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Abstract. It is well established that finite displacement screws effective for the (incompletely spe-
cified) relocation of a body with symmetries form linearly combined sets if they are of a sin-screw
form Ŝ = sin 1

2 θ̂ ŝ, characterised by pitch PS = 1
2σ/tan 1

2 θ . This paper shows that screws of indef-
initely many other functional forms may be derived, each with a correspondingly distinct definition
of pitch, which in the same kinematical situations will also form sets of screws that are linearly
combined with dual coefficients. As example, screws of form Ŝ = sin θ̂ ŝ, of pitch PŜ = d/tan θ ,
are evaluated that describe displacement of a point-line.
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1 Introduction

Screws of a particular sin-screw form, Ŝ = sin 1
2 θ̂ ŝ, characterised by pitch PS =

1
2d/tan 1

2θ , have recently found use in representing the finite displacement of a rigid

body through a dual angle θ̂ = θ+ε d , −π < θ ≤ π , about a screw-axis sited in
the unit line ŝ, with |ŝ| = 1. Using that sin-screw form it is found, when a body with
spatial symmetries of figure is relocated – or, equivalently, when a displacement is
incompletely specified – that the (possibly infinite) set of screws available to the
body in achieving the relocation is described by linear combination of a small basis
of screws [2, 6, 7].

In this paper we show that these properties are by no means unique to the ’sin
half-angle’ screw form and that, for any such kinematic context, we may derive an
indefinitely large number of screw forms of quite different definition (and pitch),
each of which occur in similarly constituted linear combinations, formed with dual
coefficients in general.

It is not our purpose to advocate use of screw forms other than the sin-screw
form: that form, which – as the vector sub-component – has intimate connection
with the unit biquaternion for the displacement (see Eq. (4)), appears to represent
the displacement with least sign-ambiguity and to be the simplest to manipulate in
formal analysis. Rather, the purpose is to point out that when – in the course of
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exploratory geometric analysis – a screw of different definition or a different pitch-
form appears, it does not necessarily betoken a distinct physical phenomenon but
may simply be, in effect, an alias for the sin-screw under the kind of derivation just
mentioned.

A number of investigations have recently been made into the formal underpin-
nings of finite displacements which have turned up suggestive measures of pitch for
the helicoidal vector fields under study. In one of these [4], for example, the pitch
measure P = d/sin θ has emerged which, though not that of the sin-screw, is re-
cognisable as the pitch-form associated with the screw T̂ = tan 1

2 θ̂ ŝ, obtained from

the sin-screw by the simple step of dividing by cos 1
2 θ̂ [3, 9, 11].

To show the ease of creating screw-forms, a new screw-form defined in terms of
the full- rather than half-dual angle, viz. Ŝ = sin θ̂ ŝ, characterised by pitch PŜ =
d/tan θ , is used in a typical kinematic context.

2 Notation and Basic Geometry

We write a screw Ŝ as a 3-vector of dual numbers

Ŝ = |Ŝ| (1+ε p) ŝ, ŝ = l+εM

ŝ2 = l2+ε 2 l ·M = 1+ε 0, l×M = R

}
(1)

in which ε is a quasi-scalar such that (a+ε b = c+ε d) ⇔ (a = c) ∧ (b = d) for
all real a, b, c, and d , and satisfying ε2 = 0. |Ŝ| is the real magnitude and p is
the real pitch of the screw Ŝ, and ŝ (written in lower case) is its normalised line
which, regarded as a screw in its own right, has unit magnitude and zero pitch. The
line ŝ of the screw is spatially located by the direction 3-vector of direction cosines
l = (l, m, n), and by the moment 3-vector M = (P, Q, R) which determines its
origin-radius 3-vector R.

Two screws Ŝ1, Ŝ2 are perpendicular if l1 · l2 = 0, and orthogonal if Ŝ1 · Ŝ2 = 0,
which implies that each intersects the other at right angles. The cross product Ŝ1×Ŝ2
is sited in their common perpendicular.

We represent the typical right-handed reference frame by orthogonal normalised
axial lines x̂i, ŷi, and ẑi for which

x̂i · ŷi = ŷi · ẑi = ẑi · x̂i = 0, x̂2
i = ŷ2

i = ẑ2
i = 1,

x̂i × ŷi = ẑi, ŷi × ẑi = x̂i, ẑi × x̂i = ŷi.

