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Preface

Rough Set Theory was proposed by Zdzis�law Pawlak in 1980. Since
inception it has generated an increasing interest in different research
fields, namely computer science, mathematics and logic. An impressive
amount of research-papers have been devoted to this topic.

A number of good books have appeared in the recent years, in which
Rough Set Theory has been investigated under one or more privileged
points of view.

We mention Demri & Or�lowska [2002] and Polkowski [2002] as two
works close to our scientific purpose. Recently in the Transactions on
Rough Sets a monograph by J. Järvinen has been published, which has
close connections with Part II of this book (Järvinen [2007]).

An almost complete bibliography on the subject may be found in
the website of the International Rough Set Society (http://roughsets.
home.pl/IRSS/).

The present work is not intended to be an introduction about Rough
Set Theory, but a sort of journey which starts from a basic idea (that
of an elementary “observation system”, basically two sets linked by a
binary relation) and arrives at a broad “geometrical” construction in
which Rough Set Theory is positioned.

The term “observation system” is influenced by the heuristic read-
ing (that is, epistemological not ontological) of the phenomenologi-
cal approach: we become aware of “things” through their observable
(perceivable) properties.

On the other hand, the term “geometrical” refers to the fact that
to give these “perceptions” a symbolic order, we shall mainly use topo-
logical concepts such as “close to”, “internal to”, and the like.

Moreover, our journey has an explicit purpose: making a reader
understand the connections between Rough Set Theory and a wide
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Figure 1: A Rough Set connection

number of mathematical and logical, if not philosophical, fields, topics
and concepts, as sketched in Figure 1.

More precisely, in the present book the main bodies of the Chapters
shall deal with the topics in the shadowed boxes along the arrows dis-
played by solid lines. Non shadowed boxes and dotted lines show topics
and some interesting links that will be discussed in the Frame sections.

The focus of this picture is the concept of an approximation, namely
Approximation Spaces and Rough Set Theory.

To be sure, some of these connections will sound familiar to math-
ematicians and logicians (who, in turn, could suggest other interesting
links to us).

Probably some will sound new to graduate students, who, we hope,
in this book will find suggestions for their future studies and researches.
We invite them to explore these connections in order to have a “holis-
tic picture” of a number of logical and mathematical techniques that
typically are used and presented in separate fields of interest.
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Our logico-mathematical tour may be described, more or less, as
follows.

In the Introduction we shall discuss the general connections (and
disconnections) between the ideas of “perceiving something”, “knowing
something”, “having a logical understanding of something” and, finally
“communicating perception, knowledge or logical understandings to
someone”. Therefore, we shall discuss some relationships between epis-
temology, logic and semiotics, in order to understand the reason why
(and the extent to which) Rough Set Theory, as an approach to pro-
vide “observations” with an intelligible shape, can be given a logical
and topological interpretation.

Observation are intelligible when we are able to collect the observed
phenomena into classes and compare these classes with different cat-
egorisations (induced, for instance, by preceding observations or by
theoretical considerations), which are supposed to be able to explain
the given observed phenomena.

The comparison between two categorisations leads to the notion
of an approximation. In fact, some explaining categories may coincide
with some categories to be analysed, or they can partially coincide and
only approximate the later categories.

In Part I we shall see that the notion of an “approximation” may be
mathematically modelled by the notion of a Galois connection. Then
we show that systems of observations, in this study called Attribute
Systems or Property Systems, induce “perception operators” which ful-
fill adjunction properties. These operators are generalisation of the
topological operators “interior” and “closure”. In a particular case
they coincide with the notion of an upper approximation and a lower
approximation provided by classical Rough Set Theory.

In fact, the basic philosophical assumption in classical Rough Set
Theory is that one fundamental source of our knowledge is the ability
to distinguish objects by means of their properties. The more precise
these properties are, the finer the grains of our knowledge will be. Thus,
given a universe of discourse U and a set of attributes or properties M ,
the basic gnoseological act is the organization of the elements of U into
disjoint categories, in such a way that each category collects the ele-
ments of U that are describable by means of the same set of attribute
values or properties, that is, the elements that are indiscernible on
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the basis of our data or observations. The collection of these disjoint
categories define an equivalence relation E on U . Since the proper-
ties definable by these attributes or properties are the gnoseological
co-ordinates explaining the universe, the Indiscernibility Space 〈U,E〉
provides the “gnoseological geometry” of our world.

However, our “perception operators” are more general and may be
described within the theory of point-free (or formal) pre-topology and
point-free topology. And in some cases they coincide with the upper
and lower approximations that can be defined from a generic relational
space 〈U,R〉, with R any binary relation on U .

In Part II we start with a philosophical consideration about an Indis-
cernibility Space 〈U,E〉.

In the best case, that is, when our information about the elements
of U is complete, E is the identity relation (hence any category is a sin-
gleton). In the worst case, that is, when our information is absolutely
insufficient, E is the total relation U ×U : you can distinguish nothing.
But the latter is a pathological situation which, indeed, induces degen-
erate algebras. Actually, one situation arises when for any element a
there are some (but not all) elements a′, such that a �= a′ but a and
a′ are indiscernible. In between these two extreme situations, viz. this
case and the case of complete information, we have an intermediate
possibility: about some elements a we have complete information (so
that the indiscernibility class reduces to the singleton {a}), while other
elements cannot be uniquely characterised, so that they belong to more
populated classes.

These two situations split the universe of discourse U into two parts,
with different logico-algebraic properties.

Let us denote by B the union of the equivalence classes that are
singletons, and by P the union of the equivalence classes that have
cardinality strictly greater than 1. B and P do not have the same
logical role in the construction of a Rough Set System. In fact the
elements in B are “exact” in nature and they should enjoy the two
principles of Classical Logic reflecting exactness: the law of excluded
middle and the law of contradiction.

On the contrary, on P either excluded middle or non-contradiction,
or both, may fail because in P we may have boundary cases. That is,
we have undecided or ambiguous situations.
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Thus we may think that Rough Set Systems fulfill two distinct local
logical behaviours: one is classical and localized on B, whereas the
other, localized on P , is three-valued. It is the combination of these local
behaviours that characterise the overall logical features of the system.
It follows that the construction of a Rough Set System will depend on
the parameter B (or P ). Moreover, this means that in order to analyse
this two-faced situation, one needs some mathematical notion which
makes it possible to formalise the concept “to be locally valid”.

We find that the notion of a Grothendieck topology provides us with
the required formalism. Moreover, William Lawvere and Myles Tierney
gave an abstract logico-algebraic interpretation to Grothendieck topolo-
gies, while investigating Topos Theory, giving rise to the techniques of
the so-called Lawvere-Tierney operators.

So, we shall use this interpretation to describe the logical opera-
tors that may be defined in a Rough Set System, namely pseudo and
co-pseudo complementation, with the appropriate meaning that which
makes it possible to completely characterise the two logical behaviours.
It will be shown that these operators induce modalities (with no sur-
prise, since Lawvere et al. showed that “to be locally valid” is a modal-
ity, indeed). In turn, these modalities make a Rough Set System into
different logico-algebraic structures.

At this point the main result of Part II is ready. Rough Set Systems
may vary from Boolean algebras (when we have complete information)
to Post algebras of order three (when we do not have complete informa-
tion), passing through an intermediate case, three valued �Lukasiewicz
algebras (when we have both complete and incomplete information).

The discriminating point between the two logical behaviours (clas-
sical and three-valued) is the existence an intermediate value (“uncer-
tain”) in a chain of values. When an intermediate value exists Rough
Set Systems may be given the structure of a Chain-based lattice, too.

Interestingly enough, it will be seen that the philosophical and for-
mal techniques used in this Part are linked to important problems about
maximal intermediate constructive logics and the constructivistic phi-
losophy tout-court.

In Part III we revisit this story by analysing these kinds of modalities
and operators under three points of view:
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• As external modalities, that is, modalities defined by means of
a double decoding (observations + exogenous interpretation) of
primitive data (or primitive events, uninterpreted data, and so
on)

• As Diodorean modalities, i.e. modalities in which, roughly speak-
ing, an event A is evaluated “possible” only if there is some
conceivable state of affairs in which A happens indeed

• As core/expansion and vicinity/contraction maps induced by pre-
topological spaces endowed with specific features

Pre-topological spaces play a particular role in our analysis, since they
are such generalisations of topological spaces as to make it possible to
enlarge the interpretation domains of classical Approximation Spaces
and classical Rough Set Theory towards, for instance, dynamic obser-
vation systems. On the other hand, positioning classical Approximation
Spaces and Rough Set Theory within the framework of pre-topological
spaces gives us the possibility for a better understanding of both the
strength and weakness of the theory.

Pre-topological operators will be gradually given stronger features
so as to arrive at a connection between them and modal operators
defined by means of R-neighboring operators, for any reflexive binary
relation R on the universe of discourse U . Under specific assumptions
about R, pre-topological spaces with operators defined by means of the
relation R turn into topological spaces.

With the addition of some extra features on R, we finally obtain
topological spaces of clopen (both open and closed) subsets of the
universe. These topological operators may be added to a Boolean alge-
bra in order to obtain pre-monadic Boolean algebras, monadic Boolean
algebras, topological Boolean algebras and monadic topological Boolean
algebras. These structures make it possible to give an algebraic inter-
pretation of Approximation Spaces as described by Rough Set Theory.

Particularly, by means of a straightforward manipulation of monadic
Boolean algebras it is possible to define topological quasi-Boolean alge-
bras and, by means of this notion, algebraic structures that are equal or
isomorphic to the Post algebras of order three defined in Part II, called
pre Rough algebras and Rough algebras. This move makes it possible to
use Rough Sets Systems as a complete semantics of two logical systems
L1 and L2.
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How to read this book

Each Chapter is organised as follows:

• A self-containing exposition of the topics of the Chapter,

• A “Frame section”. Each Frame presents additional examples,
details and topics related with the main content of a Chapter.
Moreover, frames propose additional exercises and provide the
reader with subsections dedicated to some history of the concepts
used in the Chapter.

• Solutions of the exercises.

For obvious reasons, we could provide neither an all-encompassing his-
tory nor all the topics that deserve a due attention. We had to make
some choices and some, painful, renounces.

All the preliminary mathematical notions are collected in an Appe-
ndix, titled “Mathematical toolkits”.

Intended readers

The intended readers of this book are primarily graduate and post
graduate students and researchers from mathematics, logic, computer
science and philosophy. We hope that insiders of each group will find in
the book materials of their specific interest. But for a deeper apprecia-
tion of the journey taken up in this writing an interest in all the above
disciplines and some general awareness of current trends of thoughts
may be helpful.
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Notation

We enlist more important notations conventions:

Symbol Meaning
A,B, ... sets (if not otherwise specified)
a, b, ... elements of sets (if not otherwise specified)
α, β, ... formulae of a logic language or properties

�α� the “extension” of α in a model
A,B, ... structures (sets equipped with operations and/or

relations)
A,B sets of sets (if not otherwise specified)
∨ Linguistic disjunction
∧ Linguistic conjunction
∼ Strong negation (in Nelson, De Morgan or Kleene

algebras)
¬ Pseudo-complementation or complementation

(in Heyting and Boolean algebras)� Co-intuitionistic negation
· � Weak negation (in Nelson algebras)
¬· Co-weak negation (in Nelson algebras)
− Set-theoretic complement
→ Material implication
� Contrapositional implication (in Nelson algebras and

related structures)
⇒ Extensional implication (in Rough algebras)

=⇒ Relative pseudo-complementation (in Heyting
algebras)

⇐= Co-relative pseudo-complementation (in co-Heyting
algebras)
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xxx Notation

�→ Functional dependence
⊃ Pre-intuitionistic implication (in Nelson algebras)
⊂ Co-pre-intuitionistic implication (in Nelson

algebras)
S=⇒ Relative pseudo-supplementation
S⇐= Co-relative pseudo-supplementation
� Metalinguistic implication
& Metalinguistic conjunction

∨ (or “or”) Metalinguistic disjunction
¬ (or “not)” Metalinguistic negation

The metalanguage is classical First Order Logic.
Notice that the same operation may be denoted by different symbols,

as a structure is transformed.
For instance, in semi-simple Nelson algebras the weak negation · �,

the co-weak negation ¬· and the pre-intuitionistic implication ⊃ coin-
cide, respectively, with the co-intuitionistic negation �, the pseudo-
complementation ¬ and the relative pseudo-complementation =⇒.

However, in semi-simple Nelson algebras we keep using the symbol
⊃, while we adopt �and ¬ instead of · �and, respectively, ¬· .

Obviously, the relative pseudo-complementation =⇒ of a Heyting
algebra H turns into a material implication → if H is a Boolean algebra.
And so on.

If H = 〈A, op1, op2, ..., opn〉 is any mathematical structure with car-
rier A, then we shall denote an element a of the structure by a ∈ A. If
there is no risk of confusion we shall also write a ∈ H.
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Introduction

Who looks for life finds the form. Who looks for the form finds death.
— E. De Filippo

1 Perception and Concepts:
A Phenomenological Approach

The theory of Approximation Spaces, and Rough Sets, the main con-
cern of this book, is essentially a theory of perception. Of course, this is
true if we intend “perception” to be taken in a broad sense and not as
a mere naturalistic recording of external data by means of our senses.

In order to better explain what is meant here with this notion, we
can consider some classical puzzles in the theory of vision. Consider,
for instance, the well-known Kanizsa’s triangle (Figure 1). It is known
that the white triangle in the foreground does not exist and that the
strength of its virtual existence is induced by (and is a symptom of)
some interrelations between our senses and the elaboration capabili-

Figure 1: Phenomenal rendering of a white triangle with contours
without gradients
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ties of our mind. Again, look at Figure 2. Usually people perceive the
convex part as “the object” while the concave part is perceived as the
visible part of the “background” behind the object. However, appar-
ently, we do not have any particular reason for this preference. One of
the most interesting challenges for the theory of vision was and still is
the explanation of these implicit choices: the choice of the convex part
as a body against a background, in Figure 2; the choice for an inexis-
tent triangle as a means for getting a sort of equilibrium within the
“possible meanings” of Figure 1.

Figure 2: The convex region is perceived as the figure

Whatever the deep nature of these processes could be, nowadays the
schema of Figure 3 is a most reliable hypothesis. According to it, the
source sends data that must be reconstructed by the receiver subject.

Figure 3: Sender and receiver concurrently define the meaning of
messages

Indeed, this schema has been assumed by recent semiotics too, in
contrast with the former structuralist interpretations and the pouring
models of the theory of meaning (see Nattiez [1989]).

During the reconstruction process, data are “selected, analyzed, inte-
grated by means of properties not directly perceivable but induced by
hypotheses, deduced or anticipated, by the intellectual faculties at my
disposal.” (Kanizsa [1980], page 81. Our translation).
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Furthermore, G. Kanizsa points out that “the mere identification
of an object of vision [...] implies an elementary logical operation, its
placement in a particular identity category rather than in another. [...]
Indeed, it is clear that the simplest of the operations I spoke about,
presupposes a “something” which must be identified, that is to say,
which must be assigned to an equivalence class, operation that makes it
possible to infer the other (probable, but not directly given) features of
the object. And this is the premise for any other more complex cognitive
activity.” (ibidem, pages 83 and 84).

This long quotation is worthwhile. Indeed we could hardly describe
the starting point of Rough Set Theory with different words.

This starting point is, in fact, the partition of a universe of discourse
U into disjoint equivalence classes, that is the same as the identifica-
tion of an equivalence relation over U . This equivalence relation does
not come by chance, but strictly depends on the parameters that we
have selected in order to interpret the states of affairs about U . Using
Kanizsa’s words, we can say that in Rough Set Theory, data are per-
ceived by means of anticipated hypotheses. In other terms, the set A
of observable properties that one decides to use, prepares a percep-
tion grid to be filled by the data deriving from our observations of
U .1 This means that, since the very beginning, one cannot speak of
mere data, but must speak of filtered data: data that one records by
means of a well defined and specific perception grid. Data, as such,
are Kantian “noumena” that we perceive only within a categorization
operation.

In fact, by means of the perception grid we can organize our uni-
verse of discourse U into equivalence classes, that constitute our basic
categories. More precisely, two objects a and b, belonging to U , will be
considered equivalent if they enjoy the same observed properties, that
is to say, if the set A of observable properties is not able to differentiate
them. Thus one can claim that a and b are indiscernible with respect
to A, since no observables from A is able to separate a from b. In this
manner, A induces the required equivalence relation, EA.

Therefore, it follows that any equivalence relation embeds some set
of information concerning the elements of a universe U , perceived by

1We use the term “observable property” and “observable” in a broad sense. For
instance, a set of parameters is, in this context, a set of observables.
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means of a set of observables A. We shall call the structure I = 〈U,A〉
an Information System.2

This is the first part of the job. But the story is not over.
Our equivalence (or indiscernibility) relation EA gives only a partial

account of U . In a sense, the set of observables A solely induces the
particular granulation of a particular “conceptual filter”. Of course, we
have good reasons for preferring A instead of another set of observables:
maybe the observables in A are more significant for the phenomenon we
want to analyze; maybe this choice depends on a trade-off between com-
pleteness and tractability (more observables, more dimensions, thought
more accurate, could lead to infeasible computations). In any case, the
reader should notice that A is an a priori choice. It depends on some
hypotheses.

Definition 1.1. Let U be a set and E ⊆ U ×U an equivalence relation
on U . Then the pair 〈U,E〉 will be called an Indiscernibility Space.

From what is said before, an Indiscernibility Space 〈U,EA〉 has
no value “an sich”. It is inert. We must contrast it against another
space in order to have a useful information. In other words, we
must compare at least two different categorisations E = 〈U,EA〉 and
E′ = 〈U,EA′〉 of the same universe U , that is, by means of two Infor-
mation Systems I and I’. As always happens, we need two different
states to initiate the dynamic process of information collection: 0/1,
background/foreground, black/white, ....

What is the nature of E and E′?

1.1 Monological Approach and Dialogical Approach

If we assume that one of the two categorisations, say E, must provide
the conceptual explanation of the other, E′, then it should be assumed
that E is charged with some founding role in our gnoseological dynam-
ics. Although the choice of E is an “a priori”, depending for instance on
the meaning of the parameters in A, once we have decided that E has
to provide the basic categorisation, E is given a privileged role. Such
a role imposes a particular direction to the gnoseological dynamics so
that E cannot be influenced by E′.

2This notion of an “Information System” is a generalisation of that adopted in
Rough Set Theory (see below).
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For instance, A′ might be a set of decisions about members of U (for
instance, decisions for investments in a group of regions) while A might
be a set of evaluations related to those decisions (for example, socio-
economic evaluations about those regions). In this case we should like,
for instance, to check the consistency of our decisions, with respect
to A in order to compute the best consistent decisions, or we would
like to know the reliability of possible extensions of a decision to other
members of U . This is the usual approach in Rough Set Analysis and
we call it monological approach, because of the directedness from a
privileged categorisation towards the other.

But one can also think of E and E′ as categorisations induced by
the perception of two distinct gnoseological subjects, S and S′. In this
case we cannot privilege one of them. On the contrary we should be
interested in questions like: how do S and S′ interact? What are the
conditions for such an interaction being possible? How can E and E′ be
re-formed so that the subjects S and S′ may arrive at a consensus on
a claim like “x is X”, where X is not a sharply defined property (or,
equivalently, X is not the extension of a property)? How can E and
E′ merge together? In other words, now we do not have a privileged
direction forcing one categorisation to be subordinated by the other.
Therefore this reading is called dialogical approach.

This approach is a novelty and at in embryo stage within the special-
ized literature but we mention it in order to underline the philosophical
and mathematical differences from the monological approach (some
details about the so-called Dynamic spaces are shown in Part III).

The monological variant is clearly an instance of the dialogical app-
roach. In accordance with it, one of the two Indiscernibility Spaces,
say E, will act as background while E′ becomes the set of perceptions
that must be focused in contrast to this background. To some extent the
monological approach has a metaphysical flavour since in this approach
E′ plays the role of “object” while E plays the role of “subject”. In this
framework, we call E an “internal categorisation” and E′ an “external
categorisation”.

Nevertheless we shall be primarily concerned with the monological
approach since researches in this direction has almost reached a sta-
tus of well-established scientific “corpus”. Moreover, the monological
approach is able to supply the basis for understanding the problems
behind the dialogical approach.
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2 Monological Approach to Perception
and Concepts

So, let us assume that one of the two categorisations has to be con-
sidered as the internal categorisation that must be referred to by the
external one in order to obtain a conceptual reading of the external
categories.

Hence we are back to the initial puzzles. Indeed these puzzles and
the process just described, share some basic mechanisms.

Researchers achieved an almost general agreement in focusing on a
number of most promising notions for the explanation of these kinds
of puzzles. These notions, generally, describe some “topological” rela-
tion: vicinity, similarity, direction, continuity, closure. Others belong
to higher order factors, such as the principle of “good Gestalt” (or
“Prägnanz”). Finally, others pertain to the history of the subject, like
her/his past experience.3

Among the topology related factors, the notion of a completion cov-
ers an outstanding position. Indeed, in Figure 1 one virtually forms,
by means of a completion process, three black discs and a white tri-
angle with black contours, that “justify” the presence, on an upper
stratum, of the white triangle with contours without gradients (or with
“cognitive contours”).

This completion process is called “amodal completion” since the
resulting figures do not enjoy the characteristics of the visual modality.

What we can here appreciate is that probably we are naturally
inclined, first of all, to close a figure (in a sense, we suffer a “horror
vacui ”) and, second, to take the maximal coherent part of this closure
(in order to be able both to separate a figure from another figure and
a figure from the background). This double move is what is called here
a “completion”.

3From this point on, we are trying to give a reliable, albeit simple, mathematical
interpretation of these cognitive features, with the final goal of providing a particular
mathematical approach to data analysis with an intuitive background. Otherwise
stated, we do not claim that the aforementioned cognitive psychology analysis are
given a mathematical support by our model. On the contrary, we just hope that our
mathematical approach could be better understood by means of the psychological
and philosophical concepts here discussed. Anyway we think that the interpretation
developed here has some deep cognitive motivation (to be better explored in the
future).
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Figure 4: A straight segment connecting two points inside a convex
region lies in that region

Figure 5: Unification of two figures with incoherent contours

Also in Figure 2, the notion of a completion is decisive. In fact,
a convex area has the property that any two distinct points lying in
it can be linked by a segment completely inside the area. This is a
completion feature too and, in our opinion, it is the best explanation of
our propensity to perceive convex areas as “bodies”.4 Indeed, “bodies”
are solid, cannot be interpenetrated and enjoy an internal coherence.
All this is assured by their completion features (see Figure 4).

We do not go far from the notion of a “completion”, even when
the “good Gestalt” principle is considered. This principle is a mix of
“topological” factors, like “simplicity”, “order”, “symmetry” and “reg-
ularity”. According to this principle, phenomena are perceived so as
to get a maximum of “structural coherence”. The completion process
is accomplished in view of this result. For instance, if one unifies the
two shapes on the left in Figure 5, one perceives two new figures (a
circle and a hexagon) according to the principle of maximal structural
coherence. The term “maximum” is somewhat misleading. We are not
speaking of the maximality of the area enjoying structural coherence,

4This elementary property defines convex figures; curiously enough, as far as we
know, it does not appear among the explanations of this phenomenon.
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which would be an extensional maximality; on the contrary, we are
speaking of a sort of intensional maximality or, better, we are speaking
of fixpoints in the search process for structural coherence. In the same
way, by a “completion” we do not intend uniformly a coherent exten-
sion of a figure. A figure could loose part of its area if this sacrifice
allows us to accomplish a coherent completion (actually, a completion
is not referred only to the figure at hand, but to the geometry of the
entire perception field). We give an example of this fact.

Example 2.1.

Figure 6: Two admissible unifications

The two crescents in Figure 6 may be unified either as a circle inscribed in an oval, or
as two intersected eggs. This is a case of different fixpoints of a completion processes.

As for the “past experience”, one has to consider that we dis-
tinguish “figures” (or “bodies”, or “objects”) within a context (or
universe of discourse) in such a way as to make them behave as usu-
ally experienced figures, (bodies or objects).5 For instance we want
them to fulfill some “invariance property” and some “persistence prop-
erty”. Otherwise stated, we require a sort of structural stability. It is

5In this context, the terms “body”, “object” and “figure” are interchange-
able. The reason should be already clear. Anyway it will be explained later on
in Subsection 5.1.
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this structural stability which makes us perceive things as a “perti-
nent world”, provided that “what is regarded as a pertinent world is
inseparable from the structure of the perceiver.” (Varela [1994].)

These remarks oblige us to be a little bit more precise. In fact, what
has been described was called “the completion” of an object, together
with its relation to the notion of a closure of a region, with some license,
while we should rather speak of a connected space. Indeed, this seems
to be the property characterizing the domain of existence of an object
(cf. Thom [1977]). Nevertheless, in view of the mathematical nature of
the models that we shall use, the notion of a closure as noticed, must be
supplemented by some invariance condition. Intuitively, an invariance
condition assures that a body is determined and individualized within
its relationships with other objects. A minimal requirement to be satis-
fied by a “body”, therefore, is its separability from the other “bodies”.
When we are dealing with usual sets, we have such features: the clo-
sure property is given by the comprehension schema which defines a
set by enclosing all the elements satisfying a given property, while the
required invariance condition is guaranteed by the fact that any set, as
such, is separable from all the others by means of the set-theoretic com-
plementation, which is involutive: −− X = X. That is what induces
the Boolean structure of the powerset of any set. Thus closure and
separability coincide in this case.

However, in more complex and refined situations, the closure prop-
erty is insufficient and it cannot guarantee separability. In this case
we have to require a “body” X to be characterized by the inductive
property stating that given any point x of X, X comprehends all the
points which are close to x but that do not belong to the border region
of X.

It is this double condition which gives sets their “rough” nature.
Indeed, if we do not include, for any sub-region of a body, the

points which are close to it, we would lack the principle of coherence.
On the other side, if we do not exclude the border region, we would
admit external interferences so that the principle of stability would be
lacking.

Therefore, we require a “body” to be a regular set, topologically
speaking, viz. a set which coincides with the interior of its closure (for
these and other basic topological notions see Mathematical toolkit 16.4
and the text).
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From now on, by I(X), C(X), B(X) and −X, we shall denote the
interior, the closure, the boundary and the set-theoretic complement of
X, respectively (where B(X) = C(X) ∩ −I(X)).6

It is not difficult to notice that the notion of a regular element is
well suited for our purposes. Of course, it is appropriate when we deal
with unstructured sets and simple categorization operations induce a
Boolean algebra of both open and closed (clopen) subsets of U (as a
topology, this algebra is said to be 0-dimensional; this concept renders
the fact that we have not to take into account any deeper categorisation
of U , any previous structure).

But it is appropriate also when we deal with a universe structured
by means of more general topological relations. Actually, the simple
set-theoretic complement together with the notion of an open set could
not be sufficient, since it would only separate an open set from the
background, but not a body from another body. In fact if we accept
that the “coherence” requirement implies that a “figure” a has to be
an open set, then its complement −a is surely a closed one, thus gen-
erally it is not a “figure”. Therefore we must take the interior of −a,
I(−a), in order to obtain a figure. Call it the complementary figure
(the complementary body) of a, denoted by ¬a. However, usually it
happens that there is not a 1-1 correspondence between open sets and
complementary figures, because the complementary figure of ¬a could
be different from a: −(¬a) is a closed set and when we take its inte-
rior we obtain ¬¬a = I − (¬a) = I − I(−a) = IC(a) which, generally,
is larger than a. Indeed we can even have incomparable a and a′ such
that ¬a = ¬a′. Hence we observe that an open set could be structurally
unstable, because the separation capability of the operation ¬ is just
one way and we could be unable to recover a from its complementary
figure. In other words, when we go out entering the exterior of a and
then come back, we are not sure to find the same set we have left. In this
case a is not clearly separable from the rest of its ambient universe. An
open set a will be structurally stable only if a = ¬¬a, and this means,
precisely, that a is regular, from a topological point of view.

6By now the reader can think of a point x which belongs to the interior of a set
X as a point which has links just with points belonging to X, while x is close to X
if it has at least a link with some elements of X. Finally, x is on the border of X if
it is close to X but has at least a link with a point not belonging to X.
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We give a simple but general enough example.

Example 2.2.

c

b d

�
� �

�

a

A simple structured space

We say that a set X ⊆ {a, b, c, d} is an upset or order filter (respectively, a downset
or order ideal) if whenever x ∈ X and x′ is above (respectively, below) x, then x′ is
in X too (see Mathematical toolkit 16.1). Upsets (respectively, downsets) fulfill the
open set (respectively, closed set) axioms. It follows that a point x is close to a set
Z if there is a z ∈ Z such that x is below z. Hence, assuming this upward topology
(a topology where the open sets are all and only the upsets) over {a, b, c, d}, we
can easily notice that, for instance, the set {c} is open, its closure is {c, b, a} and
its boundary is {c, b, a} ∩ −{c} = {b, a}. The set-theoretic complement of {c} is
{a, b, d} which is a closed set. Thus the set-theoretic complement −{c} cannot be
the complementary figure of {c}. To obtain the complementary figure of {c} we have
to take the interior of the complement, I(−{c}) = {d}, which is an up-set. But the
complementary figure of {d} is IC({c}) = {b, c} � {c}. It follows that {c} is not a
regular element. On the contrary, {d}, {b, c}, the whole universe {a, b, c, d} and the
empty set ∅ are regular.

Throughout this study the notion of a regular element will be funda-
mental, at any level. By means of this notion Boolean elements hidden
inside different logico-algebraic structures shall be identified. And this
is important because these Boolean elements, will represent the struc-
turally stable “islands”, surrounded by more complex and unstable
seas.

As a matter of fact, at the very beginning given a universe U we
take into account a particular Boolean algebra of subsets of U .

In fact, concerning an Indiscernibility Spaces E =〈U,EA〉, it is noti-
ced that the family of equivalence classes U/EA = {[x]EA

}, for x

ranging over U , can be regarded as the family of atoms of a Boolean
algebra that will be denoted by AS(U/EA). Therefore, any element of
AS(U/EA) is a union of equivalence classes.
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Any such Boolean algebra is induced by an Indiscernibility Space
and can be considered as the fundamental (albeit elementary) phe-
nomenological space of our construction. From this point of view, it
receives the name of “Approximation Space” (of U , with respect to
the indiscernibility relation EA). Because of our definition, an element
X ∈ AS(U/EA) is a set definable by means of a basic property, if it is
an atom, or by means of a set of basic properties, otherwise.

A simple Information System and its Approximation Space are
shown below in Figure 7.

Example 2.3.

P1 P2 P3

a 1 2 f

b 1 3 h

c 1 2 f

d 0 3 f

{a, b, c, d}

�
�
�
�

�
�

{a, b, c} {a, c, d} {b, d}
�
��
�
�
�

�
�
�
�
�
�

{a, c} {b} {d}
�
� �

�
�
�

∅
Figure 7: A simple Information System and the Hasse diagram of its
Approximation Space

A = {P1, P2, P3}, U = {a, b, c, d}, EA = {〈a, a〉, 〈b, b〉, 〈c, c〉, 〈d, d〉, 〈a, c〉, 〈c, a〉}, so
the basic categories are {a, c}, {b} and {d}, corresponding to the basic properties
“P1 = 1∧P2 = 2∧P3 = f”, “P1 = 1∧P2 = 3∧P3 = h”, and “P1 = 1∧P2 = 3∧P3 =
f”, respectively. The element {a, b, c} is given by {a, c}∪{b}; hence it is describable
by the property (“P1 = 1”∧“P2 = 2”∧“P3 = f”)∨(“P1 = 1”∧“P2 = 3”∧“P3 = h”).

In an Approximation Space any equivalence class X is a structurally
stable object, because it is clopen. Indeed, X = C(X) = I(X) =
IC(X).7 This property is inherited by joins.

7This is not new. For instance, “[If E is a topological space] in order for a
G-equivalence class F to be structurally stable, it needs and suffices that the totality
of the points in E of this equivalence class constitutes an open set of the space.”
(Thom [1980], Ch. 2, § 2.1, C).
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Remarks. Concerning the last point, it must be mentioned that, strictly

speaking, only the atoms of AS(U/EA) are objects because they are con-

nected by the indiscernibility relation, while non-atomic elements (formed

by joins) are separable but not connected. Indeed non atomic objects are

compound objects, in that they are given by an assemblage of atomic

(hence connected) objects. The compound but not connected nature of

non-atomic elements will be clearly illustrated by the construction of the

dual space of an Approximation Space. Moreover, we shall see that there

is an important difference between compound objects and complex objects

which are given, for instance, by Galois adjunctions, because the latter

enjoy a sort of organic unity, as we shall see in Part I. In a complex object,

elements are merged together and, in a sense, their properties are multi-

plied. In a compound objects, elements are juxtaposed and their properties

are added.

Being aware of the above proviso, we can work with AS(U/EA) and
consider it as the lattice of clopen subsets of a 0-dimensional topological
space 〈U,AS(U/EA)〉. In a 0-dimensional space if X ∈ AS(U/EA),
then −X is in AS(U/EA) too. Moreover, −−X = X. It is worthwhile
remarking this property, since it has some relevance not only from a
mathematical, but also from a philosophical point of view. In fact, in
the history of Philosophy, it is often found that “individual objects”
are defined as “entities” fulfilling properties that can be interpreted
by means of mathematical notions such as “closure”, “interior” and
“separability”.

For instance, in Modern Age, Leibniz observed that “the nature of
an individual substance, or complete being, is to have such a perfect
notion so that it comprehends, and makes it possible to deduce, all the
predicates of the subject to which this notion is ascribed.” If this is
not the case, then Leibniz speaks of “accidental beings”, that is, not
necessary beings. Hence a complete being is both (deductively) closed
and necessary (Leibniz, “Discourse on Metaphysics”).

These requirements are usually in direct contrast in mathematical
logic, since “closure” is strictly connected with the notion of “possibil-
ity”, while the notion of “necessity” is reflected by that of “interior”.
However, when we deal with a universe of both closed and open sets,
any possible event is also necessary and the contradiction does not
remain further.
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In fact, we shall investigate Approximation Spaces as topo-algebraic
models of S5 modal system which is characterized by this property.

To conclude, Approximation Spaces provide us with a good frame-
work for a conceptual organization.

But concept forming really occurs when at least two phenomenolog-
ical spaces arising from the same universe of discourse U are compared.
So, we must contrast an Approximation Space with another which is
derived by a different basic categorization.

First it has to be decided which Approximation Space will act as
background. Here we are speaking of a “conceptual background”, in
the sense that the parameters that generate the background space are
supposed to be able to explain phenomena recorded in the structure of
the other Approximation Space.

Once we have decided which is the background Approximation Space,
say AS(U/EA), we have to fit in it the objects from the second space,
say AS(U/EA′), that therefore shall be called a foreground Approxi-
mation Space. An element X ∈ AS(U/EA′) (an “object” or a “figure”)
might fail to be an element (object, figure) of AS(U/EA). This means
that a set exactly described by properties of the foreground space A′

(foreground properties) might not be exactly described by properties of
the background space A (background properties). Or, otherwise stated,
a set which is structurally stable with respect to the topological space
〈U,AS(U/EA′)〉, might be structurally unstable in 〈U,AS(U/EA)〉. We
can then say that a figure of the foreground space is a pre-figure in
the background space, a sort of fuzzy shadow which must be focalised
(remember that this is a “one way” operation, in the monological
approach).

Let us consider an arbitrary object X of the foreground space
AS(U/EA′). Two possibilities are given: either X ∈ AS(U/EA), too,
or not. In the first case one can exactly describe X by means of a
property, which in view of the preceding discussion can be named a
background property. In the second case background properties cannot
be used for a direct description of X, but one can approximate it by
means of properties from AS(U/EA) (see Figure 8).

More precisely, there is an approximation from above, called an
upper approximation, (uEA)(X), and an approximation from below,
called a lower approximation, (lEA)(X).
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Remarks. If the set A of observables is understood or immaterial, we

shall use the symbols (uE)(X) and (lE)(X) instead of (uEA)(X) and

(lEA)(X), respectively.

We shall see that if we consider an Approximation Space 〈U,AS(U/E)〉
as a topological space, then the upper approximation of X coincides
with the topological closure C(X) and the lower approximation of X
with the interior I(X).

It follows that the lower approximation of X, (lE)(X), is the largest
body contained in it, while the upper approximation of X, (uE)(X), is
the smallest body that contains it.

However, in general between (lE)(X) and (uE)(X) we have the
topological boundary of X: B(X) = C(X) ∩ −I(X) = (uE)(X) ∩
−(lE)(X). Notice that the boundary of X is the set of the points that
are neither in its lower approximation, nor in the complement of its
upper approximation: B(X) = C(X) ∩ −I(X) = −(−C(X) ∪ I(X)) =
−(−(uE)(X) ∪ (lE)(X)).

Figure 9 displays a picture of the approximation operations. This
is the basic intuition behind Rough Set Theory. Otherwise stated, the
philosophical assumption in Rough Set Theory (see Pawlak [1991]) is
that the ability to distinguish objects by means of their properties
is a basic source of knowledge. Such properties may be induced by
direct observations or by theoretical considerations: in any case the
more precise these properties are, the finer the grains of our knowledge
will be. Thus, given a universe of discourse U and a set of observables
A, the basic gnoseological act is the organization of U into disjoint
categories, in such a way that each category collects the elements of
U that are describable by means of the same observed properties or,

Figure 8: Background space – Foreground space – Contrast
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Figure 9: Lower approximation – Upper approximation – Boundary –
External part

in other terms, that are indiscernible by means of the observables
considered.

Therefore, the atoms of AS(U/EA) and AS(U/EA′) may be intended
as extensions of basic properties which are definable from two informa-
tion systems, I and I’. Clearly, any element of the background and
foreground Approximation Spaces is the extension of a disjunction of
basic properties.

Example 2.4. Information Systems
In the Information System depicted in Table 1 below, the set A′ = {Comfort} has to
be compared with the set A = {Temperature, Hemoglobin, Blood Pressure, Oxygen
Saturation} in order to find some regularity connecting these two sets of observations.
The parameter in A′ is supposed to depend on parameters in A. Therefore the latter
are considered explicantes. They will induce the background Approximation Space
AS(U/EA), and the explicandum will give the foreground Approximation Space
AS(U/EA′).

In this Information System, the set {d, e, f, g} is an object of AS(U/EA′)
described by the basic property “Comfort = medium”. This fact will be denoted by
{d, e, f, g} = �“Comfort = medium”�, to be read: “the set {d, e, f, g} is the exten-
sion of the basic property “Comfort = medium”. But {d, e, f, g} is not an object of
AS(U/EA) because we cannot obtain it by means of any union of its atoms (i.e.
equivalence classes from 〈U,EA〉 which are: {{a}, {b}, {c, d}, {e, f}, {g}, {h}, {i}}).
So we have to approximate it, as illustrated in the next example.
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Table 1: A medical information system (Slight modification of a
database presented in Grzymala-Busse [1992])

Temperature Hemoglobin Blood pressure Oxygen saturation Comfort

a low fair low fair low
b low fair normal poor low
c normal good low good low
d normal good low good medium
e low good normal fair medium
f low good normal fair medium
g normal fair normal good medium
h normal poor high good very low
i high good high fair very low

Sets which have the same upper approximation and the same lower
approximation induced by an indiscernibility space 〈U,E〉, cannot be
distinguished by means of the information in I. Under this respect they
are equivalent and their equivalence class is called a rough set. The fam-
ily of all rough sets is called a Rough Set System, denoted by RS(U/E).

Example 2.5. Approximation operations and rough sets
(a) Rough sets

In Example 2.3, {{c}, {a}} is a rough set belonging to the Rough Set System
RS(U/EA), because (lEA)({c}) = (lEA)({a}) = ∅ and (uEA)({c}) = (uEA)({a}) =
{a, c} and no other set has these approximations. The family RS(U/EA) of all rough
sets is: {{{a}, {c}}, {{b, a}, {b, c}}, {{d, a}, {d, c}}, {{b, d, a}, {b, d, c}}}, plus the set
{X} for any X ∈ AS(U/EA).

(b) Boundaries
Consider the Information System of Example 2.4. If X = {d, e, f, g}, then

B(X) = (uEA)(X) ∩ −(lEA)(X) = {c, d, e, f, g} ∩ −{e, f, g} = {c, d}. But if X
is an element of the foreground Approximation Space AS(U/EA′), then its bound-
ary is empty. Thus X must be describable by some property of AS(U/EA′). Indeed,
it is the extension of the (basic) property “Comfort = medium”. On the contrary,
the set {h, i} = �“Comfort = verylow”� is given by {h} ∪ {i}, which is given by
a disjunction of two atoms of AS(U/EA). Actually, B({h, i}) = (uEA)({h, i}) ∩
−(lEA)({h, i}) = {h, i} ∩ −{h, i} = ∅ and {h, i} is the extension of the (complex)
property “(“Temperature = normal” ∧ “Hemoglobin = poor” ∧ “Blood Pressure =
high” ∧ “Oxygen Saturation = fair”) ∨ (“Temperature = high” ∧ “Hemoglobin =
good” ∧ “Blood Pressure = high” ∧ “Oxygen Saturation = good””.)

We conclude that observing is the act of comparing properties.
So a number of questions arises: How can we perform our compar-

ison? What geometry emerges from this contrast? What figures, what
bodies, can we recognize?
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Rough Set Theory answers these questions in a logical way, well-
founded on the notion of a “completion”.

We shall develop the logical analysis of Rough Set Theory in Part
II and Part III. Now we have to explain what is intended of the term
“logical”.

3 Phenomenology and Logic

3.1 Semantics vs Syntax

The main topic of this book is the logico-algebraic interpretation of
Approximation Spaces and Rough Set Systems.

Thus three principal questions arise: (a) Is there any perspicuous
relationship between phenomenology and logics? (b) What have we
to intend with the word “interpretation”? (c) What is the status of
logico-algebraic models (or, more generally, of semantics) within formal
logics?

These questions have to be answered because, in order to understand
what we are going to do, we must correctly situate the logical analysis of
Rough Set Theory. For instance, we can legitimately ask whether there
is any use in developing syntactic calculi for which our algebraic mod-
els (derived from concrete Approximation Spaces and concrete Rough
Set Systems) are complete. Or, on the opposite side, one may wonder
whether semantics has a meaning at all for Mathematical Logic. More
simply, we can even doubt if a logical interpretation of Approximation
Spaces and Rough Set Systems is of any interest for their development.

Not only the three questions above are unavoidable, but one cannot
answer them separately. Therefore we hope to be excused by the reader,
because we are going to provide an answer within a somewhat un-
systematic and extremely synthetic survey of different topics.

The relationship between phenomenology and logic is a “vexata
quaestio” (we only recall Husserl’s work and address the reader to
the “Concluding Remarks”). Here we shall narrow down the scope by
delimiting the first term, on the one hand, and by discussing some
issues about the second term, on the other.

The term “phenomenon”, within the limits of the present work, is
strictly framed in the process described above: a state of affairs is a phe-
nomenon whenever it can be categorized by means of some parameter
grid.
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Once this term is fixed, in order to answer the above questions, it
should be specified what we intend with “Logic”.

This term, as a matter of fact, has some ambiguity in that it can be
intended either:

• As the art that makes it possible to distinguish a correct argu-
mentation from an incorrect one

or

• As the art that makes it possible to distinguish truth from falsity

In other words, it is not fairly clear if the central notion in Logics is
“proof” or “truth”, is “syntax” or “semantics”. As is well-known, com-
pleteness theorems are bridges between the two horns of the dilemma,
but this is not decisive for answering the above questions, since we can
construct a syntax from a given mental model of what we are interested
in, or can construct a semantics from a given abstract language that is
supposed appropriate for speaking about what we are concerned with.
And it is very difficult to privilege one starting point instead of the
other. It is also incorrect to say that in view of completeness theo-
rems there is no difference, since this is a mere tautological comment
“ex post”, when it applies; and sometimes it applies not even.8 As a
matter of fact, what is discussed here is a pre-logical, pre-categorical,
representation of our own mental processes and therefore it is not a
scandal if we find unresolved options. Exactly as there is no scandal,
for instance, in unresolved dichotomies like “grammar/meaning”, in
semiotics.

Roughly speaking, it is difficult to decide if we have to accept the
rules

α β

α ∧ β (∧ − introduction);
α ∧ β
α

α ∧ β
β

(∧ − elimination);

because we accept the truth-table

∧ 0 1
0 0 0
1 0 1

8For instance, we know the syntax of Kleene’s Recursive Realizability, but we do
not know its models. In contrast, we know the models of Medvedev’s Logic, but not
its syntax, for the time being.
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or we accept this table because the conjunction “and” seems to be
currently used as described by the above introduction and elimination
rules.

Indeed, this ambiguity runs through the history of modern logics
since their origins: although Boole claimed that symbols represent noth-
ing but mental processes and are dispensable in principle, for Frege the
linguistic apparatus plays a pre-eminent role if we want (as we should,
according to him) ban from Logic any contamination of perceptive and
psychological categories.

The Fregean setting, that we call “formal ”, widely influenced res-
earchers in the XX century, in any field. So, the Boolean point of view,
that we shall call “conceptual ”, was surprisingly denied, for instance,
also by scholars who probably would have got a significant gain from
the conceptual approach.

Consider the case of Piaget: he insisted on separating Logic from
the operational-conceptual structures elaborated during his researches,
justifying this position by a methodological assumption: the separation
of a “normative epistemology” from a “genetic epistemology ”. By def-
inition, a “normative epistemology” does not deal with the activities
of the cognitive subject but tries to determine the most general norms
that truth-conditions rely on, for a given knowledge domain; dually, a
“genetic epistemology” does not deal with any condition normalizing
the notion of “truth”, but tries to determine the activities which even-
tually allow the subject to construct truth norms (see Piaget [1957],
page 24).

This methodology was clearly influenced by Frege’s point concerning
the separation of psychology and logic and it is justified only within the
framework of the formal approach and its claim that logic is Classical
Logic tout court. Thus, Piaget’s explicit target was to explain how nor-
mative and genetic epistemology converge. Nevertheless his ideological
apparatus prevented him from trying to logically (although partially
and not classically) interpret the operational-conceptual structures that
he was using in order to formalise the intermediate steps of the mental
evolution of children.9

9For instance, Piaget’s so-called First Stage Logic is characterised by the fact
that 5–6 years old children do not control inverse operations, yet. For example, they
are able to split a set B of black or white pearls into the set A of black and the
set A′ of white pearls and compare them. But they are not able to compare A or
A′ with B, since B has been irreversibly “destroyed” by this splitting and cannot
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For Piaget, as for Frege, logic is Classical Logic and this logic is
the natural accomplishment of the (genetic) mental development of a
child.10 This target is achieved by means of subsequent filtrations of
those less mature operational-spatial structures that are acquired by a
child during her/his mental development and that do not as yet fit the
perfect architecture of Classical Logic. In order to achieve this goal,

be recovered from the join of A and A′ (see Piaget [1950], Part I, Section 1, § 3).
It seems that although A is the complement of A′, nonetheless the splitting move
makes children consider A and A′ separately, one at a time. Thus, in a sense, this
separated perception has the same effect as adding a non void topological border
between A and A′; therefore, recalling that −A ∩ −B(A) = I(−A) = ¬A, we can
model this situation by means of the equations A = ¬A′, A′ = ¬A (hence A′ = ¬¬A′

and A = ¬¬A).
Henceforth, in our terminology, although they recognize that A and A′ are com-

plementary figures in the universe B, nevertheless they are not able to apply the
operation ¬¬ to the join A ∪ A′ (that is, A ∪ ¬A) in order to obtain B. Indeed
Piaget registers that at this age α ∨ ¬α �= 1, but he does not try to connect this
particular failure of the excluded middle to the topological modeling of intuitionistic
logic, to its related notion of a creative subject and to Gödel-Glivenko results such
as ¬¬(α∨¬α) = 1. According to this non-classical reading, one could argue that the
unity body B is unrecoverable from A and ¬A, because although both A and A′ are
regular, nonetheless A∪A′ = (¬¬A∪¬¬A′) ⊆ ¬¬(A∪A′) = B. Hence, this typical
Intuitionistic inequality might interpret the difficulty, for 5–6 years old children, to
apply a completion operation to complex objects.

Other operational characteristics of this age could be analysed in terms of struc-
tural rules. This is the case of the so-called “join by contiguity and subtraction”: if
the set C is split into the subsets B and B′, and in turn B is split into A and A′,
then the join of A and B′, A∪B′, is given only by means of the operation C ∩−A′.
That is, “C but not A′”, since classes are formed by children only thanks to the
presence or absence of a “quality” (ibidem). Now, we can notice that a general form
for C ∩ −A′, is an operation a ⊗ b defined by min(b, 1 − a) (with “min” given by
some order) that is formally neither associative nor commutative. Thus it would be
interesting to understand how children, in their development, transform ⊗ into an
associative and commutative operation similar to min(a, b), using only + and −.
This could be interpreted as the adoption of a sort of exchange rule (exchanging the
position of the operation −), which is a structural rule, not a logical rule.

10Piaget was aware of the Intuitionistic approach, but he considered its construc-
tive point of view only within the analysis of the genesis of the concept of a “number”
(and he rejected it). Moreover, we can notice that Piaget’s conception of Classical
Logic as a normative logic, does not contrast Frege’s claim that Classical Logic
is a descriptive logic: the “third” (Platonistic) realm, between the perceptive and
the physical ones, which, according to Frege, is described by Classical Logic, is
substituted in Piaget’s work with the normal “fine tuning” of human conceptual
capabilities, the outcome of a child’s normal mental evolution. Of course, Piaget can-
not accept an “a priori” norm, but only a phylogenetic one. Nonetheless, Piaget’s
“ex-post” norm is, roughly speaking, nothing else but Frege’s “ex ante” mental
world.
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mankind uses powerful instruments: the abstraction from contingent
details and the idealization of the concrete elements of the fundamental
structures that model human mental capabilities progressively.11

Although in the Formal approach models are claimed to be inde-
pendent, nonetheless technically they do not have any independent
existence; on the contrary they are generated by means of manipula-
tions of the syntax. In a sense, models are just metaphors of syntax.12

This point of view made the development of the so-called “quantitative
proof theory” possible. The first season of modern logic is character-
ized by this approach, according to which what is provable and to what
extent are the important things to understand. That is, logicians had to
investigate two parallel bi-partitions: “theorems/non theorems”, “valid
formulas/non valid formulas”, since the target, at the beginning of mod-
ern Formal Logic, was to know the extension of the power of formalism.
And we had the first important results: the completeness and the (non)
categoricity theorems for First Order Logic.

But when theories were taken into account, instead of pure logical
systems, when the notion of an “intended model” was considered (for
instance, naive Set Theory or elementary Arithmetic), the two notions
of “proof” and “truth” suddenly diverged: the problem of the Contin-
uum Hypothesis and Gödel’s incompleteness theorems opened a drastic
reflection about the possible ineffectiveness of pure formalism.

The Formal approach can be criticized in different ways: (A) Rad-
ical constructivism. As is well-known, the Dutch mathematician L. E.
J. Brouwer denied any legitimacy to the mathematical linguistic appa-
ratus, since, according to him, it does not have any actual role in
mathematical creation. On the contrary, sometimes it may even be
an obstacle, since it may breed antinomies. Henceforth, Classical Logic
and Formalism do not have either a descriptive or a normative dig-
nity. (B) Neo-conceptualism. The linguistic apparatus is accepted, but
it must be intrinsically connected with the mathematical structures
we are interested in: “The essential role of a theory is to describe its
models” (W. Lawvere).

11This activity resembles the usual filtration of a Heyting algebra by means of
the filter of its dense elements. As is well-known, also in this case we obtain a
Boolean algebra isomorphic to the Boolean algebra of the regular elements of the
given Heyting algebra. And this structure is obtained by simplifying the topological
relations of the dual space of the original Heyting algebra (for these notions see
Part II).

12Of course, metaphors are very useful in knowledge creation.
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In order to develop Brouwer’s ideas, A. Heyting introduced a partic-
ular semantics: the meaning of a formula is any deduction ending with
that formula.13 Thus, the meaning of a formula is, strictly speaking, a
syntactic object. So in order to avoid the short-circuit “syntax-syntax”
we need a very refined notion of calculus, in which one can develop oper-
ational concepts like that of “extraction of information from a proof”.
Following this issue, one finds the central role played by Gentzen’s nor-
mal proofs, that is, continuous proofs which can be read backwards
since there are not jumps (cuts) from the assumptions to the conclu-
sion. Linear Logic is a recent development of this program, that can
be named “qualitative proof theory”: now the target is to understand
how one deduces (see Girard [1982].) In a sense, the manifesto of this
program sounds like “The real meaning of syntax is inside the internal
harmony of syntax itself”. In principle semantics is avoidable, because it
does not add a real value (and, even worst, sometimes it is conceptually
misleading).

On the other hand, Neo-conceptualism developed an impressive
number of model-oriented frameworks, linked by fundamental concepts
such as that of an “adjoint functor”, each one based on the idea that
“models” are first off all, and before being models, rich mathemati-
cal structures possibly with an intrinsic particular logic.14 In a sense,
the syntactic apparatus follows its model. We illustrate this point by
means of the following example of a process: (a) first we assume that
presheaves (of functions over a topological space) are the mathemat-
ical objects we are interested in; (b) then we decide that presheaves
have to be logically interpreted; (c) finally, by means of our analysis
we discover that presheaves are models of Intuitionistic Logic. We may
infer, dually, that presheaves are describable by means of Intuitionistic
Logic so that we can call this process the “elicitation of the logic of
presheaves”.

However, saying that presheaves intrinsically have an intuitionistic
logic is a sentence that sounds, to us, too much unbalanced towards

13So, for instance, the meaning of α∧β is any proof ending with α∧β,

e.g.
α β

α ∧ β
.

14This position reminds us Karl Marx’s remark that “any specific object has its
own specific logic”. Actually, this principle guided some researchers towards deep
results, according to the Neo-conceptualist approach (cf. Lawvere’s work).
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the ontological side. We prefer to interpret this process by saying that
presheaves fulfill structural features that are shared by Intuitionistic
Logic. Similarly, Boolean algebras have the same structure as (the
Lindenbaum algebras of) Classical Logic and we shall see that in the
framework of Rough Set Theory, Boolean algebras are used to model
complete information systems, in contrast with three-valued algebras
which in the same framework model incomplete information systems.
Nonetheless, it can not be claimed that Classical Logic is the logic of
complete information. In a framework different from Rough Sets The-
ory, this claim may be falsified from an algebraic point of view (see,
for instance, how Boolean algebras may model not completely defined
objects in Scott-Solovay proof of the independence of the Continuum
Hypothesis). Moreover, the above claim is also incorrect from a strictly
logical point of view.15

Therefore, although within the scope of this book “Boolean algebra”
is synonym of “exactness”, nevertheless we have to take great care if
we are to generalise this situation.

3.2 Information and Interpretation: Correspondence
Theory of Truth vs Pragmatism

Although the Fregean conception is justified by a picture of Logic
as a descriptive science, on the opposite side it led to a paradoxi-
cal result: the actual non-distinction between derivability and validity,
syntax and semantics, inference and truth. This is because, in this set-
ting, semantics as completely subordinated to syntax is a mere tool
for mining results in logical theories. As a matter of fact, if syntax
describes something, it describes a linguistic variant of itself. The most

15Assume there are three aligned boxes, A, B and C. We know that A is green
and C is blue. We do not know the color of B. We want to know if there is a green
box near a non-green box. Using Classical Logic we can solve the problem: if B is
green, then B is a green box near a non-green box, namely C. If B is not green,
then A is a green box near a non-green box, namely B. Thus, the answer is “Yes”.

According to Moore, here we use the following features: (a) the ability to prove
that an existential predicate A(x) is true without knowing which term (“object”) t
makes A(t) true; (b) the possibility to say that for any sentence A either A is true
or ¬A is true; (c) the ability to reason by cases.

The first two features are strictly related to Classical Logic (cf. Moore [1982]).
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visible result of this confusion, namely the identification of meaning
and truth-conditions, opened up a measureless distance between logic
and semiotics.

Indeed, semioticians are wary of Formal Logic, since they do not
perceive any essential relation between the concept of “meaning” and
that of “truth”. They claim that as soon as there is a meaning, one
is in position to lie, and vice-versa. Otherwise stated, I lie when I
utter a sentence that you understand but that it is not true. So that
the meaning of a sentence has an existence independent of its truth
conditions.

However, after Gödel incompleteness results, besides the so-called
“intentional proof theory” (originating from Herbrand and Gentzen),
more refined semantics began to be studied, that aimed at tackling
those problems where verification criteria (hence referential issues) have
a real priority. Therefore, while according to the correspondence the-
ory of truth, the meaning of a sentence is equated to the result of the
verification process (“true” or “false”), on the contrary, the alterna-
tive semantic criteria stress the importance of the verification process
itself.

Typical problems that are faced by these semantics are the so-called
“referentially opaque” contexts, that is to say contexts in which a sen-
tence is within the scope of some modalised expression, like “to know”,
“to believe”, “it is necessary”, “it is possible”, “it is provable” and so
on (“The subject X beliefs that Y ”, “There is an X that necessarily
enjoys the property P ”, etc.).

With a parallel action, constructivistic criticism urgently stated the
necessity of a revision of the pair 〈syntax, correspondence theory of
truth〉 in favour of the analysis of the so-called “creative subject” (see
Kreisel [1965]).

Through these efforts, Logic stealthily began recovering with an
addition of a hitherto neglected dimension that was already present in
semiotics: pragmatics.

3.2.1 Meaning-conditions vs Truth-Conditions

Semiotics distinguishes between meaning-conditions and truth-
conditions. To enter the topic with a paradigmatic case, let us compare
Peirce’s and Frege’s interpretations of the semiotic triangle:
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Sense (A)

��
�
� �

�
��

Sign (B) � Denotation (C)

Semiotic triangle

Interpretant (A) Sinn (A)

��
�
� �

�
�� ��

�
� �

�
��

Representamen (B) � Reference (C) Zeichen (B) � Bedeutung (C)

Peirce’s triangle Frege’s triangle

Semiotics, as the theory of the functions of sign, is concerned with
the relation between A and B. However we can notice that, according
to Peirce, “this three-relative inference is not solvable by an action
between pairs, at all”. So we need C. But one cannot accept C if
it is intended as an extensional term instead of an intensional one.
On the contrary, the extensional reading of C is the basis of Frege’s
truth-functional interpretation of sentences. More precisely, in Frege’s
version C is a set and our interpretation reflects our ability to evaluate
the characteristic function of C via A. Otherwise stated, we have the
following interpretation function: A : B �−→ C. On the contrary, the
intensional reading of C requires a somewhat less comfortable analysis
of the semiotic triangle, as is suggested by Peirce’s “theory of the inter-
pretant”. In accordance with this point of view, U. Eco explains that
a Fregean Bedeutung is captured via the series of its proper Sinnen.
Hence, a semiotic triangle is not just a simple commutative diagram
made up of a Sign, a Sense (or Connotation) and a Reference (a Deno-
tation). Since a Bedeutung itself must be interpreted, thus it requires a
new triangular process. We can give a mathematical interpretation of
Eco’s remarks. In a sense, we can say that the interpretation function
is parameterized by the “interpretant”, so that we obtain iA : B �−→ C,
which is tantamount to a function i : A × B �−→ C. However, i is not
a term of the triangle, but the unlimited interpretation process itself,
the process that links all the three terms. Since this process behaves as
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Figure 10: Structuralist pouring model

a cultural reference for the interpreter, then C can be intended to be
a “denotation” only naively, since as a matter of fact it is a “cultural
unity” (something that culture defines as a unity distinguished from
other unities). According to this conception, a meaning is not unaccept-
able because we cannot understand it (for example “if snow is made
of chocolate, then dogs are mammals”), “but it is unacceptable because
if it were, we should re-organize our rules of comprehension.”(See Eco
[1975], § 2.5).

If this is true, we face an unlimited semiosis that circumscribes cul-
tural unities, by means of a sequence of approximations. The “final
interpretant” (which justifies the Fregean Bedeutung, actually) is a
passage to the limit.

Although it is not that evident what morphisms between Bedeun-
tung can be defined, surely they are transformations of a “state of
affairs” into another. If x ∈ C is a fixpoint under such a transforma-
tion, then it fulfills some kind of invariance property that makes it look
very closely like an “object”. For the time being we do not have suffi-
cient elements for carrying on this modeling of the “unlimited semiosis”
further, but we think that it is evocative enough for suggesting that
the “unlimited semiosis” cannot end without somehow giving the “ref-
erence” (C) the status of an “object”. This asymptotic interpretation
process is what makes it possible the comunicative use of signs for
referring to things: it does not require to be resolved into a physical or
Platonistic entity (the “third realm” envisioned by Frege).

This also means that we must revise the usual pouring model in
favour of the poiesis-aisthesis concurrent activity described in Figure 10
above.

Indeed, the “final sign” is not really a sign, but it is the “entire
semantic field as a structure which connects signs to each other”(U. Eco,
ibidem, § 2.7).16

16If this asymptotic limit were regarded as an actual entity, then it should look
like a “peradam”, the mythical stone of the “Mont Analogue”. In this novel, René
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In Mathematical Logic, after Heyting’s work we started seeing the
possibility to understand, to some extent, semantics as a “theory of
meaning”; that is to say, as a notion released from the concept of
“truth”, as we shall see in Part II.

Gentzen’s approach is not different: he aimed at releasing the notion
of “coherence” from that of “truth”. So the point of view of semiotic
was assumed, in some form, by the so-called intensional proof theory.
Of course, within the limits of the expressive power of First Order
Logic.

It is the harmony of the overall architecture of the so-called Natural
Calculus that guarantees its own coherence and that makes it possible
to speak of proofs as meaningful-in-themselves entities (proof seman-
tics). And it is this harmony together with the constructive features of
the system that makes it possible to communicate, through the dialec-
tic “poiesis (connective introduction, or right part of a sequent read
top-down)/aisthesis (connective elimination, or left part of a sequent

Daumal tells about expeditions that have to conquer the top of a mountain, called
the Mont Analogue. This mountain is higher than any mountain, hence higher than
itself. But when, after a “non-Euclidean navigation”, a team reaches the island
where Mont Analogue rises, it suddenly faces the following problem: it has to buy the
equipment for the expedition, exchanging them with a particular form of money: the
“peradam”. The “peradam” is an almost invisible stone, that can be found almost
exclusively in high lands. Alternatively the team members can work for getting
a more conventional form of money: counters. Thus a number of teams instead of
starting climbing, try to gain counters to prepare the expedition that they will never
begin, because they have to work.

As is well-known, the monetary exchange is the typical symbolic exchange, so
that this loop seems to point out that any symbol negatively and unsolvably hides
an essence. To use Hegel’s, and Marx’ concepts, it continuously turns from the
condition of being an “Erscheinung” (a phenomenon of something, a manifestation
of an essence) into that of being a “Schein” (mere appearance, illusion). As Daumal
points out in the working notes for his novel, that he was not able to finish since he
died before his time, only who starts climbing anyway, has a possibility to find the
“peradam”, a “curved crystal” that enjoys the “same refraction as the air”, hence
a sort of non-Euclidean object, a sort of “object non-object”. Thereafter, we say,
the “peradam” is a symbol non-symbol, or, rather, it is the symbol of all symbols,
the means required to climb the top of the Mont Analogue which, in turn, is the
denotation of all denotations (hence the risk of entering a loop when trying to fix
this denotation as an actual entity by means of static symbols – the counters). In a
sense, who enters the loop is an interpreter á la Frege, whereas who starts climbing
anyway is an interpreter á la Peirce.
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read bottom-up)”, “construction/re-construction”.17 The pillar of this
architecture is the Hauptsatz, the cut elimination theorem. It is this
result that allows us to go forth and back through a proof, to extract
information from it and, therefore, to amend Thom’s perspicuous and
fatal issue concerning deductions: “The engine of any logical deduc-
tion is the loss of informational content: ‘Socrates is mortal’ is less
informative than ‘Socrates is a man’.” (Thom [1980], Ch. 10, § 10.2,
footnote).

The target of intensional proof theory is, in a sense, the famous
“final interpretant”:

• Synchronously: if Π1,Π2, ...,Πn are different proofs of a formula α,
then we can intend them as different “readings”of the same infer-
ence,18 but also as different “Sinnen” of the same “Bedeutung”.
The unique normal proof of α is then the proof of α, representing
all the other proofs. It is the prototype of this inference, not just a
representative of an equivalence class of proofs (modulo the root
formula). It is a type whereas Π1,Π2, ...,Πn are tokens.

17If the ∧-introduction rule reads “From the contemporary evidence of both α
and β we can assert α ∧ β”, then the ∧-elimination rule reads “From the assertion
α ∧ β we can deduce both the evidence for α and the evidence for β.”

“To understand” is then “to deduce”, because I understand you if I can recover the
conceptual roles of the components of your phrase; and I can infer their conceptual
roles if I recognize their positions with respect to the fundamental constructors of the
sentence. In its turn, this means that I must be able to eliminate any connective that
you introduce. Indeed, this elimination is the evidence that I am able to recover the
meaning of the connective (if you say “John and are coming back” and I am satisfied,
then surely I am not understanding, or listening to you: in fact I have not understood
the meaning of the conjunction “and”. But if I really understand the meaning of
“and”, I stop you and ask “John and who?”, because I know that the elimination
rule for “and” is double and makes it possible to infer “John is coming back” and
“(I don’t know who, because “and” was ill-used) is coming back, too”. Thus, to
understand is to accomplish a deduction. For better fitting natural languages (or
at least some families of natural languages) the calculus has been refined in order
to distinguish left conceptual positions from right conceptual positions and to take
into account also the multiplicity of terms. Along this line we have Lambek calculi
and Non-commutative Linear Logic – see for instance Abrusci [1991].

Besides the specific connections between Chomski’s grammars and logics (see
Buszkowski [1988]), the first interpretation of Intuitionistic Natural Deduction as a
system describing language competence, appeared in Prawitz [1980].

18Cf. Van Benthem [1991], Ch. IV.
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Obviously Natural Calculus accounts for a theory of mean-
ing only partially. Indeed, it accounts for a purely structural and
relational understanding of “meaning”. As such, it is a genuine
Sausurrean framework. However, the notion of a normal proof is
a fair step towards a system linking all the possible “readings” of
a sentence.

• Diachronously: the ultimate system cannot be a mono-logical
system (classical, or intuitionistic or whatever you like), but a
pluralistic system, a system in which several codes can communi-
cate.

At this point we have to underline that the term “pluralistic system”
has essentially two meanings in contemporary logical researches:

• A monadic system with a plurality of logical contexts inside (this
is the “Unity of Logic” program, as derived from Linear Logic –
see Girard [1993])

• A plurality of monadic systems linked by a metacontext (this is,
roughly speaking, the program that can be founded upon Labelled
Deductive Systems and Fibred Semantics – see [Gabbay 1997 and
1996])

In accordance with the latter program we have different systems linked
by a logical middleware. In accordance with the former, the target
system itself must be a metasystem, at the same time.19

3.2.2 Logic, Meaning and Rough Set Theory

Rough Set Theory, as a theory of perception, aims at interpreting obser-
vations by means of concepts. In this framework, concepts are disjunc-
tions of linguistically describable properties, represented by unions of
basic categories (as sketched above).

19It is worthwhile to quote U. Eco again: “When one speaks of a ‘language’ as
a ‘code’, one has to think of a wide series of small semantic systems (or fields),
which couple with the unities of the meaning system, in different ways. Concerning
this point the code starts appearing as [...] the system of the semantic systems and
of the rules of semantic combination of the different unities [...]” (Eco [1968], page
110. Translation by the author). Hence, Eco thinks of the concept of a code as a
metacode.
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Nevertheless, we must recognize that in general Rough Set Theory is
considered, developed and exploited, as a theory of partial information,
data mining or knowledge discovery in databases. Generally the notion
of “meaning” is not explicitly used by Rough Set theoreticians. But this
is just a historical incident, since, generally speaking, this notion cannot
be ignored by qualitative data analysis and knowledge discovery. On
the other hand, from a technical point of view Rough Set Theory can
be developed also in the direction of a theory of meaning and formal
ontology (for a general introduction to this topic, see Subsection 5.1).

In any case, both as a theory of incomplete information and as a
theory of incompletely defined objects, Rough Set Theory induces logico-
algebraic models that are polymorphic in nature: in the same model we
have intuitionistic, co-intuitionistic, classical, modal and three-valued
logical environments.

This list is definitely the result of an application of the Neo-
conceptualistic approach: we have a mathematical object and we elicit
its logic (if any). In our case we obtain an unexpected number of
different logical behaviours, because we deal with systems that may
represent, at the same time both inexact and exact information mixed
together (as it actually happens: it is difficult to find completely fuzzy
or completely sharp information systems).

Indeed, neo-conceptualism is the declared framework of this book.
However, we must underline that neo-conceptualism is adopted as a
methodological framework in this book. It is not a philosophical com-
mitment.

So our approach should look far from intentional proof theory. But
it is not completely true. Indeed a “mixed radix” system of calculus,
as conceivable within the pluralistic approach, could be of great use for
such multifarious logico-algebraic systems. This is true, of course, if we
think that a logical global calculus is of some interest for Rough Set
Theory. But one can also suppose that what one really needs is only
an algebraic system and, eventually, a local logical calculus, that is a
logical calculus which enables us to infer formulas that are valid in a
particular model of a given class.

We shall resume the problem of the relationships between logic and
language at the end of this Introduction, specifically embedded into the
rough set framework. Therefore it has to be explained why we think
that Rough Set Theory has a genuine logical flavour.
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4 The Logico-Algebraic Interpretation
of Rough Set Systems

In logic-literature we find several systems that have been studied in
order to generalize Classical Logic because bivalence was considered an
unrealistic limitation and/or because principles like the law of excluded
middle or the law of contradiction were considered as being founded on
metaphysical assumptions or as being sources of paradoxes.

Although the motivating ideas and purposes were, evidently, differ-
ent in nature, during the development of these systems the notions of
“information” and “knowledge” have been often used as a means to
justify their logical architecture.

We can say that at present these notions have gained a citizenship
in contemporary Logic thanks to such efforts, although it has been re-
discovered as a consequence of the new problems posed by Information
Technology and Computer Science.

As we shall see, Rough Set Systems can be represented by more
than one non-classical system and, surprisingly enough, by systems
with different and sometimes contrasting properties. For instance, some
of them present intermediate values while some others do not. Some
present a chain of values while some others do not.

One can legitimately ask whether this contradictory picture is a
symptom of the fact that these logical interpretations of Rough Set
Systems is just formal but not substantial in character, or we can try
and see whether, in view of the heuristic intuition recalled above, these
relationships can be explained in terms of the notion of “information”.
Indeed, we shall see that an intermediate value has a non-metaphorical

information content, where information is intended to be as a concrete

organization of data.
In Part II we shall investigate the deep connections between these

informational features and the algebraic properties of Rough Set
Systems.

In the first part we shall analyse the local logical behaviours sug-
gested by the inherent philosophy of Rough Set Theory as related to
the notion of information “granularity” or “quality/precision”, as well
as the logico-algebraic systems induced by such local behaviours. With
the term “local behaviours” we intend to mean that one can observe
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certain logical relationships to hold in some parts of a domain, while
in other parts quite different relationships hold.

Indeed, this “mixed behaviour” depends on the information embed-
ded in a given Rough Set System and results in the polymorphism of
Rough Set Systems as logical models.

Therefore, we are not seeking a “Rough Set interpretation” of some
given logic, but, on the contrary, according to the conceptual point of
view, we are to explore in the opposite direction, that is, finding the
logic which is inherent to Rough Set Systems.

Given a universe of discourse U , according to Rough Set Theory the
basic gnoseological act is the organization of U into disjoint categories.
These categories are induced by our observations and the properties
that correspond to them are the gnoseological co-ordinates explaining
the universe U , that is, they are the starting points in order to organize
U from a cognitive point of view.

It is this “gnoseological geometry” which induces the aforemen-
tioned polymorphism of Rough Set Systems.

This polymorphism is linked with important problems related to
Logic in a broad and general sense which induces the necessity to make
classical and constructive logics coexist.

Indeed, a sentence may be regarded as either bearing information
which deserves to be constructively analysed or as bearing information
about facts which need not be analysed.

It will be proved that from both a philosophical and a mathematical
point of view the “mixed behaviour” of Rough Set Systems is a special
case of a pluralistic approach in Logic.

We know that given an Indiscernibility Space 〈U,E〉, an Approxi-
mation Space AS(U/E) is a subalgebra of the Boolean algebra of sets
℘(U). With a slight abuse of terminology from the “concrete” level, we
call any element of AS(U/E) an exactly describable subset or an exact
subset, and its atoms basic subsets. Basic subsets are extensions of basic
properties, so that exact sets are disjunctions of basic properties.

Moreover, we have seen that given an arbitrary subset X ⊆ U ,
we have two possibilities: either X is exact or not. In the first case
X is either a basic subset or a disjunctions of basic subsets.20 In the

20Strictly speaking, in both cases X is the disjunction of basic subsets, evidently,
because X =

⋃
X.
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second case we cannot use basic subsets for a direct description of
X, but we can approximate it by means of an upper approximation,
(uE)(X), and a lower approximation (lE)(X). We know that the former
coincides with the topological closure C(X) and the latter with the
topological interior I(X) of the space 〈U,AS(U/E)〉, intended as a
topological space.

Finally, we have seen that two sets which have the same upper and
lower approximations are to be considered equivalent: they cannot be
distinguished using our description capabilities. Any such equivalence
class is called a rough set.

We can give a logical interpretation to this machinery: (uE)(X) is
the set of elements which possibly belong to X because they fulfill the
same set of properties fulfilled by some element which actually is in X;
on the other hand (lE)(X) is the set of elements which necessarily

belong to X since there are no elements outside X which fulfill the
same set of properties. This modal interpretation will be analysed in
great details in Part III.

If X is an element of the Approximation Space AS(U/E), then
X = (uE)(X) = (lE)(X): its description is “perfect”. Topologically
speaking, the boundary B(X) = (uE)(X) ∩ −(lE)(X) is empty in
this case. Actually, a boundary is a region of doubt: if x ∈ B(X),
then we can say nothing certain about the membership of x in X.
We cannot say either that x is certainly (necessarily) in X, or that
x has certainly nothing to do with X: in fact it could belong to
X, since it is indiscernible from some element of X; but actually it
does not.

Therefore if one wants to grasp this situation one has to generalize
the classical two-valued characteristic function turning it into a three-
valued function. But this generalisation works in dependence on the
separation properties fulfilled by the topological space 〈U,AS(U/E)〉.

In the “concrete” setting, this depends on the granularity of our
knowledge which, in turn, depends on the level of accuracy of our
information with respect to the given set of objects. We have the best
separation properties when AS(U/E) = ℘(U). In this case the resulting
topology is the discrete topology (that is Hausdorff and completely
disconnected) and one can single out each element of U . In a sense,
we have enough basic properties for “naming”, or “labeling”, any sin-
gle object which, indeed, is isolated by a singleton of ℘(U). On the
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contrary, when all the objects are indiscernible, one obtains the trivial
topology: AS(U/E) = {∅, U}.

However, usually intermediate cases will be given in which some
elements can be singularly “named”, while others cannot be singled
out by means of the information at our disposal: in general in 〈U,E〉
some equivalence classes are singletons while others are not.

Let us denote the family of the equivalence classes that are singleton
by B∗, and with P ∗ the family of the equivalence classes that have car-
dinality strictly greater than 1. B∗ and P ∗ do not have the same logical
role in the construction of a rough set system. In fact the elements in
B∗ are “exact” in nature and they should enjoy the two principles of
Classical Logic reflecting bivalence and exactness: the excluded middle

and the contradiction principle. Indeed, given a set X and an open
(basic, of course) singleton {s}, either {s} is included in (lE)(X) or it
is included in −(uE)(X). On the contrary any basic open set with at
least two elements may be included in the boundaries of at least two
different sets. Therefore, if there are no singletons in AS(U/E), then
there are at least two sets X such that (uE)(X) = U and (lE)(X) = ∅
(think of any set which picks up exactly one element out of any basic
open set). From the point of view of Approximation Space theory, such
an X is called an undefinable set. Obviously, if X is undefinable then
B(X) = U .

Thus we may think that for any Rough Set System there are two
distinct local logical behaviours: one is classical and localized on B =
⋃
B∗, whereas the other one, localized on P =

⋃
P ∗, is purely three-

valued. It is the combination of these local behaviours that defines the
overall logical features of the system. It follows that the construction
of RS(U/E) will depend on the parameter B (or P , which is the same
because B = −P ).

Moreover, in RS(U/E) any rough set induced by an element of
the Approximation Space AS(U/E), must have a particular logical
behaviour too: such an element corresponds to an exactly definable
subset of U , hence, again, it should fulfill Classical Logic, but within a
logical environment which might be three-valued.

Thus we have two levels of local logical behaviours: one is related
to the internal definition of rough sets, the other deals with the global
logical properties of Rough Set Systems.

The first completely depends on the parameter B (or P ). These
parameters cannot be recovered from the “geometrical” shape of the
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Approximation Space AS(U/E).21 It follows that an inspection of the
atoms is unavoidable in order to define RS(U/E). Because the infor-
mation provided by this inspection does not have any lattice-theoretic
content, we call B and P external parameters or empirical parameters

and say that they are able to distinguish the external classical local

behaviour within an Approximation Space.
On the contrary, we can analyse the logico-algebraic structure of

RS(U/E) from a pure abstract point of view. In fact, also in this case
we have to use a particular parameter, but curiously enough, though
this parameter is induced by B, nevertheless it is definable in RS(U/E)
by means of a mere lattice-theoretic definition. For this reason we call it
an internal parameter and we shall see that it distinguishes the internal

classical local behaviour within a Rough Set System.
In this Chapter we shall analyse both local behaviours by exploit-

ing the mathematical notions that best manage the concept of “being
locally the case that”, namely Grothendieck topologies and Lawvere-
Tierney operators.

5 Equivalence Classes, Abstraction

and Meaning

5.1 Types, Tokens and Abstract Points

So far we have seen that the notion of an equivalence class is exploited
in order to account for some abstraction mechanisms in concept forma-
tion. It is time to investigate this move in some more details and try
to embed it in a more general setting.

21At least we have to compare the cardinality of U with the number of atoms of
AS(U/E). More precisely, if the cardinality of the universe U is n and AS(U/E)
has n atoms, then any atom is a singleton. It immediately follows that B = U and
P = ∅ and we can straightforwardly construct RS(U/E) by means of the techniques
described in Part I. If n ≥ 2 and AS(U/E) has n − 1 atoms, then there are n − 2
atoms with cardinality 1 and one atom with cardinality 2. Using this information,
it is possible to define a lattice L isomorphic to the rough set system RS(U/E): we
can randomly choose an atom x of AS(U/E) and use it as it were the parameter
B, since the elements of x are immaterial in the construction of L. But if n ≥ 3
we obtain L = RS(U/E) only by chance, because in order to have identically the
equality, we should inspect AS(U/E), discover the unique non singleton atom and
use it as parameter. If AS(U/E) has n− 2 atoms for n ≥ 4, we cannot even know
how many singletons there are.
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First of all an equivalence class stands for a type of objects (tokens).
The problem “types vs tokens” is a long stated issue in philosophy. In
Modern Age we found it since the querelle between Locke and Berkeley.
In fact, Berkeley doubted that there could be a generic representative x
of a concept C. That is, Berkeley claimed that if x is a representative of
a concept C, then x itself is a specific entity belonging to that concept.
For example, it is impossible to think of a “generic triangle” without
thinking of a “particular triangle” (equilateral or right-angled, and so
on). Thus any attempt to provide a generic instance of a type collapses
into a mere token.

This problem entered modern logics through Frege’s and Russells’s
works. The “extensional solution” to the problem is to consider equiv-
alence classes [x]≡ (for some equivalence relation ≡) and choosing a
representative y of [x]≡. Since y ∈ [x]≡, this solution is in accordance
with Berkeley’s vision. The choice of y instead of another element
of [x]≡, is just a matter of convention and this relative freedom is
supported by the well-known isomorphism theorems and their corol-
laries, to the extent that ≡ is a congruence relation with respect to
the operations we are interested in (independence of the operations of
the particular choice, in the quotient structure). But we can illustrate
a different and more refined solution, borrowing some techniques from
Pointless Topology. This solution, in a sense, meets both Locke’s and
Berkeley’s conception.

In Pointless Topology, a family of open subsets of a topological
space is considered from a very abstract point of view. In fact, we
forget points. What is taken into account is just the abstract alge-
braic structure, called a frame, induced on the family of open sets by
their fundamental relationships so that the most relevant relationship
between frames is that of homomorphism. The algebraic structure of a
frame has the following intuitive motivation:

1. Any usual open set a of a topological space 〈U,Ω(U)〉 (where Ω(U)
is the family of open subsets of U) collects all the objects in U

which are near each other with respect to the vicinity relation that
is set by the topology Ω(U). If the nearness relation is interpreted
as “similar behaviour with respect to a property P”, then a may
be thought of as the extension �P� of P.

Moreover, we are not speaking of generic properties, but of
“observable properties”. Observable properties fulfill the follow-
ing principles, that are independent of the nature of points:
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2. One can check any disjunction of observations. That is, if x is an
element of our universe and P is an observable property, one can
affirm that x ∈ �P� (x is in the extension of P, x enjoys P), even
if P = P1∨P2∨ ...∨Pn ∨ .... Hence we allow infinite disjunctions,
because the first positive observation about P(x) stops the search.
In particular we can check

∨
∅, that is the smallest property.

3. We can check only a finite amount of observations, hence we
allow only finite conjunctions of properties. In particular we can
consider

∧
∅, that is the largest property.22

4. In order to check P ∨ (Q1 ∧ Q2 ∧ ... ∧ Qi), we have to check
(P ∨Q1)∧ (P ∨Q2)∧ ...∧ (P ∨Qi); from above it follows that we
allow that disjunction distributes only over finite conjunctions.

5. Dually, conjunction distributes over arbitrary disjunctions.

Indeed these are the axioms for any frame of open subsets of a
topological space. Generalizing them and forgetting points, we say that:

Definition 5.1. A frame is a lattice bounded by a top element and
a bottom element, with infinite disjunctions, finite conjunctions and
corresponding distributive laws.

Henceforth, any frame F can be considered as a system of observable
properties tout court, without any reference to points.

Starting from this consideration, in Pointless Topology a radical
phenomenological point of view is assumed: we only perceive properties
while substances (objects, points) are “noumena”.

This interpretation of Pointless Topology, first appeared in Com-
puter Science literature, within the researches on Denotational Seman-
tics of programming languages:
“Intuitively, the idea of a computable property is simply this: we have
a uniform procedure that, given (a code for) x, tells us within a finite
time that ” P(x)” holds, whenever that is true. Of course this is just
the idea of semi-decidability.
(...) a specification of an object (say a program) is a (finite or countable)
list of properties that the object is to satisfy. In view of our identification

22
∨
∅ is the smallest element of the set {x : for all y ∈ ∅, y ≤ x} = {x : (y ∈ ∅)

implies (y ≤ x)}. But this set equals U , because the premise of the implication is
false. Thus

∨
∅ is the smallest element of U . Dually for

∧
∅.
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of properties with open sets, this means that what is specified is always
a countable intersection of open sets [more precisely] the computable
properties will, rather, be the basic open sets and effective unions of
them.
(...) If we really think of the (basic) open sets of a space as the fun-
damental properties of interest in the space, then, presumably points
having the same neighborhood should not be distinguished. We thus
require spaces to have the T0 separation property.
(...) A more radical position would be that, since we can be concerned
only with the (ascertainable/computable) properties of points, points
should be treated as logical constructions out of properties. Points, in
this approach, will be mere ‘bundles of properties’.” (Smyth [1983]).

We now shall exploit this point of view in order to suggest a
possible solution to the “generic element” problem, above discussed.
In fact we shall construct “generic elements” in three steps, starting
from an abstract frame.

STEP 1 [From Denotational Semantics]:

• Consider just what you effectively have: the phenomena (or obser-
vations) and their relations that arrange phenomena into a frame
F. Thus, consider F as an abstract structure, not a family of sets
of objects.

• So, any a ∈ F is a property whose extension is filled by unknown
“noumena”.

STEP 2 [From Locke’s Naming Principle]:

• Since our thought retains that qualities (that is, “properties”
in our terminology) cannot subsist “sine re substante” (without
some-thing underlying it), we can assume that qualities define
substances. This means that those “noumena” whose qualities go
always together (i.e. are indiscernible) must be named by a single
name (cf. Locke).

• Under this point of view, we have the equation substance=
bundle of properties.
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STEP 3 [From Pointless Topology]:

• Bundles of properties define abstract points. Hence abstract

points are particular characteristic functions of their qua-

lities. Thus any abstract point p is represented by a particular
functions p̂ : F −→ {0, 1}:

• Any function p̂ has the intended meaning:

p̂(a) =
{

1 if p satisfies a
0 otherwise

• How to guarantee this intended meaning? Clearly p̂ must pre-
serve all the relationships between phenomena, hence all frame
operations. For instance if p satisfies the complex property “a
and b”, then p must satisfy both property a and property b;
this means that p̂(a ∧ b) = p̂(a) ∧ p̂(b). Similarly for ∨, the null
property ⊥ and the top property �. In other words p̂ must be
a {0, 1} − homomorphism between F and 2 (the two element
Sierpinski frame 〈{0, 1}, 0 ≤ 1〉. Thus,

substances = HOM(F,2).

(the set of {0, 1}−homomorphisms from F to 2).

• If p̂ ∈ HOM(F,2), then the inverse image of its true-kernel (that
is, the inverse image of 1 along p̂) is a principal filter ↑ p = {x ∈
F : p ≤ x} generated by a co-prime element p of F.
A co-prime element is an element belonging to the set J (F) =
{a ∈ F : ∀S ⊆ F((a ≤

∨
S) ⇒ (a ≥ s for some s ∈ S))}.

For this reason, co-prime elements are also called join-irreducible
elements: they cannot be reached by means of a disjunction of
strictly smaller elements. Now, notice that if a � c, b � c, c =
a ∨ b and p̂(c) = 1 but neither p̂(a) = 1 nor p̂(b) = 1, then
h is not a homomorphism, because in the Sierpinski frame 2,
x ∨ y = 1 if and only if x = 1 or y = 1. But if p̂(a) = 1 or
p̂(b) = 1, then c is not the least element of p̂−1(1), because a � c

or because b � c. Henceforth, the element generating p̂−1(1) is
always join-irreducible, for any homomorphism p̂ belonging to
HOM(F,2).
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• Since there is a bijection between {0, 1}-homomorphisms and co-
prime elements, we can consider J (F) as the set pt(F) of abstract
points of F:

pt(F) = J (F).

• Now, for any property a ∈ F, we have to know the abstract points
belonging to its (abstract) extension. Since any such extension is
a subset of abstract points, to obtain this information we have to
apply some function, φ, mapping F to ℘(pt(F)). This function,
again, must preserve the intended meaning of the abstract points.
That is, φ must be dual to the construction of the abstract points.
Thus, the definition of φ is the following:

φ : F −→ ℘(pt(F)) : φ(a) = {p ∈ J (F) : p fulfills a}
= {p ∈ J (F) : a ∈ p̂−1(1)}
= {p ∈ J (F) : p ≤ a}

Hence φ(a) = {p ∈ J (F) : a ∈↑ p}.
If F is finite, then φ is always an isomorphism between F and φ(F)

and this procedure is essentially the core of Birkhoff’s duality result for
finite distributive lattices.

Here is a simple, but clarifying, example.

Example 5.1. Pointless topology and abstract points
Consider the following frame F:

7

6

�
� �

�
4 5

��
��
��

2 3

�
� �

�

1

One can notice, for instance, that the map p̂ such that p̂(2) = p̂(4) = p̂(5) = p̂(6) =
p̂(7) = 1 and p̂(1) = p̂(3) = 0 is a {0, 1}-homomorphism from F to 2. The pre-image
p̂−1(1) = {2, 4, 5, 6, 7} is a principal filter of F. The element generating p̂−1(1) is 2.
Along this way, we find that the set of the elements generating the true-kernels of
all the {0, 1}-homomorphisms from F to 2, pt(F), is
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2

4 3

�
� �

�

7

Notice that on pt(F), the order � is given by x � y if ↑ x ⊆↑ y.
Now let us apply the map φ : F −→ ℘(pt(F)); for instance to the element 5:
φ(5) = {p ∈ pt(F) : p fulfills 5} = {p ∈ pt(F) : 5 ∈↑ p} = {p ∈ pt(F) : p ≤ 5} =

{2, 3} = ↑� {2, 3}, where ↑� denotes an ordered filter with respect to the order �.
Then the application of φ to F, φ(F), gives

{2, 3, 4, 7}

{2, 3, 4}

�
� �

�
{2, 4} {2, 3}

��
��
��

{2} {3}

�
� �

�

∅

This lattice is easily seen to be isomorphic to F. Moreover φ(F) = {↑� X :
X ⊆ pt(F)} (φ(F) is the Alexandrov topology over the preordered set 〈pt(F),�〉 –
cf. Mathematical toolkit 16.4).

From the above construction, it follows that co-prime elements are
the generic elements we were looking for. They represent abstract points
because they represent the basic properties from frame F, because
the principal filters that they generate in J (F) are the topologi-
cal basic open sets of the spatial (i.e. with points) topological space
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〈pt(F), φ(F)〉. In fact, this procedure is called the spatialisation of a
frame F, SPAT (F).

It is worth emphasizing that given a generic frame F, it is not guar-
anteed that φ(F) is isomorphic to F. It could be only homomorphic.
If φ is an isomorphism, then F is said to be spatial; this means that
it was really the abstraction of a topological space (with points). Oth-
erwise we have a somewhat interesting situation in which there are
less abstract points than properties, so that abstract points are not
enough to separate or to distinguish, properties: there are at least two
properties with the same (abstract) extension. In this case inseparable
properties collapse via the application φ. This may happen only if F is
infinite (for instance a Boolean algebra without isolated points).

Dually, if F is the frame of open subsets of a topological space 〈U,F〉,
surely φ(F) and F are isomorphic, since F is “a priori” spatial, but
〈U,F〉 and 〈pt(F), φ(F)〉 might not be homeomorphic. This happens
when there are less abstract points than concrete points. In this case F
does not have sufficient properties to separate all “concrete” points. In
other words, the original space U is too reach in points: there are at least
two distinct points x, x′ fulfilling exactly the same properties. Then, the
result of the spatialisation is a more essential copy of 〈U,F〉, because
unseparable points collapse via a function η from concrete points to
abstract points – that is, from U to pt(F) – naturally induced by φ

(i.e. η is a function U �−→ pt(F) preserving the isomorphism φ). Then,
it should be clear why the resulting space is called a soberification of
the given one – see Johnstone [1982]. In most cases the soberification
of a topological space τ is homeomorphic with its T0-ification.23

We shall see these concepts at work in Part I and Part II.
In any case, through the isomorphism φ, a co-prime element is not

only a property, but also an element of its own “virtual extension”: if
a ∈ pt(F), then a ∈ φ(a), because a ≤ a. Call it the generic represen-
tative of the property a. If a /∈ pt(F), then it is a property definable
by means of more elementary properties (because a is join-reducible)
and its “virtual extension” is made up by their generic representatives.
This solves, in a precise mathematical sense, Berkeley’s issue.24

23Not always, anyway: see Johnstone [1981].
24A thorough study on these topics can be found in Pagliani [1992], while a variant

of this construction, specifically dealing with Locke’s “generic objects”, is discussed
in Santambrogio [1985].
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5.2 Abstract Points and Meaning

In semiotic terms, an abstract point is a “cultural unity”, a bundle of
cultural properties, not a physical object. In fact, references to physical
objects should be avoided in semiotics.

According to U. Eco,
“Let us suppose that I point out a cat, saying |this is a cat|. Everyone
would agree that the sentence “the object I have pointed out is a cat”
is true, or rather, it is true the sentence “the percept I have pointed
out at point in time x was a cat” (...). But in order to make the above
sentences verified as true, I must translate them in the following way:
“the percept connected with my pointing out at moment x, represents a
concrete instance of a perceptive type conceptually defined in such a way
that the properties belonging to the perceptive model systematically
correspond to the semantic properties of the semema cat and in such
a way that both sets of properties usually represent the same meanings”.
At this point, the cat-referent is no longer a mere physical object.
It has already been transformed into a semiotic entity.
(...) In other terms, both the word |cat| and the percept or object ||cat ||
culturally stay for the same semema”. (Eco [1975], page 221. Emphasis
by the author).

5.3 Abstract Points and Rough Sets

Let us sum up the approach proposed above, from the point of view of
Rough Set Theory.

In the case of an Approximation Space AS(U/E), the co-prime ele-
ments are the atoms, that is, the elements of U/E. Hence any abstract
point e happens to be an equivalence class. Because it is an atom, there
are not generic elements strictly smaller than e. It follows that the open
set of abstract points φ(e) is the singleton {e}, so that all the elements
of e collapse into the abstract point e, via the function η induced on
U by φ. It follows that any element of the equivalence class e can be
legitimately taken as a representative of e.

This could resemble the extensional solution. Indeed e, qua equiva-
lence class, is the extension of a basic property P. But, qua element of
the frame AS(U/E), from the above discussion it is also an abstract
property. However, qua abstract point it is a generic representative of
the basic property P and of the elements of e, that collapse into e itself,
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as well. Therefore we should intend both an equivalence class and its
representatives as descriptive labels of a basic property. Such labels
describe a basic property using a language made up of the attributes,
A, the values, V , and by the conjunction ∧. On the contrary, any
non-atomic element of AS(U/E) is described by a disjunction of labels.

Therefore, when we apply the operators (lE) and (uE) to a set X,
we virtually apply labels, predetermined by the Information System I,
to describe X using the linguistic apparatus at our disposal. In other
words, by means of the approximation operations we interpret a set X
exploiting the qualitative (or intensional) part of the language of the
Information System.

So, we should regard an Approximation Space as a linguistic basis
expressing properties induced by a primary observation of the ambient
space.25

This is the reason why we have introduced Approximation Spaces
as background spaces. Now one can add a qualification: background
cultural spaces, that is, spaces with structures depending on theoretical
assumptions.

Pointless topology is a powerful research field which makes it pos-
sible to model a pure phenomenological approach to data analysis.
Indeed it will guide our discussion throughout Part I when we shall
analyse perception systems and in Part II when we shall develop the
logico-topological and logico-algebraic interpretations of Rough Set
Systems.

6 Rough Sets and Logic

As far as now we have seen that Rough Set Systems have an intrinsic
algebraic structure. This structure may be made into different logically
interpretable algebras. “Logically interpretable” means that we have
language-oriented operations like “or” and “and”, language-oriented

25This operation of abstraction and labelling, is central also in the context of
morphogenesis. In fact, any object must be equipped with a regulation system, in
order to survive in a complex but limited ambient space. This regulation system is
based on some mechanism for comparing the forces operated by other objects of the
ambient space. This implies that such a comparison is possible. And it is possible
when objects share some common field of forces with the same nature.

Therefore an abstraction mechanism is unavoidable that substitutes the same
label for different objects. (cf. Bruter [1974], pp. Ch. II, §1)
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constants like “definitely yes”, “definitely no”, and “nothing certain (up
to particular subset of the universe of discourse)” and, finally, sentence
modalizers like “not”, “it is necessary that” and “it is possible that”.

We have seen the Rough Set interpretation of the above linguistic
machinery. Now, in order to go towards a full logical picture of rough
sets, we have to answer the following question: “What are the relation-
ships between empirical constructions like concrete Rough Set Systems
and universal constructions like logical systems?” Which amounts to
asking “What is a Rough Set Logic?” Let us try to answer.

To some extent, Logic is a rationalisation of empirical activities
such as exploration and understanding of space-time relationships, or
such as mathematical creation or, in general, the linguistic appropria-
tion of reality (may it be physical or conceptual). Scope and effect of
this rationalisation may be illustrated by the following example. Any-
one who is familiar with mathematical research can easily confess that
nobody obtains results by thinking straightforwardly in terms of lem-
mata and main propositions. That is, no one creates mathematics by
planning “ex ante” a linear development of his/her own thoughts as it
is idealized by logical calculi and as we find in its formal exposition.26

The clean and rational exposition of a result is a linguistic operation
applied “ex post”, which has not so much relation with its conceptual
history and which has two main purposes:

• Communication

• Systematic check of the inference steps

In turn, “communication” means at least: making the result “receiv-
able” and understandable using standard techniques and protocols that
are shared and acceptable within the scientific community.27 Anyway,
once deposits of this linguistic apparatus, that we call “Logic”, have
been properly abstracted, they become active tools for deeper analy-
ses of the given results, for new discoveries, for making different fields
communicate each other, or for communicating with artifacts that use
symbolic languages.

26Using terms from Natural Calculus, we might say that no one proves anything
by means of normal proofs, except for trivial cases.

27This has clear advantages but can generate mystifications: acknowledged sym-
bols or even concepts does not necessarily transform any content into a scientific
result (see, for instance, Suchman [1993] and some examples from Sokal & Bricmont
[1988]).
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The extent to which what we have called “empirical activities” is
purely empirical, is not known to us. We hardly may decide if Logic
is just an “ex post” rationalisation of empirical activities or if empir-
ical activities are guided “ex ante” by logical laws too. In any case,
apart from any phylogenetic consideration, we can observe that Logic
is eminently a linguistic activity: by definition one cannot work with
Logic without a language. Neither one can decide if Logic is dialectic
in nature (as in Plato or Hegel) or if it is categorial (as in Aristotle,
Kant and in modern Logic).

In Indian thought, for instance, Logic definitely is derived from lin-
guistic studies and has a dialectic flavour. Indian grammarians were
precursor of logicians in that they discovered universals of language
long before the development of Logic as a discipline. And this achieve-
ment was the result of empirical investigations on Sanskrit (and other
languages). The linguistic school founded between the fifth and the
second centuries BC developed over time until its connection with the
Navya-nyaya, that is, classical Indian Logic which began with Gangesh
Upadhyaya in the thirteenth century A.D.

But again, as one can deduce from the discussion in Subsection
3, and as it was pointed out by a distinguished specialist in Indian
Logic, this does not prove, of course, that logical principles depend
on linguistic structures, because linguistic structures themselves may
depend on a deeper structures of thinking or “being” (see Staal [1960]).
Nevertheless, it is an empirical and historical matter of fact that Indian
scholars developed advanced abstract logical concepts by studying lin-
guistic structures and their actual dialogical uses. Indeed, the dialogical
basis of Indian logical thought is particularly evident in some cen-
tral concepts like that of “paksa” which, roughly speaking, is a sort
of connection between a given hypothesis and a prototypical exam-
ple or counterexample of the hypothesis itself (used, therefore, both in
dialogical reasoning, reasoning by cases and in indirect proofs).

Moreover, we do not like to stop our discussion with this open
question about the “a priori” vs “a posteriori” nature of the logical
structure of language or of the linguistic structure of Logic. We must
try and venture a workable hypothesis. This hypothesis goes along a
“side” interpretation of those phenomena that have been studied both
within genetic epistemology (Piaget) and cognitive linguistic (Vygot-
skij). Infancy is characterised by the effort to have access to language.
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We need this effort since we are not born equipped with a formed lan-
guage. Therefore, language is something definitely different from our
senses: whereas senses are tightly coupled with our environment, the
activity of developing a linguistic competence induces a permanent dis-
tance between human beings and any determined environment. This
distance, experienced since infancy, opens the possibility of abstrac-
tion and History and transforms an environment into a World (see
Agamben [1981]). Otherwise stated, the ontogenetic effort to access
language, induces a sort of coding mechanism which separates real-
ity from its representation.28 Then, the typical universal framework of
Logic is, in this respect, the crystallisation of these linguistic mecha-
nisms, the crystallisation of tools that we use to live in a meaningful
world.

With a shift of plane, we may therefore intend our logico-algebraic
interpretation of rough sets as a process aimed at the linguistic compre-
hension of a given “reality” and Rough Sets Logic as the crystallisation
of the linguistic apparatus that we empirically use in this process to
deal with this “reality” in a meaningful way. To summarize, we shall
have:

AS(U/E) � RS(U/E) � LM

�
�
�
�
��
RSL

��
�
�
�
�

AS(U ′/E′)
	

� RS(U ′/E′)
	

� LM′
	

Abstraction levels

AS(U/E)
1st� RS(U/E)

2nd� LM
3rd� RSL

28Moreover, according to De Kerckhove, the phonetically complete Greek-Roman
alphabet induced a double coding mechanism (from signs to sounds and from sounds
to concepts) that opened the possibility to Western abstraction and rationalisation
attitude (see De Kerckhove [1990]).
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where LM and LM′ are instances of a class of logico-algebraic
models. Any instance is derived from concrete Rough Set Systems,
RS(U/E) and RS(U ′/E′). In turn these systems are derived from
particular Approximation Spaces AS(U/E) and AS(U ′/E′), and,
thereafter, from particular Information Systems (the “given reality”).
Thus both LM and LM′ have their own local use in the process of
interpretation of the specific features of AS(U/E) and, respectively,
AS(U ′/E′) . But Rough Set Logic RSL is complete with respect to
LM, LM′ and all the other instances of that class of algebraic models.
Completeness pays a price in terms of capability to grasp the specific
relations living in specific Information Systems, Approximation Spaces
and Rough Set Systems. But with completeness we gain the possibil-
ity to “reuse” our discoveries in RSL, throughout different instances of
Information Systems.

Although we are aware that this argument does not write the word
“end” on the problem of the meaning of a Rough Set Logic, nevertheless
we think that it may help the reader positioning this logic within the
framework of the present book.

7 Concluding Remarks

It is virtually impossible to end the above discussion with a full stop.
Therefore we shall address the reader to a series of topics encompassing
general philosophical issues connected with the above discussion and
that constitute open research fields.

First of all, Phenomenology-Logic relationships are (although not
exclusively) embedded in a research field known as “Formal Ontology”.
Formal ontology is inspired mainly by Husserl’s work and filtered by
a series of researches on terminological logic in expert systems (see
Brachman et al. [1985]). However Formal Ontology may be framed into
different philosophical streams, such as nominalism, conceptualism or
realism. An excellent philosophical accounts of Formal Ontology can
be found in N. Cocchiarella’s papers.

According to a common understanding, Formal Ontology deals with
basic conceptual (a priori) distinctions and relations such as:

(1) Part-whole, (2) Dependence, (3) Integrity, (4) Identity.
The above distinctions link Formal Ontology with a series of

disciplines such as:
(a) Mereology, (b) Topology, (c) Morphology, (d) Logic and general
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mixed research fields, like Natural Language Processing, Knowledge
Representation, Speech Recognition and Pattern Recognition.

In turn, Mereology (and Ontology), Topology, Morphology and
Logic have well-established links with Rough Set Theory and its
generalisations and extensions.

It is almost impossible to quote all these connections. In this book
we shall develop a part of them.

From the point of view of Rough Set Theory, just to be strictly
confined to the above mentioned topics, Lech Polkowski’s and Andrzej
Skovron’s scientific work is a fundamental reference for “Rough Mere-
ology”, Ivo Düntsch and co-workers have obtained a number of results
about Spatial Reasoning, while Ewa Or�lowska is a reference scholar
for the relation-algebraic approach to a number of the above research
themes (not to mention her pioneering and fundamental researches on
Rough Sets and their connections with modal and non-classical Logics
and Algebraic Logic).

A large body of Chinese researchers – lead by T. Y. Lin and, more
recently, Y. Y. Yao – is emerging in Rough Set Theory, from the main-
land, the USA and Canada, which proposes interesting generalisations
both from theoretical and application points of view.

Finally we have to mention James F. Peters’ researches on the con-
nections between Rough Sets and Neuro Computing and applications
of rough set based information granules in a number of fields.

We repeat that this is, by no means, a complete list. However it may
serve for useful searches in the WEB.
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A Mathematics
of Perception
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Chapter 1

Observations, Noumena
and Phenomena

1.1 Foreword

Despite the name, Rough Set Theory relies on a well defined mathemat-
ical ground. This, of course, is what one would like to obtain from any
sort of formal and analytic approach to “cognitive” problems. But, sur-
prisingly enough, besides the required rigour, Rough Set Theory shares
a number of common features with old and new theories belonging to
widely different traditions and fields.

And “surprise” is not just a rhetoric if one thinks of the peculiar
“practical” problem this theory is originated from. At times, this theory
appears as a particular case of more comprehensive approaches, while
in other cases it appears as a generalization of well established theories.

The latter case will be evident in the logico-algebraic analysis of
Rough Set Theory (see Part II). The former case may be observed
when dealing with the very beginning of Rough Set Theory which is
based on the concept of a classification of entities by means of their
observed properties.

From this point of view Rough Set Theory happens to arise from
a particular data analysis approach. Its peculiarity is synthesized as
follows:

• Data are analysed statically at a given point in time of a possibly
evolving observation activity.

3
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• As a consequence, the analysed data provides us only with an
approximated picture of the domain of interest (because typically
we do not have a complete set of observed properties, at a certain
point in time).

Therefore, in order to frame Rough Set Theory we shall discuss three
basic topics:

1. What are the basic formalisable relationships between “entities”
and their “observable properties”.

2. What may be intended of “dynamic observation”.

3. In what sense Rough Set Theory is based on flat cuts of branching
sets of dynamic observations.

The status of an observation system at a certain point in time is essen-
tially a triple P = 〈G,M,�〉, that we call a Property system, were G is
a set of objects, M a set of properties and �⊆ G × M is intended
to be a fulfillment relation. From the concept of an “observation”
we shall define a family of basic “perception constructors” mapping
sets of objects into sets of properties, called intensional constructors,
decorated with “i” and sets of properties into sets of objects, called
extensional constructors, decorated with “e”. After that we show that
some pairs of constructors from opposite sides, namely 〈〈e〉, [i]〉 and
〈〈i〉, [e]〉 fulfill adjunction properties. That is, one behaves in a partic-
ular way with respect to properties if and only if the other behaves
in a mirror-like way with respect to objects. Hence, adjunction prop-
erties state a sort of “dialectic” relationship, or mutual relationship,
between perception operators, that is what exactly we want in view of
our “phenomenological” approach.

Basic constructors generally do not admit inverse operations which
from an intensional characterisation of a set of objects X, [i](X) or
〈i〉(X) make it possible to determine backwards X by means of con-
structors decorated with “e”.

Indeed, what we have is a set of properties Y obtained through some
means of observation, like 〈i〉 or [i]. In a sense Y is a “proxy” of some
set of objects that we have to fit into a conceptual pattern.

Fortunately adjunction properties make combinations of basic con-
structors into generalised upper approximation and lower approxima-
tion operators. A lower approximation of a set X of objects gives its



1.1 Foreword 5

best description from below, in the sense that it is the largest sub-
set of X which can be described by means of our observations. An
upper approximation of X gives the best description form above, in
the sense that it is the smallest superset of X which can be described
by means of our observations. More precisely, we shall see that we can
“phenomenologically” approximate X in the following way:

〈e〉([i](X)) ⊆ X ⊆ [e](〈i〉(X)).

However, this is just the first step, because the approximation oper-
ators 〈e〉[i] and [e]〈i〉 are not continuous, that is, they exhibit “jumps”
in the presence of set-theoretical operations. Therefore we synthesize
the structuring properties of a P-system into a new relational system
〈G,G,RP〉 where RP is a relation between objects – hence no longer
between objects and properties – embedding the relevant informational
patterns of P. This way we can define a second level informational
structure in which adjointness makes second level approximation oper-
ators fulfill nice and more refined properties. Also, in this way we shall
be able to account for more general forms of Information Systems,
called “Attribute systems”.

Since a symmetrical synthesis may be done with respect to prop-
erties (or attributes), given an Information (property or attribute)
System S we shall derive, on the basis of informational criteria:

– A family GS of operators manipulating sets of objects

– A family MS of operators manipulating sets of properties

– A family IS of operators transforming sets of objects into sets of
properties

– A family ES of operators transforming sets of properties into sets
of objects

A Multi-agent pre-topological Perception System will be therefore
defined as a structure:

〈G,M, {GSk}k∈K , {MSj}j∈J , IS,ES〉

where any Sk is an Information System on the set of objects G and
set of properties or attributes Mk possibly distinct from M , any Sj is
an Information System on the set of properties (or attributes) M and
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set of objects Gj possibly distinct from G, IS : ℘(G) �−→ ℘(M) and
ES : ℘(M) �−→ ℘(G), where for any set X, ℘(X) denotes the powerset
of X (set of all sets).

This generalisation makes it possible to manipulate sets of objects
(of properties, attributes) by subsequently applying informational cri-
teria induced by different Information Systems. Notice that any of the
above families is possibly empty.

Eventually we shall focus on a particular Perception System
〈G, ∅, {�,♦}, ∅, ∅, ∅〉, were � and ♦ are sorts of topological interior,
respectively closure operators, defined on the basis of rather intuitive
informational criteria. Such a Perception System is what we call a
“Classical Approximation System”.

1.2 Formal Relationships Between
“Noumena” and “Phenomena”

When we are given a set of “cognitive data” (meaning data that we
want to organize in some cognitive manner in order to make them
emancipate from the status of “data” to the status of “knowledge”),
the very first approach is to organize them in categories, on the ground
of some patterns depending on those properties through which they
manifest to the observer.

Otherwise stated, data are to be considered, from a methodological
point of view, as “noumena” whose initial links with our sensitiveness
are given by their observable properties or “phenomena”.

“Noumenon”, the singular of “noumena”, means “to be perceived by
mind”. In any phenomenological approach to reality, noumena cannot
be directly named because they receive an ontological and conceptual
status only through the filter of phenomena. In other words, although
we can assume that observables properties are projections of noumena,
by pulling back the conceptual elaboration of these observables we
obtain just phenomena while noumena remain as philosophical marks
with a double meaning: (a) phenomena are not void constructions but,
indeed, they “speak” of something; (b) phenomena are not that “some-
thing” but, in a sense, approximations whose limits depend on our
categorisation capabilities.

Actually, this picture is coherent with the Aristotelian point of
view that something exists beneath phenomena: a substance (from the
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Latin “substantia”, literally: something that stays below) or an essence.
Otherwise any pull-back from phenomena to noumena would be vacu-
ous and we should deal only with observable properties (indeed, this is
the point of Berkeley’s radical idealism – see Introduction).

This is, clearly, a restrictive meaning to the philosophical term “phe-
nomenon”. Indeed, in a sense, it is close to what in classical German
philosophy is called “Erscheinung” (manifestation) in contraposition to
“Schein” (appearance): since a “Schein” does not presume an essence
(“Wesen”), it may be a fallacy (“Betrug”), while an “Erscheinung” is
the manifestation of a property of an essence, the only means through
which we are aware of it: “Das Wesen muss erscheinen” (“Any being
must manifest” – see G. W. F. Hegel, Wissenschaft der Logik, Meiner,
Leipzig). However, the phenomenological approach does not permit an
essence to be presumed independently of any phenomenon, so that
phenomena are, so to say, ‘cognitive proxies’ for essences.

We do not claim that things actually run in this way. First of all, phe-
nomenology is much more complex an approach. Second, “observable
property” is a tricky concept. Actually, in view of the limiting results
of recursion theory (see Frame 4.4) we shall assume that “observable
property” means a property observable within a finite interval of time
(“finite observation”).

What we have roughly described, is just a methodological approach
providing us with the conceptual framework which is able to suggest
the mathematical tools that we have to adopt.

Shortly, we apply the term “phenomenon” to “what appears” to an
observer through a “conceptual grid”. Therefore, within the limits of
this text a phenomenon will be understood as an external manifesta-
tion whose relationship with a substantial reality is the result of an
interpretation process within some “conceptual co-ordinates” that are
presumed to be the explicans of the essence underlying (sub-stante)
the observed phenomenon (we shall have other occasions for better
explaining this point).

Observation is a dynamic process aimed at getting more and more
information about a domain. The larger is the information, the finer is
the picture that we have about the elements of the domain. Using topo-
logical concepts, an observation process makes it possible to move from
a trivial topology on the domain, in which everything is indistinguish-
able, to a topology in which any single element is sharply separable
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Figure 1.1: A process of differentiation via observations

Figure 1.2: A slice of an observation process

from all the other elements of the domain (say a discrete topology or
a Hausdorff space). In this case we can “name”or “label” each single
element of the domain by means of its characteristic properties.

However, under this consideration, observation is an asymptotic pro-
cess. What usually happens is that at a certain point in time we stop
our observation process, at least temporarily, and analyse the stock of
pieces of information collected so far. In a sense we consider a “flat
slice” of the observation process (see Figures 1.1 and 1.2).

1.2.1 Property Systems – P-Systems

This information slice provides us essentially with a set of observed
properties which, we have assumed, are induced by some entities.
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Therefore, our information slice is basically composed by:

• A set G of ‘objects’

• A set M of ‘observable properties’

• A relation between G and M , that we denote, by now, with the
symbol �

The symbol G is after the word “Gegenstand ” – plural:
‘Gegenstände’ – a term used in classic German philosophy to denote
‘what stays before the cognitive subject’, that is an uninterpreted object
(so that ‘Gegenstand ’ is different, in German, from ‘Object’, that is
something identified by means of its qualities after an interpretation
activity). However, members of the set G will be usually referred to as
‘points’, a neutral term with a bit of a geometrical flavour, or as ‘items’
or ‘entities’.

On the other side, the symbol M is after the German term
‘Merkmale’, meaning ‘signs’, ‘properties’ or ‘qualities’. However, the
members of the set M will be mostly referred to as ‘observables’ or as
‘(observable) properties’.

We shall assume that the members of M are binary properties, that
is, ‘yes-no’ properties. In other words, we shall not deal, by now, with
properties having graded or fuzzy answers. Therefore, given a ∈ G and
b ∈M we shall say that if a � b, then a enjoys the property b, or that
a induces the phenomenon or observable property b.

Remarks. With the term “property” we do not intend to mean necessarily

a single property. In fact the term “property” implicitly refers to some

“level of abstraction” so that it could refer to a set or synthesis of “more

primitive” properties.

Finally, the cognitive subject is, first of all, an observer, so that she is
not interested in points or in properties as such, but she will focus on the
relationships between points and observables so that all the ingredients
do not have a real meaning if they stand alone. A corollary of this
conclusion is that we have also to assume that � is defined for all the
elements of G and M . This could be questionable. Indeed if we set an
experiment in which a hypothetical property A is not detected because
no object fulfills it, then this amounts to saying that all objects do not
fulfill A or that any experiment for A failed (maybe we have to fix or
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refine some instrumentation). However from an informational point of
view A carries no information at all because it cannot help making any
distinction among objects. Symmetrically, if an object g does not fulfill
any property, then it is a “non-object” from a phenomenological point
of view (literally, an “un-wesen”, a “non-being” in German classical
philosophy).

To conclude, the mathematical structure we shall start with is a
triple 〈G,M,�〉, where G and M are sets and � is a binary relation
between the elements of these sets, that is, a subset of the Cartesian
product G ×M such that the domain of � is the whole of G and the
range is the whole of M .

Remarks. Since a collection of observations is supposed to be finite, if

not otherwise stated it is assumed that we deal with finite sets. However,

in general we shall underline if a result strictly depends on this assumption.

Everything is coded in the following definition:

Definition 1.2.1 (Property system). A triple 〈G,M,�〉 where G and
M are finite sets, �⊆ G×M is a relation such that for all g ∈ G there
is m ∈M such that 〈g,m〉 ∈�, and for all m ∈M there is g ∈ G such
that 〈g,m〉 ∈�, is called a property system or a P-system.

Figure 1.3: A P-system
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Terminology and Notation

From now on we assume that P always denotes such a triple 〈G,M,�〉.

1.2.1.1 Functional Property Systems

It has been assumed that the properties we shall deal with admit just
yes/no answers. Simple examples of a P-system arise when the relation
� is a functional relation according to the following definition:

Definition 1.2.2 (Functional relation). Let R ⊆ A × B be a binary
relation defined for all the elements of A, then R is said to be functional
if 〈a, b〉 ∈ R and 〈a, b′〉 ∈ R implies b = b′.

Thus R is a functional relation if any element of A is associated with
a unique element of B. A P-system such that � is a functional relation
will be called a functional P-system, or an FP-system (see Figure 1.4).

A number of P-systems may be represented in a functional setting.
Suppose we are associating each student of Ballygunge Science College
to her home zip code. Clearly, any student will be mapped onto just
one value (e.g. 700.103 or 700.105 or . . .), although two students may
have the same zip code.

Remarks. Notice that strictly speaking in this example the elements of M

are not zip codes but properties like “700.103 zip-coded”, “700.105 zip-

coded” and so on, while � is a deterministic link.

Anyway, sometimes by abuse of language, we shall call � with the

collective name (or type) of the properties in M , if any.

Figure 1.4: A functional P-system
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FP-systems exhibit a high classification power, as we shall see in a
while.

1.2.1.2 Relational Property Systems

In other cases, on the contrary, some elements of G must be mapped
onto more elements of M and we shall speak of relational P -systems at
large, or RP -systems.

This happens for instance when we do not have enough information
to uniquely determine a value for a property m of an element g, so that
the value is indeterministically assigned among a set of possibilities,
obtaining a reading such as “the value of g for property � is m1 or m2

or ...” (for instance, “Bob is eight or ten years old”).
We have also cases in which multiple choices are obliged. For instance

if � is the property “having son” and at least one g has two sons m1

and m2, then 〈G,M,�〉 is surely an RP-system. But in this case the
reading is “the value of g for property � is m1 and m2”.

Although the two situations may be given, at a first sight, the same
formal shape, by no means they are equivalent and we shall not deal
with the disjunctive (former) case unless otherwise specified.

Finally, we obtain RP − systems if we merge more FP − systems

together. As a matter if fact, this is the most relevant case and it
is tantamount to evaluating objects against a set of non mutually
incompatible properties.

Figure 1.5: Merging two functional P-systems
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1.2.1.3 Dichotomic Property Systems

An important kind of RP-system is given by the so-called dichotomic P-
systems. In such systems any property is coupled with a complementary
property.

Definition 1.2.3 (Dichotomic property system). Let P = 〈G,M,�〉
be a P-system. We say that P is a dichotomic P-system, or DP-system,
if for all p ∈ M there is p ∈ M such that for all g ∈ G, g � p if and
only if g �� p. p is called the complementary property of p.

We shall see that dichotomic systems enjoy particular features since
the presence of mutually incompatible properties renders this kind of
systems a high classification power. Indeed FP-systems and DP-systems
are closely linked together and we shall see that RP-systems may be
reduced to suitable DP-systems and FP-systems.

1.2.2 Attribute Systems – A-Systems

Very often data are represented by means of multi-valued matrices
of type 〈G × At × V 〉, where At is a set of attributes, V is a set of
values, namely the union of a family of sets {Va}a∈At, where Va is the
set of possible values for the attribute a, and, finally, the entries of
the matrix is given by the family of functions {a : G �−→ Va}a∈At

or {a : G �−→ ℘(Va) − {∅}}a∈At. In the first case we obtain a so-
called Deterministic Attribute System or A-system, in the second a
Non-deterministic Attribute System or nd-A-system.1

Definition 1.2.4 (Attribute system). (A-system)
Any structure of the form 〈G,At, {Va}a∈At, 〉, where G, At and Va

are sets and for each a ∈ At, a : G �−→ Va is a function, is called a
deterministic Attribute System or A-system. If a : G �−→ ℘(Va)−{∅},
then the triple will be called a non-deterministic Attribute System or
nd-A-system.

Later on in this Chapter we shall see how to translate an A-system into
a P-system.

1Usually Attribute Systems come along with an evaluation function v : G×At �−→
V or, if non-deterministic, v : G×At �−→ ℘(V ). However our equivalent presentation
is more comfortable because kernels of ai, kai , are important while the kernel of v
makes a poor sense.
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Example 1.2.1. Property and Attribute Systems
Here are the basic examples in this Chapter: a P-system P = 〈G, M,�〉, an
FP-system F = 〈G, M ′, f̂〉 and an A-system A = 〈G, At, {Va}a∈At〉 where G =
{a, a′, a′′, a′′′}, M = {b, b′, b′′, b′′′}, M ′ = {m, m′, m′′}, At = {A, A′, A′′}, VA =
{0, 1, 3}, VA′ = {b, c, f}, VA′′ = {α, δ} and the evaluation functions are given by
the following matrices (here vl ⊆ G×At×

⋃

a∈At

{Va}):

� b b′ b′′ b′′′ f̂ m m′ m′′ vl A A′ A′′

a 1 1 0 0 a 1 0 0 a 1 b α
a′ 0 1 0 1 a′ 0 1 0 a′ 0 c α
a′′ 0 1 1 1 a′′ 1 0 0 a′′ 1 b α
a′′′ 0 0 0 1 a′′′ 0 0 1 a′′′ 3 f δ

Evidently, � is not a map because, for instance, both 〈a′, b′〉 ∈� and 〈a′, b′′′〉 ∈�
but b′ �= b′′′. On the contrary F is clearly functional.

1.3 Functional P-Systems
and Conceptualisation

Our starting point was the assumption that we have a conceptual
awareness of perceptive events only if we are able to classify our “per-
cepta” is some way (see the Introduction).

If 〈G,M,�〉 is an FP-system, we are in a privileged position for
achieving this goal. Indeed if we read back or, more precisely, if we
pull-back the map �, we obtain an equivalence relation E, so that any
element of G will belong to one and just one equivalence class modulo
E, without ambiguity or borderline situations. This is a perfect case of
a classification.

Figure 1.6: A B-valued classification of A
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In the presence of RP-systems we obtain less sharp classifications.
More precisely, the sharpness degree depends on the way we consider
the interplay between relations and inverse relations and on the nature
of the RP-system we are dealing with (see later).

1.3.1 Categorizing Through Functional P-systems

It is clear that any function f : A �−→ B induces a classification of the
elements of A by pulling back f itself. Indeed, any b ∈ B may be viewed
as a property-value which makes it possible to classify the elements of
A by gathering together in a sort all those x ∈ A such that x assumes
value b via the evaluation f , that is, all x such that f(x) = b. This
interpretation of a function f is sometimes described by saying that f
is a property B-evaluated on A. Using the previous example, suppose B
is the set of possible values of the property “zip code”, b means “700-
103” and A is a set of students. Then the sort {x ∈ A : f(x) = b} is
that of students with residence’s zip code = 700.103.

Actually it is already affirmed that we prefer to see “700.103 zip-
coded” itself as a particular property. In view of this preference we shall
say that f is a B-evaluated classification of A (see Figure 1.6).
Because of an analogy taken from agriculture, any sort is sometimes
called a “fibre” (or, also, a “stalk”) and the family of sorts is called
the stalk space (or espace etalé) of f . The elements of a fibre are called
“germs (of a function)” and, clearly, the relation which links the ele-
ments in each fibre together is the kernel kf . In Figure 1.7 the set A is
split into four fibers or stalks. Or, to put it in another way, the elements
of A are gathered around four distinct stalks.

The formal operation which makes it possible to associate each
member of B with a fibre of A is f←: looking back pointwise from

Figure 1.7: A section
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B to A through f . Indeed, the stalk space of f equals {f←({b})}b∈B =
{f←({f(a)})}a∈A.

If, instead of the domain, we focus on the codomain of f , we can
interpret this function as a way to list or parameterize (some of) the
elements of B, through the elements of A. In view of this interpretation
it is natural to associate with each property from B a representative in
A of each equivalence class modulo the kernel kf , by choosing a member
from each sort. The set of these representatives is called a cross section
of f (see Figure 1.7).

Therefore, a cross section of f is an isomorphic copy of the image
of f , Imf , in the domain of f . More precisely, what is described in
Figure 1.7 is the image of a particular type of function defined as
follows:

Definition 1.3.1 (Section). Let f : A �−→ B be a function. Then a
morphism s : B �−→ A is called a section of f , if s ◦ f = 1B, that is, if
the following diagram commutes (meaning that the two paths from the
origin to the target coincide):

A

�
�
�
�
�

s

 �

�
�
�
�

f

�
B

1B

� B

Section

The notion of a section has its own dual:

Definition 1.3.2 (Retraction). Let f : A �−→ B be a function. Then
a morphism r : B �−→ A is called a retraction of f , if f ◦ r = 1A, that
is, if the following diagram commutes:

B

�
�
�
�
�

f

 �

�
�
�
�

r

�
A

1A

� A

Retraction
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Sections are also called “co-retractions”. From the above diagrams, we
immediately deduce that if s is a section of f , then f is a retraction
of s; and vice-versa. Moreover, it is not difficult to verify that f does
not have any section if it is not onto B (otherwise, how would it be
possible to obtain 1B?). Intuitively if there is a b ∈ B that is not f -
image of any a ∈ A, then b would be associated with a void sort (that is
odd, although not completely a non-sense – see remarks about Pointless
Topology in the Introduction). However, it is not required for f to be
injective. Vice-versa, a function f does not have any retraction if f is
not into B. In fact, if f(a) = f(a′) = b, for a �= a′, then any morphism
from B to A either maps b onto a and forgets a′, or it maps b onto a′

and forgets a, because of the uniqueness of image. However, it is not
necessary for f to be onto.

Since these properties will be used throughout this Chapter, we
should highlight them:

If a function f has a section, then f is surjective (1.3.1)

If a function f has a retraction, then f is injective (1.3.2)

From the above discussion, it follows that for any function f : A �−→ A,
fo is a section with retraction f o.2

Given a cross section S of A, another natural maneuver is to group
around the members of S the elements of A belonging to the same fibre
or stalk.

Let us specify the mathematics to accomplish this.
If r : A �−→ B is a retraction of a function h : B �−→ A, then r ◦h is

an idempotent endomorphism in A: (r ◦ h) ◦ (r ◦ h) = r ◦ (h ◦ r) ◦ h =
r ◦ 1B ◦ h = r ◦ h.

It follows that if s : B �−→ A is a section of f : A �−→ B, then f ◦ s
is an idempotent endomorphism in A, assumed s is onto, because f is
a retraction of s (see Figure 1.8).

Clearly, if a = s(b), then s(f(a)) = s(f(s(b))) = s(1B(b)) = s(b) =
a, so that a is a fixed point of the endomorphism f ◦ s. Moreover,
(f ◦ s)(a′) = a for all a′ such that f(a) = f(a′), since s(f(a′)) =
s(f(a)) = a. Henceforth, this endomorphism makes it possible to group
any element x of A around a representative, s(f(x)), of its own fibre
f←f→({x}).

2For the meaning of fo and fo the reader is addressed to Mathematical toolkit
16.2.
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Figure 1.8: Retraction + section = idempotent endomorphism

This endomorphism is a trace of f and s in A and its core is the
notion of a “kernel”. Indeed, a section of f is obtained by peaking-up
an element from any equivalence class [x]kf

of the kernel. In a sense,
we first use the elements of B as “proxies” of the equivalence classes of
kf (setting b as a “proxy” of [a]kf

, when [a]kf
= f←({b})) and then we

apply the Isomorphism Theorem.
We shall extensively use the notions of a retraction and a section in

the sequel. Now we want to show that in turn these notions are special
cases of a more fundamental concept: a divisor.

Indeed, from elementary arithmetic we know that the solution to
the equation 6 × x = 18 is given by dividing 18 by 6. Similarly, in
the world of morphisms we can have solutions to equations of type
f ◦ x = h or x ◦ f = h, for given f and h. Let us then call x a right
divisor of h by f , in the first equation, and a left divisor of h by f , in
the second.

Definition 1.3.3 (Left divisor). Let f : A �−→ B, g : B �−→ C and
h : A �−→ C be three functions. Then, g is called a right divisor of h
by f and f is called a left divisor of h by g if h = f ◦ g, that is, if the
following diagram commutes:

B

�
�
�
�
�

f

 �

�
�
�
�

g

�
A

h
� C
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Clearly, things are interesting when we are given f and h and we have
to find a right divisor; or the other way around, when we are given h

and g and have to find a left divisor.
The first problem is also called the “determination problem”.

Indeed, if we find a right divisor of h by f , then we can say that
h is determined by f . For instance a mapping h between a set of
people and their residence districts, may be determined by a mapping
f between people and their residence ZIP codes, by means of a
correspondence g between ZIP codes and districts. We can see that a
map g is a right divisor of h by f only if for all a, a′ ∈ A, f(a) = f(a′)
implies h(a) = h(a′). Moreover, if f is an isomorphisms, then it is
straightforward to see that f−1 ◦ h is the unique right divisor of h
by f .

The second problem is called the “choice problem”. For instance,
if h is as above and g maps the set of candidates onto the districts
they want to represent, then a left divisor f is given by choosing a
candidate through an election. One can see that f is a left divisor of h
by g only if for all a ∈ A, there exists a b ∈ B such that h(a) = g(b).
Moreover, if g is an isomorphisms, then h◦g−1 is the unique divisor of h
by g.

The proof of all the above assertions is left as an exercise.
It is immediate to verify that retractions and sections are instances

of right and, respectively, left divisors.

Example 1.3.1. Sections and retracts
Suppose A = {a, a′}, B = {b} and f : A �−→ B is such that f(a) = f(a′) = b.
If f has a retraction r, then for any x ∈ A, r(f(x)) = x. But we have just two
possibilities: either r(b) = a or r(b) = a′. In the first case r(f(a′)) = a �= a′, while
in the second r(f(a)) = a′ �= a. Hence f does not have any retract. Intuitively, we
cannot have a retraction r if r has to map a smaller set into a larger set.

Suppose now g : B �−→ A is such that g(b) = a. If g has a section s, then
g(s(x)) = x, any x ∈ B. But there is just a map from A to B and it is f so that
g(f(x)) = g(b) = x only if x = a, while g(f(x)) �= x if x = a′. It follows that g does
not have any section. Intuitively, a section has to map a smaller set into a larger set.
On the contrary, g has a retraction and it is f . Indeed, f(g(b)) = f(a) = b. For the
same reason, g is a section of f .3

3For a further example, look below at Excursus 1.1: function co is a retraction
of function co which, in turn, is a section of co. Indeed, co selects an element out of
each equivalence class [x]κCo = [x]κc .
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Exercise 1.1. Let A and B be two sets.

(A) Let f : A �−→ B. How many sections does f have, if any?

(B) Let f : A �−→ B. How many retracts does f have, if any?

(C) Prove that f : A �−→ B has a section only if it is epi.

(D) Prove that f : A �−→ B has a retraction, only if it is into.

1.4 Categorizing Through Relational

P-Systems

It is observed that if we are given an FP-system we obtain sharply
delimited categories in a rather straightforward way. Indeed, the notion
of a “kernel” (or of a “fibred product”) and those of a “section” and
a “retraction” provide us with the necessary machinery to compute
clusters of objects.

On the contrary, if we deal with relational P-systems, as we have
indeed to do, it hardly results in sharp classifications, at least without
a proper manipulation of the given P-system that, in turn, may be
or may not be an appropriate maneuver. It follows that the identity
relation in the definition of left and right divisors must be weakened to
an inequality relation “≥” or “≤”.

Therefore, to deal with generic cases we need a more subtle math-
ematical machinery and here below we give an initial intuitive picture
of what we have to explore.

Such a machinery is based on the notion of an “approximation”.
However, this notion depends on another one. Indeed, we cannot speak
of “approximation” without comparing a result with a goal and this
goal depends on the granularity level of its definition.

For instance, if we are to retrieve documents, we enter a series of
keywords. The more complete is this series, the smaller the number of
documents which are retrieved (provided we are using an “and” search),
since more specialized is our query, or, otherwise stated, since finer is
its grain. We can use a ratio to measure the precision, or dually the
approximation rate of search results, namely the number of relevant
documents retrieved over the number of documents retrieved. Clearly
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the finer is the grain of our query the higher is the precision. But this
measure is also affected by the granularity of the documents stored
in the system. One should notice first that a precision equal 1 could
mean nothing from a cognitive ergonomic point of view. In fact suppose
we have to catalogue a library. If we decide that we have only one
basic grain, i.e. the entire library, any query will result in one and only
answer whose precision ratio is, trivially, 1. Of course, this is an extreme
case. However it drives our attention to the fact that “precision” alone
measures little and it must be related also to the cardinality of the
entire stock of the stored pieces of information which are supposed to
be the atomic relevant data. Clearly, the larger is this stock the less
affected is “precision”.

So we decide, presumably, to refine the granularity of the stored
pieces of information by lowering them to the level of single books.
Again the same issue may apply to the sub-level of Books, and so on
to Sections, Paragraphs, Pages, Lines and Words. Where to stop is
a matter of application-domain, capability, time, space and cognitive
ergonomy.

In sum, precision/approximation depend both on query and docu-
ment granularity, that is, on granularity of objects and properties.

In general we face a situation in which queries refer to a set of
possible answers and not to single objects. Otherwise we would not
have “queries” but “selections” (the realm of sections and retractions).

In other words, the world of objects is made of finer grains than
that of modeling or interpretation activities, in principle.

So we can distinguish an extensional granulation, related to objects,
and an intensional granulation, related to properties, and assume that
the extensional granulation is finer than the intensional one. Thus when
we have to determine a point on the extensional scale by means of the
intensional ruler, we hardly will be able to get a precise
determination.

In the example of Figure 1.9 we have to reduce a continuum of
points, represented on an extensional scale, to a series of discrete
intervals, represented on an intensional scale. The point x can be
approximated by a best approximation from above, viz. 5.5, and a best
approximation from below, viz. 5. But in order to be able to have such
“best approximations” the intensional granulation and its relationships
with the extensional granulation must fulfill non trivial properties.
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Figure 1.9: Scaling and approximating

First of all we need an order to give the term “best” a meaning. But
at what level of abstraction?

To be sure, if the fulfillment relation � is an injective functional
relation then we know that we can recover each single element of G
with a retraction without the need of any order.

Remarks. The reader should agree that this is an unrealistic situation.

In fact if there were a 1-1 relationships between substances and properties

then properties would just be perfect copies of objects. Of course, someone

could claim that the best model of a cat is a cat, but this makes a poor

meaning in any modeling activity. Indeed, modeling means abstracting and

abstracting means losing or renouncing some quality or characteristic.

If � is a surjective functional relation, we have one or more sections and
if G is ordered in some way then we can apply this order to select the
“best” (with respect to the given order) section. For instance if m ∈M
is a query and X =�← ({m}) then X is a set of candidate results of
the query m. If the elements of X are ordered in some way, we can use
this order to choose, for instance, the least or the largest element of X,
if any.

Symmetrically, if M were ordered, we could make any fulfillment
relation into a function by choosing for each g ∈ G the “best” element
fulfilled by g and, then, find retractions or sections.

However if G and M are not ordered then we have to change strat-
egy, because � is seldom a surjective or injective functional relation. In
a sense it is an event which happens only if we are able to completely
reduce a structure to a simpler one.

Having this picture in mind, the reader is invited to notice what
follows. From a phenomenological point of view we cannot assume
that either G or M are ordered. Indeed all objects are at a peer level
because they come into our awareness by means of their manifested
properties. Similarly, properties are at a peer level because they come
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into our observations just because they are manifested by unknown
objects.

To be sure, this genuine phenomenological approach can be ques-
tioned and, actually, it happens to be too extreme in several
situations.

However, methodologically we decided to assume that the only rela-
tionships between objects are those induced by the fulfillment relation
� and such relationships are grouping relations so that we can compare
subsets of objects (or properties) but not, directly, objects (or proper-
ties). In other words, we assume that there is no relation (hence any
order) either between objects or between properties, if not otherwise
stated. It follows that the result of the phenomenological activity is, a
“type” not a “token”, at least in this case.4 Therefore, we shall move
from the level of pure P-systems 〈G,M,�〉 to that of Perception sys-
tems 〈℘(G), ℘(M), φi〉 where φi is a map from ℘(G) to ℘(M) or from
℘(M) to ℘(G). It follows that we have to manipulate some kinds of
subsets of the domain and the codomain of � which embed enough
ordering features to compute approximations (see Figure 1.10).

1.4.1 Types and Approximation

Suppose φ is an isotonic function which maps subsets of a set (type)
A into subsets of a set (type) B. Suppose Y ⊆ B and φ(X) ⊇ Y ,
for X a subset of A. Then we can say that X approximates Y from
above via φ. The smallest of these Xs can therefore be thought of as a
“best approximation from above” via φ, because its image is the closest
to Y .

In order to obtain such a best approximation, if any, we should take
⋂
φ←(↑ Y ), where ↑ Y = {Y ′ ⊆ B : Y ′ ⊇ Y }. In fact

⋂
φ←(↑ Y ) =

⋂
{X : φ(X) ⊇ Y }.
Dually, if we take

⋃
φ←(↓ Y ), where ↓ Y = {Y ′ ⊆ B : Y ′ ⊆ Y }, we

should obtain a “best approximation from below” of Y , if any, via φ,
because

⋃
φ←1(↓ Y ) =

⋃
{X : φ(X) ⊆ Y }.

4Indeed, this is consistent with the fact that, according to Aristotle, we can-
not reproduce reality, but just interpret it through a “mimesis” (reproducing)
effort. For a different mathematical approach arriving at the same conclusion, see
Frame 4.2.



24 1 Observations, Noumena and Phenomena

℘(M)

�
�
�
�
�

φi


 �
�
�
�
�

approximation
best

�
℘(G)

⊇ [⊆]
� ℘(G)

Figure 1.10: Approximation deals with types

To be sure, this approach is successful only if φ(
⋂
φ←(↑ Y )) ⊇ Y

and, dually, φ(
⋃
φ←(↓ Y )) ⊆ Y . So we now shall examine the condi-

tions under which the above operations are admissible and behave as
expected.

First, the mathematical machinery that has to be used shall be pre-
sented, in an abstract way. Subsequently, in Section 2.1 this machinery
will actually be applied to functions between the two powersets ℘(G)
and ℘(M) and order relations will turn into subset relation on ℘(℘(G))
and ℘(℘(M)) (this is a reason why it is more comfortable to present
the basic techniques in a more abstract setting).

1.4.2 Divisors and Residuals

Terminology and Notation

Since in the next subsections we shall deal with maps which happen to be

functors between categories (in some contexts), we shall denote them with

Greek lower symbols.

Let us start with the problem of how to approximate a function from
below and from above by means of a pair of other functions.

If A = 〈A,≤A〉, B = 〈B,≤B〉 and C = 〈C,≤C〉 are partially ordered
sets and three maps φ : A �−→ C, λ : A �−→ B and 	 : B �−→ C are
given, we can have the following notable situations:

(i) For all a ∈ A, (λ ◦ 	)(a) ≤C φ(a) (which shall be denoted as
λ ◦ 	 ≤C φ).

(ii) For all a ∈ A, (λ ◦ 	)(a) ≥C φ(a) (which shall be denoted as
λ ◦ 	 ≥C φ).
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The following diagram may be helpful:

B

�
�
�
�
�

λ

 �

�
�
�
�

	

�
A

φ [≤ or ≥]
� C

Divisors

First of all, we recall that (λ ◦ 	)(x) = 	(λ(x)) = 	λ(x).
Now, if (i) is satisfied and 	 is isotone, then we say that 	 is an

upper-divisor of φ by λ and that λ is a lower-divisor of φ by 	 – notice
that no restriction on λ is imposed.

Usually, in literature the terms “left” and “right” divisor are more
common and we have kept traces of this fact in the symbols λ (after
“left”) and 	 (after “right”). But as we develop our discourse this
terminology can generate misunderstanding as it will be clear a few
paragraphs below. If (ii) is satisfied, then we have to reverse the termi-
nology as to the partial order direction and call 	 a lower-divisor of φ
by λ, provided it is isotone, and λ an upper-divisor of φ by 	. Obviously,
if we reverse the order of the two categories, then we have to swap the
terms “upper” and “lower”.

Now we can ask: under what conditions do three mappings fulfill
conditions (i) and (ii)? under what conditions such divisors exist?

Let us start with the following result about isotonicity. Indeed, if
we hope to be able to define two approximating maps, at least one of
them should have a regular (isotone) behaviour.

The intuition behind the following Lemma is simple and clear: if
any principal order ideal (filter) in B has a corresponding order ideal
(filter) in A, via φ, then the order of A is paralleled by that of B via φ.

Lemma 1.4.1. Let φ be a mapping between two preordered sets A and
B. Then φ is isotone iff for all b ∈ B, φ←(↓ b) is either empty or is an
ideal of A, iff φ←(↑ b) is either empty or is a filter of A.

Proof. Assume φ is isotone. Suppose φ←(↓ b) �= ∅ for b ∈ B. Then if
a ∈ φ←(↓ b) and a′ ≤A a we have, by hypothesis, φ(a′) ≤B φ(a) ≤B b
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so that a′ ∈ φ←(↓ b). Suppose, conversely, that for any b ∈ B, φ←(↓ b)
is either empty or an ideal in A. For each a ∈ A we have trivially
φ(a) ≤B φ(a) whence a ∈ φ←(↓ φ(a)). But by hypothesis φ←(↓ φ(a))
is an ideal of A. It follows that a′ ≤A a� a′ ∈ φ←(↓ φ(a)); henceforth
φ(a′) ≤B φ(a). qed

Now, if we compare two subsets X and Y of an ordered structure and
X ⊆ Y then the minimal elements of X are greater than or equal to
the minimal elements of Y . We use this simple fact in the following
Proposition:

Proposition 1.4.1. Let A,B and C be partially ordered sets and let
φ : A �−→ C, λ : A �−→ B and 	 : B �−→ C be maps. Then,

1. Given φ and λ, λ◦	 ≥C φ if and only if ∀x ∈ B,λ←(↓ x) ⊆ φ←(↓
	(x)), provided 	 is isotone.

2. Given φ and λ, λ◦	 ≤C φ if and only if ∀x ∈ B,λ←(↑ x) ⊆ φ←(↑
	(x)), provided 	 is isotone.

3. Given φ and 	, there is λ such that λ ◦ 	 ≤C φ if and only if
∀x ∈ A, 	←(↓ φ(x)) �= ∅.

4. Given φ and 	, there is λ such that λ ◦ 	 ≥C φ if and only if
∀x ∈ A, 	←(↑ φ(x)) �= ∅.

Proof. (1) (�) Assume λ ◦	 ≥C φ. If λ←(↓ x) = ∅, then the conclusion
is trivial. Otherwise for each a ∈ λ←(↓ x) we have λ(a) ≤B x and from
the isotonicity of 	 and hypothesis, we obtain φ(a) ≤C 	(λ(a)) ≤C ρ(x).
It follows that a ∈ φ←(↓ 	(x)). (�) For all a ∈ A we have a ∈ λ←(↓
(λ(a))) ⊆ φ←(↓ (	(λ(a)))). Whence φ(a) ≤C ρ(λ(a)). (2) Dually.
(3) If λ ◦ 	 ≤C φ, then for all a ∈ A, 	(λ(a)) ≤C φ(a) so that
λ(a) ∈ 	←(↓ (φ(a))). It follows that for all a ∈ A, 	←(↓ (φ(a))) �= ∅.
Conversely, if the last inequality holds, then we can define a map
λ : A �−→ B by associating with each a ∈ A a chosen element belong-
ing to 	←(↓ (φ(a))). Obviously, for all a ∈ A, 	(λ(a)) ≤C φ(a). (4) Is
obtained dually. qed
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Now, let us specialize the above mechanisms to the case in which C = A
and φ is the identity map 1A:

B

�
�
�
�
�

λ

 �

�
�
�
�

	

�
A

1A [≤ or ≥]
� A

Divisors

In this case we have:

Proposition 1.4.2. Let A, B be partially ordered sets and let 	 :
B �−→ A be isotone. Then,

1. There exists λ : A �−→ B such that λ ◦ 	 ≤A 1A if and only if
given any principal order ideal ↓ x of A, 	←(↓ x) is an order
ideal of B.

2. There exists λ : A �−→ B such that λ ◦ 	 ≥A 1A if and only if
given any principal order filter ↑ x of A, 	←(↑ x) is an order
filter of B.

Proof. (1) is an immediate corollary of the above Proposition 1.4.1 and
Lemma 1.4.1, while (2) is obtained dually from (1). qed

As will be stated later on in Definition 1.4.1, if hypothesis 1 of Proposi-
tion 1.4.2 holds, ρ is called an upper residual of λ and λ is called a lower
residual of ρ. If hypothesis 2 holds we reverse the terminology. So, in
order to have such kind of weak divisors we need a sort of continuity
between ordered structures. Analogously, in order to have derivatives
we need continuity. A function f : X �−→ Y is continuous if given
any open subset A ⊆ Y , the pre-image f←(A) is an open subset of
X. In this case we can define the derivative function of f (up to well-
known pathological functions). Upper and lower residuals are sorts of
derivative functions and order filters (ideals) play the role of open sets.

The last step is to further specialize the above result to the case that
both residuals are isotone maps, hence to embed the above results into
the category of partially ordered sets. It is exactly this specialization
which constitutes the core of the fundamental notion of an adjunction
(and eventually we definitely forget the terms “right” and “left”).
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Proposition 1.4.3. Let A and B be partially ordered sets, φ a functor
(i.e. an isotone map) between A and B. Then, the following conditions
are equivalent:

1. (a) There exists a functor ψ : B �−→ A such that φ ◦ ψ ≥A 1A

and ψ ◦ φ ≤B 1B.
(a′) For all b ∈ B,φ←(↓ b) is a principal order ideal of A.

2. (b) There exists a functor ϑ : A �−→ B such that ϑ◦φ ≥B 1B and
φ ◦ ϑ ≤A 1A.
(b′) For all a ∈ A,ϑ←(↑ a) is a principal filter of B.

Proof. (1) (a � a′). Suppose (a) holds. Then from Propositions 1.4.1
and 1.4.2 we obtain for all b ∈ B, ∅ � φ←(↓ b) ⊆↓ ψ(b). Suppose now
a ∈↓ ψ(b), then a ≤A ψ(b) so that φ(a) ≤B φ(ψ(b)) ≤B 1B(b) = b.
It follows that a ∈ φ←(↓ ψ(b)) and, thereafter, that for all b ∈ B,
∅ � φ←(↓ b) =↓ ψ(b). (a′ � a) Conversely, if (a′) holds, then for all
b ∈ B there exists a ∈ A, clearly unique, such that φ←(↓ b) =↓ a. From
the above Lemma 1.4.1 it follows that φ is isotone. Clearly for any given
b such an a is unique and we can set a mapping ψ : B �−→ A;ψ(b) = a.
Since for all b ∈ B, ψ(b) ∈↓ ψ(b) = φ←(↓ b), we immediately obtain
that for all b ∈ B, φ(ψ(b)) ≤B b. Moreover, since for all a ∈ A, a ∈
φ←(↓ φ(a)) =↓ (ψ(φ(a))), we immediately obtain that for all a ∈ A,
ψ(φ(a)) ≥A a.
(2) Mutatis mutandis the symmetric theorem with respect to ordering
holds, too, by switching the partial order direction and swapping ideals
and filters (we shall qualify such a kind of theorems as “order-dual”).

qed

The reader must take care of the fact that we have two levels of duality.
The first swaps the partial order (≤ into ≥ and vice-versa). The second
swaps the order of application of the functions (φ ◦ ψ into ψ ◦ φ, and
the other way around) and the position of their domain and codomains.
This is the reason why we do not use terms such “right residual”, “dual
residual”, and the like (by the way, we notice that in usual literature
given a map φ, the upper residual is denoted by φ∗ and the lower
residual is denoted by φ∗).

Remarks. From now on O and O′ shall denote two arbitrary partially

ordered sets O = 〈O,≤〉 and, respectively, O′ = 〈O′,≤′〉.
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Now we encode the existence preconditions, as specialized to partially
ordered sets, in the following definition.

Definition 1.4.1. Let O and O′, be two preordered sets. Then,

1. A map φ : O �−→ O′ is upper-residuated if for any principal
ideal ↓ p′ of O′, φ←(↓ p′) is a principal ideal of O. In this case
the map φ+ : O′ �−→ O : φ+(p′) = max(φ←(↓ p′)) is called the
upper-residual of φ.

2. A map φ : O �−→ O′ is lower-residuated if for any principal
filter ↑ p′ of O′, φ←(↑ p′) is a principal filter of O. In this case
the map φ− : O′ �−→ O : φ−(p′) = min(φ←(↑ p′)) is called the
lower-residual of φ.

In other terms φ+(p′) is the generator of the principal ideal φ←(↓ p′)
that exists if φ is residuated. Dually for φ−(p′). From the above results
we trivially have that if φ is upper (lower) residuated then it is isotone.

Proposition 1.4.3 proves that φ+ and φ− behave in the required way,
that is, for all x ∈ O′, φφ+(x) ≤ x and φφ−(x) ≥ x. It is pretty evident
that if φ+ is upper residual of φ then φ is lower residual of φ+, that is,
φ = (φ+)− and, dually, if φ− exists then φ = (φ−)+. Otherwise stated,
lower and upper residuals are mutually defined notions. This is what
is stated by the fundamental notion of a Galois adjunction which now
comes onto stage.

1.4.3 Galois Adjunctions and Galois Connections

An overlook at Mathematical toolkit 16.3 is recommended.

Definition 1.4.2 (Adjointness relation). Let σ : O �−→ O′ and ι :
O′ �−→ O be two maps. Then we say that ι and σ fulfill an adjointness
relation if the following holds:

∀p ∈ O,∀p′ ∈ O′, ι(p′) ≤ p if and only if p′ ≤′ σ(p) (1.4.3)

If the above conditions hold, then σ is called the upper adjoint of ι
and ι is called the lower adjoint of σ. This fact is denoted by

O′ �ι,σ O (1.4.4)
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and we shall say that the two maps form an adjunction between O
and O′. If the two partial orders are understood we shall denote the
adjunction with ι � σ, too.

We use the two symbols ι and σ for mnemonic reasons: ι stays for
“inferior” (=lower) and σ stays for “superior” (=upper).

When an adjointness relationship holds between two partial ordered
structures we say that the pair 〈σ, ι〉 forms a Galois adjunction or an
axiality. This name is after the notion of a Galois connection which is
defined by means of a similar but covariant condition where, indeed, ι
and σ are antitone:

∀p ∈ O,∀p′ ∈ O′, ι(p) ≥′ p′ if and only if p ≤ σ(p′) (1.4.5)

We read this fact by saying that the pair 〈σ, ι〉 forms a Galois connection
or a polarity. Clearly, a Galois connection is a Galois adjunction with
the right structure turned into its opposite. Moreover, the notion of a
Galois adjunction is completely symmetric:

Proposition 1.4.4. For any pair of order preserving maps σ : O �−→
O′ and ι : O′ �−→ O,

1. 〈σ, ι〉 is a polarity between Oop and O′ if and only if 〈σ, ι〉 is an
axiality between O and O′.

2. O′ �ι,σ O iff Oop �σ,ι O′op.

Proof. Trivial, by easy inspection. qed

Proposition 1.4.5. Let it be O �ι,σ O′ and O′ �ι′,σ′ O′′. Then
O �ι◦ι′,σ′◦σ O′′.

Proof. Trivial, by easy inspection of the ordering using the fact that
composition of isotonic maps are isotonic. qed

Remarks. So, axiality turns into polarity if we turn the right structure

upside-down. However, it must be emphasized that we must take some

care if the two structures (the two categories) coincide.

In literature about Category Theory, lower adjoints are usually called
“left adjoint”, while upper adjoints are called “right adjoints”. But, as
we have anticipated, here the position of the category does not matter.
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Indeed, as noticed in [Gierz et al. 1980], this terminology is ambiguous
and in our context this ambiguity could generate confusion because we
shall meet situations in which operations must be concatenated in a
precise order (as in the case of divisors or in the case of composition of
relations).

Proposition 1.4.6. Let σ : O �−→ O′ and ι : O′ �−→ O be mappings,
p ∈ O and p′ ∈ O′. Then,

1. O′ �ι,σ O if and only if σι(p′) ≥′ p′ and ισ(p) ≤ p, and both ι

and σ are isotone.

2. O′ �ι,σ Oop if and only if σι(p′) ≥′ p′ and ισ(p) ≥ p and both ι

and σ are antitone.

Proof. (1) (�) If ι is a lower adjoint, from (1.4.3) we obtain ισ(p) ≤ p

from σ(p) ≤′ σ(p). Dually, if σ is an upper adjoint, we obtain p′ ≤′

σι(p′) from ι(p′) ≤ ι(p′). Moreover if x′ ≤ p′ then by transitivity
x′ ≤ σι(p′), whence ι(x′) ≤ ι(p′) and symmetrically for σ. (�) if
p′ ≤′ σ(p) we obtain, from isotonicity of ι, ι(p′) ≤ ισ(p). But for
hypothesis ισ(p) ≤ p, so that ι(p′) ≤ p. Similarly p ≥ ι(p′) implies
σ(p) ≥′ σι(p′) ≥′ p′.
(2) Trivially from (1) and the fact that the right category is Oop. qed

Corollary 1.4.1. Let f : A �−→ B be a map. Then 〈℘(A),⊆〉 �f→,f←

〈℘(B),⊆〉.

Proof. Evidently, both f← and f→ are isotone. Moreover, suppose
X ⊆ B, x ∈ f→(f←(X)) and x /∈ X. Then there are a ∈ A and x′ ∈ X
such that f→({a}) ⊇ {x, x′}, so that f is not a function. It follows
that necessarily f→(f←(X)) ⊆ X. If y ∈ Y ⊆ A but y /∈ f←(f→(Y ))
then for no b ∈ B, f(y) = b. It follows that f is not defined over all A.
Thus necessarily Y ⊆ f←(f→(Y )) because we have assumed by default
that f is a total function. From Proposition 1.4.6 we conclude the
proof. qed

So adjoint pairs behave exactly the residuation-like way described in
order to define approximating maps. And, indeed, now we show the
links between residuation and adjointness.
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Proposition 1.4.7. Let σ : O �−→ O′ and ι : O′ �−→ O be two
mappings. Then the following conditions are equivalent:

1. O′ �ι,σ O.

2. σ is isotone and ι(p′) = min(σ←(↑ p′)), for all p′ ∈ O′ (1-min).

3. ι is isotone and σ(p) = max(ι←(↓ p)), for all p ∈ O (1-max).

The proof is immediate from Proposition 1.4.3 and Proposition 1.4.6.

Example 1.4.1. Adjointness
Conditions ισ(x) ≤ x and σι(y) ≥ y, on the one side, and isotonicity of both ι and
σ, on the other side, must hold in order for a pair of functions 〈ι, σ〉 to be an adjoint
pair. Here is an extreme counterexample. Let A = 〈A = {1, 2, 3}, 1 ≤ 3, 2 ≤ 3, 1 ≤
1, 2 ≤ 2, 3 ≤ 3〉, B = 〈B = {a, b, c}, a ≤ b, a ≤ a, b ≤ b, c ≤ c〉 and let f : A �−→
B; f(1) = c, f(2) = a, f(3) = b, g : B �−→ A; g(a) = 2, g(b) = 3, g(c) = 1. Then, g
is isotone, g = f−1, g is monic and epic (so is f). Hence for all x ∈ A, gf(x) = x
and for all y ∈ B, fg(y) = y. However g and f do not form a Galois adjunction
because f is not isotone. Indeed, although for all x ∈ B, g(x) = max(f−1(↓ x)) and
g(x) = min(f−1(↑ x)), nonetheless, neither min(g−1(↑ 1)) nor max(g−1(↓ 3)) exist.

As a further extreme situation let us compare the following two pairs of functions:

We can notice what follows: although both f and g are homomorphisms, they do
not form a pair of adjoint maps. Indeed min(f−1(↑ y)) = min{c, 1} = c �= 1 =
g(y). Also, max(f−1(↓ x)) = max{0, a, b, d} = d �= 0 = g(x) (we can also notice
that y ≤ y = f(c) while g(y) = 1 � c). Thus neither f � g nor g � f hold.
However, since they both are homomorphisms they must have both upper and lower
adjoints.
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Indeed, g′ � f . Moreover set g′′ : Y �−→ X such that g′′(y) = 1 and g′′(x) = d.
Then f � g′′. Now, set f ′ : X �−→ Y such that f ′(a) = y if a = 1 and f ′(a) = x
otherwise. Then g � f ′. Finally, if f ′′ : X �−→ Y is such that f ′′(a) = x if a = 0 and
f ′′(a) = y otherwise, then f ′′ � g.

Exercise 1.2. Consider Example 1.4.1. Find the upper adjoint of f ′

and the lower adjoint of f ′′, if any.

1.4.4 Algebraic Properties of Adjoint Maps

Adjoint maps enjoy very interesting properties which are fundamental
in the present investigation.

One of the most important features connected with Galois adjunc-
tions is, in particular, that given two complete lattices L and L′, if a
map φ : L �−→ L′ preserves joins, then it has an upper residual φ+

and this upper residual is a meet-preserving map L′ �−→ L. Dually, if
a map φ : L �−→ L′ preserves meets, then it has a lower residual φ−

and this lower residual is a join-preserving map L′ �−→ L. The idea
here is that formulae (1 −min) and (1 −max) above define infs and
sups in lattices. Categorically stated, upper adjoints preserve limits,
while lower adjoints preserve colimits. We prove the above statements
by means of two Lemmata.

Lemma 1.4.2. Let O′ �ι,σ O hold. Then σ preserves all the existing
infs and ι preserves all the existing sups.

Proof. Let P ⊆ O. Suppose p =
∧
P . Since σ is order preserving and

p ≤ x,∀x ∈ P , we have σ(p) ≤ σ(x), for all x ∈ P . If t is a lower
bound of σ→(P ), then for all x ∈ P, σ(x) ≥ t and x ≥ ι(t). It follows
that any lower bound of σ→(P ) is mapped by ι onto a lower bound of
P . But p is the greatest of such lower bounds. Therefore p ≥ ι(t) for
all such t. It follows that σ(p) ≥′ t, for all lower bounds t of σ→(P ).
Thus, σ(p) is the greatest among the lower bounds of σ→(P ), that is,
σ(p) =

∧
σ→(P ). But p =

∧
P so that we have σ(

∧
P ) =

∧
σ→(P ).

Dually one can prove that ι preserves sups. qed

Lemma 1.4.3. Let L be a complete lattice and O a partially ordered
set. Then,

1. Any map φ : L �−→ O which preserves all infs has a lower adjoint,
φ−.
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2. Any map φ : L �−→ O which preserves all sups has an upper
adjoint, φ+.

Proof. (1) Since L is a complete lattice, we can define a morphism
φ− : O �−→ L by means of formula φ−(p) =

∧
φ←(↑ p), which is

a specialization to complete lattices of formula (1 −min) of Proposi-
tion 1.4.7. Clearly, φ− is isotone (see the proof for the isotonicity of
ι in Proposition 1.4.7). If now p ≤ φ(l), then l ∈ φ←(↑ p), so that
φ−(p) =

∧
φ←(↑ p) ≤ l. Hence, p ≤ φ(l) implies φ−(p) ≤ l. Conversely,

assume that φ−(p) ≤ l. Clearly φ−(p) ≤ l implies
∧
φ←(↑ p) ≤ l,

by definition of φ−. Moreover, since φ preserves all infs, it is mono-
tone. Hence, φ(

∧
φ←(↑ p)) ≤ φ(l). But since φ preserves infs, we

obtain: φ(
∧
φ←(↑ p)) =

∧
φ(φ←(↑ p)) ≥

∧
(↑ p) = p (notice that

the inequality “≥” does not turn into equality unless φ is surjective).
(2) Dually. qed

5

To sum up, it is clear that in order to have a lower adjoint φ− (an
upper adjoint φ+), a map φ is required to fulfill something weaker than
being a lattice homomorphism: φ has to be a ∧-preserving map (φ has
to be a ∨-preserving map). And, vice-versa, in order to preserve infs
– i.e. limits – (to preserve sups – i.e. co-limits) for a map φ between
a complete lattice and a partially ordered set, φ must be isotone and
must have a lower adjoint (an upper adjoint).

At this point we can list a number of important properties of adjoint
maps between complete lattices.

Proposition 1.4.8. Let L′ �ι,σ L and L′ �ε,ς Lop hold. Let x′, y′ ∈ L′

and x, y ∈ L. Then the following holds:

1. (a) σ is multiplicative; (b) ι is additive.

2. (a) σ(x ∨ y) ≥′ σ(x) ∨′ σ(y); (b) ι(x′ ∧′ y′) ≤ ι(x′) ∧ ι(y′).

3. (a) ς and ε are anti-additive maps between L and L′.

4. (a) ε(x′ ∨′ y′) ≥ ε(x′) ∨ ε(y′); (b) ς(x ∧ y) ≥′ ς(x) ∧′ ς(y).

5. (a) ισ(x ∨ y) ≥ ισ(x) ∨ ισ(y); (b) σι(x′ ∨′ y′) ≥′ σι(x′) ∨′ σι(y′).
5Implicitly we have also proved that φ(φ−(p)) ≥ p. In fact, since x ≤ φ(y) implies

φ(y) ∈↑ x and, therefore, y ∈ φ←(↑ x), we immediately obtain that φ(φ−(p)) ∈↑
p and φ−(p) ∈ φ←(↑ p), so that

∧
φ←(↑ p) = min(φ←(↑ p)). In other words,∧

φ←(↑ p) belongs to (φ←(↑ p)), and, consequently it is its minimum.
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6. (a) ισ(x ∧ y) ≤ ισ(x) ∧ ισ(y); (b) σι(x′ ∧′ y′) ≤′ σι(x′) ∧′ σι(y′).

7. (a) ες(x ∧ y) ≤ ες(x) ∧ ες(y); (b) ςε(x′ ∧′ y′) ≤′ ςε(x′) ∧′ ςε(y′).

8. (a) ες(x ∨ y) ≥ ες(x) ∨ ες(y); (b) ςε(x′ ∨′ y′) ≥′ ςε(x′) ∨′ ςε(y′).

9. (a) ι = ισι, σ = σισ, ε = εςε, ς = ςες, (b) σι, ισ, ες and ςε are
idempotent.

10. ισ(0) = 0, σι(1′) = 1′, ες(1) = 1, ςε(1′) = 1′.

Proof. (1) From Proposition 1.4.2. (2) (a) x ∨ y ≥ x and x ∨ y ≥ y,
hence, from isotonicity, σ(x ∨ y) ≥′ σ(x) and σ(x ∨ y) ≥′ σ(y), so
that σ(x ∨ y) ≥′ σ(x) ∨′ σ(y). (b) x′ ∧′ y′ ≤ x′ and x′ ∧′ y′ ≤ y′,
hence, from isotonicity, ι(x′ ∧′ y′) ≤ ι(x′) and ι(x′ ∧′ y′) ≤ ι(y′), so that
ι(x′ ∧′ y′) ≤ ι(x′)∧ ι(y′). (3) ς maps limits of Lop, hence co-limits of L,
hence sups, into limits of L′, that is, infs. Similarly, ε maps co-limits of
L′, hence sups of L′, into co-limits of Lop, hence infs of L. (5), (6), (7)
and (8) are proved directly from the previous points, eventually with
the aid of Proposition 1.4.6. (9) (a) Because ι(p′) = ι(p′) and, in view of
Proposition 1.4.6, ισ(p) ≤ p, we have ισ(ι(p′)) ≤ ι(p′). Vice-versa, since
ι is monotone and p′ ≤ σι(p′), we obtain ι(p′) ≤ ισ(ι(p′)). It follows
that ι(p′) = ισι(p′). Dually one can prove the remaining equations. (b)
From these equations one can straightforwardly prove σι = σισι and
ισ = ισισ and the other equations. (10) From the decreasing property
of ισ we obtain ισ(0) ≤ 0, dually from the increasing property of σι,
ςε and ες we have the other equations. qed

It is must be emphasized that the above properties about ε and ς

are valid if we fix L so that the limits of Lop are the co-limits of L.
Otherwise Lop as such is a lattice with its own infs and sups and the
normal adjointness properties hold.

Now we have a good stock of results in order to “implement” a suf-
ficiently large body of useful operators, namely those operators which
will constitute the backbone of all the present story.

Definition 1.4.3. Let φ : O �−→ O be an operator on a partially
ordered set and ϑ : L �−→ L′ be an operator between two lattices. Then,

1. φ is a projection operator on O if and only if it is isotone and
idempotent.
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2. A projection operator is a closure operator if and only if it is
increasing.

3. A projection operator is an interior operator if and only if it is
decreasing.

4. ϑ is a modal operator if and only if it is normal and additive.

5. ϑ is a co-modal operator if and only if it is co-normal and mul-
tiplicative.

6. If ϑ is a closure operator then it is topological if and only if it is
modal.

7. If ϑ an interior operator, then it is topological if and only if it is
co-modal.

8. ϑ is an anti-modal operator if and only if it is anti-normal and
anti-additive.

9. ϑ is an anti-co-modal operator if and only if it is anti-co-normal
and anti-multiplicative.

10. ϑ is a complementation operator if and only if it is an anti modal
and anti-co-modal operator.

Then from Proposition 1.4.6 we immediately obtain:

Corollary 1.4.2. Let O′ �ι,σ O and O′ �ε,ς Oop hold (hence the latter
is a Galois connection between O and O′). Then,

1. (a) σι is a closure operator on O′; (b) ισ is an interior operator
on O.

2. (a) ςε is a closure operator on O′; (b) ες is a closure operator
on O.

Notice that none of these operators needs to be topological.
Moreover given the above adjointness situations we can underline

what follows:

• σ is half of a co-modal operator: it lacks co-normality.

• ι is half of a modal operator: it lacks normality.

• ε and ς are half of an anti-modal operator: they lack anti-
normality.
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Remarks. Modal operators are also called possibility operators and co-

modal operators are also called necessity operators while anti-modal oper-

ators are called sufficiency operators. We shall adopt this more intuitive

terminology in Section 2.2. Notice that for an operator ϑ to be a modality

we do not require ϑ to be an endomorphism. That is, our notions apply to

generic morphisms between two possibly distinct lattices.

Excursus 1.1 (Closure systems and adjointness).
It should be noted that given a function f : A �−→ B, with fo we denote the

corestriction A �−→ Imf of f to Imf . Dually, with fo we shall denote the inclusion
Imf �−→ B of Imf into B.

1. Let f : L �−→ L, for L a lattice. With f(L) we shall denote Imf equipped
with the order inherited from L. It can be shown:

(a) f is a projection if and only if fo is a retraction of L on f(L) with
coretraction fo.

(b) f is a closure operator if and only if L �fo,fo f(L) if and only if f = ισ
and S �ι,σ L, for some S.

(c) f is an interior operator if and only if f(L) �fo,fo

L if and only if
f = σι and S �ι,σ L, for some S.

Indeed, remember that f can be decomposed into fofo. Now suppose f is
a closure operator, then fofo ≥ 1L because, trivially, fofo = f . Conversely,
if fo � fo then fofo ≥ 1L. If f = ισ and S �ι,σ L then f is idempotent.
Moreover ισ ≥ 1L for adjunction properties, so that f is a closure operator.
In a dual manner we prove point 1c.

2. Let L be a complete lattice and C(L) be the set of all families of subsets of
L which are closed under arbitrary meets. 〈C(L),⊆〉 is a partially ordered set
and if S ∈ C(L) then S is said to be a closure system.

As an example of a closure system, consider a lattice L with minimum 0.
Then the family of all ideals of L, I (L), is a closure system such that any
element I ∈ I (L) is given by a closure operator cI(A) =↓

∨
A, any A ⊆ L.

The reader will notice that this fact will lies at the core of our definition
of closure operators on Information Systems. Another example: Let G be a
group and Sub(G) the family of subgroups of G. Then Sub(G) is a closure
system and for S ∈ Sub(G) the corresponding closure operator is given by
cS(A) = 〈A〉, where 〈A〉 is the subgroup generated by A.

3. More in general, we can associate closure systems and closure operators by
exploiting the fact that a section of a function f selects an element out of
each equivalence class modulo the kernel of f , and that fo is a coretraction,
hence a section. Indeed, we can associate with each closure operator c over
L a member of C(L) just by taking the family φ(c) = {x : x = c(x)}. The
association φ turns to be an order isomorphism between the set of closure
operators pointwise ordered and C(L)op.

The inverse map φ−1 associates with any closure system S ∈ C(L) the
upper adjoint of the inclusion map in : S −→ L followed by in itself. The
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upper adjoint of in is clearly given by the formula in+(x) = min(↑ x ∩ S) =∧
(↑ x ∩ S), all x ∈ L. Therefore, φ−1 associates with any closure system

S the closure operator cS which induces S itself, by means of the formula
cS(x) =

∧
{y ∈ S : x ≤ y}, any x ∈ L. Figures 1.11 and 1.12 depict an

illustrative example:

Figure 1.11: Decomposition of a closure operator

Figure 1.12: Composition of a closure operator

In the next paragraph we shall see situations in which the above oper-
ators turn into topological operators and/or complete modal, co-modal
and anti-modal operators. These situations lie at the core of our argu-
ments about “perception operators”. But we must immediately notice
that the lack of properties involving top and bottom elements is quite
obvious since they depend on the nature of O,O′ and L,L′. On the
contrary, the lack of properties concerning preservation of operations
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may be partially amended when we restrict domains to the families of
fixed points of the operators σι, ισ, ες and ςε.

To this end the following two results are fundamental:

Lemma 1.4.4. Let φ : O �−→ O be a map. Then,
(a) If φ is closure then O �φo,φo Imφ; (b) if φ is interior then
Imφ �φo,φo

O.

Proof. (a) We remind that for any map f , fo = 1Imf
, f o = f, f = f o◦fo

and if f is idempotent then fo ◦ f o = 1Imf
. Therefore, since φ is

idempotent φo ◦ φo = 1Imf
and since it is increasing φo ◦ φo ≥ 1O.

Moreover, φ is monotone so is φo, while φo is monotone qua identity
map. Hence the thesis follows from Proposition 1.4.6. (b) By duality.
Anyway the following direct proof may be of some interest. Because
φ is interior φ(x) = φoφ

o(x) ≤ x any x ∈ O. Hence if y ≤ φo(x),
since φo is monotonic we have φo(y) ≤ φoφ

o(x) ≤ x, and by transi-
tivity φo(y) ≤ x. Conversely if φo(y) ≤ x then φoφo(y) ≤ φo(x). But
φoφo(y) = 1Imf

(y) = y. Thus y ≤ φo(x). qed

Corollary 1.4.3. Let φ : L �−→ L be a map. Then,

1. If φ is closure then (a) φo is additive, (b) φo(Imφ) is closed under
meets, (c) Satφ(L) =def 〈Imφ,∧,�, 1〉, where for all x, y ∈ Imφ,
x � y = φ(x ∨ y), is a lattice; (d) If, in addition, φ is surjective,
then it is topological.

2. If φ is interior then (a) φo is multiplicative, (b) φo(Imφ) is closed
under joins, (c) Satφ(L) =def 〈Imφ,�,∨, 0〉, where for all x, y ∈
Imφ, x � y = φ(x ∧ y), is a lattice. (d) If, in addition, φ is
surjective, then it is topological.

Proof. (1) (a) Assume φ is closure. Then from Lemma 1.4.4 φo is lower
adjoint. Hence φo is additive. (b) In turn, φo is upper adjoint, thus it
is multiplicative. But φo = 1Imφ

so that meets in Imφ must coincide
with meets in L. (c) Finally, notice that 1 ∈ Imφ; now, consider the
set of upper bounds {a, b}u. Clearly the least upper bound (join) of a
and b, a � b, is

∧
{a, b}u. If {a, b}u = ∅ then

∧
{a, b}u = 1. Otherwise

suppose x =
∧
{a, b}u. Then x exists in Imφ because it is closed under

meets. We claim that x = φ(a ∨ b). By definition, x ≥ a, x ≥ b so
that x ≥ a ∨ b. Since x ∈ Imφ, x = φ(z) for some z ∈ L. Hence
φ(z) ≥ a ∨ b. For isotonicity φφ(z) ≥ φ(a ∨ b) and for idempotence
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φ(z) ≥ φ(a ∨ b), that is, x ≥ φ(a ∨ b). But a, b ≤ a ∨ b and since φ is
inflationary a∨b ≤ φ(a∨b). It follows that φ(a∨b) ∈ {a, b}u. Moreover,
φ(a∨b) ∈ Imφ. Thus x ≤ φ(a∨b). (d) If φ is surjective, then it coincides
with φo. (2) may be proved dually. qed

Remarks. If φ is an operator on a lattice L and φo(Imφ) is closed under

meets (under joins), then one can say that Imφ inherits meets (joins)
from L.

Notice that if φ is closure then joins in L and joins in Imφ may differ.

Hence, although for all x ∈ L, φ(x) = φo(x) and φo is additive, nonetheless

φ in general is not additive and φo(Imφ) could be not closed under joins.

Moreover from the above results we deduce that φ is additive if joins in L
and joins in Imφ coincide. The same remarks hold for interior maps and

meets.

These results together with Corollary 1.4.2 give the following propo-
sition (where we have just to notice that by turning Lop upside-down
interiors turns into closures and joins into meets):

Proposition 1.4.9. Let L′ �ι,σ L and L′ �ε,ς Lop hold. Then:

1. Satισ(L) = 〈Imισ ,�,∨, 0〉, where for all x, y ∈ Imισ, x � y =
ισ(x ∧ y), is a lattice.

2. Satσι(L′) = 〈Imσι,∧′,�, 1′〉, where for all x, y ∈ Imσι, x � y =
σι(x ∨′ y), is a lattice.

3. Satςε(L′) = 〈Imςε,∧′,�, 1′〉, where for all x, y ∈ Imςε, x � y =
ςε(x ∨′ y), is a lattice.

4. Satες(L) = 〈Imες ,∧,�, 1〉, where for all x, y ∈ Imες, x � y =
ες(x ∨ y), is a lattice.

Exercise 1.3. Give a direct proof of Proposition 1.4.9 [Hints: start
with ισ(x ∨ y) ≥ ισ(x) ∨ ισ(y) = x ∨ y].

