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Preface

Springer published the first book of the series of Advances in Robot Kinematics
in an edited format in 1991. Since 1994, Kluwer and Springer published a book
every two years without interruptions. These books deal with the theory and practice
of robot kinematics and treat the kinematic aspects of robot motion and design of
robots. Each book of Advances in Robot Kinematics reports the most recent research
projects and presents important new discoveries. The series of Advances in Robot
Kinematics is considered a most important source of information in its area.

The present book emphasizes kinematic analysis and design. The issues ad-
dressed are fundamentally kinematic in nature, including synthesis, calibration, re-
dundancy, force control, dexterity, inverse and forward kinematics, kinematic singu-
larities, as well as over-constrained systems. Methods used include line geometry,
quaternion algebra, screw algebra, and linear algebra. These methods are applied
to both parallel and serial multi-degree-of-freedom systems. The results should in-
terest researchers, teachers and students, in fields of engineering and mathematics
related to robot theory, design, control and application.

The contributions had been rigorously reviewed by independent reviewers. The
authors discussed their results at the eleventh international symposium on Advances
in Robot Kinematics which was held in June 2008 in Batz-sur-Mer, France. The
symposium was organized by the Institut de Recherche en Communications et Cy-
bernetique de Nantes, France in collaboration with the J. Stefan Institute, Ljubljana,
Slovenia, under the patronage of the International Federation for the Promotion of
Mechanism and Machine Science.

We are grateful to the authors for their contributions and to the reviewers for
their timely reviews and recommendations. We are also indebted to the personnel
at Springer and Jolanda Karada (Karada Publishing Services) for their excellent
technical and editorial support.

Jadran Lenarčič and Philippe Wenger, editors

xi



SINGULARITY ANALYSIS OF
PARALLEL MANIPULATORS



A New Assessment of Singularities of Parallel
Kinematic Chains

Michele Conconi and Marco Carricato

DIEM – Department of Mechanical Engineering, University of Bologna, Italy;
e-mail: {michele.conconi,marco.carricato}@mail.ing.unibo.it

Abstract. An exhaustive hierarchical-level-based classification of singularities of parallel kin-
ematic chains is presented. Singular events are identified, interpreted and related to the direct
physical phenomena originating them. An in-depth study of the interaction of different types of
singularity is performed.

Key words: singularities, instantaneous kinematics, parallel mechanisms.

1 Introduction

Singularities are critical configurations in which the kinetostatic behaviour of a
mechanism suddenly changes with respect to a full-cycle condition. They have been
studied, under different perspectives, by several authors. Just a few contributions are
recalled here, as a comprehensive discussion is beyond the scope of this paper (for
more detailed bibliographic records, the reader may refer, for instance, to [8]).

Singular configurations are commonly identified by analyzing the input-output
kinematic equations of a mechanism [3]. However, it has been shown that such
an approach may fail to detect some critical configurations of closed-loop chains.
Zlatanov et al. [11], in particular, recognized the role of passive joints, emphasizing
the necessity to develop the study of singularities in the entire configuration space
of the mechanism. They consider the mechanism as an input-output device and base
their study on a definition of singularities that requires the selection of a set of
actuated variables. This choice is necessary for the sake of completeness, but it
inevitably renders the classification complex and, in some cases, of non-immediate
or ambiguous application.

Hunt [4] pioneered the idea of independently considering the phenomena solely
depending on the mechanism geometry, introducing the concepts of uncertainty and
stationary configurations for single-loop chains. Park and Kim [9] and Liu et al. [7]
developed a more complete level-based analysis. They showed that critical config-
urations are coordinate-invariant and proposed, for closed-loop chains, a hierarch-

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 3–12.
© Springer Science+Business Media B.V. 2008
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ical classification that distinguishes between the effects caused by the geometric ar-
rangement of joints, the choice of the actuation and the output-frame location. Their
approach, based on the tools of differential geometry, does not, however, provide an
easy insight into the physical causes of singular phenomena.

Joshi and Tsai [5], in turn, developed an easily-interpretable screw-theory-based
Jacobian analysis of parallel mechanisms. Such an analysis is able to express the
distinctive contributions of both the passive and active constraints acting between
the fixed base and the end-effector, but it does not take into account the entirety of
singular events caused by passive joints.

The aim of this study is to merge the advantages of the above approaches in
order to obtain a singularity classification that (i) proves detailed and exhaustive;
(ii) recognizes hierarchical levels in which physical causes of different phenom-
ena may be distinguished and more easily interpreted; (iii) employs analytical tools
that make the physical comprehension of singularities immediate. Particular atten-
tion is reserved for the interaction of singularities of different types, an aspect that
has seldom received attention in the literature. Indeed, different critical events may
simultaneously take place, either compensating or amplifying each other or even
originating new phenomena.

For the sake of simplicity, the paper is focused on fully-parallel kinematic chains
only. They are composed of a base, a platform and a number of serial chains con-
necting them. A configuration is addressed as full-cycle if a finite neighborhood
thereof exists in which instantaneous motions may occur that do alter neither the
connectivity of the platform with respect to the base nor the dimension of the screw
system associated with any subset of pairs pertaining to a same leg. A full-cycle
condition represents a reference state with respect to which singular configurations
are identified. The full-cycle condition of a given kinematic chain is not necessar-
ily unique [2] and the problem of its identification is not addressed here. Full-cycle
quantities are overlined by a tilde accent throughout the text. As joints with multiple
degrees of freedoms (dof) may always be represented by convenient (instantaneous)
ensembles of individual freedoms, only single-dof joints are considered, without
loss of generality.

The paper is organized as follows. Section 2 presents the singularities of an un-
actuated kinematic chain (UKC). At this level, no link is a priori elected as a frame
or end-effector and no actuation scheme is chosen. In Section 3 the actuated kin-
ematic chain (AKC) is considered, its peculiar singularities are introduced and their
interactions with the ones defined at the first level are analyzed. Section 4 briefly
discusses the possible consequences of singularities on a task-dedicated mechan-
ism, namely a device in which frame and output links have been chosen. For the
sake of the reader’s convenience, two tables are provided at the end of the paper,
summarizing the obtained results. Finally, conclusions are drawn.
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A New Assessment of Singularities of Parallel Kinematic Chains

2 Level 1: Unactuated-Kinematic-Chain Singularities

At this level, no link is selected as a frame or end-effector and no joint is actuated. As
a consequence, kinetostatic properties only depend on the kind, number and mutual
disposition of the joints composing the UKC.

Two members, called base (member b) and platform (member p), are connec-
ted by a number l of serial chains, named legs. A superscript i denotes quantities
referring to the ith leg. q̇ ij$

i
j , j = 1, . . . , f i , is the twist associated with the j th

pair of such a leg, f i being the total number of joints in it. Ji = [$i1, . . . , $if i ] and

q̇i = [q̇ i1, . . . , q̇ if i ]T are the Jacobian matrix and the joint-velocity array of the leg,

respectively. Si = span($i1, . . . , $
i
f i
) is the subspace spanned in R3×R3 by the leg

screws and ri is its dimension. A leg is said to be redundant if, in a full-cycle config-
uration, it is f i > r̃i . The differencemi = f i−ri represents the internal mobility of
the leg, to wit the number of velocity variables that needs to be assigned within the
leg in order to completely determine its velocity state while p and b are kept fixed.
Ci is the subspace of the wrenches reciprocal to the leg screws, namely the passive
constraints or reactions that may be transmitted between b and p. ci = 6− ri is the
dimension of Ci . The total number of joints in the KC is F =∑l

i=1 f
i .

Quantities referring to the relative movement between b and p (in brief, the pb
motion) are denoted by a superscript pb. Spb = ⋂l

i=1 S
i is the subspace of the

admissible pb twists tpb and rpb is its dimension. Cpb =∑l
i=1 C

i is the subspace,
of dimension cpb = 6− rpb, of the reactions reciprocal to the screws of Spb .

2.1 Instantaneous Mobility

As tpb may be expressed as a linear combination of the joint twists in each leg,

namely tpb = ∑f i

i=1 q̇
i
j$
i
j = Ji q̇i , i = 1, . . . , l, the first-order-kinematics loop-

closure equations of the KC may be expressed as

Lq̇ =

⎡⎢⎢⎢⎣
−J1

−J1

...

−J1

J2 0 . . . 0
0 J3 . . . 0
...
...
. . .

...

0 0 . . . Jl

⎤⎥⎥⎥⎦
︸︷︷︸

L1

︸ ︷︷ ︸
L2l

⎡⎢⎢⎢⎣
q̇1

q̇2

...

q̇l

⎤⎥⎥⎥⎦ = 0, (1)

where L is a 6(l − 1)× F matrix and q̇ is an F -dimensional vector.
As L2l is a block diagonal matrix, a column of L1 linearly depends on other

columns of L only if the corresponding column of J1 may be obtained as a linear
combination of the columns of each one of the matrices Ji , for i = 2, . . . , l. The
number of linearly dependent columns comprised in L1 amounts, thus, to the di-
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mension of the intersection of the column spaces of all Ji , i.e. dim
(⋂l

i=1 S
i
)
=

dim(Spb) = rpb. It immediately follows that

rank(L) =
l∑
i=1

ri − rpb = R − rpb, (2)

where R =∑l
i=1 r

i .
The instantaneous mobility of the KC, to wit the number of first-order kinematic

variables that must be specified in order to completely determine the KC velocity
state, may thus be calculated as

m = F − rank(L) =
l∑
i=1

f i −
l∑
i=1

ri + rpb =
l∑
i=1

mi + rpb. (3)

Thus, m is the sum of the internal mobilities of all legs plus the connectivity of p
with respect to b [6].

In the following, the singularities characteristic of the UKC are introduced and
their effects on the KC mobility are analyzed. Numerical information is derived by
computing the rank of L and its submatrices (for an exhaustive singularity analysis,
such computing is a necessary step, even though, in many instances, it may be per-
formed by geometric inspection rather than numeric calculation [4, 10]).

2.2 Serial Singularities

A serial singularity (SS) occurs in a leg any time n screws of a previously linearly
independent subset sin become linearly dependent. As a consequence, the rank rin of

sin becomes lower than n and ∞n−rin non-trivial combinations of relative motions
not affecting the kinematic state of the other joints in the chain become possible
among the joints of the subset. We call this phenomenon instantaneous localized
mobility (ILM). As an effect of the localization of mobility, a number n − rin of
velocity parameters needs to be specified among the joints sharing the SS, in order
to determine the complete kinematic state of the KC.

An SS which causes the leg screw system to lose its full-cycle dimension, to
wit ri < r̃i , is named a leg singularity (LS). A necessary and sufficient condition
for LSs to occur is R < R̃, their number being NLS = �R = R̃ − R. It is worth
remarking that not every SS causes an LS. Indeed, in the case of redundant leg, an SS
may occur in a subset of screws that already exhibits a full-cycle linear dependency
(a so-called redundant set), so that the dimensions of the screw systems associated
with both the redundant set and the overall leg do not vary. For instance, in a leg
comprising a redundant set consisting of four revolute pairs with parallel axes, an
SS may occur that causes three of such joints to become coplanar. Nonetheless, as
the dimension of the screw system associated with the overall redundant set is still
equal to three, ri remains unaltered.

6



A New Assessment of Singularities of Parallel Kinematic Chains

Due to an LS, ci increases as much as ri lessens. The leg gains an internal mo-
bility and exerts a further constraint between b and p.

When the new reactions are linearly independent from the others, rpb decreases
as much as ri : as a consequence, the overall mobility does not vary (cf. Eq. (3)).
Following Hunt [4], we call a configuration for which �r = rpb − r̃pb < 0 a
stationary configuration (SC) and we address the quantity NSC = max(0,−�r) as
its order. This is also the number of LSs leading to an SC (NLS-SC = NSC).

On the contrary, when the new reactions are linearly dependent on the others, rpb

does not change and the mobility of the mechanism necessarily increases. Following
Zlatanov et al. [11], we say that the KC exhibits an instantaneous increased mobility
(IIM). The number of LSs leading to an IIM is NLS-IIM = NLS − NLS-SC =
�R −NSC .

2.3 Constraint Singularities

A passive-constraint singularity or simply constraint singularity (CS) occurs when
the dimension of the pb motion space increases with respect to its full-cycle value,
i.e. rpb > r̃pb (and hence cpb < c̃pb). The mobility criterion (3) shows that a CS
necessarily leads to an IIM configuration. While in an IIM due to an LS the new
freedom is localized in a leg, at a CS it regards the pb motion and, potentially,
it affects the overall movement of the KC. The quantity NCS = max(0,�r) is
addressed as the order of the CS. The overall increase of the instantaneous mobility,
namely�m = m− m̃ = �R+�r , is of course equal to NIIM = NLS-IIM +NCS .

The CS definition adopted here is strictly related to the dimension of the con-
straint subspace Cpb and not to the type of the exerted reactions. Indeed, the ori-
ginal definition by Zlatanov et al. [10] is more ambiguous under this perspective, as
it seems to relate the occurrence of a CS to the acquisition of a new relative free-
dom between b and p, a different one with respect to those previously available.
An example may clarify this. In a 3-UPU translational parallel manipulator, for in-
stance, every leg exerts a pure reaction torque between b and p and the pb motion is
purely translational [5]. If, in a certain configuration, the three reaction torques be-
come linearly dependent and, at the same time, a leg reaches an LS applying a new
force between b and p, the four reaction wrenches still span a three-dimensional
subspace and rpb = r̃pb = 3. Even if the nature of the pb motion changes (it is no
longer translational [1]) and an IIM occurs, the KC is not at a CS, according to our
interpretation (it is, indeed,NSC = NCS = 0 and NLS = NLS-IIM = 1).

According to our definitions, SCs and CSs are mutually exclusive.

3 Level 2: Actuated-Kinematic-Chain Singularities

At this level, motorized joints are specified. Actuation is effectual only if it allows
the complete control of the KC, i.e. if the KC is transformed into a structure once

7
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the actuators are locked. The velocity equations on which the kinematic study of this
level is based are obtained from the system (1) by eliminating the screws associated
with the actuated joints. By choosing and locking the entire set of motors, a KC with
locked actuation (KC-LA) is generated. Instead, by choosing and locking only the
actuators comprised in the redundant sets (if any), an UKC with locked redundancy
(UKC-LR) is obtained. All quantities referring to a KC-LA are underlined, whereas
quantities referring to the UKC-LR are denoted by the subscript LR.

By virtue of the above reasoning, a good choice of the actuation scheme must
then guarantee m̃ = 0, i.e. m̃i = 0, for i = 1, . . . , l, and r̃pb = 0. The former
condition requires the choice of m̃i actuators among the joints of the redundant set
of the ith leg (if present), the latter the selection of further r̃pb motors to control the
pb motion in order to assure c̃pb = 6. The total number of actuators must hence be
equal to m̃ (full-cycle actuation redundancy is excluded here).

