X)) as U
Ω

κ
R=⇒ (X), that is, κR(X) does

not coincide with the greatest element of ΩκR(U) below X, because
of the trivial reason that this element might not exist. This limitation
is due to the fact that without further constraints, generally ΩκR(U)
is not a sup-subsemilattice of ℘(U). Moreover notice that this fact is
independent of the distributive properties of κR (see Example 12.8.1).

To analyse this topic, we shall use the following Lemma:

Lemma 12.7.1. Let 〈B(U), k(B(U))〉 be a k-modal system such that
the knowledge map k is connected with a relation R ⊆ U × U . Let, for

any X ⊆ U , L∗R(X) =
⋃
{R(Z) : R(Z) ⊆ X} and !R(X) = U

k(B(U))
=⇒

X = max{Z ∈ k(B(U)) : Z ⊆ X}. Then for any X ⊆ U ,

1. L∗R(X) =!R(X).

2. If R is reflexive, then LR(X) ⊆ L∗R(X).

3. If R is a preorder, then LR(X) = L∗R(X).

Proof. (1) !R(X) = max{Y ∈ k(B(U)) : Y ⊆ X} = max{Y ∈
{R(Z)}Z⊆U : Y ⊆ X} = max{R(Z) : R(Z) ⊆ X}. But from the
additivity of R-neighborhoods, max{R(Z) : R(Z) ⊆ X} =

⋃
{R(Z) :

R(Z) ⊆ X} = L∗R(X). (2) Suppose a ∈ LR(X). Then R(a) ⊆ X,
so that R(a) ⊆

⋃
{R(Z) : R(Z) ⊆ X}. If R is reflexive, a ∈ R(a)

and, therefore, a ∈
⋃
{R(Z) : R(Z) ⊆ X} = L∗R(X) (the reverse

inclusion does not hold – cf. Example 12.8.1). (3) In view of (2) we
have only to prove the reverse inclusion. Suppose R is a preorder and
a ∈
⋃
{R(Z) : R(Z) ⊆ X}. Then there is a b such that a ∈ R(b) and

R(b) ⊆ X. Now, for any c such that c ∈ R(a), c ∈ R(b) by transitivity
of R. Therefore c ∈ X. It follows that R(a) ⊆ X and we can conclude
that a ∈ {x : R(x) ⊆ X}. qed

We show some instances of this point in Example 12.8.1 below.
So, we have partially solved the problem issued at the end of Section

12.1: LR(X) = L∗R(X) and MR(X) = M∗
R(X) if and only if R is a

preorder. Otherwise stated:

Corollary 12.7.4. If 〈B(U), k(B(U))〉 is a k-modal system such that
the knowledge map k is connected with a relation R ⊆ U × U , then
〈B(U), k(B(U))〉 is a modal system if and only if for any X ⊆ U ,
X ⊆ k(X) and if X ′ ⊆ k(X), then k(X ′) ⊆ k(X).
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However, pre-topological spaces are naturally connected with a more
general class of modal structures called modal algebras:

Definition 12.7.5. A modal algebra is a pair 〈B,�〉, where B is a
non degenerate Boolean algebra closed under a unary operation �.

We have trivially:

Proposition 12.7.5. Let U be a set and N (U) a neighborhood system
over U . Then 〈B(U), G〉 is a modal algebra.

Conversely,

Proposition 12.7.6. Let 〈B(U),�〉 be a modal algebra of the subsets
of a set U . Let us set for all X ⊆ U , X ∈ N�

x if and only if x ∈ �(X).
Then N�(U) = {N�

x }x∈U is a neighborhood system.

A more general form of duality between modal algebras and neighbor-
hood system is discussed in Frame 15.15.

Now we continue our analysis of pre-topological spaces.
In order to compare two pre-topological spaces associated with two

binary relations it is sufficient to compare the relations themselves:

Corollary 12.7.5. Let P1 and P2 be two pre-topological spaces on
the same universe U , associated with two reflexive binary relations on
U , R1 and R2, respectively. Then P2 � P1 if and only if for any
x ∈ U,R1(x) ⊆ R2(x), if and only if R1 ⊆ R2.

Dually, given a pre-topological space, we can define a reflexive binary
relation associated with it:

Proposition 12.7.7. (T-association) Let P = 〈U, ε,κ〉 be a pre-topo-
logical space. Let us set:

〈x, y〉 ∈ RT (P) iff y ∈
⋂

{X : X ∈ κx} (T )

Then RT (P) is a reflexive binary relation on U .

Proof. Trivial: since by definition x ∈
⋂
{X : X ∈ κx}, then 〈x, x〉 ∈

RT (P). qed

We shall say that RT (P) is T-associated with the pre-topology P and
denote this relation with RT whenever the pre-topological space P is
understood.
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In general, given a pre-topological space P, it is possible to link it
to a pre-topological space that is associated with a reflexive binary
relation, in a unique way.

Proposition 12.7.8. Let P = 〈U, ε,κ〉 be a pre-topological space.
Then,

1. P � P(RT (P)).

2. If P is of type VS, then P = P(RT (P)).

3. If P is associated with a relation R, then R is T-associated with
the pre-topological space P, that is, R = RT (P(R)).

Proof. (1) P(RT (P)) κRT

x is induced by the family RT (x), and for any
x ∈ U , RT (x) =

⋂
{X : X ∈ κx}, so that RT (x) ⊆ X, for any X ∈ κx.

Therefore, κx ⊆ κ

RT

x . (2) Suppose P is of type VS . Then for any
x ∈ U there is a subset X of U such that κx =↑ X. Since y ∈ RT (x)
iff y ∈

⋂
{X : X ∈ κx} = X, we obtain κx = κ

RT

x . (3) From Definition
12.7.1 if P is associated with a relation R, then it is induced by the
basis {R(x)}x∈U . Therefore, κx =⇑ {R(x)} = {↑ R(x)}. Hence, from
Proposition 12.6.4, P is of type VS , so that from point (2) we obtain
the result. qed

Remarks. The above Proposition 12.7.8 guarantees that given a pre-

topological space P = 〈U, ε,κ〉 of type VS, we can derive the properties

of P from those of P(RT (P)).

