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Abstract. Starting from the definition of a stiffness matrix, the authors present the Cartesian stiff-
ness matrix of parallel compliant mechanisms. The proposed formulation is more general than any
other stiffness matrix found in the literature since it can take into account the stiffness of the passive
joints and remains valid for large displacements. Then, the conservative property, the validity,and
the positive definiteness of this matrix are discussed.
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1 Introduction

The stiffness matrix of a mechanism is defined as the Hessian matrix of a potential.
For example, the Cartesian stiffness matrix is the square matrix of second-order
partial derivatives of potential ξf associated with wrench f with respect to the vector
of Cartesian coordinates, noted x:

KC = ∂2ξf

∂x2 . (1)

Thus by definition, a stiffness matrix is a symmetric matrix [3]. A stiffness mat-
rix is also conservative [1]. And since the Hessian matrix of a potential is used to
determine the stability of an equilibrium [5], a stiffness matrix can be either positive-
definite or negative-definite.

In this paper, a stiffness matrix that considers the external loads, the changes of
the geometry of the mechanism and the stiffness of any joint – even the passive
ones – is presented. The kinematic model of a parallel mechanism that takes into
account the passive joints is first introduced. Then, expressions for the potential
energy are derived in order to obtain a general form of the Cartesian stiffness matrix
of a compliant mechanism. The correctness and the properties of this matrix are then
discussed and applied in a simple parallel mechanism.
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2 Model of a Parallel Mechanism

2.1 Geometric Constraints

In a parallel mechanism, some geometrical constraints between the joint coordinates
corresponding to the closure of loops formed by legs must always be satisfied. These
constraints are written as K(θ) = 0, where θ is the joint coordinate vector of the
mechanism.

Therefore, a vector of generalized coordinates χ is defined such that λ, the vector
of the kinematically constrained coordinates and θ , the complete joint coordinate
vector of the mechanism, always satisfy the geometric constraints. One has:

λ = λ(χ) and θ = θ(χ) =
[

χ

λ

]
, (2)

where λ = [λ1, · · · , λc]T – c being the number of constrained coordinates – and θ =
[θ1, · · · , θm]T with m the number of joints in the mechanism and θk the coordinate
of the kth joint.

2.2 Kinematic Constraints

The variation of the kinematically constrained (dependent) joint coordinates is de-
scribed by a matrix G and a matrix R defined as

G = dλ

dχ
and R = dθ

dχ
=

[
1l
G

]
, (3)

where 1l stands for the l × l identity matrix. The relations between the variation of
the joint coordinates and the variation of the generalized coordinates are expressed
as dλ = Gdχ and dθ = Rdχ .

2.3 Kinematic Model

2.3.1 Pose of the Platform

Represented by a vector x, it is defined as the average pose of the end-effector of all
legs of the mechanism, namely

x = 1

n

n∑
i=a

xi , i ∈ {a, · · · , n} , (4)
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where xi =
[
cTi ,q

T
i

]T
is the pose vector of the ith leg and where ci is the position

vector of a chosen point on the platform while qi is a quaternion vector describing
the orientation of the platform. All legs are indexed from a to n.

2.3.2 Jacobian Matrix Jθ

The Jacobian matrix Jθ of a parallel mechanism in which all joints – even the passive
ones – are considered is written as

Jθ = ∂x
∂θ
= 1

n

n∑
i=a

∂xi
∂θ
. (5)

2.3.3 Jacobian Matrix J

In this Jacobian matrix, only the generalized coordinates are considered. It is defined
as

J = ∂x
∂χ

= ∂x
∂θ

∂θ

∂χ
= JθR. (6)

2.3.4 Kinematic Model

Thus, the kinematic model of the complete mechanism can be written in different
equivalent forms, namely

dx = Jθdθ = JθRdχ = Jdχ . (7)

2.3.5 Inverse Kinematic Model

From Eq. (7), the inverse kinematic model of the mechanism is expressed as

dχ = J−1dx, dλ = GJ−1dx and dθ = RJ−1dx. (8)