}
(2)

If, in some common frame, we know a general screw Ŝ and the i-frame axes x̂i, ŷi,
ẑi, we transform that screw into i-frame coordinates by

Ŝi =
⎡⎢⎣ x̂T

i

ŷT
i

ẑT
i

⎤⎥⎦ Ŝ =
⎡⎢⎣ x̂i · Ŝ

ŷi · Ŝ
ẑi · Ŝ

⎤⎥⎦
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in which the first-written matrix is 3× 3 dual orthogonal.

3 Specification of a Finite Displacement Screw

We represent the general finite displacement of a body – comprising translation
through distance d and rotation through angle θ ,−π < θ ≤ π , about the unit screw
axis ŝ (ŝ2 = 1) – by constructing the dual angle

1
2 θ̂ = 1

2θ+ε 1
2d so that sin 1

2 θ̂ = sin 1
2θ+ε 1

2d cos 1
2θ,

and by then writing the sin-screw

Ŝ = sin 1
2 θ̂ ŝ = sin 1

2θ (1+ε PS) ŝ where PS = 1
2d/tan 1

2θ. (3)

The sin-screw resultant, Ŝ, of successively applying two such screws, first Ŝ1 =
sin 1

2 θ̂1 ŝ1 and then Ŝ2 = sin 1
2 θ̂2 ŝ2, is conveniently written[

cos 1
2 θ̂

Ŝ

]
=

[
cos 1

2 θ̂1 cos 1
2 θ̂2 − Ŝ1 · Ŝ2

cos 1
2 θ̂2 Ŝ1 + cos 1

2 θ̂1 Ŝ2 − Ŝ1 × Ŝ2

]
, (4)

which comprises the biquaternion product rule [1].
An alternative form of finite displacement screw, which derives from the sin-

screw on division by cos 1
2 θ̂ , is the tan-screw, written [11]

T̂ = tan 1
2 θ̂ ŝ = tan 1

2θ (1+ε PT ) ŝ where PT = d/sin θ. (5)

Such manipulation of Eq. (4) yields the corresponding tan-screw resultant [11] of
applying two tan-screws, first T̂1, then T̂2, viz.

T̂ = T̂1 + T̂2 − T̂1 × T̂2

1 − T̂1 · T̂2
. (6)

Using the sin-screw form of Eq. (3) it is found, when a body with spatial sym-
metries of figure is relocated – or, equivalently, when a displacement is incompletely
specified in some coordinate(s) – that the (possibly infinite) set of screws available
to the body in achieving the relocation is described by linear combination of a small
basis of screws [2, 6, 7]. These findings, each dealing with particular kinematic in-
stances, have been generalised to treatment of the symmetry screws of any body
shape, and have been shown to extend equally to unit biquaternions in linear com-
binations [8,10]. This generalisation has been re-expressed in terms of the tan-screw
form of Eq. (5) [9].
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4 Generalisation to Other Screw Forms

We now show that this property – the capacity to form kinematically significant
linearly combined sets – is by no means retricted to sin-screws and tan-screws, or
to screws of their pitch-forms. For suppose that some kinematic situation (such as
those cited above) is described by such a set of sin-screws so that the typical screw
of the set is characterised by the dual-linear form

Ŝ = sin 1
2 θ̂ ŝ = X̂(. . .) x̂ + Ŷ(. . .) ŷ + Ẑ(. . .) ẑ, (7)

where x̂, ŷ, ẑ are mutually intersecting orthogonal unit lines for which

x̂ · ŷ = ŷ · ẑ = ẑ · x̂ = 0, x̂2 = ŷ2 = ẑ2 = 1,

and the dual-valued coefficients X̂(. . .), Ŷ(. . .), Ẑ(. . .) are functions of one or more
spatial variables applying in the particular kinematic context.

Since ŝ2 = 1, from Eq. (7) we readily derive

sin2 1
2 θ̂ = X̂2(. . .)+Ŷ2(. . .)+Ẑ2(. . .). (8)

If we assume that the sign of sin 1
2θ has been incorporated into the direction spe-

cified for the line ŝ, so that we may safely adopt the positive square root of sin2 1
2θ

wherever it occurs, we may multiply both sides of Eq. (7) by arbitrary powers g, h
of sin 1

2 θ̂ , cos 1
2 θ̂ to obtain

sing+1 1
2 θ̂ cosh 1

2 θ̂ ŝ = {
X̂2()+Ŷ2()+Ẑ2()

}g/2 {
1−X̂2()−Ŷ2()−Ẑ2()