By locking all the actuators in a leg, new wrenches become available that con-
strain the pb motion. If Ci is the space of all screws reciprocal to the passive joints
of the ith leg (ci = dim(Ci)), Ci is necessarily a subspace of it. As a consequence,
there exists a subspaceAi whose generators are reciprocal to the screws ofCi and so
thatCi = Ci⊕Ai .Ai is said to be the subspace of the actions exerted by the ith leg,
its dimension ai being equal to the number of motors contributing to control the pb
motion in the ith leg. Apb =∑l

i=1A
i is hence the subspace of the overall actions

between b and p, apb being its dimension. Evidently, it is cpb = cpb + apb − c∩,
c∩ being the dimension of Cpb ∩ Apb.

A good choice of actuation must guarantee c̃pb = c̃pb+ ãpb− c̃∩ = 6 and hence
ãpb = r̃pb + c̃∩. Since, in any case, it must also be ãpb ≤ ∑l

i=1 dim(Ai) = r̃pb,
it follows that the actuation is well chosen if and only if c̃∩ = 0 (and hence ãpb =
r̃pb).

It is clear that any increase of mobility undergone by the UKC cannot be com-
pensated by actuation. On the contrary, this may cause further labilities due to its in-
stantaneous ineffectiveness. Globally, actuation may be considered singular if m >
�m = NIIM . However, as any freedom present in the KC-LA is an uncontrolled
one, it is particularly useful to provide a further distinction between labilities loc-
alized in the legs, which simply affect the subset of joints sharing an SS, and those
regarding the pb motion, which potentially affect the overall movement of the KC
(including its legs). The former freedoms, associated with localized losses of con-
trol, are caused by actuated-leg singularities (ALSs) and occur if�R = R̃−R > 0.
The latter, associated with a global loss of control, are due to pb-motion singularit-
ies (PBSs) and occur when rpb > 0. The overall number of uncontrolled freedoms
(UF) in the KC-LA is, accordingly,NUF = NALS +NPBS = �R + rpb.

ALSs and PBSs depend on singular phenomena distinctive of both the UKC and
the KC-LA. In the following, the effects of the UKC singularities on the KC-LA
are assessed and singularities characteristic of the KC-LA (namely, redundant-set
singularities and action singularities) are introduced. The instantaneous redund-
ancy of actuators (IAR) is also evaluated. This occurs when the number of actions
exerted by the motors among b and p exceeds the dimension of the motion space
that they instantaneously control, namely when an action linearly depends on other

8
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constraints, either passive or active. In such occurrences, actuators may work either
against each other or against joint constraints, causing overheating or breakdown.

3.1 Redundant-Set Singularities

When an SS is not an LS for the UKC, it necessarily regards a group of joints
comprised in a set that is redundant for full-cycle motions of the leg. Such a set
thus exhibits an internal ILM. If a proper number of joints sharing the SS are ac-
tuated (a number equal to the order of the singularity), the redundant set remains
controllable and nothing special happens. Conversely, if an insufficient number of
actuators among those reserved for the control of the redundancy are included in
the joints sharing the SS, the KC-LA (as well as the UKC-LR) exhibits an LS not
present in the UKC. It is an ALS and we call it a redundant-set singularity (RSS).
In such a condition, an actuator originally intended to control the redundant set of
joints exerts a further action between b and p. Depending on whether such an action
belongs to Cpb or not, it does not or it does contribute to reducing the dimension of
the pb motion space. In the former case it acts similarly to an LS causing an IIM, in
the latter as an LS leading to an SC. By analogy, we address the RSS as RSS-IIM
or RSS-SC respectively. While the action generated by an RSS-SC contributes to
Apb and cooperates in controlling the pb motion (bringing about the possibility for
an IAR to occur), the action produced by an RSS-IIM belongs to Cpb and yields no
effects to this aim (however, since it lets c∩ �= 0, it necessarily causes an IAR).

It is worth emphasizing that RSS-IIMs and RSS-SCs are not physically related to
the SCs and IIMs defined in Section 2.2. The latter phenomena, in fact, refer to the
UKC, which is not affected by RSSs. RSS-IIMs and RSS-SCs are conceptually sim-
ilar phenomena, but appearing in the UKC-LR. Indeed, the number of RSSs, RSS-
SCs and RSS-IIMs is given by, respectively, NRSS = R − RLR , NRSS-SC = rpb −
r
pb

LR andNRSS-IIM=NRSS−NRSS-SC . NRSS may also be evaluated by simply look-
ing at the rank of the screw subspaces associated with the actuated redundant sets.

3.2 Constraint Singularities and Action Singularities

A PBS occurs when rpb > 0 and it is caused by a deficiency of the global constraints
restraining the relative motion between b and p. While a CS represents the short-
coming of passive constraints (reactions), an action singularity or active-constraint
singularity (AS) expresses the instantaneous inadequacy of the active ones (actions).
A PBS is always associated with a global loss of control.

If �r <0, i.e. the UKC lies in an SC, or �r = 0, no increase of the pb-motion-
space dimension is owed to reactions and a value of rpb greater than zero may
only be due to insufficient independent actions. In this case, an AS occurs any time
rpb > 0.

9



M. Conconi and M. Carricato

If �r > 0, namely the UKC exhibits a CS, the rise of rpb may depend on both
a CS and an AS. If there are no RSSs, any lability caused by a CS is still present at
level two, while any further increment of rpb is due to actuation. As a consequence,
it is necessarily rpb ≥ �r and an AS occurs only when the strict inequality holds.
Conversely, if RSSs are present, these may compensate a CS and it may happen that
rpb < �r . In such a case, actuation produces no detrimental effect on the control
of the pb motion (on the contrary, it mitigates the effects of the reaction linear
dependency) and no AS is present. The order NAS of the AS is then given by rpb if
�r ≤ 0, by rpb −�r if 0 < �r ≤ rpb and by 0 if �r > rpb.

3.3 Leg Singularities

Depending on actuator location, an LS of the UKC may or may not be present in
the KC-LA. We refer to the former as an uncontrolled LS (ULS) and to the latter as
a controlled LS (CLS).

If there is an LS in the UKC not present in the KC-LA (CLS, ri = r̃ i ), some
actuator that normally controls the pb motion instantaneously instead controls the
localized freedom produced by the LS, being no longer available for the original
task. If the LS determines an SC for the UKC (�r < 0), however, the KC remains
completely controllable, as the ILM is accompanied by a corresponding reduction
of the dimension of the pb motion space. If, on the contrary, the LS produces an
IIM for the UKC, the pb motion space preserves its dimension, but it loses one
of the actions intended for its control. Unless such an action is compensated by that
resulting from an RSS, the CLS leads to an AS with global loss of control (rpb > 0).

If the LS appears both in the actuated and the unactuated KC, then ri < r̃i

and the KC-LA exhibits an ULS, hence an ALS. The quantity NALS = �R =
R̃ − R represents the number of uncontrolled localized freedoms. As any RSS also
produces an ALS, the number of ULSs is given by NULS = NALS − NRSS and
consequentlyNCLS = NLS −NULS .

In an ULS, the leg exerts more reactions between p and b than it does in a full-
cycle configuration (ci > c̃i ). If the LS determines an SC for the UKC, the new
reactions are linearly independent from the others (cpb > c̃pb) and they contribute
to the pb motion. Hence, they may interfere with actions, potentially leading to an
IAR. If the new reactions linearly depend on the others, namely the LS is a IIM for
the UKC, they belong to Cpb and no IAR may occur.

3.4 Instantaneous Actuator Redundancy

An instantaneous actuator redundancy occurs any time an action linearly depends
on other constraints, either passive or active. The number of actions generated by
the motors between b and p is equal to r̃pb + NRSS − NCLS and the dimension of
the space that they control is equal to rpb − rpb. The number of linear dependen-
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Table 1 Singularities and critical configurations of the unactuated kinematic chain.

Name Acronym Number or order

Leg singularity

⎧⎨⎩LSLS-SC
LS-IIM

NLS = �R
NLS-SC = max(0,−�r)
NLS-IIM = NLS −NLS-SC = �R−max(0,−�r)

Constraint singularity CS NCS = max(0,�r)
Stationary configuration SC NSC = NLS-SC = max(0,−�r)
Increased instantaneous mobility IIM NIIM = NLS-IIM +NCS = �R +�r = �m
Definitions: �R = R̃ − R, �r = rpb − r̃pb, �m = m− m̃

Table 2 Singularities and critical configurations of the actuated kinematic chain.

Name Acronym Number or order

Redundant-set singularity

⎧⎨⎩RRSRSS-SC
RSS-IIM

NRSS = R − RLR
NRSS-SC = rpb − rpbLR
NRSS-IIM = NRSS − NRSS-SC = (R − RLR) −
(rpb − rpbLR)

Actuated-leg singularity ALS NALS = �R
Uncontrolled leg-singularity ULS NULS = NALS −NRSS = �R − R + RLR
Controlled leg-singularity CLS NCLS = NLS −NULS = R̃ − RLR −�R
Platform/Base-motion singular-
ity

PBS NPBS = rpb

Actuation singularity AS NAS =
⎧⎨⎩ r

pb, �r ≤ 0
rpb −�r, 0 < �r ≤ rpb
0, �r > rpb

Uncontrolled freedoms UF NUF = NALS + NPBS = �R + rpb
Instant. redundancy of actuators IAR NIAR = NUF − NIIM = �R + rpb −�R −�r
Definition: �R = R̃ − R

cies involving actions, given by the difference between these two quantities, is thus
NIAR = rpb−�r+NRSS−NCLS and it may be interpreted as the order of the IAR.
By considering the expressions given in the previous sections for NRSS and NCLS ,
it is not difficult to prove that NIAR = �R + rpb −�R −�r = NUF −NIIM .

4 Level 3: Input/Output-Mechanism Singularities

At this level, both the frame and the output member (or members) are specified. This
is equivalent to choosing some relative freedoms as particularly significant, but no
new phenomena or singularities are introduced.

From this point of view, all phenomena involving a link whose freedoms are
chosen as an output acquire more relevance. In practice, any gain or loss of mobility
for an output member may alter the mechanism functionality (as well as, indeed, a
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change in the nature of the output motion space, an aspect that has not been con-
sidered here). In all these conditions, some outputs become, in fact, impossible to
achieve (cf. [11]). Particular importance is also assumed by configurations leading
to an IAR. In these situations, in fact, some inputs become impossible to produce
and actuators (or links) risk being damaged.

5 Conclusions

This study has presented a complete and organic classification of singularities of
parallel kinematic chains. The approach employed has the merit of recognizing hier-
archical levels in which the objective causes of different physical phenomena may
be distinguished and more easily interpreted. A better comprehension of the beha-
viour of the kinematic chain under the interaction of different types of singularity
is thus made possible. The study has emphasized how different critical events may
simultaneously take place, either compensating for or amplifying each other, or even
originating new phenomena.

The adopted analytical tools, based on the theory of screws, make the compre-
hension of singularities and their identification particularly simple and physically
intelligible.
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Abstract. Singularity is a major problem for parallel robots as in these configurations the robot
cannot be controlled. There may be very large forces/torques in its joints, possibly leading to its
breakdown. This issue is clearly a very practical problem and we present in this paper an algorithm
which computes the static workspace of a planar parallel robot for a given orientation i.e. the set
of location of the platform at which the absolute value of all joint forces are smaller or equal to a
given threshold

Key words: planar parallel robots, singularity, static workspace.

1 Introduction

Singularity analysis of parallel robots has a long history, starting with the pioneer
works of Cauchy [4], Bricard [3] and Borel [2]. In the modern era such configura-
tions have been studied by Hunt [6] and by Gosselin [5]. Since then this issue has
been addressed by many authors [7, 18, 21].

Although it exists some kind of singularity where the joint forces/torques could
resist to a very large external wrench, it is usually claimed that singularities should
be avoided because in the vicinity of some singularities the joint forces may go to
infinity, leading to a breakdown of the robot. This has led to major work to determine
the singularity loci [8, 9, 13–15], to define a “distance” to a singular pose [17, 19],
to determine trajectories that avoid singularities [1, 11, 12, 16], to investigate the
relation between singularities and kinematics analysis [20] and finally to determine
if a given workspace is singularity-free [10] in spite of the uncertainties in the robot
modeling.

In this paper we follow another approach that is led by a very practical considera-
tion: to avoid breaking the robot the main criteria is to avoid exceeding the maximal
possible forces/torques in the legs. Hence being given a threshold τmax on the joint
forces we define the static workspace as the set of poses so that

−τmax ≤ τ ≤ τmax (1)

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 13–20.
© Springer Science+Business Media B.V. 2008
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Fig. 1 The 3-RPR robot.

for a given load on the platform. The aim of this paper is to present an algorithm that
allows one to compute the boundary of static workspace for a given orientation of
the platform. This algorithm will be illustrated on the planar 3-RPR parallel robot.

2 Static Analysis

We consider a 3-RPR parallel robot (Figure 1) whose attachment points on the base
(platform) are denoted Ai (Bi ). The pose of the platform is parametrized by the
coordinates in a given reference frame of a point C of the platform and by the
rotation angle θ between the x axis of the reference frame and the xr axis of the
mobile frame. The length of leg i is denoted by ρi = ‖AiBi‖. The joint forces
vector τ and the wrench F exerted on the platform are related by F = J−T τ , J−T

is the transpose of the kinematic Jacobian J−1 whose lines Ji are given by:

Ji =
(

AiBi

ρi

CBi ×AiBi

ρi

)
(2)

We derive from J−1 a matrix M whose rows are Mi = (AiBi CBi × AiBi)
T while

matrices Ni are obtained by the substitution of the ith column of M by F . Note that
such formulation is valid for many types of parallel robot (for example the Jacobian
of the Gough platform has the same layout).

According to Cramer’s rule applied on F = J−T τ we get:

τi = ρi |Ni|
|M| (3)

Note that at a singularity (i.e |M| = 0), we may still have finite joint forces satisf-
ing (1). Hence in term of static, singularities are not the real issue but more important
is their vicinity, which motivates the study of the the regions where |τ | ≤ τmax, that
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will be called the static workspace. This study is performed under the assumptions
that θ and the wrench applied on the platform have both constant values. It must be
noted that under these assumptions we have ρi =

√
(x − Ui)2 + (y − Vi)2 where

Ui, Vi are constants that depend only on the leg and on θ .

3 Border of the Static Workspace

It can be shown that a point belongs to the boundary of the static workspace if at
least one component τi of τ verifies |τi | = τmax. Let us assume first that |M| �= 0.
If τi = τmax or τi = −τmax then (3) can be rewritten as

τmax|M| − ρi |Ni| = 0, τmax|M| + ρi |Ni| = 0 (4)

Curves in the x-y plane that satisfies τi = τmax are called n-type curves and those
that satisfies τi = −τmax are called m-type curves. These curves are not algebraic
as ρi is a square root of an algebraic equation in x, y. But it must be noted that
m-curves and n-curves satisfy both the equation

τ 2
max|M|2 − ρ2

i |Ni|2 = 0 (5)

that denotes the q-curves and are algebraic of total degree 6.
Now, if we assume that |M| = 0 (i.e. we are at a singularity), then τi may be

finite only in two cases, namely if |Ni| = 0 or ρi = 0. Poses at which we have
|M| = 0, |Ni| = 0 are labeled as N-points while poses at which |M| = 0, ρi = 0
are denoted by R-points. It must be noted that both R and N-points belong simultan-
eously to the n and m-curves.

