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Abstract. Geometric algebra is employed for the analysis of the singularity of parallel manipula-
tors with limited mobility. The rotations and translations of vectors and screws are performed in the
degenerate geometric algebra G3,0,1. The condition for singularity is obtained using the language
of geometric algebra. The approach is applied to two parallel manipulators with limited mobility.
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1 Introduction

This paper presents an application of geometric algebra for the analysis of the sin-
gularity of parallel manipulators that do not have full mobility, i.e. spatial parallel
manipulators with less than six degrees of freedom (dof) or planar ones with less
than three dof. The analysis of the singular configurations of the parallel manipula-
tors is an essential part of the process of design and control. In a singular configu-
ration the moving platform of the parallel manipulator has an uncontrollable instant
mobility and the manipulator can not sustain a certain wrench applied to the moving
platform.

Recently, some “non-standard” methods have been introduced to robot kinemat-
ics. For example, the Grassmann geometry was used by Merlet (1989) and the
Grassmann–Cayley algebra has been applied to robotics by several researchers:
White (1994) analysed the motion of serial robot using Grassmann–Cayley alge-
bra. The Grassmann–Cayley algebra was employed in Staffetti and Thomas (2000)
and Ben-Horin and Shoham (2006). The Clifford algebra was used in Collins and
McCarthy (1998) and Selig (2000). In Zamora-Esquivel and Bayro-Corrochano
(2006) and in Tanev (2006) the geometric algebra was applied.

The Grassmann and Clifford algebras were created in the 19th century. In the sec-
ond half of the 20th century Clifford algebras have been “rediscovered” and further
developed into a unified language named “geometric algebra” in Hestenes (1999),
Lasenby et al. (2000), Dorst and Mann (2002), and some other authors.
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In this paper, the geometric algebra is used for obtaining the singularity con-
ditions for parallel manipulators with fewer than six degrees of freedom. This ap-
proach is applied to two parallel manipulators – a simple planar one and a spatial
5-dof parallel manipulator.

2 Kinematics of Parallel Manipulators Using Geometric Algebra

The different types of geometric algebra distinguished by the different signatures
can be denoted by Gp,g,r = G(p, q, r). This geometric algebra has n = q + q + r
orthonormal basis vectors ei (i = 1, . . . , n) which obey the following rule:

ei · ej =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, i = j = 1, . . . , p,

−1, i = j = p + 1, . . . , p + q,
0, i = j = p + q + 1, . . . , p + q + r,
0, i �= j,

ei ∧ ei = 0. (1)

In this paper, the transformations for the kinematic analysis are performed in the
degenerate geometric algebra (Hestenes et al., 1999). In this case, the translation
can be represented as a spinor:

T = ee0a/2 = 1+ 1

2
e0a, (2)

where e0 (e0 · e0 = 0) is a null vector orthogonal to R3; a is a vector in G3.
Here, the point x is represented as a trivector in G3,0,1 similar to the form given

in Selig (2000), i.e.,
x = (1+ e0x)I3, (3)

where I3 = e1e2e3 is the unit pseudoscalar of G3; x = a1e1 + a2e2 + a3e3 is a
vector in G3.

The points denoted as italic characters are represented by vectors in G3,0,1, and
points denoted as boldface characters are represented by vectors in G3.

The rigid displacement can be written in spinor representation, i.e.,

Q = T R, (4)

where the spinor

R = e−(1/2)I3a = cos

(
1

2
a
)
− I3 sin

(
1

2
a
)
.

Thus, the linear transformation is written as:
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Q(x) = QxQ†, (5)

whereQ† = R†T † is the reverse ofQ.
This representation has the great advantage of reducing the group composition to

the geometric product.
The screw axes (lines) of the joints can be expressed in the geometric algebra as

follows: any oriented line L is uniquely determined by given its direction u and its
moment m and in the geometric algebra G3 of 3-D vector space V 3 with the basis
{e1, e2, e3} it can be written as (Hestenes, 1999):

L = u+m (6)

≡ u+ r ∧ u = u1e1 + u2e2 + u3e3 +m1e2 ∧ e3 +m2e3 ∧ e1 +m3e1 ∧ e2,

where r is the position vector of a point on the line; ui (i = 1, 2, 3) and mi (i =
1, 2, 3) are scalar coefficients.