}h/2
× {

X̂() x̂ + Ŷ() ŷ + Ẑ() ẑ
}
,

which, on the right-hand side, is again a linear combination of the same orthogonal
basis screws with coefficient functions parameterised in the same spatial variables.
The item on the left, when dual angles are expanded, takes the form

sing+1 1
2θ

{
1+ε 1

2d cot 1
2θ

}g+1 cosh 1
2θ

{
1−ε 1

2d tan 1
2θ

}h ŝ

= sing+1 1
2θ cosh 1

2θ
{
1+ε 1

2d
{
(g + 1) cot 1

2θ−h tan 1
2θ

}}
ŝ,

which is a screw of pitch p = 1
2d {(g + 1) cot 1

2θ−h tan 1
2θ}.

We may, further, observe that sums of such terms, with arbitrarily chosen expo-
nents gi and hi , and combined with arbitrarily chosen dual-valued functions Ci(),
of the same spatial parameters, such as∑

i Ci() singi+1 1
2 θ̂ coshi 1

2 θ̂ ŝ

=∑
i Ci()

{
X̂2()+Ŷ2()+Ẑ2()

}gi/2 {
1−X̂2()−Ŷ2()−Ẑ2()

}hi/2
× {

X̂() x̂ + Ŷ() ŷ + Ẑ() ẑ
}
,

(9)
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yield similar linear combinations.
We may, therefore, synthesise an arbitrarily large set of functions F̂ (θ̂) of the

dual angle θ̂ to serve as multipliers of the screw-axis line ŝ in screw forms F̂ (θ̂ ) ŝ
which can be expressed as sets of screws deriving as linear combinations of the
chosen basis.

5 The Full-Angle Sin Screw

To exemplify the results of the preceding section we now introduce a new screw
form – an “Ŝ-screw” – defined in terms of the full dual angle of displacement; thus,
in terms of quantities defined in Section 3,

Ŝ = sin θ̂ ŝ = sin θ (1+ε PŜ) ŝ where PŜ = d/sin θ. (10)

(whereas the definition of Ŝ at Eq. (3) involved the dual half-angle). Since Ŝ =
2cos 1

2 θ̂ Ŝ, we may write the resultant, Ŝ, of successively applying two such screws,

first Ŝ1 = sin θ̂1 ŝ1 and then Ŝ2 = sin θ̂2 ŝ2, as the doubled product of the two entries
on the right in Eq. (4), viz.

Ŝ = cos θ̂2 Ŝ1+cos θ̂1 Ŝ2− 1
2

[
1− Ŝ1 · Ŝ2

(cos θ̂1 + 1) (cos θ̂2 + 1)

]
Ŝ1 × Ŝ2

−1
2

[
Ŝ1

cos θ̂1 + 1
− Ŝ2

cos θ̂2 + 1

]
× (Ŝ1 × Ŝ2). (11)

To provide an exemplary set of Ŝ-screws in linear combination, we could adapt
a general method used elsewhere [8–10] in order to generate them directly from the
symmetry Ŝ-screws of a body undergoing displacement. But the visible growth in
complexity of Eq. (11) – a necessary component in the development – when it is
contrasted with its analogue in Eq. (4), makes this a tortuous course to follow.

Instead, we shall broadly follow the prescription of the preceding section. Having
outlined the known solution to a particular kinematic context as it is expressed in
sin-screws Ŝ, we shall convert those sin-screws to Ŝ-screws by multiplying by an
expression for 2cos 1

2 θ̂ .

6 Finite Displacement of a Body with Symmetries

We will restrict attention to properties of the point-line object, for which the set of
symmetry screws – the totality of finite displacements (screws) which leave the the
object invariant – consists of all possible pure rotations of the object about the line
component i.e. all sin-screws of the form
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Ŝ = sinψ l̂, −π < ψ ≤ π, (12)

where l̂ is the unit line component of the point-line object.
However, it will better serve to provide geometric context and to illustrate the

provenance of many linearly combined sets of screws if we consider the symmetry
screws of a body to be written more generally as

Ŝ = L̂ î + M̂ ĵ + N̂ k̂,

where L̂, M̂ , N̂ are dual-valued coefficient functions and î, ĵ, k̂ are orthonormal
axial lines fixed in the body.