Hence the boundary of the static workspace is constituted of arcs of m and n-
curves with possibly some R and N-points.

4 Algorithm Computing the Boundary of the Static Workspace

4.1 The Key-Points

Let us consider a point M1 on the n-curve n1 (i.e. at this pose we have τ1 = τmax)
and assume that |τ2|, |τ3| ≤ τmax. If we move along n1 we may arrive at a pose
M2 at which we have |τ2| > τmax. This implies that there is pose M3 between M1
andM2 on the curve n1 such that |τ2| = τmax andM3 is an intersection between n1
and n2 or m2. The poses which lie on the intersections of two n-curve ni or two m-
curve mi or one n-curve and one m-curve for which we have |τi | = τmax are called
key-points and by extension the N and R-points are also considered as key-points.
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Now consider the part of an n-curve (or an m-curve) between two successive
key-points. If a pose of this part lies on the boundary of the static workspace, then
it is easy to show that the whole part is a component of the border.

In summary the set of key-points is consitutued of the R and N-points and the
intersection points between the n and m-curves, which can be easily calculated with
the q-curves. Indeed the intersections between two such curves are the intersection
points between all pairs of corresponding m and n-curves. The intersection points
between two algebraic q-curves qi, qj may easily be computed with a resultant and
attributed to ni , mi , nj or mj . A similar procedure allows one to calculate the co-
ordinates of the R and N-points.

Note that we may have infinite arcs: to avoid this problem we define a bounding
box and draw the border only within it. It may also occur that the list of key-points
is empty either because the static workspace has no intersection with the bounding
box or if there is no intersection between the n and m-curves and some n and m-
curves are fully included in the bounding box. To deal with this case we compute
the intersections I of the n and m-curves with the bounding box. If these intersec-
tions are not empty, then the intersection points are added as key-points. Then, we
compute arbitrary poses on the curves: if the set T of such poses are included in,
the bounding box is no empty, then we use T as additional key-points. If I and T
are empty, then the static workspace has no intersection with the bounding box.

As seen previously determining if part of an n or m-curve belong to a border may
be performed by considering an arbitrary pose on the arc and computing the τ at this
pose: the |τi | must be all lower or equal to τmax. The procedure On_Border(x,y)
returns 1 if x, y is on the border, 0 otherwise. Note also that for the calculation of
the border we add a few additional key-points, that will be presented later.

4.2 Determining the Curves

After having computed the key-points, we must determine the arcs of the curves
between two successive key-points. Without lack of generality we consider a n-
curve ni . We start from a key-point K1 with coordinates (x1, y1) and look at the
closest key-points Kf (xf , yf ) from K1 with xf > x1. We then compute the two
tangent unit vectors T1, T2 of the n-curve at this point. We consider first T1 with
components (tx, ty). If t2x ≥ t2y we substitute x = xn = x1 + �, y = y + 1 + ε
in ni where � is a small fixed increment. We then solve ni = 0 in ε, looking only
for “small” solutions (typically of absolute value lower than 10�). If we obtain
more than one solution, we divide � by 2 and start again, while if no solution is
obtained we stop the process. If we get only one of such solutions, we obtain a new
point on the n-curve with coordinates (xn = x1 + �, yn = y1 + ε). We use then
On_Border(xn, yn) to determine if the arc we are following is on the border. If this
procedure returns 1, then we repeat the process for this new point. Otherwise the
process is stopped.

The process is repeated until one of the following cases occur:
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• if x1 + � > xf we adjust � in such way that x1 + � = xf . We compute then
yn = y1 + ε and if yn = yf , then we have determined an arc of curve between
K1,Kf which are successive key-points. If yn �= yf the process continues.

• we compute the tangent unit vectors at xn, yn. If at this point t2y > t
2
x we stop the

process and store (xn, yn) as new additional key-point. The motivation here is to
increment by� the variable that has locally the largest variation so that the other
variable will exhibit only minor variations.

When this process is terminated, we repeat it with x = xn = x1 − � instead of
x = xn = x1 +�, in order to determine another arc starting formK1.

If t2y > t2x the principle is the same except that it is the variable y which is
incremented by �.

Concerning the R-points which require a specific treatment as they have no tan-
gent vectors (indeed the derivatives of the curves with respect to x, y involve 1/ρ
while at an R-point ρ = 0). For an R-point of coordinates x1, y1 we use all the small
solutions obtained for x1 ± �, y1 ± � as new key-points and the above procedure
is not used for the R-points.

5 Examples

The algorithm described in the paper was implemented in Maple and was tested
for the planar parallel robot 3-RPR whose geometry is defined by OA1 = (0, 0),
OA2 = (20, 0), OA3 = (12, 10), CBr1 = (−4, 4), CBr2 = (4,−4) and CBr3 =
(0, 2), units being irrelevant as soon as th same one is used for all calculations.

We choose a threshold τmax = 3 and an increment � = 0.05. The curves that
are involved and the static workspace border are presented for F = (4, 0, 0), θ =
0.1 rad in Figure 2, while Figure 3 presents the static workspace for θ = −2.91 rad
and F = (0, 0, 5). Note that the crosses on the second part of figure 2 represent the
points used to determine if a region is or not on the boundary of the static workspace.

The computation time for determining the static workspace varies between 50 s
and 500 s.

Some interesting results may be noticed on these figures. For example in Figure 3
the static workspace is composed of three components that are connected at point
S1, S2. These two poses are singular. Hence it is theoretically possible to move from
one component to another one by going through the singularity. In practice however
the useful workspace is reduced to only one component because the robot control
will not allow to generate a trajectory that goes exactly through Si . It must also be
noted that the static workspace may have components that extend to infinity.

The effect of the kinematic constraints may be seen on figure 3: here we have
imposed that the leg lengths are limited to the range [3, 12]. The resulting workspace
is composed of the intersection of the 3 large circles minus the union of the 3 small
circles. But if we take into account the static workspace this workspace is reduced
to 2 components: a very small area (the one located around x = −15 close to the
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Fig. 2 Curves involved and static workspace border for F = (4, 0, 0), θ = 0.1 rad.

two small circles having an intersection and a larger one between x = −10 and
x = −5).

6 Conclusion

We have presented in this paper an algorithm which allows one to determine the
boundary of the static workspace of a planar manipulator for a given orientation
and a given external wrench. This approach is another way, based on a physical
requirement, to manage singularity. It has been illustrated on a planar parallel robot
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Fig. 3 On the right the static workspace for θ = 2.91 rad and F = (0, 0, 5) (denoted by “+”). On
the right the workspace based on limits on the leg lengths is reduced by the static workspace to 2
components.

but may be used as well on other parallel manipulators and will provide planar
cross-sections of the static workspace.

This work may be extended in various ways. It may be interesting to compute
the static workspace for a given orientation range. Using our approach we may cal-
culate the static workspace for various values of the orientation angle. Then we will
compute the intersections of all these static workspaces (which is possible as basic-
ally the boundary of the static workspace is a polygonal line and it exists efficient
algorithms to compute the intersections of polygons). A similar approach may be
used if the wrench applied on the platform lies within some given range.

Clearly with this approach the result will only be an approximation of the static
workspace for the orientation or a wrench range. But we will be sure that the real
static workspace is included in the resulting polygon(s) and we may then use, for
example, interval analysis to refine the result.

A similar method may be used to take modeling uncertainties (e.g. uncertainties
on the location of the Ai,Bi ) into account. A first result is obtained through our
approach, then interval analysis may be used with the initial result as starting point
to determine a “safe” static workspace that will be guaranteed to include on poses
strictly satisfying the constraint (1) whatever are the tolerances on the location of
the Ai,Bi .
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Abstract. The paper addresses the constraint singularities in connection with the structural para-
meters of parallel robots. The new formulae of mobility, connectivity, overconstraint and redund-
ancy of parallel robots, recently proposed by the author, are used to characterize the constraint
singulatities. By using these formulae, we demonstrate that in a constraint singularity the instant-
aneous values of the mobility, connectivity of the moving platform and degree of overconstraint
increase with no changes in limb connectivity. The constraint singularities are easily identified by
inspection without Jacobian calculation.

Key words: constraint singularity, mobility, connectivity, redundancy, overconstraint.

1 Introduction

In a general mathematical sense, a singularity is a point at which a given mathem-
atical model is not defined or fails to be well-behaved in some particular way. In
engineering, a singularity is a configuration of a system in which the subsequent
behaviour cannot be predicted. In a singular configuration, the underlying equations
of the mechanical model exhibit a mathematical singularity. The corresponding mo-
tions, forces, or other physical parameters modelled by these equations become un-
determined.

Numerous investigations have been conducted on singular configurations of
mechanisms, with recent emphasis on parallel robotic manipulators. The identi-
fication of singular configurations in parallel robots is of great importance. Near
singular configuration, infinitesimal changes in input/output velocities or forces can
produce huge variations of outputs/inputs. In singular configurations, the mechan-
ism loses the ability to transmit resolutely motion and force, and becomes uncon-
trollable; the kinematic and static behaviour of the mechanism change dramatically;
the mechanism gains extra degrees of freedom and loses its stiffness. Furthermore,
the actuator forces may become very intense; this might lead to robot failure or per-
manent damage of the robot and surrounding equipment, including a breakdown of
the mechanism. Therefore, much effort has been devoted to avoiding singularities

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 21–28.
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by a proper design. When they do exist in the workspace, they must be circumvented
by proper path planning.

The term of constraint singularities has been recently coined by Zlatanov et al.
(2002a) to characterize the configuration of lower mobility parallel manipulators in
which both the connectivity of the moving platform and the mobility of the parallel
mechanism increase their instantaneous values. This type of singularity was initially
identified as a configuration space singularity of the 3-UPU robot at SNU – Seoul
National University (Han et al., 2002). In this notation U stands for universal and
P for prismatic joints. At its home position this translational parallel robot exhibits
finite motions even with all active prismatic joints locked. Various tools have been
used to study this singularity: the rank and the condition number of the Jacobian
matrix of the loop closure equations (Han et al., 2002), the screw theory (Zlatanov
et al., 2002a, 2002b), the augmented Jacobian matrix (Joshi and Tsai, 2002), the
linear complex approximation (Wolf and Shoham, 2002; Wolf et al., 2002), Morse
function theory and differential forms associated with the constraint functions (Liu
et al., 2003).

The 3-UPU mechanism was studied for the first time in Tsai (1996) where the
direct position analysis restricted to the search for the translational configurations
was addressed. Di Gregorio and Parenti-Castelli (2002) analyzed in analytic form
both translation and rotation singularities of this parallel mechanism.

The main objective of this paper is to propose a simple approach to identify and
characterize the constraint singularities in connection with the structural parameters
of the parallel robots.

2 Structural Parameters of the Parallel Robots

The main structural parameters of the parallel robots are associated with mobility,
connectivity, redundancy and overconstraint. We recall briefly the meaning of these
parameters. More details can be found in Gogu (2008).

IFToMM terminology defines the mobility or the degree of freedom as the num-
ber of independent coordinates required to define the configuration of a kinematic
chain or mechanism (Ionescu, 2003).

We note that the classical formulae for a quick calculation of mobility, known as
Chebychev–Grübler–Kutzbach formulae do not fit many classical mechanisms and
recent parallel robots. These formulae have been recently reviewed in Gogu (2005a)
and their limits have been set up in Gogu (2005b). New formulae for quick calcula-
tion of the mobility have been proposed in Gogu (2005c, 2005d) and demonstrated
via the theory of linear transformations. A recent development of these contributions
can be found in Gogu (2008).

The connectivity between two links of a mechanism represents the number of
independent finite and/or infinitesimal displacements allowed by the mechanism
between the two links.
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The number of overconstraints of a mechanism is given by the difference between
the maximum number of joint kinematic parameters that could lose their independ-
ence in the closed loops, and the number of joint kinematic parameters that actually
lose their independence in the closed loops.

The redundancy is given by the difference between the mobility of the parallel
mechanism and the connectivity of the moving platform.

Let us consider the case of a parallel mechanism F ← G1 − G2 − · · · Gk in
which the end-effector n ≡ nGi is connected to the reference link 1 ≡ 1Gi by k
simple or complex kinematic chains Gi (1Gi − 2Gi − · · · nGi ) called limbs (legs).
The mechanism F ← G1 −G2 − · · · Gk is characterized by:

• RGi – the vector space of relative velocities between the extreme links nGi and
1Gi in the kinematic chain Gi disconnected from the mechanism F ,

• RF – the vector space of relative velocities between the extreme links n ≡ nGi
and 1 ≡ 1Gi in the mechanism F ← G1 −G2 − · · · Gk ,

• SGi = dim(RGi ) – the connectivity between extreme the links nGi and 1Gi in the
kinematic chainGi disconnected from the mechanism F ,

• SF = dim(RF ) – the connectivity between the extreme links n ≡ nGi and 1 ≡
1Gi in the mechanism F ← G1 −G2 − · · · Gk .

These parameters are related by the new formulae for mobilityM , connectivity SF ,
overconstraint N , and redundancy T of the parallel mechanism F ← G1 − G2 −
· · · Gk (Gogu, 2008):

M =
p∑
j=1

fj − r, (1)

N = 6q − r, (2)

T = M − SF , (3)

where
SF = dim(RF ) = dim(RG1 ∩ RG2 ∩ · · · ∩ RGk ), (4)

r =
k∑
j=1

SGj − SF + rl, (5)

and

rl =
k∑
j=1

r
Gj
l , (6)

where p represents the total number of joints, q is the total number of independent
closed loops in the sense of graph theory, fj is the mobility of the j th joint, r is
the number of joint parameters that lose their independence in the mechanism F ,

r
Gj
l is the number of joint parameters that lose their independence in the closed

loops of the limb Gj , and rl is the total number of joint parameters that lose their
independence in the closed loops that may exist in the limbs of the mechanism F .
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We note that the intersection in Eq. (4) is consistent if the operational velocity
spaces RGi are defined by the velocities of the same point situated on the end-
effector. This point is called the characteristic point, and is denoted in this paper by
H .

The connectivity SF of the end-effector n ≡ nGi in the mechanism F ← G1 −
G2 − · · · Gk is less than or equal to the mobilityM of the mechanism F .

The basis of the vector space RF of relative velocities between the end-effector
n ≡ nGi and the reference link 1 ≡ 1Gi ≡ 0 in the mechanism F ← G1 − G2 −
· · · Gk does not vary with the position of the characteristic point on n ≡ nGi .

When there are various ways to choose the basis of the operational spaces, the
bases of RGi in Eq. (4) are selected such as the minimum value of SF is obtained.
By this choice, the result of Eq. (4) fits in with general mobility definition as the
minimum value of the instantaneous mobility.

Equations (1–6) are valid for any parallel mechanism in which no joint belongs
to more than one limb. This condition can be expresses by

p =
k∑
j=1

pGj , (7)

where pGj is the number of joints of j th limb.
In a singular configuration of the parallel mechanism F ← G1−G2−· · · Gk , at

least one of the structural parameters in Eq. (5) is instantaneously altered. We denote
by an anterior superior index i the instantaneous values of the structural parameters
defined above. We note that, in general, any structural parameter used in Eqs. (1–6)
can be affected by singular configurations excepting fj and q .