Until now we have dealt with the situation in which a function can be
approximated from below or from above by means of a pair of adjoint
maps. Now let us focus on a case in which the pair of adjoint maps
provides us with the same information as the two identity maps. That
is, when the two residuals are divisors of the two identity maps.

We have already met this situation in Section 1.3 where given a
mapping φ from A to B, a mapping ψ from B to A was called a section
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of φ, if ψ ◦ φ = 1B , that is, for any b ∈ B,φ(ψ(b)) = b. Dually, if
φ ◦ ψ = 1A, then ψ was called a retraction of φ.

Also, it is proved that in order to have a section, φ must be surjec-
tive, while in order to have a retraction it must be injective. Thus it is
straightforward to show that the lower adjoint of a surjective mapping
φ is a retraction of φ and the upper adjoint of an injective mapping ψ
is a section of ψ (of course, provided they exists).

Proposition 1.4.10. Let O and O′ be partially ordered sets. Let O′ �ι,σ

O,p′ ∈ O′ and p ∈ O. Then the following are two sets of equivalent
statements:

1. (a) σ is surjective; (b) ι(p′) = min(σ←({p′})); (c) σι(p′) = p′; (d)
ι is injective.

2. (a′) σ is injective; (b′) σ(p) = max(ι←({p})); (c′) ισ(p) = p; (d′)
ι is surjective.

Proof. (1) (a)� (b): σι(p′) = σ(min(σ←(↑ p′))). But since σ is mono-
tonic, σ(min(X)) = min(σ→(X)), any X, so that σ(min(σ←(↑ p′))) =
min(σ→σ←(↑ p′)). Moreover, since σ is surjective, σ→σ←(↑ p′) =↑ p′.
Hence min(σ→σ←(↑ p′)) = min(↑ p′) = p′. Therefore, ι(p′) ∈ σ←({p′})
(notice that this relation holds because of surjectivity of σ, while gen-
erally, just ι(p′) ∈ σ←(↑ p′) holds). Therefore, since p′ = min(↑ p′) and
ι is monotone, we obtain ι(p′) = min(σ←({p′})).

(b) � (c): Because ι(p′) ∈ σ←({p′}), we immediately have σι(p′) =
p′, for all p′ ∈ O′.

(c) � (d): Since, for hypothesis, σι(p′) = p′, all p′ ∈ O′, we have
that ι is a section of σ. Hence, as we have already seen, ι must be
injective.6

(d)� (a): From ισι = ι we obtain ισι(x) = ι(x). But since ι is injec-
tive, for hypothesis, we must deduce σι(x) = x. Thus, σ is a retraction,
whence it is surjective. (2) Dually. qed

An adjunction O′ �ι,σ O such that ισ = 1O, is called a Galois insertion
or Galois embedding or a reflection. If σι = 1O′ then it is called a
co-reflection.

6Moreover, since ι is a section of σ, σ is a retraction of ι. Hence σ must be
surjective. Thus, as a side effect we have also proved (c)� (a).
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Example 1.4.2.
About the maps depicted in Example 1.4.1, the reader will note that g′f(1) = c � 1
because f is not injective while fg′(y) = y, fg′(x) = x because f is surjective.
It is worth noticing that from f ′′ � g � f ′ we can obtain the composition (f ′′ ◦ g) �
(f ′ ◦ g). Indeed (f ′′ ◦ g)(a) = 0 if a = 0, (f ′′ ◦ g)(a) = 1 otherwise and (f ′ ◦ g)(a) = 0
if a = 1, 0 otherwise and we can readily check that the adjointness properties hold.



Chapter 2

Concrete and Formal
Information Constructions

2.1 Concrete and Formal Observation Spaces

Now let us come back to the observation systems.
First of all, let us make an inventory of the basic actions one is

allowed to do in a generic P-system 〈G,M,�〉:

• Any point of G may be uniquely associated with a subset of M
(collecting the observed properties of the given point).

• Any property of M may be associated with a subset of G (col-
lecting the points manifesting the given property).

It seems to be a really poor stock of actions. Can we mine meaningful
information by means of the mathematical tools so far introduced? Can
one define a “conceptual geometry” on G and M using this machinery?

It will be seen that observation systems together with the math-
ematical machinery so far introduced are sufficient to define a rather
complex and comprehensive theory.

We shall start with an ‘observation function’ obs : G �−→ ℘(M),
defined by setting:

b ∈ obs(a) ⇔ a � b. (2.1.1)

Technically, obs is what is called a constructor because it builds-up a
set from a point. Obviously, for each point a, obs(a) is {b ∈M : a � b},
that is, the set of properties that are observed of a. We shall call obs(a)
the ‘intension of a’. In fact, any element a appears through the series

43
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of its observable properties, so that obs(a) is actually the intensional
description of a. The intension of a point a is, therefore, nothing but
its description through the observable properties listed in M . We shall
also say that if a � b (i.e. if b ∈ obs(a)), then b is an observable property
connected with a and that a belongs to the field of b.

By means of the observation function obs we obtain the family

OBS(G) = {obs(a) : a ∈ G}
We shall call 〈M,OBS(G)〉 a formal observation space. In pure mathe-
matical terms, obs is an indexing function. Indeed, in obs(a) the symbol
a may be considered a mere aseptic index for a family of observ-
ables. This is coherent with our phenomenological approach because
we can avoid the symbol a playing the ambiguous role of a pre-
phenomenological essence.

Also, in mathematical terms this construction is reversible because
observables may be conceived as indices for sets of points. This is coher-
ent with the fact that a genuine phenomenological approach does not
collapse into a sort of idealism. To avoid this danger, we can deal with
a “substance function” sub : M �−→ ℘(G) defined by setting:

a ∈ sub(b) ⇔ a � b. (2.1.2)

This symmetry reflects the intuition that a point can be intension-
ally conceived of as the set of properties it is connected with, just
as a property may be extensionally conceived of as the set of points
belonging to its field. Dually to obs, given a property b ∈M , sub(b) =
{a ∈M : a � b}, so that sub(b) is the ‘extension’, or the field, of b (see
Figure 2.1 below).

The link between these two functions is the above mentioned relation
�, because for all a ∈ G and b ∈M ,

a ∈ sub(b) ⇔ b ∈ obs(a) ⇔ a � b (2.1.3)

Obviously, we can dually introduce the notion of a concrete observa-
tion space by coupling the set G with the family SUB(M) = {sub(b) :
b ∈M}.

Remarks. obs (sub) takes in input a point (an observable) and outputs

a subset of M (of G). In fact, obs and sub are equivalent to the following

characteristic functions, for g ∈ G, p ∈M :

g(p) =
{

1 if g � p
0 otherwise

p(g) =
{

1 if g � p
0 otherwise
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Figure 2.1: A Observations and Substances

2.1.1 Observations and Partial Observations

As we have already noticed, the above picture is coherent with a phe-
nomenological approach because that way we do not disregard noumena
although we do not refer to them in a direct manner, in our concep-
tual construction. In a sense, we are applying Husserl’s method called
“epochè”. According to this method substances do not suddenly disap-
pear at once as claimed by extreme idealism (cf. again Berkeley’s argu-
ment reported in the Introduction), but all essentialist considerations
are “enclosed within a pair of brackets”, or “excluded” (Ausschaltung),
meaning that we have to suspend any prescriptive judgement about the
what of an object, because an object can be referred to only through a
phenomenological medium.

We now notice that since the set M is given and fixed, any P -system
will provide only with partial observations of the members of G. This
limitation means that a single point x possibly fails to be uniquely
described by its intension obs(x). Indeed, we can have distinct points
x and y such that obs(x) = obs(y) (i.e. obs should fail to be injective).
Obviously, if we change the set M of observables or if we enlarge it,
we can eventually obtain a situation where obs(x) �= obs(y) whenever
x �= y.1 Generally, the larger is M , the finer is the description of any

1We shall see that in a topological interpretation this means that the filter of
neighborhoods of x converges to x.
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point from a fixed setG. Anyway, even if we reach descriptions such that
obs(x) �= obs(y), for any x �= y, it cannot be said that the combination
of properties obs(x) captures the essence of x. Indeed, if we enlarge G,
we can have, again, a new point z �= x such that obs(x) = obs(z).

Finally, if only finite observations are considered, we should, in
principle, deal only with positive observations. In fact, negative obser-
vations are not that sound if only finitely many observations are allowed
(see Frame 4.4).

The above remarks can be synthesized by saying that the precision
of the intentional description of any object strictly depends on the par-
ticular P-system at hand. This, again, will avoid any essentialism, and
we stressed this position by saying that the symbol x in the notation
obs(x) is just an index of a family of members of M .

However, we shall also say that obs(x) is an intensional approx-
imation of a ‘partially describable’ member x of G and claim that
if obs(x) = obs(y), then x and y cannot be discerned by means of
the observable approximating properties (or “partial descriptions”) at
hand, so that x and y will be said to be indiscernible in the given
P-system.

Indeed, if obs fails to be injective then we know that it cannot have a
retraction and this means that the identity 1℘(G) cannot be determined
by means of the properties at our disposal (that is, the subsets of M
mapped by obs), so that a “loss of identity” literally happens.

If x and y are indiscernible they will collapse into the same inten-
tional description.

This is what happens in pointless topology, where two “concrete”
points may collapse into a single abstract point, that is, into a single
bundle of properties (cf. Introduction).

We shall see how to compute an indiscernibility relation from a
P-system. Before that, we have to introduce the basic operators act-
ing on P-systems. Some of them will be directly used in the following
paragraphs, some others will be used later on in derived P-systems.
Finally, some of them are introduced for the sake of completeness and
for making it possible to have a wider look at the topic.

Actually, a number of operators can be defined on P-systems. But
we require at least three basic intuitive characteristic:
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Mandatory requirements for operators on observation systems
All the operators must be defined by using the constructors “obs” and “sub”
The operators must make it possible to define approximation
operators by means of adjunction properties
The operators must not be defined just in order to technically
fit the above points, but, on the contrary they must have an
intuitive reading

2.1.2 Relations and Galois Adjunctions

Since � is a relation we need a stock of definitions and properties
about these mathematical objects. Therefore, the reader is invited to
go through Mathematical toolkit 16.5.

Remarks. For reasons which will be explained later, from now on we shall

adopt the following symbols2:

Relational operator Symbol

R(· · · ) 〈R�〉
R�(· · · ) 〈R〉
R =⇒ (· · · ) [R�]

R� =⇒ (· · · ) [R]

R� ⇐= (· · · ) [[R�]]

R⇐= (· · · ) [[R]]

We are going to prove the basic properties of the operations induced
by binary relations. First we need a Lemma.

Lemma 2.1.1. Let R ⊆ A× B. Then for any X ⊆ A,Y ⊆ B, a ∈ A,
b ∈ B:

1. b ∈ [R�] (X) iff 〈R〉(b) ⊆ X iff R�(b) ⊆ X.

2. a ∈ [R] (Y ) iff R(a) ⊆ Y iff 〈R�〉(a) ⊆ Y .

3. a ∈ [[R]] (Y ) iff Y ⊆ R(a) iff Y ⊆ 〈R�〉(a).
2It can seem rather odd that relational operators defined by means of R� turn

into symbols decorated with R and vice-versa and, even worst, this is not the case
for [[α]] operators. However there are several reasons depending on both logic and
relational algebra. The logical reasons will be explained in Frame 4.13 of the present
Part, while the other reasons will be explained in Frame 15.18.2 of Part III.
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4. b ∈ [[R�]](X) iff X ⊆ R�(b) iff X ⊆ 〈R〉(b).

5. (a) [[R]](∅) = A, (b) [[R�]](∅) = B, (c) 〈R�〉(∅) = 〈R〉(∅) = ∅.
(d) [R�](A) = B, (e) if R is onto, 〈R�〉(A) = B, [R�](∅) = ∅.
(f) [R](B) = A, (g) if R� is onto, 〈R〉(B) = A, [R](∅) = ∅.

6. If X and Y are singletons, then (a) 〈R�〉(X) = [[R�]](X);
(b) 〈R〉(Y ) = [[R]](Y ).

7. (a) If R is onto, [R�](X) ⊆ 〈R�〉(X); (b) If R� is onto [R](Y ) ⊆
〈R〉(Y ).

8. If R is a functional relation then [R](Y ) = 〈R〉(Y ).

9. If R� is a functional relation then [R�](X) = 〈R�〉(X).

10. If R is an isomorphism relation, then 〈R�〉(X) = [R�](X) and
[R](Y ) = 〈R〉(Y ).

Proof. (1) By definition b ∈ [R�] (X) iff ∀a(〈a, b〉 ∈ R � a ∈ X) iff
R�(b) ⊆ X iff 〈R〉(b) ⊆ X. (2) By symmetry. (3) and (4) from (1)
and (2) by swapping the position of the relations ∈ and R. (5) (a),
(b) and (c) are obvious. (d) For any b ∈ B, either 〈a, b〉 ∈ R for some
a ∈ A or the premise of the implication defining the operator [R�] is
false. (e) If R is surjective then for all a ∈ A there is a b ∈ B such that
〈a, b〉 ∈ R. Moreover, in [R�](∅) the premise is true for some element
while the conclusion is false; hence the consequence is always false.
Similar proofs for (f) and (g). (6) Applied on singletons the definitions
of [[α]] and 〈α〉 operators trivially coincide, for α = R or α = R�. (7)
For all b ∈ B, b ∈ [R�](X) iff R�(b) ⊆ X iff (for isotonicity of R(. . .))
R(R�(b)) ⊆ R(X). But b ∈ R(R�(b)). Hence b ∈ R(X) = 〈R�〉(X).
Symmetrically for [R] and 〈R〉. (8) If R is a functional relation, by
definition R� is onto, thus from point (7) [R](Y ) ⊆ 〈R〉(Y ) for any
Y ⊆ B. Suppose x ∈ 〈R〉(Y ) and x /∈ [R](Y ). Then there are y ∈ Y

and y′ /∈ Y such that 〈x, y〉 ∈ R and 〈x, y′〉 ∈ R. Hence R is not
functional. (9) Just an instance of (8). (10) Straightforwardly from (8)
and (9) by noticing that if R is an injective functional relation then
R� is a functional relation too. qed

Proposition 2.1.1. Consider the partially ordered sets A = 〈℘(A),⊆〉
and B = 〈℘(B),⊆〉. Let R ⊆ A × B be any relation, f̂ ⊆ A × B any
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functional relation and ĝ ⊆ A×B any isomorphism relation. Then the
following holds:

1. (a) A �〈R�〉,[R] B; (b) B �〈R〉,[R�] A.

2. (a) A �[[R�]],[[R]] Bop; (b) Bop �[[R]],[[R�]] A.

3. (a) A �〈f̂�〉,〈f̂〉 B; (b) B �〈ĝ〉,〈ĝ�〉 A and A �〈ĝ�〉,〈ĝ〉 B.

Proof. (1) (a) 〈R〉(Y ) ⊆ X iff R�(y) ⊆ X,∀y ∈ Y iff (from Lemma
2.1.1.(1)) Y ⊆ [R�](X). (b) By symmetry. (2) X ⊆ [[R]](Y ) iff ∀x ∈
X(Y ⊆ R(x)) (from Lemma 2.1.1.(3)), iff ∀x ∈ X,∀y ∈ Y (y ∈ R(x))
iff ∀y ∈ Y (X ⊆ R�(y)) iff ∀y ∈ Y (y ∈ [[R�]](X)) iff Y ⊆ [[R�]](X)
(in view of Lemma 2.1.1.(4)). (3) Either directly from Lemma 2.1.1.(8)
and (9) or from point (1) above and Corollary 1.4.1 by noticing that if
f̂ is a functional relation then 〈f̂�〉 = f→ and 〈f̂〉 = f←. qed

The latter statement says nothing else than if R is just a renaming,
then subsets of elements with a given name correspond exactly with
subsets of the same elements renamed.

Notice that if R� is onto then from 2.1.1.(7) 〈R�〉(X) ⊆ Y implies
X ⊆ 〈R〉(Y ) but the reverse implication holds only if R is functional.
Symmetrically, if R is onto then X ⊆ 〈R〉(Y ) implies [R�](X) ⊆ Y

but the reverse implication holds only if R� is functional.

Example 2.1.1. Relations, maps and functions
Consider the relation � of our basic Example 1.2.1.
We can compute some example of neighborhoods: � (a) = {b, b′}, � (a′) = {b′, b′′′},
� ({a, a′}) = {b, b′, b′′′} =� (a)∪ � (a′). One can verify that a ∈�� ({b, b′′}) implies
� (a) ∩ {b, b′′} = {b, b′} ∩ {b, b′′} = {b} �= ∅; and vice-versa.

Here below we depict the converse relation �� together with the two composi-
tions � ⊗ �� and �� ⊗ �:

�� a a′ a′′ a′′′ � ⊗ �� a a′ a′′ a′′′ �� ⊗ � b b′ b′′ b′′′

b 1 0 0 0 a 1 1 1 0 b 1 1 0 0
b′ 1 1 1 0 a′ 1 1 1 1 b′ 1 1 1 1
b′′ 0 0 1 0 a′′ 1 1 1 1 b′′ 0 1 1 1
b′′′ 0 1 1 1 a′′′ 0 1 1 1 b′′′ 0 1 1 1

The two compositions can be computed because �⊆ G×M and ��⊆ M ×G.
One can easily verify that 〈x, y〉 ∈� ⊗ �� if and only if there is a “path”

from x to y, that is, if there is an m ∈ M such that 〈x, m〉 ∈� and 〈m, y〉 ∈��

(symmetrically for �� ⊗ �). For instance, 〈a, b′〉 ∈� and 〈b′, a′′′〉 ∈�� so that
〈a, a′′′〉 ∈� ⊗ ��. Since �=���, and � ⊗ ��

	 ΔA, we have that �� is surjective
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but it is not functional. Indeed, both 〈b′, a〉 and 〈b′, a′〉 belong to � so that 〈a, a′〉 ∈�
⊗ �� although a �= a′. In the same manner we can verify that � is surjective too
but not functional.

On the contrary the relation f̂ of Example 1.2.1 is functional because f̂� ⊗ f̂ =
ΔM′ .

Exercise 2.1. Prove that for any relation R: −(R(X)) = −{y :
∀x(〈x, y〉 ∈ R� x �∈ X)}.

We claim that now we have all the ingredients to start deliberating on
observation systems.

2.2 The Basic Phenomenological Constructors

It is noticed that we must lift from the level of tokens to the level of
types (i.e. sets of tokens). Therefore, now we have to extend the con-
structors sub and obs from tokens to types, and call such extensions
“basic phenomenological constructors” or “perception constructors”
induced by a P-system.

We qualify these constructors as “basic” because they are defined
by means of elementary formulae of the form ∃x(α(. . . , x, . . .) &
β(. . . , x, . . .)) or ∀x(α(. . . , x, . . .) � β(. . . , x, . . .)), where α and β are
either ∈, obs or sub.

These constructors will make it possible to define different kinds of
structures over ℘(G) and ℘(M). Since such structures are defined as
extensions of the two functions obs and sub and since, in turn, these two
functions are linked by the relation (2.1.3), it is clear that any structur-
isation on points will have a dual structurisation on observables, and
vice-versa. In a precise sense, the pair 〈sub, obs〉 defines parallel con-
structions of structures connecting the elements of G with each other
and structures connecting the elements of M .

Essentially all the basic constructors will coincide with the opera-
tors definable from binary relations which have been introduced at the
beginning of the previous Section. In a few cases we shall deal with new
operators.

Basically, we have four types of extensions of obs and subs to a
subset Z of G or M :

• Existential extension: it is defined by existentially quantifying the
membership formula “x ∈ Z”.
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• Universal extension: it is defined by universally quantifying the
membership formula “x ∈ Z”.

• Co-existential extension: it is defined by universally quantifying
the fulfillment formula “x � y”, or, equivalently, x ∈ sub(y), y ∈
obs(x).

• Co-universal extension: it is defined by existentially quantifying
the fulfillment formula “x � y”, or, equivalently, x ∈ sub(y), y ∈
obs(x).

Remarks. In the present Chapter we shall basically deal with existential

and co-existential extensions. Some discussion shall be reserved for univer-

sal extensions. We shall not deal with co-universal extensions because, for

the time being, they have a rather odd interpretation in terms of perception

systems.

Definition 2.2.1 (Basic phenomenological constructors). Let P =
〈G,M,�〉 be a P-system. Then:

• 〈e〉 : ℘(M) �−→ ℘(G);
〈e〉(Y ) = {a ∈ G : ∃b(b ∈ Y & a ∈ sub(b))} = 〈�〉(Y ).

• [e] : ℘(M) �−→ ℘(G);
[e](Y ) = {a ∈ G : ∀b(a ∈ sub(b)� b ∈ Y )} = [�](Y ).

• [[e]] : ℘(M) �−→ ℘(G);
[[e]](Y ) = {a ∈ G : ∀b(b ∈ Y � a ∈ sub(b))} = [[�]].

• 〈i〉 : ℘(G) �−→ ℘(M);
〈i〉(X) = {b ∈M : ∃a(a ∈ X & b ∈ obs(a))} = 〈��〉(X).

• [i] : ℘(G) �−→ ℘(M);
[i](X) = {b ∈M : ∀a(b ∈ obs(a)� a ∈ X)} = [��](X).

• [[i]] : ℘(G) �−→ ℘(M);
[[i]](X) = {b ∈M : ∀a(a ∈ X � b ∈ obs(a))} = [[��]](X).

An intuitive interpretation of the above functions is in order. A con-
structor is decorated with ‘e’ when its application gives an extent. We
can verify that 〈e〉 is the “existential” or “disjunctive” extension of sub
while [[e]] is its “universal” or “conjunctive” extension.

Obviously, 〈e〉 = sub→ = obs←. We leave as an exercise the proof
that [e] is the dual of 〈e〉, hence it is the “co-existential extension” of
sub (the dual of [[e]] will be discussed “en passant” later on).
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Given Y ⊆M , the set [[e]](Y ) collects the points which fulfill at least
all the properties from Y (and, possibly, other properties outside Y ),
while 〈e〉(Y ) gives the set of points which fulfill at least one property
from Y (and possibly other properties outside Y ). Finally, [e](Y ) –
sometimes called the “restriction of Y along ��” – collects the points
which fulfill at most all the properties from Y (possibly not all the
properties in Y , but no property outside Y ).

The same considerations apply symmetrically to the operators deco-
rated with ‘i’ (because the result of these functions is an intent). Indeed
〈i〉 and [[i]] are the disjunctive and, respectively, conjunctive extensions
to subsets of G of the function obs; clearly 〈i〉 = obs→ = sub←. More
precisely, 〈i〉(X) collects the set of properties which are fulfilled at least
by one point of X, while [[i]](X) collects the set of properties which are
fulfilled at least by all the points of X, that is, the properties shared at
least by all the points of X. Finally, [i](X), the “co-existential exten-
sion” of obs, gives the set of properties which are fulfilled at most by all
of the points in X. In particular, [i]({x}) is the set of properties which
uniquely characterise x (see Figure 2.2 below).

We summarize these remarks in the following table:

. . . property/ies in Y . . . point/s in X

at least one . . . 〈e〉(Y ) 〈i〉(X)

at least all . . . [[e]] (Y ) [[i]] (X)

at most all . . . [e](Y ) [i](X)

The above basic constructors are just particular interpretations of the
operators defined in the previous Section. The following correspondence
table may be helpful.

P-systems
reading

Relational system reading Relational operations

〈e〉 〈�〉 �� (. . .)
[e] [�] ��=⇒ (. . .)
〈i〉 〈��〉 � (. . .)
[i] [��] �=⇒ (. . .)

[[e]] [[�]] �⇐= (. . .)
[[i]] [[��]] ��⇐= (. . .)
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Figure 2.2: Basic constructors derived from a P-system

Therefore, from Proposition 2.1.1 it is clear that the following adjoint-
ness properties hold in any P-system P = 〈G,M,�〉:

(a) M �〈e〉,[i] G; (b) G �〈i〉,[e] M;

(c) M �[[e]],[[i]] Gop; (d) G �[[i]],[[e]] Mop.

It follows, immediately, that the boxed operators (i.e. [i] and [e]) are
co-modal, the diamond operators (i.e. 〈i〉 and 〈e〉) are modal while the
double boxed operators (i.e. [[e]] and [[i]]) are anti-modal.

2.2.1 A Modal Reading of the Basic Constructors

At this point a modal reading of the basic constructors is in order.
Thus, let us read these constructors by means of operators taken from
extended forms of modal logic, namely, possibility, necessity and suffi-
ciency. We shall see in Part III that such a reading is also supported
by the fact that these operators, indeed, may play the role of seman-
tic counterparts of modal operators. The proposed interpretation comes
straightforwardly from Proposition 2.1.1. We prefer to give a few expla-
nations and present the matter in a tabular and pictorial form. For
the sake of completeness, in this section we shall deal also with the
operators dual of [[i]] and, respectively, [[e]]:

• 〈〈i〉〉(X) =def −[[i]](−X), for X ⊆ G, the “co-universal exten-
sion” of obs

• 〈〈e〉〉(Y ) =def −[[e]](−Y ), for Y ⊆ M , the “co-universal exten-
sion” of sub
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The matter will be presented just for intensional operators.

Operator x ∈ X b ∈ B Example reading

〈i〉 (X) = B If x ∈ X then

it is possible that

x enjoys elements

in B

b is enjoyed by

some element

collected in X

There are examples

of elements in X

that enjoy b

[i] (X) = B To enjoy elements in

B it is necessary

to be in X

b is enjoyed by

at most all the

element of X

There are not

examples of elements

enjoying b that are

not in X

[[i]] (X) = B To enjoy elements in

B it is sufficient

to be in X

b is enjoyed by

at least all the

elements of X

There are not

examples of elements

of X that do not

enjoy b

〈〈i〉〉 (X) = B It is possible

that some element

outside X does not

enjoy elements in B

b is not enjoyed

by some element

outside X

There are examples

of elements in −X

not enjoying b

A pictorial description of the above modal reading is shown in Fig-
ures 2.3 and 2.4.

In Formal Concept Analysis [[i]](X) gives the “intent” of the set X,
that is, as already noticed, the set of properties that are shared by
all the elements from X or, otherwise stated, the set of properties
that characterise X as a whole. Symmetrically, [[e]](Y ) gives the set
of objects that share all the properties listed in Y , hence [[e]](Y ) is
the “extent” of the set of properties Y . On this basis, we shall give a
mathematical proof of a well-known philosophical law which concerns
extensions and intentions of concepts, the aforementioned “Loy de Port
Royal” which states that intension and extension are contravariant.
Indeed the more a set is characterised (or defined), the less is the num-
ber of its elements (for example, a generic inhabitant of India fulfills
less properties than a Bengali, because a Bengali is an Indian with fur-
ther properties, for instance “living in Bengal”).
See Frame 4.9 for further details.

Exercise 2.2.
(A) Consider A = {a, a′, a′′}, B = {b, b′, b′′, b′′′}. Let R ⊆ A × B be
given by the following table:
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R b b′ b′′ b′′′

a 1 0 1 0

a′ 0 1 0 0

a′′ 0 0 1 1

Compute:

(1) 〈〈i〉〉({a, a′}), (2) [[i]]({a, a′′}), (3) [i]({a, a′}).

(B) Prove that in any P-system 〈〈i〉〉(X) = (− �)(−X).

Figure 2.3: Possibility and Necessity

Figure 2.4: Sufficiency and dual sufficiency

The above functions are linked by some fundamental relationships.
First recall that our operators are defined on Boolean algebras of type
〈℘(A),∩, ∪, A,−, ∅〉, so that negation coincides with set-theoretical
complementation.

Thus, let us say that if an operator Opo is obtained by negating all
of the defining subformulas in an operator Op, and by further applying
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the contraposition law according to negations (or, equivalently, by first
putting the definition in disjunctive normal form), then Opo and Op are
said to be opposite or orthogonal (to each other), or “o” in symbols.3 If
Opd(X) =∼ Op(∼ X) then Opd is called the dual of Op and we denote
the relation of duality with “d”. Eventually, Op1 “od” Op2 means that
the operator Op2 is obtained by taking the opposite of the dual of Op1.
Then we have (for intensional operators):

[i] [[i]] 〈i〉 〈〈i〉〉
[i] = o d od

[[i]] o = od d

〈i〉 d od = o

〈〈i〉〉 od d o =

The same happens of extensional operators. The details are left as
exercises.

However, from now on we shall no longer deal with 〈〈i〉〉 and 〈〈e〉〉.
About the remaining operators, let us observe that the internal struc-
ture of their definitions splits them into three classes. Moreover their
domains split each class into two sub-classes:

Internal structure Domain

〈e〉 ∃& ℘(M)

〈i〉 ∃& ℘(G)

[e] ∀� ℘(M)

[i] ∀� ℘(G)

[[e]] � ∀ ℘(M)

[[i]] � ∀ ℘(G)

In the above table by means of the sequence � ∀ we denote the fact
that the universally quantified formula which appears in the definition
of the operator has the relation ∈ in the premise and the relation �
(in the guise of sub or obs) in the conclusion. On the contrary in ∀�-
formulas we have the other way around. This is another way to state
that ∀� and � ∀ formulas are opposite to each other.

3So, for instance, if α� β appears in a defining formula, of Op, then in Opo we
have ∼ β �∼ α.
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We can easily observe that functions decorated with e and functions
decorated with i are symmetric with respect to the relation �, and we
denote this fact with (s), while box-functions and diamond-functions
are formally dual (d). It follows that box-functions decorated with e

(with i) are symmetric-dual (sd) to diamond-functions decorated with
i (with e):

〈e〉 〈i〉 [e] [i] [[e]] [[i]]

〈e〉 = s d sd od ods

〈i〉 s = sd d ods od

[e] d sd = s o os

[i] sd d s = os o

[[e]] od ods o os = s

[[i]] ods od os o s =

Obviously, symmetric functions fulfill the same formal properties, oppo-
site functions fulfill opposite properties, while dual and symmetric-dual
operators fulfill dual properties, as we can see from the following result.

The reader will notice that functions [[e]] and [[i]] behave like [e] and
[i], respectively, but with the inversion of the relation ⊆. The intuitive
reason, discussed above, is the “Loy de Port Royal”, while the formal
reason is the polarity property between [[e]] and [[i]].

Example 2.2.1. Basic formal constructors
Consider again our basic Example 1.2.1. About system P, we can see, for instance,
that 〈i〉(a′) = {b′, b′′′}, 〈i〉(a) = {b, b′}, and 〈i〉({a, a′}) = {b, b′, b′′′} which shows
that 〈i〉(a) ∪ 〈i〉(a′) = 〈i〉({a} ∪ {a′}) and, moreover, that 〈i〉(a) ⊆ 〈i〉({a, a′})
(instances of the sup-distributivity and, respectively, monotonicity of 〈i〉).

Thus, if x ∈ {a, a′} it is possible that x � b or x � b′ or x � b′′′.
However,〈e〉(b) �= {a′}, 〈e〉(b′) �= {a′} and 〈e〉(b′′′) �= {a′}. It follows that [i](a′) = ∅,
that is tantamount to saying that there are not properties uniquely characteris-
ing a′. On the contrary, 〈e〉(b) = {a} so that b is a characteristic property
of a, as well as b′′ is a characteristic property of a′′. But if we consider a, a′

and a′′ together, we get a “synergy” result: [i]({a, a′, a′′}) = {b, b′, b′′} because
if x ∈ {b, b′, b′′} then �� ({x}) ⊆ {a, a′, a′′}, and only in this case (notice that
[i](a′)∪ [i](a)∪ [i](a′′) = {b, b′′} ⊆ [i]({a}∪{a′}∪{a′′}). i.e. non sup-distributivity of
[i]; on the contrary, [i]({a, a′′} ∩ {a′′, a′′′}) = [i](a′′) = {b′′} = {b′, b′′} ∩ {b′′, b′′′} =
[i]({a, a′′})∩[i]({a′′, a′′′}) (i.e. inf-distributivity of [i])). So, in order to fulfill prop-
erties in {b, b′, b′′} it is necessary to belong to {a, a′, a′′}. In fact, a′′′ /∈ {a, a′, a′′}
and a′′′ does not fulfill any element of {b, b′, b′′}. However, the condition is not
sufficient, because, for instance, a ∈ {a, a′, a′′} but a �� b′′.
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On the opposite side, we can easily see that {a′′′} = [e]({b′′, b′′′}).
Finally, {b′, b′′′} = [[i]]({a′, a′′}) because b′ and b′′′ are the properties shared by a′

and a′′. Thus, it is sufficient to belong to {a′, a′′} in order to fulfill the properties
in {b′, b′′′}. However, it is not necessary, because, for instance a′′′ /∈ {a′, a′′} but
a′′′ � b′′′.

Moreover, this example shows that [[i]]({a, a′}) ∩ [[i]]({a′, a′′}) = {b′} =
[[i]]({a, a′} ∪ {a′, a′′}) whereas, for instance, [[i]]({a} ∩ {a′}) = [[i]](∅) = {b, b′,
b′′, b′′′, b′′′′} ⊇ {b, b′, b′′′} = [[i]]({a}) ∪ [[i]]({a′}) (which is also an instance of the
fact that [[i]] – and [[e]] – is antitone).

To end, notice the following instances of the adjoint properties of the basic

constructors:

adj.1) 〈i〉({a′, a′′′}) = {b′, b′′′} ⊆ {b′, b′′, b′′′}; {a′, a′′′} ⊆ {a′, a′′, a′′′} =

[e]({b′, b′′, b′′′}).
adj.2) 〈e〉({b, b′}) = {a, a′} ⊆ {a, a′, a′′}; {b, b′} ⊆ {b, b′, b′′} = [i]({a, a′, a′′}).
ax.1) {b′} ⊆ {b′, b′′′} = [[i]]({a′, a′′}); [[e]]({b′}) = {a, a′, a′′} ⊇ {a′, a′′}.
ax.2) {a′′} ⊆ {a′′} = [[e]]({b′, b′′}); [[i]]({a′′}) = {b′, b′′, b′′′} ⊇ {b′, b′′}.

Exercise 2.3. Without using any adjointness property, but only logi-
cal and set-theoretical means, prove the distributive features of [i], 〈i〉,
[e], 〈e〉, [[i]] and [[e]] according to the theses of Proposition 1.4.8 (Hints:
for instance, to prove that the operator 〈α〉 distributes over unions, for
α = i or α = e, proceed as follows: start with the fact that ∃x(x ∈
X ∩ Y ) � ∃x(x ∈ X) & ∃x(x ∈ Y ) and use the logical law (∀x(x ∈
X) ∨ ∀x(x ∈ Y ))� ∀x(x ∈ X ∪ Y )).

2.3 Formal Operators on Points
and on Observables

Sequences of constructors with alternate decoration provide a number
of operators on ℘(G) and ℘(M). We shall deal with a restricted set of
possibilities. In fact, we shall use sequences of adjoint operators. Indeed
axiality says that if one operator lowers an element then the coniugate
operator lifts it, and vice-versa, so that by combining them either we
obtain the maximum of the lowering elements or the minimum of the
lifting elements of a given argument.

Definition 2.3.1 (Formal perception operators). Let 〈G,M,�〉 be a
P -system. Then:

• int : ℘(G) �−→ ℘(G); int(X) = 〈e〉([i](X)).

• cl : ℘(G) �−→ ℘(G); cl(X) = [e](〈i〉(X)).
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• est : ℘(G) �−→ ℘(G); est(X) = [[e]]([[i]](X)).

• A : ℘(M) �−→ ℘(M);A(Y ) = [i](〈e〉(Y )).

• C : ℘(M) �−→ ℘(M); C(Y ) = 〈i〉([e](Y )).

• IT S : ℘(M) �−→ ℘(M);IT S(Y ) = [[i]]([[e]](Y )).

As like as the basic constructors decorated by i and e, these oper-
ators can be classified on the basis of two distinct criteria, viz. their
defining formulae and their domain:

Logical class Domain
C ∃∀ ℘(M)
int ∃∀ ℘(G)
A ∀∃ ℘(M)
cl ∀∃ ℘(G)

IT S ∀∀ ℘(M)
est ∀∀ ℘(G)

The domain-based classification is immediate. As for the classification
based on the logical structure, notice that C(Y ) = 〈i〉([e] (Y )) and that
〈i〉 is a ∃&-function while [e] is a ∀ �-function, so that C is a ∃∀-
operator. Dually for A which is defined by means of the sequence [i]〈e〉.
The argument for int and cl is the same. Finally, notice that both
est and IT S are defined by means of a sequence of two universally
quantified conditions (� ∀-operators) (see Figure 2.5).

From the above classification it follows that the two ∀∃-operators are
symmetric with respect to their domains and co-domains, as like as the
two ∃∀-operators, while ∀∃-operators and ∃∀-operators are symmetric-
dual. Therefore, we obtain a symmetry-duality table that is formally
equivalent to the symmetry-duality table for basic constructors:

C int A cl IT S est

C = s d sd
int s = sd d
A d sd = s =
cl sd d s =

IT S = s
est s =
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Figure 2.5: Basic formal perception operators

Proposition 2.3.1. In any P-system 〈G,M,�〉, for any X ⊆ G,Y ⊆
M , a ∈ G, b ∈M :

1. b ∈ A(Y ) iff �� (b) ⊆ �� (Y ), iff 〈e〉(b) ⊆ 〈e〉(Y ).

2. a ∈ cl(X) iff � (a) ⊆� (X), iff 〈i〉(a) ⊆ 〈i〉(Y ).

3. a ∈ int(X) iff 〈i〉(a) ∩ [i] (X) �= ∅.

4. b ∈ C(Y ) iff 〈e〉(b) ∩ [e](Y ) �= ∅.

5. a ∈ est(X) iff [[i]](X) ⊆ � (a), iff ∀m ∈M((∀x ∈ X(x � m))�
a � m).

6. b ∈ IT S(Y ) iff [[e]](Y ) ⊆ �� (b), iff ∀g ∈ G((∀y ∈ Y (g � y))�
g � b).

Proof. (1) By definition b ∈ A(Y ) iff b ∈ [i] (〈e〉(Y )). Hence from Lemma
2.1.1.(1), b ∈ A(Y ) iff 〈e〉(b) ⊆ 〈e〉(Y ) iff �� (b) ⊆ �� (Y ). (2) By
symmetry. (3) a ∈ int(X) iff a ∈ 〈e〉([i] (X)) iff a ∈�� ({b :�� (b) ⊆
X}), iff � (a) ∩ {b :�� (b) ⊆ X} �= ∅, iff 〈i〉(a) ∩ [i] (X) �= ∅. (4) By
symmetry. (5) The first equivalence comes from Lemma 2.1.1.(4) and
the definition of “est”. Moreover, [[i]](X) = {m : X ⊆�� (m)} = {m :
∀x ∈ X(x � m)}. Henceforth [[i]](X) ⊆ � (a) iff a � m for all m such
that x � m, for any member x of X. (6) By symmetry. qed

It is worth noticing, at once, that a ∈ est(X) if and only if a fulfills
at least all the properties that are shared by all the elements of X. In
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this sense est(X) is the extent of the set of properties that characterises
X as a whole. Symmetrically, b ∈ IT S(Y ) if and only if b is fulfilled
by at least all the objects that enjoy all the properties from Y . In this
sense IT S(Y ) is the intent of the set of objects that are characterised
by Y as a whole.

In order to understand the meaning of the other operators, let us
recall that the elements of M can be interpreted as “formal neighbor-
hoods”. In fact, in topological terms a neighborhood of a point x is a
collection of points that are linked with x by means of some nearness
relation. Since a member b of M is associated, via �� with a subset X
of G, b may be intended as a ‘proxy’ of X itself. Thus if X is a concrete
neighborhood of a point x, then b may be intended as a formal neigh-
borhood of x, on the basis of the observation that the nearness relation
represented by X states that two points are close to each other if they
both fulfill property b.

This interpretation will be developed in details in Part III.
By now we use it to justify the symbol int. Indeed the usual def-

inition tells us that for any subset X of G, a point a belongs to the
interior of X if and only if there is a neighborhood of a included in X.
In this formal framework we cannot verify directly if a formal neigh-
borhood b of a is included in a set of points X. Indeed, we have to
check: first if b is a formal neighborhood of a, that is, a � b (hence, if
a ∈ 〈e〉(b)); second if the extension of b, 〈e〉(b), is included in X. From
the adjunction properties, 〈e〉(b) ⊆ X if and only if {b} ⊆ [i] (X). The
conclusion is that a belongs to the interior of X if and only if a ∈ 〈e〉(b)
for b belonging to [i] (X). To sum up:

interior(X) = {a : ∃b(a ∈ 〈e〉(b) & b ∈ [i](X))}
= 〈e〉([i] (X)) = int(X) (2.3.4)

Otherwise stated, int(X) is the extension of all the neighborhoods m
such that 〈e〉(m) ⊆ (X).

Much in the same line, we justify the symbol cl. In fact for any subset
X of G, a belongs to the closure of X if and only if any neighborhood
of a has non empty intersection with X. Thus a ∈ cl(X) if and only
if for all b ∈� (a) (that is, for all formal neighborhoods of a) ��

(b)∩X �= ∅. Therefore, in view of point 3 of Mathematical toolkit 16.5,
{b : a � b}(i.e. 〈i〉(a)) must be included in 〈i〉(X) and, from Proposition
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2.1.1.(2), this holds if and only if a ∈ [e]〈i〉(X). To sum up:

closure(X) = {a : ∀b(a ∈ 〈e〉(b)� (X ∩ 〈e〉(b) �= ∅))}
= [e] (〈i〉(X)) = cl(X) (2.3.5)

To put it another way, cl(X) is the extension of all and only those
neighborhoods m such that 〈e〉(m) ∩ (X) �= ∅.

Example 2.3.1. Basic formal operators – I
We still refer to our basic Example 1.2.1.

Let us try and compute some instances of basic formal operators on system P:
1. Extensional operators:
int({a, a′}) = 〈e〉[i]({a, a′}) = 〈e〉({b}) = {a}; int({a′′}) = 〈e〉({b′′}) = {a′′}.
cl({a, a′}) = [e]〈i〉({a, a′}) = [e]({b, b′, b′′′}) = {a, a′, a′′′}; cl({a, a′′}) = [e](M) = G.
est({b′, b′′}) = [[i]][[e]]({b′ , b′′}) = [[i]]({a′′}) = {b′, b′′, b′′′}.
int(int({a, a′})) = int({a}) = 〈e〉[i]({a}) = 〈e〉({b}) = {a} = int({a, a′}).
cl(cl({a, a′})) = cl({a, a′, a′′′}) = [e]〈i〉({a, a′, a′′′}) = [e]({b, b′b′′′}) = {a, a′, a′′′}
= cl({a, a′}).
est(est({b′, b′′})) = est({b′, b′′, b′′′}) = [[i]][[e]]({b′ , b′′, b′′′})
= [[i]]({a′′}) = {b′, b′′, b′′′} = est({b′, b′′}).
Thus, we have examples of the fact that int is decreasing while cl and est are
increasing and all of them are idempotent. Moreover, one can see that int({a, a′})
∪ int({a′′}) = {a, a′′} ⊆ {a, a′, a′′} = int({a, a′}∪ {a′′}) and cl({a, a′})∩ cl({a, a′′})
= {a, a′, a′′′} ⊇ {a} = cl({a, a′} ∩ {a, a′′}).

2. Intensional operators:
A({b, b′}) = [i]〈e〉({b, b′}) = [i]({a, a′, a′′}) = {b, b′, b′′}.
C({b′′, b′′′}) = 〈i〉[e]({b′′, b′′′}) = 〈i〉({a′′′}) = {b′′′}.
IT S({b′, b′′}) = [[i]][[e]]({b′ , b′′}) = [[i]]({a′′}) = {b′, b′′, b′′′}.
A(A({b, b′})) = A({b, b′, b′′}) = [i]〈e〉({b, b′, b′′}) = [i]({a, a′, a′′}) = {b, b′, b′′} =
A({b, b′}).
C(C({b′′, b′′′})) = C({b′′′}) = 〈i〉[e]({b′′′}) = 〈i〉({a′′′}) = {b′′′} = C({b′′, b′′′}).
IT S(IT S({b′, b′′})) = IT S({b′′′}) = [[i]][[e]]({b′ , b′′, b′′′}) = [[i]]({a′′}) =
{b′, b′′, b′′′} = IT S({b′, b′′}).
Thus, this is also an example of the fact that C is decreasing while A and IT S are
increasing and all of them are idempotent.

Exercise 2.4. Prove that:
(A) int(X) =

⋃
{〈e〉(m) : 〈e〉(m) ⊆ X} = 〈e〉{m : 〈e〉(m) ⊆ X}.

(B) cl(X) = [e]{m : 〈e〉(m) ∩X �= ∅}.
(C) cl(X) = [e]

⋂
{−{m} : X ⊆ −〈e〉(m)}.

(D) cl(X) = [e]
⋂
{Z : X ⊆ [e](Z)}.
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2.3.1 Algebraic Properties of Formal Perception
Systems

From the adjunction properties of the basic constructors we deduce,
in view of Corollary 1.4.2 (and Example 2.3.1), that in a P-system
P = 〈G,M,�〉 the following hold:

Interior operators int, C
Closure operators cl, A, est, IT S

In view of the observation after Corollary 1.4.2 one easily notices that
none of the above operators needs to be topological.

Definition 2.3.2. Let P = 〈G,M,�〉 be a P-system. Then we define
the following families of fixpoints of the operators induced by P:

1. Ωint(P) = Imint = {X ⊆ G : int(X) = X} – the extensional
open subsets of P.

2. Γcl(P) = Imcl = {X ⊆ G : cl(X) = X} – the extensional closed
subsets of P.

3. Γest(P) = Imest = {X ⊆ G : est(X) = X} – the extents of P.

4. ΩA(P) = ImA = {Y ⊆ M : A(Y ) = Y } – the intensional open
subsets of P.

5. ΓC(P) = ImC = {Y ⊆ M : C(Y ) = Y } – the intensional closed
subsets of P.

6. ΓIT S(P) = ImIT S = {Y ⊆ M : IT S(Y ) = Y } – the intents of
P.

Terminology and Notation. If X belongs to one of the above fam-

ilies for an operator Op ∈ {cl, est, C,IT S, int,A}, then X is called

Op − saturated (or “saturated”, if the operator Op is understood). It

is worth mentioning that in pointfree topology extensional operators are

called “concrete” , while intensional operators are called “formal”.

Proposition 2.3.2. Let P = 〈G,M,�〉 be a P-system. Then:

1. Satint(P) = 〈Ωint(P),∪,∧, ∅, G〉, where
∧

i∈I Xi = int(
⋂

i∈I
Xi), is

a complete lattice.
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2. SatA(P) = 〈ΩA(P),∨,∩, ∅,M〉, where
∨

i∈I Yi = A(
⋃

i∈I
Yi), is a

complete lattice.

3. Satcl(P) = 〈Γcl(P),∨,∩, ∅, G〉, where
∨

i∈I Xi = cl(
⋃

i∈I
Xi), is a

complete lattice.

4. SatC(P) = 〈ΓC(P),∪,∧, ∅,M〉, where
∧

i∈I Yi = C(
⋂

i∈I

Yi), is a

complete lattice.

5. Satest(P) = 〈Γest(P),∩,∨, est(∅), G〉, where
∨

i∈I Xi =
est(
⋃

i∈I

Xi), is a complete lattice.

6. SatIT S(P) = 〈ΓIT S(P),∩,∨,IT S(∅),M〉, where
∨

i∈I Yi =
IT S(

⋃

i∈I
Yi), is a complete lattice.

Proof. Much work has already be done in Proposition 1.4.9. We just
need to justify the choice of top and bottom elements. To this end,
remember that in any P-system both � and �� are onto. Hence in view
of Lemma 2.1.1.(5). int(G) = 〈e〉[i](G) = 〈�〉[��](G) = 〈�〉(M) = G,
and analogously for the other operators. The only difference is for IT S
and est because [[�]](∅) = G but [[��]](G) = {m :�� (m) = G} ⊇ ∅;
dually for [[�]][[��]](∅). qed

From the definitions in the above Proposition it follows that the partial
order between saturated subsets is the order which is inherited from
the structure they are derived from. Thus, for instance, we shall have
〈ΓC(M),⊆〉.

Now we shall discuss the isomorphic relationships between formal
operators. This result will help us to have a complete picture about
the relationships between formal perception operators. Particularly we
shall see that three types of relationships must be distinguished: (a)
symmetry, (b) duality, (c) isomorphism.

First, we need a Lemma:

Lemma 2.3.1. Let P = 〈G,M,�〉 be a P-system. Then for all X ⊆
G,Y ⊆M ,
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X ∈ Ωint(P) iff X ∈ Γcl(P) iff X ∈ Γest(P) iff

X = 〈e〉(Y ′) X = [e](Y ′) X = [[e]](Y ′)

Y ∈ ΩA(P) iff Y ∈ ΓC(P) iff Y ∈ ΓIT S(P) iff

Y = [i](X ′) Y = 〈i〉(X ′) Y = [[i]](X ′)

for some Y ′ ⊆M,X ′ ⊆ G.

Proof. IfX = 〈e〉(Y ′) thenX = 〈e〉[i]〈e〉(Y ′), from Proposition 1.4.8.(9).
Therefore, by definition of int, X = int(〈e〉(Y ′)) = int(X). Vice-
versa, if X = int(X), then X = 〈e〉[i](X). Hence, X = 〈e〉(Y ′) for
Y ′ = [i](X). The other cases are proved in the same way, by exploiting
the appropriate equations of Proposition 1.4.8.(9). qed

Corollary 2.3.1. Let P = 〈G,M,�〉 be a P-system. Then,

1. 〈e〉 is an isomorphism between SatA(P) and Satint(P).

2. [i] is an isomorphism between Satint(P) and SatA(P).

3. [e] is an isomorphism between SatC(P) and Satcl(P).

4. 〈i〉 is an isomorphism between Satcl(P) and SatC(P).

5. [[i]] is an anti-isomorphism between Satest(P) and SatIT S(P).

6. [[e]] is an anti-isomorphism between SatIT S(P) and Satest(P).

7. The set-theoretic complementation is an anti-isomorphism
between Satcl(P) and Satint(P) and between SatC(P) and
SatA(P).

Proof. Let us notice, at once, that the proof for an operator requires the
proof for its adjoint operator. Then, let us prove (1) and (2) together.
First, let us prove bijection for 〈e〉 and [i]. From Lemma 2.3.1 the
codomain of 〈e〉 is Ωint(P) and the codomain of [i] is ΩA(P). More-
over, for all X ∈ Ωint(P),X = 〈e〉[i](X) and for all Y ∈ ΩA(P), Y =
[i]〈e〉(Y ). From the adjunction properties we have:

(i) 〈e〉 is surjective on Ωint(P) and (ii) [i] is injective from Ωint(P).
(iii) 〈e〉 is injective from ΩA(P) and (iv) [i] is surjective onto ΩA(P).
Moreover, if [i] is restricted to Ωint(P), then its codomain is the set
H = {Y : Y = [i](X) & X ∈ Ωint(P)}. Clearly, H ⊆ ΩA(P). In turn, if
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〈e〉 is restricted to ΩA(P), then its codomain is the set K = {X : X =
〈e〉(Y ) & Y ∈ ΩA(P)}. Clearly K ⊆ Ωint(G). Therefore, (i) and (iii)
give that 〈e〉 is bijective if restricted to ΩA(P), while (ii) and (iv) give
that [i] is a bijection whenever restricted to Ωint(P).4

Now it is to show that 〈e〉 and [i] preserve joins and meets. For
〈e〉 we proceed as follows: (v) 〈e〉(

∨
i∈I(A(Yi))) =def 〈e〉(A(

⋃

i∈I
(A(Yi))).

But 〈e〉A = 〈e〉, from Lemma 2.3.1.(9). Moreover, 〈e〉 distributes over
unions. Hence the right side of (v) equals to

⋃

i∈I

〈e〉(A(Yi)). But in view

of Proposition 2.3.2, the union of extensional open subsets is open and
from Lemma 2.3.1 〈e〉(A(Yi)) belongs to Ωint(P) indeed, so that the
right side of (v) turns into int(

⋃

i∈I
〈e〉(A(Yi))) =def

∨
i∈I〈e〉(A(Yi)).

(vi) 〈e〉(
∧

i∈I A(Yi)) = 〈e〉(
⋂

i∈I
[i]〈e〉(Yi)). Since [i] distributes over

intersections, the right side of (vi) turns into 〈e〉[i](
⋂

i∈I
〈e〉(Yi)) =

int(
⋂

i∈I
〈e〉(Yi)). But 〈e〉 = 〈e〉A, so that the last term is exactly

∧
i∈I〈e〉(A(Yi)). Since [i] is the inverse of 〈e〉, qua isomorphism, we

have that [i] preserves meets and joins, too.
As to (3) and (4), the results come by symmetry.
(5) and (6) As in the above proof (we can optimize a passage by

noticing that [[e]] and [[i]] are both upper and lower adjoints) and by
the fact that in polarities the right category is reversed upside down
with respect to the order (hence, with respect to the lattice operations).
(7) By duality between the operators. qed

It should be noticed carefully that points 5 and 6 of Corollary 2.3.1
definitely code the “Loy de Port-Royal”.

As we have seen, int(X) and cl(X) translates the usual topological
definitions of an interior and, respectively, a closure of a set X ⊆ G,
into the language provided by observation systems.

Therefore, from Corollary 2.3.1, we immediately have that given
Y ⊆M , A(Y ) = Y expresses the fact that Y is a “formal open subset”
and C(Y ) = Y means that Y is a “formal closed subset” (Figure 2.6).

4As side results, we have: (a) ΩA(P) = H and (b) Ωint(P) = K. This is not
surprising, because if Y ∈ ΩA(P) then Y = [i]〈e〉(Z) for some Z ⊆ M and 〈e〉(Z) ∈
Ωint(P), any Z ⊆ M . Vice-versa, if X ∈ Ωint(P), then X = 〈e〉(Z). Hence [i](X) =
[i]〈e〉(Z) belongs to ΩA(P). Symmetrically for (b).
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Figure 2.6: Concrete and formal topological operators

All the same, once more the reader must pay attention to the fact
that although int and C are interior operators, they are not, in general,
topological interior operators, since it is not guaranteed that they pre-
serve intersections. This can readily be verified by considering the fact
that, from the very definition of int, we have:

int(X) = 〈e〉{m : 〈e〉(m) ⊆ X},∀X ⊆ G. (2.3.6)

so that an open set may be a union of other open sets but it is not
guaranteed that the intersection of open sets is open.

Similarly,

cl(X) = [e]{m : 〈e〉(m) ∩X �= ∅},∀X ⊆ G. (2.3.7)

so that it is not guaranteed that cl, A, est and IT S preserve unions
(see Part III for details on this topic).
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However we have a simple, although notable, result about this topic.

Proposition 2.3.3. Let θ and φ be two dual basic operators. Then,

1. θ is a closure operator if and only if φ is an interior operator.

2. θ is topological if and only if φ is topological.

Proof. (1) Trivially, since complementation reverses the order. (2) Sup-
pose θ is additive, then φ(X ∩ Y ) = −θ− (X ∩ Y ) = −θ(−X ∪−Y ) =
−(θ(−X) ∪ θ(−Y )) = −θ(−X) ∩ −θ(−Y ) = φ(X) ∩ φ(Y ). Dually for
the opposite implication. qed

We end this Section with a useful characterisation suggested by equa-
tion 2.3.6

Proposition 2.3.4. Let P be a P-system. Then for any X ⊆ G,

int(X) =
⋃

{〈e〉(m) : 〈e〉(m) ⊆ X}

Hence, for obvious reasons, we call the family {〈e〉(m) : 〈e〉(m) ⊆
X}X⊆G the base of Ωint(P). It is left to the reader to prove that equa-
tions 2.3.6 and 2.3.7 hold and that Proposition 2.3.4 derives from 2.3.6.

Example 2.3.2. Basic perception operators – II
Let us now visualise the lattices of saturated sets (from the basic Example 1.2.1):

Satint(P) Satcl(P)

G G

��� ��� ��� ���
{a′, a′′, a′′′} {a, a′, a′′} {a′, a′′, a′′′} {a, a′, a′′′}

�������

��� ��� ��� �������
{a, a′′} {a′, a′′′}

��� ��� ���
{a′′} {a} {a′′′} {a}
��� ��� ��� ���

∅ ∅

SatA(P) SatC(P)

M M

��� ��� ��� ���
{b′′, b′′′} {b, b′, b′′} {b′, b′′, b′′′} {b, b′, b′′′}

�������

��� ��� ��� �������
{b, b′′} {b′, b′′′}

��� ��� ���
{b′′} {b} {b′′′} {b, b′}
��� ��� ��� ���

∅ ∅

Notice, for instance, that {b} = [i]({a}) and {b′′, b′′′} = [i]({a′, a′′, a′′′}). Indeed,
[i] is an isomorphism from Satint(P) to SatA(P). Otherwise stated, given a set
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X in Satint(P), the corresponding element Y of SatA(P) is the set of properties
which uniquely characterises X. Vice-versa, recall that A = [i]〈e〉 and, in fact,
symmetrically, 〈e〉 is an isomorphism from SatA(P) to Satint(P) (for example,
〈e〉({b, b′′}) = {a, a′′}). Hence, given a set Y in SatA(P), the corresponding element
in Satint(P) is the set of objects uniquely characterised by Y . Dually, 〈i〉 is an
isomorphism between Satcl(P) and SatC(P) (for instance, 〈i〉({a}) = {b, b′}) and
[e] is the inverse of 〈i〉 (e. g. [e]({b, b′}) = {a}).

Moreover we can verify that the set-theoretic complementation is an anti-isomo-
rphism between Satcl(P) and Satint(P) and between SatC(P) and SatA(P). For
instance −{a} = {a′, a′′, a′′′} and −{a, a′′} = {a′, a′′′}, −{b′, b′′′} = {b, b′′}, and so
on.

Let us verify some examples of operations on these lattices.
{a} ∨ {a′′′} = {a, a′, a′′′} = cl({a} ∪ {a′′′}). In fact Satcl(P) is not closed under
unions, but the join, of X and Y in Satcl(P) is given by cl(X ∪ Y ). Dually,
{a, a′, a′′} ∧ {a′, a′′, a′′′} = {a′′} = int({a, a′, a′′} ∩ {a′, a′′, a′′′}), because Satint(P)
is not closed under intersections but the meet of X and Y in Satint(P) is given by
int(X ∩ Y ).

So, notice that cl is not additive because cl(X ∪Y ) �= cl(X)∪cl(Y ) (for instance
cl({a}) ∪ cl({a′′′}) = {a} ∪ {a′′′} = {a, a′′′} �= cl({a, a′′′})). Similarly, int is not
multiplicative, because intersections of fixpoints of int generally are not fixpoints of
int.

On the contrary, clo : ℘({a, a′, a′′, a′′′}) �−→ Γcl is additive because clo(X∪Y ) =
cl(X ∪ Y ) = X ∨ Y = clo(X) ∨ clo(Y ), and into : ℘({a, a′, a′′, a′′′}) �−→ Ωint is
multiplicative because into(X ∩Y ) = int(X ∩Y ) = X ∧Y = into(X)∧ into(Y ) (for
instance, clo({a}) ∨ clo({a′′′}) = {a, a′, a′′′} = clo({a, a′′′})).

One can now easily find symmetrical examples for SatA(P) and SatC(P).

Exercise 2.5.
(A) Using the equation [i]〈e〉[i] = [i], prove that for all Y, Y ′ ⊆ ΩA(P),
〈e〉(Y ) = 〈e〉(Y ′) implies Y = Y ′.
(B) Just using logical transforms of connectives and quantifiers prove:
[[i]](A ∩B) ⊇ [[i]](A) ∪ [[i]](B) and [[i]](A ∪B) = [[i]](A) ∩ [[i]](B).
(C) In Proposition 2.1.1 it is claimed that b ∈ [[i]](X) iff X ⊆ 〈e〉(b). In
view of this claim is it possible to derive, Y ⊆ [[i]](X) iff X ⊆ 〈e〉(Y )?
(D) Prove: [[i]](X) =

⋂
{〈e〉(m) : X ⊆ 〈e〉(m)}.

(E) Just using logical transforms, prove [e](Y ) = −〈e〉(−Y ).
(F) Prove that 〈〈i〉〉(X) = {b ∈M : ∃a(a �∈ X & a �� b)}.
(G) Prove that [[i]] and [i] are orthogonal (that is, they arise by negating
all the subformulas of the other).
(H) Compute all the elements of ΩA(P), ΓC(P), Γcl(P) and Ωint(P).
(I) Prove that cl and int are dual.
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2.3.2 Multi-Agent Pre-Topological
Approximation Systems

We wonder whether int, cl or est and IT S have a proper informational
and conceptual interpretation. Now we give an answer as to int and cl
while a discussion for est and IT S is reserved for the future.

Given X ⊆ G it is known that [e]〈i〉(X) ⊇ X and 〈e〉[i](X) ⊆ X.
We can interpret these relationships by saying that:
(ua) cl is an upper approximation of the identity map on ℘(G).
(la) int is a lower approximation of the identity map on ℘(G).

More precisely, since 〈i〉(X) = min([e]←(↑ X)) = min{X ′ ⊆ G :
[e](X ′) ⊇ X}, we have that [e]〈i〉(X) (i.e. cl(X)) is the best approxi-
mation from above to X via function [e].

Dually, [i](X) = max(〈e〉←(↓ X)) = max{X ′ ⊆ G : 〈e〉(X ′) ⊆ X}.
Hence, 〈e〉[i](X) (i.e. int(X)) is the best approximation from below to
X, via function 〈e〉.5

If 〈i〉 is injective (or, equivalently, [e] is surjective), then we can
exactly reach X from above by means of [e]. The element that must be
mapped is, indeed, 〈i〉(X). Dually, if [i] is injective (or 〈e〉 is surjective),
then we can exactly reach X from below by means of 〈e〉 applied to
[i](X).

Given a P-system P, let us define the following families of operators
manipulating sets of objects: GP = {int, cl}. On this basis we can
introduce the notion of a Multi-agent pre-topological Approximation
Systems (mpAP for short):

〈G,M, {GPk}k∈K〉 or, shortly, 〈G, {GPk}k∈K〉

where any Pk is an Information System on the same set of objects
G. This generalisation makes it possible to manipulate sets of objects
by subsequently applying informational criteria induced by different
Information Systems.

5The pairs of concepts 〈least, upper〉 and 〈greatest, lower〉 are essential. Indeed,
dealing with upper approximations is too vague, since we can have a plenty of upper
approximations with no upper bound (dually for lower approximations). Exactly
for the same reasons we deal with least upper bounds, greatest lower bounds, least
fixed points, least common multiples, greatest common divisors and so forth. In this
duality, the notion of a limit (or co-limit) is embedded.
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Particularly, the structure 〈G, int, cl〉 will be called a Basic pre-
topological Approximation System.

By carrying on the same construction on properties (or attributes)
and setting MP = {A, C} we obtain a Multi-agent pre-topological co-
Approximation System 〈M,G, {MPj}j∈J〉 or, shortly, 〈M, {MPj}j∈J〉
and by merging the two spaces we obtain the notion of a Multi-agent
pre-topological Perception System:

Definition 2.3.3. Let P be a P-system, then the structure:

〈G,M, {GPk}k∈K , {MPj}j∈J , IP,EP〉,

where any Pk is an Information System on the set of objects G and
set of properties or attributes Mk possibly distinct from M , any Pj is
an Information System on the set of properties (or attributes) M and
set of objects Gj possibly distinct from G, IP : ℘(G) �−→ ℘(M) and
EP : ℘(M) �−→ ℘(G) are maps, is called a Multi-agent pre-topological
Perception System.

Notice that any of the above families may be empty.
Particularly, if card(k) = card(j) = 1 we shall adopt the term

(Single-agent) pre-topological Perception System.



Chapter 3

Pre-Topological and
Topological Approximation
Operators

3.1 Information, Concepts and Formal

Operators

So far we have listed a number of well-defined mathematical instru-
ments that act on either sides of abstraction we are dealing with, that
is, points and properties. But what is the informational interpretation
of the above machinery? What is a plausible philosophical interpreta-
tion of all these mathematical results? Are they able to provide points
(i.e. noumena) with a proper informational and conceptual structure
based on their manifested properties (i.e. phenomena)?

First of all, from Corollary 2.3.1 we can say that the operators A,
C and IT S give the intensional (or formal) images of the extensional
structures that are defined by int, cl and est on G and, symmetrically,
through int, cl and est we obtain extensional (or concrete) images of
the formal structures that A, C and IT S define on M . However, this
imaging is not a mere mirroring, since intensional structures are not
definable without the extensional structures, and the other way around.
This is a plausible point of view under any non-mechanical approach
to cognitive acts.

Thus we maintain that P-systems equipped with the basic construc-
tors and the basic operators are good starting points.

73
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But we have not yet answered the question above. On the contrary,
another one is to be added.

We know that int and cl provide us with lower and upper app-
roximations of any set X ⊆ G. But are we really happy with this
machinery? The answer is “yes and no”. Yes, because we have found a
mathematically sound way to deal with approximations which respects
a reliable intuitive interpretation. No, because both int and cl are dis-
continuous operators because int is not multiplicative and cl is not
additive, so that we have to face “jumps” which can be too wide and
make us miss information.

In order to solve the above issue, we must again start noticing that
any answer and solution depends on the nature of the P-system at hand.
Generally, the nature of points is not really important. More important
is the nature of properties. And, even more important is the nature of
the operator supposed to better represent the basic perception act.

Once this choice has been made we can easily define higher level
structures. In fact, suppose Op is our hypothetical choice. Then, given
a P-system P = 〈G,M,�〉, the family of Op-saturated subsets of G
immediately induces a first order derivative P-system P′ = 〈G,G,R〉
where R ⊆ G × G is a binary relation derived from the Op-saturated
structure we started with (the same apply to any family of symmetric
Op-saturated subsets of M , of course).

As usual we have two basic derivatives: an “existential” and a “uni-
versal” derivative:

• (U) 〈g, g′〉 ∈ R if for all Op-saturated set O, g ∈ O implies g′ ∈ O

• (E) 〈g, g′〉 ∈ R if there exists an Op-saturated set O, such that
g, g′ ∈ O

A variant is obtained by substituting the implication in (U) with a
bi-implication.

Moreover, since P′ is a P-system, we can compute its saturated
structures and obtain second order derivatives of P, using relations
induced by other operators if convenient. And so on. However, we wont
exploit relations directly defined by means of Op-saturated sets, but
we shall derive such kind of new relations from a conceptual analysis
in our phenomena-noumena framework.

All we have now to do is to carefully decide the starting point and
understand the informational content of the derivatives.
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3.1.1 Choosing the Initial Perception Act

So far we have assumed that a “phenomenological system” is a set of
objects coupled with a set of attributes or properties through which
we are aware of them: “data + attributes” (A-systems) or “data +
properties” (B-systems), this is what we supposedly are given. That is,
it has been assumed that original sources of knowledge are systems of
information of either of these sorts. Probably this is not “the” way one
interacts with the world (it is surely too much an Aristotelian begin-
ning), but without any doubts a number of information is presented
this way.

P-systems are special cases of A-systems in which V = {0, 1} – up
to a proviso that we shall detail later on. This fact will be underlined
by giving A-systems the more general term introduced by Z. Pawlak:
Information Systems or the term Multivalued Contexts introduced
by R. Wille. However, since in turn, as we shall see, A-systems are
equivalent to particular P-systems, we shall continue to use the present
terminology and collect both P-systems and A-systems under the term
“Information Systems”.

We also have assumed that our first act of knowledge is a group-
ing act, a sort of “data abstraction”. This can basically be performed
in two opposite ways: either collect around an object g the elements
which fulfills at least all the properties (or attribute-values) of g, or the
elements fulfilling at most all the properties (or attribute-values) of g.
Otherwise stated, in the first case we collect the objects which are char-
acterised at least as g by the properties (attributes) at hand, while in
the second case we collect the objects which are characterised at most
as g. However if we consider attribute-values instead of properties, the
two conditions collapse (see later on).

Moreover notice that the grouping rule just asserted does not imply
any form of symmetry. Indeed, g′ could manifest all the properties of g
but also additional properties that are not manifested by g. To put it
another way, we are claiming that our basic grouping act is not based on
the notion “to manifest exactly the same properties”, but on the notion
“to manifest at least (or at most) the same properties”. Indeed, the set
of properties which are manifested by g, is the attracting phenomenon
around which we form our perception. Thus from an analytical point
of view we have just to focus on these properties and not to take into
account additional properties. In the present paragraph it will be seen
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that the former notion is subsumed by the latter. That is, if we define
this way the basic “cells” of our categorisation process, a wider range
of cases shall be covered.

However, it is worth discussing the notion of “sameness” between
properties.

Indeed, one can legitimately ask: “What does ‘same’ mean? Does it
mean ‘equal’ or may I consider some more subtle concept like ‘equal up
to some tolerated difference’? You know, we have experimental errors
and other sorts of noises, or sometimes an ε difference is not important”.

Yes, all of the above are perspicuous and acceptable interpretations.
The answer of Classical Rough Set Theory (from now on CRST) is:

“same” means “identical”. But, we have to add immediately, “identical”
up to the way our data are collected and presented. Indeed, CRST must
not be interpreted as a witness of “rigidity”. It should be such, if we
had some ingenuously realistic point of view for which we are “tabulae
rasae” ready to be impressed by external data. On the contrary we know
that any “external datum” is filtered by a number of “intentional” co-
ordinates, so that any datum is actually an “intentional datum”. Hence
any attribute is manifested just by means of some more or less artificial
“experimental system”. Therefore a datum belongs to an Information
System because of and to the extent to which it is within the framework
of a “conceptual scaling”:

“A quality, as such, is never an object of observation. We can see
that a thing is blue or green, but the quality of being blue and the quality
of being green are not things that we see; they are products of logical
reflections.” (Charles. S. Peirce, The Fixation of Belief, Popular Science
Monthly, 12, November 1877, pp. 1–15).

Thus although we are considering “identical values”, nonetheless
we are allowed to consider as identical, for instance, the values “3”
and “4” – i.e. the two properties “taking value 3” and “taking value
4” – if they belong to the same conceptual interval (for instance if
they represent the distance in millimeters from the center of a target
of two different shots during a target-shooting game and we are merely
interested if the shot is within the center).

Therefore, the scale we use is a matter of presentation of data, while
the real objection to the “same-as-identical” assumption, is related to
its interpretation and affects the level of granularity of the resulting
conceptual structure. In fact variants and extensions of CRST have
been proposed and the still increasing literature on rough sets presents
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a good repertoire of solutions in the neighborhoods of the basic aspects
of the classical theory.

Now let us come back to our “perception cells”.
We have basically two choices, as we know (a third is a “neutral”

choice):

Let 〈G,At, {Va}a∈At〉 be an Attribute System. Then for all
g ∈ G define:

Qg = {g′ : ∀a ∈ At,∀x ∈ Va((a(g) = x)� (a(g′) = x))} –
quantum of information at g.

Let 〈G,M,�〉 be a Property System. Then for all g ∈ G define:

Q↑
g = {g′ : ∀m ∈M(m ∈ 〈i〉(g)� m ∈ 〈i〉(g′))} – the quantum
of information at g.

Q↓
g = {g′ : ∀m ∈M(m ∈ 〈i〉(g′)� m ∈ 〈i〉(g))} – the
co-quantum of information at g.

Remember that the two names g and g′ are not part of the informa-
tion we have: they just stand for the observation of some phenomena.
Therefore we maintain that an object g′ must be associated with the
same “category” as g if g′ manifests all the phenomenological proper-
ties that are manifested by g. That is, we are not able to perceive g
without perceiving g′.

This assumption reflects the idea “g is perceived together with g′

whenever g′ manifests at least the same properties as g”. Indeed, if
〈i〉(g) and 〈i〉(g′) are the set of positive properties fulfilled by g and,
respectively, g′ and 〈i〉(g) ⊆ 〈i〉(g′), then g′ surely belongs to the exten-
sion of the set of properties 〈i〉(g). For example, if someone manifests
the property “to be Italian”, whenever we consider what is perceivable
by means of the same property we must include any Italian, with no
regards to any additional properties they can manifest (for instance,
“to be Roman” or “to have a degree”).

Therefore, given (the properties manifested by) an object g the per-
ception cell organised around g should be Q↑

g which should be referred
to as the “minimum perceptibilium at location g”, because it is not
possible to perceive g without perceiving (the manifestations of) the
other members of that “perception parcel”. Therefore, we call such
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perception parcel a quantum of perception or a quantum of information
at g. This terminology is not from CRST. Instead we drew our inspira-
tion from Bell [1983] and this term expresses a sort of programme that
may be epitomized by the slogan “any information is a quantum
of information”.

Objects in the sense of object-oriented programming, for instance,
are very sophisticated “quanta of information”. Here we have more
basic “quanta of information”.

The reader is invited to notice that the name “quantum” is not
suggested by a vague analogy living in the Hyperuranium: on the con-
trary, as it is seen in Frame 4.6.1, under certain circumstances quanta of
information happen to be particular quanta at a location in the sense
of Bell [1983] and quanta at a location, in turn, are connected with
ortholattices. Eventually, ortholattices are connected with Quantum
Logic.

As to quanta of information from a Property System, we can elabo-
rate a little further (Attribute Systems shall be resumed later on).

Proposition 3.1.1. Let P = 〈G,M,�〉 be a P-system and g, g′ ∈ G.
Then,

1. Q↑
g = est(g).

2. g′ ∈ Q↑
g iff for all X ∈ Γest, g ∈ X � g′ ∈ X.

3. g′ ∈ Q↑
g iff for all m ∈M,g ∈ 〈e〉(m) � g′ ∈ 〈e〉(m), iff 〈i〉(g) ⊆

〈i〉(g′).

4. g′ ∈ Q↑
g iff g ∈ Q↓

g′ iff g ∈ cl(g′).

Proof. The proofs are based on Proposition 2.1.1.(6) and Proposition
2.3.1.(5).
(1) Indeed, g′ ∈ est(g) iff � (g′) ⊇ [[i]](g). But [[i]](g) = 〈i〉(g) =� (g),
whence g′ ∈ est(g) if and only if m ∈� (g) � m ∈� (g′) if and only if
g′ ∈ Q↑

g.
(2) (�) Suppose X ∈ Γest and g ∈ X � g′ ∈ X. Then � (g) ⊇ [[i]](X)
implies � (g′) ⊇ [[i]](X). Since this happens for all est-saturated X, it
happens for [[i]](g) too and we trivially obtain � (g′) ⊇� (g), so that
g′ ∈ Q↑

g. (�) If g′ ∈ Q↑
g then � (g′) ⊇� (g). If, moreover, g ∈ X, for

X = est(X), then � (g) ⊇ [[i]](X). By transitivity, � (g′) ⊇ [[i]](X),
whence g′ ∈ X too.
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(3) Indeed, g ∈ 〈e〉(x) if and only if g � x if and only if x ∈� (g).
Hence for all m ∈ M,g ∈ 〈e〉(m) � g′ ∈ 〈e〉(m) if and only if for all
m ∈M,m ∈ 〈i〉(g) � m ∈ 〈i〉(g′).
(4) So, g′ ∈ Q↑

g if and only if 〈i〉(g) ⊆ 〈i〉(g′) if and only if g ∈ Q↓
g′ if

and only if g ∈ cl(g′). qed

Corollary 3.1.1. In any P-system 〈G,M,�〉, for all g ∈ G, est(g) =
{g′ : g ∈ cl(g′)}.

Indeed, this result, a trivial consequence of the above Proposition,
formally states, in view of Proposition 2.3.1.(2), that g′ is perceived
together with g if and only if it fulfills at least all the properties fulfilled
by g. The above intuition is highlighted by the following observation: a
quantum of perception at a location g is the universal extension of func-
tion sub to the set of properties 〈i〉(g) fulfilled by g. In turn, since we
start with a singleton {g}, 〈i〉(g) is both a universal and an existential
extension of function obs. Hence,

Q↑
g = [[e]]〈i〉(g) = [[e]][[i]](g) = {g′ : g ∈ cl(g′)}.

However, this is true of singletons, but 〈i〉 and [[i]] reveal their nature of
opposite dual operators when applied to arbitrary sets and this differ-
ence openly works when we have to decide how to combine elementary
cells or, more precisely, how to move from grouping-maneuvers around
a single object to grouping maneuvers around two or more objects.

In this case, too, we have essentially two kinds of choice: universal
extensions from singletons to a generic set X and existential extensions.

As to existential extensions we have two alternatives which are
compatible with our basic choice:

Q∪
X =

⋃

x∈X

Q↑
x Q⊕

X = [[e]]〈i〉(X)

As to universal extensions we briefly discuss only the following alter-
native:

Q⊗
X = [[e]][[i]](X) = est(X).

The superscript ⊗ underlines the fact that in est(X) we consider the
properties which glue the elements of X together. Otherwise stated,
we extract from � (X) the set of properties P ′ which are shared by all
the elements of X. Then we apply the symmetric process to P ′. Thus,
according to this universal extension, an object g belongs to Q⊗

X if g
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fulfills all the properties fulfilled by all the elements of X. In fact, the
universal extension of quanta of information is the basic mechanism for
the construction of formal concepts in Formal Concept Analysis (see
Frame 4.9).

In Q⊕
X we add together all the properties fulfilled by the elements

of X, as if X were a single object perceived through the properties in
〈i〉(X). Subsequently we collect all the elements g such that 〈i〉(g) ⊇
〈i〉(X).

In Q∪
X we consider X as an actual set where all elements carry a

specific information.
For the very reasons discussed so far, as initial perception acts we

shall adopt Q↑
g and Q∪

X , which, moreover, makes a uniform treatment
of both P-systems and A-systems possible.

Moreover, notice that Q⊕
X is not an additive operator. Indeed, for

any A,B ⊆ G, Q⊕
A∪B = Q⊕

A ∩Q⊕
B (the operator 〈i〉 distributes over ∪,

but the operator [[e]] turns ∪ into ∩).
On the contrary, Q∪

X is trivially additive (notice that we obtain Q∪
X

by simply swapping the two quantifiers in Q⊕
X).

Terminology and Notation. Since by default we shall deal just with

quanta of information and additive extensions of quanta of information –

from now on also i-quanta – we shall generally avoid “↑” and ∪” to qualify

Qg or QX . On the contrary, whenever we need to explicitly distinguish

the Information Systems which induce the quanta of information we are

dealing with, we shall use the name of the system as an exponent (e.i.

QP
g , QS

X , etc.). Moreover, if O = 〈X,R〉, we set −O = 〈X,−R〉 and

O� = 〈X,R�〉.
From now on, if A denotes an A-system, then it is understood that

A = 〈G,At, V 〉. Similarly, if P denotes a P-system, then it is understood

that P = 〈G,M,�〉. With S we shall denote either of these two kinds of

systems.

We can ask whether these are the only meaningful combinations of phe-
nomenological operators to start with. Within the limit of the present
approach the answer is “yes”. Clearly other operators could be adopted,
with different informational meaning and the reader will be able to try
and find other interesting combinations.

However, our choice is powerful and expressive enough to make the
development of a number of theoretical and technical features possible.
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Example 3.1.1.
Consider the P-system P of Example 1.2.1. Let us compute some quanta of infor-
mation of P: Qa = {a}, Qa′ = {a′, a′′}, Qa′′ = {a′′}, Qa′′′ = {a′, a′′, a′′′}, Q{a,a′} =
{a, a′, a′′} and so on additively. It is worth noticing that cl({a, a′′′}) is {a, a′, a′′′}
and int({a′, a′′}) = {a′′}, while Q{a,a′′′} = {a, a′′′}, Q{a′,a′′} = {a′, a,′′ a′′′}, so that
QX is definitely an operator different from both cl and int (from int because Q is
increasing, too).

Now let us compute some instances of the operator Q⊕:
Q⊕a = [[e]]〈i〉({a}) = [[e]]({b, b′}) = {a} = Qa, and so on for any application of Q⊕

to singletons. On the contrary, Q⊕{a,a′} = [[e]]〈i〉({a, a′}) = [[e]]({b′, b′′′}) = {a′, a′′}
= ∅.

More in general notice that if x ∈ Q⊕Y then 〈i〉(x) ⊇ 〈i〉(Y ). It follows that for all
y ∈ Y, 〈i〉(y) ⊆ 〈i〉(x), so that x ∈ Qy. Thus x ∈ Q⊕Y implies x ∈ QY . The converse
implication does not hold, though, because if x ∈ QY then ∃y ∈ Y such that x ∈ Qy,
while x ∈ Q⊕Y if and only if x ∈

⋂

y∈Y

Qy.

3.1.2 Information Quantum Relational Systems

Now that we have chosen the basic mechanisms (basis and step) leading
from atomic perceptions (or “elementary perception cells”) to complex
perception, let us analyse what kinds of relation arise between elements
of G from these grouping-maneuvers.

Let us then set the following definition:

Definition 3.1.1 (Information Quantum Relational System). Let S
be an Information System over a set of points G. Let R be a binary
relation on G. We say that R is induced by S whenever the following
holds, for all g, g′ ∈ G:

〈g, g′〉 ∈ R iff g′ ∈ Qg.

We call R the information quantum relation – or i-quantum relation
or quantum relation in short – induced by S and it will be denoted as
RS. Moreover, Q(S) will denote the relational system 〈G,RS〉, which
is called the Informational Quantum Relational System – IQRS, or
Quantum Relational System in short, induced by S.

Since g′ ∈ Qg says that g′ fulfills at least all the properties fulfilled by
g, then 〈g, g′〉 ∈ RS has the same meaning.

Remarks. Notice that 〈G,RS〉 is a square P-system 〈G,G,RS〉 and we

shall liberally use this fact.
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Clearly the properties of i-quantum relations depend on the patterns of
objects induced by the given systems. However, they uniformly fulfill
some basic properties. In view of the additivity property of generalised
quanta, we can confine our attention to i-quanta at a location.

Lemma 3.1.1. In any Information System S over a set G, for all
g, g′, g′′ ∈ G:

1. (a) g ∈ Qg (q-reflexivity); (b) g′′ ∈ Qg′ & g′ ∈ Qg � g′′ ∈ Qg

(q-transitivity).

2. If S is an A-system, or a functional or dichotomic P-system then
g′ ∈ Qg implies g ∈ Qg′ (AFD-q-symmetry).

Proof. (1) The two statements are obvious consequences of transitivity
and reflexivity of the relation ⊆. Notice that antisymmetry does not
hold because of the obvious fact that g′ ∈ Qg and g ∈ Q′

g does not
imply g′ = g. (2) Now, let S be an A-system. Suppose g′ ∈ Qg and
a(g) �= x, then a(g) = x′ for some x′ �= x so that a(g′) = x′, because
g′ ∈ Qg, whence a(g′) �= x too. Therefore, g′ ∈ Qg implies g ∈ Qg′ , so
that the induced relation is also symmetric. If S is a functional P-system
we trivially obtain the proof from the fact that � (g) is a singleton.
Finally, if S is dichotomic and g′ ∈ Qg, then g′ fulfills at least the same
properties as g. Now, if g′ � p while g �� p, then g � p (where p is
a complementary copy of p), but g′ �� p, since it fulfills p. Hence we
cannot have � (g) ⊆� (g′), whence g′ �∈ Qg. Contradiction. qed

So notice that in A-systems the universal quantification over values
hides a bi-implication because the set of attribute-values of g′ and that
of g must coincide in order to have g′ ∈ Qg.

As an immediate consequence of the above result we have:

Proposition 3.1.2. Let S be an Information System. Then:

1. The i-quantum relation RS induced by S is a preorder.

2. If S is an A-system or an FP or DP system, then RS is an
equivalence relation.

3. If S is an FP-system then RS =� ⊗ �� and g′ ∈ Q↑
g iff g′ ∈ Q↓

g

iff g′ ∈ [g]k�.
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Proof. We have to prove statement (3), only. In view of Proposition
3.1.1.(4) we just need to show that if �̂ is a map then for all x ∈ G,
cl({x}) = [x]κ�̂ . From Proposition 2.3.1 a ∈ cl({a′}) if and only if
〈i〉({a}) ⊆ 〈i〉({a′}). Therefore, if �̂ happens to be a map, we have that
a ∈ cl({a′}) if and only if 〈i〉({a}) = 〈i〉({a′}), since exactly one value is
admitted. We can conclude that for all x ∈ G, cl({x}) = {x′ : � (x′) =
� (x)} =� ⊗ �� ({x}) = [x]κ�̂ . qed

From the above results we immediately obtain some interesting con-
sequences about FP-systems:

Corollary 3.1.2. Let P be a functional P-system. Then,

(a) cl is a topological closure operator.
(b) int is a topological interior operator.

Proof. From Proposition 3.1.1.(4) and Proposition 3.1.2.(3) we have
that cl(x) = [x]κ�̂ . But κ�̂ is the kernel of �̂ and the kernel of a
function is a congruence. It follows by induction that cl(X)∪ cl(Y ) =
[X]κ�̂ ∪ [Y ]κ�̂ = [X ∪ Y ]κ�̂ = cl(X ∪ Y ). Hence cl is additive. Since int
is dual of cl, from Proposition 2.3.3 we immediately obtain that int is
multiplicative. qed

Example 3.1.2. Information quanta and information quantum relations
Consider the P-system P of Example 1.2.1. Here below the i-quantum relations RP

and RQ(P) are displayed:

RP a a′ a′′ a′′′ RQ(P) a a′ a′′ a′′′

a 1 0 0 0 a 1 0 0 0
a′ 0 1 1 0 a′ 0 1 0 1
a′′ 0 0 1 0 a′′ 0 1 1 1
a′′′ 0 1 1 1 a′′′ 0 0 0 1

Thus 〈a′, a′′〉 ∈ RP because a′′ ∈ Qa, but the opposite does not hold (a′ /∈ Qa′′).
We remind that by definition we have Q(P) = 〈G, G, RP〉, Q(Q(P)) =

〈G, G, RQ(P)〉, and so on.
It is easy to verify that both of the above relations are reflexive and transitive,

and R�
P = RQ(P). Moreover, one can see that, for instance, Q

Q(P)
a′ = {a′, a′′′} or

Q
Q(P)

a′′′ = {a′, a′′, a′′′}. Indeed we have that a′ ∈ Qa′′′ and a′′′ ∈ Q
Q(P)

a′ , or a′′ ∈ Qa′

whereas a′ ∈ Q
Q(P)

a′′ , and so on.

As to the functional system F, we can trivially verify that Q
Q(F)
x = {g : f(g) =

f(x)}, any x ∈ G. For instance, Q
Q(F)
a = {a, a′′}. Thus RF = kf .
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Passing to the A-system A, we have: QA
a = {a, a′′} = QA

a′′ , Q
A
a′ = {a′}, QA

a′′′ =
{a′′′}. Thus the resulting i-quantum relation RA = {〈a, a′′〉, 〈a′′, a〉, 〈a, a〉, 〈a′′, a′′〉,
〈a′, a′〉, 〈a′′′, a′′′〉} is an equivalence relation.

Exercise 3.1.
Prove that for any preorder O = 〈A,R〉, 〈R〉(X) = [[−R]][[−R�]](X) =
Q∪

X ⊇ Q⊕
X .

We list some results in terms of IQRSs. Since i-quantum relations are
preorders, it is useful to prove some general facts about this kind of
relations:

Proposition 3.1.3. Let O = 〈X,R〉 be any preordered set. Then for
any x, y ∈ X the following are equivalent:

1 2 3 4 5

y ∈ R(x) R(y) ⊆ R(x) x ∈ QO
y x ∈ R�(y) y ∈ QO�

x

Proof. (1 �� 2) y ∈ R(x) iff 〈x, y〉 ∈ R. Suppose 〈y, y′〉 ∈ R. Since
R is transitive, then 〈x, y′〉 ∈ R, too, so that R(x) ⊇ R(y). Con-
versely, since R is reflexive, y ∈ R(y) holds. Thus if R(x) ⊇ R(y)
then y ∈ R(x). All the other equivalences are obvious consequences or
even definitions. qed

Corollary 3.1.3. Let S be any Information System over a set G. Then
the following are equivalent:

1 2 3 4 5 6

g′ ∈ QS
g g′ ∈ RS(g) g ∈ Q

Q(S)
g′ g′ ∈ Q

Q(Q(S))
g g ∈ R�

S (g′) g ∈ Q−S
g′

Proof. (1�� 2) is just a definition. (2�� 3�� 4) Now, g′ ∈ RS(g)
iff RS(g′) ⊆ RS(g) iff g ∈ Q

Q(S)
g′ iff g ∈ RQ(S)(g′) iff RQ(S)(g) ⊆

RQ(S)(g′) iff g′ ∈ Q
Q(Q(S))
g . (2�� 5) is trivial. (5�� 6) is obtained

from trivial set-theoretic considerations, (X ⊆ Y iff −Y ⊆ −X). qed

Particularly, QQ(S)
g = Q↓

g. Moreover, the second set of equivalences
shows that IQRSs of level higher than 1 do not provide us with any
further information.
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Corollary 3.1.4. Let S is an A-system, or an FP-system or a DP-
system over a set G, g, g′ ∈ G,X ⊆ G. Then the following are pairs of
equivalent expressions:

g′ ∈ QS
g ; g′ ∈ QQ(S)

g RS(X);RQ(S)(X)

Moreover, since a P-system is a generic relational system we have that
all facts valid for P-systems are valid for any relational system.

It is noticed that the notion of a quantum of information is asym-
metric for P-systems, because if g′ fulfills strictly more properties than
g, we have g′ ∈ Qg but g �∈ Qg′ .

On the contrary it is symmetric in the case of A-systems and dic-
hotomic or functional P-systems.

However dichotomic and functional P-systems seem to belong to a
rather odd kind of objects, since “in nature” they are not that frequent.
On the contrary, in view of the formal properties they share with A-
systems we should expect that they are likely to arise from natural
transforms of A-systems into P-systems, as we are going to see, indeed.

In order to be manipulated by the operators we have introduced
so far, A-systems must be reshaped. Namely, we have to transform
attributes into properties. Obviously, this transformation must preserve
the expressive capability of the original A-system. More precisely, the
quanta of information induced by the original A-system must coincide
with the quanta of information induced by the resulting P-system.

Hence, we need a notion to compare the expressive (or discrimina-
tory) capabilities of different information systems over the same set of
objects.

3.2 Comparing Perception Systems

First of all we should ask whether it is possible to compare two quanta
of information Qg and Qg′ . At first sight we would say that Qg is finer
than Qg′ if Qg ⊆ Qg′ . However, this intuition works for P-systems, but
it does not work for A-systems because ifQg ⊆ Qg′ thenQg′ ⊆ Qg. Thus
a non trivial comparison of quanta of information require a specialized
notion of a quantum of information.
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Definition 3.2.1 (Relativised quanta of information).

• Let A be an A-system. The quantum of information of g relative
to a subset A ⊆ At is defined as: Qg � A = {g′ ∈ G : ∀a ∈ A,∀x ∈
Va((a(g) = x)� (a(g′) = x))}.

• Let P be a P-system. The quantum of information of g with
respect to a subset A ⊆ M is defined as: Qg � A = {g′ ∈ G :
∀a ∈ A(g � a� g′ � a)}.

Now we can introduce the well-known notion of a functional depen-
dence.

Definition 3.2.2 (Functional dependence and informational equiva-
lence). Let S be an Information System. Let A,A′ ⊆ At (or A,A′ ⊆
M), g ∈ G.

1. We say that A′ functionally depends on A at g, in symbols A �→g

A′, if for all g′ ∈ G, g′ ∈ Qg � A � g′ ∈ Qg � A′ (that is, if
Qg � A ⊆ Qg � A′).

2. We say that A′ functionally depends on A, in symbols A �→ A′,
if for all g ∈ G, A �→g A

′.

3. If A �→ A′ and A′ �→ A, we say that A and A′ are informationally
equivalent, A ∼=I A

′ (thus, A ∼=I A
′ if for all g ∈ G, Qg � A =

Qg � A′).

So, a set of attributes (properties) A′ functionally depends on a set of
attributes (properties) A if the quanta of information induced by A

are sharper than those induced by A′. Therefore, A′ depends on A if
A has a higher discriminatory capability than A′. Indeed, the highest
discrimination capability is given when Qg = {g} for each g ∈ G, that
is, when the i-quantum relation reduces to the diagonal relation.

Terminology and Notation. In what follows, given a P-system P
and X ⊆M the symbol �� X will denote the relation � with co-domain

restricted to X. Moreover with P � X we shall denote the subsystem

〈G,X,�� X〉 and, for the sake of uniformity, if P is an A-system and

X ⊆ At, with P � X we shall denote the subsystem 〈G,X, {Va}a∈X 〉.

The following statement formalises the above intuitions with respect
to i-quantum relations:
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Proposition 3.2.1. Let S be an Information System. Let A,A′ ⊆ At

(A,A′ ⊆M) such that A �→ A′. Then R(A�A) ⊆ R(A�A′).

Proof. The proof is immediate. Suppose A �→ A′. Then for all g ∈ G,
Qg � A ⊆ Qg � A′, so that 〈g, g′〉 ∈ R(A�A) implies 〈g, g′〉 ∈ R(A�A′).

qed

From this discussion it follows that we can naturally extend the notion
of a functional dependence in order to cover the case in which we must
compare two sets X and X ′ of properties or attributes from two distinct
(property or attribute) systems S and S′ over the same set of points G.
Therefore, if we compare the entire set of properties (or attributes) of
S with the entire set of properties (or attributes) of S′, we can extend
the notion of an “informational equivalence” from sets of properties
(attributes) to entire systems:

Definition 3.2.3 (I-equivalence). Let S and S′ be Information Systems
over the same set of points G. Let S and S′ be the sets of attributes
(properties) of S and, respectively, S′.

1. We say that S and S′ are informationally equivalent, in symbols
S ∼=I S′, if and only if for any g ∈ G,Qg � S = Qg � S′.

2. If, moreover, there is a 1-1 mapping h : S �−→ S′ such that for
all g, g′ ∈ G and for all m ∈ S, g′ ∈ Qg � m if and only if
g′ ∈ Qg � h(m), then we say that S and S′ are informationally
isomorphic, in symbols S ≈I S′.

It is easy to verify that S ∼=I S′ if for any set of properties (attributes)
X of S, there is a set of properties (attributes) X ′ of S′ such that
X �→ X ′ and vice-versa.

Terminology and Notation. From now on, whenever needed, an

operator Op will be decorated by a superscript to underline the system Op

refers to – for instance intP, intP
′
and so on.

Not surprisingly, since Q↑ and cl are symmetric with respect to infor-
mational power, informational equivalence tells something about the
behaviour of cl and int:

Proposition 3.2.2. Let P ∼=I P′. Then for all x ∈ G, clP(x) =
clP

′
(x). If clP and clP

′
are topological, then clP(X) = clP

′
(X) and

intP(X) = intP
′
(X), for any X ⊆ G.
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Proof. Suppose clP(x) �= clP
′
(x). Then there is g ∈ G such that,

say, g ∈ clP(x) and g /∈ clP
′
(x). It follows that � (g) ⊆� (x) but

�′ (g) ��′ (x). Thus x ∈ QP(g) and x /∈ QP′(g), so that P �∼=I P′.
Further, if clP(x) = clP

′
(x) for any x ∈ G and both closure oper-

ators are additive, then by easy induction we obtain that clP(X) =
clP

′
(X) for any X ⊆ G. Moreover, suppose intP(X) �= intP

′
(X). Then

−intP(X) �= −intP′(X), so that clP(−X) �= clP
′
(−X) – contradiction.

qed

The above reasoning for generic subsets does not hold if either clP

or clP
′

is not topological because in this case the equality between clP

and clP
′

is guaranteed just for singletons so that clP(−X) �= clP
′
(−X)

is not in general a contradiction (notice that we can have P and P′

such that intP(x) �= intP
′
(x) but P ∼=I P′).

Remarks. The above proposition underlines that our notion of an “infor-

mational equivalence” suffers from some limitations. Therefore, the rela-

tion ∼=I is far to be considered the “best” way to compare Information

Systems. Nonetheless it is very useful to our purpose. Anyway, a con-

nected notion is given in Frame 4.2.

It should be stressed that we can compare not only the informational
behaviour of the same point with respect to two different sets of prop-
erties (attributes), but we can also compare the behaviours of two
different points with respect to the same set of properties (attributes).

Definition 3.2.4. Let S be an Information System, X ⊆ M (or X ⊆
At) and g, g′ ∈ G.

1. We say that g is an X-specialization of g′ (or that g′ is an X-
approximation of g), in symbols g′ 	X g, if and only if the
following condition holds:

∀p ∈ G(g′ ∈ Qp � X � g ∈ Qp � X).

2. We say that g is a specialization of g′, g′ 	 g, if and only if
g′ 	M g (g′ 	At g).

Since from q-reflexivity x ∈ Qx, if g′ 	X g then g ∈ Qg′ � X, so that
g′ 	X g says that g fulfills at least all the properties from X that are
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fulfilled by g′ (clearly, if we are dealing with an A-system then g′ 	X g

implies g 	X g′). Therefore, g′ 	 g implies 〈g′, g〉 ∈ RS. Conversely, if
〈g′, g〉 ∈ RS then g ∈ Qg′ . Hence g′ ∈ Qx implies g ∈ Qx, any x ∈ G,
from q-transitivity. It follows that the two relations 	 and RS coincide.
In fact they are instances of the notion of a specialization preorder
which is discussed in Frame 4.3 as related to topological spaces. In
what follows we shall construct a topology ΩQ(S) on G such that its
specialization preorder will indeed be 	 (that is, RS).

Obviously, if S is an A-system or an FP or a DP system then 	 is
an equivalence relation.

Example 3.2.1. I-dependence and i-equivalence
In our basic Example 1.2.1 let A = {b, b′} and B = {b′′, b′′′}. Then Qa′′ � A =
{a, a′, a′′} while Qa′′ � B = {a′′}. It follows that B �→a′′ A. On the contrary,
Qa′ � A = {a, a′, a′′} and Qa′ � B = {a′, a′′, a′′′} are not comparable. Hence B �→ A
does not hold.

Let us now compare the Information Systems P, F and A. We can notice what
follows:

(a) A �∼=I P because QA
a = {a, a′′} while QP

a = {a}. Neither P �→ A because
QP

a′ = {a′, a′′} while QA
a′ = {a′}.

(b) F ∼=I A, because for all g ∈ G, QA
g = QF

g . However A and F are not i-isomorphic
because, for instance, QF

a′ � {m} = G while QA
a′ � {A} = G, for no A ∈ At.

Now we exhibit an example of two informationally equivalent P-systems, P and
P′ such that in general intP �= intP

′
:

P a b c P′ a b c d

1 1 0 1 1 1 0 1 0
2 1 1 0 2 0 1 0 1
3 0 1 1 3 0 1 1 0

We can trivially verify that for any g ∈ G, QP
g = QP′

g = {g}, so that P ∼=I P′.
However, intP({1}) = ∅ while intP

′
({1}) = {1} and intP({2}) = ∅ �= intP

′
({2}) =

{2}. (Notice that neither clP nor clP
′

are topological – for instance clP({1, 2}) =

{1, 2, 3} 	 clP({1}) ∪ clP({2}) = {1, 2} and the same happens for clP
′
.

In the next example we show two informationally equivalent P-systems, P and
P′ such that clP

′
is topological but clP is not:

P a b c P′ a b c d

1 1 0 0 1 1 0 0 0
2 1 1 0 2 1 1 0 0
3 0 0 1 3 0 0 1 0
4 0 1 1 4 0 0 1 1
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The reader is invited to check that P ∼=I P′. However, whereas clP
′

is topologi-
cal – for instance clP

′
({2}) ∪ clP

′
({3}) = {1, 2} ∪ {3} = clP

′
({1, 2, 3}) – clP is not:

clP({2}) ∪ clP({3}) = {1, 2, 3} � {1, 2, 3, 4} = clP({1, 2, 3}).

3.3 Higher Level Operators

Let S be an Information System and let Q(S) = 〈G,G,RS〉 be its
induced IQRS.

What kinds of patterns of data can we collect by applying our
operators to these derivative systems?

First, notice that in IQRSs there is no longer the distinction between
objects and properties and intension or extension. Therefore it is better
we change our symbols and notation and come back to the original one,
once more:

The
operator

defined as turns
into

〈i〉 〈i〉(X) = {g : ∃g′(g′ ∈ X & 〈g′, g〉 ∈ RS)} =
{g : R�

S (g) ∩X �= ∅}
〈R�

S 〉

〈e〉 〈e〉(X) = {g : ∃g′(g′ ∈ X & 〈g, g′〉 ∈ RS)} =
{g : RS(g) ∩X �= ∅}

〈RS〉

[i] [i](X) = {g : ∀g′(〈g′, g〉 ∈ RS � g′ ∈ X)} =
{g : R�

S (g) ⊆ X}
[R�

S ]

[e] [e](X) = {g : ∀g′(〈g, g′〉 ∈ RS � g′ ∈ X)} =
{g : RS(g) ⊆ X}

[RS]

Let us call the above operators decorated by RS “quantum opera-
tors” (notice that in this context [[RS]] and [[R�

S ]] are not quantum
operators).

Quantum operators behave in a very particular way, because, we
remind, they fulfill adjoint properties. Namely 〈RS〉 � [R�

S ] and 〈R�
S 〉 �

[RS].
Actually, the following results apply to any preorder, too.

Proposition 3.3.1. Let Q(S) = 〈G,G,RS〉 be a IQRS. Let Oi and Oj

be any two adjoint quantum operators from the set {〈R�
S 〉, 〈RS〉, [R�

S ],
[RS]}. Then:
(a) OiOj = Oj ; (b) OjOj = Oj ; (c) the fixpoints of Oi and Oj coincide.
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Proof. (a) (i) In view of Proposition 2.3.1.(2), for all g ∈ G and X ⊆
G, g ∈ [RS]〈R�

S 〉(X) iff 〈R�
S 〉(g) ⊆ 〈R�

S 〉(X), iff RS(g) ⊆ RS(X) iff
(from Proposition 3.1.3) g ∈ RS(X) iff g ∈ 〈R�

S 〉(X). One can prove
g ∈ [R�

S ]〈RS〉(X) iff g ∈ 〈RS〉(X) similarly.
(ii) In view of Proposition 2.3.1.(3), g ∈ 〈RS〉[R�

S ](X) iff 〈R�
S 〉(g) ∩

[R�
S ](X) �= ∅, iff there is g′ such that a ∈ R�

S (g′) and g′ ∈ [R�
S ](X).

But g′ ∈ [R�
S ](X) iff R�

S (g′) ⊆ X and a ∈ R�
S (g′) iff (again from

Proposition 3.1.3) R�
S (g) ⊆ R�

S (g′) so that we must have R�
S (g) ⊆ X.

Hence, g ∈ 〈RS〉[R�
S ](X) iff g ∈ [R�

S ](X).
(b) From point (a) and Proposition 1.4.8.(9), OjOj = OiOjOiOj =
OiOj = Oj .
(c) Let X = Oj(X). Then using point (a) Oi(X) = OiOj(X) =
Oj(X) = X. qed

1

In view of these results we can prove a number of properties.

Corollary 3.3.1. Let Q(S) be an IQRS. Then,

QS
(...) = 〈R�

S 〉 = clQ(S) Q
Q(S)

(...)
= 〈RS〉 = AQ(S) [R�

S ] = intQ(S) [RS] = CQ(S)

Definition 3.3.1. Let S be an Information System. With ΩQ(S) we
shall denote the family {QS

X : X ⊆ G}. With Qn(S) we denote the
n-nested application of the functor Q to S.

Corollary 3.3.2. Let S be an Information System, H an A-system or
FP-system or DP-system, F an FP-system. Then,

1. 〈R�
Qn(S)〉 = 〈RQn+1(S)〉 and [R�

Qn(S)] = [RQn+1(S)], n ≥ 0.

2. ΩQ(Qn(S)) = Γcl(Qn+1(S)) = ΓC(Qn+1(S)), n ≥ 0.

3. Ωint(Qn(S)) = ΩA(Qn(S)) = Γcl(Qn+1(S)) = ΓC(Qn+1(S)),
n ≥ 1.

4. Γcl(Qn(S)) = ΓC(Qn(S)) = Ωint(Qn+1(S)) = ΩA(Qn+1(S)),
n ≥ 1.

5. Ωint(Qn(S)) = ΩA(Qn(S)) = ΩQ(Qn(S)), n ≥ 1.

1We must remark that if we start with arbitrary relations and not preorders
(hence from arbitrary topologies and not from Alexandrov topologies), things can
run a different way. For a more general investigation in this topic, see Ghilardi &
Meloni [1991].
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6. Ωint(Qn(H)) = ΩA(Qn(H)) = Γcl(Qn(H)) = ΩQ(Qn(H))
= ΓC(Qn(H)), n ≥ 1.

7. ΩQ(Qn(H)) = ΩQ(Qn+1(H)), ΩQ(Qn(F)) = Ωint(Qn(F)) n ≥ 0.

8. Satint(Qn(S)) and Satcl(Qn(S)), SatA(Qn(S)) and SatC
(Qn(S)), SatA(Qn(S)) and Satint(Qn(S)), SatC(Qn(S)) and
Satcl(Qn(S)), are pairwise antisomorphic, n ≥ 0.

Proof. (1) By easy induction from Corollary 3.3.1. (2), (3) and (4)
immediately follow by recalling that in Q(S) adjoint operators have
the same fixpoints and Corollary 3.3.1. (5) From the previous points,
ΩA(Q3(S)) = ΩA(Q(S)) and ΩA(Q3(S)) = Γcl(Q2(S)) = ΩQ(Q(S)):
Thus ΩA(Q(S)) = ΩQ(Q(S)) and by induction the thesis. (6) and (7)
Directly from (1)-(3) and the fact that Qn(H) = Qn+1(H), n ≥ 1
because of symmetry of RH. The second equation is given by Corollary
3.1.2 and an inductive extension of Proposition 3.3.3 below. (8) From
Proposition 3.1.3, A and int have the same fixpoints as well as C and
cl. Moreover from cl = RS(. . .) and A = R�

S (. . .) we have the entire
thesis. qed

It is obvious that in practice we shall deal just with n in the range
0 − 1, because Q3(S) = Q1(S).

Lemma 3.3.1. For any P-system P, (a) Ωint(P) ⊆ ΩQ(P); (b) Γcl(P)
⊆ Ωint(Q(P)).

Proof. (a) Assume X � QX . Thus we must have some x such that
x /∈ X and x ∈ QX . Thus there is g ∈ X such that � (x) �� (g),
so that for all m ∈ M such that g � m surely �� (m) � X. It
follows that g /∈ intP(X) and, hence, intP(X) � X. (b) We remind
that x ∈ clP(X) iff 〈i〉(x) ⊆ 〈i〉(X) iff �� (x) ⊆�� (X). Moreover,
if x ∈ X, 〈i〉(x) ⊆ 〈i〉(X). Now suppose X �= intQ(P)(X). Then there
is x ∈ X such that RP(x) � X. Hence {y : x ∈ QP

y } � X. Thus
{y : 〈i〉(y) ⊆ 〈i〉(x)} � X. This means that there is g /∈ X such that
〈i〉(g) ⊆ 〈i〉(x) ⊆ 〈i〉(X) so that �� 〈i〉(g) ⊆�� 〈i〉(x) ⊆�� 〈i〉(X). It
follows that X � clP(X). qed

Corollary 3.3.3. For all X ⊆ G in a P-system, int(X) ⊆ QX .

Proof. From the above Lemma we have int(X) = Qint(X), all X ⊆ G.
But int(X) ⊆ X and Q(··· ) is monotonic. qed
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Corollary 3.3.4. Let S be an Information System. Then,

1. QS
(...), Q

Q(S)
(...) , 〈RS〉 and 〈R�

S 〉 are topological closure operators and
their images are closed under intersections.

2. [RS] and [R�
S ] are topological interior operators and their images

are closed under unions.

3. intQ(S) and CQ(S) are topological interior operators; clQ(S) and
AQ(S) are topological closure operators.

Proof. (1) From Corollary 3.3.1, we have that QS
(...), Q

Q(S)
(...) , 〈RS〉 and

〈R�
S 〉 are closure operators. Moreover, since they are lower adjoints

between 〈℘(G),⊆〉 and itself they preserve colimits, that is, unions.
Finally, from Proposition 2.3.2 their images are closed under inter-
sections. (2) Again from Corollary 3.3.1, [RS] and [R�

S ] are interior
operators. Moreover, as they are lower adjoints between 〈℘(G),⊆〉 and
itself they preserve limits, that is, intersections. Finally from Proposi-
tion 2.3.2 their images are closed under unions. (3) Trivially, intQ(S) =
〈RS〉[R�

S ] = [R�
S ], thus from the previous point we have the result.

The other statements are proved in a similar way. qed

Corollary 3.3.5 (I-quantum systems). Let S be an Information Sys-
tem. Then,

1. SatQ(S) = 〈ΩQ(S),∪,∩, ∅, G〉 is a distributive lattice, called the
I-quantum system (or IQS) induced by S.

2. SatQ(Q(S)) = 〈ΩQ(Q(S)),∪,∩, ∅, G〉 is a distributive lattice,
called the co-I-quantum system (or co-IQS) induced by S.

3. The set theoretical complement is an antisomorphism between
SatQ(S) and SatQ(Q(S)).

4. 〈G,ΩQ(S)〉 and 〈G,ΩQ(Q(S))〉 are topological spaces, where the
interior operators are intQ2(S) and, respectively, intQ1(S).

5. Satint(Q(S)),Satcl(Q(S)),SatA(Q(S)) and SatC(Q(S)), equip-
ped with the set-theoretical operations, are distributive lattices.

6. If S is a preordered set (that is, G = M and R ⊆ G × G is a
preorder), then ΩQ(S) = Ωint(S).
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Proof. (1) We know that the operator Q(...) is additive. Thus ΩQ(S) is
closed under unions. From Proposition 3.3.4 it is closed under intersec-
tions too. Moreover, since ΩQ(S) is a (finite) lattice of sets SatQ(S)
inherits distributivity from the corresponding property of unions and
intersections. (2) Since Q(S) is a P-system the above considerations
apply to this structure. (3) From Corollary 3.1.3 we know that R−S =
R�

S = RQ(S), so that we obtain immediately the thesis. (4) Any fam-
ily of open sets of a topological space enjoys distributivity of arbitrary
unions over finite intersections and of intersection over arbitrary unions.
Moreover, from Corollary 3.3.2.(2), ΩQ(S) = Γcl(Q(S)). But from
3.3.2.(4) Γcl(Q(S)) = Ωint(Q2(S)). Finally, from 3.3.2.(5) we have
the result for co-IQ systems. (5) From Proposition 2.3.2 and Corollary
3.3.4. (6) Obvious, since in this case S = Q(S′) for some Information
System S′. qed

Proposition 3.3.2 (I-quantum equivalence relations and Boolean alge-
bras). Let S be an Information system. If RS is an equivalence relation,
then SatQ(S) is a Boolean algebra.

Proof. We show that if RS is an equivalence relation then any element
QX of ΩQ(S) is complemented by QX =

⋃

z �∈QX

Qz. First, let us prove

that QX ∪ QX = G. In fact for all g ∈ G if g �∈ QX then g ∈ QX

because g ∈ Qg (q-reflexivity). Now we prove that QX ∩ QX = ∅.
Assume z �∈ QX . We have just to prove that if z′ ∈ Qz then z′ �∈ QX .
So let z′ ∈ Qz. From q-symmetry, z ∈ Qz′ . So, if there is an x ∈ X such
that z′ ∈ Qx we have z ∈ Qx too (from q-transitivity), hence z ∈ QX .
Contradiction. qed

Corollary 3.3.6. Let S be an Information system. Then, if S is an
A-system, or a dichotomic or a functional P-system, then:

1. SatQ(S) is a Boolean algebra.

2. Satint(Q(S)), Satcl(Q(S)), SatA(Q(S)) and SatC(Q(S)) are
Boolean algebras.

Proof. (1) comes straightforwardly from the previous Proposition. (2)
is a consequence of (1) and Proposition 3.3.2.(6). qed

We shall recover the above results from a different point of view in
Section 3.4 below. By now, the following result about the family of
co-prime elements of SatQ(S) is worth mentioning:
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Lemma 3.3.2. Let S be an Information System. Then for any X ∈ J
(SatQ(S)), X = Qg for some g ∈ X.

Proof. Trivial from the additive definition of the operator Q and its
increasing property. qed

Lemma 3.3.3. Let P be a P-system and g ∈ G. Then Qg =
⋂
{〈e〉(m) :

m ∈ 〈i〉(g)}.

Proof. Indeed, x ∈ Qg iff 〈i〉(x) ⊇ 〈i〉(g) iff x ∈ 〈e〉(m),∀m ∈ 〈i〉(g).
qed

Proposition 3.3.3. Let P be a P-system such that cl (int) is topolog-
ical. Then SatQ(P) = Satint(P).

Proof. We have seen in Lemma 3.3.1 that Ωint(P) ⊆ ΩQ(P). Now we
need just to show that if X ∈ J (SatQ(P)) then X = int(X). The proof
is immediate: if int is topological then it is multiplicative and since for
all m ∈ M , int(〈e〉(m)) = 〈e〉(m) (from Lemma 2.3.1), in view of the
above Lemma 3.3.3 we have the result. qed

If we compare this result with Corollary 3.3.2.(7) we can note that
P-systems such that int and cl are topological behave like functional
systems.

Remarks. Do not confuse A-systems in which V = {0, 1} (i.e. binary

A-systems) with P-systems. Indeed they are formally similar – and we

exploit this fact when convenient – but, conceptually, they are different

objects, because in a P-system 1 and 0 are “yes” and “no” answers, respec-

tively, to questions concerning fulfillment of properties, while in binary

A-systems they are the attribute-values that objects can be assigned.

Hence, for instance, if in a binary A-system for any object g, vl(〈g,A〉) = 0
this means that attribute A meaningfully applies to all objects and that

they uniformly take value 0 at A. On the contrary, if this happens of a

property m in a P-system, then we can conclude that m is not fulfilled by

any object. This is the proviso we promised to discuss a few pages back.2

2We can question whether a property m which is not fulfilled by any object is
meaningful or useless. Clearly, m is not able to characterise objects in the sense
that it does not have any discriminatory ability. However, the same happens of a
property m′ which is fulfilled by all the objects. But keeping or discharging all such
m or m′ has important consequences on the behaviour of the “Concept Lattices”
operators. Indeed, if we keep m, then surely [[e]][[i]](∅) = ∅, while if we discharge
m′ then surely [[i]][[e]](∅) = ∅.
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At this point we can end the subsection with an analogue of the duality
between distributive lattices and preorders in the context of i-quantum
relations and P-systems.

Proposition 3.3.4 (Duality between preorders and Information Sys-
tems).

1. Let O = 〈G,R〉 be a preorder, then there is an Information
System I(O) over G such that RI(O) = R (hence, Q(I(O)) ∼=I O).

2. Let S be an Information System. Then I(Q(S)) ∼=I S, where I is
the operator defined in point (1).

Proof. (1) Trivially, RO = R� and RQ(O) = R. Hence Q(Q(O)) ∼=I O.
Thus, the required operator I is Q.3 (2) Since Q(S) is a preorder, from
the previous point we have Q(Q(Q(S))) ∼=I Q(S) so that trivially
Q(Q(S)) ∼=I S. qed

Example 3.3.1. Quantum relational systems
Consider the Information Systems of Example 1.2.1. Here below we display the
lattices SatQ(P) and SatQ(A):

SatQ(P) SatQ(A)

G

��
� 

G

{a′, a′′, a′′′} {a, a′, a′′}
��
��
� 

 ��
� 

{a, a′, a′′} {a, a′′, a′′′} {a′, a′′}

{a′, a′′} {a, a′′} ��
��
�

��
��
�

 ��
� 

{a, a′′} {a′} {a′′′}

{a′′} {a}  ��
��
�

 ��
� ∅

∅

It is easy to verify that both of them are distributive lattices and that, moreover,
SatQ(A) is a Boolean algebra. Indeed, for instance, the element QA

{a,a′} = {a, a′, a′′}
is complemented by the element

⋃

z /∈QA
{a,a′}

QA
z = QA

{a′′′} = {a′′′}.

If we compare SatQ(P) and Satint(P) we notice that the only difference is the
lack of {a′, a′′} in Satint(P), because int({a′, a′′}) = {a′′}. On the contrary, for
any singleton {x} ∈ SatQ(P), x = Q{x} = RP({x}) = int({x}). The family of co-
prime elements J (SatQ(P)) is {{a′′}, {a}, {a′, a′′}, {a′, a′′, a′′′}} and we can see that

3For a more conceptual proof see Frame 4.6.3.
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{a′′} = 〈e〉(b′′), {a} = 〈e〉(b), {a′, a′′, a′′′} = 〈e〉(b′′′) while for no m ∈ M, {a′, a′′} =
〈e〉(m) and 〈e〉(b′) /∈ J (SatQ(P)). So we cannot either recover J (SatQ(P)) via
J (Satint(P)) or J (Satint(P)) via J (SatQ(P)).

One can notice that {a′, a′′} = {a′, a′′, a′′} ∩ {a, a′, a′′}. Nonetheless pay atten-
tion that SatQ(P) generally is not the closure under intersections of J (Satint(P)).
For instance, consider a P-system S such that G = {a, b, c, d, e}, M = {A, B, C}
and � (a) = {A},� (b) = {A, B},� (c) = {A, B, C},� (d) = {C},� (e) = {A, C}.
Then QS

{b,e} = {b, c, e} but J (Satint(S)) = {{b, c}, {c, d, e}, {a, b, c, e}, G, ∅} so that
{b, c, e} is not an intersection of elements of J (Satint(S)).

The reader can straightforwardly verify that ΩQ(P) = Γcl(Q(P)). Indeed in view
of Proposition 3.3.2 given an Information System S, the index n must be greater
than or equal to 1 in order to have Ωint(Qn(S)) = Γcl(Qn+1(S)) = ΩQ(Qn(S)). If
n = 0, ΩQ(Q0(S)) = Γcl(Q1(S)). On the contrary, Γcl(Q1(S)) is Ωint(Q0(S)) plus
some missed elements which are the difference between ΩQ(S) and Ωint(S). In our
example the missed element is {a′, a′′} which in Q(P) equals cl({a′, a′′}). On the
contrary, in P int({a′, a′′}) = ∅.

Finally, in view of Corollary 3.3.5.(4) let us verify that if ΩQ(P) is considered
as the family of open subsets of a topological space on G, then the corresponding
interior operator is intQ2(P): intQ2(P)({a′′, a′′′}) = 〈e〉({a′′′}) = {a′′′} ∈ ΩQ(P).
Notice that QP

{a′′,a′′′} = {a′, a′′, a′′′}.

Exercise 3.2. Prove that i-quanta are closed under intersections, with-
out using the properties of adjoint functors but just transitivity of
i-quantum relations.

3.4 Transforming Perception Systems

Now we are equipped with a sufficient machinery in order to transform
A-systems into informationally equivalent P-systems.

Let A be an A-system. The basic step is derived from the observation
that any attribute a is actually a set of properties, namely the set
of admissible attribute values for a. Thus we start with associating
each attribute a with the family N (a) = {av}v∈Va

. We set N (At) =
⋃

a∈At

N (a). For each value v, av is the property “taking value v for

attribute a”. We call this transform “scale nominalisation”.
Now let us set a relation �N as:

g �N av if and only if a(g) = v, all g ∈ G, a ∈ At, v ∈ Va.

The resulting system, N (A) = 〈G,N (At),�N 〉, is called the “nominal-
isation of A”. N (A) will be called a nominal A-system or NA-system.
Obviously, the following holds:
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Proposition 3.4.1. Let A be an A-system. Then N (A) is a P-system.

Remarks. Nominalising is tantamount to setting a ternary relation R ⊆
G×At×

⋃
a∈At Va. In fact, �N is a binary relation G× (At×

⋃
a∈At Va) –

indeed, a(g) = v is equivalent to g(〈a, v〉) = 1.

Moreover, if we formally consider P-systems as binary A-systems, we
can also nominalise P-systems. But in this case we have a further
property:

Proposition 3.4.2. Let P be a P-system. Then N (P) is a dichotomic
system.

Proof. This is obvious, because for any property p, the nominalisation
N (p) = {p1, p0} forms a pair of complementary properties, since for all
g ∈ G, g �N p1 if and only if g � p and g �N p0 if and only if g �� p. qed

If nominalisation of P-systems produces dichotomic systems, nominal-
isation of dichotomic systems does not give rise to any further result.

Proposition 3.4.3. If S is an A-system, or a dichotomic or functional
P-system, then N (S) ∼=I S.

Proof. Let 〈p, p〉 be a pair of complementary properties in S. After
nominalisation we shall obtain two pairs N (p) = {p1, p0} and N (p) =
{p1, p0}. Clearly, for any g ∈ G, g � p in P if and only if g �N p1

in N (S). But g �N p1 if and only if g ��N p0 if and only if g �N p0.
Conversely, g � p if and only if g �N p0 if and only if g ��N p1 if and
only if g �N p1.

As to A-systems, let us prove that for any g ∈ G, Qg � At = Qg �
N (At). Indeed, if g′ ∈ Qg � At, then a(g) = x if and only if a(g′) = x,
all a ∈ At. Therefore for any x ∈ N (a), g � ax if and only if g′ � ax,
whence g′ ∈ Qg � N (a). Moreover, g′ �� ax′ for any other x′ �= x, so
that the reverse implication holds too.

If S is functional and g′ ∈ Qg �M then g � m if and only if g′ � m,
since �̂(g) = �̂(g′) = m. Thus the proof runs as above. qed

As usual, we shall also write �N (S) if we have to refer to a particular
Information System S.
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Recalling that for any A-system A, N (A) is not only a P-system
but it is still an A-system with At = {0, 1}, we obtain the following
corollary:

Corollary 3.4.1. Let S be an Information System. Then N (S) ∼=I

N (N (S)).

Proof. If S is a P-system then N (S) is a dichotomic system. If S is an A-
system then N (S) is a binary A-system. In both cases from Proposition
3.4.3 N (N (S)) ∼=I N (S). qed

Corollary 3.4.2. If A is an A-system then there is a dichotomic
system D such that D ∼=I A.

Proof. Since N (A) is a P-system, from Proposition 3.4.2 N (N (A))
is dichotomic. But from Proposition 3.4.3 and Corollary 3.4.1 A ∼=I

N (A) ∼=I N (N (A)). qed

As a by-product we again obtain Proposition 3.1.2.(2), which states
that i-quantum relations induced by A-systems, dichotomic and func-
tional P-systems are equivalence relations, and Corollary 3.3.6.(2).
Notice that Proposition 3.4.1, as well as Corollary 3.1.2.(2), relies on
the fact that we are dealing with deterministic Information Systems so
that if g and g′ take the same attribute value for a, say v, then g and
g′ cannot also take v′ and, respectively, v′′ for a, such that v′ �= v′′.

Now let us see how different perception operators relate to each
other in transformed systems.

Proposition 3.4.4. Let A be an A-system. Then for all X ⊆ G,
(a) intN (A)(X) ⊆ Q

N (A)
X ⊆ clN (A)(X); (b) intN (A)(X) ⊆ QA

X ⊆
clN (A)(X).

Proof. It is to notice that from Proposition 3.4.3, N (A) ≡I A. There-
fore we have just to prove (a). But RA = RN (A). Hence RN (A) is an

equivalence relation (from Proposition 3.1.2.(2)). Now, if g ∈ Q
N (A)
X

then there is x ∈ X such that 〈i〉N (A)(x) = 〈i〉N (A)(g). But x ∈
clN (A)(X), because cl is increasing, thus 〈i〉N (A)(x) ⊆ 〈i〉N (A)(X). It
follows that 〈i〉N (A)(g) ⊆ 〈i〉N (A)(X), too, so that g ∈ clN (A)(X).
Moreover, since N (A) is a P-system, from Corollary 3.3.3 we have
intN (A)(X) ⊆ Q

N (A)
X . qed
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Example 3.4.1. Nominalisation
Here are some examples of nominalisation.

Let us nominalise the Information Systems A and P of Example 1.2.1:

�N (A) A0 A1 A3 A′b A′d A′f A′′α A′′δ �N (P) b1 b0 b′1 b′0 b′′1 b′′0 b′′′1 b′′′0

a 0 1 0 1 0 0 1 0 a 1 0 1 0 0 1 0 1
a′ 1 0 0 0 1 0 1 0 a′ 0 1 1 0 0 1 1 0
a′′ 0 1 0 1 0 0 1 0 a′′ 0 1 1 0 1 0 1 0
a′′′ 0 0 1 0 0 1 0 1 a′′′ 0 1 0 1 0 1 1 0

So, N (A) = {A0, A1, A3}, N (b) = {b1, b0} and so on. It is evident that, for instance,

a ∈ Q
N (A)

a′′ and a′′ ∈ Q
N (A)
a . But the same happens already in A. Indeed, QA

a =

{a, a′′} = QA
a′′ . On the contrary, while QP

a′ = {a′, a′′} we have Q
N (P)

a′ = {a′}. In
fact a′′ ∈ QP

a′ because it fulfills all the properties fulfilled by a′ (i.e. b′ and b′′′) plus
the additional property b′′. But in N (P) this latter fact prevents a′′′ from belonging

to Q
N (P)

a′ , because property b′′ splits into the pair 〈b′′0 , b′′1 〉 and a′ �N (P) b′′0 while

a′′ �N (P) b′′1 , which are mutually exclusive possibilities.
If we further nominalise N (P) we split 〈b′′0 , b′′1 〉 into 〈b′′01 , b′′00 , b′′11 , b′′10〉:

�NN(P)
. . . b′′01 b′′00 b′′11 b′′10 . . .

. . . . . . . . . . . . . . . . . . . . .

. . . a′ 1 0 0 1 . . .

. . . a′′ 0 1 1 0 . . .

. . . . . . . . . . . . . . . . . . . . .

It is obvious that the pairs 〈b′′01 , b′′10〉 and 〈b′′00 , b′′11〉 give the same information as b′′0
and, respectively, b′′1 . In fact the columns are pairwise duplicated in N (N (P)) and
after simplification we obtain the columns corresponding to the generating properties
in N (P).

It is not difficult to verify that RN (A) = RA so that N (A) ∼=I Q(A).

3.5 Topological Approximation Operators

In view of the duality between Information Systems and preorders, we
can develop the rest of the theory from a more abstract point of view.

Thus, from now on we shall deal with preordered structures and
assume, intuitively, that they represent some information quantum
relation system.
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Corollary 3.5.1. Let O = 〈G,G,R〉 be a preordered set. Let X ⊆ G.
Then:

The application is the least fixpoint of including X

〈R〉(X) 〈R〉 [R�] A int

〈R�〉(X) 〈R�〉 [R] cl C
The application is the largest fixpoint of included in X

[R](X) [R] 〈R�〉 C cl

[R�](X) [R�] 〈R〉 int A

Proof. First notice that from Proposition 3.3.1 the fixpoints listed in
each row coincide. Now, for didactic purposes, we prove the first two
cases by means of two different approaches.
(a) Obviously 〈R〉(X) ⊇ X and from idempotence 〈R〉(X) is a fixed
point of 〈R〉. Suppose Z is a fixed point of 〈R〉 and X ⊆ Z. From mono-
tonicity 〈R〉(X) ⊆ 〈R〉(Z) = Z. Hence 〈R〉(X) is the least fixpoint of
〈R〉 including X.
(b) From Proposition 1.4.6 (but see also Subsection 2.3.2) [R]〈R�〉(X)
is the smallest image of [R] greater than or equal to X and [R] is idem-
potent. Thus it is the least fixpoint of [R] which includesX. Hence, from
Proposition 3.3.1, it is also the least fixpoint of 〈R�〉(X) including X.

The remaining cases are proved analogously. qed

Corollary 3.5.2. Let O = 〈G,G,R〉 be a preordered set. Then for all
X ⊆ G,

(i) 〈R〉(X) =
⋂
{Z : Z ∈ ΩA(O) & Z ⊇ X};

(ii) [R](X) =
⋃
{Z : Z ∈ ΓC(O) & Z ⊆ X};

(iii) 〈R�〉(X) =
⋂
{Z : Z ∈ Γcl(O) & Z ⊇ X};

(iv) [R�](X) =
⋃
{Z : Z ∈ Ωint(O) & Z ⊆ X}.

Henceforth, for obvious reasons we shall adopt the following termi-
nology:

〈R〉(X) Direct upper R-approximation of X, also denoted by (uR)(X)

〈R�〉(X) Inverse upper R-approximation of X, also denoted by (uR�)(X)

[R](X) Direct lower R-approximation of X, also denoted by (lR)(X)

[R�](X) Inverse lower R-approximation of X, also denoted by (lR�)(X)
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The information-oriented reading of the above operators is:

〈R〉(X) Set of the elements specialized by some
member of X (or, which approximate some

member of X)

〈R�〉(X) Set of the elements approximated by some
member of X (or, which specialize some

member of X)

[R](X) Set of the elements specialized only by
members of X (or, which approximate only

members of X)

[R�](X) Set of elements approximated only by members
of X (or, which specialize only elements of X)

Particularly we can give an information-oriented interpretation to some
combinations of operators:

[R]〈R〉(X)

Set of the elements which are specialized only by
elements specialized by some member of X
(x ∈ [R]〈R〉(X) only if each element which

specializes x is specialized by some member of X)

[R�]〈R�〉(X)

Set of the elements which are approximated only
by elements approximated by some member of X

(x ∈ [R�]〈R�〉(X) only if each element which
approximates x is approximated by some member

of X)

Besides these operators we add also the interpretation of [[R]] and
[[R�]]:

[[R]](X) Set of the elements specialized by all the members of
X (or, which approximate all the members of X)

[[R�]](X) Set of the elements approximated by all the members
of X (or, which specialize all the members of X)
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3.6 Topological Approximation Systems

Given an Information system S, from Q(S) we can define the following
families of operators manipulating sets of objects: GS = {〈RS〉, 〈R�

S 〉,
[RS], [R�

S ]}. If S is a P-system then we can add est to GS. A Multi-agent
topological Approximation System will be therefore defined as a
structure:

〈G,G, {GSk}k∈K〉 or, shortly, 〈G, {GSk}k∈K〉

where any Sk is an Information System on the same set of objects G.
This generalisation makes it possible to manipulate subsets of objects
by subsequently applying informational criteria induced by different
Information Systems. Particularly, if card(K) = 1 we shall speak of
“(single-agent) topological Approximation Systems.

Notice that if we start with an arbitrary relational structure 〈X,Y,R〉,
we have to deal separately with A, C, int and cl, as we have done in the
initial part of this Chapter, because fixed points of adjoint functors
may fail to coincide, even if X = Y .

We end this Chapter by defining some interesting examples of Single-
agent topological Approximation Systems.

Definition 3.6.1. Let Q(S) = 〈G,G,RS〉 be an IQRS. Then,

1. 〈G, [RS], 〈RS〉〉 – will be called a Direct Intuitionistic Approxima-
tion System.

2. 〈G, [R�
S ], 〈R�

S 〉〉 – will be called an Inverse Intuitionistic Approx-
imation System.

3. 〈G, [R�
S ], 〈RS〉〉 – will be called a Galois Intuitionistic Approxi-

mation System.

4. 〈G, [RS], 〈R�
S 〉〉 – will be called a co-Galois Intuitionistic Approx-

imation System.

The term “intuitionistic” is after the link between preorders and intu-
itionistic models (see Frame 4.13).

Definition 3.6.2 (Indiscernibilty Space). Let E = 〈G,G,E〉 be a P-
system such that E is an equivalence relation. Then E is called an
Indiscernibility Space and shall be denoted by 〈G,E〉, too.
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Definition 3.6.3 (Pawlak Approximation System). Let 〈G,G,E〉 be
an Indiscernibility Space. Let IE and CE be the interior and, respec-
tively, topological operators of the topological space induced by taking
{[x]E : x ∈ G} as a subbasis. Then 〈G, IE ,CE〉 is called a Pawlak
Approximation System.

From the above discussion the following statement is obvious:

Proposition 3.6.1. Let E = 〈G,G,E〉 be an Indiscernibility Space.
Let L ∈ {[E], [e]E, [i]E, CE, intE} and U ∈ {〈E〉, 〈e〉E , 〈i〉EAE, clE}
Then the Single-agent topological Approximation System 〈G,L,U〉 is
a Pawlak Approximation System.

Proof. From Corollary 3.3.1 we know that for any preorder R, for any
X ⊆ G, [R](X) = C(X) and 〈R〉(X) = A(X). Moreover, if R is an
equivalence relation, R� = R. It follows that [R](X) = [R�](X) =
cal(X) = int(X) and 〈R〉(X) = 〈R�〉(X) = A(X) = cl(X). Therefore,
a Pawlak Approximation System is any of the types listed in Definition
3.6.1. qed

But we can prove a further fact. To this end we introduce the notion of
an Approximation Equivalence, or a-equivalence between Single-agent
Approximation Systems:

Definition 3.6.4. Let A = 〈G, I,C〉 and A′ = 〈G, I′,C′〉 be two Single-
agent topological or pre-topological Approximation Systems, with I, I′

interior operators and C,C′ closure operators. Then we say that A and
A′ are a-equivalent, in symbols, A ∼=a A′ if and only if ΩI(G) = ΩI′(G)
and ΓC(G) = ΓC′(G).

Clearly, by duality one equality implies the other. We use this definition
in the following statement:

Proposition 3.6.2. Let S be an A-system or FP-system or DP-system.
Let us set ♦ = 〈RS〉 and � = [RS]. Then:

1. ♦ = 〈R�
S 〉, � = [R�

S ] and 〈G,�,♦〉 is a Pawlak Approximation
System.

2. For any X ⊆ G, ♦(X) ⊆ clS(X) and intS(X) ⊆ �(X).

3. If S is an FP-system then 〈G,�,♦〉 ∼=a 〈G, intS, clS〉.
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Proof. (1) Immediate, from the fact, proved in Proposition 3.1.2.(3),
that RS in these cases is an equivalence relation. (2) Let g ∈ ♦(X).
Then there exists a g′ ∈ X such that 〈i〉(g) = 〈i〉(g′). It follows
that 〈i〉(g) ⊆ 〈i〉(X) so that g ∈ clS(X). Therefore, since ♦(−X) ⊆
clS(−X) we obtain −♦(−X) ⊇ −clS(−X), that is, �(X) ⊇ intS(X).
(3) It is sufficient to use in addition Proposition 2.1.1.(3) together with
Proposition 2.3.3, or the latter Proposition and Proposition 3.1.2.(3)
which together with Proposition 3.1.1.(4) states that clS(g) = [g]kf

,
any g ∈ G. qed.

Notice that we cannot set 〈G,�,♦〉 = 〈G, intS, clS〉 instead of 〈G,�,♦〉
∼=a 〈G, intS, clS〉, because, actually, the former system is 〈G,G,�,♦〉
while the latter is 〈G,M, intS, clS〉. However, if S is an FP-system,
then Single-agent pre-topological Approximation Systems, Single-agent
topological Approximation Systems and Pawlak Approximation Sys-
tems induce the same family of fixed points.

Given an Information System S, in Q(S) the setM coincides with G.
Thus Multi-agent topological Approximation Systems are also Multi-
agent topological Perception Systems on Q(S). Further, we can carry
on the quantisation transform from the point of view of properties
(or attributes) and obtain Multi-agent topological co-Approximation
Systems 〈M,M, {MSj}j∈J〉. By merging the two spaces we can define,
on an Information System S, the notion of a Multi-agent topological
Perception System: 〈G,M, {GSk}k∈K , {MSj}j∈J , IS,ES〉, where any Sk

is an Information System on the set of objects G and set of properties
or attributes Mk possibly distinct from M , any Sj is an Information
System on the set of properties (or attributes) M and set of objects Gj

possibly distinct from G, IS : ℘(G) �−→ ℘(M).
However, we shall not go further into this topic.



Chapter 4

Frames (Part I)

4.1 Frame – Approximation

Any complete account for an history of the concept of an approximation
is trivially non-feasible.

Indeed, approximation is a fundamental concept in a number of
fields and it is not likely to try and list even a small amount of them.
However, because of its historical role in Mathematics we recall Archi-
medes’ exhaustion method (ca. 287–212 BC). This method is based on
the observation that we can compute the area of, for instance, a circle,
by means of a series of more and more refined approximations from
below and from above.

Figure 4.1: Archimedes’ exhaustion method
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More precisely, Archimedes’ main idea was to try and approximate
the circle using inscribed (lower approximating) and circumscribed
(upper approximating) regular polygons, as shown in Figure 4.1.

However, this method may be traced back to Eudoxus of Cnidos
(ca. 400–347 BC) and to the well-known paradoxes by Zeno of Elea
(ca. 495–435 BC) accounted by Plato in “Parmenides”, which can
be considered a first kind of (never ending) approximation reasoning
(see Kline [1972]).

4.2 Frame – Classification

An approximation process is a means for classifying objects. Indeed
“concrete” items are assigned classifying types (i.e. “attribute-values”,
“properties”, “neighborhoods”, and so on along all the possible
interpretations of M we discussed in this Chapter) and types inten-
sionally approximate collections of objects.

Classification is, obviously, a main topic in many domains and fields,
such as document management, information retrieval and so on and the
approaches to this topic are impressively numerous.

We just mention a recent contribution to its scientific definition,
which is closely related to our approach (in what follows we use our
terminology and symbols).

In their valuable book Barwise & Seligman [1997], J. Barwise and
J. Seligman describe a classification as a P-system A = 〈G,M,�〉.
The elements of G are called the tokens of A and the elements of M
are called the types of A, which are used to classify the tokens from G

by means of the binary relation � which determines which token are of
which type.

Now, let Γ,Λ ⊆ M . Then a token g is said to satisfy the sequent
〈Γ,Λ〉 if the following holds:

〈i〉(g) ⊇ Γ� 〈i〉(g) ∩ Λ �= ∅
that is, if g fulfills all the types of Γ then it must be at least of a type
from Λ (indeed any logical sequent {γ1, γ2, ..., γn} # {λ1, λ2, ..., λm} is
read γ1 ∧ γ2 ∧ ... ∧ γn # λ1 ∨ λ2 ∨ ... ∨ λm).

It follows that g satisfies a constraint 〈Γ,Λ〉 if g belongs to at least
a type listed in Λ.

The sequent 〈Γ,Λ〉 is valid in A, or Γ entails Λ in A, Γ |
A

Λ, if
every token of G satisfies 〈Γ,Λ〉. If this is the case, the sequent at hand
is called a constraint supported by the classification A.
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The set of valid constraint in A is called the theory of A, Th(A).
The notion of a constraint makes it possible to describe a number

of facts about a classification:

• If both Γ and Λ are singletons, then Γ |
A

Λ means that Γ logically
entails Λ in A.

• Γ |
A

means that no tokens are of type Γ in A.

• If Γ,Λ |
A

, then Γ and Λ are mutually exclusive in A.

• If |
A

Λ,Γ, then every token of A belongs at least to one of the
types listed in Λ or Γ.

Further, we can think of a distributed information system as a collection
of classification structures. These structures must be related to each
other in a proper way in order to make up a system. The required
connections are called infomorphisms.

Given two classifications A = 〈GA,MA,�A〉 and B = 〈GB,MB,

�B〉, an infomorphism between A and B is a pair of functions 〈fM , fG〉
such that fM : MA �−→MB, fG : GB �−→ GA and the following holds,
for all g ∈ GB and m ∈MA:

fG(g) �A m iff g �B fM (m)

It follows that classification structures plus infomorphism are Chu
spaces (see Frame 4.12).

In Rough Set Theory this approach was exploited in Skowron et al.
[2003] to investigate nets of Information Systems.

We now prove that our notion of an “informational equivalence”
(see Section 3.2.3) is an instance of infomorphism.

Let P = 〈G,M,�〉 and P′ = 〈G,M ′,�′〉 be two P-systems. Clearly,
{Qx � M}x∈G and {Qx � M ′}x∈G are two classifications of the objects
in G. Thus, let us set A = 〈G, {Qx � M}x∈G,∈〉, B = 〈G, {Qx �
M ′}x∈G,∈〉. Moreover, let us set fG = Id and fM (Qx �M) = Qf−1

G (x) �
M ′ = Qx �M ′. Then we have:

Proposition 4.2.1. P ∼=I P′ if and only if 〈fM , fG〉 is an infomor-
phism.

Proof. fG(y) ∈ Qx � M iff y ∈ Qx � M (since fG is the identity func-
tion) iff y ∈ Qx �M ′ (by ∼=I) iff y ∈ fM(Qx �M) (by definition of fM ).
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Vice-versa, y ∈ Qx � M iff fG(y) ∈ Qx � M iff y ∈ fM(Qx � M) (by
infomorphism) iff y ∈ Qx �M ′ (by definition of fM). qed

Also, the above machinery has been combined with Formal Concept
Analysis to develop a general framework to define and implement For-
mal Ontologies, especially by R. Kent (cf. for instance Kent [2000]).1

However, for these developments we address the reader to the follow-
ing web-sites: “http://www.ontologos.org/” and “http://suo.ieee.org/”.

4.3 Frame – Categorizing Through Pointless

Topology

In this frame we want to show how classifications may be defined by
means of the mathematical tools provided by pointless topology, as
depicted in the Introduction. Indeed, we shall see that we have basi-
cally to apply the pull-back schema to a particular function that maps
points of a topological space onto the so called spectral space of the
lattice of the open sets of the topological space. Then we shall decom-
pose this function much in the same way described in Theorem 16.5.1
of Mathematical toolkit 16.5. We shall need just an additional subtle,
but surprisingly intuitive, step. This step aims at analysing the rela-
tionships between points, that are induced by the given topology. It is
based on the notion of a specialization preorder.

Let us recall the definition from Mathematical toolkit 16.4

Definition 4.3.1 (Specialisation preorder). Given a topological
space 〈X,Ω(X)〉 and two elements x and x′ of X, we say that x is
specialized by x′(x′ specializes x; x′ is a better approximation than x;
x′ refines x), denoted x $ x′, if and only if for any open set O ∈ Ω(X),
x ∈ O � x′ ∈ O. The relation $ will be called the specialization
preorder on X induced by Ω(X).

Proposition 4.3.1. Given a topological space 〈X,Ω(X)〉, the special-
ization preorder induces a partial order 
 on the set of abstract points
J (Ω(X)) by setting P 
 P ′ if and only if ∀p′ ∈ P ′, ∃p ∈ P such that

1A Formal Ontology is “an explicit specification of a conceptualization,” as main-
tained in Gruber [1993] or a sort of “dictionary or glossary, but with greater detail
and structure that enables computers to process its content. An ontology consists of
a set of concepts, axioms, and relationships that describe a domain of interest,” as
stated by the IEEE P1600.1 Standard Upper Ontology Working Group.
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p $ p′. This partial order 
 is contravariant with respect to the lattice
order of Ω(X) restricted to J (Ω(X)).

Proof. The relation 
 is a partial order. In fact, let us suppose that
P 
 P ′ and P ′ 
 P but P �= P ′. So, suppose x ∈ P but x /∈ P ′. Since
P ′ 
 P there exists y ∈ P ′ such that y $ x. But y $ x if and only if
for all A, y ∈ A � x ∈ A. It follows that x ∈ P ′, too (contradiction).
Henceforth P ⊆ P ′. qed

Proposition 4.3.2. Given a topological space 〈X,Ω(X)〉, let us define
an equivalence relation ≡ by putting, for any x, x′ ∈ G, x ≡ x′ if and
only if x $ x′ and x′ $ x (where $ is the specialization preorder induced
by Ω(X)). Let us factorise X through ≡. On X/≡ we inherit a partial
order % from $, by setting [x]≡ % [x′]≡ if and only if x $ x′.

Proof. The relation % is a partial order. In fact, suppose [y]≡ % [x]≡
and [x]≡ % [y]≡. Then, from [y]≡ % [x]≡ we have y $ x and from
[x]≡ % [y]≡ we have x $ y. It follows that x ≡ y, so that [y]≡ = [x]≡.

qed

Definition 4.3.2 (T0-ification). Let 〈X,Ω(X)〉 be a topological space.
By considering the set of order filters of the poset 〈X/≡,%〉 we obtain
another topological space 〈X/≡,Ω�(X/≡)〉, called the T0-ification of
〈X,Ω(X)〉 (the name is after the property of T0 spaces in general topo-
logy).

Definition 4.3.3 (Identification space). Let 〈X,Ω(X)〉 be a topo-
logical space and let E be an equivalence relation on X. Let us define
on X/E a topological space 〈X/E ,ΩI(X/E)〉 by means of the following
equivalence: ∀O ∈ ℘(X/E), O ∈ ΩI(X/E) iff nat−1(O) ∈ Ω(X), where
nat is the canonical application nat(x) = [x]E, for any x ∈ X. Then
〈X/E ,ΩI(X/E)〉 is called an identification space of 〈X,Ω(X)〉.

Definition 4.3.4 (Identification map). Let 〈X,Ω(X)〉 and 〈Y,Ω(Y )〉
be two topological spaces. Then a map φ : X �−→ Y is called an iden-
tification map if it is onto and Y ′ ∈ Ω(Y ) if and only if φ←(Y ′) ∈
Ω(X).

Clearly, given an identification space 〈X/E ,ΩI(X/E)〉, the canonical
map nat(x) = [x]E is an identification map from 〈X,Ω(X)〉.

Proposition 4.3.3. The T0-ification of a topological space 〈X,Ω(X)〉
is an identification space.
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Proof. If O ∈ Ω�(X/≡) then O =↑� [x]≡ for some x ∈ X. Thus,
nat−1(O) = nat−1{[x′]≡ : [x′]≡ & [x]≡}. But since [x′]≡ & [x]≡ if and
only if x′ ' x, we obtain that nat−1(O) =↑� x. Therefore nat−1(O) ∈
Ω(X). Conversely, if nat−1(O) ∈ Ω(X), then nat−1(O) =↑� x for some
x ∈ X. It follows that O = nat→(↑� x) =

⋃
{nat(x′) : x′ ' x} =

{[x′]≡ : x′ ' x} =↑� [x]≡. Henceforth, O ∈ Ω�(X/≡). qed

Now, following the pointless topology approach, let us define a map
from concrete points to abstract points, that is a map ψ:G �−→J (Ω(X))
: ψ(x) =↑� (x). But we know that ψ−1 is the partition modulo the
kernel of ψ, which is given as the pull-back of ψ along itself.

Proposition 4.3.4. The functional relation corresponding to the ker-
nel of ψ coincides with n̂at, i.e. the functional relation corresponding
to the canonical map nat.

Proof. We have just seen that ↑� (x) = n̂at
�

(↑� [x]≡). It follows that
ψ̂�(↑� (x)) = [x]≡, that is, ψ̂ ⊗ ψ̂� = κ̂ (pay attention that ψ̂ ⊗ ψ̂�

means “ψ̂� after ψ̂”). qed

It follows that ψ−1 is a homeomorphism between 〈J (Ω(X)),
Ω�(J (Ω(X)))〉 and 〈X/≡,Ω�(X/≡)〉, while nat is an isomorphism
between Ω(X) and the former two structures.

Moreover, we know that the extension of ψ to ℘(X), φ, defined
by the equation φ(O) = {P ∈ J (Ω(X)) : O $ P}, is an isomorphism
between Ω(X) and Ω�(J (Ω(X))) (indeed it is a 1-1 identification map).
Hence it is an isomorphism between Ω(X) and Ω�(X/≡), too.

However, if for two distinct elements O and O′, φ(O) = φ(O′),
then Ω�(J (Ω(X))) and Ω�(X/≡) are not homeomorphic with Ω(X),
because the elements that are “duplicated” in Ω(X) collapse into a
single element in the other spaces. This means that we can identify ele-
ments that always fulfill the same properties either by means of the T0-
ification technique or the soberification technique, and obtain the same
result (we also recall that this is not always true in the infinite case).

Ω(X)

��
�
�
�
�

iso

 ��

�
�
�
�

iso

�
Ω�(X/≡) �

homeo
� Ω�(J (Ω(X)))

For an example see Frame 4.5.
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How to interpret this journey from a phenomenological point of
view?

“Points” are perceived just through observations of their proper-
ties. We know the properties, not the objects. This is what is meant
by saying that objects (points) are just “bundles of properties”. The
equation ψ(x) = ψ(x′) or, equivalently, nat(x) = nat(x′) means, indeed,
that x and x′ “come always together”: they manifest the same proper-
ties. This equation depends, of course, on the collected information. In
other terms it depends on the considered “slice” of the evolving obser-
vation process. In fact, if we stop our observations at some point in
time t and collect our information, then points do not have any longer
the possibility to manifest any eventual difference by means of finer
properties. If under the finest observations we have collected, x and
x′ cannot be distinguished, then both of them are put into the same
equivalence class.

4.4 Frame – Observable Properties

When we speak of an “observable property” we must take precautions
because we have to define, first, what “observable” means.

Intuitively, a property p is observable of an object g if some per-
ceptive subject s is able to decide if it is the case that g � p. Thus,
the problem is now about the meaning of the verb “to decide”. Of
course, decision procedures in human beings and decision procedures
in mechanical artifacts like computers are not the same (indeed they
can seriously diverge). However, since we are trying to define a formal
framework for some observation logic and, moreover, since we are not
able, for the time being, to describe human decision procedures with a
sufficiently acceptable precision degree, we shall assume that a property
is observable if it is decidable from the point of view of Computability
Theory.

4.4.1 Decidable and Semi-Decidable Properties

In view of the previous assumption we can say that property P is
decidable, if there is an effective procedure which is able to affirm that
g � P holds, for any object g of the domain of discourse. Here we
assume that “effective” has the meaning defined by Church’s Thesis.
Hence it means “Turing computable”, “Post computable”, “computable
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by means of recursive functions”, “λ computable” and so on (see any
book on Computability Theory, for instance, Manna [1974]). Roughly
speaking, in this context “effective” means “computable by means of a
mechanical procedure”. If this is the case, we also say that g � P is a
solvable problem.

Unfortunately, it is well-known that there are unsolvable problems
and, even worst, that such problems are usually important. Here is a
limited list of unsolvable problems:

1. Checking mechanically whether an arbitrary program will halt on
a given input (the Halting Problem).

2. Printing out all and only the true statements of arithmetic
(Gödel’s Incompleteness Theorem).

3. Deciding whether a given sentence of first-order logic is valid or
not (Church’s Theorem).

In some more abstract terms we shall say that a (decision) problem A

(over an alphabet Σ) is a subset A ⊆ Σ∗, where Σ∗ is the set of all
strings (words) of symbols in Σ:

Definition 4.4.1. A decision problem A over Σ is decidable if its
characteristic function χA is computable:

χA(x) =
{

1 if x ∈ A
0 if x /∈ A

If a decision problem A is decidable than A is said to be a recursive
set.

From Church’s Theorem above, we know that the set of valid first-
order logic sentences, V FOL, is not recursive, because there is no
mechanical procedure which is able to say, for any first-order logic sen-
tence s, if s ∈ V FOL or s /∈ V FOL. Note that s /∈ V FOL means,
classically, s ∈ −V FOL, where “−” is the set theoretic complement
with respect to the set FOL of all first-order logic sentences.

There are some subsets of V FOL which are recursive (that is,
decidable) such as, for instance, the set of Horn clauses (on which the
program language Prolog relies). But the entire set V FOL is not.

However, V FOL fulfills a weaker but still interesting property: there
is a mechanical procedure which decides if s ∈ V FOL, though. This
procedure is not able to decide if s /∈ V FOL. Otherwise stated, if s is
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valid our procedure notifies it. But if s is not valid our procedure may
notify it or run forever.

Thus membership in V FOL is a semi-decidable problem and V FOL
is said to be recursively enumerable. It follows that a set is recursive if
both itself and its complement are recursively enumerable.

Gödel’s Incompleteness Theorem says that the set of true arithmetic
statements is not even recursively enumerable.

In view of the concepts so far defined, we shall say that a (positive)
property is “finitely observable” if it is semi-decidable (or, equivalently,
if its domain of validity is recursively enumerable).

4.4.2 Decidable Properties, Topology, Domains
and Geometric Logic

In a seminal paper M. B. Smyth (see Smyth [1978], but see also Smyth
[1992]) faced the problem as how to characterise decidable properties.
He introduced an ordering % on a domain D, which is considered as an
information ordering, i.e., x % y if y contains more information than x.
This ordering is, therefore, very close to what we have introduced as a
“specialization preorder”. A (semi) decidable property P is thought of
as an observable property. If x has enough information for the property
P to hold, i.e., χ[[P ]](x) = 1, and x % y then y also contains enough
information for the property P to hold. If we think of y as a neighbor of
x (from the point of view of a nearness relation based on the notion “to
have more information than ...”), then this intuition leads to the fact
that a semi-decidable property is, indeed, a kind of open set, because
for any element in it, the set contains also its “neighbors”.

As Vickers [1989] puts it:

“An observation must be made in finite time, after a finite amount

of work.... A finite observation in itself is neutral in its logical content. It

can be used positively, to affirm an assertion (most concretely, the asser-

tion “this observation can me made”), or negatively, to refute an assertion

(“this observation can never be made”). However, we shall tend to give

the observations an implicit logical content by taking the positive view-

point.... [Having established] in what circumstances [an] assertion can be

affirmed or refuted, let us now ask when it is true or false.... The answer

depends on how we classify all the borderline cases .... If we say that for

all borderline cases the assertion is false, then “true” means “affirmably
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true” ... this means that sets corresponding to truth are open. On the other

hand, we may count all the borderline cases as true, so that “true” means

“irrefutable” and the sets corresponding to truth are closed.”

The logic of affirmative assertions (finite observations) admits some
nice properties: arbitrary disjunctions, finite conjunctions, distribution
of conjunction over arbitrary disjunctions and distribution of disjunc-
tions over finite conjunctions (intuitively disjunctions may be arbitrary
because we can stop the sequence as soon as we observe evidences to
affirm a sentence; dually we cannot accept infinite conjunction, because
this would imply an infinite amount of observations). Such a logic is
known as Propositional Geometric Logic (see Frame 4.5).

To be sure, things are a little bit more complex when applied to pro-
gram semantics. In fact we must embed this intuition into a framework
in which also issues related to “finiteness” (compactness) and “approx-
imation by means of finite elements” must be taken into account (for
instance for computation purposes real numbers must be limits of their
finite – or concrete – approximations). This approach leads to the tech-
nical notions of a “Domain” (“complete partial order – cpo”, “algebraic
cpo” and “powerdomain” – see Abramsky & Jung [1994], Scott [1982]
and Vickers [1989]).

4.5 Frame – Finite Observations: The Binary
Machine Example

Let us recall three fundamental assumptions we made about observa-
tion processes:

• any substance (or “entity”, “object” or “point”) is a “bundle” of
finite observable properties;

• observation is a dynamic activity evolving over time;

• any Information System is a section of the results of this dynamic
activity at a certain point in time.

Considered from a dynamic point of view, observations have a pecu-
liar geometry that was discussed in Section 5.1 of Introduction which
corresponds to a peculiar logic.
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Given a P-system P, a positive observation is any formula g � p.
Let Ω be the collection of the positive observations induced by P.
1. any disjunction of positive observations is still a positive obser-
vation:
every subset X of Ω has a join (or sup),

∨
X

2. any finite conjunctions of positive observations is still a positive
observation:
every finite subset X of Ω has a meet (or inf),

∧
X

3. to affirm O and at least one of the Oi ∈ Y , we must affirm
at least O and one of the Oi (frame distributivity): binary meets
distribute over joins: O ∧ (

∨
Y ) =

∨
{O ∧Oi : Oi ∈ Y }.

A structure 〈Ω,∧,∨〉 with the above properties is called a frame.
If, moreover, we define:
a =⇒ b =

∨
{x : x ∧ a ≤ b} and ¬a = a =⇒ 0, where 0 =

∨
∅,

then a frame becomes a complete Heyting algebra (see Part II).
Frames and complete Heyting algebras are the same objects;
differences arise when we consider morphisms (transformations)
between objects, since in the case of frames, morphisms are not
required to preserve =⇒.

Window 4.1. The logic of finite positive observations

The logic modelled by frames is called “Geometric Logic” or “Obser-
vation Logic” (see Frame 4.4.2).

An elementary example of frame is given by the following binary-tree
observation: let G be a set of machines whose behaviours are checked
at some intervals of time. Any machine may generate, asynchronously,
a binary string by concatenating a 0 or a 1 to its preceding output.
The set of all possible binary strings is denoted by M . If a machine m
outputs a string s, we write m � s.

Let us stop the observations of the system at point in time t and
record all the observed output relations � between machines in G and
strings in M . This means that the evolution of � for each machine is
recorded and we obtain a P-system 〈G,M,�〉. Let us denote the sub-
string relation with the symbol ( (hence 01 ( 011 and 01 ( 010, and
so on). In this P-system the set of possible future stories of a machine x
such that at point in time t, x � s is given by the principal order filter
↑� s which is represented by the output s originating this order filter.
Otherwise stated, the possible future evolutions of an observation x � s
(that is, any observation of the form x � s′ for s( s′) are represented
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by their potential x � s (because if s is 0110, then it represents, at
point in time t, also 01100, 01101, 011001, 011000, etc.). This means
that if at point in t the last observation for a subset G′ of machines is s
(for instance 0110), then we can momentarily equalize all the members
of G′. In fact our best evidence is that all those machines output string
s, so that at point in time t, they can be considered to have the same
behavior, regardless of their future development. Obviously, at point in
time t+ 1 some of the machines in G′ could output s′ and some others
s′′ such that s′ �= s′′ (for instance s′ = 01101 and s′′ = 01100). However
they cannot be distinguished at point in time t: we have no information
for performing this distinction, yet.

However, we must distinguish a machine m whose output at point in
time t is string s from a machine m′ whose output at t is a string s′ ( s.
Indeed, the latter’s next output could be a string s′′ incompatible with
s, or it could definitely stop or loop at position s′. In both cases, we
cannot legitimately equalize the behaviours of m and m′ at time t.

Now we shall apply the approach suggested by Pointless Topology.
Consider the set of machines G = {m1,m2,m3,m4,m5} and the set

of observations M = {⊥, 〈0〉, 〈1〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉, ...}. Imagine that
we make our observations in the interval of time [t0, t] collecting the
following output relations (⊥ denotes the void string):

m1,m2 � 〈0, 1〉 m4 � 〈1, 1〉

m1,m2,m3 � 〈0〉 m4 � 〈1〉
�
�
�
� �

�
�
�

⊥ m1,m2,m3,m4

We obtain the following P-system 〈G,M,�〉:
� 〈0〉 〈1〉 〈0, 1〉 〈1, 1〉

m1 1 0 1 0
m2 1 0 1 0
m3 1 0 0 0
m4 0 1 0 1

Therefore the set SUB(M) is given by:

sub(⊥) = {m1,m2,m3,m4}, sub(〈0〉) = {m1,m2,m3}, sub(〈1〉) =
{m4}, sub(〈0, 1〉) = {m1,m2}, sub(〈1, 1〉) = {m4}.
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So, let us define on G a topological space 〈G,ΩSUB(G)〉 by tack-
ing SUB(M) as a sub-base (or by tacking {∅} ∪ SUB(M) as a base).
ΩSUB(G) is the following distributive lattice:

{m1, m2, m3, m4}
��
� ���

{m1, m2, m3} {m1, m2, m4}
��� ��

� ���
{m1, m2} {m4}

��� ��
�

∅

The element {m1,m2} corresponds to the property ⊥ ∧ 〈0〉 ∧ 〈0, 1〉,
{m4} corresponds to ⊥ ∧ 〈1〉 ∧ 〈1, 1〉, while {m1,m2,m4} corresponds
to ⊥∧ ((〈0〉 ∧ 〈0, 1〉) ∨ (〈1〉 ∧ 〈1, 1〉)) and so on. Let us consider the set
of co-prime (join-irreducible) elements of ΩSUB(G),

J (ΩSUB(G)) = {{m1,m2}, {m4}, {m1,m2,m3}}.

Indeed, given two elements s and s′ of M , either they are incompatible,
meaning that they have sub-strings of the same length that differ at
least in one position, or one is a substring of the other. Clearly, if s( s′,
then sub(s′) ⊆ sub(s), because in order to output s′ a machine must
output also substring s. Therefore, if s ( s′, then sub(s) ∪ sub(s′) =
sub(s). If s and s′ are incompatible sub(s) ∪ sub(s′) �= sub(s′′) for any
s′′ ∈ M . It follows that for any s ∈ M , sub(s) is a co-prime element.
Since the other elements of ΩSUB(G) are unions of elements of SUB(M),
the latter is the set of all co-prime elements of the distributive lattice
ΩSUB(G).

Exercise 4.1. Show the P-system which results by recording just
the most updated output for each machine. Show that in this case
J (ΩSUB(G)) is a partition.

Let us now define on G the specialization preorder $ induced by
ΩSUB(G). Since in order to compute the specialization preorder co-
prime open sets are sufficient, we shall have for any x, x′ ∈ G, x $ x′

iff for all s ∈ M , if x � s then x′ � s, iff for all s ∈ M , if x � s then
there exists s′ ) s such that x′ � s′), iff for all s ∈ M , if x ∈ sub(s)
then x′ ∈ sub(s).

Here are some examples: m1 � m3 and m2 � m3, because m1,m2 ∈
{m1,m2,m3} but m3 /∈ {m1,m2}; on the contrary, m3 $ m1 and
m3 $ m2.



120 4 Frames (Part I)

The specialization preorder 〈G,$〉, the poset of co-prime elements
〈J (ΩSUB(G)),$〉, function ψ and the partial order 〈G/≡,%〉 are
depicted in the following diagrams:

〈G,$〉

m1,m2

m3 m4

〈G/≡,%〉 〈J (ΩSUB(G)),$〉 G

� nat

[m1]≡ �
ψ−1

{m1,m2} � ψ
m1�������ψ m2

[m3]≡ [m4]≡ m3
�������ψ−1

�������ψ−1
����

���
���

���
��

ψ

{m1,m2,m3} {m4} � ψ
m4

Indeed, machines m1 and m2 always output the same string. In other
terms their behaviours are indistinguishable at point in time t, that is
the time we stopped the observations. Thus they must be equalized and
in fact they collapse into the same abstract point {1, 2} via function ψ
or via function nat = ψ ◦ ψ−1.

Clearly 〈G,ΩSUB(G)〉 and 〈J (ΩSUB(G)),Ω�(J (ΩSUB(G)))〉 (or
〈G/≡,Ω�(G/≡)〉), fail to be homeomorphic because we have collected
less outputs than machines and this happens exactly when at least
two machines always output the same strings. Through the above
techniques we can equalise these machines.

4.6 Frame – Quanta of Information

4.6.1 Quanta at a Location and Ortholattices

If we assume the “same-up-to-some-tolerated-difference” principle,
then objects will be perceived to be connected by a tolerance, or coher-
ence, relation, R, that is a symmetric and reflexive binary relation on U .
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The resulting structure 〈U,R〉 is called a Proximity Space, an important
mathematical object since it has strict connections with ortholattices
and Quantum Logics (cf. Bell’s quoted work and see later Frame 15.10
of Part 3).

Moreover the dual relation −R, called orthogonality relation deter-
mines the (better known) dual space 〈U,−R〉, called Orthogonality
Space.

A Proximity Space T is a set X equipped with a coherence relation
T (that is a symmetric and reflexive relation).
For any x ∈ X, the quantum at location x, QLx, is defined by:
QLx = {x′ ∈ X : 〈x, x′〉 ∈ T} = T�(x) = T (x) = 〈T�〉(x) =
〈T 〉(x) =↓T x =↑T x.
Part(X), the family of all unions of quanta, is called a complete
quantum assemblage. It is possible to prove that SatQL(T) =
(Part(X),∧,∨,∗ , X, ∅)
is a complete ortholattice when the operations are defined by:
∨
{Ui}i∈I =

⋃
{Ui}i∈I ;

∧
{Ui}i∈I =

⋃
{QLx : QLx ⊆

⋂
{Ui}i∈I};

U∗ =
⋃
{QLx : x �∈ U}.

Window 4.2. Proximity Spaces and Complete Quantum Assem-
blages

A complete quantum assemblage of a Proximity Space is a complete
ortholattice and any complete ortholattice is isomorphic to a complete
quantum assemblage of a Proximity Space.

Consider the following proximity space T (clearly a Proximity Space
T = 〈X,T 〉 is a P-system 〈X,X, T 〉):

T a b c d

a 1 1 1 0
b 1 1 0 0
c 1 0 1 1
d 0 0 1 1
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It induces the following quantum assemblage SatQL(T) that we
compare with SatQ(T):

SatQL(T) SatQ(T)

{a, b, c, d} {a, b, c, d}

�
� �

� �
� �

�
{a, b, c} {a, c, d} {a, b, c} {a, c, d}

�
� �

� �
� �

�
{a, b} {c, d} {a, b} {a, c} {c, d}

�
� �

� �
� �

� �
� �

�

∅ {a} {c}
�
� �

�

∅

In ΩQL(T), {a, b, c} ∧ {a, c, d} is computed as follows: {a, b, c} ∩
{a, c, d} = {a, c} but for all X ∈ ΩQL(T), X � {a, c}. Hence
{a, b, c} ∧ {a, c, d} = ∅.

As to orthogonality, since {a, b}∗ = QLc∪QLd = {a, c, d}∪{c, d} =
{a, c, d} and {a, c, d}∗ = QLb = {a, b}.

There is no way to recover quantum assemblages from quanta of
information. In fact by means of the induced IQRS, Q(T), quanta of
information can just reproduce the behaviour of −T, or direct or inverse
images ofRT (by means of the equivalences of Proposition 3.1.3). But they
cannot recover all and only the direct (or, equivalently, inverse) images
of T , because T is not a preorder. For instance, in SatQ(T) we have
{a, b} = QT

b but QT
c = {c} is not an element of SatQL(T). Moreover,

SatQ(Q(T)) is isomorphic to SatQ(T) for T is a tolerance relation.
On the contrary, if we are given an Information System S, RS is a

preorder so that in view of Proposition 3.1.3 we have QQ(S)
x = R�

S (x) =
QLx. Moreover, if S is an A-system (or it is dichotomic or functional)
then RS is also symmetric, so it is a tolerance relation too. It follows
that ΩQL(S) = ΩQ(S), so that SatQL(S) is a distributive ortholat-
tice, hence a Boolean algebra, because all distributive ortholattices are
Boolean algebras (the additional Boolean features are indeed given by
transitivity of RS). But from Corollary 3.1.4, ΩQ(S) = ΩQ(Q(S)). So
we have proved Proposition 3.3.6 in another way.



4.6 Frame – Quanta of Information 123

In the case of P-systems, since symmetry is not granted, ΩQ obtains
distributive lattices but not ortholattices, hence not Boolean algebras,
in general.

Notice that any transitive Proximity Space induces a Boolean alge-
bra, but the converse implication is not valid. Indeed, we can have non-
transitive Proximity Spaces such that the induced quantum assemblage
is a Boolean algebra. Here an example:

R 1 2 3 4

1 1 1 1 0
2 1 1 0 0
3 1 0 1 0
4 0 0 0 1

The family of quanta at a point is {QL1 = {1, 2, 3}, QL2 = {1, 2},
QL3 = {1, 3}, QL4 = {4}}. It is easy to see that the resulting quan-
tum assemblage coincides with the Boolean algebra whose atoms are
QL2, QL3 and QL4. It is interesting to notice that this happens because
QL1 = QL2 ∪ QL3. If, on the contrary, this coincidence fails, we no
longer obtain a Boolean algebra. For instance if in the above P-system
in addition we had 〈3, 4〉 ∈ R, then QL3 = {1, 3, 4} so that the element
QL1 would be neither an atom nor join-accessible from atoms.

4.6.2 A Topo-Algebraic Reading of IQRSs

We have already proved that for any Information System S over a set
G, ΩQ(S) can be made into a lattice of open subsets of G. Now we shall
give a brief deeper insight into this perspective.

Any IQRS is basically a preorder O. We can then consider the fam-
ily of order filters F (O). In view of the results collected so far, it is
immediate to verify that if O = Q(S) then F (O) = {R(X) : X ⊆
G} = ΩQ(S). Indeed this family determines the so-called Alexandrov
topology over O, whose lattice of open subsets is, thus, SatQ(O�).

Moreover, F (O) ⊆ ℘(G). So let in : F (O) �−→ ℘(G) be the inclu-
sion map. This inclusion function is a lattice homomorphism between
(F (O),⊆) and (℘(G),⊆). Then it is both a ∨-preserving and a ∧-
preserving map, so that in view of Lemma 1.4.3 we can ask what its
upper and lower adjoints are.

Lemma 4.6.1. Let O = 〈G,R〉 be a preordered set. Let F (O) be the
family of its order filters and in : F �−→ ℘(G) an inclusion function.
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Then the upper adjoint “in+” of the inclusion map “in”, coincides with
the interior operator I induced by F (O) qua Alexandrov topology on O.

Proof. From Proposition 1.4.7.(3), for any X ∈ ℘(G), in+(X) =
∨

(in−1

(↓⊆ X)) =
⋃
{Y ∈ F (O) : in(Y ) ⊆ X}. Since in(Y ) = Y , in+(X) is

the greatest element of F (O) contained in X. qed

Lemma 4.6.2. For any set X ⊆ G and any g ∈ G, g ∈ [R](X), iff
g ∈ I(X).

Proof. For any X ⊆ G, g ∈ I(X) if and only if g ∈
⋃
{Y ∈ F (O) :

Y ⊆ X} if and only if g ∈ {z ∈ G : ∀z′ ∈ G(〈z, z′〉 ∈ R � z′ ∈ X)} =
[R](X). qed

Lemma 4.6.3. The lower adjoint “in−” of the inclusion map “in”,
coincides with the closure operator Cop induced by F (O�) qua Alexan-
drov topology on O�.

Proof. in−(X) =
∧

(in−1(↑⊆ X)) =
⋂
{Y ∈ F (O) : Y ⊇ X} = {z ∈

G : ∃z′(〈z, z′〉 ∈ R� & z′ ∈ X)} = C

op(X). qed

Corollary 4.6.1. For any set X ⊆ G, for any g ∈ G, g ∈ 〈R�〉(X) if
and only if g ∈ Cop(X).

Proof. Indeed Cop(X) = R(X), any X. qed

This reasoning can be dualized by starting from the family of order
ideals I (O) = {R�(X) : X ⊆ G}, thus obtaining the operators 〈R〉
and [R�]. Notice that O� = Q(O) so that 〈R�〉 = Q

Q(O)
(...) and 〈R〉 =

QO
(...). Therefore, if O is the IQRS induced by S, Q(S), then QS

X =

Q
Q(Q(S))
X = Q

Q(O)
X = 〈R�〉(X) = R(X) = 〈R�

S 〉(X) = RS(X).
Finally, since in is a lattice homomorphism between (F (O),⊆) and

(℘(O),⊆), we can recover the adjointness properties of these operators:

(1) 〈R�〉 � [R]; (2) 〈R〉 � [R�].

Terminology and Notation. Given an ordered set O, in general we

shall denote the structure (F (O),⊆) with F(O).

4.6.3 Duality Between P-Systems and Preorders

A more conceptual proof of Proposition 3.3.4 Let F (O) be the set
of order filters of O. Thus F (O) = ΩQ(Q(O)) (i.e. ΩQ(O�)), so
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that we know that F (O) can be made into the distributive lattice
SatQ(Q(O)). Then let J (SatQ(Q(O))) be the set of co-prime elements
of SatQ(Q(O)). We have seen in the Introduction that co-prime ele-
ments have the form ↑R x, i.e. R(x), for some element x ∈ G and that
they may be understood as properties fulfilled by those elements g of
G such that g ∈ R(x). Thus, let us set g � x if and only if g ∈↑ x. Then
we can define an Information System I(O) as 〈G,J (SatQ(Q(O))),�〉.
Thus, 〈g, g′〉 ∈ RI(O) iff g′ ∈ Q

I(O)
g , iff � (g) ⊆� (g′), iff g ∈ R(x) �

g′ ∈ R(x) for all R(x) ∈ J (SatQ(Q(O))). In particular, since R is
reflexive, g ∈ R(g) so that g′ ∈ R(g) holds, i.e. 〈g, g′〉 ∈ R. Conversely,
if 〈g, g′〉 ∈ R and 〈x, g〉 ∈ R, for transitivity 〈x, g′〉 ∈ R too. It follows
that g ∈ R(x)� g′ ∈ R(x), all x ∈ G.

Consider the following preorder O = 〈G,R〉:

R 1 2 3 4 5 RO 1 2 3 4 5

1 1 1 1 1 1 1 1 0 0 0 0
2 0 1 0 1 1 2 1 1 0 0 0
3 0 0 1 0 0 3 1 0 1 0 0
4 0 0 0 1 1 4 1 1 0 1 1
5 0 0 0 1 1 5 1 1 0 1 1

It is immediate to verify that RO = R� so that the family F (O) =
{R(X) : X ⊆ G} coincides with ΩQ(Q(O)) (that is, ΩQ(O�)), which
in turn, once equipped with the set-theoretical operations, gives the
distributive lattice depicted on the left with set of co-prime elements
depicted on the right:

SatQ(Q(O)) J (SatQ(Q(O)))

G

��
� 

{2, 4, 5} {3, 4, 5} {2, 4, 5}
 ��

� 
{4, 5} {3} {4, 5} {3}

 ��
�

∅
Now we verify that the required Information System I(O) is
〈G,J (SatQ(Q(O))),�〉 where g � X if and only if g ∈ X, all g ∈ G

and X ∈ J (SatQ(Q(O))).
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� {3} {4, 5} {2, 4, 5}

1 0 0 0
2 0 0 1
3 1 0 0
4 0 1 1
5 0 1 1

One can easily verify that for all X ⊆ G,Q
I(O)
X = QO

X .
Hence Q(I(O)) ≡I O.
Dually, let S be the above Information System I(O). Since RS = R

we have that Q(S) ∼=I O and I(Q(S)) ∼=I I(O) = S.