The transformation of a line can be performed in the same way as a vector (see
Selig, 2000) and for that reason the line can be written as a bivector in G3,0,1, i.e.,

L(4) = (u+me0)I3 (7)

= u1e2 ∧ e3 + u2e3 ∧ e1 + u3e1 ∧ e2 +m1e1 ∧ e0 +m2e2 ∧ e0 +m3e3 ∧ e0,

where the superscript (4) indicates that the screw is written in G3,0,1.
A general screw can be expressed in G3,0,1 in a similar way, i.e.,

S(4) = v1e2 ∧ e3+ v2e3 ∧ e1+ v3e1 ∧ e2+ b1e1 ∧ e0+ b2e2 ∧ e0+ b3e3 ∧ e0, (8)

where vi (i = 1, 2, 3) and bi (i = 1, 2, 3) are scalar coefficients.
Then, the transformation of a screw (or line) can be written as

S(4) = QS(4)Q†. (9)

2.1 Velocity

In this section, the screws are expressed as vectors in G6. In other words, in the
geometric algebraG6 of 6-D vector space V6 with the basis {e1, e2, e3, e4, e5, e6}, a
screw can be written as a vector (grade 1), i.e.,

S = v1e1 + v2e2 + v3e3 + b1e4 + b2e5 + b3e6, (10)

where the coefficients are the same as in Eq. (8).
The following notation of a screw is adopted: an upper case letter without su-

perscript (S,D) denotes a screw written as a vector in G6 of 6-D space, otherwise
a superscript indicates the type of the geometric algebra in which the screw is de-
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scribed; letters with a tilde mark (S̃) denote the elliptic polars of the screws S (Lipkin
and Duffy, 1985).

The moving platform and the base of a parallel manipulator are connected with
n-legs, which can be considered as serial chains. The velocity of the moving plat-
form can be expressed as a linear combination of the joint instantaneous twists (for
example, see Rico and Duffy, 1996):

Vp =
f∑
i=1

jωi
jSi , j = 1, 2, . . . , n, (11)

where jωi denotes the joint rate and j Si represents the normalized screw associated
with the ith joint axis of the j th leg; f is the dof of the j th leg. The left leading
superscript denotes the leg number.

A leg with full mobility and a leg with less than six dof could be treated in a
similar way. For that reason the necessary extra dummy joints are added to the leg
with less than six dof so that it becomes a leg with full mobility. The dummy joints
are considered as driven but locked ones. Then, taking the outer product of five
screws of the j th leg gives the following 5-blade:

jAk = j S1 ∧ j S2 ∧ · · · ∧ j Sk−1 ∧ j Sk+1 ∧ · · · ∧ j S6, (12)

where j Si are the normalized joint axes of the j th leg.
The 5-blade jAk from Eq. (12) involves five screws (out of six with the exception

of the j Sk screw), where the kth joint is active. In a non-degenerate space, the dual
of a blade represents the orthogonal complement of the subspace represented by
the blade. The dual of the above 5-blade jAk is given by the following geometric
product:

jDk = jAkI
−1
6 = (−1)n(6−n)I−1

6
jAk, (13)

where I6 = e1e2e3e4e5e6 is a unit pseudoscalar of the G6 and I−1
6 is its inverse;

n = 5 (in case of 6-dof limb).
Pre-multiplying (inner product) both sides of Eq. (11) by jDk one obtains:

jωk = 1
jDk · j Sk

jDk · Vp or jωk = 1
j R̃k · j Sk

jRk · Ṽp, (14)

where jRk ≡ j D̃k is a screw reciprocal to the joint screws j S1, j S2, . . . , j Sk−1, . . . ,
j S6, and Ṽp is the velocity of the moving platform with interchanged primary and
secondary parts.

The result in Eq. (14) is obtained having in mind that j Si · jDk = 0 (i �= k) and
j Sk · jDk = j ck (providing the joint screws of the j th leg are linearly independent);
j ck is a scalar.
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3 Wrenches of Constraints and Singularity

Let n be the number of the manipulator legs and m (m = 6 − q) be the degrees
of freedom of the parallel manipulator. We suppose that the remaining q degrees
of freedom are represented by dummy joints (or driven but locked joints) and as-
sociated with them dummy screws. So, in non-singular configuration the driven
joints and the geometry (or the dummy joints) of the manipulator sustain a general
wrench applied to the moving platform. Therefore, the singular configuration can
occur when all dual (or reciprocal, respectively) screws jDk (jRk) from Eq. (14),
representing active and dummy joints, are linearly dependent. Using the language
of the geometric algebra, the condition of singularity for the parallel manipulator
with less than six degrees of freedom (but with dummy joints) can be expressed in
the following way

Da1 ∧ · · · ∧Dak ∧Dd1 ∧ · · · ∧Ddq = 0, k + q = 6, (15)

where Dai is a dual vector (grade 1-blade) associated to the ith active joint andDdi
is a dual vector (grade 1-blade) associated to the ith dummy joint. In this case each
leg has a full mobility. Here the dummy joints are considered as active but locked.