3 Constraint Singularities

In this section, we discuss the nature of constraint singularities, by using Eqs. (1–
6), and we demonstrate the relation between these singularities and the degree of
overconstraint of the parallel mechanism and the connectivity of the limbs.

Property 1. If the vector space of relative velocities between the extreme links nGi
and 1Gi in the kinematic chain Gi disconnected from the mechanism F , accept
various bases, the connectivity of the moving platform can increase instantaneously
its value iSF > SF , with no instantaneous change in leg connectivity (iSGi = SGi ).
This property results directly from Eq. (4) and shows that a constraint singularity
may occur when the vector space of relative velocities between the extreme links
nGi and 1Gi in the kinematic chainGi disconnected from the mechanism F , accept
various bases at least for one of the limbs.
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Property 2. An instantaneous increase of the connectivity of the moving platform
(iSF − SF ) is accompanied by an identical increase of the mobility of the parallel
mechanism (iMF −MF ) when no instantaneous changes occur in limb connectivity
and the number of joint parameters that lose their independence in the closed loops
that may exist in limb Gj

iMF −MF = iSF − SF (8)

when iSGi = SGi and i rl = rl . This property results directly from Eqs. (1) and (5).

Property 3. An instantaneous increase of the connectivity of the moving platform
(iSF − SF ) is accompanied by an identical increase of the degree of overconstraint
of the parallel mechanism (iN − N) when no instantaneous changes occur in leg
connectivity and the number of joint parameters that lose their independence in the
closed loops that may exist in limb Gj

iN −N = iSF − SF (9)

when iSGi = SGi and i rl = rl . This property results directly from Eqs. (1) and (5).

Property 4. An instantaneous increase of the connectivity of the moving platform
(iSF − SF ) accompanied by an identical increase of the mobility of the parallel
mechanism (iMF −MF ) does not affect the redundancy of the parallel mechanism.

This property results directly from Eq. (3).
The four properties characterizing the constraint singularities are illustrated with

respect to the well known 3-UPU mechanism in Figure 1a. We will show that the
constraint singularities of this mechanism can be easily identified by inspection with
no need to calculate the augmented Jacobian. The parallel mechanism has three
simple legs (no closed loops exist inside a leg), that is irl = rl = 0. The axes of the
first revolute joints of each leg are coplanar and form the fixed platform plane. The
axes of the last revolute joints of each leg are also coplanar and form the moving
platform plane. The relative position of the three revolute joints in the two planes
is the same but the dimensions of the mobile and fixed platforms are different (see
Figure 1a). Each universal joint is composed by two revolute joints with perpendic-
ular axes. Each leg has SGi = 5 and each vector space RGi can have one of the
following bases: (vx, vy, vz,ωx,ωy), (vx, vy, vz,ωx,ωz) and (vx, vy, vz,ωy,ωz).
Three different values can be obtained for the connectivity between the moving and
the fixed platforms of 3-UPU mechanism. The minimum value SF = 3 is associ-
ated with the mechanism in Figure 1a where the moving platform have just three
independent translations. For example if we chose (RG1) = (vx, vy, vz,ωx,ωy),
(RG2) = (vx, vy, vz,ωx,ωz) and (RG3) = (vx, vy, vz,ωy,ωz), Eqs. (1–5) give
M = 3, N = 0 and T = 0.

For certain configurations the moving platform can have iSF = 4 or 5. These
instantaneous values are associated with the constraint singularities. In the configur-
ation in Figure 1b, the axes of the first two revolute joints of two limbs are coplanar,
and the axes of the last two revolute joints of the same limbs are also coplanar.
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Fig. 1 Two solutions of 3-UPU parallel mechanisms: general solution with no constraint singular-
ities (a) and a solution with a constraint singularity (b).

The two planes to which the revolute joints belong are parallel. In this configur-
ation, the vector spaces of relative velocities between the extreme links nGi and
1Gi in the kinematic chain Gi disconnected from the mechanism F have the fol-
lowing bases (iRG1) = (vx, vy, vz,ωx,ωz), or (iRG1) = (vx, vy, vz,ωy,ωz) and
(iRG2) = (iRG3) = (vx, vy, vz,ωx,ωy) with SGi = 5. Equation (4) gives iSF = 4.
The moving platform has instantaneously four independent velocities: three transla-
tions and one rotation. Equations (1–3) give iM = 4, iN = 1 and iT = 0.

In the configurations in Figure 2, the axes of the first two revolute joints of the
three limbs are coplanar, and the axes of the last two revolute joints of the three limbs
are also coplanar. The two planes to which the revolute joints belong are parallel. In
this configuration, the vector spaces of relative velocities between the extreme links
nGi and 1Gi in the kinematic chainGi disconnected from the mechanism F have the
same bases, for example (iRG1) = (iRG2) = (iRG3) = (vx, vy, vz,ωx,ωy) with
SGi = 5. Equation (4) gives iSF = 5. The moving platform has instantaneously five
independent velocities: three translations and two rotations. Equations (1–3) give
iM = 5, iN = 2 and iT = 0. The moving platform and the base are identical
in Figure 2a. The constraint singularity in Figure 2b was firstly observed on SNU
parallel robot (Han et al., 2002).

The constraint singularities in Figures 2a and 2b have been identified by Joshi
and Tsai (2002) by calculating the rank of the augmented (overall) Jacobian. The
constraint singularity in Figure 1b is identified for the first time by using the method
presented in this paper.
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Fig. 2 Two solutions of 3-UPU parallel mechanisms with constraint singularities.

4 Conclusions

Constraint singularities are used to characterize the configuration of lower mobility
parallel manipulators in which both the connectivity of the moving platform and the
mobility of the parallel mechanism increase their instantaneous values. In this pa-
per, we have explained the nature of these singularities, by using the new formulae
of mobility, connectivity, overconstraint and redundancy of parallel robots, recently
proposed by the author, and we have demonstrate the relation between these singu-
larities and the structural parameters of the parallel robots. In this way, the constraint
singularities can be easily identified by inspection with no need to calculate the aug-
mented Jacobian.
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Abstract. This paper first deals with the forward kinematics (forward displacement analysis) of a
class of 3-RPR planar parallel manipulator with congruent equilateral base and moving platform
using an algebraic approach. Conditions on the inputs under which the manipulator has different
number of solutions to the forward kinematics, including a double solution, two distinct solutions
or infinite solutions (self-motion), are identified. The Type 2 singularity analysis is then performed
for this parallel manipulator. The result, given in [1] without detailed proof, regarding the Type 2
singularities with a non-zero orientation angle is then proved.

Key words: parallel manipulator, forward kinematics, singularity, self-motion, Cardanic motion.

1 Introduction

Recently, a 3-RPR planar parallel manipulator with congruent equilateral base and
moving platform (Figure 1) has been proposed in [1]. A comprehensive kinematic
study on this parallel manipulator has been performed using a geometric approach.
It was pointed out, without detailed proof (see the last paragraph in [1, p. 224]), that
the only Type 2 singular configurations, for which the base and the moving platform
do not coincide, belong to self motions. In such singular configurations, the legs
intersect at the circumcircle of the base.

For a better understanding of this parallel manipulator, the forward kinematics
(forward displacement analysis) and the singularity analysis will be investigated
systematically using an algebraic approach.

2 Loop Closure Equation

The 3-RPR planar parallel manipulator (Figure 1) is composed of a base and moving
platform connected by three legs. The base (A1A2A3) and the moving platform
(B1B2B3) are congruent equilateral triangles. Each leg is composed of an R, a P

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 29–38.
© Springer Science+Business Media B.V. 2008



X. Kong

Fig. 1 3-RPR planar parallel manipulator.

and an R joint in sequence. The positive direction of each P joint is indicated by an
arrow in the figures except for Figure 1. All the three R joints located on the base
are actuated. Two coordinate systems, A3 − XY and B3 − XPYP , are fixed on the
base and the moving platform, respectively. The location of the moving platform
can be represented with (x, y), the position of OP , and φ, the orientation angle of
the moving platform.

The loop closure equations of loopsA3B3B1A1 andA3B3B2A2 in complex num-
ber form are [3] {

ρ3e
iθ3 = e−i(2π/3) + ρ1e

iθ1 − ei(φ−2π/3)

ρ3e
iθ3 = e−i(π/3) + ρ2e

iθ2 − ei(φ−π/3)

Multiplying the above equation with e−iθ1 and e−iθ2 respectively, we obtain{
ρ3e

i(θ3−θ1) = e−i(θ1+2π/3) + ρ1 − ei(φ−θ1−2π/3)

ρ3e
i(θ3−θ2) = e−i(θ2+π/3) + ρ2 − ei(φ−θ2−π/3) (1)

Taking the imaginary part of Eq. (1), we have{
ρ3 sin(θ3 − θ1) = − sin(θ1 + 2π/3)− sin(φ − θ1 − 2π/3)

ρ3 sin(θ3 − θ2) = − sin(θ2 + π/3)− sin(φ − θ2 − π/3) (2)
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3 Forward Kinematics

Since x and y can be readily determined for a specified ρ3, the forward kinematics
is reduced to the solution of Eq. (2) for ρ3 and φ.

Rewriting Eq. (2), we have{
sin(φ − θ1 − 2π/3) = −ρ3 sin(θ3 − θ1)− sin(θ1 + 2π/3)

sin(φ − θ2 − π/3) = −ρ3 sin(θ3 − θ2)− sin(θ2 + π/3) (3)

i.e.

R

[
sin φ

cosφ

]
= −

[
ρ3 sin(θ3 − θ1)

ρ3 sin(θ3 − θ2)

]
−

[
sin(θ1 + 2π/3)

sin(θ2 + π/3)
]

(4)

where

R =
[

cos(θ1 + 2π/3) − sin(θ1 + 2π/3)

cos(θ2 + π/3) − sin(θ2 + π/3)
]

(5)

Equation (4) can be regarded as a set of linear equations in sinφ and cosφ. There-
fore, it can be solved according to the following two cases:

Case 1
det(R) = sin(θ1 − θ2 + π/3) �= 0 (6)

Case 2
det(R) = sin(θ1 − θ2 + π/3) = 0 (7)

3.1 Case 1

Since Eq. (6) is satisfied, we obtain the following equation by solving Eq. (4):{
sin φ = ρ3det(S)/det(R)

cosφ = 1+ ρ3det(T )/det(R)
(8)

where

S =
[

sin(θ3 − θ1) sin(θ1 + 2π/3)

sin(θ3 − θ2) sin(θ2 + π/3)
]

(9)

T =
[

cos(θ1 + 2π/3) − sin(θ3 − θ1)

cos(θ2 + π/3) − sin(θ3 − θ2)

]
(10)

Substitution of Eq. (8) into sin2 φ + cos2 φ = 1, we obtain

a2ρ
2
3 + a1ρ3 = 0 (11)

where
a2 = det2(S)+ det2(T ) (12)
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a1 = 2 sin(θ1 − θ2 + π/3)det(T ) = 2det(R)det(T ) (13)

Equation (11) can be solved according to the following three sub-cases.

Case 1a {
a2 = 0

a1 = 0
(14)

Case 1b {
a2 �= 0

a1 = 0
(15)

Case 1c
a1 �= 0 (16)

3.1.1 Case 1a

Equation (14) is equivalent to {
det(S) = 0

det(T ) = 0
(17)

Substituting Eq. (17) into Eqs. (12) and (13), we obtain that a1 = 0 and a2 = 0.
From Eq. (11), we obtain that there are infinite solutions for ρ3.

Substituting Eq. (17) into Eq. (8), we have{
sin φ = 0

cosφ = 1
(18)

i.e.,
φ = 0 (19)

Substituting Eq. (18) into Eq. (3), we obtain{
ρ3 sin(θ3 − θ1) = 0

ρ3 sin(θ3 − θ2) = 0
(20)

i.e., {
sin(θ3 − θ1) = 0

sin(θ3 − θ2) = 0
(21)

In summary, in Case 1a in which Eq. (21) is satisfied, there are infinite solu-
tions to the forward kinematics, and the moving platform undergoes self-motion –
translation along AiBi with φ = 0 (Figure 2a).
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(a)                                                                      (b)

A1 A2

A3

B1 B2

B3

A1 A2

C

B3

B1

B2

A3

IA

IB

Fig. 2 Forward kinematics of 3-RPR planar parallel manipulator with infinite solutions: (a) Case
1a translation as selfmotion, and (b) Case 2a Cardanic motion as selfmotion.

3.1.2 Case 1b

Equation (15) is equivalent to {
det(S) �= 0

det(T ) = 0
(22)

Solving Eq. (11), one obtain the following double solution to ρ3:

ρ3 = 0 (23)

Substituting the above equation into Eq. (8), we have{
sin φ = 0

cosφ = 1
(24)

i.e.,
φ = 0 (25)

Therefore, in Case 1b, in which Eqs. (6) and (22) are satisfied, there is a double
solution to the forward kinematics: the moving platform coincides with the base
(Figure 3a).

3.1.3 Case 1c

Equation (16) is equivalent to
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(a) (b)

A2(B2)

A3(B3)

A1(B1)

A3(B3)

A1(B1) A2(B2)

Fig. 3 Forward kinematics of 3-RPR planar parallel manipulator with a double solution: (a) Case
1b, and (b) Case 2b.

(a)                                                                                          (b)
A1 A2

B1

B2

B3 B2

B1

A3

A1 A2

A3(B3)

Fig. 4 Forward kinematics of 3-RPR planar parallel manipulator with two distinct solutions: (a)
Case 1c, and (b) Case 2b.

det(T ) �= 0 (26)

Solving Eq. (11), we obtain two distinct solutions for ρ3:

ρ3 = 0 (27)

ρ3 = −a1/a2 (28)

For each value of ρ3 (Eqs. (27) and (28)), one unique value for φ can be obtained
using Eq. (8).

In Case 1c (Figure 4a) in which Eqs. (6) and (26) are satisfied, there are two
distinct solutions to the forward kinematics (Eqs. (27) and (28) and (8)).
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3.2 Case 2

In this case, Eq.(7) is satisfied. Substituting Eq. (7) into the second equation of (3),
it becomes

sin(φ − θ1 − 2π/3) cos(θ1 − θ2 + π/3)
= −ρ3 sin(θ3 − θ2)− sin(θ1 + 2π/3) cos(θ1 − θ2 + π/3) (29)

Comparing Eq.(29) with the first equation of (3), we obtain that Eq. (3) have solu-
tions if

ρ3[sin(θ3 − θ2)− sin(θ3 − θ1) cos(θ1 − θ2 + π/3)] = 0 (30)

Equation (30) leads to

sin(θ3 − θ2) = sin(θ3 − θ1) cos(θ1 − θ2 + π/3) (31)

or {
sin(θ3 − θ2) �= sin(θ3 − θ1) cos(θ1 − θ2 + π/3)
ρ3 = 0

(32)

Therefore, the forward kinematics in Case 2 can be further divided into two sub-
cases: Case 2a – Equation (31) is satisfied, and Case 2b – Equation (32) is satisfied.