As to the inequality (1) of Proposition 12.7.8, it is possible to show that
if P is of type VI , then P(RT (P)) is the coarsest pre-topology among
those of type VS that are finer than P (see Frame 15.3 for a proof).

We can also associate a pre-topology to a tolerance (i.e. reflexive
and symmetric) relation:

Proposition 12.7.9. (B-association) Let P = 〈U, ε,κ〉 be a pre-
topological space. Let us set, for all x, y ∈ U :

〈x, y〉 ∈ RB(P) iff y ∈
⋂

{X : X ∈ κx}� x ∈
⋂

{Y : Y ∈ κy} (B)

Then R is a reflexive and symmetric relation.

Proof. Trivial. qed

We shall say, that RB(P) is B-associated with the pre-topology P.
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12.7.2 Excursus. Pre-Topological Spaces
and Approximation Spaces

From Proposition 12.7.8 we know that P �P(RT (P)) and RT (P(R)) =
R. So we wonder what information P(RB(P)) and RB(P(R)) carry.
We shall give the answer as a corollary of the following more general
statement about families of binary relations, as treated in Excursus
12.4.1.

Proposition 12.7.10. Let U be a set and {Rj}1≤j≤n a family of
n reflexive binary relations on U . Let 1 ≤ m ≤ n and let Pm =
〈U, εm,κm〉, with the operators εm and κm, as defined by Definition
12.6.8. Moreover let us set R∗ =

⋃

1≤j≤n
Rj and R∗ =

⋂

1≤j≤n
Rj . Then,

1. RT (Pn) = R∗.

2. RT (P1) = R∗.

3. RB(Pn) is the largest tolerance relation included in R∗.

4. RB(P1) is the largest tolerance relation included in R∗.

The proof is given in Frame 15.3

Corollary 12.7.6. For any family of n reflexive binary relations,
P(RT (Pn)) � P(RB(Pn)).

Therefore, trivially, if we are given just one reflexive binary relation
R, then RB(P(R)) ⊆ R, because RB(P(R)) is the largest tolerance
relation included in R, while if we are given a pre-topological space P,
then P(RB(P)) is the pre-topological space associated with the largest
tolerance relation included in RT (P). It follows that P � P(RB(P))
(the equality is not uniformly valid even if P is of type VS ; in fact in
this case we have, generally, P = P(RT (P) � P(RB(P))).

Corollary 12.7.7. Let P = 〈U, ε,κ〉 be a pre-topological space. Then
P(RB(P)) is the coarsest pre-topology among the pre-topological spaces
finer than P and associated with a tolerance relation.

A direct proof is in Frame 15.4.

Corollary 12.7.8. Let U be a set and {Rj}1≤j≤n a system of n reflexive
binary relations on U , such that R∗ =

⋃

1≤j≤n
Rj (such that R∗ =
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⋂

1≤j≤n
Rj) is transitive. Then, P(RB(Pn)) (respectively P(RB(P1)))

is the Approximation Space induced by the largest tolerance relation
included in R∗ (respectively included in R∗).

Particularly, if RT (P) is a binary transitive relation on U , then
P(RB(P)) is the Approximation Space induced by the largest toler-
ance relation included in RT (P), so that we can say that P(RB(P))
is the coarsest Approximation Space finer than the pre-topological
space P.

Definition 12.7.6. Let P be a pre-topological space, then:

1. If RT (P) is a tolerance relation, then P is said to be weakly
symmetric.

2. If RT (P) is an equivalence relation, then P is said to be strongly
symmetric.

Therefore, any pre-topological space of the form P(RB(P)), is weakly
symmetric and any pre-topological space of the form P(RB(P)) such
that RT (P) is a transitive and reflexive, is strongly symmetric.

Corollary 12.7.9. Let P = 〈U, ε,κ〉 be a pre-topological space, then:

1. P is weakly symmetric if given x, y ∈ U, x ∈ ε({y}) implies y ∈
ε({x}).

2. P is strongly symmetric if given x, y ∈ U, x ∈
⋂
{X : X ∈ κy}

implies κx = κy.

3. P is strongly symmetric if {
⋂
κx : x ∈ U} forms a partition of U .

Weakly symmetric pre-topological spaces are connected with a partic-
ular kind of pre-uniformity structures:

Definition 12.7.7. Let U(R) be a pre-uniformity of reflexive relations
over a set U , such that for all R ⊆ U × U , R ∈ U(R) implies R� ∈
U(R). Then U(R) is called a semi-uniformity.

Proposition 12.7.11. If U(R) is a semi-uniformity then its connected
pre-topological space P(U(R)) is weakly symmetric.
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Example 12.7.4. Associating pre-topologies with reflexive binary rela-
tions
Some examples.

T-association: RT (P1), RT (Pn)
Consider the system of relations R worked in Excursus Dynamics 2.

In view of the basis computed in Section 12.6.2, we derive the following table:

⋂
Bm

x

⋂
Bm

a

⋂
Bm

b

⋂
Bm

c
⋂
B1

x {a} {b} {c}
⋂
B2

x {a, c} {b} {c}
⋂
B3

x U {a, b} {c}

Consider P1(R) and call it P1, for short. Let us compute RT (P1). Since for all
x ∈ U , κm

x =⇑
⋂
Bm

x , we can work on the generators of the basis.
(i) a ∈

⋂
B1

x, for x = a; (ii) b ∈
⋂
B1

x, for x = b; (iii) c ∈
⋂
B1

x, for x = c.
Therefore we obtain:

RT (P1) a b c

a 1 0 0
b 0 1 0
c 0 0 1

We immediately see that RT (P1) and R∗ coincide. Notice, anyway, that RT (P1) is
a transitive relation by chance.

Incidentally, here we can verify that P1 � P(RT (P1)). Indeed, P(RT (P1)) has
the following family of basis: Ba = {{a}},Bb = {{b}},Bc = {{c}}. Clearly Ba

induces a filter Fa =↑ {a} which is finer than F 1
a (i.e. {{a, b}, {a, c}, {a, b, c}} –

cf. Section 12.6.2). Indeed, we can recognize that P1 is not of type VS, because⋂
B1

a /∈ B1
a.