If the number of components in x is larger than six, then J−1 should be replaced by
the Moore–Penrose generalized inverse.
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3 Cartesian Stiffness Matrix of a Compliant Mechanism

3.1 Potential Energy of a Mechanism

The potential energy stored in the compliant joints of a compliant mechanism, noted
ξθ , is calculated as

ξθ =
∫ θ

θ0

τTθ dθ =
∫ χ

χ0

τTχ dχ +
∫ λ

λ0

τ Tλ dλ, (9)

where τ θ , τχ and τ λ are the vectors of joint torques/forces respectively associated
with the joints corresponding to vectors θ , χ or λ and where θ0, χ0 and λ0 cor-
respond to the unloaded configuration of the mechanism. In the particular – but
frequent – case of compliant joints with constant stiffness, ξθ is written as

ξθ = 1

2
(χ − χ0)

TKχ(χ − χ0)+ 1

2
(λ− λ0)

TKλ(λ− λ0), (10)

where Kχ and Kλ are the (diagonal) joint stiffness matrices.
The potential energy ξf associated to the external wrench f is equal to the work

provided by f and is defined as

ξf =
∫ x

x0

fT dx, (11)

where x0 corresponds to the unloaded configuration.
The potential energy due to the external wrench ξf is equal – apart from a con-

stant ξ0 – to the energy stored in the mechanism. (ξf = ξθ + ξ0). From Eq. (8), this
can be written as∫ x

x0

fT dx =
∫ x

x0

τ Tχ J−1dx+
∫ x

x0

τTλGJ−1dx+ ξ0. (12)

3.2 Cartesian Static Equilibrium

Differentiating Eq. (12) with respect to the pose x leads to the Cartesian static equi-
librium of a compliant mechanism. It is written as

dξf

dx
= dξθ

dx
+ dξ0
dx

⇔ f = J−T τχ + J−TGT τλ. (13)

In the most general case, the stiffness of these joints is not constant and the corres-
ponding forces/torques are defined as
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τχ =

∫ χ
χ0

Kχdχ =
∫ x

x0
KχJ−1dx,

τ λ =
∫ λ
λ0

Kλdλ =
∫ x

x0
KλGJ−1dx.

(14)

3.3 Cartesian Stiffness Matrix

The definition of the Cartesian stiffness matrix of a mechanism is given in Eq. (1)
and is equivalent to KC = df/dx. Therefore, using Eqs. (13) and (14), it is obvious
that KC is not constant and depends on the stiffness of the joints and the geomet-
ric configuration of the mechanism. To obtain this function, the right-hand side of
Eq. (13) is differentiated with respect to x

d2ξθ

dx2 = d

dx

(
J−T

∫ x

x0

Kχ J−1dx+ J−TGT
∫ x

x0

KλGJ−1dx
)
, (15)

which leads to
d2ξθ

dx2 = A+ B+ J−TKχJ−1, (16)

where

A = dJ
dx

−T
(τχ +GT τ λ) and B = J−T

dG
dx

T

τ λ + J−TGTKλGJ−1 (17)

3.3.1 Matrix A

First, the derivative of the inverse of a matrix can be written as

dJ−T

dx
= −J−T

dJT

dx
J−T . (18)

Thus, matrix A can be expressed, using Eq. (13) as

A = −J−T dJT

dx
(J−T τχ + J−TGT τ λ) = −J−T dJT

dx
f. (19)

Using the chain rule, the derivative is written as

dJT

dx
f =

(
dJT

dχ
f
)
dχ

dx
=

(
dJT

dχ
f
)

J−1. (20)

Hence, a matrix that captures the effect of the external wrench can be defined as

KE = −dJT

dχ
f = −

[(
dJT

dχ1
f
)
· · ·

(
dJT

dχm
f
)]
, (21)
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where χi is the ith joint coordinate of χ and (dJT /dχi)f is a vector forming the ith
column of l × l matrix KE . Indeed matrix KE is equal to the opposite of the matrix
noted KG in [1].