3.2.1 Case 2a

If Eq. (31) is satisfied, the two equations in (3) are identical. In this case, the moving
platform can undergo a finite motion which can be described using either the first
(or the second) equation of (3), which is in fact the Cardanic motion (Figure 2b).

3.2.2 Case 2b

Substitution of Eq. (32) into the first equation of (3), we have

sin(φ − θ1 − 2π/3) = − sin(θ1 + 2π/3) (33)

which leads two solutions if θ1 �= −π/6 and 5π/6:

φ = 0 (34)

φ = 2θ1 + π/3 (35)

or a double solution if θ1 = −π/6 or 5π/6:

φ = 0. (36)
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3.3 Summary

From the previous sections, it is learned that there may be infinite solutions, a double
solution or two distinct solutions to the forward kinematics for different cases of in-
puts. In this section, the above results will be summarized. Geometric characteristics
for different cases will also be revealed. From brevity,AiB⊥i is used to represent the
perpendicular to AiBi passing through Ai , and circumcircle A is used to denote the
circumcircle of points A1, A2 and A3.

1. Equations (7) and (31) are satisfied (Case 2a).
Considering that the base is an equilateral triangle, we can prove using the prop-
erty of inscribed angles in the circumcircle A that Eq. (7) means lines A1B1 and
A2B2 intersect at a common point, denoted by C, on the circumcircle A. From
Eq. (31), we obtain that A3B3 should be parallel to one and only one of the two
angle bisectors of the angles formed by lines A1B1 and A2B2. Using again the
property of inscribed angles, we obtain that A3B3 passes through C. Therefore,
if Eqs. (7) and (31) are satisfied, all the lines AiBi intersect at a common point,
C, on the circumcircle A, and if the common point coincide with Ai , then line
AiBi must be tangent to the circumcircleA. We can prove that the reverse is also
true.
Similarly, we can prove that except for θ1 = −π/6 or 5π/6, all the AiB⊥i in-
tersect at a common point on the circumcircle A if and only if Eqs. (7) and (31)
are satisfied. If θ1 = −π/6 or 5π/6, all the AiB⊥i intersect at A3, there is no
guarantee that (31) is satisfied.
In summary, all the lines AiBi intersect at a common point on the circumcircle
A, and if the common point coincides with Ai , then line AiBi must be tangent to
the circumcircle A. The moving platform can undergo finite motion – Cardanic
motion.

2. Equation (21) is satisfied (Case 1a).
In this case, all lines AiBi are parallel. There are infinite solutions to the forward
kinematics, and the moving platform undergoes self-motion – translation along
AiBi with φ = 0 (Figure 2a).

3. The case which satisfies (Case 1c)⎧⎪⎨⎪⎩
det(R) �= 0

det(S) �= 0

det(T ) = 0
(37)

or (Case 2b) ⎧⎪⎨⎪⎩
sin(θ1 − θ2 + π/3) = 0

sin(θ3 − θ2) �= sin(θ3 − θ1) cos(θ1 − θ2 + π/3)
θ1 = −π/6 or 5π/6

(38)
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Equation (37) means, geometrically, that all the AiB⊥i intersect at (a) A1 or A2
if not all AiBi intersect at a point on the circumcircleA, and (b) a finite point not
on the circumcircleA. Equation (38) means that all the AiB⊥i intersect at A3 and
not all AiBi intersect at a point on the circumcircle A.
In summary, in this case, all the AiB⊥i intersect at (a) Ai if not all AiBi intersect
at a point on the circumcircle A, and (b) a finite point not on the circumcircleA.
There is a double solution to the forward kinematics.

4. The other cases, there are two distinct solutions to the forward kinematics.

4 Type 2 Singularity Analysis

Type 2 singularity (also uncertainty singularity) occurs when the structure that is ob-
tained from the parallel manipulator by blocking all its actuated joints has a positive
instantaneous (or full-cycle) DOF [4].

Taking all θi as constants and differentiating Eq. (2), we have{
sin(θ3 − θ1)δρ3 = − cos(φ − θ1 − 2π/3)δφ

sin(θ3 − θ2)δρ3 = − cos(φ − θ2 − π/3)δφ (39)

Thus, Type 2 singularities happen if and only if∣∣∣∣ sin(θ3 − θ1) cos(φ − θ1 − 2π/3)

sin(θ3 − θ2) cos(φ − θ2 − π/3)
∣∣∣∣ = 0 (40)

i.e.
det(S) sin φ + det(T ) cosφ = 0 (41)

One can verify that Eq. (41) is satisfied in the cases that there are infinite solutions
or a double solution to the forward kinematics. Equation (41) is not satisfied in the
cases that there are two distinct solutions to the forward kinematics. Due to space
limitation, only the non-trival solution of two distinct solutions (Eqs. (8) and (28))
in Cases 1c will be discussed in the following.

Substitution of Eqs. (8), (28), (12) and (13) into det(S) sin φ + det(T ) cosφ, we
obtain using Eqs. (26)

det(S) sin φ + det(T ) cosφ = −det(T ) �= 0 (42)

Therefore, the manipulator is not singular at the non-trival solution of the two dis-
tinct solutions in Cases 1c.

In summary, singularities happen in three cases:

1. All the lines AiBi intersect at a common point, C, on the circumcircle A (Fig-
ure 2b), and if the common point coincide with Ai , then line AiBi must be tan-
gent to the circumcircle A.
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In this case, the moving platform can undergo finite motion – Cardanic motion.
All the perpendiculars to AiBi passing through Bi (Ai) also intersect at a com-
mon point, IB(IA), on the circumcircle of points B1, B2 and B3 (A1, A2 and
A3).

2. Lines AiBi (i = 1, 2, 3) are parallel (Figure 2a).
In this case, the moving platform can undergo finite motion – translation along
lines AiBi .

3. All AiB⊥i intersect at (a) Ai if not all AiBi intersect at a point on the circum-
circle A, and (b) a finite point not on the circumcircle A. In this case, there is a
double solution to the forward kinematics (Figure 3). The moving platform has
an instantaneous DOF.

We have thus proved that the result, given in [1] without detailed proof, that the
only Type 2 singular configurations, for which the base and the moving platform do
not coincide, belong to self-motions.

5 Summary

A systematic approach to the forward kinematics has been presented for the class
of 3-RPR planar parallel manipulator with congruent equilateral base and moving
platform. The conditions on the inputs under which this planar parallel manipulator
has different number of solutions to the forward kinematics, including a double
solution, two distinct solutions or a set of continuous motion, have been identified.
Type 2 singularity analysis has also been investigated systematically. The result,
given in [1] without detailed proof, regarding the Type 2 singularities with a non-
zero orientation angle has been proved.

Although it is not as elegant as the geometric approach presented in [1], the
algebraic approach presented in this paper is rigorous. Some results, such as the
conditions on the inputs under which this planar parallel manipulator has a double
solution, might be hard to obtain using the geometric approach.
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Abstract. Geometric algebra is employed for the analysis of the singularity of parallel manipula-
tors with limited mobility. The rotations and translations of vectors and screws are performed in the
degenerate geometric algebra G3,0,1. The condition for singularity is obtained using the language
of geometric algebra. The approach is applied to two parallel manipulators with limited mobility.

Key words: parallel manipulator, geometric algebra, kinematics, singularity.

1 Introduction

This paper presents an application of geometric algebra for the analysis of the sin-
gularity of parallel manipulators that do not have full mobility, i.e. spatial parallel
manipulators with less than six degrees of freedom (dof) or planar ones with less
than three dof. The analysis of the singular configurations of the parallel manipula-
tors is an essential part of the process of design and control. In a singular configu-
ration the moving platform of the parallel manipulator has an uncontrollable instant
mobility and the manipulator can not sustain a certain wrench applied to the moving
platform.

Recently, some “non-standard” methods have been introduced to robot kinemat-
ics. For example, the Grassmann geometry was used by Merlet (1989) and the
Grassmann–Cayley algebra has been applied to robotics by several researchers:
White (1994) analysed the motion of serial robot using Grassmann–Cayley alge-
bra. The Grassmann–Cayley algebra was employed in Staffetti and Thomas (2000)
and Ben-Horin and Shoham (2006). The Clifford algebra was used in Collins and
McCarthy (1998) and Selig (2000). In Zamora-Esquivel and Bayro-Corrochano
(2006) and in Tanev (2006) the geometric algebra was applied.

The Grassmann and Clifford algebras were created in the 19th century. In the sec-
ond half of the 20th century Clifford algebras have been “rediscovered” and further
developed into a unified language named “geometric algebra” in Hestenes (1999),
Lasenby et al. (2000), Dorst and Mann (2002), and some other authors.

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 39–48.
© Springer Science+Business Media B.V. 2008



T.K. Tanev

In this paper, the geometric algebra is used for obtaining the singularity con-
ditions for parallel manipulators with fewer than six degrees of freedom. This ap-
proach is applied to two parallel manipulators – a simple planar one and a spatial
5-dof parallel manipulator.

2 Kinematics of Parallel Manipulators Using Geometric Algebra

The different types of geometric algebra distinguished by the different signatures
can be denoted by Gp,g,r = G(p, q, r). This geometric algebra has n = q + q + r
orthonormal basis vectors ei (i = 1, . . . , n) which obey the following rule:

ei · ej =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, i = j = 1, . . . , p,

−1, i = j = p + 1, . . . , p + q,
0, i = j = p + q + 1, . . . , p + q + r,
0, i �= j,

ei ∧ ei = 0. (1)

In this paper, the transformations for the kinematic analysis are performed in the
degenerate geometric algebra (Hestenes et al., 1999). In this case, the translation
can be represented as a spinor:

T = ee0a/2 = 1+ 1

2
e0a, (2)

where e0 (e0 · e0 = 0) is a null vector orthogonal to R3; a is a vector in G3.
Here, the point x is represented as a trivector in G3,0,1 similar to the form given

in Selig (2000), i.e.,
x = (1+ e0x)I3, (3)

where I3 = e1e2e3 is the unit pseudoscalar of G3; x = a1e1 + a2e2 + a3e3 is a
vector in G3.

The points denoted as italic characters are represented by vectors in G3,0,1, and
points denoted as boldface characters are represented by vectors in G3.

The rigid displacement can be written in spinor representation, i.e.,

Q = T R, (4)

where the spinor

R = e−(1/2)I3a = cos

(
1

2
a
)
− I3 sin

(
1

2
a
)
.

Thus, the linear transformation is written as:
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Q(x) = QxQ†, (5)

whereQ† = R†T † is the reverse ofQ.
This representation has the great advantage of reducing the group composition to

the geometric product.
The screw axes (lines) of the joints can be expressed in the geometric algebra as

follows: any oriented line L is uniquely determined by given its direction u and its
moment m and in the geometric algebra G3 of 3-D vector space V 3 with the basis
{e1, e2, e3} it can be written as (Hestenes, 1999):

L = u+m (6)

≡ u+ r ∧ u = u1e1 + u2e2 + u3e3 +m1e2 ∧ e3 +m2e3 ∧ e1 +m3e1 ∧ e2,

where r is the position vector of a point on the line; ui (i = 1, 2, 3) and mi (i =
1, 2, 3) are scalar coefficients.

The transformation of a line can be performed in the same way as a vector (see
Selig, 2000) and for that reason the line can be written as a bivector in G3,0,1, i.e.,

L(4) = (u+me0)I3 (7)

= u1e2 ∧ e3 + u2e3 ∧ e1 + u3e1 ∧ e2 +m1e1 ∧ e0 +m2e2 ∧ e0 +m3e3 ∧ e0,

where the superscript (4) indicates that the screw is written in G3,0,1.
A general screw can be expressed in G3,0,1 in a similar way, i.e.,

S(4) = v1e2 ∧ e3+ v2e3 ∧ e1+ v3e1 ∧ e2+ b1e1 ∧ e0+ b2e2 ∧ e0+ b3e3 ∧ e0, (8)

where vi (i = 1, 2, 3) and bi (i = 1, 2, 3) are scalar coefficients.
Then, the transformation of a screw (or line) can be written as

S(4) = QS(4)Q†. (9)

2.1 Velocity

In this section, the screws are expressed as vectors in G6. In other words, in the
geometric algebraG6 of 6-D vector space V6 with the basis {e1, e2, e3, e4, e5, e6}, a
screw can be written as a vector (grade 1), i.e.,

S = v1e1 + v2e2 + v3e3 + b1e4 + b2e5 + b3e6, (10)

where the coefficients are the same as in Eq. (8).
The following notation of a screw is adopted: an upper case letter without su-

perscript (S,D) denotes a screw written as a vector in G6 of 6-D space, otherwise
a superscript indicates the type of the geometric algebra in which the screw is de-
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scribed; letters with a tilde mark (S̃) denote the elliptic polars of the screws S (Lipkin
and Duffy, 1985).

The moving platform and the base of a parallel manipulator are connected with
n-legs, which can be considered as serial chains. The velocity of the moving plat-
form can be expressed as a linear combination of the joint instantaneous twists (for
example, see Rico and Duffy, 1996):

Vp =
f∑
i=1

jωi
jSi , j = 1, 2, . . . , n, (11)

where jωi denotes the joint rate and j Si represents the normalized screw associated
with the ith joint axis of the j th leg; f is the dof of the j th leg. The left leading
superscript denotes the leg number.

A leg with full mobility and a leg with less than six dof could be treated in a
similar way. For that reason the necessary extra dummy joints are added to the leg
with less than six dof so that it becomes a leg with full mobility. The dummy joints
are considered as driven but locked ones. Then, taking the outer product of five
screws of the j th leg gives the following 5-blade:

jAk = j S1 ∧ j S2 ∧ · · · ∧ j Sk−1 ∧ j Sk+1 ∧ · · · ∧ j S6, (12)

where j Si are the normalized joint axes of the j th leg.
The 5-blade jAk from Eq. (12) involves five screws (out of six with the exception

of the j Sk screw), where the kth joint is active. In a non-degenerate space, the dual
of a blade represents the orthogonal complement of the subspace represented by
the blade. The dual of the above 5-blade jAk is given by the following geometric
product:

jDk = jAkI
−1
6 = (−1)n(6−n)I−1

6
jAk, (13)

where I6 = e1e2e3e4e5e6 is a unit pseudoscalar of the G6 and I−1
6 is its inverse;

n = 5 (in case of 6-dof limb).
Pre-multiplying (inner product) both sides of Eq. (11) by jDk one obtains:

jωk = 1
jDk · j Sk

jDk · Vp or jωk = 1
j R̃k · j Sk

jRk · Ṽp, (14)

where jRk ≡ j D̃k is a screw reciprocal to the joint screws j S1, j S2, . . . , j Sk−1, . . . ,
j S6, and Ṽp is the velocity of the moving platform with interchanged primary and
secondary parts.