Now let us compute RT (P3):
(i) a ∈

⋂
B3

x, for x ∈ {a, b}; (ii) b ∈
⋂
B2

x, for x ∈ {a, b}; (iii) c ∈
⋂
B3

x, for
x ∈ {a, c}.

So, for instance, since c ∈
⋂
B2

a, 〈a, c〉 ∈ RT (P3).
Summing up, we obtain:

RT (P3) a b c

a 1 1 1
b 1 1 0
c 0 0 1

We immediately verify RT (P3) = R∗.
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B-association: RB(Pn), RB(P1).
Let U = {a, b, c, d, e} and R1, R2, R∗, R∗ be given by

R1 a b c d e

a 1 1 1 1 1
b 1 1 1 1 1
c 1 1 1 1 1
d 0 0 0 1 1
e 0 0 0 1 1

R2 a b c d e

a 1 1 1 1 1
b 1 1 1 1 1
c 0 0 1 0 0
d 0 0 0 1 1
e 0 0 0 1 1

R∗ a b c d e

a 1 1 1 1 1
b 1 1 1 1 1
c 0 0 1 0 0
d 0 0 0 1 1
e 0 0 0 1 1

R∗ a b c d e

a 1 1 1 1 1
b 1 1 1 1 1
c 1 1 1 1 1
d 0 0 0 1 1
e 0 0 0 1 1

By easy computation, applying the two formulas B1
x = {R1(x), R2(x)} and B2

x =
{R1(x) ∪ R2(x)} we obtain:

Bm
x Bm

a Bm
b Bm

c Bm
d Bm

e

B1
x {U} {U} {{c}, U} {{d, e}} {{d, e}}
B2

x {U} {U} {U} {{d, e}} {{d, e}}

From the above table we derive the following one:

⋂
Bm

x

⋂
Bm

a

⋂
Bm

b

⋂
Bm

c

⋂
Bm

d

⋂
Bm

e
⋂
B1

x U U {c} {d, e} {d, e}
⋂
B2

x U U U {d, e} {d, e}

Let us compute RB(P1):
(i) a ∈

⋂
B1

x, for x ∈ {a, b}; (ii) b ∈
⋂
B1

x, for x ∈ {a, b}; (iii) c ∈
⋂
B1

x, for
x ∈ {a, b, c}; (iv) d ∈

⋂
B1

x, for x ∈ {a, b, d, e}; (v) e ∈
⋂
B1

x, for x ∈ {a, b, d, e}.
Therefore, for instance, 〈a, b〉 and 〈b, a〉 ∈ RB(P1), while 〈a, e〉 and 〈e, a〉 /∈

RB(P1) because although e ∈ U =
⋂
B1

a, a /∈ {d, e} =
⋂
B1

e (in order to understand
if 〈x, y〉 ∈ RB(P1), it is sufficient to compare the ranges of validity of the membership
relation for x and y: {x, y} is included in both of them, hence 〈x, y〉 ∈ RB(P1)).

Summing up, we obtain:

RB(P1) a b c d e

a 1 1 0 0 0
b 1 1 0 0 0
c 0 0 1 0 0
d 0 0 0 1 1
e 0 0 0 1 1

Comparing this relation with R∗, we immediately see that it is the largest toler-
ance relation included in R∗. Incidentally, since R∗ is transitive, RB(P1) is also an
equivalence relation.
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Now let us compute RB(P2):
(i) a ∈

⋂
B2

x, for x ∈ {a, b, c}; (ii) b ∈
⋂
B2

x, for x ∈ {a, b, c}; (iii) c ∈
⋂
B2

x, for
x ∈ {a, b, c}; (iv) d ∈

⋂
B2

x, for x ∈ {a, b, d, e}; (v) e ∈
⋂
B1

x, for x ∈ {a, b, d, e}.
Therefore, for instance, now 〈a, c〉, 〈b, c〉, 〈c, a〉 and 〈c, b〉 ∈ RB(P2).
We obtain:

RB(P1) a b c d e

a 1 1 1 0 0
b 1 1 1 0 0
c 1 1 1 0 0
d 0 0 0 1 1
e 0 0 0 1 1

Comparing this relation with R∗, we immediately see that it is the largest tol-
erance relation included in R∗. Also in this case, since R∗ is transitive, RB(P2) is
an equivalence relation.

We conclude noticing that if the pre-topological space P is of type VS, then it
can be associated with a pre-topology which is the finest among the pre-topology
T-associated with a tolerance relation and that are coarser than P. Suffices it to
consider for any x ∈ U the basis Bx =

⋂
κx ∪ {y : x ∈ κy}.

Exercise 12.11.
Draw directed graphs representing R1, R2, R

B(P1) and RB(P2).

A relation R such that RB(P(R)) is a tolerance but not an
equivalence relation

Consider the following relation R:

R a b c d

a 1 1 0 0
b 1 1 1 0
c 0 1 1 1
d 0 0 0 1

By easy inspection we can observe that R is not transitive. For instance 〈a, b〉 ∈ R,
〈b, c〉 ∈ R, but 〈a, c〉 /∈ R.

If we transform it into the relation RB(P(R)), then we obtain a tolerance relation
and not an equivalence (because of the lack of transitivity). The basis for P(R) is:

x a b c d

Bx {{a, b}} {{a, b, c}} {{b, c, d}} {{d}}

(i) a ∈
⋂
Bx, for x ∈ {a, b}; (ii) b ∈

⋂
Bx, for x ∈ {a, b, c}; (iii) c ∈

⋂
Bx, for x ∈

{b, c}; (iv) d ∈
⋂
Bx, for x ∈ {c, d}. Therefore, for instance, a ∈

⋂
Bb and b ∈

⋂
Ba,

so that 〈a, b〉 ∈ RB(P(R)); d ∈
⋂
Bc but c /∈

⋂
Bd, so that 〈c, d〉 /∈ RB(P(R)).

Summing up:

RB(P(R)) a b c d

a 1 1 0 0
b 1 1 1 0
c 0 1 1 0
d 0 0 0 1
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and we can easily notice that RB(P(R)) ⊆ R (in fact, 〈c, d〉 ∈ R, while 〈c, d〉 /∈
RB(P(R))).