Therefore from Eqs. (19) and (20), the matrix A introduced in Eq. (16) is equal
to

A = −J−T
(
dJT

dχ
f
)

J−1 = J−TKEJ−1. (22)

3.3.2 Matrix B

Using the chain rule, the right-hand element of matrix B introduced in Eq. (16), can
be differentiated as

dGT

dx
τ λ =

(
dGT

dχ
τλ

)
dχ

dx
=

(
dGT

dχ
τλ

)
J−1. (23)

A matrix KIG that captures the effect of the changes of geometry of the kinematic
constraints, is defined as

KIG = dGT

dχ
τ λ =

[(
dGT

dχ1
τ λ

)
· · ·

(
dGT

dχm
τλ

)]
, (24)

where (dGT /dχi)τλ is a vector forming the ith column of l × l matrix KIG.
Moreover, another matrix noted KIK that captures the effect of the stiffness of the
kinematically constrained joints, is defined as

KIK = GTKλG. (25)

Matrices KIG and KIK are functions of the generalized coordinates and they rep-
resent the contribution of the kinematically constrained joints to the stiffness of the
mechanism. This contribution is assembled in a matrix KI , defined as

KI = KIG +KIK = dGT

dχ
τλ +GTKλG. (26)

Thus, according to Eqs. (17), (23), (25) and (26), B is equal to

B = J−TKIJ−1. (27)

3.3.3 Cartesian Stiffness Matrix

Finally, combining eqs. (16), (22) and (27), the Cartesian stiffness matrix of a com-
pliant mechanism is written as

KC = J−T
(
Kχ +KI +KE

)
J−1. (28)
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This matrix includes the three contributions that determine the stiffness of a mech-
anism according to our initial assumption (no gravity and no dynamical effects),
namely: the stiffness of the kinematically unconstrained joints (Kχ ), the stiffness
due to the passive joints and the internal torques/forces (KI ) and the stiffness due to
the external loads (KE).

3.4 Stiffness Matrix Expressed in Generalized Coordinates

In the domain of generalized coordinates, the stiffness of the mechanism is described
by a matrix KM defined as

KM = Kχ +KI +KE. (29)

Therefore, the relation between the stiffness in the generalized domain and in the
Cartesian domain is written under a familiar form, namely

KC = J−TKMJ−1 or KM = JTKCJ. (30)

4 Properties of the Stiffness Matrix

4.1 Conservativity of the Matrix

Since the Cartesian stiffness matrix has been calculated by differentiating three
torques/forces, namely f, τχ and τλ, which are in turn expressed as the derivat-
ive of a potential function, KC is by definition a conservative matrix. Thus, KC is
proved symmetric and satisfying the exact differential condition [1].

4.2 A Matrix of a More General Application

The Cartesian stiffness matrices found in the literature can be easily obtained from
the matrix presented here. The matrices for serial mechanisms [1, 4] in which there
are no passive joints and no internal wrenches such that KI = 0. As well as the
matrices in which the external wrench is not taken into account [2, 4] such that
KE = 0.
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�

x = [
x, y

]T

ρa ρb

θa θb

A
B

Fig. 1 2-DoF parallel mechanism in unstable static equilibrium.

4.3 Positive Definite Property

The stiffness matrix of a compliant mechanism can be positive definite, semi-
positive definite or non-positive definite.

The 2-DoF mechanism presented in the configuration shown in Figure 1 is used
to illustrate this property.

4.3.1 Parameters of the Mechanism

The articular coordinates of this mechanism are θa , θb, ρa and ρb, while the pose of
the platform is x = [

x, y
]T

. The two base points of the legs, noted A and B, are
defined by vectors a = (0, 0) and b = (L, 0). The revolute joints are not compliant
while both prismatic compliant joints are identical, the free length of their equivalent
linear spring is noted ρ0 and their stiffness coefficient is noted kρ . In the configura-
tion presented in Figure 1, the parameters are θa = 0, θb = π , ρa = ρb = L/2 and
the external wrench f = 0.