The result in Eq. (14) is obtained having in mind that j Si · jDk = 0 (i �= k) and
j Sk · jDk = j ck (providing the joint screws of the j th leg are linearly independent);
j ck is a scalar.
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3 Wrenches of Constraints and Singularity

Let n be the number of the manipulator legs and m (m = 6 − q) be the degrees
of freedom of the parallel manipulator. We suppose that the remaining q degrees
of freedom are represented by dummy joints (or driven but locked joints) and as-
sociated with them dummy screws. So, in non-singular configuration the driven
joints and the geometry (or the dummy joints) of the manipulator sustain a general
wrench applied to the moving platform. Therefore, the singular configuration can
occur when all dual (or reciprocal, respectively) screws jDk (jRk) from Eq. (14),
representing active and dummy joints, are linearly dependent. Using the language
of the geometric algebra, the condition of singularity for the parallel manipulator
with less than six degrees of freedom (but with dummy joints) can be expressed in
the following way

Da1 ∧ · · · ∧Dak ∧Dd1 ∧ · · · ∧Ddq = 0, k + q = 6, (15)

where Dai is a dual vector (grade 1-blade) associated to the ith active joint andDdi
is a dual vector (grade 1-blade) associated to the ith dummy joint. In this case each
leg has a full mobility. Here the dummy joints are considered as active but locked.

In the following sections, the approach is applied to two particular parallel ma-
nipulators.

3.1 Example of Four-Bar Mechanism as a One-dof Parallel
Manipulator

Firstly, in order to illustrate the approach, it is applied to a very simple example, i.e.
to the four-bar mechanism (Figure 1a), whose singular configurations are known
(e.g., Zlatanov et al., 2002). It is considered as a planar parallel manipulator with
two RR-legs and the coupler as a moving platform. The mechanism has one driven
joint with the joint axis 1S1. In order to have full mobility, we suppose that one
dummy joint is added to each leg. Then, the duals corresponding to the active and
dummy joints for the first and the second leg, respectively, are as follows:

1D1 = (1S2 ∧ 1Sd ∧ e126)I
−1
6 ; 1Dd = (1S1 ∧ 1S2 ∧ e126)I

−1
6 , (16)

2Dd = (2S1 ∧ 2S2 ∧ e126)I
−1
6 , (17)

where e126 = e1 ∧ e2 ∧ e6 is a 3-blade representing the restricting subspace, i.e., it
restricts the mechanisms to move only in the horizontal (X–Y ) plane; jDd denotes
the dual corresponding to the dummy joint and j Sd is a screw associated with the
dummy joint.

After applying some identities of the geometric algebra (see Hestenes et al.,
1999) one obtains
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Fig. 1 Four-bar mechanism (one-dof parallel manipulator).

1D1 ∧ 1Dd = c(1S2 ∧ e126)I
−1
6 , (18)

where c = 1D1 · 1S1 is a scalar.
The blade from Eq. (18) is a blade of non-freedom for the first leg. In this case,

the wrenches of constraint associated with the dummy joints for the first and the
second leg, respectively, are 1Cd = 1D̃d , 2Cd = 2D̃d (derived from Eqs. (16) and
(17)) and the third one can be obtained by factoring the 2-blade from Eq. (18).

In this case the wrenches of constraints are pure forces, Notice, that the two
constraint forces 1Cd and 2Cd , associated with the dummy joints, are unique (along
the legs, Figure 1a).

The condition for singularity of the manipulator can be written as

1D1 ∧ 1Dd ∧ 2Dd = 0 or 1D̃1 ∧ 1D̃d ∧ 2D̃d = 0. (19)

Again, applying the identities of the geometric algebra and keeping in mind
Eq. (18), the left-hand blade (the singularity condition) from Eq. (19) becomes

[c(1S2 ∧ e126)I
−1
6 ] ∧ [(2S1 ∧ 2S2 ∧ e126)I

−1
6 ]

= −c(2S1 ∧ 2S2 ∧ e126 ∧ 1S2)I
−1
6 e126I

−1
6

= c(2S1 ∧ 2S2 ∧ 1S2 ∧ e126)e126 = 0. (20)

Therefore, bearing in mind that e1 ∧ e2 ∧ e6 �= 0, it is clear from Eq. (20) that
the condition for singularity can be written as

2S1 ∧ 2S2 ∧ 1S2 = 0. (21)

Eq. (21) implies that the mechanism is in singular configuration if the three lines
(joint axes, which are parallel) are linearly dependent, i.e., lie in a single plane,
defined by any two of the lines (Figure 1b). Eq. (21) involves only the screw axis of
the passive joints. Therefore, in case of changing the driven joint (for example from
1S1 to 2S1), the configuration shown in Figure 1b will be no longer singular.
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Fig. 2 Constraint singular configuration of the four-bar mechanism.

If we consider the blade formed only by the duals associated with the dummy
joints, the condition for the so-called constraint singularity (the term introduced by
Zlatanov et al., 2002) can be obtained, i.e.,

1Dd ∧ 2Dd = 0 or 1D̃d ∧ 2D̃d = 0. (22)

Therefore, the constraint singularity occurs when these two lines 1Cd = 1D̃d
and 2Cd = 2D̃2 coincide (Figure 2).

From Eqs. (19) and (22) it can be seen that the constraint singularity is a subset
of general singularity. It is clear from Eqs. (16), (17) and (22) that the condition for
constraint singularity involves all joint axes, which fact implies that the mechanism
remains in constraint singular configuration even when the driven joint is changed.

In this section a type of parallel manipulator with five degrees of freedom is in-
troduced and its singular configurations are analyzed using the geometric algebra.
The considered parallel manipulator has four legs; the first leg has RRPRR structure
and the other three legs have identical SPS structure (Figure 3). The driven (active)
joints are the four prismatic joints of the legs and a revolute joint R attached to the
base of the RRPRR leg. In this case, the RRPRR (R ⊥ R ⊥ P ⊥ R ⊥ R) leg has two
driven (active) joints: the first one (R – revolute joint attached to the base) and the
prismatic joint (P).

The SPS legs have full mobility and each one has one driven joint (the P joint). In
this case the SPS (or UPS) leg has only one possible dual screw, or reciprocal screw
to the joint axis associated with the U and S joints. This reciprocal screw is a line
along the SPS leg. The RRPRR leg has five degrees of freedom and in order to have
full mobility one extra dummy joint (denoted by a superscript d in the equations)
is added, which can be considered as active but locked. The dual screws associated
with the active and dummy joints of the first (RRPRR) leg are as follows:

1D1 = (1S2 ∧ 1S3 ∧ 1S4 ∧ 1S5 ∧ 1Sd)I
−1
6 , (23)

1D3 = (1S1 ∧ 1S2 ∧ 1S4 ∧ 1S5 ∧ 1Sd)I
−1
6 , (24)

1Dd = (1S1 ∧ 1S2 ∧ 1S3 ∧ 1S4 ∧ 1S5)I
−1
6 , (25)
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Fig. 3 The 5-dof parallel manipulator.

where 1S1 is the axis of the joint attached to the base and 1S5 is the axis of the joint
connected to the moving platform of the RRPRR leg (Figure 3).

Applying the identities of the geometric algebra for the outer product of the duals
from Eqs. (23), (24) and (25) one obtains:

D13d = 1D1 ∧ 1D3 ∧ 1Dd = λ(1S2 ∧ 1S4 ∧ 1S5)I
−1
6 , (26)

where λ = (1S1 · 1D1)(
1Sd · 1Dd) is a scalar; the above result is obtained bearing in

mind that 1Di · 1Sk = 0 (i �= k) and 1Di · 1Sk �= 0 (i = k).
In fact, the 3-blade from Eq. (26) is a blade of non-freedom for the RRPRR leg.

One of the wrenches of constraints (1Cd = 1D̃d ) is uniquely defined by Eq. (25).
The algebraic condition for singularity can be written as follows:{[(1S2 ∧ 1S4 ∧ 1S5)I

−1
6 ] ∧ 2D ∧ 3D ∧ 4D

}
I−1

6 = 0, (27)

where 2D = 2C̃, 3D = 3C̃ and 4D = 4C̃ are duals associated with the three SPS
legs: jD = j S1 ∧ j S2 ∧ j S4 ∧ j S5 ∧ j S6 (j = 2, 3, 4). The missing joint screw
axis j S3 is associated with the active P joint of the SPS (UPS) legs. The wrenches
of constraint 2C, 3C and 4C for the three SPS legs can be easily obtained and in
fact they are lines along the legs.

The singular configurations of the parallel manipulator can be algebraically de-
rived from Eq. (27). Expanding Eq. (27) leads to an algebraic equation in terms of
the five joint variables of the RRPRR leg (all joint screws of the parallel manipula-
tor are expressed as functions of these five variables). The solutions of this equation
give the singular configuration of the manipulator. The expanded equation is not
listed here because of the limited space. Several singular configurations have been
identified. Two types of singular configurations are shown in Figure 4.

The uncontrollable motion of the moving platform for the first singular configu-
ration (Figure 4a) is a pure rotation, which axis intersects all four legs, is parallel to
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Fig. 4 Singular configurations of the 5-dof parallel manipulator.

two R joint axes of the RRPRR leg and perpendicular to P joint axis of the RRPRR
leg. In the second singular configuration (Figure 4b) the uncontrollable motion is a
general screw motion.

4 Conclusions

The presented approach proves to be effective in determining the singularity con-
dition for parallel manipulators with limited mobility. This approach is applied to
two parallel manipulators, which singular configurations are obtained. It has been
shown that the equation for the singularity (the condition for singularity) involves
the screws which represent all and only passive joints of the manipulators. This
geometric algebra approach provides a good geometrical insight and efficiency in
dealing with robot kinematics and singularity of parallel manipulators with fewer
than six degrees of freedom.
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Abstract. This paper presents SinguLab, a graphical user interface for the singularity analysis of
parallel robots. The algorithm is based on Grassmann–Cayley algebra. The proposed tool is inter-
active and introduces the designer to the singularity analysis performed by this method, showing all
the stages along the procedure and eventually showing the solution algebraically and graphically,
allowing as well the singularity verification of different robot poses.

Key words: singularity, Grassmann–Cayley algebra, parallel robot, software.

1 Introduction

Singularity of parallel manipulators has been thoroughly investigated using different
methods, mainly including line geometry, screw theory, and Jacobian determinants
analysis. Recently, Grassmann–Cayley algebra (GCA) has been used for singularity
analysis too.

SinguLab is the first version of a tool for singularity analysis of parallel robots.
The aim of this user interface is to provide the designer an automatic tool for the
analysis, geometric interpretation and visualization of singularities. It enables the
user to determine the singularities of a large range of parallel robots and gives him
some guidelines of GCA.

SinguLab was developed within the framework of SIROPA1 – a French national
project, the aim of which is to develop knowledge about the direct-kinematics sin-
gularities of parallel robots and to transmit this knowledge to the end-users – during
a sojourn stay of the first author at IRCCyN.

1 https://wiki-sop.inria.fr/wiki/bin/view/Coprin/SIROPA

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 49–58.
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1.1 Grassmann–Cayley Algebra

The algorithm used in SinguLab is based on GCA. For space limitations we only
introduce the basic concepts and the readers are referred to Ben-Horin and Shoham
(2006a) and reference therein for further details on this topic. The basic elements
of this algebra are called extensors, which in fact are symbolically denoted Plücker
coordinates of vectors. Two basic operations that play an essential role in GCA
involving extensors are the join and meet operators. The first is associated with
the union of two vector spaces, and the latter has the same geometric meaning as
the intersection of two vector spaces. Further, special determinants called brackets
are also defined in GCA. The brackets, of which columns are vectors, satisfy spe-
cial product relations called syzygies, which are useful to manipulate and compare
bracket expressions. The Grassmann–Cayley algebra functions under the projective
space Pd , in which points are represented by homogeneous coordinates and lines
are represented by Plücker coordinates.

As mentioned above, the extensors are vectors that represent geometric entities,
and are characterized by their step. Extensors of step 1, 2 and 3 stand for a point,
a line and a plane, respectively. Assumming two extensors A and B, of step k and
h, respectively, defined in the d-projective space, the join and meet operations are
written as follows:

A ∨ B = a1 ∨ a2 ∨ · · · ∨ ak ∨ b1 ∨ · · · ∨ bh = a1a2 . . . akb1 . . . bh, (1)

A ∧ B =
∑
σ

sgn(σ )[ασ(1)aσ(2) . . . aσ(d−h)b1 . . . bh]aσ(d−h+1) . . . aσ(k)

=
∑
σ

sgn(σ )[ȧ1ȧ2 . . . ȧd−hb1 . . . bh]ȧd−h+1 . . . ȧk, (2)

where the sum in Eq. (2) is taken over all permutations σ of {1, 2, . . . , k} such that
σ(1) < σ(2) < · · · < σ(d − h) and σ(d − h+ 1) < σ(d − h+ 2) < · · · < σ(k).
Incidences between geometric entities are obtained as extensors of step 0 (scalars).
Some examples of incidences in 3D-space are the meet of four planes, the meet of
two lines and the meet of a line with two planes. Three meet examples are written in
GCA as follows:

• Meet of four planes: abc ∧ def ∧ ghi ∧ jkl = [ȧdef ][ḃghi][ċjkl].
• Meet of two lines: ab ∧ cd = [abcd].
• Meet of a line and two planes: gh ∧ abc ∧ def = [ġabc][ḣdef ].

Let us consider a finite set of 1-extensors {a1, a2, . . . , ad} defined in the d-
dimensional vector space over the field ϒ , V , where ai = x1,i , x2,i, . . . , xd,i
(1 ≤ i ≤ d). The bracket of these extensors is the determinant of the matrix, of
which columns are vectors ai (1 ≤ i ≤ d):
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[a1, a2, . . . , ad ] =

∣∣∣∣∣∣∣
x1,1 x1,2 . . . x1,d

...
... · · · ...

xd,1 xd,2 . . . xd,d

∣∣∣∣∣∣∣ . (3)

For example, the bracket of points a, b, c and d defined in the 3D space is written
as:

[abcd] =

∣∣∣∣∣∣∣∣∣
ax bx cx dx

ay by cy dy

az bz cz dz

1 1 1 1

∣∣∣∣∣∣∣∣∣ .
From a geometrical point of view, the value of this bracket represents six times the
volume of the tetrahedron of vertices a, b, c and d.

2 Algorithm

The procedure behind SinguLab follows the next steps:

a. Determination of the robot structure.
b. Writing the singularity equation in terms of GCA.
c. Identification of the geometrical entities involved in the singularity condition ac-

cording to the algebraic equation.
d. Depending on the entities found, the algorithm finds the geometrical condition

in terms of GCA. The singularity condition, if feasible, is shown to the user by
means of a geometrical statement in algebraic form with a graphical visualization
of the geometric entities comprising the singularity.

2.1 Determination of the Robot Structure

The available options in this version are all the possible Gough–Stewart platforms
(GSPs). There are 35 different GSPs if concurrent joints on the platform or on the
base are considered (Faugere and Lazard, 1995). In the next version of SinguLab,
other types of parallel robots will be analyzed by means of the method explained in
Sections 2.5 and 3.