4.7 Frame – Information Systems

Information Systems as related to Rough Set Theory were introduced
by Z. Pawlak in Pawlak [1981]. Immediately, a large amount of res-
earches and studies followed together with the applications of Rough
Set Theory in a number of fields among which we mention:

• Decision support systems

• Knowledge discovery in databases

• Pattern recognition

• Mereology

It is practically impossible to cite even the major contributions to
the theory, so we shall just sketch some developments towards general-
isations.

4.7.1 Generalising Information Relations

As we know from Definition 1.2.4, we can consider A-systems
〈G, {Va}a∈At, At〉 in which for each a ∈ At, a : G �−→ ℘(Va). That is, an
object g can be associated with more than one value for any attribute
a. We recall that this kind of A-systems is called non-deterministic.
Non-deterministic A-systems have been originally studied both by Z.
Pawlak and, especially, by E. Or�lowska.
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On this basis, a number of information relations among objects have
been defined, given A ⊆ At, in Konrad et al. [1981], Or�lowska [1985]
and Vakarelov [1991]:

Indistiguishability Relations

Strong indiscernibility 〈x, y〉 ∈ indA iff a(x) = a(y), for all a ∈ A.

Strong similarity 〈x, y〉 ∈ simA iff a(x) ∩ a(y) �= ∅, for all a ∈ A.

Strong forward inclusion 〈x, y〉 ∈ finA iff a(x) ⊆ a(y), for all a ∈ A.

Strong backward inclusion 〈x, y〉 ∈ binA iff a(x) ⊇ a(y), for all a ∈ A.

Strong negative similarity 〈x, y〉 ∈ nimA iff −a(x) ∩ −a(y) �= ∅, for all a ∈ A.

Strong incomplementarity 〈x, y〉 ∈ icomA iff a(x) �= −a(y), for all a ∈ A.

Moreover, we have the weak version of the above notions when the def-
ining properties are required for some a ∈ A instead of all a ∈ A. There-
fore we have weak indiscernibility, windA, weak similarity, wsimA,
weak forward inclusion wfinA, weak backward inclusion, wbinA, weak
negative similarity, wnim, weak incomplementarity wicomA.

Moreover, by taking the complement of either a(x) or a(y) in the
above definitions, one obtains distinguishability relations. So, for inst-
ance, the relation lort defined by 〈x, y〉 ∈ lortA iff −a(x) ⊆ a(y), for all
a ∈ A, is called strong left orthogonality, the relation wrnim : 〈x, y〉 ∈
wrnimA iff a(x)∩−a(y) �= ∅ is called weak right negative similarity and
so on (for details see Or�lowska [1989] and Demri & Or�lowska [2002]).

4.7.2 Generalizing Indiscernibility Relation

Other early generalisations suggested weakening the properties of an
equivalence relation, thus using tolerance relations (by dropping tran-
sitivity) or even generic relations (see Frame 4.10).

A further generalisation is obtained by exploiting Fuzzy Set The-
ory. In Fuzzy Set Theory instead of a classical characteristic function
χX(x) : X �−→ {0, 1}, which evaluates the positive or negative mem-
bership of x in a set X, we have a membership function μF (x) : X �−→
L, where L is an ordered set of values (possibly a complete lattice
and usually the real interval [0, 1]). This function gives the degree of
membership of x in X.

In Dubois & Prade [1992] two approaches are suggested to get a
fuzzy extension of the upper and lower approximations. First, instead
of a classical set one can approximate a fuzzy set by means of an equiv-
alence relation E on G. To define this notion, given any element Xi of
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G/E we use a map ω(Xi) = {y : 〈x, y〉 ∈ Xi} – this way we distinguish
between Xi as a member of the quotient set G/E and ω(Xi) as a subset
of G.

Then, the upper and lower approximation of a fuzzy subset F of G
is defined by, respectively:

μ(uE)(F )(Xi) = sup{μF (x) : ω(Xi) = [x]E} and μ(lE)(F )(Xi) =
inf{μF (x) : ω(Xi) = [x]E}, where μ(uE)(F )(Xi), resp. μ(lE)(F )(Xi),
is the degree of membership of Xi in (uE)(F ), resp. in (lE)(F ).

In the second approach one defines a fuzzy similarity relation on G.
A fuzzy similarity relation R is a fuzzy set on G×G. The usual prop-
erties of a fuzzy similarity relation R are: (i) reflexivity (μR(x, x) = 1),
(ii) symmetry (μR(x, y) = μR(y, x)), and (iii) ∗-transitivity (μR(x, z) ≥
μR(x, y)∗μR(y, z), where ∗ is any operation satisfying a∗b ≤ min(a, b) –
a sort of logical “and”).

Using a fuzzy similarity relation, R, the fuzzy equivalence class [x]R
for objects close to x can be defined as: μ[x]R = μR(x, y), that is, the
extent to which two elements x and y are similar.
Then, the fuzzy lower and upper approximations are defined as:

μ(lR)(Fi)(X) = infx∈G(max{1 − μFi
(x), μX(x)}), ∀i;

μ(uR)(Fi)(X) = supx∈G(min{μFi
(x), μX(x)}), ∀i,

where Fi denotes a fuzzy equivalence class belonging to G/R.
In the same year the notion of a fuzzy rough set was independently

introduced in Lin [1992] and in Hadjimichael & Wong [1993] where, fur-
ther, some links are established between this notion and neighborhood
systems (see Frame 4.10).

4.7.3 Generalising from Sets to Relations

A further generalisation is approximating relations instead of sets. This
idea was introduced in Skowron & Stepaniuk [1993] and discussed in
Pagliani [1996] from the point of view of Relation Algebra (see Frame
15.18.4 of Part III).

In the following quick presentation we shall not deal with the inclu-
sion vagueness function ν and the structural function P , for which we
refer to the quoted work.

Thus let {Ci = 〈Ui, Ei〉}1≤i≤k be a family of Approximation Sys-
tems.
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By R = C1×, ...,×Ck = 〈U,E〉 we denote an approximation space
such that U = U1×, ...,×Uk, and, for x = 〈x1, ..., xk〉 ∈ U , we set
E(x) = E1(x1)×, ...,×Ek(xk). Then the following are the definitions for
the lower and, respectively, upper approximations of a relation R ⊆ U :

Definition 4.7.1. Let β be a real number within the range 0 ≤ β < 0.5.
Let card(X) denote the cardinality of the set X. Then,

(i) L(R, R) = {x ∈ U :
card(R ∩ E(x))
card(E(x))

≥ 1 − β};

(ii) U(R, R) = {x ∈ U :
card(R ∩ E(x))
card(E(x))

> β}.

where card(X) denotes the cardinality of the set X.

4.8 Frame – Dichotomic, Complementary

and Functional Systems

4.8.1 Dichotomic Systems

First notice that the reverse of Proposition 3.1.2 does not hold. For
instance, in a P-system P′ such that G = {1, 2, 3, 4},M = {A,B,C}
and � (1) = {A,B},� (2) = {A,B},� (3) = {B,C},� (4) = {B,C},
Qg is an equivalence class, any g ∈ G, though P′ is neither dichotomic
nor functional.

Let us now define the notion of a complementary system of a
P-system:

Definition 4.8.1. Let P = 〈G,M,�〉 be a P-system. A system P =
〈G,M,�〉 is called a complementary system of P if:

(i) M = {m : m ∈M}, (ii) g�m iff g �� m.

If we are given a P-system P, then a quanta of information at location
X with respect to a complementary system P will be denoted by QX

(i.e. QX = QP
X).

To be precise, we have to discharge any m such that �� (m) = G

before forming P, otherwise we do not obtain a P-system because m
would be such that ��(m) = ∅ so that � would not be onto.

As we know, quanta of information in P-systems and in complemen-
tary systems are dual to each other, in the sense that g ∈ QP

g′ if and

only if g′ ∈ QP
g .
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Let us now introduce the notion of a sum of P-systems over the
same domain:

Definition 4.8.2 (Sum of P-systems). Let P = 〈G,M,�〉 and P′ =
〈G,M ′,�′〉 be two P-systems over the same domain G. The sum of P
and P′ is defined as: P ⊕ P′ = 〈G,M ∪M ′,� ∪ �′〉.

Clearly, for any P-system P = 〈G,M,�〉, the system D(P) = P⊕P
is dichotomic, so that in view of Lemma 3.1.1 RD(P) is an equivalence
relation.

But we can obtain the same result from the fact that if g′ ∈ Qg then
surely g′ ∈ Qg � M and g′ ∈ Qg � M , so that in view of Proposition
3.1.3 g ∈ Qg′ � M and g ∈ Qg′ � M too. If we build the dichotomic
system D(P) we obtain the same information as N (P). In fact the
column of m coincides with that of m1 while the column of m coincides
with that of m0, all m ∈ P . Hence D(P) ∼=I N (P).

We can readily verify that D(N (A)) ∼=I N (A) ∼=I A, for any
A-system A.

4.8.2 Complementary Systems I

Any dichotomic P-system P has at least an i-equivalent system of the
form D(P′) for some P′. In fact if P′ is a dichotomic P-systems then
starting from any singleton X1 = {m1} we can proceed in the following
manner: m ∈ Xn+1 if for no mi ∈ Xn either �� (mi) =�� (m) or mi

is a complementary property of m. Let us set X = Xn if Xn+1 = Xn.
Clearly X ⊆M so that we can define a relation �′ as the restriction of
� to X. Let us set P′ = 〈G,X,�′〉. Since P is dichotomic, X ⊆M∩−X
so that D(P′) is a subsystem of P such that for any p �∈ X ∪X there is
m′ either in X or in X such that �� (m) =�� (m′). Thus D(P′) ∼=I P.

4.8.3 Complementary Systems II

In general, if A is an A-system, then N (A) is not necessarily a dichoto-
mic system. However N (A) ∼=I N (N (A)) which is dichotomic (see
Corollary 3.4.1). Notice that N (N (A)) is informationally equivalent to
the system defined as follows:

1. For each av in N (A), if Va is not a singleton set ¬av = {av′}v′ �=v,
while if Va = {v} then set ¬av = {av′}. We set P = {av}v∈Va

∪
{¬av}v∈Va

.
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2. For each g ∈ G set g �∗ ¬av if and only if g �� av and g �∗ av if
and only if g � av.

Clearly ¬av is the complementary copy of av. Thus,

3. set S = 〈G,P,�∗〉. By easy inspection we can verify that S is a
dichotomic system and that S ∼=I N (A).

Conversely, since given any P-system P, N (P) induces an equivalence
relation, we can ask whether it “is”, in some form, an A-system. But
we know that it is trivially an A-system where the set of attributes
values is V = {0, 1} and m1(g) = 1 iff g � m1 iff g �� m0 iff m0(g) = 0,
m1(g) = 0 iff g � m0 iff g �� m1 iff m0(g) = 1.

We have just to show that 〈G,N (M), {0, 1}〉 is informationally equi-
valent to N (P). But this can be verified by trivial inspection.

4.8.4 Complementary Systems III

Complementary systems reflect the “exactly-the-same” point of view
advocated by classical Rough Set Theory. It is worth noticing that this
point of view is based on an implicit “closed world assumption”, stating
that if an object g does not manifest a property p then it implicitly
manifests the opposite property p.

The close world assumption reflects, to some extent, the idea that
the information system we are dealing with describes a complete state
of affairs. Indeed, we have mathematically proved that adding the
opposite properties makes any quantum of information Qg into an
equivalence class modulo “fulfilling exactly the same properties.”

4.8.5 Dichotomic Systems and Functional Systems

We know that if S is a dichotomic system or a functional system
then RS is an equivalence relation (see Proposition 3.1.2). Thus a
question naturally arises as how to define a functional system F (S)
informationally equivalent to S. The answer is simple and general.

Consider any Information System S. If S is a P-system consider it
as an A-system. Any tuple t ∈

∏
a∈At Va is a combination of attribute-

values and has the form 〈a1m
, . . . , ajn

〉. We set g �∗ t only if ai(g) =
aim

for any ai ∈ At and aim
∈ t. We say that the resulting system

〈G,
∏

a∈At Va,�∗〉 is the required F (S). Clearly �∗ is a map because
no g ∈ G can satisfy different tuples (otherwise g would take different
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attributes values for some attribute). Thus RF (S) is an equivalence
relation such that 〈g, g′〉 ∈ RF (S) only if a(g) = a(g′) for all a ∈ At (or
in M). It follows that N (S) ∼=I F (S) so that if S is dichotomic or it is
an A-system then RS = RF (S) and S ∼=I F (S).

4.8.6 Functional Systems and Approximations

Consider the following FP-system F′ = 〈{1, 2, 3, 4}, {a, b},�〉 and its
kernel � ⊗ �� (alias κ�̂):

� a b � ⊗ �� 1 2 3 4

1 1 0 1 1 0 1 0
2 0 1 2 0 1 0 1
3 1 0 3 1 0 1 0
4 0 1 4 0 1 0 1

First of all, notice, for instance, that [e]〈i〉({3}) = [e]({a}) = {1, 3} =
〈e〉〈i〉({3}). Indeed in FP-systems [e] = 〈e〉. Moreover, we can trivially
verify that RF′ =� ⊗ ��, which induces the equivalence classes: {1, 3}
and {2, 4}. Now let us compute some example of interior and closure:
we have already seen that cl({3}) = {1, 3} but {1, 3} = (uRF′)({3}). As
for the interior, int({1, 2, 4}) = 〈e〉[i]({1, 2, 4}) = 〈e〉({b}) = {2, 4} =
(lRF′)({1, 2, 4}).

4.8.7 Dichotomic Systems and Approximations

Here is a dichotomic system D = 〈{1, 2, 3, 4}, {a, a, b, b, c, c},�〉 such
that cl is not a classical upper approximation and int is not a classical
lower approximation:

� a a b b c c

1 1 0 0 1 0 1
2 1 0 0 1 0 1
3 0 1 0 1 0 1
4 0 1 0 1 1 0

The equivalence classes of RD are {1, 2}, {3}, {4}. Easily, we com-
pute int({2, 3}) = ∅ (because [i]({2, 3}) = ∅), while (lRD)({2, 3}) =
{3}. Also cl({1, 4}) = [e]({a, a, b, c, c}) = {1, 2, 3, 4} �= {1, 2, 4} =
(uRD)({1, 4}).
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4.9 Frame – Concept Lattices

4.9.1 Formal Contexts and Formal Concept Analysis

Formal Concept Analysis, or FCA, was introduced by R. Wille in Wille
[1982]. The starting points of FCA are Formal Contexts which coin-
cide with our P-systems. Indeed, we used the symbols “G ” and “M ”
after the German terms “Gegenstände” (“objects”) and, respectively,
“Merkmale” (“properties”) used by Wille in the quoted paper.

Wille’s original purpose was to answer some psychologists’ require-
ments about the introduction of non numerical data analysis tech-
niques.

Wille’s proposal was the manipulation of data by means of the
polarity 〈est,IT S〉.2 Given a Formal Context (i.e. a P-systems) P =
〈G,M,�〉, any pair of the form 〈A,B〉 where A ⊆ G,B ⊆ M and
A = [[e]](B) and B = [[i]](A), is called a Formal Concept. If the
above equalities hold, then in view of Corollary 2.3.1, we know that
A = est(B) and B = IT S(A), so that A is the extent of B and B is
the intent of A in that all of the properties in B are fulfilled by all of
the objects in A.

The family of all formal concepts induced by P is denoted as B(P).
Given two formal concepts 〈A,B〉 and 〈A′, B′〉, if A ⊆ A′ (or, equiv-
alently, B ⊇ B′, because the right and left ordered structures of the
polarity 〈est,IT S〉 are opposite to each other), then the former is said
to be a subconcept of the latter (or the latter a superconcept of the
former), in symbols 〈A,B〉 $ 〈A′, B′〉.

Also, we know that 〈B(P),$〉 is a complete lattice, because $ defines
the following sup and inf operations:

∨

i∈I

〈Ai, Bi〉 = 〈est(
⋃

i∈I

Ai),
⋂
Bi〉;
∧

i∈I

〈Ai, Bi〉 = 〈
⋂

i∈I

Ai,IT S(
⋃
Bi)〉

This can be directly derived from Proposition 2.3.2 after considering
that intersections on G turn into unions on Mop and the other way
around.

2We use our notation.
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Let us consider the following formal context (from Wille [1982]):

� Size Distance from sun Moon
Small Medium Large Near Far Yes No

Mercury x x x
Venus x x x
Earth x x x
Mars x x x
Jupiter x x x
Saturn x x x
Uranus x x x
Neptune x x x
Pluto x x x

Let us call it the “planet context”, denoted by C. Using some abbre-
viations, we can see that G = {Me, V,E,Ma, J, S, U,N,P} and M =
{Ss, Sm,Sl,Dn,Df,My,Mn}. It induces the following lattices of
extents and, on the right, intents:

Any extent is obtained by an application of est. For instance
est({J, S, P}) = [[e]][[i]]({J, S, P}) = [[e]]({Df,My}) = {J, S, P,
U,N}. Dually, any intent is an application of IT S. For example,
[[i]][[e]]({Dn,My}) = [[i]]({E,Ma}) = {Dn,My, Ss}.

If we combine isomorphic elements of the two lattices into pairs
we obtain formal concepts. For instance the isomorphic image of
{Me,V } is [[i]]({Me,V }) = {Ss,Dn,Mn}, while the isomorphic
image of {E,Ma,P} is [[i]]({E,Ma,P}) = {Ss,My}, and so
on. Thus the formal concepts induced by the planet contexts are
〈{Me,V }, {Ss,Dn,Mn}〉, 〈{E,Ma,P}, {Ss,My}〉, and so on.

It is straightforward to verify that formal concept formation is not
additive. Indeed, est({J}) ∪ est({P}) = {J, S} ∪ {P} = {J, S, P} �
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{P, J, S, U,N} = est({J, S} ∪ {P}). By dual-symmetry, the same hap-
pens of intents. For instance IT S({Ss,Dn} ∪ {Df,My}) = M � {Ss,
Dn,Df,My} = IT S({Ss,Dn}) ∪ IT S({Df,My}).

Also it is immediate to verify an instance of the fact that [[i]] is an
intisomorphism: [[i]]({Me, V,E,Ma})∩ [[i]]({E,Ma,P }) = {Ss,Dn}∩
{Ss,My} = {Ss} = [[i]]({Me, V,E,Ma,P} = [[i]]({Me, V,E,Ma} ∪
{E,Ma,P}).

Similar examples verify the same property of [[e]] (easy exercise left
to the reader).

4.9.2 Formal Concepts and Approximation Operators

Notice that since C is a nominalised system, in view of Corollary
3.4.1 and Proposition 3.1.2, RC is an equivalence relation, so that
E = 〈G,G,RC〉 is an Indiscernibility Space and 〈G, (lRC), (uRC)〉
is a Pawlak Approximation System (we recall that (lRC) and (uRC)
coincide with intE and, respectively, clE).

We can easily verify that formal concepts in general differ from
either (generalised) lower or upper approximations or both. Here are
some examples:

Set est int cl (lRC) (uRC)

{E, Ma, J, S} {E, Ma, J, S, U, N, P} {J, S} {E, Ma, J, S, P} {E, Ma, J, S} {E, Ma, J, S}
{V, P} {Me, V, E, Ma, P} ∅ {Me, V, E, Ma, P} {P} {Me, V, P}

Intuitively, est(X) collects all the elements of G which are glued
together by means of the properties which are shared by all the ele-
ments of X. In fact the operator [[i]](X) in est(X) looks for those
properties whose extensions include X. To put it another way, est(X)
has a somewhat “structural” flavor, since their elements are gathered
together by means of what we can term the “intensional backbone”
of X. On the contrary (lRC)(X) (and (uRC)(X), respectively) adds
together all the equivalence classes modulo E in order to get the maxi-
mal (minimal, respectively) set which is included in X (which includes
X, respectively). For that reason, additivity of equivalence classes is
a nice property (meaning that if we add two equivalence classes mod-
ulo E we obtain an equivalence class modulo an equivalence relation
coarser than E).

In a sense, the two generalised approximation operators, int and
cl represent an intermediate approach, in that the operator [i](X) in
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int(X) looks for those properties whose extensions are included in X,
hence something similar to a sort of “intensional core” of X. Similarly,
[e] in cl(X) looks for those objects whose intension is included in the
union of all the properties fulfilled by the elements of X, hence for
“subconcepts” of 〈i〉(X).

However, see below an interesting question:

Exercise 4.2. One can verify that for each g ∈ G, cl({g}) = est({g}) =
(uRC)({g}). Why?

From the above exercise it follows that in the planet context, extents
induced by singletons coincide with equivalence classes modulo the
equivalence relation induced by the context (that is, for any g ∈ G,

est({g}) = [g]RC
).

The above considerations apply to nominalised contexts. Now we
show a more general relationship between extents and upper approxi-
mations:

Lemma 4.9.1. Let P = 〈G,M,�〉 be a P-system and let E be an equiv-
alence relation on G. Then for all X ⊆ G, est(X) ⊆

⋃

x∈est(X)

[x]E =
(uE)(est(X)).

Proof. Trivially, because E is reflexive. qed

Proposition 4.9.1. Let P = 〈G,M,�〉 be a P-system and let E� be
the equivalence relation defined by 〈g, g′〉 ∈ E� if and only if 〈i〉(g) =
〈i〉(g′), for g, g′ ∈ G. Then for all X ⊆ G, est(X) =

⋃

x∈est(X)

[x]E� =
(uE�)(est(X)).

Proof. From the above Lemma est(X) ⊆
⋃

x∈est(X)

[x]E� . Vice-versa, if

g ∈
⋃

x∈est(X)

[x]E� then there is g′ ∈ est(X) such that 〈i〉(g) = 〈i〉(g′). It

immediately follows that g ∈ est(X). qed

Thus any extent of a formal concept is a definable set modulo E�.
However, since (uE�) is additive on ℘(G) while est is not, the family
of extents {est(X) : X ⊆ G} is a subset of the family of definable sets
{(uE�)(X) : X ⊆ G}.

Corollary 4.9.1. For any P-system P and Pawlak Approximation Sys-
tem E on the same set of objects, G, for any X ⊆ G, estP(X) ⊆
clE(estP(X)). If for any X, clE(X) = E�(X), then estP = clEestP.
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4.9.3 Combining Classical Approximation Systems
and Concept Lattices

Stated above are some basic relationships between Pawlak’s Approxi-
mation Systems and Formal Concepts. Moreover, researches have been
developed to understand general relationships between Rough Set The-
ory and FCA and to combine the two approaches (see [Pagliani 1993a,
1996, 1998c], [Kent 1993, 1996], [Yao & Chen 2004]).

Particularly E. R. Kent’s approach is a fundamental background for
any attempt to merge the two data analysis techniques. We shall give a
taste of this approach. Using our notation and concepts, we can recast
Kent’s approach in a Multi-agent pre-topological Perception System
〈G,M, intE, clE, 〈e〉C, 〈i〉C, [[e]]C, [[i]]C〉, where the operators decorated
with “E” are induced by an Indiscernibility Space 〈G,G,E〉 (i.e. E =
〈G, intE, clE〉 is a Pawlak Approximation System) and the operators
decorated with “C” are induced by a P-system (formal context) C =
〈G,M,�〉. Then Kent defines the upper approximation of the context
C with respect to E, clE(C), as follows:

Definition 4.9.1. clE(C) = 〈G,M,�clE〉, where �clE is defined point-
wise by setting for each m ∈M , 〈e〉clE(C)(m) =def cl

E〈e〉C(m).

In other words, for all g ∈ G and m ∈M , g �clE m if and only if there
is g′ ∈ G such that g′ ∈ clE(g) and g′ � m.

Then formal concepts are formed according to the transformed for-
mal context, that is, a formal concept in clE(C) is a pair of the form
〈estclE(C)(X), [[i]]cl

E(C)(X)〉 for some X ⊆ G (or, equivalently, of the
form 〈[[e]]clE(C)(Y ),IT SclE(C)(Y )〉 for some Y ⊆M).

Now two considerations are in order.
First of all, one must take a great care while applying Kent’s

approach, because in the case of dichotomic context it may lead to
contradictions, easily. For instance, if we are to transform the planet-
context by means of a Pawlak Approximation System N induced by
an equivalence relation N , classifying the planets inside the asteroid
belt ({Me, V,E}), or outside of it ({Ma, J, S, U,N,P}), then we have
clN(〈e〉C({My})) = clN({E,Ma, J, S, U,N,P}) = G and, simultane-
ously, clN(〈e〉C({Mn})) = clN({Me,V }) = {Me, V,E}, so that in the
upper approximation of the planet-context Mercury, Earth and Venus
would fulfill both Moon-yes and Moon-no.
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Second, we wonder whether when we apply clE to estC we obtain
the same result as when we apply estcl

E(C), that is, if for any X ⊆ G,
clE(estC(X)) = estcl

E(C)(X).
The answer is negative:

Lemma 4.9.2. Let C = 〈G,M,�〉 be a formal context and E a PAS
on G. Then for all m ∈M , 〈e〉clE(C)(m) ⊇ 〈e〉C(m).

Proof. Indeed, 〈e〉clE(C)(m) = clE(〈e〉C(m)) and since clE is increasing
we have the result. qed

Corollary 4.9.2. Let C = 〈G,M,�〉 be a formal context and E a PAS
on G. Then [[i]]cl

E(C)(X) ⊇ [[i]]C(X), any X ⊆ G.

Proof. From the above Lemma,
⋂

x∈X
〈i〉clE(C)(x) ⊇

⋂

x∈X
〈i〉C(x) and we

obtain the result from definition. qed

Proposition 4.9.2. Let C = 〈G,M,�〉 be a formal context and E a
PAS on G. Then for all X ⊆ G, estcl

E(C)(X) ⊆ clE(estC(X)).

Proof. Clearly for all g ∈ G, g ∈ clE(estC(X)) if and only if for all
m ∈ [[i]]C(X), g ∈ clE〈e〉C(m). Thus suppose g /∈ clE(estC(X)). Then
there is m ∈ [[i]]C such that g /∈ clE〈e〉C(m). That is g /∈ 〈e〉clE(C)(m).
Now, from the above Corollary we have m ∈ [[i]]cl

E(C), too. But,
obviously, g ∈ estcl

E(C)(X) if and only if for all m ∈ [[i]]cl
E(C)(X),

g ∈ 〈e〉clE(C)(m). Thus g /∈ estcl
E(C)(X). Hence by contraposition we

obtain the thesis. qed

Trivial counterexamples show that the reverse inclusion is false (see
below).

Third, we can ask about estCclE. Actually, this operator has an
unpredictable behaviour with respect to both clN(C) and clEestC.

Example

Let P be the planet context of the above examples, let N be the above
Pawlak Approximation System, and let X be a Pawlak Approximation
System induced by an equivalence relation gathering together {Me,P}
(the two extremes of the Solar system) and {V,E,Ma, J, S, U,N} (the
intermediate planets). Then:

(i) clN(estP({E})) = clN({E,Ma}) = G.
(ii) estcl

N(P)({E}) = {Me, V,E}.3

3Because in the system clN(P), 〈i〉({E}) = 〈i〉({Me}) = 〈i〉(V ) = {Ss, Dn, My,
Mn}.
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(iii) estP(clN({E})) = estP({Me, V,E}) = {Me, V,E,Ma}.
(iv) clN(estP({J})) = clN({J, S}) = {Ma, J, S, U,N,P}.
(v) estP(clN({J})) = estP({Ma, J, S, U,N,P}) = {E,Ma, J, S, U,

N,P}.
(vi) estP(clX({Me})) = {Me, V,E,Ma,P}.4

(vii) estcl
X(P)({Me}) = G.5

According to (i) and (ii) the reverse inclusion of Proposition 4.9.2
does not hold. From (i), (ii) and (iii), we have estcl

N(P)
� estPclN �

clNestP. According to (iv) and (v), clNestP � estPclN. Finally, from
(vi) and (vii) estPclX � estcl

X(P).

Dually, we can define the lower approximation intE(C) = 〈G,M,�intE〉
of a formal context C with respect to a PAS E as follows:

Definition 4.9.2. intE(C) = 〈G,M,�intE〉, where �intE is defined
point-wise by setting for each m ∈M , 〈e〉intE(C)(m) = intE〈e〉C(m).

From the decreasing properties of int we immediately have that for all
X ⊆ G, [[i]]intE(C)(X) ⊆ [[i]]C(X), so that with a similar reasoning as
for the previous Proposition we obtain:

Proposition 4.9.3. Let C = 〈G,M,�〉 be a formal context and E a
PAS on G. Then for all X ⊆ G, estintE(C)(X) ⊇ intE(estC(X)).

To sum up, for all X ⊆ G:

intE(estC(X)) ⊆ estintE(C)(X) ⊆ estcl
E(C)(X) ⊆ clE(estC(X))

The two transforms clE(C) and intE(C) are described by Kent in an
elegant manner which can be better explained within Relation Algebra
(that is what will be done in Frame 15.18.5 of Part III).

Notice that instead of clE we can apply 〈i〉E to estC and obtain the
same result because E is reflexive (so that x ∈ 〈i〉E(x), all x ∈ G).
Moreover, since E is symmetric we can use 〈e〉E, as well. But if E
were not symmetric and reflexive, then we should obtain truly differ-
ent operators 〈i〉EestC, 〈e〉EestC. In addition, we can generalise Kent’s
approach by applying after estC any applicable operator from any other
Information System or I-Quantum Relation System S on G. Clearly,
the relationships between these operators and estcl

S(C) must be studied
4Because the only property shared by Me and P is Ss.
5Because for all g ∈ {V, E, Ma, J, S, U, N}, 〈i〉clX(P)({x}) = M .
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case by case, as well as their application meanings. Further, one should
analyse what happens in case of particular relationships between C and
E (for instance, when E is the equivalence relation induced by C or
when E = RC). Finally, one should analyse what happens when C is
a nominal or dichotomic system.

4.9.4 Combining Non-Classical Approximation Systems
and Concept Lattices

Variations of concept lattices have been introduced by means of
the above operators, namely “object oriented concepts” of the form
〈int(X), [i](X)〉 (see Yao & Chen [2004]) and “property oriented con-
cepts” of the form 〈(cl(X), 〈i〉(X)〉 (see Düntsch & Gegida [2002]) (we
use our own terminology and notation).

These constructions are intuitively explained in the following way:
if we are given an object oriented concept 〈X,Y 〉, then if an object
possesses a property in Y then it belongs to X. Symmetrically, if 〈X,Y 〉
is a property oriented formal concept, and a property is possessed by
an object in X then it must be in Y .

Thus these facts are exploited, for instance, in order to predict the
membership of an object by looking at its properties. Indeed, we have
⋃

y∈[i](X)

〈e〉(y) ⊆ X.

However, the reverse implication holds in a weaker form: int(X) ⊆
⋃

y∈[i](X)

〈e〉(y). Since
⋃

y∈[i](X)

〈e〉(y) ⊆ int(X) we obtain the equation
⋃

y∈[i](X)

〈e〉(y) = int(X), so that in the case of an object oriented for-

mal concept, 〈X,Y 〉 we obtain the features which characterizes formal
concepts, namely that (generalised) intents and (generalised) extents
uniquely determine each other:

⋃

y∈Y

〈e〉(y) = X.

Dually, one can prove: (a) X ⊆
⋂

y∈[[i]](X)

〈e〉(y), (b)
⋂

y∈[[i]](X)

〈e〉(y) ⊆

est(X), (c) est(X) =
⋂

y∈[[i]](X)

〈e〉(y) so that for any (usual) formal

concept 〈X,Y 〉, X =
⋂

y∈Y
〈e〉(y).

4.9.5 Nominal Systems and Conceptual Scaling

The transformation of A-systems into P-systems has been studied in
Wille [1982], Vakarelov [1997] and Pagliani [2005].
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In Formal Concept Analysis nominalisation is an instance of a
more comprehensive techniques called Conceptual scaling (see Ganter &
Wille [1989]). Indeed, there is no unique way to transform an Attribute
System S = 〈G, {Va}a∈At, At〉 (or a “Multivalued context” in FCA
terminology) into a P-system, because any transformation is, in fact,
a matter of interpretation. Roughly speaking, conceptual scaling is a
method to give a meaning to each set of attribute-values Va (for a ∈ At)
by turning it from a flat set to a hierarchical domain. In other terms,
conceptual scaling gives a conceptual interpretation of the attributes
and their values. For instance, if an attribute a takes numerical values
Va = {0, 1, 2, ...n} giving a “smaller-higher” order to Va may be impor-
tant to a conceptual interpretation of data. It follows that we have
to link S with the P-system A≥ = 〈Va, Va,≥〉 (or A≤ = 〈Va, Va,≤〉),
called a conceptual scale. Once we have defined conceptual scales for
each attribute we combine them together in a common scale Sc (see
the quoted paper for a list of combining techniques).

In a wider setting a scale is a P-system Sc = 〈GSc,MSc,�Sc〉 and
the connection between S and Sc is given by a mapping σ : G �−→ GSc

such that if X is an extent in Sc (that is, X = estSc(X)) then the
pre-image σ−1(X) is an extent in S (that is, estS(σ−1(X)) = σ−1(X)).

Nominalisation is obtained when one applies the scale Sc =
〈
⋃
{Va}a∈At,

⋃
{Va}a∈At,=〉 (called, indeed, nominal scale), “which, at

least, would conceptually separate different values” (Wille [1992]).
In Vakarelov [1997] the transformation from (and to) P-systems to

(and from) A-systems is framed within a wider study about depen-
dency and consequence relations. Vakarelov’s approach is slightly dif-
ferent from Wille’s, because he defines a P-system as a triple S =
〈G,M, obs〉 (we are using our own terminology and notation). Moreover,
Vakarelov takes into account the more general case of non-deterministic
information systems (see Frame 4.7.1).

Given an Information System, for each a ∈ At one can define a P-
system Aa = 〈G,Va, obsa〉, where obsa(g) = a(g). In the A-system A of
Example 1.2.1, obsA(a) = {1}, obsA′(a) = {b}, obsA′′(a) = {α}, which
amounts to saying that 〈a,A1〉, 〈a,A′

b〉 and 〈a,A′′
α〉 belong to �NA (see

Example 3.4.1).
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4.10 Frame – Neighborhood Systems

We introduce a topic which will be largely discussed in Part III.
Topological concepts have been widely applied in data analysis since

its very beginning. However within a framework close to our approach we
must quote the pioneering work by T. Y Lin: [Lin 1988, 1989 and 1998]
(see also Yao & Lin [1997], Yao [1999] and Yao & Chen [2004]). According
to Lin’s approach, Rough Set Theory is generalised by using arbitrary
binary relations instead of equivalence relations.

It is worthwhile to briefly discuss some intuitions which led to this
generalisation. Consider an A-system A = 〈G,At, {Va}a∈At〉. We can
group the values of each single set Va by means of binary relations, thus
obtaining a family of binary relations on the sets of values, denoted by
{Rj

a}a∈At,j∈J , for some index family J . For instance, in the A-system
A of Example 1.2.1 one may classify the values b and c of attribute A′

as “close”, while b and f may be classified as “very close” (suppose b, c
and f are locations). Thus we have two binary relations: CloseA′ and
V ery− closeA′ . This may be helpful, for instance, in order to answer a
query asking for an item with value 1 for attribute A and value f for
attribute A′. Indeed there are no items with such an evaluation, but
we can approximate a correct answer by returning the answer “a′′”,
because it has value 1 for A and its actual value b for A′ is “very-close”
to the required value f .

The reader will find further details in the Frame section of Part III.
As a matter of fact, the family {Rj

a}a∈At,j∈J is a sort of conceptual
scaling (see Frame 4.9.5).

Generally speaking, in this way we associate each object g ∈ G with
a family of neighborhoods, each one defined as 〈Rj�

a 〉(g).
One can frame this approach in an abstract setting.
Let U,U ′ be sets. Let us consider the elements of U as connected

(classified, characterised, labeled, perceived, ...) by means of the char-
acteristic features of the elements of another set U ′, By means of a map
n, any element u of U will be associated with one or more elements of
℘(U ′), obtaining a family of subsets of U ′, such that each N ∈ n(u)
represents a particular relationship between the elements of U ′. There-
fore, the fact that the image of u along n is a set of sets and not just a
set, reflects the fact that any element of n(u) represents, in principle,
a different classification of the elements of U via the elements of U ′.



4.11 Frame – Basic Pairs and Point-Free Topology 143

Moreover, Yao and Lin have generalised this approach to fuzzy
relations (see Frame 4.7.2).

In Pagliani [2003] this approach, as to usual relations, has been
further generalised and the pre-topological and topological properties
of the resulting systems have been systematically studied in Pagliani
[2002], following the approach of Point-free Topology (see below
Frame 4.11).

The first section of Part III is devoted to neighborhood systems.

4.11 Frame – Basic Pairs and Point-Free

Topology

P-systems appear in different mathematical contexts and under differ-
ent names, such as Basic pairs, Formal contexts (see Frame 4.9) and
Chu spaces (see Frame 4.12).

The material in the present Chapter is based on the “Basic pairs”
approach and on original researches. So, it is worthwhile to give a preview
of the “Padua” approach on point-free topology through basic pairs.

Concrete pre-topological spaces are fundamentally describable by
means of a map n linking elements from a set A with a family of sub-
sets of A, called “neighborhoods of a”. Given a ∈ A and X ⊆ A, we
record the fact that X ∈ n(a) by a � X. Usually we shall denote the set
n(a) with Na, so that Na = {X : a � X}. Mathematically, � is a subset
of the Cartesian product A × ℘(A). The family N (A) = {Na}a∈A is
called a (concrete) neighborhood system and the pair 〈A, {Na}a∈A〉 will
be called a concrete neighborhood space. As we have seen, a neighbor-
hood of a collects the elements that are close to a relative to a specific
criterion (the neighbors of a).

Lifting the level of abstraction we can get rid of the elements of the
neighborhoods and refer to each of them as to elementary entities. In
other words, we can consider any element of ℘(A) as an element of a set
B. Therefore, we can consider two sets, A and B and think of the ele-
ments of A as pure “indices” of sets of observables, as illustrated above.

On this basis, a new approach to pre-topological and topological for-
mal spaces has been introduced in Sambin & Gebellato [1998] (see also
Sambin [2001]), which subsumes the original theory introduced in [Sam-
bin 1987 and 1989] after suggestions from P. Martin-Lóf’s Intuitionistic
Type Theory. This is the approach known as “point-free topology”.
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Given a basic pair 〈A,B,�〉, the operator A makes it possible to
synthesise the formal properties of formal pre-topologies in logical (or,
better, type theoretical) terms.

This goal is achieved by defining a relation, denoted by the symbol
�, which connects (subsets of) formal neighborhoods with subsets of
formal neighborhoods to be interpreted as a formal pre-covering rela-
tion, because it is the formal counterpart of the “concrete” concept of
an “adherence”:

Definition 4.11.1. Let 〈A,B,�〉 be a basic pair. Then for any b ∈ B

and Y, Y ′ ⊆ B, the following relation is called a formal pre-cover, or
shortly a semi-cover:

(basis): b � Y iff b ∈ A(Y ), (step): Y � Y ′ iff ∀y ∈ Y, y � Y ′.

The relationships between different kinds of formal and concrete neigh-
borhood systems have been analysed in Pagliani [2002], where the
adjointness properties of basic operators were presented.

The formal (pre)topology approach will be widely investigated in
Part III. Here, for the convenience of the interested reader, we shall
give a table of translation between the terminology and symbols used
in this book and the usual notation of formal topology.

Present notation 〈e〉 [i] 〈i〉 [e]
Formal topology ext � ♦ rest

4.12 Frame – Chu Spaces

A Chu space is, in itself, a P-system. The difference lies in the fact that
actually we have to speak of Chu spaces in the plural mode, linked
together by morphisms (cf. Barr [1979], Pratt [1999]). More precisely,
given two Chu spaces C = 〈G,M,�〉 and C′ = 〈G′,M ′ �′〉 a morphism
from C to C′ is a pair of functions 〈fM , fG〉 with fM : M �−→M ′ and
fG : G′ �−→ G such that for any m ∈ M,g′ ∈ G′, fG(g′) � m if and
only if g′ �′ fM(m). That is, the following diagram commutes in Chu
spaces:
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M
fM � M ′

G

�

�
fG

G′

�′

For example, consider a P-system P = 〈G,M,�〉 and add to G a new
object along with the observed properties, which remain unchanged,
thus obtaining P′ = 〈G′,M,�′〉. Then the pair of functions 〈IM , IG〉,
where IM is the identity function on M and IG is the injection of
objects, is a Chu morphism.

Another example is the following:

Let P = 〈A,M,�〉 and Q = 〈A,M,�′〉, where

� a b

g1 1 1
g2 1 0

�′ a b

g1 1 1
g2 1 1

fM(m) = m, fG(x) = g1,
any m ∈M,x ∈ G

One can easily check that the pair 〈fM , fG〉 gives a Chu-mapping
between P and Q.

This simple example is used in Zhang [2004] to show that Chu-
mappings do not necessarily preserve formal concepts. Indeed, in our
notation, 〈{g1, g2}, {a}〉 is a formal concept in P while 〈{g1, g2},
fM({a})〉 = 〈{g1, g2}, {a}〉 is not a formal concept of Q. In fact, Q
induces the only formal concept 〈{g1, g2}, {a, b}〉. We note, inciden-
tally, that, on the contrary, fG preserves the latter formal concept:
〈fG({g1, g2}), {a, b}〉 = 〈{g1}, {a, b}〉 which is a formal concept in P.

4.13 Frame – Intuitionism, Modalities
and Relational Semantics

In early 1960s, Saul Kripke introduced models for some modal logics
and for Intuitionistic logic ([Kripke 1963a, b]). In a sense, Kripke’s
proposal collected, rationalized and simplified previous modelling tech-
niques but it created a sensation within the logic community and indeed
turned into a standard because of its intuitive flavour and straight
relationships with other mathematical fields such as Relation algebra,
Topology and Sheaf Theory.
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A Kripke frame is a pair 〈W,R〉, where W is a non-empty set, and
R is a binary relation on W . Elements of W are usually called possible
worlds, and R is known as the accessibility relation.

A propositional Kripke model is a triple 〈W,R,�〉, where 〈W,R〉 is a
Kripke frame, and � is a relation between possible worlds and formulas
from a propositional language L, called forcing.

The forcing discipline between possible worlds and atomic formulas
of L, is called a set-up.

Relations R and � fulfill particular properties depending on the
logical system we are to model. For instance, if Intuitionistic Logic is
to be modeled, R must be a preorder and the following set-up discipline
is applied, for any w,w′ ∈W and atomic p:

if w � p and 〈w,w′〉 ∈ R, then w′ � p (monotonicity)

so that any atomic formula (and, by induction, any formula – see below)
is mapped on an order filter (i.e. an R-neighborhood) of the frame.

On the contrary, if we are dealing with a Modal Logic, R does have
to fulfill specific properties depending on the logic to be modeled (cf.
Part III). The forcing relation between worlds and atomic formulas is
arbitrary and does not depend on the relation R, which plays a role
just in the forcing clauses for modal formulae (see below), so that any
atomic formula is mapped onto some generic subset of W .

4.13.1 Necessity and Possibility

As to well formed formulas, again the forcing discipline changes along
with the logical system. We give, as examples, the forcing discipline for
Intuitionistic Logic and standard (Diodorean) modal logics:

Forcing Intuitionistic logic Modal logic
w � ¬α ∀w′((〈w,w′〉 ∈

R)� (w′ �� α))
w �� α

w � α ∨ β w � α or w � β w � α or w � β
w � α ∧ β w � α & w � β w � α & w � β
w � α =⇒ β ∀w′((〈w,w′〉 ∈

R & w � α)�
(w′ � β))

w � ¬α or w � β

w � �α ∀w′((〈w,w′〉 ∈ R)� (w′ � α))
w � ♦α ∃w′(〈w,w′〉 ∈ R & w′ � α)
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We shall set, for any formula α, �α� = {w ∈ W : w � α}. From
the above definition, it is clear that �α� =⇒ �β� holds if and only if
�α� ⊆ �β�.

The properties of the modal operators defined by means of a relation
depend on the properties of the relation itself. This is not surprising.
For instance we have seen in Corollary 3.3.4 that [RS] and [R�

S ] are inte-
rior operators. Hence, for instance, [RS](X) ⊆ X and [RS][RS](X) =
[RS](X). These properties depend on Proposition 3.3.1 which in turn
depends on reflexivity and, respectively, transitivity of the relation RS

(cf. Proposition 3.1.3).
Indeed, in general we have the following correspondences, given a

Kripke frame 〈W,R〉:

1. [R](�α�) =⇒ �α�, for all formula α, is fulfilled in the class of
reflexive frames.

2. [R][R](�α�) ⇐⇒ [R](�α�), for all formula α, is fulfilled in the class
of transitive frames.

We shall see in Frame 4.13.4 that, however, some important prop-
erties of relations cannot be expressed in pure necessity and possibility
terms.

4.13.2 Basic Operators as Modal Operators

In view of the above forcing rules, if we interpret the condition w � α in
a Kripke model with the condition w ∈ �α�, where w belongs to a set W
representing the validity domain of a formula α, then it is not difficult
to understand why we used the symbols [i], [e], 〈i〉, 〈e〉, [R], 〈R〉, [R� ]
and 〈R�〉 to denote our operators. Indeed we leave as an easy veri-
fication that, for instance, [R](X) meets the forcing clause for �(X)
if we consider P-system as generalised Kripke frames, generalised in
the sense that the accessibility relation, � in this case, is between the
elements of two possibly distinct sets.

On the contrary we can consider a Quantum Relational System as
a normal Kripke frame, for Intuitionistic Logic or an S4 modal logic,
because any i-quantum relation is a preorder. Eventually, if RS is an
equivalence relation, then Q(S) is a Kripke frame for S5-modal logic.
The reader will find every details in Part III.
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4.13.3 Ramified Tense Logic

Another kind of modal interpretation can be of some help to recall
some concepts introduced in this Chapter. In fact we can consider an
IQRS as a Kripke model O = 〈W,R,�〉 for a ramified tense logic like
Kt (see Prior [1957]).

For tense formulas α we have the following clauses:

1. w |= G(α) iff ∀w′((〈w,w′〉 ∈ R) � (w′ |= α)) (“always in the
future”).

2. w |= P (α) iff ∃w′(〈w,w′〉 ∈ R & w′ |= α) (“sometimes in the
past”).

3. w |= H(α) iff ∀w′((〈w′, w〉 ∈ R) � (w′ |= α)) (“always in the
past”).

4. w |= F (α) iff ∃w′(〈w′, w〉 ∈ R & w′ |= α) (“sometimes in the
future”).

From the discussion of Section 3.3 of this Chapter, we can conclude
that the following correspondence holds, with respect to any IQRSs:

Basic operator [R] 〈R�〉 [R�] 〈R〉
Modeled tense operator G P H F

4.13.4 Necessity and Sufficiency Operators

In Humberstone [1983] I. Lloyd Humberstone considered relational log-
ics in which modal operators are defined in terms of a notion of “inac-
cessibility”. More precisely, given a Kripke model K = 〈W,R,�〉 we
can consider a model on the complementary frame −K = 〈W,−R〉.
Obviously, if 〈w,w′〉 ∈ R means “world w′ is accessible from world w”
then 〈w,w′〉 ∈ −R means “world w′ is inaccessible from world w”.

On −K one can define the same sufficiency operator [[R]] which
was introduced in this Chapter. Indeed, we know that the equality
[[R]](X) = [−R](−X) holds (see Exercise 2.5), so that the notion
of “inaccessibility” lays at the core of the notion of a “sufficiency
operator”.

Indeed, Humberstone’s original operator is defined as (X) =
[−R](X), so that [[R]] is an immaterial departure from the original
definition.
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Technically the operation [[R]], together with its dual 〈〈R〉〉 and the
usual modalities, is able to express properties of relational frames which
are not expressible in the customary modal language. For instance:

1. The class of irreflexive frames, expressed by: [[R]](α) =⇒ �α�, all
formula α,

2. The class of asymmetric frames, expressed by: �α� =⇒ 〈〈R〉〉(�α�),
all formula α,

3. The class of intransitive frames, expressed by: [[R]](�α�) =⇒
[[R]][[R]](�α�), all formula α,

and other properties.
But, as Humberstone points out:

“Apart from any purely technical interest such examples may have, some

of them are of obvious relevance when the unenriched language is thought

of in tense-logical terms (thinking of � as Prior’s G, – see Frame 4.13.3

(authors’ note)).

Further applications are suggested by the fact that we may sometimes

wish to consider an operator O with the reading: O(α) is true iff α is true

only at accessible (sc. R-related) worlds, since O(α) may be defined as

(∼α) (i.e. [[R]](α) – authors’ note). For example, in deontic logic, where

� and ♦ are thought of as expressing obligatoriness and permissibility,

respectively, one may wish to consider the unorthodox notion of strong

permissibility, P , defined thus: P (α) =df [[R]](α), since all frames will

then validate the equivalence (P (α) ∧ P (β)) ←→ P ((α) ∨ (β)) much

loved by the proponents of ‘free-choice’ permission.” (we used our own
symbols).

Notice that the latter equivalence stated in the quotation is exactly
the anti-additivity of [[R]] and [[R�]].

4.13.5 Modal Operators and Information Systems

The fact that derivative operators in Concept Lattices are sufficiency
operators was probably first noted in Pagliani [1996] were the for-
mula [[E]][E](R) (there written [E](R)[E]) was exploited in order to
approximate a relation R by means of an equivalence relation E, in the
framework of Relation Algebra (see also Pagliani [1998b] for further
generalisations and applications).
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Within the same framework Ewa Or�lowska noted that the so-called
“weakest pre-specification” in program semantics is indeed an applica-
tion of a sufficiency operator (see also Frame 4.14.1).

More details about the above results are in Frame 15.18.2 of Part III.
Here it must be noted that sufficiency operators have been systemat-

ically studied in the field of Information Systems and Spatial Reasoning
by E. Or�lowska and I. Düntsch (cf. [Düentsch Orlowska 1999 and 2001]).

An interesting application is given by Qualitative Geometry (cf. the
latter paper). Indeed, in spatial reasoning one have to deal with contact
relations.

A relation C on a set U is a contact relation if the following prop-
erties are satisfied:
(R) C is reflexive; (S) C is symmetric; (E) C(x) = C(y) implies x = y.

In order to express contact relations one needs both necessity and
sufficiency operators. In fact reflexivity can be expressed by necessity
(cf. Frame 4.13.1). But in view of Frame 4.13.4 symmetry is likely to
need sufficiency in order to be expressed. Further the extensionality
principle (E) happens to need both of them.

Indeed one has to use modal structures of type 〈℘(U), 〈R〉, [[R]]〉
from a Kripke frame 〈U,R〉. Such structures (or better their abstract
counterparts – see the quoted papers) are called Mixed modal-suffici-
ency algebras or MIAs.

Let us define e : ℘(U)×℘(U) �−→ ℘(U); e(X,Y ) = [R](X)∩ [[R]](Y )
and set for all X ⊆ U , m(X) = e(X,−X). Then R is a contact relation
if and only if the following properties hold:

(R’) [R](X) ⊆ X; (S’) X ⊆ [[R]][[R]](X);
(E’) m(−(e(X,X) ∩−Y )) ∪m(−(e(X,X) ∩ Y )) = U .

Another interesting application of the sufficiency operator is given in
Gegida & Düntsch [2002]. Suppose we are given a set Q of problems and
a set S of skills. Let R ⊆ Q × S a binary relation. There are variants
with respect to the interpretation of relation R: a) 〈q, s〉 ∈ R if with
skill s it is possible to solve q; b) 〈q, s〉 ∈ R if skill s is necessary to
solve q and R(q) is the minimal set of skills which are sufficient to
solve q. We can then define the usual operators [R] : ℘(S) �−→ ℘(Q),
〈R�〉 : ℘(Q) �−→ ℘(S), [[R]] and [[R�]] (we are using our notation).
Therefore, for any P ⊆ Q, if q ∈ [R]〈R�〉(P ) then with the skills which
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are needed to solve all the problems in P it is possible to solve q:

q ∈ [R]〈R�〉(P ) iff
⋂

{R(p) : p ∈ P} ⊆ R(q).

Sufficiency operators give a symmetric and dual reading: if q ∈
[[R]][[R�]](P ) then the minimal set of skills sufficient to solve q is
included in the minimal set of skills which is sufficient to solve all the
problems in P :

q ∈ [[R]][[R�]](P ) iff R(q) ⊆
⋃

{R(p) : p ∈ P}.

Finally, it is worth mentioning that the operator [[R]] has ben used in
Cattaneo et al. [1993] to model an intuitionistic-like orthocomplemen-
tation in Quantum Logic (for this logic see also Frame 4.6.1).

4.14 Frame – Galois Adjunctions

The notion of a “Galois Adjunction” is derived from Évariste Galois’
investigations of necessary and sufficient conditions for a polynomial
equation to be solvable by radicals. In this analysis Galois developed the
notion of a correspondence between groups and fields (Galois’ results
were however published fourteen years after his early death in the
Journal de mathématiques pures et appliquées, 1846).

Roughly speaking, given a field K and an extension K ′ of K, let
F be the set of subfields of K ′ that contain K. Consider the ordered
set 〈F,⊆〉. Let e ∈ F and let us denote by G(K ′/e) the group of field
automorphisms f of K ′ such that f(e) = e. Now, let S be the set of
subgroups of G(K ′/e). Consider 〈S,⊆〉. Given a subgroup g ∈ S, let us
define Fix(g) to be the field of all elements of K ′ that are fixedpoints
of all elements of g. Then the maps e �−→ G(K ′/e) and g �−→ Fix(g)
form an axiality.

This technique was generalised by Oystein Ore in his classic work,
where the notion of a Galois connection was in fact introduced. More-
over, in Galois connections Saunders Mac Lane recognised the structure
of an adjoint pair of functors (see Frame 4.14.4). Later on, the topic was
rearranged by Melvin Janowitz and Thomas Blyth in Blyth & Janowitz
[1972] within the general framework of residuated lattice.

The centrality of the notion of a Galois adjunction is witnessed by
the number of examples in mathematics and logic, as we see below.
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4.14.1 Galois Adjunctions in Computer Science

The notion of a Galois adjunction has been largely exploited in Logic
and Computer Science. As an example we cite (Gierz et al. [1980]) and
the references quoted thereby. A seminal and interesting application
is given by Rohit Parikh in Parikh [1982]. Let W be a set of program
states and L a language. Suppose � is a satisfaction relation between the
elements of W and L. Given Γ ⊆ L we can define the “model” of Γ as
the set Mod(A) = {s ∈ W : ∀A ∈ Γ, s � A}. Dually, given X ⊆ W we
define the “theory” of X as the set Th(X) = {A ∈ L : ∀s ∈ X, s � A}.
It is clear that 〈Th,Mod〉 forms a Galois connection between ℘(W )
and ℘(L). Moreover, one can prove that the closure operator J(X) =
Mod(Th(X)) on W is topological if the following conditions are sat-
isfied: (falsehood): there is an element ⊥ ∈ L such that Mod(⊥) = ∅,
(disjunction): for every A,B ∈ L there is a C such that Mod(C) =
Mod(A) ∪Mod(B).

If the above applications aim at approximating states in programs
which fulfill some required property, Galois connections are also used,
in Computer Science, to approximate computations on a given domain
by means of computations on a simpler domain.

For instance consider L = 〈℘(Z). ⊆〉, where Z is the set of integers.
Any X ⊆ Z can be approximated by its minimum and maximum ele-
ments, so that we can define a function α(X) = [min(X),max(X)].
We set a new domain L′ = {⊥} ∪ {[l, u] : l ∈ Z ∪ {−∞}, u ∈ Z ∪
{+∞}, l ≤ u}. L′ is ordered as follows: a) ⊥ % [l, u], any [l, u] ∈ L′; b)
[l1, u1] % [l2, u2] iff l2 ≤ l1 ≤ u1 ≤ u2. For instance [3, 9] % [3, 11] and
α{2, 5, 3} = [2, 5]. We further set α(⊥) = ∅.

Now we have to define a function δ from L′ to L such that L′ �α,δ L.
But we know how to do it: δ([l, u]) = sup(α−1(↓ [l, u])) =

⋃
{X : l ≤

min(X) ≤ max(X) ≤ u} = {x : l ≤ x ≤ u}. For instance δ([2, 5]) =
⋃
{{2, 5}, {3, 4}, {2, 3, 5}, ...} = {2, 3, 4, 5}. We further set δ(⊥) = ∅.
Let us verify an example of the connection properties: α({2, 3, 5}) =

[2, 5] % [1, 5] and {2, 3, 5} ⊆ {1, 2, 3, 4, 5} = δ([1, 5]). As to the other way
around, {1, 3} ⊆ {1, 2, 3, 4} = δ([1, 4]) and α({1, 3}) = [1, 3] % [1, 4].

Now we can associate any X ⊆ Z with the assertion X(Π(x)) stating
that the value of a variable x during execution of program Π can vary
just on X. Thus if X ⊆ X ′ the assertion X(Π(x)) is more precise than
X ′(Π(x)), because in the former the variability of x is more restricted.
In this sense “⊆” is said to be a “concrete approximation relation”.
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Moving to the side of abstraction L′ we have that α({1, 2, 5}) = [1, 5] %
[1, 8] = α({1, 2, 5, 8}) (as the upper adjoint α is monotone). We have
also, for instance, [1, 5] % [−3, 5] and [1, 9] % [−3, 5] but [1, 9] �% [−3, 5]
because 9 �≤ 5 and [−3, 5] �% [1, 9] for 1 �≤ −3. In fact, [1, 5](Π(x)) is the
best abstract approximation of the concrete assertion {1, 2, 5}(Π(x)). In
other terms, α(X) is the abstraction of X in the sense that it is the most
precise approximation of X in L′. In turn, δ(y) is the concretisation of
y, that is, the most imprecise element of L which can be approximated
by y. Obviously, in moving from concrete to abstract approximations
we can lose interesting information.

A comparison between this approach and other techniques with the
same aim can be found in Cousot & Cousot [1992].

Another prominent application in Computer Science, namely the
calculus of weakest pre (post) specifications, is presented in Hoare & He
[1986], and briefly discussed in Part III, as mentioned in Frame 4.13.5.

Finally we must mention the inverse limit construction for recursive
domain. This technique is based on the concept of a projection pair,
〈ε, π〉, where ε and π are continuous functions such that D �ε,π E, D
and E are Domains (that is, roughly speaking, sets equipped with a
partial order % to be intended as “(information) approximation” – see
Frame 4.4.2), and ε is injective. Thus, as we know from Section 1.3 and
Proposition 1.4.10, π is onto and is a retraction of ε so that ε ◦ π = 1D

and π ◦ ε % 1E .
As is explained in Paulson [1987], “If D can be embedded in E, this

means that E has a richer structure, and can represent the structure D. If

elements of D are mapped into E and back again, no information is lost.

The mapping in the reverse direction, from E to D and back, may lose

information. [...] A projection pair is something like a pair of isomorphism

functions, but isomorphisms preserve information in both directions”.6

Since ε determines π we can indicate that there is a projection pair
between D and E by writing D�ε E. If we have a chain of embeddings
D0 �ε0 D1 �ε1 · · · �εn−1 Dn · · · the inverse limit construction makes
it possible to construct a domain D∞ that contains all the Dn and
such that it includes least upper bounds of increasing chains (a sort of
continuity property).

6Pay attention that in the quoted book ε◦π is reversed in the functional notation
π ◦ ε.
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Exercise 4.3. Let D = 〈{⊥, 0, 1,�},�〉 with the operation � given by
the ordering ⊥ ≤ x, any x in D, 0 ≤ �, 0 ≤ 0, 1 ≤ �, 1 ≤ 1, � ≤ �.
Let α : L �−→ D defined as:

α(X) =

⎧
⎪⎪⎨

⎪⎪⎩

⊥ if X = ∅
1 if ∀n ∈ X(n > 0)
0 if ∀n ∈ X(n < 0)
� otherwise

Compute the lower adjunction δ of α.

4.14.2 Galois Adjunctions and Dedekind Cuts

A fundamental application of the notion of a Galois adjunction is given
by Dedekind’s definition of real numbers by means of a series of encap-
sulated rational intervals (cf. R. Dedekind, “Stetigkeit und irrationale
Zahlen”, Vieweg, 1872). A typical example of a Dedekind cut is given
by the pair

〈{a ∈ Q : (a2 < 2) ∨ (a ≤ 0)}, {b ∈ Q : (b2 ≥ 2) ∧ (b > 0)}〉,

which represents the real number
√

2.
Dedekind’s approach can be straightforwardly generalised as follows.

Let 〈X,≤〉 be an ordered set then X = 〈X,X,≤〉 is a P-system. Let us
call an A ⊆ X such that A ∈ Γest(X) a “cut”. Thus p ∈ A if p is less
than or equal to all the elements which are greater than or equal to all
the elements of A.

It follows that cuts coincide with formal concepts when X is regarded
as a Formal Context (see Frame 4.9). The set of cuts on X is called the
Dedekind-MacNeille completion (or completion by cuts or normal com-
pletion) of X and denoted as DM(X) (see H. K. MacNeille, “Partially
ordered sets”. Trans. Amer. Math. Soc., 42, 1937, pp. 90–96). From
Proposition 2.3.2.(5) we immediately have that the Dedekind-MacNeille
completion of any ordered set X is a complete lattice. Moreover, the
map φ : X �−→ DM(X);φ(x) = 〈e〉(x) =↓ x is an order embedding.
That is, φ preserves all existing infs and sups of X.

Example

Consider the preordered set Q(P) = 〈G,RP〉 whereRP is the i-quantum
relation depicted in Example 3.1.2. Then DM(Q(P)) = Satest(Q(P))
is:
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G
��� ���

{a′, a′′, a′′′} {a, a′, a′′′}
��� �������
{a′, a′′′}

���
{a′′′} {a}

��� ���
∅

In Sambin & Gebellato [1998] one can find a connection between con-
struction of points in Formal Topology (cf. Frame 4.11) and Dedekind’s
construction of real numbers.

4.14.3 Galois Adjunctions at Large

Galois adjunctions appear in a number of fields and under different
forms. In general one can say that when two statements are connected
by an “if and only if” operator, then the two statements are likely to
form a Galois adjunctions. Let us see some example:

Logic Set Theory Number Theory

¬a ⇒ b ≡ ¬b⇒ a −X ⊆ Y ≡ −Y ⊆ X −n ≤ m ≡ −m ≤ n
a ∧ b⇒ c ≡ b⇒ (a ⇒ c) X ∩ Y ⊆ Z ≡ X ⊆ −Y ∪ Z n + m ≤ z ≡ n ≤ z −m

Indeed the implication operator ⇒ defines an order among propositions
(i.e. a ≤ b iff a ⇒ b is true). Thus the first logical statement reads
“¬(a) ≤ b iff a ≥ ¬(b)” so that it is an example of a Galois connection,
because the order is reversed by switching the application of function ¬.
The second logical statement reads “∧a(b) ≤ c iff b ≤⇒a (c), so that
we are in the presence of a Galois adjunction ∧ � ⇒ (note that we have
parameterized the logical constants ∧ and ⇒ by means of formulas).
Since the lower adjunction ∧ must preserve co-limits, i.e. sups, it follows
that for the second statement to hold ∧ must distribute over ∨. The
second logical statement is also called “Currying property” (we refer
the reader to Part II for a detailed discussion on these topics).

Strictly connected with the latter example is the following one. Let
X be a set and A ⊆ X. Let FA(B) = A ∩ B and GA(B) = −A ∪ B,
for any B ⊆ X. Then F � G on 〈℘(X),⊆〉. Indeed, this is an instance
(in a Boolean algebra of sets) of the adjunction between meet and
implication.
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To conclude, another very general example of Galois adjunction is
indeed a generalisation of Galois’ original application. Let X be any
mathematical object with an underlying set, such as a group, a ring or
a vector space or others. For any subsetA of X, let F (A) be the smallest
subobject of X which contains A (for instance the subgroup, subring
or subspace generated by A). On the other side, for any subobject B of
X, let G(B) be the underling set generating B. Then we have F � G
(G is also called a “forgetful” functor because it forgets the structure
of its arguments).

Exercise 4.4. in Corollary 1.4.1 we have proved that the adjunction
relationship 〈℘(A),⊆〉 �f→,f← 〈℘(B),⊆〉 holds. Find the upper adjoint
of f← (if any).

4.14.4 Galois Connections and Representation
Theorems

The duality between I-quantum-relational structures and P-systems
which has been proved in Proposition 3.3.4, discussed in Frame 4.6.3
and applied in Frames 4.5 and 4.6.2 is an example of more general tech-
niques aimed at establishing duality connections between some kinds
of lattices and some kinds of (topological) ordered structures (or at
representing one structure in terms of the other).

The origin of these results must be credited to Marshall Stone (see
Stone [1936]).

As reported in Johnstone [1982], “[...] Stone was neither an algebraist

nor a logician. It was his work in [linear operators in Hilbert space] which led

him to the consideration of algebras of commuting projections in Hilbert

space; it was known that these could be given the structure of Boolean

algebras, but they had no natural representation as algebras of subsets.”
Stone realized that a Boolean algebra is a ring in which a · a = a,

for all a. Thus, in analogy with rings he understood the importance
of (prime) ideals to set the carrier of the representation construction.
Moreover, he realized that the set of prime ideals could be made into a
topological space in which principal ideals correspond to clopen (that is,
both open and closed) sets. Since there is a 1-1 correspondence between
principal ideals and elements of the algebra (namely f(↑ x) = x) we
can recover an isomorphic copy of the original algebra.

Independently Garrett Birkhoff arrived at an equivalent duality
result between distributive lattices and partially ordered sets (Birkhoff
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[1933]). Indeed the results in the present Part and the discussion about
pointless topology in the Introduction refer to Birkhoff’s duality.

Of late Priestley was able to “topologize” Birkhoff’s construction
and represent bounded distributive lattices by means of compact totally
ordered disconnected topological spaces (Priestley [1984]).

In Frame 4.14.2 we have seen that Galois connections make ordered
sets into complete lattices (Dedekind-McNeille completion).

Thus, in view of the duality theorems and the (pre)topological prop-
erties of Galois operators we can wonder whether Galois connections may
be used in order to make particular ordered sets into distributive lattices.

The answer, for the finite case, is positive.
For a formal context C = 〈X,X �=〉, the Concept Lattice B(C) is

isomorphic to the Boolean lattice of all subsets of X. In fact, for any
A ⊆ X, [[�=]](A) = {x : ∀a(a ∈ A � a �= x)} = −A. Therefore,
est(A) = A and IT S(A) = −A.

For a formal context C = 〈X,X �≥〉, the Concept Lattice B(C) is
isomorphic to the distributive lattice I(C) of order ideals of C. In fact
for any A ⊆ X, [[�≥]](A) = − ↓ A =↑ A′, for some A′ ⊆ X. It follows
that the elements of B(C) are exactly the pairs 〈A,−A〉, for A ∈ I(C)
(see Wille [1982] and Hartung [1993] for other interesting examples and
a thorough study).

Notice that F(SatQ(P)) (see the example of Frame 4.14.2) is
given by closing Satest(Q(P)) under unions and is anti-isomorphic to
SatQ(P) (cf. Example 3.3.1).

4.14.5 Galois Adjunctions, Isomorphisms
and Approximation: A Note

Notice that a Galois adjunction establishes weaker links between the
involved structures than an isomorphism does. In fact, as we have seen,
a Galois adjunction gives rise to an isomorphism between certain sub-
structures.

This is why it acts so properly in defining a “natural” understanding
of how the elements of a structure may approximate the elements of
another (or, more precisely, they can approximate each other).

However these remarks must be complemented with another notable
feature of a Galois adjunction (and adjoint functors at large, see below):
it picks a particular “optimal” approximation (minimal or maximal)
from the set of possible approximations.
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4.15 Frame – Categories and Adjoint
Functors

Actually, the notions of an “adjoint pair” and of a “duality” are fully
defined, in a general setting, within Category Theory, where ≤ and ≤′

are replaced by the morphisms that define the categories we are deal-
ing with. Roughly speaking, categorical morphisms are associative and
transitive correspondences between the objects of the given category.
Moreover any category is equipped with a null-morphism ν such that
for any object o, ν(o) = o. In a category, morphisms are denoted by
arrows.

The idea of an adjoint functor was formulated by Daniel Kahn in
Kahn [1958] and elaborated by distinguished category theoreticians
such as Alexander Grothendieck (see Grothendieck [1957–1962]) and
William Lawvere (see Lawvere [1969]).

Eventually, Saunders Mac Lane interpreted Galois connections
as adjoint functors (with the right category reversed – see Mac Lane
[1971]).

Here we just show the formal definition of adjoint functors with
some additional comments related to the topics discussed in this Part.

In the Introduction we have informally used a category-like ter-
minology when speaking of the set of (0, 1)-homomorphisms in the
construction of the abstract points from a frame.

We give now the formal definition of this basic categorial machinery.

Definition 4.15.1. A category C consists of a class OBC of objects,
a class HOMC of morphisms between members of OBC. A morphism
is the abstraction of a function or mapping and is denoted by an arrow
between objects. The class of morphisms between two objects X,Y ∈
OBC is denoted HOMC(X,Y ). Morphisms must fulfill the following
properties:

• (Composition) If f ∈ HOMC(X,Y ) and g ∈ HOMC(Y,Z)
then the composition f ◦ g ∈ HOMC(X,Z) is always defined
(some authors write “g◦f” or “gf”). Such a composition is often
described by saying than the following diagram commutes (that is,
the two paths along the arrows coincide):
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X
f � Y

�
�
�
�
�

f ◦ g
�

Z

g

	

• (Identity) For every object X there exists a morphism 1X : X −→
X such that for every morphisms f : A −→ B we have f ◦ 1B =
1A ◦ f .

• (Associativity) For every f, g, h ∈ HOMC the following equation
holds, whenever the compositions are defined: h ◦ (f ◦ g) = (h ◦
f) ◦ g.

The interpretation of morphisms depends on the category. So, for inst-
ance, if the objects of C are sets, morphisms are functions. If the objects
of C are groups then morphisms are group homomorphisms, if they are
topological spaces then morphisms are continuous functions.

Particularly, if the objects of C are lattices then morphisms are lat-
tice homomorphisms and if the objects are ordered sets then morphisms
are order preserving maps.

Finally, we can represent every partially ordered set as a category in
which the objects are the elements of the set and there is at most one
morphism between two objects x and y representing the order relation
(that is, x −→ y if and only if x ≤ y).

One can extend the notion of a morphism from objects of a category
to categories themselves. These extensions are called functors.

It follows that a functor from a category A to a category B will map
elements of OBA to elements of OBB as well as elements of HOMA

to elements of HOMB:

Definition 4.15.2. Let A and B be categories. A functor F from A to
B is a mapping that associates to each object X in A an object F (X)
in B, associates to each morphism f : X −→ Y in A a morphism
F (f) : F (X) −→ F (Y ) in B, such that the following two properties
hold:

• F (idX ) = idF (X) for every object X ∈ A.

• F (f ◦ g) = F (f) ◦ F (g), for all morphisms f : X −→ Y and
g : Y −→ Z.
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At this point we can introduce the notion of adjoint functors:

Definition 4.15.3. A pair of adjoint functors between two categories
C and D consists of two functors F : C �−→ D and G : D �−→ C and
a natural isomorphism φ : HOMD(F−,−) �−→ HOMC(−, G−) con-
sisting of bijections φX,Y : HOMD(F (X), Y ) �−→ HOMC(X,G(Y )),
for all objects X in C and Y in D and such that the following diagram
commutes for all f : X ′ −→ X in C and g : Y −→ Y ′ in D (naturality
of φ):

HOMC(X,G(Y ))
HOM(f,G(g))

� HOMC(X ′, G(Y ′))

HOMD(F (X), Y )

φX,Y

����������
HOM(F (f),g)

� HOMD(F (X ′), Y ′)

φ′X′,Y ′

����������

As we can easily realize, an adjointness relation does not hold in a void,
but it holds with respect to a pair of fixed structures: the domain of F ,
that will be called the left category, and the domain of G that will be
called the right category.

Every adjoint pair fulfills some interesting properties that we have
proved from the abstraction level of Galois adjunction in Proposition
1.4.8.(9).

Namely, adjoint pair of functors defines a unit η from the functor
1C to GF (X), for all X ∈ C:

ηX : X −→ GF (X); ηX = φX,F (X)(1F (X))

Analogously, one may define a co-unit ε from FG to 1D, for all Y ∈ D:

εY : FG(Y ) −→ Y ; εY = φ−1
G(Y ),Y (1G(Y ))

Moreover, units and co-units have the following properties:

1F = (Fη) ◦ (εG) : F −→ FGF −→ F

1G = (ηG) ◦ (Gε) : G −→ GFG −→ G

As we have seen in Lemma 1.4.2 (as to Galois adjunction) the most
important property of adjoints is “continuity”, which we now describe
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in a more abstract setting: every functor that has a left adjoint (there-
fore, a right adjoint) preserves limits (or it “commutes” with limits, or
it is continuous) and every functor which has a right adjoint (therefore,
a left adjoint) preserves colimits (or it “commutes” with colimits, or it
is cocontinuous).

Further, we can restate Corollary 2.3.1.(5) and (6) at a higher level of
abstraction by saying that adjoint pairs extend equivalences in the sense
that if C1 is the full subcategory of C consisting of those objects X of C
for which ηX is an isomorphism and, dually, if D1 is the full subcategory
of D consisting of those objects Y of D for which εY is an isomorphism,
then F andG restricted to C1 and D1 yield inverse equivalences of these
subcategories. In a sense adjoints are “generalised” inverses. However a
right inverse of F (i.e. a functor G such that FG is naturally isomorphic
to 1D) needs not be a right (or left) adjoint of F .

Finally, the conditions stated in Proposition 1.4.7 and Lemma 1.4.3
are subsumed by the Freyd Adjoint Functor Theorem which states that
G has a left adjoint if and only if it is continuous and for every object
X of C there exists a family of morphisms fi : X −→ G(Yi), i ∈ I such
that any other morphism h : X −→ G(Y ) uniquely factorises with
some fi, meaning that the following equation holds: h = fi ◦ G(t), for
some i ∈ I and some t : Yi −→ Y .

An analogous existence result holds of right adjoints.

4.16 Solutions

• Exercise 1.1

– (A) A section chooses an element from f←(b), for any ele-
ment b of B. Hence the number of possible sections is given
by
∏

b∈B card(f←(b)), where card(X) denotes the cardinal-
ity of the a set X. It follows that if there is a b ∈ B such
that for no a ∈ A, b = f(a), then card(f←(b)) = 0 and
∏

b∈B card(f←(b)) = 0.

– (B) A retraction r maps any f(a) to a itself. Then surely
in any retraction, for each b such that b = f(a) for some
a ∈ A, r(b) = a is required. As to the remaining elements of
B, any combination is admissible. It follows that the number
of retractions is given by card(A)(card(B)−card(A)) .
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– (C) Let s be a section of f . Then for all b ∈ B, f(s(b)) = b.
Moreover, for any g : C �−→ B, the composition g◦s is a map
from C to A such that (g ◦ s) ◦ f = g ◦ (s ◦ f) = g ◦ 1B = g.
Let C = B and g = 1B . Then 1B ◦ s ◦ f = 1B . This means
that any b ∈ B must be the f − image of some a ∈ A.

– (D) Let r be a retraction of f . Then for all a ∈ A, r(f(a)) =
a. Moreover, for any two maps g : C �−→ A, h : C �−→ A, if
g ◦ f = h ◦ f then g = h. In fact, g = g ◦ 1A = g ◦ (f ◦ r) =
(g◦f)◦r = (h◦f)◦r = h◦(f ◦r) = h◦1A = h. In particular,
let C = A and h = g = 1A. Then if f(1A(a)) = f(1A(a′)),
we have 1A(a) = 1A(a′), i.e. a = a′, so that f is injective.

• Exercise 1.2 The map f ′ cannot have an upper adjoint because
it is not ∨-preserving. In fact f ′(c ∨ d) = f ′(1) = y �= x =
x ∨ x = f ′(c) ∨ f ′(d). Similarly, f ′′ cannot have a lower adjoint
because it does not preserve meets (f ′′(a ∧ b) = f ′′(c) = x �= y =
y ∧ y = f ′′(a) ∧ f ′′(b)). Notice, though, that both f ′ and f ′′ are
monotonic.

• Exercise 1.3 (1) From Proposition 1.4.8.(5) we have ισ(x ∨ y) ≥
ισ(x) ∨ ισ(y) = x ∨ y. But from Corollary 1.4.2.(1) x ∨ y ≥
ισ(x ∨ y). Thus ισ(x∨ y) = x∨ y whenever x and y are fixpoints
of ισ. (2) By duality from (1). (3) and (4). From Proposition
1.4.8.(7) we have ες(x ∧ y) ≤ ες(x) ∧ ες(y) = x ∧ y because
x, y ∈ Imισ. But from Corollary 1.4.2.(2) x∧ y ≤ ες(x∧ y). Thus
ες(x∧y) = x∧y whenever x and y are fixpoints of ες. Analogously
for ςε.

• Exercise 2.1 −(R(X)) = −{y : ∃x(x ∈ X & 〈x, y〉 ∈ R)} = {y :
∀x¬(x ∈ X & 〈x, y〉 ∈ R)} = {y : ∀x(x �∈ X ∨ 〈x, y〉 �∈ R)} = {y :
∀x(x ∈ X � 〈x, y〉 �∈ R)} = −{y : ∀x(〈x, y〉 ∈ R� x �∈ X)}.

• Exercise 2.2

– (A) (1) 〈〈i〉〉({a, a′}) = {b, b′}; (2) [[i]]({a, a′′}) = {b′′}; (3)
[i]({a, a′}) = {b, b′}. Notice that the first and the third results
coincide just by chance.

– (B) 〈〈i〉〉(X) = −{b : ∀a(a ∈ X ∨ 〈b, a〉 ∈��)} = −{b :
∀a¬(a �∈ X & 〈b, a〉 �∈��)} = −{b : ¬∃a(a �∈ X & 〈b, a〉
�∈��)} = {b : ∃a(a ∈ −X & 〈b, a〉 �∈��)}.
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But the last condition can be read: {b : ∃a(〈a, b〉 ∈ − �
& a ∈ −X)} which describes the set {b : ∃a(a ∈ −X & 〈a, b〉
∈ − �)}, that is, (− �)(−X).

• Exercise 2.3

– (A) 〈α〉 distributes over unions. Directly from definitions,
in view of the fact that ∃x(x ∈ A ∪ B) is equivalent to
∃x(x ∈ A) ∨ ∃x(x ∈ B).

– (B) [α] distributes over intersections. Directly from defini-
tions, in view of the fact that ∀x(x ∈ A ∩ B) is equivalent
to ∀x(x ∈ A) ∧ ∀x(x ∈ B).

– (C) (i) [[i]](X ∪X ′) = [[i]](X)∩ [[i]](X ′), any X,X ′ ⊆ G; (ii)
[[e]](Y ∪Y ′) = [[e]](Y )∩ [[e]](Y ′), any Y, Y ′ ⊆M . Transform
the defining formulas as follows, where α(x, y) ≡ y ∈ obs(x)
or α(x, y) ≡ x ∈ sub(y): (a) ∀x(x ∈ A ∪ B � α(x, y)), (b)
∀x(¬(x ∈ A∪B)∨α(x, y)), (c) ∀x((¬(x ∈ A)∧¬(x ∈ B))∨
¬α(x, y)), (d) ∀x((¬(x ∈ A)∨α(x, y))∧(¬(x ∈ B)∨α(x, y))),
(e) ∀x(¬(x ∈ A) ∨ α(x, y)) ∧ ∀x(¬(x ∈ B) ∨ α(x, y)), (f)
∀x(x ∈ A � α(x, y)) ∧ ∀x(x ∈ B � α(x, y)). Now, by
forming the related sets with respect to the variable y, we
obtain the result.

– (D) Since X ∩ X ′ ⊆ X,X ∩ X ′ ⊆ X ′ and [[i]] is anti-
tonic, [[i]](X ∩X ′) ⊇ [[i]](X), [[i]](X ∩X ′) ⊇ [[i]](X ′). Hence
[[i]](X ∩X ′) ⊇ [[i]](X) ∪ [[i]](X ′), any X,X ′ ⊆ G. Similarly
we can prove that [[e]](Y ∩ Y ′) ⊇ [[e]](Y ) ∪ [[e]](Y ′), any
Y, Y ′ ⊆M .

• Exercise 2.4

– (A) int(X) = 〈e〉[i](X), but [i](X) = {m : 〈e〉(m) ⊆ X}.
Hence int(X) = 〈e〉({m : 〈e〉(m) ⊆ X}). Moreover, 〈e〉({m :
〈e〉(m) ⊆ X}) = 〈e〉(

⋃
{{m} : 〈e〉(m) ⊆ X}) and since

〈e〉 is additive the latter expression turns into
⋃
{〈e〉(m) :

〈e〉(m) ⊆ X}.

– (B) cl(X) = −int(−X). Thus cl(X) = −〈e〉(
⋃
{{m} :

〈e〉(m) ⊆ X}) = [e](−
⋃
{{m} : 〈e〉(m) ⊆ X}) =

[e](
⋂
{−{m} : 〈e〉 ⊆ −X}). But 〈e〉(m) ⊆ −X & 〈e〉(m′) ⊆

−X implies 〈e〉(m) ∪ 〈e〉(m′) ⊆ −X which is equivalent, by
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additivity of 〈e〉, to 〈e〉({m}∪{m′}) ⊆ −X. Thus, by apply-
ing a De Morgan law we obtain [e](

⋂
{−{m} : 〈e〉(m) ⊆

−X}) = [e](
⋃
{{m} : ¬(〈e〉(m) ⊆ −X)}) = [e]({m :

〈e〉(m) ∩X �= ∅}).

– (C) From the above proof, cl(X) = [e](
⋂
{−{m} : 〈e〉(m) ⊆

−X}) = [e](
⋂
{−{m} : X ⊆ −〈e〉(m) ⊆}).

– (D) From the above proof, cl(X) = [e](
⋂
{−{m} : X ⊆

−〈e〉(m) ⊆}). But m is arbitrary; so set −{m} = Z for
some Z ⊆ G. Moreover, −〈e〉(m) = [e](−{m})} so that the
above equation turns into cl(X) = [e](

⋂
{Z : X ⊆ [e](Z)}).

• Exercise 2.5

– (A) We know that Y = [i](X) and Y ′ = [i](X ′) for some
X,X ′ ⊆ G (see Lemma 2.3.1.(4)). Hence, from hypoth-
esis, 〈e〉[i](X) = 〈e〉[i](X ′) and, therefore, [i]〈e〉[i](X) =
[i]〈e〉[i](X ′). But [i]〈e〉[i] = [i], whence [i](X) = [i](X ′) so
that Y = Y ′.

– (B) Let us notice that [[i]](A) has the logical form ∀x(A(x)�
C(x)). Therefore: [[i]](A ∩B) has the logical form ∀x((A(x)
& B(x))� C(x)) which is equivalent to ∀x(¬A(x)∨¬B(x)∨
C(x)) which is implied by ∀x(¬A(x))∨C(x))∨∀x(¬B(x)∨
C(x)). The last formula is the logical companion of [[i]](A)∪
[[i]](B).
Similarly, [[i]](A)∩ [[i]](B) has the logical form ∀x(¬A(x))∨
C(x)) & ∀x(¬B(x)∨C(x)) which is equivalent to ∀x((¬A(x)
∨ C(x)) & (¬B(x)∨C(x))), so to ∀x(C(x)∨¬(A(x)∨B(x)))
and finally to ∀x((A(x)∨B(x))� C(x))). The last formula
is the logical counterpart of [[i]](A ∪B).

– (C) The answer is “No”. Indeed, we can have X ⊆ 〈e〉(Y )
but for all b ∈ Y , X � 〈e〉(b).

– (D) 〈e〉(m) ⊇ X if and only if for all g ∈ X, g � m, if and
only if m ∈ [[i]](X).

– (E) ¬〈e〉(−Y ) = {a ∈ G : ¬∃b(b ∈ −Y & a ∈ sub(b))} =
= {a ∈ G : ∀b(b �∈ −Y ∨ a �∈ sub(b))} = {a ∈ G : ∀b(a ∈
sub(b)� b ∈ Y ))} = [e](Y ).

– (F) 〈〈i〉〉(X) = −[[i]](−X) = −{b : ∀a(a �∈ X � a � b)} =
{b : ¬∀a(a ∈ X ∨ a � b)} = {b : ∃a(a �∈ X & a �� b}.
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– (G) Trivially, since a� b ≡ ¬b� ¬a.

– (H) A({b}) = {b}, A({b′}) = A({b, b′}) = A({b′, b′′}) =
A({b, b′, b′′}) = {b, b′, b′′}, A({b′′}) = {b′′}, A({b′′′}) =
A({b′′, b′′′}) = {b′′, b′′′}, A({b, b′}) = A({b′, b′′}) =
A({b, b′, b′′}) = {b, b′, b′′}, A({b, b′′′}) = A({b′, b′′′}) =
A({b, b′, b′′′}) = A({b′, b′′, b′′′}) = A({b, b′′, b′′′}) = A(M) =
M , A(∅) = ∅.

C(∅) = C({b}) = C({b′}) = C({b′′}) = C({b, b′′}) =
C({b′, b′′}) = ∅, C({b′′′}) = C({b, b′′′}) = C({b′′, b′′′}) =
C({b, b′′, b′′′}) = {b′′′}, C({b, b′}) = C({b, b′, b′′}) =
{b, b′}, C({b′, b′′′}) = {b′, b′′′}, C({b, b′, b′′′}) = {b, b′, b′′′},
C({b′, b′′, b′′′}) = {b′, b′′, b′′′}, C(M) = M .

int(∅) = int({a′}) = int({a′′′}) = int({a′, a′′′}) = ∅,
int({a}) = int({a, a′}) = int({a, a′′′}) = int({a, a′, a′′′}) =
{a}, int({a′′}) = int({a′, a′′}) = int({a′′, a′′′}) = {a′′},
int({a, a′′}) = {a, a′′}, int({a, a′, a′′}) = {a, a′, a′′},
int({a′, a′′, a′′′}) = {a′, a′′, a′′′}, int(G) = G.

cl({a}) = {a}, cl({a′}) = cl({a′, a′′′}) = {a′, a′′′}, cl({a′′}) =
cl({a′, a′′}) = cl({a′′, a′′′}) = cl({a′, a′′, a′′′}) = {a′, a′′, a′′′},
cl({a′′′}) = {a′′′}, cl({a, a′}) = cl({a, a′′′}) = cl({a, a′, a′′′})
= {a, a′, a′′′}, cl({a, a′′}) = cl({a, a′, a′′}) = cl({a, a′′, a′′′}) =
cl(G) = G, cl(∅) = ∅.

– (I) cl(X) = {g : ∀b(g � b � b ∈ {m : ∃a(a ∈ X & a �
m)})} = {g : ∀b(g � b � ∃a(a ∈ X & a � b))}. So
−cl(−X) = {g : ¬∀b(g � b � ∃a(a /∈ X & a � b))} =
{g : ∃b(g � b & ¬∃a(a /∈ X & a � b))} = {g : ∃b(g �
b & ∀a¬(a /∈ X & a � b))} = {g : ∃b(g � b & ∀a(a ∈
X ∨ a �� b))} = {g : ∃b(g � b & ∀a(a � b� a ∈ X))} = {g :
∃b(g � b & b ∈ {m : ∀a(a � m� a ∈ X)})} = int(X).

• Exercise 3.1 From Proposition 3.1.3 x ∈ 〈R〉(x′) iff x ∈ QR
x′ . It

follows immediately that for any X ⊆ A, 〈R〉(X) = Q∪
X . Since

Q⊕
X∪Y = Q⊕

X ∩ Q⊕
Y ⊆ Q∪

X ∪ Q∪
Y = Q∪

X∪Y we immediately have
Q∪

X ⊇ Q⊕
X . Finally, [[−R�]](X) = {a : ∀x(x ∈ X � 〈a, x〉 /∈

R)} = {a : x(x ∈ X & 〈a, x〉 ∈ R)} = −〈R〉(X). Similarly
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we obtain [[−R]](X) = −〈R�〉(X). Hence [[−R]][[−R�]](X) =
−〈R�〉 − 〈R〉(X) = [R�]〈R〉(X) = 〈R〉(X). qed

• Exercise 3.2 Suppose X = QA ∩ QB and z ∈ QX . Then ∃z′ ∈
QA ∩ QB such that z ∈ Qz′ . Clearly z′ ∈ QA and z′ ∈ QB . By
q-transitivity we have z ∈ QA and z ∈ QB so that z ∈ X. Thus,
QX ⊆ X. But X ⊆ QX , by reflexivity, so that X = QX . qed

• Exercise 4.1 In this case we have that � is the following map:

� 〈0〉 〈0, 1〉 〈1, 1〉

m1 0 1 0
m2 0 1 0
m3 1 0 0
m4 0 0 1

Therefore, J (ΩSUB(G)) = {{m1,m2}, {m3}, {m4}}.

• Exercise 4.2 Because the planet context is nominalised.

• Exercise 4.3
δ(x) =

⋃
{α←(↓ x)}. Hence: δ(⊥) =

⋃
{∅} = ∅; δ(1) =

⋃
{X :

∀n ∈ X,n > 0} = {n : n > 0}.
δ(0) =

⋃
{X : ∀n ∈ X,n > 0} = {n : n > 0}; δ(�) = δ(⊥) ∪

δ(1) ∪ δ(0) ∪ −(δ(1) ∪ δ(0)) = Z.

• Exercise 4.4
The upper adjoint of f← is the map h : A �−→ B;h(X) = {y :
f←({y}) ⊆ X}.
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The Logico-Algebraic
Theory of Rough Sets
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Chapter 5

Logic and Rough Sets:
An Overview

“Any specific object has a specific logic” K. Marx.

Since the present Part has a certain complexity, it is worth introduc-
ing, with some details, the intuitive motivations of the entire picture
and their connections with the mathematical machinery which will be
used.

5.1 Foreword

Thus, let us sum up what we have discussed and discovered as far as
now.

In Rough Set Theory, the starting point is a collection of observa-
tions which are stored in an Information System I and which induces
an indiscernibility space 〈U,E〉. We denote the family of all basic cate-
gories by IND(I).

We have seen that from any Information System I one can compute
the extension �D� on the universe U of a basic property D which we
call a I-basic property, because it can be formulated using the linguistic
material from I.1

I-basic properties make it possible to classify the objects from U

into different disjoint equivalence classes which are to be intended as

1For instance, if I is an Attribute Systems, a deterministic property is a conjunc-
tion of sentences of the form “ai = vj”, where ai ranges on the set of parameters
At, vj ranges on the set of values V .

169



170 5 Logic and Rough Sets: An Overview

the gnoseological co-ordinates interpreting the universe U , the basis of
the organization of U from a conceptual point of view. In a literal math-
ematical sense, IND(I) is a basis for a topological space that provides
the “gnoseological geometry” of our world. Objects belonging to the
same class are indiscernible by means of our system of information I.
Moreover, from the hypotheses about P-systems and A-systems, stated
in Part I, every object from U will belong to the extension of some
I-basic property. So we obtain the first important characteristic for our
analysis:

Axiom 5.1.1. The set IND(I) = {�D� : D is a I−basic property} is
a partition of U .

These classes, or blocks, are the atoms of more complex conceptual
constructions. In Rough Set Theory, they are called “elementary” (or
“basic”) “classes” (or “categories”) and we adopt this use.

As noted at the very beginning of the Introduction, this construc-
tion is fundamental. Call it “grouping”, “association”, “categorization”,
we hardly can find an analysis of human knowledge leaving it out of
consideration: “When you learn a concept, you learn how to treat differ-
ent things as instances of the same category. Without this classification
procedure, thinking would be impossible because each event or entity
would be unique” (Johnson-Laird [1988], page 132).

Because IND(I) coincides with the family of the equivalence classes
modulo the equivalence relation induced by the Information System I,
on a more abstract level we can start from any generic Indiscernibility
Space 〈U,E〉, where E ⊆ U × U is an arbitrary equivalence relation.

The topological space for which the family U/E forms a basis, is
called an Approximation Space. Nonetheless, in the present book we
also use this term to denote the frame (complete distributive lattice)
of its open subsets, denoted by AS(U/E) (the context shall avoid
any confusion). Any open set is the union of basic sets. Therefore,
they are extensions of disjunctions of basic properties, called thereafter
“I-properties”. So, given an Information System I, the Approximation
Space AS(U/E) induced by I, represents in fact this kind of linguistic
description of concepts. This intuitively explains why an Approxima-
tion Space is defined as the set of all the unions of elementary classes
plus the empty-set ∅ (an arbitrary I -property could have an empty
extension).
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Thus, from an algebraic point of view, we have:

Axiom 5.1.2. For any Indiscernibility Space 〈U,E〉, the Approxima-
tion Space AS(U/E) is the Boolean algebra of sets for which U/E is
the set of atoms.

Now, as we know, the second basic maneuver is to contrast AS(U/E)
with the result of another categorization, say the Indiscernibility Space
〈U,E′〉. However, for the sake of maximal generalization, we shall
assume that any arbitrary subset of U can be brought in contrast with
AS(U/E), so that the second categorization will be assumed to be the
discrete one (〈x, y〉 ∈ E′ if and only if x = y), if not otherwise stated.
In other terms, any subset of U can play the role of a pre-figure. Thus
we assume that the foreground Approximation Space will always be
the powerset ℘(U).2

For this reason the structure of AS(U/E′) does not count and we
shall reserve by now the name “Approximation Space” to the back-
ground space, and the term “datum” to the elements of the foreground
space.

With respect to this structure we have the following fact:

Axiom 5.1.3. For any Indiscernibility Space 〈U,E〉, the Approxima-
tion Space AS(U/E) is a subalgebra of the Boolean algebra of sets B(U)
defined on the powerset ℘(U) of the universe U .

In accordance with these assumptions, Approximation Spaces are given
a more general interpretation. In fact, if we assume that a generic subset
of elements of U is the extension of a generic “datum” virtually defin-
able on U , then the fact that an Approximation Space AS(U/E) is
generally a strict subalgebra of ℘(U), displays the popular observation
that usually we do not have a complete information about any situation
we face with, in a pretty “concrete” and “tangible” manner. In other
words, the granularity of the knowledge represented by our properties,
generally does not allow the exact representation of arbitrary concepts,

2For the sake of generalisation, but also because we are working within the
monological approach. From this point of view, the foreground space is always sub-
ordinated to the background. Otherwise stated, the foreground space is inert, so that
any subset of this space may be conceived of as a “crude” datum to be analysed,
but not to be questioned. In the dialogical approach we do not have “crude data”
any longer, but interacting categories.
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but just an approximation depending on the gnoseological material at
our disposal. Hence the term “Approximation Space”.

Let us then consider an arbitrary set X ⊆ U . Obviously, either X ∈
AS(U/E) or not. In the first case X can be exactly described by means
of an I-property, which can be named a background property, in view
of the discussion in the Introduction. In the second case we cannot use
I-properties for a direct description ofX, which can be approximated by
means of an upper approximation, (uE)(X), and a lower approximation,
(lE)(X). If 〈U,AS(U/E)〉 is intended as a topological space, we know
that (uE)(X) is the closure C(X) and (lE)(X) is the interior I(X).

However, in general in between (lE)(X) and (uE)(X) we have the
topological boundary of X: B(X) = C(X) ∩ −I(X) = (uE)(X) ∩
−(lE)(X). Notice that the boundary of X is the set of points which
are neither in the lower approximation, nor in the complement of the
upper approximation of X: B(X) = C(X) ∩ −I(X) = −(−C(X) ∪
I(X)) = −(−(uE)(X) ∪ (lE)(X)). From the point of view of Approx-
imation Spaces, two sets that have exactly the same upper and lower
approximations can be considered equivalent, and one obtains:

Definition 5.1.1. A rough set of 〈U,E〉 is an equivalence class of sub-
sets of U modulo the equality of their upper and lower approximations.
Such an equivalence relation is called a rough equality.

The family of all rough sets induced by an Approximation Space
AS(U/E) is called a Rough Set System and is denoted by RS(U/E).

5.2 Rough Set Systems and Three-Valued

Logics

As we have mentioned in the Introduction, one can give a logical
interpretation to this machinery. The upper approximation (uE)(X)
is the set of elements that possibly belong to X since they share the
same I-properties with some element actually in X. In other words, if
x ∈ (uE)(X), then we can associate it to X, even if it does not actually
belong to this set, since some “twin” of x belongs to X already. On the
other hand (lE)(X) is the set of elements of X that necessarily belong
to X since there are not elements outside of X which are describable
by means of the same I-properties. In negative terms: if x ∈ X but
there is an x′ belonging to −X which is indiscernible from x, then in
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order to obtain the lower approximation of X, we discard x too, since
its membership is accidental, according to the conceptual background
represented by AS(U/E).

Example 5.2.1. Possibility and necessity in an information system
Consider the information system of Example 2.4 in the Introduction. Let X be
the set {d, e, f, g}, which in AS(U/A′) is characterized by the property “Com-
fort = medium”. We can notice that in AS(U/A) the patient c may be associated
to X since patient d belongs to X and is indiscernible from c which is as like as
any patient having Temperature = normal, Hemoglobin = good, Blood Pressure = low
and Oxygen Saturation = good. So we can assume that it is not impossible for these
patients to have Comfort = medium because we have examples of patients with the
same attribute-values that have this rate. In fact (uEA)(X) = {c, d, e, f, g}. On the
other hand, all the patients with Temperature = low, Hemoglobin = good, Blood Pres-
sure = normal and Oxygen Saturation = fair, have Comfort = medium. This means,
for instance, that e necessarily belongs to X, since we do not have counterexamples
of patients with the same characteristics but with Comfort �= medium. This fact is
reflected by the equation (lEA)(X) = {e, f, g}.

From this point of view, for any set X we have two definite or certain

states: the lower approximation (interior of X, necessary part of X),
which means “definitely yes”, and the complement of the upper approx-
imation, −(uE)(X) = −C(X), (exterior of X, impossible part of X)
which means “definitely no”. Since −C(X) = I(−X), this element coin-
cides with the complementary figure ¬X. Everything that is neither in
(lE)(X) nor in the complementary figure, ¬X, is in the boundary of
X, B(X). Indeed a boundary is a region of doubt: if x ∈ B(X), then
we can say nothing certain about the membership of x in X. We can-
not say either that x is certainly (or necessarily) in X, or that x has
certainly nothing to do with X: in fact it could belong to X, since it is
indiscernible from some element of X; but it could belong to −X, too,
because it is indiscernible from some element of −X.

It follows that, generally, between (lE)(X) and its complementary
figure ¬X, there is not an empty region and that the union of (lE)(X)
and ¬X does not give the unit universe U . In other words, the law of
Excluded Middle is not uniformly valid for rough sets.

So we begin to see that the classical two-valued characteristic func-
tion must be generalized by a three-valued one, if we want to grasp this
situation. It follows that in general Rough Set Systems are likely to
have strict relationships with some three-valued logico-algebraic sys-
tem. Actually, more than one of these systems are related to this
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information analysis and the reason depends on the deeper meaning
of our construction.

In fact, the topological space 〈U,AS(U/E)〉 may fulfill different sep-
aration properties depending on the granularity of our knowledge. In
turn, this depends on the level of accuracy of the attributes. We have
the best separation properties when AS(U/E) = ℘(U). In this case our
topology is the discrete topology (which is Hausdorff and completely
disconnected) and one can single out each element of U . Otherwise
stated, in a sense we have enough properties for “naming ” any single
element of U . On the contrary, when no object can be discerned from
the others, we have the trivial topology: AS(U/E) = {∅, U}. Using the
famous sentence of the German philosopher G. W. F. Hegel, this is like
the “night in which all cows are black”. Indeed in this case we have the
weakest separation property.

However, usually we shall have intermediate cases in which some
elements can be singularly “named ”, while others cannot be individ-
ualised by the information at our disposal: in general in 〈U,E〉 some
equivalence classes are singletons while others are not.

5.3 Exact and Inexact Local Behaviours
in Rough Set Systems

Let us denote by B∗ the family of the equivalence classes that are
singletons, and by P ∗ the family of the equivalence classes that have
cardinality strictly greater than 1. As mentioned in the introduction.
B∗ and P ∗ do not have the same logical role in the construction of
a Rough Set System. In fact the elements in B∗ are exact in nature,
because they do not have any boundary, any region of doubt, so that
they should enjoy the principle that in Classical Logic reflects com-
pleteness and exactness: Excluded Middle.3 Indeed, given a set X and
an open singleton {s}, either {s} is included in (lE)(X) or it is included
in −(uE)(X).4 On the contrary any basic open set with at least two
elements may be included in the boundaries of at least two different
sets. This means that if there is no singleton in AS(U/E), then there
are at least two sets X such that (uE)(X) = U and (lE)(X) = ∅. In
other words, there are at least two undefinable sets.

3If {x} is a singleton, then x is an isolated point, in topological terms.
4In topological terms: an isolated element cannot be a member of any boundary.
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Therefore, it is not difficult to understand why the class of the unde-
finable sets can play the role of intermediate value: this class represents
situations in which everything could be true, or everything could be
false. Thus, the rough set of all the undefinable sets is another “night
in which all cows are black”.

Example 5.3.1. Exact and inexact information
In the Approximation Space induced by the set A of attributes in the Information
System of Example 2.4 discussed in the Introduction, we have two non singleton
atoms, {c, d} and {e, f}, and five singletons, {a}, {b}, {g}, {h}, {i}. The singleton
{a}, for instance, is uniquely defined by the property “Temperature = low, Hemoglo-
bine = fair, Blood Pressure = low, Oxygen Saturation = fair”. This property applies
only to the element a so that we have complete and unique information about a,
because the attribute-values we are dealing with make it possible to distinguish a
from all the other elements of U .

On the contrary, the element c fulfills the same property as the element d, so
that we do not have enough information in At to distinguish c (or d).

Clearly, as far as we deal with the set of attributes A, we do not have subsets
of U that are undefinable, because for instance if {a} is included in the upper
approximation of a subset of U , then it is included in its lower approximation, too.
It follows that there are not sets X such that (uEA)(X) = U and (lEA) = ∅.

Now consider, instead, the following sub-table of the same Information System,
where U∗ = {a, b, c, d, e, f} and A∗ = {Temperature,Hemoglobin}:

v Temperature Hemoglobin

a low fair

b low fair

c normal good

d normal good

e low good

f low good

Clearly E/A∗ = {{a, b}, {c, d}, {e, f}}. So the induced Approximation Space has
three atoms and none of them is a singleton. If we contrast the set X = {a, c, e}
against E/A∗ then we find (uEA∗)(X) = U∗ and (lEA∗)(X) = ∅. In fact it is
impossible to find a disjunction of basic properties exactly describing some member
of X but not all the members of U . Hence X is an undefinable set. Indeed, the
process of peaking up an element out of each (non singleton) equivalence class gives
us a combination of eight undefinable sets:

{{a, c, e}, {a, c, f}, {a, d, e}, {a, d, f}, {b, c, e}, {b, c, f}, {b, d, e}, {b, d, f}}

This collection is therefore the rough set of all sets X such that (uEA∗)(X) = U∗

and (lEA∗) = ∅. Therefore, it represents all the undefinable sets.
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Therefore, we may suppose that for any rough set there are two distinct
local logical behaviours: one is classical and localized on B =

⋃
B∗,

whereas the other one, localized on P =
⋃
P ∗, is purely three-valued.

It is the combination of these local behaviours that defines the over-
all logical features of rough sets. It follows that the construction of
RS(U/E) will depend on the parameter B (or, equivalently, P ).

Moreover, in RS(U/E), any rough set induced by an element of
the Approximation Space AS(U/E) has a particular logical behaviour
too: such an element corresponds to an exactly definable subset of U ,
hence, again, it should fulfill Classical Logic, but within the logical
environment determined by the overall Rough Set System. And, as
just seen, this environment might be three-valued.

Thus we have two levels of local logical behaviours: one is related
to the internal definition of rough sets, the other deals with the global
logical properties of Rough Set Systems.

The first level completely depends on the parameter B (or P ). These
parameters cannot be recovered from the “geometrical” shape of the
Approximation Space AS(U/E), except for trivial cases. It follows that
in general an inspection of the atoms is unavoidable in order to define
RS(U/E). Because the information provided by this inspection does
not have any theoretic content, we call B and P external parameters

or empirical parameters and we say that they are able to distinguish
the classical local behaviour within an Approximation Space.

On the contrary, we can analyse the lattice structure of RS(U/E)
from a pure abstract point of view. In fact, also in this case we have to
use a particular parameter, but curiously enough, though it is induced
by the empirical parameter B, nevertheless it is definable in RS(U/E)
by means of a mere lattice-theoretic definition. For this reason we
call it an internal parameter or theoretical parameter and we shall see
that it distinguishes a classical local behaviour within a Rough Set
System.

It follows that Rough Set Systems should be analysed using some
notion able to manage the concept of “it is locally the case that”.

For this purpose we shall exploit the mathematical notions of a
“Grothendieck topology” and a “Lawvere-Tierney operator” which have
been introduced to deal with local properties.
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5.4 Representing Rough Sets

A rough set is an equivalence class of sets modulo the equality of their
approximations. Thus a rough set from U belongs to ℘(℘(U)).

However a rough set is naturally and more comfortably representable
by a pair 〈X1,X2〉 of elements of AS(U/E), where X1 and X2, are the
two approximations.

So, consider the (by now informal) family

Definition 5.4.1. RS(U/E) = {〈X1,X2〉 ∈ AS(U/E) × AS(U/E):
〈X1,X2〉 is a Rough Set in AS(U/E)}.

We immediately have the problem of the formal and abstract char-
acterization of the sentence “is a Rough Set in AS(U/E)”. A first
sub-problem is:

Problem 5.4.1. For any Approximation Space AS(U/E), determine
the internal formal characteristics that must be satisfied by an ordered
pair to represent a rough set.

The answer depends on the intuitive motivations that drive our reading
of the nature of rough sets. A first, and in a sense the most immediate
and “naive”, solution is considering pairs of the form

〈(uE)(X), (lE)(X)〉 (5.4.1)

This ordered pair uniquely describes the equivalence class in question.
From this point of view, the “internal property” to be fulfilled by a

pair 〈X1,X2〉 in order to belong to RS(U/E) is necessarily:

X2 ⊆ X1 (5.4.2)

because the first element X1 stands for the upper approximation of a
set X and X2 stands for its lower approximation. Thereafter we call
such a representation the decreasing representation of a rough set.

A second reading, probably less “naive” but still intuitive, is sug-
gested by the application of Rough Set Theory to some semantics for
Logics of Knowledge and Learning (see the Frame section of Part III
and is connected with the following intuition: any rough set represents
what definitely is known to satisfy a concept and what definitely is
known not to satisfy it. Between the two areas, eventually, there is a
doubtful region which is due to the incompleteness of our knowledge.
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Thereafter, from this point of view the “internal property” of a pair
〈X1,X2〉 is necessarily:

X1 ∩X2 = ∅ (5.4.3)

and we call it the disjoint representation of a rough set.
We have already seen that in a more logical setting, the upper

approximation (uE)(X) corresponds to the modal application M(X) –
“what possibly belongs to X” – and the lower approximation (lE)(X)
corresponds to the modal application L(X) – “what necessarily belongs
to X”. According to this reading, the decreasing representation of a
rough set is of the type

〈M(X), L(X)〉 (5.4.4)

However, consider −M(X). Since −M(X) means “it is impossible to
belong to X”, we have that L(X) and −M(X) are the only statements
expressing “certainty”. Thus a definite knowledge about a specific phe-
nomenon will be expressed by a pair

〈L(X),−M(X)〉 (5.4.5)

that is to say, 〈maximal internal body, complementary body〉. In order
to make rough sets reflect the above intuition, one must represent them
as a pair

〈(lE)(X),−(uE)(X)〉 (5.4.6)

that is exactly the disjoint representation of a rough set.
So we shall set:

Definition 5.4.2 (Decreasing representation of rough sets). For any
Approximation Spaces AS(U/E) and X ⊆ U : rs(X) = 〈(uE)(X),
(lE)(X)〉.

Definition 5.4.3 (Disjoint representation of rough sets). For any
Approximation Spaces AS(U/E) and X ⊆ U : rs′(X) = 〈(lE)(X),
−(uE)(X)〉.

The application rs will be called a “rough set map”.
From the involution property of “−”, one easily shows that the two

representations are interchangeable.
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Although a choice between the two representations is somewhat
arbitrary, since we prefer to deal with the two standard modalities
(Necessity and Possibility) we adopt the decreasing representation.5

Therefore, we assume by default the decreasing representation until
the disjoint representation is explicitly considered. Moreover, when the
context is clear, with the term “rough set” we shall denote the decreas-
ing (disjoint) representations of a rough set (which, actually, is an
equivalence class).

Example 5.4.1. Representing rough sets
Let us represent some rough sets induced by the Approximation Space
X ∈ AS(U/EA) of Example 1.2.3 (cf. also Example 1.2.5).

Disjoint representation:

{{a}, {c}} −→ 〈∅, {b, d}〉; {{b, a}, {b, c}} −→ 〈{b}, {d}〉;
{{d, a}, {d, c}} −→ 〈{d}, {b}〉; {{b, d, a}, {b, d, c}} −→ 〈{b, d}, ∅〉.

and any X ∈ AS(U/EA) is represented by 〈X,−X〉.

Decreasing representation:

{{a}, {c}} −→ 〈{a, c}, ∅〉; {{b, a}, {b, c}} −→ 〈{a, b, c}, {b}〉;
{{d, a}, {d, c}} −→ 〈{a, c, d}, {d}〉; {{b, d, a}, {b, d, c}} −→ 〈U, {d, b}〉.

and any X ∈ AS(U/EAt) is represented by 〈X, X〉.

A second sub-problem is:

Problem 5.4.2. For any Approximation Space AS(U/E), determine
the internal empirical characteristics of the ordered pairs representing
a rough set.

More precisely, this problem is related to the previous discussion about
singleton and non singleton basic categories. If we assume the decreas-
ing representation we have to notice that not every pairs of elements
fulfilling the formal property (5.4.2) are legal. In other words, (5.4.2) is
a necessary but not sufficient condition for a pair to represent a rough
set of an Information System I.

5Other reasons supporting this choice can be found in the Frame section of Part
II. However, from a strictly mathematical point of view the disjoint representation
is to be preferred because it has more general applications – see Example 9.6.1 of
Section 9.6.
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In fact, as we already know, if an elementary class S is a singleton
then for any X ⊆ U , S is included either in (lE)(X) or in −(uE)(X).
Thus S belongs to (lE)(X) whenever S is included in (uE)(X). This
is the required general characteristic. It follows, for instance, that the
pair 〈S, ∅〉 it is not a legal one although it fulfills property 5.4.2, while,
for example, 〈S, S〉 is.

In the same case, if we assume the disjoint representation, we have
to discard, for instance, the pair 〈∅, ∅〉: indeed it enjoys property 5.4.3
but it is clear that the singleton S must necessarily be included either
in X1 or in X2, for any pair 〈X1,X2〉. Again 5.4.3 is only a necessary
condition.

The problem becomes thereafter:

Problem 5.4.3. For any Approximation Space AS(U/E) characterize
the set RS(U/E) within the family of elements of the Cartesian product
AS(U/E) × AS(U/E) which fulfill property (5.4.2) (or (5.4.3) if we
prefer the disjoint representation).

The solution of this problem will be given within the following more
general:

Problem 5.4.4. Determine if there is some logico-algebraic structure
behind Rough Sets Systems.

Example 5.4.2. Local validity in Rough Set Systems – 1
Let us consider the information system of Example 2.3. According to it, the pair
〈{a, b, c, d}, {a, c, d}〉 is not a legal rough set (in decreasing representation). In fact
if b ∈ (uEA)(X), for some X ⊆ U , then for some x ∈ X, 〈x, b〉 ∈ EA But since {b}
is a singleton we have 〈b, x〉 ∈ EA if and only if x = b, so that b ∈ X too. It follows
that {b} ⊆ X. Hence, {b} ⊆ (lEAt)(X) and b ∈ (lEAt)(X).

The union B of all the singletons is {b, d} and we have that for any x ∈ B, either
x ∈ (lEAt)(X) or x ∈ −(uEAt)(X). Otherwise stated, x ∈ (uEAt)(X) if and only if
x ∈ (lEAt)(X). This means that for any rough set 〈X1, X2〉, X1 ∩ B = X2 ∩B.

In disjoint representation, the above considerations lead to the fact that for any
X ⊆ U , for any rough set 〈X1, X2〉, X1 ∪X2 ⊇ B, i.e. (lEAt)(X) ∪ −(uEAt)(X) ⊇
{b, d}.

Let us depict the situation in Figures 5.1 and 5.2 below.
Given the universe U , a usual set X has a complement −X such that X ∪−X = U
(Figure 5.1 left). In an Approximation Space, on the contrary we have (lE)(X) ∪
−(uE)(X) ⊆ U (Figure 5.1 right). The intermediate area is the boundary of X.

But if the union B of all the singletons is not void (Figure 5.2 left), we have a
different situation: any subset B′ of B is a sub-body with it own complement −B′

as complementary body. Indeed, (lE)(B′) ∪ −(uE)(B′) = B ∪ B′ = B (Figure 5.2
right).
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Figure 5.1: An empty union B of singletons

Figure 5.2: A non-empty union B of singletons – subsets of B behave
as usual

5.5 Rough Set Systems, Local Validity,

and Logico-Algebraic Structures

Notwithstanding its “practical” motivations, Rough Set Theory hap-
pens to be able to model a number of logical systems.

Indeed, Rough Set Systems have many connections with Heyting
and bi-Heyting algebras, �Lukasiewicz algebras, Post algebras, Stone
algebras, Chain Based Lattices and P -algebras. In what follows we
provide the overall picture of these connections.

First of all we have to show that the language-oriented operations
provided by Logic are meaningful in Rough Set Systems. As a matter of
fact, this is partially true on the part of the operations “and” and “or”.

Indeed, let X,Y,Z be subsets of U . We have:

• Interpretation of the operation ∧: if rs(X)∧ rs(Y ) = rs(Z), then
Z is a maximal set in the class {X ′ ∩ Y ′ : rs(X ′) = rs(X) and

rs(Y ′) = rs(Y )}.

• Interpretation of the operation ∨: if rs(X)∨ rs(Y ) = rs(Z), then
Z is a minimal set in the class {X ′ ∪ Y ′ : rs(X ′) = rs(X) and

rs(Y ′) = rs(Y )}.
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It follows that rs distributes over ∨ just with respect to the upper
approximations and, dually, it distributes over ∧ just with respect to
the lower approximations (details later in the text). Hence, the two
binary connectives ∨ and ∧ make sense in defining a Rough Set Logic,
under the limitations of the above proviso.

Now, it is well known that the set B[n] = {〈a1, . . . , an−1〉 ∈ Bn−1 :
ai ≥ aj for i ≤ j}, where B is a Boolean algebra, is an example of
n-valued �Lukasiewicz algebra (see Boicescu et al. [1991]).

Thus AS(U/E)[3] is a three-valued �Lukasiewicz algebra.
From this consideration it follows that RS(U/E) is a substructure of

AS(U/E)[3] if we assume the decreasing representation.
On the side of the disjoint representation, if D is a finite distributive

lattice with least element ⊥, then the set K(D) = {〈a1, a2〉 ∈ D2 :
a1 ∧ a2 = ⊥} is an example of De Morgan algebra. In particular if D
is a finite Boolean algebra, then K(D) is a Post algebra of order three.
Since AS(U/E) is a Boolean algebra, from the above considerations it
follows that if we assume the disjoint representation, then RS(U/E) is
a substructure of the Post algebra of order three, K(AS(U/E)).

Our last problem can now be restated in the following way:

Problem 5.5.1. For any Approximation Space AS(U/E), character-
ize within AS(U/E)[3] and within K(AS(U/E)) the logical status of
the substructure RS(U/E) using only information-oriented parameters
depending on AS(U/E).

In this Part we shall start answering these questions by representing
RS(U/E) as a semi-simple Nelson algebra. We decide to start with
this interpretation for a couple of reasons. First, although David Nelson
introduced his systems in order to circumvent some non constructivistic
features of intuitionistic negation (in connection with Kleene’s notion
of “Recursive Realizability”), Nelson’s deep intuitive motivations can
be completely framed in our context:

“In general, an experimental verification of a statement consists of
an operation followed by an observation of a property. [. . . ] However,
if we have not observed the property, there remains an ambiguous sit-
uation insofar as the truth of a statement is concerned. The failure to
observe the property may be significant of the falsity of the statement
or may merely be an indication of some deficiency on the part of the
observer. [. . . ] In view of this ambiguity, it might be maintained that
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every significant observation must be an observation of some property
and further that the absence of a property P if it may be established
empirically at all, must be established by the observation of (another)
property N which is taken as a token for the absence of P .” (Nelson
[1959], page 208).

On the basis of these intuitions, in the quoted paper David Nelson
introduced a logical system named S, which makes it possible to distin-
guish concepts such as “from A a contradiction is provable” and “the
negation of A is established”, which are usually unified.

We call this difference the issue of “separation of concepts”, and we
record it by saying that in the former case the proof ends with a weak
form of negation, �α, and in the latter with a strong form of negation,
∼α. System S is strictly connected to semi-simple Nelson algebras, that
constitute a subvariety of the class of Nelson algebras, which in its turn
is connected with the system N introduced in Nelson [1949].6

The second reason to start with semi-simple Nelson algebras is the
fact that the duality theory of these algebras provides us with the
mathematical machinery that is needed in order to exhibit a rigor-
ous characterization of RS(U/E). The main result of this approach is
that for any Approximation Space AS(U/E) the Rough Set System
RS(U/E) can be made into a finite semi-simple Nelson algebra, which
is precisely definable by means of the parameter B (viz. the union of
all the singleton elementary classes) that was discussed in the previous
subsections. We shall use B for filtering RS(U/E) out of AS(U/E)[3]

and K(AS(U/E)).
This use of B will be completely framed within the theory of

Grothendieck Topologies, because it will be based on the notion of
“local validity”, as has been anticipated.

These Nelson algebras will be proved to be equipped with a pseudo-
complementation, ¬, which, in fact, can be defined by means of the
weak negation �and the strong negation ∼.

6One of the principal differences between N and S is that in S we have just
a restricted form of thinning, namely α,α,α�β

α,α�β
. As always happens, restrictions on

structural rules make formerly unified logical meanings split. The above restricted
form of thinning is shared also by three-valued �Lukasiewicz logic which may be
defined by consistently extending S by means of the axiom α ≡∼ α, for a suitable
formula α (cf. the discussion below about the connection between semi-simple Nelson
algebras and three-valued �Lukasiewicz algebras, and about central elements).
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What is the rough set interpretation of these negations?

• Strong negation “∼”: we have ∼rs(X) = rs(−X), so that the
strong negation of a rough set equals the rough set of its set-
theoretical complement. In other words, the strong negation faith-
fully represents the set-theoretical complement at the rough set
level.

• Pseudo-complementation “¬”: if ¬rs(X) = rs(Y ), then Y is the
greatest definable set disjoint from (uE)(X).

• Weak negation “ �”: if �rs(X) = rs(Y ), then Y is the greatest
definable set disjoint from (lE)(X).

Thus negations have a straightforward meaning in Rough Set Systems.
Moreover, the above algebraic structures may also be regarded as

bi-Heyting algebras. More precisely, on can show that the operator �

is the pseudo-complementation in the co-Heyting algebra RS(U/E)op

that is obtained by reversing the order, thus swapping ∧ and ∨, 1 and
0 (and defining a dual relative pseudo-complementation). Therefore in
RS(U/E), if we set 1 = 〈U,U〉 and 0 = 〈∅, ∅〉 we have, for any a:

a ∨ ¬a ≤ 1, a ∧ ¬a = 0;
a ∨ �a = 1, a ∧ �a ≥ 0;
a∨ ∼ a ≤ 1, a∧ ∼ a ≥ 0.

These failures of the laws of contradiction and excluded middle, have
an immediate informational interpretation, displayed by the following
symmetries, for a = 〈(uE)(X), (lE)(X)〉:

a ∨ ¬a = 〈U,−B(X)〉 = a∨ ∼ a

a ∧ �a = 〈B(X), ∅〉 = a∧ ∼ a.

So, it is absolutely evident that the lack of the classical principles is due
to the presence of the doubtful boundary region: the excluded middle
and the law of contradiction are valid up to the presence of a non-empty
boundary. Indeed, if B(X) = ∅, then 〈U,−B(X)〉 = 〈U,U〉, which is the
top element, while 〈B(X), ∅〉 = 〈∅, ∅〉, which is the bottom element.

Particular attention is given to the logico-algebraic characterization
of definable sets. It is possible to define, by means of the weak negation
and the pseudo-complementation, two operators ��and ¬¬. These
operators project any rough set X onto particular exact elements, that
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is elements 〈X1,X2〉 such that X1 = X2 (assuming X to be in decreas-
ing representation). More precisely, ¬¬ is a possibility operator , while��is a necessity modalizator.

The interpretation in Rough Set Theory of these modalities is:

• “Possibility” operator: if ¬¬rs(X) = rs(Y ), then Y is the least
definable set containing X. That is, ¬¬rs(X) = rs((uE)(X));

• “Necessity” operator: if ��rs(X) = rs(Y ), then Y is the greatest
definable set included in X. That is, ��rs(X) = rs((lE)(X)).

As it will more detailed in Frame 10.12.4, it is worth mentioning that
the operation �was exploited in Lawvere [1982] to give a logical account
for the notions of a “boundary”, “essential core of a body” and “sub-
body” or “body”, in the context of Continuum Physics. If we compare
our terminology with Lawvere’s, we can observe that the notion of
“essential core of a body” corresponds to our “maximal internal body”.
In our terminology, however, a “body” is so if it coincides with its own
essential core, that is to say if it is a regular element.7

It is clear that, because of their atomicity, singleton elementary
classes are sub-bodies that either belong to X or to its complemen-
tary figure ¬X, for any given subspace X of the universe of discourse.
Otherwise stated, B ⊆ X ∪ ¬X. There is no notion of a boundary
involving B: any point which can be isolated by an elementary class,
cannot belong to any boundary. It follows that for all a ∈ RS(U/E) we
have a∨¬a = 〈U,−B(X)〉 ≥ 〈U,B〉 and a∧ �a = 〈B(X), ∅〉 ≤ 〈−B, ∅〉,
so that the law of excluded middle and the law of contradiction are
valid with respect to the subspace B.

At this point, Grothendieck topologies display their power, as we
shall see in Chapter 7. Indeed, our use of Grothendieck topologies has
the objective to formally render, from a mathematical point of view,
that in a part of our universe we have to apply Classical Logic, while
in the remaining part we have to apply a three-valued Logic. Roughly
speaking, given the family G of open sets of a Grothendieck topology
over a universe U , we say that a property P is locally valid on a set X ⊆
U , if its domain of validity, �P�, has a large enough intersection with
X, where the meaning of “large enough” is given by the topology G;

7Therefore, we are not able to distinguish between a body and its essential core,
while we can distinguish the maximal internal body within a generic set (or pre-
figure). As a matter of fact, our topology is coarser than Lawvere’s.
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namely, if �P� ∩ X ∈ G. So we shall define a suitable Grothendieck
topology GB on AS(U/E)[3], depending on the parameter B, such
that the disjunction a ∨ �a is absolutely valid while a ∨ ¬a is greater
than or equal to the local top element 〈U,B〉 (i.e. the transformation via
GB of the absolute top element 〈U,U〉) and the conjunction a ∧ ¬a is
absolutely invalid, while a∧ �a is less than or equal to the local bottom
element 〈−B, ∅〉 (i.e. the transformation via GB of the absolute bottom
element 〈∅, ∅〉).

Hence Grothendieck topologies will code the fact that both excluded
middle and the law of contradiction are locally valid with respect to
the sub-universe B, according to the picture of Figure 5.3.

Figure 5.3: Local and global elements

Example 5.5.1. Local validity in Rough Set Systems – 2
Negations and boundaries:
Given a rough set x = 〈X1, X2〉 (in decr. repr.), ∼ x = 〈−X2,−X1〉 = 〈−(lE)(X),
−(uE)(X)〉 that is the rough set of −X.

�

x = 〈−X2,−X2〉 = 〈−(uE)(X),
−(uE)(X)〉 that is the rough set of (uE)(−X) (of −(lE)(X)). ¬x = 〈−X1,−X1〉 =
〈−(lE)(X),−(lE)(X)〉, that is the rough set of (lE)(−X) (of −(uE)(X)). If y =
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〈Y1, Y2〉, we define x ∧ y and x ∨ y point-wise:

x ∧ y = 〈X1 ∩ Y1, X2 ∩ Y2〉, x ∨ y = 〈X1 ∪ Y1, X2 ∪ Y2〉

(for all these operations see Window 7.1).
In the information system of Example 2.3, we have for instance that if a =

〈{a, c, b},
{b}〉 then a∧ ∼ a = 〈{a, c, b}, {b}〉 ∧ 〈{a, c, d}, {d}〉 = 〈{a, c}, ∅〉. Now, 〈{a, c, b}, {b}〉
represents the rough set {{a, b}, {c, b}}. Let us consider, for instance, {a, b}. The
boundary B({a, b}) is {a, b, c} ∩ −{b} = {a, c}. It follows that a∧ ∼ a = 〈B({a, b}),∅〉.
Hence ¬(a∧ ∼ a) = ¬(a ∧ �

a) = 〈−B({a, b}),−B({a, b})〉 = 〈{a, c}, {a, c}〉.
On the contrary, a∨ ∼ a = 〈{a, b, c, d}, {b, d}〉 = 〈U,−B({a, b})〉, so that

�

(a∨ ∼
a) =

�

(a ∨ ¬a) = 〈− − B({a, b}),−− B({a, b})〉 = 〈B({a, b}),B({a, b})〉.

Local Validity:
Let us consider again the rough set a = 〈{a, c, b}, {b}〉. Then a∨¬a = 〈{a, c, b}, {b}〉∨
〈{d}, {d}〉 = 〈U, {b, d}〉 = 〈U,B〉. However, if we take the illegal pair a′ = 〈{a, c, b},
∅〉, then a′ ∨ ¬a′ = 〈U, {d}〉 � 〈U, B〉. So the property x ∨ ¬x � 〈U, B〉 reflects our
constraint on the admissible forms of rough sets with decreasing representation.

On the other side, a ∧ �

a = a ∧ 〈{c, d}, {c, d}〉 = 〈{c}, ∅〉 ≤ 〈−B, ∅〉. Again,
a′∧ �

a′ = a′∧〈U, U〉 = a′ � 〈−B, ∅〉. Henceforth, also the property x∧¬x 
 〈−B, ∅〉
testifies for the legality of x.

Once we have accomplished this logico-algebraic interpretation of
Rough Set Systems, we can exploit well-known relationships between
the class of semi-simple Nelson algebras and the class of three-valued
�Lukasiewicz algebras in order to move from Nelson’s philosophical issues
concerning the separation of concepts to the standpoint of Multi-Valued
Logics. It will be proved that for any Approximation Space AS(U/E)
the Rough Set System RS(U/E) is a finite three-valued �Lukasiewicz
algebra. In this framework the projection operators correspond to the
two endomorphisms provided by these algebras.

The logical status of the intermediate value in these algebras is
worth being discussed.

Generally, three-valued �Lukasiewicz algebras lack the presence of a
central element. An element x is called central if ∼x = x. One can
prove that in RS(U/E), qua three-valued �Lukasiewicz algebra, there
is at most one central element. Now we show that there is a central
element only if there are not singleton elementary categories. In fact,
we know that in this case we have at least two undefinable sets whose
corresponding rough set is 〈U, ∅〉 (by definition of “undefinable set”,
the closure of these sets is the entire universe, while their interior is
empty). It happens that ∼〈U, ∅〉 = 〈U, ∅〉.
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Moreover, in this specific case RS(U/E) can be made into a Post
algebra of order three, characterized by the three-element chain

〈∅, ∅〉 ≤ 〈U, ∅〉 ≤ 〈U,U〉.

However, in general we do not have such a central element because
B �= ∅. In this case is it impossible to define an algebraic structure
exhibiting a three-element chain of values, in full generality? It is pos-
sible, if we conceive, once more, the concept of an intermediate value
in a relative manner, not in an absolute one. This means that the
property “to be an intermediate element” must be given a local, or
relative, meaning exactly as the notion of a “rough set” was given,
exploiting the Grothendieck topology GB , a meaning relative to the
sub-universe B of the exact pieces of information. In this way we enter
the realm of the generalizations of Post algebras called Chain Based
Lattices investigated by Epstein and Horn.

Particularly, we shall see that for any Approximation Space
AS(U/E), the Rough Set System RS(U/E) is a P2 − lattice of order
three characterized by means of the parameter B. Under this interpre-
tation, the above local top element 〈U,B〉 and local bottom element
〈−B, ∅〉 play the role of intermediate and, respectively, co-intermediate
elements.

If we compare the fact that 〈U, ∅〉 means “totally undefinable” with
the local top and bottom elements, we find a meaningful reading for the
intermediate value of a Rough Set Systems qua P2-lattices: the worst
informational situation is 〈U,B〉 which means “totally undefined up
to B”.

So one can pass from an extreme situation when B = U , to an
opposite extreme situation when B = ∅, through an intermediate one
when U �= B �= ∅. In the first case 〈U,B〉 = 〈U,U〉 = ∼〈∅, ∅〉 = 〈−B, ∅〉.
In the second 〈U,U〉 �= 〈U,B〉 = 〈−B, ∅〉 �= 〈∅, ∅〉. In the intermediate
case 〈U,U〉 �= 〈U,B〉 �= 〈−B, ∅〉 �= 〈∅, ∅〉.

We illustrate these situations in Figure 5.4 below.
Moreover we shall show that the pseudo-supplementation and the dual
pseudo-supplementation which are definable in P2-lattices play the same
roles as the projection operators in semi-simple Nelson algebras and the
two endomorphisms in �Lukasiewicz three valued algebras.

It will also be proved that any finite semi-simple Nelson algebra,
three-valued �Lukasiewicz algebra, Post algebra of order-three or
P2−lattice of order three, is isomorphic to the rough sets system induced
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Figure 5.4: Three-valued lattices connected with Rough Set Systems

by some Approximation Space AS(U/E). More importantly, we shall
exhibit a logico-algebraic decomposition of the structure of Rough
Sets Systems (hence of semi-simple Nelson algebras, three-valued
�Lukasiewicz algebras, Post algebra or P2−lattices of order three), based
on the distinction between locally exact (or Boolean) part and locally
inexact (or Postean) part of an Information System.
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The first section of the Part will run as follows.

• We formally define the sets B and P and explain why they induce
local logical behaviours in an Approximation Space.

• We introduce the mathematical notions of a “Grothendieck Topol-
ogy” and a “Lawvere-Tierney operator”, underlining their suit-
ability for managing the notion “to be locally valid”.

• The set B and its dual P will be exploited as information-
dependent logico-topological parameters in order to define a
Grothendieck topology for identifying RS(U/E) within the set
of all the ordered pairs of decreasing elements of AS(U/E).

• Via two Lawvere-Tierney operators, defined by means of B and
P and inherited from the previous step, we shall define two modal
operators M and L in RS(U/E) that parallel the upper and the
lower approximations, respectively. We shall see that M is an
example of a closure operator induced by a well-known
Grothendieck topology, namely the dense topology on the dual
space of RS(U/E) qua Heyting algebra while L is the closure
operator induced by the dense topology on the dual space of the
opposite Heyting algebra RS(U/E)op.

• Using the above machinery we shall be able to show when and
how a Rough Set System can be made into a Boolean algebra, a
�Lukasiewicz algebra, a Post algebra, a P2-lattice, a P -algebra or
a Nelson algebra. We shall see the roles played in these construc-
tions by the notions of a “central element” and an “intermediate
value”, and the knowledge-oriented content that they are given
in our setting.

• Finally by means of two additional Lawvere-Tierney operators
based on the parameters P and B, we define a couple of new
Grothendieck closure operators which make it possible to dis-
cover the double local logical nature of the above algebraic struc-
tures: the Post-like one (related to the inexact information of
a knowledge system) and the Boolean one (related to its exact
information).

In the second section of the Part the above results will be linked
with an analysis of the notion of a “constructive logical system”, by
discussing the following points:
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• The difference between the “truth-oriented” and the “knowledge-
oriented” approaches in Logic.

• Why a knowledge-oriented approach leads us to the rejection of
some classical principles and the assumption of new principles
such as explicit definability (any derivable existential sentence
must be explicitly instantiated by a closed term) and the dis-
junction principle (a disjunction is provable if at least one disjoint
sentence is explicitly derivable). These principles define what are
usually accepted as “constructive systems”.

• The limits of this understanding of a “constructive system” and
their relations with the classical definition of the concept of
“knowledge”.

• What is hidden in the knowledge-oriented approach. More pre-
cisely the difference between the logical status of atomic and
non-atomic sentences.

• As a consequence the need to make classical and constructive
systems coexist either by endowing constructive systems with
well-suited classical principles or by adopting “context opera-
tors” which are able to identify the logical environment of a
sentence, either classical or constructive, thus making the logical
understanding of a sentence explicit.

To conclude, we shall record two notable conclusions:

R1 The “context operators” are the starting points of an approach
to study maximal constructive logics, that is, constructive logics
embedding a maximal amount of classical principles, in the sense
that they cannot be augmented with any new principle without
making them collapse into a non constructive system.

R2 The “context operators” are tightly connected with the Lawvere-
Tierney operators which we use to formalise the notion of “local
validity” and to define Rough Set Systems, both from a philo-
sophical and a technical point of view.



Chapter 6

Basic Logico-Algebraic
Structures

In order to appreciate the polymorphism of Rough Set Systems the
essential ideas and notions of the logico-algebraic structures we shall
deal with will be introduced.

In Mathematical toolkit 16.3 the reader will find the basic princi-
ples of bounded lattices. Moreover, all the algebraic structures needed
are not only bounded lattices, but finite distributive bounded lattices,
that is, finite structures D = 〈A,∨,∧, 0, 1〉 such that the following
distributive properties hold:

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) (6.0.1)

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) (6.0.2)

Remarks. The restriction to finite structures is not a limitation when we

have to deal with practically given Rough Set Systems. This consideration

lies behind our choice to focus on finite algebras. However, in general the

results which will follow do not require finiteness. Anyway, we shall indicate

when the finiteness assumption is essential to prove a result.

Among bounded distributive lattices Heyting algebras play a pro-
minent role.

193
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6.1 Heyting Algebras

Heyting algebras aim at modeling Intuitionistic Logic. In contrast to
Classical Logic which maintains that given a formula α the negation ∼α
is conceptually the complement of α, so that α∨ ∼ α holds true, Intu-
itionism maintains that the negation of α holds whenever any attempt
to prove α implies a contradiction. In turn, a formula α implies a
formula β if one can transform any proof of α into a proof of β.

With a questionable abuse, in Intuitionistic Logic the set of proofs
for a formula α is usually identified with α itself.

Indeed this shift can been contested in various degrees. At the very beginning of
constructive researches, the Russian mathematician A. Kolmogorov intended a
formula as a problem and Yu. T. Medvedev made this idea explicit by claiming
that a formula has a meaning only if coupled with its set of admissible solutions.
In the last decade of the XX century Linear logicians advocated that the original
Intuitionistic spirit leads to a “proof semantics” instead of a “formula semantics”.
Synthesizing, in a sense, the two approaches, P. A. Miglioli introduced the Evalu-
ation Form Semantics, in which each formula α is interpreted by means of the set
of proofs ending with α. These issues will be discussed in the second section of
the Part, where, moreover, we shall see that they lead to a logical setting which
is fully shared by Rough Set Theory.

However, in what follows we start with the “formula semantics” approach.

The provability of a formula β from α, α # β, is read, via the
“deduction theorem” as # α −→ β. In lattices, α # β is modeled by the
relation �α� ≤ �β�, where �x� is the interpretation of formula x in the
given lattice. Moreover, for any element w of the lattice, w ≤ �β� means
that β is valid at w. Thus we have that �α −→ β� is the largest ele-
ment w of the lattice such that w∧ �α� ≤ �β�. Indeed, if this inequality
holds, either both α and β are valid at w, or β is already valid with-
out the assistance of α, so that β keeps holding true if we add α to
the premises. Of course, one may question whether this addition is a
faithful interpretation of the intended meaning of intuitionistic impli-
cation, even within the formula semantics approach.1 However, this is
the interpretation embedded in Heyting algebras in which, therefore, for
any a, b ∈ A there must be an element a =⇒ b such that the following

1Clearly this immaterial transformation of a superfluous proof of α into an
already given proof of β is not acceptable if we think that any “transformation” must
involve some relevant connection between the two sides of the move. For instance,

Relevance Logics do not admit unlimited instances of the weakening rule
Γ�β

α,Γ�β ,

which corresponds to the questionable maneuvers we are discussing.
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relation holds, for any c ∈ A:

c ∧ a ≤ b iff c ≤ a =⇒ b (6.1.3)

which states, indeed, that a =⇒ b is the largest element w such that
w ∧ a ≤ b.

The element a =⇒ b is called the pseudo-complement of a relative
to b. It follows that if we model any contradiction with the bottom
element of the algebra, 0, then the negation will be defined as

¬a = a =⇒ 0 (6.1.4)

The element ¬a is called the pseudo-complement of a.
Thus we eventually arrive at the following definition:

Definition 6.1.1 (Heyting algebras). H = 〈A,∧,∨,=⇒,¬, 0, 1〉 is
called a Heyting algebra if it is a bounded lattice such that the operation
=⇒ fulfills the relation (6.1.3).

Notice that we are not required to explicitly assume that H is dis-
tributive. Indeed let us make the binary operations ∧ and =⇒ into
two families of unary operations {∧x}x∈A and {=⇒x}x∈A, respectively
(in other words, we parameterize ∧ and =⇒ with the elements of the
algebra). Then, from (6.1.3) we have, for any a, b, c ∈ A:

∧a(c) ≤ b iff c ≤=⇒a (b) (6.1.5)

At this point the reader has already recognized that (6.1.5) defines a
Galois adjunction ∧ � =⇒ on H. In fact, =⇒ is upper adjoint to ∧.
Therefore, ∧ preserves joints, qua lower adjoint, so that H must be a
distributive lattice (cf. Lemma 1.4.2) of Chapter 1.

Remarks. The parameterizations above are instances of Currying – after

the logician H. Curry – that is, the technique to transform a binary function

f(x, y) into a unary function f ′ which takes as input the first argument, x,

and returns a new function f ′′ which takes as input the second argument,

y, and returns the required result.

Any finite distributive lattice is a Heyting algebra, in fact we can set:

a =⇒ b =
∨

{x : x ∧ a ≤ b} (6.1.6)
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Heyting algebras feature important properties. For instance the pseudo-
complement of a is not necessarily the complement of a. Indeed we have
that a∨¬a ≤ 1, so that the Excluded Middle does not hold in Heyting
algebras (just as it does not hold in Intuitionistic Logic). It follows that,
in general, a ∨ b = 1 only if a = 1 or b = 1, which models the so-called
disjunction property (see below Chapter 9). However a∧¬a = 0, so that
the Law of Contradiction still holds. Moreover, in any Heyting algebra
we have:

a ≤ ¬¬a (6.1.7)

Hence ¬¬a =⇒ a ≤ 1, so that deducing a contradiction from the
assumption that a formula α is false, does not amount to a proof of
α itself (although it may be a useful information2). Anyway, ¬0 = 1
and ¬1 = 0 so that if applied to the top and bottom elements ¬ is
involutive (i.e. ¬¬x = x).

In Heyting algebras the first De Morgan law holds:

¬(a ∨ b) = ¬a ∧ ¬b (6.1.8)

However one can prove that the second De Morgan rule

¬(a ∧ b) = ¬a ∨ ¬b (6.1.9)

does not hold (in fact, if 6.1.9 held, then since a ∧ ¬a = 0, we would
obtain a weak form of Excluded Middle, namely ¬a ∨ ¬¬a = 1).
Actually in Heyting algebras the second De Morgan law is weakened to

¬(a ∧ b) ≥ ¬a ∨ ¬b (6.1.10)

Definition 6.1.2. A Boolean algebra is a Heyting H algebra s.t.
∀a ∈ A,

a ∨ ¬a = 1 (6.1.11)

In Heyting algebras there are two kinds of notable elements, which will
play important roles in our analysis:

2It says that trying to prove α is not a desperate attempt.
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Definition 6.1.3. Let x be an element of a Heyting algebra H, then

1. x is said to be dense iff ¬x = 0 (iff ¬¬x = 1).

2. x is said to be regular iff ¬¬x = x.

If Hop is a Heyting algebra, too (which always happens if H is finite)
then we can define a dual relative pseudo-complementation, as the
relative pseudo-complementation in Hop:

Definition 6.1.4 (Lower adjoint to join). Given a lattice L = 〈A,∧,∨,
0, 1〉, let us set ∀a, b, x ∈ A,

(i) a ∨ x ≥ b if and only if x ≥ a⇐= b; (ii) �a = a⇐= 1.

Then a ⇐= b, if it exists, is the smallest element x of A such that
a ∨ x is greater than or equal to b, while �a is called the dual pseudo-
complement (or co-intuitionistic negation) of a and it is the smallest
element x of A such that a ∨ x = 1.

The operator �will be a pillar of our algebraic construction of Rough
Set Systems.

Definition 6.1.5 (Co-Heyting algebras). If for any a, b ∈ A, a ⇐= b

is defined, then 〈A,∨,∧,⇐=, �, 0, 1〉 is called a co-Heyting algebra.

Definition 6.1.6 (Bi-Heyting algebras). A bi-Heyting algebra is a
bounded distributive lattice which is both a Heyting and a co-Heyting
algebra.

Example 6.1.1. Heyting algebras
Below we depict a Heyting algebra A. We shall use this algebra in a number of
subsequent examples.

A

1

e

� �
c d

� � �
a b

� �
0

In the Heyting algebra A the pseudo-complement of b relative to a is c, that is,
b =⇒ a = c. Indeed, the set of elements x such that x ∧ b ≤ a is {0, a, c}, and c is
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the largest in such set. Obviously, if x ≤ y then x =⇒ y = 1. The element c happens
to be the pseudo-complement ¬b, too. In fact it is the largest element whose meet
with b is 0. One can verify that ¬a = b so that a ≤ ¬¬a = ¬b = c. A is also a
co-Heyting algebra. Suffice it to reverse the lattice upside-down. We can verify that
in A, c ⇐= d = b, which is c =⇒ d in Aop. However, notice that for each element
of Aop distinct from 1, the pseudo complement is 1. Thus for each element x �= 1 of
A,

�

x = 1. On the contrary,

�

1 = 0.

6.2 Nelson Algebras

The failure of (6.1.9) implies that we can prove that a conjunction
is false without being able to exhibit which formula is actually false.
To circumvent this draw-back Nelson algebras were introduced – after
David Nelson’s logical work (see previous Chapter for Nelson’s logical
account). Nelson algebras feature a strong form of negation, ∼, such
that the first De Morgan rule holds as well as the involution property:

∼∼ a = a (6.2.12)

From (6.1.8) and (6.2.12) we immediately obtain the second De Morgan
rule:

∼ a∨ ∼ b =∼∼ (∼ a∨ ∼ b) =∼ (∼∼ a∧ ∼∼ b) =∼ (a ∧ b).

The properties about negation so far collected lead to an interme-
diate kind of lattices:

Definition 6.2.1 (De Morgan lattices). A De Morgan lattice is a
bounded distributive lattice D = 〈A,∧,∨,∼, 0, 1〉 in which (6.1.8), (6.1.9)
and (6.2.12) hold (putting “∼” instead of “¬” in the first two equa-
tions).

From the two De Morgan rules it follows that ∼1 = 0 and ∼0 = 1
(for instance, a∨ ∼ 0 =∼ (∼a ∧ 0) =∼ 0, any a, so that ∼0 is the top
element).

However, Excluded Middle as well as the Law of Contradiction fail
even for strong negated formulas. That is, a∨ ∼ a ≤ 1 and a∧ ∼ a ≥ 0.

For some elements, however, both principles hold. The family of
such elements is called the center, CT R(D) of the lattice D. Thus a
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center is the site where ∼ behaves as a Boolean complementation and
it is always not empty because at least 1 and 0 belong to it.3

Moreover, we also obtain the contraposition rule:

a ≤ b iff ∼ b ≤∼ a (6.2.13)

because if a ≤ b then a ∨ b = b, so that ∼b =∼ (a ∨ b) =∼ a∧ ∼ b, i.e.
∼b ≤∼ a.

Now we state another principle required to define Nelson algebras.
For all a, b ∈ A:

a∧ ∼ a ≤ b∨ ∼ b (6.2.14)

This principle tells us that we can have at most one element a such
that ∼a = a. Such an element is called, if any, central element (not to
be confused with the center of the algebra). If a lattice has a central
element, them it is called centered.

All this material makes it possible to define another intermediate
class of lattices:

Definition 6.2.2 (Kleene algebras). A De Morgan lattice K = 〈A,∧,∨,
∼, 0, 1〉 such that (6.2.14) holds, is called a Kleene algebra.

Moreover, in Nelson algebras, we have an implication which fulfills
the following weaker adjointness property with conjunction. For any
a, b, c ∈ A:

a ∧ c ≤∼ a ∨ b iff c ≤ a −→ b (6.2.15)

So notice, first of all, that ∼a is not defined as a −→ 0 and, secondly,
that −→ is a weaker form of implication than the intuitionistic =⇒,
and we call it weak relative pseudo-complementation or, shortly, weak
implication. In fact we have that a −→ b does not imply ∼b −→∼ a.
Therefore, if we set a $ b iff a −→ b = 1, then $ happens to be a
preorder so that it does not coincide with the partial order ≤ of the
lattice.

3More precisely, one should speak of a center with respect to a negation, “′”,
because the center of a lattice L is defined as the set {x : ∃x′(x∧x′ = 0 & x∨x′ =
1)}. However we shall see that any additional qualification is superfluous in the
lattices we are dealing with.
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Of course, in any De Morgan lattice we can define an implication
by cases a� b =∼ a ∨ b. This implication has nothing to do with the
weak implication. However, we can restate (6.2.15) as follows:

a −→ b = a =⇒ (a� b) (6.2.16)

where, =⇒ is a relative pseudo-complementation.
It follows that in those Kleene algebras in which the relative pseudo-

complementation of a relative to a � b is uniformly definable (surely
all finite algebras) we can also define a weak implication −→. But in
order to obtain Nelson algebras from this kind of Kleene algebras we
have to provide −→ with the additional property:

(a ∧ b) −→ c = a −→ (b −→ c),∀a, b, c ∈ A (6.2.17)

which, incidentally, is the logical form of the transformation of a func-
tion with two arguments, a and b, into two functions with one argument
each, i.e. Currying.

Definition 6.2.3 (Nelson algebras). A Kleene algebra N = 〈A,∧,∨,∼,
−→, 0, 1〉 such that (6.2.15) and (6.2.17) hold, is called a Nelson
algebra.

Relation (6.2.15) allows sufficient room to define another type of nega-
tion in Nelson algebras:

· �a = a −→ 0 (6.2.18)

For reasons that will be clear in a while, we call “· �” weak negation. In
view of (6.2.15) · �a is the largest element x such that x ∧ a ≤∼ a.

Definition 6.2.4 (Semi-simple Nelson algebras). A Nelson algebra N
is called semi-simple if and only if a ∨ · �a = 1, for any a ∈ A.

In view of Definition 6.1.4, · �is a dual pseudo-complementation, in
semi-simple Nelson algebras (in generic Nelson algebras this does not
hold). Therefore in these algebraic structures we shall adopt the symbol�instead of · �. But, whenever required to avoid confusion, we shall
eventually distinguish �and · �, also in semi-simple Nelson algebras.

Clearly, if a Nelson algebra is a Heyting algebra we have the relative
pseudo-complementation =⇒. Moreover, one can set an extensional
implication “�” as follows:

a� b = (a −→ b) ∧ (∼b −→∼ a) (6.2.19)
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Specifically, in Nelson algebras in which a pseudo-complementation
relative to 0 is defined for any element, we can set a pseudo-complemen-
tation “¬”.4

Let us now set in a Nelson algebra N, for all a, b:

a ⊃ b =∼ · �∼ a ∨ b ∨ ( · �a ∧ · �∼ b) (6.2.20)

¬· a = a ⊃ 0 =∼ · �∼ a (6.2.21)

Later on we shall prove that in semi-simple Nelson algebras ⊃ is a
relative pseudo-complementation and ¬· a pseudo-complementation.
Therefore, as above, in semi-simple Nelson algebras we shall denote ¬·
with ¬, if not otherwise stated to avoid risk of confusion. Nonetheless,
in order to keep track of the general distinction between these oper-
ations, we shall not denote ⊃ with =⇒. Thus we have the following
correspondence table:

Heyting/co-Heyting Nelson algebras Semi-simple Nelson
algebras algebras

=⇒ =⇒ ⊃
⊃ ⊃
−→ −→
� �

¬ ¬ ¬ or ¬·
¬· ¬ or ¬·� � �or · �

· � �or · �

We shall prove that in semi-simple Nelson algebras:

a ∧ ¬a = 0 ≤ a∧ ∼ a = a ∧ �a (6.2.22)

a ∨ �a = 1 ≥ a∨ ∼ a = a ∨ ¬a (6.2.23)

Hence the following holds:

¬a ≤∼ a ≤ �a (6.2.24)

But for some elements the three negations collapse. It can be shown
that if two of them coincide, then all three coincide and the site of the
elements a such that ∼ a = ¬a = �a is the center, CT R(N), of N.

4Actually this is the case of any finite Nelson algebra, because they are Heyting
algebras too. But there are infinite Nelson algebras which are not Heyting algebras
(see Frame 10.9.3). Nevertheless, the relative pseudo-complementation of a with
respect to a� b is defined for all elements a and b in a Nelson algebra. Obviously.
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Example 6.2.1. De Morgan, Kleene and Nelson algebras
We depict a De Morgan lattice M, a Kleene algebra C and a Nelson algebra D.

M

1

� �
a b

� �
0

C

1

�� ��
g h

�� �� ��
e f

�� �� ��

c d

�� �� ��
a b

�� ��

0
1

D

l

� �
h i

� � �
f g

� � �
d e

� � �
b c

� �
a

0

In the De Morgan lattice M we have ∼a = a, ∼b = b, ∼1 = 0 and ∼0 = 1. So
M has two central elements, a and b. For no definition of ∼, M could have just
one central element because, otherwise ∼ would not be involutive because for at
least one non-central element x we would have ∼∼ x �= x. Clearly, a∧ ∼ a = a and
b∨ ∼ b = b are incomparable in M so that property (6.2.14) does not hold.

In the Kleene lattice C the weak negation ∼x is the element which is symmetric
to x: ∼1 = 0,∼g = b,∼e = d,∼c = f and ∼a = h. There is no central element here.

C is a Heyting algebra (trivially, because it is finite), so that we can define a
relative pseudo-complementation =⇒. We can then adopt definition (6.2.16) to set a
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weak implication “−→”. However, this weak implication fails to fulfill the Currying
property (6.2.17). In fact, for instance, g −→ (f −→ c) = g −→ c = h, whereas
(g ∧ f) −→ c = 1. We leave the computation to the reader. Notice that g −→ c = h
while g =⇒ c = c.

In the Nelson lattice D the different negations are given by the following table:

1 a b d c f

∼ 0 l i g h e

·� 0 1 1 1 h e

·�·� 1 0 0 0 c h

¬· 0 l i c h c

¬· ¬· 1 0 0 h c h

From the above table we can compute the negations of any element. For instance,
from ·�f = e and ·�·�f = h, we deduce that ·�e = h. With the same method we
obtain ¬· e = f ; in fact, using ∼∼ x = x, we have ¬· e =∼ ·�∼ e =∼ ·�f =∼ e = f ,
and so on (eventually using ∼ ¬· ∼= ·�).

Let us compute an instance of weak relative pseudo-complementation: e −→ d,
on the basis of (6.2.15). We have that {x : x∧e ≤ (∼ e∨d)} = {x : x∧e ≤ (f∨d)} =
{x : x ∧ e ≤ f} = {h, f, d, b, a, 0}. The largest element of this set is h. Therefore
e −→ d = h.

Further, we can verify an instance of the Currying property of −→:
i −→ (e −→ d) = i −→ h = h = e −→ d = (i ∧ e) −→ d.

Since D is a finite distributive lattice, it is also a Heyting algebra. However,
the operation ⊃ defined in (6.2.20) does not coincide with the relative pseudo-
complementation =⇒ of D qua Heyting algebra. For instance, b ⊃ 0 = i while
b =⇒ 0 = 0 (of course, the weak relative pseudo-complementation −→ does not
coincides either with =⇒ or with ⊃: b −→ 0 = 1).

Finally, notice that c ∨ ·�c = c ∨ h = l � 1. It follows that D is not semi-simple.

6.3 N-Valued �Lukasiewicz Algebras

Semi-simple Nelson algebras are strongly linked to three-valued
�Lukasiewicz algebras. Hence this kind of multi-valued logico-algebraic
systems deserves to be introduced.

Definition 6.3.1. An n-valued �Lukasiewicz algebra, for n ≥ 2, is a
de Morgan lattice 〈A,∧,∨,∼, 0, 1〉 with n−1 unary operators φ1, φ2, ...,

φn−1 satisfying the following identities:

1. φi(x∨ y) = φi(x)∨φi(y); φi(x∧y) = φi(x)∧φi(y), 1 ≤ i ≤ n−1.

2. φi(x) ∧ φj(x) = φj(x), 1 ≤ i ≤ j ≤ n− 1.

3. φi(x)∨ ∼ φi(x) = 1; φi(x)∧ ∼ φi(x) = 0, 1 ≤ i ≤ n− 1.
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4. φi(∼x) =∼ φn−i(x), 1 ≤ i ≤ n− 1.

5. φi(φj(x)) = φj(x), 1 ≤ i, j ≤ n− 1.

6. x ∨ φ1(x) = φ1(x); x ∧ φn−1(x) = φn−1(x).

7. φi(0) = 0; φi(1) = 1, 1 ≤ i ≤ n− 1.

8. ∼x ∧ φn−1(x) = 0; ∼x ∨ φ1(x) = 1.

9. y ∧ (x∨ ∼ φi(x) ∨ φi+1(y)) = y, 1 ≤ i ≤ n− 2.

In �Lukasiewicz algebras one can define an upper adjoint to ∧, �, called
a Moisil residuation. In particular, if the algebra is three-valued the
definition is:

a � b = b∨ ∼ φ1(a) ∨ (∼φ2(a) ∧ φ1(b)) (6.3.25)

As to the relations between three-valued �Lukasiewicz algebras and
semi-simple Nelson algebras, we shall see that everything is based on
the fact that the operators φi are definable as double dual pseudo-
complementations or double pseudo-complementations.

6.4 Chain-Based Lattices

It is not difficult to exhibit Nelson algebras where some element cannot
be defined in terms of polynomial of other elements (think of a Nelson
algebra where 1 is co-prime).

But there are distributive lattices such that each element is a com-
bination of elements of the center and of another sublattice forming a
chain {0 = e0 ≤ e1 ≤ ... ≤ en−1 = 1}, called a chain base.

Prototypes of such lattices are Post algebras but they can be gener-
alised in different ways and these generalisations are given the collective
name Chain-based lattices. Post algebras and some Chain-based lattices
play a real important role in our discussion in that their fundamental
ingredients, a chain base and a centre, make it possible to represent the
polymorphism of Rough Set Systems.

Let us then introduce their features. A few of them will be left
unproven and the reader is addressed to the literature quoted in the
Frame section for further details.
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Here we mention some possible conditions on a bounded distributive
lattice L. In what follows, by CB(L) we denote the chain base of L, if
it exists.

Basically, the principles below regard the capability to generate all
the elements of a lattice by means of the chain and the center, the
shape of the chain and its position within the lattice, and the possibil-
ity to project the elements of the lattice (specifically the elements of
the chain) onto the center.

(cbl-1) Generation by chain and center. A first condition is about
the aforementioned possibility to recover any element of L by means of
elements forming a chain in L and elements of the center. Namely:

L is generated by B ∪ C where B is a Boolean subalgebra of CT R(L)
and C ⊆ CB(L).

Intuitively, any element x is identified by means of two co-ordinates,
CT R(L) and CB(L):

CT R(L)

� x

� CB(L)

�

�

(cbl-2) Projection onto the center. The second principle deals with
the existence of operations which projects each element onto the center
of the lattice. Namely:

For all x, y ∈ L, there is a greatest element e ∈ CT R(L) such that
e ∧ x ≤ y. Such e is denoted by x

c=⇒ y and it is called the pseudo-
supplement of x relative to y.

In particular !x = 1 c=⇒ x is called the pseudo-supplement of x and
by definition it is the largest element of the center, below x.
(cbl-3) Chaining with respect to the relative pseudo-comple-
mentation. This principle states that the chain behaves as chain also
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with respect to the order embedded in the relative pseudo-complementa-
tion. Namely:

ei+1 =⇒ ei = ei for all sequences 〈ei+1, ei〉 of elements of the chain
base.

(cbl-4) Existence of the pseudo-supplement for any element of
CB(L). !ei exists for any element ei of the chain base.
(cbl-5) Linearity with respect to the relative pseudo-comple-
mentation. For any x, y ∈ L, (x =⇒ y) ∨ (y =⇒ x) = 1.
(cbl-6) Linearity with respect to the relative pseudosupplemen-
tation. For any x, y ∈ L, (x c=⇒ y) ∨ (y c=⇒ x) = 1.
(cbl-7) Position of the chain base in the lattice. This principle is
about the position of the elements of the chain base with respect to the
bottom element: !en−2 = 0.

Now we list some algebraic structures that can be defined on the basis
of the above properties.5

Definition 6.4.1. If L satisfies (cbl-1), then it is called a P0− lattice.

Definition 6.4.2. A P0 − lattice which satisfies (cbl-3) and (cbl-4), is
called a P2 − lattice.

In a P2−lattices L any element x has a representation x =
∨n−1

i=1 (bi∧ei)
where ei ∈ CB(L) and bi ∈ CT R(L). If bi ≥ bi+1 for all i, then the
representation is called monotone. If bi ∧ bj = 0, for i �= j, then it is
called disjoint.6 Using these representations one can define a relative
pseudo-complementation �. It follows that any P2−lattice is a Heyting
algebra.7

It can be shown that for a lattice L to be a P2−lattice it is sufficient
to satisfy (cbl-1), to be pseudo-supplemented and to fulfill the following
additive property: !(x ∨ y) =!x∨!y.

5Actually, we list only the lattices we are interest in. For a more general analysis
we address the reader to the quoted literature.

6Hence, in this context the meaning of the terms “disjoint” and “monotone”
do not coincide with the terms “disjoint” and “decreasing” in the context of
representation of rough sets.

7For the interested reader, here is the definition: a � b = b∨
∨n−1

i=0 (bi∧ ci), where
a =
∨n−1

i=1 (bi ∧ ei) is a disjoint representation of a, b =
∨n−1

i=1 (ci ∧ ei) is a monotone
representation of b, c0 = 1 and, finally, b0 =

∧n−1
i=1 −bi, where “−” is the Boolean

complement in CT R(L).
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Definition 6.4.3. If L satisfies (cbl-2) and (cbl-6) then both L and
its dual Lop are Heyting algebras satisfying (cbl-2), (cbl-5) and (cbl-6).
Such a lattice is called a P-algebra.

In P-algebras, qua bi-Heyting algebras, we have both =⇒ and ⇐=. In
addition, we find the dual operations of c=⇒ and !. They are denoted by

c⇐= and ¡, respectively, and called the dual relative pseudo-supplementa-
tion and the dual pseudo-supplementation, respectively. Since ¡x =
0 c⇐= x, we have that ¡x is the smallest element of the center, above x.

It can be shown that any P2 − lattice is a P − algebra. Hence a
P2 − lattice can be equipped with the operator ¡. Vice-versa any P −
algebra fulfilling (cbl-1) is a P2 − lattice.

Definition 6.4.4. If L is a P2-lattice satisfying (cbl-7), then it is called
a Post-algebra.

From the above definitions, it follows that a Post algebra of order
n, for n ≥ 2, is a Heyting algebra with n nullary operations 0 =
e0, e1, ..., en−1 = 1, forming a chain base, and n − 1 unary operators
Di(x) = ei

c=⇒ x, for 1 ≤ i ≤ n − 1, satisfying the identities for
P2-lattices and (cbl-7).

The unary operations are analogous to those in �Lukasiewicz
algebras.

Notice that these projection operators will be massively used to
model the lower and the upper approximations of rough sets.

6.5 Relationships, Analogies and Differences
Between Structures

A number of relationships among the above structures are known in
logic and algebraic literature (cf. the Frame section). These relation-
ships while revealing certain analogies among the above systems, require
some deeper explanation. Actually, we have to notice the following
“strange facts”:

1. Any Post algebra of order n exhibits an n-element chain of values.

2. Any P2-lattice of order n is a principal ideal of a Post algebra of
order n.

3. Any P2-lattice of order n exhibits an n-element chain of values.
This sentence seems in contrast with the two previous statements.
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Indeed, if P is a Post algebra of order n, then its chain of values
is aligned upon the bottom element so that some of this values
will be surely excluded by any principal ideal of P (except the
non proper ideal ↓ 1).

4. In general a three-valued �Lukasiewicz algebra does not have a
three-element chain of values. We have a chain if and only if
the algebra is centered. In this case, the central element is the
intermediate value.

5. A finite P0-lattice of order three can be made into a P2-lattice
of order three and as such it can exhibit a three-element chain
of values, even if it is not centered. Since any finite P0-lattice of
order three is also a three-valued �Lukasiewicz algebra, at a first
sight we have a contradiction with the previous statement: what
about the intermediate value?

6. Any finite P0-lattice of order three is a semi-simple Nelson alge-
bra. But it is also a P−algebra and as such it has projection oper-
ators onto the center (as like as 3-valued �Lukasiewicz algebras),
though Nelson algebras do not have projection operators.

In the next Example we shall see how these “mysteries” are represented
from a formal point of view. After that we shall explain them in terms
of “information granules”.

Example 6.5.1. Semi-simple Nelson, �Lukasieicz and Chain-based
lattices

Here we show an example of semi-simple Nelson algebra, Chain-based lattices and
three-valued �Lukasiewicz algebras. Pay attention to the fact that the depicted lat-
tices serve as example of different kind of algebras, for a reason that will be crystal
clear in a few lines.

L1

1

�� ��
f g

�� �� �� ��
c d e

�� �� �� ��
a b

�� ��
0

L2

1

�� ��
c d

�� �� ��
a b

�� ��
0
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This is the table of the three negations in L1 and L2:

L1 0 a b c d e f g 1

∼ 1 g f e d c b a 0

·� 1 1 1 e 1 c e c 0

¬· 1 e c e 0 c 0 0 0

L2 0 a b c d 1

∼ 1 d c b a 0

·� 1 1 c b c 0

¬· 1 b c b 0 0

1. We leave as an easy exercise to verify that both L1 and L2 are Nelson alge-
bras. Moreover, by easy inspection of the tables, one can verify that for any
x, x∨ ·�x = 1. It follows that both L1 and L2 are semi-simple. For this reason
we shall adopt the notation

�

and ¬ instead of ·�and, respectively, ¬· .

Since they are finite distributive lattices they can also be made into Heyting
algebras. In this case the implication ⊃ defined in (6.2.20) coincides with the
relative pseudo-complementation =⇒, differently from the Nelson algebra D
of Example 6.2.1 which is not semi-simple. For instance, a ⊃ 0 =∼ �∼
a∨0∨(

�

a∧ �∼ 0) =∼ �

g∨(1∧ 0) =∼ c = e = a =⇒ 0. Anyway,−→ does not
correspond with ⊃ and =⇒. In fact, a −→ 0 = a =⇒ (∼a∨ 0) = a =⇒ g = 1.

The center of L1, CTR(L1), is {0, c, e, 1}, while CTR(L2) = {0, b, c, 1}. For
all these elements, x∧ ∼ x = 0 and x∨ ∼ x = 1 (easy inspection). Finally,
∼d = d, so that L1 is a centered algebra and d its central element. On the
contrary, there is no central element in L2.

2. L1 has a 3- elements chain of values 〈e0, e1, e2〉 provided by 〈0, d, 1〉. Further,
one can verify that !en−2 = 0. In fact, en−2 = d, so that !en−2 =!d = 1

c
=⇒

d =
∨
{x : x ∧ 1 ≤ d & x ∈ CTR(L1)} =

∨
{0} = 0.

Finally, D1(x) = e1
c

=⇒ x = d
c

=⇒ x so that one obtains the following
table:

0 a b c d e f g 1

D1 0 c e c 1 e 1 1 1

D2 0 0 0 c 0 e c e 1

Since it is also a Heyting algebra, we have verified that L1 can be made into
a Post algebra of order three.

3. Both L1 and L2 can be made into three-valued �Lukasiewicz algebras by
setting φ1 = D1 and φ2 = D2 in L1. As to L2:

0 a b c d 1

φ1 0 c b c 1 1

φ2 0 0 b c b 1

4. L1 and L2 are also P0−lattices. This is obvious for L1, because it is a Post
algebra. As for L2 consider that C = 〈0, a, 1〉 is a chain base. Let us see a
decreasing representation of the only element which is neither in the center
nor in the chain: d = (1∧ a)∨ (b∧ 1) (notice that the elements of the center,
1 and b, are in decreasing order). A disjoint representation of d is given by
(c ∧ a) ∨ (b ∧ 1).

5. However, the position of the chain base C prevents L2 to be a P2−lattice.
Indeed, although (cbl-4) of Section 6.4 is satisfied because !ei exists for any
element ei of the chain base (easy verification), nonetheless (cbl-3) does not
hold. In fact, we have a =⇒ 0 = b, so that e1 =⇒ e0 �= e0.
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However it can be made into a P2−lattice by setting e1 = d. In fact d =⇒
0 = 0. With this new chain, the element a (which now is neither in the chain
nor in the center) is represented as c ∧ d. The new intermediate value is the
least dense element of the lattice, because ¬¬d = ¬0 = 1 and the other dense
element is 1 (this move is justified in Frame 10.1).

Further, with this new chain the projection operators ! and ¡ coincide with
φ2 and, respectively, φ1. Moreover, the reader will easily notice that the oper-
ators D1 and φ1 coincide with the operator

��

, while D2 and φ2 coincide
with ¬¬. This does not happen by chance, as we shall prove in the text.

Here below we depict the application of the modal operators

��

= φ2 =
D2 =! and ¬¬ = φ1 = D1 =¡:

L1

1

��� �
f g

���
..... ...

.. �
c d

�

e

� ...
.. ..... ���

a b

� ���

1
	

L2

1

�� �
c d

� �� �
a b

� ��
0

� ���

φ1, D1,¬¬,¡

�

φ2, D2,

��

, !

��� �
	



Chapter 7

Local Validity,
Grothendieck Topologies
and Rough Sets

7.1 Representing Rough Sets

The first step is to represent rough sets. Thus, we now give the formal
definition of a rough set and the formal definition of the decreasing
representation of rough sets which was adopted in the Introduction.

Definition 7.1.1. Given an Indiscernibility Space 〈U,E〉,

1. Two sets X,Y ∈ ℘(U) are called rough top equal, X 0 Y , iff
(uE)(X) = (uE)(Y ).

2. Two sets X,Y ∈ ℘(U) are called rough bottom equal, X∼Y , iff
(lE)(X) = (lE)(Y ).

3. Two sets X,Y ∈ ℘(U) are called rough equal, X ≈ Y , iff X 0 Y

and X ∼Y .

4. A set X ∈ ℘(U) is called definable iff X = (lE)(X) = (uE)(X).

5. A set X ∈ ℘(U) is called undefinable iff (lE)(X) = ∅ and
(uE)(X) = U .

6. Any equivalence class of subsets of U modulo the relation ≈ is
called a rough set.

211
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We represent rough sets, with respect to an Indiscernibility Space
〈U,E〉 by means of ordered pairs of the form 〈(uE)(X), (lE)(X)〉, and
if there is no risk of confusion we shall call them rough sets tout-court.
Therefore, we define the following rough-set map:

Definition 7.1.2. Let 〈U,E〉 be an Indiscernibility Space and AS(U/E)
the Approximation Space induced by it. Then

1. rs : ℘(U) �−→ AS(U/E) × AS(U/E); rs(X) = 〈(uE)(X),
(lE)(X)〉, is called a rough-set map.

2. The image Imrs will be called the Rough Set System of the Indis-
cernibility Space 〈U,E〉 and denoted by RS(U/E).

By extension we say that two rough sets 〈A1, A2〉, 〈B1, B2〉 are top
equal, if and only if A1 = B1, bottom equal if and only if A2 = B2.
Since the context will make the meaning clear, we shall use for these
relations the same symbols “0” and, respectively, “∼”.

From the above definitions we have that any ordered pair 〈(uE)(X),
(lE)(X)〉 such that (uE)(X) = (lE)(X) is the image of an equivalence
class modulo E with exactly one element: X. In this case X is an
exactly definable set and rs(X) = 〈X,X〉.

Definition 7.1.3. Given an Indiscernibility Space 〈U,E〉, any rough
set of type 〈X,X〉, for X ⊆ U , is called an exact rough set.

Although this term may appear contradictory, it is meaningful and it
can be found elsewhere in literature (see, for instance, [Cleave, 1974]).

Obviously, for any X ∈ AS(U/E), rs(X) is an exact rough set.

7.1.1 Local Logical Behaviours in Rough Set Systems

Terminology and Notation

From now on we set a = 〈a1, a2〉, b = 〈b1, b2〉 and, in general, x = 〈x1, x2〉.
We shall use this notation also for generic rough sets, reserving capital Latin

letters, for instance X = 〈X1,X2〉, for specific subsets of the universe U or

when we want to stress the fact that the elements of a rough set are sets.

The context will clarify the level of abstraction we are referring to. More-

over, since the equivalence relation E will be always understood, we shall

avoid its reference in the notation of Approximation Spaces and Rough Set

Systems and we shall use AS(U) and RS(U), respectively. In any case,

we do not change the notation of upper and lower approximations.
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Since an Approximation Space is a Boolean algebra and Rough Sets
are ordered pairs of decreasing elements of this Boolean algebra, we
have to consider the logical operations which can be performed on
generic ordered pairs of decreasing elements of a generic Boolean alge-
bra A = 〈A,∨,∧,=⇒,¬, 1, 0〉, where for any a, b ∈ A, a =⇒ b = ¬a∨ b:

1. 1 = 〈1, 1〉 (top element).
2. 0 = 〈0, 0〉 (bottom element).
3. a ∨ b = 〈a1 ∨ b1, a2 ∨ b2〉 (meet).
4. a ∧ b = 〈a1 ∧ b1, a2 ∧ b2〉 (join).
5. a −→ b = 〈a2 =⇒ b1, a2 =⇒ b2〉 (weak implication).
6. ∼a = 〈¬a2,¬a1〉 (strong negation).
7. �a = 〈¬a2,¬a2〉 (weak negation).
8. a ⊃ b =∼ �∼ a ∨ b ∨ ( �a ∧ �∼ b) (intuitionistic implication).
9. ¬a =∼ �∼ a = 〈¬a1,¬a1〉 (intuitionistic negation),
where 1, 0,∧,∨,=⇒ and ¬ applied inside the ordered pairs are the
operations of the underlying Boolean algebra.
Definition: a ≤ b iff a ∨ b = b.
Facts (to be proved in Frame 10.5):
(a) a ∧ c ≤ b iff c ≤ a ⊃ b.
(b) a ≤ b iff a ∧ b = a, iff a −→ b =∼ b −→∼ a = 1, iff a ⊃ b = 1,

iff a1 ≤ b1 and a2 ≤ b2.
(c) ¬¬a = �∼ a; ��a =∼ �a; (d) ¬a = a ⊃ 0; �a = a −→ 0.
(e) ∼ ¬a = �∼ a;∼ �a = ¬ ∼ a.

Window 7.1. Operations on ordered pairs of decreasing ele-
ments of a Boolean algebra

It is not difficult to verify that any Rough Set System RS(U/E) is
closed under the operations listed in Window 7.1. Therefore, it is a
complete distributive lattice with top element 〈U,U〉 and bottom ele-
ment 〈∅, ∅〉. In any Rough Set System, 〈X,Y 〉 ≤ 〈X ′, Y ′〉 if and only if
X ⊆ X ′ and Y ⊆ Y ′.

However, before trying to understand what happens when we apply
the above operations to a Rough Set System RS(U), this system must
be exactly defined.