Consider that we observe such a body to undergo a relocation which – because
its symmetries restrict our ability to distinguish apparently equivalent locations – is,
in effect, an incompletely specified displacement. Our goal is to identify all finite
displacement screws which are capable of producing the observed relocation. We
may generate the typical screw

• by, firstly, applying some particular displacement (screw) that carries the body
from its initial location into one of its symmetrically equivalent final locations;
this, so called, pilot screw is singled out for this role only and is not otherwise
distinguished among the screws effective for the displacement;

• by then applying to the body – in that final location – a typical member of the
set of symmetry screws which leaves the body apparently invariant by carrying it
into a symmetrically equivalent final location.

Thus, every screw effective for the observed relocation may be obtained as the res-
ultant of applying the pilot screw and one such symmetry screw.

Let the pilot displacement comprise translation dZ and rotation θZ, −π < θZ ≤
π , about a unit line ẑ so, by Eq. (10), the pilot screw is

ŜZ = sin 1
2 θ̂Z ẑ where θ̂Z = θZ+ε dZ.

We adopt ẑ and two further lines x̂, ŷ – which together satisfy orthonormality con-
ditions of Eqs. (2) – as the reference frame for all results.

Now the pilot displacement carries this xyz-frame, embedded in the body, from
an initial location x̂i, ŷi, ẑi to a final location x̂f, ŷf, ẑf with the z-axis ẑ = ẑi = ẑf
in common. It greatly simplifies later working to define the orthonormal axes x̂, ŷ,
ẑ to be the mean lines of those extremum axes, which are then expressed in that
reference location by

x̂i = cos 1
2 θ̂Z x̂−sin 1

2 θ̂Z ŷ,

ŷi = sin 1
2 θ̂Z x̂+cos 1

2 θ̂Z ŷ,

ẑi = ẑ,

x̂f = cos 1
2 θ̂Z x̂+sin 1

2 θ̂Z ŷ,

ŷf = −sin 1
2 θ̂Z x̂+cos 1

2 θ̂Z ŷ,

ẑf = ẑ.

We may now evaluate the resultant of applying the pilot screw,

Ŝ1 = sin 1
2 θ̂Z ẑ,
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and the symmetry screw (L̂, M̂, N̂) as expressed at the final location,

Ŝ2 = L̂(cos 1
2 θ̂Z x̂+sin 1

2 θ̂Z ŷ)−M̂(sin 1
2 θ̂Z x̂−cos 1

2 θ̂Z ŷ)+N̂ ẑ,

for which sin2 1
2 θ̂2 = L̂2+M̂2+N̂2, so that cos 1

2 θ̂2 =
√

1−L̂2−M̂2−N̂2. For the
resultant sin-screw, by use of Eq. (4) we find

cos 1
2 θ̂ =

√
1−L̂2−M̂2−N̂2 cos 1

2 θ̂Z−N̂sin 1
2 θ̂Z, (13)

Ŝ = L̂x̂+M̂ŷ+
[√

1−L̂2−M̂2−N̂2 sin 1
2 θ̂Z+N̂cos 1

2 θ̂Z

]
ẑ, (14)

the second of which shows, in its generalised terms, the provenance of many linearly
combined sets of screws of the kind considered in this paper.

7 Half-Angle Sin Screws for Displacement of the Point-Line

We can now make these results specific to the point-line symmetry object. Within the
displacing xyz-frame, we consider the line-component of the element to lie parallel
with the ŷ-axis. Generality is lost if the line is constrained to lie on the ŷ-axis since
some point of the line is then required – atypically – to traverse the screw axis ẑ itself
during the course of the displacement. Instead, we specify that the line-component
intersects the axis x̂ in a point at distance τ from ŷ, and we adopt that point as the
point-component.

So located, the symmetry screws of the point-line in Eq. (12) are expressed in the
functional forms ⎡⎣ L̂M̂

N̂

⎤⎦ = sinψ

⎡⎣ 0
1
ε τ

⎤⎦,
in which the real parameter ψ , −π < ψ ≤ π , may be arbitrarily chosen.

Since L̂2+M̂2+N̂2 = sin2ψ , so that
√

1−L̂2−M̂2−N̂2 = cosψ , with these
values Eqs. (13, 14) simplify to:

cos 1
2 θ̂ = cosψ cos 1

2 θ̂Z − ε τ sinψsin 1
2 θ̂Z, (15)

Ŝ = sinψ
[
ŷ + ε τ cos 1

2 θ̂Z ẑ
] + cosψ sin 1

2 θ̂Z ẑ, (16)

the second of which shows the two-system [5] of screws expected for the displace-
ment of a point-line [7], as generated by linear combination of the mutually perpen-
dicular, but not intersecting, sin-screws

ŷ + ε τ cos 1
2 θ̂Z ẑ,

sin 1
2 θ̂Z ẑ,
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with the real coefficient functions sinψ , cosψ parameterised by the variable ψ ,
−π < ψ ≤ π .