The robot structure is determined by the user with six lines as 2-extensors ac-
cording to their endpoints on the platform and the base. Two concurrent joints have
the same label. Once the structure is defined, a schematic of the robot appears.
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2.2 Singularity Equation

The singularity analysis is performed using a coordinate-free invariant version of
the Jacobian matrix determinant written in terms of GCA, which is suitable for
robots of motion ruled by six pure forces, represented by six zero-pitch screws.
This coordinate-free version of the Jacobian determinant was derived by McMillan
and White (1991), after proposing a significantly larger expression by White (1983)
eight years before.

A paradigm of robots ruled by six pure forces is the general GSP. The moving
platform of GSP is connected to the base through six spherical-prismatic-universal
chains, the spherical and universal joints being placed anywhere on both platforms.
The coordinate-free version of the Jacobian determinant of this robot with legs ab,
cd , ef , gh, ij , and kl (a, . . . , l denoting the endpoints of the lines) has 24 monomi-
als as follows:

[[ab, cd, ef, gh, ij, kl]] = −[abcd][efgi][hjkl] + [abcd][ef hi][gjkl] + [abcd][efgj ][hikl]
− [abcd][ef hj ][gikl] + [abce][dfgh][ijkl] − [abde][cfgh][ijkl] − [abcf ][degh][ijkl]
+ [abdf ][cegh][ijkl] − [abce][dghi][fjkl] + [abde][cghi][fjkl] + [abcf ][dghi][ejkl]
+ [abce][dghi][f ikl] − [abdf ][cghi][ejkl] − [abde][cghj ][f ikl] − [abcf ][dghj ][eikl]
+ [abdf ][cghj ][eikl] + [abcg][def i][hjkl] − [abdg][cef i][hjkl] − [abch][def i][gjkl]
− [abcg][defj ][hikl] + [abdh][cef i][gjkl] + [abdg][cefj ][hikl] + [abch][defj ][gikl]
− [abdh][cefj ][gikl]. (4)

Each term (monomial) in Eq. (4) is a multiplication of three brackets.
The singularity condition arises when the right-hand side of (4) is equal to zero.

This is the basic equation used in the singularity analysis in this paper. It is to be
noted that we use Eq. (4) instead of another shorter version having 16 monomials
(Downing et al., 2002). The main advantage of Eq. (4) over the shorter version
is the order of the points in each bracket, which is lexicographically in both rows
and columns. This fact significantly facilitates the manipulation and comparison of
monomials, operations needed for the derivation of the geometric condition of the
singularity equation.

For the remaining 34 GSP combinations, the singularity equation is significantly
reduced since many monomials vanish due to the appearance of equal points in some
brackets. For most of these structures, this equation enables the geometrical explan-
ation of the singularity condition using GCA tools. The reduction of the original
equation, however, may be differently obtained if different order of legs is taken to
substitute the left-hand side of Eq. (4). For example, for the 3-3 GSP, the following
leg definition leads to two and four monomials if the leg order is altered:

[[ab, af, cb, cd, ed, ef ]] = [abf c][acde][bdef ] + [abfd][acbe][cdef ], (5)

[[ab, cd, af, cb, ed, ef ]] = −[abcd][afce][bdef ] + [abcd][afbe][cdef ]
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+ [abcf ][dcbe][adef ] − [abdc][cafe][bdef ]. (6)

Although Eqs. (5) and (6) are equivalent, the lowest number of monomials is
recommended in order to avoid long calculations. Therefore, if the number of
monomials obtained after the user definition is more than 4, then he is led to use
the automatic function to find the shortest form. This function runs all the possible
orders and returns the first shortest form. The next step is to find the interchangeable
points within the monomials in order to identify the geometrical entities involved in
the singularity condition.

2.3 Identification of Interchangeable Points

The objective of this stage is to automatically find the geometric entities involved
in the singularity condition. These entities may be lines, planes or tetrahedrons. The
method to find them is based on the first stage of the Cayley factorization performed
by White (1991).

White’s algorithm deals only with multilinear expressions, which are those con-
taining each point in each monomial only once (Eq. (4) without any substitution is a
multilinear example). According to his algorithm a pair of points is interchangeable
if the expression after replacing all the appearances of both with each other, summed
with the original expression is equal to zero:

P(a, b, . . .)+ P(b, a, . . .) = 0, (7)

where P is the expression containing all the monomials (for example, Eq. (4)).
This process is performed for all possible pairs of points, using the straightening
algorithm (White, 1991).

Unfortunately, our expressions are never multilinear. Unlike the general GSP, of
which singularity has no special geometrical explanation with this method, all other
structures have at least one point appearing at least twice in each monomial. Until
now, no algorithm of Cayley factorization for non-multilinear polynomials is known
and it still remains an open problem. Our approach is as follows.

First, we assume that if a point appears more than once in each monomial, then
each appearance belongs to a different geometric entity. Each monomial has three
brackets, each bracket containing four points, thus 12 points are part of geometric
entities that have to be identified. From the definition of the meet operation (Eq. (2)),
to obtain a monomial of brackets of four points the geometric entities involved may
be 2- or 3-extensors (lines or planes). Otherwise, a meet including a 4-extensor
(tetrahedron) and another entity would lead to a 5-bracket. Still, a monomial of 4-
brackets may result from a bracket containing a tetrahedron and two other brackets
resulting from a meet of lines and planes. Accordingly, when the potential entities
to be searched are lines, planes and tetrahedrons, the following groups can be found:
(a) six lines; (b) two planes and three lines; (c) four planes; (d) one tetrahedron, two
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planes and one line; (e) one tetrahedron and four lines; (f) two tetrahedrons and two
lines; and (g) three tetrahedrons.

To avoid the non-multilinearity problem, the order of searching is as follows:
1. The first entities to be searched are the tetrahedrons. These are searched as

common brackets (having the four points of the tetrahedron) in all the monomials.
If the equation has more than one monomial, then it is searched if there is a common
bracket appearing in all the monomials. If such a bracket exists, then the tetrahedron
recognition is done, and the remaining equation continues the search procedure. To
have three tetrahedrons there has to be only one monomial in the equation, where
each bracket consists of the points of each tetrahedron. If this is the case, then the
procedure is completed, resulting in three possible coplanar tetrahedrons, according
to the points appearing in each bracket in the monomial.

2. The second stage is to look for planes, which are represented as triplets of
interchangeable points. These triplets are searched as points that appear together in
one bracket in every monomial. Any pair within such a triplet is interchangeable
since replacing them one by another means a permutation, leading to a general sign
change in all the monomials, and thus satisfying Eq. (7).

3. Once all the triplets in the previous stage were recognized, their labels acquire
a star (a → a∗) to distinguish them from the other same labels appearing in other
brackets in the monomials, due to the non-multilinearity. The next stage consists in
searching among the remaining points, pairs that satisfy Eq.(7). In many cases it
is not necessary to use the straightening algorithm to verify this condition. For the
cases in which it would be necessary, unfortunately we cannot use this algorithm
because of the non-multilinearity of the expressions. Therefore in these cases the
points that remain without being identified to any entity are left in parentheses and
are treated as follows. If three planes were already identified then the residual letters
will be treated as possible part of a fourth plane (case c). The same occurs with the
residual letter if three planes and one line were found. If two planes and a line
were identified, then the residual letters will be referred as possible pairs of lines to
correspond to case b.

2.4 Singularity Solution and Visualization

This stage provides the singularity condition as a geometrical incidence between the
entities that were already identified. The union and intersection of geometric entities
in terms of GCA are obtained by means of the join and meet operators, respectively.

Ben-Horin and Shoham (2006a, 2006b, 2007) found the geometrical conditions
for 31 from the 34 regular GSPs. According to the number and types of entities
identified in the previous section, this stage verifies if, algebraically, the respective
condition is equal to a geometric incidence, some examples of which are shown
in Section 1. If both are equal, then the solution is written according to the points
that were defined before, and the geometric entities involved are shown in the robot
figure.
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Once the singularity condition is obtained, a new field appears in the window
with a value standing for the singularity condition in the actual configuration. When
this value, which changes depending on the robot pose, becomes smaller than a
predefined ε, it means closeness to singularity and a warning message appears. In
the robot figure the user is able to move the platform in 6 DOFs in order to visualize
the poses that satisfy the singularity condition. The singularity test is performed
using the simplest form according to the condition obtained. For example, the four
intersecting planes condition is verified by calculating the condition number of the
4× 4 matrix containing the coefficients of the planes. The condition for two planes
to intersect simultaneously a line is verified by calculating the condition number of
the matrix having the four homogeneous coordinates of four points: two of them lie
on the line of intersection of the planes, and the remaining two lie on the other line.

For the interested users, the identification of the interchangeable points and the
verification of the singularity condition can be performed manually. By default, the
automatic mode is applied.

2.5 Applications

The structures suitable to be analyzed by this method and used with this tool in-
clude a long list of robots in addition to all the GSP structures. Their analyses are
performed knowing the equivalent lines of action applied to the platform by the legs.
For 6-DOF robots these equivalent lines of action are the reciprocal screws to the
passive joints of legs (McCarthy, 2000). The topology of the lines of action must
be equal to one of the 34 combinations of legs arrangement presented in Faugere
and Lazard (1995) since they are all the different combinations existing to define
six legs connecting two platforms when two and three concurrent joints are taken
into consideration.

Manipulators with lower DOF having a spherical joint in each leg can be also
analyzed by this tool. For their analysis the 6 × 6 Jacobian matrix, which contains
a Jacobian of actuations and a Jacobian of constraints as sub-matrices, is needed
(Joshi and Tsai, 2002). Once the rows of both sub-matrices are identified, these rows
actually being the wrench screws applied to the platform, the topologically equival-
ent GSP can be identified and the singularity condition can be found by means of
SinguLab.

In a future version of SinguLab, an automatic specification of other parallel ro-
bots than GSPs with graphical tools will be available. The use of SinguLab is per-
formed according to the interactive instructions in the main window. These instruc-
tions follow the steps listed in Section 2. This guidance, showing each result algeb-
raically, graphically and as a geometric statement, enables non-experts to obtain the
singularity in an easy manner.
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Fig. 1 (a) Four-DOF robot from Gallardo-Alvarado et al. (2006), (b) reciprocal screws, (c) equi-
valent structure.

3 Example

We exemplify the tool by means of the singularity analysis of a 4-DOF robot, first
presented in Gallardo-Alvarado et al. (2006). This robot consists of three different
legs, having PS, UPS and PRPS (or CPS) kinematic chains, respectively (the under-
lined labels stand for actuated joints), see Figure 1a.

The constraint screws of leg 1 are reciprocal to the spherical and prismatic joints.
Thus they form a two-system perpendicular to the prismatic and passing through the
spherical joint. Then the reciprocal screw to the passive joint of leg 1, $1, is a screw
directed along the leg. In leg 2 the passive joints are the spherical and the universal
joints thus their reciprocal screw, $2, is directed along the leg that connects them.
The third leg has two prismatic actuators P3 and P4. The reciprocal screws to the
passive joints form a two-system of zero pitch, being a planar pencil with center
at the spherical joint and containing the axis of the revolute joint. Particularly, $3
and $4 pass through the spherical joint center and are directed along the leg and
parallel to the revolute joint axis, respectively. With these screws known, the equi-
valent structure to be entered into SinguLab is as appears in Figure 1c. The interface
analyzing this robot is shown in Figure 2, where the singularity condition is that
at least one of the tetrahedrons composed by S1A1B1C1, S1S3A3B3 and S1S3S2A2
(according to the labels in Figure 1c) is coplanar.

4 Conclusion

This paper presents SinguLab, a graphical user interface for the singularity ana-
lysis of parallel robots. The theoretical background behind this analysis is based on
Grassmann–Cayley algebra, which provides a coordinate-free approach for treating
geometric entities and their incidences. The identification of the geometric entities
and the singularity conditions are made automatically. The results are based on pre-
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Fig. 2 SinguLab interface.

vious studies on certain classes of Gough–Stewart platforms. This interface is suit-
able for a broad range of parallel robots. The current version can be used only for
robots actuated with SPS chains. For those with serial chains, an equivalent struc-
ture has to be predefined with their reciprocal screws. Accordingly, the topological
arrangement of the lines of action is the robot definition input. For lower-DOF par-
allel robots, the reciprocal screws standing for the actuation and for the constraints
on the platform have to be identified first. Therefore, we come up with the 6 × 6
Jacobian matrix and the same GCA approach thereafter. In future versions, the ana-
lysis of these robots will be incorporated in the software to provide a fully automatic
tool for robot designers.
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Abstract. This paper characterizes geometrically the singularities of limited-DOF parallel ma-
nipulators. The geometric conditions associated with the dependency of six Plücker vector of
lines (finite and infinite) constituting the rows of the inverse Jacobian matrix are formulated us-
ing Grassmann–Cayley algebra. Manipulators under consideration do not need to have a passive
spherical joint somewhere in each leg. This study is illustrated with three example robots.

Key words: parallel manipulator, singularity, Grassmann–Cayley algebra, screw theory.

1 Introduction

Parallel singularities are critical configurations in which a parallel manipulator loses
its stiffness and gains one and more degrees of freedom (DOF). These singular
configurations can be found using analytical, numerical or geometrical methods
(Merlet, 2005). The inverse Jacobian matrix of a 6-DOF parallel manipulator has
Plücker coordinate vectors of finite lines as its rows. These lines are wrenches of
actuation describing the instantaneous forces of actuation applied by the actuators
on the moving platform. For parallel manipulators of type Gough–Stewart, parallel
singularities occur when lines within legs of the manipulator are linearly depend-
ent, which Merlet (1989) analyzed using Grassmann line geometry. Hao and Mc-
Carthy (1998) used screw theory to define conditions for line-based singularities.
They focused on 6-DOF parallel manipulators, each leg having at least one actuator
and their last three joints equivalent to a passive spherical joint. These conditions
ensure that each supporting leg of the system can apply only a pure force to the
platform so that it is possible to characterize all singular configurations in terms
of the geometry of linearly dependent sets of lines. Ben-Horin and Shoham (2005,
2006) analyzed parallel singularities of two classes of 6-DOF parallel manipulat-
ors using Grassmann–Cayley algebra (GCA). They used the superbracket and the
Grassmann–Cayley operators to obtain geometric conditions for singularity, namely,
when four planes defined by the direction of the joint axes and the location of the
spherical joint are concurrent in a point.

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 59–68.
© Springer Science+Business Media B.V. 2008
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Contrary to 6-DOF manipulators, each leg of a limited-DOF parallel manipulator
has connectivity less than 6 and, in turn, constraints partly the motion of the moving
platform. When a leg loses its ability to constrain the moving platform, a so-called
constraint singularity occurs. Joshi and Tsai (2002) developed a methodology for the
inverse Jacobian of limited-DOF parallel manipulators with the theory of reciprocal
screws. A 6×6-inverse Jacobian matrix was defined, the rows of which are wrenches
that provide information about both architecture1 and constraint singularities. These
wrenches, also known as governing lines, are actuation and constraint wrenches
applied to the moving platform.