Exercise 12.12.
Draw two directed graphs representing R and RB(P(R)).

12.8 Topological Spaces and Binary Relations

We are eventually at one step from our main goal in the Subsection:
linking topologies and relations.

Until now, we have considered pre-topological spaces and specifi-
cally, pre-topological spaces associated with reflexive or tolerance rela-
tions.

Now we have to understand what happens in case of a topological
space.

First of all, let us define topological spaces and understand the basic
differences between them and their closest relatives: pre-topological
spaces of type VId, VCl and VS.

Definition 12.8.1. A pre-topological space 〈U, ε,κ〉 of type VD is a
topological space if for any x, κx satisfies property (τ).

For the reader’s convenience, we recall here this property: for any
x ∈ U,X ⊆ U ,

if X ∈ κx, then there is a Y ∈ κx such that for any y ∈ Y,X ∈ κy

Usually, pre-topological spaces do not fulfill this property.
A pre-uniformity connected with a pre-topological space fulfilling

(τ), satisfies the property described in the following definition:

Definition 12.8.2. Let U(R) be a pre-uniformity such that for each
R ∈ U(R) there is an R′ ∈ U(R) such that R′ ⊗ R′ ⊆ R. Then U(R)
is called a quasi-uniformity.

We remind that given two relations R and R′ on a set U , R⊗R′ is the
concatenation {〈x, y〉 : ∃z( 〈x, z〉 ∈ R & 〈z, y〉 ∈ R′)}.

Intuitively, quasi-uniformities provide us with a notion of “non-
discontinuity”: if 〈a, c〉 ∈ R, then there is a b in between a and c,
that is, a b such that 〈a, b〉 ∈ R and 〈b, c〉 ∈ R. Conversely if 〈a, b〉 ∈ R
and 〈b, c〉 ∈ R, then 〈a, c〉 ∈ R, too.
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Proposition 12.8.1. Let U(R) be a pre-uniformity of reflexive rela-
tions. Then, if U(R) is a quasi-uniformity, its connected pre-topological
space P(U(R)) fulfills (τ).

We have seen at the very beginning of this story that isotonicity plus
property τ give idempotence. Therefore, if a neighborhood system ful-
fills 0, 1, N1, N2 and (τ), then the operators κ and ε are idempotent
in the induced pre-topological space.

In this Section we want to analyse the connections between topolog-
ical properties and binary relations. More precisely, let 〈U, εR,κR〉 be
a pre-topological space associated with a binary relation R. We won-
der whether R has to enjoy specific properties whenever 〈U, εR,κR〉 is
a topological space. The answer is positive: there is a strict connec-
tion between topological spaces and preorders, i.e. binary reflexive and
transitive relations.

Proposition 12.8.2. Let P = 〈U, εR,κR〉 be a pre-topological space
associated with a reflexive binary relation R ⊆ U × U . Then P is a
topological space if and only if R is transitive.

Proof. (A) �: Assume that (τ) holds. In case of pre-topological spaces
induced by a reflexive binary relation R, property (τ) reads:

(∗) ∀x ∈ U,∀X ⊆ U(X ∈ κR
x � ∃Y (Y ∈ κR

x &∀y ∈ Y (X ∈ κR
y ))).

So, take X = R(x). Assume (*) holds for some Y . Then, (i) X is
the least element of κR

x . (ii) ∀y ∈ Y,X ⊇ R(y) (from the assumption
and Corollary 12.7.2.(5)). (iii) Y ⊆ X, because R is reflexive. Hence,
(iv) X = Y . Therefore, (v) for all x′ ∈ R(x), R(x′) ⊆ R(x), that is,
R(x) ⊇ R(x′) for all x′ ∈ X. Hence, (vi) R(x) ⊇ R(y). But X = Y .
Therefore R(x) ⊇ R(R(x)), which is the axiom for transitivity.

(B) �: Suppose (*) does not hold. Therefore we have:

(∗∗) ∃x,∃X(X ∈ κR
x &∀Y (Y ∈ κR

x � ∃y(y ∈ Y&X /∈ κR
y ))).

So, choose Y = R(x). We have elements x and y such that: (i) 〈x, y〉 ∈ R
and X /∈ κR

y ; hence (ii) 〈x, y〉 ∈ R and X /∈↑ R(y); (iii) 〈x, y〉 ∈ R and
R(y) � X; (iv) 〈x, y〉 ∈ R and there exists a z such that 〈y, z〉 ∈ R and
z /∈ X. But X ∈ κR

x , so that R(x) ⊆ X. We obtain: (v) 〈x, x′〉 ∈ R

implies x′ ∈ X. From (iv) and (v) we conclude that 〈x, z〉 /∈ R. Hence
R is not transitive. qed
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Proposition 12.8.3. Let P = 〈U, ε,κ〉 be a topological space induced
by a basis B = {Bx}x∈U . Then,

1. For any x ∈ U : (a)
⋂
κx is open; (b)

⋂
Bx is open: (c)

⋂
κx is

the least open set containing x.

2. For any X ⊆ U , κ(X) =
⋃
{κ(Z) : κ(Z) ⊆ X}.

Proof. (1) (a) For any x ∈ U , κx =⇑ Bx and from Proposition 12.6.1
we have

⋂
⇑ Bx ∈ Bx. Thus we obtain

⋂
κx ∈ κx. So, from the topo-

logical property (τ), there is a Y ∈ κx such that
⋂
κx ∈ κy for any

y ∈ Y . But this means that any y belonging to Y belongs to
⋂
κx, too

(because, by definition, if A ∈ κy, then y ∈ A). Henceforth, Y ⊆
⋂
κx.

But
⋂
κx is the least element of κx and Y belongs to κx. It follows

that Y =
⋂
κx and we can conclude that

⋂
κx is a neighborhood of

all its own elements. Hence it is open. (b) is straightforward from the
equality κx =⇑ Bx. (c) is obvious, because if x ∈ κ(A) = A, then
A ∈ κx, so that A ⊇

⋂
κx. (2) If P is a topological space, then κ is

isotonic and idempotent. Therefore, if κ(Z) ⊆ X, then, for isotonicity,
κ(κ(Z)) ⊆ κ(X). That is to say, for idempotence, κ(Z) ⊆ κ(X). Con-
versely, if κ(Z) ⊆ κ(X), since κ is deflationary κ(Z) ⊆ κ(X) ⊆ X. It
follows, immediately, κ(X) =

⋃
{κ(Z) : κ(Z) ⊆ X}. qed

Notice that Proposition 12.8.3.(2) is not that trivial when we frame it
in topological spaces connected with binary relations, as we are going
to see in the next corollary. Indeed, if isotonicity or idempotence fails,
then this result does not hold any longer.