In the following sections, the approach is applied to two particular parallel ma-
nipulators.

3.1 Example of Four-Bar Mechanism as a One-dof Parallel
Manipulator

Firstly, in order to illustrate the approach, it is applied to a very simple example, i.e.
to the four-bar mechanism (Figure 1a), whose singular configurations are known
(e.g., Zlatanov et al., 2002). It is considered as a planar parallel manipulator with
two RR-legs and the coupler as a moving platform. The mechanism has one driven
joint with the joint axis 1S1. In order to have full mobility, we suppose that one
dummy joint is added to each leg. Then, the duals corresponding to the active and
dummy joints for the first and the second leg, respectively, are as follows:

1D1 = (1S2 ∧ 1Sd ∧ e126)I
−1
6 ; 1Dd = (1S1 ∧ 1S2 ∧ e126)I

−1
6 , (16)

2Dd = (2S1 ∧ 2S2 ∧ e126)I
−1
6 , (17)

where e126 = e1 ∧ e2 ∧ e6 is a 3-blade representing the restricting subspace, i.e., it
restricts the mechanisms to move only in the horizontal (X–Y ) plane; jDd denotes
the dual corresponding to the dummy joint and j Sd is a screw associated with the
dummy joint.

After applying some identities of the geometric algebra (see Hestenes et al.,
1999) one obtains
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Fig. 1 Four-bar mechanism (one-dof parallel manipulator).

1D1 ∧ 1Dd = c(1S2 ∧ e126)I
−1
6 , (18)

where c = 1D1 · 1S1 is a scalar.
The blade from Eq. (18) is a blade of non-freedom for the first leg. In this case,

the wrenches of constraint associated with the dummy joints for the first and the
second leg, respectively, are 1Cd = 1D̃d , 2Cd = 2D̃d (derived from Eqs. (16) and
(17)) and the third one can be obtained by factoring the 2-blade from Eq. (18).

In this case the wrenches of constraints are pure forces, Notice, that the two
constraint forces 1Cd and 2Cd , associated with the dummy joints, are unique (along
the legs, Figure 1a).

The condition for singularity of the manipulator can be written as

1D1 ∧ 1Dd ∧ 2Dd = 0 or 1D̃1 ∧ 1D̃d ∧ 2D̃d = 0. (19)

Again, applying the identities of the geometric algebra and keeping in mind
Eq. (18), the left-hand blade (the singularity condition) from Eq. (19) becomes

[c(1S2 ∧ e126)I
−1
6 ] ∧ [(2S1 ∧ 2S2 ∧ e126)I

−1
6 ]

= −c(2S1 ∧ 2S2 ∧ e126 ∧ 1S2)I
−1
6 e126I

−1
6

= c(2S1 ∧ 2S2 ∧ 1S2 ∧ e126)e126 = 0. (20)

Therefore, bearing in mind that e1 ∧ e2 ∧ e6 �= 0, it is clear from Eq. (20) that
the condition for singularity can be written as

2S1 ∧ 2S2 ∧ 1S2 = 0. (21)

Eq. (21) implies that the mechanism is in singular configuration if the three lines
(joint axes, which are parallel) are linearly dependent, i.e., lie in a single plane,
defined by any two of the lines (Figure 1b). Eq. (21) involves only the screw axis of
the passive joints. Therefore, in case of changing the driven joint (for example from
1S1 to 2S1), the configuration shown in Figure 1b will be no longer singular.
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Fig. 2 Constraint singular configuration of the four-bar mechanism.

If we consider the blade formed only by the duals associated with the dummy
joints, the condition for the so-called constraint singularity (the term introduced by
Zlatanov et al., 2002) can be obtained, i.e.,

1Dd ∧ 2Dd = 0 or 1D̃d ∧ 2D̃d = 0. (22)

Therefore, the constraint singularity occurs when these two lines 1Cd = 1D̃d
and 2Cd = 2D̃2 coincide (Figure 2).

From Eqs. (19) and (22) it can be seen that the constraint singularity is a subset
of general singularity. It is clear from Eqs. (16), (17) and (22) that the condition for
constraint singularity involves all joint axes, which fact implies that the mechanism
remains in constraint singular configuration even when the driven joint is changed.