This basis pair, found earlier as both sin- and tan-screws [8,9], has been made the
subject of a theorem in a recent treatment of the point-line situation which adopts
their directions, and the mid-point between them, as defining a canonical system for
this kinematic context [12]. This adoption is not based on any fundamental charac-
teristic of the screws which distinguishes them from any others in the two-system,
but by the convenience for the human observer of indentifying the locations of those
particular screws within the physical reality of a practical situation.

At the values sinψ = ± sin 1
2 θ̂Z/

√
1+sin2 1

2 θ̂Z, cosψ = 1/
√

1+sin2 1
2 θ̂Z, the

two central principal screws [5] of the two-system are selected, viz.

Ŝ± = sin 1
2 θ̂Z√

1+sin2 1
2 θ̂Z

{
±[

ŷ + ε τ cos 1
2 θ̂Z ẑ

] + ẑ
}
, (17)

which are orthogonal, so that Ŝ+ · Ŝ− = 0, and therefore intersect one another
at right angles. In terms of these, the general member screw of Eq. (16) may be
restated, thus

Ŝ =
√

1+sin2 1
2 θ̂Z

2

{[
cosψ+ sinψ

sin2 1
2 θ̂Z

]
Ŝ+ +

[
cosψ− sinψ

sin2 1
2 θ̂Z

]
Ŝ−

}
.

Normalistion aside, this equation typifies the linear combination of orthogonal basis
screws with (more usually) dual-valued coefficient functions which is represented
in general form at Eq. (7).

8 Full-Angle Screws for Displacement of the Point-Line

As proposed earlier, we form the full-angle Ŝ-screws for displacement of the point-
line object by multiplying the cos 1

2 θ̂ expression of Eq. (15) into the half-angle Ŝ-
screw expression of Eq. (16), and doubling: in some respects, the least-rearranged
outcome, viz.

Ŝ = (sin 2ψ cos 1
2 θ̂Z−ε 2τ sin2 ψsin 1

2 θ̂Z)
[
ŷ + ε τ cos 1

2 θ̂Z ẑ
]

+ (cos2 ψ sin θ̂Z−ε τ sin 2ψsin2 1
2 θ̂Z) ẑ, (18)

is the most informative in that it preserves the identity of the lines of the basis screws
– which, of course, have not changed – while revealing that the coefficients are no
longer purely real.

The attempt, at those same basis screws, to allow a number of inherent references
to the full-angle θ̂Z to express themselves, as represented in the rearrangement:
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Ŝ = sin 2ψ
[
cos 1

2 θ̂Z ŷ + ε τ cos θ̂Z ẑ
] + cos2ψ sin θ̂Z ẑ

− 2ε τ sin2ψsin 1
2 θ̂Z ŷ, (19)

not only leaves the half-angle 1
2 θ̂Z still much in evidence but also splits the iden-

tity of the basis screw ŷ+ε τ cos 1
2 θ̂Z ẑ into two less comprehensible portions. This

unattractive situation is not appreciably changed if the Ŝ-screws are re-expressed in
terms of the central orthogonal principal screw basis of Eq. (17).

So, while we have demonstrated the feasibility, and ease, of expressing a chosen
kinematic situation in terms of full-angle Ŝ-screws, we do not find the representation
which they offer to be as directly informative as that found earlier for half-angle sin-
screws at Eq. (16).

9 Conclusion

It has been shown that in any kinematic situation which is described by a set of
sin-screws in linear combination, whether with real or dual coefficients, screws of
indefinitely many other functional forms may be derived, each with a correspond-
ingly distinct definition of pitch, which in the same kinematic situation will also
form sets of screws that are linearly combined, with – generally – dual coefficients.

It is clear that the scope of the demonstration could have been broadened:
sin-screws were adopted as the base type from which other screw-forms might
be derived because they have been central to most discussions of finite displace-
ment screws in the recent literature; a focus was maintained on derivation of
trigonometrically-related functional forms, rather than arbitrarily general forms, be-
cause these appear to be the most relevant to current and future work and might, in
any case, lead to quite general forms by way of Fourier synthesis.

As stated at the outset, the purpose was not to proffer new screw forms for use
but to indicate where connections may lie between screw- and pitch-forms newly
arising in analysis and those which have been used before.
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