Example 12.8.1. Idempotence, preorders and contractions
The pre-topology P2 of Example 12.6.7 provides us with an example of the fact that
the lack of idempotence makes the equivalence κ(X) =

⋃
{κ(Y ) : κ(Y ) ⊆ X} fail.

In fact, κ({c}) = ∅, while
⋃
{κ(Y ) : κ(Y ) ⊆ X} = {c}.

It must be noticed that, a fortiori, κ(X) �=
⋃
{Y : κ(Y ) ⊆ X}. So do not

confuse the set {x : κR(x) ⊆ X} (which has no meaning) with the set {x : R(x) ⊆
X} (which gives κR(X) in case of pre-topological spaces of type VS) and the set
{R(Y ) : R(Y ) ⊆ X} (whose union gives κR(X) in case of a preorder R).

For another example consider the following non-transitive relation:

R3 a b c

a 1 1 0
b 0 1 1
c 0 0 1
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It gives the basis BR:

x a b c

BR3
x {{a, b}} {{b, c}} {{c}}

By applying in P(R3) the formula LR3(X) = κ

R3(X) = {x : ∃B(B ∈ BR3
x &

B ⊆ X)} we obtain:

X {a} {b} {c} {a, b} {a, c} {b, c} ∅ U

LR3(X) ∅ ∅ {c} {a} {c} {b, c} ∅ U

Thus, LR3({a, b}) = {a} �=
⋃
{R3(x) : R3(x) ⊆ {a, b}} =

⋃
{R3({a})} = R3({a}) =

{a, b}. This is due to the fact that although b ∈ R3({a}) and R3({a}) ⊆ {a, b},
nonetheless R3({b}) = {b, c} �⊆ {a, b} = R3({a}), because of the failure of transitiv-
ity. Hence, b /∈ {x : R3(x) ⊆ {a, b}}. Therefore

⋃
{R3(Z) : R3(Z) ⊆ {a, b}} contains

elements (viz. b) that do not fulfill the universal proviso of the necessity operator (i.e.
“LR3(X) = {x : ∀y, 〈x, y〉 ∈ R3 � y ∈ X}”). It follows that

⋃
{R3(Z) : R3(Z) ⊆ X}

is not a suitable formula for L(X), in this case.
Moreover notice that in case of lack of transitivity, the set of R-neighborhoods,

{∅, {a, b}, {b, c}, {c}, U}, and the set of necessitations {∅, {a}, {c}, {b, c}, U} do not
coincide. Henceforth we can observe that in this case it is not true that for any
A ⊆ U , if X = LR3(A), then X = R3(Y ) for some Y ⊆ U .

Also, observe that ΩR3(U) = {LR3(X) : X ⊆ U} is not a distributive sublattice
of B(U). Due to this fact we can see that the element max{X ∈ ΩR3(U) : X ⊆ Z}
might not exist for some subset Z of U . Indeed this is the case of {a, c}. Actually,
{X ∈ ΩR3(U) : X ⊆ {a, c}} = {{a}, {c}} which does not have a greatest element.
It can be noticed that

∨
{X ∈ ΩR3(U) : X ⊆ {a, b}} = U , but U � {a, c}.

To sum up, if a relation R is not a preorder, then BR is not a basis for ΩR(U)
in the topological sense. That is, there can be X, Y ∈ BR such that X ∪Y �= LR(Z)
for all Z ⊆ U .

Finally, it is worth noticing that if R lacks reflexivity, then {x : R(x) ⊆ X} is
not included in

⋃
{R(Z) : R(Z) ⊆ X}. For instance, consider the (non-reflexive)

relation R of Example 12.1.1.
Then, {x : R(x) ⊆ {b, c}} = {a, b, c}, while

⋃
{R(Z) : R(Z) ⊆ {b, c}} = {b, c}.

Indeed, the inclusion here failed was proved in Lemma 12.7.1 by exploiting reflex-
ivity. On the contrary, the reverse inclusion

⋃
{R(Z) : R(Z) ⊆ X} ⊆ {x : R(x) ⊆ X}

requires just transitivity. For instance, to prove that if b ∈
⋃
{R(Z) : R(Z) ⊆ {b, c}}

then b ∈ {x : R(x) ⊆ {b, c}}, first we need to notice that the antecedent is valid
because b ∈ R({a}) and R({a}) ⊆ {b, c}; second, we apply the transitivity of R
to show that R({b}) ⊆ R({a}). So we conclude R({b}) ⊆ {b, c} and can derive
b ∈ {x : R(x) ⊆ {b, c}}.

We can restate the property (τ) of Definition 12.8.1, in terms of
idempotence of εR and κR:

Corollary 12.8.1. Let P = 〈U, εR,κR〉 be a pre-topological space asso-
ciated with a reflexive binary relation R ⊆ U ×U . Then εR and κR are
idempotent if and only if R is transitive.
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Proof. (A) �: Suppose y ∈ R(x) and z ∈ R(y). It follows, from Propo-
sition 12.7.2, that y ∈ εR({z}) and x ∈ εR({y}). Since P is of type
VS (again from Proposition 12.7.2), the operator εR is isotonic. Hence
x ∈ εR(εR({z})). But if εR is idempotent, x ∈ εR({z}) and, as a
consequence, z ∈ R(x), which proves that R is transitive.

(B) �: Suppose R is transitive. Then, since by default R is also
reflexive, we have R(R(x)) = R(x). Hence R�(R�(x)) = R�(x). So,
from Proposition 12.7.2 εR(εR(x)) = εR(x). For κR the proof is by
duality. qed

Therefore, reflexive and transitive relations, i.e. preorders, are tightly
linked with topological spaces.