More precisely, we know that RS(U) is a subset of AS(U)×AS(U).
Then the first question is: how can we identify RS(U) within the above
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direct product (also denoted by A2)? An initial answer is given by the
following

Lemma 7.1.1. Given any Approximation Space AS(U), if 〈X,Y 〉 is
a rough set then X ⊇ Y .

Proof. Trivially, since for any X, (uE)(X) ⊇ (lE)(X). qed

It follows that RS(U) will be within two extreme systems that we
describe in general:

Definition 7.1.4. for any Boolean algebra A,
1. P(A) = {〈x1, x2〉 ∈ A2 : x1 ≥ x2}.
2. B(A) = {〈x1, x2〉 ∈ A2 : x1 = x2}.

Indeed we have:

B(AS(U)) ⊆ RS(U) ⊆ P(AS(U)) (7.1.1)

(in particular, from Definition 7.1.3, rs(AS(U)) = B(AS(U)). More-
over it is easy to show that any Boolean algebra A is representable in
the following isomorphic form:

B(A) = 〈B(A),∨,∧, �, 〈∅, ∅〉, 〈U,U〉〉. (7.1.2)

On the contrary, as we shall see, P(AS(U)) is a Post algebra of order
three. Hence we have the following information: first, exact rough sets
(that is, of type 〈X,X〉) form a Boolean algebra; second, this Boolean
algebra must be embedded in RS(U); third RS(U) is in between a Post
algebra of order three and a Boolean algebra.

In order to proceed we must consider closely the philosophy of the
theory. In fact, if we take it seriously, we have to distinguish two sorts
of elementary classes.

Definition 7.1.5. Let 〈U,E〉 be an Indiscernibility Space. We set:

(1) B∗ = {X ∈ U/E : card(X) = 1};
(2) P ∗ = {X ∈ U/E : card(X) ≥ 2};
(3) B =

⋃
B∗;

(4) P =
⋃
P ∗.

where card(X) denotes the cardinality of the set X.

The distinction between these sets is essential: indeed, given an ele-
mentary class X if X = {x}, for x ∈ U , then our information about its



7.1 Representing Rough Sets 215

unique element is perfect: X is a sort of fixed point in the knowledge
extraction process, in the sense that more information cannot be trans-
formed into a narrower analysis of X: its unique element x is completely
determined already.

On the other hand, if card(X) ≥ 2, then our information about its
elements is not complete. Therefore we can have some A ⊆ U such
that some but not all the elements of X are in A, so that neither X ⊆
(lE)(A) nor X ⊆ −(uE)(A). So X is included in (uE)(A) ∩−(lE)(A),
i.e. X is included in the doubtful region (or boundary in topological
terms) of the description of A via the information at our disposal.

This difference is immediately reflected in the behaviour of the
following generalized characteristic function χ:

χA(x) =

⎧
⎨

⎩

0 if x ∈ −(uE)(A)
δ if x ∈ (uE)(A) ∩ −(lE)(A)
1 if x ∈ (lE)(A)

If X = {x} ∈ U/E, then for all A ⊆ U , χA(x) takes value 0 or 1: {x}
cannot be part of any boundary and hence, for any singleton X, we
have:

X ⊆ (lE)(A) if and only if X ⊆ (uE)(A). (7.1.3)

Thus χ has a local Boolean behaviour on B and a local three-
valued behaviour on P .

Indeed, condition (7.1.3) is tantamount to

(lE)(A) ∩B = B ∩ (uE)(A), any A ⊆ U (7.1.4)

That is, the upper and lower approximations must locally (that is,
on B) coincide. But in view of Definition 7.1.3, this means that any
rough set is a classic rough set as to its B-part. So we start seeing that
describing rough sets uniformly by means of a generalized three-valued
characteristic function is only half of the job. If we forget the second
half we miss the target.

Therefore, in order to exhibit a well-founded mathematical expla-
nation of the algebraic mechanism we are required to describe, we need
some subtle notion able to define the concept

IT IS LOCALLY THE CASE THAT

in a formal setting.
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Terminology and Notation

Since U/E is the set of atoms of the Boolean algebra AS(U), we shall

denote it with atoms(AS(U)), too.

If S is a mathematical structure with carrier X, for instance an ordered

set P = 〈X,≤〉, whenever required we shall distinguish S from X. Thus

we shall write, for example, p ∈ X to denote an element p of S. However,

if there is no need for this distinction, we shall use the notation p ∈ S as

an equivalent expression.

7.2 Some Duality of Distributive Lattices

Before looking for a suitable mathematical tool, we must go through
a short excursus on duality theory of distributive lattices and Heyting
algebras.

Duality theorems state a “dialectic” relationships between two dif-
ferent classes of structures, in the sense that the members of one class
can be recovered from members of the dual class, and vice-versa, in a
“continuous way” that we are going to specify.

Typically the elements of one class are structurally simpler than
the other, and, for this reason, they receive also the name “spectral
spaces”.

The general schema of a duality is the following:

A′ φ � B′

A

h

�

�
η

B

g

	

which reads: Suppose A and A′ belong to a class A and B and B′

belong to a class B. Then, if A′ is dual to B′ and B′ is transformed into
B via a mapping g, then the dual of B is transformed, via h, into A′.
Otherwise stated, duality reflects the transformations which are typical
of a given classe in the other class.

In our framework, distributive lattices are dual to partially ordered
sets (eventually equipped with some additional features), transforma-
tions of distributive lattices are lattice {0, 1}-homomorphisms, and



7.2 Some Duality of Distributive Lattices 217

transformations of partially ordered sets are order preserving maps (and
any additional dual feature).

As a matter of fact the definition of “abstracts points” as “bundles
of properties”, described in the Introduction at Subsection 5.1, is such
a dual construction. Indeed, the partial order between abstract points
of a frame A of observed properties stocks sufficient information to
recover A itself.

Here, we sketch the fundamental points of the duality relations of
distributive lattices, in the finite case (which will be understood by
default). Notice, that they can be extended to the infinite case by
improving, in a sense, the topological component of the results we are
going to describe.

Any finite distributive lattice L = 〈L,≤〉 is dual to the partial
ordered set of its own co-prime elements J(L) = 〈J (L),
〉 , where
p 
 p′ only if p ≥ p′. Any partially ordered set P = 〈P,≤〉 is dual to the
lattice of its filters F(P) = 〈F (P),
〉, where for all ↑ A, ↑ B ∈ F (P),
↑ A 
↑ B if ↑ A ⊆↑ B, so that ↑ p 
↑ p′ whenever p′ ≤ p.

One can prove that if L is a finite distributive lattice then

L ∼=d F(J(L)) (7.2.5)

where ∼=d denotes the isomorphism between finite distributive lattices.
Conversely, if P is a partially ordered set, then

P ∼=p J(F(P)) (7.2.6)

where ∼=p denotes the isomorphisms between partially ordered sets.
The isomorphism (7.2.5) is given by the function φ described in

Section 5.1 of the Introduction which, we recall, for any a ∈ L is defined
as:

φ(a) = {p ∈ J (L) : p ≤ a} (7.2.7)

(notice that ≤ is the partial order of L). This isomorphism will be
understood for all duality results which will be stated from now on.

The direction of the ordering on J(L) or F(P) is by no means essen-
tial; we assume the above ordering to follow the usual preference of
logicians for thinking in terms of filters (truth) instead of ideals (falsity).

If we consider J(L) as a Kripke frame for Intuitionistic Logic, then
the monotonicity condition of the forcing clauses (cf. condition (mono-
tonicity) of Frame 4.13 of Part I) states that for any formula α its
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interpretation �α� in J(L) is a filter. Therefore F(J(L)) is the family
of possible validity domains of formulas.

Example 7.2.1. Duality for finite distributive lattices
Consider the Heyting algebra A of Example 6.1.1. For this algebra the duality
construction runs as follows.

a J(A)

c b

� �
1

{1, a, b, c}
F(J(A))

{a, b, c}
� �

{a, c} {a, b}
� � �
{a} {b}
� �

∅

{a} J(F(J(A)))

{a, c} {b}
� �
{1, a, b, c}

Thus, for instance φ(d) = {a, b} because a and b are the elements of J (A) below d
in A.

7.2.1 Duality for Heyting Algebras

Given a distributive lattice L of subsets of a universe U , we have
seen that L = F(S(L)), where S(L) is U preordered by the special-
ization preorder $ induced by L. Thus L is the Alexandrov Topology
on U induced by $ and can be equipped with the following operations,
besides ∩, ∪ and the complementation −:

(a) A =⇒ B = I(−A ∪B) (where I is the interior operator).
(b) ¬A = I(−A) = −C(A) (where C is the closure operator).

Indeed, −A ∪B is the largest subset X of U such that X ∩A ⊆ B, so
that its interior is the largest element of L with such property.

As we have shall see in Subsection 7.3.1, the definitions above explain
some terminology: for instance in the lattice L′ of the example of sub-
frame 10.3.1 below, the element {d, c} is dense, in topological terms,
since IC({d, c}) = {a, b, c, d} = 1. But {d, c} is dense also in logico-
algebraic terms (see Definition 6.1.3). In fact from (a) and (b), for any
X ∈ L′, IC(X) = −C− C(X) = ¬¬X.

Similarly we have that IC({d, c}) �= {d, c}. Thus {d, c} is regular
neither in topological nor in logico-algebraic terms. On the contrary
{c} is regular.
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Practically, in order to find the closure C(X) of a subset X ⊆ U

we have just to compute ↓� X in S(L). In turns, the interior I(X)
is the largest element of L included in X, and we can compute it by
exploiting either of the following relations:

x ∈ I(X) iff ∀x′(x $ x′ � x′ ∈ X); (7.2.8)

I(X) = −C(−X) = − ↓� (−X). (7.2.9)

In L′, for example, I({b, d, a}) =− ↓� (−{b, d, a}) =− ↓� {b′, c}=
− {b, b′, a, c} = {d}; C({c}) = ↓� {c}= {c, a}. Thus ¬{c}= − {c, a}
= {b, b′, d}.

Exercise 7.1. Prove that A =⇒ B = ¬(A ∩ −B).

This way we arrive at the following definition:

Definition 7.2.1. A finite Heyting space is a poset X = 〈X,≤〉. Given
a Heyting space X we can define its dual Heyting algebra H(X) in the
following way: H(X) = 〈F(X),∧,∨,=⇒,¬, 0, 1〉, where for any A,B ∈
F(X): (i) A =⇒ B = − ↓ (A ∩ −B); (ii) ¬A = A =⇒ ∅ = − ↓ A, (iii)
A ∧B = A ∩B, (iv) A ∨B = A ∪B, (v) 1 = X, (vi) 0 = ∅.

Conversely, given a finite Heyting algebra A = 〈A,∧,∨,=⇒,¬, 0, 1〉
we can obtain its dual Heyting space HS(A) by setting HS(A) = J(A).

We have that if A is a finite Heyting algebra and X is a finite
Heyting space, then A ∼=h H(HS(A)) and X ∼=p HS(H(X)), where
∼=h is the Heyting algebras isomorphism and ∼=p is the isomorphism
between posets.

7.3 Grothendieck Topologies

We ended Subsection 7.1.1 with a question: “Is there any mathematical
tool which is able to deal with the concept is locally the case that . . . ”?

Fortunately, we can find such a notion in a powerful mathematical
field: Grothendieck Topologies and their logico-algebraic interpretation
introduced by Lawvere and Tierney.
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Let O = 〈O,≤〉 be a preorder. We recall that for any X ⊆ O, the set
↑ X = {p ∈ O : ∃x ∈ X ∧ x ≤ p}, is called the order filter or sieve
generated by X.
In particular, for any p ∈ O, ↑ p = {p′ ∈ O : p ≤ p′} is called the
principal filter generated by p.
Let F(O) be the set of order filters over O, ordered by ⊆,
i.e. F(O) = 〈F (O),⊆〉.
A Grothendieck Topology maps any element p ∈ O to a particular
subset J[p] of the family F (↑ p) of order filters over the subpreorder
〈↑ p,≤p〉, where ≤p is the preorder induced by ≤ on ↑ p. More
precisely, a Grothendieck Topology is a map
j : O �−→ ℘(F (O)); j(p) = J[p] ⊆ F (↑ p) such that:

GT1. ↑ p ∈ J[p], ∀p ∈ O;
GT2. ↑ p′ ∩ S ∈ J[p′], ∀p′ ≥ p, ∀S ∈ J[p];
GT3. ∀p ∈ O, S ∈ J[p], S′ ⊆↑ p, for S′ ∈ F (O), if ∀p′ ∈ S, S′∩ ↑ p′
∈ J[p′] then S′ ∈ J[p].

If a filter S belongs to J[p], then we say that “S covers p”.
By extension we shall call the set
G = {J[p] : p ∈ O} a “Grothendieck Topology”, too;
The structure 〈O,≤,G〉 is called an ordered site.

Window 7.2. Grothendieck topologies (over preorders)

Axiom GT1 (identity) states that the principal filter ↑ p covers p.
Axiom GT2 (stability) states that the restriction of a cover of an object
p to a subfilter of p generated by p′, is a cover of p′.
Axiom GT3 (transitivity) states that subcovers of covers are again
covers.

Like any other topology, a Grothendieck topology G induces a closure
operator. In particular, given an ordered site, one can uniquely define
a Grothendieck closure operator, J , in the following way:

J : F (O) �−→ F (O);J(S) = {p : S ∩ ↑ p ∈ J[p]}, for J[p] ∈ G.

(7.3.10)

The formal properties of J are the following:

(i) J(X) ⊇ X; (ii) J(J(X)) = J(X); (7.3.11)

(iii) J(X ∩ Y ) = J(X) ∩ J(Y )
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Notice that J is multiplicative and not additive, differently from the
usual topological closure operators.

We address the reader’s attention to the fact that F(O) is a topology
in itself. Indeed it is the Alexandrov topology on O. Thus an element of
G is a family of open sets of a (usual) topology.

We want to emphasize the fact that Grothendieck topologies have
actually been introduced in order to grasp the notion “to be locally
valid”. Intuitively: given a universe U and a Grothendieck topology on
it, one can say that a property α is locally valid on a subset A of U , if
the domain of validity of α, �α�, has a large enough intersection with
A, where the meaning of “large enough”, as we are going to explain, is
provided by the Grothendieck topology we are working with.

7.3.1 A Fundamental Example: The Dense Topology

A well-known example of a Grothendieck topology is provided by the
dense topology over an intuitionistic Kripke model. We remind from
Frame 4.13 of Part I that a model of this type is a pair M = 〈W, |=〉,
where W = 〈W,≤〉. Remember that the intuitionistic forcing discipline
requires that the interpretation of any well formed formula α of an
intuitionistic language L is an order filter �α� of W, hence a member
of F (W). If w ∈ �p�, then we say that w forces the validity of p, w |= p:

∀w ∈W,∀α ∈ L, w |= α iff w ∈ �α�. (7.3.12)

Moreover, recall that:

w |= ¬α iff ∀w′ ≥ w,w′ �|= α. (7.3.13)

Now consider for any w ∈ W the set Jden
[w] of filters S of F (↑ w) that

are dense in ↑ w, that is to say, such that ∀w′ ≥ w,∃w′′ ≥ w′ such that
w′′ ∈ S. It is possible to prove that the family G = {Jden

[w] : w ∈ W} is
a Grothendieck topology. The domain of validity of a formula α, �α�,
is “large enough” with respect to a filter ↑ w, if �α�∩ ↑ w covers w in
the dense topology, that is, if {w′ ≥ w : w′ |= α} ∈ Jden

[w] . In this case

we say that α is locally valid at level w, denoted by w |= 〈l〉(α), with
respect to the dense topology. From (7.3.13) it is not difficult to obtain:

Proposition 7.3.1. For any formula α, for any intuitionistic Kripke
model M, for any w ∈W , w |= 〈l〉(α) if and only if w |= ¬¬α.
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The modal operator 〈l〉 is called a Lawvere’s local operator. As is well-
known, these operators algebraically correspond to particular closure
operators over Heyting algebras. In our case following (7.3.10) one can
define a Grothendieck closure operator Jden on F(W) and prove that
for any order filter S, Jden(S) = IC(S), where I and C are the interior
and, respectively, closure operators induced by F(W) qua Alexandrov
topology. In fact if ∃w′′ ≥ w′ such that w′′ ∈ S, then w′ ∈ C(S). If
this happens for all w′ ≥ w, since by transitivity w ∈ C(S) we obtain,
moreover, w ∈ IC(S) (otherwise stated, for no w′ ≥ w,w′ ∈ I(−S)).

Since from duality theory the set of order filters over any preorder is
a Heyting algebra, we can wonder whether Jden is an example of some
particular kind of operators on Heyting algebras. Indeed in the notion
of a Lawvere-Tierney operator we find the proper generalization, that
will be useful throughout this study:

Definition 7.3.1. Given a Heyting algebra H = 〈H,∨,∧,=⇒,¬, 0, 1〉,
a Lawvere-Tierney operator J on H is a map H �−→ H such that for
all a, b ∈ H:

(1) a ≤ J(a); (2) J(J(a)) = J(a); (3) J(a ∧ b) = J(a) ∧ J(b).

Any Lawvere-Tierney operator J induces an equivalence relation ≡J

on H in the following way: a ≡J b iff J(a) = J(b). By [a]≡J
, we denote

the equivalence class of a modulo ≡J . One can prove:

Proposition 7.3.2. For any Lawvere-Tierney operator J on a Heyting
algebra H,

(1) the relation ≡J is a congruence on H;
(2) For any a ∈ H, J(a) =

∨
[a]≡J

.

The set of fixed points of J is then

J(H) = {J(a) : a ∈ H} = {
∨

[a]≡J
: a ∈ H}.

Thus from this more abstract point of view, we have:

Proposition 7.3.3. For any Heyting algebra H, ¬¬ : H �−→ H is a
Lawvere-Tierney operator.

Proposition 7.3.4. Given a partially ordered set O, the Lawvere-
Tierney operator “¬¬” on the Heyting algebra F(O) coincides with
the Grothendieck closure operator induced by the dense topology.

Proof. Consider F(O) as a frame of open subsets of a topological
space. Thus F(O) can be made into a Heyting algebra if we define
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x =⇒ y = I(−x ∪ y), for any element x, y ∈ F(O) (see Subsec-
tion 7.2.1). Hence for any x, ¬x = x =⇒ 0 = I − x. It follows that
¬¬x = I− I−x = IC−−x = IC(X). From this and the results quoted
after Proposition 7.3.1, we obtain the proof. qed

A fixed point of the operator ¬¬ is an element p of H such that ¬¬p = p.
These elements are called ¬¬− saturated or regular (after the fact that
in a topological space a set X is called regular if X = IC(X)).

The family Reg(H) = {x ∈ H : ¬¬x = x} of the regular ele-
ments of a Heyting algebra H can be made into a Boolean algebra
REG(H) = 〈Reg(H),∨¬¬,∧,=⇒,¬, 0, 1〉, where a ∨¬¬ b = ¬¬(a ∨ b).
In fact REG(H) cannot inherit ∨ from H because a Lawvere-Tierney
operator is in general just multiplicative (for other Lawvere-Tierney
operators, J , things could be a little bit more complicated, since in
general J(0) �= 0; hence J(¬a) �= ¬a). Thus REG(H) is not, generally,
a subalgebra of H.

On the contrary, if ¬¬ happens to be an endomorphism in H, then
REG(H) is the centre CT R(H), that is the subalgebra of all the ele-
ments of H that have a Boolean behaviour. We now only anticipate
that any Rough Set System is a Heyting algebra with this property.

Note that a comprehensive example of a Grothendieck topology will
be given in a few pages.

7.4 Lawvere-Tierney Operators

and Rough Set Systems

We shall use several Lawvere-Tierney operators in order to add stronger
logical properties to different basic logico-algebraic structures. There-
fore, the notion of filtering will be pervasive throughout this analysis.
In fact, “filtering” is the algebraic way for adding logical properties.

Given the system of all possible rough sets, P(AS(U)) (see Defini-
tion 7.1.4), we shall add more structure by filtering it by means of the
following constraint:

−x1 ∪ x2 ⊇ B, for all 〈x1, x2〉 ∈ P(AS(U)). (7.4.14)

We recall that B is the union of all singleton elementary classes. Since
x1 ⊇ x2, this is tantamount to x1 ∩ B = x2 ∩ B, i.e. condition (7.1.4).
In logico-algebraic terms, since x1 ≥ x2 we have x2 =⇒ x1 = U , while
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(7.4.14) gives x1 =⇒ x2 ⊇ B. Therefore x1 ⇐⇒ x2 ⊇ B. Thus B acts
as a local truth, a local top element that validates classical tautologies.
Indeed “to be valid” for a property α means that the domain of validity
�α� is (greater than or) equal to the top element 1. Hence “to be locally
valid” for a property α means that �α� is greater than or equal to the
local top element, in our case B.

Remarks. This is not a usual notion in logic. Indeed when in Part III

we shall restate everything in a modal language, we shall realize that we

are actually requiring that some (otherwise invalid) modalised formulas –

in our case �(A) ∨ ¬�(A) – must be valid with respect to a specific part

of the universe U .

Example 7.4.1. Semi-simple Nelson algebras from Boolean algebras
Consider the Boolean algebra B, and the derived lattices of ordered pairs of decreas-
ing elements of B.

B

1

�
� �

�
a b

�
� �

�

0

RS0(B)

〈1, 1〉

�� ��
〈1, a〉 〈1, b〉

�� �� �� ��
〈a, a〉 〈1, 0〉 〈b, b〉

�� �� �� ��
〈a, 0〉 〈b, 0〉

�� ��
〈0, 0〉

RSb(B)

〈1, 1〉

�� ��
〈a, a〉 〈1, b〉

�� �� ��
〈a, 0〉 〈b, b〉

�� ��
〈0, 0〉

Notice thatRS0(B) andRSb(B) are isomorphic to the lattices L1 and, respectively,
L2 of Example 6.5.1. Let us abstract from sets. In the first lattice the filtering
parameter is the element 0 and in the second the element b.

The lattice RS0(B) consists of all the ordered pairs of decreasing elements of
B, because for all x, y ∈ B, x =⇒ y ≥ 0, so that the filtration clause is immaterial,
and only the constraint x1 ≥ x2 applies.
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On the contrary, inRSb(B) the ordered pair 〈1, 0〉 is not accepted, because 1 ≥ 0
but 1 =⇒ 0 = 0 � b. For the same reason we discard 〈1, a〉 and 〈b, 0〉, too. On the
contrary, 〈a, 0〉 is a valid pair because a =⇒ 0 = b ≥ b. Similarly for the other pairs
of RSb(B).

Given the operations listed in Window 7.1 it is not difficult to compute the
operations in these lattices. For instance,

�〈1, b〉 = 〈¬b,¬b〉 = 〈a, a〉, ∼〈1, b〉 =
〈¬b,¬1〉 = 〈a, 0〉, ¬〈1, b〉 = 〈¬1,¬1〉 = 〈0, 0〉, 〈1, 0〉 ∨ 〈b, b〉 = 〈1, b〉, 〈1, 0〉 ∧ 〈b, b〉 =
〈b, 0〉, and so on.

The center CTR(RS0(B)) is given by the ordered pairs such that x1 = x2,
which crown the lattice. For any x,

��

x is the largest element of the center below
x, while ¬¬x is the smallest element of the center above x. For instance

��〈1, a〉 =�〈¬a,¬a〉 = 〈¬¬a,¬¬a〉 = 〈a, a〉 and ¬¬〈1, a〉 = 〈1, 1〉. Notice that 〈¬¬x,¬¬y〉 =
〈x, y〉 only because ¬ is a Boolean complement in B.

The same considerations apply to RSb(B) and RSb(B)op.

Since in any Boolean algebra −x1 ∪ x2 is equivalent to x1 =⇒ x2, let
us start examining the Lawvere-Tierney operators by considering the
following operator Ja:

Definition 7.4.1. Let H be a Heyting algebra. For any a, x ∈ H,
Ja(x) = a =⇒ x. By extension we set Ja(H) = {Ja(x) : x ∈ H}.

Then we obtain an equivalence relation ≡Ja:

Definition 7.4.2. For any a, x, y ∈ H, x ≡Ja y iff Ja(x) = Ja(y) iff
(a =⇒ x) = (a =⇒ y).

Proposition 7.4.1. For any Heyting algebra H and any element
a ∈ H, Ja is a Lawvere-Tierney operator.

Exercise 7.2. Prove statement 7.4.1.

Corollary 7.4.1. Let H be a Heyting algebra and a ∈ H. Then:

1. ≡Ja is a congruence relation.

2. For any x ∈ H, Ja(x) =
∨

[x]≡Ja .

3. Ja(H) is lattice-isomorphic to the sublattice ΩJa = {p : p ≤ a}.

The last point of Corollary 7.4.1 means that a becomes really a local
top element in Ja(H).

We leave the proof as an exercise.
Now we prove a condition which is equivalent to ≡Ja and which will

be extremely helpful.

Proposition 7.4.2. For any a, b, c ∈ H, b ≡Ja c iff a ∧ b = a ∧ c.
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Proof. Suppose (a =⇒ b) = (a =⇒ c). Then, a fortiori, (a =⇒ c)∧a ≤ b

and (a =⇒ b) ∧ a ≤ c. But for any x, y ∈ H, x =⇒ y ≥ y. Therefore
c∧a ≤ b and b∧a ≤ c, so that c∧a∧b = c∧a and b∧a∧c = b∧a. Hence
c∧a = b∧a. Vice-versa, suppose c∧a = b∧a. Clearly (a =⇒ b)∧a ≤ b,
but also (a =⇒ b) ∧ a ≤ a, so that (a =⇒ b) ∧ a ≤ a ∧ b. From this
and the hypothesis we obtain (a =⇒ b) ∧ a ≤ a ∧ c and, a fortiori,
(a =⇒ b) ∧ a ≤ c. It follows that a =⇒ b ≤ a =⇒ c. Symmetrically we
obtain a =⇒ c ≤ a =⇒ b. Thus a =⇒ c = a =⇒ b. qed

The above Proposition provides us with an alternative definition of
the equivalence relation ≡Ja :

b ≡Ja c iff ∃z ∈↑ a such that b ∧ z = c ∧ z. (7.4.15)

Then we shall also say that ≡Ja is induced by the filter ↑ a.

Exercise 7.3. Prove that the above condition (7.4.15) is equivalent to
that of Proposition 7.4.2 (hints: prove that if s ∧ b = s ∧ c and s′ ≤ s

then s′ ∧ b = s′ ∧ c).

Example 7.4.2. Grothendieck topologies
Since J(X) = {p : X ∩ ↑ p ∈ Jp} we obtain the following equivalent definitions which
make it possible to link Grothendieck topologies to Lawvere-Tierney operators:

Jp = {↑ p ∩X : p ∈ J(X)} (7.4.16)

Jp = {X : X ⊆↑ p & p ∈ J(X)} (7.4.17)

Jp = {X : X ⊆↑ p & X ≡J↑ p} (7.4.18)

Exercise 7.4. Prove that the above definitions are equivalent.

Consider the partially ordered set J(L) and its dual Heyting algebra F(J(L)) of
Example 7.2.1. Let us construct the dense topology on J(L). The minimal dense ele-
ment of F(J(L)) is {a, b}. We know that x ∈ J{a,b}(X) if and only if x ∈ ¬¬X, that
is, − ↓ − ↓ X ⊇↑ x. Thus, for instance, c ∈ J{a,b}({a}) = {a, c} = J{a,b}({a, c}),
c ∈ J{a,b}({a, b}) = J{a,b}({a, b, c}) = J{a,b}(J (L)) = J (L), and we have that the

cover J
{a,b}
[c] of the element c is {↑ c ∩ X : c ∈ J{a,b}(X)} = {{a, c} ∩ {a}, {a, c} ∩

{a, c}, {a, c} ∩ {a, b}, {a, c} ∩ {a, b, c}, {a, c} ∩ J (L)} = {{a}, {a, c}}.
Here we have the entire topology:

x a b c d

J
{a,b}
[x] {{a, b}, {a, b, c},J (L)} {{a}} {{b}} {{a}, {a, c}}

• Let us verify the defining conditions of the dense topology (cf. Subsection
7.3.1). Consider for instance the element {a}. First of all let us check the
inclusion condition: {a} ∈ F(↑ c) = {{a}, {a, c}}, because it is an order
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filter included in ↑ c. We have now to verify the cofinality condition: ∀w ∈
{a, c}, ∃w′ ∈ {a} such that w′ ≥ w. But a is such a required element w′,
trivially. Hence {a} is an element of J

{a,b}
[c] . On the contrary, {a, b} satisfies

just the cofinality condition but not the inclusion condition with respect to
↑ c. Thus {a, b} /∈ J

{a,b}
[c]

. Finally {a} /∈ J
{a,b}
[1]

, because it satisfies just the
inclusion condition but not the cofinality condition with respect to ↑ 1.

• Indeed, we also can verify that for any X∈ F(J(L)), J{a,b}(X) =
⋃

[X]≡
J{a,b} .

For instance, we have {a} ∩ {a, b} = {a, c} ∩ {a, b}. Hence {a, c} ≡J{a,b} {a}
and it is immediate to see that [{a}]≡

J{a,b} = {{a}, {a, c}}. But
⋃
{{a}, {a, c}}

= {a, c}. Thus J{a,b}({a}) = {a, c} = ¬¬{a}.

• Let us verify that the Grothendieck topology and the Lawvere-Tierney oper-
ator J{a,b} go together well. Since, for instance, J{a,b}({a}) = {p :↑ p∩{a} ∈
J
{a,b}
[p]

}, we have ↑ c ∩ {a} = {a} ∈ J
{a,b}
[c]

, ↑ a ∩ {a} = {a} ∈ J
{a,b}
[c]

,

↑ b ∩ {a} = ∅ /∈ J
{a,b}
[c] , and so on, obtaining at the end J{a,b}({a}) = {a, c}.

• Finally, let us verify the axioms for Grothendieck topologies (cf. Window 7.2):

(GT1): ↑ 1 = U ∈ J
{a,b}
[1] , ↑ a = {a} ∈ J

{a,b}
[a] , ↑ b = {b} ∈ J

{a,b}
[c] ,

↑ c = {a, c} ∈ J
{a,b}
[c] ;

(GT2): ↑ a∩ {a, c} = {a} ∈ J
{a,b}
[a] , ↑ c∩{a, c} = {a, c} ∈ J

{a,b}
[c] . Thus (GT2)

holds of every element of J
{a,b}
[c] and all elements of ↑ c.

↑ 1 ∩ {a, b} = {a, b} ∈ J
{a,b}
[1] , ↑ 1 ∩ {a, b, c} = {a, b, c} ∈ J

{a,b}
[1] , ↑ 1 ∩ J (L) =

J (L) ∈ J
{a,b}
[1] , ↑ a ∩ {a, b} = {a} ∈ J

{a,b}
[a] , ↑ a ∩ {a, b, c} = {a} ∈ J

{a,b}
[a] ,

↑ a ∩ J (L) = {a} ∈ J
{a,b}
[a] , ↑ c ∩ {a, b} = {a} ∈ J

{a,b}
[c] , ↑ c ∩ {a, b, c} =

{a, c} ∈ J
{a,b}
[c]

, ↑ c ∩ J (L) = {a, c} ∈ J
{a,b}
[c]

, ↑ b ∩ {a, b} = {b} ∈ J
{a,b}
[b]

,

↑ b∩ {a, b, c} = {b} ∈ J
{a,b}
[b] , ↑ b∩J (L) = {b} ∈ J

{a,b}
[b] . Thus (GT2) holds of

any element of J
{a,b}
[1]

and all elements of ↑ 1. And so on, more trivially, for b
and a.
(GT3): Let us take an arbitrary element of J (L), say c (which instantiates
the variable p of the axiom). Let us take all the subfilters of ↑ c that belong to

J
{a,b}
[c] ; so the conclusion of the axiom, (i.e. S′ ∈ J

{a,b}
[c] ) holds independently

of any premise. Let us now instantiate p with b. But {b} is the only element

of J
{a,b}
[b] , and the only non-empty subset of {b}. Finally b is the only ele-

ment of {b}. Thus the conclusion is a tautological “X ∈ Y iff X ∈ Y ”. Same
when we set p = b. Now let us consider a. Set S = {a, b} and S′ = {a, c}
(which is possible because ↑ 1 = J (L)). Set now p′ = b, for a ∈ S. We have

↑ a ∩ {a, c} = {a} ∈ J
{a,b}
[a] , but {a, c} /∈ J

{a,b}
[1] . Indeed, when we set p′ = b

we have ↑ b ∩ {a, c} = ∅ /∈ J
{a,b}
[b]

. Thus the precondition of the axiom does

not hold for all p′ ∈ {a, b}. We leave as an exercise to check the axiom for the
other cases.

Now some further considerations are in order. We can verify, for instance, that
J{a,b}(∅) = ∅. This means that for no x ∈ J (L), ∅ ∈ J

{a,b}
[x] . On the contrary,

consider the Grothendieck topology corresponding to the LT- operator J{b}. We
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have in this case that {a} ∩ {b} = ∅ ∩ {b} = {a, c} ∩ {b} = ∅, so that {a} ≡J{b}

{a, c} ≡J{b} ∅. Hence J
{b}
[a] = {∅, {a}, {a, c}} and, thus, J{b}(∅) = {a, c}. It follows

that J{b}(¬{a, c}) = J{b}({b}) = J (L) (indeed, J{b}(¬{a, c}) = J{b}(¬{a}) =
J{b}(¬∅)). But J (L) �= {b} = ¬{a, c}.

From the above discussion we have that in order to define a Grothendieck topol-
ogy on a poset X = 〈U,≤〉 we can select a filter F out of F (X), then for any p ∈ U
and S ∈ F (X) we have that S ∈ JF

[p] if S ⊆↑ p and ↑ p ≡JF S. We say that the
topology is induced by F .

Exercise 7.5.
(A) Prove that in a Grothendieck topology induced on a poset X =
〈U,≤〉 by a filter ↑ X on F(X), ∅ ∈ JX

[a] only if a ∈ ¬X.
(B) Prove that there is an element a such that ∅ ∈ JX

[a] only if X is
strictly less than the least dense element of F(X).

In the following Example 7.4.3 we shall see that the Boolean algebra
REG(H) is isomorphic to H/≡Jd where ≡Jd is the equivalence relation
induced by the filter of all and only the dense elements of H, that is,
elements a such that ¬¬a = 1 (again, the terminology has a topological
origin, since a set X is dense in a topological space 〈U,Ω(U)〉 if and only
if IC(X) = U , if and only if ¬¬X = U in Ω(U) qua Heyting algebra).
In other terms, the dense topology provides us with the geometrical
counterpart of the well-known Gödel-Glivenko result about the double
negation validity of classical tautologies in intuitionistic propositional
logic (see Section 9.6).

Example 7.4.3. Center of a Heyting algebra
Consider the Heyting algebra A of Example 6.1.1. The set Reg(A) of all regular
elements of A is {1, 0, b, c} (¬¬c = c, and so on) and forms a Boolean algebra
REG(A) because ¬ is involutive on the elements of Reg(A).

But REG(A) is not a subalgebra of A. In fact b ∨ c = e but e is not regular.
Indeed the joint in REG(A) is given by b ∨¬¬ c =def ¬¬(b ∨ c) = ¬¬e = 1. This
fact is connected with the issue of non-standard constructive systems that will be
discussed in Section 9.4.

Finally, notice that d, e and 1 are dense elements (¬d = ¬e = ¬1 = 0) and that
d is the least dense element of A.

Now, if we take the filter ↑ d of all dense elements, we can define a congruence
≡Jd as follows (see Definition 7.4.2 and Proposition 7.4.2):

a ≡Jd b iff ∃z ∈↑ d(a ∧ z = z ∧ b) (7.4.19)
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One can prove that the quotient algebra A/≡
Jd is a Boolean algebra isomorphic to

the algebra of regular elements REG(A). The isomorphism is obtained by mapping
a congruence class onto its largest element and, in the opposite direction, by mapping
a regular element onto its congruence class:

1

e
	
�

←→: Congruence ≡jd

� ���
c d

��� � �
a b

� �
0

A/≡
jd

[1, e, d]≡
jd

� �
[c, a]≡

jd [b]≡
jd

� �
[0]≡

jd

Reg(A)

1

� �
c b

� �
0

Now let us come back to Approximation Spaces and Rough Set Sys-
tems.

From now on B will be a generic element of AS(U) and P = −B.
Thus B and P will be considered as formal parameters. The depen-
dence of B and P on AS(U) is understood and has no influence in the
development of the reasoning, because we shall treat Approximation
Spaces as generic finite Boolean algebras.

The operator JB makes it possible to filter out AS(U) by means of
the filter ↑ B, via the congruence relation ≡JB , producing the following
set:

RSB(AS(U)) = {〈a1, a2〉 ∈ AS(U)2 : a2 =⇒ a1

= U & a1 =⇒ a2 ≡JB U}. (7.4.20)

Proposition 7.4.3. For any Approximation Space AS(U), RSB

(AS(U)) = RS(U).

Proof. For any a ∈ RSB(AS(U)), a2 =⇒ a1 = U if and only if
−a2 ∪ a1 = U , if and only if a1 ⊇ a2, as required by Lemma 7.1.1.
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Moreover a1 =⇒ a2 ≡JB U if and only if −a1 ∪ a2 ≡JB U . Therefore,
since B =⇒ U = U , from Definition 7.4.2 the equivalence holds if and
only if U = −B ∪ −a1 ∪ a2, if and only if (−a1 ∪ a2) ⊇ B, as required
by (7.4.14). Alternatively we can exploit Proposition 7.4.2 and obtain
directly condition (7.1.4). qed

(In view of the above Proposition, when we do not need any reference
to the parameters B or P , we can denote RSB(AS(U)) with RS(U)).

It follows that for any rough set a, a singleton elementary class
X must be included in the lower approximation a2 or in the comple-
ment −a1 of the upper approximation. Thus X cannot be included
in a2 ∩ −a1, that is, X will not be included in the boundary of any
A ∈ rs−1(〈a1, a2〉), as required. This is the role of the above filtering.

Corollary 7.4.2. (1) P(AS(U)) = RS∅(AS(U)); (2) B(AS(U)) =
RSU (AS(U)).

Thus P and B represent two well determined extreme situations.
We have seen that our second clause in the definition of RSB

(AS(U)) warrants what is required: within any rough set the equal-
ity between its lower and upper approximations must be locally valid
on B. Of course a set such that its lower and upper approximations
coincide, is a usual set. But rough sets must behave as usual on B:
there is no reason be rough there to.

Terminology and Notation. As usual, from now on, let us denote

AS(G/RA) with the shorter notation AS(G).

Example 7.4.4. Algebraic constructions of Rough Set Systems
Consider the A-system A = 〈G, At, {Va}a∈At〉 of Example 1.2.1 of Chapter 1. We
remind that the i-quantum relation RA is an equivalence relation so that Q(A) =
〈G, RA〉 is an Indiscernibility Space. The induced Approximation Space AS(G/RA)
is depicted in Example 3.3.1 of Chapter 3 and coincide with SatQ(A). In this space,
the external parameter is the local Boolean universe B, that is, the union of all
singleton elementary classes. Hence B =

⋃
{{a′}, {a′′′}} = {a′, a′′′} and ¬B = −B =

{a, a′′} (because AS(G) is a Boolean algebra of sets). We remind the definition of
the operator JB : JB(X) = B =⇒ X. Hence JB(X) = ¬B ∨ X = −B ∪X. Thus,
for X, Y ∈ AS(G), X ∼=JB Y if and only if −B ∪ X = −B ∪ Y if and only if
B ∩ X = B ∩ Y (in fact, if x ∈ B ∩ X but x /∈ B ∩ Y , then x ∈ X and x /∈ Y .
Thus, x ∈ −B ∪ X but x /∈ −B ∪ Y ). For instance, {a, a′, a′′} ∼=JB {a′} because
−{a′, a′′′} ∪ {a, a′, a′′} = {a, a′, a′′} = −{a′, a′′′} ∪ {a′}.
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X is a fixed point of the Lawvere-Tierney operator JB if and only if B =⇒
X = X, if and only if −B ∪ X = X, if and only if −B ⊆ X. It follows that
the family of fixed points of JB is ↑ ¬B, which is isomorphic to ↓ B via the
complementation ¬.

The geometry of the equivalence classes of AS(G) modulo ≡JB and its fixed
points is shown in the diagram below, where the double arrow ←→ show the
equivalence ≡JB :

G

�
�
�

↑ ¬B

��
�
��

{a, a′, a′′} {a, a′′, a′′′} B = {a′, a′′′}

�
�
���
�
�� ..

..
..

..
..

..
.

��
�
��

¬B = {a, a′′} {a′} {a′′′}

..............

��
�
�� ..

..
..

..
..

..
.

↓ B

∅

..............

Each fixpoint is the largest element of an equivalence class modulo ≡JB and for
each X ∈ AS(G), JB(X) =

∨
[{X}]≡

JB . For instance, {a, a′, a′′} =
∨

[{a′}]≡
JB =

⋃
{{a′}, {a, a′, a′′}} and JB({a′}) = B =⇒ {a′} = {a, a′, a′′′}.

Here, the Rough Set System induced by AS(G) is depicted in both disjoint and
decreasing representation, along with the Rough Set System represented as a lattice
of equivalence classes modulo rough equivalence.

{G}

��
��
� �����{{a, a′, a′′′}, {a′′, a′, a′′′}}

{{a, a′, a′′}}

��
��
� �����

{{a, a′′, a′′′}}
�����

{{a′, a′′′}}

��
��
�

{{a, a′}, {a′′, a′}}

��
��
� �����

{{a′′, a′′′}, {a, a′′′}}
�����

〈{{a, a′′}}〉

��
��
�

{{a′}} {{a′′′}}
�����

{{a}, {a′′}}

��
��
�

{∅}

{[X]≈ : X ⊆ G}
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〈G, G〉

��
��
� �����〈G, {a′, a′′′}〉

〈{a, a′, a′′}, {a, a′, a′′}〉

��
��
� �����

〈{a, a′′, a′′′}, {a, a′′, a′′′}〉
�����

〈{a′, a′′′}, {a′, a′′′}〉

��
��
�

〈{a, a′, a′′}, {a′}〉

��
��
� �����

〈{a, a′′, a′′′}, {a′′′}〉
�����

〈{a, a′′}, {a, a′′}〉

��
��
�

〈{a′}, {a′}〉 〈{a′′′}, {a′′′}〉
�����

〈{a, a′′}, ∅〉

��
��
�

〈∅, ∅〉

RSB(AS(G))

〈G, ∅〉

��
��
� �����〈{a′, a′′′}, ∅〉

〈{a, a′, a′′}, {a′′′}〉

��
��
� �����

〈{a, a′′′, a′′}, {a′}〉
�����

〈{a′, a′′′}, {a, a′′}〉

��
��
�

〈{a′}, {a′′′}〉

��
��
� �����

〈{a′′′}, {a′}〉
�����

〈{a, a′′}, {a′, a′′′}〉

��
��
�

〈{a′}, {a, a′′, a′′′}〉 〈{a′′′}, {a, a′, a′′}〉
�����

〈∅, {a′, a′′′}〉

��
��
�

〈∅, G〉

N≡
JB (AS(G))

The notation N≡
JB (AS(G)) will be justified later in this Part. If not otherwise

stated, from now on we shall refer to the lattice RSB(AS(G)).
One can notice that for all X ∈ AS(G), X ≡JB G if and only if B ⊆ X.

In fact, X ≡JB G iff B =⇒ X = B =⇒ G = G, iff B ⊆ X. It follows that
〈X1, X2〉 ∈ N≡

JB (AS(G)) only if B is distributed between X1 and X2, because we
must have X1∪X2 ≡JB G, hence X1∪X2 ⊇ B. For instance, 〈{a, a′′}, {a′}〉 belongs
to P(AS(G)) but not to N≡

JB (AS(G)) because {a, a′′} ∪ {a′} � {a′, a′′′}. On the
contrary, 〈{a′}, {a′′′}〉 belongs to N≡

JB (AS(G)) because {a′} ∪ {a′′′} ⊇ {a′, a′′′}.
In the decreasing representation, the same example reads as 〈{a, a′′, a′′′}, {a, a′′}〉 /∈
RSB(AS(G)) because −{a, a′′, a′′′} ∪ {a, a′′} = {a, a′, a′′} � {a′, a′′′} and
〈{a, a′, a′′}, {a′}〉 belongs to RSB(AS(G)) because −{a, a′, a′′} ∪ {a′} ⊇ {a′, a′′′}.

About the latter examples, notice that 〈{a, a′, a′′}, {a′}〉 is such that {a, a′, a′′}∩
B = {a′} = B ∩ {a′}, while 〈{a, a′′, a′′′}, {a, a′′}〉 is such that {a, a′′, a′′′} ∩ B =
{a′′′} �= ∅ = B ∩ {a, a′′}.

In the Hasse diagrams below, notice how the elements of the centre are placed
on the vertexes of the edges forming a Boolean algebra:
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〈G, G〉

��
��
� �����.

〈{a, a′, a′′}, {a, a′, a′′}〉

��
��
� �����

〈{a, a′′, a′′′}, {a, a′′, a′′′}〉
�����

〈{a′, a′′′}, {a′, a′′′}〉

��
��
�

.

��
��
� �����

.

�����

〈{a, a′′}, {a, a′′}〉

��
��
�

〈{a′}, {a′}〉 〈{a′′′}, {a′′′}〉
�����

.

��
��
�

〈∅, ∅〉

CT R(RSB(AS(G)))

〈G, ∅〉

��
��
� �����.

〈{a, a′, a′′}, {a′′′}〉

��
��
� �����

〈{a, a′′′, a′′}, {a′}〉
�����

〈{a′, a′′′}, {a, a′′}〉

��
��
�

.

��
��
� �����

.

�����

〈{a, a′′}, {a′, a′′′}〉

��
��
�

〈{a′}, {a, a′′, a′′′}〉 〈{a′′′}, {a, a′, a′′}〉
�����

.

��
��
�

〈∅, G〉

CT R(N≡
JB (AS(G)))

Both

�〈{a, a′′, a′′′}, {a′′′}〉 (i.e 〈{a, a′, a′′}, {a, a′, a′′}〉) and ¬〈{a, a′′, a′′′}, {a′′′}〉
(i.e. 〈{a′}, {a′}〉) are elements of type 〈X1, X2〉 such that X1 = X2. The three nega-
tions coincide when applied to these elements because ¬X2 = ¬X1. It follows that
all these elements X are complemented because X ∨ �

X = X∨ ∼ X = X ∨¬X = 1
and X ∧ �

X = X∧ ∼ X = X ∧ ¬X = 0. Thus CT R(RSB(AS(G))) = {〈X1, X2〉 :
X1 = X2}.

We can now notice that there is another algebraic interpretation of the
above filtering.

In fact, RSB(AS(U)) can be recovered by filtering P(AS(U)) mod-
ulo the filter ↑ 〈U,P 〉. Actually, by applying the related Lawvere-
Tierney operator, we can prove:



234 7 Local Validity, Grothendieck Topologies and Rough Sets

Lemma 7.4.1. For any a, b ∈ P(AS(U)), a ≡J〈U,P〉 b if and only if a
and b are top equal (that is, their first elements, a1 and b1, coincide)
and the P -parts of a2 and b2 are equal.

Proof. a ∧ 〈U,P 〉 = b ∧ 〈U,P 〉 if and only if a1 ∩ U = b1 ∩ U and
a2 ∩ P = b2 ∩ P , if and only if a1 = b1 and a2 ∩ P = b2 ∩ P . qed

Lemma 7.4.2. 〈x1, x2〉 = J 〈U,P 〉(a) if and only if x1 = a1 and x2 =
a2 ∪ (B ∩ x1).

Proof. Since any a differs from all the other elements of [a]≡
J〈U,P 〉 just

in the B-part of a2 and a1 ⊇ a2, when we take
∨

[a]≡
J〈U,P 〉 we add to

a2 the B-part of a1 (i.e. x1). qed

It follows that if 〈x1, x2〉 = J 〈U,P 〉(a), then x1 ∩B = x2 ∩B and hence,
in view of condition (7.1.3), it is a (legal) rough set. On the other side, if
a is a rough set then a = J 〈U,P 〉(x) for some x ∈ P(AS(U)). Therefore
we obtain the following:

Corollary 7.4.3. J 〈U,P 〉(P(AS(U))) = RSB(AS(U)).

Of course we have to show that this operator and the next ones manipu-
late Heyting algebras. That is, we have to show that for any Approxima-
tion Space AS(U) and Z ∈ AS(U), 〈RSZ(AS(U)),∨,∧,¬,⊃, 0, 1〉 is a
complete Heyting algebra. This will be formally stated in Proposition
8.3.1, in a more abstract setting.

Therefore: any Rough Set System is obtained by filtering a Post
algebra of order three.

In Frame 10.1 this result will be proved from the point of view of
Chain-based lattices.

Example 7.4.5. Rough Set System by filtering a Post algebra
In the diagram below the elements of the Rough Set SystemRSB(AS(G)) presented
in Example 7.4.4. are embedded in bold fonts in P(AS(G)). The double arrows show
the congruence ≡J〈U,P〉 :
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〈G, G〉

���
��
��
� ��������!

〈G, {a′,a′′′}〉
〈G, {a, a′, a′′}〉

���
��
��
� ��������!

〈G, {a, a′′, a′′′}〉

��
��
��
� �.......................!

〈{a′,a′′′}, {a′,a′′′}〉

�.....
....

....
....

....
.. �������

〈G, {a′}〉

���
��
��
� ��������!

〈G, {a′′′}〉
〈{a, a′,a′′}, {a,a′,a′′}〉

��
��
��
� �.......................!

〈G, {a, a′′}〉

�.....
....

....
....

....
.. �������

〈{a,a′′,a′′′}, {a, a′′, a′′′}〉
��������!

〈{a′, a′′′}, {a′}〉

....
....

....
....

....
. .....................

〈{a′, a′′′}, {a′′′}〉

���
��
��
� 

〈{a, a′,a′′}, {a′}〉

��
��
��
� �.......................!

〈G, ∅〉

�.....
....

....
....

....
.. �������

〈{a, a′′,a′′′}, {a′′′}〉
��������!

〈{a, a′, a′′}, {a, a′′}〉

....
....

....
....

....
. .....................

〈{a, a′′, a′′′}, {a, a′′}〉

���
��
��
� 

〈{a′}, {a′}〉 �������

〈{a′, a′′′}, ∅〉

��
��
��
� 〈{a′′′}, {a′′′}〉

��������!

〈{a, a′, a′′}, ∅〉

....

....
....

....
....

....
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〈{a, a′′, a′′′}, ∅〉
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〈{a,a′′}, {a,a′′}〉
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�

〈{a′}, ∅〉

....

〈{a′′′}, ∅〉

....

�������

〈{a,a′′}, ∅〉

��
��
��
�

〈∅, ∅〉

Remember that P = ¬B = −B. Hence P = {a, a′′}. The reader can easily see
that RSB(AS(G)) is isomorphic to ↓ 〈G,¬B〉 =↓ 〈G, {a, a′′}〉. Let us verify that
the operator J〈U,P 〉 is an isomorphism from ↓ 〈G,¬B〉 toRSB(AS(G)), but not from
P(AS(G)). In fact, for instance, J〈U,P 〉(〈{a, a′′, a′′′}, {a, a′′}〉) �= J〈U,P 〉(〈{a, a′′, a′′′},
∅〉) because both elements belong to ↓ 〈G,¬B〉.

On the contrary, J〈U,P 〉(〈G, ∅〉) = J〈U,P 〉(〈G, {a′}〉) = 〈G, {a′, a′′′}〉 because
{a′} ∩B �= ∅, and so on.

Finally, note what is stated in Lemma 7.4.1: take for instance the equivalence
class of 〈{a′, a′′′}, {a′}〉 modulo ≡J〈G,¬B〉 , i.e. {〈{a′, a′′′}, {a′}〉, 〈{a′, a′′′}, ∅〉,
〈{a′, a′′′}, {a′′′}〉, 〈{a′, a′′′}, {a′, a′′′}〉}. We can notice that the first elements of the
members of this equivalence class coincide, as well as the ¬B− part of their second
elements. In other words, they are rough top equal and rough bottom equal with
respect to B.

Let us see how the Rough Set System RSB(AS(G)) is singled out of the Post
algebra P(AS(G)).

We verify some instance of Corollary 7.4.3. Let us compute J〈G,P 〉(〈G, ∅〉):
clearly 〈G, ∅〉 ≡J〈G,P〉 〈G, {a′}〉 because 〈G, ∅〉 ∩ 〈G, P 〉 = 〈G, {a′}〉 ∩ 〈G, P 〉, This
holds of every 〈X1, X2〉 such that X1 = G and X2 ∩ P = ∅ ∩ P = ∅. Since
B is the largest element disjoint from P , the largest element of the equivalence
class of 〈G, ∅〉 modulo ≡J〈G,P〉 is trivially 〈G, B〉. In details: [〈G, ∅〉]≡

J〈G,P 〉 =

{〈G, ∅〉, 〈G, {a′}〉, 〈G, {a′′′}〉, 〈G, {a′, a′′′}〉}. Hence J〈G,P 〉(〈G, ∅〉) =
∨

[〈G, ∅〉]≡
J〈G,P 〉

= 〈G, {a′, a′′′}〉 = 〈G, B〉.
One can trivially notice that G ∩ B �= ∅ ∩ B, so that 〈G, ∅〉 is not a mem-

ber of RSB(AS(G)). Also, 〈G, {a′}〉 is not a legal rough set because G ∩ B =
B �= {a′} = {a′} ∩ B. On the contrary, both J〈G,P 〉(〈G, ∅〉 and J〈G,P 〉(〈G, {a}〉
equal 〈G, B〉, which is a legal rough set. Again, 〈{a, a′, a′′}, P 〉 is not a legal rough
set. Let us compute J〈G,P 〉(〈{a, a′, a′′}, P 〉): obviously, 〈{a, a′, a′′}, P 〉 ∩ 〈G, P 〉 =
〈{a, a′, a′′}, P 〉. Hence, every pair of decreasing elements of AS(G) 〈X1, X2〉 such
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that X1 = {a, a′, a′′} and X2 ⊇ P is in [〈{a, a′, a′′}, P 〉]≡
J〈G,P 〉 . It follows that

∨
[〈{a, a′, a′′}, P 〉]≡J〈G,P〉 = 〈{a, a′, a′′}, {a, a′, a′′}〉. Otherwise stated, to X2 we

have to add the “exact part” of X1 (in this example, {a′}).
Further, one can verify that J〈G,P 〉 ∼=↓ 〈G, P 〉.

The reader should notice that in P(AS(U)) there is also the element
〈U, ∅〉. This element has the following property:

∼〈U, ∅〉 = 〈U, ∅〉.

Thus, 〈U, ∅〉 is a central element of P(AS(U)) (see Section 6.2). In
the systems we are dealing with, there is at most one central element.
Now, we have seen that 〈U, ∅〉 represents a completely uninformed sit-
uation in the sense that if rs(X) = 〈U, ∅〉, then X is undefinable in
AS(U): everything could be in X but actually nothing is definitely in
it. But this situation is not plausible as soon as we have at least one
elementary class which is a singleton. In the general case the worst

situation, from a knowledge point of view, is given by:

〈U,B〉, that is, J 〈U,P 〉(〈U, ∅〉).

So, the worst solution is 〈U, ∅〉 only when B = ∅, that is, when the
exact region is empty.

We are going to show that if B is the parameter that decides the
global logical properties of these systems, 〈U,B〉 is a pillar in the con-
struction of the modal operators of a number of logics. Moreover, we
shall see that in spite of the fact that the element 〈U,B〉 appears to
depend on B, nevertheless it can be singled out, in any Rough Set Sys-
tem RS(U), by means of the lattice-theoretic notion of a least dense

element.



Chapter 8

Approximation
and Algebraic Logic

8.1 Approximation Operators

Of course, in order to honour the philosophy of Rough Set Theory, we
must endow any Rough Set Systems RS(U) with a couple of operators
reflecting the approximation features provided by the theory, applied,
this time, not to sets but to rough sets. Let us connect the knowledge-
oriented interpretation of these operators to their logical properties.

We are looking for two operators M and L such that the following
diagrams commute:

℘(U)
(uE) � AS(U) ℘(U)

(lE) � AS(U)

RS(U)

rs

	

M
� rs(AS(U))

rs

	
RS(U)

rs

	

L
� rs(AS(U))

rs

	

Proposition 8.1.1. If the above diagrams commute then for any rough
set 〈(uE)(X), (lE)(X)〉,
1. L(〈(uE)(X), (lE)(X)〉) = 〈(lE)(X), (lE)(X)〉.
2. M(〈(uE)(X), (lE)(X)〉) = 〈(uE)(X), (uE)(X)〉.
Proof. For any X ∈ ℘(U), (lE)(X) ∈ AS(U). But for any element A
of AS(U), rs(A) = 〈A,A〉. Thus rs((lE)(X)) = 〈(lE)(X), (lE)(X)〉.
Similarly for M . qed

237
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So, let us define the two operators in the following manner:

Definition 8.1.1. For any Rough Set System RS(U), for any a ∈
RS(U),
(1) M(a) = 〈a1, a1〉; (2) L(a) = 〈a2, a2〉.

Now, the surprising fact is that the previously defined elements 〈U,B〉
and its dual 〈P, ∅〉 carry sufficient information for recovering these
modal operators and for describing their algebraic properties. Notice
that 〈P, ∅〉 =∼ 〈U,B〉.

We frame the definitions of L and M within a wider logico-algebraic
discourse in order to allow the reader to appreciate the particular-
ity of these operators. Moreover in this way we prepare the technical
background for further results.

8.2 Adjointness, Approximations
and the Center of a Rough Set System

Forward: This Subsection, although relatively short, is pivotal in the
present Chapter. In fact, here we shall see how all the mathematical
concepts originated from a number of different formal fields and intu-
itive motivations, converge in a single coherent picture.

We have seen in Part I that in any relational structure the following
adjointness relationships hold:

(a) 〈R〉 � [R�]; (b) 〈R�〉 � [R]

What happens in the case of indiscernibility relations, that is, when
we apply these results not to a mere partially ordered set but to an
Indiscernibility Space 〈U,E〉?

Of course, since E is symmetric we do not have the two directions
“left” and “right” any longer (topologically: any open set is a closed
set): [R] and [R�] collapse into a single operator �, while 〈R〉 and
〈R�〉 collapse into a single operator � as well, with the meaning “it is
necessary” and “it is possible”, respectively.

Therefore, from the above results and definitions we have � = (lE)
and � = (uE), so that the following adjointness relations hold:

Corollary 8.2.1. For any Boolean algebra A ⊆ ℘(U),
1. � � � – when A is considered as a modal space.
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2. C � I – when A is considered as a 0-dimensional topology.
3. (uE) � (lE) – when A is considered as an Approximation Space.

This result will have a very interesting consequence. But let us first
notice that for any subset X, X ⊆ �(X) and X ⊇ �(X), so that from
the adjointness relation the two equalities �(X) = X and �(X) = X

imply each other. This is exactly what Rough Set Theory provides: if
either X = (uE)(X), or X = (lE)(X) then the two approximations of
X coincide. However, notice that � and � are not adjoint operators in
general.

Now we claim that our two knowledge-oriented sets B and P are
the key parameters for defining the operators L and M and that using
the above adjointness properties we are able to make the internal local
Boolean behaviour of exact rough sets explicit.

Lemma 8.2.1. For any Rough Set System RS(U), for all X ⊆ U ,
1. rs(

⋃
[X]�) =

∨
[rs(X)]� = 〈(uE)(X), (uE)(X)〉.

2. rs(
⋂

[X]∼) =
∧

[rs(X)]∼ = 〈(lE)(X), (lE)(X)〉.

Proof. For any Z ⊆ U,Z ∈ [X]� if and only if (uE)(Z) = (uE)(X).
Thus

⋃
[X]� = (uE)(X) and rs(

⋃
[X]�) = 〈(uE)(X), (uE)(X)〉. But

for any rough set z = 〈z1, z2〉, z2 ⊆ z1 and z ∈ [rs(X)]� if and only
if z1 = (uE)(X); hence

∨
[rs(X)]� = 〈(uE)(X), (uE)(X)〉. By duality

we have the second statement. qed

We need now the Lawvere-Tierney operator Ja:

Definition 8.2.1. Let H be a Heyting algebra. Given a, x ∈ H, Ja(x) =
a ∨ x.

Proposition 8.2.1. For any Rough Set System RS(U), for any a ∈
RS(U),
(1)
∨

[a]≡
J〈U,B〉 = M(a); (2)

∧
[a]≡J〈P,∅〉

= L(a).

The proof is an immediate corollary of Lemma 8.2.1 together with the
following result:

Lemma 8.2.2. For any a, b ∈ RS(U), (1) a ≡J〈U,B〉 b iff a 0 b;
(2) a ≡J〈P,∅〉 b iff a∼b.

Proof. If a ≡J〈U,B〉 b then a1 ∧ U = a1 = b1 = b1 ∧ U . For the opposite
direction (that is: if a1 = b1 then a ≡J〈U,B〉 b) we have to prove that if
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a1 = b1, then a2∩B = b2∩B. Obviously, if a1 = b1, then a1∩B = b1∩B,
so that in view of the special behaviour of B, a2∩B = a1∩B = b1∩B =
b2 ∩B. By a dual reasoning, we obtain the proof for J〈P,∅〉. qed

Proposition 8.2.2. J 〈U,B〉(RS(U)) and J〈P,∅〉(RS(U)op) are order-
isomorphic to AS(U).

Actually we shall prove something stronger. Let us focus on J 〈U,B〉.
This operator filters the elements of RS(U) with respect to the filter
↑ 〈U,B〉. So the question arises: what kind of filter ↑ 〈U,B〉 is?

Lemma 8.2.3. ↑ 〈U,B〉 is the filter of the dense elements of RS(U)
qua Heyting algebra.

Proof. We have seen that the pseudo-complement in RS(U), qua Heyt-
ing algebra, is “¬”. Thus an element a is dense in RS(U) if and only
if ¬¬a = 〈U,U〉, if and only if a1 = U . Hence 〈U,B〉 is dense. More-
over x2 ⊇ B ∩ x1, for any element 〈x1, x2〉 of RS(U) and B ∩ U = B;
hence we obtain that 〈U,B〉 is the least dense element of this Heyting
algebra. qed

But we have seen that given the nature of this filter, RS(U)/≡
J〈U,B〉

is isomorphic to the Boolean algebra of the regular elements of RS(U).
The isomorphism is obtained by considering the set J 〈U,B〉(RS(U)) of
the fixed points of the operator J 〈U,B〉.

Now, since an element a is regular if ¬¬a = a or ��a = a, we have
that 〈a1, a2〉 is regular if a1 = a2. Therefore, a regular element of RS(U)
has the form 〈(uE)(X), (uE)(X)〉 (or, equivalently, 〈(lE)(X), (lE)(X)〉).
It follows that the Boolean algebra of the regular elements of RS(U) is
the image of AS(U) via rs. So we are done.

Therefore, in Rough Set Systems the Lawvere-Tierney operators
J 〈U,B〉 and J〈P,∅〉 are analogous of the upper and, respectively, lower
approximations in Approximation Spaces. What is surprising is that
these operators are both defined by means of the pure lattice-theoretic
notion of “least dense element” (because 〈P, ∅〉 = ¬〈U,B〉), and that,
in turn, this element is based on the “empirical” parameter B.

We want to prove the statement by exploiting another interesting
property of the Lawvere-Tierney operator J 〈U,B〉:

Proposition 8.2.3. J 〈U,B〉 is both multiplicative and additive on
RS(U).
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Proof. J 〈U,B〉 is multiplicative since it is a Lawvere-Tierney operator.
Now, for any rough set 〈(uE)(X), (lE)(X)〉, J 〈U,B〉(〈(uE)(X),
(lE)(X)〉) = 〈(uE)(X), (uE)(X)〉. By Corollary 8.2.1 (uE) has a right
adjoint, hence it must be additive (indeed it is a topological closure
operator). Additivity is inherited by the operation ∨ between ordered
pairs, from its point-wise definition, so we obtain the proof. qed

From this result a number of interesting consequences follows. First
of all, J 〈U,B〉(RS(U)) is not only the Boolean algebra of the regular
elements of RS(U), but we have a particular situation:

Corollary 8.2.2. For any Approximation Space AS(U), J 〈U,B〉(RS
(U)) is a sublattice of the Rough Set System RS(U).

Corollary 8.2.3. J 〈U,B〉(RS(U)) is the center CT R(RS(U)) of RS(U),
that is, the set of complemented elements.

A complemented element in our framework is any x of the form 〈x1, x1〉.
So we can proceed as we have done above. To sum up, we know that
the family of the pairs with form 〈x1, x1〉 can be made into a Boolean
algebra and from the discussion about exact rough sets, it is not a
surprise to find this Boolean algebra embedded in RS(U):

Corollary 8.2.4. For any Rough Set System RS(U),

1. J 〈U,B〉(RS(U)) = B(AS(U)) = rs(AS(U)).

2. B(AS(U)) = 〈J 〈U,B〉(RS(U)),∧,∨,∼, 0, 1〉 is the Boolean algebra
of the exact elements of RS(U).

3. B(AS(U)) is isomorphic to AS(U).

The same properties hold true of J〈P,∅〉, with respect to the opposite
Heyting algebra RS(U)op. It is worth noticing that the additivity of L
(the multiplicativity of M) must be explicitly assumed in systems of
modal logic for rough sets (cf. axiom 10a of Section 14.4 of Part III).

Before closing the Section, one more time we must mention that in
the abstract case the parameters B and P are actually inessential in
order to define L,M and CT R(RS(U)). In fact the notion of a “least
dense element” is sufficient and this notion is definable in pure lattice-
theoretic terms. This fact will allow us to state some more abstract
results.
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Example 8.2.1. The Lawvere-Tierney operators J 〈G,B〉 and J〈P,∅〉
In this example we show an application of Lemma 8.2.1 to the Rough Set System
RSB(AS(G)) presented in Example 7.4.4.
Consider the element 〈{a, a′, a′′}, {a′}〉 ofRSB(AS(G)). We have: 〈{a, a′, a′′},{a′}〉∧
〈G, B〉 = 〈{a, a′, a′′}, {a′}〉 = 〈{a, a′, a′′}, {a, a′, a′′}〉 ∧ 〈G, B〉, and this equation
holds of every pair 〈X1, X2〉 of decreasing elements of AS(G), such that X1 =
{a, a′, a′′}. Hence, x ≡J〈G,B〉 〈{a, a′, a′′}, {a′}〉 if x is top equal to 〈{a, a′, a′′}, {a′}〉.
Moreover, it follows that the largest element of [〈{a, a′, a′′}, {a′}〉]≡

J〈G,B〉 is

〈{a, a′, a′′}, {a, a′, a′′}〉. Otherwise stated, J〈G,B〉(〈{a, a′, a′′}, {a′}〉) = 〈{a, a′, a′′},
{a, a′, a′′}〉 = ¬¬〈{a, a′, a′′}, {a′}〉 = M(〈{a, a′, a′′}, {a′}〉).

Moreover, the reader can easily verify that J〈G,S〉(RSB(AS(G)) ∼=↓ 〈G, B〉.
Dually, by easy inspection of the diagram of RSB(AS(G)) we can see that

〈{a, a′, a′′}, {a′}〉 ∨ 〈P, ∅〉 = 〈{a′}, {a′}〉 ∨ 〈P, ∅〉 and this equation holds of every
element 〈X1, X2〉 such that X2 = {a′} and X1 ⊇ {a′}. Actually, [〈{a, a′, a′′},
{a′}〉]≡J〈P,∅〉

= {〈{a, a′, a′′}, {a′}〉, 〈{a′}, {a′}〉} so that
∧

[〈{a, a′, a′′}, {a′}〉]≡J〈P,∅〉
=

〈{a′}, {a′}〉 =

��〈{a′}, {a′}〉 = L(〈{a′}, {a′}〉).
Finally, the reader is invited to verify that J〈P,∅〉(RSB(AS(G))) =↑ 〈P, ∅〉.

8.3 Multi-Valued Logics:

A Knowledge-Oriented Interpretation

8.3.1 A Taxonomy of Logical Systems

So far we have developed the discourse along the information-oriented
interpretation suggested by Rough Set Theory. Now that the meaning
of the parameters B and of the special rough sets 〈U,B〉 and 〈P, ∅〉
are established, we can change perspective, assuming a more general
point of view. In fact, we are going to discover the basic logico-algebraic
systems that are defined by means of a functor RSB , depending on the
parameter B, but framing the results in a general setting. After that
they shall be interpreted from our usual information-oriented point of
view.

So, let A = 〈A,¬,∧,∨, 0, 1〉 be an arbitrary Boolean algebra and let
x and y be elements of A such that x = ¬y.

It is obvious that all the results introduced until now continue to
hold when we substitute A for AS(U), generic elements x, y ∈ A such
that x = ¬y for B and P and we translate the set-theoretical operations
and relations on ℘(U) with the corresponding logical operations and
relations on A (i.e. ⊆ with ≤, ∩ with ∧ and so on).
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In particular, the abstract analogous of the rough-set operator RSB

is the following:

Definition 8.3.1. Let A be a Boolean algebra, and let x ∈ A. Then
RSx(A) = {〈a1, a2〉 ∈ A2 : ¬a2 ∨ a1 = 1 and ¬a1 ∨ a2 ≥ x}.

Now we can proceed at the required level.

Proposition 8.3.1. For any Boolean algebra A, for any x ∈ A,

1. L(A) = 〈RSx(A),∧,∨,∼, φ1, φ2, 0, 1〉, where φ1 = M and φ2 =
L, is a three-valued �Lukasiewicz algebra.

2. N(A) = 〈RSx(A),∧,∨,∼, �,−→, 0, 1〉 is a semi-simple Nelson
algebra.

3. H(A) = 〈RSx(A),∧,∨,¬,⊃, 0, 1〉 is a Heyting algebra.

The proofs are given in Frame 10.6. Remember that in the above alge-
braic structures the operations are those defined on ordered pairs, not
on A.

Proposition 8.3.2. For any Boolean algebra A, 〈RSx(A),∧,∨, �,
0, 1〉 coincides with the Boolean algebra B(A) if and only if x = 1.

Proof. If x = 1, then 〈a1, a2〉 ∈ RSx(A) if and only if a1 = a2. Thus the
left to right implication is given by Corollary 8.2.3. For the opposite
direction, consider that if x �= 1, then y �= 0 and we can chose two
elements a, b ∈ A such that b < a, a∧x = b∧x and a∧ y �= b∧ y. Then
〈a, b〉 ∈ RSx(A) and a �= b. It follows that RSx(A) �= B(A). qed

Lemma 8.3.1. For any Boolean algebra A, for any x ∈ A and a, b ∈
RSx(A),

1. a ≤ b if and only if ∼ a ≥∼ b.

2. L(a) =∼ �a; M(a) = �∼ a.

3. ∼ �(a ⊃ b) =
∨
{c ∈ CT R(RSx(A)) : c ∧ a ≤ b}. We set

a
c=⇒ b =def∼ �(a ⊃ b).

4. ∼ (∼ a ⊃∼ b) =
∧
{z ∈ RSx(A) : z∨a ≥ b}. We set a ⊂ b =def∼

(∼ a ⊃∼ b).

5. �∼ (a ⊂ b) =
∧
{c ∈ CT R(RSx(A)) : c ∨ a ≥ b}. We set

a
c⇐= b =def

�∼ (a ⊂ b).
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Proof. (1) The order reversing property is inherited in RSx(A) from
the same property of ¬ in A. (2) By easy computation we have ∼�a =∼ 〈¬a2,¬a2〉 = 〈a2, a2〉 and �∼ a = �〈¬a2,¬a1〉 = 〈a1, a1〉. (3)
As listed as a fact in Table 1, a ⊃ b =

∨
{z : z ∧ a ≤ b}; so from 2,

∼ �(a ⊃ b) is the largest element of the center below a ⊃ b. (4) Because
“∼” is order reversing. (5) From 2 and 4. qed

It follows that a c=⇒ b is the largest element of the center of A whose
meet with a is less than or equal to b, while a ⊂ b is the smallest ele-
ment whose union with a is greater than or equal to b. Finally, a c⇐= b

is the smallest element of the center of A whose union with a is greater
than or equal to b.

Corollary 8.3.1. For any a, b ∈ RSx(A),

1. �a = a ⊂ 1 =
∧
{z : z ∨ a ≥ 1}.

2. a c=⇒ b, a ⊂ b and a
c⇐= b exist.

3. (i) L(a) = 1 c=⇒ a; (ii) M(a) = 0 c⇐= a.

Proof. (1) By easy computation we have the equations a ⊂ 1 = �a ∧
1 ∧ (∼ �∼ a∨ ∼ �1) = �a (we can have a direct proof: if z ∨ a = 1,
then z1 ∨ a1 = 1 = z2 ∨ a2. But ¬a2 is clearly the least w ∈ A such
that w∨ a2 = 1. Since z1 ≥ z2, the required element is 〈¬a2,¬a2〉, that
is, �a). (2) The result is obtained from the fact that RSx(A) is closed
under the operations �, ¬, ∼ and ⊃ and from the definition of c=⇒, c⇐=
and ⊂. (3) Again by easy computation we have the following two chains
of equations (i) 1 c=⇒ a =∼ �(1 ⊃ a) =∼ �∼ 1∨ ∼ �a ∨ ( �1 ∧ �∼
a) = 0∨ ∼ �a ∨ (0 ∧ �∼ a) =∼ �a = L(a), (ii) 0 c⇐= a = �0 ∧ �∼
a ∧ ( �∼ �0∨ ∼ �a) = 1 ∧ �∼ a ∧ (1∨ ∼ �a) = �∼ a = M(a). qed

It should be noticed that the proof of Corollary 8.3.1.(1) depends on
the fact that A is a Boolean algebra. The operations ⊂ and �are
the relative pseudo-complementation and, respectively, the pseudo-
complementation in the Heyting algebra RSx(A)op (the reader is
invited to compare these results with the identities stated in Epstein
& Horn [1974a], for instance: a c⇐= b =∼ (b c=⇒ a)).
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Proposition 8.3.3. For any Boolean algebra A,

P2(A) = 〈RSx(A),∧,∨, !, e0, e1, e2〉

where the pseudo-supplementation ! is L, e0 = 0, e1 = 〈1, x〉 and e2 = 1,
is a P2-lattice of order three, if and only if x �= 1.

Proof. (i) From Corollary 8.3.1(3) (a) it follows that L is indeed the
pseudo-supplementation !. Moreover by Corollary 8.3.1(2) this opera-
tion is always defined in RSx(A). (ii) e1 = 〈1, x〉 derives immediately
from the fact that 〈1, x〉 is the least dense element in the interval
[〈0, 0〉, 〈1, 1〉] and from the result quoted in Frame 10.1. Moreover in
view of the discussion about the operator J 〈1,B〉, one can prove that
↑ 〈1, x〉 is a Boolean algebra; hence the least (and only) dense element
within the interval [〈1, x〉, 〈1, 1〉] is 〈1, 1〉. It follows that P2(A) is of
order three. But if x = 1 then the least and only dense element of
RSx(A) would be 〈1, 1〉 and we would obtain a Boolean algebra. (iii)
It is easy to check that e1 ⊃ e0 = e0 (the other case, e2 ⊃ e1, is
trivial). qed

Proposition 8.3.4. For any Boolean algebra A,

P(A) = 〈RSx(A),∧,∨,¬,⊃,D1,D2, e0, e1, e2〉

where D1 = M,D2 = L, is a Post algebra of order three if and only
if x = 0. In this case the chain of values is given by e0 = 0, e1 = 〈1, 0〉
and e2 = 1.

Proof. In view of Proposition 8.3.3, we have only to show that !en−2 =
0. Since in our case en−2 = e1 = 〈1, 0〉, we have: ∼ �〈1, 0〉 =∼
〈¬0,¬0〉 =∼ 〈1, 1〉 = 〈0, 0〉. Moreover it is obvious that if 1 �= x �= 0
then !en−2 is strictly greater than 0, so that RSx(A) can be only made
into a P2-lattice of order three; on the contrary, if x = 1 then !e0 = 0,
but en−2 = e0: in this case P(A) is indeed a Post algebra, but of order
two, that is a Boolean algebra. qed

Proposition 8.3.5. For any Boolean algebra A, for any x ∈ A,

PA(A) = 〈RSx(A),∧,∨, c=⇒,
c⇐=,⊃,⊂, !,¡, 0, 1〉

where the pseudo-supplementation ! is L, the dual pseudo-supplementa-
tion ¡ is M , and c⇐=, c=⇒ and ⊂ are the operations defined in Lemma
8.3.1, is a P-algebra.
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Proof. In view of Proposition 8.3.1 and Corollary 8.3.1, we have only
to check the “linearity property” (a ∗ b) ∨ (b ∗ a) = 1, for ‘∗’ any of
the operations ⊃,⊂, c=⇒ and c⇐=. So let us prove just the cases for
⊃ and c=⇒ (the others come from duality). In the development of the
polynomial (a ⊃ b) ∨ (b ⊃ a) we obtain an equivalent disjunctive for-
mula in which the two terms �∼ b∨ ∼ �∼ b and �∼ a∨ ∼ �∼ a

appear. Since for any z, both ∼ �z and �∼ z are complemented, we
have (a ⊃ b) ∨ (b ⊃ a) = 1. Consider now that the operator ∼ �is
additive; thus (a c=⇒ b) ∨ (b c=⇒ a) =∼ �(a ⊃ b)∨ ∼ �(b ⊃ a) =∼�((a ⊃ b) ∨ (b ⊃ a)) =∼ �1 = 1. qed

Example 8.3.1. Logico-algebraic structures from Rough Set Systems
As we have seen in Example 7.4.1, the lattices L1 and L2 of Example 6.5.1 are
isomorphic to the derived lattices RS0(B) and, respectively, RSb(B) of the Boolean
algebra B. Therefore, all the considerations about L1 and L2 in Example 6.5.1 turns
into examples of the previous Propositions.

As for “concrete” examples, we can refer to the Rough Set Systems of Example
7.4.4:

1. The lattice RSB(AS(G)) equipped with the chain 〈〈0, 〈¬B, ∅〉, 1〉, i.e. 〈〈∅, ∅〉,
〈{a, a′′}, ∅〉, 〈G, G〉〉 can be made into a P0−lattice. Moreover, by setting e1 =

J〈G,¬B〉(〈G, ∅〉), i.e. by setting e1 = J〈G,{a,a′′}〉(〈G, ∅〉) = 〈G, {a′, a′′′}〉 =
〈G, B〉, we obtain a new chain 〈0, e1, 1〉 which makes RSB(AS
(G)) into a P2−lattice, because e1 (alias 〈G, B〉) is the least dense element in
RSB(AS(G)). Thus the element 〈G, B〉 plays here the role of intermediate
value, that is the same role played by the central element 〈G, ∅〉 in the case
of P(AS(G)).

2. RSB(AS(G)) can be made into a semi-simple Nelson algebra. Indeed, one
can verify, for instance, that 〈{a, a′′, a′′′}, {a′′′}〉 ∨ �〈{a, a′′, a′′′}, {a′′′}〉 =
〈{a, a′′, a′′′}, {a′′′}〉 ∨ 〈¬{a′′′},¬{a′′′}〉 = 〈{a, a′′, a′′′}, {a′′′}〉 ∨ 〈{a, a′, a′′},
{a, a′, a′′}〉 = 〈G, G〉. This, obviously, depends on the fact that ¬ is a Boolean
complementation in AS(G).
Symmetrically, we verify that 〈{a, a′′, a′′′}, {a′′′}〉 ∧ ¬〈{a, a′′, a′′′}, {a′′′}〉
= 〈{a, a′′, a′′′}, {a′′′}〉 ∧ 〈¬{a, a′′, a′′′},¬{a, a′′, a′′′}〉 =
= 〈{a, a′′, a′′′}, {a′′′}〉 ∧ 〈{a′}, {a′}〉 = 〈∅, ∅〉

3. If we set φ1 = ¬¬ and φ2 =

��

then RSB(AS(G)) can be made into
a three-valued �Lukasiewicz algebra. For instance, φ1(〈{a, a′, a′′}, {a′}〉) =
〈{a, a′, a′′}, {a, a′, a′′}〉 while φ2(〈{a, a′, a′′}, {a′}〉) = 〈{a′}, {a′}〉. Notice that
both results are exact rough sets, namely rs({a, a′, a′′}) and, respectively,
rs({a′}).

The above results describe a mere taxonomy. Indeed if we want to
speak of “information-oriented” interpretation, we should be able to



8.3 Multi-Valued Logics: A Knowledge-Oriented Interpretation 247

investigate these structures more deeply and to decompose and recon-
struct them, from a logical point of view, using our information-based
parameters B and P .

8.3.2 Exact and Inexact Information
in Logico-Algebraic Systems

In order to understand the two fold nature of the above logico-algebraic
structures, we must unravel the double nature of Rough Set Systems.
So, though we could continue and develop the reasoning at a more
abstract level, as in the previous Subsection, we prefer to frame the
next results within the more intuitive setting of Rough Set Theory and
to translate them into general terms at the end of the Section.

We have to answer the following question: “What happens if we
focus our attention separately on the P -part and on the B-part of a
Rough Set System”? In order to answer we have to extract from RS(U)
the local logical properties of the inexact part and of the exact part.
Clearly we shall look again for some suitable Lawvere-Tierney operator.
Indeed, in order to discharge the B-part we have to consider 〈P,P 〉 as
a (local) top element, whereas in order to discharge the P -part, 〈B,B〉
has to be a local top element (notice that both elements are legal rough
sets).

Let us first deal with the P -part. We use, therefore, the Lawvere-
Tierney operator J 〈P,P 〉. In fact it is seen that J 〈P,P 〉(RS(U)) is iso-
morphic to ΩJ〈P,P〉(RS(U)) = {x : x ≤ 〈P,P 〉}. We shall obtain
ΩJ〈P,P〉(RS(U)) step by step, providing it with an information-oriented
flavour. First, by definition we have:

Lemma 8.3.2. For any a, b ∈ RS(U), a ≡J〈P,P 〉 b iff a1 ∩ P = b1 ∩ P
and a2 ∩ P = b2 ∩ P .

Thus ≡J〈P,P 〉 groups together all rough sets which coincide in the P -
part of both elements. It follows that the only difference between ≡J〈P,P〉

equivalent rough sets, rests in the B-parts of their elements. Moreover
it follows that for any rough set x, the fixed point

∨
[x]≡

J〈P,P 〉 adds B to
x1 and x2. In this way B acts no more and the only difference between
the fixed points of J 〈P,P 〉 depends uniquely on the P -part, that is the
inexact part of AS(U). It is not difficult to show that the set of fixed
points of this operator can be made into a Post algebra of order three
with chain (〈B,B〉, 〈U,B〉, 〈U,U〉).



248 8 Approximation and Algebraic Logic

Now that the B-part is no longer active, we can consider the fol-
lowing transformation of elements x ∈ J 〈P,P 〉(RS(U)): h(〈x1, x2〉) =
〈x1 ∩ −B,x2 ∩ −B〉 = 〈x1 ∩ P, x2 ∩ P 〉.

By means of h we discharge the “frozen” B-part of the elements of
J 〈P,P 〉(RS(U)) (of course we can directly obtain h(J 〈P,P 〉(RS(U))) if
we consider the dual fixed points

∧
[x]J〈P,P 〉 : in this way we subtract B

from x1 and x2). At this point one can easily prove:

Proposition 8.3.6. For any Rough Set System RS(U), h(J 〈P,P 〉

(RS(U))) = RS∅(B∗(P )), where B∗(P ) is the Boolean algebra whose
set of atoms is P ∗, i.e. the ideal ↓ P of AS(U).

Readers are invited to prove the exercise.

Corollary 8.3.2. P(P ) = 〈h(J 〈P,P 〉(RS(U))),∨,∧,¬,⊃, L,M, e0,

e1, e2〉 is a Post algebra of order three with chain of values given by
e0 = 〈∅, ∅〉, e1 = 〈P, ∅〉, e2 = 〈P,P 〉.

So the inexact part gives rise to a Post algebra of order three as we
expected on the basis of our intuitive considerations.

For the second half of the task, it is to analyse the logical behaviour
of the B-part of a Rough Set System. Now we have to collect the
elements that coincide in their B-parts and to “freeze” the P -part. It
seems intuitive to apply the operator J 〈B,B〉, since 〈B,B〉 =∼ 〈P,P 〉:

Lemma 8.3.3. For any a, b ∈ RS(U), a ≡J〈B,B〉 b iff a1 ∩ B = b1 ∩ B
and a2 ∩B = b2 ∩B.

Taking the set of fixed points of this operator we obtain a Boolean
algebra with top element 〈U,U〉 and bottom element 〈P,P 〉. In fact for
any x,

∨
[x]J〈B,B〉 adds P to both x1 and x2.

Once we have “frozen” the P -part in this way, we must subtract it
from each element of J 〈B,B〉(RS(U)). So we shall use the transforma-
tion: g(〈x1, x2〉) = 〈x1 ∩−P, x2 ∩−P 〉 = 〈x1 ∩B,x2 ∩B〉. It is easy to
prove for any Rough Set System RS(U):

Proposition 8.3.7. g(J 〈B,B〉(RS(U))) = RSB(B∗(B)), where B∗(B)
is the Boolean algebra whose set of atoms is B∗, i.e. the ideal ↓ B

of AS(U) (that is, actually, ℘(B)).

Corollary 8.3.3. B(B) = 〈g(J 〈B,B〉(RS(U))),∨,∧,∼, 〈∅, ∅〉, 〈B,B〉〉
is a Boolean algebra.
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Again one could consider the duals of the fixed points obtaining the
resulting structure directly.

Example 8.3.2. The Lawvere-Tierney operators J 〈P,P 〉 and J 〈B,B〉

Let us have a look of an illustration of the statements of Subsection 8.3.2.
The reader will verify by easy inspection of Figure 8.1 that the following decom-

position into a Post algebra of order three and a Boolean algebra holds of RSB

(AS(G)), where h and g are the maps defined in Proposition 8.3.6 and Proposition
8.3.7:

Figure 8.1: Decomposition of a three-valued lattice into a Post algebra
of order three and a Boolean algebra

Now a remark about this last construction is in order. We have seen that
to obtain the Boolean elements constituting the center of RS(U), we
had to use a double negation topology, namely the Lawvere-Tierney
topology J 〈U,B〉(RS(U)). It is rather interesting to see that the con-
struction of the Boolean algebra B(B) uses a double negation topology,
too. This fact has been hidden by the use of the operator J 〈B,B〉. But
one can prove that in RSB(AS(U)) this operator is equivalent to the
Lawvere-Tierney operator B〈P,P 〉 which is defined as follows:

Definition 8.3.2. For any Heyting algebra H and a, p ∈ H, Ba(p) =
(p =⇒ a) =⇒ a.
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The proof of the equivalence is left as an exercise based on the following
Lemma:

Lemma 8.3.4. If a is an exact element then for all x, x =⇒ a =
〈¬x1,¬x2〉 ∨ a.

Proof. ∼ �∼ x ∨ a ∨ ( �x ∧ �∼ a) =∼ �∼ x ∨ a ∨ ( �x ∧ a) =∼ �∼
x ∨ a = 〈¬x1,¬x1〉 ∨ a. qed

Since 〈P,P 〉 is an exact element, for all a,B〈P,P 〉(a) = (a=⇒ 〈P,P 〉)=⇒
〈P,P 〉 = (〈¬a1,¬a1〉∨〈P,P 〉) =⇒ 〈P,P 〉 = 〈a1∧¬P, a1∧¬P 〉∨〈P,P 〉 =
〈P ∨ (a1 ∧ ¬P ), P ∨ (a1 ∧ ¬P )〉 = 〈P ∨ a1, P ∨ a1〉.
Hence a ≡B〈P,P 〉 b if and only if 〈P ∨a1, P ∨a1〉 = 〈P ∨ b1, P ∨ b1〉 if and
only if P ∨ a1 = P ∨ b1, if and only if −P ∧ (P ∨ a1) = −P ∧ (P ∨ b1),
if and only if B ∧ a1 = B ∧ b1 and (by definition of a rough set)
B ∧ a2 = B ∧ b2. Therefore, the P part is immaterial. It follows that
∨

[a]≡B〈P,P 〉
= 〈a1 ∨ P, a1 ∨ P 〉.

Exercise 8.1. Prove that, (i)
∨

[a]≡B〈B,B〉
=
∨

[a]≡
J〈P,P 〉 and (ii)

∨
[a]≡B〈P,P 〉

=
∨

[a]≡
J〈B,B〉 .

Exercise 8.2. Prove that B〈P,P 〉 coincides with the mixed operator
J 〈G,B〉 ∨B〈P,∅〉.

The congruence relation induced by this operator, gives the so-called
Boolean quotient. The term “Boolean” is justified by the fact that the
set of fixed points of the operator Ba is {p ∈ H : (p =⇒ a) =⇒ a ≤ p}.
Hence in the case a = 0 we obtain the well-known double negation
quotient REG(H).1 Thus applying B〈P,P 〉 we obtain the set of regular
elements with respect to the local bottom element 〈P,P 〉 (and it is
natural to consider 〈P,P 〉 a bottom element: in order to accomplish
our construction, we have to forget the P -part).

After this, let us come to some conclusions
From the above results it follows that any Rough Set System RS(U)

is isomorphic to the direct product of the Post algebra of order three

1In the case a = 0 the set of fixed points of the operator Ba coincides with
{p ∈ H : (p =⇒ a) =⇒ p =⇒ p = 1}. But this is precisely Peirce’s law, that is, the
law which separates the implicative fragment of Classical Logic from the implicative
fragment of Intuitionistic Logic.
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P(P ) (i.e. RS∅(B∗(P ))), and the Boolean algebra B(B) (i.e. RSB(B∗

(B))). The lattice isomorphism is:

f : P(P ) × B(B) �−→ RS(U) : f(〈〈p1, p2〉, 〈b1, b2〉〉) = 〈p1 ∪ b1, p2 ∪ b2〉.

Thus f re-connects B and P and as such it is the reciprocal of g and h.
Notice that if P = ∅, then P(P ) is a degenerate Post algebra, while

B(B) equals B(AS(U)) and is isomorphic to AS(U). Conversely, if B =
∅, then B(B) is a degenerate Boolean algebra and P(P ) = P(AS(U)).

Example 8.3.3. Post × Boole=Lukasiewicz
Here we apply to RSB(AS(G)) the decomposition and reconstruction technique
which was examined above.
Step 1: we separate the inexact from the exact parts of the Approximation Space
AS(G):

- Inexact part: P ∗ = {{a, a′′}}, P =
⋃

P ∗ = {a, a′′};
- Exact part : B∗ = {{a′}, {a′′′}}, B =

⋃
B∗ = {a′, a′′′}.

Step 2: we form the Boolean algebras B∗(B) and B∗(P ), which has B∗ and, respec-
tively, P ∗ as set of atoms, and then we form the Post algebra RS∅(B∗(P )) and the
Boolean algebra RSB(B∗(B)), according to Corollary 8.3.2 and Corollary 8.3.3:

B∗(B)

{a′, a′′′}

�
� �

�
{a′} {a′′′}

�
� �

�

∅

B∗(P )

{a, a′′}

∅

RSB(B∗(B))

〈{a′, a′′′}, {a′, a′′′}〉

�
� �

�
〈{a′}, {a′}〉 〈{a′′′}, {a′′′}〉

�
� �

�

〈∅, ∅〉

RS∅(B∗(P ))

〈{a, a′′}, {a, a′′}〉

〈{a, a′′}, ∅〉

〈∅, ∅〉
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Step 3: now we form the product RS∅(B∗(P ))×RSB(B∗(B)):

〈〈{a, a′′}, {a, a′′}〉, 〈{a′, a′′′}, {a′, a′′′}〉〉

��
��
��
��
� ���������

〈〈{a, a′′}, ∅〉, 〈{a′, a′′′}, {a′, a′′′}〉〉

〈〈{a, a′′}, {a, a′′}〉, 〈{a′}, {a′}〉〉

��
��
��
��
� ���������

〈〈{a, a′′}, {a, a′′}〉, 〈{a′′′}, {a′′′}〉〉
���������

〈〈∅, ∅〉, 〈{a′, a′′′}, {a′, a′′′}〉〉

��
��
��
��
�

〈〈{a, a′′}, ∅〉, 〈{a′}, {a′}〉〉

��
��
��
��
� ���������

〈〈{a, a′′}, ∅〉, 〈{a′′′}, {a′′′}〉〉
���������

〈〈{a, a′′}, {a, a′′}〉, 〈∅, ∅〉〉

��
��
��
��
�

〈〈∅, ∅〉, 〈{a′}, {a′}〉〉 〈〈∅, ∅〉, 〈{a′′′}, {a′′′}〉〉
���������

〈〈{a, a′′}, ∅〉, 〈∅, ∅〉〉

��
��
��
��
�

〈〈∅, ∅〉, 〈∅, ∅〉〉

Step 4: Finally, we apply the pair-wise summation to each element.
For instance, the element 〈〈{a, a′′}, {a, a′′}〉, 〈∅, ∅〉〉 is transformed into 〈{a, a′′}∪

∅, {a, a′′} ∪ ∅〉 = 〈{a, a′′}, {a, a′′}〉 and 〈〈{a, a′′}, ∅〉, 〈{a′, a′′′}, {a′, a′′′}〉〉 is trans-
formed into 〈{a, a′′} ∪ {a′, a′′′}, ∅ ∪ {a′, a′′′}〉 = 〈G, B〉. So one can notice that the
intermediate value of RSB(AS(G)) qua P2−lattice, 〈G, B〉, is obtained by multi-
plying the intermediate value 〈P, ∅〉 of RS∅(B∗(P )) and the “intermediate value”
〈B, B〉 of RSB(B∗(B)) (in a Boolean algebra the intermediate value coincides with
the top element). Similarly, the bottom element of RSB(AS(G)) is obtained by
multiplying the bottom elements of RS∅(B∗(P )) and RSB(B∗(B)) while the top
element is given by the multiplication of the top elements of the two algebras.

The above steps provides us with a logical decomposition/recomposition
procedure which is information-oriented. In fact, it is worth emphasiz-
ing that as to their algebraic meanings these results are related to
the decomposition and representation results of Moisil and Cignoli (see
Moisil [1949] and Cignoli [1969]). We shall give a glance at these results
in Frame 10.10. For the moment we would like to mention the fact that
we have proved that given a finite semi-simple Nelson algebra A (a
finite �Lukasiewicz algebra), the decomposition process of A may be
suspended at a well determined point, that is, when we reach the point
corresponding to the P ∗/B∗ − decomposition of the atoms of A, thus
exhibiting the “logical core” of the analyzed structure.

We can sum up the discussion of the first part in the following way:

1. When B = ∅ (that is, when we do not have any precise info-
rmation), then RS(U) is a Post algebra of order three with
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intermediate element 〈U, ∅〉. Alternatively, it is a centered three-
valued �Lukasiewicz algebra – or a centered semi-simple Nelson
algebra – with 〈U, ∅〉 as central element. We have seen that 〈U, ∅〉
reflects a completely inexact knowledge.

2. When B �= ∅ and B �= U , then RS(U) is a non-centered three-
valued �Lukasiewicz algebra (a non-centered semi-simple Nelson
algebra). Indeed in this case we cannot have any knowledge which
is inexact everywhere, since the elements of B∗ are completely
known. We can have at most a completely inexact knowledge
up to the elements ofB∗: this situation is represented by 〈U,B〉
which becomes the intermediate value when we interpret RS(U)
as a P2-lattice.

3. On the contrary, when B = U (that is when we have a complete
information about U), then RS(U) is a Boolean algebra. In this
case the two modalities M and L collapse into the identity.

4. Any Rough Set System is isomorphic to the product of the Rough
Set System induced by the exact part of an information system
and the Rough Set System induced by the inexact part of the
same information system.

So, all these results make it possible to give an intuitive background to
the following statement:

Proposition 8.3.8. Let A be a complete three-valued �Lukasiewicz alge-
bra (or a semi-simple Nelson algebra, or a P2-lattice of order three),
then A is isomorphic to the direct product BA × PA of a Boolean
sublattice BA and of a Post sublattice PA of order three of A.

Proof. In order to apply the Lawvere-Tierney operator Jx, we have to
define a relative pseudo-complementation for any two elements a, b ∈
A. In semi-simple Nelson algebras this operation is provided by ⊃, in
�Lukasiewicz algebras by the Moisil residuation � defined in (6.3.25) and
in P2-lattices by the operation �, defined in the footnote of Section 6.4.
In the cases we are dealing with, we have a � b = a � b = a ⊃ b, for
any element a, b of the given algebra (provided the translations φ1/¬¬/¡
and φ2/

��/!). In order to find the smallest dense element δ of A, in
semi-simple Nelson algebras and in three-valued �Lukasiewicz algebras
we have to find the least x such that x ⊃ 0 = 0; in P2-lattices, we
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already know that δ coincides with the intermediate value e1. Once we
have δ, following the above techniques and the representation theorems
stated in Frame 10.3 we obtain the result. qed

Therefore any Rough Set System is, actually, a combination of a Boolean
subalgebra and a Post subalgebra of order three, each one with a pre-
cise informational meaning.

We end this part with a table summing up the relationships between
the operators of the different algebraic structures:

semi-simple Nelson alg. 3-valued �Lukasiewicz alg. P2 − alg. Rough Set Systems

¬¬ φ1 ¡ (uE)�� φ2 ! (lE)
⊃ � �



Chapter 9

A Logico-Philosophic
Excursus

The logico-algebraic analysis of Rough Set Systems so far carried on
shows that one cannot adopt a “pure” classical or a “pure” construc-
tivistic point of view, a “pure” bivalent or a “pure” muti-valued point
of view, because things are much more complicated, also in higher
level degrees of abstraction. This observation leads us to more general
considerations about the status of current logical researches.

Anyway, after illustrating these general considerations, from this
new viewpoint we shall smoothly land back to our Rough Set Systems.

9.1 Truth-Oriented and Knowledge-Oriented
Approaches in Logic

As we have anticipated in the Introduction, according to the classical
point of view the goal of Logic is the discovery of the laws of truth, in
opposition to other sciences whose goal is to discover truth.

However in modern logic a different position arose as to the claim
that Logic has to discover the discovery laws. In other words, the
domain of Logic should be the laws of knowledge.

These two positions induce different understanding as to what the
meaning of a sentence is. The truth-oriented point of view (advocated
by Frege and usually called “classical” or “extensional”) claims that
the meaning of a sentence A is given by its truth-conditions, that is,
the set of states of affairs that make A true. On the contrary, the
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knowledge-oriented position, also called “intensional”, maintains that
the meaning of A is given, in a sense, by the way A “is used”. In both
cases the meaning of A is solely given by the meaning of the logical
constants of A, but in the truth-oriented case this meaning is given by
a notion of “trueness”, while for the knowledge-oriented position it is
connected with the notion of “how to recognize trueness” or verification
conditions.

Indeed, the knowledge-oriented approach points out a serious weak-
ness existing in the truth-oriented position: in order to determine that
a sentence A is true with respect to a given state of affairs, we should
already know the meaning of A.

9.2 Understanding the Knowledge-Oriented
Point of View

Let us analyse the knowledge-oriented point of view. According to it:

(M1) We can recognize the meaning of a sentence on the sole basis of
its logical constants.

(M2) The meaning of the logical constants cannot depend on any clas-
sical notion of “truth”, since this relies on the assumption of an
external state of affairs.

(M3) The meaning of a complex sentence depends on the meaning of
its components.

In short, the meaning of a sentence α is given by the way α has been
syntactically assembled along with some ability to recognize the cor-
rectness of this construction. To put it in a slogan, the meaning of
α is a (or “the”) verifiable construction of α. Therefore, we shall also
call this position constructivistic position or Constructivism at large.
Actually, this is the core of the so-called BHK interpretation of Intu-
itionism which, as we shall see, leads to the identification of “meaning
conditions” with “verification conditions” and, in turn, with “proof
conditions”.1

Thus, “meaning conditions” on the one hand require a notion of
“invariance”, because according to (M1) and (M2), the meaning of a

1The acronym BHK is after the names of the logicians Brouwer, Heyting and
Kolmogorov.
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logical constant must be given solely by the role that it plays in any
sentence. Moreover, we should be able to distinguish between correct
and incorrect uses of logical constants.

These issues deserve a deeper analysis.
In order to be compliant with the latter, we have to base the notion

of “knowledge” on the more primitive notion of “evidence”. But accord-
ing to the former issue, the notion of an “evidence” should be invariant,
that is, it should not depend on the cognitive context, or cognitive
domain, in which it is applied. Since it is unlikely to find any notion of
an “evidence” completely unaffected by the cognitive context it is used
for (otherwise we would speak about some kind of Platonistic truth
and not about “evidence”), everything amounts to saying that we are
looking for a paradigmatic cognitive context which is general enough
to exhibit an invariant notion of “evidence”.

Let us consider, for instance, any cognitive context in which the
notion of a “perception” or “empirical knowledge” is central. Clearly,
in this context we can have pieces of evidence – true evidence – that
may happen to be false.

For instance, look again at Kanizsa’s triangle depicted in the Intro-
duction.

You surely are now perceiving two overlapping triangles. Let us call
this epistemic state of yours E1. Now we show you that actually the
triangle you see in the foreground is just given by a cognitive interpola-
tion of the other geometrical figures (cover, for instance one of the black
disks). Thus, now you reach a different epistemic state E2. Nonethe-
less, when you look again at the figure as it is, you come back to the
epistemic state E1.

On the contrary, suppose you are given a mathematical proof Π and
you evaluate Π as correct, so reaching the epistemic state, say, E3. If I
show you later an error in some step of Π – so that I turn your epistemic
state into E4 – you are not able to come back to the epistemic state
E3 any longer.

To sum up, while in an empirical context we accept to apply the term
“evidence” also to temporarily acceptable sentences, in Mathematics
we reject this possibility. To put it in another way, in Mathematics the
“evidence” of a proposition implies a stable condition that we can call
“mathematical truth”, while in empirical contexts this does not hold.
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Logico-philosophical remarks. 1
From this discussion it follows that “evidence” in Mathematics is close to the
traditional notion of “knowledge”, as it has been elaborated since Plato and
which basically states that knowledge is:

(K1) A belief (in order to know α, I must be aware of α),

(K2) True (otherwise α would just be an opinion),

(K3) Justified (I am not tossing a coin, but I have justifications to believe α
true).

It has been shown that actually conditions (K1), (K2) and (K3) are neither
sufficient nor necessary to define knowledge. An analysis of the counterexam-
ples shows that one important weakness of the above definition is the lack of
any defined relationship between justifications to believe A true (required by
point (K3)) and trueness (required by (K2)). Indeed, trueness is related to
states of affairs, and states-of-affairs may vary. So,

(KR1) Are we required to have a unique justification, applicable to all states-
of-affairs,

or

(KR2) For any state-of-affair are we required to find at least a justification?

The tradition seems to support the second reading and, in this way, is not able
to avoid counterexamples (cf. Gettier [1963]).
It is not difficult to see that the first reading is connected with the con-
structivistic position. In fact, a proof Π of A is constructively valid if it is a
construction (i.e. a justification) of A for any interpretation of its assumptions.
Otherwise we would have a proof that depends on the different states-of-affairs.
In other words Π would not be valid just because of its intrinsic construction
and, as a consequence, the meaning of A would not be given by conditions
(M1), (M2) and (M3). Indeed, (KR1) and (KR2) discriminate between con-
structive and non constructive proofs in a very precise manner (see Frame
10.17.2 for a striking example).

In any case we have seen the main reasons why almost all knowledge-
oriented points of view assume mathematics as a privileged cogni-
tive context in order to construct a good abstract model of epistemic
activities.

Since mathematical assertions are given evidence by means of proofs,
logics, from a knowledge-oriented point of view, is usually characterised
as the analysis of the more abstract properties of the construction of
proofs.
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9.3 Some Problems Arising From
the Knowledge-Oriented Point of View

However there are some problems to solve.

(I1) According to points (M1) and (M3) above, we face an impasse
when we reach atomic sentences, in the analysis of the construc-
tion of a proof. Indeed, what is the meaning of an atomic sentence
p according to the constructivistic point of view? Strictly speaking
p should not have any meaning, since the meaning of a sentence
is given by its logical constants and p does not have any logical
constant. In conclusion, as Miglioli et al. [1989] puts it, the identi-
fication of verification conditions with proof conditions “seems to
us to be better conceived as a normative proposal than an explica-
tive one”, so that we are required to consider this identification
with some additional care.2

(I2) Any logic L aiming at analysing the validity of a cognitive con-
struction by means of the analysis of its logical constants, should
fulfill some basic properties: the Disjunction Property (DP) and
the Explicit Definability Property (ED):

DP : If α ∨ β belongs to L, that is, α ∨ β is derivable in L
(with possible assumptions Γ), in symbols Γ | L α ∨ β, then
either α is derivable in L or β is derivable in L. There-
fore, for instance, if Γ | L α ∨ ¬α, then either Γ | L α or
Γ | L ¬α, because the justification for α ∨ ¬α is given by
its construction and not by the assumption that necessarily
either α or ¬α is valid in some Platonistic “objective” world,
as advocated by Classical Logic, CL.

ED : If Γ | L ∃xα(x), then Γ | L α(t) for some closed term t.
In other words, in order for ∃xα(x) to be derivable we must
exhibit a closed term t which is an instance of the claim,
which is not true of CL.3

2There is an additional problem: the meaning of an implication “α −→ β”,
according to the BHK interpretation, is that we know a construction that makes
it possible to transform every proof of α into a proof of β. But as mathematics
develops, one could find out a method to prove α that cannot be transformed into
a method to prove β.

3Indeed, | CL ¬∀x¬α(x) ←→ ∃xα(x), while if L is constructive we just have
| L ∃xα(x) −→ ¬∀x¬α(x). Indeed we could prove that the hypothesis ∀x¬α(x)
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Logics fulfilling ED and DP are called “constructive logics” in the
usual sense.

Intuitionistic Logic, INT , is considered to be the paradigm of
a constructive logic. But, what do we obtain if we add classical but
not intuitionistic principles to INT ? What is the status of super-
intuitionistic logics obtained in this way? Are there constructive
superintuitionistic logics in the range between INT and CL (to
be called “intermediate constructive logics”)? Jan �Lukasiewicz
conjectured a negative answer. But nowadays it is well-known
that there is plenty – indeed a continuum – of intermediate con-
structive logics (see Miglioli et al. [1989b], Miglioli [1992]). So,
what is the “real” constructive logic (if any)? Finally, if L is a con-
structive logic and T is a set of extra-logical axioms (for instance
the axioms of Peano Arithmetic), is T + L still constructive?

9.3.1 Possible Solutions 1: Making Classical
and Constructive Attitudes Coexist

We can try to solve issue (I1) by admitting that, actually, there is not
just one cognitive attitude, but at least two:

(i) The constructivistic cognitive attitude, according to which in
order to give α a meaning we must analyse the construction of
the proofs for α.

(ii) The classical cognitive attitude, according to which we do not
have to analyse α, since we can assume the truth or falsity of α
as evident on the basis of an objective state-of-affairs.

Along with this distinction, the constructivistic attitude reflects the
point of view of a partial cognitive subject, while the classical attitude
reflects the point of view of an complete observer.

According to these possible choices, we should apply the classical
approach to atomic sentences. More generally, it is wise to be able to
apply the classical approach in each case where a constructive analysis
is not useful (or unmotivated, as for atomic formulae).

For instance, in the context of Computer Science, we must apply the
constructivistic attitude when we need to analyse a cognitive object α

leads to a contradiction, without being able to exhibit any closed term t such that
α(t).
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in order to extract enough information from the proof of α to specify
an algorithmic construction of α, while we shall adopt the classical
attitude when we assume α as an un-analysed “data”. Indeed, in a
program we have both ingredients: algorithms to solve problems and
data to initialise algorithms.

To sum up, instead of conceiving the constructivistic attitude and
the classical attitude as two approaches that cannot communicate each
other, we treat them as “complementary cognitive contexts” that may
coexist and cooperate.

9.3.2 Possible Solutions 2: Strengthening INT
With Classical Principles

A second possible approach deals more directly with issue (I2).
In fact, we could augment INT with a number of non intuitionistic

principles which are, however, plausible from a constructivistic point
of view and obtain (eventually non-standard) intermediate constructive
systems.

The possibility to go in this direction was opened in [Kreisel &
Putnam 1957] where it was shown that if one augments INT with the
principle

(KP ) (¬α −→ β ∨ γ) −→ ((¬α −→ β) ∨ (¬α −→ γ))

then the resulting system is still constructive, thus refuting �Lukasiewicz’
conjecture.4

Is there any limit to such a move? Actually there are at least two
limits.

The first is connected with the existence of maximal intermediate
constructive logics, that is, superintuitionistic constructive logics such
that if they are augmented with any non derivable principle, then they
collapse to non constructive systems.

An interesting example of such a logic is Medvedev Logic, MV,
which is a particular but faithful interpretation of Intuitionism in the

4Formula (KP ) is not derivable in INT but it is admissible. A rule α
β

is called
admissible in a theory T if β is provable in T whenever α is, while it is called derivable
if α −→ β is provable in T . In Classical propositional logic CP, the class of admissible
rules and the class of derivable rules coincide. On the contrary KP is admissible in
INT but not derivable. Indeed KP can be refuted by the simple Kripke model
0 ≤ 1, 0 ≤ 2, 0 ≤ 3, 1 |= α, 2 |= β, 3 |= γ. In fact, ¬�α� = {2, 3} = �β ∨ γ�. Thus,
�¬α −→ β∨γ� = W , but �¬α =⇒ β�∪�¬α =⇒ γ� = {1, 2}∪{2, 3} = {1, 2, 3} � W .
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sense of a logic of uniformly soluble finitary problems (see Frame 10.18).
For a number of reasons, probably Medvedev Logic is something close
to an ideal constructive logic. Unfortunately no axiomatisation for MV
is known.

The second limitation is given by the constructive mutual incom-
patibility of some superintuitionistic principles. To say, we can have
two principles A and B such that both INT + A and INT + B are
constructive but INT + A + B is no longer constructive. Indeed, the
set of intermediate constructive logics does not enjoy a linear order but
is ramified (cf. Kirk [1982]5).

9.4 A “Mixed-Radix” Attitude in Logic

Both the possible approaches lead us now discuss what is probably one
of the major novelties in recent logical researches: the combination of
logical systems.

As mentioned in the Introduction, in particular two well-known
attempts to combine different logics emerged in logic-literature as
promising fields of investigation: Gabbay’s approach based on Labelled
Deductive Systems (see Gabbay [1996, 1997]) and Girard’s “Unity of
Logic” based on Linear Logic (see Girard [1993]).

While in Gabbay’s approach the cognitive context is specified by
labels which mark (hence, control) any deduction step, so that we
can speak of separate logical contexts communicating by means of an
external mechanism which regulates the use of the labels, in Girard’s
approach we have a single context which, in a sense, acts also as the
metacontext needed to control the entire mechanism. We can, therefore,
call the former approach “pluralistic program” and the latter “monadic
program” (or “Unity of logic” program).6

Within the “Pluralistic program” a large number of different log-
ical systems can be elegantly described and applied using a uniform,
appealing and, let us say, “user-friendly” deduction technique.7

5Pay attention that in this paper the thesis is correct, but the proof presents a
slight error while gluing Kripke models.

6A different classification of mechanisms for combining logics is discussed in
Blackburn & de Rijke [1995].

7Often together with their functional interpretations (see Gabbay & De Queiroz
[1992]).
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The “Unity of Logic” program is, clearly, more radical but the notion
of a system as a meta-system has a difficult conceptual and technical
implementation, as witnessed by U. Eco’s understanding of a semiotic
code as a meta-code, that we quoted in the Introduction.

But we can also conceive of an intermediate approach which shares,
with the pluralistic position, the coexistence of different attitudes,
whereas with the unifying program it shares the interest for understand-
ing, so to say, to what extent we can equip constructive systems with
classical features without making them collapse into non-constructive
systems.

This is the case of Pier Angelo Miglioli’s philosophy of logic.
However, P. Miglioli was not interested in de-structuring/re-

structuring Classical Logic or Intuitionistic Logic, but the syntactic
side of his works was characterised by imposing classical behaviours
to specific parts of a constructive system, or by adding superintuition-
istic principles to constructive systems.8 In particular he approached
the former problem using “modal” operators to identify the scope of
classical behaviours and/or by assuming that atomic formulas must
classically behave. The latter method led to the study of non-standard
intermediate constructive logics, that is, systems in which the Uniform
Substitution principle is not valid (see Frame 10.19.1).9 Renouncing
this “nice property” was by no means a technicality. Instead it was
induced by considering the logical status of atomic theories from a
constructivistic point of view, as we have already seen and shall detail
later on.

Now, consider a logical framework in which the two cognitive con-
texts are clearly identified but interlaced. We can define it, for instance,
by introducing a modality T(. . .) within a constructivistic apparatus,
such that T(α) means “α is classically true”. Otherwise stated, within
the scope of the operator T the “verification conditions” do not count
whereas outside its scope the “truth-conditions” do not count.

Call such a system E (to be detailed, of course). Therefore, in E we
have a constructive framework hosting a classical context.

Coming back to atomic formulae, its is now natural to make them
fall within the scope of the classical cognitive context T(. . .). Thus, the

8We mean principles such as KP or Rose’s formula, Rose [1953], and similar,
or, at a predicate level, the Kuroda principle, Troelstra [1973], the Grzegorczyk
principle, Grzegorczyk [1972] or the Markov principle, Markov [1954].

9Although they may enjoy restricted forms of substitution.
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meaning of an atomic formula p should be given by the relation:

(AT − T ) T(p) ←→ p,

so that p is given the classical meaning provided by the identity truth-
function.

This is, however, a very strong assumption. In fact, if T is to express
classical validity, then we should have:

(CV ) | CL α if and only if | E T(α), for any formula α.

But in the propositional case we have the well-known Gödel-Glivenko
theorem, stating:

(GGT ) | CL α if and only if | INT ¬¬α,

that is what we have already expressed by saying that classical tau-
tologies are dense elements in Heyting algebras (i.e. ¬¬�α� = 1 for any
classical tautology α).

Therefore, if E embeds INT , as it probably does in order to pro-
vide the constructive context, then in the propositional case the above
principle (AT-T) is equivalent to ¬¬p ←→ p for atomic formulae p,
which is valid neither in INT , nor in any intermediate standard logic,
i.e. intermediate logics enjoying the principle of Uniform Substitution.
Indeed, E and any intermediate system accepting (AT-T) or analogous
principles, turn into non standard logics.

At this point, it must be re-stated that the operator T was intro-
duced to tackle a serious problem arising at the predicative level and
dealing, indeed, with Gödel-Glivenko theorem. In fact, according to
(GGT), at the propositional level Classical Logic is a “limit logic”,
because | CL ¬α if and only if | INT ¬α, so that if we add any non
classical principle to INT , we obtain an inconsistent system. But, this
is not true at a predicative level any longer.

For instance, | CL ∀x(α(x) ∨ ¬α(x)). But consider a Kripke model
K = 〈W,D, |=〉 where:

• W = {0, 1, 2, 3, . . . , n, . . .} = N

• D = {D0 = {0},D1 = {0, 1}, . . . ,Dn = {0, 1, . . . n}, . . .}

• 1 |= α(0); 2 |= α(0), α(1); . . . ;n |= α(0), α(1), . . . , α(n − 1); . . ..
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We have that 0 �|= α(0), Nonetheless, 0 �|= ¬α(0) because for all n �
0, n |= α(0). Henceforth, From D0 = {0} we obtain 0 �|= ∀x(α(x) ∨
¬α(x)). More in general, for all n, n �|= α(n) and n �|= ¬α(n), hence for
any n, n |= ¬∀x(α(x)∨¬α(x)). It follows that K |= ¬∀x(α(x)∨¬α(x)).
We can conclude that �| INT ¬¬∀x(α(x)∨¬α(x)) and INT +¬∀x(α(x)∨
¬α(x)) is consistent.

Logico-philosophical remarks. 2
From the above discussion, it follows that we can develop INT towards an
“anti-classic” direction. But there is a number of doubts that this is a sound
direction, from a philosophical point of view. As a matter of fact, Classical
Logic is a “limit logic” since metalanguages uses Classical Logic. For instance,
the reasoning to decide if a proof for a formula α is a “true” proof, run by
means of classical principles. Also in extremely constructive contexts, such as
Computer Science, in which algorithms or abstract data types (i.e. objects
that are sort of prototypes of “constructive objects”) are at the center of the
attention, meta-logic is Classical Logic. Indeed, there is a number of evidences
that we should consider Classical Logic as a “limit logic”.

In order to obtain a (non-standard) predicative constructive Logic L such
that | CL α if and only if | L ¬¬α we need to add a couple of principles to
INT :
(K) ∀x¬¬α(x) ←→ ¬¬∀xα(x), all α – the Kuroda principle;
(Reg) ¬¬p ←→ p for all atomic p.

Let us call KURAT the system INT +(K)+(Reg). Then also in the
predicative case it is possible to show:

| CL α if and only if | KURAT ¬¬α, all A.

The modality T is able to amend this “anomaly” at the predicative
level.

Indeed, T is defined by means of the following two simple “T-
rules” which aim at grasping the essence of the problematic classical
negation and, particularly, of the problematic principle of Proof by
Contradiction:

(1) (¬α −→⊥) −→ T(α); (2) (α −→⊥) −→ ¬T(α) (T )

Clearly if we set:

(a) T(p) −→ p; (b) T(¬p) −→ ¬p, for p atomic (T −Reg)

then (T −Reg) together with (T ) and the intuitionistic principle α −→
¬¬α, amount to (AT − T ), which is the T-formulation of the principle
(Reg) stated in the logico-philosophical box above, and one can prove
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T(∀xα(x)) ←→ ∀xT(α(x)), which is the T-formulation of Kuroda
principle.10

More in general, it is possible to prove | CL α if and only if | E T(α),
also for any predicate α. Hence, T is stronger than double intuitionistic
negation. Notice that Kuroda principle is equivalent to ¬¬∀x(α(x) ∨
¬¬α(x)) and it is validated by Kripke models with constant domains,
that is by models in which Di = Dj for any Di,Dj ∈ D. In view of
the above counterexample this requirement is by no means a surprise.
From a philosophical point of view it features a situation closer to
an “objective world” than it is done by Kripke models with variable
domains which, on the contrary, have a more subjective taste.

9.5 A Maximal Intermediate Constructive
Logic

Now let us deal with the second approach.
Although �Lukasiewicz’ conjecture revealed to be false, there are,

indeed, intermediate constructive logics such that we cannot augment
them with non derivable principles without making them collapse into
a non-constructive system. Such logics are called maximal.

We mentioned that the cardinality of the set of all intermediate
constructive logics is 2ℵ0 . But what is surprising is that there is also
a continuum of maximal intermediate constructive logics (cf. Miglioli
[1992] and Ferrari & Miglioli [1993]).

Maximal intermediate constructive logics are logics which have a
high deductive power, very close to that of Classical Logics, but which
still satisfy the disjuction property and the principle of explicit defin-
ability.

In view of the above notes, one can start understanding a first,
very general, connection between the logical issues connected with
(maximal) intermediate constructive logics and the logical behaviour
of Rough Set Systems. In fact, to some extent Rough Set Systems are
three-valued systems equipped with some Classical feature. We shall
develop this intuition in what follows.

10It is also possible to prove that (T − Reg) is equivalent to (AT − T ), because
∼ T(α) ≡ T(∼ α) – for this see Frame 10.16.3.
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Among maximal constructive logics a prominent position is held
by Medvedev’s Logic. As anticipated, Medvedev’s Logic of Finite
Problems, MV, was introduced in Medvedev [1962] as a faithful inter-
pretation of Intuitionistic Logic. As far as now, as we have seen, an
axiomatisation of MV is not known. On the contrary, we know some
semantics for MV.

Surprisingly enough, the story of the proof of maximal constructivity
of MV gives a new deeper insight into our algebraic interpretation of
Rough Set Systems.

Indeed, let us follow backward the story of this result.
(step -1) MV = (FCL)∗, where: (a) FCL is a particular maxi-

mal intermediate non-standard constructive logic (which will be spec-
ified in the next step); (b) the operator (. . .)∗, is the “stabilisation”
of a non-standard logic, that is, (. . .)∗ outputs the part of the logic
which is closed under uniform substitution (note that (. . .)∗ preserves
constructivity and maximality).

(step -2) FCL is the system obtained by augmenting the intuition-
istic system INT with (KP ) and (Reg).

Instead of adding (KP ) and (Reg) to INT , we can add (T-Reg)
and the following axiom, to Constructive Logic with Strong Negation
(or CLSN , see Frame 10.15.1):

(T(α) −→ β ∨ γ) −→ ((T(α) −→ β) ∨ (T(α) −→ γ)) (T −KP )

where in the definition of the operator T we use the constructible,
or strong, negation “∼” inherited by the basic logical system CLSN ,
instead of the intuitionistic negation “¬”.11

Now we start understanding a stronger connection between Rough
Set Systems, mixed logical behaviours and this story. Indeed the modal
operator T was introduced in order to account for the concept “being
classically valid” within a constructive framework. Moreover, the con-
structive base is given by CLSN which has Nelson algebras as models,
so that Proposition 8.3.1.(2) provides us with another link with the
story we are presenting.

In order to better follow this story we suggest the reader going
through Frames 10.13, 10.15, 10.16, 10.17 and 10.18.

11It is worth recalling that in the quoted papers the strong negation is generally
denoted by “¬” while the weak negation is denoted by “∼”.
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(step -3) The full role of T is achieved when we assume (T − Reg)
and (T −KP ). However, this operator was first added alone to CLSN
in order to explore the technical feasibility and soundness of the philo-
sophical intuition about the coexistence of classical and constructive
behaviours.

The resulting system, CLSN + (T ) was named E0 and presents sur-
prising features because the behaviour of the operator T influences that
of the strong negation a big deal.

Indeed, strong negation acts in E0 differently than in CLSN . This
difference is semantically evident: in Kripke models for CLSN we can
have possible worlds g and atomic formulas p such that neither g nor
any possible world which is accessible from g force either p or ∼ p. On
the contrary, in E0 semantics, from any possible world g and atomic
formula p, we can access a possible world g′ such that either g′ forces p
or g′ forces ∼ p. Otherwise stated, eventually we reach a theory (a pos-
sible world) which decides any atomic formula (see Frames 10.3.3 and
10.3.4). This decidability propagates to arbitrary well-formed formulae.
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�

�
�
�

.

INT −model
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�

�
�
�

.

E0 −model

From a formal point of view, the strong negation “∼” is closer to the
intuitionistic negation in E0 than in CLSN . Nevertheless, it keeps enjoy-
ing properties like double negation elimination and both De Morgan
laws, while the Excluded Middle is not uniformly fulfilled.

We have now all the ingredients to describe the deepest connections
between the intuition which lies behind the operator T and Rough Set
Systems.
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The underlying philosophy is synthesized in the following box.

Logico-philosophical remarks. 3
In the preprint of Miglioli et al. [1989] we find an interesting explanation of
the basic philosophical idea behind the operator T:

“[. . . ] the classical notion of truth, far from being useless for a theory of mean-
ing (as Intuitionism claims) and far from being the core notion of such a theory
(as the Platonists claim), can be explicated as derived from a specific cognitive
modality that may be adopted towards the objects of knowledge – a modality
which can be intuitively qualified as assumption of cognitive data, and whose
particularity is that, when objects are considered under it, it felt as not rele-
vant the fact that they are possibly the result of our constructive activity. The
other main cognitive modality is the one we adopt whenever we are interested
in analyzing or in synthesizing our knowledge, and under which the objects are
seen as complex constructions, whose modes of constitution are to be taken into
account. [. . . ] From this point of view it becomes essential the availability of
linguistic contexts in which each cognitive modality is in turn relevant. Let us
therefore introduce the context “T . . . ” (where “T” is a sentential operator
to be read as “it is classically true that”), within which the classical modal-
ity is relevant: any sentence occurring within that context does not require a
constructive analysis, in the sense that only its true value must be taken into
account. In the empty context (i.e., out of the scope of T), on the contrary,
the ‘constructive’ modality is relevant.”

In view of this discussion, we can explain why (T −KP ) is intuitively admis-
sible. Indeed this principle says that if α is classically true, then there is a
verification procedure to decide either β or γ. Therefore the right hand part
of the principle is nothing but the interpretation of the premise.

9.6 Mixed-Radix Information Systems

Now we are ready to come back to Information Systems and Rough
Sets. But first, let us have a deeper insight into the semantics of E0

using an algebraic interpretation.12

9.6.1 Local Validity in Nelson Lattices
from Heyting Algebras

In order to let the reader have an understanding of Nelson operations
and to get closer to our use of Nelson lattices for representing Rough
Set Systems, we present the construction of a Nelson lattice from the
material provided by the Heyting algebras.

12By abuse of language, we do not distinguish here between Nelson lattices, Nelson
algebras and Nelson models.
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The construction of Nelson algebras through Heyting algebras is a
sufficiently general technique and deserves to be adequately illustrated,
because in this construction we find an algebraic synthesis of a number
of topics: exact vs inexact information in Rough Set Theory, decid-
ability of particular formulas in constructive systems (notably, atomic
formulas), and, finally, the polymorphism of Rough Set Systems. Top-
ics which are linked with each other and which are the leitmotive of
this Part.

Thus let H be any Heyting algebra. Let Θ be a congruence induced
via (7.4.19) by an element b which is less than or equal to the least dense
element of H (i.e. Θ is ≡Jb). Then, in view of the above discussion, Θ
is a Boolean congruence on H, that is, H/Θ is a Boolean algebra. On
the basis of the Boolean congruence Θ we can then collect a family of
ordered pairs, which will be denoted by NΘ(H):

NΘ(H) = {〈a1, a2〉 ∈ H × H : a1 ∧ a2 = 0 and a1 ∨ a2Θ1} (9.6.1)

Then let us define on NΘ(H) the following operations:

Definition 9.6.1 (Operation on pairs of disjoint elements of a Heyting
algebra H).

1. 0 = 〈0, 1〉, the bottom element

2. 1 = 〈1, 0〉, the top element

3. 〈a1, a2〉 ∧ 〈b1, b2〉 = 〈a1 ∧ b1, a2 ∨ b2〉

4. 〈a1, a2〉 ∨ 〈b1, b2〉 = 〈a1 ∨ b1, a2 ∧ b2〉

5. 〈a1, a2〉−→〈b1, b2〉=〈a1 =⇒ b1, a1∧b2〉, weak (or non-extensional)
implication

6. 〈a1, a2〉 � 〈b1, b2〉 = (〈a1, a2〉 −→ 〈b1, b2〉) ∧ (∼ 〈b1, b2〉 −→
∼ 〈a1, a2〉), extensional implication

7. ∼ 〈a1, a2〉 = 〈a2, a1〉, strong negation

8. · �〈a1, a2〉 = 〈a1, a2〉 −→ 〈0, 1〉 = 〈¬a1, a1〉, weak negation
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9. ¬· 〈a1, a2〉 =∼ · �∼ 〈a1, a2〉 = 〈a2,¬a2〉, dual weak negation

where the operations inside the ordered pairs are operations of H.

One can prove:

Theorem 9.6.1.

1. NΘ(H) is closed under the operations listed in Definition 9.6.1.

2. NΘ(H) = 〈NΘ(H),∧,∨,∼,−→, 1, 0〉 is a Nelson algebra.

3. a −→ b = 1 iff a1 =⇒ b1 = 1 in H.

4. If ≤ is the lattice order in NΘ(H), then a ≤ b iff a� b = 1.

5. Let us define the bi-implication a ←→ b =def a −→ b ∧ b −→ a.
Then the relation “�” defined as a � b iff a ←→ b = 1, is a
congruence on (N,∧,∨,−→, · �, 0, 1), but it is not a congruence
for the strong negation ∼ (hence ¬· ). Clearly a � b iff a1 = b1.

6. NΘ(H)/� is a Heyting algebra isomorphic to H.

7. NΘ(H) is semi-simple iff NΘ(H)/� is a Boolean algebra, hence
iff H is a Boolean algebra.

8. For any a, · �a =∼ ¬· ∼ a.

Exercise 9.1.

Prove Theorem 9.6.1.

Example 9.6.1. Nelson algebras from Heyting algebras
Consider the Heyting algebra A of Example 6.1.1. In A the element b (which is less
than the least dense element d) induces the congruence relation ≡Jb defined by the
equivalence classes [b, d, e, 1], [0, a, c]. On the contrary, d is the least dense element
and induces the congruence relation depicted in Example 7.4.3. Below we show in
bold the resulting Nelson lattice N≡

Jb (A) embedded into the lattice N(A) of all
pairs of disjoint elements of A, and N≡

Jd (A):
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N≡
Jb (A)

〈1,0〉

〈e,0〉
� �

〈c, 0〉 〈d, 0〉
� ... � �

〈c,b〉 〈a, 0〉 〈b,0〉
� � ... � �
〈a,b〉 〈0, 0〉 〈b,a〉

� � ... � �
〈0,b〉 〈0, a〉 〈b, c〉

� � ... �
〈0, d〉 〈0, c〉

� �
〈0, e〉

〈0,1〉

N≡
Jd (A)

〈1, 0〉

〈e, 0〉
� �

〈c, b〉 〈d, 0〉
� � �
〈a, b〉 〈b, a〉

� � �
〈0, d〉 〈b, c〉

� �
〈0, e〉

〈0, 1〉

By way of example, it is easy to verify that in A, 0∧ b = 0 and 0∨ b ≡Jb 1, because
0 ∨ b = b ∈↑ b. Therefore, 〈0, b〉 fulfills condition (9.6.1), so that 〈0, b〉 ∈ N≡

Jb (A).
On the contrary, 0 ∨ b �≡Jd 1 because b /∈↑ d. Thus, 〈0, b〉 /∈ N≡

Jd (A). Instead,
a ∧ b = 0 and a ∨ b ≡Jb 1, because a ∨ b = d and trivially d ≡Jd 1. It follows that
〈a, b〉 fulfills condition (9.6.1), so that 〈a, b〉 ∈ N≡

Jd (A).
Notice that the lattice of all ordered pairs of disjoint elements of A, N(A), is

obtained by means of the improper filter ↑ 0. That is, N(A) = N≡
J0 (A).

The reader may notice that in N(A) there is a central element, namely 〈0, 0〉
and that the strong negation is symmetric with respect to this central element. But
in N≡

Jb (A) the central element (as well as other elements) is not admitted.
Now let us compute some logical function, with some comments.

(i) ∼ 〈a, b〉 = 〈b, a〉, ∼ 〈b, a〉 = 〈a, b〉 (ii) ·�〈a, b〉 = 〈¬a, a〉 = 〈b, a〉, ·�〈b, a〉 =
〈¬b, b〉 = 〈c, b〉. Hence, notice that we can immediately affirm that neither N≡

Jb (A)
nor N≡

Jd (A) are semi-simple. In fact, in semi-simple Nelson algebras the operator
·�sends any element onto an element of the center. But in the center all the three
negations coincide, while ·�〈b, a〉 �=∼ 〈b, a〉. It follows that ·�does not send 〈a, b〉
onto the center of the algebra.
(iii) 〈a, b〉 ∨ 〈b, c〉 = 〈a ∨ b, b ∧ c〉 = 〈d, 0〉, 〈a, b〉 ∧ 〈b, c〉 = 〈a ∧ b, b ∨ c〉 = 〈0, e〉.
(iv) 〈0, b〉 −→ 〈b, a〉 = 〈0 =⇒ b, 0 ∧ a〉 = 〈1, 0〉,
(v) 〈b, 0〉 −→ 〈b, a〉 = 〈1, 0〉. However, 〈b, 0〉 � 〈b, a〉. Therefore x −→ y = 1 does not
imply x ≤ y. (vi) 〈b, a〉 ←→ 〈b, c〉, but ∼ 〈b, a〉 = 〈a, b〉 �←→ 〈c, b〉 =∼ 〈b, c〉. There-
fore ←→ is not a congruence for the operator ∼. Moreover, ¬· 〈b, a〉 = 〈a, b〉 �←→
〈c, b〉 = ¬· 〈b, c〉. On the contrary, ·�〈b, a〉 = 〈c, b〉 ←→ 〈c, b〉 = ·�〈b, c〉. (vii)
〈0, b〉 ←→ 〈0, d〉 and 〈0, b〉 ∨ 〈b, a〉 = 〈b, 0〉 ←→ 〈b, a〉 = 〈0, d〉 ∨ 〈b, c〉, and so on.
(viii) 〈0, b〉� 〈b, a〉 = 〈1, 0〉 ∧ (〈a, b〉 −→ 〈b, 0〉) = 〈1, 0〉 ∧ 〈b, 0〉 = 〈b, 0〉. Therefore,
� is not a relative pseudo-complementation.
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We have seen that 〈x1, x2〉 � 〈y1, y2〉 if and only if x1 = y1 (while the second
elements may be different). Thus it is not difficult to understand why the filtration
N≡

Jb
(A)/� is isomorphic to A (we recover all and only the elements of A by

making the second elements of all pairs collapse that share the same first element,
for instance a, 0 and c in 〈b, a〉, 〈b, 0〉 and 〈b, c〉).

Moreover, suppose we know that a given Nelson algebra is obtained as N≡Jx (A)
for some x ∈ A. It is not difficult to understand what element x is. In fact 〈x, 0〉 is
the least dense element of the Nelson algebra, so that we have just to find out the
least element of the form 〈z, 0〉. In our example it is 〈b, 0〉.

Further the reader is invited to notice that ¬· and ·�are neither pseudo-
complementations nor dual pseudo-complementations. For instance 〈c, b〉∧ ¬· 〈c, b〉 =
〈c, b〉∧〈b, c〉 = 〈0, e〉, 〈c, b〉∨ ·�〈c, b〉 = 〈c, b〉∨〈b, c〉 = 〈e, 0〉; moreover the three nega-
tions coincide on 〈c, b〉 and 〈b, c〉. We call the set of elements where ∼, ¬· and ·�

coincide, the pseudo-center of the lattice.

Exercise 9.2. Show necessary conditions on 〈a1, a2〉 and 〈b1, b2〉 in
order for 〈a1, a2〉� 〈b1, b2〉 to be the relative pseudo-complementation
of 〈a1, a2〉 with respect to 〈b1, b2〉.

Basically we can define two classes, depending on the Boolean congru-
ence we use:

NA = {NΘ(H) : Θ is a Boolean congruence on H};

E = {NΔ(H) : Δ is the least Boolean congruence on H}.
Obviously E ⊆ NA. Define on any element of NA (hence of E) the

operation:

T(〈a1, a2〉) = 〈¬¬a1,¬a1〉 (9.6.2)

Any NΘ(H) is called a Nelson lattice because it is an algebraic
model for CLSN , while any NΔ(H) is an algebraic model for E0 and
will be called an Effective Lattice.

For instance, the lattice N≡Jb (H) of Example 9.6.1 belongs to NA,
while N≡Jd (H) ∈ E.

Now we notice what follows:

Proposition 9.6.1. Let H be a Boolean algebra, x ∈ H and let Θ be
the congruence induced by the filter ↑ x (i.e. Θ is ≡Jx). Then RSx(H)
and NΘ(H) are order isomorphic.

Proof. We prove that the following maps provide a 1-1 correspondence:
nrs : NΘ(H) �−→ RSx(H);nrs(〈a1, a2〉) = 〈¬a2, a1〉.
srn : RSx(H) �−→ NΘ(H); srn(〈a1, a2〉) = 〈a2,¬a1〉.
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Indeed let 〈a1, a2〉 ∈ RSx(H) then a2 ≤ a1 so that a1 ∧ ¬a2 = 0.
Moreover, since 〈a1, a2〉 ∈ RSx(H) we have that ¬a1∨a2 ∈↑ x, so that
trivially ¬a1 ≡Jx a2. Hence srn(〈a1, a2〉) ∈ NΘ(H). Vice-versa, if
〈a1, a2〉 ∈ NΘ(H) then a1 ∧ a2 = 0, so that ¬a2 ≥ a1. Moreover,
since a2 ∧ a1 ∈↑ x, obviously a2 ∈↑ x and trivially ¬a2 ∨ a1 ∈↑ x. It
follows that nrs(〈a1, a2〉) ∈ RSx(H). Finally, for any a ∈ RSx(H)
nrs(srn(a)) = a. In fact, nrs(srn(〈a1, a2〉)) = nrs(〈a2,¬a1〉) =
〈¬¬a1, a2〉 = 〈a1, a2〉. To show that both nrs and srn are order iso-
morphisms is now immediate. qed

Corollary 9.6.1. Let H be a Boolean algebra, x ∈ H and let Θ be the
congruence induced by the filter ↑ x. Then 〈RSx(H),∧,∨,∼,¬, �,−→,

0, 1〉 and 〈NΘ(H),∧,∨,∼,¬· , · �,−→, 0, 1〉 are isomorphic.

Exercise 9.3. Prove that the above structures are isomorphic. [Hints:
from Proposition 9.6.1 and using the fact that in a Boolean algebra both
De Morgan laws hold]

It is worth noticing that the above results do not hold if H is a generic
Heyting algebra. Indeed, they strictly depend on the fact that the
negation ¬ is an involution, in Boolean algebras.

To be sure, since any Boolean algebra is a Heyting algebra, the
reader can easily understand that Nelson Lattices are generalisations
of Rough Set Systems. Indeed this is not a novelty because we know
that Rough Set Systems are semi-simple Nelson Lattices. But what we
have to explore is the role of the operator T and of the congruence Θ
in an information oriented context.

The properties of the operations are subjected to some restrictions,
here.

Clearly, the three negations “∼”, “· �” and “¬· ” do not coincide in
general. As for the strong negation “∼”, it has an ambiguous behaviour.
In fact for any Heyting algebra H we have (by easy inspection):

1 ≥ a ∨ · �a ≥ a ∨ ¬· a = a∨ ∼ a (9.6.3)

0 ≤ a ∧ ¬· a ≤ a ∧ · �a = a∧ ∼ a (9.6.4)

Hence, ∼ coincides with the dual weak negation with respect to the
excluded middle formula, whereas it coincides with the weak negation
with respect to the law of contradiction formula (notice that the above
relations are generalisation of (6.2.22) and (6.2.23)). We can notice
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that ∼ a = · �a only if a2 = ¬a1 in H, while ∼ a = ¬· a only if a1 =
¬a2. Therefore, the three negations collapse only if they are applied
to elements a such that a1 = ¬a2 and a2 = ¬a1. It follows that the
three negations coincide when they are applied to elements of the form
¬· ¬· a (i.e. of the form 〈¬a2,¬¬a2〉) or of the form · �· �a (i.e. of the form
〈¬¬a1,¬a1〉). Since for any a ∈ NΘ(A), · �· �· �· �a = ¬· ¬· · �· �a = · �· �a and
¬· ¬· ¬· ¬· a = · �· �¬· ¬· a = ¬· ¬· a, in view of the discussion from Subsection
7.3.1 we call ¬· ¬· a a “regular element” and · �· �a “co-regular element”
(or “regular elements” in general).

In particular the three negations collapse if applied to elements a
such that a2 is the Boolean complement of a1. Clearly, we shall call
such kind of elements “exact elements” and we know that they belong
to the center CT R(NΘ(H)).

To end this discussion about the three forms of negation, notice
that in view of the definition of “· �” it is clear that for any element a ∈
NΘ(H), · �a is the largest element x such that a∧x � 0. However, · �a is
not the pseudo-complement of a because, indeed, in general a∧ · �a �= 0
as, in general, −→ is not a relative pseudo-complementation, as we have
seen in Example 6.2.1. Neither ¬· is, because in general a∧¬· a �= 0, as
in general neither ⊃ is a relative pseudo-complementation.

As we have seen, things change in a subtle but important manner
when H is a Boolean algebra (that is, when NΘ(H) is semi-simple). In
this case, ⊃ turns into a relative pseudo-complementation so that ¬·
turns into a pseudo-complementation. Moreover, in semi-simple Nelson
algebras the first inequalities in (9.6.3) and (9.6.3) turn into equali-
ties.13

Now we can analyse the differences between NΔ(H) and NΘ(H) by
means of the operator T. They may be synthesised as follows:

1. For any a ∈ NΘ(H), · �· �a = T(a) ≤ ¬· ¬· a.

2. For any a ∈ NΘ(H), ∼ ¬· ¬· a = · �· �∼ a = T(∼ a) ≤∼ T(a) =
∼ · �· �a = ¬· ¬· ∼ a.

3. For any a ∈ NΔ(H), T(∼ a) =∼ T(a) (so that the inequalities
in 1 and 2 turn into equalities).14

13And, in fact, we use ⊃,

�

and ¬ instead of −→, ·�and ¬· .
14We could set a new operator T′(a) = 〈¬¬a1,¬¬a2〉. In this case we have:

T′(∼ a) =∼ T′(a) also in NΘ(H), but ·�·�a ≤ T′(a) ≤ ¬· ¬· a. Evidently, in Effective
Lattices the operators T′ and T coincide.
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Let us stress that this difference is induced by the fact that in
NΘ(H), ¬¬a1 ≤ ¬a2 and ¬¬a2 ≤ ¬a1, any a, while in NΔ(H), ¬¬a2 =
¬a1 (hence ¬¬a1 = ¬a2).15 In turn the latter equation depends on
the fact that in NΔ(H) we filter the ordered pairs by means of the
least Boolean congruence Δ of H. In fact, this congruence is induced
by the filter ↑ d generated by the least dense element of H, d, hence
〈x1, x2〉 ∈ NΔ(H) only if x1 ∨ x2 ≥ d.

On the contrary in NΘ(H) the congruence Θ may be induced by a
filter ↑ b for b � d. But if a1 ∨ a2 � d then d∧¬(a1 ∨ a2) = δ, for some
element δ �= 0. Since in any Heyting algebra d ≤ a1 ∨ ¬a1 and δ ≤ d

but a1 ∧ δ = 0, we obtain δ ≤ ¬a1. For a symmetric reason, we have
δ ≤ ¬a2.16

Thus ¬¬a2 ∧ δ = 0 while ¬a1 ∧ δ = δ (symmetrically, ¬¬a1 ∧ δ = 0
and ¬a2 ∧ δ = δ). It follows that if a1 ∨ a2 � d then ¬¬a2 � ¬a1 and
¬¬a1 � ¬a2.

Therefore in Effective Lattices, T(〈a1, a2〉) = 〈¬a2,¬a1〉, while in
general 〈¬a2,¬a1〉 is not even an element of Nelson lattices because,
as already noticed, both ¬a1 and ¬a2 are greater than or equal to
d ∧ ¬(a1 ∨ a2). At a semantic level, this means that if a formula α is
interpreted on a, then neither α nor ∼ α is decided by δ.

On the contrary, if a1 ∨ a2 ≥ d, then d ∧ ¬(a1 ∨ a2) = 0, so that
there are no elements below d (except 0) which do not decide either α
or ∼ α. This means that for all x ∈ H (x �= 0), there is a y ≤ x such
that either �α� = y or �∼ α� = y (where �α� is an interpretation of
the formula α onto H) (see Frame 10.16.3 for a proof-theoretical and
parallel algebraic argument).

9.6.2 Local Validity and Mixed Logical Behaviour

So we have seen that the above differences reflect those between Δ and
all the other Boolean congruences Θ of H.

If we remember the relationship between dense elements in Heyting
algebras and classical tautologies, then we understand why filtering the
ordered pairs via Δ is essential in order to make T represent a classical
validity operator: the prerequisite is that classically valid formulas are
mapped onto dense elements. For instance, T(a∨ ∼ a) = 1 in NΔ(H),
for any a, because a1∨a2 is always a dense element in NΔ(H). In turn,

15Indeed ¬¬a2 = ¬a1 iff ¬¬a1 = ¬¬¬a2 = ¬a2.
16Alternatively we obtain this result by observing that δ = d ∧ ¬a1 ∧ ¬a2.
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this is true because a1 ∨ a2
∼=Δ 1.

Clearly, for any other Boolean congruence this is not uniformly true.
Suppose now that a Boolean congruence Θ on H is induced by a

principal filter ↑ b, with b an arbitrary element of H less than or equal
to d. From a slight generalisation of the previous argument, it follows
that in NΘ(H) any classical tautology T is mapped onto an element
�T � ≥ 〈b, 0〉.

Therefore, 〈b, 0〉 is an element that locally validates classical tau-
tologies.

Dually, any classical contradiction C is mapped onto an element
�C� ≤ 〈0, b〉.

Considering the principle of Excluded Middle as a prototype of
classical tautologies and its dual as a prototype of contradictions, we
have:

1 ≥ a ∨ · �a ≥ a ∨ ¬· a = a∨ ∼ a ≥ 〈b, 0〉 (9.6.5)

0 ≤ a ∧ ¬· a ≤ a ∧ · �a = a∧ ∼ a ≤ 〈0, b〉 (9.6.6)

Otherwise stated, 〈b, 0〉 is a local (classical) top element, and 〈0, b〉
is a local (classical) bottom element so that we could think of a “local”
application of the operator T, whereas in E0 we have a uniform and
global application since b, in that case, is the least dense element of H.

Example 9.6.2. Inequalities (9.6.5)
In the Nelson lattice N≡

Jb (A) of Example 9.6.1, we have:
(a) 1 ≥ 〈e, 0〉 = 〈b, a〉 ∨ 〈c, b〉 = 〈b, a〉 ∨ ·�〈b, a〉 ≥ 〈b, a〉 ∨ ¬· 〈b, a〉 = 〈b, a〉 ∨ 〈a, b〉 =
〈b, a〉∨ ∼ 〈b, a〉 = 〈d, 0〉 ≥ 〈b, 0〉;
(b) 0 ≤ 〈0, e〉 = 〈a, b〉 ∧ 〈b, c〉 = 〈a, b〉 ∧ ¬· 〈a, b〉 ≤ 〈0, d〉 = 〈a, b〉 ∧ ·�〈a, b〉 = 〈a, b〉∧ ∼
〈a, b〉 ≤ 〈0, b〉.

Finally, notice that since A is not a Boolean algebra, the lattices N≡
Jb (A) and

RSb(A) are not isomorphic (in opposition to Corollary 9.6.1). For instance, both
〈1, d〉 and 〈d, d〉 belong to RSb(A). However, srn(〈1, d〉) = srn(〈d, d〉) = 〈d, 0〉. More
precisely, all decreasing pairs in RSb(A), 〈δ, x〉, with δ a dense element, have the
same srn image 〈x, ∅〉 onto N≡

Jb (A).

In particular, it is not difficult to verify that in NΘ(H) the following
holds true:

T(a∨ ∼ a) = T(a ∨ ¬· a) = 〈¬δ, δ〉 ≤ 〈1, 0〉 = T(a ∨ · �a) (9.6.7)

T(a∧ ∼ a) = T(a ∧ ¬· a) = T(a ∧ · �a) = 〈0, 1〉 (9.6.8)
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Therefore, since δ = 0 in NΔ(H), we have again that classical tautolo-
gies are mapped by T into 〈1, 0〉.17

It is, however, very interesting to note that the element 〈b, 0〉 is the
least dense element of NΘ(H), whatever b is. Thus, 〈b, 0〉 is indeed an
intermediate value in the sense of Chain Based Lattices (Figure 9.1).

Figure 9.1: Absolute and local values in general, NΘ(H), and in Boolean
case, NΘ(B)

9.7 Conclusions

To sum up, we can claim that by means of the analysis of Effective
lattices and E0 system, the deep logical meaning of Boolean congruences
in the construction of Nelson lattices becomes transparent.

We can apply this intuition to account for informational situations
in the spirit of the present Part.

17Compare with T′(a∨ ∼ a) = T′(a ∨ ¬· a) = 〈¬δ, 0〉 ≤ 〈1, 0〉 = T′(a ∨ ·�a) and
T′(a∧ ∼ a) = T′(a ∧ ·�a) = 〈0,¬δ〉 ≥ 〈0, 1〉 = T′(a ∧ ¬· a).
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Imagine D as any distributive lattice of subsets of a given domain D,
representing in some way a cognitive status aboutD. For any sentence α
about this domain, we can distinguish between the set A1 of elements
in D that definitely satisfy α, and the set A2 of elements in D that
definitely do not satisfy α. Since our knowledge may be incomplete,
generally A1 ∪ A2 ⊆ D. Indeed, there can be elements x such that we
are not (yet) able to decide if x ∈ A1 or x ∈ A2. But our cognitive
status may be complete with respect to some elements of D. Let us
denote by B the set of all the elements of D for which we have a
complete knowledge. Therefore, (i) A1 ∩ A2 = ∅ (A1 and A2 must be
disjoint), (ii) A1 ∪ A2 ⊆ D (our knowledge may be incomplete), but
(iii) A1 ∪A2 ⊇ B (because for any element b of B we are able to decide
if either b ∈ A1 or b ∈ A2). It follows that in order to represent our
sentences about D, we cannot take all the ordered pairs 〈A1, A2〉 of
disjoint elements of D, but we have to filter them out, by means of the
filter generated by B, ↑ B.

Then N≡Jb (D) might be considered well-suited for algebraically
modeling this situation.

Unfortunately, as far as we know there are not yet suitable applica-
tions of this machinery, when D is an arbitrary distributive lattice and
if by “suitable” we mean a natural description of a cognitive status.

On the contrary, if D is a Boolean algebra, we have an
application with high degree of “naturalness”: Rough Set Systems



Chapter 10

Frames (Part II)

10.1 Frame – Rough Set Systems

and Chain-Based Lattices

The equivalence between semi-simple Nelson algebras and three-valued
�Lukasiewicz algebras was stated in [Monteiro, 1967].

The transformation stated in Example 6.5.1 at point 5 is supported
by the following results from [Epstein & Horn, 1974a]):

Lemma 10.1.1. If A = 〈A,∨,∧,¬, 0 = e0 ≤ . . . ≤ en−1 = 1〉 is a
pseudo-complemented P0-lattice, then A has a chain base f0 ≤ f1 ≤
. . . ≤ fn−1 s.t. f1 is the smallest dense element of A.

Lemma 10.1.2. If A = 〈A,∨,∧,¬,=⇒, 0 = e0 ≤ . . . ≤ en−1 = 1〉 is
a P0-lattice and 〈A,∨,∧,¬,=⇒, 0, 1〉 is a Heyting algebra, then there
exists a chain base 0 = f0 ≤ f1 ≤ . . . ≤ fn−1 = 1 s.t. 〈A,∨,∧,¬,→,

0 = f0 ≤ f1 ≤ . . . ≤ fn−1 = 1〉 is a P1-lattice.

In order to get the required chain base one can refer to Lemma 10.1.1,
taking as f1 the first dense element of A, and inductively as fn+1 the
smallest dense element of the convex interval [fn, 1].

Finally, a general relationship between chain-based lattices is stated
in the following result:

Lemma 10.1.3. Every P2-lattice is a principal ideal in a Post algebra.

281
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As a matter of fact, this result is an instance of Proposition 7.4.1.(3)
and Corollary 7.4.3, as the reader is invited to prove in the following
exercise:

Exercise 10.1. Prove Lemma 10.1.3 in the case of RSx(B), B any
Boolean algebra, and the isomorphism stated in Lemma 7.4.1.(3) [hints:
first, consider the principal ideal ↓ 〈1,¬x〉 and define a map p such
that p(a) = min{b ∈ RSx(B) s.t. b ≥ a in P(B)}; second, prove that
p(a) = J 〈1,¬x〉(a); third, define the lower adjoint of p].

It follows, from Exercise 10.1 that for any Boolean algebra B and x ∈ B,
RSx(B), which is isomorphic to the principal ideal ↓ 〈1,¬x〉 of the
Post algebra P(B), is a P2-lattice of order three. In P(B), e0 = 〈0, 0〉,
e1 = 〈1, 0〉 and e2 = 〈1, 1〉, while the chain of values in RSx(B) is
f0 = p(e0) = e0, f1 = p(e1) = 〈1, x〉 and f2 = p(e2) = p(〈1,¬x〉) = e2,
where p is the map defined in Exercise 10.1.

Example 10.1.1. P2-algebras by filtering Post algebras
The reader can notice that the lattice RSb(B) of Example 7.4.1 consists of the
images of the map p provided by Exercise 10.1. In the diagram below, RSb(B) is
shown embedded in bold fonts in the Post algebra P(B) (alias RS0(B)). The arrows
show the effect of the map p. The image Imp of p coincides with the set of fixpoints,
in the Post algebra P(B)), of the Lawvere-Tierney operator J〈1,a〉, i.e. J〈1,¬b〉, and
it is isomorphic to the principal ideal ↓ 〈1, a〉 of P(B), as one can readily see from
the diagram:

P(B)

〈1, 1〉

��� �� � : p

〈1, a〉 〈1, b〉

...
.. ..... ��� ��

〈a,a〉 ↓ 〈1, a〉 〈1, 0〉 〈b, b〉
..... ...

.. ..... ���

〈a,0〉 〈b, 0〉
..... ...

..

〈0, 0〉

Now let us see an application of the adjoint map p∗: p∗(〈1, b〉) =
∧
{p←(↑ 〈1, b〉)} =∧

{p←({〈1, b〉, 〈1, 1〉})} =
∧
{〈1, 1〉, 〈1, b〉, 〈1, a〉, 〈1, 0〉} = 〈1, 0〉. Incidentally, notice

that J〈G,¬B〉(〈G, ∅〉) = p(〈G, ∅〉) and that p∗ recovers the intermediate element of
the Post algebra, 〈G, ∅〉, from the intermediate value of the P2−lattice.
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Let us notice that the element 〈0, 0〉 does not belong to RSx(B)
if ≡Jx is not trivial. The map p provides then the way to recover a
new intermediate value f1 according to the results of Lemma 10.1.1
and Lemma 10.1.2. Indeed, p(e1) = 〈1, x〉 which is the least dense ele-
ment in the interval [〈0, 0〉, 〈1, 1〉] of RSx(B). It must be noticed that
here “dense” must be understood with respect to the operation “¬”,
that is the pseudo-complementation of RSx(B) qua Heyting algebra. In
fact, ¬〈1, x〉 = 〈¬1,¬1〉 = 〈0, 0〉 and if 〈¬a1,¬a1〉 = 〈0, 0〉 then 〈a1, a2〉
≥ 〈1, x〉, because (i) surely a1 = 1 in order to have ¬a1 = 0 (1 is
the only dense element in the Boolean algebra B); (ii) from the fil-
tration condition we have 1 ∧ x = a2 ∧ x, so that x = a2 ∧ x. Hence,
a2 ≥ x.

Exercise 10.2. Is the operation � a relative pseudo-complementation
in any semi-simple Nelson algebra?

10.2 Frame – Rough Set Systems as Regular
Double Stone Algebras

Definition 10.2.1.

• A bounded pseudo-complemented lattice L = (L,∧,∨, ∗, 0, 1) is a
Stone algebra if ∀x ∈ L, x∗ ∨ x∗∗ = 1.

• A dual-order pseudo-complemented lattice L = (L,∧,∨,+ , 0, 1) is
a dual Stone algebra if ∀x ∈ L, x+ ∧ x++ = 0.

• A distributive lattice L is a double Stone algebra if it is both a
Stone and a dual Stone algebra.

• A double Stone algebra L is said regular if ∀x, y ∈ L, x ∧ x+ ≤
y ∨ y∗.

From (6.2.22) and (6.2.23) it is immediate to prove that for any
Boolean algebra B and x ∈ B, 〈RSx(B),∧,∨, �, 0, 1〉 is a Stone
algebra and 〈RSx(B),∧,∨,¬, 0, 1〉 is a dual Stone algebra, so that
〈RSx(B),∧,∨, �,¬, 0, 1〉 is a double Stone algebra.1

1Actually, it is well-known that any P2-lattice (of order n) is a Stone lattice (of
order n).
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10.3 Frame – Information-Oriented Duality
Theorems

10.3.1 Information-Oriented Interpretation of Duality

We have seen in Section 7.2 the duality between partial orders and finite
distributive lattices. Now, instead of a partial order let us consider a
preordered set P = 〈P,$〉. If we take F(P) we obtain a distributive
lattice. However, J(F(P)) is not isomorphic to P but to the quotient
space P/≡ = 〈P/≡,$′〉, where for all p, p′ ∈ P , p ≡ p′ if and only if
p $ p′ and p′ $ p and [x]≡ $′ [y]≡ if and only if x $ y.

Vice-versa, if L = 〈L,≤〉 is a lattice of subsets of a given universe
U , we can define a preordered set S(L) = 〈U,$〉 where a $ a′ if and
only if for all A ∈ L, a ∈ A implies � a′ ∈ A. Then we have that
F(S(L)) = L. However, J(F(S(L))) (i.e. J(L)) is not order isomorphic
to S(L), but to S(L)/≡.

It has seen observed in the Introduction that if L is the frame of
open subsets of a topology on U , then $ is the so-called specialization
preorder. Moreover F(J(L)) is the soberification of L (which coincide
with the T0-ification in the finite case), in the sense that superfluous
points are disposed off. The same result can be achieved by (i) taking
the specialization preorder S(L), (ii) factorising S(L) through ≡, thus
obtaining a partial order, and (iii) taking the dual of the resulting
partial order.

The informational content of the two maneuvers is the same. In fact,
if any member X of L is seen as a property fulfilled (or “inhabited”)
by some elements of U , then the corresponding element F(J(L)), i.e.
φ(x), will be inhabited not by the same number of elements as X, but
by “champions” (that is, sets) representing them, so that the elements
of U that uniformly fulfill the same properties in L are represented by
the same “champion” in F(J(L)). It follows that F(J(L)) and L are
isomorphic but not homeomorphic qua topological spaces. To put it
another way, they have the same geometrical shape but the elements
of F(J(L)) are less populated than the members of L, because they are
inhabited by that strict number of abstract points which is required to
distinguish one property from the others.

Analogously, a is specialized by a′ (i.e. a $ a′) if any property
fulfilled by a is fulfilled by a′ too, so that a′ fulfills at least the same
properties as a (hence a′ is more determined than a). Thus a ≡ a′ if
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and only if they fulfill exactly the same properties. It follows that the
factorisation S(L)/≡ makes a and a′ collapse into the same “champion”
(that is, equivalence class), so that F(S(L)/≡) and F(J(L)) are not only
isomorphic, but also homeomorphic.

J(F(S(L)))
iso

S(L)/≡
F � F(S(L)/≡)

�
�
�
�

J



�
�
�
�

/≡


 �
�
�
�

iso

�
�
�
�

(homeo)
iso

F(S(L)) �
F

S(L) J(L)
F � F(J(L))

""""""""""""

=
(homeo)

��
�
�
�

S

�
�
�
�

J



##
##
##
##
##
##

iso
(not homeo)

L

If L is a Boolean algebra of sets, then the specialization preorder is an
equivalence relation. This means that given an Approximation Space A
we can recover the Indiscernibility Space it is induced by, just by taking
S(A). Conversely, if X is an Indiscernibility Space, then the induced
Approximation Space is F(X).

Moreover, given any finite lattice L of subsets of a universe U , 〈U,≡〉
is an Indiscernibility Space and P = 〈U,L,∈〉 is a P-system such that
the quantum relation system Q(P) = L, because the information quan-
tum relation induced by P coincides with the specialization preorder $.
Clearly, the information quantum relation of its nominalisation, RN (P)

(see Part I), coincides with ≡.

Example Let U = {a, b, b′, c, d}.

{a, b, b′, c, d}

L′

{d, b, b′, c}

�� ��
{d, b, b′} {d, c}

�� �� ��
{d} {c}

�� ��

∅

{d} J(L′)

{b, b′, d} {c}

�� ��

{a, b, b′, c, d}
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d S(L′)

�
�
� �

�
�

b b′ c

�
�
� �

�
�

��
��
�

a

[d]≡

S(U)/≡

[b]≡ [c]≡
�
�
� �

�
�

[a]≡
P

∈ {c} {d} {d, c} {d, b, b′} {d, b, b′, c} {a, d, b, b′, c}
a 0 0 0 0 0 1
b 0 0 0 1 1 1
b′ 0 0 0 1 1 1
c 1 0 1 0 1 1
d 0 1 1 1 1 1

U/≡

{a}, {b, b′}, {c}, {d}

We have: QP
d = {d}, QP

c = {c}, QP
b = QP

b′ = {b, b′, d}.

10.3.2 Duality of Logico-Algebraic Structures

In Subsection 7.2.1 we have seen, given a Heyting algebra H, how
to define an isomorphic Heyting algebra on a topological space and,
vice-versa.

Duality for the other algebraic structures is defined in a similar way
with the addition of extra ingredients. For instance, if we have to model
some form of strong negation, then we need to define an involution on
dual spaces. Intuitively the involution provides us with a rule to find the
strong negation of each element. Thus we first define I-spaces, that is,
spaces with an involution (for a history of the following representation
techniques see Frame 10.9.2).

Definition 10.3.1. A finite I-space is a pair X = 〈X, f〉 where X is a
poset and f is an involution on X, that is, for any x ∈ X, f(f(x)) = x.
If A⊆X then with f(A) we denote the direct image f→(A) = {f(a)}a∈A.

Consider then the following set of operations on ℘(X):

(i) 1 = X, (ii) 0 = ∅, (iii) A ∧ B = A ∩ B, (iv) A ∨ B = A ∪ B, (v)
∼ A = X ∩ −f(A), (vi) A � B =∼ A ∪ B, (vii) A −→ B = − ↓
(A ∩ f(A) ∩ −B), (viii) · �A = − ↓ (A ∩ f(A)).

Definition 10.3.1 makes it possible to define Kleene and Nelson spaces.
As we are going to see, the difference between them is a certain con-
dition on the interrelations between the involution and the partial
order.
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Definition 10.3.2. A Kleene space is an I-space X = 〈X, f〉 s.t. f is a
linear involutive order-antiautomorphism: if Xop is the dual of X then
f : X �−→ Xop is an order-isomorphism, for all x ∈ X, f(f(x)) = x

and x ≤ f(x) or f(x) ≤ x.
Given a finite Kleene space X = 〈X, f〉 we can define its dual Kleene

algebra K(X ) in the following way: K(X ) = 〈F(X),∧,∨,�,∼, 0, 1〉,
where for any A,B ∈ F(X) the operations are defined as in 10.3.1
(i)–(vi).

On the other way, given a finite Kleene algebra A = 〈A,∧,∨,�,∼,
0, 1〉 we can recover its dual Kleene space KS(A) as follows:

KS(A) = 〈J(A), f〉, where the involution f is given by f(x) =
min(J(A) ∩ −{∼ b : b ∈↑ x}).

We have that if A is a finite Kleene algebra and X is a finite Kleene
space, then A ∼=k K(KS(A)) and X ∼=p KS(K(X )), where ∼=k is the
Kleene algebras isomorphism.

Eventually, we can give the dual construction for Nelson algebras:

Definition 10.3.3. A finite Nelson space is a finite Kleene space
X = 〈X, f〉 s.t. for any a, b ∈ X the following interpolation property is
fulfilled:

(IN) if a≥ f(a), b≥ f(a), a ≥ f(b), b ≥ f(b)),

then ∃c ∈ X s.t. c ≤ a, c ≤ b, f(a) ≤ c, f(b) ≤ c.

If A = 〈A,∧,∨,−→, · �,∼, 0, 1〉 is a finite Nelson Algebra, then we can
recover its dual Nelson space NS(A) as before. On the other side, if
X = 〈X, f〉 is a finite Nelson space then we can define its dual Nelson
algebra N(X ) as follows: N(X ) = 〈J(X),∧,∨,−→, · �,∼, 0, 1〉, where
for any A,B ∈ Ω(X) the operations are defined as in 10.3.1 (i)–(viii).

We have that if A is a finite Nelson algebra and X is a finite Nelson
space, then A ∼=n N(NS(A)) and X ∼=p NS(N(X )), where ∼=n is the
Nelson algebras isomorphism.

It is now important to notice that Nelson and Kleene spaces can be split
into two parts and that Kleene and Nelson algebras can be constructed
as ordered pairs of subsets of elements of just one part:

Definition 10.3.4. Given an I-space X , let X+ be the set {x ∈ X : x ≤
f(x)} and X+ be 〈X+,≤〉 where ≤ is the partial order inherited from
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X. X+ will be called the “positive part” of X . Consider the function
kf :

kf : ℘(X) �−→ ℘(X+) × ℘(X+) : kf (A) = 〈X+ ∩A,X+ ∩ −f(A)〉.

Notice that the index recalls that this map depends on the involution
f . On Imkf

we can define operations analogous to those of Definition
9.6.1. Namely:

(i) 1 =def 〈X+, ∅〉; (ii) 0 =def 〈∅,X+〉; (iii) ∼ 〈X1,X2〉 =def 〈X2,X1〉;
(iv) 〈X1,X2〉 ∧ 〈Y1, Y2〉=def 〈X1 ∧ Y1,X2 ∨ Y2〉, (v) 〈X1,X2〉 ∨ 〈Y1, Y2〉
=def 〈X1 ∨ Y1,X2 ∧ Y2〉, (vi) 〈X1,X2 >� 〈Y1, Y2〉 =def 〈X2 ∨ Y1,X1 ∧
Y2〉 =∼ 〈X1,X2〉 ∨ 〈Y1, Y2〉; (vii) 〈X1,X2〉 −→ 〈Y1, Y2〉 =def 〈X1 =⇒
Y1,X1 ∧ Y2〉; (viii) · �〈X1,X2〉 =def 〈¬X1,X1〉 = 〈X1,X2〉 −→ 0, where
inside the ordered pairs the operations listed in Definition 7.2.1.(i)-(vi)
are used.

We obtain the following result:

Proposition 10.3.1. Let X = 〈X, f〉 be an I-space where f is a linear,
involutive antiautomorphism. Then:

1. kK(X ) = 〈kf (F(X)),∧,∨,�,∼, 0, 1〉 is a Kleene algebra.

2. If in addition f satisfies (IN), then kN(X ) = 〈kf (F(X)),∧,
∨,−→,∼, · �, 0, 1〉 is a Nelson algebra,

provided that the operations are those of Definition 10.3.4.

Proof. Clearly X+ is a partial order. Thus the first thing to prove is
that if A is an order filter in X then A ∩ X+ is a order filter in X+.
Indeed, let a ∈ A ∩ X+, and a′ ∈ X+; if a ≤ a′ then a′ ∈ A, too,
because A is an order filter. Hence a′ ∈ A ∩ X+. Moreover from the
conditions on the involution f we immediately obtain that kK(X ) is
isomorphic to K(X ) and kN(X ) is isomorphic to N(X ). qed

In view of the above proposition, let Z = 〈Z,≤〉 be a Heyting space.
Then in order to obtain a Nelson algebra we can proceed as follows:

Definition 10.3.5. (a) Let S ⊆ maximal(Z). Take an opposite copy
(from the point of view of order) of Z ∩ −S, Z′ = 〈Z ′,	〉, that is,
Z ′ = {h(x) : x ∈ Z ∩−S}, and h(x) = x′ is an anti-order-isomorphism
between x and Z ′, for x ∈ Z ∩ −S.
(b) Glue Z and Z′ together by setting x ≤ x′ for any x ∈ Z ∩ −S.
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(c) Set the following involution:

f(x) =

⎧
⎨

⎩

a′ if x = a and a /∈ S
a if x = a and a ∈ S
a if x = a′

(d) Call the new space X S(Z). It is easy to verify that it is a Nelson
space.

Example

On the first line we show the Kleene space dual to the Kleene algebra C
depicted at the beginning of Frame 6.2.1. The involution f is depicted
in dashed lines. Here f(c) = c. On the second line the Nelson space
X {a}(J(A)) is depicted, that is induced by the Heyting algebra A of
Example 6.2.1. In this space for all x �= a, f(x) = x′ and f(x′) = x

while f(a) = a. Aside the two spaces we show their positive parts, too.
The reader will easily verify that kN(X {a}(J(A))) = N≡

J{a}
(J(A)) ∼=n

N≡Ja (A).

KS(C)

g f

�
�
� $

$
$
$
$
$
$
$%

%
%
%
%
%
%
%

c

�
�
�

a b

KS(C)+

c

a b

1′

��
� 

c′ b′

X {b}(J(A))
a

c b
 ��

�

1

X {b}(J(A))+

a

c b
 ��

�

1
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In KS(C) the interpolation condition (IN) does not hold (in between
a, g, b and f there is no interpolating element. On the contrary,
(IN) trivially holds in X {a}(J(A)). Now let us define some elements
of K(KS(C)) and N(X ). From the filter {b, g, f} of KS(C) we
have: kf ({b, g, f}) = 〈{b, g, f} ∩ KS(C)+,KS(C)+ ∩ −f({b, g, f})〉 =
〈{b, g, f} ∩ {a, b, c}, {a, b, c} ∩ −{a, b, f}〉 = 〈{b}, {c}〉. From the fil-
ter {a, c′, 1′} of X {a}(J(A)) we obtain: kf ({a, c′, 1′}) = 〈{a, c′, 1′} ∩
X {a}(J(A))+,X {a}(J(A))+ ∩ −f({a, c′, 1′}) = 〈{a},X {a}(J(A))+ ∩
−{a, c, 1}〉 = 〈{a}, {b}〉.

Exercise 10.3.
(A) Compute: kf ({c, g}) and kf ({c, b, g, f}) in KS(C); kf ({b, b′, 1′})
and kf ({b, a, 1′, c′, b′}) in X {a}(J(A)).
(B) Verify that the Nelson algebra N≡Jb (A) of Example 9.6.1 is iso-
morphic to kN(X φ(b)(J(A))) and to F(X φ(b)(J(A))), where φ(b) is the
image of b in F(J(A)) via the isomorphism φ of (7.2.7) [hint: draw
X φ(b)(J(A)); extend the isomorphism φ pairwise to a function γ; define
the dual function of kf ].
(C) Find the isomorphic image of 〈b, a〉 in F(X {b}(J(A)); find the
isomorphic image of {a′, c′, 1′} in N≡Jb (A).

10.3.3 Collapse of Maximal Elements
and Atomic Decidability

One can verify that, for instance, the ordered pair 〈{b}, ∅〉 cannot be
recovered by kf from X {a}(J(A)). In fact given any Nelson space X
and any order filter A of X, if f(x) = x we have (i) x ∈ X+ and (ii)
x ∈ A iff x ∈ f(A). It follows that if x /∈ A ∩ X+ then x /∈ f(A) so
that x ∈ X+ ∩ −f(A). If x /∈ X+ ∩ −f(A) then x ∈ f(A) and, hence,
x ∈ A ∩X+. In our example f(a) = a, so that if ∅ is the second element
of kf (A) then a must belong to the first element. This proves:

Proposition 10.3.2. Let X be a Nelson or a Kleene space such that
x ∈ X+ and f(x) = x. Then for any order filter A of X, if 〈X1,X2〉 =
kf (A) then either x ∈ X1 or x ∈ X2.

Corollary 10.3.1. For any Heyting space W = (W,≤), S ⊆ maximal

(W), kN(X S(W)) = N≡JS (H(W)), and they are Nelson algebras.

Proof. (Sketch) Set D = maximal(W). Then D is the least dense
element of the Heyting algebra H(W). Indeed, any order filter of W
has non void intersection with D. Therefore, if S ⊆ D then ≡JS is



10.3 Frame – Information-Oriented Duality Theorems 291

a Boolean congruence on H(W). Finally, since in kN(X S(W)), S =
{x : f(x) = x}, from Proposition 10.3.2 we obtain the result. qed

In view of Chapter 9 this fact has an important logical meaning.
Indeed, if x ∈ W and there exists x′ ∈ W ′ such that x′ = f(x),

then, intuitively, there may be at least an atomic formula p such that
x �|= p and x �|=∼ p, even if x is maximal. In fact from the definition of
kf we could have an element P such that x �∈ (kf (P ))1, x �∈ (kf (P ))2
(for example, in X {a}(J(A)) if P = {a, c′, 1′, b′}, then kf (P ) = 〈{a}, ∅〉
and b �∈ (kf (P ))1, b �∈ (kf (P ))2). Thus P is the algebraic value of some
formula p such that neither b |= p nor b |=∼ p. But we have seen that
if f(x) = x then either x ∈ (kf (A))1 or x ∈ (kf (A))2, any A. Call a
possible world which is able to decide any atomic formula “complete”.
From the monotonicity clause of forcing, in order to know what possible
worlds are complete, it is sufficient to analyse the set of maximal states
of W . Suppose that the set of complete maximal possible worlds is
S ⊆ maximal(W), then we have just seen, for any 〈A1, A2〉, that A1 ∨
A2 ≡JS W only if all the elements of S are distributed between A1 and
A2. This is tantamount to saying that for each atomic formula p for
any element s ∈ S either s � �p� or s � �∼p�.

If S = maximal(W) then we have maximal(W) ⊆ �p�∨ ∼ �p�.
Hence for any formula α, �α�∨ ∼ �α� is a dense element in N≡JS (H(W))
(indeed, as we have seen, maximal(W) intersects all filter of W).