4.3.2 Pose of the End-Effector

The coordinates of leg a are arbitrarily chosen as the generalized coordinates of the
mechanism, noted χ . Then, the pose and the Jacobian matrix can be expressed as

x =
{
ρa cos θa
ρa sin θa

and J =
[−ρa sin θa cos θa
ρa cos θa sin θa

]
. (31)

4.3.3 Geometric Constraints

The two kinematically constrained joints, noted λ, are θb and ρb. The geometric
constraints that represent the condition of rigidity of the platform, are then written
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as

xa − xb = 0 ⇔
{
ρa cos θa − (ρb cos θb + L) = 0,
ρa sin θa − ρb sin θb = 0.

(32)

The retained solution of the latter equation is written as

ρb =
√
ρ2
a − 2ρaL cos θa + L2, θb = arctan

(
ρ1

ρb
sin θa,

ρ1

ρb
cos θa

)
. (33)

4.3.4 Kinematic Constraints

Thus, matrix G defined in Eq. (3) can be derived from the geometric constraints. G
is written as

G = dλ

dχ
= J−1

b Ja. =

⎡⎢⎢⎢⎢⎣
−(cos θaL− ρa)ρa
ρ2
a − 2ρaL cos θa + L2

− sin θaL

ρ2
a − 2ρaL cos θa + L2

ρa sin θaL√
ρ2
a − 2ρaL cos θa + L2

−(cos θaL− ρa)√
ρ2
a − 2ρaL cos θa + L2

⎤⎥⎥⎥⎥⎦ .
(34)

4.3.5 Torque/Force Vectors

The force associated to the passive compliant joint ρb is written as τρ = kρ(ρb−ρ0).

4.3.6 Stiffness Matrices Due to Passive Joints

The four components of KIK , defined in Eq. (25), can be analytically calculated as

KIK(1, 1) = ρ2
a sin2 θaL

2kρ

ρ2
b

, KIK(2, 2) = (cos θaL− ρa)2kρ
ρ2
b

, (35)

KIK(1, 2) = KIK(2, 1) = ρa sin θaLkρ(cos θaL− ρa)
ρ2
b

. (36)

4.3.7 Stiffness Matrices Due to Internal Wrenches

The four components of matrix KIG, defined in Eq. (24), can be analytically calcu-
lated as

KIG(1, 1) = −ρa
2 sin2 θaL

2τρ

ρ3
b

+ ρa cos θaLτρ
ρb

, (37)
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KIG(1, 2) = KIG(2, 1) = sin θaLτρ
ρb

+ (cos θaL− ρa) τρρa sin θaL

ρ3
b

, (38)

KIG(2, 2) = τρ

ρb
+ (cos θaL− ρa) τρ

2ρ2
b

. (39)

4.3.8 Negative Definite Matrices

In the presented configuration, matrices KM and J are functions of three parameters
only, namely kρ , L and ρ0. They are written as

KM =
[
kρL(

1
2L− ρ0) 0

0 2kρ

]
and J =

[
0 1
L/2 0

]
, (40)

and the Cartesian stiffness matrix (Eq. (30)) is calculated as

KC =
[

2kρ 0
0 2kρ(L− 2ρ0)/L

]
. (41)

Therefore, this formulation of the Cartesian stiffness matrix demonstrates that a
stiffness matrix can be negative definite: the presented configuration is stable with
respect to axis (Oy), only if ρ0 < L/2, i.e., if the linear springs are in tension.

5 Conclusion

The presented formulation of the stiffness matrix is a generalization of the already
existing stiffness matrices, since it can take into account non-zero external loads,
non-constant Jacobian matrices and stiff passive joints, this later point being its
main novelty.
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