Example 12.8.2. A pre-topological space associated with a reflexive and
transitive relation R
Let U = {a, b, c, d, e} and let R be the following preorder:

R a b c d e

a 1 1 1 1 1
b 0 1 0 1 1
c 0 0 1 0 0
d 0 0 0 1 1
e 0 0 0 1 1

Consider the family BR = {R(x)}x∈U = {{c}, {d, e}, {b, d, e}, U}. Let us compute
the family {BR

x }x∈U , where for any x ∈ U , BR
x = {X : X ∈ BR & x ∈ X}:

x a b c d e

BR
x {U} {{b, d, e}, U} {{c}, U} {{d, e}, {b, d, e}, U} {{d, e}, {b, d, e}, U}

We can observe what follows

for any x ∈ U, if X ∈ BR
x then there is a Y ∈ BR

x

such that for any y ∈ Y, X ∈ BR
y (12.8.1)

Indeed we can chose Y = X. Moreover for any x, Fx =⇑ {R(x)} =⇑ BR
x (this is

proved in the following way: Let a ∈ R(b) for b �= a. Suppose R(a) � R(b). Then
there is an x such that x ∈ R(a) and x /∈ R(b). But a ∈ R(b); it follows that R is not
transitive). Obviously, property (τ ) is inherited by Fx from BR

x and this makes the
topological property (τ ) hold. In fact take any x ∈ U and any F ∈ Fx. Let us look
for an X ∈ Fx such that for any y ∈ X, F ∈ Fy . It is sufficient to take any member
Y of BR, such that Y ⊆ F (and it exists, because Fx =⇑ {R(x)} and R(x) ∈ BR).
In fact, since Y is open, it is a neighborhood of all its points. But since Y ⊆ F , then
F is a neighborhood of all the points of Y , too.

For instance, let x = d and take F = {b, c, d, e} which is a member of Fd.
Take Y = {b, d, e}. Y belongs to ⇑ {R(b)},⇑ {R(d)} and ⇑ {R(e)}. But since
Y ⊆ F , we obtain R(b) = {b, d, e} = Y ⊆ {b, c, d, e} = F, R(d) = {d, e} ⊆ Y ⊆ F
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and R(e) = {d, e} ⊆ Y ⊆ F . That is to say, F ∈⇑ {R(b)}, F ∈⇑ {R(d)} and
F ∈⇑ {R(e)}. Which is the same thing as saying that F is a neighborhood of b, d
and e.

Therefore F = {Fx}x∈U is a neighborhood system for a topology Ω(U) with
subbasis BR. But F is a neighborhood system for P(R), too. So we conclude that
〈U, Ω(U)〉 = P(R). Hence P(R) is a topological space and the interior operator IR
coincides with the contraction operator κR.

Let us compute, for instance, κR({a, c, d, e}) and IR({a, c, d, e}):
κ

R({a, c, d, e}) = {x : ∃X(X ∈⇑ {R(x)} & X ⊆ {a, c, d, e})} = {x : R(x) ⊆
{a, c, d, e}} = {c, d, e};

IR({a, c, d, e}) =
⋃
{X : X ∈ BR & X ⊆ {a, c, d, e}} =

⋃
{{c}, {d, e}} =

{c, d, e}.
It is immediate that ΩκR(U) = {∅, {c}, {d, e}, {c, d, e}, {b, d, e}, {b, c, d, e}, U}.
Conversely, suppose we are given a topological space 〈U, Ω(U)〉, such that
Ω(U) = {∅, {c}, {d, e}, {c, d, e}, {b, d, e}, {b, c, d, e}, U}.
Let us set Ox = {O : O ∈ Ω(U) & x ∈ O}. Then we obtain a reflexive and

transitive binary relation S in the following way:

〈x, y〉 ∈ S iff y ∈
⋂
Ox (12.8.2)

x a b c d e
⋂
Ox U {b, d, e} {c} {d, e} {d, e}

Clearly,
⋂
Ox =

⋂
BR

x . Summing up, we found S = R.

Now we have a list of results connected with the fact that preorder is
the relational counterpart of the topological property “A set X is open
if and only if it is a neighborhood of all its own points”. A sentence
which, in turn, reflects, as we know, the intuitive reading “If a set X is
close to a point x, then it is close to all the points that are sufficiently
close to x”.

Proposition 12.8.4. Let P = 〈U, ε,κ〉 be a pre-topological space of
type VS. Then RT (P) is a preorder if and only if P is a topological
space.

Proof. In any pre-topology P of type VS, P = P(RT (P)) (Proposition
12.7.8). Hence from Proposition 12.8.2 we obtain the result. qed
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Example 12.8.3. A pre-topological space P which is not a topological
space, even if RT (P) is a preorder
This example seems to question Proposition 12.8.4. But there is a trick. The topo-
logical space P1 of Example 12.7.4 is such an example. Indeed, it is not difficult to
see that P1 is not a topological space (we have seen that κ1({a, b}) ∩ κ1({a, c}) =
{a} �= ∅ = κ({a, b}∩{a, c}); however, in Example 12.7.4 we have shown that RT (P1)
is the identity relation, hence reflexive and transitive).

Notice, anyway, that P1 is not of type VS. Indeed, there are not pre-topological
spaces P of type VS such that RT (P) is a preorder but P is not a topological space
[for a related example, see Frame 15.7].

Exercise 12.13. Give a direct proof of Proposition 12.8.4.

Moreover, it is important to point out that there are pre-topologies P
such that Ωκ(U) is a distributive lattice, so that 〈U,Ωκ(U)〉 is a topo-
logical space, but P is not topological (see a counter example below).
This may happen because the interior operator induced by Ωκ(U) as a
topology on U and κ may fail to coincide. However, this cannot happen
if P is topological.

Example 12.8.4. A pre-topological space P which is not topological
such that Ωκ(U) is a lattice of sets
Consider the pre-topological space P2 of Example 12.6.7.

Let us compute the family {κx}x∈U :

x a b c

κx {{a, b}, U} {{a, b}, U} {{b, c}, U}

P is of type Vs because each κx is a principal filter. However P is not topological
because κc does not satisfy τ . Indeed, given the member {b, c} of κc there is no
X ∈ κc such that {b, c} belongs to κx for every x ∈ X. In fact if we hope to have
some chance we must consider the least element {b, c} of κc. But {b, c} /∈ κb (indeed,
κ(κ({b, c})) = ∅ �= {c} = κ({b, c})), so that idempotence fails.