10.3.4 Rough Sets, Duality and Decidability

In this subsection we show an example of application of the above
duality construction from Approximation Spaces to Rough Set Systems.
Consider the Approximation Space AS(G) of Example 7.4.4. First we
have to build the dual space X S(J(AS(G))) (where now S = B =
⋃
{X : card(X) = 1} =

⋃
{{a′}, {a′′′}} = {a′, a′′′}). Thus:

{a, a′′}′ XB(J(AS(G)))−

XB(J(AS(G))) −−−−−−−−−−−−−−−−−−−−−−−−−−

{a, a′′} {a′} {a′′′} XB(J(AS(G)))+

The space XB(J(AS(G))) is built up of two separate subspaces:
XB(J(AS(G)))− = {X ′ : ∃X ∈ J (AS(G)) & X /∈↓ {a′, a′′′}}
and XB(J(AS(G)))+ = J (AS(G)) (this set is, of course, the fam-
ily of atoms of AS(G), that is, the family of basic classes of the
Approximation Space).
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The involution f is given as in Definition 10.3.5.
The elements of XB(J(AS(G)))− may be thought of as basic con-

stituents of upper approximations (or closures) while the elements of
XB(J(AS(G)))+ as basic constituents of lower approximations (or inte-
riors).

Thus the dual space of any rough set is an order filter ↑ X where
X ⊆ XB(J(AS(G))). It follows that in this dual space any rough
set takes the form

−→
X = {X ′

1,X
′
2, . . . ,X

′
n,X1,X2, . . . ,X

1
m} such that

0 ≤ m, 0 ≤ n and if Xi ∈ −→
X and X ′

i exists, then X ′
i ∈ −→

X , too. To
put it in other words, in a dual rough set space we can have primed
elements, X ′

i without the corresponding non-primed element, Xi, but
not the other way around. This is intuitive, because, topologically, if
a basic set Z belongs to I(X) then Z ∈ C(X), but the opposite is
not always true (that is, an elementary class which is included in the
upper approximation of a set X is not necessarily included in its lower
approximation, but the opposite always holds true). However, if Z is a
singleton, then Z ∈ I(X) if and only if Z ∈ C(X). This is the reason
why we do not have primed copies of singleton elementary sets.

In order to obtain rough sets in disjoint representation we have to
apply the following steps:

(A.1) apply the function kf to any
−→
X (obtaining 〈−→X1,

−→
X2〉);

(A.2) apply the set-theoretic summation component-wise to the result
of step (A.1) (thus obtaining 〈

⋃−→
X1,
⋃−→
X2〉).

We denote this procedure with dis(
−→
X ).

If we want the decreasing representation we must use, instead
of kf , the following transformation k∗f : k∗f (

−→
X ) = 〈f(

−→
X ) ∩

XB(J(AS(G)))+,
−→
X ∩ XB(J(AS(G)))+〉. Then apply step A.2.

We denote the resulting procedure with dec(
−→
X ).

Example

kf ({{a, a′′}′, {a′}}) = 〈{{a′}}, XB(J(AS(G)))+∩−f({{a,a′′}′,{a′}})〉=
〈{{a′}},XB(J(AS(G)))+ ∩−{{a, a′′}, {a′}}〉 =
〈{{a′}},XB(J(AS(G)))+ ∩ {{a′′′}}〉 = 〈{{a′}}, {{a′′′}}〉.
Hence dis({{a, a′′}′, {a′}}) = 〈

⋃
{{a′}},

⋃
{{a′′′}}〉 = 〈{a′}, {a′′′}〉.

2. k∗f ({{a, a′′}′, {a′}}) = 〈f({{a, a′′}′, {a′}})∩XB(J(AS(G)))+, {{a,
a′′}′, {a′}} ∩ XB(J(AS(G)))+〉 = 〈{{a, a′′}, {a′}} ∩ X S(J(AS(G)))+,
{{a′}}〉 = 〈{{a, a′′}, {a′}}, {{a′}}〉.
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Hence dec({{a, a′′}′, {a′}}) = 〈
⋃
{{a, a′′}, {a′}},

⋃
{{a′}}〉= 〈{a, a′, a′′},

{a′}〉.
3. kf ({{a, a′′}, {a, a′′}′, {a′}}) = 〈{{a, a′′}, {a′}},−{{a, a′′}, {a, a′′}′,
{a′}}∩XB(J(AS(G)))+〉 = 〈{{a, a′′}, {a′}}, {{a′′′}}∩XB(J(AS(G)))+〉
= 〈{{a, a′′}, {a′}}, {{a′′′}}〉.
Hence dis({{a, a′′}, {a, a′′}′, {a′}}) = 〈{a, a′′, a′}, {a′′′}〉.
4. k∗f ({{a, a′′}, {a, a′′}′, {a′}}) = 〈{{a, a′′}, {a′}}, {{a, a′′}, {a′}}〉.
Hence dec({{a, a′′}, {a, a′′}′, {a′}}) = 〈{a, a′′, a′}, {a, a′′, a′}〉.
Thus {{a, a′′}, {a, a′′}′, {a′}} is the dual representation of an exact
rough set.

This transformation makes it possible to put the above machinery
another way. In fact, we can notice that primed elements stand for the
possibility of being included in the negative part (i.e. second element)
of a disjoint representation. Indeed, a primed element X ′

i is mapped
onto Xi via f so that it can belong to −f(

−→
X ). Thus we have the fol-

lowing cases: Let A be an elementary class.

(Case 1) A ∈ −→
X .

(Case 1.1) A /∈↓ B. Then A′ exists and A′ ∈ −→
X , because

−→
X is

an order filter and A ≤ A′ in XB(J(AS(G))). Since A = f(A′), A /∈
−f(

−→
X ) so that A cannot belong to the negative part of kf (

−→
X ).

(Case 1.2) A ∈↓ B. Then A = f(A) and we have the same conclusion
as in the previous case.

(Case 2) A /∈ −→
X .

(Case 2.1) A /∈↓ B.
(Case 2.1.1) A′ ∈ −→

X . Then according to Case 1.1, A cannot
belong to the negative part of kf (

−→
X ) either.

(Case 2.1.2) A′ /∈ −→
X . Then A ∈ −f(

−→
X ), so that A belongs to the

negative part of kf (
−→
X ).

(Case 2.2) A ∈↓ B. For f(A) = A, A ∈ −f(
−→
X ), and we are in the

same case as above.
(Case 2.2.1) This is the “rough case”: A /∈ −→

X but A′ ∈ −→
X . In this

case A belongs neither to the positive nor to the negative part of
−→
X .

But this cannot happen if A ∈↓ B.

In other words, any rough set is decidable with respect to the elements
of ↓ B.
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Let us now consider the Grothendieck topology induced on
XB(J(AS(G))) by the filter ↑ {{a, a′′}′, {a′}, {a′′′}}. First notice that
{{a, a′′}′, {a′}, {a′′′}} is the least dense open set in F(XB(J(AS(G)))
(when it is considered as a frame of open subsets). To see this,
notice that it is the least order filter which includes all the
maximal element of XB(J(AS(G))). Further, one can notice that
dec({{a, a′′}′, {a′}, {a′′′}}) = 〈G, {a′, a′′′}〉= 〈G,B〉. And when we com-
pute ¬¬〈G,B〉 we obtain 〈G,G〉 (indeed, ¬¬〈G,B〉=¬〈¬G,¬G〉 =
¬〈∅, ∅〉 = 〈¬∅,¬∅〉 = 〈G,G〉), which is tantamount to saying that
〈G,B〉 is dense in algebraic terms. Moreover, as proved in Lemma 8.2.3,
any dense element must have the form 〈G,X〉 with X ⊇ B (necessar-
ily, because of the clause of filtration via B). Hence, 〈G,B〉 is the least
dense element of RSB(AS(G)).

Thus let us denote {{a, a′′}′, {a′}, {a′′′}} with D.
The Grothendieck topology JD is then:

X {a, a′′}′ {a, a′′} {a′} {a′′′}
JD

[X] {{{a, a′′}′}}, {{{a, a′′}, {a, a′′}′}, {{a, a′′}′}} {{{a′}}} {{{a′′′}}}

For the reader’s convenience we show below the lattice F(XB(J(AS
(G)))), with the least dense element in bold. Double-arrows show the
equivalence relation ≡JD .

{{a′}, {a′′′}, {a, a′′}, {a, a′′}′}

��
��
��
� �������

{{a′}, {a′′′}, {a, a′′}′}
	�

{{a′}, {a, a′′}, {a, a′′}′}

��
��
��
� �������

{{a′′′}, {a, a′′}, {a, a′′}′}
�������

{{a′}, {a′′′}}

��
��
��
�

{{a′}, {a, a′′}′}
	�

��
��
��
� �������

{{a′′′}, {a, a′′}′}
	�

�������

{{a, a′′}, {a, a′′}′}

��
��
��
�

{{a′}} {{a′′′}}
�������

{{a, a′′}′}
	�

��
��
��
�

∅

10.3.5 Rough Set Systems, Post Algebras
and Total Atomic Undecidability

Suppose that on G we are given an Indiscernibility Space A′ = 〈G,E〉
with an equivalence relation E giving exactly two equivalence classes,
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{a, a′} and {a′′, a′′′}, then B = ∅. We show the induced Approxima-
tion Space AS(G/E), the dual Nelson space X ∅(J(AS(G/E))) and the
induced Rough Set System RS∅(J(AS(G/E))) (that is, the application
of function dec to the elements of F(X ∅(J(AS(G/E))))):

AS(G/E)

{a, a′, a′′, a′′}

�
� �

�
{a, a′} {a′′, a′′′}

�
� �

�

∅

X ∅(J(AS(G/E)))

{a, a′}′ {a′′, a′′′}′

{a, a′} {a′′, a′′′}

RS∅(AS(G/E))

〈{a, a′, a′′, a′′′}, {a, a′, a′′, a′′′}〉

�
� �

�
〈{a, a′, a′′, a′′′}, {a, a′}〉 〈{a, a′, a′′, a′′′}, {a′′, a′′′}〉

�
� �

� �
� �

�
〈{a, a′}, {a, a′}〉 〈{a, a′, a′′, a′′′}, ∅〉 〈{a′′, a′′′}, {a′′, a′′′}〉

�
� �

� �
� �

�

〈{a, a′}, ∅〉 〈{a′′, a′′′}, ∅〉

�
� �

�

〈∅, ∅〉

It is immediate to verify that RS∅(AS(G/E)) is a Post algebra of order
three, with central element 〈{a, a′, a′′, a′′′}, ∅〉 (cf. Example 7.4.1).

The Grothendieck topology induced by ↑ ∅ on X ∅(J(AS(G/E))) is:

X {a, a′}′ {a′′, a′′′}′ {a, a′} {a′′, a′′′}
J∅[X] {∅, {{a, a′}′}} {∅, {{a′′, a′′′}′}} {∅, {{a, a′}′}, {∅, {{a′′, a′′′}′},

{{a, a′}, {a, a′}′}} {{a′′, a′′′}, {a′′, a′′′}′}}

One can see that ∅ covers all the elements of X ∅(J(AS(G/E))). This
testifies the possible “ambiguity” or “roughness” of all sets.
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Excursus: Grothendieck topology on Approximation Spaces
Consider the Approximation Space A described in Example 7.4.4. First
of all, let us see what Grothendieck topology is induced on the poset
Q(A) by the filter ↑ B (i.e. ↑ {a′, a′′′}) on F(Q(A)) (remember that
Q(A) = 〈G,RA〉 and F(Q(A)) = AS(G)):

x a a′ a′′ a′′′

JB
[x] {∅, {a, a′′}}, {{a′}} {∅, {a, a′′}} {{a′′′}}

To verify this, notice that Q(A) is the following preordered space:

a � � a′′ a′ a′′′

Thus ↑ a =↑ a′′ = {a, a′′}, ↑ a′ = {a′} and ↑ a′′′ = {a′′′}. Moreover,
∅ ⊆↑ a, ∅ ⊆↑ a′ and ∅ ≡JB↑ a, ∅ ≡JB↑ a′.

10.4 Frame – Representation of Three-Valued

�Lukasiewicz Algebras as Rough
Set System

By means of the same decomposition procedure as that shown in Sub-
section 8.3.2 one can prove that given an Approximation Space AS(U)
the center of RSB(AS(U)) (hence AS(U)) is lattice isomorphic to
B∗(B) × B∗(P ).

This procedure is supported by a general result about duality that
we describe now.

In what follows, given a (Nelson, Heyting, Boolean) space S, the
generic operation resulting in the dual (Nelson, Heyting, Boolean) alge-
bra is denoted by F(S). Dually, given a (Nelson, Heyting, Boolean)
algebra A, by X(A) we intend its dual space:

Lemma 10.4.1. (see [Davey & Duffus, 1982]) Let S and S′ be two
spaces, then

F(S ⊕ S′) ∼= F(S) × F(S′)

where ⊕ is the ordinal sum (juxtaposition) of the two spaces.

Clearly, for any Approximation Space AS(U), X(AS(U)) =
〈atoms(AS(U)),=〉 and we can partition X(AS(U)) in the two sub-
spaces B = 〈B∗,=〉 and P = 〈P ∗,=〉, so that B ⊕ P = X(AS(U)).
Clearly, F(P) = B∗(P ) and F(B) = B∗(B). Thus we obtain AS(U) =
F(B ⊕P) ∼= F(B) ×F(P) = B∗(B) × B∗(P ).
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To obtain the results of Subsection 8.3.2 we similarly apply the
above Lemma and the following one:

Lemma 10.4.2. (cf. [Balbes & Dwinger, 1974]) Let Ln be the class of
n-valued �Lukasiewicz algebras and let A ∈ Ln. Then any prime ideal
of A is contained in exactly one maximal chain of at most n− 1 prime
ideals.

Since any Rough Set System RSB(AS(U)) can be made into a three-
valued �Lukasiewicz algebra, by reasoning on prime filters instead of
prime ideals and substituting co-prime elements for prime filters (since
we are in the finite case), we have that the dual space of RSB(AS(U))
is a set of chains of at most two elements. Indeed, it is isomor-
phic to XB(J(AS(U))), because NΘ(AS(U)) ∼= kN(XB(AS(U))) ∼=
F(XB(J(AS(U)))). In view of the construction of XB(J(AS(U))) we
can split this space into two parts: XB(J(AS(U)))P ∗ = 〈{X,X ′ : X ∈
atoms(AS(U)) & card(X) ≥ 2},X ≤ X ′〉 which is a set of chains
of exactly two co-prime elements of AS(U), and XB(J(AS(U)))B∗ =
〈{X : X ∈ atoms(AS(U)) & card(X) = 1},X ≤ X〉 which is a set of
chains with exactly one co-prime element.

Therefore, if we denote XB(J(AS(U)))P ∗ with {C ′
i}1≤i≤n and

XB(J(AS(U)))B∗ with {Ci}1≤i≤m it is obvious that XB(J(AS(U))) =
C ′

1 ⊕ . . . ⊕ C ′
n ⊕ C1 ⊕ . . . ⊕ Cm, so that we can recover (an isomor-

phic copy of) RSB(AS(U)) by tacking F(C ′
1)× . . .×F(C ′

n)×F(C1)×
. . .×F(Cm) ∼= F(C ′

1 ⊕ . . .⊕C ′
n ⊕C1 ⊕ . . .⊕Cm) = F(XB(AS(U))) ∼=

F(C ′
1 ⊕ . . . ⊕ C ′

n) × F(C1 ⊕ . . .⊕ Cm) ∼= RS∅(B∗(P )) ×RSB(B∗(B)).
Now we show that given any three-valued �Lukasiewicz algebra L3,

we can define an Approximation Space A(L3) such that L3
∼= L(AS

(A(L3))), where L is the operator of Proposition 8.3.1.
We have immediately that X(L3) (i.e. 〈J (L3),≤〉) is formed of

chains of co-prime elements of at most length 2. Let us set the fol-
lowing binary Information System I:
I = 〈G,R〉, where G = J (L3) and 〈a, b〉 ∈ R iff a ≤ b or b ≤ a (in
other words, just the members of the same chain are mutually related).
Obviously, R is an equivalence relation and I is an Indiscernibility
Space, so that AS(G/R) is an Approximation Space. We claim that
L(AS(G/R)) ∼= L3.

Let us set B = {X : X ∈ atoms(AS(G/R)) & card(X) = 1}. It
is obvious that XB(J(AS(G/R))) is isomorphic to X(L3). Indeed, if
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a ≤ b is a chain of length 2 in X(L3) then R({a}) = R({b}) = {a, b},
so that {a, b} ≤ {a, b}′ is a chain of length 2 in XB(J(AS(G/R))) and
if a ≤ a is a chain of length 1 in X(L3) then R({a}) = {a} so that
{a} ≤ {a} is a chain of length 1 in XB(J(AS(G/R))). Vice versa, for
any element {a, b} ∈ XB(J(AS(G/R))), {a, b} ≤ {a, b}′ if and only if
R({a}) = R({b}) = {a, b} if and only if either a ≤ b or b ≤ a in X(L3),
and {a} ≤ {a} in if and only if a ≤ a. It follows that for any chain of
length 2 of XB(J(AS(G/R))) there is exactly a chain of length 2 in
X(L3), for any chain of length 1 of XB(J(AS(G/R))) there is exactly
a chain of length 1 in X(L3), and vice-versa.

We conclude that F(X(L3)) ∼= F(XB(J(AS(G/R))). From this
and the facts that F(X(L3)) ∼= L3 and F(XB(J(AS(G/R))) ∼=
RSB(AS(G/R)) we have immediately that L3

∼= L(AS(G/R)).
It is worth mentioning that Mohua Banerjee extended these results

to the general (infinite) case in [Banerjee, 1997].

Example

L3

1
� �

a d

� � �
c b

� �
0

X(L3)
a

c b

R a c b

a 1 1 0
c 1 1 0
b 0 0 1

AS(G/R)
{a, b, c}
� �

{a, c} {b}
� �

∅

X {b}(J(AS(G/R)))
{a, c}′

{a, c} {b}

The isomorphic image of 1 in F(X {b}(J(AS(G/R)))) is {{a, c},
{a, c}′, {b}}, that of b is {{a, c}′, {b}}, and so on. The isomorphic image
of 1 in RS{b}(AS(G/R)) is 〈G,G〉, that of b is 〈{a, c, b}, {b}〉, and so
on.
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10.5 Frame – Proof of the Facts Stated
in Window 7.1

The only property to be really proved is (a), that is, the adjunction
property between ⊃ and ∧. As a variant we carry on this proof in the
disjoint representation (see Definition 9.6.1). So, let A be a Boolean
algebra and a, b ∈ A. In order to fulfill the adjunction property, a ⊃ b

must be an element 〈c1, c2〉 s.t.

(a) c2 is the least element, x, of A s.t. x ∨ a2 ≤ b2, while

(b) c1 must be the greatest element y of A s.t. y ∧ a1 ≤ b1, and
x ∩ y = 0.

We claim that c2 = b2 ∧ ¬a2. In fact, in view of the first requirement,
b2 ∧ ¬a2 is the least element x s.t. x ∧ a2 ≥ b2. Now, in view of the
disjunction condition and the requirement of maximization of c1 , b2 ∧
¬a2 is the best solution for c2. Now, the greatest element y of A s.t.
y ∧ a1 ≤ b1 is ¬a1∨b1 but in order to get the condition of disjointedness
we have to subtract c2 from it obtaining (¬a1 ∨ b1) ∧ ¬(b2 ∧ ¬a2). Let
us then develop this Boolean polynomial:

(¬a1 ∨ b1) ∧ ¬(b2 ∧ ¬a2) = (¬a1 ∨ b1) ∧ (¬b2 ∨ a2)
= (¬a1 ∧ (¬b2 ∨ a2)) ∨ (b1 ∧ (¬b2 ∨ a2))
= (¬a1 ∧ ¬b2) ∨ (¬a1 ∧ a2) ∨ (b1 ∧ ¬b2) ∨ (b1 ∧ a2)
= (¬a1 ∧ ¬b2) ∨ a2 ∨ b1 ∨ (b1 ∧ a2)

but since (a2 ∨ b1) ≥ (b1 ∧ a2) the last expression reduces to (¬a1 ∧
¬b2) ∨ a2 ∨ b1.
Hence we have:
(*) c1 = (¬a1 ∧ ¬b2) ∨ (a2 ∨ b1);
(**) c2 = b2 ∧ ¬a2.
It follows that 〈c1, c2〉 is the disjunction of two elements d and e s.t.
d1 ∨ e1 = (¬a1 ∧ ¬b2) ∨ (a2 ∨ b1) and d2 ∧ e2 = b2 ∧ ¬a2.
Again, d is the conjunction of two elements d′ and d′′ s.t. d′1∧d′′1 = ¬a1∧
¬b2 and (d′2 ∨d′′2)∧ e2 = d2∧ e2 = b2∧¬a2, while e is the disjunction of
two elements e′ and e′′ s.t. e′1 ∨ e′′1 = a2 ∨ b1 and (e′2 ∧ e′′2)∧ (d′2 ∨ d′′2) =
(e′2 ∧ e′′2)∧ d2 = d2 ∧ e2 = b2 ∧¬a2.
We are to find a solution with minimal structural complexity.
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We claim that d′ = ¬〈a1, a2〉, d′′ = ¬ ∼ 〈b1, b2〉, e′ =∼ ¬ ∼ 〈a1, a2〉 and
e′′ = 〈b1, b2〉.

In fact on the one hand we have:
¬〈a1, a2〉∧¬ ∼ 〈b1, b2〉 = 〈¬a1, a1〉∧¬ ∼ 〈¬b2, b2〉 = 〈¬a1∧¬b2, a1∨b2〉.
On the other hand:
∼ ¬ ∼ 〈a1, a2〉 ∨ 〈b1, b2〉 = 〈a2,¬a2〉 ∨ 〈b1, b2〉 = 〈a2 ∨ b1, b2 ∧ ¬a2〉.
But 〈¬a1 ∧ ¬b2, a1 ∨ b2〉 ∨ 〈a2 ∨ b1, b2 ∧ ¬a2〉 equals
(***) 〈(¬a1 ∧ ¬b2) ∨ (a2 ∨ b1), (a1 ∨ b2) ∧ (b2 ∧ ¬a2)〉.
Since (a1 ∨ b2) ≥ b2 ≤ (b2 ∧ ¬a2), we have (a1 ∨ b2) ∧ (b2 ∧ ¬a2) =
(b2 ∧ ¬a2).
Hence (***) becomes 〈(¬a1∧¬b2)∨(a2∨b1), b2∧¬a2〉 as required by (*)
and (**). By easy calculation one can verify that the last polynomial
is exactly a ⊃ b. qed

The other facts listed in Window 7.1:
(b) essentially reads a ∧ b = a iff a ≤ b iff a ⊃ b = 1; but this is a con-
sequence of (a) while (c), (d) and (e) are verified by easy inspection.
Notice that from (c) and (e) we straightforwardly have: (e’) ∼ ¬¬a =��∼ a = ¬a, (c’) ∼ ��a = ¬¬ ∼ a = �a.

Further, (c), (d), (e), (e’) and (c’) may be interestingly read as
follows:

(i) ∼ ♦ = � ∼; ¬♦ = �¬. (ii) ∼ � = ♦ ∼; �� = ♦ �.
(iii) �♦ ≤ � �. (iv) ¬� ≥ ♦¬.

Exercise 10.4. Recall that � is defined as a −→ b∧ ∼ b −→∼ a.
Prove that in semi-simple Nelson algebras a� 0 =∼ a.

10.6 Frame – Proof of Proposition 8.3.1

Proposition 10.6.1. Let A = 〈A,∨,∧,¬, 0, 1〉 be a Boolean alge-
bra and x ∈ A. Then, H(A) = 〈RSx(A),∧,∨,¬, �,⊃,⊂, 0, 1〉 is a
bi-Heyting algebra.

Proof. Immediately from the fact that ⊃ is a relative pseudo-
complementation, ¬ is a pseudo-complementation (see Frame 10.5),
⊂ is a co-relative pseudo-complementation (see Lemma 8.3.1.(4)) and
that �is a co-pseudo-complementation (see Corollary 8.3.1.(1)). qed

Lemma 10.6.1.
1. ¬¬ and ��are endomorphisms in the lattice H(A).
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2. ¬¬ and ��distribute over ∧ and ∨.

Proof. (1) Lifting the abstraction level from Boolean algebras of sets to
generic Boolean algebras, from Lemma 8.2.3 and Proposition 7.3.4 we
have that the operator induced by J 〈1,x〉 is ¬¬. Thus from Corollary
8.2.2 we obtain that ¬¬ is an endomorphism in H(A). By duality we
obtain the same result as to ��. (2) From Proposition 8.2.3 and duality.
qed

Lemma 10.6.2. Let A = 〈A,∨,∧,¬, 0, 1〉 be a Boolean algebra and
x ∈ A. Then, D(A) = 〈RSx(A),∧,∨,∼, 0, 1〉 is a De Morgan lattice.

Proof. We have just to prove the two De Morgan rules. But ∼ (a∧ b) =
〈¬(a2 ∧ b2),¬(a1 ∧ b1)〉 = 〈¬a2 ∨ ¬b2,¬a1 ∨ ¬b1〉 =∼ a∨ ∼ b, because
¬ is a Boolean complementation. Dually for the other De Morgan
rule. qed

Proposition 10.6.2. Let A = 〈A,∨,∧,¬, 0, 1〉 be a Boolean algebra
and x ∈ A. Then, N(A) = 〈RSx(A),∧,∨, �,∼,−→, 0, 1〉 is a semi-
simple Nelson algebra.

Proof. In view of the above Lemma 10.6.2 we have just to prove prop-
erties (6.2.15) and (6.2.17) and semi-simplicity. The first property is
equivalent to a −→ b = a ⊃ (∼a∨ b), which is proved straightforwardly
as follows: a ⊃ (∼a∨ b) =∼ �∼ a∨ ∼ a∨ b∨ ( �a ∧ �∼ (∼ a∨ b)) =∼
a∨b∨( �a∧( �a∨ �∼ b)) =∼ a∨b∨ �a = 〈¬a2∨b1,¬a1∨b2〉∨〈¬a2,¬a2〉 =
〈¬a2 ∨ b1,¬a2 ∨ b2〉 = a −→ b. The second property is immediate from
the trivial fact that a −→ b = �a∨ b and the fact that, by duality, the
two De Morgan laws hold of �. Hence (a∧ b) −→ c = �(a∧ b) ∨ c =�a∨ �b∨ c = a −→ (b −→ c). Now we have to prove that x ∨ �x = 1.
Indeed, x ∨ �x = 〈x1, x2〉 ∨ 〈¬x2,¬x2〉 = 〈1, 1〉, because x2 ≤ x1 and
¬x2 is the Boolean complement of x2. qed

Proposition 10.6.3. Let A = 〈A,∨,∧,¬, 0, 1〉 be a Boolean algebra
and x ∈ A. Set φ1 =¬¬ and φ2 = ��. Then L(A) = 〈RSx(A),∨,∧, ∼ ,
φ1, φ2, 0, 1〉 is a �Lukasiewicz algebra of order three.

Proof. In view of Lemma 10.6.2 it is sufficient to verify the identities of
Definition 6.3.1.



302 10 Frames (Part II)

1. From Lemma 10.6.1.
2. φi(x) ∧ φj(x) = φj(x), (1 ≤ i, j ≤ 3 − 1): from (6.2.24) ��≤ ¬¬.
3. φi(x)∨ ∼ φi(x) = 1;φi(x)∧ ∼ φi(x) = 0, (1 ≤ i ≤ 3 − 1): from
Lemma 8.3.1.(2) and the fact that ��a =∼ �a and ¬¬a =∼ ¬a.
4. φi(∼ x) =∼ φn−i(x), (1 ≤ i ≤ 3 − 1): see Frame 10.5.
5. φi(φj(x)) = φj(x), (1 ≤ i, j ≤ 3 − 1): because the codomain of both
φ1 and φ2 is the center of the algebra and �and ¬ are involutions on
the center.
6. x∨φ1(x) = φ1(x);x∧φ2(x) = φ2(x), because ¬¬x ≥ x and ��x≤x.
7. φi(0) = 0;φi(1) = 1, (1 ≤ i ≤ n − 1): because ��(1) = ¬¬(1) = 1
and ��(0) = ¬¬(0) = 0.
8. ∼x∧ φ2(x) = 0;∼x∨ φ1(x) = 1: from easy computation (or the fact
that ��x is the largest element of the center below x and ¬¬x is the
smallest element of the center above x).
9. y ∧ (x∨ ∼ φ1(x) ∨ φ2(y)) = y: by easy inspection. qed

We can also verify, by straightforward inspection, that the Moisil resid-
uation � defined in (6.3.25) coincides with the operation ⊃ of semi-
simple Nelson algebras.

On the other side, given a three-valued �Lukasiewicz algebra L, we
can introduce two new operations ¬ and −→ in such a way that the
resulting structure is a semi-simple Nelson algebra:

Lemma 10.6.3. Let L be a three-valued �Lukasiewicz algebra and φ1, φ2

its two endomorphisms. Define ∀a, b ∈ L the following two new opera-
tions:
(1) �a =∼ φ2(a); (2) a −→ b =∼ φ2(a) ∨ b.
Then L+ = (L,∨,∧,∼, �,−→, 0, 1) is a semi-simple Nelson algebra.

Proof. By an easy verification of the axioms of semi-simple Nelson
algebras or exploiting the relation between φ2 and the centre of L. qed

10.7 Frame – Grothendieck Topologies

and Lawvere-Tierney Operators

Let 〈X,Ω(X)〉 be a topological space, Y ⊂ X and O ⊆ ℘(X) a family
of open subsets. If

⋃
O = Y , then O is called an open covering of

Y . In 1960 Alexander Grothendieck generalised the notion of an open
covering to that of an étalé covering (or stalk space covering) in order
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to define cohomology theory. The axiomatisation of the properties of
étalé covering lead to the notion of a “Grothendieck topology”.

Somewhat more precisely, consider the sheaf of continuous real-
valued functions defined on X which associates with every open subset
U ⊆ X the set F (U) of real-valued continuous functions defined on U .
If U ⊆ V ⊆ X we have a “restriction map” from F (V ) to F (U).

If {Vi}i∈I is an open covering of the set U , and we are given mutu-
ally compatible elements of {F (Vi)}i∈I , then there exists precisely one
element of F (U) that restricts to all the given ones. This is the notion
which is basically axiomatised by a Grothendieck topology.

Some years later, F. William Lawvere and Miles Tierney were able
to axiomatise Elementary topos theory, in order to provide a founda-
tion for differential geometry. They showed that sheaf theory could be
developed axiomatically by starting with a topos T with global element
Ω and a morphism j : Ω �−→ Ω, whose properties are categorical ver-
sions of the multiplicative, additive and inflationary requirements for
an operation on a lattice. The pair (E, j) was called a site. In [Lawvere,
1970] it was openly stated that “A Grothendieck topology appears most
naturally as a modal operator of the nature it is locally the case that”.
This is the intuition we used in the present Part.

The definitions and propositions in this Part are slight modifications
of those that can be found for instance in [Goldblatt, 1984], [Mac Lane
& Moerdijk, 1992] and [Fourman & Scott, 1979].

10.8 Frame – Representation of Rough Sets

The increasing representation of rough sets (that is, by means of pairs
〈X,Y 〉 such that X ⊆ Y , representing 〈(lE)(X), (uE)(X)〉), was ado-
pted, for instance, in [Iwinski, 1987].

In the present book we have preferred the decreasing representation
since, in a precise sense, this reading is linked to the notion of a refine-
ment of an approximation and it is consistent with the interpretation of
some multi-valued logics which were proposed, for instance, in [Traczyk,
1963] and [Epstein & Rasiowa, 1987] (see also [Rasiowa, 1987]).

The first representation of Rough Sets as pairs 〈(lE)(X),−(uE)(X)〉
of disjoint elements was proposed in [Pagliani, 1993b], in order to deal
with Nelson algebras. According to this interpretation ∼〈X1,X2〉 =
〈X2,X1〉, so that the filtration via ↑ B receives a probably more
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intuitive interpretation: an ordered pair X = 〈X1,X2〉 is a rough set
only if 〈B, ∅〉 ≤ (X∨ ∼ X). That is, the excluded middle must be
locally valid on 〈B, ∅〉.

10.9 Frame – Rough Sets and Non Classical
Logico-Algebraic Systems

The first researches on the relationships between Rough Set Systems
and the logico-algebraic structures that we developed in this Part can
be found in the following seminal works: [Obtu�lowicz, 1987], [Pomykala
& Pomykala 1988] where an interpretation of Rough Set Systems as
Stone algebras was proposed, [Comer 1991 and 1993] where Double
Stone algebras were proposed, [Banerjee & Chakraborty, 1993], in which
modal-algebraic structures were used (for this topic and related litera-
ture we address the reader to Part III), [Pagliani, 1993b] where semi-
simple Nelson algebras, hence three-valued �Lukasiewicz algebras, were
used and [Pagliani, 1998d], where Rough Set Systems were represented
as semi-simple Nelson algebras, three-valued �Lukasiewicz algebras, Post
algebras of order three, semi-Post algebras, Stone algebras and Chain
Based Lattices.

More recently these studies have been revamped by [Düntsch, 1997]
who introduced a logic for Rough Sets by working on Rough Set Sys-
tems represented as Katrinak algebras (essentially, regular double Stone
algebras), [Pagliani, 1997b] (mixed logico-algebraic behaviour of Rough
Set Systems), [Iturrioz, 1999] (Rough Set Systems and three-valued
structures). As to a more recent study, we record [Milne, 2004] where
Rough Sets Systems are connected to De Finetti algebras (i.e. centered
three-valued �Lukasiewicz algebras).

It is important to underline that several deductive systems have
been studied for Rough Set Systems. We quote [Düntsch et al., 2000]
where relational proof theory was used for many-valued information
structures, because relational deductive systems reveal to be flexible
and powerful in the realm of non-classical logics (see Part III). Notably,
[Sen & Chakraborty, 2002] presents sequent calculi for a variety of
topological algebras connected to Rough Sets Systems and for Wajsberg
algebras, as well as a connection between some of these logics and
Linear Logic. Recently [Dai et al., 2005] introduced a sequent calculus
for Stone logic connected to Rough Set Systems.
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10.9.1 Rough Sets and Brouwer-Zadeh Lattices

It is worth noticing that while we arrived at structures connected to
Quantum Logic by investigating Rough Set Systems (see Part I, Frames
4.6.1, and 15.10 of Part III), from the other way around Giampiero
Cattaneo and Davide Ciucci, by investigating models of Quantum Log-
ics (cf. [Cattaneo et al., 1993]), arrived at structures that are able to
link Rough Sets and Fuzzy Sets. More precisely, Rough Set Systems
have been interpreted within the framework of Brouwer-Zadeh Lattice
and Heyting-Wajsberg algebras (see [Cattaneo, 1998] and [Cattaneo &
Ciucci, 2002b]). Shortly, a structure 〈X,∨,∧,¬,∼, 0〉 is a distributive
Brouwer-Zadeh lattice if:

1. 〈X,∨,∧, 0〉 is a distributive lattice, with minimum 0.

2. ∼ is a Kleene orthocomplementation, that is: (i) ∼ ∼a = a, (ii)
∼ (a ∨ b) = ∼a∧ ∼ b, (iii) a∧ ∼ a ≤ b∨ ∼ b, any a, b ∈ X.

3. ¬ is a Brouwer orthocomplementation, that is: (i′) a ∧ ¬¬a = a,
(ii′) ¬(a ∨ b) = ¬a ∧ ¬b, (iii′) a ∧ ¬a = 0.

4. The two orthocomplementations are linked by the following equa-
tion: ∼ ¬a = ¬¬a.

The mapping ∼ is also called a �Lukasiewicz or fuzzy or Zadeh ortho-
complementation .

It is clear that for any Approximation Space AS(U), the Rough Set
System RS(U) is a Brouwer-Zadeh lattice. Moreover, by adding or sub-
tracting properties on the two sides of these algebraic structures, one
can generalise or specialize them, so as to be able to deal with infor-
mation structures based on preclusivity, similarity and other relations
(see [Cattaneo & Ciucci, 2002a]).

10.9.2 Lattices and Non-Classical Logics

The logical systems here discussed have different origins and motiva-
tions.

Indeed, Emil Post aimed mainly at a generalization of the logi-
cal system of Whitehead and Russell’s “Principia Mathematica” (see
[Post, 1920]). Post algebras where analysed in [Traczyk, 1963], [Cignoli
1969, 1972] and [Balbes & Dwinger, 1971].
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Jan �Lukasiewicz focused on the fact that some usually accepted
modal principles lead to disagreeable consequences in a two-valued
setting (see [�Lukasiewicz & Borkowski, 1970]). Arend Heyting tried
to formalise the ideas of Intuitionistic Logics in [Heyting, 1930],
while David Nelson introduced his system in order to circumvent the
non-constructive features of intuitionistic negation (cf. [Nelson, 1949]).

Heyting algebras, �Lukasiewicz algebras and Post algebras provided
the starting point for developing Chain Based Lattices (viz. P0-lattices,
P1-lattices and P2-lattices) and P -algebras. These lattices were studied
by George Epstein and Afred Horn within the theory of multi-valued
signal processing and programming languages in [Epstein & Horn
1974a, b].

Systems connected to Nelson algebras have been used in Logic Pro-
gramming by [Pearce & Wagner, 1990] (see Frame 10.12.3), in program
synthesis by [Miglioli et al., 1989]) and in the framework of informa-
tion systems (cf., for instance, [Wansing, 1993] and [Pagliani, 1997a],
see also Frame 10.20 of Part II).

10.9.3 Lattices with Strong Negation

The algebraic companions of Nelson logic were studied by the Polish
mathematicians A. Bia�lynicki-Birula and H. Rasiowa, who named their
algebraic models “Quasi-pseudo Boolean algebras” (see [Bia�lynicki-
Birula & Rasiowa, 1958]) and by the Latino-American school of logic
(see [Monteiro, 1963a]; the interpolation property of Definition 10.3.3
was introduced, in [Cignoli, 1986]), that represents the first thorough
study of the relations between Kleene, �Lukasiewicz and Nelson algebras.
Notably, in this paper is given an example of complete and centered
Nelson algebra which is not a Heyting algebra.2

Relations among Nelson algebras, Post algebras, �Lukasiewicz alge-
bras, Chain Based Lattices and P -algebras have been studied in
[Monteiro, 1967], [Balbes & Dwinger, 1974], [Priestley, 1984], [Cignoli,
1986], [Boicescu et al., 1991], [Pagliani, 1998d].

2Take kN(H(R)), where H(R) is the complete Heyting algebra of open sets of the
real line R. Consider the elements α = 〈]0, 1[, ]− 1, 0[∪]1, 2[〉 and β = 〈]1/3, 3/2[, ]−
1, 1/2[∪]3/2, 2[〉. Then α =⇒ β does not exists in kN(H(R)). Indeed, consider the
family of elements Γ = {γn = 〈] − 1,−1/n]∪]1/2, 2[〉}n∈N , then α ∧ γn ≤ β, all
n ≥ 1. Suppose Γ has a greatest element γ = 〈γ1, γ2〉. Then γn ≤ γ, for each n, so
that [0, 1/2] ⊇ γ2 ⊇]− 1/n, 1/2[ for each n ≥ 1, which is impossible.
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Some of them have been discussed in this Part where, moreover, we
have shown that the “strange” formal phenomena which appear when
considering such relations, can be explained in terms of “information”,
at least when we are dealing with structures of order three.

A comprehensive study of all these kinds of algebraic structures is
[Cornish, 1986].

For different accounts of the logical and mathematical foundations
of Rough Set Theory we address the reader to [Demri & Or�lowska,
2002] and [Polkowski, 2002].

10.10 Frame – Representation Theorems
and Decomposition of Distributive

Lattices

Representation theorems for the algebraic structures presented in this
Part, have been proved mostly by the authors quoted above.

In particular, we have to mention that Post algebras of order n are
represented by means of Post fields of sets that we briefly describe.

Definition 10.10.1. A topological space 〈X,Ω(X)〉 is said to be a Post
space of order n ≥ 2 if

1. X =
⋃
{X1, . . . ,Xn−1 : Xi ∩Xj = ∅, for 1 ≤ i, j ≤ n− 1}.

2. There exists a Boolean algebra B with dual space X(B) and home-
omorphisms gi : Xi �−→ X(B) of Xi onto X(B), 1 ≤ i ≤
n− 1.

3. The family B(X) = {
⋃n−1

i=1 g
−1
i (C): C is a clopen subset of X(B)}

is a basis for 〈X,Ω(X)〉.
This Post space is denoted by X = 〈{Xi, gi}1≤i≤n−1, B(X)〉.

Intuitively, to use a geological metaphor, a Post space X is a regular
stratification of disjoint homeomorphic Boolean spaces. Any element of
B(X) is the core drilled, throughout all the strata, by a drilling ring
with section equal to a clopen set of B.

For instance, the space X ∅(J(AS(G/E))) of Frame 10.3.5 is a Post
space made up of the Boolean space X1 = {{a, a′}, {a′′, a′′′}}, the
first stratum, and the Boolean space X2 = {{a, a′}′, {a′′, a′′′}′}, the
second stratum. The dual space X(B) = ({a, a′},=) of the Boolean
algebra B of Example 7.4.1 is clearly homeomorphic to both X1
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and X2, via the isomorphisms g1({a, a′}) = a, g1({a′′, a′′′}) = b and
g2({a, a′}′) = a, g2({a′′, a′′′}′) = b. In this space all the subsets of {a, b}
are trivially clopen. It follows that, for instance, {{a, a′}, {a, a′}′} =
⋃

(g−1
1 (a), g−1

1 (b)) and {{a′′, a′′′}, {a′′, a′′′}′} =
⋃

(g−1
2 (a), g−1

2 (b)) are
elements of B(X).

We recall that in any Post space X:

10.10.0.1.

1. B∗(X) = 〈B(X),∩,∪,−,=⇒, ∅,X〉 is the field of all simultane-
ously open and closed subsets of X.

2. e0 = ∅, e1 = X1, e2 = X1 ∪X2, . . . , en−1 = X, is a chain.

3. By P (X) is intended the class of all subsets of X of the form
Y = Y1∩e1∪ . . .∪Yn−1∩en−1 where Yi ∈ B(X) for 1 ≤ i ≤ n−1.

4. There exist operations Di : P (X) �−→ B(X), for 1 ≤ i ≤ n −
1, which with every Y ∈ P (X) associate uniquely determined
coefficients Di(Y ) ∈ B(X) such that Y has a unique monotonic
representation Y = D1(Y ) ∩ e1 ∪ . . . ∪ Dn−1(Y ) ∪ en−1, where
D1(Y ) ⊇ D2(Y ) ⊇ . . . ⊇ Dn−1(Y ).

5. The following condition holds:

Di(ej) =
{

1 for 1 ≤ i ≤ j ≤ n− 1
0 for n− 1 ≥ i > j ≥ 0

Continuing our “geological explanation”, ei is the accumulation of all
the strata up to the ith − level (enumerating from the surface), while
any element Y is an accumulation of samples of various strata such that
any sample of the ith stratum is greater than or equal to any sample
of the i + 1th stratum. Finally Di(Y ) is a call for a core drilling with
section of the same dimension as the ith sample forming the element Y .

In our example from Frame 10.3.5 we have:

e0 = ∅, e1 = {{a, a′}′, {a′′, a′′′}′} and e2 = {{a, a′}, {a′′, a′′′}, {a, a′}′,
{a′′, a′′′}′} and it is worth noticing that dec(e1) = 〈{a, a′, a′′, a′′′}, ∅〉,
while dis(e1) = 〈∅, ∅〉. Moreover, {{a, a′}, {a, a′}′, {a′′, a′′′}} is a mem-
ber of P (X) given by {{a, a′}′, {a′′, a′′′}′, {a, a′}, {a′′, a′′′}}∩e1∪{{a, a′}′,
{a, a′}}∩e2, while {{a, a′}′} is given by {{a, a′}′, {a, a′}}∩e1∪∅∩e2. Fur-
ther, the element {{a, a′}′} is given by {{a, a′}′}∩e1∪∅∩e2 = {{a, a′}′∪
∅}. Hence D2({{a, a′}′}) = ∅ and D1({{a, a′}′}) = {{a, a′}, {a, a′}′}.
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We have the following Representation Theorem (see [Dwinger, 1966],
[Rasiowa, 1974], [Traczyk, 1963]):

Lemma 10.10.1. Every Post algebra P = 〈P,+, •,−,=⇒,D1,D2, . . . ,

Dn−1, 0 = e0, . . . , en−1 = 1〉 is isomorphic to a Post field P(X) =
〈P (X),∪,∩,¬,⊃,D1,D2, . . . ,Dn−1, 0 = e0, . . . , en−1 = 1〉 of subsets of
a Post space X = ({Xi, gi}1≤i≤n−1, B(X)), where, for all Z, Y ∈ P (X):

1. C(Y ) = X ∩ −D1(Y ).

2. Z ⊃ Y = (CD1(Z)∪D1(Y ))∩ e1 ∪ ((CD1(Z)∪D1(Y ))∩
(CD2(Z)∪D2(Y )))∩ e2 ∪ . . . ∪ ((CD1(Z)∪D1(Y ))∩ . . . ∩
(CDn−1(Z)∪Dn−1(Y )))∩ en−1.

3. ¬Z = Z ⊃ 0.

As we have seen, representation theorems are connected with decom-
position results of these lattices, given in terms of products of chains.
On the other side, the classical construction of these kinds of lattices
is given in terms of sublattices of the direct products of their centers
(see [Balbes & Dwinger, 1974] and the references quoted there).

Example

Consider the three-valued �Lukasiewicz algebra L3 of Frame 10.4. The
center CTR(L3) is the Boolean algebra B of Example 7.4.1. In Fig-
ure 10.1 the hypercube CTR(L3) × CTR(L3) is depicted and the iso-
morphic copy of L3 is embedded in the hypercube. From the hypercube
we can recover a number of other sublattices isomorphic to L3, as shown
in Figure 10.2. In Figure 10.2 the sublattice L2 includes the element

Figure 10.1: The hypercube CTR(L3) × CTR(L3) with embedded an
isomorphic copy of L3
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Figure 10.2: Lattice L1 and L2 isomorphic to L3

〈1, b〉, as like as L3, but the intermediate value is 〈0, 1〉. Each of them
has symmetric twins (substitute 〈b, 1〉 for 〈a, 1〉 in L1 and 〈1, b〉 for
〈1, a〉 in L2).

Other sublattices isomorphic to L3 can be singled out. Notice that
the sublattice L1 has 〈1, 0〉 as an intermediate value as like as the
Post algebra RS0(B) of Example 7.4.1 which is a sublattice of the
hypercube, too. Thus a certain formal shape of the chain of values is
preserved. However, by following this method we can miss the logico-
informational content of the construction.

Indeed, as already pointed out, the result proved in this Part does
not state an algebraic decomposition (it would not be sufficient since
it does not give a complete decomposition) but a logical decomposition
which is achieved through the construction by means of a filter ↑ x,
that is more suitable for an information-oriented analysis.

We end this Frame by recalling that a Post algebra of order n is also
obtained as the co-product, B

∐
n of a Boolean algebra B and a chain

n of n elements. By duality B
∐

n ∼= F(X(B) × X(n)). If we consider
the Post algebra RS0(B), we obtain:

X(B)×X(n)

1

a b × =

0

[∼= X ∅(J(B))]

〈a, 1〉 〈b, 1〉

〈a, 0〉 〈b, 0〉
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F(X(B)×X(n)) :

{〈a, 1〉, 〈b, 1〉, 〈a, 0〉, 〈b, 0〉}

�
� �

�
{〈a, 1〉, 〈1, 0〉, 〈b, 1〉}{〈b, 1〉, 〈b, 0〉, 〈a, 1〉}

�
� �

� �
� �

�
{〈a, 1〉, 〈a, 0〉} {〈a, 1〉, 〈b, 1〉} {〈b, 1〉, 〈b, 0〉}

�
� �

� �
� �

�

{〈a, 1〉} {〈b, 1〉}
�
� �

�

∅

10.11 Frame – Representation of Logical
Values by Ordered Pairs

The function kf introduced in Definition 10.3.4 of Frame 10.3.2 is a
specialization of that used in the “Polarity Theorem” of [Dunn, 1966]).
Independently, but many years later, it was introduced in [Pagliani,
1990] in the framework of the representation theorem of logic E0. A few
months later, John Michael Dunn wrote a letter to P. Pagliani in which
Dunn’s Dissertation was recalled together with a number of notes about
the use of ordered pairs to model De Morgan lattices, paraconsistent
logics and logics of entailment. Michael Dunn enclosed also a copy of
[Dunn, 1986] and a manuscript.

On the basis of these documents and other sources we can sketch
the following history.

Functor N(D), for D a distributive lattice, was introduced in
[Kalman, 1958] in order to construct De Morgan lattices. On the basis
of [Bia�lynicki-Birula & Rasiowa, 1957] and influenced by Rudolf Carnap
and Bar-Hillel’s concepts of a “content” (states that make a proposi-
tion false) and an “information” (states that make a proposition true),
in his dissertation J. M. Dunn gave another proof of Kalman’s results
by means of lattices of ordered pairs 〈A+, A−〉. However Dunn did not
require A+ ∩A− = ∅, thus opening the possibility to paraconsistency.3

3Actually, this story is far from being complete if we do not mention S. Halldén’s
The Logic of Nonsense (Uppsala Univ. Arsskr) where in 1949 a semantics by
(disjoint) ordered pairs was substantially introduces in order to interpret the notions
of “α is true at state t (t ∈ �α�+)”, “α is false at state t (t ∈ �α�−)” and “α is
acceptable at state t (t /∈ �α�−)”.
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As to strong negation, later on the technique of ordered pairs was used
in [Vakarelov, 1977] (where Bia�lynicki-Birula and Rasiowa’s work is
cited, but not Dunn’s), in [Pagliani, 1990] (where [Bia�lynicki-Birula
& Rasiowa, 1957] was used and [Vakarelov, 1977] was cited) and in
[Sendlewski, 1990] which is essentially based on Vakarelov’s work and
where the general construction of the class NA was introduced. In
[Sendlewski, 1990] the fact that E is a subvariety of the class NA is
pointed out, but there is no reference to the logical properties of E.
The logical meaning of the difference between E and NA was explored
in [Pagliani, 1999] (here cf. Frames 10.3, 10.16 and 10.12.3).

In [Pagliani, 1993b] the construction NΘ(H) was applied in the
case H is a Boolean algebra, to represent Rough Set Systems as semi-
simple Nelson algebras (the result was already presented two years
before at the University of Warsaw and at the Technische Hochschule
of Darmstadt). In [Pagliani, 2000] the construction was restated in
terms of Lawvere-Tierney operators and Grothendieck topologies.

10.12 Frame – Negation

In this Part we have dealt with different kinds of negation (namely,
Intuitionistic, Classical, co-Intuitionistic and strong negations).

Indeed “negation” is one of the most controversial operator in Logic.
Actually it is polymorphic and controversial even in Natural Language.

In [Westbury] we can find a classification of negations in Natural
Language, form a psychological point of view. This is a slight modifi-
cation:

Type Use
Rejection To reject or signal displeasure with an

undesirable situation
Refusal To signal a refusal to comply a request
Imperative As a directive to other to act differently
Cognitive comment To comment on his/her failure to achieve

an intended goal
Scalar predication Used for the concept of non-existence or to

compare scalar values
Denial of propositions To deny a stated utterance
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The latter form is the fully cognitive linguistic use of the negation.
Nonetheless, even in the use of this form we found, within the same
group of Indoeuropean languages, such as Italian and English, different
attitudes. For instance, in Italian the sentence “Non e’ ne’ bravo ne’
bello”, literally “He is not neither clever nor handsome”, is a negative
sentence where the second negative terms, “ne’” reinforces the first,
“non”. In English the literal translation is grammatically incorrect,
but in any case, two negative terms would form an affirmative one, not
a reinforcement of a negation.
In Formal Logic, as we have seen, we can distinguish different kinds
and degrees of negation, but, first of all, we have to distinguish the
syntactical view and the semantical view of negation.

As to the syntactical view, in the framework of Gentzen’s Sequent
Calculi, the negation is a change of position: from the “active” zone on
the right, to the “passive” zone on the left of the sequent symbol:

α,Γ # Δ
Γ # Δ,¬α

Γ # Δ, α
¬α,Γ # Δ

It is of importance to note that in these rules we use sequents with mul-
tiple conclusions, that which is not allowed in Intuitionistic sequents.

This behaviour of negation has been interpreted from a game-
theoretical point of view as swapping of roles between players. This is,
indeed, a privileged interpretation in Linear Logic (cf. [Girard, 1989],
[Lafont & Streicher, 1991], or [Abramsky & Jagadeesan, 1992]; for some
critical issues see [Blass, 1994]).4

Therefore, if the negation of α, α⊥ in Linear Logic notation (the
“dual of α”), is to be interpreted as the swapping from the role of
proponent to the role of opponent, it follows that negation is involutive,
i.e. α⊥⊥ ≡ α, because the proponent gives the opponent the move and
the opponent gives it back to the proponent. In addition it is possible to
show that the linear implication α� β is equivalent to α⊥ �β so that
α� α ≡ α⊥ �α. But α� α is a thesis of Linear Logic, so it is a thesis
α�α⊥. Since � is the intensional or multiplicative version of “or”, we
have the “intensional” version of the Excluded Middle. This fact can be
explained in terms of Game Theory. Indeed, α�β may be interpreted
as a protocol consisting of interleaved runs of the protocol for α and for
β. Hence, suppose α is a move of Kasparov against Paul (a beginner),

4Maybe this interpretation may be credited to Hintikka’s Logic, Language
Games, and Information (Claredon, 1973).
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known as White, and α⊥ is a move of Short against Paul, as Black.
Then the connective � allows Paul to apply the following strategy:
Paul repeats, against Short, any move of Kasparov against Paul, and
duplicate against Kasparov any move of Short against himself. This is
called the “copy-cat” strategy. Clearly, Paul is bound to win whoever,
Kasparov or Short, wins.

10.12.1 Classifying Formal Negations

First of all, we refer the interested reader to the following notable
collections of papers about negation: [Gabbay & Wansing, 1999] and
[Wansing, 1996].

Summing-up the story, according to the elaboration of [Restall,
2002] on [Dunn, 1999], we can list the following properties involving
negation:

Name Abbrev. Formalisation Reference
in the
present
Part

Contraposition Cont φ # ψ � ¬ψ # ¬φ (6.2.19)

Sub De Morgan Sub dM
¬(φ ∨ ψ) # ¬φ ∧ ¬ψ
¬φ ∨ ¬ψ # ¬(φ ∧ ψ)

(6.1.8)

Constructive De
Morgan

Const dM ¬φ ∧ ¬ψ # ¬(φ ∨ ψ)

Constructive
contraposition

Const cont φ # ¬ψ � ψ # ¬φ

Constructive
double negation

Const ¬¬ φ # ¬¬φ (6.1.7)

Absurdity Ab φ ∧ ¬φ # χ (6.2.22)
Classical De
Morgan

Class dM ¬(φ ∧ ψ) # ¬φ ∨ ¬ψ (6.1.9)

Classical
contraposition

Class cont ¬φ # ψ � ¬ψ # φ

Classical double
negation

Class ¬¬ ¬¬φ # φ (6.2.12)

Excluded middle Ex χ # φ ∨ ¬φ (6.1.11)

Then we can set the following table of systems (the negations in bold
have been introduced by G. Restall):
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cont sub dM
const
dM

const
cont

const
¬¬ ab

class
dM

class
cont

class
¬¬ ex

Subminimal (HL)
√ √

Preminimal
√ √ √

Galois
√ √ √ √ √

Minimal (HM)
√ √ √ √ √

Intuitionistic (HJ)
√ √ √ √ √ √

De Morgan
√ √ √ √ √ √ √ √

Ortho
√ √ √ √ √ √ √ √ √ √

Preminimal’
√ √ √

Galois’
√ √ √ √ √

Minimal’
√ √ √ √ √

Paraconsistent
√ √ √ √ √ √

Some explanations and comments are in order.
Galois negation, or split negation, is a pair of two negation operators

� and �, which are defined in the presence of a Galois connection O ��,�

Oop. Hence we have for all α, β, α # �β if and only if β # �α and
α # � � α, α # � � α. The components of a split negation individually
satisfy all the checked properties except const cont and class cont which
here are read as bi-implications, and const ¬¬ and class ¬¬, where we
have to substitute �� and �� for ¬¬.5

The Orthonegation is a classical negation, to all ends. What is
missed in ortholattices (and orthologic) is distributivity (cf. also Part I,
Frame 4.6.1).

A negation ∼ is called “strong”, with respect to a negation ¬, if
for all α, ∼α =⇒ ¬α. Once we set ¬α =def α =⇒∼ α we find in
[Zeman, 1968] the following classification starting from the system HA

of positive Intuitionistic logic, were the negations above the dotted line
S · · ·S are strong:

S

HR
cont � HS

class ¬¬ � HT

.......
.......

.......
.......

.......
.......

.......
.......

.......
.......

.......
.......

.......
.......

.......
.......

.......
.......

.......
.......

.......
.......

�
�
�
�
�

ab




�
�
�
�
�

ab

 �

�
�
�
�

const ¬¬
�

�
�
�
�
�

const ¬¬
�

HA
cont

� HL HJ
PLaw

� HK

�
�
�
�
�

const ¬¬
� �

�
�
�
�

ab



�
�
�
�
�

ab



S HM
(∼ α =⇒ α) =⇒ α� HD

PLaw
� HE

5Galois negation was introduced in [Dunn, 1991] (cf. also [Dunn & Hartonas,
1993] and the quoted collections).
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where: (i) PLaw is the Peirce’s law ((α =⇒ β) =⇒ β) =⇒ β,
(ii) HD= strict negation (Johansson), (iii) HE= classical refutability
(Kripke), (iv) HK = Classical negation.

10.12.2 A Geometric Interpretation of Negation

Post n-valued negation, Kleene strong three-valued and �Lukasiewicz
negations are analysed in terms of geometrical manipulations in [Varzi
& Warglien, 2003]. Indeed, we can basically perform two kinds of
inversions:

Figure 10.3: Symmetric inversion applied to (a) three values, (b) six
values and (c) four values

Figure 10.4: Cyclic inversion applied to (a) three values, (b) six values
and (c) after applying a symmetric inversion to four values

In Figure 10.3 the three-valued lattice is a model of Kleene’s strong
three-valued logic, while the four-valued lattice is a model of Belnap’s
four-valued logic (cf. also bilattices in Frame 15.12 of Part III). In
Figure 10.4, case (a) is a model of Post’s three-valued logic case (c)
corresponds to the convolution defined by Fitting on bilattices.

One can straightforwardly notice that in n-valued logics an n-fold
cyclic negation is tantamount to an affirmation, while a 2-fold symmet-
ric negation corresponds to an affirmation.
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10.12.3 Strong Negations and Knowledge States
in Artificial Intelligence

It is worth noticing that since the operator T was introduced in order to
analyse the notion “it is classically true” within a constructive environ-
ment, so that T(α) is provable in E0 if and only if α is provable in CL,
the classical negation has to be represented by the strong negation “∼”.

Probably for a similar reason, strong negation is called “classi-
cal” in [Gelfond & Lifshitz, 1990]. Usually, Logic Programming pro-
vides a (meta) negation as failure not: if the program cannot prove α
then we can assume not α. This assumption is admissible under the
Closed World Hypothesis which states that what is declared is all what
exists. Thus, suppose in a program we have the clause ingest(X) : −
not side effect(Y,X), expressing that one can ingest a drug X if it
does not have the side effect Y . Suppose there is no information about
the presence of Y as a side effect of X, so that not side effect(Y,X)
is proved. However it may be very dangerous to Paul to intake X if
he has a severe allergy to Y . We need, in this case an explicit fact
∼ (side effect(Y,X)). Also, we should need a clause of the form
investigate(X,Y ) : −not side effect(Y,X), not∼(side effect(Y,X)),
which suggests some additional investigations in case of doubts.

This kind of reason suggests introducing an explicit negation which,
although called “classic” in the quoted paper, it is recognized to be a
Nelson negation also within the Logic Programming community – see,
for instance, [Pearce & Wagner, 1990].

Systems with strong negation were “empirically” explored within
Artificial Intelligence. An interesting example is the generation of hypo-
theses in machine learning. For instance, in [Delgrande, 1988] with
each hypothesis two subsets are associated which denote the ground in-
stances that we know to satisfy the hypothesis and the ground instances
that we know to not satisfy it. This way an algebraic logic for forming
conjectures is described as much as like a lattice of the kind NΘ(B).
Curiously enough, in the paper there is reference to Kalman’s and
Kleene’s construction but no reference to the fact that the resulting
structure is a three-valued �Lukasiewicz algebra.

Delgrande’s work is close to the approaches by Fagin, Halpern and
Levesque to epistemic and doxastic logics. For instance in [Fagin &
Halpern, 1985] and [Levesque, 1984] two “support relations” �t and
�f are used, in a fashion that can be compared with Thomason’s
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relational models, once w �∼ α is translated w �f α (see Sub-
frame 10.16.2 and footnote 10.11).

In [Akama, 1987] the consequences on knowledge representation of
the specific clauses of Kripke models for E0 are explicitly exploited to
cope with some problems in Artificial Intelligence (but without any
reference to the work of Miglioli’s group). Indeed, Akama studies an
equivalent system endowed with modal operators to face the “frame
problem” in knowledge bases. In that paper, intuitively, it is required
that any search for complete information must be successfully accom-
plished. On the basis of our previous discussion it is easy to understand
why Akama satisfies this request by postulating that each maximal
chain of possible worlds ends with a greatest element fulfilling a Boolean
forcing. Hence the set of these elements is dense.

In any case, the Boolean behaviour captured by all these systems
is, in our terminology, an internal local one. In fact, we have already
noticed that the concept of “density” is definable by means of mere
lattice theoretic notions. But we have seen that when H is a Boolean
algebra, internal local behaviours drastically lose attraction, because
NΔ(H) is isomorphic to H.

However we have not to be confined to internal local behaviours:
indeed we have shown in Frame 10.3, that in a Kripke model K =
〈W,≤,�〉 for Nelson logic if B is the set of maximal worlds with a
Boolean forcing relation and if Θ is ≡Jφ(B), then the element 〈φ(B), 0〉
is the greatest locus (the local top) in NΘ(F(W)) in which Boolean
identities hold, where φ(B) is the element of F(W) corresponding to
B by duality. This is the way we uses NΘ in Rough Set Theory (see
[Pagliani, 1998d]). Since in this case B does not have a lattice-theoretic
individuality, a two-sorted deductive system characterized by a local
(sorted) version of the operator T was suggested in [Pagliani, 1994].

10.12.4 Negations, Bodies and Boundaries

The operation �was probably introduced for the first time by the polish
mathematician Cecylia Rauszer in [Rauszer, 1974]. Two years later, the
properties of �within Heyting-Brouwer and three-valued �Lukasiewicz
algebras were studied by Luisa Iturrioz who in [Iturrioz, 1982] expanded
her researches towards Symmetric Heyting algebras of order n, or SHn
algebras. SHn algebras were introduced to give an algebraic account
for Moisil’s symmetrical modal propositional calculus, that is, an intu-
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itionistic calculus augmented with an involutive negation satisfying the
contraposition law. These algebras are strictly linked with Post algebras
and can be seen as �Lukasiewicz algebras equipped with a generalised
negation (in [Iturrioz & Or�lowska, 1996] a completeness theorem of SHn
logics with respect to Kripke semantics was proved).

To give the reader a taste of the recent developments, we men-
tion that Rauszer’s system, renamed “Subtractive Logic” and with
its semantics revisited as a bi-Cartesian closed category, was investi-
gated in the framework of λ-calculus and Curry-Howard isomorphism,
in [Crolard, 2004].

The negation provided by bi-Heyting algebras was independently
exploited in [Lawvere, 1982] to give a logical account for the notions
of a “boundary”, “essential core of a body” and “sub-body”, in the
context of Continuum Physics.

Given an element a of a co-Heyting algebra CH, Lawvere calls ��a
the regular core of a. Generally ��a ≤ a. It is claimed that a part a
may be considered a sub-body (or shortly a body) if and only if ��a= a.

Everything is based on the fact that in co-Heyting algebras we can
recapture the geometrical notion of a “boundary”. Indeed Lawvere
points out that this notion is definable by means of the co-intuitionistic
negation, �, in the following manner (for a belonging to any co-Heyting
algebra):

∂(a) = a ∧ �a.

First of all, ∂(a) is the boundary of a in a topological sense: if the given
co-Heyting algebra is the system of all closed sets of a topological space,
then a is a closed set. Thus a ∩ �(a) = C(a) ∩ −I(a), which is exactly
the topological boundary, B(a), of a.

More generally, ∂(a) is a boundary since for any a, b of any co-
Heyting algebra, it formally fulfills the rules:

(1) ∂(a ∧ b) = (∂(a) ∧ b) ∨ (a ∧ ∂(b));
(2) ∂(a ∧ b) ∨ ∂(a ∨ b) = ∂(a) ∨ ∂(b).

The first equation is called “Leibniz formula” by W. Lawvere who
emphasizes that though its validity for boundaries of closed sets is sup-
ported by our space intuition (think of two partially overlapping ovals),
nevertheless it is virtually unknown in general topology literature.

Indeed, we can notice that it is essentially the usual Leibniz rule for
differentiation of a product (but see also the Grassmann rule). More-
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over, Lawvere notices that any element a in a co-Heyting algebra is the
join of its core and its boundary: a = ��a ∨ ∂(a).

In view of Lawvere’s work, the notion of a co-Heyting boundary
was exploited in [Pagliani, 1998a] in the context of Rough Set analysis,
where Lawvere’s intuitions fit perfectly.

In fact, given an Approximation Space AS(U), if a = rs(X) for
X ⊆ U , then rs−1( ��a) = (lE)(X), that is the necessary part of X,
(in a literal sense when AS(U) is interpreted as an S5 modal space –
see Part III). Thus the notion of a “sub-body” coincides in Rough Set
Systems with that of greatest exact rough set included in rs(X), that
is, rough sets “(deductively) closed” and “perfect”, hence without any
boundary.6 In turn, the boundary of X is given by rs−1(a ∧ �a) (or,
equivalently, rs−1(a∧ ∼ a).

The above relationships suggest that it is possible to connect Rough
Set Theory to other interesting topics in mathematics and in physics
(see below Frame 10.12.5).

10.12.5 Negations, Modalities and Stalk Spaces

In this Part we have mostly seen negations as kinds of modality. Rela-
tionships between negations and modalities have been studied in [Došen,
1986], [Dunn, 1991] (and other papers), [Pagliani, 1990], [Restall 1997,
1998] and by some other authors.

Notably, in [Reyes & Zolfaghari, 1996], it is shown that bi-Heyting
algebras feature some interesting general properties. Let us define two
operators � and � as follows:

Definition 10.12.1. Given an additionally complete bi-Heyting alge-
bra BH, ∀a ∈ BH,
(i) �0 = �0 = Id; (ii) �n+1 = ¬ ��n, �n+1 = �¬�n.
(iii) �(a) =

∧n
i=1 �i(a); (iv) �(a) =

∨n
i=1 �i(a).

Then it is shown that for any a,�(a) is the largest complemented ele-
ment of BH below a, while �(a) is the smallest complemented element
above a.7

6Not by chance we are using the terminology introduced by Leibniz to describe
the notion of “individual substance” (Discourse on Metaphysics).

7The interested reader must take great care that in the quoted paper the co-
intuitionistic negation

�

is denoted by ∼.
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Example

In order to avoid drawing too complicate Hasse diagrams of lattices, it
is often more comfortable to work with their simpler dual spaces. Thus
consider the Heyting space W depicted below:

c d e g

�
�
� �

�
� �

�
� �

�
�

a b f

Given an order filter A ∈ F (W), we know that in the bi-Heyting
algebra H(W), �A is the smallest element B of F (W) such that A ∪
B = W . Thus it is straightforward to verify that �A =↑ −A (in fact
A ∪ −A = W , but −A is an order ideal in W, so that we have to
take the smallest order filter containing −A). From Definition 7.2.1.(ii)
we know that ¬A = − ↓ A. With the above hint how to compute �

and ¬ we can immediately verify that in H(W), ¬{c} = {b, d, e, g, f},�{b, d, e, g, f}= {a, c, d}, ¬{a, c, d}= {e, f, g} and, finally, �{e, f, g} =
{a, b, c, d, e}. Since ¬{a, b, c, d, e} = {f, g} and �{f, g} = {a, b, c, d, e},
we have that �¬{a, b, c, d, e} = {a, b, c, d, e}. Hence {a, b, c, d, e} is the
smallest complemented element greater than or equal to {c} (indeed �
and ¬ coincide on {a, b, c, d, e}). Thus the sequence ♦i stabilizes in two
steps.

As to �, �{e, f, g}={a, b, c, d, e},¬{a, b, c, d, e}={f, g}and �{f, g}=
{a, c, d, e}. Hence {f, g} is the largest complemented element less than
or equal to {e, f, g}. In this case the sequence �i stabilizes in one step.
On the contrary, the sequence �i stabilizes in two steps if applied to
{b, d, e}: �2�1({b, d, e}) = �2({e}) = ∅.

We know that in Rough Set Systems � = �1 and � = �1. In other
words both sequences �i and �i stabilize at step 1. This fact, as pointed
out by Reyes and Zolfaghari for the general case, is related to the two
De Morgan laws that, respectively, fail in Heyting and in co-Heyting
algebras, generally:

Let H and CH be a Heyting and, respectively, a co-Heyting algebra.
Then we say:

1. H satisfies the De Morgan law for ¬, if ¬(x∧y) = ¬x∨¬y, ∀x, y.

2. CH satisfies the De Morgan law for �, if �(x ∨ y) = �x ∧ �y,
∀x, y.
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One can show that in bi-Heyting algebras the De Morgan law for ¬
implies �(a) = ¬ �a and that the law for �implies �(a) = �¬a. The
reverse of these implications does not hold in general, as we are going
to see in the next example.

Example

Consider the two Heyting spaces W and W′ below:

b W c

�
�
�
� �

�
�
�

a

c

�
�
�
� �

�
�
�

a W′ b

For any element A �= W of H(W), �A = W while �W = ∅. It follows
that �(A) = ∅ if A �= W and �(W ) = W , so that the sequence �i

always stabilizes at step 1. However the De Morgan law for ¬ does not
hold: ¬({b} ∩ {c}) = ¬∅ = W �= ¬{b} ∪ ¬{c} = {c} ∪ {b} = {c, b}.

Symmetrically, for any element A �= ∅ of H(W′), ¬A = ∅, while
¬∅ = W . It follows that ♦(A) = W for all A �= ∅ and ♦(∅) = ∅, so that
the sequence ♦i always stabilizes at step 1. However the De Morgan law
for �does not hold: �({a, c} ∪ {b, c}) = �W = ∅ �= �{a, c} ∩ �{b, c} =
{b, c} ∩ {a, c} = {c}.

However, one can verify that both De Morgan laws actually hold in
Rough Set Systems.

The general reason is discussed in [Johnstone, 1977] where it is
proved that in a Heyting algebra H the De Morgan law for ¬ is equiv-
alent to the fact that Reg(H) is a sublattice of H. Dually for �in
co-Heyting algebras. But this is precisely the case for RSx(A), A any
Boolean algebra, x any element of A.

In [Reyes & Zolfaghari, 1996] the above arguments are presented
within the framework of presheaf topoi.

This is not a surprise. Indeed from Proposition 8.3.5 we have that the
maps φs and ηs from CT R(RSx(A)) to RSx(A), defined as φs(e) = e∧
s and ηs(e) = e∨s, are residuated. It happens that algebraic structures
with these residuals enjoy a stalk-space representation (see [Crown et al.
1996]).

In these notes we can just say that any rough set is a section of this
stalk space.
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10.13 Frame – Intuitionistic Logic: Natural
Deduction System INT

Here we introduce the deductive systems of Heyting logic. We assume
the Predicative Natural Deduction Calculus for INT (see, for instance,
[Prawitz, 1965]).

α (assumption).
α β

α ∧ β
(∧ − int);

α ∧ β

α

α ∧ β

β
(∧ − elim);

[α]
...
⊥
¬α

(¬ − int);
α

α ∨ β

β

α ∨ β
(∨ − int);

[α] [β]
...

...
α ∨ β γ γ

γ
(∨ − elim);

α(p)

∀xα(x)
(∀ − int);

[α]
...
β

α −→ β
(−→ −int);

α α −→ β

β
(−→ −elim);

∀xα(x)

α(t)
(∀ − elim);

α(t)

∃xα(x)
(∃ − int);

[α(p)]
.
..

∃xα(x) γ

γ
(∃ − elim);

¬α α

β
(contr);

Notice that

• The parameter p in ∀− int cannot be free in any non discharged
assumption that α(p) depends on. The parameter p in ∃ − elim

cannot be free in α(x), in γ or in any assumption that γ depends
on, except α(p).

• The assumptions within brackets in a rule, for instance [α], are
discharged after the application of the rule.

• In the rule for the introduction of negation, ⊥ is any contradiction.
Actually (¬ − int) is an instance of (−→ −int).

• In the restricted version of the rule (contr), the consequence β is
any atomic formula. However, the unrestricted version is derivable
from the restricted one. This prove that (contr) does not introduce
formulas of arbitrary complexity.
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10.14 Frame – Classical Logic: Natural
Deduction System CL

The classical calculus CL is obtained by adding to INT the following
rule:

[¬α]
...
⊥
α (CCR);

In this rule a formula of arbitrary complexity may be introduced.
This gives CL a particular strength together with the particular non-
constructive flavour which characterises Classical Logic.

10.14.1 Deriving the Principle of Excluded Middle
from CL

α[1]

α ∨ ¬α ¬(α ∨ ¬α)[3]
⊥
¬α dis.1

¬α[2]

α ∨ ¬α ¬(α ∨ ¬α)[3]
⊥
α dis.2

⊥
¬α ∨ α CCR dis.3

The expression “dis.n” on the right of an inference step, says that after
the step we discharge the assumption(s) marked with [n].

The reader here should note that the proof strictly depends on the
application of the Classical Contradiction Rule, CCR (last step). In
Frame 10.17.2 we shall constructively analyse this proof from the point
of view of the Evaluation Form Semantics.

10.15 Frame – Nelson Logic: Natural

Deduction System CLSN

10.15.1 Constructive Logics with Strong Negation

CLSN is also termed “Nelson Logic for Constructible Falsity”. As we
have already seen, Nelson noted that in INT negation is not construc-
tive in that we can deduce ¬(α∧β) without being able to deduce either
¬α or ¬β. Indeed, the De Morgan rule ¬(α∧β) ≡ ¬α∨¬β fails in INT .
Henceforth Nelson introduced a strong negation ∼ for which both De
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Morgan rules are valid although α∨ ∼ α still fails. Actually, the valid-
ity of both De Morgan rules is connected with the already discussed
requirement that in a real constructive approach, the verification of a
proof for α should recursively account for the sub-proofs of any struc-
tural component of α, even if α is negative. The original motivations
of CLSN are in [Nelson, 1949].

The adoption of a strong form of negation seems to come straightfor-
wardly from the constructivistic approach. In fact, if the interpretation
of a formula α is given by its provability-conditions, then it is not wise
to assume (as Intuitionism does) that proving ¬α amounts to proving
that α is not provable. On the contrary we have to explicitly anal-
yse both positive and negative verification-conditions for α. Hence any
step in a proof of α must be analysed as to its negated or non negated
ingredients. Thus, while in INT the introduction of ¬ is uniformly
given by the rule stating that if from α we obtain a contradiction then
we deduce ¬α, regardless to the specific structure of α, on the con-
trary in CLSN for any connective we have to list both its positive
and negative introduction and elimination rules in order to be able
to analyse the structure of any proof step as recursively related to
the structural complexity of the proved formula (a requirement which
motivates Thomason’s relational models).

10.15.2 Natural deduction system for CLSN

We now introduce the deductive system for Constructive Logic with
Strong Negation (CLSN). The system CLSN is obtained by adding
the following rules to INT :

∼α

∼(α ∧ β)

∼β

∼(α ∧ β)
(∼ ∧ −int);

[∼α] [∼β]

.

.

.
.
.
.

∼(α ∧ β) γ γ

γ

(∼ ∧ −elim);

∼α ∼β

∼(α ∨ β)
(∼ ∨ −int);

∼(α ∨ β)

∼α

∼(α ∨ β)

∼β
(∼ ∨−elim);

α ∼β

∼(α −→ β)
(∼ −→ −int);

∼(α −→ β)

α

∼(α −→ β)

∼β
(∼ −→ −elim);

α

∼∼α
(∼ − int);

∼∼α

α
(∼ ∼ −elim);

∼ α α

β
(contr);

∃x ∼ α(x)

∼∀xα(x)
(∼∀ − int);

∼∀xα(x)

∃x ∼ α(x)
(∼∀− elim);

∀x ∼ α(x)

∼∃xα(x)
(∼∃ − int);

∼∃xα(x)

∀x ∼ α(x)
(∼∃− elim);
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It is worth noticing that the law of contraposition does not hold for
constructive negation. Hence also the law of substitution of equivalents
fails. Here is an example:

(i) | CLSN ∼∼ (α −→ α) ←→ (α −→ α) and (ii) | CLSN α −→ α.
Moreover,
(iii) | CLSN ∼ (α−→α) ←→ (α∧ ∼α) and (iv) | CLSN ∼ (α∧ ∼ α) ←→
(α∨ ∼ α).
However, we cannot conclude | CLSN (α −→ α) ←→ (α∨ ∼ α), because
�| CLSN ∼ (α∧ ∼ α) ←→∼∼ (α −→ α). Otherwise stated, we can-
not substitute α∧ ∼ α for ∼ (α −→ α) in (i). In general, indeed,
�| CLSN (α −→ β) −→ (∼ β −→∼ α).

Incidentally, this proves that the Excluded Middle is not derivable
even for strong negated formulae, in spite of the fact that both the De
Morgan rules hold.

Look at the algebraic evidence:

a −→ a = 〈a1 =⇒ a1, a1 ∧ a2〉 = 〈1, 0〉,
a∧ ∼ a = 〈a1 ∧ a2, a2 ∨ a1〉 = 〈0, a2 ∨ a1〉,
a∨ ∼ a = 〈a1 ∨ a2, a2 ∧ a1〉 = 〈a1 ∨ a2, 0〉.
It follows that ∼ (a∧ ∼ α) = (a∨ ∼ a).
On the contrary, ∼ (a∧ ∼ a) ≤ (a −→ a), because (a1 ∨ a2) ≤ 1 =
(a1 =⇒ a1).

Finally, because of these weaker properties of the implication, the
rule (¬ − int) does no longer define an intuitionistic negation in this
contest, but the weaker negation “· �”. To recover the power of ¬ we need
to define an operator which checks both the positive and the negative
part of a formula (cf. Section 9.6). That which we achieve with system
E0.

10.16 Frame – The System E0

E0, obtained by adding the two T-rules to CLSN , was introduced by
P. Miglioli in 1979 and its properties were studied together with M.
Ornaghi, G. Usberti and P. Pagliani in the same year. It was almost
immediately clear that P. Miglioli was aiming at a particular and rather
new direction. Outside Miglioli’s group, the first scholar who fully
appreciated the strength of the T-rules, was Helena Rasiowa, three
years later, during a meeting with P. Pagliani. Indeed, how peculiar
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and strong they were, it is testified by the radical changes in the mean-
ing of the logical constants that they induce in CLSN – as we were
able to appreciate from the algebraic discussion in the present Part.

10.16.1 The Natural Deduction System E0

To obtain propositional E0 we have to add the two T-rules to CLSN :
[∼α] [∼α]

...
...

β ∼β

T(α) (T− int);

[α] [α]
...

...
β ∼β

∼T(α) (∼T− int)

where “∼” is the constructive negation.

10.16.2 Relational Models for Nelson Logic

A relational model K = 〈W,≤, |=〉 for Nelson logic is a Kripke model
for Intuitionistic logic with, in addition, a set up for strongly negated
formulas with the following two clauses: (i) no w ∈ W can force both
p and ∼p, (ii) if w �∼ p and w ≤ w′ then w′ �∼ p. The clauses for
strongly negated formulas are ([Thomason, 1969]):

w �∼ (α ∨ β) iff w �∼ α and w �∼ β;
w �∼ (α ∧ β) iff w �∼ α or w �∼ β;
w �∼ (α −→ β) iff w � α and w �∼ β;
w �∼∼ α iff w � α.

10.16.2.1 Relational Models for E0

A relational model for E0 is a Kripke model for Nelson logic in which it
is postulated that for any atomic formula p and for any possible world
w, there exists a maximal possible world w′ ≥ w such that w′ |= p∨ ∼ p.
That is, the set of worlds for which the forcing relation |= is Boolean is
dense in these models. This is exactly what is discussed in Frame 10.3
and it is the reason why one has to use NΔ for modeling E0. In fact, Δ
is induced by the filter of all and only the dense elements of the dual
lattice F(W).

10.16.3 Logic and Algebra in Partnership

The analysis carried on so far precisely explicates the fundamental links
between the syntactic level and the topo-algebraic level. In the following
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schema we resume these links, for a Heyting algebra H dual to a partial
order W = 〈W,≤〉, used as Kripke frame:

Algebra Topology Relational
Models

Logic

S = maximal(W); I− (A1 ∪ A2) = ∅ for any state s | E0 T(α∨ ∼ α)

Δ = minimal Boolean
congruence on H(W)

s �|= ¬(α∨ ∼ α)
any α

↑ S is the filter of all
dense elements of
H(W);
A1 ∨ A2Δ1 iff
A1 ∨ A2 is dense

A2=∅ iff A1 is
dense

at any maximal
state s s |= α for
any classical
tautology α

If α is a classical
tautology then
| E0 T(α)

H(W)/Δ is isom. to
the Boolean algebra
of the regular
elements of H(W)

IC(A2) = I(−A1) at any maximal
state s s |= α or
s |=∼ α (any α)

| E0 ¬¬α ⇐⇒ T(α)
| E0 ∼ T(α) ⇐⇒
T ∼ (α)

where:

• α is any sentence and 〈A1, A2〉 is the interpretation of α into
NΔ(H(W)).

• Maximal(W) is the set of maximal elements in W.

• I and C are the interior and, respectively, closure operators of
H(W) qua frame of open subsets of a topological space on W .

• α � α =def α −→ α∧ ∼ β −→∼ α and α ⇐⇒ β =def α �
β ∧ β � α.

On this basis we can analyse syntactical proofs from an algebraic point
of view.

10.16.4 Algebraic Analysis of the Characteristic
Proofs of E0

Taken singularly, the two T-rules resemble the Intuitionistic rule (¬ −
int) of Frame 10.13. More precisely, in view of our discussion about
the weaker properties induced by the rules (−→ −int) and (¬− int) in
CLSN , (T−int) looks like a “· �∼” introduction, while (∼ T−int) looks
like a “· �” introduction (otherwise stated, what in INT is (¬− int), in
CLSN turns into a ( �− int) rule).

We shall see that, on the contrary, the two rules together define a
very peculiar system that cannot be grasped by the two negations, · �
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and ∼, at our disposal. We prove this claim by a parallel proof/algebraic
analysis.

The equivalence ∼T(α) ⇐⇒ T(∼α) can be proved only by means of
both the two T-rules and can be regarded as a characteristic tautology
of system E0. In this section we shall follow the steps of the natural
deduction of this formula, translating them into relevant algebraic fea-
tures that will prove that Effective Lattices constitute the appropriate
algebraic structures for E0.

Let us then analyze this natural deduction: it is achieved by means
of four subproofs (points A∗, B∗, C∗ and D∗ mark the critical steps):

Proposition 10.16.1. E0 #∼ T(α) ⇐⇒ T ∼ (α).

Proof.

A

∼(∼α)[1]
∼(∼α)

∼α[2]

∼α
∼T(∼α)[3] T(∼α)

T(α)
∼T(∼α) −→ T(α)

(dis.1)(A∗)
(dis.2)
(dis.3)

B

α[1]

∼(∼α)
(∼α)[2]
(∼α)

T(α)[3] ∼T(α)
∼T(∼α)

T(α) −→ ∼T(∼α)

(dis.1)(B∗)
(dis.2)
(dis.3)

C

∼(∼α)[1]
∼(∼α)

∼α[2]

∼α
∼T(α)[3] T(α)

T(∼α)
∼T(α) −→ T(∼α)

(dis.2)(C∗)
(dis.1)
(dis.3)

D

α[1]

∼(∼α)
(∼α)[2]
(∼α)

T(∼α)[3] ∼T(∼α)
∼T(α)

T(∼α) −→ ∼T(α)

(dis.2)(D∗)
(dis.1)
(dis.3)
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Notice that the following algebraic analysis of the above proof can be
regarded as a part of the completeness theorem for E0 with respect to
Effective Lattices.

First of all it is worth pointing out that in these proofs the notations
“∼ (∼α)” and “(∼α)”, redundant from a formal point of view, under-
line the “encapsulation” of the strongly negated formula α in order to
suitably apply the rules (T − int) and (∼T − int) (since the T-rules
are defined for any formula these encapsulations are legal).

The crucial points in the proof are (A∗), (B∗), (C∗) and (D∗): if
we consider that the two T rules are a “· �-introduction” and a “· �∼-
introduction” rule, in view of ∼ ∼α = α we can synthesize these crucial
points by means of the two following diagrams:

· �∼ α · �α

��
�
�
�
�
D1




� ��

�
�
�
�
D1′




�

T(α) ∼T(∼α) ∼T(α) T(∼α)

Diagram D1 represents the branching performed by step C∗ and, respec-
tively, D∗ while discharging hypothesis [2] (i.e. “∼ α”).

Diagram D1′ represents the branching performed by step B∗ and,
respectively, A∗ while discharging hypothesis [1] (i.e. “α”).

Now, given an interpretation v s.t. v(α) = a = 〈a1, a2〉, for a

belonging to a Nelson algebra NΘ(H), for some Heyting algebra H
and Boolean congruence Θ, if we assume semantically T(a) = · �∼ a

(which at first sight could look like a good candidate in view of rule
(T-int)), then from the algebraic fact ∼ · �a −→ · �∼ a = 1, we obtain
the following diagrams (the arrows represent the weak implication in
NΘ(H)):

· �∼ a

��
�
�
�
��
D2
�





T(a) = · �∼ a � ∼ T(∼ a) =∼ · �a
· �a

�
�
�
�
��
D2′
�



�

∼ T(a) =∼ · �∼ a � T(∼ a) = · �a
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In order to interpret the diagrams D1 and D1′ in D2 and, respectively,
D2′, we have to add the reverse of the arrows originated in ∼ · �a and,
respectively, in ∼ · �∼ a. Henceforth we must have ∼ · �a ←→ · �∼ a

and, respectively, · �a ←→∼ · �∼ a. Thus we must have ¬a2 = a1 and
¬a1 = a2.

Hence ¬¬a2 = ¬a1 = a2 and ¬¬a1 = ¬a2 = a1. So the intuition-
istic negation ¬ must be an involutive pseudo-complementation in the
underlying Heyting algebra H. It follows that we can suitably complete
the diagrams D2 and D2′ just in the case of H Boolean and Θ minimal
(that is, if the resulting Nelson algebra is itself a Boolean algebra).

If we interpret T as ∼ · �we obtain the diagrams (dual to the latter
two):

· �∼ a

�
�
�
�
��
D3
�



�

T(a) =∼ · �a � ∼T(∼a) = · �∼ a

· �a

��
�
�
�
��
D3′
�





∼T(a) = · �a � T(∼a) =∼ · �∼ a

and the preceding considerations about the completion of the diagrams
apply again.

If we assume semantically T(a) = · �· �a we obtain the diagrams:

· �∼ a

�
�
�
�
��
D4
�





T(a) = · �· �a � ∼T(∼a) =∼ · �· �∼ a

· �a

�
�
�
�
��
D4′
�





∼T(a) =∼ · �· �a � T(∼a) = · �· �∼ a

To complete these diagrams with arrows from D1 and D1′ we must
have ¬a2 = ¬¬a1 and ¬¬a2 = ¬a1. In other words, if we assume
T(a) = · �· �a we have 〈¬a1,¬¬a1〉 = 〈¬¬a2,¬a2〉.
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Therefore we can suitably complete the diagrams D4 and D4′ in
the case of Θ minimal and H any Heyting algebra: in fact from the
hypothesis of minimality of Θ it follows that ¬a1 = ¬¬a2, henceforth
¬¬a1 = ¬¬¬a2 = ¬a2. Thus, if we assume Θ to be minimal, we can define
T(a) = (a −→ 0) −→ 0 = · �· �a = 〈¬¬a1,¬a1〉 = 〈¬a2,¬¬a2〉 = ¬· ¬· a.

On the other hand, if we assume T(a) = 〈¬a2,¬¬a2〉 the algebraic
relationships corresponding to the rules (T− int) and (∼T− int) (that
is a −→ 0 =∼ T(a) and ∼a −→ 0 = T(a)) are fulfilled only if Θ is
minimal.

For instance, we can inspect the lattices N≡Jd (A) and N≡Jb (A)
of Example 9.6.1. We know that N≡Jd (A) is an Effective Lattice and
equals N≡Jb (H) minus the elements 〈0, b〉 and 〈b, 0〉. We can verify that
T(〈0, b〉) = · �· �〈0, b〉 = 〈0, 1〉 ≤ 〈c, b〉 = ¬· ¬· 〈0, b〉 and ∼T(〈0, b〉) =∼
· �· �〈0, b〉 = 〈1, 0〉 ≥ 〈b, c〉 = ¬· ¬· 〈0, b〉 = T(∼〈0, b〉).

On the contrary, for all the elements of N≡Jd (H) all these inequali-
ties turn into equalities.

Finally, let us recall that any three-valued �Lukasiewicz algebra L is
equipped with an endomorphism φ1 that projects any element a ∈ L
onto the largest element of the centre of L less than or equal to a as
well as an endomorphism φ2 that fprojects any element a ∈ L onto
the least element of the centre of L greater than or equal to a. Since
the centre of L is the family of elements fulfilling the Boolean property
of Excluded Middle it makes sense to ask if there is some relationship
between these two operators and the operator T.

Indeed we have shown in this Part that in a three-valued �Lukasiewicz
algebra L, φ1 corresponds to “∼ · �” and φ2 corresponds to “· �∼” in
semi-simple Nelson algebras.

From the above discussion, we obtain that if a three-valued
�Lukasiewicz algebra L (a semi-simple Nelson algebra) is to fulfill the T
features, then for any a ∈ L, φ1(a) must equal φ2(a); that is, L must
collapse to a Boolean algebra.

10.17 Frame – The Logic FCL

We have seen in Section 9.5 that FCL (or, more precisely, E∗) is obtained
by augmenting E0 with (T-Reg) and (T-KP). Actually, the axioms for
FCL were introduced as Natural Calculus-like rules in [Miglioli et al.,
1989]. However, we have to note that since the rule for (T-KP) does not
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have an inverse, we obtain a pseudo-natural calculus with a restricted
form of normalisation.

It is worth stressing that FCL enjoys a particular semantics: the
“evaluation form” interpretation. This semantics is one of the most
interesting steps towards a suitable interpretation of the Intuitionistic
spirit, since, according to it, any formula is interpreted by means of its
own set of possible proofs.

10.17.1 The Natural Deduction System E∗ – Alias FCL

The whole calculus E∗ is given by adding to E0 the rules:

T(α) −→ β ∨ γ

(T(α) −→ β) ∨ (T(α) −→ γ)
(T −KP );

T(α) −→ ∃xβ(x)C

∃x(T(α) −→ β(x))
(T −KPP );

T(p)

p

T(∼ p)

∼ p
, for p atomic (T −REG)

10.17.2 Evaluation Form Semantics

The semantics of Evaluation Forms, EFS, intuitively associates with
every well formed formula α a set of “possible proofs”, or “possible justi-
fications” or “not yet interpreted constructions” of α. These objects are
then given an interpretation when we evaluate their atomic formulae.

Otherwise stated, after having recursively associated evaluation
forms with a formula, they must be filtered, or interpreted (intuitively,
we have to discriminate between true and false forms, or between
“proofs” and “non-proofs”).

It follows that EFS differs from Kripke-style semantics in that it
does not directly assign an interpretation to formulae, and it differs
from the BHK semantics in that EFS rejects a notion of an “abstract
proof” for atomic formulae while for the BHK semantics it makes no
sense to introduce an interpretation different from the constructions
themselves, even for atomic formulae.

Interpretations of evaluation forms may be classical (with co-domain
{0, 1}) or intuitionistic (over Kripke models).

Definition 10.17.1. Given a formula α, F(α) denotes the set of eval-
uation forms (EFs) associated with α and α̂ will denote any element of
F(α). Here are the inductive clauses:
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1. F(⊥) = {⊥}.

2. F(p) = {p}, for every atomic p.

3. F(∼p) = {∼p}, for every atomic p.

4. F(T(α)) = {T(α)}.

5. F(∼T(α)) = {∼T(α)}.

6. F(α ∧ β) =

{
α̂ β̂

α ∧ β : α̂ ∈ F(α) and β̂ ∈ F(β)

}

.

7. F(α ∨ β) =
{

α̂

α ∨ β : α̂ ∈ F(α)
}

∪
{

β̂

α ∨ β : β̂ ∈ F(β)

}

.

8. F(∼(α ∧ β)) =
{

∼̂α
∼(α ∨ β)

: ∼̂α ∈ F(∼α)
}

∪
{

∼̂β
∼(α ∨ β)

: ∼̂β ∈ F(∼β)

}

.

9. F(∼(α ∨ β)) =

{
∼̂α ∼̂β
∼(α ∨ β)

: ∼̂α ∈ F(∼α) and ∼̂β ∈ F(∼β)

}

.

10. F(α −→ β) = F(β)F(α).

11. F(∼(α −→ β)) =

{
α̂ ∼̂β

∼(α −→ β)
: α̂ ∈ F(α) and ∼̂β ∈ F(∼β)

}

.

12. F(α) =
{

α̂

∼∼α : α̂ ∈ F(α)
}

.

We remind that ¬α is short for α −→ ⊥.
A classical interpretation of EFs is an assignment CI : PV s �−→

{0, 1} of one of the two classical values to every propositional variable
together with the following inductive definition:

1. CI(⊥) = 0.

2. CI(p̂) = CI(p), for any atomic p.

3. CI(∼̂ p) = 1, iff CI(p) = 0.
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4. CI(̂T(α)) = CI(T(α)), where CI(T(α)) = T(α) and T(True) =
1,T(False) = 0.

5. CI( ̂∼ T(α)) = 1 iff CI(T(α)) = 0.

6. CI

(
α̂ β̂

α ∧ β

)

= 1 iff CI(α̂) = 1 and CI(β̂) = 1.

7. CI

(
∼̂ α ∼̂ β

∼(α ∨ β)

)

= 1 iff CI(∼̂ α) = 1 and CI(∼̂ β) = 1.

8. CI
(

∼̂ α

∼(α ∧ β)

)

= CI(∼̂ α); CI

(
∼̂ β

∼(α ∧ β)

)

= CI(∼̂ β).

9. CI
(

α̂

α ∨ β

)

= CI(α̂); CI

(
β̂

α ∨ β

)

= CI(β̂).

10. CI

(
α̂ ∼̂ β

∼(α −→ β)

)

= 1 iff CI(α̂) = 1 and CI(∼̂ β) = 1.

11. CI( ̂α −→ β) = 1 iff ∀α̂ ∈ F(α) such that CI(α̂) = 1 the corre-
sponding β̂ ∈ F(β) is such that CI(β̂) = 1.

12. CI
(

α̂

∼∼α

)

= CI(α̂).

One can prove:

Proposition 10.17.1. For any interpretation CI, for any formula α,
CI(α) = 1 if and only if there exists α̂ ∈ F(α) such that CI(α̂) = 1.

Since CI is a classical interpretation, we immediately obtain:

Corollary 10.17.1. A formula α is classically valid, |==CL
α, if and only

if ∀CI,∃α̂ ∈ F(α) such that CI(α̂) = 1.

The difference between classical validity and constructive validity is
given by swapping the position of the two quantified formulas (hence,
of the two quantifiers):

Definition 10.17.2. A formula α is constructively valid, |==CN
α, if and

only if ∃α̂ ∈ F(α) such that ∀CI, CI(α̂) = 1.
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We can restate the above results in terms of “knowledge” , to keep on
the discussion of Section 9.2 (specially the box “Logico-philosophical
remarks.1”). Let us substitute “state of affairs” for “interpretation”
and “justification” for “evaluation form”. Then a formula α is classi-
cally valid, according to Proposition 10.17.1, if for all states of affairs
about α we have a justification to believe α true. On the contrary, α is
constructively valid, according to Definition 10.17.2, if we have a jus-
tification which applies to any state of affair about α. In the classical
case justifications depends on states of affaires, in the constructivistic
case they do not (see below an example).

It is not difficult to show that Disjunction Property is constructively
valid. Indeed, suppose |==CN

α∨β. Then there is a form â ∈ F(α∨β) such

that â is satisfied by every interpretation CI. But either â =
α̂

α ∨ β or

â = β̂

α ∨ β . Thus, by definition of |==CN
, at least one of the two forms

are satisfied by any interpretation. This means that |==CN
α or |==CN

β.
We can immediately verify that p∨ ∼ p is not constructively validated

by EFS. In fact, since p is atomic, F(p) = {p} and F(∼p) = {∼p}.
Therefore:

F(p∨ ∼ p) =
{

p̂

p∨ ∼ p
: p̂ ∈ F(p)

}

∪
{

∼̂ p

p∨ ∼ p
: ∼̂ p ∈ F(∼p)

}

=
{

p

p∨ ∼ p
,

∼p
p∨ ∼ p

}

.

Thus there are exactly two forms associated with p∨ ∼ p. But the
first is falsified by every interpretation CI such that CI(p) = 0 and
the second is falsified by every interpretation CI such that CI(p) = 1.
Therefore, there is not a unique justification applicable to all interpre-
tations. The same holds for the weak negation “¬”. This is evident
from the proof-tree reported above. Indeed, if CI(α) = 0 we have to
choose the branch starting from assumption ¬α, as a justification for
α∨¬α, while if CI(α) = 1 we have to choose the other branch. Hence,
for every interpretation we have a justification for α ∨ ¬α, but not the
other way around.
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Finally one can prove the following completeness theorem:

Proposition 10.17.2. For all formula α, | Fcl
α if and only if |==CN

α.

While the interpretation of evaluation forms over classical models leads
to a completeness theorem for FCL, the interpretation over intuitionistic
models (Kripke models) completely determines a logic called
FINT .

At present, the latter system does not have the same importance
as FCL in logical researches, probably because FCL = (FINT )∗, where
given a logic L, (L)∗ = L + D({¬¬p −→ p : p atomic}), where D(L)
is the closure of L with respect to Modus Ponens.

In any case, it is interesting to notice that FINT seems to be
strictly connected to the Logic of Union Types developed in [Dezani &
Ciancaglini, 1991].

10.18 Frame – Medvedev’s Logic
of Finite Problems

FCL was introduced to grasp the syntax of Medvedev Logic of finite
problems, MV. Medvedev conceived intuitionistic validity of a formula
α as “solvability, by means of a uniform method, of any complex problem
obtained by substituting problems for the propositional variables of the
formula.”

Medvedev’s proposal, in order to formally treat the notions of a
“problem” and a “solution”, is to consider any problem as a dilemma
and a solution as a possibility admitted by that dilemma. Therefore,
any problem may be characterised as a finite set F of “admissible pos-
sibilities” and by a subset X ⊆ F (possibly empty) of “solutions”.
It follows that any problem is represented by a pair 〈F,X〉. Given
two problems, U1 = 〈F1,X1〉 and U2 = 〈F2,X2〉, one can define the
following operations:

(∧) U1 ∧ U2 = 〈F1 × F2,X1 ×X2〉,

(∨) U1 ∨ U2 = 〈F1
⊎
F2,X1

⊎
X2〉, where

⊎
is the disjoint union,

(−→) U1 −→ U2 = 〈FF1
2 , {f : F1 �−→ F2 : x ∈ X1 implies f(x) ∈

X2}〉,

(¬) ¬U1 = U1 −→ 〈F, ∅〉, where F is an arbitrary finite set.
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Given a formula α, we associate it with a pair 〈a(α), i(a(α))〉, where a
is any function mapping any propositional variable of α onto a finite
set F and i is any function mapping any finite set F onto a subset of
F itself. Clearly i(a(α)) depends on a(α) and a(α) depends on α.

Notice a main difference between Medvedev’s approach and Eval-
uation Forms semantics: in EFS with any propositional variable a
singleton is associated and not a finite set, as in MV.

One says that α is a-solvable if and only if there exists x ∈ a(α) such
that for all i, x ∈ i(a(α)), or otherwise stated, if there is a “possible
solution” which is validated by every interpretation. We say that α is
identically solvable, if it is a− solvable for all a.

On this basis one can show for instance, that every intuitionistic the-
sis is identically solvable, on the contrary KP is an identically solvable
formula which is not an intuitionistic thesis.

A few facts are known about MV : (i) a semantics was found by
([Jankov, 1969]) and generalised by Miglioli; (ii) we know that MV is
a maximal constructive logic ([Maksimova, 1986] and, independently,
[Miglioli et al., 1989b] by means of different mathematical techniques);
(iii) it coincides with the part of FCL which is closed under uniform
substitution (see [Miglioli et al., 1989b]); (v) we do not know any sys-
tem of axioms for MV ; (iii) we know that this logic is not finitely
axiomatisable ([Maksimova et al., 1979])).

Finally, we notice that Medvedev Logic is stronger than Recursive
Realisability, as proved by Jankov.

10.19 Frame – Atomic Decidability

and Non-Standard Systems

The treatment of atomic formulae in a classical manner is both a
philosophical key point and a technical problem of constructivism.

As a matter of fact, an atomic formula p cannot be analysed in terms
of “proofs”, as required by the BHK interpretation. Indeed, a proof of
p has the form ∅ # p, that is, all assumptions must be discharged.
But according to the Intuitionistic calculus (see Frame 10.13) the only
way to discharge assumptions is the =⇒ −int rule. Thus the minimal
obtainable proof involving p must have the form p =⇒ p (but this
possibility is questionable – see [Gabbay & De Queiroz, 1992], page
1334, footnote 23).
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Miglioli and co-workers provide the following philosophical account
of atomic decidability:

“Since the notion of a proof of an atomic sentence is by itself mean-
ingless, the intuitionistic explanation of the meaning of such sentences
cannot fail to conceive them as formulas which, even if are left unan-
alyzed, nevertheless belong to some concrete mathematical theory, so
that the problem of specifying what is the proof of an atomic formula
comes down to the question whether there is any mathematical evidence
warranting the assertibility of the sentences of some specific theory.
However, while the identification of the atomic formulas of a proposi-
tional language with the (unanalyzed) sentences of some theory is surely
correct, the intuitionistic explanation fails to take into account the other
crucial aspect of the problem, i.e., the fact that, when we are concerned
with logical validity, we want just to make abstraction from the mathe-
matical content of the sentence we leave unanalyzed, making reference
only to the abstract element shared by such contents: the true value of
each sentence. [. . . ] within our framework, logic and mathematical the-
ories do not need to be reduced to each other, but represent different and
irreducible levels of analysis of the notion of meaning. [. . . ] (From this
it follows that) if A is an atomic sentence, A and T(A) are equivalent:
‘classical’ truth and ‘constructive’ truth coincide in the case of atomic
sentences.”

Technically, atomic decidability plays an important role in relation
to the notion of an isoinitial model.8

Roughly speaking, a theory T formalises an isoinitial model if there
is a model MT such that to all models M ′

T there is a unique isomorphic
immersion from MT (viz. there is a submodel M ′′

T of M ′
T such that

MT and M ′′
T are isomorphic in the usual model-theoretic sense). A

well-known example of theory which formalises an isoinitial model is
Arithmetic, since the standard model of natural numbers is an isoinitial
model. Theories with isoinitial models fulfills constructive features for
a number of extralogical axioms (for instance, ∃∀-formulae, Harrop
formulae, induction or descending chain principles), even in the case
the logical “inference engine” is superintuitionistic.

Isoinitial models are unique up to isomorphisms.
In general, it happens that if a theory Theor has a model whose

8Introduced in [Bertoni et al., 1979] with the name “monoinitial model” (which,
however, usually denotes a slightly different concept).
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elements are represented by the closed terms of the language of Theor
and if for any closed atomic formula p of the language of Theor,
either Theor # p or Theor #∼ p, then Theor completely formalises an
isoinitial model. Moreover, if Theor completely formalises an isoinitial
model, then using a constructive logic augmented with Kuroda princi-
ple and KP , we can decide any closed quantifier-free formula of Theor.

This is a reason to maintain atomic decidability as a “good princi-
ple”.

10.19.1 Atomic Decidability and the Failure
of Uniform Substitution

In spite of the philosophical appeal of atomic decidability, this prin-
ciple induces non trivial technical problems, at least if it is framed in
intuitionistic-like constructivism.

The most immediate casualty of atomic decidability is the principle
of uniform substitution of formulae (USF).

A logical system L enjoys the uniform substitution property (USF)
if

| L α(p1, . . . , pn) ≡| L α(σ(p1), . . . , σ(pn)) (USF )

where p1, . . . , pn are all the propositional variables of the formula α and
σ is a function which maps propositional variables onto formulae.

If we add (Reg) to INT it immediately follows that p←→ ¬¬p for
any atomic formula and USF does not hold any longer. For instance,
in FCL we have, | FCL ¬¬p −→ p but given σ(p) = α ∨ ¬α, we have
�| FCL ¬¬(α ∨ ¬α) −→ (α ∨ ¬α).

Algebraically, atomic formulas should be interpreted on regular ele-
ments of Heyting algebras (or a particular class of Heyting algebras).
Since, in general, the set of regular elements of a Heyting algebra is not
additive, we have the algebraic counterpart of the failure of uniform
substitution.

One should wonder about the “naturalness” of logics without
USF. Actually, we have already seen very interesting objects exhibit-
ing “jumps” in the presence of disjunctions, namely closure systems
induced by Galois connections (cf. Part I).

In a wider philosophical setting, one may argue whether “nice prop-
erties” that guarantee a sort of “continuity”, may or may not be that
evident and “natural” (for instance, the concept of “synergy” implies
some non-additive mechanism).
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10.20 Frame – An Applications
of the Algebraic Approach

to Partial Information Systems

In Knowledge Discovery in databases, a central topic is the analysis of
the dependencies among sets of attributes. Roughly speaking, given an
A-system, I = (U,At, V al), we say that the set of attributes B depends
on the set of attributes A, A� B, if and only if the values taken for the
attributes of B can be univocally determined whenever we are given
the values taken by the objects for all the attributes of A.

From Definition 3.2.1 and Definition 3.2.2, of Chapter 3, we can
prove:

Proposition 10.20.1.

1. B is dependent on A at point g, A�g B, if and only if [g]A ⊆ [g]B
viz. if for any g′ ∈ [g]A, (g′(a1) = va1 ∧ . . . ∧ g′(an) = van

) �
(g′(b1) = vb1 ∧ . . . ∧ g′(bm) = vbm

).

2. B is dependent on A, A� B, if and only if ∀g ∈ U,A�g B.

Remarks. (cf. [Pawlak, 1991]) In Rough Set Analysis the set of objects

g such that A �g B holds, is called A-positive region of B, POSA(B),
and defined by POSA(B) =

⋃

X∈Ind(B)

(lEA)(X), where EA is the indis-

cernibility relation induced by A. Otherwise stated, we compute the lower

approximation with respect to EA of each equivalence class of U modulo

EB and then take the union of the results. Moreover, in Rough Set Analysis

it is used the concept of “partial dependence” or “degree of dependence”

A�k B, for k a rational number:

A�k B if and only if k =
card(POSA(B))

card(U)

If k = 1 then B is said to be totally dependent on A. Obviously, A�1 B

if and only if A� B.

If I is a P-system, 〈G,M,�〉, then a set of properties B is dependent
on a set of properties A, if and only if an arbitrary object fulfills B
whenever it fulfills A, or, equivalently, it is not the case that an object
fulfills A but not B.
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Given a P-systems it is now convenient to set the following total
function:

i : G×M �−→ {0, 1}; i(〈g,m〉) = 1 iff g � m (10.20.1)

Therefore, let A,B ⊆M , g ∈ G. We have:

1. B is said to be dependent on A at point g, A �→g B, if

(∀a ∈ A(i(〈g, a〉) = 1))� (∀b ∈ B(i(〈g, b〉) = 1)).

2. B is said to be dependent on A, A �→ B, iff ∀g ∈ G,A �→g B.

Notice that dependence in P-systems and in A-systems are rather dif-
ferent concepts. This is related to the intended meaning of P-systems
and A-systems. In fact, in P-systems 0 and 1 are not analysed as par-
ticular values, but as values of the characteristic functions of the set
of validity of properties. It follows that inclusion of equivalence classes
modulo values is a meaningless criterion for computing dependence.
Here is an example:
Example 1. A complete P-system

P a1 a2 b1 b2
g1 1 1 0 1
g2 1 1 0 1
g3 0 1 1 1
g4 0 1 1 0
g5 1 0 1 1

Let us set A = {a1, a2} and B = {b1, b2}. Thus we have A �→g3 B

and A �→g4 B though [g3]A = {g3, g4} � {g3, g5} = [g3]B . Therefore,
dependence at a point in the sense of P-systems does not imply depen-
dence at a point in the sense of A-systems. Moreover, [g1]A = {g1, g2} ⊆
{g1, g2} = [g1]B . Hence A �g1 B. On the contrary, neither A �→g1 B

nor A �→g2 B. Hence, dependence at a point in A-systems does not
imply dependence at a point in P-systems.

Let us then discover what kind of set-theoretic relations stay behind the
concept of a dependence in P-systems. The search is not really difficult,
but needs some explanation.
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If I = 〈G,M, i〉 is a P-system, for any property a we set a+ = {x ∈
G : i(〈x, a〉) = 1} and a− = {x ∈ G : i(〈x, a〉) = 0}. Let us extend this
definition to sets of properties, A:

A+ =def

⋂
{a+ : a ∈ A} and A− =def

⋃
{a− : a ∈ A} (10.20.2)

The definition of A+ is quite obvious: if A = {a1, . . . , an}, then A+ is
the set of elements that enjoy a1 and a2 and . . . and an. This choice
depends on the principle of “ecceitas”, stating that an object is a syn-
thesis of all its properties, so that we consider a set of properties as a
logical product of its components.

The definition of A−, on the contrary, may sound somehow odd:
why the union and not the intersection? The reason, in this case, is
exquisitely logical in nature, once we have assumed the definition of
A+. Actually, for any property a, a+ is the extension of a, �a�. But
what is a−? We can think of a− as the extension of the complementary
property of a, a. As we know from Definition 4.8.1 the complementary
property a is the negative mirror of a, in that for any g ∈ G, i(〈g, a〉) = 1
if and only if i(〈g, a〉) = 0.

Notice that a complementary property is more than an incompatible
property. Indeed a and b are incompatible at a point g if and only if
(i(〈g, a〉) ∧ i(〈g, b〉)) = 0. They are incompatible if they are incompati-
ble at every point (to characterise incompatible properties, only the left
to right implication of the definition of a complementary property is
required). For instance the attribute a and b below are complementary,
while c and d are incompatible.

Example 2. Incompatible and dichotomic attributes:

Dichotomic a b

g1 0 1
g2 1 0
g3 0 1

Incompatible c d

g1 0 1
g2 1 0
g3 0 0

We can extend this notion to pairs {A,B} of sets of properties, tack-
ing into account the logical products of their evaluations, i(Ag) =
∧
{i(〈g, a〉) : a ∈ A} and i(Bg) =

∧
{i(〈g, b〉) : b ∈ B} and saying

that A and B are incompatible at point g if i(Ag) ∧ i(Bg) = 0.

Is there a difference between not fulfilling a property a and fulfilling the
complementary property a? As far as we deal with a single property
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a there are no doubts: �a� = −�a�. However, when we deal with a
set A = {a1, . . . , an} of properties we must take some care. What is
actually the complementary property A? Are we really interested to
A as a composite property? If this is the case, an object g fulfills the
composition of a1, a2, . . . , an if and only if g ∈ �a1� and g ∈ �a2�

and, . . . , and g ∈ �an�. This is exactly the meaning of the definition
A+ =def

⋂
{a+ : a ∈ A}. But since in this way we take A as a whole,

as a synthesis of properties, A− should represent the complementary
property of this synthesis and not of the single components of A. This
is the reason of definitions (10.20.2).

But A is defined as �a1�∩ . . .∩�an�, that is,
⋂
{a− : a ∈ A}, which is

the composition of the complementary properties of each single element
of A, not the complementary property of their composition.

This is the reason why we set:

A− = a−1 ∪ . . . ∪ a−n =
⋃

{a− : a ∈ A} = −�A� = −A+ (10.20.3)

Now we are in position to express dependencies between sets of
properties. It is straightforward that in a P-system,

A �→ B iff �A� ⊆ �B� iff − �A� ∪ �B� = U (10.20.4)

which exactly expresses the sentence “B depends on A if and only if
any object x which fulfills all the properties from A, fulfills all the
properties from B, too”. Hence we can set:

A �→g B iff g ∈ A− ∪B+ A �→ B iff A− ∪B+ = U (10.20.5)

In the P-system of Example 1 above, A+ = {g1, g2}, A− = {g3, g4, g5},
B+ = {g3, g5} and A− ∪B+ = {g3, g4, g5}.

Therefore, we have A �→g3 B,A �→g4 B and A �→g5 B.
It is worth observing that A �→g B if and only if i(Ag) = 1 and

i(Bg) = 0. In this case i(Bg) = 1.
Let us notice the difference between �→ and �: in the above P-

system, we can verify that [g2]A = {g1, g2} = [g2]B . Thus we have
A �g1 B and A �g2 B, while g1, g2 /∈ A− ∪ B+. On the contrary,
[g3]A � [g3]B , thus A ��g3 B and A ��g4 B, while A �→g3 B and
A �→g4 B.

Things becomes more interesting and more complicated if the infor-
mation function i is not totally defined.



10.20 Frame – An Applications of the Algebraic Approach 345

10.20.1 P-Systems with Partial Information

In [Burmeister 1989 and 1993] partial P-systems are taken into account
as to the problem of how to compute functional dependency in the
presence of information gaps.

In those papers a Kleene evaluation is applied to the predicate
A �→ B (B depends on A). The non deterministic evaluations are pro-
vided there using two extreme Boolean completions I0 and I1 of a given
partial P-system: I0 has all the partial values equated to 0 while I1 has
all the partial values equated to 1. It is straightforward comparing how
this approach is reflected by our algebraic construction.

In [Pagliani, 1997a] a new approach to this topic was introduced that
we shall describe here below with some details, and in which the trans-
formation of a partial P-system into the required Boolean P-systems
can be performed locally and run-time.

This will be the topic of the present Frame.
In total P-systems, for any g ∈ G, the function i of (10.20.1) is

totally defined. On the contrary, in a partial P-system i is a partial func-
tion. In this case in I there are lacks of information for some objects.
Now, if g ∈ G and m ∈ M are such that i is not defined for 〈g,m〉
then, by definition, for all B ⊆ M, {m} �→g B holds true vacuously.
However, if there is a b ∈ B such that i(〈g, b〉) = 0, the preceding
statement is a critical commitment: in fact if, by means of some addi-
tional information, i(〈g,m〉) is later given the value 1, then we have to
retract our evaluation. This is not a drama, since it is a typical example
of non-monotonic reasoning. But if we want to keep monotonicity in
our evaluation, we must say also that the dependence is undefined at
point g. But if we are to accept this interpretation, we must also accept
that if i(〈g,m〉) is undefined then for all B ⊆M,B �→g {m} can never
be evaluated “false”. So we must be able to distinguish the following
cases:

(a) A �→g B = T: the dependence is definitely true at point g.
(b) A �→g B = F: the dependence is definitely false at point g.
(c) A �→g B = U: a definite truth value for the dependence at point

g cannot be established given the current information in I.
Derived important cases are:
(d) A �→g B ∈ {T,U}.
(e) A �→g B ∈ {F,U}.
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In order to grasp the intended meaning we must set:

Definition 10.20.1. Let I = 〈G,M, i〉 be a partial P-system, A,B ⊆
M , g ∈ G. Then,

1. A �→g B = T iff (∃a ∈ A, i(〈g, a〉) = 0) or (∀b ∈ B, i(〈g, b〉) = 1).

2. A �→g B = F iff (∀a ∈ A, i(〈g, a〉) = 1) & (∃b ∈ B, i(〈g, b〉) = 0).

3. A �→g B = U iff ¬((A �→g B = T) or (A �→g B = F)).

Thus

4. A �→g B = U iff
not [(∃a ∈ A, i(〈g, a〉) = 0)or(∀b∈B, i(〈g, b〉) = 1)] & [not(∀a∈A,
i(〈g, a〉) = 1) & (∃b ∈ B, i(〈g, b〉) = 0)],
iff (∀a ∈ A, i(〈g, a〉) �= 0) & (∀b ∈ B, i(〈g, b〉) �= 1) & [(∃a ∈
A, i(〈g, a〉) �= 1) or (∀b ∈ B, i(〈g, b〉) �= 0)].

Now we shall try to provide the logico-algebraic operations making a
“property explorer” be able to have these kinds of information at a
glance, in spite of their structural complexity.

For convenience, given a partial P-system, we extend i to a total
function G×M �−→ {0, 1, ?} in the following manner:

i′(〈g, a〉) =

⎧
⎨

⎩

1 if i(〈g, a〉) = 1
? if i(〈g, a〉) is not defined
0 if i(〈g, a〉) = 0

Example 3. Consider the partial P-system:

C a b c d e

1 ? 0 1 ? ?
2 0 0 1 1 0
3 1 ? ? 0 1
4 0 0 1 1 0
5 ? 0 1 ? ?

Let us understand the new framework.
First of all, in the presence of lack of information, given a set of

properties A, A− ⊆ −A+. For example, consider a in the P-system
C above. As one can easily observe, a+ = �a� = {3} and a− = {2, 4},
while −a+ = {1, 2, 4, 5}: for 1 and 5 we do not have enough information.
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Therefore, A+ and A− must be considered in partnership at a peer.
It follows that instead of 2a3 it is convenient to work with a pairing
function

π : ℘(M) �−→ ℘(G) × ℘(G); π(A) = 〈A+, A−〉, for any A ⊆M.

(10.20.6)
The difference with the previous situation is that now A+ ∪ A− ⊆ G.
If A+ ∪A− = G, then we say that A is complete or total. We can have
also the extreme case: A+ = A− = ∅.

Let us set 1 = 〈G, ∅〉. From the above discussion, the definitions for
conjunction and negation are as follows:

(conj) π(A) ∧ π(B) =def 〈A+ ∩B+, A− ∪B−〉.
(neg) ∼π(a) =def 〈A−, A+〉, because by ∼ we want to put in evi-

dence the complementary property of A.

Some operations, then, come straightforwardly:

(zero) 0 =∼ 1 = 〈∅, G〉
(or) π(A) ∨ π(B) =def∼ (∼π(A)∧ ∼ π(B)) = 〈A+ ∪B+, A− ∩B−〉,
(mat-imp) π(A) → π(B) =def∼ π(A)∨π(B) = 〈A−∪B+, A+∩B−〉.

Definition 10.20.2. Let us denote by π(M){op1,...,opn} the inductive
closure of the set π(M) = {π(ai)}ai∈M under the operations, {op1, . . . ,

opn}, specified in the index (and, of course, their derived operations).

From Chapter 6, we have immediately:

Proposition 10.20.2. Let I = 〈G,M, i〉 be a partial P-system. Then
the structure

LK(I) = 〈π(M){1,∧,∼},∨,∧,∼,→, 1, 0〉

is a Kleene algebra.

Kleene algebras provide us with enough machinery to compute the
definite cases of Definition 10.20.1, that is, (1) and (2). From now on
given a pair 〈x, y〉 we set π1(〈x, y〉) = x and π2(〈x, y〉) = y.

Proposition 10.20.3. For any partial P-system I =〈G,M, i〉, ∀A,B ⊆
M,∀g ∈ G:

1. A �→g B = T iff g ∈ π1(π(A) → π(B)).
2. A �→g B = F iff g ∈ π2(π(A) → π(B)).
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3. A �→ B = T iff (π(A) → π(B)) = 1.
4. A �→ B = F iff (π(A) → π(B)) = 0.

Proof 1. A �→g B = T iff (∃a ∈ A, i(〈g, a〉) = 0) or (∀b ∈ B, i(〈g, b〉) = 1)
iff g ∈ π1(π(∼ A)) or g ∈ π1(π(B)) iff g ∈ (π2(π(A)) ∪ π1(π(B))) iff
g ∈ π1(π(A) → π(B)).
2. A �→g B = F iff (∀a ∈ A, i(〈g, a〉) = 1) & (∀b ∈ B, i(〈g, b〉) = 0)
iff g ∈ π1(π(A)) & g ∈ π1(π(∼ B)) iff g ∈ π1(π(A)) & g ∈ π2(π(B)) iff
g ∈ π2(π(A) → π(B)).
3. A �→ B = T iff ∀g ∈ G(A �→g B = T) iff π1(π(A) → π(B)) = G iff
π(A) → π(B) = 〈G, ∅〉.
4. Similar. qed

However, in order to compute the indefinite cases provided by Defini-
tion 10.20.1.(3), Kleene algebras are not enough. Intuitively, we have
to go beyond the definite field, by endowing Kleene algebras with some
additional suitable tool.

For instance, noting that ∼π(A) = 〈A−, A+〉, in Kleene algebras we
cannot explore the domain in between A− and A+ (namely G ∩−(A−

∪ A+)). So let us set:
(co intuitionistic negation) �π(A) =def 〈−A+, A+〉.

As we know from Chapter 6 we are now in position to define:

(weak implication)

π(A) −→ π(B) =def

�π(A) ∨ π(B) = 〈−A+ ∪B+, A+ ∩B−〉.

Again from Chapter 6, we have:

Proposition 10.20.4. For any partial P-system I = 〈G,M, i〉, the
structure LN (I) = 〈π(M){∧,∼,

�},∨,∧,∼,−→, �, 1, 0〉 is a semi-simple
Nelson algebra.

Proposition 10.20.5. For any partial P-system I = 〈G,M, i〉, ∀A,B ⊆
M,∀g ∈ G:

1. A �→g B �= F iff g ∈ −A+ ∪ −B−.
2. A �→g B �= T iff g ∈ −A− ∩ −B+.

Proof. 1. A �→g B �= F iff ¬ ((∀a ∈ A, I(〈g, a〉) = 1) & (∀b ∈
B, I(〈g, b〉) = 0)) iff (∃a ∈ A, I(〈g, a〉) �= 1) or (∃b ∈ B, I(〈g, b〉) �= 0)iff
g ∈ −π1(π(A)) or g ∈ −π2(π(B)) iff g ∈ −A+ ∪ −B−.
2. is dual of (1). qed
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Now we can define two operations reflecting faithfully the intended
implicational character of the dependency relation �→ and of the met-
alinguistic negation not (i.e. operations able to cope with the indefinite
cases).

Corollary 10.20.1. For any partial P-system I = 〈G,M, i〉, ∀A,B ⊆
M , let us define the following enteilment relations:

(a) π(A)) π(B) =def

�∼π(A) →∼ �π(B),
(b) π(A)≫ π(B) =def∼ �π(A) → �∼ π(B).
Then ∀g ∈ G,
(i) A �→g B = T iff g ∈ π1(π(A) ) π(B));
(ii) A �→g B �= T iff g ∈ π2(π(A) ) π(B));
(iii) A �→g B = F iff g ∈ π2(π(A)≫ π(B));
(iv) A �→g B �= F iff g ∈ π1(π(A)≫ π(B)).

Corollary 10.20.2. For any partial P-system I = 〈G,M, i〉, ∀A,B⊆M
(i) π(A) ) π(B) =∼ �(π(A) → π(B)); (ii) π(A) ≫ π(B) =
¬ ∼ (π(A) → π(B)).

As we know, in this way we are dealing with modalities. Indeed,
∼ �(X) equals L(X), while ¬ ∼ (X) = M(X).

Therefore we have:

π(A) ) π(B) = M(π(A)) → L(π(B)) = L(π(A) → π(B)) (10.20.7)

π(A)≫ π(B) = L(π(A)) →M(π(B)) = M(π(A) → π(B)) (10.20.8)

By easy calculation, one can verify that in (10.20.7) and (10.20.8) we
can substitute the Nelson implication −→ for the Kleene implication →.

Example 4.
Consider the P-system depicted in Example 3. Let us compute the
dependence {c} �→ {a}: in the Kleene algebra LK(C) we have π({c}) =
〈{1, 2, 4, 5}, ∅〉 and π({a}) = 〈{3}, {2, 4}〉; thus applying the Kleene
implication ’→’ we obtain: π({c}) → π({a}) =∼ π({c}) ∨ π({a}) =
〈∅, {1, 2, 4, 5}〉 ∨ 〈{3}, {2, 4}〉 = 〈∅∪ {3}, {1, 2, 4, 5} ∩ {2, 4}〉 = 〈{3},
{2, 4}〉.

Thus we know where this dependence definitely holds and where it
definitely does not hold.
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In LN (C) we can apply the augmented implications ) and ≫:

π({c}) ) π({a}) = �∼ π({c}) →∼ �π({a}) = 〈{3}, {1, 2, 4, 5}〉.

Thus, according to Corollary 10.20.1 (i) and (ii), 1, 2, 4 and 5 are the
points where {c} �→ {a} is or could be F, while 3 is the only element that
necessarily supports this dependence. In the same way, by computing
π({c}) ≫ π({a}) we get 〈{1, 3, 5}, {2, 4}〉; so, according to Corollary
10.20.1 (iii) and (iv), the above dependence is or could be T at points
1, 3 and 5, while it is necessarily F at points 2 and 4. It is worth noticing
the modal reading of the results.

Observe, incidentally, that there can be partial P-systems K1 and
K2 such that their induced Kleene algebras are different, while the
induced Nelson algebras are equal.

Example 5. Consider the partial P-systems:

I1 a

1 ?
2 0
3 1

I2 a b

1 ? 1
2 0 0
3 1 0

Thus LN (I1) = LN (I2) = LK(I2) but LK(I1) is a strict sublattice of
LK(I2). In the following Hasse diagram, LK(I1) is drawn in dotted lines
and embedded in LK(I2) (i.e. LN (I2), LN (I1)):

〈{1, 2, 3}, ∅〉

..
..

..
..

.
�
�
�

〈{2, 3}, ∅〉 〈{1, 3}, {2}〉〈{1, 2}, {3}〉

�
�
�

.........�
�
�

�
�
��
�
�

〈{2, 3}, {1}〉 〈{3}, {2}〉

.........

〈{2}, {3}〉 〈{1}, {2, 3}〉
�
�
��
�
�

.........�
�
�

�
�
�

〈{3}, {1, 2}〉〈{2}, {1, 3}〉 〈∅, {2, 3}〉

.........

�
�
� ..

..
..

..
.

〈∅, {1, 2, 3}〉
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10.20.2 Adequacy of the Kleene Fragment w.r.t.
Definite Answers

As we have seen, in complete P-systems, the relation A �→g B is
exhaustively defined by the classical material implication. Therefore
an enteilment operation intended to compute answers about dependen-
cies in partial P-systems must not conflict with the classical material
implication. Roughly speaking it has to fulfill two intuitive properties:

(inv) If I is a partial P-systems then intuitively we are allowed to
say that A �→g B = T or A �→g B = F only if for any more specified
“release” of I, these evaluations do not change. Thus the enteilment
operation has to reflect this fact.

(cons) If the arguments are sets of complete properties, then the
enteilment operation must coincide with the classical material implica-
tion.

We call condition (inv) invariance condition and (cons) consistency
condition. If these conditions are fulfilled by a semantic system S, then
S is said to be “adequate to Classical Logic”.

From the above discussion it follows that an algebraic model for
partial P-systems is good if and only if it is induced by a homomor-
phism from the algebra of formulas generated by a language L into
the algebra of truth values induced by a semantic adequate to Clas-
sical Logic. Indeed, our Kleene algebra LK(I) is induced by LK(I) =
π(M){1,∧,∼} and Kleene Strong Semantics for partial recursive func-
tions (see [Kleene, 1952]). Since it is well-known that Kleene Strong
Semantics characterizes a three-valued logic semantically adequate to
Classical Logic, our Kleene fragment is adequate for definite answers.

Indeed, let us confine our attention to a partial P-system I1×2 =
〈{g}, {a, b}, i〉. On varying the range of i on {1, ?, 0}, this P-system
reproduces the situation in which two atomic formulas are three-
evaluated on a single world.

Then for any atomic γ = {x}, for x ∈ {a, b}, we have: π(γ) =
〈{g}, ∅〉 iff i(〈g, x〉) = 1 and π(γ) = 〈∅, {g}〉 iff i(〈g, x〉) = 0; we have
π(γ) = 〈∅, ∅〉 otherwise. Moreover in any algebra induced by I1×2 the
top element 1 is 〈{g}, ∅〉 while 〈∅, {g}〉 is the bottom element 0. We
denote the element 〈∅, ∅〉 by δ. Hence the operations for I1×2 can be
represented by the following tables:
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∧ 1 δ 0
1 1 δ 0
δ δ δ 0
0 0 0 0

→ 1 δ 0
1 1 δ 0
δ 1 δ δ

0 1 1 1

∼
1 0
δ δ

0 1

(By easy verification: for instance 1∧δ = 〈{g}, ∅〉∧〈∅, ∅〉 = 〈{g}∩∅, ∅∪
∅〉 = 〈∅, ∅〉 = δ; δ → 0 = 〈∅, ∅〉 → 〈∅, {g}〉 = 〈∅∪∅, {g}∩∅〉 = 〈∅, ∅〉 = δ).
It happens that these are precisely the tables of the Kleene Strong
Semantics.

However, we have seen that in order to cope with the cases A �→g

B �= F and A �→g B �= T we have to move from the Kleene fragment
to the Nelson fragment. The Nelson fragment on I1×2 is given by the
tables:
−→ 1 δ 0
1 1 δ 0
δ 1 1 1
0 1 1 1

) 1 δ 0
1 1 0 0
δ 1 0 0
0 1 1 1

≫ 1 δ 0
1 1 1 0
δ 1 1 1
0 1 1 1

�

1 0
δ 1
0 1

But this semantics is not adequate to Classical Logic because (cons) is
fulfilled while (inv) is not. In fact all Nelson operations are consistent
with Classical Logic but they make too strong commitments as to the
evaluation of indefinite arguments. For instance δ −→ 0 = 1; but if our
information evolves so that the antecedent becomes 1, then we break
the rule for classical material implication. �δ = 0, but if δ evolves into
0 we have �0 = 0. The derived operations ) and ≫ show the same
problem.

As a matter of fact the application of the operators �∼ and ∼ �to
the arguments of → is a sort of “probabilistic challenge” to Classical
Logic and it is not a surprise that operations that are to provide non-
definite answers are not adequate to Classical Logic.

However, what is the concrete meaning of the above operations?
If A is a set of properties and g is an object such that i(Ag) =?

(according to table of ∧ above), then g �∈ A+ and g �∈ A−, but g will
belong to the first element of M(π(A)) (i.e. −A−; that is: when we
apply M to π(A) we assume that i(〈g, a〉) = 1, for all a ∈ A. On the
other side g will belong to the second element of L(π(A)) (i.e. −A+);
that is: when we apply L to π(A), we assume that i(〈g, a〉) = 0, for all
a ∈ A.

Since π(A) ) π(B) equals, from (10.20.7), M(π(A)) → L(π(B)),
for A,B ⊆ M , then it amounts to applying the operation → to a pair
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of “completed” arguments A1 and B0: A1 is completed by equating to
1 all the undetermined evaluations, while B0 is completed by equating
them to 0.

The calculus of π({A})≫ π({B}) is dual (from 10.20.8).
Hence when we apply ) we assume a “sceptical” point of view,

while we assume an “optimistic” point of view when we apply ≫.

10.21 Frame – Logical Operations
in a Pure Algebraic Setting

In this section we shall recover the operations so far discussed, from
a more general picture construed by means of pure logico-algebraic
relationships.

Indeed, we must consider the fact that any semi-simple Nelson alge-
bra can be made into a three-valued �Lukasiewicz algebra, and that
three-valued �Lukasiewicz logic enjoys a limited form of weakening,
namely, A,A,A�B

A,A�B (this fact was already noticed by Nelson). The lim-
itation or the suppression of structural rules makes it possible to split
the meaning of previously unified operations. So, moving back from
syntax to semantics, we can argue whether one can define a multiplica-
tion operation, say ⊗, such that ⊗ has an interesting meaning different
from ∧.

Let g and f be monadic operators (we recall that a dyadic operation
can be transformed, via Currying, into a family of monadic operators).
We call the operator g(f(g(x)) the g−dual of f . For instance, in a
Boolean algebra, let g be ∼ and f be a∧. Then g(f(g(x)) =∼ (a∧ ∼
x) =∼ a∨ ∼∼ x =∼ a ∨ x = a→ x.

With this example in mind, let us consider the algebraic structure
RSx(A) = 〈RSx(A),∧,∨,¬,∼, �,−→,⊃, 0, 1〉, for A a Boolean alge-
bra and x ∈ A. Let a, b ∈ RSx(A) (that is, a = 〈a1, a2〉, b = 〈b1, b2〉),
and proceed as follows:

Definition 10.21.1. Let 4 be a binary operation. Let us call:
1. the operation �(a 4 �b): “co-intuitionistic dual” of 4, denoted by�

d(4)
2. the operation ∼ (a4 ∼ b): “De Morgan dual” of 4, denoted by
∼d (4)
3. the operation ¬(a4¬b): “intuitionistic dual” of 4, denoted by ¬d(4)
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Moreover, whenever a binary operation 4 has its left operand modalised
by Mod1 and its right operand modalised by Mod2, for Mod1,Mod2

∈ {L,M}, then we shall denote it by Mod14Mod2 . Finally, in order to
apply a duality transformation to a modalised operation Mod14Mod2

apply the negation sign to the argument of Mod2, not to the modality
(for instance �

d(L(a) ∧M(a)) = �(L(a) ∧M( �a))).
Now we can notice that ∼d (−→) is not commutative. Indeed, in

order to have a commutative multiplication, the choice is essentially
between �

d(−→) and ¬d(⊃) (remember that �a = a −→ 0 and ¬a =
a ⊃ 0). So let us start with the first option:

Proposition 10.21.1. The equation �

d(−→) =L ∧L holds in RS(U).

Proof. (we show the easy deduction just to exhibit a prototype of the
proofs of the subsequent propositions, that will be omitted):

�(a −→ �b) = �( �a ∨ �b) = ��a ∧ ��b = L(a) ∧ L(b).
The first equation derives from the equation a −→ b = �a ∨ b. The
second from the fact that �inherits both De Morgan laws from the
Boolean negation which defines �. The third comes from the fact that
L(a) = ��(a) (for all these facts, cf. the previous Frame 10.20). qed

Proposition 10.21.2.

1. (i) �

d(L∧L) =L−→L; (ii) ∼d (L∧L) = ¬d(L∧L) =L−→M .

2. (i) �

d(L−→M ) =∼d (L−→M ) =L ∧L; (ii) ¬d(L−→M) =L ∧M .

3. (i) �

d(L−→L) =L ∧L; (ii) ∼d (L−→L) = ¬d(L−→L) =L ∧M .

4. (i) �

d(L∧M) =∼d (L∧M) =L−→L; (ii) ¬d(L∧M) =L−→M .

Now the second option:

Proposition 10.21.3. The equation ¬d(⊃) =M ∧M holds in RS(U).

Proposition 10.21.4.

1. (i) �

d(M∧M) =∼d (M∧M ) =M−→L; (ii) ¬d(M∧M ) =M−→M .

2. (i) �

d(M−→L) =M ∧L. (ii) ∼d (M−→L) = ¬d(M−→L) =M ∧M .

3. (i) �

d(M−→M ) =∼d (M−→M ) =M ∧L; (ii) ¬d(M−→M ) =M ∧M .

4. (i) �

d(M∧L) =M−→L; (ii) ∼d (M∧L) = ¬d(M∧L) =M−→M .
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As for the remaining cases, we can notice that ¬d(−→) =L ∧M ,

�

d(⊃)
=M ∧L,∼d (a −→ b) = L(a) ∧ b and ∼d (a ⊃ b) = M(a) ∧ b.

So, we have found operations that apply to the center of the above
algebraic structures, that is, on operands modalised by means of L
or M .

Since the center has a Boolean behaviour, it follows that when ∧
is applied to modalised arguments (as like as L∧M ), it behaves as a
classical “and”, thus enjoying all the structural rules. Moreover, any
implication of the form Mod1 −→Mod2 works also when we substitute
the Nelson implication −→ with the material implication →. In particu-
lar, we have recovered the two implications, ) and≫ that are used in
Frame 10.20 to deal with functional dependency in incomplete informa-
tion systems, namely, the operation M →L (by means of the �

d−dual
of the ¬d−dual of the relative pseudo-complementation ⊃) and, respec-
tively, the operation L →M (by means the ¬d−dual of the �

d−dual of
the Nelson implication −→). What follows is more interesting.

The implication M −→L (i.e. M →L) is also the �

d−dual of M∧L.
In turn, M∧L is the �

d−dual of −→ (easy exercise). Therefore, M →L

is the �

d

�

d-transformation of −→. Dually we can observe that the
implication L −→M (i.e. L →M ) is also the ¬d−dual of L∧M . In turn,
L∧M is the ¬d−dual of −→ (easy exercise, too). Therefore, L →M is
the ¬d¬d−transformation of −→. These transformations are implicitly
stated in Corollary 10.20.2 of Frame 10.20.

In other words, �

d( �

d(a → b)) = ��(a → b) = a ) b and
¬d(¬d(a→ b)) = ¬¬(a→ b) = a≫ b.

10.22 Solutions

• Exercise 7.1 I(−A ∪B) = −C− (−A ∪B) = −C(A ∩ −B).

• Exercise 7.2 Since a ∧ x ≤ x, we have x ≤ a =⇒ x. From the
Currying property of =⇒, a =⇒ (a =⇒ x) = a ∧ a =⇒ x. Finally,
=⇒ is upper adjoint, hence it preserves meets.

• Exercise 7.3 The hypotheses give: b∧ s′ ≤ s′, c∧ s′ ≤ s′, b∧ s′ ≤ b;
moreover s′ ≤ s so that c ∧ s′ ≤ c ∧ s = b ∧ s ≤ b. It follows
that b ∧ s′ ≤ (b ∧ s′) ∨ (c ∧ s′) ≤ b ∧ s′, from which we obtain
b ∧ s′ = (b ∧ s′) ∨ (c ∧ s′) and hence b ∧ s′ = c ∧ s′.
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• Exercise 7.4
(a) 7.4.16 and 7.4.17 are equivalent. Let X ⊆↑ p and p ∈ J(X).
Then from the definition of J(X), ↑ p ∩ X ∈ Jp. It follows that
X ∈ {Z∩ ↑ p : p ∈ J(Z)} (or, more directly, use the fact that if
X ⊆↑ p then X∩ ↑ p = X). Vice-versa, if X ∈ {↑ p∩Z : p ∈ J(Z)},
then X is an order filter (since a meet of order filters) and X ⊆↑ p.
Now if p ∈ X then p ∈ J(X), trivially. Otherwise, p �∈ Z. Thus
it must exist Z ′ such that p ∈ Z ′ and Z ≡J Z ′. Suppose that
↑ p �≡J X. This means ↑ p �≡J Z∩ ↑ p, which in turn, since p ∈ Z ′

implies ↑ p ⊆ Z ′, is tantamount to Z ′∩ ↑ p �≡J Z∩ ↑ p, which
is impossible because ≡J is a congruence. (A more explicit prove
of the last fact runs as follows. Assume J is induced by ↑ S, for
S an element of the lattice. Then Z ∩ S = Z ′ ∩ S. Assume that
↑ p∩S �= X∩S – so that ↑ p �≡J X. For X ⊆↑ p, we have that there
must be a g such that g ∈↑ p∩S but g /∈ X ∩S. Hence, g /∈ X and,
as a consequence, g /∈ Z (because g ∈↑ p). But g ∈ Z ′, because
↑ p ⊆ Z ′, and g ∈ S. It follows that g ∈ Z ′ ∩ S but f /∈ Z ∩ S, in
contradiction with the fact that Z ≡J Z

′).

(b) 7.4.17 and 7.4.18 are equivalent. Let X ⊆↑ p and p ∈ J(X). If
p ∈ X, then ↑ p ⊆ X and we have X =↑ p, hence X ≡J↑ p, trivially.
If p /∈ X then there exists Y such that p ∈ Y and Y ≡J X. From
p ∈ Y we obtain ↑ p ⊆ Y which gives X ⊆↑ p ⊆ Y . From this,
straightforwardly, ↑ p ≡J X. Vice-versa, if X ⊆↑ p and X ≡J↑ p
then ↑ p ⊆ J(X) so that p ∈ J(X).

• Exercise 7.5
(A) Assume p ∈ ¬X. Clearly ¬X∩X = ∅ = ∅∩X. Hence ¬X ≡JX ∅
from which we obtain ¬X ⊆ JX(∅), so that p ∈ JX(∅). It follows
that ∅ ∈ JX

[p] (because, trivially, ∅ ⊆↑ p). Vice-versa, if ∅ ∈ JX
[p] then

∅ ≡JX↑ p. It follows that ↑ p ∩X = ∅ ∩ X = ∅. Hence ↑ p ⊆ ¬X
and p ∈ ¬X.
(B) From the above result, trivially, because if X is greater than
or equal to the least dense element, then ¬X = ∅, so that for all x,
x /∈ ¬X.

• Exercise 8.1
(i) With a slight modification of Lemma 8.3.4, one can prove that
for a ≡B〈B,B〉 b to hold, the B part must be immaterial. Therefore,
RSB(AS(U))/≡B〈B,B〉

= RSB(AS(U))/≡
J〈P,P 〉 . (ii) a ≡J〈B,B〉 b if
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and only if a ∧ 〈B,B〉 = b ∧ 〈B,B〉, if and only if a1 ∧B = b1 ∧B
and a2 ∧B = b2 ∧B.

• Exercise 8.2
It is not difficult to verify that for all a, b, Ja ∨Bb = Ba−→b. More-
over, 〈G,B〉 =⇒ 〈P, ∅〉 = 〈G,B〉 =⇒∼ 〈G,B〉 =∼∼ �〈G,B〉 =�〈G,B〉 = 〈¬B,¬B〉 = 〈P,P 〉.

• Exercise 9.1
(1.1) Since the operations inside each pair of NΘ(H) are operations
in H, surely each output is a pair of elements of H. (1.2) If a1∧a2 =
0 and b1 ∧ b2 = 0 then a1 ∧ b1 ∧ (a2 ∨ b2) = (a1 ∧ b1 ∧ a2) ∨ (a1 ∧
b1 ∧ b2) = 0 ∧ 0 = 0. Same for ∨. Trivial for ∼. As to −→, from
a1 =⇒ b1 ∧ a1 ≤ b1 and b1 ∧ b2 = 0 we obtain (a1 =⇒ b1) ∧ b2 = 0.
(1.3) The congruence condition a1∨a2Θ1 holds in any resulting pair
because of the definition of a “congruence” in Heyting algebras.

• Exercise 9.2 〈a1, a2〉� 〈b1, b2〉 = 〈(a1 =⇒ b1 ∧ b2 =⇒ a2), a1 ∧ b2〉.
Thus, 〈a1, a2〉� 〈b1, b2〉 ≤ 〈b1, b2〉 only if (a1 =⇒ b1∧ b2 =⇒ a2) ≤
b1 and a1 ∧ b2 ≥ b2. But a1 =⇒ b1 ≥ b1. It follows that we must
have: (a) a1 ≥ b2 and (b) b2 =⇒ a2 ≤ b1.

• Exercise 9.3 Let us only verify some cases.
(a) nrs(÷a) = ÷nrs(a): nrs(∼ ¬ ∼ a) = nrs(〈a2,¬a2〉) = 〈a2, a2〉
= ÷nrs(a).
(b) nrs(a −→ b) = nrs(a) −→ nrs(b):

nrs(a −→ b) = nrs(〈¬a1 ∨ b1, a1 ∧ b2〉)
= 〈¬a1 ∨ ¬b2,¬a1 ∨ b1〉 = 〈¬a1,¬a1〉 ∨ 〈¬b2, b1〉
= 〈¬¬a2, a1〉 ∨ 〈¬b2, b1〉 = 〈¬a2, a1〉 −→ 〈¬b2, b1〉
= nrs(a) −→ nrs(b).

(c) nrs(a ⊃ b) = nrs(a) ⊃ nrs(b); from the previous results or
directly as follows:

nrs(a) ⊃ nrs(b) = 〈¬a2, a1〉 ⊃ 〈¬b2, b1〉
= 〈¬a2 =⇒ ¬b2, (¬a2 =⇒ ¬b2) ∩ (a1 =⇒ b1)〉
= 〈¬¬a2 ∪ ¬b2, (¬¬a2 ∪ ¬b2) ∩ (¬a1 ∪ b1)〉
= 〈a2 ∪ ¬b2, (a2 ∪ ¬b2) ∩ (¬a1 ∪ b1)〉;
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but

(a2 ∪ ¬b2) ∩ (¬a1 ∪ b1) = ((a2 ∪ ¬b2) ∩ ¬a1) ∪ ((a2 ∪ ¬b2) ∩ b1)

= (a2 ∩ ¬a1) ∪ (¬b2 ∩ ¬a1) ∪ (a2 ∩ b1) ∪ (¬b2 ∩ b1)

= (¬b2 ∩ ¬a1) ∪ (a2 ∪ b1).

Thus we have nrs(a) ⊃ nrs(b) = 〈a2∪¬b2, (¬b2∩¬a1)∪ (a2∪b1)〉.

nrs(a ⊃ b) = nrs((¬a ∧ ¬ ∼ b)∨ ∼ ¬ ∼ a ∨ b)
= nrs(〈((−a1 ∩ −b2) ∪ a2 ∪ b1),−a2 ∩ b2〉
= 〈a2 ∪ −b2, (−b2 ∩−a1) ∪ (a2 ∪ b1)〉.

• Exercise 10.1
Let us denote the element 〈1,¬x〉 with g. Define the map p :
P(B) �−→ RSx(B); p(a) = 〈a1, a2 ∨ (a1 ∧ x)〉. It is obvious that
p(a) is the least element b of RSx(B) s.t. b ≥ a in P(B). Indeed,
for any a ∈ P(B), p(a) ∈ RSx(B) because p(a)1 ∧ x = x ∧ p(a)2.
Clearly, for any c ∈ RSx(B), if c ≥ a then c1 ≥ a1, c2 ≥ a2,
c2 ≤ c1, c2 ∧ x = x ∧ c1 ≥ x ∧ a1, so that c2 ≥ a2 ∪ (x ∧ a1). Now
we have to prove that p determines an order isomorphism between
↓ g and RSx(B). Suppose a, b ∈↓ g and a = 〈a1, a2〉 �= 〈b1, b2〉 = b.
If a1 �= b1 then p(a) �= p(b), because for all z, p(z)1 = z1. Suppose
a1 = b1 but a2 �= b2. Then a2∨(a1∧x) = a1∧(a2∨x) �= b1∧(b2∨x) =
b2 ∨ (b1 ∧ x) because a2 ∧ x = b2 ∧ x = 0. Thus p �↓ g is injective.
Moreover, Jg(a) = g =⇒ a =

∨
{b : b∧g ≤ a}. It follows that Jg(a)

is the least b such that 〈b1 ∧ 1, b2 ∧¬x〉 ≤ 〈a1, a2〉. Then, of course,
b1 = a1. Therefore, b2 is the maximal element such that b2 ≤ a1

and b2 ∧ ¬x ≤ a2. Thus b2 ∧ x = a1 ∧ x, because b2 ∧ x ∧ ¬x = 0,
so that (a1 ∧ x) ∨ a2, i.e. p(a)2 is the maximal element y such
that y ∧ ¬x ≤ a2. Hence, Jg(a) = p(a), any a. Since p is, there-
fore, multiplicative, it has a lower adjoint p∗(a) =

∧
{p←(↑ a)}.

We have immediately that p∗(a)1 = a1, because p(a)1 = a1. Then
p∗(a)2 = a2 ∧¬(a1 ∧x) = (a2 ∧¬a1)∨ (a2 ∧¬x). But since a2 ≤ a1

we have a2 ∧ ¬a1 = ∅ so that p∗(a)2 = a2 ∧ ¬x. To sum up:
p∗(a) = 〈a1, a2 ∧ ¬x〉. It follows that for any a, p∗(a) ∈↓ g. Thus
p∗ � p, but we can readily verify that p � p∗ holds, too. Thus
p(p∗(a)) = a = p∗(p(a)) and p is onto. From the properties of
adjunction relations (or, more simply, from the definition of p), p
is order preserving.
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• Exercise 10.2 The answer is “No”. For example, in the semi-
simple Nelson algebra RSB(B) of Subframe 7.4.1, 〈a, 0〉 �
〈b, b〉 = 〈1, b〉. In fact, in semi-simple a Nelson algebra the relative
pseudo-complementation is ⊃.

• Exercise 10.3
(A) (a) kf ({c, g}) = 〈{c}, {b}〉; (b) kf ({c, b, f}) = 〈{c, b}, ∅〉 in
KS(C); (c) kf ({b, b′, 1′}) = 〈{b}, {a, c}〉, (d) kf ({b, a, 1′, c′, b′}) =
〈{b, a}, ∅〉 in X {a}(J(A)).

(B) The required isomorphism γ is given by γ(〈a1, a2〉) =
〈φ(a1), φ(a2)〉; ψ(〈a1, a2〉) = φ(a1) ∪ f(X+ ∩ −φ(a2)), where φ

is the isomorphism defined in (7.2.7). Indeed we can show that
γ(〈a1, a2〉) = 〈φ(a1), φ(a2)〉 = kf (ψ(〈a1, a2〉)).
(C) γ(〈b, a〉) = 〈φ(b), φ(a)〉 = 〈{b}, {a}〉.
ψ(〈{b}, {a}〉 = {b}∪f(−{a}) = {b}∪f({1, c, b}) = {b}∪{1′, c′, b} =
{1′, c′, b}; kf ({1′, c′, b}) = 〈X+ ∩ {1′, c′, b},X+ ∩ −f({1′, c′, b})〉 =
〈{b},X+ ∩ −{1, c, b}〉 = 〈{b},X+ ∩ {a, a′, c′, 1′}〉 = 〈{b}, {a}〉;
kf ({a′, c′, 1′}) = 〈X+ ∩ {a′, c′, 1′},X+ ∩ −f({a′, c′, 1′}〉 = 〈∅,X+ ∩
−{a, c, 1}〉 = 〈∅, {b}〉; γ−1(〈∅, {b}〉 = 〈0, b〉.

• Exercise 10.4 〈a1, a2〉 � 〈0, 0〉 = 〈a1, a2〉 −→ 〈0, 0〉 ∧ 〈1, 1〉 −→
〈¬a2,¬a1〉 = 〈¬a2,¬a2〉 ∧ 〈¬a2,¬a1〉. But from a2 ≤ a1 we have
¬a1 ≤ ¬a2, so that 〈¬a2,¬a2〉 ∧ 〈¬a2,¬a1〉 = 〈¬a2,¬a1〉 =∼
〈a1, a2〉.
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Chapter 11

Modality and Knowledge

“In any act of inference or scientific method we are engaged

about a certain identity, sameness, similarity, likeness, resem-

blance, analogy, equivalence or equality apparent between

two objects”. W. S. Jevons, The Principles of Science. A
Treatise on Logic and Scientific Method, London, 1877,

page 1.

11.1 Foreword

We have seen that the principal concept upon which the notion of a
rough set relies, is “rough equality”. We recall that two subsets A and
B of U are roughly equal in an Approximation Space AS(U/E) if and
only if (lE)(A) = (lE)(B) and (uE)(A) = (uE)(B), indicating that
relative to the given partition of the domain, one is unable to discern
between the concerned sets. The final intention in the present Part is to
look at rough equality syntactically and semantically in the framework
of modal logical systems. Indeed, we shall obtain this syntactical view
passing through the semantic notion of a monadic quasi-Boolean algebra
(mqBa).

This notion links together two mathematical fields which, in turn,
relate to both the logical aspects we need: algebra, which models the
non-modal logical operations, and topology, which models the modal
operators that, in Rough Set Systems, are induced by the approxima-
tion operators. The resulting structure will be a representation of what
we may propose as the modal logical system of Rough Sets.

363
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As for the first part of this picture – the non-modal logical opera-
tions – in Part II we have seen that in Rough Set Systems roughness
induces operations that are slightly but definitely different from the
Boolean operations which lead to structures varying from Boolean
Algebras to Post Algebras of order three passing through three-valued
�Lukasiewicz Algebras (or Chain Based Lattices of order three). In the
present context roughness will lead to the notion of a “quasi-Boolean
algebra”.

As for the second part, we have already seen that two modal opera-
tors L and M can be defined that, in a precise sense, embed in Rough
Set Systems the features of the lower and, respectively, the upper
approximation.

The operators L and M exhibit well-defined topological properties.
These properties together with quasi-Boolean operations will lead us
to the notion of a “monadic quasi-Boolean algebra”.

Before entering the technical details of this construction, we shall
discuss why a modal perspective has a perspicuous meaning in Percep-
tion Systems. Then we shall analyse the specific properties of modalities
in Rough Set Systems. Indeed, in what follows we shall explain:

• What does a modality mean in the present context.

• What kind of modalities are we dealing with.

• The topological interpretation of upper and lower approxima-
tions.

• The practical effect of this interpretation.

• The modal interpretation of upper and lower approximations.

• The philosophical implications of the modal interpretation.

• How these modalities are inherited by Rough Set Systems.

• What kind of logical system do we obtain by interpreting Rough
Set Systems from a modal point of view.

• The syntactical properties of this system.
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11.2 Modalities and Assertions

The term “modality” comes from the Latin word “modus” that means
“manner” or “way”. So, by this term we intend any operator which adds
information about the way a sentence has to be intended. Typically,
such a way may:

• Modulate the “force” of a sentence (its is possible that . . . , it is
necessary that . . . , it is impossible that . . . , it is contingent that
. . . ) – in this way we have the so-called “Alethic modal logics”,
or “modal logics” tout court.

• Specify the “time” a sentence is asserted about (always in the
past, always in the future, sometime in the past, sometime in the
future) – in this way we obtain “tense logics”.

• Concern with the prescription implied by a sentence (it is allowed
that . . . , it is prohibited that . . . ) – in this way we obtain “deontic
logics”.

• Specify the status of a sentence as related to the mental attitude
of a subject (subject S knows that . . . , subject S believes that
. . . ) – this leads to “doxastic logics” (dealing with the opera-
tor “S beliefs that . . . ”) and “epistemic logics” (dealing with the
operator “ S knows that . . . ).

• Specify the status of a sentence within a theory T (it is coherent
in T that . . . , it is provable in T that . . . ) – and we have the
so-called “provability logic”.1

• Specify what happens during or after an action or a computation
A (it is always true during A that .., it is sometimes true during
A that .., it is always true after A that .., it is sometimes true
after A that . . . ). These modalities are taken into account by the
so-called “dynamic logic”.

Depending on the particular features of the modalizer, any kind
of modal logic has different variants. For instance we may think of
situations in which time “branches”, so that we obtain a ramified tens
logic; on the contrary, one may have a linear conception of time. Or one

1T contains Peano Arithmetic, as like as the theories that Gödel’s results refer
to.
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may think that in order to truly assert the possibility of an event, this
event must be true in some conceivable state of affairs; in this case
we speak of Diodorean modalities, which, in turn, may have variants.
These variants will depend on the properties connected to the way a
“state of affair” may be conceived from the others.

One could add to the above list an “approximation modal logic”,
but we think that this addition risks to be of no use since there are
well-known modalities that give approximation operations a sufficiently
meaningful interpretation.

We recall, for instance, that tense operators were already used in
Part I in order to provide an intuitive setting for the discussion about
the adjunction properties of the perception operators. And we recall,
also, that at the end of that discussion we found two Alethic modal
operators. And, of course, these two Alethic operators will be found
at the end of the present analysis, too, but framed in a more general
picture.

Remarks. In what follows we shall develop our analysis of the classi-

cal approximation operators (uE) and (lE), while a similar analysis for

pairs of generalised operators such as 〈RS〉 and [RS] or int and cl will be

sketched in the Frame section of the present Part.

Let us then, for convenience, recall some concepts. Let 〈U,E〉 be an
Indiscernibility Space induced by an Information System; let P be a
property and �P � its range of validity. Then, whenever x ∈ (lE)(�P �)
we say that x necessarily fulfills P , while whenever x ∈ (uE)(�P �) we
say that x possibly fulfills P . In fact, in the first case all the elements
that are indiscernible from x from the point of view of our information
system, enjoy property P , so that we have no example of elements that
enjoy the same basic properties as x but do not enjoy P . In the second
case, we only know that we have examples of elements which enjoy the
same basic properties as x and enjoy P , too.2 Moreover, the rough set
images of lower and upper approximations have a particular status in
Rough Set Systems: they are elements that are reachable by means of
the operator L and, respectively, M . Namely, given �P �, rs((lE)(�P �) =
L(r(�P �) = ��(r(�P �) and rs((uE)(�P �) = M(r(�P �) = ¬¬(r(�P �).

2The adverb “only” is appropriate in a strict sense when x ∈ (uE)(�P �) ∩
−(lE)(�P �), that is, when x belongs to the boundary of �P �.
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This is the reason why we are interested in modal systems as related
to Rough Set Systems.

We shall start analysing modalities in a very general setting, dis-
tilling the modal features of the two approximation operations step by
step.

It will be seen that all the modal operators that are introduced in
the list above, share a common set of modelling techniques, that are
based mostly on the so-called “Kripke models” approach which was
introduced in Frame 4.13 of Part I. These techniques will be further
discussed within this Part, after an introduction aimed at analysing
modal systems at a more abstract level.

We shall see that upper and lower approximations represent “pos-
sibility” and, respectively, “necessity” operators of Diodorean type,
with distinguished properties which make Approximation Spaces into
models for the so-called S5 modal system. These modalities are coher-
ently connected to our conception of an Approximation Space as a
perception system. However, in order to explain this point, we have
to introduce another, less usual but subtle, kind of distinction: that
between “internal modalities” and “external modalities”.

11.3 Internal Modalities vs External

Modalities

Let S be a generic logical model, that is, a structure equipped with
an evaluation function between well formed formulas of some language
and the elements of S. A modality Mod is an internal modality if, for
any formula α, we can evaluate Mod(α) in S without the need of any
other structure S′. On the contrary, Mod is an external modality if, in
order to evaluate Mod(α), we have to contrast the evaluation of α in
S against another structure S′:

α
interpretation

� S

L(α)

deduction

	

interpretation
� S

evaluation

	

Internal modality process
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α
interpretation

� S

L(α)

deduction

	

interpretation
� S′

evaluation

	

External modality process

In particular we shall deeply analyse the case in which S is the Boolean
algebra B(U) of the subsets of a set U , and S′ is a subalgebra of B(U),
namely an Approximation Space AS(U/E), which is an instance of
external modalisation process:

α
interpretation

� B(U)

L(α)

deduction

	

interpretation
� AS(U/E)

evaluation

	

Specific external modality process

Now we explain the difference between these two approaches by devel-
oping in some details the notion of a forcing over an algebraic
structure.

By the term “(propositional) forcing over an algebraic structure” we
denote a relation between elements of a logico-algebraic structure and
formulas of a propositional modal language. If p is an element of the
logico-algebraic structure and α is a formula, we say that “p forces (the
validity) of α” whenever p is part of the domain of validity of α. This
situation tells us, intuitively, that in p there is enough information
in order to state that α is true. We shall denote this relation with
“p |= α”:
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KRIPKE-JOYAL SEMANTICS
Let L be a propositional modal language, possibly without the impli-
cation sign, and let S be a complete ortholattice, a complete Boolean
algebra or a complete Heyting algebra, with lattice order ≤. Let
φ̂ : L �−→ S be a map from atomic sentences of L to elements of
S, called a set-up.
We extend this set-up to an evaluation map φ of the sentences of L,
as follows:

(a) φ(α ∧ α′) = φ(α) ∧ φ(α′).
(b) φ(α ∨ α′) = φ(α) ∨ φ(α′).
(c) φ(¬α) = ¬φ(α), where ¬α denotes the orthocomplement, the
complement or, respectively, the pseudo complement of α.
(d) φ(α =⇒ α′) = φ(α) =⇒ φ(α′), where =⇒ denotes the relative
pseudo-complementation in Heyting or Boolean algebras.

Let us define a forcing relation |= as follows, for p ∈ S, γ, α, α′ ∈ L, γ
atomic:

1. p |= γ iff p ≤ φ̂(γ).
2. p |= α ∧ α′ iff p |= α & p |= α′.
3. p |= α ∨ α′ iff ∃p′, p′′(p′ ∨ p′′ = p & p′ |= α & p′′ |= α′).
4. p |= ¬α iff ∀p′ ≤ p(p′ |= α � p′ ≤ ¬p).

These clauses can be extended to languages with an implication sign
“=⇒”, as follows:

5. p |= α =⇒ α′ iff ∀p′ ≤ p(p′ |= α� p′ |= α′).

PERSISTENCE PROPERTY
We say that S enjoys the Persistence Property if for all p ∈ S, α ∈ L
the following holds:

(Pers). If p |= α then ∀p′ ≤ p, p′ |= α.

Window 11.1. Forcing over algebraic structures

Remarks. The extension to the implication =⇒ (vital for analyzing Heyt-

ing algebras) is not important in Boolean algebras, since in this case the

relative pseudo-complement a =⇒ b reduces to the implication by cases

¬a ∨ b (in ortholattices, implication with nice properties is problematic

because of the lack of distributivity).
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Proposition 11.3.1. (see Bell [1983]) Let S be a complete ortholat-
tice, Heyting algebra or Boolean algebra. Let L be a language possibly
without the implication sign, α any sentence of L and β any sentence
not containing the connective ∨. Let |= be a forcing relation from L to
S based on a setup φ̂, and φ the extension of φ̂. Then,

1. φ(α) = 1 iff 1 |= α.

2. 0 |= α.

3. For all p ∈ S, (i) p |= β iff p ≤ φ(β); (ii) φ(β) =
∨
{p : p |= β}.

4. For all p ∈ S, if S is a Heyting algebra or a Boolean algebra, then
(i) p |= α iff p ≤ φ(α); (ii) φ(α) =

∨
{p : p |= α}.

From Proposition 11.3.1.(4) we have that the Persistence Property
holds in general for Heyting and Boolean algebras; on the contrary,
from Proposition 11.3.1.(3) in ortholattices it holds restricted to for-
mulas without disjunctions. As we are going to see, this distinction
is important for the definition of the forcing clauses for modalised
formulas.

In fact, now we have to decide how to define modalities. Intuitively
we can think of elements of S as information grains so that if p′ ≤ p,
then the granularity of p′ is finer than the granularity of p. Otherwise
stated, p′ is the result of zooming into p or of adding information to p.
Therefore, we may say that p bears sufficient information to claim that
α is necessarily true, if any refinement, any specialization of the infor-
mation in p forces us to consider α valid, anyway. Along this intuition
we shall say that for any p ∈ S, for any α ∈ L, p |= L(α) if and only if
for any p′ ≤ p, p′ |= α.

In this way we obtain an “internal characterisation” of the modal-
ity L. We call it “internal”, because it uses solely the lattice structure
of S and, obviously, the forcing relation.

Of course it is not guaranteed that this definition is meaningful for
any structure. Surely, this is not the case for structures enjoying the
Persistence Property. In such structures the above definition is simply
immaterial since it does not add any value to the information already
provided by the forcing clauses for non modalised formulas, because
from the Persistence Property, if p |= α and p′ ≤ p, then p′ |= α.



11.4 Knowledge and Information 371

Example 11.3.1. Ortholattices and internal forcing
Consider an ortholattice O isomorphic to that of Frame 4.6.1 of Part I:

a

&
& '

'
d e

b c

'
' &

&

0

Let A and B be atomic formulas. Let b |= A, c |= B (so that also 0 |= A and 0 |= B
from Clause 1 of Kripke-Joyal forcing). Therefore, since a = b ∨ c, from Clause 3 of
Kripke-Joyal forcing we obtain a |= A ∨ B. Moreover, d = d ∨ 0 and d = d ∨ d but
neither d �|= A nor d �|= B, so that d �|= A ∨ B, because the forcing clause for the
disjunction of A and B does not apply. For an analogous reason, e �|= A ∨ B.

Therefore, the disjunction A ∨B is not downwards inherited.
Therefore we have:

• a |= A ∨ B.

• d, e ≤ a.

• d �|= A ∨ B, e �|= A ∨B.

It follows that the Persistence Property does not hold in O.

11.4 Knowledge and Information

However, this characterisation of modal forcing is not the only alterna-
tive. In fact, we may also think that the lattice order of S delivers, on
its own, only an “information order”, while we need also a “knowledge
order” to evaluate sentences such as “it is possible that . . . ” or “it is
necessary that . . . ”. In other words, with any element p of S we have to
explicitly associate the elements which we consider as knowledge coun-
terparts of the information embedded in p. Hence, we shall adopt a
“knowledge relation” K ⊆ S×S, so that if 〈x, y〉 ∈ K we shall say that
the information carried by y is part of a conceptual pattern connected
with the information carried by x.

At this point, one could assume that the information-driven lattice
order of S, ≤, and the knowledge-driven relation are unlinked. Under
this hypothesis ≤ has no role in the identification of K(p) = {p′ :
〈p, p′〉 ∈ K}. If this is the case, the information order does not induce
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any knowledge order. But this is a rather odd assumption, according to
our intuition. It is true that we are framing the elements of S into a new
structure which is more perspicuous (conceptual) than the given lattice
structure; however this new point of view cannot forget that the lattice
order represents, anyway, the structuring frame of the information we
are dealing with (and this fact is reflected by the forcing clauses); and
one cannot forget that knowledge is not independent of information. If
we think that this is a reliable picture, then the knowledge order has
to be coherent with the information order, so that given p ∈ S instead
of a set of counterparts we can associate p just with a single element of
the neighborhood K(p), namely its largest element with respect to the
information order (and provide that such an element exists). Following
this assumption, instead of a knowledge relation K we can consider
a knowledge association function k, so that if b = k(p), then we shall
say that b is the representative of the conceptual pattern associated
with p. Therefore, b will be called a “knowledge counterpart” of p. This
function will have the following properties:

1. 0-preservation: k(0) = 0: from Proposition 11.3.1, 0 forces all for-
mulas. Therefore, 0 is a fixed-point for the knowledge association
function.

2. Join-preservation: k(p ∨ p′) = k(p) ∨ k(p′), for any p, p′ ∈ S.
This property reflects a sort of “continuity” that we require for
conceptual pattern formation. Knowledge is built up from infor-
mation in a continuous way. Although this request is avoidable
in other contexts,3 nonetheless it makes sense when speaking of
“knowledge”, in view of the knowledge paradoxes cited in the
Introduction. From this property we derive:

3. Order-preservation: if p ≤ p′, then k(p) ≤ k(p′): if p ≤ p′, then
the information in p is stronger than the information in p′. In
fact, at least for atomic formulas, p forces more formulas than p′.
It follows that the knowledge associated to p is more refined than
the knowledge associated to p′.

We should wonder whether an element belongs to its own conceptual
pattern, or not. If yes, we must have p ≤ k(p). Moreover, what about

3We already know that Concept Lattices do not fulfill this sort of continuity (cf.
Part I).
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k(k(p))? Is k(p) to be a fixed point of k (i.e. k(k(p)) = k(p))? We
answer yes if we think that k(p) is able to “drill down”, in one shot, all
the conceptual counterparts of the conceptual counterparts of p, and
so. Both these properties are acceptable in a number of contexts and
they say that k is a closure operator. However, they are not acceptable
in general. So, we do not add them to the list of the basic properties
1–3 of k.

If the situation is satisfactory with this picture, we consolidate it in
the following definition:

Definition 11.4.1. Let S be a lattice. By a knowledge map, we intend
any join-preserving 0-automorphism on S.

Remarks. This is not the only solution. In the Frame section, the reader

will see examples in which knowledge order and information order are coher-

ent in a different sense.

Using the above approach, we say that p forces L(α) if α is forced by
any information that is more refined than the knowledge counterpart
of p.

Dually, for the modality M we must consider, for any element p of
S, the largest element whose knowledge counterpart contains p. This
information is given by a function g definable from k and that enjoys
the same properties.4

The applications k(S) = {k(p)}p∈S and g(S) = {g(p) p∈S determine
two sublattices S′ and S

′′
of S. Therefore, according to our terminol-

ogy, modalities defined by means of S′ or S
′′

will be called “external
modalities”.

Let L be a propositional modal language and let S be a com-
plete ortholattice, a complete Boolean algebra or a complete Heyting
algebra, with lattice order ≤.
Let |= be a Kripke-Joyal forcing relation over an algebraic structure
S based on a setup φ̂, and let φ be the extension of φ̂.

Window 11.2. Forcing for modalised formulas

4g : S �−→ S; g(p) =
∨
{p′ : ∃p′′(p′′ ∈ k←(↓ p) & p′ ∧ p′′ �= 0)}.
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INTERNAL FORCING
For any p ∈ S and α ∈ L we set the following internal forcing clause
for modalised formulas:

1. p |= L(α) iff ∀p′(p′ ≤ p� p′ |= α).

It can be proved that if we set M(α) = ¬L(¬α), then (see Frame
15.10):

2. p |= M(α) iff ∃p′(p′ ≥ p & p′ |= α).

EXTERNAL FORCING
Let k and g be two join-preserving 0-automorphisms S �−→ S.
For any p ∈ S, α ∈ L, we set the following external forcing clauses for
modalised formulas:

3. p |= Lk(α) iff ∀p′(p′ ≤ k(p)� p′ |= α).
4. p |= Mg(α) iff ∃p′(g(p′) ≥ p & p′ |= α).

FACTS ABOUT EXTERNAL FORCING
5.1. p |= Lk(α) iff k(p) ≤ φ(α); 5.2. φ(Lk(α)) =

∨
{p : k(p) ≤ φ(α)};

6. φ(Mg(α)) =
∨
{p : ∃p′(g(p′) ≥ p & p′ ≤ φ(α)}.

Window 11.2. Continued

Remarks.

• For the proof of Clause 2 of Window 11.2, see the Frame section.

The three facts are left as exercises.

• In Clause 3 of Window 11.2, the proviso “ ∀p′ ≤ k(p) . . . ” is imma-

terial in Boolean and Heyting algebras because of the Persistence

Property. Indeed, k(p) ≤ k(p), therefore if k(p) |= α and p′ ≤ k(p),
then p′ |= α, so that we can more simply state: p |= Lk(α) iff k(p) |=
α. Anyway, we have used it in the defining clause for L for the sake

of generality, because if we extend k to a function from S to a larger

lattice S′, then we have to state the definition as follows: p |= Lk(α)
iff ∀p′ ∈ S(p′ ≤S′ k(p)� p′ |= α), where ≤S′ is the lattice order of

S′. Moreover, Clause 3 better stresses the analogies and differences

with the corresponding internal forcing clause and with some formula

defining approximation operators we have studied in Part I

• If k is a closure operator, then Clause 3 is equivalent to ∀p′(k(p′) ≤
k(p)� p′ |= α).
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Terminology and Notation. Since g is derivable from k, we may

focus our attention to pairs 〈S, k(S)〉, where S is a lattice and where

an operator Lk is definable by means of Clause 3 of Window 11.2 above.

Moreover, from now on the operator Mg (if defined byMg(α) = ¬Lk(¬α))
will be denoted by Mk, for the same reason.

11.5 Knowledge and Modal Systems

Definition 11.5.1. Let S be a lattice and k a join-preserving
0-automorphism on S. Then the pair 〈S, k(S)〉 is called a “k-modal
system”.

Because of Facts 5.1, 5.2 and 6. of Window 12.1, we can work directly
on the elements of S, without mentioning explicitly any formula but
understanding any a ∈ S as an evaluation φ(α) for some formula α.
Therefore, we shall define two operators Lk and Mk on S, as follows:

Definition 11.5.2. Let 〈S, k(S)〉 be a k-modal system. For any a ∈ S,

1. Lk(a) =
∨
{p : k(p) ≤ a}.

2. Mk(a) =
∨
{p : ∃p′(g(p′) ≥ p & p′ ≤ a)}.

Proposition 11.5.1. Let 〈S, k(S)〉 be a k-modal system. Then for all
a ∈ S, Lk(a) ∈ {p : k(p) ≤ a}.

Proof: Suppose k(x) ≤ a and k(x′) ≤ a. Therefore k(x)∨ k(x′) ≤ a. By
additivity of k, k(x) ∨ k(x′) = k(x ∨ x′). Thus k(x ∨ x′) ≤ a. It follows
that if x, x′ ∈ {p : k(p) ≤ a}, then x ∨ x′ ∈ {p : k(p) ≤ a}. Hence
∨
{p : k(p) ≤ a} ∈ {p : k(p) ≤ a}. qed

Remarks. The above result says that Lk(a) = max{p : k(p) ≤ a}. One

should not confuse it with the equation Lk(a) = max{k(p) : k(p) ≤ a}.
This equation is one of the main concerns of this chapter and we shall see

that it holds under very specific constraints.

The external forcing for modalised formulas is a sort of second level
evaluation over a first level evaluation.5

5However, we avoid the tempting term “superevaluation” for historical reasons,
because it has been used in order to denote a rather different modelling technique
(see van Fraassen [1969]).
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The first level acts as an external interface collecting pieces of infor-
mation and framing them into an information structure. The
information structure must subsequently be processed by a second
evaluation step, via the forcing relation determined by the “knowledge
structure” S′ = k(S). This is the reason why we term this technique
“external forcing” (see Figure 11.1).