In this section a type of parallel manipulator with five degrees of freedom is in-
troduced and its singular configurations are analyzed using the geometric algebra.
The considered parallel manipulator has four legs; the first leg has RRPRR structure
and the other three legs have identical SPS structure (Figure 3). The driven (active)
joints are the four prismatic joints of the legs and a revolute joint R attached to the
base of the RRPRR leg. In this case, the RRPRR (R ⊥ R ⊥ P ⊥ R ⊥ R) leg has two
driven (active) joints: the first one (R – revolute joint attached to the base) and the
prismatic joint (P).

The SPS legs have full mobility and each one has one driven joint (the P joint). In
this case the SPS (or UPS) leg has only one possible dual screw, or reciprocal screw
to the joint axis associated with the U and S joints. This reciprocal screw is a line
along the SPS leg. The RRPRR leg has five degrees of freedom and in order to have
full mobility one extra dummy joint (denoted by a superscript d in the equations)
is added, which can be considered as active but locked. The dual screws associated
with the active and dummy joints of the first (RRPRR) leg are as follows:

1D1 = (1S2 ∧ 1S3 ∧ 1S4 ∧ 1S5 ∧ 1Sd)I
−1
6 , (23)

1D3 = (1S1 ∧ 1S2 ∧ 1S4 ∧ 1S5 ∧ 1Sd)I
−1
6 , (24)

1Dd = (1S1 ∧ 1S2 ∧ 1S3 ∧ 1S4 ∧ 1S5)I
−1
6 , (25)
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Fig. 3 The 5-dof parallel manipulator.

where 1S1 is the axis of the joint attached to the base and 1S5 is the axis of the joint
connected to the moving platform of the RRPRR leg (Figure 3).

Applying the identities of the geometric algebra for the outer product of the duals
from Eqs. (23), (24) and (25) one obtains:

D13d = 1D1 ∧ 1D3 ∧ 1Dd = λ(1S2 ∧ 1S4 ∧ 1S5)I
−1
6 , (26)

where λ = (1S1 · 1D1)(
1Sd · 1Dd) is a scalar; the above result is obtained bearing in

mind that 1Di · 1Sk = 0 (i �= k) and 1Di · 1Sk �= 0 (i = k).
In fact, the 3-blade from Eq. (26) is a blade of non-freedom for the RRPRR leg.

One of the wrenches of constraints (1Cd = 1D̃d ) is uniquely defined by Eq. (25).
The algebraic condition for singularity can be written as follows:{[(1S2 ∧ 1S4 ∧ 1S5)I

−1
6 ] ∧ 2D ∧ 3D ∧ 4D

}
I−1

6 = 0, (27)

where 2D = 2C̃, 3D = 3C̃ and 4D = 4C̃ are duals associated with the three SPS
legs: jD = j S1 ∧ j S2 ∧ j S4 ∧ j S5 ∧ j S6 (j = 2, 3, 4). The missing joint screw
axis j S3 is associated with the active P joint of the SPS (UPS) legs. The wrenches
of constraint 2C, 3C and 4C for the three SPS legs can be easily obtained and in
fact they are lines along the legs.

The singular configurations of the parallel manipulator can be algebraically de-
rived from Eq. (27). Expanding Eq. (27) leads to an algebraic equation in terms of
the five joint variables of the RRPRR leg (all joint screws of the parallel manipula-
tor are expressed as functions of these five variables). The solutions of this equation
give the singular configuration of the manipulator. The expanded equation is not
listed here because of the limited space. Several singular configurations have been
identified. Two types of singular configurations are shown in Figure 4.

The uncontrollable motion of the moving platform for the first singular configu-
ration (Figure 4a) is a pure rotation, which axis intersects all four legs, is parallel to
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Fig. 4 Singular configurations of the 5-dof parallel manipulator.

two R joint axes of the RRPRR leg and perpendicular to P joint axis of the RRPRR
leg. In the second singular configuration (Figure 4b) the uncontrollable motion is a
general screw motion.

4 Conclusions

The presented approach proves to be effective in determining the singularity con-
dition for parallel manipulators with limited mobility. This approach is applied to
two parallel manipulators, which singular configurations are obtained. It has been
shown that the equation for the singularity (the condition for singularity) involves
the screws which represent all and only passive joints of the manipulators. This
geometric algebra approach provides a good geometrical insight and efficiency in
dealing with robot kinematics and singularity of parallel manipulators with fewer
than six degrees of freedom.
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