However, Ωκ (U) is clearly a lattice of sets, hence a distributive lattice:

{a, b, c}

&
& '

'
{c} {a, b}

'
' &

&

∅

Thus, 〈U, Ωκ (U)〉 is a topological space. Let IΩκ
and �Ωκ

denote the interior
operator and, respectively, the specialization preorder induced by Ωκ (U). Since P
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is not topological, κ and IΩκ
cannot coincide. Indeed here is a counterexample:

IΩκ
({c}) = {c} �= ∅ = κ({c}).
Finally, neither RT (P) and �Ωκ

coincide. Indeed 〈b, c〉 ∈ RT (P) because b ∈⋂
κc = {b, c}, while 〈b, c〉 /∈�Ωκ

because, c ∈ {c} but b /∈ {c}.

The proof of this fact makes it possible to have a brief tour through
some of the results so far achieved.

Proposition 12.8.5. Let P = 〈U,κ, ε〉 be a pre-topology. If P is topo-
logical then κ and the interior operator induced by Ωκ(U) as a topology
on U coincide.

Proof.

1. RT (P) =$Ωκ
, where $Ωκ

is the specialization preorder induced
by Ωκ(U) qua topology on U . In fact, by definition 〈x, y〉 ∈ RT (P)
if and only if y ∈

⋂
κx. But from Proposition 12.8.3.(1)

⋂
κx is

the least open set containing x. It follows that 〈x, y〉 ∈ RT (P)
if and only if x ∈

⋂
κx � y ∈

⋂
κx if and only if x $Ωκ

y

(remember that x ∈
⋂
κx always holds). This means that the

specialization preorder $ and RT (P) coincide.

2. Hence, RT (P) is a preorder. Recalling that P is finite and topo-
logical, thus of type VS , it follows that:

(a) P = P(RT (P)) (from Proposition 12.7.8.(2)), so that κ =
κ

RT (P).

(b) κRT (P) = LRT (P) (see Corollary 12.7.3).

(c) F(〈U,$〉) = Ωκ(U).

(d) LRT (P) =!� (suffice it to substitute $ for R in Lemma
12.7.1). But !� is indeed the interior operator induced by
F(〈U,$〉).

Hence

3. !κ is the interior operator induced by Ωκ(U).

From 1 and 3 we obtain the result. qed

Remarks. Moreover, notice that we can have neighborhood systems

N (U) with a related core map G such that {G(X)}X⊆U is a lattice of

sets but such that G is not a contraction operator. Obviously, in this case

G does not coincide with the interior operator induced by {G(X)}X⊆U
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qua frame of the open subsets of a topological space. Obviously, in view of

Proposition 12.4.11, N (U) cannot be of type N1. The reader is referred

to Example 12.8.5.

Example 12.8.5. A neighborhood system whose core map G induces a
topological space but such that G is neither a contraction operator, nor
coincides with the interior operator

In Example 12.6.7 we have shown a pre-topological space which is not topological
but such that Ωκ (U) is a topology. Now we exhibit a neighborhood system such
that G is not an interior operator but such that ΩG(U) is a topology.

Let U = {a, b, c} and let the neighborhood system N (U) be given by

x a b c

Nx {{a}, {c}, {a, b}, {a, c}, {b, c}, U} {{b}, {a, b}, {b, c}, U} {U}

Therefore the core map G is:

X {a} {b} {c} {a, b} {a, c} {b, c} ∅ U

G(X) {a} {b} {a} {a, b} {a} {a, b} ∅ U

It is easy to check that N (U) fulfills N2, N3 and Id, so that G is idempotent.
Moreover, {G(X)}X⊆U is a distributive lattice. It follows that T = 〈U, {G(X)}X⊆U 〉
is a topological space. However G does not coincide with the interior operator of T. In
fact, G({b, c}) = {a, b} while IT({b, c}) =

∨
{A ∈ {G(X)}X⊆U : A ⊆ {b, c}} = {b}.

Indeed, N (U) does not fulfill N1, so that G cannot be a contraction operator (cf.
G({b, c})).

Therefore, the lack of N1 is the reason why N (U) does not induce a topological
interior operator.

Exercise 12.14.
(a) Draw a graph for Ωκ(U) where P is the pre-topological space of
Example 12.4.8.
(b) Is Ωκ(U) a lattice of sets?
(c) Is Ωκ(U) distributive?
(d) What known properties does Ωκ(U) fulfill?

Corollary 12.8.2. Let P(R) = 〈U, εR,κR〉 be a topological space asso-
ciated with a preorder R ⊆ U × U . Then:

1. For any x ∈ U , R(x) is the least open set containing x.

2. For any open set O, O =
⋃

x∈O
R(x) (any open set is a union

of minimal R-neighborhoods). We record this fact by saying that
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{R(x)}x∈U is a basis of open subsets for the topological space
P(R).

3. For any X ⊆ U , R(X) is open.

4. X is open if and only if X = R(X).

5. For any x ∈ U , R�(x) is the least closed set containing x.

6. For any X ⊆ U , R�(X) is closed.

7. X is closed if and only if X = R�(X).

8. RT (P(R)) =$ (where $ is the specialization preorder induced by
P(R)).

Proof. (1) From Proposition 12.8.3, for any x ∈ U ,
⋂
κ

R
x is open. But

⋂
κ

R
x = R(x) (alternative proofs are reported in Frame 15.5).