Figure 11.1: The triplane of external modalities

On the contrary, according to internal forcing, modal evaluations are
processed at a single level using a single structure. In a sense, we
ought to use internal forcing whenever we think that information and
knowledge coincide and we should use external forcing otherwise.

However, as already mentioned, we cannot freely choose one
approach or the other: if k(p) ≤ p internal forcing does not issue
any effect in structures enjoying the Persistence Property, since in this
case φ(α) and φ(Lk(α)) coincide, so that we “must” use, in this case,
external forcing (or some other technique).

As for the main topic, if we recall the intuitive picture of Approx-
imation Spaces given in the Introduction namely the roles played by
foreground and background spaces, then it is immediate to realize that
we must adopt the external forcing approach in order to give Approx-
imation Spaces a suitable modal interpretation. Indeed, a background
space plays the role of a second level structure S′ and a foreground
space plays the role of a first level structure S.

This is not a surprise, at all. Indeed we already know that the two
approximations are determined by contrasting perceptions against a
conceptual interpretation.
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Figure 11.2: Examples of figures which require a conceptual interpre-
tation

The meaning of the figure on the left depends on two main fac-

tors: our intention and how we are accustomed to perceive backgrounds

(white or black).

The perception of the three blocks (actually aequo-dimensional)

depends on how perspective has been historically represented in flat

pictures, which in turn, depends on conceptual patterns (at least in

Western art).

Therefore, the structure 〈B(U),AS(U/E)〉 over a universe U , is to
be qualified as a modal system with external modalities. Since B(U)
is a Boolean algebra (namely the Boolean algebra of ℘(U)) and the
Approximation Space AS(U/E) is a Boolean subalgebra of B(U), in
the present more abstract setting we shall say that an Abstract Approx-
imation System is any pair 〈B,B′〉 such that B is a Boolean algebra
and B′ is a Boolean subalgebra of B, exactly as we have explained in
Part II:

Definition 11.5.3. An Abstract Approximation System is a pair
〈B,B′〉 such that B is a Boolean algebra and B′ is a Boolean subal-
gebra of B and such that the lower approximation (lB′) and the upper
approximation (uB′) are defined, for all a ∈ B, by

1. (lB′)(a) = max{c ∈ B′ : c ≤ a}.

2. (uB′)(a) = min{c ∈ B′ : c ≥ a}.

Now we shall interpret (lB′) and (uB′) as dyadic operations. In this
way we shall see that they are instances of a generalisation of some
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operations that we have already met. Indeed, one can notice that
(lB′) =

∨
{c ∈ B′ : c ∧ 1 ≤ b} and (uB′) =

∧
{c ∈ B′ : c ∨ 0 ≥ b}, so

that one obtains:

Proposition 11.5.2. For any Abstract Approximation System 〈B,B′〉,
for any a ∈ B,

1. (lB′)(a) = 1 B′=⇒a,

2. (uB′)(a) = 0 B′⇐=a,
where, given a pair of lattices 〈S,S′〉, the two operations S′=⇒ and
S′⇐= are defined, for any a, b ∈ S, by:

(i) S′=⇒ : S �−→ S′; a S′=⇒b = max{c ∈ S′ : c ∧ a ≤ b} (generalised
relative pseudo-supplementation); we denote 1 S′=⇒a with (lS′)(a).

(ii) S′⇐= : S �−→ S′; a S′⇐=b = min{c ∈ S′ : c ∨ a ≥ b} (generalised dual
relative pseudo-supplementation); we denote 0 S′⇐=a with (uS′)(a).

So, we have eventually found a generalisation of the operations
exploited in Part II, when Rough Set Systems are interpreted as
Chain Based Lattices. In that case we used the notions of “relative
pseudo-supplementation”, “pseudo-supplementation”, “dual relative
pseudo-supplementation” and “dual pseudo-supplementation”. Indeed,
they are nothing but the above operations in the specific case when S
is a distributive lattice and S′ is the center CT R(S) of S.

Also, through these notions we have reached a sufficient abstract
degree that is packed in the following definition:

Definition 11.5.4. Let S be a bounded lattice and S′ a sublattice of
S such that both 1 S′=⇒p and 0 S′⇐=p are defined for any element p of S.
Then the pair 〈S,S′〉 is called a modal system.6

Example 11.5.1. Generalised pseudo-supplementations and Modalities
Let us consider the following lattice L (incidentally, this is a Post lattice of order
three):

6This is equivalent to the notion proposed in Iturrioz [1990].
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L

1

�� ��
f g

�� �� �� ��
c d e

�� �� �� ��

a b

�� ��

0

Now, imagine that the following sublattice L′ plays the relevant role in modalising
the elements of L (for instance, L′ could be the image of L along the following
knowledge map k: k(f) = k(c) = k(1) = 1, k(d) = k(g) = g, k(b) = k(e) = e,
k(a) = a, k(0) = 0).

L′ 1

��
g

�
�
�
�
� ��

e

�
�
�
�
�

a

��
0

Let us then see, in the modal system 〈L,L′〉, some examples of application of

the generalised relative pseudo supplementation,
L′

=⇒, and of the generalised relative

dual pseudo supplementation,
L′⇐=:

(1) b
L′

=⇒ a :
(1.a) Compute the set {x : x ∧ b ≤ a}, obtaining {0, a, c};
(1.b) Then compute the intersection of this set with L′:

{x : x ∧ b ≤ a}∩ L′ = {o, a};
(1.c) Finally take the maximum in the resulting set:∨

{{x : x ∧ b ≤ a} ∩ L′} =
∨
{o, a} = a.

To sum up, b
L′

=⇒ a = a (while b =⇒ a = c).

Similarly we obtain, for instance, e
L′

=⇒ d = a (while e =⇒ d = f).

However, c
L′

=⇒ d = c =⇒ d = g.

(2) d
L′⇐= f :
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(2.a) Compute the set {x : x ∨ d ≥ f}, obtaining {c, f, 1};
(2.b) Then compute the intersection of this set with L′: {x : x∨d ≥ f}∩L′ = {1};
(2.c) Finally take the infimum in the resulting set:∧

{{x : x ∨ d ≥ f} ∩ L′} =
∧
{1} = 1.

To sum up, d
L′⇐= f = 1 (while d⇐= f = c).

Similarly, we obtain, for instance, e
L′⇐= f = 1 (while e ⇐= f = c).

However, e
L′⇐= d = e ⇐= d = a.

When we consider modalities, we obtain, for instance:
(3) (lL′)(d) =

∨
{x ∈ L′ : x ≤ d} =

∨
{0, a} = a =

∨
{x : x ∧ 1 ≤ d} ∩ L′ =

1
L′

=⇒ d.

Moreover, (lL′)(d) = (lL′)(c) = (lL′)(f) = (lL′)(a).

Therefore, any Approximation System is a modal system. It follows that
the philosophical discussion about internal and external modalities,
together with the evidence that Approximation Systems are systems
with external modalities because we apply a second level knowledge
order to interpret data, makes us focalise on those cases in which the
notions of a k-modal system and a modal system coincide. This happens
when in a k-modal system 〈S, k(S)〉, the element max{p : k(p) ≤ a}
coincides with max{k(p) : k(p) ≤ a}, for any a ∈ S. In fact in this case

Lk(a) = max{x ∈ k(S) : x ≤ a} = 1
k(S)
=⇒ a.

Therefore in what follows we shall mainly be interested in situa-
tions where a modal system may be represented by a k-modal system,
according to the following definition:

Definition 11.5.5. Let 〈S,S′〉 be a modal system and 〈T, k(T)〉 a k-
modal system. We say that 〈T, k(T)〉 is a representation of 〈S,S′〉 if
and only if they are component-wise isomorphic and T is a lattice of
set.

The next paragraphs are devoted to show, in sequence:

1. That certain kinds of modal systems are representable by k-modal
systems such that the knowledge map k is connected with some
relation R

2. That the properties of this relation R induces specific features of
the modal system

3. That if specific properties are enjoyed by the relation R, then
the connected modal system enjoys particular pre-topological or
topological properties
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4. That abstract Approximation System are particular cases of rep-
resentable modal systems

5. That any finite abstract Approximation System 〈B,B′〉 is rep-
resentable by a k-modal system 〈B(U), k(B(U))〉 such that the
knowledge map k is connected with an indiscernibility relation
E. Therefore:

6. That any Approximation Space 〈B(U),AS(U/E)〉 is actually a
k-modal system.

As a matter of fact, to accomplish this job we must analyze the con-
ditions under which the operators Lk and Mk, as defined in Definition
11.5.2, coincide with the operators (lS′) and, respectively, (uS′) as
defined in Definition 11.5.2.

To do this, we have to lower the abstract level and to work with the
more “concrete” notion of a “forcing over a frame”

Anyway, let us remain for a while at the higher abstract level used
as far as now, in order to see, briefly, how internal forcing works and
appreciate its difference with the external variant.

11.5.1 Internal Modalities and Non-Distributivity

In ortholattices we may have elements p and formulas α such that p |= α

while for some p′ < p, p′ �|= α. The lack of the Persistence Property
is connected with the fact that the lattice order in an ortholattice is
not generally represented by its co-prime elements, in the sense that we
cannot recover an ortholattice L from the set J(L) alone. In fact, we
need the Dedekind-MacNeille completion of J(L) ∪M(L) (see Frame
4.14.2 of Part I). In fact, this happens because of the lack of distribu-
tivity in ortholattices. More precisely, in view of the forcing clause for
disjunctions in Kripke-Joyal semantics, one easily sees that if L is an
ortholattice, then we can have elements p, p′ ∈ L and formulas α and
α′ such that p |= α ∨ α′, p′ < p, but p′ �|= α ∨ α′. It is this particular
feature that does not make φ(α) and φ(L(α)) collapse.
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Example 11.5.2. Ortholattices and internal forcing – II
Consider Example 11.3.1. Since d, e �|= A∨B, although a |= A∨B, a �|= L(A∨B) so
that the validity of a formula and the validity of its necessitation do not coincide.
Moreover, 0, b, c |= A∨B (because b = 0∨ b, c = 0∨ c, b |= A, c |= B, 0 |= B, 0 |= A).
Hence, {x : x |= L(A ∨ B)} = {0, b, c}. But we cannot have a least upper bound of
the elements forcing L(A ∨B), since b ∨ c ∨ 0 = a, but a �|= L(A ∨B). [See also the
Frame section].

In particular, if L is a complete quantum assemblage induced by a Prox-
imity Space 〈U,R〉 (see Frame 4.6.1 of Part I), then internal modalities
make sense in L and they are able to model significant phenomena.
In the Frame section the reader will find some remarks about the
exploitation of internal modalities in Quantum Logic.

On the contrary, if we start from an Indiscernibility Space 〈U,E〉
everything changes, as we have seen in Part I: the complete quan-
tum assemblage of 〈U,E〉 turns into a distributive ortholattice, hence a
Boolean algebra, namely the Approximation Space AS(U/E), so that
the Persistence Property holds. Therefore in any Approximation Sys-
tem, internal modalities do not make sense any longer and we have to
apply the external forcing.

Then a question naturally arises: “Why does this (apparently mini-
mal) move from a similarity relation to an equivalence relation induce
such a drastic logical change? ”

A first technical insight was provided in Part I. Here we shall develop
this leitmotiv. At this aim we have to investigate external forcing a little
further.

11.5.2 External Modalities, Distributivity
and Possible Worlds Semantics

If the structure S we are dealing with is a complete Boolean algebra or
a complete Heyting algebra, then distributivity makes the Persistence
Property hold. So, according to our discussion above, in order to deal
with a meaningful notion of “necessity”, we need to identify a suitable
substructure of S, say S′, which, intuitively, represents the way in which
things must be considered in order to decide for their necessity (or
possibility).
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This intuition is made explicit by the forcing clauses between points
and formulas: the so-called Kripke semantics. We underline the dif-
ference: Kripke-Joyal semantic deals with forcing relations between
elements of an algebraic structure and formulas, while Kripke semantic
defines forcing relations between points and formulas. Clearly, between
the two kinds of forcing there are well-established mathematical con-
nections, so that, in a sense, Kripke semantic allows us to look into the
elements of a lattice S and to understand the “concrete” relation that
is represented by the abstract structure S′.7

Kripke semantic is well suited for the modal analysis of concrete
Approximation Spaces, because any such space is a Boolean algebra of
sets of elements belonging to a “concrete” Information System.

So, let us start moving from the level of abstract Approximation Sys-
tems (abstract modal systems), towards their representations in terms
of algebras of subsets of a universe U and relations between the ele-
ments of this universe. However, we aim at keeping a certain degree of
generalisation.

In order not to start too far from the goal of this Chapter, let us
consider, instead of arbitrary structures, modal systems 〈S,S′〉 such
that S is a finite distributive lattice and S′ a distributive sub-lattice of
S – we shall call them “(finite) distributive modal systems”. This is a
significantly general framework which, anyway, is sufficiently close to
our main goal.

11.5.3 Representing Modal Systems

Finite distributive modal systems can be represented, in the sense of
Definition 11.5.5, by exploiting Birkhoff duality augmented with some
additional features.

We now list below the steps leading to the representation of finite
distributive modal systems.

Procedure 11.5.1. Procedure for representing a finite distributive modal
system 〈S,S′〉 as a k-modal system (cf. Introduction Section 5.1 and
Subsection 7.2.1 of Chapter 7)

1. Take the dual space J(S) of S. J(S) is the partially ordered set
of elements of J (S) (set of co-prime elements of S).

7Actually, this is true in a number of cases, but fails to be true in general. See
the Frame section for a brief survey.
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2. Take the lattice F(J(S)) dual of J(S). Clearly F(J(S)) is isomor-
phic to S, via the isomorphism φ defined in (7.2.7) of Section 7.2
of Chapter 7. Moreover, the elements of F(J(S)) are subsets of
J (S).

3. Take the sublattice of F(J(S)) that is isomorphic to S′. Call it
LS′ and let φ′ the restriction S′ �−→ LS′ . Since S′ is embedded in
S, via a 1-1 map e, we have LS′ = φ(e(S′)) = φ′(e−1(S)) (that is,
we obtain LS′ by pulling back e−1 along φ′).

4. Take the preordered set P = 〈T ∗,$〉 where (a) T ∗ =
⋃
{X :

X ∈ LS′}, (b) $ is the specialization preorder induced by LS′

on T ∗, i.e. x $ y if and only if for any X ∈ LS′ , if x ∈ X then
y ∈ X. Notice that: (i) T ∗ = J (S) because 0 S′⇐= 1 must exist
and coincide with 1, so that e(1) = 1 and φ(1) = J (S); (ii)
the domain and the range of $ coincide, since any preorder is
reflexive; (iii) LS′ ⊆ ℘(T ∗); (iv) LS′ = F(P), where P = 〈F ,⊆〉
and F = {↑� X : X ∈ ℘(T ∗)}, and the order filter ↑� X is
induced by the preorder $.

5. Define a map k∗ : F(J(S)) �−→ ℘(T ∗) as k∗(X) =↑� X. Hence,
k∗(X) ∈ F (P), for any X. Moreover, since T ∗ = J (S) and L′

S

is a sublattice of F(J(S)), we have that k∗ is total and onto
F (P) and we can straightforwardly prove that k∗(F(J(S))) =
k∗(φ(S)) = LS′ .

Terminology and Notation. We shall call k∗ a “standard knowledge
map”.

Proposition 11.5.3. Let 〈S,S′〉 be a finite distributive modal system.
Then the pair 〈F(J(S)), k∗(F(J(S)))〉 obtained by the Procedure 11.5.1
above, is a representation of 〈S,S′〉.

Proof. The proof comes directly from the above procedure and is left to
the reader (remember that you have also to prove that k∗ is a knowledge
map). qed

In order to obtain the corresponding map k : S �−→ S′, that is a map k
such that k∗(φ(S)) = φ′(k(S)), we set k(S) = φ′−1(k∗(φ(S))); otherwise
stated, once we have obtained LS′ from S via φ ◦ k∗, we reach S′ by
means of the pre-image of LS′ via φ′. In this way we obtain a k-modal
system at the same abstraction level as S, namely 〈S, k(S)〉.
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Example 11.5.3. Representing modal systems as k-modal systems
Consider the two lattices L and L′ of Example 11.5.1. It is easy to find the dual
space J(L) of co-primes elements, the dual lattice F(J(L)) and the isomorphic copy
LL′ of L′ embedded in F(J(L)), with the isomorphism φ : φ(x) =↑ x, where ↑ refers
to the order of J(L):

J(L)

a b

c e

F(J(L))

{a, b, c, e}

�� ��
{a, b, c} {a, b, e}

�� �� �� ��
{a, c} {a, b} {b, e}

�� �� �� ��

{a} {b}

�� ��

∅

LL′

{a, b, c, e}

��
{a, b, e}

�
�
�
�
� ��

{b, e}

�
�
�
�
�

{a}

��
∅

The isomorphism φ′ between L′ and LL′ is an obvious restriction of φ.
The specialization preorder � induced on T ∗ by the structure of LL′ is given in

the following table and diagram:

a b, e

�
� �

�

c

� a b c e
a 1 0 0 0
b 0 1 0 1
c 1 1 1 1
e 0 1 0 1

In fact, {a, b, c, e} is the only element of LL′ containing c, so that there is no element
X of LL′ such that c ∈ X but a, b, e /∈ X. Therefore, c � a, b, e. The opposite does
not hold (a, b and e belong to {a, b, e}, but c does not belong to {a, b, e}). Moreover,
the element {a} isolates a, while b and e cannot be separated by distinct elements
of LL′ . Let us set P = 〈T ∗,�〉.

First, the reader is invited to verify that F(P) = LL′ .
Second, by means of the preorder � we can compute the standard knowledge

map k∗ : F(J(L)) �−→ LL′ ; k
∗(X) =↑� X, namely:

k∗(∅) = ∅, k∗({a}) = {a}, k∗({b}) = {b, e}, k∗({a, b}) = {a, b, e}, k∗({a, c}) =
{a, b, c, e} and so on (it is sufficient to inspect the rows of the above table).

By applying φ′−1 after φ ◦ k∗ we obtain a function k : L �−→ L′ which gives the
following transformations:

0 �→ 0, a �→ a [in fact (i) φ(a) = {a}, (ii) k∗(φ({a})) = k∗({a}) = {a}, (iii)
φ′−1(k∗(φ(a))) = φ′−1({a}) = a], b �→ e [in fact, (i) φ(b) = {b, e}, (ii) k∗(φ({b})) =
k∗({b, e}) = {b, e}, (iii) φ′−1(k∗(φ(b))) = φ′−1({b, e}) = e], e �→ e, d �→ g, g �→ g,
c �→ 1, f �→ 1, 1 �→ 1, that is another way to represent the knowledge map k of
Example 11.5.1.
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Exercise 11.1.
(a) Consider the following sublattice L′′ of the lattice L depicted in
Example 11.5.1:

g

�
�
�
�
� ��

e

�
�
�
�
�

L′′ a

��
0

(i) Verify that T ∗
� J (L). (ii) Compute, however, the function k :

L �−→ L′′, k = φ ◦ k∗ ◦φ−1, where φ and k∗ are defined as above. Is k a
knowledge map?

(b) Consider the following lattices A and A′:

1

A a

0

1

A′

0

and the function g : A �−→ A′ defined by g(0) = 0, g(a) = 0, g(1) = 1.
(i) Is g a knowledge map? (ii) If yes, does it coincide with the function
k defined as k = φ ◦ k∗ ◦ φ−1?

(c) Consider the following substructures L′′′ and L′′′′ of the lattice L
depicted in Example 11.5.1:
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e
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L′′′ a b
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0

1
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�
L′′′′ d e
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0
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(i) Verify that it is not possible to obtain a standard knowledge map
k∗. (ii) Verify that this is due to the lack of distributivity. (iii) Verify
if it is possible to define a knowledge map k : L �−→ L′′′, though. (iv) Is
there a standard knowledge map definable from L′′′′? (v) Is it possible
to define a knowledge map k : L �−→ L′′′′?

Now, if we apply this procedure to an arbitrary finite abstract
Approximation System 〈B,B′〉, we obtain a “concrete” version of
〈B(U), k∗(B(U))〉, where the specialization preorder is, actually, an
equivalence relation. Therefore it is worthwhile getting a deeper and
wider view of the topic.



Chapter 12

Modalities and Relations

12.1 Modal Systems and Binary Relations

Definition 12.1.1. Let U be a set and R a binary relation on U , a map
f : ℘(U)�−→℘(U) is said to be connected with R if for any X ∈ ℘(U),
f(X) = R(X) = {y ∈ U : ∃x(x ∈ X & 〈x, y〉 ∈ R)}.

In view of this definition we can say that finite distributive modal
systems can be made into isomorphic k-modal systems and can be
represented by k-modal systems where the standard knowledge map k∗

is connected with a preorder relation. In fact, k∗(X) =↑� X =$ (X).
In this way we have, partially, answered the questions:
(A) “Given an abstract modal system 〈S,S′〉 is there a k-modal

system 〈S, k(S)〉 isomorphic to it?”
(B) “Given a k-modal system 〈S, k(S)〉 is there a representation

〈A, k∗(A)〉 such that A is an algebra of subsets of a universe U and
the knowledge map k∗ is connected with a binary relation R on U?”

Now we reverse the starting point:
(A’) “Given an algebra A of subsets of a universe U , a binary rela-

tion R on U , and a function f connected with R, is the pair 〈A, f(A)〉
a k-modal system? If yes, how do its modal properties vary, depending
upon the properties of R?”.

(B’) “Given a k-modal system 〈A, k(A)〉 such that A is an algebra
of subsets of a universe U , is there a relation R on U such that the
knowledge map k is connected with R?”.

In other terms, we want to know (i) what relationships exist between
binary relations and knowledge maps, (ii) what relationships exist

389
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between the properties of a binary relation and the k-modal system
connected with it (if any).

In view of our main topic, Approximation Spaces, we shall solve
limited instances of the above problems, namely when A is a Boolean
algebra of sets.

Therefore, henceforth, if not otherwise stated, the role of A will be
played by the Boolean algebra of sets B(U) = 〈℘(U),∩,∪,−, U, ∅〉 for
some universe U and R will denote a binary relation on U : R ⊆ U×U .

Terminology and Notation. From now on the entities that populate

the elements of an algebra of sets will be called “points” (or “elements”

when they appear in sentences mentioning the set they belong to). The

set of all points will be denoted by means of our familiar notation U (for

“universe of discourse”; indeed, U plays the role of G in Part I. Here

instead of the set of “Gegenstände”, we prefer the more abstract notion

of a “universe”).

Now it is worthwhile recalling some properties of R-neighborhoods,
R( ) i.e. 〈R�〉, from Part I:

Proposition 12.1.1.

1. Given a binary relation R ⊆ U × U , the R-neighborhood R( ) =
〈R�〉 is lower adjoint of [R] with respect to the structure (small
category) 〈℘(U),⊆〉. Hence,

2. R( ) is continuous: R(X) ∪R(Y ) = R(X ∪ Y ),

3. R is normal: R(∅) = ∅,

4. R is isotonic: X ⊆ Y implies R(X) ⊆ R(Y ). Moreover,

5. R is co-discontinuous: R(X ∩ Y ) ⊆ R(X) ∩R(Y ).

Point 2 is a direct consequence of Proposition 1.4.8.(2), because R( ) is
a lower adjoint.

Obviously, the same holds for R�−neighborhoods, i.e. 〈R〉.
In modal contexts, points are usually called possible worlds, infor-

mation states or states of affairs.1 The binary relation R, generally has
the following meaning: if 〈x, x′〉 ∈ R, then x′ is a possible evolution of

1Or, sometimes, “knowledge states” (of a subject). However we use the term
“knowledge” to denote a particular pattern of information states.
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the state x (or x′ represents a world that is conceivable from x, or an
enrichment of the information in x). Usually if 〈x, x′〉 ∈ R, then we say
that x′ is accessible from x. However, we shall see interpretations which
are more perspicuous for our context. We shall develop this point later
on. By now, consider that R induces a particular geometry on the set
of points U , which is well represented by the space 〈U,R〉, which, for
historical reasons, is called a Kripke frame (cf. Frame 4.13 of Part I).2

We hardly can deny, at this point, that at the end of this story we
shall find not a generic relation R, but our familiar equivalence relation
E. This is obvious. However it is better we reach that point gradually,
passing through some preliminary steps illustrating how an equivalence
relation is only one among a number of other interesting possibilities.

From the definitions of R-neighborhoods and R�-neighborhoods,
it is clear that for any X ⊆ U there is only one X ′ such that X ′ =
R(X) and only one X ′′ such that X ′′ = R�(X). So we can define two
functions from ℘(U), qua carrier of B(U), to ℘(U), qua range of the
relation R, as follows:

• f : ℘(U)�−→℘(U), f(X) = R(X) – that is, f is connected with R.

• h : ℘(U)�−→℘(U), g(X) = R�(X) – that is, h is connected with
R�.

Now, the first three points of Proposition 12.1.1 tell us that any func-
tion connected with a binary relation is a knowledge map. In view of
this fact, we can restate the definitions of the modal operators Lk and
Mk using R−neighborhoods to provide these operators with a specific
meaning based on the properties exhibited by the binary relation which
is connected with k.3

Lemma 12.1.1. Let 〈B(U), k(B(U))〉 be a k-modal system such that
k is connected with some relation R ⊆ U ×U , i.e. k(B(U)) = {R(X) :

2For some specific purposes, also ternary relations are used (cf. [Allwein-Dunn
1993] as to Kripke models for Linear Logic or [Anderson et al. 1992] as to Kripke
models for Relevant Logics). In these cases, the sentence “〈x, y, z〉 ∈ R” usually
reads: “the information in x combined with the information in y, outputs the infor-
mation in z”. That is, z = x◦y where “◦” is a monoidal operator. Also, this approach
is connected with Phase Semantics for Linear Logic (see [Abrusci 1991]).

3If we do not assume S = B(U), but we let S be a sublattice of B(U), then
f : S �−→ ℘(U) and it may happen, for some X ⊆ U , that R(X) /∈ S or R�(X) /∈ S
(we recall that S is the carrier of S). So these definitions must be generalised. For
instance, we can adopt (i) f(X) =

⋃
{X′ ∈ S : X ′ ⊆ R(X)} and (ii) g(X) =

⋃
{X ′ ∈

S : X ′ ⊆ R�(X)}.
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X ⊆ U}, and g is connected with R�. Then, ∀X,Y,Z ∈ B(U),∀x, y ∈
U :

1. Lk(X) =
⋃
{Z : R(Z) ⊆ X}.

2. x ∈ Lk(X) iff ∀y ∈ U(〈x, y〉 ∈ R� y ∈ X).

3. Mk(X) =
⋃
{{x} : R({x}) ∩X �= ∅}.

4. x ∈Mk(X) iff ∃y ∈ U(〈x, y〉 ∈ R & y ∈ X).

Proof. (1): From Definition 11.5.2.(1), by substituting X for a, Z for p
and ⊆ for ≤.
(2): From (1) we obtain Lk(X) =

⋃
{Z : ∀x ∈ Z,∀y ∈ U(〈x, y〉 ∈ R�

y ∈ X)}. Since we have no restrictions on Z, we get Lk(X) = {x : ∀y ∈
U(〈x, y〉 ∈ R� y ∈ X)}. Hence the thesis. (3) and (4): From Definition
11.5.2.(2), Mk(X) =

⋃
{Z : ∃Z ′(g(Z ′) ⊇ Z & Z ′ ⊆ X)} =

⋃
{Z :

∃Z ′(R�(Z ′) ⊇ Z & Z ′ ⊆ X)}. But if Z ′ ⊆ X, from monotonicity
R�(Z ′) ⊆ R�(X), so that if Z ⊆ R�(Z ′) then Z ⊆ R�(X). Therefore,
Mk(X) =

⋃
{z : ∀z(z ∈ Z � ∃x(〈z, x〉 ∈ R & x ∈ X))}. But the

condition on z is equivalent to ∀z(z ∈ Z � R(z) ∩X �= ∅). Henceforth
we have: Mk(X) =

⋃
{{x} : R({x}) ∩ X �= ∅} and x ∈ Mk(X) iff

∃y ∈ U(〈x, y〉 ∈ U & y ∈ X).4 qed

Corollary 12.1.1. ∀X ∈ B(U):
(a) Lk(X) = [R](X); (b) Mk(X) = 〈R〉(X) (where [R] and 〈R〉 are the
operators defined in Section 2.1.2 of Chapter 2).

Definition 12.1.2. Given a modal system connected with a relation R,
the modal operators Lk and Mk will be denoted by LR and MR or [R]
and, respectively, 〈R〉. Moreover, the modal operators will be denoted
by L and M when any reference to the relation R is understood or
irrelevant.

4In the general case, that is, when we deal with a system 〈S, k(S)〉 where S is
a sublattice of B(U), not every subset of U is an element of S. Hence we can have
elements Z such that although R(Z) is included in X, Z is not an element of S.
Therefore points 1 and 3 of the Lemma are valid only with the additional constraint:⋃
{Z : Z ∈ S & . . . }, and so on. Moreover, in this case points 2 and 4 are valid only

from left to right:
(2’) If x ∈ Lk(X) then ∀y ∈ U(〈x, y〉 ∈ R� y ∈ X).
(4’) If x ∈ Mk(X) then ∃y ∈ U(〈x, y〉 ∈ R & y ∈ X).
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From the results of Part I and Corollary 12.1.1 we have:

Corollary 12.1.2. For any X ∈ B(U),−MR(−X) = LR(X);
−LR(−X) = MR(X).

Now we translate the forcing clauses over algebraic structures into forc-
ing clauses over Kripke frames. Since we are dealing with modal systems
where the algebraic operations form a Boolean algebra (of sets) B(U),
we shall use Proposition 11.3.1.(4) in order to understand what hap-
pens to forcing at a point level. Therefore, given an evaluation φ from a
modal language L to B(U), the translation will be lead by the obvious
idea that a point x forces a formula α, in symbols x � α if x belongs
to an element X of B(U) that algebraically forces α, X � α.

The translation will be accomplished through two Lemmata: the
first will link the algebraic operations induced by an evaluation φ with
the forcing relation � between points and formulas, the second Lemma
will use this link to list the forcing clauses of � for any logical constants.
The result will be summed up in Window 12.1.

Terminology and Notation. From now on, by L we shall intend a

propositional language with Boolean constants ∧,∨,¬,→, 0, 1 and modal

constants L and M , while α,α′, β, β′ and so on, will vary over well-

formed formulas. Notice that results on the material implication → will

be sometimes omitted since it fulfills the definition α→ β =def ¬α ∨ β.

Lemma 12.1.2. Let 〈U,R〉 be a Kripke frame, φ an evaluation map
from a modal language L to a k-modal system 〈B(U), k(B(U))〉, and let
k be connected with R. For any element x ∈ U , for any formula α ∈ L,
let us set: x � α if and only if there is an element X of B(U) such that
x ∈ X and X � α. Then, for any formula α,α′ ∈ L, for all x ∈ U :

1. x � α ∧ α′ iff x ∈ φ(α) ∩ φ(α′).

2. x � α ∨ α′ iff x ∈ φ(α) ∪ φ(α′).

3. x � ¬α iff x ∈ −φ(α).

4. x � α→ α′ iff x ∈ −φ(α) ∪ φ(α′).

5. x � LR(α) iff x ∈ {x′ : ∀y ∈ U(〈x′, y〉 ∈ R� y ∈ φ(α)}.

6. x �MR(α) iff x ∈ {x′ : ∃y ∈ U(〈x′, y〉 ∈ R & y ∈ φ(α)}.
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Proof.
(A) Boolean part of the proof:

by means of Proposition 11.3.1.(4) and the definition of function φ

(see Window 11.1), we obtain the result straightforwardly. The detailed
proof is left to the reader. (Hints: first, notice that the thesis’ assump-
tion reads x � α iff x ∈

⋃
{X : X ⊆ φ(α)}, so that from Proposition

11.3.1.(4), after substituting ⊆ for ≤ we obtain x � α iff x ∈ φ(α).
Therefore, for instance, from the definition of function φ in Window
11.1, x � α ∧ α′ iff x ∈ φ(α ∧ α′), iff x ∈ φ(α) ∩ φ(α′), and so on. The
reader must only pay attention that in B(U) “¬” is the set-theoretical
complementation).

(B) Modal part of the proof (actually a corollary of Lemma 12.1.1):
x � LR(α) iff x ∈

⋃
{X : k(X) � α}, iff x ∈

⋃
{X : k(X) ⊆ φ(α)},

iff x ∈
⋃
{{X : R(X) ⊆ φ(α)}, iff ∀y ∈ U(〈x, y〉 ∈ R � y ∈ φ(α));

x � MR(α) iff x ∈
⋃
{X : ∃X ′(g(X ′) ⊇ X & X ′ ⊆ φ(α)}, iff x ∈

⋃
{X : ∃X ′(R�(X ′) ⊇ X & X ′ ⊆ φ(α)}, iff ∃y ∈ U(〈x, y〉 ∈ R & y ∈

φ(α)). qed

Proposition 12.1.2. Under the assumptions of Lemma 12.1.2, for any
formula α,α′ ∈ L, for all x ∈ U :

1. x � α ∧ α′ iff x � α & x � α′.

2. x � α ∨ α′ iff x � α or x � α′.

3. x � ¬α iff x �� α.

4. x � α→ α′ iff x � ¬α or x � α′.

5. x � LR(α) iff ∀y ∈ U(〈x, y〉 ∈ R� y � α).

6. x �MR(α) iff ∃y ∈ U(〈x, y〉 ∈ R & y � α).

7. x � LR(α) iff x � ¬MR(¬α); x �MR(α) iff x � ¬LR(¬α).

Proof. From the preceding Lemma: (1) x � α ∧ α′ iff x ∈ φ(α) ∩ φ(α′),
iff x ∈ φ(α) and x ∈ φ(α′), iff for some X,X ′ ∈ B(U) such that X � α
and X ′ � α′, x ∈ X and x ∈ X ′, iff x � α & x � α′. (2) dually,
by substituting ∪ for ∩ and ∨ for ∧. (3) x � ¬α iff x ∈ −φ(α), iff
x /∈ φ(α), iff x �� α. (4) straightforward from (2) and (3) and the fact
that φ(α → α′) = −φ(α) ∪ φ(α′). (5) x � L(α) iff ∀y ∈ U(〈x, y〉 ∈
R � y ∈ φ(α)), iff ∀y ∈ U(〈x, y〉 ∈ R � y � α). (6) x � MR(α) iff
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∃y ∈ U(〈x, y〉 ∈ R & y ∈ φ(α)), iff ∃y ∈ U(〈x, y〉 ∈ R & y � α). (7)
The proof is left to the reader [Hints: use the first order equivalences
∀ ≡ ¬∃¬ and ¬∀¬ ≡ ∃]. qed

Therefore, thanks to the above Proposition 12.1.2, we have the following
set of forcing clauses over Kripke frames:

Let L be a propositional modal language and let 〈U,R〉 be a Kripke
frame.
Let φ be a set-up: φ̂ : L �−→ ℘(U).
For any point x ∈ U , for any formula α,α′ ∈ L we set the following
forcing clauses:

1. x � α iff x ∈ φ̂(α), for α atomic.
2. x � α ∧ α′ iff x � α & x � α′.
3. x � α ∨ α′ iff x � α or x � α′.
4. x � ¬α iff x �� α.
5. x � LR(α) iff ∀y ∈ U(〈x, y〉 ∈ R� y � α).
6. x �MR(α) iff ∃y ∈ U(〈x, y〉 ∈ R & y � α).

The triple 〈U,R,�〉, with the above clauses for �, is called a Kripke
model for modal logic

Window 12.1. Forcing over Kripke frames

From Lemmata 12.1.1 and 12.1.2, it follows that once again we can con-
fine our attention to the Boolean set-theoretical operations and define
two monadic operators LR and MR ranging on subsets of U . In this
way, we avoid any reference to the language L and its formulae.

Otherwise stated, we can associate to Kripke models Boolean alge-
bras of sets with additional monadic operators:

Definition 12.1.3. Let B(U) be the Boolean algebra of ℘(U). Let R ⊆
U ×U . Then 〈B(U), LR,MR〉 is called a Pre-monadic Boolean algebra
of sets.

Strictly speaking, in order to denote a Pre-monadic Boolean algebra
of sets, 〈B(U), LR〉 (or 〈B(U),MR〉) suffices, since the two monadic
operators are dual via the Boolean complementation.

Remarks. Pay attention that in general LR (i.e. [R]) and MR (i.e. 〈R〉)
are not adjoint to each other, because [R] is adjoint to 〈R�〉 and [R�] is

adjoint to 〈R〉
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From the above results we have the following statement, linking alge-
braic forcing and point-based forcing:

Proposition 12.1.3. Let 〈B(U), LR〉 be a Pre-monadic Boolean alge-
bra of the powerset of a set U . Let φ be an evaluation map from a modal
language L to B(U). Then for any formula α ∈ L, φ(α) = U if and
only if ∀x ∈ U, x � α.

It is not difficult to derive the abstract (i.e. algebraic) properties of the
modal operators, thanks to the following results:

Proposition 12.1.4. Let 〈B(U), LR〉 be a Pre-monadic Boolean alge-
bra of sets. Then, for any X,Y ⊆ U ,

L1. LR(U) = U .

L2. LR(X ∩ Y ) = LR(X) ∩ LR(Y ).

L3. LR(X ∪ Y ) ⊇ LR(X) ∪ LR(Y ).

L4. if X ⊆ Y then LR(X) ⊆ LR(Y ).

M1. MR(∅) = ∅.

M2. MR(X ∩ Y ) ⊆MR(X) ∩MR(Y ).

M3. MR(X ∪ Y ) = MR(X) ∪MR(Y ).

M4. if X ⊆ Y then MR(X) ⊆MR(Y ).

Proof. In view of Corollary 12.1.1, from the adjunction relations MR� �
LR and MR � LR� that can be derived from Proposition 2.1.1 of Chap-
ter 2. qed

Therefore, in a more abstract framework we shall set:

Definition 12.1.4. Let A be a Boolean algebra. Let L be a monadic
operator on A such that:

1. L(1) = 1 – L-conormality.

2. L(a ∧ b) = L(a) ∧ L(b) – L-cocontinuity (or multiplicativity).

3. L(a) ∨ L(b) ≤ L(a ∨ b) – L-discontinuity.

Then the structure 〈A, L〉 is called a Pre-monadic Boolean algebra.
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Proposition 12.1.5. Let 〈A, L〉 be a Pre-monadic Boolean algebra.
Let M be a monadic operator defined, for any a ∈ A, by M(a) =
¬L(¬a). Then for any a, b ∈ A:

1. M(0) = 0 – M -normality.

2. M(a ∨ b) = M(a) ∨M(b) – M -continuity (or additivity).

3. M(a ∧ b) ≤M(a) ∧M(b) – M -codiscontinuity.

4. a ≤ b implies M(a) ≤M(b) and L(a) ≤ L(b) – monotonicity.

Thus L and M are comodal and, respectively, modal operators in the
sense of Definition 1.4.3 of Chapter 1.

Definition 12.1.5. Given a Pre-monadic Boolean algebra 〈A, L〉, set
L(A) = {L(a) : a ∈ A}, ∧L = ∧ � L(A) and ∨L = ∨ � L(A). Then we
set L(A) = 〈L(A),∧L,∨L, 1, 0〉.

Now we can notice that the sublattice L(A) is not necessarily distribu-
tive.

At this point we add stronger properties to the monadic operator,
obtaining the notion of a Monadic Boolean algebra, that will be of
central importance in our story:

Definition 12.1.6. Let 〈A, L〉 be a Pre-monadic Boolean algebra such
that:

1. L(a ∨ L(b)) = L(a) ∨ L(b) – monadic L-continuity.

2. L(a) ∧ a = L(a) – L-deflationary property.

Then 〈A, L〉 is called a Monadic Boolean algebra.

We have to notice that Property 12.1.4.(2) is now derivable from the
others.

Let us list other important properties of Monadic Boolean algebras:

Proposition 12.1.6. Let 〈A, L〉 be a Monadic Boolean algebra. Define,
for all a ∈ A M(a) as −L(−a). Then:

1. M(a ∧M(b)) = M(a) ∧M(b) – monadic M cocontinuity.

2. a ∧M(a) = a – M -inflationary property.
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Example 12.1.1. Modal operators induced by R-neighborhoods
As an example of a structure equipped with a binary relation consider the set

U = {x, y, z} and the following relation R ⊆ U × U :

R x y z

x 0 1 1
y 0 1 0
z 0 0 1

Just by inspecting rows, we can see examples of some definitions and properties:

(a) R-neighborhoods: R(x) = {y, z}, R({x, z}) = {y, z}.
(b) Monotonicity: {y} ⊆ {x, y}. R({y}) = {y} ⊆ {y, z} = R({x, y}).
(c) Continuity: R({x}) ∪R({y}) = {y, z} ∪ {y} = {y, z} = R({x, y}) = R({x} ∪

{y}).
(d) 0-preservation: R(∅) = ∅ (on the contrary, R(U) = {y, z} �= U).

Let us now compute some applications of the operators LR and MR:

(*)LR({x, z}) = {z}. Indeed: R({z}) = {z} ⊆ {x, z}, R({y}) = {y} � {x, z},
R({x}) = {y, z} � {x, z}.

Notice that thanks to the continuity property, we obtain the result by gathering
all the element of U whose R-neighborhoods are included in {y, z}. A better way in
order to compute LR is based on the duality LR(X) = −MR(−X), any X.

(**) MR({x}) = ∅, MR({z}) = {x, z},−MR(−{x, z}) = −MR({y}) = −{x, y} =
LR({x, z}).
Now, consider the following set-up φ̂(A) = {x, z}, φ̂(B) = {z, y}, φ̂(C) = {x, y}.
From it we have:

- z, y |= B, z, x |= A, x, y |= C;

- z |= A ∧B (because z ∈ φ̂(A) and z ∈ φ̂(B)):
- y |= LR(C) (because R({y}) = {y} and {y} ⊆ {x, y} = φ̂(C). Otherwise

stated, all the elements R-accessible from y force C. In this case the only element
accessible from y is y itself). On the contrary, although x |= C, x �|= LR(C) because
R(x) = {y, z} � φ̂(C) (indeed, z �|= C).

- x |= MR(A ∧B) (because 〈x, z〉 ∈ R and z ∈ φ(A) ∩ φ(B), so that z |= A ∧B.
Otherwise stated, there is an element R-accessible from x that forces A ∧B).

Exercise 12.1. Let 〈U, R〉 be a relational structure. Without using the adjunction
properties of R(), but pure logical deductions, prove isotonicity, normality, continuity
and co-discontinuity of R().

Example 12.1.2. Example of a Boolean algebra with operator which is
not pre-monadic
Consider the Boolean algebra A depicted below in the diagram on the left. Let us
suppose that we are given the following table for an operator L0. Then on the right
we draw the resulting substructure L0 = L(A), embedded in A:
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The structure 〈A, L0〉 is a not a pre-monadic Boolean algebra. In fact, from the
above table we can easily verify that L0(1) = 1 and that the monotonicity property
holds. But L−co-continuity fails: L0(d ∧ e) = 0 �= b = d ∧ f = L0(d) ∧ L0(e).

Exercise 12.2. (a) Compute M0(x) for any ∈ A. (b) Find an example of M−codiscon-
tinuity. (c) Can you find a Boolean algebra of sets A′ such that LR(A′) isomorphic
to L0 for some binary relation R ⊆ A×A?

Example 12.1.3. Example of a pre-monadic Boolean algebra
Consider the Boolean algebra A depicted in Example 12.1.2. Let us suppose that
we are given the following table for an operator L1. Then on the right we draw the
resulting substructure L1 = L(A):

x L1(x)

0 0
a 0
b a
c 0
d d
e c
f a
1 1

L1 1
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It is evident that L1 is not distributive. By easy inspection we see that L is monotonic
(for instance, b ≤ f and L(b) = L(f) = a).

Let us verify a case of L−cocontinuity and a case of L−discontinuity:
L1(d ∧ f) = L1(b) = a = d ∧ a = L1(d) ∧ L1(f).
L1(d ∨ f) = L1(1) = 1 ≥ d ∨ a = L1(d) ∨ L1(f).
However, 〈A, L1〉 is not a Monadic Boolean algebra.
- Let us verify that L(x) ≤ x is not uniformly valid: L1(b) = a � b.
- Let us verify that the equality L(x∨L(y)) = L(x)∨L(y) is not uniformly valid:

L1(a ∨ L1(f)) = L1(a ∨ a) = L1(a) = 0 �= a = 0 ∨ a = L1(a) ∨ L1(f).

Exercise 12.3.
(a) Compute the table of M1.
(b) Find a case of M−co-discontinuity.
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(c) Find a case which invalidates the monadic M−co-continuity Property.
(d) Find a Boolean algebra of sets A′ with top element a set U , such that A′ is
isomorphic to the above Boolean algebra A and a relation R ⊆ U × U such that
LR(A′) is isomorphic to L1.
(e) Classify R according to the following properties: reflexivity, transitivity, symme-
try.

Example 12.1.4. Example of a pre-monadic operator L inducing a sub-
lattice
Consider the Boolean algebra A of Example 12.1.2. Consider the following table for
L (on the right we draw the resulting sublattice L2 = L(A)):

x L2(x)

0 0
a 0
b b
c c
d b
e c
f f
1 1

L2 1
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Exercise 12.4.
(a) Verify that 〈A, L2〉 is a Pre-monadic Boolean algebra.
(b) Verify that L2 is distributive by computing a representation 〈LA, k∗(LA)〉 of
〈A,L2〉 by means of the Representation Procedure.
(c) Classify the specialization preorder that you find during the Representation Pro-
cedure according to the following properties: reflexivity, transitivity, symmetry.
(d) Is 〈A, L2〉 a Monadic Boolean algebra?

Example 12.1.5. Example of a monadic Boolean algebra
Consider on the Boolean algebra A the following monadic operator Lm on A (as
usual, on the right we draw the resulting substructure Lm = L(A), which is a
sublattice, in this case):

x Lm(x)

0 0
a 0
b 0
c 0
d b
e e
f b
1 1

Lm

1

�
� �

�
b e

�
� �

�

0

The system 〈A, Lm〉 is a monadic Boolean algebra. It is worth noticing that Lm is
a Boolean algebra, too.
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Exercise 12.5.
(a) Compute a representation 〈LA, k∗(LA)〉 of 〈A,Lm〉 by means of the Represen-
tation Procedure.
(b) Classify the specialization preorder that you find during the Representation Pro-
cedure according to the following properties: reflexivity, transitivity, symmetry.

If 〈A, LR〉 happens to be a Monadic Boolean algebra, where the oper-
ator LR is induced by a binary relation R, we can ask if R enjoys some
particular property. The answer is positive and will be given at the end
of the present Section. Indeed we are going to see that the notions of a
Pre-monadic Boolean algebra and Monadic Boolean algebra are the two
extremes of a path that leads from operators associated with arbitrarily
generic relations to operators connected with relations exhibiting the
strongest properties, passing through intermediate cases.

For the reader’s convenience, let us resume and align the definitions
introduced so far in Table 12.1.

Table 12.1: Modalities, relations, forcing and algebraic structures
Operator Definition Context
a � Lk(α) ∀a′(a′ ≤ k(a)� a′ � α) Forcing on algebraic

structures
X ⊆ φ(Lk(α)) ∀X ′(X ′ ⊆ R(X)� X ′ ⊆

φ(α))
Lattice of sets with
k(X) = R(X)

x � LR(α) ∀y ∈ U(〈x, y〉 ∈ R� y �
α)

Forcing on Kripke
frames

LR(X) {x : ∀y ∈ U(〈x, y〉 ∈
R� y ∈ X)}

Pre Monadic Boolean
algebras of sets

a �Mk(α) ∃a′(g(a′) ≥ a & a′ � α) Forcing on algebraic
structures

X ⊆ φ(Mk(α)) ∃X ′(R�(X ′) ⊇
X & X ′ ⊆ φ(α))

Lattice of sets with
g(X) = R�(X)

x �MR(α) ∃y ∈ U(〈x, y〉 ∈ R & y �
α)

Forcing on Kripke
frames

MR(X) {x : ∃y ∈ U(〈x, y〉 ∈
R & y ∈ X)}

Pre Monadic Boolean
algebras of sets

We know that, LR(X) and MR(X) equal {x : R(x) ⊆ X} and,
respectively, {x : R(x) ∩X �= ∅}. Hence, using the distributivity prop-
erty of R-neighborhoods, we obtain LR(X) =

⋃
{Z : R(Z) ⊆ X} and,



402 12 Modalities and Relations

dually, MR(X) =
⋂
{−Z : X ⊆ −R(Z)} (the duality of the two equa-

tions will be proved in Frame 15.1). Therefore, if we compare the last
definitions with the definitions of lower and, respectively, upper approx-
imations, by substituting [x]R for R(x), for R an equivalence relation,
we observe that they differ slightly but in a significant way. We under-
line this difference by adding in Table 12.2 the intermediate definition
of two hypothetical operators L∗R and M∗

R.
We can notice that the passage from LR and MR to L∗R and, respec-
tively, M∗

R surely requires some extra features, as well as that from L∗R
and M∗

R to (lR) and, respectively, (uR). In what follows we analyse
these extra features and their contexts of application.

Table 12.2: Three degrees of R−modal operators
R-modal Necessity Possibility
operators
normal LR(X) =

⋃
{Z : R(Z)

⊆ X}
MR(X) =

⋂
{−Z :

X ⊆ −R(Z)}
with extra
features

L∗R(X) =
⋃
{R(Z) :

R(Z) ⊆ X}
M∗

R(X) =
⋂
{R�(Z) :

X ⊆ R�(Z)}
approximation (lR)(X) =

⋃
{[x]R : [x]R

⊆ X}
(uR)(X) =

⋂
{[x]R :

X ⊆ [x]R}

12.2 From Loosely Structured Spaces
to Structured Spaces: A Variety
of Modal Properties

Now we analyse the properties of the monadic operators LR and MR

as dependent on the properties of the relation R.
If we do not impose any particular property on R, we cannot predict

interesting uniform relationships between X and LR(X) – or MR(X)
– nor special nice behaviours of the two modal operators.

What we can predict derives just from the fact that our operators
happen to be Diodorean modalities, as one can see from Proposition
12.1.2.(6) above (viz it is valid to assert the possibility of α at point x
if there is some state of affair accessible from x in which α is true).
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What we can say without adding extra hypothesis is listed in Propo-
sition 12.1.4, and we denote this basic set of properties with the symbol
K (after the fact that they characterise a modal system usually denoted
by this symbol). A modal logic with at least the same properties as K,
is called normal.

Indeed a relation between elements of U without any specific con-
straints, reflects, in a obvious sense, empirical and variable relationships
between pieces of information. But we can impose particular constraints
toR according to theoretical intuitions or, as it happens for Approxima-
tion Spaces, according to a particular organisation of data. In Table 12.3
one can see how do specific constraints transform the properties of the
modelled logic.

Table 12.3: Relational properties and modal properties

Properties of R and derived Modelled modal Label
set-theoretical characteristics properties on top of K
Reflexivity
∀x(〈x, x〉 ∈ R) L(α) → α T
X ⊆ R(X) α→M(α)
Seriality
∀x,∃y(〈x, y〉 ∈ R) L(α) →M(α) D
X �= ∅ implies R(X) �= ∅
Symmetricity
∀x, y(〈x, y〉 ∈ R� α→ L(M(α))
〈y, x〉 ∈ R);Y ⊆ R(X) iff M(L(α)) → α B
X ⊆ R(Y );R(X) = R�(X)
Transitivity
∀x, y, z(〈x, y〉 ∈ R & 〈y, z〉 L(α) → L(L(α))
∈ R� 〈x, z〉 ∈ R); R(R(X)) M(M(α)) →M(α) 4
⊆ R(X);Y ⊆ R(X)
implies R(Y ) ⊆ R(X)
Euclidean property
∀x, y, z(〈x, y〉 ∈ R & 〈x, z〉 M(L(α)) → L(α)
∈ R� 〈y, z〉 ∈ R);Y ⊆ R(X) M(α) → L(M(α)) 5
implies R(X) ⊆ R(Y )
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Example 12.2.1. Property D implies L(α) → M(α); L(α) −→ α
implies T
Suppose that (a) there is at least an element y such that xRy and (b) for all y′,
if xRy′ then y′ |= α. Then �L(α)� ⊆ �M(α)�, because there is at least an element
accessible form x that forces A, so that x forces �M(α)� whenever x forces �L(α)�.
So, L(α) → M(α). But if we drop hypothesis (a), that is, if we drop seriality, hypoth-
esis (b) is vacuously true if there is no element accessible form x that forces α. In
this case x |= �L(α)� but x �|= α. Hence either �M(α)� ⊂ �L(α)� or �M(α)� and
�L(α)� are incomparable. Example:

R x y
x 0 1
y 0 0

y |= A

x

R

�

y |=′ A

x |=′ A

R

�

According to the model with forcing |=, �M(A)� = {x}, while �L(A)� = {y} (since

no element is accessible from y). Since R is not reflexive (i.e. x � x), this prove that

if �L(α)� ≤ �Lα� then T (reflexivity) must hold.

Example 12.2.2. Example of a non symmetric relation where α →
L(M(α)) fails
According to the model with forcing |=′ of Example 12.2.1, we have:

|=′ A |=′ M(A) |=′ L(M(A))

y yes (set-up) no (no accessible element
forces A)

yes (void precondition
“∀y′(yRy′ . . .))”

x yes (set-up) yes (because y |=′ A) no (because y �|=′ M(a))

Therefore, �A� = {x, y} and �L(M(A))� = {y}.
Next we verify that adding seriality to a non-symmetric relation does not change

the effect:

R′ x y z

x 0 1 1
y 0 1 0
z 0 0 1

z y |= A

��
�
�
�

R′

�
�
�
�

R′



x |= A

Therefore in this model we have �A� = {x, y}, �M(A)� = {x, y} and �L(M(A))� =

{y}.
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Example 12.2.3. �L(A)� −→ �LL(A)� implies property 4
Consider the relation

R′′ x y z

x 1 1 0
y 1 1 1
z 0 1 1

R′′ is reflexive and symmetric. However it is not transitive. We leave to the reader

the verification of instances of property B. We show that property 4 does not hold.

Let z, y |= A. Then �L(A)� = {z} but �LL(A)� = ∅, because 〈z, y〉 ∈ R′′ and

y �|= L(A).

Exercise 12.6.
(a) Prove that property T (reflexivity) implies L(α) → α.
(b) Prove that property 4 (transitivity) implies L(α) → L(L(α)).

Some combinations of the above properties are equivalent. For instance,
KT5, KTB4, KDB4, KDB5 are equivalent (the reader should try and
prove it – in Frame 15.2 it is possible to find some hints).

Indeed, the following result is folklore in Modal Logic:

Proposition 12.2.1. For any relation R ⊆ U × U , the following are
all the possible distinct combinations of the properties D, T, B, 4, 5,
on top of K:
K, KD, KT, KB, K4, K5, KDB, KD4, KD5, K45, KTB, KT4,
KD45, KB4, KT5.

Some of the above combinations have received a particular atten-
tion in modal logic literature, because of their philosophical and/or
mathematical importance.5 As such they are known by means of tra-
ditional names: KT = T, KTB = B, KT4 = S4, KT5 = S5 A number

5Nonetheless, in many cases, properties are adopted not because they reflect
specific intuitions about the way states of affairs are organised, but only in view of
the formal properties that the modelled Logical system must feature. For instance,
if L has to model a doxastic operator (i.e. “subject S believes that . . . ”), then
since an opinion is not guaranteed to be true, the reflexive property cannot be
adopted, otherwise we should have L(A) → A, that is read “If subject S believes A,
then A is true”. On the contrary, this property is required for modelling epistemic
operators, such as “Subject S knows that ..”, according to the classical definition
advocating that “knowledge” is true and justified belief (cf. [Halpern, Moses 1985]
for a technical overview. Cf. [Ellis 76] for a philosophical introduction and Box
“Logico-philosophical remarks. 1” of Section 9.2 of Chapter 9).
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of coarser/finer relationships between these systems are well-known in
logical literature, as well as some intermediate systems. We address the
reader to the References, for details.

However, the reader has surely noticed that, as a matter of fact,
the properties of system S4 have been analysed in Part I, because
any IQRS is a Kripke frame with reflexive and transitive accessibility
relation.6 Here we want to mention that Proximity Spaces are models
for system B: in fact, Proximity Spaces are relational spaces 〈U,R〉
where R is reflexive and symmetric.7 And it is clear now, that S5 is
about to be adopted as the referent modal logic for Approximation
Spaces, because S5 models are characterised by reflexive, transitive
and symmetric relations. Actually, this will be the starting point for
understanding the modal features of Rough Set Systems.

For the time being, we shall investigate some further formal proper-
ties of relational spaces connected with pre-topological and topological
spaces.

12.3 Relations, Pre-Topologies and Topologies

Our interest in studying relations is the fact that the main concern in
Rough Set Analysis is the way “perceptions” are connected in order to
form conceptually meaningful patterns. Henceforth, a single element of
the domain of concern is not interesting by its own (“an sich”), but
to the extent it is connected (or not) with other elements. Otherwise
stated, we are interested in the geometry that relations impose on a

6More precisely, since IQRS are finite, hence they fulfill the so-called McKin-
sey condition ∀x∃y(〈x,y〉 ∈ R & ∀z(〈y, z〉 ∈ R � y = z)), they are Kripke
frames adequate to the system S4.1, which is obtained by adding to S4 the axiom
L(M(a)) → M(L(A)).

7The symbol “B” is after the name of L. E. J. Brouwer, founder of the Intu-
itionistic school (cf. Introduction). This traditional use is justified by a translation
of the intuitionistic negation ¬ as L ∼ (here “∼” is the Boolean complementation
of the modal system). In accordance with it, the intuitionistically admissible low
a =⇒ ¬¬a becomes a → L(∼L(∼a)), i.e. a → L(M(a)) (which characterises modal
operators modelled by symmetric relations) which is the characteristic axiom of the
“Brouwerian” system. On the contrary, the intuitionistically invalid law ¬¬a =⇒ a
becomes L(M(a)) → a, which is invalidated by models with relations fulfilling TB.
However, the “real” modal system connected with Intuitionistic Logic is S4 + Grz,
where Grz is Segerberg’s translation L(L(p → L(p)) → p) → p of the principle
introduced by Andrzej Grzegorczyk for a modal interpretation of Heyting’s logic
(cf. [Grzegorczyk 1967] and [Segerberg 1971]).
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universe of possible perceptions/stimulations (or “empirical results”,
“uninterpreted data” and the like).

Of course, we shall not remain at the abstraction level of a point-
like geometry for ever. We are more interested in the general, universal
properties of a “perception system”. Therefore the abstraction level
shall be lifted to a sort of pointless geometry. This more abstract
level was discussed at the end of the Introduction and constituted
already the playground of our algebraic analysis of Rough Set Sys-
tems. Here we are going to reach the same abstraction level for the
modal interpretation.

Indeed, in case of the algebraic analysis, first we started noticing
that a concrete Approximation Space on U is induced by a subalgebra
of the Boolean algebra B(U), so that it was possible to define the
notion of an abstract Approximation System as a pair 〈B,B′〉 made up
of a Boolean subalgebra B′ of a given Boolean algebra B. Secondly, B
was transformed into a new algebraic structure (namely, a Rough Set
System), embedding the transformation of the elements of B induced
by B′. In the modal analysis, we shall follow the same strategy: the
only difference is that we shall transform B into a modal system in
accordance with the way its elements are modalised by means of an
operator LB′ (or MB′), which is the abstract companion of LR (of
MR).

This analysis will not mention the population of the elements of
B. However, we shall again reach this abstraction level starting from
the intuitive ground of a “concrete” analysis of universes populated by
“real” elements connected by “operating” relations.

12.4 Pre-Topological Spaces

We shall approach topological spaces from more general structures,
called “pre-topological spaces”. This choice is suggested by the fact
that pre-topological spaces are widely (although often implicitly) used
in Rough Set Theory in order to generalise the basic concepts of lower
and upper approximation (as one is able to verify in the Frame section).
Intuitively, whereas in Kripke frames any single world is linked with a
set of accessible world, in pre-topologies any point x is associated with
a family of sets, its neighborhood system n(x). Each element of n(x)
may be intended as representing a collection of points that are relevant
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to x. Or, from another perspective, n(x) is the family of observable
phenomena connected with x. Therefore a formula α is necessarily valid
at point x if the set of points validating α is relevant to x, i.e. x � L(α)
iff �α� ∈ n(x). This is the basic intuition leading to the definition of a
core map (see below).

Clearly if �¬α� ∈ n(x), then α is unnecessary at point x. So, since
α is possible at point x if it is not unnecessary at x, we can define
x � M(α) iff �¬α� /∈ n(x). This leads to the notion of a vicinity map
dual of the core map.

Obviously, a vicinity map (a core map) is a generalisation of the
usual notion of a closure map (interior map). The main difference,
intuitively, is that vicinity maps reflect the notion of “x is close to a set
X” under one or more possible points of view, while closure operators
account for single cumulative points of view, by gluing all the elements
of n(x) through the imposition for n(x) to be a filter.

Moreover, neighborhoods of points of U are not required to be sub-
sets of U . Indeed, in a more general setting, we can think of situations
in which n(x) ⊆ ℘(U ′) for x ∈ U and U ′ �= U . Hence U ′ acts as a
“medium”, via a map f : U �−→ U ′, in the evaluation of a closeness
relation between a point x from U and another point y of U . In fact, a
certain closeness criterion might not be applicable directly on the ele-
ments of U , but can be applicable on their f -images in U ′ (for instance
we cannot understand if professor Smith’s and professor Brown’s scien-
tific interests are similar by looking at the list of the pure names of the
academic body of San Jose University. However, this is possible when
we map Smith and Brown onto the set of academic disciplines).

In this case x will belong to the core of a subset X ⊆ U if f(X)
belongs to n(x). Below we illustrate this more general situation:

In Figure 12.1, x is related to y,w,w′, from the point of view of a
criterion α acting between their f -images on U ′. On the other hand, x
is related to z, q, z′, z′′ through a different criterion β. The collection of
these aggregations forms n(x). It follows that x belongs to the core of the
set {y,w,w′, x} and of the set {z, q, z′, z′′} because both f({y,w,w′, x})
and f({z, q, z′, z′′}) belong to n(x). Moreover, x belongs, for instance,
to the vicinity of {y, z} because −{y, z} does not belong to n(x). Notice
that f(x) does not belong to f→({z, q, z′, z′′}).

So, let U,U ′ be sets. We can consider that the elements of U are con-
nected (classified, characterised, labeled, perceived, . . . ) by means of
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Figure 12.1: Observations and pre-topological spaces

the relationships that occur between the elements of another set U ′.
Therefore, according to this connection, any element p of U can be
associated with one ore more elements of ℘(U ′), obtaining thereby a
family of subsets of U ′, denoted by n(p), so that each N ∈ n(p), links
p with other elements of U under a specific respect.

We summarize these intuitions in the following definitions:

Definition 12.4.1. Let U,U ′ be sets, X ′ ⊆ U ′, u ∈ U and f : U �−→ U ′

a total function. Then,

1. A neighborhood map is a total function n : U �−→ ℘(℘(U ′)), such
that f(x) = f(y) implies n(x) = n(y).

2. • n(u) is called a concrete neighborhood family of u.

• If N ∈ n(u), then N is called a concrete neighborhood of u.

• If u′ ∈ N ∈ n(u), then u′ is called a concrete neighbor of u.

• The family N (U) = {n(x) : x ∈ U} is called a concrete
neighborhood system.

• The pair 〈U,N (U)〉 is called a concrete neighborhood space.

3. If G(X ′) = {x : X ′ ∈ n(x)}, then G is called the core map
induced by N (U).

4. If F (X ′) = −G(−X ′) = {x : −X ′ /∈ n(x)}, then F is called the
vicinity map induced by N (U).
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5. The set F (X ′) ∩ −G(X ′) = {x : ∀N ∈ n(x)(N ∩ X ′ �= ∅ �=
N ∩ −X ′)} is called the boundary of X ′, denoted by ∂(X ′).

We can notice the reason why the notion of a core map (a vicinity
map) is a generalisation of the notion of an interior (closure) operator.
Indeed, if U = U and f is the identity map then, as we shall prove
in Lemma 12.4.1, x ∈ G(X) if and only if X ∈ n(x), that is, if and
only if X itself is a neighborhood of x, whereas in topological spaces
x ∈ I(X) (the interior of X) if and only if there is a neighborhood of x
included in X. We shall see that the two definitions coincide just under
some specific assumptions. Under the same assumptions we shall prove
that x ∈ F (X) if and only if X has no void intersection with all of the
neighborhoods of x.

Example 12.4.1. A simple neighborhood system
Let U = {x, y, z, w}, U ′ = {a, b, c}, f(x) = a, f(y) = b, f(z) = f(w) = c. Consider
the following neighborhood system: n(x) = {{a, c}, {a, b, c}}, n(y) = {{b}, {a, b}},
n(z) = n(w) = {{c}}. Then, G({b}) = {u : {b} ∈ n(u)} = {y}, G({b, c}) = ∅, and so
on;
F ({b}) = {u : −{b} /∈ n(u)} = {u : {a, c} /∈ n(u)} = {y, z, w}, F ({a, b}) = {x, y}
and so on.
Notice that neither G nor F are isotonic.

Terminology and Notation. Given p ∈ U , from now on the image

n(p) of p along n will be usually denoted by Np.

Consider the following conditions on N (U), for any x ∈ U , A,N,N ′ ⊆
U ′:

1. U ′ ∈ Nx.
0. ∅ /∈ Nx.
Id. if x ∈ G(A) then f→(G(A)) ∈ Nx.
N1. f(x) ∈ N , for all N ∈ Nx.
N2. if N ∈ Nx and N ⊆ N ′, then N ′ ∈ Nx.
N3. if N,N ′ ∈ Nx, then N ∩N ′ ∈ Nx.
N4. there is an N �= ∅ such that Nx =↑⊆ N .

Because function f occurs in the definitions of Id and N1, the two
conditions will be said to be “point-dependent”.

From a practical point of view the distinction between U and U ′

is relevant (think, for instance, of the different attributes in relational
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databases). However, on a theoretical side, dealing with a single uni-
verse is more comfortable and does not cause any information short-
coming, because instead of x′ ∈ N ∈ Nx we can consider the inverse
image f←({x}) (this is what we usually do in relational databases
when we move from a set of attribute-values V to the entities identified
by V ).

Definition 12.4.2. If U = U ′ and f is the identity map, then the pair
〈U,N (U)〉 is called a Fréchet space.

Remarks. From now on we shall deal only with Fréchet spaces. In a

Fréchet space, N1 reads: “x ∈ N , for all N ∈ Nx” and Id turns into

“∀A ⊆ U,∀x ∈ G(A), G(A) ∈ Nx”. A neighborhood system N (U) will

be denoted also by N if the set U is understood.

Example 12.4.2. A simple Fréchet space
Consider the universe U = {a, b, c}. The following is a Fréchet neighborhood system:
Na = {{b}, {a, c}, U},Nb = {{a, b}, {b, c}, U},Nc = {{b}, {a, c}, {a, b}, U}. Clearly
in N (U) 0 and 1 hold. On the contrary, N1 does not hold because, for instance,
a /∈ {b} ∈ n(a).

The above conditions carry particular properties that reflect on the
operators G and F :

Lemma 12.4.1. Let N (U) be a neighborhood system. Then, for any
X,Y ⊆ U , x ∈ U :

(G1) x ∈ G(X) iff X ∈ Nx; (G2) Gx =def {X : x ∈ G(X)} = Nx.

Condition Equivalent Equivalent
properties of G properties of F

1 G(U) = U F (∅) = ∅
0 G(∅) = ∅ F (U) = U

Id G(X) ⊆ G(G(X)) F (F (X)) ⊆ F (X)
N1 G(X) ⊆ X X ⊆ F (X)

N2
X ⊆ Y � G(X) ⊆ G(Y )
G(X ∩ Y ) ⊆ G(X) ∩G(Y )

X ⊆ Y � F (X) ⊆ F (Y )
F (X ∪ Y ) ⊇ F (X) ∪ F (Y )

N3 G(X ∩ Y ) ⊇ G(X) ∩G(Y ) F (X ∪ Y ) ⊆ F (X) ∪ F (Y )
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Proof. (G2) {X : x ∈ G(X)} = {X : x ∈ {y : X ∈ Ny}} = {X : X ∈
Nx} = Nx. From (G2) we straightforwardly obtain (G1). (1) Trivial.
(0) Trivial. (Id) Assume Id holds and x ∈ G(X). From Id, G(X) ∈ Nx,
so from (G1) x ∈ G(G(X)). Conversely, if G(X) ⊆ G(G(X)) then from
(G1) X ∈ Nx implies G(X) ∈ Nx, so that Id holds. (N1) Assume
N1 holds. If x ∈ G(X), from (G1) X ∈ Nx and from N1 x ∈ X.
Vice-versa, assume G(X) ⊆ X. But G(X) = {x : X ∈ Nx}; thus from
(G1) x ∈ G(X), hence x ∈ X. Henceforth x ∈ X. Thus N1 holds.
(N2) (a) Assume N2. If X ∈ Nx and X ⊆ Y then Y ∈ Nx. From
(G1) we deduce that if x ∈ G(X) and X ⊆ Y then x ∈ G(Y ), that
is, G(X) ⊆ G(Y ). Conversely, if X ⊆ Y implies G(X) ⊆ G(Y ), then
from (G1) X ∈ Nx implies Y ∈ Nx. Hence N2 holds. (b) Assume
N2. If x ∈ G(X ∩ Y ) then X ∩ Y ∈ Nx. But X ∩ Y ⊆ X and X ∩
Y ⊆ Y . Thus, from N2 X ∈ Nx and Y ∈ Nx, so that x ∈ G(X)
and x ∈ G(Y ). Conversely, assume G(X ∩ Y ) ⊆ G(X) ∩ G(Y ), X ∈
Nx and X ⊆ Y . Then G(X ∩ Y ) = G(X) ⊆ G(X) ∩ G(Y ). This
means that G(X) ⊆ G(Y ), from (G1), so that Y ∈ Nx, and N2 holds.
(N3) Assume N3 and x ∈ G(X) ∩ G(Y ). From (G1) we obtain X ∈
Nx and Y ∈ Nx. Therefore in view of N3, X ∩ Y ∈ Nx, and again
from (G1) x ∈ G(X ∩ Y ). Henceforth, G(X) ∩ G(Y ) ⊆ G(X ∩ Y ).
Conversely, assume X ∈ Nx, Y ∈ Nx and G(X) ∩G(Y ) ⊆ G(X ∩ Y ).
From the latter assumption if x ∈ G(X) ∩ G(Y ) then x ∈ G(X ∩ Y ).
Therefore, from (G1), if X and Y ∈ Nx, then X ∩ Y ∈ Nx, so that
N3 holds. As to F we obtain the results by duality. Here we prove
only (i) G(X ∩ Y ) ⊆ G(X) ∩ G(Y ) � F (X) ∪ F (Y ) ⊆ F (X ∪ Y )
and (ii) G(X) ⊆ G(G(X)) � F (F (X)) ⊆ F (X). (i) Indeed G(X ∩
Y ) ⊆ G(X)∩G(Y ) iff −(G(X)∩G(Y )) ⊆ −G(X ∩Y ), iff −(G(−X)∩
G(−Y )) ⊆ −G(−X ∩−Y ), iff −G(−X) ∪−G(−Y )) ⊆ −G− (X ∪ Y ),
iff F (X) ∪ F (Y ) ⊆ F (X ∪ Y ). (ii) G(X) ⊆ G(G(X)) iff −G(G(X)) ⊆
−G(X) iff −G(G(−X)) ⊆ −G(−X) iff −G − (−G(−X)) ⊆ −G(−X)
iff F (F (X)) ⊆ F (X). qed

8

Remarks. One should not confuse G1 with the principle “X ∈ Nx �
x ∈ X” which holds if N (U) fulfills N1.

8Note that if U �= U ′, then property 1 turns into G(U ′) = U , property 0 turns
into F (U ′) = U and, finally, N1 turns into G(X) ⊆ f←(X) [in the proof of N1
substitute “f(x) ∈ X” for “x ∈ X” and “G(X) ⊆ f←(X)” for “G(X) ⊆ X”, and
notice that f(X) ∈ X iff x ∈ f←(X)].
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Example 12.4.3. A neighborhood system satisfying Id but not N1,
whose core map G is not idempotent
Consider the universe U = {a, b, c} and the neighborhood system N (U) given by:

x a b c

Nx {{a}, {a, b}, {b, c}, U} {{b}, {a, b}, {b, c}, U} {{a, b}, U}

Let us check that in this neighborhood system property Id is satisfied. Indeed the
core map G is given by:

x ∅ {a} {b} {c} {a, b} {a, c} {b, c} U

G(x) ∅ {a} {b} ∅ U ∅ {a, b} U

It is easy to verify that if X ∈ Nx then G(X) ∈ Nx (for instance G({b, c}) = {a, b}
because {b, c} belongs to Na and Nb. However G(G({b, c})) = U �= G({b, c}). Also,
we can observe that N (U) does not fulfill N1 ({a, b} ∈ Nc but c /∈ {a, b}). Actually,
had N (U) fulfilled N1, G would have been idempotent (cf. Proposition 12.4.5 and
Example 12.4.5 below).

Example 12.4.4. A neighborhood system satisfying Id but not N1,
whose core map G is idempotent

Consider the universe U = {a, b, c} and the neighborhood system N (U) given by:

x a b c

Nx {{a, b}, {a, c}, U} {{a}, {b}, {a, b}, {b, c}, U} {{c}, {a, c}, U}

In this neighborhood system property Id is satisfied, but N1 is not ({a} ∈ Nb but
b /∈ {a}). However the core map G is idempotent:

x ∅ {a} {b} {c} {a, b} {a, c} {b, c} U

G(x) ∅ {b} {b} {c} {a, b} {a, c} {b} U

Example 12.4.5. A neighborhood system which satisfies 0, 1, N1 and
Id
Consider the universe U = {a, b, c} and the neighborhood system N (U) given by:

x a b c

Nx {{a, b}, {a, c}, U} {{b}, {a, b}, {b, c}, U} {{c}, {a, c}, U}

It is easy to check that in this neighborhood system 0, 1, N1 and Id hold. The core
map is idempotent:

x ∅ {a} {b} {c} {a, b} {a, c} {b, c} U

G(x) ∅ ∅ {b} {c} {a, b} {a, c} {b} U

However, N2 does not hold. In fact, Nc is not an order filter (for instance, {c} ∈
Nc, {c} ⊆ {b, c} but {b, c} /∈ Nc).
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The following is a very simple but useful statement:

Proposition 12.4.1. Let N (U) be a neighborhood system. Then N (U)
fulfills Id if and only if for all X ⊆ U and x ∈ U , X ∈ Nx implies
G(X) ∈ Nx.

Proof. Suppose Id holds and X ∈ Nx. From G1 x ∈ G(X). Hence from
Id, G(X) must belong to Nx, too. Conversely, suppose X ∈ Nx �
G(X) ∈ Nx and x ∈ G(X). Again from G1, X ∈ Nx. Therefore
G(X) ∈ Nx. We conclude that Id holds. qed

Notice that if N2 is assumed, then N3 is equivalent to the following
weaker condition:

if X ∈ Nx and Y ∈ Nx then ∃Z ∈ Nx such that Z ⊆ X ∩ Y (N3−)

Proposition 12.4.2. Assume N2 and N3−. Then for any X,Y ⊆ U ,
G(X ∩ Y ) ⊇ G(X) ∩G(Y ).

Proof. If x ∈ G(X) ∩G(Y ), then x ∈ G(X) and x ∈ G(Y ). Thus, from
G1 X,Y ∈ Nx. Therefore from N3− there exists Z ⊆ X ∩Y such that
Z ∈ Nx. But from N2, X ∩ Y must belong to Nx, too. qed

(Notice that in literature even weaker conditions are studied, such as
the so-called “connection condition”: if X ∈ Nx and Y ∈ Nx then
X ∩ Y �= ∅. An example of the use of this condition in modal logic can
be found in Frame 15.13.3).

Moreover, if N2 is assumed then Id is equivalent to the following
weaker condition:

if N ∈ Nx, then ∃N ′ ∈ Nx such that for any y ∈ N ′, N ∈ Ny (τ)

This is the familiar topological property usually explained by the sen-
tence: “if X is a neighborhood of a point x, then it is also a neighbor-
hood of all those points that are sufficiently close to x”.

Proposition 12.4.3. Let N (U) be a neighborhood system. Then if
N (U) satisfies Id, it satisfies (τ), too.

Proof. Suppose p ∈ U and N ∈ Np. From Id, G(N) belongs to Np.
But from definition of G(N), N ∈ Nx for any x ∈ G(N). Hence
(τ) holds. qed
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The converse implication does not hold without N2, as is illustrated in
Example 12.4.6 below.

Proposition 12.4.4. Let N (U) be a neighborhood system satisfying
N2. Then an element Nx of N (U) satisfies (τ) if and only if it satisfies
Id.

Proof. From Proposition 12.4.3, Id implies (τ). Conversely, let (τ) hold.
Consider any neighbor N ∈ Nx. From (τ) there is an element N ′ ∈ Nx

such that for any y ∈ N ′, N ∈ Ny. Clearly the set G(N) = {z : N ∈
Nz} includes N ′ because it is the largest collection of elements z such
that N ∈ Nz. Therefore in view of N2, G(N) ∈ Nx. qed

Condition Id alone does not guarantee the idempotence of G and F

(for a counterexample see Example 12.4.3). We have idempotence by
adding N1 to Id:

Proposition 12.4.5. Let N (U) be a neighborhood system satisfying
N1 and Id. Then for any X ⊆ U , G(G(X)) = G(X) and F (F (X)) =
F (X).

Proof. Immediate from Lemma 12.4.1. qed

Proposition 12.4.6. If G is idempotent, then Id holds.

Proof. Suppose Id does not hold. Then ∃x ∈ U,X ⊆ U such that
X ∈ Nx but G(X) /∈ Nx. Therefore, x /∈ G(G(X)), although x ∈ G(X).
It follows that G(G(X)) �= G(X). qed

Example 12.4.6. A neighborhood system fulfilling N1 and (τ) but nei-
ther Id nor N2
Let U = {a, b, c, d}. LetN (U) be given byNa = {{a}, {a, b, c}, U},Nb = {{b}, {a, b},
{a, b, c}, U}, and Nc = {{c}, U}. Then property (τ ) is fulfilled by all the elements
of N (U). However, {a, b, c} ∈ Na but G({a, b, c}) = {a, b} /∈ Na. Hence Na does
not satisfy Id. According to Corollary 12.4.1 it follows that in the pre-topological
space induced by N (U) the operator G is not idempotent (G({a, b, c}) = {a, b}, but
G({a, b}) = {b}).

Notice that N2 does not hold in N (U) (for instance {a, b} ⊇ {a} ∈ Na, but
{a, b} /∈ Na). Henceforth (τ ) plus N1 does not imply N2.

In general idempotence of G does not imply N1. However we have,

Corollary 12.4.1. In the presence of N1, G is idempotent if and only
if Id holds.
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In general G and F are not required to be idempotent. Intuitively,
the lack of idempotence reflects a sort of flowing situation in which
boundaries are not fixed once for ever, so that by adding the boundary
∂(X) to a subset X by means of the vicinity map F we do not gain a
stable situation, since a new boundary could appear.
Now we list various combinations of the above properties that shall
dealt with in this section. The right column displays their main rela-
tional characteristics, that will be proved in this Chapter:9

If all the
elements of
N (U) satisfy

N (U) is said

to be of type

Elements of
N (U)

Relational

properties

0, 1 NS

0, Id NId

0,1,N1 N1

0,1,N1, Id N1Id

0,1,N2 NB proper order
filter w. r. t. ⊆

Induced by
systems of
serial relations

0, 1, N1, N2 N2 proper order
filter w. r. t. ⊆

Induced by
systems of
reflexive
relations

0, 1, N1, N2, τ N2Id proper order
filter w. r. t. ⊆

Induced by
systems of
preorders

0, 1, N1, N2,
N3

N3 proper filter

0, 1,N1, N2,
N3, τ

N3Id proper filter

0, 1, N1, N2,
N3, N4

N4 principal filter Induced by
single reflexive
relations

0, 1, N1, N2,
N3,N4, τ

N4Id principal filter Induced by
single
preorders

9In some papers these properties are denoted by different names (for instance in
[Stadler & Stadler 2001] we have: 1 = K0, N1 = K2, N2 = K1, N3 = K3). Also, the
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Remarks. If N (U) is finite and of type N3 then it is also of type N4.

The resulting picture, that we shall justify throughout this Section, will
be the following:

systems of topological

preorders spaces preorders
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NId
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Terminology and Notation.
In what follows, we shall deal only with spaces of type at least N1. There-

fore, by abuse of language we shall refer to a neighborhood system at least

of type N1 as a “neighborhood system” tout-court. Moreover, since we

shall typically deal with finite spaces, N3 systems will stand also for N4

systems. A distinct use will be generally adopted for systematic purposes

(introduction of notions, an so on). In the Frame section we shall illustrate

some applications of the most general form of neighborhood systems.

Now we shall see that vicinity maps in neighborhood systems of type
N1 reflect, so to say, a process of extension. An extension is a pro-
cess that applied to a set X collects all the elements of X plus those
elements that, under some point of view, are connected with them

terms used to refer to types of pre-topological spaces may vary (in the quoted
paper we have NB = Extended topology, N1 = Brissaud space, N2 = Neighborhood
space, N3 = pre-topology, N2Id = Convex closure space). Other combinations have
been studied. For instance, neighborhood systems satisfying 1 + N2 + N3, which
induce the so called “Smith spaces”. Spaces induced by neighborhood systems sat-
isfying N2 + Id are called “intersection spaces”, while N2Id spaces are also called
“topped intersection structures” or “closure systems”. Notice that some authors call
neighborhood systems satisfying N1 and N3− “neighborhood basis” and neigh-
borhood systems of type N3 “neighborhood filters”. Neighborhood systems of type
N4 are usually called “binary neighborhood systems”, because they are univocally
related to binary relations (as we shall widely see in this Chapter).
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(if any). Therefore such a process is an increasing map f between
subsets of U and we call it an “expansion process”:

Definition 12.4.3. Let U be a set. An expansion process is any map
f : ℘(U) �−→ ℘(U) such that for any X ⊆ U , X ⊆ f(X).

Dually, we can think of a process of erosion which cuts down some
connections between elements of U , just leaving the elements from a
subset X that are strictly connected each others. We call such a process
a “contraction”.

Definition 12.4.4. Let U be a set. A contraction process is any map
g : ℘(U) �−→ ℘(U) such that for any X ⊆ U , g(X) ⊆ X.

Proposition 12.4.7. Let U be a set and f an expansion process. If for
any X ⊆ U, g(X) = −f(−X), then g is a contraction process, called
the dual of f .

Proof. For any X ⊆ U,−X ⊆ f(−X). Hence −f(−X) ⊆ − −X = X.
qed

From now on, by 〈ε,κ〉 we shall indicate a pair of duals: expansion and,
respective, contraction maps.

Definition 12.4.5. A pre-topological space is a triple 〈U, ε,κ〉 such
that: (i) U is a set, (ii) ε : ℘(U) �−→ ℘(U) is an expansion map such
that ε(∅) = ∅, (iii) κ : ℘(U) �−→ ℘(U) is a contraction map dual to ε.

Proposition 12.4.8. If 〈U, ε,κ〉 is a pre-topological space, then
κ(U) =U .

The proof is left to the reader.

Now we have to note that the notion of an expansion (contraction)
cannot be immediately related with that of a R-neighborhood. In fact,
given a generic relation R ⊆ U × U , we do not have either R(X) ⊆ X

or X ⊆ R(X), for any X ⊆ U (the same happens for R�, of course).
Indeed, as we have seen in Section 12.2, X ⊆ R(X) is valid only if
R is reflexive. Moreover, both ε and κ lack the isotonicity law which,
on the contrary, is valid for R-neighborhoods. Finally, differently from
R-neighborhoods, neither the definition of ε, nor that of κ make any
assumption about the distribution over disjunctions or conjunctions.
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Also, notice that neither ε nor κ are required to be idempotent in a
pre-topological space (anyway, the same happens forR-neighborhoods).
As already pointed out, this reflects a floating situation.

Example 12.4.7. Expansions and contractions
In the following figure we depict an example of a floating boundary:

Figure 12.2: Example of a floating boundary

In Figure 12.2, point x belongs to the boundary of A, ∂(A), while y /∈ ∂(A). Therefore
x ∈ ε(A), while y /∈ ε(A). However, y ∈ ∂(ε(A)). It follows that ε(ε(A)) 	 ε(A),
ε(ε(ε(A))) � ε(ε(A)), and so on up to an eventual fix point of the operator ε.

Suppose to process a set A = {x, y, z}. In A, the elements x and y are tightly
linked, while x and z are loosely linked. Moreover, z is connected with the elements
a and b, and y with the element c, that lies all outside of A. When we apply the
expansion process ε to A, we gather together all the elements of A (x, y and z),
plus the elements they are connected with, that is, a, b and c. When we contract
A, we keep just the tight connected elements inside A, (x and y) and miss the
elements which are loosely connected with these “core” elements of A. Therefore,
ε(A) = {x, y, z, a, b, c} and κ(A) = {x, y}.

Definition 12.4.6. Let 〈U, ε,κ〉 be a pre-topological space, X ⊆ U .
Then,

1. X is said to be “closed” iff ε(X) = X.

2. X is said to be “open” iff κ(X) = X.
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3. The intersection of all closed sets containing X, whenever it is a
closed set, is called “ε−closure of X” and denoted by Cε(X).

4. The union of all open sets contained in X, whenever it is an open
set, is called “κ−interior of X” and denoted by Iκ(X).

Proposition 12.4.9. Let 〈U, ε,κ〉 be a pre-topological space. Then, for
any X,Y ⊆ U , if Iκ(X) and Iκ(Y ) exist, then Iκ(X)∩ Iκ(Y ) ⊆ X ∩Y .

Proof. From the very definition of this operator, Iκ(X) ⊆ X and
Iκ(Y ) ⊆ Y . Hence Iκ(X) ∩ Iκ(Y ) ⊆ X ∩ Y . qed

In general, the existence of the closure (of the interior) of a set X is
not guaranteed, since it is not guaranteed, in a pre-topological space,
that the intersection (union) of a family of closed (open) sets is a closed
(open) set. In turn, this situation is related to the fact that in a generic
pre-topological space, as we have seen, isotonicity fails for both ε and κ.

In fact, assume that X and Y are open. By definition of a contraction
map, κ(X ∪ Y ) ⊆ X ∪ Y , but although X ⊆ X ∪ Y and Y ⊆ X ∪ Y
we have neither X = κ(X) ⊆ κ(X ∪ Y ) nor Y = κ(Y ) ⊆ κ(X ∪ Y ).
Therefore we cannot obtain the converse inclusion X ∪ Y = κ(X) ∪
κ(Y ) ⊆ κ(X ∪ Y ). Hence, X ∪ Y may fail to be open since κ(X ∪ Y )
may be different from X ∪ Y .10 By duality we obtain that X and Y

closed do not imply that X ∩ Y is closed.
Therefore, in pre-topological spaces, neighborhood systems are more

important than open set systems.
Now we reveal the obvious fact that κ is the core map induced by

a neighborhood system of type (at least) N1.

Definition 12.4.7. Given a contraction κ : ℘(U) �−→ ℘(U), for any
x ∈ U the family

κx = {Z ⊆ U : x ∈ κ(Z)}

is called the family of κ-neighborhoods of x. We set Nκ(U) = {κx}x∈U

and call Nκ(U) a κ−neighborhood system.

10The reader is invited not to confuse the equation κ(X) ∪ κ(Y ) = κ(Y ∪ Y ),
when both X and Y are open (hence κ(X) = X and κ(Y ) = Y ), which is a situation
that does not hold without the isotonicity law, with the same equation when X and
Y are generic sets (not necessarily open), which may fail also in the presence of
isotonicity.
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Intuitively, by means of κx we obtain all the subsets Z such that x is
strictly connected with some element of Z.

Proposition 12.4.10. Let 〈U, ε,κ〉 be a pre-topological space. Then,

1. The family Nκ(U) is a neighborhood system of type N1.

2. κ is the core map induced by Nκ(U).

Proof. (1) If Z ∈ κx, then x ∈ κ(Z) ⊆ Z. Hence, x ∈ Z. Thus N1
holds in Nκ(U).
(2) G(Z) = {x : Z ∈ κx} = {x : x ∈ κ(Z)} = κ(Z). 0 and 1 follow
from Definition 12.4.5. qed

Conversely, in view of Lemma 12.4.1.(N1), we have:

Proposition 12.4.11. Given a neighborhood system N (U) of type N1,
the core map G induced by N (U) is a contraction operator, which is
said to be induced by N (U).

Terminologyand Notation. If in a pre-topological space P = 〈U, ε,κ〉
the operator κ is induced by a neighborhood system N (U), then P itself

is said to be induced by N (U).

Now we shall prove that a neighborhood system of type (at least) N1

induces a pre-topological space and, viceversa, that a pre-topological
space induces an N1 neighborhood system.

Corollary 12.4.2. Let P = 〈U, ε,κ〉 be a pre-topological space induced
by a neighborhood system N (U) of type N1, then Nκ(U) = N (U).

Proof. Immediate, fromProposition 12.4.10,Definition 12.4.7 andLemma
12.4.1.(G2).

Proposition 12.4.12. Let 〈U, ε,κ〉 be a pre-topological space. Then,
for any X ⊆ U , X is open if and only if X belongs to κx for any x ∈ X.

Proof. If X is open, then X = κ(X). Hence for any element x ∈ X,x ∈
κ(X). It follows that X belongs to κx. The converse is trivial in view
of N1. qed

Therefore, a set is open if and only if it is a neighborhood for all its
own elements. But this is exactly what condition Id requires for G(X)



422 12 Modalities and Relations

(alias κ(X)), any X ⊆ U . Indeed, it is immediate to verify that a
neighborhood system N (U) is of type N1Id if and only if for anyX ⊆ U ,
G(X) is an open set.

Remarks. The bi-implication of Proposition 12.4.12 holds because in

every pre-topological space Nκ(U) is a neighborhood system of at least

type N1.

Example 12.4.8. A sample pre-topology
Consider the universe U = {a, b, c}. Suppose we are given the following contraction
map:

x ∅ {a} {b} {c} {a, b} {a, c} {b, c} U

κ(x) ∅ ∅ {b} {c} {a, b} {a, c} {b} U

If we compute the family Nκ (U) = {κx}x∈U , we obtain that Nκ (U) = N (U),
where N (U) is the neighborhood system of Example 12.4.5 (for instance, κa = {Z ⊆
U : a ∈ κ(Z)} = {{a, b}, {a, c}, U}).

We know that this neighborhood system is of type N1Id but not of type N2.
Linked to this fact, we note that the contraction operator κ (i.e. G) is not isotone:
{c} ⊆ {b, c}, but κ({c}) = {c} �⊆ {b} = κ({b, c}).

We note immediately that κ is a co-discontinuous contraction operator:
κ({a, b}) ∩ κ({a, c}) = {a} �= ∅ = κ({a}) = κ({a, b} ∩ {a, c}).
Given Nκ (U) we can recover the contraction map κ using the equation κ(X) =

{z : X ∈ κz}. Let us compute, for instance, κ({b, c}) and κ({a, b}):
κ({b, c}) = {x : {b, c} ∈ κx} = {b} (indeed, {b, c} belongs only to κb);

κ({a, b}) = {x : {a, b} ∈ κx} = {a, b} (indeed, {a, b} belongs to κb and to κa).

Example 12.4.9. Open sets
In the pre-topology 〈U,κ, ε〉 of Example 12.4.8, the sets {b}, {c}, {a, b}, {a, c}, U and
∅ are open, because they are fix points of the contraction map κ. On the contrary,
κ({b, c}) = {b}.

We have seen that a set X is open if it is a κ-neighborhood of all its points; that
is, if for any x ∈ X, X ∈ κx. Therefore, we can verify also in this way that {b, c} is
not open: indeed, {b, c} /∈ κc. Moreover, the set {b, c} does not have an interior: the
set of all open subsets of {b, c} is {∅, {b}, {c}} whose union is {b, c} itself, which is
not open.11

This example shows that in the above pre-topological space not every union of
open sets is an open set: {b} and {c} are open; however, {b} ∪ {c} = {b, c} is not
open.

11One should not confuse the fact that a set X is a κ-neighborhood of all its
points, which is always true of open sets, with the existence of a subset Y of X such
that X is a κ-neighborhood of all the elements of Y , which is related to topological
spaces – see further in the text.
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Exercise 12.7. Given a pre-topological space:
(a) Is the family κx closed with respect to intersections (unions), for
any x?
(b) Is the family κx closed with respect to supersets, for any x?
(c) Compute the table for the dual expansion map ε of the pre-topological
space of Example 12.4.8. (i) Is this map continuous?
(ii) Find a subset of U which does not have a closure.

12.4.1 Excursus. Dynamics 1: The Failure
of the Isotonicity Law

We want to recall again that the failure of the isotonicity law prevents
us from using generic pre-topologies in order to provide the knowledge
order embedded in a relation R over a universe U with a pre-topological
interpretation, even if R is reflexive. In fact, for any X ⊆ U we cannot
coherently set R(X) = ε(X) or R(X) = κ(X), because if X ⊆ Y we
have R(X) ⊆ R(Y ), but both κ(X) ⊆ κ(Y ) and ε(X) ⊆ ε(Y ) may fail.

Intuitively this difference reflects the fact that a single relation R on
U is a static representation of the relationships between the elements
of U , while ε and κ may account for a dynamic evaluation of these
relationships. In fact, if X ⊆ Y but ε(X) � ε(Y ) we can imagine a
situation in which an element x of X fulfills a connection with some
element x′ as far as x is considered just within the set X (which is
recorded by the fact x′ ∈ ε(X)), but whenever x is associated, by
expandingX to a superset Y by means of ε, with other elements outside
of X, then the connection between x and x′ is lost, because of a sort
of incompatibility between x′ and some new element in Y ∩ −X.

Here is an example.
In Figure 12.3 we have a set A = {x, y, z} and a superset of A,

B = {x, y, z, w}. Assume that (i) y is connected with c, (ii) z is con-
nected with b, (iii) w is connected with a, and (iv) that w and b are
incompatible. If we expand A, we obtain ε(A) = {x, y, z, b, c}. But
if we extend A to B, then b, which is incompatible with the new
entry w, breaks its alliance with z. Therefore, the expansion of B will
be ε(B) = {x, y, z, w, c, a} which is not even comparable with ε(A).
Therefore, expansion is not a monotonic (isotonic) operator, in general.

Moreover, one might have the case in which z and w are incompat-
ible. So that after enlarging A to B, the connection between z and the
other elements of A is lost. Therefore, when we expand B to ε(B) we
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Figure 12.3: A non-isotonic expansion

obtain {x, y, z, c, w, a}, but if we contract ε(B) we obtain a set in which
z does not appear any longer. It follows that κ(ε(B)) and B are not
comparable, in this case. Differently, consider the fact that the rela-
tion IC(X) ⊇ X is always valid in topological spaces. For an extremely
simple example of a pre-topology where κ(ε(X)) � X, take 〈U, ε,κ〉,
where U = {a, . . .},κ({a}) = ∅ and ε({a}) = {a}. In this pre-topology
κ(ε({a})) = ∅ � {a}.

As a concrete simple example, consider the following three binary
tables:

R1 a b c

a 1 1 0
b 0 1 0
c 0 0 1

R2 a b c

a 1 0 1
b 0 1 0
c 0 0 1

R3 a b c

a 1 0 1
b 1 1 0
c 0 0 1

Suppose this is the behaviour of the same relation R under different
conditions. For instance R1(a) is the behaviour of R at point a when
this element is taken alone and b and c are not considered together;
R2(a) is the behaviour of R at point a when this element is taken
alone and b and c are considered together, or when it is joined with
b. R3(a) is the behaviour of R at point a when this element is taken
jointly with c. Going on with this interpretation, we can see that for
any x and i ∈ {1, 2, 3}, Ri(x) is the behaviour of R at x for a certain
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context. Here we display a possible context-sensitive set of evaluations,
distinguishing “internal contexts” containing the elements to which R

applies, and “external contexts” otherwise:

Internal contexts External contexts Element Applicable
version of R

{a} {{c}, {b}} a R1

{a} {{b, c}} a R2, R3

{a, b} {{c}} a, b R2

{a, c} {{b}} a, c R3

{b} {{a}, {c}} b R1

{b} {{a, c}} b R3

{b, c} {{a}} b, c R2

{c} {{a}, {b}, {a, b}} c R1, R2, R3

{a, b, c} ∅ a, b, c R1

Obviously, the fact that the behaviour of R changes along the contexts,
does not make R- neighborhood formation an isotonic process. For
instance, although {b} ⊆ {b, c}, if the external context of the evaluation
of R({b}) is {a, c}, then we have R({b}) = R3({b}) = {a, b}. But the
external context of evaluation of R({b, c}) is {a} so that R({b, c}) =
R2({b, c}) = {b, c}. Hence R({b}) � R({b, c}).

However, these three versions of R may represent other situations.
For instance they could be the results of three surveys about the same
relation R with respect to three different points in time t1, t2 and t3.

Along this line of interpretation we shall develop interesting dynamic
frameworks in information analysis, in which isotonicity is valid, altho-
ugh we have still to renounce other nice properties.

This point will be developed in Excursus 12.6.2 below. First, we
have to introduce other kinds of pre-topologies.

To sum up, a dynamic analysis is required by two basic situations
and a mixed one.

The first is when we fix the point in time and let the observation
process depend on contexts:

R at point in time tx

�
�
�
�
� �

�
�
�
�

Context C1 → R1 Context C2 → R2 Context Cn → Rn



426 12 Modalities and Relations

The second happens when we fix the context and let the observation
vary over time;

R in context C

�
�
�
�
� �

�
�
�
�

time t1 → R1 time t2 → R2 time tn → Rm

A third situation is given mixing the previous two:
R

�
�
�
�
� �

�
�
�
�

point in time t1 point in time t2 point in time tm

�
�
�
�
� �

�
�
�
�

Context C1 → R11Context C2 → R12Context tn → R1n

Classical Rough Set Theory does not account for this kind of dynamic
phenomena. Indeed, as far as we are confined to a single Information
System, we can deal just with a picture taken at a particular point in
time and at a particular point in space (meaning that the picture fixes
a situation in space and time). In this picture, relations are static and
definite.

Dynamics can be taken into account if we consider possible evo-
lutions of Information Systems over time and/or evolutions of these
behaviours of the analysed elements.

As we shall see, in all these cases pre-topologies are useful in order
to synthesize and represent evolution. For instance, we can think of a
collection of Approximation Spaces with operations which are able to
synthesise their different information.

12.5 Towards Topology 1

In what follows, we shall progressively impose new properties to a pre-
topological space in order to encompass the features required by our
analysis, like isotonicity and distribution.
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In this journey we still use examples taken from the dynamic
approach illustrated above, so that the reader will be able to appre-
ciate where approaches which use topological concepts are positioned
in data analysis, like Approximation Space.

Definition 12.5.1. A pre-topological space 〈U, ε,κ〉 is said to be of type
VId if and only if for all X ⊆ U the operator κ and ε are idempotent.

It is easy to check that if one of the two conjugate operators is idem-
potent, so is the other.

Proposition 12.5.1. A pre-topological space 〈U, ε,κ〉 is of type VId if
Nκ(U) is of type N1Id.

Proof. Immediate, from Proposition 12.4.5 and Proposition 12.4.10. qed

Notice that a pre-topological space of type VId is much weaker than
a topological space, although κ is idempotent. For instance κ is not
required to be isotonic.

Definition 12.5.2. A pre-topological space 〈U, ε,κ〉 is said to be of
type VI if and only if for all X,Y ⊆ U,X ⊆ Y implies ε(X) ⊆ ε(Y ).

Proposition 12.5.2. A pre-topological space 〈U, ε,κ〉 is of type VI if
and only if for all X,Y ⊆ U,X ⊆ Y implies κ(X) ⊆ κ(Y ).

Therefore, a pre-topological space is of type VI if and only if its expan-
sion and contraction operators are isotonic. And this happens if every
κ−neighborhood system is a proper filter:

Proposition 12.5.3. Let P = 〈U, ε,κ〉 be a pre-topological space. Then
the following statements are equivalent:

1. P is of type VI .

2. The family Nκ(U) is a neighborhood system of type N2.

3. P is induced by a neighborhood system of type N2.

Proof. Immediate, from Lemma 12.4.1 and Proposition 12.4.10. qed

Given a neighborhood system of type N2 we can define a pre-topological
space of type VI in a manner that will be recognised to be very familiar.
Let us indeed define two new operators g and f on ℘(U).
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Definition 12.5.3. Let N (U) be a neighborhood system on U . Let us
set:

1. g(X) = {x ∈ U : ∃N(N ∈ Nx & N ⊆ X)}.

2. f(X) = {x ∈ U : ∀N(N ∈ Nx � N ∩X �= ∅)}.

Clearly, the maps g and f are dual (the proof is left to the reader
[hints: consider the set −g(−X); so, as usual, apply in sequence the
first order equivalences ¬∀x ≡ ∃x¬, ¬(A� B) ≡ A & ¬B and, finally,
¬(Y ∩ −X �= ∅) ≡ Y ⊆ X]). Moreover, these maps are weaker than
G and, respectively, F , because, obviously, for all X ∈ ℘(U), G(X) ⊆
g(X) (since X ⊆ X)

On the basis of this definition we have:

Proposition 12.5.4. Let U be a set. Let N (U) be a neighborhood
system. Then the following are equivalent:

1. N2 holds in N (U).

2. For any subset X of the universe, g(X) = G(X) and f(X) =
F (X).

Proof. Since G(X) ⊆ g(X), g(X) = G(X) if and only if ∀X ⊆ U ,
∀x ∈ U((∃N ∈ Nx & N ⊆ X) � X ∈ Nx), if and only if N2 holds.
Dually for F . qed

So, in case of neighborhood systems of type N2 the vicinity map (the
expansion operator) is defined in the usual topological way: a point x
is close to a set X if and only if all the elements of Nx have non null
intersection with X. A well-known intuitive picture is that displayed
by Figure 12.4.

Figure 12.4: Point x is close to the set A because all of its neighborhoods
have non empty intersections with A
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The above definitions sound familiar to the reader, since it is obvious
that as soon as we consider neighborhood systems N (U) such that
for all x, Nx is a filter with a least element l(x), then (1) and (2)
of Definition 12.5.3 turn into: (1’) g(X) = {x : l(x) ⊆ X} and (2’)
f(X) = {x ∈ U : l(x) ∩X �= ∅}.

Thus when this least element is an equivalence class [x]≈, we obtain
the definitions of upper and, respectively, lower approximations.

However, from this discussion it follows that a pre-topological space
must be equipped with additional structural properties in order to
exhibit the characteristics of Approximation Spaces.

Proposition 12.5.5. Let 〈U, ε,κ〉 be a pre-topological space of type
VI . Then,

1. If {Oi}i∈I is a family of open sets, then
⋃

i∈I
{Oi} is open.

2. If {Ci}i∈I is a family of closed sets, then
⋂

i∈I
{Ci} is closed.

3. U and ∅ are both closed and open.

Proof. (1) Let {Oi}i∈I be a family of open sets. For any element x ∈
⋃

i∈I

Oi there is a j ∈ I such that x ∈ Oj. But Oj is open, hence Oj =

x ∈ κ(Oj). Since Oj ⊆
⋃

i∈I

Oi, by isotonicity we have κ(Oj) ⊆ κ(
⋃

i∈I

Oi)

so that x ∈ κ(
⋃

i∈I

Oi). Therefore, for all x ∈
⋃

i∈I

Oi we have
⋃

i∈I

Oi ∈ κx

and from Proposition 12.4.12 we obtain the result. (2) By duality. (3)
Left to the reader. qed

Corollary 12.5.1. Let 〈U, ε,κ〉 be a pre-topological space of type VI .
Then for any X ⊆ U , the closure Cε(X) and the interior Iκ(X) always
exist.

Another way to interpret the above result is that isotonicity implies a
sort of fix-point property.

Although pre-topological spaces are spaces endowed with a rather
rich structure, nevertheless, they are not able to completely account for
the geometrical features of relational spaces. Let us consider again the
cause of this limitation.

On the one hand, a pre-topological space provides a decreasing map,
κ, and an increasing map, ε, while R−neighboring is neither, for an
arbitrary relation R. It is a decreasing map only if R is reflexive.
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On the other hand, R−neighboring distributes both on unions and
intersection, while this feature is not standard for generic pre-topological
spaces.

So, let us now analyse the meaning of reflexivity and distribution.

12.5.1 Excursus: Reflexivity, Distribution
and Perception

Since we are interested in how conceptual patterns are formed around
the perception of a “point” x (item, object, stimulation, event, . . . ),
we can assume that if a conceptual pattern is induced by a process π
that gathers together all the “points” that are related with the given
perceived “point” x, then x should belong to the result π(x) of this
process. Otherwise we should admit, rather metaphysically, that some
phenomena appear to our consciousness by means of perceptions related
with something which still remains a noumenon and not a part of the
induced phenomena (see Figure 12.5).

Figure 12.5: A non-reflexive phenomenological process may induce a
phenomenon in which it partially or totally disappears

In order to avoid this metaphysical drawback, we can assume reflexivity
on a quite intuitive basis.

As for distribution, we can have different attitudes. As a matter
of facts, there is no evidence for claiming that if a phenomenon P1

is the result of an inflationary (i.e. increasing) process π applied to
“point” x, P1 = π(x), and P2 is the result of the same process applied
to “point” y, P1 = π(y), then the result of the application of π to both
points, π(x+y), is P1 +P2. Indeed, the two points taken together could
carry more information than the sum of the two pieces of information
carried by the two “points” singularly taken. Proximity Spaces and
Concept Lattices are good examples of this situation (see Part I). On
the contrary, the classical upper approximation in Rough Set Theory
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is additive. Additivity is a symptom of phenomena that fulfill some
compositional property, in the sense that our ideal process π is additive:
π(x + y) = π(x) + π(y) (or, in a set-theoretical framework, π({x} ∪
{y}) = π({x}) ∪ π({y})).

Moreover, one might wonder if it is possible to have an inflationary
and distributive map avoiding isotonicity, i.e. monotonicity. We have
already seen that this is not possible: we can have inflationary isotonic
maps that are not additive. However, if a map is additive, then it is
isotonic with respect to the lattice order.

12.6 Towards Topology 2

So, we have done a step towards the direction of relational spaces
(Kripke frames) and Rough Sets by means of the concept of a pre-
topological space of type VI . Now we shall go further ahead, in order
to grasp the distribution features.

Definition 12.6.1. A pre-topological space 〈U, ε,κ〉 is said to be of
type VD if and only if for all X,Y ⊆ U, ε(X ∪ Y ) = ε(X) ∪ ε(Y ).

Proposition 12.6.1. A pre-topological space 〈U, ε,κ〉 is of type VD if
and only if for all X,Y ⊆ U,κ(X ∩ Y ) = κ(X) ∩ κ(Y ).

We have already seen that these distribution laws implies the isotonicity
law. So any pre-topological space of type VD is also of type VI . However
the converse implication is not valid, as we can see in Example 12.6.2
below.

It is possible to prove that in order for a pre-topology to be of type
VD, the structure of the κ-neighborhoods of any element of U must be
a filter and not only an order filter. That is, if X and Y belongs to κx,
any x, then X ∩ Y must belong to κx, too:

Proposition 12.6.2. Let P = 〈U, ε,κ〉 be a pre-topological space. Then
the following statements are equivalent:

1. P is of type VD.

2. The family Nκ(U) is a neighborhood system of type N3.

3. P is induced by a neighborhood system of type N3.

Proof. Immediate, from Lemma 12.4.1, Proposition 12.4.10 and Corol-
lary 12.4.2. qed
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Figure 12.6: In a neighborhood system of type N3, the elements of the
neighborhood family of any point x form a filter with respect to the
relation ⊆

Proposition 12.6.3. Let 〈U, ε,κ〉 be a pre-topological space of type
VD. Then,

1. If {Oi}i∈I is a finite family of open sets, then
⋂

i∈I
{Oi} is open.

2. If {Ci}i∈I is a finite family of closed sets, then
⋃

i∈I
{Ci} is closed.

3. For any X,Y ⊆ U : Iκ(X ∩ Y ) = Iκ(X) ∩ Iκ(Y ).

4. For any X,Y ⊆ U : Cε(X ∪ Y ) = Cε(X) ∪ Cε(Y ).

Proof. (1) If A and B are open sets, then κ(A) = A and κ(B) = B.
Since 〈U, ε,κ〉 is of type VD, κ(A ∩ B) = κ(A) ∩ κ(B) = A ∩ B. It
follows that A ∩B is an open set. (2) Dually. (3) From the first state-
ment we have that for any X,Y ⊆ U , Iκ(X) ∩ Iκ(Y ) is an open set;
moreover, from Proposition 12.4.9 we obtain that Iκ(X) ∩ Iκ(Y ) is an
open set included in X ∩ Y . On the other hand, since X ∩ Y ⊆ X

and X ∩ Y ⊆ Y , we have (i): Iκ(X ∩ Y ) ⊆ Iκ(X) ∩ Iκ(Y ). But
Iκ(X ∩ Y ) is the largest open set included in X ∩ Y , so that we have
(ii): Iκ(X) ∩ Iκ(Y ) ⊆ Iκ(X ∩ Y ). We conclude from (i) and (ii) that
Iκ(X) ∩ Iκ(Y ) = Iκ(X ∩ Y ). (4) From duality. qed

Therefore, a pre-topological space of type VD features properties very
close to those that characterise topological spaces. The remaining dif-
ference is that in a pre-topological space of type VD the two maps κ
and ε are not required to be idempotent. Anyway, before adding the
remaining clause and obtaining topological spaces, we have to intro-
duce a new element to the taxonomy of pre-topological spaces, that
will make it possible to associate reflexive relations with them.
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Definition 12.6.2. A pre-topological space 〈U, ε,κ〉 is said to be of
type VS, or an Alexandroff pre-topological space, if and only if for all
X ⊆ U, ε(X) =

⋃

x∈X

ε({x}).

A pre-topological space is of type VS only if any κ− neighborhood
system is a principal filter.

Proposition 12.6.4. Let P = 〈U, ε,κ〉 be a pre-topological space. Then
the following are equivalent:

1. P is of type VS.

2. P is of type VI and for any x, for any family {Xi}i∈I of elements
of κx,

⋂

i∈I
Xi ∈ κx.

3. The family Nκ(U) is a neighborhood system of type N4.

4. P is induced by a neighborhood system of type N4.

Proof. Immediate, from Lemma 12.4.1, Proposition 12.4.10 and Corol-
lary 12.4.2. qed

Therefore, if U is finite, then the notions of VS and VD pre-topological
spaces coincide.

Example 12.6.1. A pre-topological space not of type VI
We have seen that in the pre-topological space of Example 12.4.8, κ is idempotent
but not isotonic.

Example 12.6.2. A pre-topological space in which κ is isotonic and
idempotent but not multiplicative
We show that κ−distributivity is independent of κ−isotonicity and κ−idempotence.

Consider the pre-topology P1 = 〈U, ε,κ〉 such that U = {a, b, c} and κ and ε
are given by the following table:

x ∅ {a} {b} {c} {a, b} {a, c} {b, c} U

ε(x) ∅ {a} {b} {c} U {a, c} {b, c} U

κ(x) ∅ {a} {b} ∅ {a, b} {a, c} {b, c} U

By easy inspection we can verify that both κ and ε are isotonic. However,

• ε({a}) ∪ ε({b}) = {a} ∪ {b} = {a, b} �= U = ε({a, b}) = ε({a} ∪ {b}).
• κ({a, c})∩κ({b, c}) = {a, c}∩{b, c} = {c} �= ∅ = κ({c}) = κ({a, c}∩{b, c}).
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Indeed, κc = {{a, c}, {b, c}, U} is an order filter but not a filter because {a, c} ∩
{b, c} /∈ κc.

It should be noticed, moreover, that the family {κx}x∈U is a neighborhood
system of type N2Id. We can conclude that adding Id to N2 does not say anything
about N3.

Example 12.6.3. Contraction operators and order filters
We have seen that in the pre-topology P1 above, κc is an order filter but not a
filter. This is the reason why the cocontinuity law fails when κ is applied to the
intersection of {a, c} and {b, c}, and the continuity law fails when ε is applied to
their complements, {b} and respectively {a}.

The family of κ-neighborhoods is:

x a b c

κx {{a}, {a, b}, {a, c}, U} {{b}, {a, b}, {b, c}, U} {{a, c}, {b, c}, U}

Notice that κa and κb, incidentally, are filters. However, {κx}x∈U is not a neigh-
borhood system of type N3 because of κc.

Example 12.6.4. A pre-topological space P where κ is idempotent but
P is not of type VI : κ-isotonicity is independent of κ-idempotence
A simple example is given by the pre-topological space of Example 12.4.8

Example 12.6.5. A pre-topological space P where any intersection of
two open subsets is open, but not of type VD
Consider the neighborhood system N (U)

x a b c

Nx {{a, b}, {a, b, c}} {{b, c}, {a, b}, {a, b, c}} {{a, b, c}}

The open subsets are ∅, {a, b} and {a, b, c}, and it is easy to check that they are
closed under intersection. However, Nb is not a filter; thus N (U) is not of type VD.

12.6.1 Bases

Definition 12.6.3. Given a pre-topological space P = 〈U, ε,κ〉, the
family Ωκ(U) = {κ(A)}A⊆U will be called the pre-topology of U .

Terminology and Notation. From now on given a pre-topological

space P = 〈U, ε,κ〉, with the symbol P we shall mean, whenever conve-

nient and appropriate in the context, also its pre-topology Ωκ.

Definition 12.6.4. Let P1 = 〈U, ε′,κ′〉 and P2 = 〈U, ε′′,κ′′〉 be two
pre-topological spaces on the same universe U . Then we say that (the
pre-topology of) P1 is finer than (the pre-topology of) P2 (or P2 is
coarser than P1), in symbols P2 � P1, if for any X ⊆ U , κ′′(X) ⊆
κ

′(X).
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Proposition 12.6.5. Given two pre-topological spaces P1 and P2 on
the same universe U , P2 � P1 if and only if κ′′x ⊆ κ′x, any x ∈ U .

Proof. Suppose κ′′x ⊆ κ′x and x ∈ κ′′(Z). Hence Z ∈ κ′′x so that Z ∈ κ′x,
too. It follows that x ∈ κ

′(Z). Conversely, if κ′′x � κ

′
x there is an

F ∈ κ′′x such that F /∈ κ′x. Hence x ∈ κ′′(F ) but x /∈ κ′(F ). It follows
that κ′′(X) � κ′(X). qed

Terminology and Notations. If X is a family of subsets of a given set

U , then by ⇑ X we shall denote the set {Y ⊆ U : ∃X(X ∈ X & X ⊆ Y )}
(the order filter generated by X in ℘(U): ⇑ X = {↑⊆ X : X ∈ X}).

The following definition and properties will be useful.

Definition 12.6.5. Let U be a set, F , F1 and F2 order filters or
filters of elements of ℘(U). Moreover let B, B1 and B2 be families of
subsets of U . Then:

1. If F =⇑ B, then B is called a basis for F and we say that B
induces F . We call a collection B = {Bi}i∈I of bases, a basis
system.

2. If F1 ⊆ F2, then F2 is said to be a finer filter than F1.

Proposition 12.6.6. Let B1,B2⊆℘(U), F1 =⇑ B1,F2 =⇑ B2 and
B2 ⊆ B1. Then F1 is finer than F2.

The converse of the above Proposition, generally does not hold. Con-
sider, indeed, U = {a, b, c}, B1 = {{a}}, B2 = {{a, b}}. Then, ⇑ B2 ⊆⇑
B1 although B1 � B2.

Corollary 12.6.1. Let B ⊆ ℘(U) and F =⇑ B. Then,
⋂

F =
⋂
B ∈ B (i.e.

⋂
B ∈ F ).

Proof. If F is a filter and A,B ∈ F , then A ∩ B ∈ F . So
⋂

F ∈ F .
Clearly, for any X ∈ F ,

⋂
F ⊆ X. Therefore, if F =⇑ B, then

⋂
F ⊆ B, for any B ∈ B. It follows that

⋂
F =

⋂
B. qed

In view of Definition 12.5.4, if we are given a family of filters induced by
a basis system, then in order to compute ε(X) and κ(X) it is sufficient
to consider the bases:

Proposition 12.6.7. Let U be a set. Let N (U) be a neighborhood
system of type (at least) N2 and N ′(U) a neighborhood system of type
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N4. Assume that, for any x, Nx = ⇑ Bx for some Bx ⊆ ℘(U) and N ′
x =

⇑ {Qx} for some Qx ⊆ U . Then for any X ⊆ U the following equations
hold:

1. {x ∈ U : ∃N(N ∈ Nx & N ⊆ X)} =
{x ∈ U : ∃A(A ∈ Bx & A ⊆ X)}.

2. {x ∈ U : ∀N(N ∈ Nx � N ∩X �= ∅) =
{x ∈ U : ∀A(A ∈ Bx � A ∩X �= ∅)}.

3. {x ∈ U : ∀N ′(N ′ ∈ N ′
x � N ′ ∩X �= ∅)} = {x ∈ U : Qx ∩X �= ∅}.

4. {x ∈ U : ∃N ′(N ′ ∈ N ′
x & N ′ ⊆ X)} = {x ∈ U : Qx ⊆ X}.

Proof. (1): Since Fx =⇑ Bx, if N is such that N ∈ Nx and N ⊆ X,
then there is a A ∈ Bx such that A ⊆ N ⊆ X. Therefore, since A ∈ Nx,
A itself satisfies the condition of the right term of the equation. The
converse is trivial. (2) If X ∩ A �= ∅ for A ∈ Bx, then X ∩ F �= ∅ for
any F ⊇ A. On the other hand, if X ∩ F �= ∅ for any F ∈ Nx, then
this holds of any A ∈ Bx. (3) Trivially because the left part of the
equation reduces to {x ∈ U :

⋂
Nx ∩X �= ∅)} and

⋂
Nx = Qx, because

N ′
x =⇑ {Qx}. (4) Trivial, because Qx is the least element of N ′

x. qed

Definition 12.6.6. Let N (U) be a neighborhood system of type at
least N2, B = {Bx}x∈U ⊆ ℘(℘(I)) and N (U) = {⇑ Bx}x∈U . If a pre-
topological space P is induced by N (U), then we say that it is induced
by B, too, and that B is a basis for P. In this case to define κ and ε

we shall also use the right side of the equations (1) and, respectively,
(2) of Proposition 12.6.7 above.

Trivially we have:

Proposition 12.6.8. In any neighborhood system induced by a basis,
1 and N2 hold.

Example 12.6.6. From order filters to contraction operators
Given a neighborhood system of type N2, we can recover the contraction operator of
a pre-topological space of type VI by means of the equations of Proposition 12.6.7.

Consider the family of neighborhood system N (U) on U = {a, b, c} given by
Na = {{a}, {a, b}, {a, c}, U}, Nb = {{a, b}, U} and Nc = {{b, c}, {a, c}, U}.

Each neighborhood family is an order filter. Thus N (U) is of type N2 and it is
induced by the basis B = {Ba = {{a}},Bb = {{a, b}},Bc = {{a, c}, {b, c}}}.
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Let us compute κ({a, b}):
(a) κ({a, b}) = {x : ∃A(A ∈ Bx & A ⊆ {a, b})}:
(a.1) a is OK: {a} ∈ Ba and {a} ⊆ {a, b}.
(a.2) b is OK: {a, b} ∈ Bb and {a, b} ⊆ {a, b}.
(a.3) c is not OK: none member of Bc is included in {a, b}.
Hence, κ({a, b}) = {a, b}.
Let us compute κ({c}): no element of Ba, Bb or Bc is included in {c}; hence

κ({c}) = ∅.

Exercise 12.8.
(a) Give an example of a pre-topological space not of type VI where
{x : A ∈ κx} �= {x : ∃X(X ∈ κx & X ⊆ A)}.
(b) Exploiting Proposition 12.6.7.(ii), compute ε(X) for any X ⊆ U in
the pre-topological space P1 of Example 12.6.2 above.
(c) Compute a minimal basis for the pre-topology P1.
(d) Find a minimal binary relation R ⊆ U × X, for some set X,
such that the expansion map ε of P1 coincides with the Galois closure
operator on ℘(U), modulo R.

Although bases are enough, in many examples below we shall also show
the entire family of filters or order filters inducing a pre-topology.

Proposition 12.6.9. If a pre-topological space P is induced by a basis
B = {Bx}x∈U such that for any x ∈ U , Bx is a singleton, then P is of
type VS.

Proof. If Bx = {X}, then ⇑ Bx =↑ X = {Y ⊆ U : X ⊆ Y )}, which is
obviously a filter, because

⋂
↑ X = X and X ∈↑ X. Therefore, from

Corollary 12.4.2 we have the result. qed

12.6.2 Excursus. Dynamics 2: The Failure
of the Distributivity Laws

In Excursus 12.4.1, we have seen that dynamics and monotonicity may
conflict. Here we shall exhibit examples of dynamic data analysis where
monotonicity holds. However, distributivity laws fails to hold because
of the intrinsic mechanism of these dynamic analyses.

Suppose we are given a universe U and a system of n binary relations
on U , R = {Ri}1≤i≤n.

As we have seen, we can think of R1, R2, . . . , Rn as the results of n
surveys about the same relation R with respect to n different points
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of time t1, t2, . . . , tn, respectively, or surveys about n different criteria
C1, C2, . . . , Cn, respectively.

Definition 12.6.7. Let U be a set and {Ri}i∈I a family of binary rela-
tions on U . Then the pair 〈U, {Ri}i∈I〉 is called a Dynamic Relational
System.

If each Ri is reflexive, then we can use pre-topology to develop inter-
esting information analyses in which the pre-topological operators are
isotonic, although we have still to renounce other nice properties, such
as κ-cocontinuity and ε-continuity.

Let us list n × 2 basic “use cases” of the above surveys. Given a
subset A of U , we have n use cases involving the expansion process,
and n use cases involving the contraction process:

1. (Contraction): We say that x ∈ κm(A), for 1 ≤ m ≤ n, if every y
such that 〈x, y〉 ∈ Ri belongs to A, at least in m cases. Otherwise
stated: x ∈ κm(A) if R1≤i≤n(x) ⊆ A for at least m indices. So,
for instance, assume n = 3, then x ∈ κ2(A) if R1(x) ⊆ A and
R2(x) ⊆ A, or if R1(x) ⊆ A and R3(x) ⊆ A, or if R2(x) ⊆ A and
R3(x) ⊆ A (i.e. if R1(x) ∪ R2(x) ⊆ A, or R1(x) ∪ R3(x) ⊆ A, or
R2(x) ∪R3(x) ⊆ A).

2. (Expansion): We say that x ∈ εm(A), for 1 ≤ m ≤ n, if A contains
at least a y such that 〈x, y〉 ∈ Ri in at least n + 1 − m cases.
Otherwise stated: x ∈ εm(A) if R1≤i≤n(x) ∩ A �= ∅ for at least
n+ 1−m indices. So, for instance, assume n = 3, then x ∈ ε3(A)
if R1(x) ∩ A �= ∅, or R2(x) ∩ A �= ∅, or R3(x) ∩ A �= ∅ (i.e. if
(R1(x) ∪R2(x) ∪R3(x)) ∩A �= ∅).

According to these use cases, we can compute the families of expan-
sion and contraction operators, ε1≤m≤n and κ1≤m≤n, by transforming
the various Ri−neighborhoods into appropriate bases and applying
eventually Proposition 12.6.7:

Definition 12.6.8. Let U be a set and let R = {Ri}1≤i≤n be a system
of n binary reflexive relations on U . For 1 ≤ m ≤ n, let Γm be the
family of combinations of m elements out of a set of n elements, γ a
combination from Γm. Then let us set:

1. εm : ℘(U) �−→ ℘(U); εm(A) = {x ∈ U : ∀F (F ∈ Fm
x � F ∩A �= ∅)}.
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2. κm : ℘(U) �−→ ℘(U);κm(A) = {x ∈ U : ∃F (F ∈ Fm
x & F ⊆ A)},

where: Fm
x is the (order) filter induced by the basis Bm

x , and Bm
x =

{Xγ : Xγ =
⋃

l∈γ Rl(x)}γ∈Γm .

Proposition 12.6.10. Let R be a system of n reflexive binary rela-
tions on a set U . Then, for each m, 1 ≤ m ≤ n, 〈U,κm, εm〉 is a
pre-topological space of type VI .

The proof is immediate. In fact, from Proposition 12.6.8, 1 and N2
hold in Nκ

m

. Moreover, Id and 0 hold because all relations in R are
reflexive.

Let us apply all the above definitions to a simple example.
Consider the Dynamic Relational System 〈U, {R1, R2, R3}〉, where

U = {a, b, c} and R1, R2 and R3 are the relations from the example of
Excursus 12.4.1.

In view of the above definitions we have:

m Γm Bm
x

1 {{1}, {2}, {3}} {R1(x), R2(x), R3(x)}
2 {{1, 2}, {1, 3}, {2, 3}} {R1(x) ∪R2(x), R1(x)

∪R3(x), R2(x) ∪R3(x)}
3 {{1, 2, 3}} {R1(x) ∪R2(x) ∪R3(x)}

In the following tables we show the basis Bm(U) = {Bm
x }x∈U , the

induced neighborhood system Fm(U) = {Fm
x }x∈U , and, finally the

operators εm and κm:

Bm
x Bm

a Bm
b Bm

c

B1
x {{a, b}, {a, c}} {{b}, {a, b}} {{c}}

B2
x {{a, c}, U} {{b}, {a, b}} {{c}}

B3
x {U} {{a, b}} {{c}}

Fm
x Fm

a Fm
b Fm

c

F 1
x {{a, b}, {a, c}, U} {{b}, {a, b}, {b, c}, U} {{c}, {a, c}, {b, c}, U}

F 2
x {{a, c}, U} {{b}, {a, b}, {b, c}, U} {{c}, {a, c}, {b, c}, U}

F 3
x {U} {{a, b}, U} {{c}, {a, c}, {b, c}, U}
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εm ∅ {a} {b} {c} {a, b} {a, c} {b, c} U

ε1 ∅ {a} {b} {c} {a, b} {a, c} U U

ε2 ∅ {a} {b} {a, c} {a, b} {a, c} U U

ε3 ∅ {a, b} {a, b} {a, c} {a, b} U U U

κ

m ∅ {a} {b} {c} {a, b} {a, c} {b, c} U

κ

1 ∅ ∅ {b} {c} {a, b} {a, c} {b, c} U

κ

2 ∅ ∅ {b} {c} {b} {a, c} {b, c} U

κ

3 ∅ ∅ ∅ {c} {b} {c} {c} U

Since each Ri is reflexive, 〈U,κ1, ε1〉 is a pre-topological space. However
we can notice, for instance, that F 1

a is not a filter, because {a, b} ∩
{a, c} /∈ F 1

a .
Hence the pre-topological space 〈U, ε1,κ1〉 is not of type VD.
Also, we can directly observe the relationship between ε and κ

distributivity and proper filters.
Indeed, since F 1

a is not a proper filter, there are two minimal distinct
elements A = {a, b} and B = {a, c} of F 1

a such that A∩B �= ∅ but A∩
B /∈ F 1

a . Let us set Y = B ∩−A = {b}, Z = A∩−B = {c}. Therefore,
the subset Y ∪ Z = {b, c} has empty intersection neither with A nor
with B; hence Y ∪Z has empty intersections with no members of F 1

a ,
because A and B are minimal. It follows that a belongs to ε1(Y ∪ Z).
But a /∈ ε1(Y ) and a /∈ ε1(Z). Henceforth ε1(Y ) ∪ ε1(Z) � ε1(Y ∪ Z).
Dually for κ-codiscontinuity. In fact, a ∈ κ1(A) because A ∈ F 1

a and
A ⊆ A. For the same reason a ∈ κ1(B). Therefore a ∈ κ1(A) ∩ κ1(B).
But A ∩ B � A and A ∩B � B (remember that A �= B). Since A and
B are minimal in F 1

a , there is not any F ∈ F 1
a such that F ⊆ A ∩ B.

Thus a /∈ κ1(A ∩ B). Henceforth κ1(A ∩ B) � κ

1(A) ∩ κ1(B). As a
side consequence, ε1 is not continuous. In our example:

κ

1({a, b} ∩ {a, c}) = κ

1({a}) = ∅ �= {a} = {a, b} ∩ {a, c} =
κ

1({a, b}) ∩ κ1({a, c}).

and

ε1({b}) ∪ ε1({c}) = {b, c} ⊆ {a, b, c} = ε1({b, c}) = ε1({b} ∪ {c})

[See the Frame section for further details.]
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Example 12.6.7. A pre-topological space of type VD which is not topo-
logical: κ-idempotence is independent of κ−distributivity and
isotonicity

Consider the pre-topological space P2 = 〈U, ε,κ〉 such that U = {a, b, c} and κ and
ε are given by the following table:

x ∅ {a} {b} {c} {a, b} {a, c} {b, c} U

ε(x) ∅ {a, b} U {c} U U U U

κ(x) ∅ ∅ ∅ ∅ {a, b} ∅ {c} U

By easy inspection we can verify that κ distributes over meets and ε distributes
over unions.

However, the two operators are not idempotent: ε({a}) = {a, b} �= {a, b, c} =
ε({a, b}); κ({b, c}) = {c} �= ∅ = κ({c}). So this is a case of distributive operators
that are not idempotent. Since distributivity implies isotonicity, we have the required
example. Therefore property (τ ) is not valid.

But (τ ) is a typical property of neighborhoods in topological spaces – see further
in the text.

The same happens for the structure 〈U, ε3,κ3〉 in Excursus Dynamics 2, § 12.6.2.
Indeed, consider the neighborhood systems F 3

a = {{a, b, c}}, F 3
b = {{a, b}, {a, b, c}},

F 3
c = {{c}, {a, c}, {b, c}, {a, b, c}}. Given the element {a, b} of F 3

b , there is not any
X ∈ F 3

b such that {a, b} ∈ F 3
x for any x ∈ X. In fact, clearly {a, b, c} is not such an

X. As for the remaining element of F 3
b , {a, b} itself, it does not belong to F 3

a . This
is the reason for κ3(κ3({a, b})) = ∅ �= {b} = κ

3({a, b}). Dually, this is the reason
for ε3(ε3({c})) = {a, b, c} �= {a, b} = ε3({c}).

Exercise 12.9.
(a) Compute the family F = {κa,κb,κc} from P2.
(b) Check that every member of F is a filter and not only an order
filter.
(c) Compute a minimal basis for the pre-topology P2.
(d) Verify that property (τ) fails to hold in P2.

12.7 Pre-Topological Spaces and Binary

Relations

Now we are in a good position for understanding how relations and
relation neighborhoods are connected with pre-topological spaces.

First of all, let us underline that not every pre-topological space is
connected with a binary relation and not every binary relation induces
a pre-topology. We know that pre-topologies can be associated with
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relations that are at least reflexive. Taking into account this proviso,
let us formalise in a definition the construction discussed in the above
Excursus 12.6.2:

Definition 12.7.1. Let U be a set and let R = {Ri}i∈I be a system of
reflexive binary relations on U .

(a) If N (U) = {Ri(x)}i∈R then we say that N (U) and the pre-topo-
logical space P(R) = 〈U, ε,κ〉 are connected with R, where for
any x ∈ U , κ(x) = G(x). In this case we shall also write N (R).

(b) The pre-topological space induced by the basis Bm(U) = {Bm
x }x∈U

is said to be m−associated with the system R and denoted by
Pm(R) = 〈U, εm,κm〉.

(c) In particular, if R = {R}, then the pre-topological space induced
by the basis {R(x)}x∈U is said to be associated with the relation
R and denoted by P(R) =

〈
U, εR,κR

〉
.

One should not confuse P(R) with P(R).

Example 12.7.1. Difference between pre-topological spaces using
{Ri(x)}i∈I,x∈U as a neighborhood system or as a basis for a neigh-
borhood system
Here we show the difference between pre-topological spaces connected with a system
R of reflexive binary relations, and pre-topological spaces induced by R.

Consider the following system of relations R = {R1, R2}:

R1 a b c

a 1 1 0
b 0 1 1
c 1 0 1

R2 a b c

a 1 0 1
b 1 1 0
c 0 1 1

If we intend {R1(x),R2(x)}x∈U as a neighborhood system for a pre-topological space
P(R) = 〈U, ε,κ〉, then κ({a, b, c}) = ∅. Actually, P(R) is not of type VI because
neither {R1(a), R2(a)} nor {R1(b), R2(b)} are filters. Therefore we must use the
definition κ(X) = G(X) = {x : X ∈ Nx}. But for all x ∈ U , {a, b, c} /∈ R1(x) or
R2(x). On the contrary, if we intend R as a basis then we obtain P1(R) = 〈U, ε1,κ1〉.
In this case κ1({a, b, c}) = {a, b, c}. One can observe that in P(R), κ(X) �= {x :
∃Ri(Ri(x) ⊆ X)} (indeed for any i ∈ {1, 2}, and for any x ∈ U , Ri(x) ⊆ {a, b, c}).
Indeed, P1(R) has type VCl while P(R) has type VId.

Therefore, in P1(R) we can apply Proposition 12.5.4 and Proposition 12.6.7,
while in P(R) we can just set κ = G.

However, since for any x ∈ U , {a, b, c} ∈⇑ (B1
x), we have that the relation

1 = U × U belongs to the pseudo-uniformity U(R) see below, because 1 ⊇ Ri, any
Ri ⊆ U × U . It follows that P(U(R)) = P(R).
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Proposition 12.7.1. Let P1(R) =
〈
U, ε1,κ1

〉
be a pre-topological

space 1-associated with a system of reflexive binary relations R =
{Ri}i∈I . Then;

1. P1(R) is of type VI .

2. B1(U) = {B1
x}x∈U = {Ri(x)}i∈I,x∈U .

3. κ1(X) = {x : ∃Ri(Ri ∈ R & Ri(x) ⊆ X)}.

4. ε1(X) =
⋂

i∈I
R�

i (X).

Proof. (1) Obvious. (2) Obvious. (3) In view of (1), P1(R) fulfills
N2, hence we can apply Proposition 12.6.7. Therefore, ε1(X) = {x :
∀Ri(Ri ∈ R � Ri(x) ∩ X �= ∅)}. But Ri(x) ∩ X �= ∅ if and only if
∃x′(x′ ∈ X & 〈x, x′〉 ∈ Ri). Thus, ε1(X) = {x : ∀Ri(Ri ∈ R � x ∈
R�(X))}. qed

Exercise 12.10.
(a) Consider the system R collecting the following two equivalence
relations on U4 = {a, b, c, d}:

E1 a b c d

a 1 1 1 0
b 1 1 1 0
c 1 1 1 0
d 0 0 0 1

E2 a b c d

a 1 1 0 0
b 1 1 0 0
c 0 0 1 1
d 0 0 1 1

(a.1) Compute the operators ε1, ε2, κ1 and κ2 starting from the two
bases {B1

x}x∈U4 and {B2
x}x∈U4.

(a.2) Consider the pre-topologies P1(R) = 〈U4, ε
1,κ1〉 and P2(R) =

〈U4, ε
2,κ2〉. Do P1(R) or P2(R) coincide with the Approximation

Space induced by 〈U4, E1 ∩ E2〉?
(b) Consider the following relations on U3 = {a, b, c, }:

R1 a b c

a 1 0 0
b 0 1 0
c 0 1 0

R2 a b c

a 1 1 0
b 1 1 0
c 0 0 1

(b.1) Compute ε1, ε2, κ1 and κ2 by starting with the two bases {B1
x}x∈U3

and {B2
x}x∈U3 .

(b.2) Are 〈U3, ε
1,κ1〉 and 〈U3, ε

2,κ2〉 pre-topological structures?
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We must distinguish pre-topological spaces that are connected with a
system of relations R and pre-topological spaces that are induced by
R. However, if P is induced by R we can find a system of relations R′

such that P is connected with it, in a straightforward way.
Indeed, so far we have discussed spaces generated by arbitrary fam-

ilies of binary reflexive relations. However we can prove that particular
types of spaces are generated by families of binary reflexive relations
organised in a specific manner.

If R = {Ri}i∈I is a system of binary reflexive relations and P1(R) =
〈U, ε1,κ1〉 is the pre-topological space 1-associated with R, then we
can regard any Ri as a vicinity (nearness) relation on U . Clearly, if
R′

i ⊇ Ri, then R′
i(x) ∈ κ1

x, because by definition Ri(x) ∈ κ1
x. Therefore

we can think of I principal filters of relations ordered by ⊆, generated by
R = {Ri}i∈I . The collection of these filters is called a pseudo-uniformity
generated by R, and denoted by U(R) (see Figure 12.7).

Figure 12.7: A pseudo-uniformity

Definition 12.7.2. Let R = {Ri}i∈I be a system of relations, then the
family U(R) =⇑ {Ri}i∈I is called a pseudo-uniformity.

Remarks. Notice that a pseudo-uniformity is a system of relations, not

a system of relation neighborhoods.

Proposition 12.7.2. Let U(R) be a pseudo-uniformity such that each
R ∈ R is reflexive. Then,

1. The pre-topological space P(U(R)) connected with U(R) coincides
with the pre-topological space P1(R) 1-associated with R.

2. P(U(R)) is a pre-topological space of type VI .

Proof. Directly from Definitions 12.7.2 and Proposition 12.7.1. qed
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So, pseudo-uniformities provide us with the intuitive concept of a family
of vicinity relations, or, under a slightly different point of view, they
provide us with a qualitative (non numerical) notion of nearness. In
this intuitive context, the requirement that in any pseudo-uniformity
U(R), if R ∈ U(R) and R ⊆ R′, then R′ ∈ U(R), rests on the intuition
that if two points x and y are estimated to be near with respect to a
given point of view (or resolution) then they are near also with respect
to a less refined point of view (i.e. with respect to a coarser resolution).
The opposite, of course, does not hold, because a better resolution can
separate x and y.

Moreover a different scenario is given by the requirement that if x
and y are estimated to be near with respect to both the relations R and
R′, then they must be estimated near also with respect to the relation
R ∩R′. This is the behaviour of pre-topological spaces of type VD, so
that the situation in which U(R) is closed under intersections needs a
new name:

Definition 12.7.3. If R = {Ri}i∈I is a system of relations, and U(R)
a pseudo-uniformity such that R,R′ ∈ R implies R ∩ R′ ∈ R, then
U(R) is called a pre-uniformity.

Notice that since both R and R′ are required to be reflexive, the so
called diagonal Δ(U) = {〈x, x〉 : x ∈ U} is always included in R∩R′, so
that the intersection of elements of R is never empty (see Figure 12.8).

Figure 12.8: A pre-uniformity

Corollary 12.7.1. Let U(R) be a pre-uniformity such that each R ∈ R

is reflexive and R′ = {R}, for R reflexive. Then,

1. P(U(R)) is a pre-topological space of type VD.

2. U(R′) =↑ R is a pre-uniformity.
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Proof. From Definitions 12.7.1, 12.7.3 and Proposition 12.6.2, because
if U(R) is a pre-uniformity then N (U(R)) is a filter. qed

The catalogue of the interesting pre-topologies does not reduces to
the above cases. Indeed, it is not complete if we miss the following
important case:

Definition 12.7.4. A pre-topological space P = 〈U, ε,κ〉 is said to be
of type VCl if the operator ε is a closure operator, that is, inflation-
ary, isotonic and idempotent and κ is an interior operator, that is,
deflationary, isotonic and idempotent.

The pre-topological space P1 of Example 12.6.2 is of type VCl (notice
that, however, it is not of type VD. Therefore, distributivity might not
hold).

Proposition 12.7.3. N (U) is a neighborhood system of type N2Id if
and only if its induced pre-topological space is of type VCl.

Proof. From Proposition 12.4.10 and Lemma 12.4.1.(N1) and (N2), G
is inflationary and isotonic if and only if N1 and N2 hold in N (U).
qed

Moreover,

Proposition 12.7.4. Let R = {Ri}i∈I be a system of preorder rela-
tions on U . Then,

1. In the pre-topological space P1(R) = 〈U, ε1,κ1〉 the operators ε1

and κ1 are isotonic and idempotent.

2. The family {⇑ B1
x}x∈U is a neighborhood system of type N2Id.

Proof. We prove only (1) because {κ1
x}x∈U = {⇑ B1

x}x∈U and (1) implies
that {κ1

x}x∈U is a neighborhood system of type N2Id.
Isotonicity derives from the construction of P1(R) via {⇑ B1

x}x∈U .
Let us prove the assertion about the idempotence of κ1 through its

contraposition. If κ1 is not idempotent then there is an A ⊆ U such
that κ1(A) � κ1(κ1(A)) (indeed, κ1(κ1(A)) ⊆ κ

1(A) always holds).
In this case there is a y ∈ κ1(A) such that y /∈ κ1(κ1(A)). Therefore
there is a set B ∈ B1

y such that B ⊆ A (so that y ∈ κ1(A)), but for
every B′ ∈ B1

y, B′
� κ

1(A) (so that y /∈ κ

1(κ1(A))). In particular
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B � κ1(A). It follows immediately that there is an element b ∈ B such
that b /∈ κ1(A). This means that for all B′′ ∈ B1

b , B′′
� A. But B has

the form Ri(y), for some index i, and B′′ has the form Rj(b), for every
index j. Therefore we can put i = j. To sum up, there is a y ∈ U such
that for all b ∈ Ri(y), b ∈ A but for some b ∈ Ri(y) there is a b′ ∈ Ri(b)
such that b′ /∈ A. It follows that b′ /∈ Ri(y). Hence Ri is not transitive,
so that it is not true that all the members of R are preorders. qed

The converse of the above Proposition does not hold because we can
have systems of relations R such that none of their components is
a preorder but, nonetheless, in P1(R) the operator κ1 (resp. ε1) is
idempotent.

Example 12.7.2. A system R of non-preorder relations, which induces
a pre-topological space of type VCl
Notice: Under the assumptions of Proposition 12.6.7, in what follows we shall work
on pre-topological bases, instead of induced filters.

Let R be the collection of relations of Example 12.7.1.
It is easy to check that neither relation is transitive (〈a, c〉 ∈ R2, 〈b, a〉 ∈ R2 but

〈b, c〉 /∈ R2; 〈a, b〉 ∈ R1, 〈b, c〉 ∈ R1 but 〈a, c〉 /∈ R1).
The basis B1 is given by

B1
x B1

a B1
b B1

c

B1
x {{a, b}, {a, c}} {{b, c}, {a, b}} {{a, c}, {b, c}}

Therefore the operator κ1 is given by:

x ∅ {a} {b} {c} {a, b} {a, c} {b, c} U

κ

1(x) ∅ ∅ ∅ ∅ {a, b} {a, c} {b, c} U

Hence κ1 is idempotent. Indeed, the family {κx}x∈U is a neighborhood system of
type N2Id.

So it is observed that the important mathematical notion of a clo-
sure (interior) operator is connected, in particular contexts, with pre-
topological spaces induced by systems of relations featuring specific
properties, namely preorders.

We sum-up the above results in Table 12.4.
The last row will be the target of what follows.
We recall that from Proposition 12.5.4, if 〈U, ε,κ〉 is of type VI , then
for any X ⊆ U , κ(X) = {x ∈ U : ∃N(N ∈ Nx & N ⊆ X)} and
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Table 12.4: Correspondence between pre-topology types and neighbor-
hood system types
〈U, ε,κ〉 Characteristic if Nκ(U)
is said of type: properties is of type:
VId κ(κ(X)) = κ(X) ε(ε(X)) = ε(X) N1Id

VI X ⊆ Y ⇒ κ(X) ⊆ κ(Y )
[resp. ε(X) ⊆ ε(Y )]

N2

VD ε(X ∪ Y ) = ε(X) ∪ ε(Y )
[resp. κ(X ∩ Y ) = κ(X) ∩ κ(Y )]

N3

VCl ε [resp. κ] is a closure
[resp. interior] operator

N2Id

VS ε(X) =
⋃

x∈X ε({x}) N4

topological ε [resp. κ] is a topological closure
[resp. interior] operator

N3Id, N4Id

ε(X) = {x ∈ U : ∀N(N ∈ Nx � N ∩X �= ∅)}, that is, in VI spaces the
contraction operator (the expansion operator) has the same definition
as the interior (closure) operator in usual topological spaces. Moreover,
notice that if U is finite, then the notions of VS and VD pre-topological
spaces coincide.

Remarks. If we think of a neighborhood system as the image of a relation

R ⊆ U × ℘(U), then we can ask what are the relationships between κ,

G and the perception operator int introduced in Chapter 2, and the role

played by Id, N1, N2 and so on in these relationships. This point will be

developed il Lemma 15.14.4 of Frame 15.14.

In what follows we abandon systems of relations and from now on we
shall focus on single relation based pre-topologies. About them we have
a first set of results:

Corollary 12.7.2. Let P(R) = 〈U, εR,κR〉 be a pre-topological space
associated with a reflexive binary relation R. Then for any X ⊆ U :

1. P(R) is of type VS.

2. κR(X) = {x : R(x) ⊆ X}.

3. κR(X) =
⋃
{Y : R(Y ) ⊆ X}.
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4. εR(X) = R�(X).

5. κR
x =⇑ {R(x)}, for all x ∈ U .

Proof. (1) Trivially, from Proposition 12.6.9 since R(x) is a single
subset of U . (2) From Proposition 12.7.1. (3) From the additivity of
R-neighborhoods. (4) From Proposition 12.7.1. (5) From Proposition
12.7.1 and the definition of a basis of a filter. qed

Notice that we cannot prove κR(X) = R(X), in contrast with εR(X) =
R�(X); conversely, we cannot prove εR(X) =

⋂
{Y : R�(Y ) ⊇ X}, in

contrast to κR(X) =
⋃
{Y : R(Y ) ⊆ X}.

Example 12.7.3. If R is not a preorder, then R�(X) �=
⋂
{R�(Z) :

X ⊆ R�(Z)}
We show that reflexivity is not enough in order to turn the above inequality into
equality. Consider the following reflexive but not transitive relation:

R a b c

a 1 0 1
b 1 1 1
c 0 1 1

{R�(Z) : {b} ⊆ R�(Z)} = {{a, b}, {b, c}, {a, b, c}}. Thus
⋂
{R�(Z) : {b} ⊆

R�(Z)} = {b} �= R�({b}) = {b, c}. Indeed, the problem is that b ∈ R(c), a ∈ R(b)
but a /∈ R(c). Thus c /∈ R�({a}) so that c /∈

⋂
{R�(Z) : {b} ⊆ R�(Z)}, although

R�({a, b}) ∈ {R�(Z) : {b} ⊆ R�(Z)}.

In view of Definition 12.1.2 we obtain immediately the following

Corollary 12.7.3. Let P(R) = 〈U, εR,κR〉 be a pre-topological space
associated with a reflexive binary relation R. Then for any X ⊆ U ,

1. κR(X) = LR(X).

2. εR(X) = MR(X).

12.7.1 Excursus: Pre-topological Spaces
and Modal Algebras

Let us set ΩκR(U) = {X ⊆ U : κR(X) = X}. We should now ask
if the system 〈B(U),ΩκR(U)〉 is a modal system. From the point of
view of Definition 11.5.4 the answer is negative because in general we
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cannot define κR(X) (i.e. LR(X)) as U
Ω

κ
R=⇒ (X), that is, κR(X) does

not coincide with the greatest element of ΩκR(U) below X, because
of the trivial reason that this element might not exist. This limitation
is due to the fact that without further constraints, generally ΩκR(U)
is not a sup-subsemilattice of ℘(U). Moreover notice that this fact is
independent of the distributive properties of κR (see Example 12.8.1).

To analyse this topic, we shall use the following Lemma:

Lemma 12.7.1. Let 〈B(U), k(B(U))〉 be a k-modal system such that
the knowledge map k is connected with a relation R ⊆ U × U . Let, for

any X ⊆ U , L∗R(X) =
⋃
{R(Z) : R(Z) ⊆ X} and !R(X) = U

k(B(U))
=⇒

X = max{Z ∈ k(B(U)) : Z ⊆ X}. Then for any X ⊆ U ,

1. L∗R(X) =!R(X).

2. If R is reflexive, then LR(X) ⊆ L∗R(X).

3. If R is a preorder, then LR(X) = L∗R(X).

Proof. (1) !R(X) = max{Y ∈ k(B(U)) : Y ⊆ X} = max{Y ∈
{R(Z)}Z⊆U : Y ⊆ X} = max{R(Z) : R(Z) ⊆ X}. But from the
additivity of R-neighborhoods, max{R(Z) : R(Z) ⊆ X} =

⋃
{R(Z) :

R(Z) ⊆ X} = L∗R(X). (2) Suppose a ∈ LR(X). Then R(a) ⊆ X,
so that R(a) ⊆

⋃
{R(Z) : R(Z) ⊆ X}. If R is reflexive, a ∈ R(a)

and, therefore, a ∈
⋃
{R(Z) : R(Z) ⊆ X} = L∗R(X) (the reverse

inclusion does not hold – cf. Example 12.8.1). (3) In view of (2) we
have only to prove the reverse inclusion. Suppose R is a preorder and
a ∈
⋃
{R(Z) : R(Z) ⊆ X}. Then there is a b such that a ∈ R(b) and

R(b) ⊆ X. Now, for any c such that c ∈ R(a), c ∈ R(b) by transitivity
of R. Therefore c ∈ X. It follows that R(a) ⊆ X and we can conclude
that a ∈ {x : R(x) ⊆ X}. qed

We show some instances of this point in Example 12.8.1 below.
So, we have partially solved the problem issued at the end of Section

12.1: LR(X) = L∗R(X) and MR(X) = M∗
R(X) if and only if R is a

preorder. Otherwise stated:

Corollary 12.7.4. If 〈B(U), k(B(U))〉 is a k-modal system such that
the knowledge map k is connected with a relation R ⊆ U × U , then
〈B(U), k(B(U))〉 is a modal system if and only if for any X ⊆ U ,
X ⊆ k(X) and if X ′ ⊆ k(X), then k(X ′) ⊆ k(X).
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However, pre-topological spaces are naturally connected with a more
general class of modal structures called modal algebras:

Definition 12.7.5. A modal algebra is a pair 〈B,�〉, where B is a
non degenerate Boolean algebra closed under a unary operation �.

We have trivially:

Proposition 12.7.5. Let U be a set and N (U) a neighborhood system
over U . Then 〈B(U), G〉 is a modal algebra.

Conversely,

Proposition 12.7.6. Let 〈B(U),�〉 be a modal algebra of the subsets
of a set U . Let us set for all X ⊆ U , X ∈ N�

x if and only if x ∈ �(X).
Then N�(U) = {N�

x }x∈U is a neighborhood system.

A more general form of duality between modal algebras and neighbor-
hood system is discussed in Frame 15.15.

Now we continue our analysis of pre-topological spaces.
In order to compare two pre-topological spaces associated with two

binary relations it is sufficient to compare the relations themselves:

Corollary 12.7.5. Let P1 and P2 be two pre-topological spaces on
the same universe U , associated with two reflexive binary relations on
U , R1 and R2, respectively. Then P2 � P1 if and only if for any
x ∈ U,R1(x) ⊆ R2(x), if and only if R1 ⊆ R2.

Dually, given a pre-topological space, we can define a reflexive binary
relation associated with it:

Proposition 12.7.7. (T-association) Let P = 〈U, ε,κ〉 be a pre-topo-
logical space. Let us set:

〈x, y〉 ∈ RT (P) iff y ∈
⋂

{X : X ∈ κx} (T )

Then RT (P) is a reflexive binary relation on U .

Proof. Trivial: since by definition x ∈
⋂
{X : X ∈ κx}, then 〈x, x〉 ∈

RT (P). qed

We shall say that RT (P) is T-associated with the pre-topology P and
denote this relation with RT whenever the pre-topological space P is
understood.
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In general, given a pre-topological space P, it is possible to link it
to a pre-topological space that is associated with a reflexive binary
relation, in a unique way.

Proposition 12.7.8. Let P = 〈U, ε,κ〉 be a pre-topological space.
Then,

1. P � P(RT (P)).

2. If P is of type VS, then P = P(RT (P)).

3. If P is associated with a relation R, then R is T-associated with
the pre-topological space P, that is, R = RT (P(R)).

Proof. (1) P(RT (P)) κRT

x is induced by the family RT (x), and for any
x ∈ U , RT (x) =

⋂
{X : X ∈ κx}, so that RT (x) ⊆ X, for any X ∈ κx.

Therefore, κx ⊆ κ

RT

x . (2) Suppose P is of type VS . Then for any
x ∈ U there is a subset X of U such that κx =↑ X. Since y ∈ RT (x)
iff y ∈

⋂
{X : X ∈ κx} = X, we obtain κx = κ

RT

x . (3) From Definition
12.7.1 if P is associated with a relation R, then it is induced by the
basis {R(x)}x∈U . Therefore, κx =⇑ {R(x)} = {↑ R(x)}. Hence, from
Proposition 12.6.4, P is of type VS , so that from point (2) we obtain
the result. qed

Remarks. The above Proposition 12.7.8 guarantees that given a pre-

topological space P = 〈U, ε,κ〉 of type VS, we can derive the properties

of P from those of P(RT (P)).

As to the inequality (1) of Proposition 12.7.8, it is possible to show that
if P is of type VI , then P(RT (P)) is the coarsest pre-topology among
those of type VS that are finer than P (see Frame 15.3 for a proof).

We can also associate a pre-topology to a tolerance (i.e. reflexive
and symmetric) relation:

Proposition 12.7.9. (B-association) Let P = 〈U, ε,κ〉 be a pre-
topological space. Let us set, for all x, y ∈ U :

〈x, y〉 ∈ RB(P) iff y ∈
⋂

{X : X ∈ κx}� x ∈
⋂

{Y : Y ∈ κy} (B)

Then R is a reflexive and symmetric relation.

Proof. Trivial. qed

We shall say, that RB(P) is B-associated with the pre-topology P.
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12.7.2 Excursus. Pre-Topological Spaces
and Approximation Spaces

From Proposition 12.7.8 we know that P �P(RT (P)) and RT (P(R)) =
R. So we wonder what information P(RB(P)) and RB(P(R)) carry.
We shall give the answer as a corollary of the following more general
statement about families of binary relations, as treated in Excursus
12.4.1.

Proposition 12.7.10. Let U be a set and {Rj}1≤j≤n a family of
n reflexive binary relations on U . Let 1 ≤ m ≤ n and let Pm =
〈U, εm,κm〉, with the operators εm and κm, as defined by Definition
12.6.8. Moreover let us set R∗ =

⋃

1≤j≤n
Rj and R∗ =

⋂

1≤j≤n
Rj . Then,

1. RT (Pn) = R∗.

2. RT (P1) = R∗.

3. RB(Pn) is the largest tolerance relation included in R∗.

4. RB(P1) is the largest tolerance relation included in R∗.

The proof is given in Frame 15.3

Corollary 12.7.6. For any family of n reflexive binary relations,
P(RT (Pn)) � P(RB(Pn)).

Therefore, trivially, if we are given just one reflexive binary relation
R, then RB(P(R)) ⊆ R, because RB(P(R)) is the largest tolerance
relation included in R, while if we are given a pre-topological space P,
then P(RB(P)) is the pre-topological space associated with the largest
tolerance relation included in RT (P). It follows that P � P(RB(P))
(the equality is not uniformly valid even if P is of type VS ; in fact in
this case we have, generally, P = P(RT (P) � P(RB(P))).

Corollary 12.7.7. Let P = 〈U, ε,κ〉 be a pre-topological space. Then
P(RB(P)) is the coarsest pre-topology among the pre-topological spaces
finer than P and associated with a tolerance relation.

A direct proof is in Frame 15.4.

Corollary 12.7.8. Let U be a set and {Rj}1≤j≤n a system of n reflexive
binary relations on U , such that R∗ =

⋃

1≤j≤n
Rj (such that R∗ =
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⋂

1≤j≤n
Rj) is transitive. Then, P(RB(Pn)) (respectively P(RB(P1)))

is the Approximation Space induced by the largest tolerance relation
included in R∗ (respectively included in R∗).

Particularly, if RT (P) is a binary transitive relation on U , then
P(RB(P)) is the Approximation Space induced by the largest toler-
ance relation included in RT (P), so that we can say that P(RB(P))
is the coarsest Approximation Space finer than the pre-topological
space P.

Definition 12.7.6. Let P be a pre-topological space, then:

1. If RT (P) is a tolerance relation, then P is said to be weakly
symmetric.

2. If RT (P) is an equivalence relation, then P is said to be strongly
symmetric.

Therefore, any pre-topological space of the form P(RB(P)), is weakly
symmetric and any pre-topological space of the form P(RB(P)) such
that RT (P) is a transitive and reflexive, is strongly symmetric.

Corollary 12.7.9. Let P = 〈U, ε,κ〉 be a pre-topological space, then:

1. P is weakly symmetric if given x, y ∈ U, x ∈ ε({y}) implies y ∈
ε({x}).

2. P is strongly symmetric if given x, y ∈ U, x ∈
⋂
{X : X ∈ κy}

implies κx = κy.

3. P is strongly symmetric if {
⋂
κx : x ∈ U} forms a partition of U .

Weakly symmetric pre-topological spaces are connected with a partic-
ular kind of pre-uniformity structures:

Definition 12.7.7. Let U(R) be a pre-uniformity of reflexive relations
over a set U , such that for all R ⊆ U × U , R ∈ U(R) implies R� ∈
U(R). Then U(R) is called a semi-uniformity.

Proposition 12.7.11. If U(R) is a semi-uniformity then its connected
pre-topological space P(U(R)) is weakly symmetric.
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Example 12.7.4. Associating pre-topologies with reflexive binary rela-
tions
Some examples.

T-association: RT (P1), RT (Pn)
Consider the system of relations R worked in Excursus Dynamics 2.

In view of the basis computed in Section 12.6.2, we derive the following table:

⋂
Bm

x

⋂
Bm

a

⋂
Bm

b

⋂
Bm

c
⋂
B1

x {a} {b} {c}
⋂
B2

x {a, c} {b} {c}
⋂
B3

x U {a, b} {c}

Consider P1(R) and call it P1, for short. Let us compute RT (P1). Since for all
x ∈ U , κm

x =⇑
⋂
Bm

x , we can work on the generators of the basis.
(i) a ∈

⋂
B1

x, for x = a; (ii) b ∈
⋂
B1

x, for x = b; (iii) c ∈
⋂
B1

x, for x = c.
Therefore we obtain:

RT (P1) a b c

a 1 0 0
b 0 1 0
c 0 0 1

We immediately see that RT (P1) and R∗ coincide. Notice, anyway, that RT (P1) is
a transitive relation by chance.

Incidentally, here we can verify that P1 � P(RT (P1)). Indeed, P(RT (P1)) has
the following family of basis: Ba = {{a}},Bb = {{b}},Bc = {{c}}. Clearly Ba

induces a filter Fa =↑ {a} which is finer than F 1
a (i.e. {{a, b}, {a, c}, {a, b, c}} –

cf. Section 12.6.2). Indeed, we can recognize that P1 is not of type VS, because⋂
B1

a /∈ B1
a.

Now let us compute RT (P3):
(i) a ∈

⋂
B3

x, for x ∈ {a, b}; (ii) b ∈
⋂
B2

x, for x ∈ {a, b}; (iii) c ∈
⋂
B3

x, for
x ∈ {a, c}.

So, for instance, since c ∈
⋂
B2

a, 〈a, c〉 ∈ RT (P3).
Summing up, we obtain:

RT (P3) a b c

a 1 1 1
b 1 1 0
c 0 0 1

We immediately verify RT (P3) = R∗.
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B-association: RB(Pn), RB(P1).
Let U = {a, b, c, d, e} and R1, R2, R∗, R∗ be given by

R1 a b c d e

a 1 1 1 1 1
b 1 1 1 1 1
c 1 1 1 1 1
d 0 0 0 1 1
e 0 0 0 1 1

R2 a b c d e

a 1 1 1 1 1
b 1 1 1 1 1
c 0 0 1 0 0
d 0 0 0 1 1
e 0 0 0 1 1

R∗ a b c d e

a 1 1 1 1 1
b 1 1 1 1 1
c 0 0 1 0 0
d 0 0 0 1 1
e 0 0 0 1 1

R∗ a b c d e

a 1 1 1 1 1
b 1 1 1 1 1
c 1 1 1 1 1
d 0 0 0 1 1
e 0 0 0 1 1

By easy computation, applying the two formulas B1
x = {R1(x), R2(x)} and B2

x =
{R1(x) ∪ R2(x)} we obtain:

Bm
x Bm

a Bm
b Bm

c Bm
d Bm

e

B1
x {U} {U} {{c}, U} {{d, e}} {{d, e}}
B2

x {U} {U} {U} {{d, e}} {{d, e}}

From the above table we derive the following one:

⋂
Bm

x

⋂
Bm

a

⋂
Bm

b

⋂
Bm

c

⋂
Bm

d

⋂
Bm

e
⋂
B1

x U U {c} {d, e} {d, e}
⋂
B2

x U U U {d, e} {d, e}

Let us compute RB(P1):
(i) a ∈

⋂
B1

x, for x ∈ {a, b}; (ii) b ∈
⋂
B1

x, for x ∈ {a, b}; (iii) c ∈
⋂
B1

x, for
x ∈ {a, b, c}; (iv) d ∈

⋂
B1

x, for x ∈ {a, b, d, e}; (v) e ∈
⋂
B1

x, for x ∈ {a, b, d, e}.
Therefore, for instance, 〈a, b〉 and 〈b, a〉 ∈ RB(P1), while 〈a, e〉 and 〈e, a〉 /∈

RB(P1) because although e ∈ U =
⋂
B1

a, a /∈ {d, e} =
⋂
B1

e (in order to understand
if 〈x, y〉 ∈ RB(P1), it is sufficient to compare the ranges of validity of the membership
relation for x and y: {x, y} is included in both of them, hence 〈x, y〉 ∈ RB(P1)).

Summing up, we obtain:

RB(P1) a b c d e

a 1 1 0 0 0
b 1 1 0 0 0
c 0 0 1 0 0
d 0 0 0 1 1
e 0 0 0 1 1

Comparing this relation with R∗, we immediately see that it is the largest toler-
ance relation included in R∗. Incidentally, since R∗ is transitive, RB(P1) is also an
equivalence relation.
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Now let us compute RB(P2):
(i) a ∈

⋂
B2

x, for x ∈ {a, b, c}; (ii) b ∈
⋂
B2

x, for x ∈ {a, b, c}; (iii) c ∈
⋂
B2

x, for
x ∈ {a, b, c}; (iv) d ∈

⋂
B2

x, for x ∈ {a, b, d, e}; (v) e ∈
⋂
B1

x, for x ∈ {a, b, d, e}.
Therefore, for instance, now 〈a, c〉, 〈b, c〉, 〈c, a〉 and 〈c, b〉 ∈ RB(P2).
We obtain:

RB(P1) a b c d e

a 1 1 1 0 0
b 1 1 1 0 0
c 1 1 1 0 0
d 0 0 0 1 1
e 0 0 0 1 1

Comparing this relation with R∗, we immediately see that it is the largest tol-
erance relation included in R∗. Also in this case, since R∗ is transitive, RB(P2) is
an equivalence relation.

We conclude noticing that if the pre-topological space P is of type VS, then it
can be associated with a pre-topology which is the finest among the pre-topology
T-associated with a tolerance relation and that are coarser than P. Suffices it to
consider for any x ∈ U the basis Bx =

⋂
κx ∪ {y : x ∈ κy}.

Exercise 12.11.
Draw directed graphs representing R1, R2, R

B(P1) and RB(P2).

A relation R such that RB(P(R)) is a tolerance but not an
equivalence relation

Consider the following relation R:

R a b c d

a 1 1 0 0
b 1 1 1 0
c 0 1 1 1
d 0 0 0 1

By easy inspection we can observe that R is not transitive. For instance 〈a, b〉 ∈ R,
〈b, c〉 ∈ R, but 〈a, c〉 /∈ R.

If we transform it into the relation RB(P(R)), then we obtain a tolerance relation
and not an equivalence (because of the lack of transitivity). The basis for P(R) is:

x a b c d

Bx {{a, b}} {{a, b, c}} {{b, c, d}} {{d}}

(i) a ∈
⋂
Bx, for x ∈ {a, b}; (ii) b ∈

⋂
Bx, for x ∈ {a, b, c}; (iii) c ∈

⋂
Bx, for x ∈

{b, c}; (iv) d ∈
⋂
Bx, for x ∈ {c, d}. Therefore, for instance, a ∈

⋂
Bb and b ∈

⋂
Ba,

so that 〈a, b〉 ∈ RB(P(R)); d ∈
⋂
Bc but c /∈

⋂
Bd, so that 〈c, d〉 /∈ RB(P(R)).

Summing up:

RB(P(R)) a b c d

a 1 1 0 0
b 1 1 1 0
c 0 1 1 0
d 0 0 0 1
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and we can easily notice that RB(P(R)) ⊆ R (in fact, 〈c, d〉 ∈ R, while 〈c, d〉 /∈
RB(P(R))).

Exercise 12.12.
Draw two directed graphs representing R and RB(P(R)).

12.8 Topological Spaces and Binary Relations

We are eventually at one step from our main goal in the Subsection:
linking topologies and relations.

Until now, we have considered pre-topological spaces and specifi-
cally, pre-topological spaces associated with reflexive or tolerance rela-
tions.

Now we have to understand what happens in case of a topological
space.

First of all, let us define topological spaces and understand the basic
differences between them and their closest relatives: pre-topological
spaces of type VId, VCl and VS.

Definition 12.8.1. A pre-topological space 〈U, ε,κ〉 of type VD is a
topological space if for any x, κx satisfies property (τ).

For the reader’s convenience, we recall here this property: for any
x ∈ U,X ⊆ U ,

if X ∈ κx, then there is a Y ∈ κx such that for any y ∈ Y,X ∈ κy

Usually, pre-topological spaces do not fulfill this property.
A pre-uniformity connected with a pre-topological space fulfilling

(τ), satisfies the property described in the following definition:

Definition 12.8.2. Let U(R) be a pre-uniformity such that for each
R ∈ U(R) there is an R′ ∈ U(R) such that R′ ⊗ R′ ⊆ R. Then U(R)
is called a quasi-uniformity.

We remind that given two relations R and R′ on a set U , R⊗R′ is the
concatenation {〈x, y〉 : ∃z( 〈x, z〉 ∈ R & 〈z, y〉 ∈ R′)}.

Intuitively, quasi-uniformities provide us with a notion of “non-
discontinuity”: if 〈a, c〉 ∈ R, then there is a b in between a and c,
that is, a b such that 〈a, b〉 ∈ R and 〈b, c〉 ∈ R. Conversely if 〈a, b〉 ∈ R
and 〈b, c〉 ∈ R, then 〈a, c〉 ∈ R, too.
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Proposition 12.8.1. Let U(R) be a pre-uniformity of reflexive rela-
tions. Then, if U(R) is a quasi-uniformity, its connected pre-topological
space P(U(R)) fulfills (τ).

We have seen at the very beginning of this story that isotonicity plus
property τ give idempotence. Therefore, if a neighborhood system ful-
fills 0, 1, N1, N2 and (τ), then the operators κ and ε are idempotent
in the induced pre-topological space.

In this Section we want to analyse the connections between topolog-
ical properties and binary relations. More precisely, let 〈U, εR,κR〉 be
a pre-topological space associated with a binary relation R. We won-
der whether R has to enjoy specific properties whenever 〈U, εR,κR〉 is
a topological space. The answer is positive: there is a strict connec-
tion between topological spaces and preorders, i.e. binary reflexive and
transitive relations.

Proposition 12.8.2. Let P = 〈U, εR,κR〉 be a pre-topological space
associated with a reflexive binary relation R ⊆ U × U . Then P is a
topological space if and only if R is transitive.

Proof. (A) �: Assume that (τ) holds. In case of pre-topological spaces
induced by a reflexive binary relation R, property (τ) reads:

(∗) ∀x ∈ U,∀X ⊆ U(X ∈ κR
x � ∃Y (Y ∈ κR

x &∀y ∈ Y (X ∈ κR
y ))).

So, take X = R(x). Assume (*) holds for some Y . Then, (i) X is
the least element of κR

x . (ii) ∀y ∈ Y,X ⊇ R(y) (from the assumption
and Corollary 12.7.2.(5)). (iii) Y ⊆ X, because R is reflexive. Hence,
(iv) X = Y . Therefore, (v) for all x′ ∈ R(x), R(x′) ⊆ R(x), that is,
R(x) ⊇ R(x′) for all x′ ∈ X. Hence, (vi) R(x) ⊇ R(y). But X = Y .
Therefore R(x) ⊇ R(R(x)), which is the axiom for transitivity.

(B) �: Suppose (*) does not hold. Therefore we have:

(∗∗) ∃x,∃X(X ∈ κR
x &∀Y (Y ∈ κR

x � ∃y(y ∈ Y&X /∈ κR
y ))).

So, choose Y = R(x). We have elements x and y such that: (i) 〈x, y〉 ∈ R
and X /∈ κR

y ; hence (ii) 〈x, y〉 ∈ R and X /∈↑ R(y); (iii) 〈x, y〉 ∈ R and
R(y) � X; (iv) 〈x, y〉 ∈ R and there exists a z such that 〈y, z〉 ∈ R and
z /∈ X. But X ∈ κR

x , so that R(x) ⊆ X. We obtain: (v) 〈x, x′〉 ∈ R

implies x′ ∈ X. From (iv) and (v) we conclude that 〈x, z〉 /∈ R. Hence
R is not transitive. qed
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Proposition 12.8.3. Let P = 〈U, ε,κ〉 be a topological space induced
by a basis B = {Bx}x∈U . Then,

1. For any x ∈ U : (a)
⋂
κx is open; (b)

⋂
Bx is open: (c)

⋂
κx is

the least open set containing x.

2. For any X ⊆ U , κ(X) =
⋃
{κ(Z) : κ(Z) ⊆ X}.

Proof. (1) (a) For any x ∈ U , κx =⇑ Bx and from Proposition 12.6.1
we have

⋂
⇑ Bx ∈ Bx. Thus we obtain

⋂
κx ∈ κx. So, from the topo-

logical property (τ), there is a Y ∈ κx such that
⋂
κx ∈ κy for any

y ∈ Y . But this means that any y belonging to Y belongs to
⋂
κx, too

(because, by definition, if A ∈ κy, then y ∈ A). Henceforth, Y ⊆
⋂
κx.

But
⋂
κx is the least element of κx and Y belongs to κx. It follows

that Y =
⋂
κx and we can conclude that

⋂
κx is a neighborhood of

all its own elements. Hence it is open. (b) is straightforward from the
equality κx =⇑ Bx. (c) is obvious, because if x ∈ κ(A) = A, then
A ∈ κx, so that A ⊇

⋂
κx. (2) If P is a topological space, then κ is

isotonic and idempotent. Therefore, if κ(Z) ⊆ X, then, for isotonicity,
κ(κ(Z)) ⊆ κ(X). That is to say, for idempotence, κ(Z) ⊆ κ(X). Con-
versely, if κ(Z) ⊆ κ(X), since κ is deflationary κ(Z) ⊆ κ(X) ⊆ X. It
follows, immediately, κ(X) =

⋃
{κ(Z) : κ(Z) ⊆ X}. qed

Notice that Proposition 12.8.3.(2) is not that trivial when we frame it
in topological spaces connected with binary relations, as we are going
to see in the next corollary. Indeed, if isotonicity or idempotence fails,
then this result does not hold any longer.

Example 12.8.1. Idempotence, preorders and contractions
The pre-topology P2 of Example 12.6.7 provides us with an example of the fact that
the lack of idempotence makes the equivalence κ(X) =

⋃
{κ(Y ) : κ(Y ) ⊆ X} fail.

In fact, κ({c}) = ∅, while
⋃
{κ(Y ) : κ(Y ) ⊆ X} = {c}.

It must be noticed that, a fortiori, κ(X) �=
⋃
{Y : κ(Y ) ⊆ X}. So do not

confuse the set {x : κR(x) ⊆ X} (which has no meaning) with the set {x : R(x) ⊆
X} (which gives κR(X) in case of pre-topological spaces of type VS) and the set
{R(Y ) : R(Y ) ⊆ X} (whose union gives κR(X) in case of a preorder R).

For another example consider the following non-transitive relation:

R3 a b c

a 1 1 0
b 0 1 1
c 0 0 1
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It gives the basis BR:

x a b c

BR3
x {{a, b}} {{b, c}} {{c}}

By applying in P(R3) the formula LR3(X) = κ

R3(X) = {x : ∃B(B ∈ BR3
x &

B ⊆ X)} we obtain:

X {a} {b} {c} {a, b} {a, c} {b, c} ∅ U

LR3(X) ∅ ∅ {c} {a} {c} {b, c} ∅ U

Thus, LR3({a, b}) = {a} �=
⋃
{R3(x) : R3(x) ⊆ {a, b}} =

⋃
{R3({a})} = R3({a}) =

{a, b}. This is due to the fact that although b ∈ R3({a}) and R3({a}) ⊆ {a, b},
nonetheless R3({b}) = {b, c} �⊆ {a, b} = R3({a}), because of the failure of transitiv-
ity. Hence, b /∈ {x : R3(x) ⊆ {a, b}}. Therefore

⋃
{R3(Z) : R3(Z) ⊆ {a, b}} contains

elements (viz. b) that do not fulfill the universal proviso of the necessity operator (i.e.
“LR3(X) = {x : ∀y, 〈x, y〉 ∈ R3 � y ∈ X}”). It follows that

⋃
{R3(Z) : R3(Z) ⊆ X}

is not a suitable formula for L(X), in this case.
Moreover notice that in case of lack of transitivity, the set of R-neighborhoods,

{∅, {a, b}, {b, c}, {c}, U}, and the set of necessitations {∅, {a}, {c}, {b, c}, U} do not
coincide. Henceforth we can observe that in this case it is not true that for any
A ⊆ U , if X = LR3(A), then X = R3(Y ) for some Y ⊆ U .

Also, observe that ΩR3(U) = {LR3(X) : X ⊆ U} is not a distributive sublattice
of B(U). Due to this fact we can see that the element max{X ∈ ΩR3(U) : X ⊆ Z}
might not exist for some subset Z of U . Indeed this is the case of {a, c}. Actually,
{X ∈ ΩR3(U) : X ⊆ {a, c}} = {{a}, {c}} which does not have a greatest element.
It can be noticed that

∨
{X ∈ ΩR3(U) : X ⊆ {a, b}} = U , but U � {a, c}.

To sum up, if a relation R is not a preorder, then BR is not a basis for ΩR(U)
in the topological sense. That is, there can be X, Y ∈ BR such that X ∪Y �= LR(Z)
for all Z ⊆ U .

Finally, it is worth noticing that if R lacks reflexivity, then {x : R(x) ⊆ X} is
not included in

⋃
{R(Z) : R(Z) ⊆ X}. For instance, consider the (non-reflexive)

relation R of Example 12.1.1.
Then, {x : R(x) ⊆ {b, c}} = {a, b, c}, while

⋃
{R(Z) : R(Z) ⊆ {b, c}} = {b, c}.

Indeed, the inclusion here failed was proved in Lemma 12.7.1 by exploiting reflex-
ivity. On the contrary, the reverse inclusion

⋃
{R(Z) : R(Z) ⊆ X} ⊆ {x : R(x) ⊆ X}

requires just transitivity. For instance, to prove that if b ∈
⋃
{R(Z) : R(Z) ⊆ {b, c}}

then b ∈ {x : R(x) ⊆ {b, c}}, first we need to notice that the antecedent is valid
because b ∈ R({a}) and R({a}) ⊆ {b, c}; second, we apply the transitivity of R
to show that R({b}) ⊆ R({a}). So we conclude R({b}) ⊆ {b, c} and can derive
b ∈ {x : R(x) ⊆ {b, c}}.

We can restate the property (τ) of Definition 12.8.1, in terms of
idempotence of εR and κR:

Corollary 12.8.1. Let P = 〈U, εR,κR〉 be a pre-topological space asso-
ciated with a reflexive binary relation R ⊆ U ×U . Then εR and κR are
idempotent if and only if R is transitive.
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Proof. (A) �: Suppose y ∈ R(x) and z ∈ R(y). It follows, from Propo-
sition 12.7.2, that y ∈ εR({z}) and x ∈ εR({y}). Since P is of type
VS (again from Proposition 12.7.2), the operator εR is isotonic. Hence
x ∈ εR(εR({z})). But if εR is idempotent, x ∈ εR({z}) and, as a
consequence, z ∈ R(x), which proves that R is transitive.

(B) �: Suppose R is transitive. Then, since by default R is also
reflexive, we have R(R(x)) = R(x). Hence R�(R�(x)) = R�(x). So,
from Proposition 12.7.2 εR(εR(x)) = εR(x). For κR the proof is by
duality. qed

Therefore, reflexive and transitive relations, i.e. preorders, are tightly
linked with topological spaces.

Example 12.8.2. A pre-topological space associated with a reflexive and
transitive relation R
Let U = {a, b, c, d, e} and let R be the following preorder:

R a b c d e

a 1 1 1 1 1
b 0 1 0 1 1
c 0 0 1 0 0
d 0 0 0 1 1
e 0 0 0 1 1

Consider the family BR = {R(x)}x∈U = {{c}, {d, e}, {b, d, e}, U}. Let us compute
the family {BR

x }x∈U , where for any x ∈ U , BR
x = {X : X ∈ BR & x ∈ X}:

x a b c d e

BR
x {U} {{b, d, e}, U} {{c}, U} {{d, e}, {b, d, e}, U} {{d, e}, {b, d, e}, U}

We can observe what follows

for any x ∈ U, if X ∈ BR
x then there is a Y ∈ BR

x

such that for any y ∈ Y, X ∈ BR
y (12.8.1)

Indeed we can chose Y = X. Moreover for any x, Fx =⇑ {R(x)} =⇑ BR
x (this is

proved in the following way: Let a ∈ R(b) for b �= a. Suppose R(a) � R(b). Then
there is an x such that x ∈ R(a) and x /∈ R(b). But a ∈ R(b); it follows that R is not
transitive). Obviously, property (τ ) is inherited by Fx from BR

x and this makes the
topological property (τ ) hold. In fact take any x ∈ U and any F ∈ Fx. Let us look
for an X ∈ Fx such that for any y ∈ X, F ∈ Fy . It is sufficient to take any member
Y of BR, such that Y ⊆ F (and it exists, because Fx =⇑ {R(x)} and R(x) ∈ BR).
In fact, since Y is open, it is a neighborhood of all its points. But since Y ⊆ F , then
F is a neighborhood of all the points of Y , too.

For instance, let x = d and take F = {b, c, d, e} which is a member of Fd.
Take Y = {b, d, e}. Y belongs to ⇑ {R(b)},⇑ {R(d)} and ⇑ {R(e)}. But since
Y ⊆ F , we obtain R(b) = {b, d, e} = Y ⊆ {b, c, d, e} = F, R(d) = {d, e} ⊆ Y ⊆ F



12.8 Topological Spaces and Binary Relations 463

and R(e) = {d, e} ⊆ Y ⊆ F . That is to say, F ∈⇑ {R(b)}, F ∈⇑ {R(d)} and
F ∈⇑ {R(e)}. Which is the same thing as saying that F is a neighborhood of b, d
and e.

Therefore F = {Fx}x∈U is a neighborhood system for a topology Ω(U) with
subbasis BR. But F is a neighborhood system for P(R), too. So we conclude that
〈U, Ω(U)〉 = P(R). Hence P(R) is a topological space and the interior operator IR
coincides with the contraction operator κR.

Let us compute, for instance, κR({a, c, d, e}) and IR({a, c, d, e}):
κ

R({a, c, d, e}) = {x : ∃X(X ∈⇑ {R(x)} & X ⊆ {a, c, d, e})} = {x : R(x) ⊆
{a, c, d, e}} = {c, d, e};

IR({a, c, d, e}) =
⋃
{X : X ∈ BR & X ⊆ {a, c, d, e}} =

⋃
{{c}, {d, e}} =

{c, d, e}.
It is immediate that ΩκR(U) = {∅, {c}, {d, e}, {c, d, e}, {b, d, e}, {b, c, d, e}, U}.
Conversely, suppose we are given a topological space 〈U, Ω(U)〉, such that
Ω(U) = {∅, {c}, {d, e}, {c, d, e}, {b, d, e}, {b, c, d, e}, U}.
Let us set Ox = {O : O ∈ Ω(U) & x ∈ O}. Then we obtain a reflexive and

transitive binary relation S in the following way:

〈x, y〉 ∈ S iff y ∈
⋂
Ox (12.8.2)

x a b c d e
⋂
Ox U {b, d, e} {c} {d, e} {d, e}

Clearly,
⋂
Ox =

⋂
BR

x . Summing up, we found S = R.

Now we have a list of results connected with the fact that preorder is
the relational counterpart of the topological property “A set X is open
if and only if it is a neighborhood of all its own points”. A sentence
which, in turn, reflects, as we know, the intuitive reading “If a set X is
close to a point x, then it is close to all the points that are sufficiently
close to x”.

Proposition 12.8.4. Let P = 〈U, ε,κ〉 be a pre-topological space of
type VS. Then RT (P) is a preorder if and only if P is a topological
space.

Proof. In any pre-topology P of type VS, P = P(RT (P)) (Proposition
12.7.8). Hence from Proposition 12.8.2 we obtain the result. qed
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Example 12.8.3. A pre-topological space P which is not a topological
space, even if RT (P) is a preorder
This example seems to question Proposition 12.8.4. But there is a trick. The topo-
logical space P1 of Example 12.7.4 is such an example. Indeed, it is not difficult to
see that P1 is not a topological space (we have seen that κ1({a, b}) ∩ κ1({a, c}) =
{a} �= ∅ = κ({a, b}∩{a, c}); however, in Example 12.7.4 we have shown that RT (P1)
is the identity relation, hence reflexive and transitive).

Notice, anyway, that P1 is not of type VS. Indeed, there are not pre-topological
spaces P of type VS such that RT (P) is a preorder but P is not a topological space
[for a related example, see Frame 15.7].

Exercise 12.13. Give a direct proof of Proposition 12.8.4.

Moreover, it is important to point out that there are pre-topologies P
such that Ωκ(U) is a distributive lattice, so that 〈U,Ωκ(U)〉 is a topo-
logical space, but P is not topological (see a counter example below).
This may happen because the interior operator induced by Ωκ(U) as a
topology on U and κ may fail to coincide. However, this cannot happen
if P is topological.

Example 12.8.4. A pre-topological space P which is not topological
such that Ωκ(U) is a lattice of sets
Consider the pre-topological space P2 of Example 12.6.7.

Let us compute the family {κx}x∈U :

x a b c

κx {{a, b}, U} {{a, b}, U} {{b, c}, U}

P is of type Vs because each κx is a principal filter. However P is not topological
because κc does not satisfy τ . Indeed, given the member {b, c} of κc there is no
X ∈ κc such that {b, c} belongs to κx for every x ∈ X. In fact if we hope to have
some chance we must consider the least element {b, c} of κc. But {b, c} /∈ κb (indeed,
κ(κ({b, c})) = ∅ �= {c} = κ({b, c})), so that idempotence fails.

However, Ωκ (U) is clearly a lattice of sets, hence a distributive lattice:

{a, b, c}

&
& '

'
{c} {a, b}

'
' &

&

∅

Thus, 〈U, Ωκ (U)〉 is a topological space. Let IΩκ
and �Ωκ

denote the interior
operator and, respectively, the specialization preorder induced by Ωκ (U). Since P
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is not topological, κ and IΩκ
cannot coincide. Indeed here is a counterexample:

IΩκ
({c}) = {c} �= ∅ = κ({c}).
Finally, neither RT (P) and �Ωκ

coincide. Indeed 〈b, c〉 ∈ RT (P) because b ∈⋂
κc = {b, c}, while 〈b, c〉 /∈�Ωκ

because, c ∈ {c} but b /∈ {c}.

The proof of this fact makes it possible to have a brief tour through
some of the results so far achieved.

Proposition 12.8.5. Let P = 〈U,κ, ε〉 be a pre-topology. If P is topo-
logical then κ and the interior operator induced by Ωκ(U) as a topology
on U coincide.

Proof.

1. RT (P) =$Ωκ
, where $Ωκ

is the specialization preorder induced
by Ωκ(U) qua topology on U . In fact, by definition 〈x, y〉 ∈ RT (P)
if and only if y ∈

⋂
κx. But from Proposition 12.8.3.(1)

⋂
κx is

the least open set containing x. It follows that 〈x, y〉 ∈ RT (P)
if and only if x ∈

⋂
κx � y ∈

⋂
κx if and only if x $Ωκ

y

(remember that x ∈
⋂
κx always holds). This means that the

specialization preorder $ and RT (P) coincide.

2. Hence, RT (P) is a preorder. Recalling that P is finite and topo-
logical, thus of type VS , it follows that:

(a) P = P(RT (P)) (from Proposition 12.7.8.(2)), so that κ =
κ

RT (P).

(b) κRT (P) = LRT (P) (see Corollary 12.7.3).

(c) F(〈U,$〉) = Ωκ(U).

(d) LRT (P) =!� (suffice it to substitute $ for R in Lemma
12.7.1). But !� is indeed the interior operator induced by
F(〈U,$〉).

Hence

3. !κ is the interior operator induced by Ωκ(U).

From 1 and 3 we obtain the result. qed

Remarks. Moreover, notice that we can have neighborhood systems

N (U) with a related core map G such that {G(X)}X⊆U is a lattice of

sets but such that G is not a contraction operator. Obviously, in this case

G does not coincide with the interior operator induced by {G(X)}X⊆U



466 12 Modalities and Relations

qua frame of the open subsets of a topological space. Obviously, in view of

Proposition 12.4.11, N (U) cannot be of type N1. The reader is referred

to Example 12.8.5.

Example 12.8.5. A neighborhood system whose core map G induces a
topological space but such that G is neither a contraction operator, nor
coincides with the interior operator

In Example 12.6.7 we have shown a pre-topological space which is not topological
but such that Ωκ (U) is a topology. Now we exhibit a neighborhood system such
that G is not an interior operator but such that ΩG(U) is a topology.

Let U = {a, b, c} and let the neighborhood system N (U) be given by

x a b c

Nx {{a}, {c}, {a, b}, {a, c}, {b, c}, U} {{b}, {a, b}, {b, c}, U} {U}

Therefore the core map G is:

X {a} {b} {c} {a, b} {a, c} {b, c} ∅ U

G(X) {a} {b} {a} {a, b} {a} {a, b} ∅ U

It is easy to check that N (U) fulfills N2, N3 and Id, so that G is idempotent.
Moreover, {G(X)}X⊆U is a distributive lattice. It follows that T = 〈U, {G(X)}X⊆U 〉
is a topological space. However G does not coincide with the interior operator of T. In
fact, G({b, c}) = {a, b} while IT({b, c}) =

∨
{A ∈ {G(X)}X⊆U : A ⊆ {b, c}} = {b}.

Indeed, N (U) does not fulfill N1, so that G cannot be a contraction operator (cf.
G({b, c})).

Therefore, the lack of N1 is the reason why N (U) does not induce a topological
interior operator.

Exercise 12.14.
(a) Draw a graph for Ωκ(U) where P is the pre-topological space of
Example 12.4.8.
(b) Is Ωκ(U) a lattice of sets?
(c) Is Ωκ(U) distributive?
(d) What known properties does Ωκ(U) fulfill?

Corollary 12.8.2. Let P(R) = 〈U, εR,κR〉 be a topological space asso-
ciated with a preorder R ⊆ U × U . Then:

1. For any x ∈ U , R(x) is the least open set containing x.

2. For any open set O, O =
⋃

x∈O
R(x) (any open set is a union

of minimal R-neighborhoods). We record this fact by saying that
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{R(x)}x∈U is a basis of open subsets for the topological space
P(R).

3. For any X ⊆ U , R(X) is open.

4. X is open if and only if X = R(X).

5. For any x ∈ U , R�(x) is the least closed set containing x.

6. For any X ⊆ U , R�(X) is closed.

7. X is closed if and only if X = R�(X).

8. RT (P(R)) =$ (where $ is the specialization preorder induced by
P(R)).

Proof. (1) From Proposition 12.8.3, for any x ∈ U ,
⋂
κ

R
x is open. But

⋂
κ

R
x = R(x) (alternative proofs are reported in Frame 15.5).

(2) Since O is open, from Proposition 12.7.2. (2) we have O =
κ

R(O) = {x : R(x) ⊆ O)}. This means that for any x ∈ O, R(x) is
included in O. Thus

⋃

x∈O
R(x) is included in O. Moreover, if x ∈ O, then

〈x, x〉 ∈ R(x), for reflexivity. Hence x ∈
⋃

x∈O
R(x), so that O, in turn,

is included in
⋃

x∈O
R(x). (3) For any x ∈ X, R(x) is open; therefore,

R(X) =
⋃

x∈X
R(x) is open (because unions of open sets are open and

R-neighboring is additive). (4) If X = R(X), then from (3) X is open.
Conversely, suppose X is open. Then, from point (2), X =

⋃

x∈X

R(x) =

R(X). (5) From Proposition 12.7.2.(4), εR({x}) = R�(x). But εR({x})
is closed and contains x. (6) From (5), usingR-neighborhood additivity.
(7) X is closed if and only if X = εR(X) if and only if X = R�(X).
(8) from Proposition 12.7.8.(3), RT (P(R)) = R. Obviously, P(R) is
induced by the basis {R(x)}x∈U . Thus we have to prove: a $ b if and
only if 〈a, b〉 ∈ R. But a $ b if and only if a ∈ R(x)� b ∈ R(x), for all
x. Therefore if a $ b then a ∈ R(a) � b ∈ R(a). But a ∈ R(a), since
R is reflexive. Thus b ∈ R(a), that is, 〈a, b〉 ∈ R. Conversely suppose
b ∈ R(a). Therefore if a ∈ R(x) then, by transitivity, b ∈ R(x). Hence
a $ b. qed

From Corollary 12.8.2.(1) and (2) we obtain a well-known fact about
topological spaces, namely that any topological space is induced by a
basis of open sets by means of union formation.
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Corollary 12.8.3. Let R be a preorder. Then BR = {R(x)}x∈U is
a topological basis of a topological space 〈U,Ω(U)〉 such that for any
X ⊆ U, I(X) =

⋃
{Y ∈ BR : Y ⊆ X} = κ

R(X).

This is specific of preorder relations. For counterexamples see Example
12.7.4.

Terminology and Notation. From now on, given a topological space

〈U, εR,κR〉 associated with a preorder R, the frame of open subsets of

U (i.e. the family of open subsets of U equipped with the operations

∩,∪,−, U, ∅) will be denoted by ΩR(U) and, consequently, the topolog-

ical space will be also denoted by 〈U,ΩR(U)〉. By ΓR(U) we shall mean

the family of closed subsets of U . The interior and the closure operators

induced by ΩR(U), will be denoted by IR and, respectively, CR (we recall

that IR(X) =
⋃
{Y ∈ ΩR(U) : Y ⊆ X}; CR is defined dually). Moreover,

remember that ΩκR(U) denotes the set {κR(X) : X ⊆ U}.

Corollary 12.8.4. Let 〈U, εR,κR〉 be a topological space associated
with a preorder R ⊆ U × U . Then for any X ⊆ U :

1. ΩR(U) = ΩκR(U) ; ΓR(U) = {εR(X) : X ⊆ U}.

2. IκR(X) = κ

R(X) = IR(X); CεR(X) = εR(X) = CR(X).

3. For any X ⊆ U , IR(X) =
⋃
{R(Z) : R(Z) ⊆ X}.

4. For any X ⊆ U , CR(X) =
⋂
{R�(Z) : X ⊆ R�(Z)}.

5. IR(X) =
⋃
{Z : Z ∈ ΩR(U) & Z ⊆ X} = U

ΩR=⇒ X.

6. 〈B(U),ΩR(U)〉 is a modal system.

Proof. (1) ΩR(U) = {X : X = κ

R(X)}. So, since κR(X) = κ

R(κR(X))
the result is obvious. (2) Immediately from (1) and Definition 12.4.6.
(3) Directly from Lemma 12.7.1. (4) Let I = {R�(Z) : X ⊆ R�(Z)}.
Clearly, since R is reflexive, so is R�. Thus X ⊆ R�(X), so that
R�(X) ∈ I. Moreover, because R is transitive, so is R�. Thus if
X ⊆ R�(Y ), for some Y ⊆ U , then R�(X) ⊆ R�(Y ). It follows that
R�(X) is the least element of I. We conclude that

⋂
I = R�(X).

(5) Since ΩR(U) = {R(X) : X ⊆ U}, the thesis is just a translation of
(3). (6) Directly from (5) qed.
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Corollary 12.8.4.(3) tells us that an open set O is a fixpoint of the
process of formation of R-neighborhoods limited by some set X. We can
restate this image, saying that an open set O is the result of a process
π of approximation of a phenomenon X by means of some basic pieces
of information: O = π(X). As such it is stable: π(π(X)) = π(X) =
π(O) = O. Otherwise stated, it is the core of a “phenomenon”, modulo
a perception process π. This stability is precisely the nice property we
can derive from the topological property (τ) discussed above, which, in
turn is strictly connected with transitivity. Indeed, transitivity makes
it possible to drill down until the limit, or to collect everything that
immediately or mediately is connected with a given perception point x.

We have seen that in order to obtain this nice property we have to
renounce some dynamic features. Classical Rough Set Theory is within
this choice. And in this framework we can review the story of the modal
operators we have suspended at the end of the last paragraph.

Let us continue it.
In view of Proposition 12.8.2.(2) we have that if O is open, x ∈ O

and 〈x, y〉 ∈ R, then y ∈ O. From this, one can easily understand why
open sets are images of the necessity operator L.

In fact, compare the last property with the definitions of L as shown
in the table at the end of Section 12.1. In view of those definitions, in
set-theoretical terms we have: x ∈ �L(α)� iff ∀y, 〈x, y〉 ∈ R � y ∈ �α�.
That is to say, x ∈ �L(α)� iff R(x) ⊆ �A�. Therefore if we are given a
topological space 〈U, εR,κR〉 and for any formula α, �α� is a subset of
U , then �L(α)� is to be interpreted as the largest open subset included
in �α�.

Indeed, we have:

Corollary 12.8.5. Let 〈B(U), LR〉 be a pre-monadic Boolean algebra
of the powersets of a set U . Let R be a preorder and X ⊆ U . Then,

1. LR(X) =
⋃
{R(Z) : R(Z) ⊆ X}.

2. MR(X) =
⋂
{R�(Z) : R�(Z) ⊇ X}.

Proof. Straightforwardly, from Corollaries 12.7.3, 12.7.1 and 12.8.4.
qed

In Frame 15.6 we give a direct proof of the second equation. Therefore,
we have accomplished almost all the moves listed in the last table of
Section 12.1.



Chapter 13

Modalities, Topologies
and Algebras

13.1 Topological Boolean Algebras

We pack the above properties in the following definition:

Definition 13.1.1. Let 〈U, Ω(U)〉 be a topological space. Then the pair
〈B(U), I〉 is said to be a topological Boolean algebra of sets.

Corollary 13.1.1. Let 〈B(U), LR〉 be a pre-monadic Boolean algebra
of the powersets of a set U , such that R is a preorder. Then 〈B(U), LR〉
is a topological Boolean algebra of sets.

In a more abstract setting, we can easily observe that taking into
account the formal properties of the operators I and C in a topological
space 〈U,Ω(U)〉, we obtain the following definition:

Definition 13.1.2. Let B be a Boolean algebra and I a monadic oper-
ator on B such that, for any a, b ∈ B

1. I(1) = 1.

2. I(a) ≤ a.

3. I(I(a)) = I(a).

4. I(a ∧ b) = I(a) ∧ I(b).

then the pair 〈B,I〉 is called a “ topological Boolean algebra, tBa”.

471
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From Definition 13.1.2, it follows immediately that I(a∨b) ≥ I(a)∨I(b).
Therefore, any tBa is a pre-monadic Boolean algebra with additional
features (namely (2) and (3) – cf. Definition 12.1.3).

Proposition 13.1.1. Let 〈B,I〉 be a tBa and C a monadic operator
such that for any a ∈ B,C(a) = ¬I(¬a). Then, for any a, b ∈ B,

1. C(0) = 0.

2. C(a) ≥ a.

3. C(C(a)) = C(a).

4. C(a ∨ b) = C(a) ∨ C(b).

The above abstraction is adequate in that the following proposition
holds:

Proposition 13.1.2. Let 〈U,Ω(U)〉 be a topological space, then
〈B(U), I〉 is a tBa.

Proof. straightforward. qed

Proposition 13.1.3. Any tBa is a model for the modal system S4.

For the complete proof see, for instance, Rasiowa [1974], Chapter XIII,
where S4 is called Sλ4. By going back from Corollary 12.8.4 through our
preceding discussion, we can easily obtain that S4 modal systems are
characterised by reflexive and transitive binary relations, i.e. preorders
(see Section 12.2).1

13.2 Monadic Topological Boolean Algebras

The equations stated in Corollary 12.8.5 give a partial answer to the
problem risen at the end of Section 12.1. To completely solve it we have
to understand when MR(X) =

⋂
{R(Z) : R(Z) ⊇ X}.

Immediately we observe that the second equation holds whenever
R = R�. So, let us specialize the above results for the case when the
binary relation at hand is an equivalence relation.

1However, if we are confined to finite partial orders we characterise the logic
S4GRZ – see above.
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Proposition 13.2.1. Let 〈U,ΩR(U)〉 be a topological space associated
with a relation R ⊆ U × U . Then IR(X ∪ IR(Y )) = IR(X) ∪ IR(Y ) if
and only if R is an equivalence relation.

Proof.
(A) �: Let R be an equivalence relation. Since IR(X ∪ IR(Y )) ⊇

IR(X) ∪ IR(IR(Y )), from idempotence of IR we have IR(X ∪ IR(Y )) ⊇
IR(X) ∪ IR(Y ). Therefore we have to prove the reverse inclusion. So,
let a ∈ IR(X ∪ IR(Y )); we prove that a ∈ IR(X) or a ∈ IR(Y ). We
recall that IR(X ∪ IR(Y )) = {x : R(x) ⊆ X ∪ IR(Y )} = {x : R(x) ⊆
X ∪ {y : R(y) ⊆ Y }}. Thus, R(a) ⊆ X ∪ {y : R(y) ⊆ Y }, so that for
any a′ ∈ R(a), a′ ∈ X ∪{y : R(y) ⊆ Y }. Therefore, let a′ ∈ {y : R(y) ⊆
Y }, then R(a′) ⊆ Y . But R(a′) = R(a), because R is an equivalence
relation. Hence, in this case, a ∈ IR(Y ). Otherwise R(a′) ∩ Y = ∅. But
in this case we must have R(a) ⊆ X and a ∈ IR(X).

(B) �: Assume now that IR(X ∪ IR(Y )) ⊆ IR(X)∪ IR(Y ). We have
to prove that R is an equivalence relation. Suppose IR(X ∪ IR(Y )) is
not included in IR(X) ∪ IR(Y ). We show that in this case R cannot
be an equivalence relation. So, assume (i) a ∈ IR(X ∪ IR(Y )) and (ii)
a /∈ IR(X) ∪ IR(Y ). Therefore, a ∈ {x : R(x) ⊆ X ∪ IR(Y )}. However,
R(a) cannot be included in X, otherwise a ∈ IR(X). It follows that
there is an a′ ∈ R(a) such that a′ ∈ IR(Y ). This means that R(a′) ⊆
Y . Suppose R(a′) = R(a). In this case R(a) ⊆ Y and a ∈ IR(Y ),
which contradicts our assumption (ii). Henceforth, R(a) �= R(a′) (if R
is transitive, R(a′) �⊆ R(a)). It follows immediately that R is not an
equivalence relation. qed

Proposition 13.2.2. Let 〈U,ΩE(U)〉 be a topological space associated
with an equivalence relation E ⊆ U × U . Then,

1. ΩE(U) = ΓE(U).

2. ΩE(U), is a Boolean algebra.

3. 〈U,ΩE〉 = 〈U,AS(U/E)〉.

Proof. (1) X ∈ ΩE(U) if and only if X = IE(X) = κ

E(X) if and only
if X = E(X), if and only if X = E�(X), if and only if X = εE(X) =
CE(X), if and only if X ∈ ΓE(U). (2) Since IE and CE are dual,
from point (1) we have that if X ∈ ΩE(U), then X = IE(X), so that
−X = −IE(X) = CE(−X). Therefore, −X ∈ ΓE(U) = ΩE(U). So,
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ΩE(U) is closed under complementation. Moreover, from Proposition
12.5.5 and point (1), if X,Y ∈ ΩE(U), then both X ∪ Y and X ∩ Y
belong to ΩE(U). Moreover, κE(U) = U and κE(∅) = ∅. Therefore
ΩE(U) is a Boolean algebra of sets. (3) From the definitions of ΩE and
AS(U/E). qed

So far, we have distilled the topological features of Approximation
Spaces. Now we have enough material in order to understand why
the pair 〈B(U), LE〉, where LE is induced by an Approximation Space
〈U,ΩE〉 = 〈U,AS(U/E)〉, is a particular kind of topological Boolean
algebra of sets.

As we have seen, this term applies, more in general, to any pair
〈B(U), L〉 where L is the interior operator of any topology on U . In
particular, it applies to the pair 〈B(U), LR〉 where LR is induced by
the topology {κR(X) : X ⊆ U} for some transitive and reflexive rela-
tion R. The distinguishing properties of Approximation Spaces, qua
topological Boolean algebra of sets, are consequences of the fact that
Approximation Spaces are induced not just by generic preorders, but
by equivalence relations:

Corollary 13.2.1. Let 〈B(U), LR〉 be a pre-monadic Boolean algebra
of the powersets of a set U . Let R be an equivalence relation and X ⊆ U .
Then,

1. LR(X) =
⋃
{R(Z) : R(Z) ⊆ X}.

2. MR(X) =
⋂
{R(Z) : R(Z) ⊇ X}.

Proof. Straightforward, from Corollary 12.8.5. qed

The above result completes the answer to the problem risen at the end
of Section 12.1.

We summarize the properties of pre-monadic Boolean algebras
induced by topological spaces associated with equivalence relations,
in the following corollary:

Corollary 13.2.2. Let 〈B(U), LR〉 be a pre-monadic Boolean algebra
of the powersets of a set U , such that R is an equivalence relation. Then
〈B(U), LR〉 is a monadic topological Boolean algebra of sets.
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Proof. Straightforwardly from Definition 12.1.6 and Proposition 13.2.1.
qed

In abstraction we set:

Definition 13.2.1. If 〈B,I〉 is a tBa such that, for any a, b ∈ B,
I(a∨I(b)) = I(a)∨I(b), then it is called a “ monadic topological Boolean
algebra (mtBa)”.

Corollary 13.2.3. Any monadic Boolean algebra of sets 〈B(U), LR〉
is a mtBa of sets.

Proof. From Definition 12.1.6.(2) and Proposition 13.2.1 the proof fol-
lows. qed

Proposition 13.2.3. For all tBa 〈A, L〉, L(A) is a sublattice of A.

Proof. Let x, y ∈ L(A). Then x∧y = L(x)∧L(y) (from idempotence of
L. Thus x∧ y = L(x∧ y). Since for all a, b ∈ A, L(a)∨L(b) ≤ L(a∨ b),
if x, y ∈ L(A), x ∨ y ≤ L(x ∨ y). But L(x ∨ y) ≤ x ∨ y (because L is
deflationary). It follows that x ∨ y = L(x ∨ y). qed

Proposition 13.2.4. For all mtBa 〈A, L〉, L(A) is a Boolean algebra.

Proof. We have to prove that L(A) is closed under complementation.
Let x ∈ L(A). Since x ∧ −x = 0 we have L(x ∧ −x) = 0 (from the
deflationary property). Thus, L(x ∧ −x) = L(x) ∧ L(−x) = 0. More-
over, x ∨ −x = 1 so that L(L(x) ∨ −x) = 1 (because x = L(x)). From
monadicity, L(x) ∨ L(−x) = x ∨ L(−x) = 1. Thus L(−x) is the com-
plement of x, because L(A) is a sublattice of A. We conclude that
L(−x) = x and L(A) is closed under complementation. qed

Corollary 13.2.4. In any mtBa 〈A, L〉, M(A) = {M(x) : x ∈ A}
coincides with L(A).

Proof. For all x ∈ A, M(x) ∈ L(A). In fact, M(x) = −L(−x). But
from Proposition 13.2.4 −L(−x) ∈ L(A). For all y ∈ A, L(x) ∈ L(A):
dually. qed

Corollary 13.2.5. In any mtBa 〈A, L〉, (a) ML(x) = L(x); (b) LM
(x) = M(x), any x ∈ A.

Proof. (a) From Proposition 13.2.4, for all x ∈ A, −L(x) ∈ L(A).
Therefore, −L(x) = L − L(x) = −ML(x). It follows that L(x) =
ML(x). (b) By duality. qed
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Proposition 13.2.5. Any mtBa is a model for the modal system S5.

As to the proof see, for instance, Rasiowa [1974], Chapter XIII, where
S5 is called Sλ5. This result confirms what we have discussed in Section
12.2: S5 modal systems are characterised by symmetric, reflexive and
transitive binary relations, i.e., equivalence relations.

The following results link the definitions of lower and upper approx-
imations to the fact that 〈B(U),ΩE(U)〉 is a modal system:

Corollary 13.2.6. Let 〈U,ΩE(U)〉 be a topological space associated
with an equivalence relation E ⊆ U × U and let 〈U,E〉 be the Indis-
cernibility Space based on E. Then for any X ∈ B(U),

1. LE(X) = IE(X) =
⋃
{Y : Y ∈ ΩE & Y ⊆ X} =

⋃
{[x]E : [x]E ⊆

X} = (lE)(X).

2. ME(X) = CE(X) =
⋂
{Y : Y ∈ ΩE & Y ⊇ X} =

⋂
{[x]E : X ⊆

[x]E} = (uE)(X).

3. (i) LE(ME(X)) = ME(X); (ii) ME(LE(X)) = LE(X).

Proof. (1) and (2) come straightforward from the above results. (3)
LE(X) is an open set. Thus it has the form E(Y ) for some Y ⊆
U (namely Y =

⋃
{E(x) : E(x) ⊆ X}. Therefore, ME(LE(X)) =

ME(E(Y )) = E�(E(Y )) = E(E(Y )) = E(Y ) = LE(X). Dually for
the first equation. qed

Corollary 13.2.7. Let 〈U,AS(U)〉 be an Approximation Space. Then
〈B(U), (lE)〉 (or 〈B(U), (uE)〉) is a mtBa of sets.

The two axioms which characterise S5, that is L(M(α)) ←→M(α) and
M(L(α)) ←→ L(α) say, in logical terms, that any string (m1, ...,mn)
of nested modal operators mi ∈ {[R], 〈R〉}, collapses into the one-term
string mn. In our Rough Set reading, this collapse says that any single
approximation of a subset of the universe of discourse provides an exact
set, that is a set invariant under further approximations.

At this point we can list a series of connections between some
fundamental results we have proved so far.

• From a topological point of view, in any mtBa, for all x ∈ L(A),
x = IC(x) (from Corollary 13.2.5). Hence any x ∈ L(A) is a
regular element [cf. Subsection 7.3.1 of Chapter 7].
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• Any Approximation Space AS(U/E) is a Boolean subalattice of
the Boolean algebra of ℘(U).

• In S5 modal systems, ML(α) ←→ L(a) and LM(α) ←→ M(a),
any formula α) [cf. Table 12.3 of Section 12.2].

• In any Approximation Space AS(U/E), for any X ⊆ U, (uE)(X)
and (lE)(X) are exact elements. Hence, (lE)(uE)(X) = (uR)(X)
and (uR)(lE)(X) = (lE)(X).

• MR � LR (because R = R�, from Proposition 13.2.1 and Propo-
sition 13.2.1) [cf. Corollary 8.2.1 of Chapter 8].

Example 13.2.1. A topological Boolean algebra and a monadic topo-
logical Boolean algebra

The pre-monadic Boolean algebra 〈A, L2〉 of Example 12.1.4 is a topological Boolean
algebra. The structure 〈A, L′〉 with the operator L′ below, is a monadic topological
Boolean algebra:

x 0 a b c d e f 1

L′(x) 0 0 b 0 b e b 1

The sublattices L′(A) of the images of the operator L′ coincides with that of the
monadic Boolean algebra 〈A, Lm〉 of Example 12.1.5. However, 〈A, Lm〉 is not
topological because, for instance, LmLm(d) = 0 �= b = Lm(d) (i.e. Lm is not
idempotent).



Chapter 14

The Propositional Modal
Logic of Rough Sets

14.1 Introduction

In this Section we introduce the notion of a monadic topological quasi
Boolean algebra. It turns out that monadic topological quasi-Boolean
algebras are rough set systems construed after starting with topological
Boolean algebras, that is, algebras exhibiting an explicit modal oper-
ator L (intuitively, lower approximation) and its dual M . Actually,
monadic topological quasi-Boolean algebras can be made into Rough
Sets Systems by translating L with ��. And vice-versa.

It will be proved that monadic topological quasi-Boolean algebras
are the Lindenbaum algebras of a logic that, therefore, we can call a
“logic of Rough Sets. In what follows we need to set up a bridge between
syntax and semantics. This bridge is provided by a method of defining
a family LB of sets of formulas in a suitable way, so that LB may be the
carrier of an algebraic structure.

Let L be a propositional language with logical constants ∧,∨,¬ =⇒.
Given a logical system L on L we define a relation ∼ over formulas of
L as follows:

ϕ ∼ ψ iff # ϕ⇐⇒ ψ

provided that =⇒ has the property: if |
L
α =⇒ β and |

L
α then |

L
β.

With suitable axioms of the logical system ∼ turns out to be an
equivalence relation.

479
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Let LB = L/ ∼ be the set of ∼ equivalence classes. We define the
operations ⊕ and ·, �, [α] on LB by:

[α] ⊕ [β] = [α ∨ β]
[α] · [β] = [α ∧ β]

[α] = [¬α]
[α] � [β] = [α =⇒ β]

Due to choice of appropriate axioms and rules, above definitions remain
valid, the set of all theorems (tautologies) forms a class, 1, and the set
of all antitheorems (contradictions) forms a class, 0.
The structure LB(L) = (LB,⊕, ·,�, ,̄ 0, 1) is called the Lindenbaum
algebra of L.

One can prove that if L is a system for propositional Classical Logic,
then ∼ is a congruence relation and LB(L) is a Boolean algebra [to
prove this one can turn LB(L) into a lattice by setting a partial order
[α] ≤ [β] iff α |

L
β, i.e. – via the Deduction Theorem – iff |

L
α =⇒ β;

then one shows that ⊕ is sup (or lub) and · is inf (or glb) with respect
to ≤ and [α]⊕ [α] = 1, [α] · [α] = 0, by exploiting axioms and theorems
of Classical Logic. For instance, |

L
α =⇒ (β =⇒ α) and |

L
β =⇒

(α =⇒ β) and the Deduction Theorem shows that · is inf ].
At this point, by means of Stone’s representation theorem (see Sub-

section 7.2.1 of Chapter 7 and the cross-references therein), one can
prove that LB(L) is isomorphic to a Boolean algebra of sets (a variant
of this fact, namely Sikorski’s representation theorem, will be exploited
in Theorem 14.3.2).

One can apply the method to other systems of logic, as we are going
to do.

14.2 From Syntax to Semantics

We have seen that S5 and mtBa capture the propositional aspects of
concrete Approximation Spaces, as mBa captures abstract Approxima-
tion Spaces (see Section 13.2).

In order to lift from Approximation Spaces to a modal logic of Rough
Sets we need to adequately account for the syntactic counterpart of the
concept of rough equality.

Let us consider the modal system S5. The language of S5 is the usual
classical propositional language with monadic modalities L (necessity)
and M (possibility) such that one is definable in terms of the other e.g.
M = ¬L¬.
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Axioms of S5 are the usual propositional logic axioms along with
the following additional axioms for L and M .

1. L(α =⇒ β) =⇒ (L(α) =⇒ L(β)).

2. L(α) =⇒ α.

3. M(α) =⇒ LM(α).

The rules of inference are

α,α =⇒ β

β
(modus ponens)

and
α

L(α)
(necessitation)

As above, in the algebra F of well formed formulas an equivalence
relation R1 is defined by 〈α, β〉 ∈ R1 if and only if |

S5 α⇐⇒ β.
In the quotient space F/R1, all the operators in F may be extended.

That this can be done is due to the theorems obtained in S5 which
reduces the equivalence relation R1 into a congruence relation. The
quotient algebra F/R1 is the Lindenbaum algebra for the logic sys-
tem S5.

Exercise 14.1. To check that F/R1, is a monadic tBa.

Exercise 14.2. To show that all theorems of S5 (i.e. α such that |
S5 α)

constitute the top element 1 and all anti theorems (i.e. α such that
|
S5 ¬α) constitute the least element 0 of F/R1.

An evaluation v maps any wff α to a subset v(α) of U of an approx-
imation system 〈U,AS(U/E)〉 such that

1. v(α ∧ β) = v(α) ∩ v(β).

2. v(α ∨ β) = v(α) ∪ v(β).

3. v(¬α) = −v(α).

4. v(L(α)) = (lE)(v(α)).

5. v(M(α)) = (uE)(v(α)).
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Let |= α be defined as v(α) = U for all evaluations in all approx-
imation systems 〈U,AS(U/E)〉. Then the standard S5 soundness –
completeness (meta)theorems state that

|
S5 α iff |= α.

The proof hinges upon the above mentioned Lindenbaum construction
and the fact that the canonical mapping α �−→ [α]R1 is indeed an
evaluation in the defined sense and also that |

S5 α iff [α]R1 = 1 in the
Lindenbaum algebra. This is, however a standard text book exercise.

It should, however, be noted that the Lindenbaum construction is
nothing special of the modal system S5.

If there is an inference procedure | L in a logic L satisfying the
conditions that α | L α and α | L β and β | L γ implies α | L γ, then an
equivalence relation R can always be defined by 〈α, β〉 ∈ R iff α | L β

and β | L α hold.
Also let it be assumed that the logical operations preserve substitu-

tion of equivalents and that the set of theorems viz. {α :| L α} is closed
under substitution by equivalents. Then the quotient algebra L/R may
be constructed and it is possible to extend the basic logical operations
to this algebra that will construe the Lindenbaum algebra for the logic.
The canonical map viz. α �−→ [α]R will make an evaluation in a natural
way. This quotient algebra shall be instrumental to proving soundness
and completeness of the logic L relative to set theoretic semantics.

So, the system S5 and tBa appear to capture the propositional
aspects of rough set theory provided that sets with the same lower
and upper approximations are considered to be identical in rough con-
text in all respects and logical operations are classical. We have, under
this consideration that 〈α, β〉 ∈ R1 if and only if |

S5 α ⇐⇒ β i.e.
v(α) is the same set as v(β) whatever interpretations be given to the
constituent atomic formulae in α and β and whatever approximation
space is taken as the domain of interpretation.

But this interpretation falls short of the real import of rough set
theory that would intend to make no distinction between v(α) and
v(β) when these are roughly equal, that is, v(α) ≈ v(β).

In other words we would require syntactic ways for the interpreta-
tions of wffs α and β to be roughly equal in all models.

To express that, let us introduce a new binary connective in the
language of S5. By abuse of notation we shall borrow the symbol ≈ from
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semantics. Thus, α ≈ β stands for (L(α) ⇐⇒ L(β)) ∧ (M(α) ⇐⇒
M(β)), where α, β are any well-formed formulae.

Then, the syntactic counterpart of the above demand is reflected in
|
S5 α ≈ β.

Hence a binary relation R in F may be defined by 〈α, β〉 ∈ R if
and only if |

S5 α ≈ β and R is an equivalence relation partitioning F

giving rise to the quotient set F/R. A few interesting observations are
the following

• The set F/R with ≤ defined by [α] ≤ [β] iff |
S5 (L(α) =⇒ L(β))∧

(M(α) =⇒M(β)), is a partially ordered set. So, [α] ≤ [β] if and
only if v(α) is roughly included in v(β) for any evaluation in any
approximation space. The zero, 0, and the unit, 1, of this bounded
poset are, as before, the equivalence classes of antitheorems and
theorems of S5 respectively.

• R is not a congruence relation, so, Lindenbaum construction is
not possible in this situation.

But a Lindenbaum-like construction can be carried out.
In fact, In the poset 〈F/R,≤〉, we are able to define the following

operations, for any classes [α], [β] ∈ F/R,

F1 ¬[α] ≡ [¬α].

F2 [α] � [β] ≡ [(α ∧ β) ∨ (α ∧M(β) ∧ ¬M(α ∧ β))].

F3 [α] � [β] ≡ [(α ∨ β) ∧ (α ∨ L(β) ∨ ¬L(α ∨ β))].

F4 L[α] ≡ [L(α)].

F5 The zero (0) and unit (1) of the poset are respectively the equiv-
alence classes of all antitheorems (α is an antitheorem if and only
if #S5 ¬α) and theorems of S5.

where ¬,∧ and ∨ are the operations of S5.
The structure A = 〈F/R,≤,�,�,∼, L, 0, 1〉, turns out to be short of

a monadic topological Boolean algebra, in that the laws of contradiction
and excluded middle (viz. x� ∼ x = 0 and x� ∼ x = 1, respectively)
fail to hold in it generally, in contrast with monadic Boolean algebras
(because of their Boolean basis). It is, indeed, a quasi-Boolean algebra
(see Part II) that has, in addition, a monadic topological operation
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(i.e. L). Thus we arrive at the notion of a monadic topological quasi-
Boolean algebra:

Definition 14.2.1. An algebra A = 〈A,≤,∧,∨,∼, L, 0, 1〉 is a monadic
topological quasi-Boolean algebra (mtqBa) if:

A1. 〈A,≤,∧,∨〉 is a distributive lattice.

A2. ∼∼ a = a.

A3. ∼ (a ∨ b) =∼ a∧ ∼ b.

A4. L(a) ≤ a.

A5. L(a ∧ b) = L(a) ∧ L(b).

A6. L(L(a)) = L(a).

A7. L(1) = 1.

A8. M(L(a)) = L(a), where M(a) ≡∼ L(∼ a), a, b ∈ A.

A question naturally arises at this juncture: what is the logic that
corresponds to monadic topological quasi-Boolean algebras?

Moreover, given an Indiscernibility Space 〈U,E〉, the Rough Set-
counterpart of A will be the mtqBa 〈℘(U)/ ≈,%,�,�,∼, L, [∅], [U ]〉,
where ≈ is the relation of rough equality (an equivalence on ℘(U))
induced by the equivalence relation E. The binary relation % and the
other operations on the quotient set ℘(X)/ ≈ are defined as follows.
Let [S], [T ] be members of ℘(U)/ ≈.

R1 [S]%[T ] if and only if (lE)(S) ⊆ (lE)(T ) and (uE)(S) ⊆ (uE)(T )
(that is, S is roughly included in T ).

R2 [S] � [T ] = [S � T ].

R3 [S] � [T ] = [S � T ].

R4 ∼ [S] = [−S].

R5 L([S]) = [(lE)(S)].

where

(i) S � T = (S ∩ T ) ∪ (S ∩ (uE)(T ) ∩ −(uE)(S ∩ T )) and
(ii) S � T ≡ (S ∪ T ) ∩ (S ∪ (lE)(T ) ∪ −(lE)(S ∪ T )),

∩,∪,− denoting the operations of intersection, union, and com-
plementation in ℘(U) respectively.
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Recalling the discussion in Part II, it is possible to show that the above
algebra can be embedded in the mtqBa that is obtained by equip-
ping the semi-simple Nelson algebra 〈RS(U),≤,∧,∨,∼, 0, 1〉 with a
monadic topological operator L such that for any 〈X1,X2〉 ∈ RS(U),
L(〈X1,X2〉) = 〈X2,X2〉.1 Thus we obtain the mqBa TRS(U) = 〈RS
(U) ≤,∧,∨,∼, L, 0, 1〉, where the operations on RS(U) are those
described in Subsection 7.1.1 of Chapter 7 and for any 〈X1,X2〉 ∈
RS(U), L(〈X1,X2〉) = 〈X2,X2〉.

The above construction is a particular case of the following:

Lemma 14.2.1. Let B = 〈B,∨,∧,¬, 0, 1〉 be a Boolean algebra. Let
L = 〈B, L〉 be a mBa. Let us consider the families of ordered pairs
B[3] = {〈a, b〉 : b ≤ a}a,b∈B and ML(L) = {〈M(a), L(a)〉}a∈B. Then,

1. The algebra ML(L) = 〈ML(L),≤,∧,∨,∼, L, 0, 1〉 is a mtqBa,
called the mtqBa associated with the mBa L.

2. The algebra TQ(B) = 〈B[3],≤,∧,∨,∼, L, 0, 1〉 is a mtqBa, called
the monadic topological quasi-Boolean extension of B,

where for any 〈a1, a2〉 and 〈b1, b2〉 belonging to B[3] or ML(L),

1. 1 = 〈1, 1〉, 0 = 〈0, 0〉.

2. 〈a1, a2〉 ∧ 〈b1, b2〉 = 〈a1 ∧ b1, a2 ∧ b2〉.

3. 〈a1, a2〉 ∨ 〈b1, b2〉 = 〈a1 ∨ b1, a2 ∨ b2〉.

4. ∼ 〈a1, a2〉 = 〈¬a2,¬a1〉.

5. L(〈a1, a2〉) = 〈a2, a2〉.

The easy proof is left as an exercise. It must only be shown that
the operator ∼ enjoys properties A2–A3 and the operator L enjoys
properties A4–A8 above, where the operator M is defined as usual,
viz. M(〈a1, a2〉) =∼ L(∼ 〈a1, a2〉), for any 〈a1, a2〉 ∈ B[3] (whence, it
turns out that M(〈a1, a2〉) = 〈a1, a1〉) (however, all this machinery was
developed in Part II).

1We recall that RS(U) = {〈X1, X2〉 ∈ AS(U) ×AS(U) : X2 ⊆ X1 & X2 ∩ B =
B ∩X1}, where B is the union of all singleton equivalence classes of U/E.
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Further, it is not difficult to prove:

Proposition 14.2.1. Let A = 〈B, L〉 be a mBa and let L(A) be the
Boolean sub-algebra of the set L(A) = {L(a) : a ∈ B}. Then ML(A)
is a sublattice of TQ(L(A)).

In the present context, given any Indiscernibility Space 〈U,E〉, we give
these algebras a special status, calling ML(L) an abstract Rough Set
algebra (whenever L = 〈B(U), (lE)〉 and TQ(AS(U)) a Rough Set alge-
bra (of sets). Moreover, because of the results of the discussion about
singleton equivalence classes in an Approximation Space that was devel-
oped in Part II, we can notice that 〈℘(U)/ ≈,%,�,�,∼, L, [∅], [X]〉
is isomorphic to the monadic topological quasi-Boolean extension of
AS(U), TQ(AS(U)), if and only if no equivalence class is a singleton.
Actually we can notice that 〈℘(U)/ ≈,%,�,�,∼, L, [∅], [X]〉 is isomor-
phic to TRS(U), which, in turns, coincides with ML(〈B(U), (lE)〉). In
other words, TRS(U) is the mtqBa associated with the mBa (Approx-
imation System) 〈B(U),AS(U)〉. In fact, as we know, its domain is
built using the modal operators provided by the mtBa 〈B(U), (lE)〉,
so that only particular ordered pairs of decreasing elements of AS(U)
are eligible in its domain (viz, those ordered pairs 〈X1,X2〉 fulfilling
besides the property X2 ⊆ X1 also the property X1 ∩ C = C ∩X2 for
all elements C of AS(U) that are atoms in ℘(U)). However, it suffices
for our present purpose to consider Rough Set algebras in general, as
it will become apparent later.

Example 14.2.1. The smallest non-trivial pre-Rough algebra
The following is the smallest non-trivial pre-Rough algebra:
T = 〈A,≤,∧,∨,∼, L,⇒, 0, 1〉, where A = {1, δ, 0}:

1

δ

0

with ∼ 0 = 1, ∼ 1 = 0, ∼ a = a, L(1) = 1, L(0) = L(a) = 0.
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Example 14.2.2. A topological quasi-Boolean algebra

1

f

�
� �

�
d e

�
� �

� �
�

a b

�
� �

�

c

0

L(a) = L(c) = L(0) = 0
L(e) = L(b) = b; L(d) = d
L(f) = f ; L(1) = 1

Example 14.2.3. A rough algebra
To show an example of rough algebra, let us draw the monadic topological quasi-
Boolean algebra ML(L′(A)) associated with the monadic Boolean algebra L′(A) of
Example 13.2.1:

〈1, 1〉

�
� �

�
〈e, e〉 〈1, b〉 ML(L′(A))

�
� �

� �
�

〈e, 0〉 〈b, b〉

�
� �

�

〈0, 0〉

We can observe that it is isomorphic to the lattice L3 of Example of Frame 10.4 of
Part II. And this does not happen by chance.

Exercise 14.3.
(a) Explain why ML(L′(A)) of Example 14.2.3 and the lattice L3 of
the Example of Frame 10.4 of Part II are isomorphic.
(b) Draw the monadic topological quasi-Boolean extension TQ(A) of
A. In view of the discussion about singleton definable sets developed in
Part II, explain why TQ(A) and ML(L′(A)) do not coincide.
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(c) Exhibit a necessary and sufficient condition for TQ(A) and ML(L)
to coincide.

A deeper look into a Rough Set algebra reveals some more properties.
On abstraction, it is a mtqBa with some additional axioms. As such, it
will be referred to as a Rough algebra.

So the earlier question gives way to the following:

• What is the logic corresponding to the class of Rough algebras?

• Could a Rough Set semantics be given to such a logic?

The first issue includes the task of finding an appropriate implication
operator ⇒, one of its essential properties being

a⇒ b = 1 iff a ≤ b (14.2.1)

By a Rough Set semantics we shall mean that a model for this logic
is an Approximation Space equipped with a meaning function, that
is well formed formulas of the language are interpreted as rough sets.
Conjunction and disjunction are not assigned ordinary set intersection
(∩) and union (∪), but operations which reduce to ∩ and ∪ respectively
only when working on definable sets. Negation is interpreted as comple-
mentation and the necessity operator L as lower approximation. The
other salient point of such a model is that implication is interpreted as
rough inclusion, and bi-implication as rough equality.

In the following Subsection, we present the complete set of axioms
for a Rough algebra, but as an intermediate step, a pre-Rough algebra
is defined. Two representation theorems, crucial for this work are also
proved.

The logics L1,L2 corresponding to pre-Rough and Rough algebras
respectively, are proposed in Section 14.4. Subsection 14.4.3 brings forth
a smaller class of Rough algebras, that are able to educe soundness and
completeness of L2 as well. This result is used to impart Rough Set
semantics to L2.

14.3 Rough Algebras

We have already observed that any Approximation Space AS(U) is a
Boolean algebra so that we can consider its monadic topological quasi-
Boolean extension TQ(AS(U)).

In fact, up to isomorphism, one can claim the following.
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Lemma 14.3.1. Let B be a Boolean algebra, then TQ(B) is a monadic
topological quasi-Boolean algebra such that B is its largest Boolean sub-
algebra.

Proof. Indeed, let us consider the family L(B[3]) = {L(〈a, b〉)}〈a,b〉∈B[3] .
Then it is easy to see that L(TQ(B)) = 〈L(B[3]),≤,∧,∨,∼, 0, 1〉 is the
largest Boolean sub-algebra of TQ(B). Also, B is clearly isomorphic
to L(TQ(B)). Indeed, L(B[3]) = {〈X,X〉 : X ∈ B} = B(B), but B(B)
is isomorphic to B (cf. Part II). qed

So, let us look at some more properties of TQ(B).

Proposition 14.3.1. In TQ(B) = 〈B[3],≤,∧,∨,∼, L, 0, 1〉, for any
〈a1, a2〉, 〈b1, b2〉 in B[3],

1. L(〈a1, a2〉 ∨ 〈b1, b2〉) = L(〈a1, a2〉) ∨ L(〈b1, b2〉).

2. If L(〈a1, a2〉) ≤ L(〈b1, b2〉) and M(〈a1, a2〉) ≤ M(〈b1, b2〉), then
〈a1, a2〉 ≤ 〈b1, b2〉.

Proof. By easy verification [Hints: L(〈a1, a2〉 ∨ 〈b1, b2〉) = 〈a2 ∨ b2, a2 ∨
b2〉 = 〈a2, a2〉 ∨ 〈b2, b2〉 = L(〈a1, a2〉) ∨ L(〈b1, b2〉)]. qed

Let us define another binary operation ⇒ on TQ(B) as follows.

Definition 14.3.1. Let TQ(B) be the monadic topological quasi-
Boolean extension of the Boolean algebra B. For any 〈a1, a2〉,〈b1, b2〉
in B[3],

〈a1, a2〉 ⇒ 〈b1, b2〉 = (∼L(〈a1, a2〉) ∨ L(〈b1, b2〉))
∧(∼M(〈a1, a2〉) ∨ M(〈b1, b2〉)).

Proposition 14.3.2. Let TQ(B) be the monadic topological quasi-
Boolean extension of the Boolean algebra B. Then, for any 〈a1, a2〉,
〈b1, b2〉 in B[3],

1. 〈a1, a2〉 ⇒ 〈b1, b2〉 ∈ L(B[3]).

2. 〈a1, a2〉 ⇒ 〈b1, b2〉 = 1 if and only if 〈a1, a2〉 ≤ 〈b1, b2〉.

3. If “ =⇒” is the implication operation in the Boolean algebra B,
i.e. a =⇒ b = ¬a∨ b, then 〈a1, a2〉 ⇒ 〈b1, b2〉 = 〈a1 =⇒ b1, a1 =⇒
b1〉 ∧ 〈a2 =⇒ b2, a2 =⇒ b2〉.
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Proof. By easy inspection. qed

Remarks. Notice that a ⇒ b ≤ a � b (where � is the implication

defined in Definition 9.6.1). However, by easy calculation one can verify

that while a ⇒ b = 〈a1 =⇒ b1 ∧ a2 =⇒ b2, a1 =⇒ b1 ∧ a2 =⇒ b2〉,
a � b = 〈a2 =⇒ b1, a1 =⇒ b1 ∧ a2 =⇒ b2〉. Therefore, if a � b = 1,

we must have a1 =⇒ b1 ∧ a2 =⇒ b2 = 1, hence a1 ≤ b1 and a2 ≤ b2. It

follows that a⇒ b = 1 if and only if a� b = 1.

We can pack the above properties in a new abstract concept.

Definition 14.3.2. An algebra A = 〈A,≤,∧,∨,∼, L,⇒, 0, 1〉 is a
pre-Rough algebra, if and only if 〈A,≤,∧,∨,∼, L, 0, 1〉 is a monadic
topological quasi-Boolean algebra and, in addition, the following hold
for any a, b ∈ A.

A9. ∼ L(a) ∨ L(a) = 1.

A10. L(a ∨ b) = L(a) ∨ L(b).

A11. L(a) ≤ L(b) and M(a) ≤M(b) imply a ≤ b.

A12. a⇒ b = (∼ L(a) ∨ L(b)) ∧ (∼M(a) ∨M(b)).

Proposition 14.3.3. In any pre-Rough algebra A = 〈A,≤,∧,∨,
∼, L,⇒, 0, 1〉, L(A) = 〈L(A),≤,∧,∨,∼, 0, 1〉 is a Boolean algebra.

Proof. Left to the reader (Hints: use A9). qed

It must also be recalled that L(A) = M(A).

Proposition 14.3.4. Let A = 〈A,≤,∧,∨,∼, L,⇒, 0, 1〉 be a monadic
topological quasi-Boolean algebra such that L(A) = 〈L(A),≤,∧,∨,∼,
0, 1〉 is a Boolean algebra.
Then A is epimorphic to the sub-algebra generated by the set {〈M(a),
L(a)〉 : a ∈ A & L(a ∨ b) = L(a) ∨ L(b), for any b ∈ A}.

Now we give a representation theorem that allows us to view any pre-
Rough algebra as an algebra of pairs of Boolean elements.

Theorem 14.3.1. (Representation) If A = 〈A,≤,∧,∨,∼, L,⇒, 0, 1〉
is a pre-Rough algebra, it is isomorphic to the sub-algebra of the monadic
topological quasi-Boolean extension TQ(L(A)) generated by the set
{〈M(a), L(a)〉 : a ∈ A}.
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Proof. The proof is obtained using Proposition 14.3.4 and A11. qed

The monadic topological quasi-Boolean extension TQ(B) of any
Boolean algebra B is a pre-Rough algebra. Moreover, 〈F/R,≤,�,�,
∼, L,⇒, 0, 1〉 is a pre-Rough algebra; it may also be noticed that
L(F/R) = F/R1 (cf. the above introduction).
If AS(U) is an Approximation System, 〈℘(U)/ ≈,%,�,�,∼, L,⇒, [∅],
[U ]〉 and the monadic topological quasi-Boolean extension TQ(AS(U))
are pre-Rough algebras too.
(In each of the preceding examples, ⇒ is defined in terms of ∼,� (or
∧),� (or ∨), L and M as in A12).
In fact, 〈℘(U)/≈,%,�,�,∼, L,⇒, [∅], [U ]〉 and TQ(AS(U)) enjoy some
additional properties that lead to the notion of a Rough algebra.

Definition 14.3.3. An algebra A = 〈A,≤,∧,∨,∼, L,⇒, 0, 1〉 is a
Rough algebra, if and only if A is a pre-Rough algebra such that L(A) =
〈L(A),≤,∧,∨,∼, 0, 1〉 is a subalgebra of A that is

A13. Complete.

A14. Completely distributive, i.e.
∨

i∈I ∧j∈Jai,j = ∧f∈JI

∨
i∈I ai,f(i),

for any index sets I, J and elements ai,j, i ∈ I, j ∈ J , of L(A),
JI being the set of maps of I into J .

It follows that for any index set I and ai ∈ L(A), i ∈ I,
∨

i∈I L(ai) =
L(
∨

i∈I ai).

Proposition 14.3.5. Given an Approximation Space AS(U), the
monadic topological quasi Boolean extension TQ(AS(U)) is a Rough
Algebra.

Definition 14.3.4. The Rough algebra TQ(AS(U)) is called the Rough
Set algebra corresponding to the Approximation Space AS(U).

Theorem 14.3.2. [Representation] Any Rough algebra is isomorphic
to a subalgebra of the Rough Set algebra corresponding to some Approx-
imation Space AS(U).

Proof. Let A = 〈A,≤,∧,∨,∼, L,⇒, 0, 1〉 be a Rough algebra. Then
L(A) = 〈L(A),≤,∧,∨,∼, 0, 1〉 is a complete Boolean subalgebra of A
that is completely distributive. Hence it is isomorphic to a complete
field of sets Sikorski [1969], C = 〈C,⊆,∩,∪,−, ∅, 1〉, say. C is atomic
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Sikorski [1969], so let U denote the union of all its atoms. The atoms
induce a partition E, of U . Thus we have an Approximation Space
AS(U). It may then be noticed that C = AS(U), that is, C coincides
with the collection of all definable sets. So the isomorphism of L(A)
and C implies the isomorphism of TQ(L(A)) and the Rough Set alge-
bra TQ(AS(U)). Now there is an isomorphic copy of A in TQ(L(A))
(cf. Theorem 14.3.1), and hence in TQ(AS(U)). This is the required
subalgebra of TQ(AS(U)). qed

We had earlier remarked that Approximation Spaces with no singleton
definable set are sufficient for our purpose. Proposition 14.3.7 substan-
tiates this remark to an extent. It is obtained as a consequence of the
following general result concerning Boolean algebras of sets.

Proposition 14.3.6. Any atomic Boolean algebra of sets is isomorphic
to an atomic Boolean algebra of sets of which no atom is a singleton.

Proposition 14.3.7. Given any Indiscernibility Space 〈U,E〉, there is
an Indiscernibility Space 〈U ′, E′〉 such that the following hold:

1. The Boolean algebras AS(U) and AS(U ′) of definable sets in
〈U,E〉 and 〈U ′, E′〉, respectively, are isomorphic.

2. The Rough Set algebras TQ(AS(U)) and TQ(AS(U ′)) corre-
sponding to AS(U) and AS(U ′), respectively, are isomorphic.

3. For any element 〈D′
1,D

′
2〉 of TQ(AS(U ′)), there is a rough set

S in the Approximation System 〈B(U ′),AS(U ′)〉 such that (lE′)
(S) = D′

2 and (uE′)(S) = D′
1.

14.4 The Systems L1, L2

Let us now look at the formal systems L1 and L2. It will be shown
that these are sound and complete relative to the class of all pre-rough
algebras and rough algebras respectively.

14.4.1 The System L1

The language of L1 consists of propositional variables p, q, r, ..., logical
symbols ∼,�, L and parentheses. The formation rules are as usual.
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�,M and ⇒ are definable connectives:

(i) α � β ≡∼ (∼ α� ∼ β)
(ii) M(α) ≡ ¬L(¬α) and
(iii) α⇒ β ≡ (∼ L(α) � L(β)) � (∼M(α) �M(β))

for any wffs α, β of L1.

Axiom schemata:

1. α⇒ α

2a. ∼∼ α⇒ α 2b. α⇒∼∼ α.

3. α � β ⇒ α 4. α � β ⇒ β � α.
5a. α � (β � γ) ⇒ (α � β)� 5b. (α � β) � (α � γ) ⇒
(α � γ) α � (β � γ)
6. L(α) ⇒ α

7a. L(α � β) ⇒ L(α) � L(β) 7b. L(α) � L(β) ⇒ L(α � β)
8. L(α) ⇒ L(L(α)) 9. M(L(α)) ⇒ L(α)
10a. L(α � β) ⇒ L(α) � L(β) 10b. L(α) � L(β) ⇒ L(α � β)

Rules of inference:

1. α 2. α⇒ β

α⇒ β β ⇒ γ

β α⇒ γ

modus ponens hypothetical syllogism

3. α 4. α⇒ β

β ⇒ α ∼ β ⇒∼ α

5. α⇒ β 6. α⇒ β, β ⇒ α

α⇒ γ γ ⇒ δ, δ ⇒ γ

α⇒ β � γ (α⇒ γ) ⇒ (β ⇒ δ)

7. α⇒ β 8. α

L(α) ⇒ L(β) Lα

9. L(α) ⇒ L(β)
M(α) ⇒M(β)

α⇒ β



494 14 The Propositional Modal Logic of Rough Sets

Let F1 denote the set of all wffs of L1. Following the standard notation,
| L1

α will denote that α is a theorem of L1, and Γ | L1
α, that α is a

syntactic consequence of Γ, Γ being any set of wffs in L1.

Definition 14.4.1. An evaluation v of the wffs of L1 in a pre-rough
algebra A = 〈A,≤,∧,∨,∼, L,⇒, 0, 1〉 is a map from the set of propo-
sitional variables of L1 to A. It can be uniquely extended to F1 (the
extension is also denoted as v, and called an evaluation as well) as :
v(α � β) ≡ v(α) ∧ v(β), v(∼ α) ≡∼ v(α), v(L(α)) ≡ L(v(α)).

Let PRA denote the class of all pre-rough algebras.

Definition 14.4.2. Let Γ be a set of wffs and α any wff of L1. If in
any pre-rough algebra A, for any evaluation v in A, v(Γ) = {1} implies
that v(α) = 1, then we write Γ |==

PRA
α. In particular (when Γ = ∅), α is

valid (|==
PRA

α) provided in any pre-rough algebra A, for each evaluation
v, v(α) = 1.

If an evaluation v in a pre-rough algebra A is such that v(Γ) = {1},
then we say that v is a model of Γ in P. In particular, if v(α) = 1
(Γ = {α}), v is said to be a model of α in A.

Lemma 14.4.1. Let v be an evaluation in a pre-rough algebra A =
〈A,≤,∧,∨,∼, L,⇒, 0, 1〉. For any wffs β, γ of L1, v(β ⇒ γ) = 1 if and
only if v(β) ≤ v(γ) in A.

Proof. 1 = v(β ⇒ γ) = v((∼ L(β) � L(γ)) ∧ (∼ M(β) � M(γ))) if
and only if v(∼ L(β) � L(γ)) = 1 = v(∼ M(β) �M(γ)), as A is a
lattice. Now 1 = v(∼ L(β) � L(γ)) =∼ L(v(β)) ∨ L(v(γ)) if and only
if L(v(β)) ≤ L(v(γ)), as 〈L(A),≤,∧,∨,∼, 0, 1〉 is a Boolean algebra.
For the same reason, M(v(β)) ≤M(v(γ)). So, by property A11 in the
definition of a pre-rough algebra, v(β) ≤ v(γ) in A. The other direc-
tion is obtained using the fact that L,M both distribute over ∧,∨. qed

Let Γ be a set of wffs and α any wff of L1. We prove that L1 is sound
and complete relative to the class of all pre-rough algebras.

Theorem 14.4.1. (Soundness) If Γ | L1
α, Γ |==

PRA
α.

Proof. The proof is straightforward, and involves easy verification using
Lemma 14.4.1. One can, in fact, show that in an arbitrary pre-rough
algebra, say A, (i) any evaluation v is a model for each axiom of L1
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(i.e., each axiom is valid), and (ii) if v is a model for the premise(s) of
any rule of inference of L1, it is also a model of the conclusion of that
rule.

Indeed, v is a model of axioms 1–5b, since A is a quasi-Boolean
algebra. It is a model of axioms 6–9, as A is a topological quasi-Boolean
algebra. And finally, it is a model of axioms 10a-b, due to property A10
in the definition of a pre-rough algebra.

Now suppose that v is a model of the premise(s) of any of the rules
of inference 1–6 of L1. That v is a model of the conclusion of the respec-
tive rules follows as A is a quasi-Boolean algebra. In case of rules 7–8
and rule 9, this follows from the properties of a tqBa and the defining
property A11 of a pre-rough algebra respectively. qed

We also have the converse of the above theorem (the completeness
theorem), the proof of which – as we shall see – follows the routine
technique in algebraic logic. One can define a binary relation R on F1

as: 〈α, β〉 ∈ R if and only if Γ | L1
α ⇔ β. This can be easily proved

to be an equivalence relation on F1. Thus the quotient set F1/R is
obtained. The following may be established.

Lemma 14.4.2. The Lindenbaum algebra LA1 ≡ 〈F1/R,≤,∧,∨,
∼, L,⇒, 0, 1〉 is a pre-rough algebra, where for any [α][β] ∈ F1/R, the
operations ≤,∧,∼, L, 1 are defined on F1/R as:

1. [α] ≤ [β] if and only if Γ | L1
α⇔ β,

2. [α] ∧ [β] ≡ [α � β],

3. ∼ [α] ≡ [∼ α], and

4. L([α]) ≡ [L(α)].

5. The unit element 1 of the algebra is just the equivalence class [α],
with Γ | L1

α.

6. The other operators are defined in terms of the above as usual.

Proof. The operators ≤,∧,∼, L are well-defined:
≤ is so by rule of inference 6; ∧ by axiom 3, rules 2 and 5; ¬ by rule 4;
and L by rule 7.

That [α]∧ [β] is the greatest lower bound of [α] and [β], follows from
axiom 3 and rule 5.
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Γ | L1
α and Γ | L1

β, then Γ | L1
α ⇔ β, by rule 3. On the

other hand, if Γ | L1
α and 〈α, β〉 ∈ R, then by rule 1, Γ | L1

β. So if
Γ | L1

α, then [α] consists precisely of those wffs β for which Γ | L1
β.

Further, Γ | L1
α implies, for any [β], Γ | L1

β ⇒ α by rule 3. So
[β] ≤ [α]. Therefore, [α] such Γ | L1

α, is the unit element (1) of the
lattice 〈F1/R,≤,∧〉.
The properties that make the structure 〈F1/R,≤,∧,∨,∼, L,⇒, 0, 1〉 a
pre-rough algebra, are simple to verify. qed

Next we prove the completeness theorem.

Theorem 14.4.2. (Completeness) If Γ |==
PRA

α, then Γ | L1
α.

Proof. Let Γ |==
PRA

α. In particular, as LA1 is a pre-rough algebra
(by Lemma 14.4.2), any evaluation v in LA1 which is a model for Γ,
would be a model for α. We define an evaluation v0 from the set of
propositional variables of L1 to F1/R as follows.

v0(p) ≡ [p], for any propositional variable p. v0 is extended to F1

in the usual manner. Then, for any wff β of L1, it can be shown that
v0(β) = [β]. The proof is by induction on the number of connectives
in β. Now v0(γ) = 1, for each γ ∈ Γ (as Γ | L1

γ) – i.e. v0 is a model
for Γ. So v0 is a model for α, i.e. 1 = v0(α) = [α]. Hence (by Lemma
14.4.2), Γ | L1

α. qed

In view of the properties listed in the Table of Section 12.2, one should
notice the following correspondences between the syntactic description
of the system L1 and the concrete intuitions behind Rough Set algebras
(where, we recall, the modal operator L is induced by the rough equality
relation ≈):

Axiom 6: reflexivity of ≈.
Axiom 8: transitivity of ≈.
Axiom 9: Euclidean property of ≈ (and the derived symmetry prop-

erty).

Axioms 7a-b: L is an interior operator, since ≈ gives rise to a
topological space (see above Section 12.8).

Axioms 10a-b: we have already seen the proof (cf. Proposition 14.3.1)
based on the fact that any rough set is representable by a pair 〈X1,X2〉
of elements of some Approximation System AS(U). Speaking more
conceptually, we can notice that any element of a rough set 〈X1,X2〉
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is a fix point of the operator M , respectively, L induced by AS(U).
As such a2 ∈ L(U) = {L(X)}X⊆U which, as we already know, is the
carrier of the Boolean algebra AS(U) that, in turns, is isomorphic to
L(TQ(AS(U))). Hence, applying first the operator L and then the
operation ∨ or applying the operation ∨ first and then the operator
L yield to the same result, since both sequences reduce to a union of
elements of the same algebra, namely X2 ∪X2.

14.4.2 The System L2

The language of L2 is the same as that of L1, only enhanced by the
presence of the logical symbol

⊔
, standing for infinite disjunction and

giving rise to the following formation rule:
for any index set I,

⊔
i∈Iαi is a wff in L2 if and only if αi is of the form

L(βi), for some βi, i ∈ I.
∏

(infinite conjunction) stands for ∼
⊔
∼.

Let F2 denote the set of all wffs of L2.
Axiom schemata for L2.

Axioms 1 − 5b of L1

11. L(αj) ⇒
⊔

i∈IL(αi),
for each αj, j ∈ I,

12a.
⊔

i∈Iαi ⇒ L(
⊔

i∈Iαi) 12b. L(
⊔

i∈Iαi) ⇒
⊔

i∈Iαi

13a.
⊔

i∈I

∏
j∈J L(αi,j) 13b.

∏
f∈JI

⊔
i∈IL(αi,f(i))

⇒
∏

f∈JI

⊔
i∈IL(αi,f(i)) ⇒

⊔
i∈I

∏
j∈J L(αi,j)

where I, J are index sets and JI is the set of maps of I into J .
Rules of inference of L2:

1. Rules 1 − 9 of L1

10. L(αi) ⇒ L(β) for each i ∈ I
⊔

i∈I L(αi) ⇒ L(β)

Now we prove that L2 is sound and complete relative to the class of all
rough algebras.

#L2 α will denote that α is a theorem of L2, and Γ | L2
α, that α is

a syntactic consequence of Γ, Γ being any set of wffs in L2.
An evaluation v of the wffs of L2 in a rough algebra A = 〈A,≤,

∧,∨,∼, L,⇒, 0, 1〉 is defined as in case of L1 and pre-rough algebras. It
is a map from the set of propositional variables of L2 to A. It can be
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uniquely extended to F2 (keeping the same notation and name for the
extension) for the connectives �,∼ and L as before, while v(

⊔
i∈I αi) ≡∨

i∈I v(αi), where αi is of the form L(βi), for some βi, i ∈ I. Let RA
denote the class of all rough algebras. The definitions of Γ |==

RA
α, |==

RA
α

and a model of Γ (or α) in a rough algebra A, Γ being a set of wffs and
α any wff of L2, are all as before.

Theorem 14.4.3. (Soundness) If Γ | L2
α, then Γ |==

RA
α.

Proof. We note that Lemma 14.4.1 still applies, and the proof of
Theorem 14.4.1 can be carried out here while verifying that, in an arbi-
trary rough algebra, say A, (i) any evaluation v is a model for axioms
1–10b, and (ii) if v is a model for the premise(s) of any of the rules 1–9,
it is also a model of the conclusion of that rule.

v is a model of axiom11, as
∨

i∈I v(αi) is an upper bound of {v(αi)}i∈I

in A. The proof in case of axioms 12a-b is based on the observation that
∨

i∈I L(bi) = L(
∨

i∈I L(bi)), the subalgebra L(A) ≡ 〈L(A),≤,∧,∨,
∼, 0, 1〉 of A being complete by definition. Complete distributivity of
the same subalgebra results in the proof in case of axioms 13a-b.

Finally, if v is a model for the premises of rule 10, it is a model of
the conclusion as well, because

∨
i∈I v(αi) is the least upper bound of

{v(αi)}i∈I in A. qed

The completeness theorem can be proved in this case also. Lemma
14.4.2 has to be extended for the purpose. The binary relation R on F2

is defined as before: 〈α, β〉 ∈ R if and only if Γ | L2
α ⇔ β. This is an

equivalence relation on F2, and we get the quotient set F2/R.

Lemma 14.4.3. The Lindenbaum algebra LA2 ≡ 〈F2/R,≤,∧,∨,
∼, L,⇒, 0, 1〉 is a rough algebra, where for any [α], [β] ∈ F1/R ≤,∧,
∼, L, 1 are defined on F2/R as:

1. [α] ≤ [β] if and only if Γ | L2
α⇒ β.

2. [α] ∧ [β] ≡ [α � β].

3. ∼ [α] ≡ [∼ α].

4. L([α]) ≡ [L(α)].

5.
∨

i∈I [γi] ≡ [
⊔

i∈I L(βi)], where Γ | L2
γi ⇔ L(βi), for some

βi, i ∈ I.
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6. The unit element 1 of the algebra is just the equivalence class [α],
with Γ | L2

α.

7. The other operators are defined in terms of the above as usual.

Proof. That the operators ≤,∧,∼, L are well-defined, is proved just
as in Lemma 14.4.2. In fact, a similar proof establishes that 〈F2/R,

≤,∧,∨,∼, L,⇒, 0, 1〉 is also a pre-rough algebra. We show that the
structure is a rough algebra. ∨ is well-defined:

Let [δi] = [γi], Γ | L2
γi ⇔ L(βi) and Γ | L2

δi ⇔ L(ζi), for some
βi, ζi, i ∈ I. Γ | L2

δi ⇔ γi. By rule 2, Γ | L2
L(ζi) ⇔ L(βi) for

each i ∈ I, so that, using rule 10, one obtains Γ | L2

⊔
i∈I L(βi) ⇔

⊔
i∈I L(ζi). Thus, [

⊔
i∈I L(βi)] = [

⊔
i∈I L(ζi)].

Further,
∨

i∈I [γi] = [
⊔

i∈I L(βi)] is an upper bound for [γi]i∈I in
F2/R by axiom 11 and rule 2. Now suppose [γi] ≤ [γ], for each i ∈ I.
So Γ | L2

γi ⇒ γ implies Γ | L2
L(βi) ⇒ γ, using rule 2. Then applying

rule 7, Γ | L2
L(L(βi)) ⇒ L(γ). By axiom 8 and rule 2, Γ | L2

L(βi) ⇒
L(γ), and this holds for each i ∈ I. By rule 10 and finally by axiom 6,
Γ | L2

⊔
i∈I L(βi) ⇒ γ, i.e. [

⊔
i∈I L(βi)] ≤ [γ].

L(F2/R) is thus complete. Its complete distributivity follows from
axioms 13a-b. 〈F2/R,≤,∧,∨,∼, L,⇒, 0, 1〉 is thus a rough algebra. qed

The proof of Proposition 14.4.2 is now modified to give general com-
pleteness.

Theorem 14.4.4. (Completeness) If Γ |==
RA

α, then Γ | L2
α.

Proof. We define an evaluation v0 from the set of propositional variables
of L2 to F2/R as before, i.e. v0(p) ≡ [p], for any propositional variable
p. v0 is then extended to F2, as mentioned earlier. Again, for any wff
β of L2, it can be shown by induction on the number of connectives
in β, that v0(β) = [β]. The rest of the proof follows exactly the same
arguments as presented for Proposition 14.4.2. qed

14.4.3 Rough Set Semantics for L2

Let RE denote the class of all those Rough Set algebras of the form
TQ(AS(U)), corresponding to an Approximation Space AS(U) induced
by an Indiscernibility Space 〈U,E〉, such that for any element 〈X1,X2〉
of TQ(AS(U)), there is a rough set S with (lE)(S) = X2 and (uE)
(S) = X1.
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Our contention is that L2 is sound and complete with respect to
this smaller class of rough algebras as well. Let Γ be a set of wffs and
α any well formed formulas of L2. Γ |==

RE
α has the same meaning as

before.

Theorem 14.4.5. (Soundness) If Γ | L2
α. Then Γ |==

RE
α.

Proof. This follows directly from Theorem 14.4.3. qed

Theorem 14.4.6. (Completeness) Let Γ |==
RE

α. Then Γ | L2
α.

Proof. Let A = 〈A,≤,∧,∨,∼, L,⇒, 0, 1〉 be a Rough Algebra. By the
representation theorem and Proposition 14.3.7 it follows that there is a
monomorphism from A into a member TQ(AS(U)) of RE, correspond-
ing to some Approximation Space. Let i denote such a monomorphism
and let v be any evaluation. It can be proved that v is an evalua-
tion from F2 to TQ(AS(U)). As Γ |=A α, v(α) = 〈X,X〉, so that we
must have v(α) = 1. Thus, using completeness of L2 (Theorem 14.4.6),
Γ | L2

α. qed

We now give a Kripke-style semantics for L2.

Definition 14.4.3. A model of L2 is a triple of the form 〈U,E, φ〉,
where 〈U,E〉 is an Indiscernibility Space and φ is a map from the set
of propositional variables of L2 to ℘(U) φ is extended to the set F2 of
all wffs of L2 as follows:

1. φ(∼ α) = −φ(α).

2. φ(L(α)) = (lE)(φ(α)).

3. φ(α � β) = φ(α) � φ(β).

4. φ(α � β) = φ(α) � φ(β).

5. φ(α⇒ β) = φ(α) ⇒ φ(β).

6. φ(
⊔

i∈Iαi) =
⋃

i∈I
φ(αi).
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where, for any S, T ∈ ℘(X), S � T = (S ∩ T ) ∪ (S ∩ (uE)(T ∩ −(uE)
(S ∩ T )), S � T ≡ (S ∪ T ) ∩ (S ∪ (lE)(T ) ∪ (lE)(S ∪ −T )) and
S ⇒ T ≡ (−(lE)(S) ∪ (lE)(T )) ∩ (−(uE)(S) ∪ (uE)(T )),
⋃

denoting arbitrary union in ℘(X).
Let Γ be a set of wffs and α any wff of L2.

Definition 14.4.4.

1. α is true in a model 〈U,E, φ〉 if and only if φ(α) = U .

2. α is valid (written |= α) if and only if α is true in all models.

3. α is a semantic consequence of Γ (Γ |= α), if and only if, when-
ever each member of Γ is true in a model, α is true in that model
as well. In particular, when Γ = ∅, we say that α is valid (|= α).

Remarks 14.4.1.

(i) φ(α) is a rough set, where α is any wff in F2.

(ii) α⇒ β is true in 〈U,E, φ〉 if and only if φ(α) is roughly included
in φ(β).

(iii) (α ⇒ β) � (β ⇒ α) is true in 〈U,E, φ〉 if and only if φ(α) is
roughly equal to φ(β).

Theorem 14.4.7. (Soundness) Let Γ | L2
α. Then Γ |= α.

Proof. Let Γ | L2
α. Then Γ |= α. We consider an arbitrary model

〈U,E, φ〉 in which all the members of Γ are true and prove that α
is true in this model. Actually, it can be proved that each axiom of
L2 is valid, and all the rules of L2 preserve validity. It is straightfor-
ward to establish the validity of the axioms, using Remarks 14.4.1(ii),
and facts such as: for any subsets S, T of U in the Indiscernibility
Space 〈U,E〉, (lE)(S �T ) = (lE)(S)� (lE)(T ) = (lE)(S)∪ (lE)(T ), or
(lE)((lE)(S) ∪ (lE)(T )) = (lE)(S) ∪ (lE)(T ) (or the dual results with
respect to the upper approximation operator). Axioms 11-13b follow
from the properties of arbitrary union/intersection in ℘(U).

That rules 1–9 preserve validity can be shown easily, again using
the results just mentioned. In case of rule 10, denoting φ(αi) and φ(β)
by Ai and B respectively, and assuming that (lE)(Ai) ⊆ (lE)(B),
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i ∈ I, a simple set-theoretic argument shows that (lE)(
⋃

i ∈I
(lE)(Ai)) ⊆

(lE)(B), (uE)(
⋃

i ∈I
(lE)(Ai)) ⊆ (lE)(B). qed

Finally, we come to the completeness of L2 with respect to the preceding
semantics.

Theorem 14.4.8. (Completeness) Let Γ |= α. Then Γ | L2
α.

Proof. Let TQ(AS(U)) ∈ A, corresponding to an Indiscernibility Space
〈U,E〉 and v be any evaluation from F2 to TQ(AS(U)) that is a model
for Γ. So v(γ) = 〈U,U〉, for each γ ∈ Γ. We define an evaluation φ

from F2 to ℘(U) as follows. Let p be any propositional variable in F2.
As v(p) ∈ TQ(AS(U)), v(p) = 〈X1,X2〉 and there is S ∈ ℘(U) with
(lE)(S) = X2 and (uE)(S) = X1. We choose and fix such a set S, and
set φ(p) = S. φ is then extended to all well formed formulas in F2 as in
Definition 14.4.3. Then 〈U,E, φ〉 is a model and for any wff α, it can be
proved that v(α) = 〈(lE)(φ(α)), (uE)(φ(α))〉. In particular, for each
γ ∈ Γ, 〈U,U〉 = v(γ) = 〈(lE)(φ(γ)), (uE)(φ(γ))〉, so that φ(γ) = U

that is, each member of Γ is true in the model 〈U,E, φ〉. As Γ |= α,
φ(α) = U . So v(α) = 〈(lE)(φ(α), (uE)(φ(α))〉 = 〈U,U〉 and hence
Γ |=A α. Using Theorem 14.4.6, Γ #L2 α. qed

14.5 Algebraic Interpretation and Modal
Interpretation of Rough Set Systems

We conclude this Chapter with a short list of the main relationships
between the above modal interpretations of Rough Set Systems and
the algebraic interpretations that were introduced in Part II.

First of all, let us resume the algebraic constructions we have seen
so far.

In Tables 14.1 and 14.2, B is any Boolean algebra, B′ a Boolean sub-
algebra of B and L a distributive sub-lattice of B. D is any distributive
lattice, D′ a sub-lattice of D, S any lattice and S′ any sub-lattice of
S; E is an equivalence relation on the set U , R is a preorder or partial
order relation on U , x is an element of U , a is an element of B, S or D.
Moreover, let us compare the resulting plethora of modal notations.
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Table 14.1: Algebraic operators and modal systems

Operators Modal system Modal Algebraic
logic system

κ

E(x) = IE(x) = LE(x) 〈B(U),ΩE(U)〉 S5 mtBa
(lE)(X) 〈B(U),AS(U)〉 S5 mtBa

(lB′)(a) = 1 B′=⇒ a 〈B,B′〉 S5 mtBa
κ

R(x) = IR(x) = LR(x) 〈B(U),ΩR(U)〉 S4 tBa

(lL)(a) = 1 L=⇒ a 〈B,L〉 S4 tBa

(lD′)(a) = 1 D′=⇒ a 〈D,D′〉 R4
Lk(a) = {a′ : f(a′) ≤ a} 〈S,S′〉, for S′ = f(S)

Table 14.2: Modal operators and algebraic systems

Necessity Possibility Context
operators operators

LE ME S5 modal systems
IE CE 0-dimensional Topological Spaces

(lE) (uE) Approximation Spaces
(lB′) (uB′) abstract Approximation Spaces

∼ �≡ �� �∼≡ ¬¬ semi-simple Nelson algebras
φ2 φ1 3-valued �Lukasiewicz algebras
D2 D1 Post algebras of order 3
! ¡ P2-algebras



Chapter 15

Frames (Part III)

15.1 Frame – Proof of the Duality Between

LR(X) =
⋃

{Z : R(Z) ⊆ X}
and MR(X) =

⋂
{−Z : R(Z) ⊆ −X}

Given a function f(x), its dual function is −(f(−x)). Therefore:

−LR(−X) = −
⋃
{Z : R(Z) ⊆ −X} =

⋂
{−Z : R(Z) ⊆ −X}.

The reader is invited to distinguish between {−Z : ζ(Z)} and −{Z :
ζ(Z)} (ζ(Z) any first order formula with parameter Z). The latter
expression is equivalent to {Z : ¬ζ(Z)}. So, if A ∈ {−Z : ζ(Z)} then
A is the complement of a set fulfilling ζ, while A ∈ {Z : ¬ζ(Z)} is a
set that does not fulfill ζ.

For example consider the following relation R:

R a b c d

a 1 1 1 1
b 0 1 0 0
c 0 0 1 0
d 0 0 0 1

b c d

��
�
� �

�
�


a

�

Let A = {b}. So −A = {a, c, d}. Let ζ(X,Y ) ≡ R(X) ⊆ Y then
{X : ζ(X,−A)} = {∅, {c}, {d}, {c, d}}; thus {−X : ζ(X,−A)} =
{{a, b, c, d}, {a, b, d}, {a, b, c}, {a, b}}. It follows that

⋂
{−Z : R(Z) ⊆

−A} = {a, b} = R�(A).
Therefore, we have also verified that MR(X) = R�(X), as stated

in Corollary 12.1.1.

505
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On the contrary, {X : ¬ζ(X,−A)} = {X : R(X) � {a, c, d}} =
{X : a ∈ X ∨ b ∈ X}, i.e. X is any superset of {a} or any superset
of {b}. Hence both {a} and {b} belong to {X : ¬ζ(X,−A)}. It follows
that

⋂
{X : ¬ζ(X,−A)} = ∅, because both {a} and {b} belong to it.

15.2 Frame – Relational Properties

and Logical Characteristics

In what follows, given a relation R we shall denote 〈x, y〉 ∈ R by xRy,
too.

15.2.1 Proof of KT5 = KTB4

Suppose U = {w, z, k} and that we are given a Reflexive and Euclidean
binary relation R ⊆ U × U , such that wRz and zRk:

w

��
�
�

z � k

First of all, let us verify that zRw:

1 : wRz (hypothesis) 2 : wRw (reflexivity)
zRw (1, 2 : from the Euclidean property)

Similarly, we obtain kRz. That is, Reflexive + Euclidean� Symmetric:

w

��
�
�
�
�


z � � k

Now, let us prove that R is transitive, too:

1 : wRz (hypothesis) 2 : zRk (hypothesis) 3 : zRw (just proved)
wRk (1, 2 : from the Euclidean property)

Similarly we obtain that kRz and zRw imply kRw.
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w

��
�
�
�
�
 �

�
�
�
��

z � � k

Hence, we deduce that Reflexive + Euclidean = Equivalence.

15.2.2 Proof of KDB4 = KTB4

Let U = {w, z, k} and R ⊆ U ×U . Suppose R is Serial, Symmetric and
Transitive. If neither wRz nor zRw, then since R is serial we must have
both wRw and zRz, and we are done ( R is also reflexive). Suppose
now wRz. Then:

1 : wRz (hypothesis) 2 : zRw (symmetry)
zRz,wRw (1, 2 : by transitivity)

The same applies to k. Therefore, R is also reflexive.
However, if R is not serial then the deduction fails. Indeed suppose

that w is not connected with any element. Obviously we cannot apply
Symmetricity and Transitivity in order to obtain wRw.

Exercise 15.1. Prove KDB5 = KTB4.

15.3 Frame – Proof of Proposition 12.7.10

Let R∗ =
⋃

n
{Rj}1≤j≤n and R∗ =

⋂

n
{Rj}1≤j≤n. Then,

(1) Consider the bases for Pn: for any x, Bn
x = {R1(x)∪, . . . ,

∪Rn(x)}. Obviously R1(x)∪, . . . ,∪Rn(x) = (R1∪, . . . ,∪Rn)(x) =
R∗(x) (in fact, R1(x) ∪R2(x) = {〈x, y〉 : 〈x, y〉 ∈ R1 or 〈x, y〉 ∈ R2} =
{〈x, y〉 : 〈x, y〉 ∈ R1 ∪R2} = (R1 ∪R2)(x). Therefore, since Fn

x =⇑ Bn
x ,

we have, for any x, y: 〈x, y〉 ∈ RT (Pn) if and only if y ∈
⋂

Fn
x if and

only if y ∈ Bn
x if and only if 〈x, y〉 ∈ R∗(x). It follows thatRT (Pn) = R∗.

(2) Consider the bases for P1: for any x, B1
x = {R1(x), . . . , Rn(x)}.

Since F 1
x =⇑ B1

x, 〈x, y〉 ∈ RT (P1) if and only if y ∈
⋂

F 1
x if and only

if y ∈
⋂
B1

x if and only if y ∈
⋂

n
{Rj(x)}1≤j≤n if and only if y ∈ R∗(x).

It follows that RT (P1) = R∗.
(3) For any x, y, 〈x, y〉 ∈ RB(Pn) if and only if y ∈

⋂
Fn

x and x ∈
⋂

Fn
y . Therefore, if 〈x, y〉 ∈ RB(Pn) then y ∈

⋂
Fn

x , so that 〈x, y〉 ∈
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RT (Pn). So, RB(Pn) ⊆ RT (Pn). Moreover, RB(P) is symmetric by
definition, for any pre-topology P. Hence it is a tolerance relation,
because reflexivity is inherited by the pre-topological structure. Finally,
because of the bi-implication in the definition of RB(Pn), it is the
largest tolerance relation included in R∗.

(4) From a similar argument we can prove that RB(P1) is the largest
tolerance relation included in R∗.

(5) Since RB(Pn) is included in RT (Pn), we obtain straightfor-
wardly P(RT (Pn)) � P(RB(Pn)).

15.4 Frame – Proofs of the Propositions

about the Uniqueness of P(RT (P))
and P(RB(P))

Let P = 〈U,κ, ε〉 be a pre-topological space of type VI . Let P′ =
〈U,κ′, ε′〉 be a pre-topological space of type VS finer than P. Thus for
all x ∈ U , κx ⊆ κ

′
x, so that

⋂
κ

′
x ⊆
⋂
κx =

⋂
κ

RT

x . It follows that
κx ⊆ κ. Thus, P(RT (P)) is the coarsest among the pre-topologies of
type VS finer than P. qed

15.5 Frame – Alternative Proofs

of Corollary 12.8.2.(1)

Proof 1. We have to prove κ

R(R(x)) = R(x). Notice that since
κ

R(R(x)) = {y : ∃F (F ∈ κR
y & F ⊆ R(x)}, κR(R(x)) = {y : R(y) ⊆

R(x)} (because R(y) is the least element of κR
y ). Clearly, if y′ ∈ R(y),

then R(y′) ⊆ R(y) because R is transitive. Moreover R is reflexive. It
follows that for all y′ ∈ R(y), R(y′) ⊆ {y : R(y) ⊆ R(x)}. Therefore,
{y : R(y) ⊆ R(x)} =

⋃
{R(y) : R(y) ⊆ R(x)} = R(x). qed

Proof 2. We know that for any x ∈ U , given R(x) there is a Y ∈ κR
x ,

such that R(x) ∈ κR
y for all x ∈ Y . But if this is true of some Y , then

it is true for every Y ′ ⊆ Y . But R(x) is minimal in κR
x (because of

Proposition 12.6.9). It follows that R(x) is a neighborhood of all its
own points. Hence R(x) is open. qed
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15.6 Frame – Direct Proof of
MR(X) = M ∗

R(X), for R

a Preorder Relation

A proof is given in Corollary 12.8.5.
We remind that we have to prove in a direct way that MR(X) =

⋂
{−Z : R(Z) ⊆ −X} equals M∗

R(X) =
⋂
{R�(Z) : X ⊆ R�(Z)}.

Clearly
⋂
{R�(Z) : X ⊆ R�(Z)} = R�(X), because R is a preorder.

Moreover,
⋂
{−Z : R(Z) ⊆ −X} = −

⋃
{Z : R(Z) ⊆ −X}. Therefore

we have to prove that −R�(X) =
⋃
{Z : R(Z) ⊆ −X}.

So, let us set A =
⋃
{Z : R(Z) ⊆ −X} and let a ∈ A. Thus

R(a) ⊆ −X and there is not x ∈ X such that 〈a, x〉 ∈ R, otherwise
R(a)∩X �= ∅. Therefore if a ∈ A, then a ∈ −R�(X), i.e. A ⊆ −R�(X).

Conversely, −R�(X) is an open set, because R�(X) is closed,
since R is a preorder. Hence R(−R�(X)) = −R�(X). Moreover,
X ⊆ R�(X), because R is reflexive. It follows that −R�(X) ⊆ −X.
We can deduce that −R�(X) ∈ {Z : R(Z) ⊆ −X} and conclude
−R�(X) ⊆ A.

15.7 Frame – Transforming a Pre-Topological
Space of Type VS into a Topological
Space

Consider the pre-topological space P(R3) of Example 12.8.1. First of
all, observe that P(R3) is of type VS and ΩR3(U) is a non-distributive
lattice:

{a, b, c}

&
& '

'
'
'
'
'

{b, c}
'
'
{c} {a}
'
' &

&

∅

Indeed, ΩR3(U) is not a lattice of sets: LR({c}) ∨ L3({a, b}) = {c} ∨
{a} = {a, b, c} �= {c, a} = {c} ∪ {a}.
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Let us show that RT (P(R3)) = R3: indeed, since P(R3) is of type
VS, 〈x, y〉 ∈ RT (P(R3)) if and only if y ∈

⋂
BR3

x . But since
⋂
BR3

x =
R(x), we have y ∈

⋂
BR3

x if and only if 〈x, y〉 ∈ R3.
Moreover notice that RT (P(R3)) is different from the specialization

preorder $ induced by ΩR3(U). In fact, $ is given by:

$ a b c

a 1 0 0
b 0 1 1
c 0 0 1

Let us construe F(〈U,$)〉:

{a, b, c}

&
& '

'
{b, c} {a, c}
'
' &

& '
'

{c} {a}
'
' &

&

∅

We can observe that F(〈U,$)〉 equals the lattice of sets that we obtain
by taking ΩR3(U) as a topological basis, that is, by considering all the
unions of elements of ΩR3(U) (for instance, in F(〈U,$)〉 we have the
new element {a, c} = {c} ∪ {a}, that does not appear in ΩR3(U)).

The structure P� = 〈U,F(〈U,$)〉〉 is a topological space. Let us
compute the operator κ using the formula κ(X) =

⋃
{Y ∈ F(〈U,$)〉 :

Y ⊆ X}:

X {a} {b} {c} {a, b} {a, c} {b, c} ∅ U

κ(X) {a} ∅ {c} {a} {a, c} {b, c} ∅ U

Therefore, we obtain the neighborhood system:

x a b c

κx {{a}, {a, b}, {a, c}, U} {{b, c}, U} {{c}, {a, c}, {b, c}, U}

Here, RT (P�) is a maximal preorder included in R3, but only by
chance, as the following example witnesses.
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Consider the following relation R4:

R4 a b c d

a 1 1 0 0
b 0 1 1 0
c 0 0 1 1
d 0 0 0 1

The elements of ΩR4(U) are:

Element Generated by
{a} κ({a, b})
{b} κ({b, c})
{d} κ({d}),κ({b, d}),κ({a, d})
{a, b} κ({a, b, c})
{a, d} κ({a, b, d})
{c, d} κ({c, d}),κ({a, c, d})
{b, c, d} κ({b, c, d})

∅ remaining cases (κ({a}), . . .)
U κ(U)

Therefore, the specialization preorder of ΩR4(U) is:

$ a b c d

a 1 0 0 0
b 0 1 0 0
c 0 0 1 1
d 0 0 0 1

which is not a maximal preorder included in R4 (indeed, it lacks 〈a, b〉,
which is an admissible pair for a preorder included in R4).

15.8 Frame – Modal Interpretations of

Approximation Spaces and Rough Sets

Approximation Spaces were interpreted as modal spaces as soon as they
came to the stage of logical researches. Nonetheless, the first researchers
who systematically dealt with this topic was probably Ewa Or�lowska,
in a number of pioneering works, such as [Or�lowska, 1984, 1988a, 1989]
and [Or�lowska, 1990a].
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We have also to mention, at least, [Nakamura, 1993]. Other authors,
such as Dimiter Vakarelov, Ivo Düntsch or Günter Gediga, who made
some important advances in the topic, are largely quoted in this Book.

Of course, this list is far from being exhaustive.
A variant of the modal interpretation of Rough Set Theory was

exploited to account for a logic for knowledge and learning by [Pawlak,
1985; Or�lowska, 1987, 1989; Ras & Zemankova, 1986] and others.

This interpretation is close to the perception-oriented interpretation.

15.9 Frame – Kripke-Joyal Models

As a part of the development of Sheaf Theory, it was realised around
1965 that Kripke semantics was intimately related to the treatment
of quantification in topos theory, especially existential quantification.
That is, the ‘local’ aspect of existence for sections of a sheaf was a kind
of logic of the ‘possible’.

Actually, at present this is not a surprise (however, it was an excit-
ing achievement in 1965). Indeed, in view of the definition of the basic
“perception operators” in Chapter 2, we know that 〈R〉 and 〈R�〉 are
connected with existential quantification, while [R] and [R�] are con-
nected with universal quantification. Moreover, we know from Propo-
sition 2.1.1.(3) that A �〈f̂�〉,〈f̂〉 B for any function f : A �−→ B, where
A = 〈℘(A) ⊆〉 and B = 〈℘(B) ⊆〉. In other terms, A �f→,f← B. This
is a specialization of B �〈R�〉,[R] A. Thus if we define:

←f : ℘(A) �−→ ℘(B);←f(X) = {y ∈ B : ∀x ∈ A(f(x) = y � x ∈ X)},

then we can specialize B �〈R〉,[R�] A and obtain B �f←,←f A. Partic-
ularly, if f : A × B �−→ B, then f→ maps a relation R (a subset of
A × B) onto a property P (a subset of B). Therefore, recalling that
≤ stands for =⇒, the adjunction properties above can be restated as
follows:

〈x, y〉 ∈ R
...

P (y)
∃x(〈x, y〉 ∈ R) =⇒ P (y)

P (y)
...

∀x(〈x, y〉 ∈ R)
P (y) =⇒ 〈x, y〉 ∈ R

Therefore, we can call ←f and f→ the “universal quantifier ∀f of f”
and, respectively, the “existential quantifier of f”, ∃f .
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If we apply this machinery to presheaves of functions, f is a trans-
formation between two presheaves X and Y , so that the universal quan-
tifier ∀f (the existential quantifier ∃f ) associates a subobject X ′

∀f
⊆ Y

(X ′
∃f

⊆ Y ) with each subobject X ′ ⊆ Y , such that X ′
∀f

(X ′
∃f

) is a
sub-presheaf of Y fulfilling the adjunction properties.

This topic was developed by different researchers (for instance, W.
Lawvere). However the name Kripke-Joyal semantics is used in this
connection in [Mac Lane & Moerdijk, 1992].

From this discussion, it is clear that ∃ is a lower adjoint and ∀ an
upper adjoint. This justifies that ∃ distributes over ∨ and ∀ distributes
over ∧, as like as � and, respectively, � (which, in turn, are defined by
means of ∃, respectively ∀.

15.10 Frame – Quantum Logic and Internal
Modalities

In [Bell, 1983] a semantics for Quantum Logic (see, for instance,
[Jammer, 1974]) is approached by means of “proximity spaces”. From
Part I, Frame 4.6, we know that a proximity space is a set equipped with
a tolerance relation, T = 〈U, T 〉. In this paper J. B. Bell argues that
the failure of the distributivity law in Quantum Logic is a consequence
of more fundamental causes, namely the way in which phenomena are
perceived. In this approach phenomena, or “events” in Bell’s terminol-
ogy, are “quanta at a location”. Let p ∈ U , then a quantum at location
p ∈ U is p along with all the other points that are similar to p. Thus
a quantum at a location has the form T (p). A quantum is intended as
the “minimum perceptibilium” at a certain location. Unions of quanta
(“assemblage of quanta”) give rise to the space of events Q(T). As we
have seen in Part I, a quantum assemblage is an ortholattice.

In a quantum assemblage Q(T), the following “localization prop-
erty” fails:

(LOC) if a and b cover U , that is, if a∨b = U , then for each element
z of Q(T), the set {a, b} “localizes” to a cover {a ∧ z, b ∧ z}.

Otherwise stated, the distributivity law (a ∧ z) ∨ (b∧ z) = (a∨ b) ∧
z fails in quantum assemblages. Therefore, the Persistence Property
introduced in Window 11.1 of this Part, fails too, since it is a property
stating that phenomena are valid also in subspaces.
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The lack of the Persistence Property is able to model the fact that in
Quantum Theory we can have properties that hold globally, but do not
hold locally. Indeed, we can have properties P1 and P2 such that the
disjunction P1 ∨ P2 holds in the whole event space, but does not hold
in sub-parts of the space. Actually in such a sub-part S we may have
a superposition of P1 and P2 but S cannot be split into two sub-parts,
one fulfilling P1 and the other P2. In other terms, we cannot have S′

and S′′ such that S′∪S′′ = S, S′ |= P1, S
′ |= P2, that which is explicitly

required by Kripke-Joyal semantic in order for S to force P1 ∨ P2. In
this case 1 |= P1 ∨P2 but P1 ∨P2 does not localise to all the sub-parts
of 1 (see also Example 11.5.2).

Here is an example from [Bell, 1983]: Let C be a closed disc in the
complex plane and for any x, y ∈ C define 〈x, y〉 ∈ T if and only if
the angular distance between x and y is ≤ π

4 . Then C = 〈C, T 〉 is a
proximity space and for any x ∈ C, the quantum at x is the quadrant
T (x) = {y ∈ C : arg x− π

4 ≤ arg y ≤ arg x+ π
4 }.

Let Q(C) be a complete quantum assemblage. Suppose we are given
two atomic attributes W (“white”) and B (“black”). Let us assign a
forcing relation between points and attributes such that �W � = 1st

quadrant ∪ 3rd quadrant and �B� = 2nd quadrant ∪ 4th quadrant:
Obviously �W ∨B� = C, or, otherwise stated, the disjunction of the

two attributes is manifested (forced) over the entire universe C. But
if S is the quantum [3π

4 ,
π
4 ], with respect to the positive x-axis, then

S �⊆ �W ∨B� (i.e. W ∨B is not manifested over S) since there is not a
disjunction of S, S′ ∪ S′′ = S, such that S′ ⊆ �W � and S′′ ⊆ �B� (see
Figure 15.1). Therefore S �|= W ∨B because it does not satisfy what is
required by the Kripke-Joyal forcing condition for ∨ (see Window 11.1).

Figure 15.1: Superposition and non-persistence
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If we define a modality L by means of the internal forcing condition
x |= L(α) if and only if ∀y(y ≤ x � y |= α), then L exactly models
persistent events, in that �L(α)� = 1 if and only if α is persistent.

L induces a dual modality M defined byM(α) = ¬(L(¬α)), where ¬
is the orthocomplementation:

x |= M(α) if and only if ∀y(x |= L(¬α)� y ≤ ¬x),

if and only if ∀y(∀z ≤ y(∀v(v |= α� v ≤ ¬z)))� y ≤ ¬x,

if and only if ∀y(∀v(v |= α� v ≤ y))� x ≤ y,

if and only if ∃y(y ≥ x & y |= A).

Therefore, S ⊆ M(�α ∨ β�) asserts that there is a superpart of S
manifesting a superposition of α and β.

In the quoted paper, an example about the manifestation of incom-
patible attributes is given, too.

15.11 Frame – Persistence of Modalised
Formulas

In the approach developed in the present Part, we have imposed on the
knowledge map k a particular condition: continuity (viz. k(A)∨k(B) =
k(A∨B)). As a consequence k is isotonic (if A ≤ B, then k(A) ≤ k(B)).
This makes any evaluation of modalised formulas satisfy the Persistence
Property. Indeed, suppose we are given a k-modal system 〈L, k(L)〉 and
p is an element of L. By definition, if p |= Lk(α), then for any p′ ≤ k(p),
p′ |= α. Suppose p′′ ≤ p. By isotonicity k(p′′) ≤ k(p). Hence from the
preceding clause, k(p′′) |= α. Given any p′′′ ≤ k(p′′), by transitivity
p′′′ ≤ k(p), so that p′′′ |= α, too. But since p′′′ ≤ k(p′′), it follows that
p′′ |= Lk(α), as well.1

Trivially, for any formula α, Mg(α) is persistent too. In fact if p |=
MR(α), then there exists a p′ such that p ≤ g(p′) and p′ |= α. Suppose
p′′ ≤ p. Then by transitivity p′′ ≤ g(p′), so that the forcing clause for
MR is satisfied at point p′′, too.

1If the Persistence Property is satisfied by non-modalised formulas, the proof is
much shorter. Indeed in this case p |= Lk(α) if and only if k(p) |= α. Now suppose
p′ ≤ p. By isotonicity k(p′) ≤ k(p) and from persistence k(p′) |= α. Henceforth,
p′ |= Lk(α).
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However, at a deeper insight, the above mechanism works because k
is, from its very definition, an endomorphism, that is, k maps elements
of L onto elements of L. So, when we start with a k-modal system,
things run by definition. We have also seen that if we start with a
generic finite distributive modal system 〈S,S′〉 we have a method for
transforming it into an isomorphic k-modal system 〈LS, k

∗(LS)〉 (called
the “representation” of 〈S,S′〉) where k∗ is connected with a binary
relation R on the carrier of LS. We have also seen that R is not arbitrary
but, instead, is the preorder $ induced by LS′ . The passage from S to
LS produces exactly the turning point in which persistence with respect
to the lattice S (viz. if p |= α and p′ ≤ p, then p′ |= α) turns into
persistence with respect to the Kripke frame 〈J (S),≤〉 (if x � α and
x′ ≤ x, then x′ � α) where ≤ is the partial order induced by S on the
set of co-prime elements J (S). But modalised formulas are evaluated
using $, not ≤ (x � L(α) iff for any x′ such that x $ x′, x′ � α).
How persistency of modalised formulas is guaranteed with respect to
≤? The answer is: since S′ is a sub-lattice of S, $ is coherent with ≤,
because x $ y if and only if ↑≤ x ⊆↑≤ y if and only if y ≤ x. Moreover,
this coherence is guaranteed a priori if we start with a k-modal system
〈S, k(S)〉 where S is a lattice of subsets of a set U and k is connected
with a binary relation R ⊆ U ×U . In fact, in this case k(S) is as above
and R coincides with the specialization preorder of the sublattice k(S).

Persistence of modalised formulas becomes a critical topic when we
want to combine S with a generic binary relation R ⊆ U × U . Or,
which is the same, when we evaluate non modalised formulas over a
Kripke frame 〈U,R1〉 and modalised formulas on a different Kripke
frame 〈U,R2〉.2

This was a main topic in [Humberstone, 1981]. In this well-known
paper a modal frame is a tuple 〈W,≤, R, V 〉, where W is a set, ≤ is
a partial order on W and R is a binary relation on W . V is a set-up
map such that for any atomic formula γ, for any x, x′ ∈ W , if V (γ, x)
is defined (i.e. V (γ, x) = T or V (γ, x) = F ) and x ≤ x′, then V (γ, x) =

2This is not a problem if we deal, as happened in the majority of the cases in
this Part, with modal systems where the non modal part is based on a Boolean
algebra B (in particular B(U), the Boolean algebra of ℘(U)). Indeed, in this case
the specialization preorder of (the representation of) B is immaterial since it reduces
to the identity relation. Therefore non modalised formulas are persistent for free as
like as modalised formulas, even if they are evaluated by means of a completely
arbitrary relation R.
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V (γ, x′), which constitutes the persistency requirement for non moda-
lised formulas (an additional “Refinability” requirement is added, that
we do not discuss here). On the basis of this set-up, forcing clauses
are defined for non modal operations. It turns out that any non modal
formula α is ≤-persistent. Modalised formulas are evaluated by means
of the relation R:

x � �(α) iff for all y ∈W, if xRy then y � α (15.11.1)

The use of two relations (instead of just one dedicated to modalised for-
mulas, while non modalised formulas are evaluated on a “flat” Boolean
space, as usual) was suggested by previous arguments about Tense
Logic developed in [Humberstone, 1979], where it was shown the neces-
sity to distinguish between the relation “x is a sub-interval of the
interval of time y” and the relation “the interval x wholly precedes
the interval y”.

Humberstone explicitly examines the relationships that ≤ and R

must satisfy in order to make modalised formulas ≤-persistent. He finds
that the following sort of transitivity constraint is fundamental:

for all x, x′ and x′′, if x ≤ x′ and x′Rx′′ then xRx′′ (15.11.2)

(a dual constraint of (15.11.2) and a third constraint connected with
the notion of “Refinability” above cited are added, as well).

It is shown that this suffices to guarantee that if x � �(α) and
x ≤ x′, then x′ � �(α).

As to possibility, it is shown that given the usual definition
�(α) =def∼ �(∼ α), the correct forcing clause is the following:

x � �(α) iff ∀x′ ≥ x,∃x′′ such that x′Rx′′

and ∃x′′′ ≥ x′′ such that x′′′ � α (15.11.3)

This clause makes �(α) persistent, any α. It is shown, on the contrary,
that if an operator M is defined by the usual clause

x �M(α) iff ∃x′ such that xRx′ and x′ � α (15.11.4)

then M(α) is not ≤-persistent and �(α) #M(α), but not conversely.
In what follows we add some examples.
First example: Consider the lattices F(J(L)) and LL′ of Example

11.5.3. Let � be the specialization preorder of F(J(L)) and $ the spe-
cialization preorder of LL′ . It is easy to verify that if we put �=≤ and
$= R, then (15.11.2) is satisfied.
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Second example: Consider the following relations onW = {a, b, c, d}:

R1 a b c d

a 1 1 1 1
b 0 1 0 1
c 0 0 1 0
d 0 0 0 1

R2 a b c d

a 1 1 0 0
b 0 1 0 0
c 1 1 1 0
d 1 1 0 1

R3 a b c d

a 1 1 1 1
b 0 1 1 1
c 0 0 1 0
d 0 0 0 1

We can observe that (15.11.2) is not satisfied by the pair 〈R1, R2〉.
Indeed, bR1d, dR2a but not bR2a. In particular we can observe that the
set R′′ = {R2(X) : X ⊆W} is not a subset of R′ = {R1(X) : X ⊆W}
(for instance, R2({a}) = {a, b} is not an element of R′). On the con-
trary, (15.11.2) is satisfied by the pair 〈R1, R3〉. And we can observe
that R′′′ = {R3(X) : X ⊆ W} is a subset of R′ and 〈R′′′,⊆〉 is a sub-
lattice of 〈R′,⊆〉. Consider now a formula α such that �α� = {b, d}. If
we evaluate �(α) on the basis of R2, then ��(α)� = {b} (i.e. ��(α)� =
LR2(�α�). But {b} is not an open set in R1 because ≥ b but d /∈ {b}.
Hence b forces �(α), d ≥ b but d does not force �(α).

A third example is about the operator �. Consider a modal frame
(in the sense of Humberstone) 〈W,R1, R3, V 〉 with d |= α. We have
{x : x � M(α)} = {a, b, d} and {x : x � �(α)} = {b, d}. Let us check
why a � �(α) : c ≥ a, c is the only element such that cR3c, c is the
only element such that c ≤ c but c � α. Therefore, a does not satisfy
clause (15.11.3).

Finally it must be noticed that in case R coincides with the pre-
order ≤, the forcing clause for � becomes a clause for �M( ). That is,
x � �(α) iff x � �(M(α)). Otherwise stated, � in this case, coincides
with Lawvere’s local operator (see Part II).

15.12 Frame – Coherence Between
Information and Knowledge

In Subsection 11.4.1 given a lattice L we required a certain sort of
coherence between the information order ≤ given by the lattice order
and the new order induced by a knowledge map k on L. Namely, we
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required that k must be a ∨-endomorphism. Coherence, in this case, is
embedded in the persistence property for modalised formulas (cf. the
discussion at the beginning of Frame 15.11).

We anticipated that there are other approaches to the problem con-
cerning the coherence between a knowledge order and an information
order. A first example is Humberstone’s constraint (15.11.2) that we
have seen above.

Another interesting approach was proposed by [Ginsberg, 1986] and
developed in [Ginsberg, 1988] and [Ginsberg, 1990], upon the follow-
ing intuition. One can order values on the basis of truth and falsity,
or on the basis of the completeness of the information they represent.
Thus, instead of a lattice structure equipped with a single order rela-
tion, Matthew Ginsberg proposes using a “bi-lattice”, that is, a set
equipped with two order relations: a truth order ≤t and a knowledge
order ≤k. If a ≤k b then we say that the evidence underlying the
assignment of the truth-value a is subsumed by the evidence under-
lying the assignment of the truth-value b. The two orders have two
distinct top and bottom elements. For ≤t we have, as usual, 0 and 1.
For ≤k the bottom element is u, meaning “unknown”, while the top
element is ⊥, meaning “overdefined” or “contradictory”.3 Clearly ≤k

and ≤t are intimately connected with each other and this is expressed
by a set of constraints about the operations of inf and sup that they
induce.

Therefore, a bi-lattice is a structure B = 〈B,∧,∨, ·,+, 1, 0, u,⊥〉
such that:

(1) 〈B,∧,∨, 1, 0〉 and 〈B, ·,+, u,⊥〉 are lattices; (2) a∧b = a iff a ≤t

b (i.e. ≤t is the order relation of the first lattice); (3) a · b = a iff a ≤k b

(i.e. ≤k is the order relation of the second lattice); (4) each operation
respects the order relations in the alternate lattice (for instance, if
a ≤k b and a′ ≤k b

′, then a ∧ a′ ≤k b ∧ b′.

3This notion of “overdefined value” derives from the very origin of this business:
Default Logic. More precisely, we can deduce a statement S using default pieces of
information. If the default is later overridden by a fresh information, then S might be
retracted (a typical example in Artificial Intelligence is Tweety, that can fly because
she is a bird and, by default, birds can fly. But later we learn that Tweety is a
penguin. Then the default does not work any longer and we have to conclude that
Tweety cannot fly). Therefore we can admit that we can prove a statement S using
one method and ¬S using another.
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The following diagram depicts the smallest non trivial bilattice:

k ⊥

�� ��
0 1

�� ��

u

�

� t

The smallest non trivial bilattice

It is possible to note, for instance, that u ∧ ⊥ + u ∧ 1 = 0 + u = 0 =
u∧(⊥+1). More generally, we have that x∧ and x∨ are lattice endomor-
phisms of 〈B, ·,+, u,⊥〉, while x· and x+ are lattice endomomorphisms
of 〈B,∧,∨, 1, 0〉, which corresponds to condition (4) above.

As for negation, the underlying intuition suggests that ∼ must be
such that a ≤t b implies ∼b ≤t ∼a, while a ≤k b implies ∼a ≤k ∼b.
Indeed, if we know less about a than about b, we know less about ∼a
than ∼b. So, for instance, in the above bi-lattice we have ∼1 = 0,
∼0 = 1, ∼u = u and ∼⊥ = ⊥.

Developing this approach, Melvin Fitting in [Fitting, 1988] extends
the evaluations to topological spaces dual to Kripke models, that is, by
building bi-lattices over intuitionistic semantics. In this approach given
a topological space 〈U,Ω(U)〉 dual of a Kripke frame 〈U,R〉, elements
of a bi-lattice are ordered pairs 〈O,C〉, such that O is an open set
(meaning “belief”) and C is a closed set (meaning “disbelief”), possibly,
but not necessarily, the complement of O. Since the case “overdefined”
is admitted, no particular relationship between O and C is imposed.
This liberality induces the following cases: a pair 〈O,C〉 will be said
(a) overdefined if O ∩ C �= ∅, (b) consistent if O ∩ C = ∅, (d) exact if
O ∩ C = ∅ and O ∪ C = U .

The two orders are defined as follows: (ti) 〈O1, C1〉 ≤t 〈O2, C2〉
if O1 ⊆ O2 and C1 ⊆ C2. (tii) 〈O1, C1〉 ≤k 〈O2, C2〉 if O1 ⊆ O2

and C1 ⊇ C2. The operations are defined in a familiar way. For the
truth order:

∨
S = 〈

⋃
{O : 〈O,C〉 ∈ S},

⋂
{C : 〈O,C〉 ∈ S}〉,

∧
S =

〈I(
⋂
{O : 〈O,C〉 ∈ S}),C(

⋃
{C : 〈O,C〉 ∈ S})〉 (the interior and

closure operators I and C are not required if S is finite). For the knowl-
edge order:

∑
S = 〈

⋃
{O : 〈O,C〉 ∈ S},C(

⋃
{C : 〈O,C〉 ∈ S})〉,

∏
S = 〈I(

⋂
{O : 〈O,C〉 ∈ S}),

⋂
{C : 〈O,C〉 ∈ S}〉 (again, I and C are

not required if S is finite). The interconnections between the two orders,
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are guaranteed by 4) above. It must be noticed that the operations ∧
and ∨ distribute over + and, respectively, ·, and viceversa.

As for the negation we have (tiii) ∼ 〈O,C〉 = 〈I(C),C(O)〉. In sub-
sequent papers (cf. [Fitting, 1991]), a dual form of negation, −, called a
“conflation”, was introduced such that a ≤t b implies −a ≤t −b, while
a ≤k b implies −b ≤k −a (a further negation definable on bilattices
was shown in Part II, Frame 10.12.2, Figure 10.4).

Below, on the left the topological version of the above mentioned
bi-lattice is reproduced. On the right a topological bi-lattice is built
from the dual space of the Kripke frame {a ≤ b}:

B4
k 〈{a}, {a}〉

� �
〈∅, {a}〉 〈{a}, ∅〉

� �
〈∅, ∅〉

�

� t

B9

k 〈{a, b}, {a, b}〉

�� ��
〈{b}, {a, b}〉 〈{a, b}, {a}〉

�� �� �� ��
〈∅, {a, b}〉 〈{b}, {a}〉 〈{a, b}, ∅〉

�� �� �� ��

〈∅, {a}〉 〈{b}, ∅〉
�� ��

〈∅, ∅〉

�

� t

Observe that the right side lattice looks like a Post algebra of order
three. Nonetheless it is not a Post algebra. In fact, both 〈{a, b}, {a, b}〉
and 〈∅, ∅〉 are fix-points of the negation ∼. It follows that the inequality
a∧ ∼ a ≤ b∨ ∼ b (which is valid in Post algebras) is not satisfied.

Finally, notice that the operation −〈O,C〉 = 〈−C,−O〉 is a con-
flation. Neither in this case we obtain a Post algebra of order three
because there are two fix points of the operator “−”, namely 〈∅, {a, b}〉
and 〈{a, b}, ∅〉.

Recently bi-lattices has been used to define extensional interpreta-
tions for the “logic of questions” (cf. [Nelken & Francez]). In such logic
we have indicative and interrogative sentences. Clearly it is not wise to
interpret interrogative sentences over the set {0, 1}, because a question
cannot be true or false. Instead, a question can be “resolved”, r, or
“unresolved”, ur. A question �(α) is resolved or unresolved depend-
ing on the knowledge status of the underlying indicative sentence α.
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In turn this may assume the values 1 (meaning “α is known to be true”),
0 (meaning “α is known to be false”) and δ (meaning “ α is unknown to
be true or false”). More precisely, the semantic for indicative sentences
is assumed to be the Kleene Strong Semantic (see Frame 10.20). This
leads to symmetric notions of truth and answerability conditions.

In this semantic setting we can evaluate sentences modalised by the
interrogative operator �:

v(�(α)) =
{
r if v(α) ∈ {1, 0}
ur if v(α) = δ

The relationship between indicative evaluations and interrogative eval-
uations is guided by an “answerwhood principle”: an indicative sen-
tence answers an interrogative one, if whenever the former is assigned
1, the latter is assigned r.4

This approach yields to a bi-latice with five elements structured by
a truth-order ≤t and an answerability order ≤r:

r r

�� ��
0 1
*
*
*
*

�� ��

+
+
+
+

δ

ur

�

� t

The designed values are 1 and r. Notice that the bi-lattice negation ∼
does not affect, correctly, the amount of resolvedness as, in the previous
bi-lattices, it does not affect the knowledge degree.5

15.13 Frame – Neighborhood Systems

15.13.1 Some History and Recent Applications

Čech in his book [Čech, 1966] showed that spaces in which just 1,
N1, N2, and N3 are assumed, are sufficient to derive most of the

4Actually, one should distinguish between “yes/no questions” and so-called “wh-
questions” (what, which, when, . . . ). The latter are infinitary versions of the former,
since the structure of wh-questions is similar to that of quantified sentences.

5However, this is technically wise but it is unlikely from the point of view of Natu-
ral Language (what is the negation of a question?). More difficulties in interpretation,
of course, arise if we assume also a conflation operation.
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fundamental results of point set topology, thus making advances in the
streamline of Fréchet’s pioneering ideas on pre-topologies (see [Fréchet,
1928]).

Pre-topologies have been exploited in a limited, albeit significant,
number of fields.

Recently, interesting applications have been found in the study of
search spaces in Combinatorial Chemistry as well as in sequence spaces
underlying molecular evolution. Indeed these spaces are conventionally
represented by graphs. However, recombination implies combinatorial
search spaces structures, which are not graphical and pre-topological
spaces revealed to be a promising formal tool (see [Stadler et al., 2000]
and [Stadler & Stadler, 2001] and the references quoted therein).

The formal setting of pre-topologies in which the expansion operator
is a closure operator has been used in Computer Science, for instance to
model data flow between a client and a server. Indeed, it is worthwhile
reproducing in Figure 15.2 a schema from [Hancock & Hyvernat, 2002]
because it is quite similar to the schema we presented in Figure 2.6 of
Chapter 2:

Figure 15.2: The programmer’s predicament

In the last decade of the XX century some French scholars began
applying pre-topologies to data analysis. We have to mention especially
[Belmandt, 1993] (cf. [Langeron & Bonnevay, 1999], too):

Particularly, in Belmandt’s work, instead of the functions εm and κm

discussed in Excursus 12.6.2, the following functions where introduced:

(a) am : ℘(U) �−→ ℘(U); am(A) =
⋂

γ∈Γm(
⋃

l∈γ bε
l (A));
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(b) im : ℘(U) �−→ ℘(U); im(A) =
⋃

γ∈Γm(
⋂

l∈γ bκ

l (A)),

where Γm is defined as in Excursus 12.6.2 and for l ∈ γ, bε
l (A) =

{x : Rl(x) ∩A �= ∅} and bκ

l (A) = {x : Rl(x) ⊆ A}.

We give an example based on the family of relations of Excursus 12.4.1.
Let us compute am(x) and im(x) for some cases of m and x.

First of all, we have to apply the operators bε
l and bκ

l :

∅ {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}
bε

1 ∅ {a} {a, b} {c} {a, b} {a, c} {a, b, c} {a, b, c}
bε

2 ∅ {a} {b} {a, c} {a, b} {a, c} {a, b, c} {a, b, c}
bε

3 ∅ {a, b} {b} {a, c} {a, b} {a, b, c} {a, b, c} {a, b, c}

∅ {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}
bκ

1 ∅ ∅ {b} {c} {a, b} {c} {b, c} {a, b, c}
bκ

2 ∅ ∅ {b} {c} {b} {a, c} {b, c} {a, b, c}
bκ

3 ∅ ∅ ∅ {c} {b} {a, c} {c} {a, b, c}

For instance, in order to obtain bκ

2 ({a, b}) we reason in the fol-
lowing way: (i) R2(a) = {a, c} � {a, b}, hence a is discharged; (ii)
R2(b) = {b} ⊆ {a, b}, hence b is admitted; (iii) R2(c) = {c} � {a, b},
hence c is discharged. Thus we obtain bκ

2 ({a, b}) = {b}. For bε
2({c})

we compute: (i) R2(a) = {a, c} ∩ {c} �= ∅, hence a is admitted; (ii)
R2(b) = {b} ∩ {c} = ∅, hence b is discharged; (iii) R2(c) = {c}∩{c} �= ∅,
hence c is admitted. Thus we obtain bε

2({c}) = {a, c}.
The developed formulas for am and im are:

m am(A)
1 bε

1(A) ∩ bε
2(A) ∩ bε

3(A)
2 (bε

1(A) ∪ bε
2(A)) ∩ (bε

1(A) ∪ bε
3(A)) ∩ (bε

2(A) ∪ bε
3(A))

3 bε
1(A) ∪ bε

2(A) ∪ bε
3(A)

m im(A)
1 bκ

1 (A) ∪ bκ

2 (A) ∪ bκ

3 (A)
2 (bκ

1 (A) ∩ bκ

2 (A)) ∪ (bκ

1 (A) ∩ bκ

3 (A)) ∪ (bκ

2 (A) ∩ bκ

3 (A))
3 bκ

1 (A) ∩ bκ

2 (A) ∩ bκ

3 (A)

Then, let us compute, for instance, i2({a, b}), i1({a, b}), i1({a, c}) and
a3({a}):
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(i) i2({a, b}) = (bκ

1 ({a, b})∩bκ

2 ({a, b}))∪ (bκ

1 ({a, b})∩bκ

3 ({a, b}))∪
(bκ

2 ({a, b}) ∩ bκ

3 ({a, b})) = ({a, b} ∩ {b}) ∪ ({a, b} ∩ {b}) ∪ ({b} ∩
{b}) = {b}.

(ii) i1({a, b}) = bκ

1 ({a, b}) ∪ bκ

2 ({a, b}) ∪ bκ

3 ({a, b}) = {a, b} ∪ {b} ∪
{b} = {a, b}.

(iii) i1({a, c}) = bκ

1 ({a, c}) ∪ bκ

2 ({a, c}) ∪ bκ

3 ({a, c}) = {c} ∪ {a, c} ∪
{a, c} = {a, c}.

(iv) a3({a}) = bε
1({a}) ∪ bε

2({a}) ∪ bε
3({a}) = {a} ∪ {a} ∪ {a, b} =

{a, b}.

The reader should continue this exercise and verify that the operators
im and am correspond to κm and εm, respectively.

15.13.2 Neighborhood Systems and Approximation
of Information

As we have already seen in Frame 4.10 of Part I, in a series of papers,
neighborhood systems have been suggested by T. Y. Lin as a framework
to generalise Approximation Spaces and Rough Set Theory (see, for
instance [Lin, 1998]).

In order to give an example of the use of neighborhood systems to
approximate information, let us use an example from the quoted paper.
Consider the following restaurant database:

RESTAURANT TYPE LOCATION PRICE
Wendy American West wood inexpensive
Le Chef French West LA moderate

Great Wall Chinese St Monica moderate
Kiku Japanese Hollywood moderate

South Sea Chinese Los Angeles expensive

If Q is the query “Select RESTAURANT where TYPE = ‘Japanese’
and LOCATION = ‘West wood’ and PRICE = ‘Moderate’”, then a tra-
ditional database returns a null answer.

But suppose we are given the relations:

(i) close location, so that, for instance 〈West wood, St. Monica〉 ∈
close location;
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(ii) close type, so that, for instance 〈Japanese, Chinese〉 ∈
close type;

(iii) close price, so that, for instance 〈moderate, inexpansive〉 ∈
close price.

(iv) very close location . . . . . .

.............................................
Thus, the machine can relax Q and ask for something which fits with

Q or is “similar”(close) to Q, so to obtain an answer on the basis of
the neighborhoods of the above relations, such as “Great Wall” which
is close to “West wood” as for location and to “Japanese” as for type.

This reasoning is conceptually, if not technically, analogous to that
illustrated in Excursus 12.6.2.

In order to obtain results like this, Lin proposes extensions of Rough
Set Theory based on various types of neighborhood systems, for instance
binary neighborhood systems {Ri}i∈I for binary relations Ri ⊆ U×U ′,
or fuzzy binary systems, where Ri is a fuzzy relation U ×U ′ �−→ [0, 1].

15.13.3 Neighborhood Systems and Modal Systems

Neighborhood systems have been used in order to model non-normal
and normal modal logics. Semantics of this kind are therefore called
“neighborhood semantics” or “Montague-Scott semantics” (see
[Montague, 1968] and [Scott, 1970]). Given a neighborhood system
N (U), the necessity operator L is modeled as follows, for any formula
α of a given modal language:

x |= L(α) iff {y : y |= α} ∈ Nx

From this definition we immediately obtain:

�L(α)� = {x : �α� ∈ Nx} = κ(�α�)

where κ is the contraction operator of the induced pre-topological space
(the latter equivalence occurs only if N (U) is at least of type N1).

In the following table we give a taste of this modeling technique,
by listing some axioms along with the properties of its neighborhood
models:
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Axioms System Properties
of N (U)

1 # α ⇐⇒ β implies # L(α) ⇐⇒ L(β) E

2
1 +
L(α =⇒ β) =⇒ (L(α) =⇒ L(β))

EK
(−X ∪ Y ∈ Nx &
X ∈ Nx)� Y ∈ Nx

3 1 + 2 + # L($) K U ∈ Nx, any x ∈ U

4
5

1 + 3 +
α =⇒ L(α) +
L(α) ∧ L(β) =⇒ ¬L(¬(α ∧ β))

ES
0 + N2 +
N, N ′∈ Nx�N ∩N ′ �= ∅

A note about the logical system ES is in order (see [Ben David et al.,
2001]).

ES is a logic in which the modal operator L has the meaning “expec-
tation”, so that L(α) means that “α is expected to happen” (possibly
from some assumed defaults in a default logic). Obviously, if event α
and β are singularly expected to happen, nothing induces to argue that
they must be expected to happen at the same time. It follows that the
law

(L(α) ∧ L(β)) → L(α ∧ β)

is not accepted in ES. This is the reason why for any x ∈ U , Nx is not
required to be a filter, but only a so called semi-filter. Indeed we have
seen in this Part that if N (U) is of type N3, then L (i.e. κ) distributes
over meets.

It is possible to show that some modal logics have neighborhood
models but do not have Kripke models (modal logics weaker than K
provide an example). Moreover, there are normal modal logics which
are neither neighborhood complete nor Kripke complete (see – [Gerson,
1975a,b]).

An interesting example of such a logic is given by systemG∗ obtained
in the following way.

If L is interpreted as Bew(�p�), where �p� denotes the Gödel num-
ber of the arithmetic sentence p, while Bew(α) (after “Beweisbar”)
denotes the predicate “α is provable in the first order system of Peano
Arithmetic, PA”, then the following facts are provable:

• PA # p if and only if Bew(�p�) is true in the standard PA model
〈ω,×,+, 0, 1〉. Since all PA-provable sentences are true, it follows
that for any p the sentence Bew(�p�) → p is true (in other words,
principle T, viz. L(α) → α, is true). However, in view of Gödel’s
first incompleteness theorem this principle is not always provable.
Otherwise Bew(�0 �= 0�) → 0 �= 0 would be provable in PA.
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Hence also the contraposition ¬(0 �= 0) → ¬Bew(�0 �= 0�) would
be provable and since ¬(0 �= 0) is indeed provable we would obtain
the provability of ¬Bew(�0 �= 0�) in PA. But ¬Bew(�0 �= 0�)
exactly states that PA is consistent, so that we would contradict
Gödel’s second incompleteness theorem.

• In [Löb, 1955], Martin Löb showed that the following hold: (i)
PA # Bew(�p → q�) → (Bew(�p�) → Bew(�q�)) (i.e. the “nor-
mality” principle L(α → β) → (L(α) → L(β)) holds in PA; (ii)
if PA # p then PA # Bew(�p�) (i.e. the necessitation rule holds
in PA); (iii) if PA # Bew(�p�) → p, then PA # p.

• Point (iii) above amounts to say that if Bew(�Bew(�p�) → p�) is
true, then so is Bew(�p�). Otherwise stated Bew(�Bew(�p�) →
p�) → Bew(�p�) is true. The modal version of this formula
is L(L(A) → A) → L(A). This modal principle is known as
Segerberg’s formula W or as “Löb’s formula”,6 so that if we
denote by G the set of all PA-valid formulas then G is a nor-
mal modal logic equivalent to K4W (cf. [Löb, 1955] and [Solovay,
1976]).7

K4W (or G), is characterised by the class of finite strict modal orderings
(transitive and irreflexive relations) (cf. [Segerberg, 1971]). But Solovay,
in the quoted paper, also shows that if one adds the set of all ω-valid
sentences (that is, sentences that are true for all assignment of the
propositional variables to some PA-sentence), then one obtains a logical
system G∗ which, of course, includes G, but Bew(�p�) → p, too (i.e.
L(α) → α). However G∗ it is not closed under necessitation.

Differently from G, G∗ does not have a Kripke semantics (because it
is not a normal logic). But it does not have a neighborhood semantics,
either.

We conclude this Frame by emphasizing that the point of contact
between pre-topological systems and relational modal systems, stated
in Proposition 12.7.8.(2), is proved in [Chellas, 1980] as follows: a neigh-
borhood system is called augmented if it satisfies N2 and N4 (more
precisely, for all neighborhood family: N ∈ Nx & N ⊆ N ′ � N ′ ∈ Nx

and
⋂
Nx ∈ Nx).

6Actually, axiom 4 of ES is derivable from W .
7W (in Löb’s version) states that a formula asserting its own provability is

necessarily true and provable.
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Then, for every Kripke model 〈W,R, |=〉 there is a pointwise equiv-
alent augmented neighborhood model and vice-versa.

15.13.4 The “Omniscience Problem” in Epistemic
and Doxastic Logics

Neighborhood systems are exploited in other fields, such as Epistemic
Logic and Doxastic Logic (see the introduction of this Part). In his
excellent survey [Liau, 2000], Churn-Jung Liau recalls two main draw-
backs of the attitude of modeling reasoning about knowledge and belief
on the basis of the interpretation “The epistemic (doxastic) subject
knows (believes) α” =def �α. The first is the logical omniscience prob-
lem: from �α and α→ β, we deduce �β. Otherwise stated, an epistemic
(or doxastic) subject knows (believes) all the logical consequences of his
own knowledge (beliefs). Various modifications have been proposed to
circumvent this problem (cf. [Halpern, Moses, 1985]). The second prob-
lem, connected with this, is that if an epistemic (or doxastic) subject
has inconsistent knowledge (beliefs) then she/he knows (believes) every-
thing (from the well-known principle “Ex falso sequitur quodlibet”). To
limit the consequences, a “local reasoning” approach has been pro-
posed, that conceives a subject as a society of minds, each with its own
knowledge (or beliefs). Therefore a local reasoning model is a triple
〈U,N (U), φ〉 where U is a set, φ is an evaluation φ : L �−→ ℘(U) and
N (U) is a neighborhood system. Each neighborhood Np represents a
frame of the subject’s mind in p, so that the evaluation of the modalised
formulas turns into:

(i) φ(x,�(α)) =
∨

S∈Nx

∧
s∈S φ(s, α); (ii) φ(x,�(α)) = φ(x,¬�(¬α));

Therefore x � �(α) if there is at least a neighborhood S of x
such that all the elements of x force α. Dually, x � �(α) if in all
its neighborhoods there is at least an element which forces α.

It is shown that if N (U) is of type NB, then ��(α)� = κ(�α�) and
��(α)� = ε�α�.

Incidentally, notice that a historical approach for localizing (circum-
scribing) fallacious reasoning was developed in [Belnap, 1977] exploiting
the smallest non-trivial bi-lattice depicted in the preceding
Frame 15.12.
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15.14 Frame – Pre-Topologies
and Intuitionistic Formal Spaces

In Part I we have considered a P-system or a basic pair 〈G,M,�〉 and
derived a family of “intensional” and “extensional” operators from it.
Now let us cast a deeper insight into that construction.

Basic pairs induce particular sorts of pre-topologies, called Formal
Pre-topologies. In what follows we want to analyse the relationships
between concrete pre-topologies (i.e. the pre-topologies we dealt with
in this Part) and formal pre-topological properties.

Otherwise stated, we want to understand the extent to which the
construction of concrete topologies from neighborhood systems runs
in parallel with the construction of formal topologies. To this end we
introduce some intermediate notions, such as those of a semi-topological
formal system, quasi-topological formal system, pseudo-topological for-
mal system and a formal neighborhood system, eventually with some
additional features.

Formal neighborhood systems constitute a bridge between concrete
neighborhood systems and quasi-topological formal systems. In turn,
quasi-topological formal systems are extensions of semi-topological for-
mal systems which, finally, are the structures immediately induced by
basic pairs (i.e. P-systems) and their formal (pre)-topological operators.
Indeed, the latter is the starting point of the construction of pointfree
pre-topologies and topologies by the Padua School (see [Sambin, 1987,
1989, 1999, 2001]). In order to relieve a basic pair of too much meaning,
let us avoid the symbols G,M and |=.

Thus, consider any basic pair 〈A,B,R〉, where A and B are sets and
R is a binary relation between A and B (i.e. R ⊆ A×B). A is thought
of as a set of points and B as a set of formal neighborhoods. Therefore,
for any a ∈ A, R(a) is to be thought of as a neighborhood family and
{R(a)}a∈A as a neighborhood system. For the definition of the basic
derived operators induced by basic pairs, the reader is addressed to
Chapter 2, Definitions 2.2.1 and 2.3.1.

The main goal of this Frame is to understand the relationship
between formal pre-topological spaces and “concrete” neighborhood
systems.

We shall show the principal elements about this topics along with
a limited set of proofs, in order to make the reader understand the
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mathematical approach. For a complete study, we address the inter-
ested reader to [Pagliani, 2002].

Let us enrich the machinery developed in Part I by admitting that the
members of B can be combinable (intuitively, observables should be
combinable). Therefore, B is equipped with a binary operation “·” If
b, b′ ∈ B, then b · b′ is called the combination, or the fusion, of b and b′

and it is an abstraction of intersection between concrete neighborhoods.
Also, we can define a formal meet between the elements of SatA(B),

inherited by A−saturated sets from the monadic operator · just intro-
duced. First of all, observe that · is lifted from B to ℘(B) by means of
the following definition

X · Y = {x · y : x ∈ X & y ∈ Y } (point-meet)

Notice that even if X and Y are saturated, X · Y is not necessarily
saturated. In order to obtain a suitable operation on SatA(B) we must
close X · Y under A, obtaining the following operator •:

X • Y = A(X · Y ) (15.14.5)

However, SatA(B) and SatC(B) do not give information about the
distributivity behaviour of ∧, ∨, ∩, ∪ and •. This happens of their
“concrete” counterparts Satint(B) and Satcl(B), too. In order to make
some distributive law hold, we must add some additional structure.

15.14.1 Formal Covering Relations

Given a basic pair 〈A,B,R〉, the operator A makes it possible to syn-
thesize the formal properties of formal pre-topologies in logical (or,
better, type theoretical) terms.

The starting point is the definition, by means of the operator A, of a
relation, denoted by the symbol �, which connects (subsets of) formal
neighborhoods with subsets of formal neighborhoods. We can interpret
� as a formal semi-covering relation, because, in view of the symmetry
of A and cl, � is the formal counterpart of the “concrete” concept
of an “adherence” without any commitment about its behaviour with
respect to ·, by now. Alternatively � may be thought of as a sort of
type-theoretic sequent relation between sets of propositions (or, more
precisely, multisets of propositions, as we shall see at the end).
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Definition 15.14.1. Let 〈A,B,R〉 be a basic pair. Then for any b ∈ B
and Y, Y ′ ⊆ B, the following relation is called a formal semi-cover or,
shortly, a semi-cover:

(basis) b � Y iff b ∈ A(Y ), (step) Y � Y ′ iff ∀y ∈ Y, y � Y ′.

Terminology and Notation. Instead of b � {b′} we shall write b � b′.
Remember that 〈R〉(b) is short for 〈R〉({b}). A semi-cover is called a

“basic-cover” in Formal Topology.

Proposition 15.14.1. Let 〈A,B,R〉 be a basic pair. Then for any
b, b′ ∈ B and Y, Y ′ ⊆ B,

1. b � Y iff 〈R〉(b) ⊆ 〈R〉(Y ), iff ∀a ∈ A(b ∈ R(a) � ∃y ∈ Y (y ∈
R(a))).

2. Y � Y ′ iff 〈R〉(Y ) ⊆ 〈R〉(Y ′), iff Y ⊆ A(Y ′), iff A(Y ) ⊆ A(Y ′).

3. (i) Y ⊆ Y ′ implies Y � Y ′; (ii) A(Y ) � Y .

4. A(Y ) � Y ′ iff Y � A(Y ′).

5. if Y ′ ∈ ΩA(B), then (i) Y � Y ′ iff Y ⊆ Y ′, (ii) b � Y iff b ∈ Y .

6.
b ∈ Y
b � Y (reflexivity).

7. (i)
b � Y Y � Y ′

b � Y ′ ; (ii)
b � b′ b′ � Y

b � Y (transitivity).

8. (i) Y � Y ; (ii) b � b (identity).

9. b � Y iff {b} � Y (lifting).

Proof. (1) Immediately from Proposition 2.3.1.(1). (2) By definition,
Y � Y ′ iff for all y ∈ Y , 〈R〉(y) ⊆ 〈R〉(Y ′), iff {y} ⊆ [R�]〈R〉(Y ′) (by
Corollary 2.1.1) iff {y} ⊆ A(Y ′) iff Y ⊆ A(X). By monotonicity and
idempotence of A we obtain Y � Y ′ iff A(Y ) ⊆ A(Y ′). (3) (i) Trivially
from (2) and monotonicity of A. Note, however, that the converse is
trivially not true: we can have b � b′ (i.e. b � {b′}) even if b �= b′; (ii)
from A(Y ) ⊆ A(Y ) and (2). (4) A(Y ) � Y ′ iff A(A(Y )) ⊆ A(Y ′), iff
A(Y ) ⊆ A(Y ′) iff A(Y ) ⊆ A(A(Y ′)) iff Y � A(Y ′). (5) (i) From (2)
immediately because A(Y ′) = Y ′. As for (ii), observe that b � Y iff
b ∈ A(Y ) = Y . (6) From (basis) because b ∈ Y ⊆ A(Y ). (7) (i) Directly



15.14 Frame – Pre-Topologies and Intuitionistic Formal Spaces 533

from (1) and (2) and transitivity of the relation ⊆. (ii) From (7).(i)
and (9) below. (8) (i) Immediately from (3) and Y ⊆ Y . (ii) From
b ∈ {b} and (6). (9) Trivially from (2), because b � Y iff b ∈ A(Y ) iff
{b} ⊆ A(Y ). qed

Remarks. (Lifting) is one of the simplest but most useful property,

because it allows us to move freely from b to {b} and vice-versa on the

left of the symbol �, any b ∈ B.

Notice that Proposition 15.14.1.(2) and (identity) tell us that the rela-

tion � is a preordering on ℘(B). On the contrary Proposition 15.14.1.(5)

shows that � is a partial ordering relation in SatA(B). Indeed A-saturated

elements are representatives of the equivalence classes on ℘(B) modulo

the equality of A closures or, which is the same, modulo the relation��
defined by “X �� Y iff X � Y and Y � X”. It follows that SatA(B)
is isomorphic to the quotient ℘(B)/�� and in this quotient structure the

relation induced by the preorder � is clearly a partial order. Finally, (4)

says that A is self-adjoint with respect to �.

The above proof of transitivity and reflexivity of the relation � might
hide the role played by the properties of the operator A. These prop-
erties are revealed if we generalise the above results to an entire class
of operators:

Lemma 15.14.1. Let K be an operator on ℘(X) for some set X. For
any x ∈ X,Z,Z ′ ⊆ X define x � Z ≡def x ∈ K(Z) and Z � Z ′ iff
z � Z ′ for all z ∈ Z. Then,

1. If K is increasing, then � is reflexive.

2. If K is monotone, then � is weakly transitive, viz.
x � Z Z�Z ′

x � K(Z ′)
(weak transitivity).

3. If K is monotone and idempotent, then � is transitive.

Proof. (1) If for all Z ⊆ X,Z ⊆ K(Z), then x ∈ K(Z) whenever
x ∈ Z. (2) Suppose (i) Z ⊆ Z ′ � K(Z) ⊆ K(Z ′), (ii) x � Z and
(iii) Z � Z ′. Then, by definition x ∈ K(Z) because x � Z. Moreover,
Z � Z ′ implies Z ⊆ K(Z ′), trivially. Thus by monotonicity we obtain
K(Z) ⊆ K(K(Z ′)). It follows that x ∈ K(K(Z ′)), that is, x � K(Z ′).
(3) From (2), if K(K(Z ′)) = K(Z ′) we obtain transitivity. qed
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Conversely, if we are given a relation �⊆ X×℘(X) fulfilling transitivity
and reflexivity and for all Z ⊆ X we put K(Z) ≡def {x : x � Z}, then
K is a monotonic, increasing and idempotent operator, i.e. a closure
operator (the easy proof is left as an exercise).

Therefore, since A is a closure operator Proposition 15.14.1.(6) and
15.14.1. (7) are corollary of the above Lemma and the relationships
between the closure properties of A and those of � are revealed.

Up to now we have spoken of “semicovering” and not of “covering”
relations because until now we have not assumed any commitment to
the relationships between the operator A and the “meet” operations ·,
∩ or •. In particular we have not information as whether some condi-
tion makes • and ∩ coincide. Indeed we can notice that in general the
following equation:

A(Y · Y ′) = A(Y ) ∩ A(Y ′) (A-distributivity)

does not hold, even in the case · is ∩ itself.
Indeed, this principle requires some additional properties to be ful-

filled by R.

Terminology and Notation.
Given a basic pair 〈A,B,R〉 the operation · is intended to be defined

according to (point-meet) whenever it applies to subsets of B. We recall

that the expression b ·Y will be intended as {b} ·Y , the expressions [R](b)
and 〈R〉(b) will be intended as [R]({b}) and, respectively, 〈R〉({b}), as

usual. It follows that 〈R〉(b) and R�(b) will denote the same object and

we shall use either expression in dependence on the context. However,

properties of the operator · (such as idempotence, commutativity and the

like) refer to the application of · to elements of B, if not otherwise stated.

We recall that a commutative monoid is a set U equipped with a binary
associative operation · and a unity 1 such that for any a, b ∈ U , a · b =
b · a and 1 · a = a · 1 = a.

Definition 15.14.2. Let 〈B, ·, 1〉 be a commutative monoid, let ⊥ be
a subset of B and let � be a semi-cover relation. Then the structure
〈B, ·, 1,�,⊥〉, is called a semi-topological formal system.8

8We adopt this name instead of “pre-topological formal system” because the term
“pre-topological formal space” will be used for a slightly different notion according
with the traditional usage in the theory of Formal Spaces.
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Corollary 15.14.1. Let 〈A,B,R〉 be a basic pair, 〈B, ·, 1〉 a commu-
tative monoid and put ⊥ = {b ∈ B : 〈R〉(b) = ∅}. Then the structure
〈B, ·, 1,�,⊥〉 induced by the operator A is a semi-topological formal
system called the semi-topological formal system induced by the basic
pair 〈A,B,R〉.

In semi-topological formal systems, commutativity of · induces just a

few properties connecting · and �, such as
b · b′ � Y · Y ′

b′ · b � Y ′ · Y . Things

change if we add further properties to the monoidal operator “·”.

Definition 15.14.3. Let 〈B, ·, 1,�,⊥〉 be a semi-topological formal
system such that · is idempotent. Then 〈B, ·, 1,�,⊥〉 is called a quasi-
topological formal system and � is called a quasi-cover relation.

Proposition 15.14.2. In any quasi-topological formal system 〈B, ·, 1,
�,⊥〉, b � b · b and b · b � b hold, any b ∈ B.

Proof. Trivially, since the two relations reduce to the identity b � b.
qed

Definition 15.14.4. Let U , U ′ be sets and let f be a total function
U �−→ U ′. Let R ⊆ U × ℘(U ′) such that f(x) = f(y) implies R(x) =
R(y), and let ⊥ = {X ∈ ℘(U ′) : 〈R〉(X) = ∅}. Then 〈U,℘(U ′), R, f〉
will be called a basic neighborhood pair and the induced structure
〈℘(U ′),∩, U ′,�,⊥, f〉 will be called a formal neighborhood system. If
U = U ′ and f is the identity function, then 〈U,℘(U), R〉 and 〈℘(U),∩,
U,�,⊥〉 will be called a Fréchet basic neighborhood pair (on U) and,
respectively, a Fréchet formal neighborhood system.

Proposition 15.14.3. Any formal neighborhood system is a quasi-
topological formal system.

Proof. Trivial: actually the underlying monoid is the semilattice
〈℘(U ′),∩, U ′〉, so that ∩ is commutative and idempotent. qed

Quasi-topological formal systems are abstraction of formal neighbor-
hood systems, where the element ⊥ represents the set of elements of
℘(U ′) that do not belong to any neighborhood family (remember that
〈R〉(X) = R�(X)). Finally, given a neighborhood system {R(x)}x∈U ,
we shall liberally use Nx or R(x) to denote the neighborhood family of
x, i.e. R(x).
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Remarks.
(A) The difference between Fréchet formal neighborhood systems and

generic formal neighborhood systems is immaterial from the formal point

of view, because the difference relays on function f which maps point onto

points and makes properties Id and N1 work. Indeed, we shall see that

these two properties have no formal counterparts.

(B) While dealing with formal neighborhood systems, pay attention

that relation R is defined between elements of a set U and subsets of U .

Therefore one have to distinguish between X and {X}, for X ⊆ U . X is a

subset of the domain of R, but also a single member of the codomain of R.

Therefore X is an argument of R(−) while {X} is an argument of R�(−).
Particularly, pay attention to distinguish between 〈R〉(∅) and 〈R〉({∅}),
[R](∅) and [R]({∅}) because both ∅ and {∅} are elements of ℘(℘(U)).
Clearly, if 0 holds, that is, ∅ /∈ R(x) any x ∈ U , then 〈R〉(∅) = 〈R〉({∅}) =
∅ and if R is onto, then [R](∅) = [R]({∅}) = ∅. On the contrary, if 0 does

not hold both 〈R〉({∅}) and [R]({∅}) might be non-empty.

(C) For the above reasons, from now on we shall only deal with Fréchet

basic neighborhood pairs and with Fréchet neighborhood formal systems,

that, thereafter, will be referred to as “formal neighborhood systems”

without qualification, if there is not risk of ambiguity. Moreover, given

a formal neighborhood system 〈℘(U),∩, U,�,⊥〉, the basic neighborhood

pair 〈U,℘(U), R〉 will be implicitly understood.

(D) Formal neighborhood systems are a bridge between concrete neigh-

borhood systems and quasi-topological formal systems because in formal

neighborhood systems for any a ∈ U and X ⊆ U we can represent the

membership relation X ∈ Na as 〈a,X〉 ∈ R and ∩ is idempotent. In a

basic neighborhood pair, qua a basic pair, we can define the operators

int, cl,A and C, while as a concrete neighborhood system, we can define a

core map G and a vicinity map F . However, the reader is strongly invited to

notice that in general neither int corresponds to G, nor cl corresponds to

F . This fact is easily verified after Lemma 15.14.1 by considering that int

is symmetric-dual of A. Therefore, the core map (the vicinity map) induced

by a concrete neighborhood system cannot coincide with the operator int

(with cl), unless it is an interior operator (a closure operator). In Section

12.5 we have seen the “concrete” conditions on {R(a)}a∈U to make G

into an interior operator. However, this is just a necessary condition. In

what follows we shall zoom in on concrete neighborhood systems to anal-

yse how formal properties are connected to concrete conditions, in order to

discover if they make int and G coincide when G is an interior operator.
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Terminology and Notation.
When dealing with formal neighborhood systems we shall continue using

our notation-conventions: U,X,Z and so on, denote sets; x,w, b, c, . . .

denote elements of sets; Y,Y ′,Z, . . . denote sets of sets (hence, for

instance, x ∈ Y ∈ Z ⊆ ℘(U)). Therefore, when we refer to results about

general formal systems, pay attention to translate symbols according to

their meaning.

As like as in formal systems, given a formal neighborhood system we

write X � X instead of X � {X}, unless there is risk of confusion

(however, note that X � X iff {X} � X, by (lifting)).
With this proviso, we see that, for instance, given a formal neighborhood

system on U , Proposition 15.14.1.(3) by no means allows us to conclude,

for two sets X,Y ∈ ℘(U), that X ⊆ Y implies X � Y . In fact, in this

formal neighborhood system X and Y are elements of the codomain of the

relation R. Therefore to have X � Y (meaning X � {Y }) we should have

{X} ⊆ A({Y }). But the latter relation is implied by {X} ⊆ {Y }, which

is not implied by X ⊆ Y (example: {x} ⊆ {x, y} but {{x}} � {{x, y}}).
For the same reason, in formal neighborhood systems, in general we do not

have X · Y � Y , although X · Y (i.e. X ∩ Y ) is included in Y , (in the

previous example, {x} · {x, y} = {x} ∩ {x, y} = {x} ⊆ {x, y}, but, again,

{{x}} � {{x, y}}). On the contrary, Y ⊆ Y ′ really implies Y � Y ′ and we

have Y � Y, Y · Z � Z, and so on. Therefore, the reader must carefully

distinguish when we are dealing with abstract formal systems (where a set

X is a set of elements of the codomain of R) or, on the contrary, with formal

neighborhood systems (where a set X is an element of the codomain of R).

Having in mind the above remarks, let us discover the particular fea-
tures of semi-topological and quasi-topological formal systems.

First of all, notice that although in quasi-topological formal systems
the operator · is idempotent, nevertheless it might fail to be idempotent
on subsets of B, in view of (point-meet):

Proposition 15.14.4. Let 〈B, ·, 1,�,⊥〉 be a quasi-topological formal
system. Then for any Y ⊆ B, Y ⊆ Y · Y .

Proof. Y · Y = {y · y′ : y, y′ ∈ Y }. Thus, since · is idempotent, Y · Y =
Y ∪ {y · y′ : y, y′ ∈ Y & y �= y′ & y′ �= y · y′ �= y}. qed

The above relation may be restated using the operator A. Since by
definition x ∈ A(Y ) if and only if a � Y , from Proposition 15.14.4 we
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obtain, for quasi-topological formal systems, A(Y ) ∩ A(Y ) = A(Y ) ⊆
A(Y · Y ).

This is not sufficient in order to obtain (A-distributivity). Therefore,
we must add particular properties.

In particular three principles require to be carefully analysed:

(left)
b � Y

b · b′ � Y
; (right)

b � Y b � Y ′

b � Y · Y ′ ; (stability)
b � Y b′ � Y ′

b · b′ � Y · Y ′ .

All these principles fail to hold even in quasi-topological formal sys-
tems:

– Counterexample for (left): suppose R�(b · b′) � R�(b). Let Y =
{b}. Then b � Y – by definition – but b·b′ � Y fails to hold (for instance
take A = {a, a′}, B = {b, b′}, b · b′ = b′ and R = {〈a, b〉, 〈a′, b′〉}).

– Counterexample for (right): supposeR�(b) = R�(b′) andR�(b) �
R�(b · b′). Put Y = {b} and Y ′ = {b′}. Then b � Y – trivially – and
b � Y ′ because R�(b) = R�(b′). However, R�(Y · Y ′) = R�(b · b′) �
R�(b), Therefore (right) fails.

– Counterexample for (stability): suppose A = {a}, B = {b, b′, b′′,
b′′′, . . .}, b · b′ = b′, b′ · b′′ = b′′′ and R = {〈a, b〉, 〈a, b′〉, 〈a, b′′〉}. Let Y =
{b′} and Y ′ = {b′′}. It is easy to verify that b � Y and b′ � Y ′, while
R�(b · b′) = R�(b′) = {a} � ∅ = R�(b′′′) = R�(b′ · b′′) = R�(Y · Y ′).
Thus (stability) fails.

Since the semilattice properties do not add anything about these
three rules, if singularly taken (see below), then they fail also in quasi-
topological formal systems.

Lemma 15.14.2 (restricted stability). Let 〈B, ·, 1,�,⊥〉 be a semi-
topological formal system. Then (stability) holds for all b, b′ ∈ B and
Y, Y ′ ∈ ΩA(B).

Proof. Since for all Y ∈ ΩA, A(Y ) = Y , in view of Proposition 15.14.1
(5), from b � Y and b′ � Y ′ we derive b ∈ Y and b′ ∈ Y ′. It follows
that b · b′ ∈ Y · Y ′. Hence, b · b′ � Y · Y ′. qed

Lemma 15.14.3 (restricted right). Let 〈B, ·, 1,�,⊥〉 be a quasi-
topological formal system. Then (right) holds for all b ∈ B and Y, Y ′ ∈
ΩA(B).

Proof. Immediate by Corollary 15.14.2, and idempotence of · (or Corol-
lary 15.14.2, (lifting), Proposition 15.14.2 and transitivity of �). qed
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Definition 15.14.5. A semi-topological formal system in which (sta-
bility) holds, is called a pre-topological formal system and � is called
a pre-cover.

Definition 15.14.6. A semi-topological (pre-topological, quasi-
topological) formal system in which (left) holds, is called a left semi-
topological (left pre-topological, left quasi-topological) formal system.
The relation � is then called a regular semi-cover (a regular pre-cover,
a regular quasi-cover).

Definition 15.14.7. A semi-topological (pre-topological, quasi-
topological) formal system in which (right) holds, is called a right
semi-topological (right pre-topological, right quasi-topological) formal
system. The relation � is then called a distributive semi-cover (a
distributive pre-cover, a distributive quasi-cover).

Definition 15.14.8. A semi-topological (pre-topological, quasi-
topological) formal system in which (left) and (right) hold, is called
a topological formal system. The relation � is called a cover.

We have now an obvious duty: to prove the extent to which the above
notions do not collapse and, moreover, that Definition 15.14.8 is appro-
priate.

The following equivalence may be proved:

Proposition 15.14.5. Let 〈B, ·, 1,�,⊥〉 be any semi-topological for-
mal system. Then for any b, b′ ∈ B and Y, Y ′ ⊆ B, the following are
equivalent:

1. b · b′ � b, b · b′ � b′ (l-3)

2. Y · Y ′ � Y , Y · Y ′ � Y ′ (l-2)

3. (Left).

From this we obtain:

Proposition 15.14.6. Let 〈B, ·, 1,�,⊥〉 be any left semi-topological
formal system. Then for any b, b′ ∈ B and Y, Y ′ ⊆ B:

1. (l-3) and (l-2) hold identically.

2. (i) b � 1 (l-1a); (ii) Y � 1 (l-1b) (we denote the two rules
collectively as (l-1a,1b).

3. Y · Y � Y (abs).
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Proposition 15.14.7. Let 〈B, ·, 1,�,⊥〉 be any semi-topological for-
mal system. Then for any b, b′ ∈ B and Y, Y ′ ⊆ B the following are
equivalent:

1. Y � Y · Y (r-1),

2.
b � Y

b � Y · Y (r-2) ,

3. b � b · b (r-3).

Moreover, one can prove that (right) implies all the (r-) rules.

Corollary 15.14.2.

1. In any pre-topological formal system (left) and all the (l-) prin-
ciples are equivalent; (right) and all the (r-principles) are equiv-
alent.

2. In any quasi-topological formal system, in the presence of (stabil-
ity), (right) and all the (r-) principles are equivalent and deriv-
able.

3. Any quasi-topological formal system in which (stability) and (left)
hold is topological.

4. Any formal neighborhood system in which (stability) and (left)
hold is topological.

It is not difficult to exhibit an example supporting the following sen-
tence:

Proposition 15.14.8. In a semi-topological formal system (stability)
implies neither (right) nor (left).

To sum up, if the operator · is not idempotent on B, then all the rela-
tionships marked by (r-) are not for free, but their validity requires
(right), while all the relationships marked by (l-) require (left), inde-
pendently of the properties of ·.

In the presence of (stability) any relationship marked (r-) is equiv-
alent to (right) and all (l-)-marked principles are equivalent to (left).
But in the presence of (stability) all of the relationships marked (r-)
are derivable from idempotence of · in B and we can conclude that
in quasi-topological formal systems (stability) alone provides us with a
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valuable set of equivalent properties acting on the right of the quasi-
covering relation �. On the contrary, in order to obtain (left) from
(stability), idempotence of · is not enough. Actually we need some (l-)
marked principle, but (l-) marked principle are not derivable from sim-
ple idempotence of ·. In fact, the only left-side principle obtained from
idempotence of ·, is b · b � b which is insufficient to obtain (left) even
jointly with (stability).

Finally, observe that even without (stability) all (r-)-marked princi-
ples are equivalent and all (l-)-marked principles are equivalent, except
(l-1a) and (1-lb).

This suggests that (stability), (right), (left), (l-1a) and (l-1b) corre-
spond to different properties of neighborhood systems.

15.14.2 Semi-Topological Formal Systems
and Neighborhood Systems

When comparing semi-topological formal systems and neighborhood
systems of concrete points, we find that, often, concrete properties have
just one-way relationships with those of formal systems or, in some
cases, no relationships at all. For instance, neither N1 has a formal
counterpart (because in formal terms points are transparent) nor Id
(because Id would take the form b � 〈R〉(b), that cannot be formally
interpreted).9 Indeed these principles are point-dependent, that is, they
are closely related to the individuality of points. This means that N1
and Id have nothing to say about formal principles like (left), (right)
or (stability). Conversely, (left), (right) and (stability) have nothing to
say about N1, Id and even about N3. In fact, we have the following
one-way implication.

Remember that in a formal neighborhood system on a set U , R ⊆
U × ℘(U) and · is ∩. Moreover, remember that if X ⊆ U then 〈R〉(X)
means 〈R〉({X}), because X is a member of the codomain of R.

Proposition 15.14.9. Let 〈℘(U),∩, U,�,⊥〉 be a formal neighborhood
system. If {R(x)}x∈U fulfills N3, then (right) holds.

Proof. If N3 holds, then for all X,X ′ ⊆ ℘(U), (X,X ′ ∈ R(a)) �
(X ∩X ′ ∈ R(a)). In view of Proposition 15.14.1, X � Y and X � Y ′

9b ∈ 〈R〉(b) means R�(b) ⊆ R�(R�(b)) which, incidentally, makes sense only if
A = B. Moreover, this relation reduces to the triviality R�(b) ⊆ R�(b) when R is
a preorder.
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are equivalent to ∀a ∈ U(X ∈ R(a) � ∃Y ∈ Y & Y ∈ R(a)) and,
respectively, ∀a ∈ U(X ∈ R(a) � ∃Y ′ ∈ Y ′ & Y ′ ∈ R(a)). By (point-
meet) X∩Y ∈ Y ·Y ′ and by N3, X∩Y ∈ R(a), so that X � X ·Y. qed

But the converse does not hold (think of a formal neighborhood system
in which, for any X �= ∅, X � Y if and only if X ∈ Y or U ∈ Y. In
this case (right) holds trivially, independently of N3 because either
U ∈ X · Y or X ∈ X · Y (since X ∩ U = X ∩X = X – see an example
in Frame 15.14.7).

On the contrary N2 and (left) are equivalent:

Proposition 15.14.10. Let 〈℘(U),∩, U,�,⊥〉 be a formal neighbor-
hood system. Then, {R(x)}x∈U is a neighborhood system fulfilling N2
if and only if (left) holds.

Proof. (A)�: Suppose (left) does not hold. Then (l-3) does not hold. It
follows that X ∩X ′ � X does not hold. Therefore, there exists a ∈ U

such that X ∩X ′ ∈ R(a) and X /∈ R(a). But X ∩X ′ ⊆ X. Hence N2
does not hold.

(B)�: Conversely, suppose N2 does not hold. Then there areX,X ′∈
℘(U) and x ∈ U such that X ′ ⊆ X, X ′ ∈ R(x) and X /∈ R(x).
Clearly X � X and, by definition, X · X ′ = X ∩ X ′ = X ′. But
x ∈ 〈R〉(X ′) = 〈R〉(X ∩X ′) while x /∈ 〈R〉(X), and hence 〈R〉(X ∩X ′)
is not included in 〈R〉(X). It follows that X ·X ′ � X is not implied by
X � X and hence (left) fails. qed

Remarks.
(A) To be more precise, (left) implies bothX·X ′ � X, andX·X ′ � X ′.

Therefore (left) implies X ∩ X ′ ∈ R(a) � (X ∈ R(a) & X ′ ∈ R(a)),
which is the opposite condition of N3, and is obtained by reading (left)
upside-down.

(B) We have seen that X ⊆ X ′ does not imply X � X ′. Therefore,

although in formal neighborhood systems X ·X ′ = X ∩X ′ ⊆ X holds for

any X,X ′ ∈ ℘(U), nevertheless X ·X ′ � X does not hold without (left)
(without N2).

Finally, the condition corresponding to (stability) is the following: for
all a, a′, a′′ ∈ U,X,X ′ ∈ ℘(U), Y,Y ′ ⊆ ℘(U), if X ∈ R(a) implies
∃Y ∈ Y(Y ∈ R(a)) and if X ′ ∈ R(a′) implies ∃Y ′ ∈ Y ′(Y ′ ∈ R(a′)),
then X ∩X ′ ∈ R(a′′) implies ∃Y ′′ ∈ Y,∃Y ′′′ ∈ Y ′(Y ′′ ∩ Y ′′′ ∈ R(a′′)).
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So far we have analysed how and to what extent formal properties of
the relation � parallel “concrete” properties of neighborhood systems.

We can notice, as was anticipated, that not only (stability), (right)
and (left) are independent of N1 and Id, but, more generally, that
there are no formal property representing N1 and Id.

However, in a sense Id and N1 are embedded in �, via the closure
properties of A.

Clearly this was not a mystery by any means. In fact, since int is the
“concrete” counterpart of A, the above remark is a part of the obvious
answer to the question, related to formal neighborhood systems, “under
what circumstances an operator Op : ℘(U) �−→ ℘(U) has the same
properties as a given operator “int”? ”. The answer, of course, is “when
Op is an interior operator”, since int has such properties. Thus, if
we consider a basic neighborhood pair 〈U,℘(U), R〉 and we specialize
this question to Op = G, where G is the vicinity map induced by
the neighborhood system N (U) = {R(x)}x∈U and if we ask “what
properties must be satisfied by the neighborhood system N (U) in order
to make G fulfill the same properties as int? ”, then, trivially again,
the answer is: “N (U) must be of type N2Id”, because G is an interior
operator if and only if N (U) fulfills N1, N2 and Id (see Proposition
12.7.3).

Anyway, we want to know if the above three properties, N1, N2
and Id, co-operate in order to make G equal int.

According to (2.3.4) of Chapter 2, int(X) = {a ∈ U : ∃X ′(X ′ ∈
R(a) & R�({X ′}) ⊆ X)}.

Remarks. In formal neighborhood systems do not confuse R� (that is,

〈R〉) and G. In fact, R� : ℘(℘(U)) �−→ ℘(U), while G : ℘(U) �−→ ℘(U).
Notice, however, that G(X) = {x : X ∈ R(x)} = R�({X}). Therefore,

in what follows we liberally use G(X) of R�(X) as equivalent alternatives.

Therefore our question turns into the following: does the recursive
equation

G(X) = {a : ∃X ′(X ′ ∈ R(a) & G(X ′) ⊆ X)} (G − int)

have a solution when {R(x)}x∈U is of type N2Id?
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The answer is affirmative.

Lemma 15.14.4. Let 〈U,℘(U), R〉 be a basic neighborhood pair and
N (U) = {R(x)}x∈U . Then, for all X ∈ ℘(U), G(X) = int(X) if and
only if N (U) is of type N2Id.

Proof. (A) �: [N1 implies G(X) ⊆ int(X)] For all a ∈ U , a ∈ G(X)
implies X ∈ R(a), by definition. From N1 and Lemma 12.4.1 we have
G(X) ⊆ X. Therefore so that a ∈ int(X).. [N2 + Id implies int(X) ⊆
G(X)] a ∈ int(X) if ∃X ′ ∈ ℘(U) such that X ′ ∈ R(a) and G(X ′) ⊆ X.
By Id, G(X ′) ∈ R(a) which in turn, by means of N2, gives X ∈ R(a),
so that a ∈ G(X).

To sum up, N1, N2 and Id together imply G(X) = int(X), all X.
(B) �: [¬N1 implies G(X) � int(X)] Suppose N1 fails to hold in

N (U). Then for some X ∈ ℘(U), G(X) � X. Thus there is a ∈ U such
that a ∈ G(X) and a /∈ X. Clearly X ∈ R(a) and for all the other X ′

such that X ′ ∈ R(a), G(X ′) is not included in X, because a ∈ G(X ′)
but a /∈ X. Therefore, a /∈ int(X).

So, assume N1. [¬Id implies int(X) � G(X)] If Id does not hold,
then there are a ∈ U and X ∈ ℘(U), such that X ∈ R(a) but G(X) /∈
R(a). Clearly a ∈ int(G(X)), because by N1 G(X) ⊆ X and X ∈
R(a). On the contrary, a /∈ G(G(X)) because G(X) /∈ R(a). Hence
int(G(X)) � G(X).

Therefore, assume Id, too. [¬N2 implies int(X) � G(X)] Let X ∈
R(a), X ⊆ X ′ and X ′ /∈ R(a). We can deduce a ∈ int(X ′), because
X ∈ R(a) and, by N1, G(X) ⊆ X, so that G(X) ⊆ X ′. But a /∈ G(X ′),
because X ′ /∈ R(a).