(2) Since O is open, from Proposition 12.7.2. (2) we have O =
κ

R(O) = {x : R(x) ⊆ O)}. This means that for any x ∈ O, R(x) is
included in O. Thus

⋃

x∈O
R(x) is included in O. Moreover, if x ∈ O, then

〈x, x〉 ∈ R(x), for reflexivity. Hence x ∈
⋃

x∈O
R(x), so that O, in turn,

is included in
⋃

x∈O
R(x). (3) For any x ∈ X, R(x) is open; therefore,

R(X) =
⋃

x∈X
R(x) is open (because unions of open sets are open and

R-neighboring is additive). (4) If X = R(X), then from (3) X is open.
Conversely, suppose X is open. Then, from point (2), X =

⋃

x∈X

R(x) =

R(X). (5) From Proposition 12.7.2.(4), εR({x}) = R�(x). But εR({x})
is closed and contains x. (6) From (5), usingR-neighborhood additivity.
(7) X is closed if and only if X = εR(X) if and only if X = R�(X).
(8) from Proposition 12.7.8.(3), RT (P(R)) = R. Obviously, P(R) is
induced by the basis {R(x)}x∈U . Thus we have to prove: a $ b if and
only if 〈a, b〉 ∈ R. But a $ b if and only if a ∈ R(x)� b ∈ R(x), for all
x. Therefore if a $ b then a ∈ R(a) � b ∈ R(a). But a ∈ R(a), since
R is reflexive. Thus b ∈ R(a), that is, 〈a, b〉 ∈ R. Conversely suppose
b ∈ R(a). Therefore if a ∈ R(x) then, by transitivity, b ∈ R(x). Hence
a $ b. qed

From Corollary 12.8.2.(1) and (2) we obtain a well-known fact about
topological spaces, namely that any topological space is induced by a
basis of open sets by means of union formation.
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Corollary 12.8.3. Let R be a preorder. Then BR = {R(x)}x∈U is
a topological basis of a topological space 〈U,Ω(U)〉 such that for any
X ⊆ U, I(X) =

⋃
{Y ∈ BR : Y ⊆ X} = κ

R(X).

This is specific of preorder relations. For counterexamples see Example
12.7.4.

Terminology and Notation. From now on, given a topological space

〈U, εR,κR〉 associated with a preorder R, the frame of open subsets of

U (i.e. the family of open subsets of U equipped with the operations

∩,∪,−, U, ∅) will be denoted by ΩR(U) and, consequently, the topolog-

ical space will be also denoted by 〈U,ΩR(U)〉. By ΓR(U) we shall mean

the family of closed subsets of U . The interior and the closure operators

induced by ΩR(U), will be denoted by IR and, respectively, CR (we recall

that IR(X) =
⋃
{Y ∈ ΩR(U) : Y ⊆ X}; CR is defined dually). Moreover,

remember that ΩκR(U) denotes the set {κR(X) : X ⊆ U}.

Corollary 12.8.4. Let 〈U, εR,κR〉 be a topological space associated
with a preorder R ⊆ U × U . Then for any X ⊆ U :

1. ΩR(U) = ΩκR(U) ; ΓR(U) = {εR(X) : X ⊆ U}.

2. IκR(X) = κ

R(X) = IR(X); CεR(X) = εR(X) = CR(X).

3. For any X ⊆ U , IR(X) =
⋃
{R(Z) : R(Z) ⊆ X}.

4. For any X ⊆ U , CR(X) =
⋂
{R�(Z) : X ⊆ R�(Z)}.

5. IR(X) =
⋃
{Z : Z ∈ ΩR(U) & Z ⊆ X} = U

ΩR=⇒ X.

6. 〈B(U),ΩR(U)〉 is a modal system.

Proof. (1) ΩR(U) = {X : X = κ

R(X)}. So, since κR(X) = κ

R(κR(X))
the result is obvious. (2) Immediately from (1) and Definition 12.4.6.
(3) Directly from Lemma 12.7.1. (4) Let I = {R�(Z) : X ⊆ R�(Z)}.
Clearly, since R is reflexive, so is R�. Thus X ⊆ R�(X), so that
R�(X) ∈ I. Moreover, because R is transitive, so is R�. Thus if
X ⊆ R�(Y ), for some Y ⊆ U , then R�(X) ⊆ R�(Y ). It follows that
R�(X) is the least element of I. We conclude that

⋂
I = R�(X).

(5) Since ΩR(U) = {R(X) : X ⊆ U}, the thesis is just a translation of
(3). (6) Directly from (5) qed.
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Corollary 12.8.4.(3) tells us that an open set O is a fixpoint of the
process of formation of R-neighborhoods limited by some set X. We can
restate this image, saying that an open set O is the result of a process
π of approximation of a phenomenon X by means of some basic pieces
of information: O = π(X). As such it is stable: π(π(X)) = π(X) =
π(O) = O. Otherwise stated, it is the core of a “phenomenon”, modulo
a perception process π. This stability is precisely the nice property we
can derive from the topological property (τ) discussed above, which, in
turn is strictly connected with transitivity. Indeed, transitivity makes
it possible to drill down until the limit, or to collect everything that
immediately or mediately is connected with a given perception point x.

We have seen that in order to obtain this nice property we have to
renounce some dynamic features. Classical Rough Set Theory is within
this choice. And in this framework we can review the story of the modal
operators we have suspended at the end of the last paragraph.

Let us continue it.
In view of Proposition 12.8.2.(2) we have that if O is open, x ∈ O

and 〈x, y〉 ∈ R, then y ∈ O. From this, one can easily understand why
open sets are images of the necessity operator L.

In fact, compare the last property with the definitions of L as shown
in the table at the end of Section 12.1. In view of those definitions, in
set-theoretical terms we have: x ∈ �L(α)� iff ∀y, 〈x, y〉 ∈ R � y ∈ �α�.
That is to say, x ∈ �L(α)� iff R(x) ⊆ �A�. Therefore if we are given a
topological space 〈U, εR,κR〉 and for any formula α, �α� is a subset of
U , then �L(α)� is to be interpreted as the largest open subset included
in �α�.

Indeed, we have:

Corollary 12.8.5. Let 〈B(U), LR〉 be a pre-monadic Boolean algebra
of the powersets of a set U . Let R be a preorder and X ⊆ U . Then,

1. LR(X) =
⋃
{R(Z) : R(Z) ⊆ X}.

2. MR(X) =
⋂
{R�(Z) : R�(Z) ⊇ X}.

Proof. Straightforwardly, from Corollaries 12.7.3, 12.7.1 and 12.8.4.
qed

In Frame 15.6 we give a direct proof of the second equation. Therefore,
we have accomplished almost all the moves listed in the last table of
Section 12.1.