To sum up, ∀X(G(X) = int(X)) implies N1, N2 and Id. qed

Corollary 15.14.3. Let 〈U,℘(U), R〉 be a basic neighborhood pair.
Then, Ωint(U) = ΩG(U) if and only if {R(x)}x∈U is a neighborhood
system of type N2Id.

Remarks. Let N = 〈U,℘(U), R〉 be a basic neighborhood pair such that

{R(x)}x∈U is a neighborhood system induced by a relation Z ⊆ U × U .

This means that for any X ∈ U , R(x) =↑ Z(x). Let Z = 〈U,U,Z〉. Then,

pay attention that LZ(X) = G(X) = intN(X) but, on the contrary, as we

know from Corollary 3.3.1, LZ(X) = G(X) = [Z](X) �= intZ(X) (the

last inequality turns into an equality only if Z is an equivalence relation).

To be sure, the above equation (G-int) has also a naive, but trivial,
solution: G(X) = X, all X ⊆ U .
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Definition 15.14.9. Let 〈U,℘(U), R〉 be a basic neighborhood pair. If
for all X ∈ ℘(U), G(X) = X, then 〈U,℘(U), R〉 and its induced formal
neighborhood system will be called extensional.

Proposition 15.14.11. Let 〈U,℘(U), R〉 be an extensional basic neigh-
borhood pair. Then {R(x)}x∈U is a neighborhood system of type N3Id.

The principal intermediate conclusion of the above discussion is that
if {R(x)}x∈U is a neighborhood system of type N2Id, then int and G

coincide. And vice-versa. We reserve formal neighborhood systems with
this property a particular name:

Definition 15.14.10. Let 〈U,℘(U), R〉 be a formal neighborhood sys-
tem such that for all X ∈ ℘(U), int(X) = G(X). Then the induced
quasi-topological formal system 〈℘(U),∩, U,�,⊥〉 is called a pseudo-
topological formal system.

Proposition 15.14.12. Every pseudo-topological formal system is a
left quasi-topological formal system.

Proof. The proof is immediate, since N2 implies (left). qed

Therefore, in pseudo-topological formal systems G is an interior oper-
ator coinciding with int and, dually, the vicinity map F is a closure
operator coinciding with cl. However, this is not completely a surprise
because we have already proved that � is a precovering relation (reflex-
ive and transitive) if and only if it is induced by a closure operator.

The novelty is that now we know that when G and int coincide then
(left) holds automatically because of N2. Further, we know that if N3 is
added on top an N2Id neighborhood system, N (U), then N (U) induces
a topological space. Indeed, N3 implies (right) and this is connected
and consistent with the fact that semi-topological formal systems in
which both (left) and (right) hold are topological, as stated in Definition
15.14.8 which we are going to justify immediately.

Indeed, we can interpret this move under different perspectives.
From the point of view of N2Id neighborhood systems, the addition
of N3 makes the induced vicinity map F into a topological closure
operator by making F distribute over ∪. From the point of view of
pseudo-topological formal systems (and, more generally, of left quasi-
topological formal systems) the same goal is achieved by adding (stabil-
ity) (cf. Corollary 15.14.2.(3)), while in generic semi-topological formal
systems we have to add explicitly both (left) and (right).
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To see how these connections work, let us start from the vicinity map
F induced by a neighborhood system of type N2Id. We know that it
coincides with cl. From Lemma 12.4.1, if we add N3 then cl distributes
over ∪. Since the operator A, which acts on the formal side of formal
neighborhood systems, is symmetric to cl, we expect that A distributes
over ∪ in ℘(℘(U)). That is, we expect that the following hold:

A(X ∪ Y) = A(X ) ∪ A(Y) (A-sup-distr)

Since in SatA(℘(U)), A(Y ∪ Y) = X ∪ Y, the above equation is equiv-
alent to the following:

X ∨ Y = X ∪ Y (15.14.6)

Since SatA(℘(U)) is isomorphic to Satint(U), i.e. SatG(U), we should
also obtain that if (A-sup-distr) holds, then ∩ and ∨ distribute accord-
ing to the distributive laws of the frames of open subsets of a topological
space. Moreover, in view of the fact that N2 implies (left) and N3
implies (right), we expect that these two principles are likely to play
a fundamental role on the formal side, in order to make (A-sup-distr)
hold. Finally, notice that in the metalanguage “&” distributes over
“or”, so that · distributes over ∪ (by the very definition (point-meet)).
Thus we presume, also, that · and ∩ coincide in SatA(℘(U)) for any
formal neighborhood systems {R(x)}x∈U of type N3Id. This is what
actually happens, also at a more abstract level.

So let us consider an arbitrary semi-topological formal system
〈B, ·, 1,�,⊥〉.

Let us first note that in SatA(B), ∩ does not distribute over ∨ (see
examples in Frame 15.14.5). What about the operation •? If we add
(stability) then • distributes over ∨:

Proposition 15.14.13. Let 〈B, ·, 1,�,⊥〉 be a pre-topological formal
system and let SatA(B) be the equipped with the additional operation •.
Then for all X ∈ SatA(B), for all {Yi}i∈I ⊆ SatA(B), X •

∨
i∈I Yi =

∨
i∈I(X • Yi).

Remarks. We have seen in Lemmata 15.14.2 and 15.14.3 that in any

semi-topological formal system, (right) and (stability) hold for saturated

sets. However, this is not sufficient in order to obtain distributivity of •
over ∨, because to prove Proposition 15.14.13 we need to apply (stability)

also to terms involving arbitrary unions, and arbitrary unions of saturated
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sets are not necessarily saturated. Therefore we need the general form of

(stability).

Moreover, we can prove that in any pre-topological formal system the
following hold:

A(A(X) · A(Y )) = A(X · Y ) (A-stability)

X ·
⋃

i∈I

Yi =
⋃

i∈I

(X · Yi).

Now let us come back to quasi-topological formal systems and pseudo-
topological formal systems.

We have seen that in quasi-topological formal systems (and, more in
general, in semi-topological formal systems), · distributes over ∪, by the
very definition (point-meet). But in general, in quasi-topological formal
systems · does not coincide with ∩. If we add (left) things change:

Proposition 15.14.14. Let 〈B, ·, 1,�,⊥〉 be a left quasi-topological
formal system. Then for all X,Y ∈ ΩA(B), X • Y = X · Y = X ∩ Y .

Proof. Since (left) holds, X ·Y � X and X ·Y � Y . Therefore, X ·Y is
a lower bound of {X,Y } with respect to the partial order �. Suppose
Z is a lower bound of {X,Y }, then Z � X and Z � Y . But from
Lemma 15.14.3, Z � X · Y . It follows that X · Y is the greatest lower
bound of {X,Y } with respect to the partial order �. But in view of
Proposition 15.14.1.(5), in ΩA(B) the relation � coincides with the set-
theoretic inclusion ⊆, so that · coincides with ∩. At this point the result
is straightforward: X • Y = A(X · Y ) = A(X ∩ Y ) = X ∩ Y , because
SatA(B) is closed under intersections. qed

It is possible to prove the converse of Proposition 15.14.14:

Proposition 15.14.15. Let 〈B, ·, 1,�,⊥〉 be a semi-topological for-
mal system. If 〈ΩA(B), ·〉 is a meet semilattice with ordering ⊆, then
〈B, ·, 1,�,⊥〉 is a left quasi-topological formal system.

Corollary 15.14.4. Let 〈℘(U),∩, U,�,⊥〉 be a pseudo-topological for-
mal system. Then 〈ΩA(℘(U)), •〉 (and 〈ΩA(℘(U)), ·〉, as well) is a meet
semilattice with ordering ⊆.

Lemma 15.14.5. Let 〈B, ·, 1,�,⊥〉 be a semi-topological formal sys-
tem. If (left) and (right) hold, then (A-distributivity) holds for all
X,Y ⊆ B.
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Proof. We have to prove that for any X,Y ⊆ B, A(X) ∩ A(Y )) =
A(X· Y ).
(a) A(X ·Y ) ⊆ A(X)∩A(Y ): since (left) holds,X ·Y � X andX ·Y � Y ,
so that A(X ·Y ) ⊆ A(X) and A(X ·Y ) ⊆ A(Y ), thanks to Proposition
15.14.1.(2). (b) A(X)∩A(Y ) ⊆ A(X ·Y ): clearly A(X)∩A(Y ) ⊆ A(X)
and A(X) ∩ A(Y ) ⊆ A(Y ). Therefore, from Proposition 15.14.1. (3)
A(X) ∩ A(Y ) � A(X) and A(X) ∩ A(Y ) � A(Y ). Since (right) holds,
we have A(X)∩A(Y ) � A(X) ·A(Y ) which is equivalent to A(A(X)∩
A(Y )) ⊆ A(A(X)· A(Y )). But A(X)∩A(Y ) is already saturated, thus
by applying (stability) on the right term of the inequality we obtain
A(X) ∩ A(Y ) ⊆ A(X · Y ) (we recall that (stability) is derivable from
(left) jointly with (right)). qed

Corollary 15.14.5. Let 〈B, ·, 1,�,⊥〉 be a semi-topological formal sys-
tem. If (left) and (right) hold, then for any X,Y ∈ ΩA(B), X ∩ Y =
X • Y .

So we have seen that in topological formal systems 〈ΩA(B), •〉 is a meet
semilattice with ordering ⊆, and SatA(B) is a complete lattice with
complete distributivity. We pack all this discussion in the following
propositions:

Proposition 15.14.16. Let 〈B, ·, 1,�,⊥〉 be a semi-topological formal
system. Then 〈℘(B), ·,∪〉 is a distributive lattice.

Proposition 15.14.17. Let 〈B, ·, 1,�,⊥〉 be a pre-topological formal
system. Then 〈ΩA(B), •,∨〉 is a distributive lattice.

Proposition 15.14.18. Let 〈B, ·, 1,�,⊥〉 be a semi-topological formal
system. Then the following are equivalent:

1. 〈ΩA(B), •〉 is a meet semilattice with ordering ⊆.

2. (Left) and idempotence of · on B hold.

Proposition 15.14.19. Let 〈B, ·, 1,�,⊥〉 be a semi-topological formal
system. Then the following are equivalent:

1. 〈ΩA(B), •,∨, B,A(⊥)〉 is a complete lattice with complete dis-
tributivity and with ordering ⊆.

2. (Left) and (right) hold.

3. (Left), idempotence of · on B and (stability) hold.
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〈℘(B), ·,∪〉 〈ΩA(B),∩,∨〉 〈ΩA(B), ·,∨〉 〈ΩA(B), •,∨〉
semi distributes complete complete

left quasi distributes complete complete (and · = ∩) complete (and • = ∩)

pre-topology distributes complete complete distributes

topology distributes distributes distributes (and · = ∩) distributes (and • = ∩)

Notice that the failure of the converse of Proposition 15.14.9 means
that we can have finite neighborhood pairs 〈A,B,R〉 such that their
induced semi-topological formal systems 〈B,∩, 1,�,⊥〉 are topological
but Ωint(A) and, thereafter, ΩA(B), although formal topologies, are
distributive lattices but not lattices of sets, so that 〈A,Ωint(A)〉 and
〈B,ΩA(B)〉 could fail to be topological spaces. This is a consequence
of the fact that (right) does not imply N3.

To sum up, when we want to grasp the concrete topological features
from an abstract point of view, we must observe that Id and N1 are
immaterial, while (left) is equivalent to N2. Moreover, all three proper-
ties are embedded in the formal behaviour of the relation �, except as
to the behaviour induced by (right). Therefore, it seems that the dis-
tinguishing principle of formal topologies is (right), as it appears to be
in the latest development of the topic (see [Sambin, 1989] and [Sambin
& Gebellato, 1998]).

15.14.3 A New Age: Getting Rid of · and ⊥.

The theory of Intuitionistic formal spaces was introduced by a series
of papers initiated by [Sambin, 1987], on the ground of suggestions
after Martin-Löf’s Intuitionistic Type Theory. We shall see below that
the level of abstraction on which this business is carried on, makes
it possible to translate the formal properties of neighborhood systems
into Gentzen systems. Particularly it is shown that formal pre-topology
provide models for a fragment of Linear Logic.

As we have seen, Sambin’s notion of a pre-topology is much more
specific than the notion that we have used in this Part (indeed, a pre-
topology corresponds to a formal neighborhood system of type N2Id in
which (stability) holds). However, in recent years formal properties have
been made even more formal by getting rid of the monoidal operator ·
and the subset ⊥ (cf. [Sambin, 1989]). Let us start with ⊥.

Consider a basic pair 〈A,B,R〉. Instead of the set ⊥ one can use a
consistency predicate Pos( ) whose meaning is given by an evaluation
eval, such that eval(Pos(b)) = true if and only if ∃a ∈ A(〈a, b〉 ∈ R)
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(i.e. 〈R〉(b) �= ∅). That is, b is consistent if and only if b is a neigh-
borhood of at least a point in A (this is recorded by saying that b is
“inhabited”).

The advantage of the predicate Pos, from a constructivistic point
of view, is that it can be described purely on the abstract side, without
mentioning the set A and its elements, in the following way:

Pos(b) b � Y
∃y ∈ Y & Pos(y)

(monotonicity)
¬Pos(b)
b � Y

(ex falso sequitur quodlibet)

A second note concerns the possibility to get rid of the monoidal
operator “·”. This is achieved using a binary operator ↓, defined by:

b ↓ b′ =def {c : 〈R〉(c) ⊆ 〈R〉(b) ∩ 〈R〉(b′)}.

Then a formal system is topological, in the sense that {〈R〉(X) : X ⊆
B} is a topology, if 〈R〉(∅) = ∅ and if for all b, b′ ∈ B, 〈R〉(b)∩〈R〉(b′) =
〈R〉(b ↓ b′). In fact, by distributivity of ∩ over ∪, this equation holds if
and only if the following holds: 〈R〉(Y ) ∩ 〈R〉(Y ′) = 〈R〉({c : 〈R〉(c) ⊆
〈R〉(Y ) ∩ 〈R〉(Y ′)}). But this is exactly the closure of the 〈R〉-images
under finite intersections (closure under unions is given by the definition
of 〈R〉(Y ) as

⋃

y∈Y

〈R〉(y)).

Using these notions, we can readily see that a concrete topological
space (that is, a topological space defined in terms of points), is a
structure CT = 〈A,B,R〉 satisfying:

(B1) ∀a∃b(〈a, b〉 ∈ R); (B2)
〈a, b〉 ∈ R 〈a, b′〉 ∈ R

〈a, b ↓ b′〉 ∈ R .

But in view of the above considerations, and defining the relation � as
usual by means of the operator A, this definition may be completely
shifted to the pure abstract side in the following way:

Definition 15.14.11. A formal topology is a structure FT = 〈B,�,
Pos〉, where B is a set, � and Pos relations between elements of B
and subsets of B, such that:

1.
b ∈ Y
b � Y (reflexivity).
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2.
b � Y Y � Y ′

b � Y ′ (� −transitivity) .

3.
b � Y b � Y ′

b � Y ↓ Y ′ (↓ −right) - where Y ↓ Y ′ =
⋃

y∈Y,y′∈Y ′
y ↓ y′.

4.
〈b, Y 〉 ∈ Pos

b ∈ Y (antiref lexivity).

5.
〈b, Y 〉 ∈ Pos ∀b(〈b, Y 〉 ∈ Pos⇒ b ∈ Y ′)

〈b, Y 〉 ∈ Pos (Pos− transitivity).

6.
〈b, Y 〉 ∈ Pos b � Y ′

∃b′(b′ ∈ Y ′ & 〈b′, Y 〉 ∈ Pos) (compatibility).

If we start from a formal topology and define, as usual, A(Y ) = {b :
b � Y } and, moreover, C(Y ) = {b : 〈b, Y 〉 ∈ Pos}, then we obtain
A(Y ↓ Y ′) = A(Y ) ∩ A(Y ′) and C(Y ) � A(Y ′) � C(Y ) � Y ′, where
Y � Y ′ if and only if ∃a ∈ A(a ∈ Y & a ∈ Y ′).

This translation makes it possible to explain (antireflexivity). In
fact 〈b, Y 〉 ∈ Pos means that in 〈R〉(b) there are elements x such that
R(x) ⊆ Y . That is, 〈b, Y 〉 ∈ Pos not only if b is inhabited, but if it
is inhabited at least by an element x which belongs to Y with all its
neighbors. This makes C into an interior operator (as we already know –
explicitly: b ∈ C(Y ) iff ∃a ∈ 〈R〉(b) & R(a) ⊆ Y . But if a ∈ 〈R〉(b),
then b ∈ R(a). It follows that b ∈ Y ). Therefore, antireflexivity states
that C(Y ) ⊆ Y : if b ∈ C(Y ) then b ∈ U .

It follows that if we start from a concrete topological space 〈A,B,R〉,
then we obtain a formal topology 〈B,�, Pos〉 by defining A and C in
the usual way.

Points are defined in formal systems as follows.
If we are dealing with a topological formal system TFS = 〈B, ·,�, 1,

⊥〉, a formal point is any subset α ⊆ B, such that:

(i) α is inhabited: 1 ∈ α; (ii) α is convergent:
b ∈ α b′ ∈ α

b · b′ ∈ α ;

(iii) α splits�:
b ∈ α b � Y

∃c(c ∈ Y & c ∈ α)
; (iv) α is consistent: a ∈ α�a �= ⊥.

It is possible to prove that if TFS = 〈B, ·,�, 1,⊥〉 is a topologi-
cal formal system, then there is a bijection between formal points of
TFS and completely prime filters of SatA(B). This result is the formal
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counterpart of the construction of abstract points in pointless topology
(see Introduction).

If we deal with a formal topology FT = 〈B,�, Pos〉, then α ⊆ B is
a formal point provided:

(i*) α is inhabited: ∃b ∈ B & b ∈ α;

(ii*) α is convergent:
b ∈ α b′ ∈ α

b ↓ b′ ∈ α ;

(iii*) α splits �:
b ∈ α b � Y
∃c(c ∈ Y & c ∈ α)

;

(iv*) α is consistent:
b ∈ α α ⊆ Y

〈a, Y 〉 ∈ Pos .

15.14.4 The Logical Interpretation of the Pre-Topology
Formal Approach

To begin with, notice that since SatA(B) is a complete lattice with
complete distributivity, then it is a Heyting algebra. Therefore, we
can introduce a relative pseudo-complementation =⇒ in the following
manner: for any X,Y ∈ SatA(B),

X =⇒ Y =def {b : b ·X � Y }. (15.14.7)

Even without (stability) =⇒ preserves ∩: X =⇒ (Y ∩Z) = {b : b ·X �
(Y ∩Z)} = {b : A(b ·X) ⊆ A(Y ∩Z)}. But A(Y ∩Z) ⊆ A(Y )∩A(Z),
thus X =⇒ (Y ∩Z) = {b : A(b ·X) ⊆ A(Y )}∩{b : A(b ·X) ⊆ A(Z)} =
X =⇒ Y ∩ X =⇒ Z. Hence =⇒ has a lower adjoint. Moreover, we
already know that in the presence of (stability) · preserves ∪ and ∪ is
the dual of ∩. Hence · has a upper adjoint. This leads to a suspicion as
· and =⇒ are linked by the following adjoint relation

X · Z � Y iff Z � X =⇒ Y (imp-adjoint)

Actually, this is what happens even in pre-topological formal systems,
as we are going to see.

Proposition 15.14.20. In any pre-topological system (imp-adjoint)
holds.

Proof. The proof is based on the following lemma:
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Lemma 15.14.6. In any semi-topological space X · (X =⇒ Y ) � Y ,
for all X,Y ⊆ ℘(B).

Proof. Trivially, because X · (X =⇒ Y ) = X · {b : X · b � Y }.
Now, by (stability) we obtain (b′ � X & b � X =⇒ Y ) � (b′ · b �
X · (X =⇒ Y )) which, by the above Lemma, reduces to (b′ � X & b �
X =⇒ Y ) � (b′ · b � Y ), and by generalization we obtain (Z ′ �
X & Z � X =⇒ Y ) � (Z ′ · Z � Y ). If we put Z ′ = X we obtain
(X � X & Z � X =⇒ Y ) � (X · Z � Y ), and since X � X is
an identity, finally we have (Z � X =⇒ Y ) � (X · Z � Y ). Con-
versely, suppose b · X � Y . Then, by definition, b ∈ X =⇒ Y . Hence
{b} ⊆ X =⇒ Y , so that b � X =⇒ Y . By generalization we obtain
(Z ·X � Y )� (Z � X =⇒ Y ). qed

Therefore, in pre-topological formal systems (imp-adjoint) holds.
The connection of pre-topological and topological formal systems

with logic is further developed as follows.
An evaluation φ from the language of Linear Logic to a pre-topology

P = 〈B, •,∨, 1,⊥〉 is a function from propositional variables into
SatA(B), which is extended to all formulas by:

α ϕ(α)
� B

1 A(1)
⊥ ⊥
0 A(∅)
a⊗ b ϕ(a) • ϕ(b)
a&b ϕ(a) ∩ ϕ(b)
a⊕ b ϕ(a) ∨ ϕ(b)
a� b ϕ(a) =⇒ ϕ(b)
¬a a� ⊥ = ϕ(a) =⇒⊥

One should remember that in general • does not coincide with ∩ in
SatA(B), in pre-topological formal systems differently from topological
formal systems.

Having set this interpretation, we can give pre-topologies the struc-
ture of a Gentzen (sequent) calculus by putting:

Γ # c iff φ(⊗a∈Γ{a}) � φ(c)
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A rule of inference will be said to be valid in P if for any evaluation φ

on P, the conclusion is valid whenever all the premises are valid.
It is easy to verify that the exchange rule Γ�C

Γ′�C , where Γ′ is any
permutation of Γ, is valid because · is commutative.

Now let us note that (right) and (left) are equivalent to the following
properties (R) and, respectively, (L):

W ·A · A � Z
W ·A � Z (R)

W � Z
A ·W � Z (L)

The logical interpretation is striking, because the above rules (R) and
(L) turn into the following structural rules, respectively:

Γ, a, a # b
Γ, a # b (contraction)

Γ # b
a,Γ # b (weakening)

Since in general pre-topologies are such that the relation � is a precover
and not a cover, then pre-topologies provide a suitable semantic for
logics with limited structural rules.

Moreover, (R) jointly with (L), in turn, is equivalent to the idem-
potence of · with respect to the preorder �, which in SatA(B) means
that ·, • and ∩ coincide.

This means that in the presence of (L) and (R) we cannot any longer
distinguish between the additive connectives ∩, ∨, � and 0, and the
multiplicative connectives ⊗, �, 1 and ⊥. On the contrary, without
(R) and (L) we have the following rules for ⊗ and &:

⊗l :
Γ, a, b # c

Γ, a⊗ b # c ; ⊗r :
Γ1 # a Γ2 # b

Γ1,Γ2 # a⊗ b

&l :
Γ, a # c

Γ, a & b # c,
Γ, b # c

Γ, a & b # c ;⊗r :
Γ # a Γ # b

Γ # a & b
.

Notice that in view of (A-stability) φ(a1 ⊗ . . . ⊗ an) �� φ(a1) · . . . ·
φ(an), so that both ⊗ and “,” correspond to the operation (point-meet)

“·”. Therefore, ⊗r is evaluated as
φ(⊗Γ1) � φ(a) φ(Γ2) � φ(b)

φ(Γ1) · φ(Γ2) � φ(a) · φ(b)
which is exactly (stability). In turn, ⊗l is evaluated as

φ(Γ, a, b) � φ(c)
φ(Γ) · φ(a⊗ b) � φ(c)

. But φ(a ⊗ b) = φ(a) • φ(b) = φ(a) · φ(b) so

that φ(Γ) · φ(a⊗ b) = φ(Γ) · φ(a) · φ(b) which is the same evaluation as

φ(Γ, a, b). &r is evaluated as
φ(Γ) # φ(a) φ(Γ) # φ(b)

φ(Γ) # φ(a & b)
. But φ(a & b) =
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φ(a)∩φ(b), so that &r is evaluated as
φ(Γ) � φ(a) φ(Γ) � φ(b)
φ(Γ) � φ(a) ∩ φ(b)

that,

since for saturated sets a � b implies a ⊆ b, corresponds to
φ(Γ) ⊆ φ(a) φ(Γ) ⊆ φ(b)
φ(Γ) ⊆ φ(a) ∩ φ(b)

, which trivially holds. Similarly for &l.

15.14.5 A Sample Formal Neighborhood System

Consider the neighborhood systems of Example 12.4.4. This system
is induced by the basic pair 〈U,℘(U), R〉, where U = {a, b, c} and
R(a) = {{a, b}, {a, c}, U}, R(b) = {{a}, {b}, {a, b}, {b, c}, U}, R(c) =
{{c}, {a, c}, U}. It induces the following structures, ordered by the
subset relation:

Ωint(U)

{a, b, c}

�
� �

�
{a, b} {a, c}

{b, c}

�
� �

�
{b} {c}
�
� �

�

∅

ΩA(℘(U))

1

�
� �

�
γ η

δ

�
� �

�
α β

�
� �

�

0

ΩG(U)

U

�
� �

�
{a, b} {a, c}

{b} {c}
�
� �

�

∅
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where:
(a) In Ωint(U), ∅ = int(∅) = int({a}), {b} = int({b}), {c} =

int({c}), {a, b} = int({a, b}), {b, c} = int({b, c}), {a, c} = int({a, c}),
U = int(U).

(b) [In what follows, given a set of sets X , CX stands for any
combination without repetition of elements from X . For instance, if
X = {{a}, {b}} then CX = {{a}} or CX = {{b}} or CX = {{a}, {b}}].
In ΩA(℘(U)), 0 = {∅} = A(∅) = A({∅}); α = 0 ∪ {{a}, {b}, {b, c}} =
A(C{{a},{b},{b,c}}); β = 0 ∪ {{c}} = A({{c}} ∪ C0); γ = α ∪ {{a, b}} =
A({{a, b}} ∪ Cα); δ = α ∪ β = A(Cα ∪ Cβ); η = β ∪ {{a, c}} =
A({{a, c}} ∪Cβ); 1 = γ ∪ η ∪ {U} = A({U} ∪ Cγ ∪ Cη).

We give some example of calculation of A (we use all the canonical
parentheses):
A({{a}}) = [R�]〈R〉({{a}}) = [R�]({b}) = {∅, {a}, {b}, {b, c}}.
A({{b}, {c}}) = [R�]({b, c}) = {∅, {a}, {b}, {c}, {b, c}}.

One can notice:

A Ωint(U) is not closed under intersections (for instance, {a, b}∩{a, c}=
{a} /∈ Ωint(U)). In fact, we need the operation ∧: {a, b}∧{a, c} =
int({a, b} ∩ {a, c}) = int({a}) = ∅.

B ΩA(℘(U)) is not closed under unions (for instance, β ∪ γ = {∅, {a},
{b}, {c}, {b, c}, {a, b}{a, c}}, which is not an element of ΩA(℘(U)).
Indeed, we need the operation ∨: β ∨ γ = A(β ∪ γ) = 1.

C We can easily verify the following correspondence:

sets in U sets in ℘(U) symbol
∅ {∅} 0
{b} {∅, {a}, {b}, {b, c}} α

{c} {∅, {c}} β

{a, b} {∅, {a}, {b}, {a, b}, {b, c}} γ

{a, c} {∅, {c}, {a, c}} η

{b, c} {∅, {a}, {b}, {c}, {b, c}} δ

U {∅} ∪ ℘(U) 1

We can therefore verify, for instance, that η is the top element of an
equivalence class modulo ��. In fact η = {∅, {c}, {a, c}} and it is the
top element of the equivalence class [{{a, c}}, {{c}, {a, c}}, {∅, {a, c}},
{∅, {c}, {a, c}}], i.e. {{a, c}} ∪ Cβ.
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D (Left) Fails: {a, c} � {{a, c}}, but {a, c} · {a, b} = {a, c} ∩ {a, b} =
{a}, and {a} is not semicovered by {{a, c}}. In fact 〈R〉 ({a}) =
R�({a}) = {b}, while 〈R〉 ({{a, c}}) = R�({a, c}) = {a, c} (and
notice that N2 fails in the neighborhood system {R(x)}x∈U ).

E (Right) Does not hold. Notice for instance, that {b, c} � {{a}} and
{b, c} � {{b}}, but {b, c} is not semicovered by {{a}} · {{b}} =
{∅}, because 〈R〉({b, c}) (viz. {b}) is not included in 〈R〉({∅}) (viz.
∅) (remember that 〈R〉({b, c}) is short for 〈R〉({{b, c}})).

This also shows that:

F (Stability) Does not hold. We show this by exhibiting a counterex-
ample of (A-stability).
In fact, A(A({{a}})·A({{b}}) = A({∅, {a}, {b}, {b, c}}·A({∅, {a},
{b}, {b, c}}) = {∅, {a}, {b}, {b, c}}. On the contrary, A({{a}} ·
{{b}}) = A(∅) = {∅}.

The operations on ΩA(U) are:

• 0 α β γ δ η 1

0 0 0 0 0 0 0 0
α 0 α β α δ δ α

β 0 β β β β β β

γ 0 α β γ δ δ 1
δ 0 δ β δ δ δ δ

η 0 δ β δ δ η η

1 0 α β 1 δ η η

∨ 0 α β γ δ η 1

0 0 α β γ δ η 1
α α α δ γ δ 1 1
β β δ β 1 δ η 1
γ γ γ 1 γ 1 1 1
δ δ δ δ 1 δ 1 1
η η 1 η 1 1 η 1
1 1 1 1 1 1 1 1

∩ 0 α β γ δ η 1

0 0 0 0 0 0 0 0
α 0 α 0 α α 0 α

β 0 0 β 0 β β β

γ 0 α 0 γ α 0 γ

δ 0 α β α δ β δ

η 0 0 β 0 β η η

1 0 α β γ δ η 1

For instance, γ • η = A({∅, {c}, {a}}) = [R�]({b, c}) = {∅, {a}, {b}, {c},
{b, c}} = δ.
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Clearly, for any λ, μ ∈ ΩA(℘(U)), λ ∨ μ = λ if and only if μ ⊆ λ.
Indeed, λ = λ∨μ means A(λ) = A(λ∪μ). But A(λ∪μ) ⊇ A(λ)∪A(μ).
Therefore, λ ⊇ λ ∪ μ, so that λ ⊇ μ.

From this observation and the shape of ΩA(℘(U)), it is immediate to
infer that 〈ΩA(U),∨,∩〉 is not a distributive lattice (indeed, (stability)
does not hold). Moreover, not even • distributes over ∨. For instance,
η • (γ ∨ δ) = η • 1 = η, whereas (η • γ) ∨ (η • δ) = δ ∨ δ = δ.

15.14.6 A Pseudo-Topological Neighborhood System

Consider the neighborhood system of Example 12.6.3. This system
is induced by the basic pair 〈U,℘(U), R〉, where U = {a, b, c} and
R(a) = {{a}, {a, b}, {a, c}, U}, R(b) = {{b}, {a, b}, {b, c}, U}, R(c) =
{{a, c}, {b, c}, U}. It induces the following structures:

Ωint(U)

{a, b, c}

�
� �

�
{a, c} {b, c}

{a, b}

�
� �

�
{a} {b}
�
� �

�

∅

ΩA(℘(U))

1

�
� �

�
γ η

δ

�
� �

�
α β

�
� �

�

0

We have:

(a) ∅ = int(∅) = int({c}), and X = int(X), in the remaining cases.

(b) 0 = {∅, {c}} = A(C0); α = 0 ∪ {{a}} = A({{a}} ∪ C0); β =
0 ∪ {{b}} = A({{b}} ∪ C0); γ = α ∪ {{a, c}} = A({{a, c}} ∪
Cα); δ = α ∪ β ∪ {{a, b}} = A({{a, b}} ∪ Cα ∪ Cβ); η = β ∪
{{b, c}} = A({{b, c}}∪Cβ); 1 = γ∪η∪δ∪U = A({{a, c}}∪Cβ) =
A({{a, c}} ∪ Cβ ∪Cα) = . . . = A({U}).

Notice that A(C0) = A({∅}) and {c} ∈ A(C0) because in the for-
mula for [R�] the left side of the implication is false when the argument
is {c}.
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Although the shape of Ωint(U) is the same as that of the set of
int-saturated elements of the formal neighborhood system of Example
15.14.5, nonetheless they differ in important respects. First, in the
present system int and G (and g) coincide because {R(x)}x∈U is a
neighborhood system of type N2Id.

Second, we can observe that:

A (Left) Holds, because {R(x)}x∈U is a neighborhood system in which
N2 holds.

B As a consequence, the operations • and ∩ coincide, in this case.

C (Right) Fails. For instance, {a, c} � {{a, b}, {b, c}} and {a, c} �
{{a, c}}, but 〈R〉({a, c}) = {a, c} which is not included in {a} =
〈R〉({a}, {c}) = 〈R〉({{a, b}, {b, c}} · {{a, c}}). This corresponds
to the fact that in Ωint(U), {a, c} ⊆ {a, b} ∪ {b, c} and {a, c} ⊆
{a, c}, but {a, c} is not included in {a} = {{a, b} ∧ {a, c}} ∪
{{b, c} ∧ {a, c}}. This, in ΩA(℘(U)), is due to the following fact:

D ∩ and ∨, and hence • and ∨, do not distribute over each other. This
is an effect of the failure of (stability).

E In fact (stability) fails. Obviously, because idempotence of · and (sta-
bility) gives (right) but (right) fails and idempotence of · holds.
Therefore, (stability) cannot hold. Indeed, the counterexample for
(right) is also a counterexample for (stability).
Another counterexample is the following: {{a, c}, {b, c}} � {{a, b},
{b, c}} and {{a, c}, {b, c}} � {{a, c}, {a, b}}, but {{a, c}, {b, c}} ·
{{a, c}, {b, c}} = {{a, c}, {b, c}, {c}} which is not semicovered by
{{a}, {b}, {a, b}} = {{a, b}, {b, c}} · {{a, c}, {a, b}}. In Ωint(U)
this effect corresponds to the fact that {a, b, c} = {a, b} ∪ {b, c},
{a, b, c} = {a, c}∪{a, b}, but {a, b, c} �= {{a, b}∧{a, c}}∪{{a, b}∧
{a, b}} ∪ {{b, c} ∧ {a, c}} ∪ {{b, c} ∧ {a, b}} = {a, b} (notice that
{b, c} ∧ {a, c}) = int({b, c} ∩ {a, c}) = int({c}) = ∅). This, in
turn, is due to the fact that ∧ and ∪ do not distribute over each
other.

15.14.7 A Topological Formal Neighborhood System
in which N3 does not Hold

Consider the neighborhood system induced by the basic pair
〈U,℘(U), R〉, where U = {a, b, c} and R(a) = {{a, b}, {a, c}, U},
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R(b) = {{a, b}, U}, R(c) = {{a, c}, U}. It induces the following struc-
tures, where Ωint(U) = ΩG(U) = Ωg(U):

Ωint(U)

{a, b, c}

�
�
� �

�
�

{a, b} {a, c}
�
�
� �

�
�

∅

ΩA(℘(U))

1

�
�
� �

�
�

α β

�
�
� �

�
�

0

In ΩA(℘(U)), 0 = {∅, {a}, {b}, {c}, {b, c}}, α = 0 ∪ {{a, b}}, β = 0 ∪
{{a, c}} and 1 = α ∪ β ∪ {U}.

We can observe what follows:

A In the neighborhood system {R(x)}x∈U , N1, N2 and Id hold but
N3 does not hold (because {a} /∈ R(a)). Nevertheless (right)
holds. In fact, for any X ⊆ U and Y ⊆ ℘(U), X � Y if and only
if X ∈ Y or U ∈ Y (this is a counterexample of the converse of
Proposition 15.14.9).

B It follows that 〈U,℘(U), R〉 induces a topological formal neighbor-
hood system (because N2 implies (left)).

C Although 〈U,℘(U), R〉 gives rise to a topological formal system,
〈U,Ωint(U)〉 is not a topological space. Indeed, it is a distributive
lattice, but it is not a lattice of sets ({a, b} ∩ {a, c} /∈ Ωint(U)).

Therefore, this is an example that a formal neighborhood pair 〈U,℘
(U), R〉 may induce a topological formal system even if N3 does not
hold in {R(x)}x∈U .

15.14.8 A Topological Formal Neighborhood System
in which N1 does not Hold

Do not deduce that Ωint(U) = ΩG(U) = Ωg(U) from the fact that
a basic pair induces a topological formal system. This deduction is
incorrect because the coincidence of int and G relies on N2, N1 and Id
and the latter two are principles with no formal counterparts. Consider
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the neighborhood system R(a) = {{b}, {a, b}}, R(b) = {{a, b}}, on
U = {a, b}. Here N1 and Id does not hold (indeed, a /∈ {b} ∈ R(a) and
a ∈ {a} = G({b}) /∈ R(a)), while N2 and N3 hold. Hence the basic
neighborhood pair 〈U,℘(U), R〉 induces a topological formal system,
anyway. However, in this system int({a}) = {a}, because G({b}) ⊆ {a}
and {b} ∈ R(a). On the contrary, g({a}) = G({a}) = ∅. Moreover,
int({b}) = ∅, while g({b}) = G({b}) = {a}.

With the following example we show that N2 and N3 do not imply
extensionality. Consider the neighborhood system Na = {{a}, {a, b},
{a, c}, U}, Nb = {U}, Nc = {{a, c}, U}. This system is of type N3Id.
Nevertheless it is not extensional, because G({a, b}) = {a}.

15.14.9 A Non-Topological Formal Neighborhood
System such that Ωint(U) is a Heyting
Algebra of Sets

Let U = {a, b, c}, R(a) = {{a}, U}, R(b) = {{b}, U}, R(c) = {U}. We
obtain the following lattices:

Ωint(U)

U

{a, b}

�
� �

�
{a} {b}
�
� �

�

∅

ΩA(℘(U))

1

γ

�
� �

�
α β

�
� �

�

0

where: 0 = {∅, {c}, {a, b}, {a, c}, {b, c}}, α = {{a}} ∪ 0, β = {{b}} ∪ 0,
γ = {{a}, {b}} ∪ 0 and 1 = {{a}, {b}, U} ∪ 0.

Therefore, 〈U,Ωint(U)〉, as well as 〈ΩA(℘(U))〉, is a topological space.
Nonetheless,G �= int (for instance, G({a, b}) = ∅ �= {a, b} = int({a, b}).
Therefore, either Id, N1 or N2 fail in N (U) = {R(a)}a∈U . Indeed
both Id and N2 do not hold. It follows that (left) cannot hold. For
example, {a, b} � {a, b}, but {a, b} · {a} = {a, b} ∩ {a} = {a} and
〈R〉({{a}}) = {a}, while 〈R〉({{a, b}}) = ∅, so that {a, b} · {a} is not
semicovered by {a, b}. It follows that 〈U,℘(U), R〉 does not induce a
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topological formal system. Incidentally, thanks to this example we can
appreciate the connection between N2 and (left). In fact, if (left) held,
〈a, {a}〉 ∈ R would imply 〈a, {a, b}〉 ∈ R, too. Hence we would have
〈R〉({{a}}) ⊆ 〈R〉({{a, b}}).

Moreover, neither a pre-topological formal system is induced by
〈U,℘(U), R〉, because (stability) fails. For instance, since both {a, b} and
{b, c} belong to 0 so that 〈R〉({{a, b}}) = 〈R〉({{b, c}}) = ∅, one has
{a, b} � {a, b} and {b, c} � {a, b}. But 〈R〉({a, b} · {b, c}) = 〈R〉({b}) =
{b} � 〈R〉({{a, b}} · {{a, b}}) = 〈R〉({{a, b}}) = ∅.

The same example shows that if 〈U,Ω(U)〉 is a topological space
and we put 〈x,X〉 ∈ R if and only if X ∈ Ω(U) and x ∈ X, for x ∈ U

and X ⊆ U , then 〈U,℘(U), R〉 generally does not induce a topological
formal system (trivially, put in the above example Ω(U) = Ωint(U)).

Notice that 0 • 0 = γ. Therefore, since 0 is a subset of any A-
saturated element, for all λ, μ ∈ ΩA(℘(U)), λ • μ = γ except for the
case 1 • 1 = 1. Therefore it is not difficult to prove that • and ∨
distribute over each other. For χ • (λ ∨ μ), suppose that λ = 1 = χ.
Then χ•(λ∨μ) = 1•1 = 1. But χ•λ = 1, too, so that (χ•λ)∨(χ•μ) = 1.
If χ �= 1, then χ• (λ∨μ) = γ = γ∨γ = (χ•λ)∨ (χ•μ). For χ∨ (λ•μ),
suppose χ = 1 then χ∨(λ•μ) = 1 = 1•1 = (χ∨λ)•(χ∨μ). Next, suppose
χ �= 1. If λ = μ = 1, then χ∨(λ•μ) = χ∨1 = 1 = 1•1 = (χ∨λ)•(χ∨μ).
If λ �= 1 or μ �= 1, then χ ∨ λ �= 1 or χ ∨ μ �= 1. In both cases
(χ ∨ λ) • (χ ∨ μ) = γ = χ ∨ γ = χ ∨ (λ • μ).

Therefore, 〈ΩA(℘(U)), •,∨〉 is a distributive lattice, although
(stability) fails and (left) either (indeed • �= ∩). On the contrary,
(right) holds because N3 holds in A(U).

Form this example and Example 15.14.7 one is not allowed to infer
that right quasi-topological systems give rise to distributive lattices of
saturated sets.

In fact, ∨ distributes on ∩ if for all α, β, γ ∈ ΩA(U), α ∨ (β ∩ γ) =
(α∨β)∩ (α∨ γ), viz. if (i) A((α∪ β)∩ (α∪ γ)) = A(α∪ β)∩A(α∪ γ).
Since A is a closure operator, the first term is included in the second.
Put (α ∪ β) = X and (α ∪ γ) = Y . From (right) we can deduce
(ii) A(X) ∩ A(Y ) ⊆ A(X · Y ). In fact, A(X) ∩ A(Y ) ⊆ A(X) and
A(X) ∩ A(Y ) ⊆ A(Y ) give A(X) ∩ A(Y ) � X and A(X) ∩ A(Y ) �
Y . Thus from (right) and Proposition 15.14.1.(2) we obtain (ii). But
X ∩ Y ⊆ X · Y . Hence A(X ∩ Y ) ⊆ A(X · Y ). About the reverse
inclusion, hence about (iii) A(X ∩ Y ) = A(X · Y ) which would give
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the inclusion of the second term of (i) into the first term, (right) and
idempotence of · are silent.

However, incidentally (iii) holds in the present example and in Exam-
ple 15.14.7, (easy inspection).

Nonetheless, the above discussion actually gives at least one state-
ment linking distributivity of the saturated structures and (right), but
in the opposite direction:

Proposition 15.14.21. If ΩA(B) is distributive, then in 〈B, ·, 1,�,⊥〉
(right) holds.

Proof. If (right) does not hold, then we cannot prove A(X ∩ Y ) ⊆
A(X · Y ) and, therefore, A(X ∩ Y ) = A(X · Y ) either, which on the
contrary must hold to obtain distributivity. qed

15.14.10 A Logical Interpretation of Concrete
Properties

Pre-topological formal systems provide models for limited resource log-
ics. Referring to [Sambin, 1989], we recall that the multiplicative con-
junction ⊗ is interpreted by ·, the additive conjunction & is interpreted
by ∩, while � gives the interpretation of the sequent relation # and
formulas are evaluated over saturated subsets. One can easily verify
that if (left) and (right) hold, then the behaviour of l⊗ and l& coin-

cide. Indeed, since in this case • and · coincide, from
A � C

A · B � C

we immediately obtain the validity of
Γ, a # c

Γ, a⊗ b # c which coincides

with l&. As for (right), it makes the behaviour of r⊗ and r& coin-

cide: from
A � B A � C

A � B · C we immediately obtain the validity of

Γ # a Γ # b
Γ # a⊗ b

, which is the same as r&. It follows that in logics

modeled by topological formal systems, additive and multiplicative
conjunctions coincide.

But it is worth underlining that N2 and N3 already embed the
logical power of (left) and, respectively, (right). Indeed, N3 may be read

in the following form
N ∈ Nx N ′ ∈ Nx

N ∩N ′ ∈ Nx
, which corresponds to the

introduction of &, hence to r&. In turn, N2 may have the following
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reading:
N ∩N ′ ∈ Nx

N ∈ Nx
and

N ∩N ′ ∈ Nx

N ′ ∈ Nx
, which correspond to the

elimination of &, hence to l&.

Finally, in view of the fact that in topological formal systems A(X)∩
A(Y ) = A(X · Y ), we can notice that A is a meet-preserving closure
operator from 〈℘(B), ·,�〉 to 〈ΩA(B),∩,⊆〉. Then A is a Grothendieck
closure operator (see Part II).

15.15 Frame – Modal Structures

and Pre-Topological Spaces

15.15.1 Modal Algebras and Neighborhood Systems

In ([Došen, 1987]) Kosta Dosěn developed a duality theory between
neighborhood frames and modal algebras, in the line of [Goldblatt,
1976] (in what follows we use the symbolism and the concepts intro-
duced in this Part plus the additional symbols and concepts used in
Dosěn’s work).

We have seen that a modal algebra A = 〈A,∧,∨,∼, 0, 1,�〉 is a
non-degenerate Boolean algebra equipped with a unary operator �,
without any specific property. A neighborhood frame is a structure F =
〈U,N (U),DF 〉, where DF is a family of subsets of U closed under finite
intersections, complementation, and under the core map G defined on
the basis of a neighborhood system N (U). In turn, N (U) is such that
for all x ∈ U , Nx ⊆ DF . We notice that there is a maximal and a
minimal way for building a neighborhood frame, given a neighborhood
system N (U). In the maximal we take DF = ℘(U), while in the minimal
we take the inductive closure of

⋃
N (U) ∪ {G(X)}X⊆U under finite

intersections and complementation.
Dosěn describes how to “spread” a neighborhood frame F (A) =〈

UA,NA(UA),DF (A)
〉

over a modal algebra A:

UA = {X ⊆ A : X is a maximal filter in A} (if A is finite, then
UA = J (A) = atom(A));

DF (A) = {q(a) : a ∈ A}, where q : A �−→ ℘(℘(UA)); q(a) = {X ∈ UA :
a ∈ X} (if A is finite, then q(a) = {x ∈ atom(A) : x ≤ a});

NA : UA �−→ ℘(℘(UA));NA
X = {q(a) : �(a) ∈ X} (if A is finite, then

NA
x = {q(a) : x ≤ �(a)}).
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Conversely, given a neighborhood frame F = 〈U,N (U),DF 〉 we can
define a modal algebra A(F) = 〈AF,∩,∪,−, ∅, U,�F〉 such that AF =
DF and �F = G.

Example

Consider a modal algebra A = 〈B,�〉, where B is the Boolean algebra
depicted below together with the table for �:

A 1

�
�
�
�

�
�

d e f

�
��
�
�
�

�
�
�
�
�
�

a b c

�
� �

�
�
�

0

x 0 a b c d e f 1
�(x) b 0 0 c b 0 0 d

Then, the neighborhood frame F (A) is built in the following manner:

UA = {↑ a, ↑ b, ↑ c};

Recalling that ⇑ {X} = {↑ x}x ∈ X, q(x) is given by

x 0 a b c d e f 1
q(x) ∅ ⇑ {a} ⇑ {b} ⇑ {c} ⇑ {a, b} ⇑ {a, c} ⇑ {b, c} ⇑ U

DF (A) = ℘(UA) (notice that this holds in the present case, while it is
not uniformly true in every case).

NA
↑a = {q(x) : �(x) ∈↑ a} = {q(x) : x ∈ {1}} = {q(1)} = {⇑ U} = {{↑
a, ↑ b, ↑ c}}; NA

↑b = {q(x) : �(x) ∈↑ b} = {q(x) : x ∈ {0, d, 1}} =
{q(0), q(d), q(1)}) = {∅,⇑ {a, b},⇑ U}; NA

↑c = {⇑ {c}}.

Clearly, since in this case A is finite we can substitute ⇑ U for {a, b, c}
and obtain NA

a = {U}, NA
b = {∅, {a, b}, U}, NA

c = {{c}}.
Conversely, consider a neighborhood frame F = 〈U,N (U),DF 〉,

where U = {a, b, c} and N (U) is given by:

x a b c

Nx {{a, c}, U} {{b}, U} {∅, {c}, {a, c}}
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and DF is the inductive closure of
⋃
N (U) under G, ∩ and −. The

map G is given by the following table:

x ∅ {a} {b} {c} {a, b} {a, c} {b, c} U

G(x) {c} ∅ {b} {c} ∅ {a, c} ∅ {a, b}

Therefore,DF is given by the following steps: (i)
⋃
N (U) = {∅, {b}, {c},

{a, c}, U}; (ii)
⋃
N (U) ∪ {G(X)}X⊆U = {∅, {b}, {c}, {a, b}, {a, c}, U};

(iii) the closure of this set under ∩ and − is ℘(U) (notice that this is not
a necessary consequence of the construction, as some counterexamples
will show). Since AF = DF , in A(F) we have AF = ℘(U). The unary
operator �F equals G.

It is possible to prove that q is an isomorphism between A and
A(F (A)). Hence A ∼= A(F (A)).

Can we prove F ∼= F (A(F))?
First of all, let us define what an isomorphism between neighborhood

frames must be. So, let F1 = 〈U1,N 1(U1),DF1〉 and F2 = 〈U2,N 2(U2),
DF2〉 be two neighborhood frames and let f : U1 �−→ U2. We recall that
given any X ⊆ U2 we denote {x : f(x) ∈ X} by f←(X). Then, f is
a frame morphism between F1 and F2 if the following conditions ate
satisfied:

F1 f←(X2) ∈ DF1 , for all X2 ∈ DF2 .

F2 f←(X2) ∈ N 1
x1

if and only if X2 ∈ N 2
f(x1)

.

A frame isomorphism is a frame morphism f such that f is 1-1, onto
(i.e. surjective) and f← is a frame morphism. Since DF1 = AF1 and
DF2 = AF2 , an other way to understand the matter is that f : U1 �−→
U2 is a frame morphism between F1 and F2 if and only if f← is a
homomorphism between A(F2) and A(F1).

A good candidate as a frame isomorphism between a frame F =
〈U,N (U),DF 〉 and F (A(F)) is the following map p:

p : U �−→ ℘(℘(U)); p(x) = {X ∈ DF : x ∈ X}

Indeed, it easy to verify that for all x ∈ U , p(x) is a proper maximal
filter in 〈DF ,⊆〉. Since the carrier of A(F), AF, is DF , then p(x) is a
proper maximal filter inA(F). But in the neighborhood frame F (A(F)),
the universe UA(F) is exactly the set of proper maximal filters of A(F).
Therefore p : U �−→ UA(F).
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For instance, in the previous Example we have:

p(a) = {X ∈ DF : a ∈ X} = {{a}, {a, b}, {a, c}, U} =↑ {a}.10

Is p a frame isomorphism, always? Actually, it is possible to prove that
p is a frame isomorphism if the following two conditions hold:

P1 p(x) = p(y)� x = y (i.e. p is 1-1).

P2 ∀X ∈ UA(F),∃x ∈ U(X = p(x)) (thus p is onto).

If this happens, then F is called a descriptive neighborhood frame (cf.
Frame 15.15.2).

Example

We give an example of a non-descriptive frame.
Consider U = {a, b, c} and the following neighborhood system

N (U):

x a b c

Nx {∅, {a, b}, U} {∅, {a, b}, U} {{c}}

Then, the core map G is given by:

x ∅ {a} {b} {c} {a, b} {a, c} {b, c} U

G(x) {a, b} ∅ ∅ {c} {a, b} ∅ ∅ {a, b}

Therefore, if we define DF as the inductive closure of
⋃
N (U) under

G, ∩ and −, we have DF = {∅, {c}, {a, b}, U}.
It is straightforward to check that p(a) = p(b) = {{a, b}, U} =↑

{a, b}, although a �= b.
One could guess that this happens because we have two points with

the same neighborhood system (viz. Na = Nb). Thus, we give imme-
diately a counterexample of this conjecture. Consider the following
neighborhood system N (U):

x a b c

Nx {{c}} {∅, {a, b}, U} {{c}}

In this case Na = Nc. However, G is given by:

x ∅ {a} {b} {c} {a, b} {a, c} {b, c} U

G(x) {b} ∅ ∅ {a, c} {b} ∅ ∅ {b}

10Mind: do not confuse ↑ {a} and ⇑ {a} = {↑ a}.
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It follows that the inductive closure of
⋃
N (U) under G, ∩ and − is

℘(U), so that AF = DF = ℘(U) and for any pair of elements x, y ∈ U ,
x �= y � p(x) =↑ {x} �=↑ {y} = p(y). Obviously, the map p is onto,
too.

Moreover, Dosěn proves that for any modal algebra A, F (A) is a
descriptive frame, so that we always have F (A) ∼= F (A(F (A))). And
we can also notice that if F is finite and non-descriptive, then we can
make F into a descriptive frame with the same neighborhood system
(hence without altering the core map G), by extending DF to ℘(U)
(this move is not uniformly valid if DF is infinite – think of a Boolean
algebra without isolated points.11)

We recall that a modal algebra A is normal if and only if for all
a, b ∈ A, �(a) ∧ �(b) = �(a ∧ b) and �(1) = 1. In view of the analysis
developed in this Part it is not a surprise at all, that K. Dosěn proves
that A(A(F)) is normal if and only if in F (A(A(F))) any Nx is a filter
(not necessarily proper; indeed normal modal algebras are not required
to feature �(0) = 0).

In such a case, F (A(A(F))) is called a filter frame.
A neighborhood frame F = 〈U, N (U),DF 〉 is called a hyperfilter

frame, if

∀x ∈ U,∀X ∈ DF ,
⋂

Nx ⊆ X � X ∈ Nx (15.15.8)

Notice that if
⋂
Nx /∈ DF , then it does not belong to Nx (actually,

⋂
Nx ∈ DF if DF is closed under arbitrary intersections); thus, hyper-

filter frames do not necessarily correspond to our neighborhood systems
of type N4 (which, on the contrary, are variants of the so called “aug-
mented frames” cited in Frame 15.13.3). Nonetheless, suppose F is a
hyperfilter frame. Then, as with N4-type neighborhood systems, we can
T-associate with F a relation R such that

11We have seen in the Introduction, Section 5.1, that an infinite distributive lattice
D may be not isomorphic to its soberification S(D) because we can have less abstract
points than open subsets. Moreover given a topological space τ its soberification may
be not homeomorphic to τ , because we can have less abstract point than concrete
points.

To some extent, descriptive frames are those neighborhood frames in which both
situations do not happen. Otherwise stated, if we think of DF as a set of properties
that can be enjoyed by the elements of U (and that are really enjoyed by a point
x when they belong to Nx), and of an ultrafilter in DF as the approximation of a
point by means of its properties, then a neighborhood frame is descriptive if for each
approximation there is one and only one concrete point from U .
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H1 For any X ∈ DF and x ∈ U , x ∈ G(X) if and only if R(x) ⊆ X.

H2 For any X ∈ DF and x, y ∈ U , (x ∈ G(X)� y ∈ X)� 〈x, y〉 ∈ R.

H3 For any x ∈ U , Nx = {X ∈ DF : R(x) ⊆ X}.

H2 makes it possible to recover R from G. This is not always possible
in frames featuring just H1 (called general relational frames in Dosěn’s
work). General relational frames in which H2 holds, are called reducible
frames.

Clearly, if in a reducible frame F we define Nx by means of H3, then
(15.15.8) holds and R is the relation T-associated with the neighbor-
hood system N (U) of F.

We have also to mention that Dosěn proves that every descriptive
filter frame is a hyperfilter frame.

15.15.2 Modal Systems, Pre-Monadic Boolean
Algebras and Kripke Frames

The construction of Section 12.1 may be summed up as follows. Given
a pre-monadic Boolean algebra of sets A = 〈B(U), LR〉 we found a
Kripke frame K(A) = 〈U,R〉 such that for any formula α and x ∈ U ,
x � α iff x ∈ X for any X ∈ B(U) such that X � α. Or, rather
redundantly, the pre-monadic Boolean algebra A(K(A)), defined over
K(A), coincides, of course, with A (coherently with Dosěn’s results
that we have reported above). In Definition 11.5.1 we answered to a
more abstract question: given an abstract pre-monadic Boolean algebra
A = 〈A, L〉 such that L(A) is distributive (finite) lattices, find a Kripke
frame F = 〈U,R〉 such that A(F) = 〈B(U), LR〉 is isomorphic to A.
The required Kripke frame is implicit in the representation procedure.
Namely it is 〈J (A),$〉, where J (A) is the set of co-prime elements (the
atoms, in this case) of A and $ is the specialization preorder induced
by LL(A) on J (A) (where LL(A) is the isomorphic image of L(A) in
F(J(A)), the dual of A). Without effort, it is possible to generalise
this result to arbitrary pre-monadic Boolean algebras: U must be the
collection of ultrafilters of A (instead of the collection of the co-prime
elements, as in the finite case) and one must set 〈S, S′〉 ∈ R if and
only if for all a ∈ A, L(a) ∈ S implies a ∈ S′ (in the finite case
this means 〈x, y〉 ∈ R if and only if for all a ∈ A, x ≤ L(a) implies
y ≤ a) (which is the algebraic companion of the usual clause in Kripke
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models). The resulting Kripke frame F (A) = 〈U,R〉 is called the dual
frame of A. The pre-monadic Boolean algebra A(F (A)) defined over
F (A), is isomorphic to A.

On the contrary, the converse problem is not that easy, as we have
seen in the above Frame. It is formulated as follows: given a Kripke
frame F = 〈U,R〉 find a pre-monadic Boolean algebra A(F) such that
its dual Kripke frame F (A(F)) is isomorphic to F. It has been shown
that a frame F is isomorphic to its bi-dual F (A(F)) if and only if F is
descriptive, that is, if and only if F is isomorphic to F (A(F′)) for some
frame F′. However, this restriction is not satisfactory, because in the
infinite case the move from a non descriptive frame to its equivalent
descriptive frame does not preserve equivalence with respect to conse-
quence. This was noted in [Sambin & Vaccaro, 1988], were the notion
of a “refined frame” is shown to be the best compromise to find a type
of frames solving the isomorphism F ∼= F (A(F)). Refined frames are
defined over Hausdorff spaces and require a particular topological clo-
sure property to hold for the accessibility relation. The interested reader
is encouraged to go through the quoted paper (having in mind that
pre-monadic Boolean algebras are named “modal algebras”, there).

15.16 Frame – Duality of Operations

and Algebraic Structures

Let us consider a Rough Set System RS(U) = 〈RS(U),∧,∨,¬,∼,�,−→,⊃, 0, 1〉 induced by an Approximation Space AS(U).
We know that N(AS(U)) = 〈RS(U),∧,∨,∼, �,−→, 0, 1〉 is a semi-

simple Nelson algebra and that the operations ⊃ and ¬ are definable in
this fragment of RS(U). We can easily verify that given N(AS(U)), if
we set, for any a, b ∈ RS(U), (i) L(a) = ��a =∼ �a and (ii) a⇒ b =
L(a ⊃ b) (where “⇒” is the extensional implication defined in Section
14.3), we can make RS(U) into a pre-Rough algebra. Vice-versa, given a
pre-Rough algebra 〈A,≤,∧,∨,∼, L,⇒, 0, 1〉, if we set, for any a, b ∈ A,
(iii) �a =∼ L(a) and (iv) a −→ b = �a ∨ b =∼ L(a) ∨ b, we obtain a
semi-simple Nelson algebra (see Part II).

These transformations are just particular cases of the mathematical
mechanism explained from a purely logical point of view in Frame 10.21
of Part II.
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Indeed, the extensional implication ⇒ defined in pre-Rough algebras
is an operation definable by means of the following duality:�

d(¬d(a→ b)) ∧ ¬d( �

d(a→ b)) =L−→L ∧M −→M .
At this point a note on the extensional implications in Rough alge-

bras is in order. We say that a dyadic function f(x, y) in a Rough
algebra (Nelson algebra, and the like) is extensional when the following
conditions are fulfilled: f(x, y) = 1 & f(y, x) = 1 � x = y. Therefore,
f(x, y) = 1 if and only if x ≤ y. We immediately observe that there can
be more than one such function in a Rough algebra. Indeed in the least
non-trivial Rough algebra with carrier {1, δ, 0} (see Frame 14.2.1), f
is extensional whenever in the corresponding truth-table the lower left
triangle is set to 1, while the remaining elements are 0 or δ. Following
this intuition, there are four possible extensional implication operations
that are consistent with the material implication (the consistency prop-
erty reduces here to the requirement that f(1, 0) = 0 – more details
about this topic are in Frame 10.20 of Part II).

The first is the implication ⇒. The second is the pseudo-
complementation ⊃, while the third is the contrapositional implication
� that we have defined as a� b = (a −→ b) ∧ (∼b −→ ∼a). The last
one will be temporarily denoted by � (and we leave its interpretation
as a simple open problem):

⇒ 1 δ 0
1 1 0 0
δ 1 1 0
0 1 1 1

⊃ 1 δ 0
1 1 δ 0
δ 1 1 0
0 1 1 1

� 1 δ 0
1 1 δ 0
δ 1 1 δ

0 1 1 1

� 1 δ 0
1 1 0 0
δ 1 1 δ

0 1 1 1

15.17 Frame – Computing Dependency
Relations in a Fragment
of Intuitionistic Logic

In Information Systems without information gaps, functional depen-
dencies may be characterised by means of the intuitionistic implication.
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It is worthwhile noticing that given an A-system A = 〈U,At, V al〉,
in order to algebraically grasp a dependency relation between sets of
attributes we have to equip the Boolean algebra B(At) = 〈℘(At),∩,∪,
−, At〉 with a binary relation R, meaning that if 〈A,B〉 ∈ R holds
for A,B ⊆ At, then the indiscernibility relation EA is finer than the
indiscernibility relation EB . Therefore the resulting structure 〈B(At),
R(B(At))〉, where R(B(At)) = {R(X) : X ⊆ At}, is a modal system
because R is a preorder. It follows that a logic for dependency relations
must embed both a Boolean part, for B(At), and a non-classical part,
for R(B(At)).

This intuition was used to develop algebraic systems for dependence
relations in [Pagliani, 1993a], while it was used to formalise a syntac-
tic system in [Rauszer, 1984]. In her work, Cecylia Rauszer uses two
systems, the first with Gentzen rules for Classical propositional logic,
with operations denoted as ∪,∩ and −, call it G(B), and the second
with the Gentzen rules for the {∧,=⇒} fragment of Intuitionistic logic,
call it G(R).

The language LFD consists of two levels: Terms = B(At) and Atomic
Formulas = {[X] : X ⊆ ℘(At)}, where, intuitively, [X] stands for EX .
The set of all formulas of LFD is the inductive closure of Atomic For-
mulas with respect to the operations ∧ and =⇒. In what follows we
denote by # the sequent relation for G(B) and by � the sequent relation
for G(R). G(B) accounts for sequents of terms, while G(R) accounts
for sequents of formulas. The empty set of attributes is denoted by ⊥.
The only two axiom schemata are:

A # A and ⊥ # A

Notably, the two systems are linked by means of the following spe-
cific inference rule:

A # B,Δ
[Δ], [B] � [A]

(15.17.9)

Rule (15.17.9) is justified by the fact that if A ⊆ B then [B] ⊆ [A].
The resulting system is called FD-logic.
Using this apparatus it is possible two prove, for instance that [A]∧

[B] =⇒ [A ∪B]:
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(r − weakening)
A # A

A # A, B

B # B

B # A, B
(r − weakening + exchange)

A ∪ B # A, B

[A], [B] � [A ∪ B]

[A] ∧ [B] � [A ∪B]

� [A] ∧ [B] =⇒ [A ∪ B]

(∪ #)
(15.17.9)
(∧ �)
(�=⇒)

The semantic of FD-logic is obtained by considering the equiva-
lence classes of the subsets of At modulo the identity of their indis-
cernibility relation, namely A ≈ B iff [A] = [B]. Let us denote such
equivalence classes by A≈ and denote the collection of all these equiv-
alence classes by A. Unfortunately U is not closed under the relative
psuedo-complementation =⇒.

This fact was amended in [Pagliani, 1993a] by considering P=〈A,�〉
as a Kripke frame, where � is given by [A]≈ � [B]≈ iff [A] ⊇ [B]. In
this algebraic framework it is possible to prove that in an Attribute
System a set A of attributes is absolutely superfluous if ¬¬([[A]]) = 1,
where [[A]] is the transformation of A into an element of the Heyting
algebra dual to P.12

In Rauszer’s approach, we have to take the subset A⇒ closed under
the operation =⇒. Then 〈A⇒,=⇒,∧, 1〉, where 1 = [∅]≈ and ∧ is the
set-theoretical meet, is called an FD-algebra of information systems.

It is straightforward to prove that for any [A]≈, [B]≈ ∈ A⇒, [A]≈ =⇒
[B]≈ = 1 iff [A] ⊆ [B].

But this means that the subset B depends on A.
Thanks to a completeness theorem between FD-algebras and FD-

logic, we have that in FD-logic we can derive � α =⇒ β, for α and β

formulas of LFD if and only if the subset of attributes represented by
β depends on that represented by α. For instance the above deduction
(together with the provable reverse implication) tells us that the indis-
cernibility relation induced by the union of two subsets of attributes
equals the indiscernibility relation given by the intersection of the
indiscernibility relation induced separately by the two sets.

In [Rauszer, 1984] it is also proved that classically valid formulas
such as Peirce’s law (([A] =⇒ [B]) =⇒ [A]) =⇒ [A] are not derivable,
so that FD-logic is not a formulation of Classical propositional logic.

12Let I = 〈U, At, V al, i〉 be an Attribute System. Let Ind(At) be the family of
equivalence classes induced by At. If S � At is such that Ind(S) = Ind(At) then S
is called a reduct of I. Let RD(I) be the union of all reducts of I. If A ⊆ At∩−RD(I),
then A is said to be absolutely superfluous. The same characterization of absolutely
superfluous subsets of attributes as dense elements, was later proved in [Düntsch &
Gediga, 1997].
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It is clear that the algebraic approach has an almost pure theoretical
meaning, since in practice, in order to compute the model all depen-
dencies must be calculated in advance. On the contrary, the syntactic
approach may account for computational purposes.

15.18 Frame – Approximation, Formal

Concepts, Modalities and Relation
Algebras

Approximation Systems and modal systems in a broader sense, have
been studied also from the point of view of Relation Algebras. In this
setting, any element of the language is interpreted as a relation or an
operation on relations.

This approach makes it possible both to reach new advances and to
implement functions to compute the operations described by the theory.

The calculus of relations was created by Augustus De Morgan,
Charles Sanders Peirce and Ernst Schröder. The field of Relation Alge-
bras was pioneered by Alfred Tarski, Louise H. Chin, Leon Henkin,
J. Donald Monk and Bjarni Jónsson.

A relation algebra is a structure 〈A,+, 0, ·, 1,−, ; , 1′ ,� 〉 such that
〈A,+, 0, ·,−〉 is a Boolean algebra and 〈A, ; , 1′,� 〉 is an involuted
monoid, (that is, (i) the operation; is associative, (ii) (x; y)� = y�;x�,
(iii) x�� = x, (iv) x; 1′ = x = 1;x, any x, y ∈ A), (v) the opera-
tions ; and � distribute over + (that is, (x + y); z = x; z + y; z, (v)
(x+ y)� = x� + y�, any x, y, z ∈ A).

Moreover, the following so-called Schröder rule holds for any x,
y ∈ A:

x�;−(x; y) ≤ −y (15.18.10)

where x ≤ y iff x+ y = y.

More recently, relation algebras were studied intensively by Haj-
nal Andréka, Chris Brink, Roger D. Maddux, Maarten Marx, István
Németi, Maarten de Rijke, Ildikó Sain, Renate A. Schmidt, and
Yde Venema, (and, of course, other researchers we have no room to
mention).

As to connections with logics, relation algebras were explored par-
ticularly by Ewa Or�lowska (see [Or�lowska, 1988b, 1990b] – also, cf.



15.18 Frame – Approximation, Formal Concepts, Modalities 575

[Or�lowska & Szalas, 2001]). E. Or�lowska was able to extend relation
algebraic techniques to a number of logical systems, such as any kind
of regular modal logics ([Or�lowska, 1990b, 1991a]), Non-classical Logics
([Or�lowska, 1994]), Relevant Logics, Dynamic Logics and other sorts of
logics of programs (see later on for references).

Robert E. Kent ([Kent, 1993, 1996]), Ivo Düntsch ([Düntsch, 1997])
and Piero Pagliani ([Pagliani, 1996, 1998b,c]), applied the relation
algebra approach to Rough Set Theory and Formal Concept Analysis.

In this Frame we want to introduce the relational algebraic interpre-
tation of modal algebras and to exploit it in order (a) to formally com-
pare Formal Concept Analysis and Rough Set Theory and make them
interact, and (b) to find easily implementable functions to compute
rough functional dependencies in Information Systems.

15.18.1 Relation Algebras

As usual, given a set U , we shall represent a binary relation R ⊆ U×U
as a square matrix R of type U × U such that the element at row i

and column j is 1 if 〈i, j〉 ∈ R; it is 0 otherwise. Here i and j stay
for the i− th and, respectively j − th element of U given an arbitrary
enumeration of its elements. It is worth noticing that the enumeration
for the rows and that for the columns may be different. We assume for
convenience that the enumeration coincides:

If we apply the operations defined in Mathematical toolkit 16.5, on
the family of all binary relations over the same set, then we can define
the following instance of a relation algebra.

Definition 15.18.1. By a full algebra of binary relations over a set
W , we mean an algebra

fullREL(W ) = (℘(W ×W ),∪,∩,−,1,⊗,� ,1′)

where (℘(W × W ),∪,∩,−,1) is a Boolean algebra of sets, ⊗ is the
relational composition, � is the inverse and 1′ is the identity relation.

An explanation of these operations is in order.
Let R and S be two binary relations over W . Hence R,S ⊆W ×W .

1. R ∪ S = {〈x, y〉 ∈W ×W : 〈x, y〉 ∈ R or 〈x, y〉 ∈ S}.
It follows that the element at row i, column j in R∪S is 1 if the
same element is 1 in R or it is 1 in S.
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2. R ∩ S = {〈x, y〉 ∈W ×W : 〈x, y〉 ∈ R and 〈x, y〉 ∈ S}.
It follows that the element at row i, column j in R∩S is 1 if the
same element is 1 in both R and S.

3. −R = {〈x, y〉 ∈W ×W : 〈x, y〉 �∈ R}.
Hence the element at row i, column j in −R is 1 if and only if
the same element is 0 in R.

4. Since 1 is the top element in the Boolean algebra of the set ℘(W×
W ), then 1 is obviously W ×W .

5. R� = {〈y, x〉 ∈W ×W : 〈x, y〉 ∈ R}.
Thus in order to obtain R� from R, one has to transpose the
matrix.

6. R⊗ S = {〈x, y〉 ∈W ×W : ∃z ∈W (〈x, z〉 ∈ R and 〈z, y〉 ∈ S)}.
Composition is simply the Boolean pointwise multiplication of
matrices. Thus to obtain R⊗S we compare pointwise row i with
column j; if the pointwise Boolean multiplication gives 1 for at
least one point, then element at row i and column j of R ⊗ S is
1. It is 0 otherwise.

7. Since 1′ is the identity relation, its representation is the identity
matrix, that is the matrix such that the element at row i and
column j is 1 if and only if i = j.

example 3

Let W = {a, b, c, d}, and

R a b c d

a 1 1 1 1
b 0 1 1 0
c 0 0 1 0
d 0 0 0 1

S a b c d

a 1 1 1 0
b 0 0 0 1
c 0 1 0 0
d 1 0 0 1

P a b c d

a 1 1 1 1
b 0 0 0 0
c 0 0 0 0
d 1 1 1 1
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We have:

1 a b c d

a 1 1 1 1
b 1 1 1 1
c 1 1 1 1
d 1 1 1 1

1′ a b c d

a 1 0 0 0
b 0 1 0 0
c 0 0 1 0
d 0 0 0 1

R� a b c d

a 1 0 0 0
b 1 1 0 0
c 1 1 1 0
d 1 0 0 1

R ⊗ S a b c d

a 1 1 1 1
b 0 1 0 1
c 0 1 0 0
d 1 0 0 1

To compute, for instance, the element at row 3 column 2 of R⊗S, first
we take row 3 of R, 0010, and column 2 of S, 1010. Then we apply
component-wise the logical ∧ to these two Boolean vectors obtaining
0010. Finally we apply to these elements the logical summation. And
we obtain 1.

Following these steps, the reader can easily verify that P ⊗ 1 = P.
A relation enjoying this property is called a right ideal element.

15.18.2 Modalizing Relations by Means of Relations

Terminology and Notation. From now on if R ⊆ W ×W ′ for two

sets W and W ′, then we say that W ×W ′ is the type of the relation R

and we shall denote this fact with R : W ×W ′. Moreover, we shall say

that W is the “internal dimension” of R and W ′ the external dimension.

Now, we have to find a uniform relational representation of the notions
we have to work with. Therefore, we need:

1. A way for representing extensions of formulae in a universe of
possible worlds.

2. A way for representing accessibility relations.

3. A way for representing worlds.

4. A way for representing the forcing relation between possible
worlds and sets.
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The Relational Approach aims at representing all of these components
in a uniform way implementable on computers.

In what follows we shall refer to some general facts of relation alge-
bras. Because of the introductory character of this Frame, we omit the
proofs. Instead we shall focus on the intuitive and conceptual core of
the approach.

1. representing relations

Obviously, the relational representation of a relation R is the relation
R itself.

Example 1

Let us consider the A-system depicted in the table Hypothermic Post
Anesthesia Patients, of Example 5.2.1 of Introduction.

As we know any subset of attributes induces an indiscernibility rela-
tion EA ⊆ U × U , where U = {a, b, c, d, e, f, g, h, i}. For instance, the
set {Temperature,Hemoglobin} induces the equivalence relation TH:
{a, b}, {c, d}, {e, f}, {g}, {h}, {i}.

TH a b c d e f g h i

a 1 1 0 0 0 0 0 0 0
b 1 1 0 0 0 0 0 0 0
c 0 0 1 1 0 0 0 0 0
d 0 0 1 1 0 0 0 0 0
e 0 0 0 0 1 1 0 0 0
f 0 0 0 0 1 1 0 0 0
g 0 0 0 0 0 0 1 0 0
h 0 0 0 0 0 0 0 1 0
i 0 0 0 0 0 0 0 0 1

2. representing sets

We have to represent objects as binary relations. So we have to find
a way for transforming sets into binary relations. A suitable notion to
this end is that of a right ideal element obtained from sets via right
cylindrification:

Definition 15.18.2. Let W be a set and let X ⊆ W ; the right cylin-
drification of X (with respect to the unity 1 = W ×W ), denoted by Xc,
is X ×W . The relation Xc is called a right cylinder.

Therefore, Xc = {〈x, y〉 : x ∈ X & y ∈ W}. It follows that Xc is a
relation of type W ×W .
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Example 2

Given the A-system of Example 1, and the property α = “Comfort =
medium”, we have �α� = {d, e, f, g}. The subset �α� is represented as
the right cylinder �α�c:

�α�c a b c d e f g h i

a 0 0 0 0 0 0 0 0 0
b 0 0 0 0 0 0 0 0 0
c 0 0 0 0 0 0 0 0 0
d 1 1 1 1 1 1 1 1 1
e 1 1 1 1 1 1 1 1 1
f 1 1 1 1 1 1 1 1 1
g 1 1 1 1 1 1 1 1 1
h 0 0 0 0 0 0 0 0 0
i 0 0 0 0 0 0 0 0 0

Right cylinders represent sets: from a conceptual point of view a set is
a property, hence a unary relation, hence a right cylinder in W×W is a
unary relation embedded into the two-dimensional universe 1 = W×W .
More technically, any right cylinder Xc is (right) persistent (like any
good object) in this universe because Xc ⊗ 1 = Xc. Otherwise stated,
any right cylinder is a right ideal element.

By RI(W ) we shall denote the set of right ideal elements of type
W ×W . Moreover any right cylinder Xc : W ×W is biunivocally linked
to a subset of W by means of the right Peirce product Xc�(W ). In
fact, for any right cylinder Xc we have:

(XC�

(W ))c = Xc and Xc�(W ) = X. (15.18.11)

3. representing elements

Any element of a universe W will be denoted by a singleton set, hence
as a right ideal element with a single row whose elements are set to 1.

4. representing forcing

And now the core of our representation.
As to Boolean formulas, the interpretation is immediate: since �α�c

and �β�c are the right cylinders representing the set of possible worlds
forcing α, respectively, β, we have �α�c ∩ �β�c = �α∧β�c, �α�c ∪ �β�c =
�α∨β�c and −�α�c = �∼α�c (it is trivial to verify that these operations
turn right cylinders into right cylinders).
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As to modalised formulae, let us look again at the forcing clauses
listed in Frame 4.13.1 of Part I. Given a Kripke frame 〈W,R〉, we have:

w |= [R](α) iff ∀w′ ∈W ((〈w,w′〉 ∈ R)� (w′ |= α)). (15.18.12)

w |= 〈R〉(α) iff ∃w′ ∈W ((〈w,w′〉 ∈ R) & (w′ |= α)). (15.18.13)

Hence the validity domains of the modalised formulae are:

�[R](α)� = {w ∈W : w |= [R](α)}
= {w ∈W : ∀w′ ∈W ((〈w,w′〉 ∈ R)� (w′ ∈ �α�))}.

(15.18.14)

�〈R〉(α)� = {w ∈W : w |= 〈R〉(α)}
= {w ∈ U : ∃w′ ∈ U((〈w,w′〉 ∈ R) & (w′ ∈ �α�))}.

(15.18.15)

What we have now to do is to translate 15.18.12 and 15.18.13 into pure
relational terms. The steps are straightforward.
1. Instead of the element w we will use the right ideal element {w}c.
Thus since any element of W is now in relation {w}c with w, we can
select a generic representative u ∈W and set:

〈w, u〉 |= [R](α) iff ∀w′ ∈W ((〈w,w′〉 ∈ R)� (〈w′, u〉 |= α)).
(15.18.16)

〈w, u〉 |= 〈R〉(α) iff ∃w′ ∈W ((〈w,w′〉 ∈ R) & (〈w′, u〉 |= α)).
(15.18.17)

Thus:

�[R](α)�c = {〈w, u〉 ∈W ×W : ∀w′ ∈W ((〈w,w′〉 ∈ R)

� (〈w′, u〉 ∈ �α�c))}. (15.18.18)

�〈R〉(α)�c = {〈w, u〉 ∈W ×W : ∃w′ ∈W ((〈w,w′〉 ∈ R)

& (〈w′, u〉 ∈ �α�c))}. (15.18.19)

So far, we have been given a good description of logical objects in
relational terms. However, we want a set of operations which are able
to compute modalities for any given binary relation R ⊆ W ×W and
any given right ideal element C ∈ RI(W ), for any finite set W .

So the question is now: is there any operation between relations
which is able to compute 15.18.18 and 15.18.19?
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The answer is “Yes”. And these operations are not ad hoc, but
they are specialization of mathematical concepts we have introduced
in Part I.

Let us define a couple of operations on arbitrary binary relations.
In what follows we assume R : W ×W ′ and S : U ×U ′. Then we have:

R −→ S = −(R� ⊗−S), right residuation of S with respect to R.
(15.18.20)

This operation is defined only if W = U .

Y ←− R = −(−S ⊗R�), left residuation of S with respect to R.
(15.18.21)

This operation is defined only if W ′ = U ′.

These operations may be depicted in the following manner:

a

�
�
�
�
�

R

 �

�
�
�
�

R −→ Z

�
∀c

Z
� b

Diagram 1

b

�
�
�
�
�

Z ←− R

 �

�
�
�
�

R

�
a

Z
� ∀c

Diagram 2

We have that if R and S are binary relations on a set W , then:

Proposition 15.18.1.

1. R −→ S = {〈a, b〉 ∈W ×W : ∀c ∈W (〈c, a〉 ∈ R)� (〈c, b〉 ∈ S)}.

2. S ←− R = {〈a, b〉 ∈W ×W : ∀c ∈W (〈b, c〉 ∈ R)� (〈a, c〉 ∈ S)}.

Indeed in view of (15.18.20), (15.18.21) and Schröder inequality
(15.18.10), R −→ S, is the largest relation Z on W such that R⊗Z ≤
S. On the other hand S ←− R, is the largest relation Z such that
Z ⊗R ≤ S.

The reader is invited to notice that both residuations are sorts of
divisors (see Subsection 1.4.2 of Chapter 1). In usual mathematics if
we are given the equation n×x = m, for given numbers m and n, then
we solve the equation by a division, x = m/n.
Residuations solve the same problem for relations. But since ⊗ is a non-
commutative operation, we have to distinguish left and right divisors.
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It is easy to verify that they are an extension to relations of the
definitions of right and left residuations given in Mathematical toolkit
16.5.

If we now compare 15.18.18 with Proposition 15.18.1.(1) we can
notice that right residuation is almost the operation we are looking for.
We say ‘almost’, since the direction of R in 15.18.18 is opposite to the
direction of R in Proposition 15.18.1.(1).

On the contrary, the operation ⊗ provide us with the required
interpretation in relation algebras of the possibility modalisation.

It follows that:

Proposition 15.18.2. Given any Kripke frame 〈W,R〉, For any for-
mula α of a propositional language,

1. �[R](α)�c = R� −→ �α�c = −(R⊗−�α�c).

2. �〈R〉(α)�c = R⊗ �α�c.

In view of (15.18.11) we have �[R](α)� = (R� −→ �α�c)�(W ) and
�〈R〉(α)� = (R⊗ �α�c)�(W ).

In the case of an Indiscernibility Space, things are simpler, obviously:

Corollary 15.18.1. If E is a symmetric relation on W , then
[E](α)�c = E −→ �α�c.

Notice that for any right cylinder C and any relation Z of type W×W ′,
R⊗ C is a right cylinder (whenever the compositions is applicable).

Clearly, if we confine to relations on the same set, then we do not
have problems of dimension. Therefore we can define a logico-algebraic
structure made up of only the right ideal elements of type W ×W and
a privileged relation R ⊆W ×W :

Definition 15.18.3. Given a modal frame K = 〈W,R〉, by a full modal
algebra of relations determined by K, denoted by fullMREL(K), we
intend the structure:

〈{X ×W : X ⊆W},∪,∩,−,1, [R], 〈R〉〉,

where 1 = W ×W and the operators [R] and 〈R〉 are defined as follows
for each right cylinder C ∈ {X ×W : X ⊆W}:
(1) [R](C) = R� −→ C; (2) 〈R〉(C) = R⊗ C.
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In view of Definition 15.18.1.(1) and the definition of a right Peirce
product, it is not difficult to see that [R] and 〈R〉 are the “implemen-
tation” of the modal clauses of Kripke models in the realm of relation
algebras.

In fact from (15.18.11) we immediately obtain
〈R〉(Xc)�(W ) = (R⊗Xc)�W = R�(X) = 〈R〉(X) and
[R](Xc)�(W ) = (R� −→ Xc)�W = R� =⇒ X = [R](X).

Remarks. Do not confuse [R], 〈R〉, =⇒ and ⇐=, which apply to sets,

with [R], 〈R〉,−→ and ←−, which apply to relations. Moreover, do not

confuse R and R�, which are relations, with R(X) and R�(X), which

are sets.

We have almost all the ingredients to achieve our goals. Indeed, from
the above equations one immediately can show:

Proposition 15.18.3. Let 〈G,E〉 be an Indiscernibility Space. Then
for any X ⊆ G,

(1) (lE)(X) = ([E](Xc))�G; (2) (uE)(X) = (〈E〉(Xc))�G.

15.18.3 Comparing Formal Concepts and Rough Sets

So far we have dealt with operations between relations of the same
type (i.e. with homogeneous relation algebras). But at this point we
need to define operations between relations of different types. We have
seen that in order to be defined, binary operations will require the
congruence of dimensions: if R : W ×W ′ and Z : U × U ′, then R ⊗ Z

is defined only if W ′ = U (that is, the external dimension of R equals
the internal dimension of Z. If this happens, then R⊗ Z : W × U ′.

Moreover, we need right modalisations, too.

Definition 15.18.4. Let W,W ′, U, U ′ be sets and R : W ×W ′, Z :
U × U ′:

1. [R](Z) = R� −→ Z is called the left necessitation of Z by means
of R.

2. (Z)[R] = Z ←− R� is called the right necessitation of Z by
means of R.

3. 〈R〉(Z) = R⊗Z is called the left possibility of Z by means of R.
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4. (Z)〈R〉 = Z⊗R is called the right possibility of Z by means of R.

whenever the operations are defined (clearly 〈R〉(Z) = (R)〈Z〉).

We have observed in Subsection 2.2.1 of Chapter 2 that the basic con-
structors [[e]] and [[i]] are orthogonal to [e] and, respectively, [i]. That
is, we can notice an inversion of the predicates with respect to the
implication.

This leads to an inversion of the universal quantifiers in the def-
inition of est with respect to that of (lR). Indeed, for any P-system
〈G,M,R〉, for all A ⊆ G:

15.18.3.1. est(A) = {g ∈ G : ∀m ∈ M,∀g′ ∈ G((g′ ∈ A � 〈g′,m〉 ∈
R)� 〈g,m〉 ∈ R)};

15.18.3.2. (lR)(A) = {g ∈ G : ∀g′ ∈ G,∀m ∈ M((〈g′,m〉 ∈ R ��
〈g,m〉 ∈ R)� g′ ∈ A)}.

This is an informal observation, supported to some extent by the fact
that est and (lE) have also opposite behaviours: the former is a closure
operator, while the latter is an interior operator. In this Subframe we
want to formalise these clear appearances.

We start with by noticing that on the one hand any Indiscernibility
Space, (U,E) is a modal frame and on the other hand in any P-system,
〈G,M,R〉, if 〈g,m〉 ∈ R then we can say that the object g forces the
property m, g |= m. That is R is a forcing relation.

So, on the one side we have a modal frame (U,E) without a forcing
relation, while on the other we have a forcing relation R without a modal
frame (here the language L is defined from M , as set of atomic formu-
las, and conjunctions of atomic formulas are represented by subsets of
M). Now we have some tesserae of our puzzle. But we must find the
others: the language and the forcing relation in the case of Indiscerni-
bility Spaces; the accessibility relation, in the case of Formal Contexts.
Moreover, in both cases we have to determine at least a modal operator
making all these pieces work.

Let us first deal with [[R]] and [[R�]].

Lemma 15.18.1. Let K = 〈G,M,R〉 be a P-system, then for any
X ⊆ G, for any Y ⊆M ,

1. ([[R�]](X))c = (R�)[Xc].

2. ([[R]](Y ))c = (R)[Yc].
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Proof. (R�)[Xc] = R� ←− Xc� = {〈m,x〉 ∈M ×G : ∀g ∈ G(〈x, g〉 ∈
Xc� � 〈m, g〉 ∈ R�)} = {〈m,x〉 ∈ M × G : ∀g ∈ G(〈g, x〉 ∈ Xc �
〈g,m〉 ∈ R)}, where x is any object. Hence, from this and the definition
of [[R�]] we obtain immediately the proof.

Similarly, (R)[Yc] = R ←− Y c� = {〈g, x〉 ∈ G × M : ∀m ∈
M(〈x,m〉 ∈ Y c� � 〈g,m〉 ∈ R)} = {〈g, x〉 ∈ G × M : ∀m ∈
M(〈m,x〉 ∈ Y c � 〈g,m〉 ∈ R)}, where x is any attribute. At this
point, we obtain the result from the definition of [[R]]. qed

Using Diagrams 1 and 2, we can depict (R)[Yc] (i.e. [[R]](Y c)) and
(R�)[Xc] (i.e. [[R�]](Xc)), as follows:

∀m m
R�←−Xc�

� x ∈ G
��
�
�
�
�
�
�
�

R

�
�
�
�
�
�
�
�

R�

�

(R�)[Xc]

(R)[Yc]

M 6 x

Y C�

�

�
R←−Y c�

g ∀g

Xc�

	

Diagram 3

From the above results we can infer that there is a neat symmetry
between (lE) and [[R�]]: in fact (lE) corresponds to a modalisation
on the left of a set of objects by means of a relation, whereas [[R�]]
corresponds to a modalisation on the right of a relation by means of a
set of objects.

Let us try to give an explanation. In the case of an Indiscernibility
Space IS = 〈G,E〉 induced by an A-system, two objects g, g′ ∈ G are
E − accessible if and only if they cannot be discerned by means of the
properties definable on the ground of the information provided by IS.
In a sense, we have no evolution of our quanta of information, but we
have different individuals either carrying exactly the same amount of
information or not. But g, g′ carry the same amount of information if
g |= α iff g′ |= α, α any set of attribute-value pairs or any set of prop-
erties. Therefore, a forcing relation |= between objects and properties
(or nominalised attributes), is in fact synthesized by the accessibility
relation E. And this forcing relation is locally and virtually recovered
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whenever we consider any X ⊆ G. Indeed one can think of X as the
extension �α� of a property α (that is, as the set of objects forcing α).
It follows that g ∈ [E](Xc) means that for all g′ such that 〈g, g′〉 ∈ E,
g′ |= α.

On the contrary, we can explain the behaviour of the operator [R�]
in the following way: 〈g,m〉 ∈ R means g |= m. So R is not an
accessibility relation between objects, but the forcing relation itself.
Therefore, we need an accessibility relation. But we can notice that
in Formal Concept Analysis an accessibility relation EX is locally and
virtually defined whenever we take into consideration a set of objects
X ⊆ G: in fact let us set 〈w,w′〉 ∈ EX if and only if both w,w′ ∈ X or
both w,w′ ∈ −X. Thus the perspective is here perfectly reversed with
respect to Indiscernibility Spaces: by applying [[R�]](X) we collect the
set of properties that are necessarily linked, via the forcing relation,
with respect to the accessibility relation EX . We support this claim
by proving that when we modalise on the right via [Xc] or on the left
(as for any usual accessibility relation) via [EX], we obtain the same
results:

Proposition 15.18.4. For any P-system K = (G,M,R), ∀X ⊆ G,

((R�)[Xc])�(X) = ([EX](R))(X) = [[R�]](X).

Proof. EX is an equivalence relation. Hence [EX](R) = EX −→ R =
{〈g,m〉 : ∀g′(〈g′, g〉 ∈ EX � 〈g′,m〉 ∈ R}. In turn, (R�)[Xc] =
{〈m, g〉 : ∀g′(〈g′, g〉 ∈ Xc � 〈g′,m〉 ∈ R}. Hence [EX](R) = (R�)[Xc].
Since we are dealing with a right cylinder, here g is any element of G.
Clearly ∀g′ ∈ X, 〈g′, g〉 ∈ EX �� 〈g′, g〉 ∈ Xc (for the whole G the
right to left implication is not true, but it is immaterial because of the
dummy nature of g in the right cylinder Xc). Hence we have the result
(incidentally, ([EX](R))(−X) = [R�](−X)). qed

Therefore the above noticed symmetry can be explained as follows:
(lE)(X) computes the set of objects that necessarily force (the extension
of) a given property α. On the other side, [[R�]](X) starts with a given
set of objects that necessarily force some (possibly non elementary)
property β and computes this property.

Now let us go on and analyse est.

Proposition 15.18.5. For any P-system K = (G,M,R), for any
X ⊆ G,

(est(X))c = R←− (Xc −→ R);
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Proof. R ←− (Xc −→ R) = {〈g, g′〉 : ∀m ∈ M(〈g′,m〉 ∈ Xc −→
R � 〈g,m〉 ∈ R)} = {〈g, g′〉 : ∀m ∈ M,∀g′′ ∈ G((〈g′′, g′〉 ∈ Xc �
〈g′′,m〉 ∈ R)� 〈g,m〉 ∈ R)}. Thus we have the proof (notice that since
Xc −→ R : G×M and R : G×M , then R←− (Xc −→ R) : G×G).
If in Diagram 3 we substitute R� ←− Xc� for Y c by rotating and
translating the upper triangle until Y c� and (R� ←− Xc�)� coincide
(renaming the variable x and reversing accordingly all the arrows of the
upper triangle), then we obtain:

∀m

�
�
�
�
�
�
�
�

R
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�
�
�
�
�
�
�

R

∀g′′
Xc

� g′

Xc −→ R

�

�
X

g

Diagram 4

Diagram 4 commutes for X = R ←− (Xc −→ R), giving the diagram-
matic version of the proof. qed

Dually, with respect to the relation R, (IT S(Y ))c = R� ←− (Y c −→
R�), ∀Y ⊆M .

If R ⊆ W × W ′ is thought of as a set of transitions in a computer
from a sets of states in W to a set of states in W ′ and Z ⊆ U ×W ′ is
thought of as a set of transitions from U to W ′, then R ←− Z is the
largest set of transitions from W to U that are required before Z to
approximate R.

Roughly speaking, this is the idea behind the semantics of weakest
pre-specification and weakest post-specification, proposed in [Hoare &
He, 1986]. Therefore, Proposition 15.18.1 tells us that a weakest pre-
specification is a form of sufficiency operator, as was noted by Ewa
Or�lowska (see also [Demri et al., 1994]).
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15.18.4 Approximation of Relations

Modalisation of relations by means of relations makes it possible to
move from approximation of sets to approximations of relations. First
of all we need to generalise the notion of an Indiscernibility Space.

Definition 15.18.5. A n-ary Relational Approximation Triple is a
tuple RA(U) = 〈U,R, Z〉, where U = {Ui}1≤i≤n is a family of sets,
R = {Ri}1≤i≤n is a family of binary relations such that for any 1 ≤
i ≤ n, Ri ⊆ Ui × Ui and a modalizing relation Z is point-wise defined
on
∏n

i=1 Ui by:

〈〈x1, . . . , xn〉, 〈y1, . . . , yn〉〉 ∈ Z iff 〈xi, yi〉 ∈ Ri, all i.

Thus for any R ⊆
∏n

i=1 Ui: we set:

(lZ)(R) = {〈x1, . . . , xn〉 : ∀〈y1, . . . , yn〉(〈〈x1, . . . , xn〉, 〈y1, . . . , yn〉〉
∈ Z � 〈y1, . . . , yn〉 ∈ R}.

In particular, when any Ri is an equivalence relation, under some con-
straint we obtain the notion L(R, R) introduced in Frame 4.7.3 of
Part I.

If in a Relational Approximation Triple n = 2, then a modal rela-
tional characterization can be given:

Proposition 15.18.6. For any binary Relational Approximation Triple
〈U,R, Z〉, for any R ⊆ U1 × U2, (lZ)(R) = [R1](R)[R�

2 ].

Proof. In what follows, a, a′ ∈ U1 and b, b′ ∈ U2. ([R1](R))[R�
2 ] =

(R�
1 −→ R) ←− R2 = {〈a, b〉 : ∀b′(〈b, b′〉 ∈ R2 � 〈a, b′〉 ∈ R�

1 −→
R))} = {〈a, b〉 : ∀b′(〈b, b′〉 ∈ R2 � ∀a′(〈a′, a〉 ∈ R�

1 � 〈a′, b′〉 ∈
R))} = {〈a, b〉 : ∀b′,∀a′((〈b, b′〉 ∈ Z2 ∧ 〈a, a′〉 ∈ R1)� (〈a′, b′〉 ∈ R)} =
(lZ)(R). Moreover by easy computation one can prove (R�

1 −→ R) ←−
R2 = R�

1 −→ (R←− R2).
(Following [Van Benthem, 1991], we can comment on this fact by

saying that in this formula we can change the temporal but not the
spatial application order of the two residuals).
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Diagram 5

The diagram commutes for X = R�
1 −→ R←− R2 qed

In particular when U1 = U2 and R1 = R2 is an equivalence relation the
following holds:

Corollary 15.18.2. For any binary Relational Approximation Triple
〈U,R, Z〉 such that U1 = U2, R1 = R2 and R1 is an equivalence
relation, for any R ⊆ U1 × U1, (lZ)(R) = [R1](R)[R1].

Remarks. It can be shown (see [Pagliani, 1996]) that Proposition 15.18.3

is a specialization of this Corollary to the case in which R is a right cylinder.

Comparing now this result with Proposition 15.18.5 we are able to
see again that between lower approximations of relations and formal
concept extents there is a clear symmetry:

(est(X))c = R←− (Xc −→ R), ((lZ)(R))c = Z1 −→ R←− Z1.

15.18.5 Making Formal Concepts and Rough Sets
Interact

Now, we address the reader to the definitions of an upper approximation
〈G,M,�clE〉 and a lower approximation 〈G,M,�intE〉 of a formal con-
text 〈G,M,�〉 given in Definition 4.9.1 and Definition 4.9.2 of Frame
4.9.3 of Part I.

It is not difficult to prove that given an Indiscernibility Space 〈G,E〉
and a P-system 〈G,M,�〉 the following equations hold:

�clE= 〈E〉(�), �intE= [E](�) (15.18.22)



590 15 Frames (Part III)

15.18.6 What this Approach may Suggest

1. Though we think that the above introduced notion of n−ary Rela-
tional Approximation Triple is a natural extension of that contained
in [Skowron & Stepaniuk, 1993] (in view for instance of the approach
described in [Yao & Lin, 1997]), nevertheless we could think of them
as interacting Kripke frames, so going towards some connection with
fibred semantics (cf. [Gabbay, 1996]).

2. We did not quote [Van Benthem, 1991] by chance: indeed we have
seen in Proposition 15.18.6 that in any binary Relational Triple, (lZ)
(R) = R�

1 −→ R←− R2. We can notice that this expression resembles
the semantic type of “and” in Categorial Grammar (cf. for instance
[Van Benthem, 1991; Desclés, 1990] or [Abrusci, 1990]), that is (a\a)/a
(indeed our expression is a sort of “and” – see the proof of Proposition
15.18.6). But this expression is closer related to the semantic type of
transitive verbs: (e\t)/e, where the two e are nouns (the subject on
the left and the direct object on the right) and t is a verb. Hence
(lZ)(R) should live in the semantic type of two-place relations between
individuals.

Under this interpretation the above expression could make an inter-
esting fact explicit also: the role of the subject, R�

1 , is opposite to the
role of the complement, R2, but this is no longer true if the verb is
reflexive, that is, if with respect to this verb the role of the subject
is reflexive and equals that of the object: this is the case described in
Proposition 15.18.2.

On its own rights, the relational interpretation of [R�](Y ) look like
the semantic type of determiners, t/e, where t is a noun phrase and
e a noun. In our case this determiner should be “every” so that the
relational interpretation of est(X) is a sort of “every(every)” (and
indeed it is), where the internal “every” must be switched to the type
e\t (one-place predicate on individuals) in order to be applied by the
external one (see the proof of Proposition 15.18.5). Eventually we have
t/(e\t). Hence est(X) should live in the semantic type of second-order
properties of predicates.

So, formal language theory could help us to understand the syntactic
form of our operators. One can try to provide a very initial explana-
tion of these formal analogies, by considering some connections with
another linguistic framework: terminological languages (see for instance
[Brachman & Levesque, 1987] and [Schmidt, 1993]).
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15.18.7 Computing Dependencies
in Relation Algebras

We have seen that a good framework to compute upper and lower
approximations are modal algebras of relations. Let us start with an
example.

Example 4

The steps for computing the lower approximation (lTH)(�α�) of Exam-
ples 1 and 2 are the following:

1. Switch the Boolean values of �α�c:

−�α�c a b c d e f g h i

a 1 1 1 1 1 1 1 1 1
b 1 1 1 1 1 1 1 1 1
c 1 1 1 1 1 1 1 1 1
d 0 0 0 0 0 0 0 0 0
e 0 0 0 0 0 0 0 0 0
f 0 0 0 0 0 0 0 0 0
g 0 0 0 0 0 0 0 0 0
h 1 1 1 1 1 1 1 1 1
i 1 1 1 1 1 1 1 1 1

2. Compute TH ⊗−�α�c:

TH ⊗−�α�c a b c d e f g h i

a 1 1 1 1 1 1 1 1 1
b 1 1 1 1 1 1 1 1 1
c 1 1 1 1 1 1 1 1 1
d 1 1 1 1 1 1 1 1 1
e 0 0 0 0 0 0 0 0 0
f 0 0 0 0 0 0 0 0 0
g 0 0 0 0 0 0 0 0 0
h 1 1 1 1 1 1 1 1 1
i 1 1 1 1 1 1 1 1 1

3. Now (last step) switch the values of TH ⊗ −�α�c: we obtain
[TH](�α�c) (remember that TH = TH� because TH is an equivalence
relation):
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−(TH⊗−�α�c) a b c d e f g h i

a 0 0 0 0 0 0 0 0 0
b 0 0 0 0 0 0 0 0 0
c 0 0 0 0 0 0 0 0 0
d 0 0 0 0 0 0 0 0 0
e 1 1 1 1 1 1 1 1 1
f 1 1 1 1 1 1 1 1 1
g 1 1 1 1 1 1 1 1 1
h 0 0 0 0 0 0 0 0 0
i 0 0 0 0 0 0 0 0 0

This matrix is the right ideal element representing the set {e, f, g}:
indeed (lTH)(�α�) = {e, f, g}.

So, we have seen how to exploit relational algebra in order to compute
upper and lower approximations.

Now we are about to show that the same machinery makes it possible
to compute functional dependencies among subsets of attributes.

From Definition 3.2.1 and Definition 3.2.2, of Chapter 3 we have
that given an Information System I = 〈U,At, V al〉, given A,B ⊆ At

and u ∈ U , B is dependent on C at point u, if and only if ∀u′ ∈
U(〈u, u′〉 ∈ EA � 〈u, u′〉 ∈ EB).

Then the reader can immediately see that this definition may be
interpreted by means of the relational right residuation.

In fact, consider POSA(B) as defined in the Remarks after Propo-
sition 10.20.1 in Frame 10.20. We know that POSA(B) is the set of all
the elements of U which support the functional dependency A � B.
From this observation I(B,A) = {(lEA)(X)}X∈IND(B) is the set of the
equivalence classes of IND(A) which are included in some equivalence
class of IND(B). If we are denote by E(A,B) the equivalence relation
E such that IND(E) = I(B,A), then it is not difficult to understand
that E(A,B) is nothing else but the lower approximation of the relation
EB with respect to the relation EA, viz. (lEA)(EB).

Hence the step will be performed by exploiting the above technique
for approximating relations by means of relations and, specifically,
Corollary 15.18.2.

Proposition 15.18.7. For any Information System 〈U,At, V al〉, for
any A,B ⊆ At,

E(A,B) = (lEA)(EB) = EA −→ EB ←− EA = −(EA ⊗−EB ⊗ EA).
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Clearly, if 〈u, u′〉 ∈ E(A,B), then A �u B and A �u′ B. Therefore
we have just to transform the equivalence relation (lEA)(EB) into a
right ideal element, obtaining the relational representation of the set
POSA(B):

Proposition 15.18.8. For any Information System 〈U,At, V al〉,
A,B ⊆ At,

((lEA)(EB)) ⊗ 1 = (POSA(B))c.

Example

Continuing Example 1, we see that attribute Comfort is consid-
ered a decision. Hence the problem of computing, for instance
POS{Temperature,Hemoglobin}({Comfort}) naturally arises. Remember
that we set TH = E{Temperature,Hemoglobin} and we put C = E{Comfort}.
Since IND(E{Comfort}) = {{a, b, c}, {d, e, f, g}, {h, i}}, we have:

−C a b c d e f g h i

a 0 0 0 1 1 1 1 1 1
b 0 0 0 1 1 1 1 1 1
c 0 0 0 1 1 1 1 1 1
d 1 1 1 0 0 0 0 1 1
e 1 1 1 0 0 0 0 1 1
f 1 1 1 0 0 0 0 1 1
g 1 1 1 0 0 0 0 1 1
h 1 1 1 1 1 1 1 0 0
i 1 1 1 1 1 1 1 0 0

1. Let us first compute TH ⊗−C:

TH ⊗−C a b c d e f g h i

a 0 0 0 1 1 1 1 1 1
b 0 0 0 1 1 1 1 1 1
c 1 1 1 1 1 1 1 1 1
d 1 1 1 1 1 1 1 1 1
e 1 1 1 0 0 0 0 1 1
f 1 1 1 0 0 0 0 1 1
g 1 1 1 0 0 0 0 1 1
h 1 1 1 1 1 1 1 0 0
i 1 1 1 1 1 1 1 0 0
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2. Now we have to compute TH ⊗−C ⊗ TH:

TH ⊗−C ⊗ TH a b c d e f g h i

a 0 0 1 1 1 1 1 1 1
b 0 0 1 1 1 1 1 1 1
c 1 1 1 1 1 1 1 1 1
d 1 1 1 1 1 1 1 1 1
e 1 1 1 1 0 0 0 1 1
f 1 1 1 1 0 0 0 1 1
g 1 1 1 1 0 0 0 1 1
h 1 1 1 1 1 1 1 0 0
i 1 1 1 1 1 1 1 0 0

3. Finally we obtain (l TH)(lC) by applying the Boolean negation:

−(TH ⊗−C⊗ TH) a b c d e f g h i

a 1 1 0 0 0 0 0 0 0
b 1 1 0 0 0 0 0 0 0
c 0 0 0 0 0 0 0 0 0
d 0 0 0 0 0 0 0 0 0
e 0 0 0 0 1 1 1 0 0
f 0 0 0 0 1 1 1 0 0
g 0 0 0 0 1 1 1 0 0
h 0 0 0 0 0 0 0 1 1
i 0 0 0 0 0 0 0 1 1

4. The last step gives the right cylinder (POS{Temperature,Hemoglobin}
({Comfort}))c:

−(TH ⊗−C ×TH) ⊗ 1 a b c d e f g h i

a 1 1 1 1 1 1 1 1 1
b 1 1 1 1 1 1 1 1 1
c 0 0 0 0 0 0 0 0 0
d 0 0 0 0 0 0 0 0 0
e 1 1 1 1 1 1 1 1 1
f 1 1 1 1 1 1 1 1 1
g 1 1 1 1 1 1 1 1 1
h 1 1 1 1 1 1 1 1 1
i 1 1 1 1 1 1 1 1 1

Hence POS{Temperature,Hemoglobin}({Comfort}) = {a, b, e, f, g, h, i}.
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Notice that in order to strictly obtain the right ideal element, steps 2,
3 and 4 are not necessary, because (POS{Temperature,Hemoglobin}
({Comfort}))c = −(TH⊗−C)⊗1 (cf. Remarks after Corollary 15.18.2).

However, step 3 provides us with some useful information. Namely,
we are given the values of the functional dependence. In fact, step 3 tells
us that this dependence is based on three classes: {a, b}, {e, f, g}, {h, i}
and since these classes refer respectively to Low Comfort, Medium Com-
fort and Very Low Comfort, by looking at the attribute-values for their
elements we find the following laws:

1. Low Temperature and Fair Hemoglobin imply Low Comfort.

2. Low Temperature and Good Hemoglobin or Normal Temperature
and Fair Hemoglobin imply Medium Comfort.

3. Normal Temperature and Poor Hemoglobin or High Temperature
and Good Hemoglobin imply Very Low Comfort.

15.19 Frame – Relational Proof Theory

The relation algebraic approach suggested developing relational deduc-
tive systems. Indeed, if relation algebras are models for modal logics
(and other kinds of logics), it is straightforward to think of deductive
systems transforming sequences of relations into sequences of relations.

Ewa Or�lowska devoted several works to this topic. In what follows we
give an initial taste of this techniques, based essentially on [Or�lowska,
1988b].

First, we have to define a language LR in which well formed formulas
are relations. The ingredients of LR are:

• A set varOb = {x, y, z, . . .} of variables for objects

• A set of operations opRel = {∩,∪,−,⊗,� ,−→}

• A set conRel = {r1, r2, . . .} of constants for relations

• The closure eRel of conRel with respect to opRel

Then LR = {xPy : x, y ∈ varOb, P ∈ eRel}. For instance, x(r1⊗(−r2∩
r�
3 ))y is a wff of LR. A model M of LR is a triple 〈w, {Rri

}ri∈conRel,m〉
such that (a) W �= ∅, (b) ri ⊆ W ×W , any ri ∈ conRel, (c) m is a
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meaning function m : M �−→ LR such that:

(i) m(rJ) = Rrj
, (ii) m(P•Q) = m(P )•M(Q), (iii) m(◦P ) = ◦m(P ),

(15.19.23)
for all rj ∈ conRel, P,Q ∈ eRel, binary operation • and unary opera-
tion ◦ in opRel (for example, m(P�) = (m(P ))� and m(P −→ Q) =
m(P ) −→ m(Q)).

Therefore a model of LR is a relation algebra. We shall denote the
unity of this algebra by 1M.

Now we have to interpret object variables. We set an evaluation map
v : varOb �−→W .

Definition 15.19.1. Given a relational language LR, for any rela-
tional model M, atomic formula xPy, well formed formula α of LR
and set of well formed formulae Γ,

1. M |==
v
xPy if 〈v(x), v(y)〉 ∈ P (v satisfies xPy in model M).

2. |==M α iff M |==
v
xPy, for all evaluations v (α is true in M).

3. Γ |==M α if |==M Γ � |==M α (Γ implies α; notice that |==M Γ means
|==M γ for all γ ∈ Γ).

4. |==LR α if |==M α for all models M of LR (α is valid).

For example, one can prove (a) |==M xPy iff m(P ) = 1M or (b) |==M
x(−P ∪Q)y iff m(P ) ⊆ m(Q). Notice that (b) is a clue to verify if P
is transitive. In fact P is transitive if P ⊗ P ⊆ P (cf. property 4 of the
table of Section 12.2). Therefore, P is transitive if |==M x(−(P⊗P )∪P )y.

So far we have a language and a class of models for this language.
Now we have to define a deductive system SR such that for any formula
α, |==LR α iff | SR α.

Following a method developed by Helena Rasiowa and Roman Siko-
rski, E. Or�lowska was able to set rules which decompose sequences of
relational formulae into sequences of less complex relational formulae.
As a result we obtain either a 1-term sequence or a pair of sequences.

We assume that Γ and Δ are, possibly empty, sequences of formulae.

(∪ dec) :
Γ, x(P ∪Q)y,Δ
Γ, xPy, xQy,Δ

, (−∪ dec) :
Γ, x(−(P ∪Q))y,Δ

Γ, x(−P )y,Δ Γ, x(−Q)y,Δ
,

(∩ dec) :
Γ, x(P ∩Q)y,Δ

Γ, xPy,Δ Γ, xQy,Δ
, (− ∩ dec) :

Γ, x(−(P ∩Q))y,Δ
Γ, x(−P )y, x(−Q)y,Δ

,
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(−− dec) :
Γ, x(−− P )y,Δ

Γ, xPy,Δ
, (� dec) :

Γ, xP�y,Δ
Γ, yPx,Δ

,

(−� dec) :
Γ, x(−(P�))y,Δ

Γ, y(−P )x,Δ

(⊗ dec) :
Γ, x(P ⊗Q)y,Δ

Γ, xPz,Δ, x(P ⊗Q)y Γ, zQy,Δ, x(P ⊗Q)y
,

where z is a variable,

(−⊗ dec) :
Γ, x(−(P ⊗Q))y,Δ

Γ, x(−P )z, z(−Q)y,Δ
, (−→ dec) :

Γ, x(P −→ Q)y,Δ
Γ, z(−P )x, zQy,Δ

,

where z is a variable which does not appear in any formula above the
line,

(−−→dec) :
Γ, x(−(P −→Q))y,Δ

Γ, zPx,Δ, x(−(P −→Q))y Γ, z(−Q)y,Δ, x(−(P −→Q))y
,

where z is a variable.

Remarks. Notice that the constraint on the variable z in (−⊗ dec) and

(−→ dec) corresponds to the universal quantification in −→ (see Proposi-
tion 15.18.1). Moreover, (−→ dec) is justified by relation algebra. Indeed,

P −→ Q = −(P� ⊗ −Q), therefore if we substitute P� for P and −Q
for Q in (− ⊗ dec), and apply (− ⊗ dec), (� dec) and (− − dec)), we

obtain (−→ dec).

A formula is said to be indecomposable if it is of the form xPy or
x(−P )y for P ∈ conRel, x, y ∈ varOb.

A sequence of formulae is indecomposable if every element is an
indecomposable formula.

A sequence of formulae is said to be fundamental if it contains only
indecomposable formulae or x1y.

A sequence Γ of formulae is said to be valid if there is a formula
α ∈ Γ such that |==LR α.

One can prove:

Proposition 15.19.1. (a) Every fundamental sequence is valid. (b)
The empty sequence is not valid.

A rule Γ
Δ,Δ′ is said to be admissible whenever Γ is valid if and only if

both Δ and Δ′ are valid. We have that all the above decomposition
rules are admissible.
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The application of these rules produces a tree such that each node
of the tree generates at most two branches. A branch is called funda-
mental if it contains a fundamental sequence. A decomposition tree is
fundamental if all its branches are fundamental.

One can prove:

Proposition 15.19.2. A formula α of LR is valid if and only if there
is a fundamental decomposition tree for α.

Now we define a language LMR to deal with modal logic in a relational
fashion. So we need:
(a) A set varProp = {p, p1, p2, q, . . .} of propositional variables.
(b) A set conAcc = {k1, k2, . . .} of accessibility relation constants.
(c) The set eAcc = {c1, c2, . . .} which is obtained by closing conAcc
with respect to the operations in opRel.
(d) The logical constants ¬,∨,∧,=⇒, [ci] and 〈cj〉, where ci, cj ∈ eAcc.
(e) The set forMod of modal formulas, obtained by closing varProp with
respect to the logical constants.
For example, if k1, k2, k3 ∈ conAcc then 〈(k1 ∩ k2) ⊗−k3〉(p ∧ ¬q) is a
well formed formula of LMR.

A model M of LMR is obtained by extending a model for LR to form
a triple M = 〈W, {Rki

}ki∈conAcc},�〉, where W �= ∅, Rki
⊆ W ×W ,

any ki ∈ conAcc, and � is a forcing relation between elements of W
and elements of eAcc of formulae of LRM.

Therefore, if p is a propositional variable, then the set-up of � reads:
� (p) ⊆ W . For any accessibility relation ki, � (ki) = Rki

. Regarding
the inductive step, as to elements of eAcc, � works as like as the meaning
function m in (15.19.23), while as to formulae � works along the usual
forcing clauses for modal logics (see Frame 4.13.1 of Part I), starting
with the basic step s � p iff s ∈� (p), for s ∈ W and p propositional
variable.

Particularly, the forcing clauses for modalised formulae read:

s � [ci](α) iff ∀s′ ∈W (〈s, s′〉 ∈� (ci)� s′ � α),

s � 〈ci〉(α) iff ∃s′ ∈W (〈s, s′〉 ∈� (ci) & s′ � α).

As usual, we say that a formula α is true in a model M, |==M α if and
only if �α� = W . Otherwise stated, |==M α if and only if all s � α for all
s ∈W .
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A formula α is valid, |==LMR α if it is true in all models.
It is possible to prove that given a model M and a formula α of

LMR,

�[ci](α)� = {s ∈W : ∃t ∈W & 〈s, t〉 ∈ ((|= (ci))� −→ (�α� ⊗W )}.

This amounts to saying that �[ci](α)� is the right Peirce product with
respect to W of R� −→ �α�c = [R](�α�c), provided � (ci) = R. Which
is not a surprise in view of Lemma 15.18.1.

To use the deductive machine described above we have to interpret
formulae of LMR into formulae or the relation language LR.

First, we need an interpretation of the atomic elements of the lan-
guage. So we set a translation t (preserving 1): t : conAcc �−→ conRel

and t : varProp �−→ conRel.
Second, we extend t to a translation �� of both accessibility expres-

sions and propositional formulas: �� : eAcc �−→ eRel and �� :
forMod �−→ eRel.

This translation works as usual. That is,

1. �k� = t(k) for k ∈ conAcc; �c1 • c2� = �c1� • �c2�, �◦c� = ◦�c�,
for c1, c2, c ∈ eAcc, • ∈ {⊗,∩,∪} and ◦ ∈ {−,� }.

2. �p� = t(p) ⊗ 1, for p ∈ varProp; �α ∨ β� = �α� ∪ �β�, �α ∧
β� = �α� ∩ �β�, �α =⇒ β� = �¬α� ∪ �β�, �¬α� = −�α�, for
α, β ∈ forMod.

3. Finally, �〈ci〉(α)� = �ci�⊗ �α� and �[ci](α)� = �ci�� −→ �α�.

Since in (2) a propositional variable is interpreted as a right cylin-
der, and right cylindrification is preserved by the Boolean operators, it
follows that any formula is interpreted as a right cylinder.

Given this translation, one can prove:

Proposition 15.19.3. |==LMR α if and only if |==LR x�α�y.

On the basis of this machinery, one can add rules in order to define a
deductive system for specific logics.

For instance, if we assume that accessibility relations are transitive,
then the following rule shall be added:

(trans R) :
Γ, xRy,Δ

Γ, xRz,Δ, xRy Γ, zRy,Δ, xRy
,

where z is a variable.
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Along this line one can define the deductive system of an impressive
number of logical systems with modalities, such as normal Modal Logics
([Or�lowska, 1996b]), Dynamic Logics ([Or�lowska, 1993c]), some pro-
gram semantics, and non classical logics such as Post n-valued logic
([Or�lowska, 1991c]).

Moreover, using ternary relations instead of binary relations makes
it possible to encompass Relevant Logics ([Or�lowska, 1992]) and, in
general, substructural logics ([MacCaull, 1997]).

15.20 Frame – Some History of the Algebraic
Concepts used in this Part

We cannot provide the reader with an exhaustive list of authors and
works which are related with the algebraic concepts used in this Part.

Therefore, we just propose a few suggestions.
In [Monteiro, 1967] a method is given to construct a quotient alge-

bra by factorisation through a relation that is the counterpart of rough
equality, by starting with a monadic Boolean algebra. The algebra
〈℘(U)/≈,%,�,�,¬, L, [∅], [U ]〉 of Chapter 14 can also be obtained from
the monadic Boolean algebra 〈℘(U),⊆,∩,∪,−,M, ∅, U〉, following the
same construction (M stands for upper approximation). It should be
mentioned that the definitions of operators in ℘(U) leading to the
operators � and � are, however, different.

The construction of TQ(B) from B is a special case of a general
methods given by Moisil (cf. [Boicescu et al., 1991]).

The notion of a Rough algebra and a pre-Rough algebra and
Rough Set logic were introduced and developed by Mihir Chakraborty
and Mohua Banerjee (see [Banerjee & Chakraborty, 1993, 1994] and
[Banerjee & Chakraborty, 1996]).

The notion of topological quasi-Boolean algebra first appeared in
[Banerjee & Chakraborty, 1993] during the Lindenbaum like construc-
tion in rough logic and was later given a formal definition by Banerjee
and Wasilewska in [Wasilewska & Banerjee, 1995] where a natural rep-
resentation theorem was established. In a subsequent paper ([Vigneron
& Wasilewska, 1996]) an automatic prover was proposed.
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15.21 Solutions

• Exercise 11.1

(a) (i) Since 1 /∈ L′′, J (L) /∈ LL′′ . Indeed, T ∗ =
⋃
{∅, {a}, {e},

{a, b, e}} = {a, b, e}. (ii) The specialization preorder $ on T ∗ is:

$ a b e

a 1 0 0
b 0 1 1
e 0 1 1

Hence we have: k∗({a}) = {a}, k∗({b}) = {b, e} and so on, obtain-
ing k(0) = 0, k(a) = a, k(b) = e, k(c) = a, k(d) = g, k(e) =
e, k(g) = g, k(1) = g, so that in this case the relation x ≤ k(x)
does not hold for any x.

(b) (i) Yes, g is a knowledge map. (ii) T ∗ = {a, 1} = J (A) while
LA′ and its specialization preorder $ are:

{a, 1}

L′
A

∅

$ a 1
a 1 1
1 1 1

Hence, k∗(∅) = ∅, k∗({a}) = k∗({a, 1}) = {a, 1}. It follows that
k(0) = 0, k(a) = k(1) = 1. Therefore, g and k do not coincide.

(c) (i) Applying the representation procedure we obtain the fol-
lowing representation of L′′′, LL′′′ :

{a, b, c, e}
��

LL′′′ {a, b, e}

�
�
�
�
� ��

{b, e}

��

{a} {b}
�� ��

∅
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LL′′′ induces the following specialization preorder on T ∗:

$ a b c e

a 1 0 0 0
b 0 1 0 0
c 1 1 1 1
e 0 1 0 1

It follows that k∗({a, b}) = {a, b}, but {a, b} is not an element of
LL′′′ .

(ii) The dual lattice of the preordered space P = 〈T ∗,$〉 is:

{a, b, c, e}
��
{a, b, e}

�� ��
{a, b} {b, e}

�� �� ��

{a} {b}
�� ��

∅

In this lattice the element {a, b} appears as union of {a} and
{b}. In fact, the dual construction from the pre-order $ pro-
vides {a, b}, too (actually, the fact that F(P) �= LL′′′ , is another
proof that LL′′′ – hence L – is not distributive. Of course, the
most immediate proof is the fact that L′′′ contains the 5-element
sublattice {0, a, b, g, e}).

(iii) No. The problem concerns the elements a and b. Since a and
b belong to L′′′, there must be x, y ∈ L such that k(x) = a and
k(y) = b. But k(x)∨ k(y) = k(x∨ y). It follows that d = k(x∨ y).
But d /∈ L′′′. In fact, φ(d) = {a, b}.

(iv) The answer is “No”, because k∗ is not onto: k∗(X) = {b, e}
for noX and {b, e} is the image of e in LL′′′′ . This is due to the fact
that L′′′, although a distributive lattice is not a sublattice of L.
Hence, φ′(LL′′′′) is not a lattice of sets. To verify this statement,
use the preorder induced by φ′(L′′′′):
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$ a b c e

a 1 1 0 0
b 1 1 0 1
c 1 1 1 1
e 0 1 0 1

(v) The following is a knowledge map: k(0) = 0, k(a) = f, k(b) =
k(e) = e, k(c) = k(f) = k(1) = 1, k(d) = k(g) = g.

• Exercise 12.1
(A) Continuity: in the definition of R-neighborhood applied to
R(X) and R(Y ), consider the initial parts “∃x(x ∈ X . . . ” and
“∃x(x ∈ Y . . . ”. Now, consider that in first order logic ∃x(x ∈
X) ∨ ∃x(x ∈ Y ) ≡ ∃x(x ∈ X ∨ x ∈ Y ). (B) Co-discontinuity:
start the proof as before, but now consider that for all first order
formulas ϕ and ψ, ∃x(ϕ(x) ∧ ψ(x)) implies ∃x(ϕ(x)) ∧ ∃x(ψ(x)),
while the converse is not valid. (C) Normality: it is a corollary of
continuity, because in any complete lattice 0 =

∨
∅. (D) Isotonic-

ity: it is a corollary of continuity and the fact that if X ⊆ Y then
X ∪ Y = Y .
Nonetheless, notice that in a sense we used some form of adjunc-
tion. In fact, ∃ is a lower adjoint, hence it is additive (cf. Frame
15.9).

• Exercise 12.2

(a) Table for M0:
x 0 a b c d e f 1
M0(x) 0 b a c d 1 e 1

(b) Example of M−discontinuity: M0(a) ∨M0(c) = b ∨ c = f �=
1 = M0(e) = M0(a ∨ c).
(c) The answer is “No”. For any binary relation R, neighboring
is additive. Thus MR must be continuous.

• Exercise 12.3

(a) Table for M1:
x 0 a b c d e f 1
M1(x) 0 f d c 1 f 1 1

(c) Example of M -co-discontinuity: M1(d∧c) = M1(0) = 0 �= c =
c ∧ 1 = M1(c) ∧M1(d).

(d) Non validity of the monadicM -co-continuity property:M1(a∧
M1(b)) = M1(a ∧ d) = M1(a) = f �= b = f ∧ d = M1(a) ∧M1(b).
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(e) In order to find a representation for 〈A,L1〉 we cannot apply
the Representation Procedure, because L1 is not distributive. In
the first step we have to start with a set of eligible points of
A′; this is, nonetheless, the set of co-prime elements of A, i.e.
the set of atoms J (A) = {a, b, c}. Consider J(A) = 〈J (A),≤〉
(where, as we know, ≤ is contravariant with respect to the order
of A), the dual lattice F(J(A)) and the isomorphism φ : A �−→
F(J(A)). The second step is lead by two facts about the operator
M : (i) the operator M makes it possible to directly compute the
requested relation R between the atoms, such that φ(M(x)) =
MR(φ(x)), for any atom x. Indeed, from its definition by means
of the existential quantifier, if x ∈ MR(φ(y)), then 〈x, y〉 ∈ R;
therefore assumed that φ(M(x)) = MR(φ(x)), we obtain 〈x, y〉 ∈
R if and only if x ∈ φ(M(y)), for any x, y ∈ J (A). That is, if
and only if x ∈MR({y}); (ii) M−continuity and R−neighboring
continuity then guarantees that running this procedure on the
element of J (A) is sufficient.

So, consider F(J(A)) and the isomorphism φ : A �−→ F(J(A)).
We will have: for any x, y ∈ J (A), 〈x, y〉 ∈ R if and only if
x ∈ φ(M(φ−1({y}))).

For instance, let us consider the co-prime element a: φ−1({a}) =
a, M1(φ−1({a})) = f , φ(M1(φ−1({a}))) = {b, c}. It follows that
since b, c ∈ φ(M1(φ−1({a}))), 〈b, a〉, 〈c, a〉 ∈ R. In the same man-
ner we obtain the entire relation

R a b c

a 0 1 0
b 1 1 0
c 1 0 1

Now, let us compute, for instance, LR({b, c}): LR({b, c}) = −M
(−{b, c}) = −M({a}) = −{b, c} = {a}. Indeed, φ−1({a}) = a

and φ−1({b, c}) = f . But, actually, L(f) = a.

(f) The above relation R is not reflexive: for instance 〈a, a〉 /∈ R; it
is not transitive: for instance 〈c, a〉 ∈ R, 〈a, b〉 ∈ R, but 〈c, b〉 /∈ R;
it is not symmetric: for instance 〈c, a〉 ∈ R, but 〈a, c〉 /∈ R.

• Exercise 12.4
(a) By easy inspection.
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(b) By applying the Representation Procedure we find what fol-
lows:

{a, b, c}

LL2
�
�
{b, c}

�
�
�
�

{b} {c}

�
�
�
�

∅

$ a b c

a 1 1 1
b 0 1 0
c 0 0 1

x k∗(x)
∅ ∅
{a} {a, b, c}
{b} {b}
{c} {c}
{a, b} {a, b, c}
{a, c} {a, b, c}
{b, c} {b, c}
{a, b, c} {a, b, c}

(c) The specialization preorder $ is reflexive and transitive.

(d) The system 〈A, L2〉 is not a Monadic Boolean algebra: the L-
deflationary property is validated but the monadic L-continuity
property is invalidated by L2(d∨L2(f)) = L2(d∨f) = L2(1) = 1,
while, L2(d) ∨ L2(f) = b ∨ f = f . Also, this proves that the two
properties are independent.

• Exercise 12.5
(a) By applying the Representation Procedure we find:

{a, b, c}

�
� �

�
{b} {a, c}
�
� �

�

∅

$ a b c

a 1 0 1
b 0 1 0
c 1 0 1

x k∗(x)
∅ ∅
{a} {a, c}
{b} {b}
{c} {a, c}
{a, b} {a, b, c}
{a, c} {a, c}
{b, c} {a, b, c}
{a, b, c} {a, b, c}

(b) The specialization preorder $ is reflexive, symmetric and
transitive. In other terms $ is an equivalence relation.

• Exercise 12.6
(a) (Reflexivity) Since for any x, 〈x, x〉 ∈ R, from the definition
x ∈ �L(α)� if and only if ∀x′, 〈x, x′〉 ∈ R� x′ ∈ �α�, we immedi-
ately obtain that x ∈ �L(α)� implies x ∈ �α�. Hence �L(α)� ⊆ �α�

so that L(α) → α.
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(b) (Transitivity) Assume x ∈ �L(α)�. Then for any x′, 〈x, x′〉 ∈ R
implies x′ ∈ �α�. But for any x′′, iff 〈x′, x′′〉 ∈ R then 〈x, x′′〉 ∈ R,
by transitivity. It follows that x′′ ∈ �α�, because our assumption.
Therefore, x′ ∈ �L(α)�, too. So, we obtain x ∈ �L(L(α))�.

• Exercise 12.7

(a) The answer is “No” in both cases. In fact, consider the family
κa = {{a, b}, {a, c}, U}, from the contraction map κ of Example
12.4.8. The intersection {a, b} ∩ {a, c} does not belong to κa.
Consider, now, a contraction map κ′, defined on subsets of the
universe {a, b, c, d} and such that κ′({a}) = ∅,κ′({a, b}) = {a},
κ

′({a, c}) = {a}, κ′({a, d}) = {d},κ′({a, b, c}) = {b, c}. We have
the family κ′a = {{a, b}, {a, c}, {a, b, c, d}} and {a, b} ∪ {a, c} =
{a, b, c} does not belong to κ′a.

(b) The answer is “No”. For instance, by easy inspection of κc:
since {b, c} does not belong to κc, κc is not stable under superset
formation.

(c) Table of ε:

x ∅ {a} {b} {c} {a, b} {a, c} {b, c} U

ε(x) ∅ {a, c} {b} {c} {a, b} {a, c} U U

(i) The above map ε is not continuous. Indeed, ε({b}) ∪ ε({c}) =
{b, c} �= U = ε({b, c}) = ε({b} ∪ {c}). Intuitively, this happens
because taken singularly, b is connected only with b, and c only
with c, while taken together we get suddenly a new connection
with a.

(ii) The set {a} does not have a closure. Indeed, the closed sets
containing {a} are {a, b}, {a, c} and U ; but their intersection is
{a} itself which is not closed.

• Exercise 12.8

(a) Consider the pre-topological space of Example 12.4.5. It is
easy to see that {x : ∃X(X ∈ κx & X ⊆ {b, c}} = {b, c} �= {b} =
{x : {b, c} ∈ κx} = κ({b, c}).

Another example is given by the neighborhood system N (U) of
Example 12.4.2, where {x : ∃X(X ∈ Nx & X ⊆ {a, b}} = U �=
{b, c} = {x : {a, b} ∈ Nx} = κ({a, b}).
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(b) Let us compute ε({a, b}) by exploiting the formula ε({a, b}) =
{x : ∀X(X ∈ κx � X ∩ {a, b} �= ∅)}: a and b are obviously in
ε({a, b}). So test κc = {{a, c}, {b, c}, {a, b, c}}: (i) {a, b}∩{a, c} =
{a}; (ii) {a, b} ∩ {b, c} = {b}; (iii) {a, b} ∩ {a, b, c} = {a, b}.
Henceforth, ε({a, b}) = {a, b, c}.

Notice, however, that κc is not a filter. It follows that some dif-
ference from topologies must be somewhere. Indeed, ε is not
continuous: ε({a}) ∪ ε({b}) = {a} ∪ {b} = {a, b} �= {a, b, c} =
ε({a, b}).

(c) A minimal basis for the pre-topology P1 of Example 12.6.2:
κa =↑ {a}, κb =↑ {b}, κc =↑ {a, c}. Therefore the required basis
is given by Ba = {{a}},Bb = {{b}},Bc = {{a, c}}.

(d) As X we can use the set
⋃
{κx : x ∈ U} in a P−system

〈U,X,∈〉:

∈ {a} U {b, c} {a, c} {b}
a 1 1 0 1 0
b 0 1 1 0 1
c 0 1 1 1 0

As usual, given a subset A of {a, b, c}, we denote the Galois clo-
sure of A by ext(A). It is easy to verify that the operator ext
corresponds to the operator ε of the pre-topology P1 of Example
12.6.2. For instance: (i) [[i]]({a, b}) = {B ∈ X : ∀g(g ∈ {a, b} �
g ∈ B)} = {{a, b, c}}; (ii) [[e]][[i]](U) = {g ∈ {a, b, c} : ∀B(B ∈
{{a, b, c}} � g ∈ B)} = ext({a}) = {a, b, c}.

• Exercise 12.9
(a) The family F = {κa,κb,κc} from the pre-topology P2 of
Example 12.6.7: κa = {{a, b}, U},κb = {{a, b}, U},κc =
{{b, c}, U}.

(b) By trivial inspection.

(c) Compute a minimal basis for the pre-topology P2: Ba =
{{a, b}},Bb = {{a, b}},Bc = {{b, c}}.

(d) Consider κc = {{b, c}, U}. Take {b, c}: b ∈ {b, c}, but {b, c} /∈
κb. A fortiori, {b, c} it is not even a κ-neighborhood of all the
elements of U .
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• Exercise 12.10

(a) Let us compute ε1, ε2, κ1 and κ2 by starting with the two
families of bases B1 = {B1

x}x∈U4 and B2 = {B2
x}x∈U4 :

(a.1) (i) Let us compute {B1
x}x∈U4 and {B2

x}x∈U4 : for any x ∈ U4,
B1

x = {E1(x) ∪ E2(x)} while B2
x = {E1(x), E2(x)}. Therefore we

obtain:

Bm
x Bm

a Bm
b Bm

c Bm
d

B1
x {{a, b, c}} {{a, b, c}} {{a, b, c, d}} {{c, d}}

B2
x {{a, b}, {a, b, c}} {{a, b}, {a, b, c}} {{c, d}, {a, b, c}} {{d}, {c, d}}

In view of Proposition 12.6.7 the operators ε1 and ε2 are computed
from B1 and, respectively, B2 using the definition εm(A) = {x :
∀X(X ∈ Bm

x � X∩A �= ∅)}. For instance, let us compute ε2({a}):

(i) Every element of B2
a and of B2

b contains a. Hence a, b ∈ ε2({a}).

(ii) No element of B2
c or B2

d contains a. Hence c, d /∈ ε2({a}).

(iii) It follows: ε2({a}) = {a, b}.

The operators κ1 and κ2 are computed from B1 and, respectively,
B2 using the definition κm(A) = {x : ∃X(X ∈ Bm

x & X ⊆ A}.
For instance, let us compute κ2({a, d}):

(i) No subset of B2
a, B2

b or B2
c is included in {a, d}. Hence a, b, c /∈

κ

2({a, d}).

(ii) The subset {d} belongs to B2
d and is included in {a, d}. Hence

d ∈ κ2({a, d}).

(iii) It follows κ2({a, d}) = {d}.

Continuing this procedure we obtain:

x ∅ {a} {b} {c} {d} {a, b} {a, c} {a, d} ... {c, d} ... U4

ε1(x) ∅ {a, b, c} {a, b, c} U4 {c, d} {a, b, c} U4 U4 ... U4 ... U4

κ

1(x) ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ... {d} ... U4

ε2(x) ∅ {a, b} {a, b} {c} {d} {a, b} {a, b, c} U4 ... {c, d} ... U4

κ

2(x) ∅ ∅ ∅ ∅ {d} {a, b} ∅ {d} ... {c, d} ... U4
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(a.2) The relation E∗ = E1 ∩ E2 runs as follows:

E∗ a b c d

a 1 1 0 0
b 1 1 0 0
c 0 0 1 0
d 0 0 0 1

If we consider the rough set generated by the subset {c}, we
trivially obtain 〈{c}, {c}〉. On the contrary, 〈ε1({c}),κ1({c})〉 =
〈U4, ∅〉 and 〈ε2({c}),κ2({c})〉 = 〈{c}, ∅〉. It follows that neither
〈U4, ε

1,κ1〉 nor 〈U4, ε
2,κ2〉 coincides with the Approximation

Space induced by 〈U4, E∗〉.
Moreover, 〈U4, ε

2,κ2〉 cannot be an Approximation Space. Indeed
an Approximation Space is a topological space, while ⇑ B2

c is not
a filter, so that 〈U4, ε

2,κ2〉 is not even of type VD.

(b) Let us follow the usual procedure and compute, first, the bases
B1

x and B2
x:

Bm
x Bm

a Bm
b Bm

c

B1
x {{a, b}} {{a, b}} {{b, c}}

B2
x {{a, b}} {{b}, {a, b}} {{b}, {c}}

(b.1) Let us then compute ε1, ε2, κ1 and κ2 using Fn
x :

x ∅ {a} {b} {c} {a, b} {a, c} {b, c} U3

ε1(x) ∅ {a, b} U3 {c} U3 U3 U3 U3

κ

1(x) ∅ ∅ ∅ ∅ {a, b} ∅ {c} U3

ε2(x) ∅ {a} {a, b} ∅ {a, b} {a} U3 U3

κ

2(x) ∅ ∅ {b, c} {c} U3 {c} {b, c} U3

It is easy to verify that 〈U3,ε
1,κ1〉 is indeed a pre-topological

space. On the contrary 〈U3,ε
2,κ2〉 is not a pre-topological space.

In fact, ε2({a, c}) = {a}. Hence ε2 is not an inflationary operator.
Dually κ2({b}) = {b, c}, so that κ2 is not a deflationary operator.
Why? It happens that R1 is not a reflexive relation: 〈c, c〉 /∈ R1.
This fact prevents the construction of any pre-topological space
upon R1 or any family {Ri}i∈I of relations containing R1, at least
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when we deal with the finest operators εm and κm, where m is
the cardinality of I.

We conclude that on the one hand not every pre-topology is con-
nected with a binary relation, and, on the other hand, not every
binary relation induces a pre-topology.

• Exercise 12.11
Directed graphs representing R1, R2, R

B(P1) and RB(P2) of
Example 12.7.4:

R1:

d � � e

b

�

� � a

�

��
�
�� ��

�
�


c

R2:

d � � e

b

�

� � a

�

�
�
�� ��

�
�

c

RB(P1):

d � � e

b � � a

c

RB(P2):

d � � e

b � � a

���� ���


c

• Exercise 12.12

Directed graphs representingR and RB(P(R)) of Example 12.7.4:

R:

a

b
	

�

d

��
�� �

�


c

RB(P(R)):

a

b
	

�

d

��
��

c

• Exercise 12.13

(A)�: Let P be a topological space. Let B = {Bx}x∈U be a base
for P. In view of the definition of RT (P), i.e. 〈x, y〉 ∈ RT (P) if and
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only if y ∈
⋂
κx, and in view of the equality κx =⇑ Bx, we can set

〈x, y〉 ∈ RT (P) if and only if y ∈
⋂
Bx. Thus we can derive the

properties of RT (P) from those of Bx. First, x ∈
⋂
Bx, because

P is a topological space, so that x ∈ B for any B ∈ Bx. Thus,
〈x, x〉 ∈ RT (P) so that RT (P) is reflexive. Moreover, we have (i)
⋂
Bx ∈ Bx, because ⇑ Bx is a filter, since P is a topological space.

Suppose now y ∈
⋂
Bx, so that 〈x, y〉 ∈ RT (P), and z ∈

⋂
By,

so that 〈y, z〉 ∈ RT (P). From Proposition 12.8.3
⋂
Bx is open.

Thus
⋂
Bx ∈ Bw for any w ∈

⋂
Bx. Therefore

⋂
Bx ∈ By, which

implies
⋂
Bx ⊇

⋂
By. It follows that z ∈

⋂
Bx and we obtain

〈x, z〉 ∈ RT (P). Thus RT (P) is transitive.

(B) �: Conversely, suppose RT (P) is a preorder and P is of type
VS. From Proposition 12.7.8 P = P(RT (P)), because P is of type
VS. Therefore, from Proposition 12.8.2 we obtain immediately
that P is a topological space.

A direct proof of this part runs as follow: Let y ∈
⋂
κx and

suppose z ∈
⋂
κy. Then 〈x, y〉〈y, z〉 ∈ RT (P). But RT (P) is a

preorder, so that 〈x, z〉 ∈ RT (P), by transitivity. Hence z ∈
⋂
κx.

Thus,
⋂
κy ⊆

⋂
κx. Moreover,

⋂
κy ∈ κy because P is of type

VS. Therefore,
⋂
κx ∈ κy, because κy is a filter. It follows that

⋂
κx ∈ κw for any w ∈

⋂
κx. Let A be any element of κx. Since

A ⊇
⋂
κx, A ∈ κw for any w ∈

⋂
κx, too. This means that for

any X ∈ κx, there is a Y ∈ κx such that X ∈ κy for any y ∈ Y .
Which is exactly property (τ). qed

• Exercise 12.14

(a) The required graph G for Ωκ(U), where P is the pre-
topological space of Example 12.4.8, is

{a, b, c}

�
� �

�
{a, c} {d, b}

{c} {b}
�
� �

�

a
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(b) Ωκ(U) is not a lattice of sets. (c) Ωκ(U) is not distributive.
(d) Ωκ(U) is an ortholattice.

• Exercise 14.1 Trivial.

• Exercise 14.2 Immediate.

• Exercise 14.3.

(a) According to Exercise 12.5, L′(A) = AS(G/R) (in this equa-
tion AS(G/R) is the lattice of the Example of Frame 10.4 of
Part II). These two lattices are Boolean algebras with atoms
given by the equivalence classes of an equivalence relation R on
{a, b, c} (i.e. the specialization preorder $ of Exercise 12.5) such
that R = {{a, b}, {c}}. It follows that LR(X) = (lR)(X) and
MR(X) = (uR)(X), any X ⊆ {a, b, c}. We know from Frame 10.4
that L(AS(G/R)) ∼= L3, where L is the operator of Proposition
8.3.1. Hence, the carrier of L(AS(G/R)) is RS{b}(AS(G/R)) =
{〈(uR)(X), (lR)(X)〉 : X ⊂ {a, b, c}}. Therefore, ML(L′(A)) ∼=
L(AS(G/R)) ∼= L3.

(b) The diagram of TQ(A) is the following:

〈1, 1〉
� �

〈1, e〉 〈1, b〉
� � � �

〈e, e〉 〈1, 0〉 〈b, b〉
� � � �
〈e, 0〉 〈b, 0〉

� �
〈0, 0〉

In this diagram we have the elements 〈1, e〉, 〈1, 0〉 and 〈b, 0〉 which
are isomorphic to the elements 〈{a, b, c}, {a, c}〉, 〈{a, b, c}, ∅〉 and
〈{b}, ∅〉. But these ordered pairs are not of the form 〈(lR)(X),
(lR)(X)〉 since both the components do not coincide on the set
{b} (i.e. the union of the – only one in this case- singletons).

(c) A necessary and sufficient condition to have TQ(A) = ML(L)
is that for any atom p of A, L(p) = p. Indeed, in LL we have
that for any singleton (atom) X, (lR)(X) = X (where R is the
equivalence relation – i.e. specialization preorder – induced by
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LL). In this case B =
⋃
{X ∈ LL : card(X) = 1} = J (A),

that is, the union of exact pieces of information coincide with the
entire universe of discourse, and the results of Part II provide us
with the result.

• Exercise 15.1

Suppose R is Serial, Symmetric and Euclidean and that we are
given two points w and z (the case with one point is trivial). If
neither wRz nor zRw, then since R is serial we must have both
wRw and zRz, and we are done (R is also reflexive). Suppose
now wRz (or zRw). Then:

1 : wRz (hypothesis) 2 : wRz (hypothesis)
zRz (1, 2 : from the Euclidean property)

Since R is also symmetric, we obtain, analogously, wRw, that is,
R is also reflexive. Notice that seriality is essential.



Chapter 16

Mathematical Toolkits

16.1 A Mathematical Toolkit: Orders

1. A relation 	 on a set A is said to be a preorder if and only if it
is (i) transitive (a 	 b and b 	 c imply a 	 c) and (ii) reflexive
(a 	 a).

2. A partial order is a preorder fulfilling, in addition, (iii) antisym-
metry (a 	 b and b 	 a imply a = b).

3. An equivalence relation is a preorder fulfilling, in addition (iv)
symmetry (a 	 b implies b 	 a).

4. If 〈A ≤〉 is a partial order, for any X ⊆ A we set min(X) = a if
and only if for all x ∈ X, a ≤ x and, dually, max(X) = a if and
only if for all x ∈ X, a ≥ x. Clearly, min(X) and max(X) may
not exist for a given X.

5. For any preordered set A = 〈A,	〉, for any X ⊆ A and x ∈ A,
we define:

(a) ↑ X = {y : ∃x(x ∈ X & x 	 y)} – order filter generated
by X. In particular if p ∈ A then ↑ p =↑ {p} is called the
principal order filter generated by p and if A is a partial
order then p = min(↑ p).

(b) ↓ X = {y : ∃x(x ∈ X & y 	 x)} – order ideal generated
by X. In particular if ∀p ∈ A then ↓ p =↓ {p} is called the
principal order ideal generated by p and if A is a partial
order then p = max(↓ p).

615



616 16 Mathematical Toolkits

Let A, A′ and A′′ be three partially ordered sets and φ : A �−→ A′

a map. Then,

6. φ is called an order-homomorphism if and only if x ≤ y implies
φ(x) ≤′ φ(y) (isotonicity);

7. φ is called an order-anti-homomorphism if and only if x ≤ y

implies φ(x) ≥′ φ(y) (antitonicity);

8. if φ : A �−→ A′, ψ : A′ �−→ A′′ and both φ and ψ are isotone, then
φ ◦ ψ is isotone.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

16.2 A Mathematical Toolkit: Functions

1. If f : A �−→ B is a function, then A is called the domain of f
and B the codomain of f . The term map is sometimes used as a
synonymous of “function”.

2. If f : A �−→ B and both A and B are sets, then in some contexts
we shall call f a morphism. If A and B are equipped with a
structure, then the term “morphism” will denote a structure-
preserving mapping.

3. If f : A �−→ A, then f is called an endomorphism (of A).

4. If f : A �−→ B and both A and B are ordered sets, then f is said
to be monotonically increasing (or monotone, isotone, monotonic,
order preserving), if for all x, y ∈ A, x ≤ y implies f(x) ≤ f(y).
If x ≤ y implies f(x) ≥ f(y) then f is said to be monotonically
decreasing or order reversing.
If x ≤ y if and only if f(x) ≤ f(y), then f is called order embed-
ding. Finally, if f is order embedding and surjective, then it is
called an order isomorphism.

5. If g : B �−→ C is another function, then with (f ◦g)(x) or, equiva-
lently, g(f(x)) we denote the composition of g after f , with x ∈ A.
The composition f ◦g is allowed only if the domain of g coincides
with the codomain of f .
In what follows, we shall denote a string of applicationsf(g(h(...)))
with fgh(...) as well. We shall write h◦g◦f(...) or use parenthesis
just to put in evidence some particular string.
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6. If f : A �−→ B is a function, then we can extend f to subsets of
A in two canonical ways:

(a) f→ : ℘(A) �−→ ℘(B); f→(X) = {f(a) : a ∈ X} – the direct
image of X via f ,

(b) f← : ℘(B) �−→ ℘(A); f←(Y ) = {a : f(a) ∈ Y } – the inverse
image of Y via f .

The set f→(A) is denoted by Imf and f←(B) is also called the
pre-image of f . If f is a total function, (f→◦f←)(A) = A. If f ′ is
another function with domain A and for all a ∈ A, f(a) = f ′(a),
then we say that f = f ′ (clearly, this happens only if Imf ′ =
Imf ). Sometimes instead of f← we can use f−1 (specially if f is
injective – see below).

7. The map 1A : A �−→ A; 1A(x) = x, is called the identity function
on A.

8. If f : A �−→ A and f ◦ f = f , then f is said to be idempotent
on A.

9. A function f : A �−→ B is said to be onto or surjective or epic
if Imf = B, hence if f← ◦ f→ = 1→B . It is said to be into, or
injective or monic, if f→ ◦ f← = 1→A . In particular, if A ⊆ B and
f = 1A, then f is called an inclusion and denoted by the symbol
“in”.
f is said to be bijective or isomorphisms or iso if f is both epic
and monic.

The map f o : A �−→ Imf ; f o(a) = f(a) is called the corestriction
of f to Imf .
It is immediate that f o is surjective.
Dually, the map fo : Imf �−→ B; fo(b) = b is called the inclusion
of Imf into B. Clearly, fo is injective, fo = f ◦ in and f = f o ◦fo.
Moreover, if f is idempotent on A, then fo ◦ f o = 1Imf

.

10. Given a function f : A �−→ B, the relation kf = {〈a, a′〉 : f(a) =
f(a′)} is called the kernel of f or the fibred product A ×B A

obtained by pulling back f along itself. From the very defini-
tion, the kernel of a function is an equivalence relation. If E
is an equivalence relation, let us denote with [a]E the equiva-
lence class of a modulo E and with natE the natural map A �−→
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℘(A);natE(a) = [a]E . One can prove that any function f can be
decomposed starting from its kernel kf and the induced natural
map natkf

. Three steps are enough: first, send all the elements
of the domain into the appropriate equivalence class modulo the
kernel kf , via the natural map natkf

. Then send back the kernel
to the image of the function f by means of a bijection g from
the quotient space modulo the kernel Akf

. Finally, embed the
image of the function into its codomain, via an inclusion func-
tion in. In fact, let f : A �−→ B be a function and g the map
g : A/kf

�−→ B; g([a]kf
) = f(a). Then, g is iso and for all

a ∈ A, natkf
(a) ◦ g = f(a) (see below Relations 16.5.1). This is

the content of the so-called First Homomorphism Theorem (see
later on at the beginning of Section 1.4.3). The informational con-
tent of this result is quite evident: if two elements a and a′ are
B-evaluated in the same manner, then we group them under the
same collective name, or class. Therefore the family of collective
names and that of possible evaluation are clearly linked by a 1-1
map.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

16.3 A Mathematical Toolkit: Lattices

1. Let O = 〈A,≤〉 be a partial ordered set, a, a1, ...b... arbitrary
elements of A and X a subset of A. Let us set an operation sup

(or ∨ or join, or least upper bound, or lub) and an operation inf

(or ∧, or meet, or greatest lower bound, or glb), as follows:

(a) Xu = {a : ∀x(x ∈ X � x ≤ a)}, upper bounds of X.

(b) X l = {a : ∀x(x ∈ X � x ≥ a)}, lower bounds of X.

(c)
∨
X = min(Xu); if X = {a1, a2, . . . , an} then we write a1 ∨

a2 . . . ∨ an as
∨
X.

(d)
∧
X = max(X l) if X = {a1, a2, . . . , an} then we write a1 ∧

a2 . . . ∧ an as
∧
X.

(e) We have that a ≤ b if and only if a ∨ b = b and a ≤ b if and
only if a ∧ b = a. Thus we can regard any lattice also as a
partially ordered set.
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(f) If ∨ is defined for any pair of elements of A, then L = 〈A,∨〉
is called a sup-semilattice.

(g) If ∧ is defined for any pair of elements of A, then L = 〈A,∧〉
is called an inf-semilattice.

(h) If both operations are defined for any pair of elements of A,
then L = 〈A,∨,∧〉 is called a lattice.

(i) If for all X, ∅ �= X ⊆ A,
∧
X and

∨
X exist, then the lattice

is called complete.

(j)
∨
∅ = 0 is called a bottom element and

∧
∅ = 1 is called a

top element.
We have, by applying the implication in the definition of ∨
and ∧ to an empty set, 1∨x = 1, 1∧x = x, 0∧x = 0, 0∨x = x.

(k) If 0 ∈ A then L is called lower bounded. If 1 ∈ A then L is
called upper bounded. If 1, 0 ∈ A then L is called bounded.

(l) if for all a, b, c ∈ L, a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c), then we
say that L is inf-distributive or that ∧ distributes over ∨. If
a, b, c ∈ L, a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c), then we say that L
is sup-distributive or that ∨ distributes over ∧.

From now on by L and L′ we shall denote two arbitrary complete
and bounded lattices L = 〈L,∨,∧, 0, 1〉 and, respectively, L′ =
〈L′,∨′,∧′, 0′, 1′〉. If necessary, we shall use also notations such as
∧L, 1L′ and the like.

2. Let L be a lattice and A ⊆ L. If for all a, b ∈ A, a ∨ b ∈ A and
a ∧ b ∈ A, then A = 〈A,∧,∨, 1, 0〉 is said to be a sublattice of L.
If L′ is a lattice included in L but such that the operations in L′

and in L do not coincide, then L′ is said to be a substructure of
L.

3. (a) If x ∈ L is such that for all X ⊆ L, x ≤
∨
X =⇒ x ∈ X,

then x is called a co-prime element. The family of co-prime
elements of L is denoted as J (L).

(b) Dually, if for all X ⊆ L,
∧
X ≤ x =⇒ x ∈ X, then x is

called a prime element. The family of prime elements of L
is denoted as M(L).

4. Let ϑ : L �−→ L′ be a map between two lattices and let x and y

be arbitrary elements of L. Then,
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(a) ϑ is a sup-homomorphism (or “additive”) if ϑ(x∨y) = ϑ(x)∨′
ϑ(y).

(b) ϑ is an inf-homomorphism (or “multiplicative”) if ϑ(x∧y) =
ϑ(x) ∧′ ϑ(y).

(c) ϑ is a sup-anti-homomorphism (or “anti-additive”) if ϑ(x ∨
y) = ϑ(x) ∧′ ϑ(y).

(d) ϑ is a inf-anti-homomorphism (or “anti-multiplicative”) if
ϑ(x ∧ y) = ϑ(x) ∨′ ϑ(y).

(e) ϑ is a 0-morphism (or “normal”) if ϑ(0) = 0′.
(f) ϑ is a 1-morphism (or “co-normal”) if ϑ(1) = 1′.
(g) ϑ is a 0-anti-morphism (or “anti-normal”) if ϑ(0) = 1′.
(h) ϑ is a 1-anti-morphism (or “anti-co-normal”) if ϑ(1) = 0′.

Clearly, if ϑ is a sup-homomorphism (or an inf -
homomorphism), then ϑ is isotonic. In fact, since x ≤ y

iff y = x ∨ y, from sup-homomorphism we obtain ϑ(y) =
ϑ(x) ∨′ ϑ(y) ≥′ ϑ(x) (dually for inf -homomorphisms).
Symmetrically, if ϑ is a sup-anti-homomorphism (or an inf -
anti-homomorphism), then ϑ is antitonic. In fact, since x ≤ y

iff y = x ∨ y iff x = x ∧ y, from sup-anti-homomorphism we
obtain ϑ(y) = ϑ(x) ∧′ ϑ(y) ≤′ ϑ(x) (dually for inf -anti-
homomorphisms).

(i) If L = L′ we turn the terms “homomorphism” and
“morphism” into the term “endomorphism”. Moreover, if
ϑ is an endomorphism on L,
(i) If x ≤ ϑ(x), then ϑ is said to be increasing (or “infla-

tionary”).
(ii) If x ≥ ϑ(x), then ϑ is said to be decreasing (or “defla-

tionary”).

5. Let f : L �−→ X be a function from a lattice L to a set X. Then
the kernel kf is a congruence on L, that is, for any operation �
in L, if a ≡kf

b and a′ ≡kf
b′ then a� a′ ≡kf

b� b′.

6. Finally we report the so-called First Homomorphism Theorem
(for lattices) which states:
Let L and L′ be two lattices and let φ : L �−→ L′ be a homo-
morphism. Then the map ψ : L/kφ

�−→ L′;ψ([a]kφ
) = φ(a) is an

isomorphism. Furthermore, for all a ∈ L, natkφ
(a) ◦ ψ = φ(a).
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16.4 A Mathematical Toolkit: Topology

1. A topological space 〈X,Ω(X)〉 consists of a set X and a family
Ω(X) of subsets of X, called a topology or frame of open subsets
X, such that

• ∅ ∈ Ω(X) and X ∈ Ω(X).

• A finite intersection of members of Ω(X) is in Ω(X).

• An arbitrary union of members of Ω(X) is in Ω(X).

The members of Ω(X) are called open sets.

2. Given a topological space we define a subset of X to be closed
if it belongs to Γ(X) = {X ∩ −U : U ∈ Ω(X)}. Therefore, any
closed set is the complement of an open set. The family Γ(X) is
closed under arbitrary intersections and fine unions.

3. A set which is both open and closed is called clopen. If Ω(X)
consists of only clopen sets, then the topology is called
0 − dimensional.

4. A topological space is said to be connected if its only clopen
subsets are the whole space and the empty set.

5. Let 〈X,Ω(X)〉 be a topological space. Let C : ℘(X) �−→ ℘(X) be
a map such that for any A ⊆ X, C(A) is the least closed subset
of the topology which includes A. Then C is said to be a closure
operator induced by the topology.

6. Let 〈X,Ω(X)〉 be a topological space. Let I : ℘(X) �−→ ℘(X) be
a map such that for any A ⊆ X I(A) is the largest open subset
of the topology included in A. Then I is said to be an interior
operator induced by the topology.

7. For every interior operator I, closure operator C and A ⊆ X, the
following holds:

(a) CC(A) = C(A).

(b) A ⊆ C(A).

(c) II(A) = I(A).

(d) I(A) ⊆ A.
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(e) −I(A) = C(−A).

(f) −C(A) = I(−A).

8. Suppose S ⊂ ℘(X) and ∅ ∈ S. If S is closed under finite inter-
sections, then we can obtain a topology Ω(X) by closing S under
unions. In this case S is said to be a basis for Ω(X).
If the closure of S under finite intersections is a basis for Ω(X),
then S is said to be a subbasis for Ω(X).

9. Let x and y be two points in a topological space 〈X,Ω(X)〉. We
say that y specializes x, and write x $ y, if and only if for every
open A, if x ∈ A then y ∈ A. $ is said to be a specialization
preorder.

10. A topological space 〈X,Ω(X)〉 is said to be a T0−space if for any
two distinct points x, y ∈ X there exists an open set containing
exactly one of them.
A topological space is T0 if and only if its specialization preorder
is antisymmetric.

11. A topological space 〈X,Ω(X)〉 is said to be T1 if for all x, y ∈ X,
x $ y if and only if x = y (the specialization ordering is discrete).

12. A topological space 〈X,Ω(X)〉 is said to be T2 or a Hausdorff
space if for any two distinct points x, y ∈ X there exist two open
disjoint sets A,B such that x ∈ A and y ∈ B. Any Hausdorff
space is T1.

13. A topological space 〈X,Ω(X)〉 is said to be totally disconnected
if it is Hausdorff and A ∪B = X.

14. Given a preordered set X = (X,≤), the family of order-filters
ΩA(X) =
{↑≤ X ′ : X ′ ⊆ X} is called the Alexandrov topology over X.

15. Let 〈X,Ω(X)〉 and 〈Y,Ω(Y )〉 be two topological spaces, f : X �−→
Y a map. If f←(A) is open in X whenever A is open in Y , then
f is said to be continuous.

If f is bijective and both f and f−1 are continuous, then f is said
to be an homeomorphism.
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16.5 A Mathematical Toolkit: Relations

If A and B are sets, A×B will denote the Cartesian product {〈ai, bj〉 :
ai ∈ A & bJ ∈ B}.

Let R ⊆ A×B and Q ⊆ C×D be binary relations, X ⊆ A, Y ⊆ B,
x ∈ A, y ∈ B. Then we define:

1. R� = {〈y, x〉 : 〈x, y〉 ∈ R} – the inverse relation of R. R� ⊆
B ×A and R�� = R.

2. R(X) = {y ∈ B : ∃x(x ∈ X ∧ 〈x, y〉 ∈ R)}, – the left Peirce prod-
uct ofR and X. We shall also call R(X) theR– neighborhood of X.
In particular, if X is a singleton {x}, then we shall usually write
R(x) instead of R({x}) and, clearly, R(x) = {y : 〈x, y〉 ∈ R}. It is
immediate to verify that R(X) =

⋃

x∈X
{R(x)}, for any X ⊆ A. The

reader is invited to distinguish between the relation R and the
operation R(. . .). Because of the existential quantification in its
definition, the operation R(. . .) is isotonic with respect to subset
relation.1

3. R�(Y ) = {x ∈ A : ∃y(y ∈ Y ∧ 〈x, y〉 ∈ R)} – the right Peirce
product of R and Y , or the left Pierce product of R� and Y .
Clearly, R�(Y ) is an R-neighborhood, too.2 Clearly, a ∈ R�(Y )
if and only if R(a) ∩ Y �= ∅. In fact a ∈ R�(Y ) if and only if
∃y(y ∈ Y & 〈a, y〉 ∈ R). It follows that y ∈ R(a), too.

4. R =⇒ X = {y ∈ B : ∀x(〈x, y〉 ∈ R � x ∈ X)} – the right
residual of R and X.

5. R� ⇐= X = {y ∈ B : ∀x(x ∈ X � 〈x, y〉 ∈ R)} – the left
residual of X and R�.3

6. R⊗Q = {〈a, d〉 : ∃z ∈ B∩C(〈a, z〉 ∈ R & 〈z, d〉 ∈ Q)} – the right
composition of R with Q or the left composition of Q with R.

1The left Peirce product of R and X is sometimes denoted by X : R. Some
authors call R(a) the “extension of a along R”.

2The right Peirce product of R and X is sometimes denoted by R : Y .
3These operations, as they stand, seem new in the literature. Indeed they are

compositions of residuation operations between relations of a certain kind and Peirce
products, as detailed in Frame 15.18.2 of Part III.
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If defined, R⊗Q ⊆ A×D. Moreover, notice that by (R⊗Q)(X),
we shall intend the application Q(R(X)).4

7. The set ΔA = {〈x, x〉 : x ∈ A} is called the diagonal relation of
A.

8. If R� ⊗R ⊇ ΔB then R is called surjective or onto.

9. One can prove that R is functional if (i) R ⊗ R� ⊇ ΔA and (ii)
R� ⊗R ⊆ ΔB hold.
Condition (ii) states, trivially, that R(a) is a singleton. In fact,
if 〈a, b〉 ∈ R and 〈a, b′〉 ∈ R, for b �= b′, then both 〈b, a〉 and
〈b′, a〉 belong to R�, so that 〈b, b′〉 ∈ R� ⊗R. Jointly, conditions
(i) and (ii) state that each element of A is related with exactly
one element of B. Therefore, functional relations are functions in
relational guise. If R is a functional relation, we shall denote with
R̂ the corresponding function. If f is a function, f̂ will denote the
corresponding functional relation. However, if there is not risk of
confusion by abuse of language we generally shall not use distinct
symbols for a functional relation and its corresponding function.
Let R ⊆ A× B be a functional relation between two sets A and
B. Then from the fact that the corresponding functions of ΔA

and ΔB are 1A and, respectively, 1B we have:

(a) R(A) = B (i.e. R̂ is onto or surjective or epic) if R� ⊗R =
ΔB ;

(b) R(x) �= R(x′), if x �= x′ (i.e. R̂ is into, or injective, or 1 − 1,
or monic) if R⊗R� = ΔA.

If R̂ is both monic and epic, hence an isomorphism, then R is
called an isomorphism relation.

10. R is said to be symmetric if for every x, y ∈ A, 〈x, y〉 ∈ R implies
〈y, x〉 ∈ R.

11. R A is said to be antisymmetric if for every x, y ∈ A, 〈x, y〉 ∈ R

and 〈y, x〉 ∈ R implies x = y.

12. R is said to be reflexive if for every x ∈ A, 〈x, x〉 ∈ R.
4The left composition of R with Q is sometimes denoted by R;Q, in mathematical

literature. For reasons that will be clear in Part III, we use, instead, a symbol from
Non-commutative Linear Logic.
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13. R is said to be transitive if for every x, y, z ∈ A, 〈x, y〉 ∈ R and
〈y, z〉 ∈ R implies 〈x, z〉 ∈ R.

14. Let R ⊆ A×A.

(a) If R is symmetric and reflexive, then it is said to be a
tolerance relation.

(b) A tolerance relation which, in addition, is transitive, is called
an equivalence relation.

(c) If R is reflexive and transitive, then it is called a preorder.

(d) A preorder which, in addition, is antisymmetric, is called a
partial order.

Facts:

(S) If R� = R – equivalently X ⊆ (R =⇒ (R(X))), any X ⊆ A

– then R is symmetric.

(R) If R ⊇ ΔA – equivalently X ⊆ R(X), any X ⊆ A – then R

is reflexive.

(T) If R ⊗R ⊆ R – equivalently R(R(X)) ⊆ R(X), any X ⊆ A

– then R is transitive.

15. (a) For any relation R ⊆ A×B, R⊗R� is a tolerance relation on
A. (b) If R is a functional relation then R⊗R� is an equivalence
relation on A.

Proof. (a) Symmetry and reflexivity are proved exactly as in
point 9 above. (b) Moreover, suppose R is a map and that tran-
sitivity does not hold in R ⊗ R�. Then for some a, a′, a′′ ∈ A,
〈a, a′〉, 〈a′, a′′〉 ∈ R ⊗ R�, but 〈a, a′′〉 /∈ R ⊗ R�, Thus we have
at least 〈a, b〉, 〈a′, b〉, 〈a′, b′〉, 〈a′′, b′〉 ∈ R. But this is impossi-
ble, because otherwise R would not be functional on a′. Hence
〈a′′, b〉 ∈ R so that 〈a, a′′〉 ∈ R⊗R�.

16.5.1 Pull-Backs and Kernels

16.5.1.1 Categorization and Kernels

Proposition 16.5.1. Let f be a function, then κf = f̂ ⊗ f̂�, where f̂
is the corresponding functional relation.
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The above statement is very useful since composition of binary relations
is an easy operation to compute. Clearly, κf (a) is a fibre, for any a ∈ A.
Let us prove this statement through a pair of lemmata:

Lemma 16.5.1. Let f̂ ⊆ A×B be a functional relation. Then f̂ ⊗ f̂�

is an equivalence relation.

Proof. Obviously, by definition of a function, f̂ ⊗ f̂� ⊇ ΔA. Thus
reflexivity holds. Moreover, from Proposition 2.1.1. f̂ ⊗ f̂� = (f̂�)� ⊗
f̂� = (f̂ ⊗ f̂)�. Hence symmetry holds.5 Finally, since f̂� ⊗ f̂ ⊆ ΔB,
we have f̂⊗(f̂�⊗f̂)⊗f̂� ⊆ f̂⊗ΔB⊗f̂� = f̂⊗f̂�, so that transitivity
holds, too. qed

Lemma 16.5.2. Let f̂ ⊆ A×B be a functional relation. Then for any
a, a′ ∈ A, 〈a, a′〉 ∈ f̂ ⊗ f̂� if and only if f(a) = f(a′), where f is the
corresponding function.

Proof. 〈a, a′〉 ∈ f̂ ⊗ f̂� if and only if, for some b ∈ B, 〈a, b〉 ∈ f̂ and
〈b, a′〉 ∈ f̂�; hence 〈a′, b〉 ∈ f̂ . It follows that 〈a, a′〉 ∈ f̂ ⊗ f̂� if and
only if f(a) = f(a′). qed

Finally we can prove that any function f can be decomposed starting
from its kernel κf . Three steps are enough: first, send all the elements
of the domain into the appropriate equivalence class modulo the ker-
nel κf , via the natural map natκf

. Then send back the kernel to the
image of the function by means of a bijection f ′ from the quotient space
modulo the kernel κf . Finally, embed the image of the function into its
codomain, via an inclusion function in.

This is the meaning of the following decomposition theorem:

Theorem 16.5.1. Let f : A �−→ B be a function. Then f = natκf
◦

f ′ ◦ in, where f ′ : A/κf �−→ Imf is a bijection and in : Imf �−→ B is
the inclusion function.

Proof. Obviously, Imf ⊆ B and 〈a, a′〉 ∈ κf if and only if f(a) = f(a′).
Therefore, if we define f ′ as f ′([x]κf

) = f(x) we obtain a bijection
between A/κf and Imf . It follows that given a ∈ A, natκf

(a) = [a]κf
,

f ′([a]κf
) = f(a) and, finally, in(f(a)) = f(a). qed

5The previous equations means that if 〈a, a′〉 ∈ f̂ , then there is a b such that
〈a, b〉 ∈ f̂ and 〈a′, b〉 ∈ f̂ , so that 〈a′, a〉 ∈ f̂ , too.



16.5 A Mathematical Toolkit: Relations 627

Figure 16.1: Decomposing a function through its kernel

Notice that here f ′ ◦ in is a right divisor of f by natκf
which, in turn,

is a left divisor of f by f ′ ◦ in.

16.5.1.2 Categorization and Pull-Backs

The move which makes it possible to look at the inverse effect of a func-
tion and obtain its kernel is a special case of a more general operation
called a pull-back.

Definition 16.5.1 (Pull-Back). Let A, B and C be three sets and
let f : A �−→ C and g : B �−→ C be two functions. Suppose that there
are two functions g′ : P �−→ A and f ′ : P �−→ B from a set P such
that f ′ ◦ g = g′ ◦ f , which is equivalent to the sentence stating that the
following diagram commutes:

P
g′ � A

B

f ′

	

g
� C

f
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Then this diagram is said to be a pull-back (square) or a fibred prod-
uct, if it fulfills the following universal property: given any set Q and
pair of functions r : Q �−→ A and l : Q �−→ B such that r ◦ f = l ◦ g,
there is a unique h : Q �−→ P such that h ◦ f ′ = l and h ◦ g′ = r, that
is, such that the following diagram commutes

Q

�
�
h
�
��

������������

r

!

,
,
,
,
,
,
,
,
,
,
,
,

l

-

P
g′
� A

B

f ′

	 g � C

f

	

(we shall also say that the pair of functions l and r uniquely factorises
through h).6

This unique h is usually denoted by 〈l, r〉 and P is denoted also by
B ×C A:

Q

�
�
〈l, r〉
�
��

������������

r

!

,
,
,
,
,
,
,
,
,
,
,
,

l

-

B ×C A
g′
� A

B

f ′

	 g � C

f

	

6The universal property of “unique factorisation” says that the operation provides
us with the most general solution, and not with a special case. “Least upper bound”
and “greatest lower bounds” are familiar examples of operations with universal
properties (indeed, we do not want an upper bound by chance, but the least upper
bound ...). The general schema of operations with universal properties are called
“limits” (and “co-limits”).
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Given f and g, the pull-back or fibred product B ×C A of f with
g is uniquely determined up to isomorphisms and one says that f ′ is
the pull-back of f along g and, symmetrically, that g′ is the pull-back
of g along f .

The fibred product is constructed as follows: B ×C A = {〈b, a〉 :
g(b) = f(a)} and for all 〈b, a〉 ∈ B ×C A, f ′(〈b, a〉) = b and g′(〈b, a〉) =
a. Therefore, f ′ and g′ are called the first and, respectively, second
projection of B ×C A.

From the definition of a fibred product it follows immediately that
if A = B then A ×C A = {〈a, a′〉 : g(a) = f(a′)}. Hence, if moreover
f = g, then A ×C A = {〈a, a′〉 : f(a) = f(a′)} = κf . Thus a pull-back
of a function f along itself gives the kernel of f .

Other interesting cases of a fibred product are listed below:

• If C is a singleton {x} then B ×C A = B × A, because for any
a ∈ A, b ∈ B, f(a) = g(b) = x. In this case, in the pull-back
diagram we can omit the f and g arrows and it is called a product
diagram.

• If A ⊆ C and f is an inclusion function, say f(a) = a for all
a ∈ A, then B ×C A = {〈b, a〉 : a ∈ A & g(b) = a}. Let us set for
any a ∈ A, Ga = {g−1(a)}. Therefore, B×C A =

⋃

a∈A
{Ga ×{a}}.

Otherwise stated, B ×C A is isomorphic to {g−1(a)}a∈A via the
map h(〈b, a〉) = {x : 〈x, a〉 ∈ B ×C A}.

• If A,B ⊆ C and both f and g are inclusion functions, then B×C

A = {〈b, a〉 : b ∈ B & a ∈ A & b = a} = {〈x, x〉 : x ∈ A ∩ B}.
Therefore, f ′(B ×C A) = g′(B ×C A) = A ∩B.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Commutative diagrams in this book were drawn with the help of
Paul Taylor’s Commutative Diagrams package
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[Došen 1986] K. Došen, “Negation as a modal
operator”, Rep. Math. Logic, 20,
1986, pp. 15–27.
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Monadiques, I”. Math. Japonicae,
12, 1967, pp. 1–23.

[Moore 1982] R. C. Moore, “The role of
logic in knowledge representa-
tion and common-sense reason-
ing”. In Proc. AAAI-82, Pitts-
burgh, PA, 1982, 428–433.

[Mundici 1989] D. Mundici, “The C∗-algebras of
three-valued logic”, R. Ferro et
al. (Eds.): Logic Colloquium
’88, Amsterdam, North-Holland,
1989, pp. 61–77.

[Nakamura 1993] A. Nakamura, “On a logic of
information for reasoning about
knowledge”. In [Ziarko 1994],
pp. 186–195.

[Nattiez 1989] J-J. Nattiez, Musicologie gen-
erale et semiologie. Christian
Bourgois editeur, Paris, 1987.



Bibliography 659

[Nelken & Francez] R. Nelken & N. Francez, “Bilat-
tices and the semantic of natural
languages questions”, to appear
in Linguistic and Philosophy.

[Nelson 1949] D. Nelson, “Constructible Fal-
sity”. JSL, 14, 1949, pp. 16–26.

[Nelson 1959] D. Nelson, “Negation and sep-
aration of concepts in construc-
tive systems”. In A. Heyting:
Constructivity in Mathemat-
ics, North-Holland, Amsterdam,
1959, pp. 208–225.

[Novotny & Pawlak 1985a] M. Novotný and Z. Pawlak,
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“Black box analysis and rough
top equalities”. Bull. Pol.
Acad. Sc.(Math.), 33, 1985, pp.
105–113.

[Novotny & Pawlak 1985c] M. Novotný & Z. Pawlak, “Char-
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