In this paper, we focus on limited-DOF parallel manipulators, i.e. that have less
than 6-DOF and we are interested in identifying their parallel singularities using
GCA. The application of GCA is enlarged to include limited-DOF parallel manip-
ulators, in which the inverse Jacobian is a 6×6 matrix having not only finite lines
(zero pitch screws) as its rows but also infinite lines (infinite pitch screws). In this
work, manipulators under consideration do not need to have a passive spherical joint
somewhere in each of their legs. The results are illustrated with three example ro-
bots.

2 Grassmann–Cayley Algebra

Originally developed by H. Grassmann as a calculus for linear varieties, GCA has
two operators, namely the join, denoted by∨ and the meet, denoted by∧. These two
operators are associated with union and intersection between vector subspaces of ex-
tensors. These extensors represent geometric entities such as points, lines, planes,
etc. in the projective space. GCA makes it possible to work at the symbolic level,
where points and lines are represented in a coordinate-free form by their homogen-
eous and Plücker coordinates, respectively.

GCA is used in this study to transform the singular geometric conditions defined
as the dependency between six lines in the 3-dimensional projective space P3, into
coordinate free algebraic expressions involving 12 points selected on the axes of
these lines. For further details on GCA concept and its application to robotics, see
for example (White, 1994, 2005; Staffetti and Thomas, 2000; Ben-Horin and Sho-
ham, 2006) and references therein.

2.1 Projective Space

The 3-dimensional projective space P3 can be considered as the union of R3 with a
set of ideal points that are the intersections of parallel lines and planes. The set of
all such points forms a plane known as the plane at infinity, �∞. This plane may

1 Following Joshi and Tsai’s (2002) terminology, an architecture singularity occurs when the in-
verse Jacobian matrix is rank-deficient and the Jacobian of constraints is full-rank.
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be thought of as the set of all directions, since all lines with the same particular
direction intersect �∞ in the same unique point and all parallel planes intersect
�∞ in the same unique line. Hence every line at infinity meets every other line at
infinity, and they are therefore all in one plane.

2.2 Bracket Ring

Consider a finite set of points {e1, e2, . . . , ed } defined in the d-dimensional vector
space, V , over the field R3. Each point ei is represented by a d-tuple by using
homogeneous coordinates, where ei = e1,i, e2,i , . . . , ed,i (1 ≤ i ≤ d). The bracket
of these points is defined as the determinant of the matrix M whose columns are the
homogeneous coordinates of these points ei (1 ≤ i ≤ d):

[e1, e2, . . . , ed ] = det M =

∣∣∣∣∣∣∣
e1,1 e1,2 . . . e1,d

...
... · · · ...

ed,1 ed,2 . . . ed,d

∣∣∣∣∣∣∣ . (1)

The brackets form a subalgebra of the GCA, called the bracket ring or bracket al-
gebra. The brackets satisfy the following relations:

(1) [e1, e2, . . . , ed ] = 0 if any ei = ej with i �= j , or e1, e2, . . . , ed are dependent.
(2) [e1, e2, . . . , ed ] = sign(σ )[eσ1, eσ2, . . . , eσd ] for any permutation σ of

{1, 2, . . . , d}.
(3) [e1, e2, . . . , ed ][f1, f2, . . . , fd ] =∑d

j=1[fj , e2, . . . , ed ][f1, f2, . . . , fj−1, e1, fj+1, . . . , ff ].
All relations among the brackets are consequences of relations of the above three

types. The relations of the third type are called Grassmann–Plücker relations or
syzygies, and they correspond to generalized Laplace expansions by minors (White,
1975).

2.3 The Superbracket Decomposition

The inverse Jacobian matrix of a parallel manipulator has the Plücker coordinates
of six lines in the projective space P3 as its rows. The superjoin of these six vectors
in P5 corresponds to the determinant of their six Plücker coordinate vectors up to
scalar multiple, which is the superbracket in GCA �(V (2)) (White, 1983). Thus, a
singularity occurs when these six Plücker coordinate vectors are dependent, which
is equivalent to a superbracket equal to zero.

White (1983) and McMillan (1990) used the theory of projective invariants to
decompose the superbracket into expression having brackets involving 12 points
selected on the axes of these lines. Let [ab, cd, ef, gh, ij, kl] be the superbracket
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having six 2-extensors as its column. These extensors represent lines ab, cd , ef ,
gh, ij , kl in the projective space, respectively. The expression of this superbracket
taken from Ben-Horin and Shoham (2006) is as follows:

[ab cd ef gh ij kl ] = 1 2 1 2
[a b c d ][ e f g i ][h j k l ]

− 3 4 3 4
[a b c e ][d f g h ][ i j k l ]

− 5 6 5 7 6 7
[a b c e ][d g h i ][f j k l ]

+ 8 9 8 10 9 10
[a b c g ][d e f i ][h j k l ] , (2)

where
1 2 1 2

[a b c d ][ e f g i ][h j k l ]

denotes ∑
1,2 sign(1, 2)

1 2 1 2
[a b c d ][ e f g i ][h j k l ]

1, 2 are permutations of the 2-element sets {g, h}, {i, j }, respectively.
Equation (2) may be transformed into a linear combination (sum) of 24 bracket

monomials, where each bracket monomial is a product of 3 brackets. The monomi-
als in Eq. (2) may be found in McMillan (1990) and Ben-Horin and Shoham (2006).

3 Singularity Geometric Conditions

The aim of this study is to enlarge the application of line geometry to include
limited-DOF manipulators whose legs apply actuation and constraint wrenches to
the moving platform. These manipulators do not need to have a passive spherical
joint anywhere along their legs and their 6×6-inverse Jacobian matrix may have
Plücker coordinate vectors of finite and infinite lines as its rows. In this section, we
use GCA and the superbracket decomposition to determine the singularity geometric
conditions of two classes of parallel manipulators having inverse Jacobian matrices
equivalent to those obtained for 3-UPU translational and the parallel module of the
Verne machine shown in Figures 1 and 2.

3.1 Singularity Analysis of the 3-UPU Translational Manipulator

The 3-UPU manipulator was studied in Di Gregorio and Parenti-Castelli (1998),
Joshi and Tsai (2002), Wolf and Shoham (2003), and Merlet (2005). The mov-
ing platform controlled by three linear actuators along the three legs can perform
a translational motion when the axes of the base universal joints are parallel to those
of the platform universal joints of the same leg. Thus each leg i having connectivity
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equal to 5 applies one actuation force, F̂i = [sTi (ri × si )T ]T , and one constraint

moment, M̂i = [01×3 nTi ]T , to the moving platform, where si is a unit vector in the

direction of the line of application of the force F̂i (leg i), ri is the position vector
of a point on this line and ni is the cross product of the two vectors associated with
the axes of the base U joint of leg i represented by that the direction of the torque
associated with the constraint moment M̂i . Each actuation force, F̂i , is a zero pitch
screw reciprocal to all joint screws (a joint screw stands for a twist screw associ-
ated with the joint) of leg i except for the joint screw associated with the actuated
prismatic joint of the same leg. Each constraint moment, M̂i , is an infinite pitch
screw reciprocal to all joint screws of leg i. These actuation forces and constraint
moments have Plücker coordinate vectors of finite and infinite lines, respectively,
in the 3-dimensional projective space. As a result, the 6×6-inverse Jacobian matrix
will have the Plücker coordinate vectors of 3-finite lines (actuation forces) and 3-
infinite lines (constraint moments) as its rows. The dependency between these lines
is related to the degeneration of the inverse Jacobian matrix, which is equivalent to
a superbracket equal to zero. The transpose of the inverse Jacobian of the 3-UPU
can be expressed as follows (Joshi and Tsai, 2002):

J−T =
[

s1 s2 s3 01×3 01×3 01×3

r1 × s1 r2 × s2 r3 × s3 n1 n2 n3

]
= [

F̂1 F̂2 F̂3 M̂1 M̂2 M̂3
]
. (3)

Let ab, cd, ef , be the finite lines representing the 3-actuation forces Fi (i =
1, 2, 3), where a, b, c are finite point and b, d, f are points at infinity. All these
points are expressed with their homogeneous coordinates, where b = (sT1 0)T ,
d = (sT2 0)T , f = (sT3 0)T . On the other hand, since every line at infinity meets
every other line at infinity, the three constraint moments Mi (i = 1, . . . , 3) can be
represented by three infinite lines gh, gi and hi, respectively. According to Eq. (2)
and due to the repetition of points in the same bracket, we simplify the superbracket
expression into a reduced number of non-zero monomial terms and the superbracket
decomposition of our manipulator, in turn, reduces to:

[ab, cd, ef, gh, gi, hi] = [abdf ][cghi][eghi], (4)

where [abdf ] = (s1 × s2) · s3 and [eghi] = [cghi] = (n1 × n2) · n3.
Thus, the manipulator under study is at a singularity whenever vectors si or ni

(i = 1, . . . , 3) verify Eq. (4), which occurs respectively when triangle ghi or bdf
vanishes (its surface is equal to zero). These two conditions include the cases (c–h)
in Figure 1. Each vertex of triangle bdf is a point at infinity representing the direction
of an actuation force. In case (c, d), the 3 points at infinity b, d and f are coincident,
so three vectors si are coplanar. Case (d, e) occurs when at least two of the three
points b, d , f coincide and so at least two of the three forces are parallel. Each
side of the triangle ghi is a line at infinity defined as the intersection of a family of
parallel planes at infinity, with ni as the normal to these planes. Case (f, g) occurs
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Fig. 1 Geometric conditions for parallel singularities.

when the three lines at infinity intersect at the same point, which means that three
vectors ni are coplanar. In case (g, h), at least two lines at infinity are collinear,
which means that their corresponding planes are parallel and so at least two of the
vectors ni are parallel.

These conditions stand for all manipulators with an inverse Jacobian matrix con-
sisting of three actuation forces and three constraint moments, like for example the
3-UPU translational manipulator and the linear Delta robot (Clavel, 1988). Notice
that another condition may appear when at least one constraint moment degenerates,
meaning that at least one line gh, gi or hi degenerates to a point. This condition is
more related to the arrangement of the joint within each leg. For the 3-UPU manipu-
lator, this case can only happen if a universal joint is replaced by two revolute joints
with parallel axes.

3.2 Singularity Analysis of the Verne parallel Module

The parallel module of the Verne machine consists of three legs, leg I, II and III (Fig-
ure 2a). Each leg uses pairs of rods linking a prismatic joint to the moving platform
through two pairs of spherical joints. Legs II and III are two identical parallelo-
grams. Leg I differs from the other two legs in that ac �= bd . Leg I does not remain
planar (rod directions define skew lines) as the machine moves, unlike what arises in
the other two legs that are articulated parallelograms. The movement of the moving
platform is generated by the slide of three actuators along three vertical guideways.
We suppose that we are out of the serial singularities and we are interested only
on studying the parallel singularities.We can thus consider that the transpose of the
inverse Jacobian of this manipulator can be expressed as follows:
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Fig. 2 Singularity geometrical conditions of the Verne parallel module.

J−T = [
F̂11 F̂12 F̂21 F̂22 F̂31 F̂32

]
. (5)

The rows of J−1 are zero pitch screws, F̂ij = [sTij (rij × sij )T ]T (i = 1, . . . , 3,
j = 1, 2), represented by finite lines along the six rods, where sij is a unit vector
in the direction of the rod j within the leg i and rij is the position vector of a point
on this rod. Each of those screws is an actuation force, which is reciprocal to all the
joint screws of the rod j within the leg i except for the joint screw associated with
the actuated prismatic joint of the same leg. Notice that the pair of actuation forces
within legs II and III are parallel, so s21 = s22 and s31 = s32. The singularity geo-
metrical conditions are associated with the dependency between these six actuation
forces supported by the rods of the Verne parallel module.

Let ab, cd , ef , gh, ij , kl, be respectively the finite lines representing the six
actuation forces, where points a, b, . . . , l are finite points located at the center of
spherical joints (Figure 2). We suppose that lines ef , gh are parallel and intersect
at infinity as well as for lines ij , kl. Thus, the superbracket decomposition of these
lines reduces to:

[ab, cd, ef, gh, ij, kl] = [am, cn, eo, go, ip, kp], (6)

where m = b − a, n = d − c, ef ∧ gh = o = f − e = h − g and ij ∧ kl = p =
j − i = l − k.

The shortest form of the superbracket decomposition using the algorithm in Ben-
Horin et al. (2008) will result in the following non-zero monomial terms:

[oegm][oncp][aipk] − [oega][oncp][mipk]
− [oegn][omap][cipk] + [oegc][omap][nipk]. (7)

After collecting equal brackets and applying the shuffles relation (see White,
2005) caused by the permutation of m, a and n, c, we obtain:
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. .
[o n c p ][o e g m ][a i p k ] − . .

[o m a p ][o e g n ][ c i p k ] = 0. (8)

Applying the following relation, [(b− a)cde] = [bcde]− [acde], we are able to
replace some points at infinity by finite points and obtain the following expression:

[ab cd ef gh ij kl ] = . .
[o n c p ][f e g b ][a i j k ]

− . .
[o m a p ][f e g d ][ c i j k ] . (9)

Using the meet operator relations (see White, 2005), we prove that:

. .
[f e g b ][a i j k ] = (ijk ∧ f eg) ∧ ba = tu ∧ ba = [tuba] and. .
[f e g d ][ c i j k ] = (ijk ∧ f eg) ∧ dc = tu ∧ dc = [tudc] (10)

where tu is the line of intersection of leg II and III planes including such as:
tu = (ef× eg)× (ij× ik).

On the other hand, it is easy to prove that:

[oncp] = [f epn] = [f eqr] and [omap] = [f eqs], (11)

where q = e + p, r = q + n and s = q +m.
Finaly, the invariant algebraic expression related to the existence of parallel sin-

gularities of the parallel module of the Verne machine can be stated as:

[f eqr][tuba] − [f eqs][tudc] = 0, (12)

where [tuba] = tu · (ub× ab), [tudc] = tu · (ud× cd), [f eqr] = cd ·N and
[f eqs] = ab · N with N = ef× ij.

The above expression is geometrically equivalent to the difference between the
volume products of two pairs of tetrahedrons with vertices expressed as function
of points a, b, . . . , l as shown in Figure 2c. This geometric condition includes the
following cases: (i) planes of legs II and III are coplanar or parallel (‖tu‖ = 0);
(ii) ef and ij are parallel (‖N‖ = 0); (iii) ef , cd are parallel and ij , ab are parallel
or ef , ab are parallel and ij , cd are parallel; (iv) ab and cd intersect with tu, in this
case the six actuation forces form a singular linear complex; (v) ef , cd are parallel
and tu, cd are coplanar or ij , cd are parallel and tu, cd are coplanar or ij , ab
are parallel and tu, ab are coplanar or ef , ab are parallel and tu, ab are coplanar;
(vi) the 6 actuation forces form a general linear complex expressed by

[cd ·N][tu · (ub× ab)] − [ab · N][tu · (ud× cd)]. (13)

The singularity conditions of the Delta robot are obtained for the particular when
cd = ab, thus Eq. (13) is reduced to:

[ab ·N][tu · (db× ab)] = [(s1 × s2) · s3][(n1 × n2) · n3]. (14)
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4 Conclusions

This paper showed how GCA can be used to determine the geometric conditions
associated with the singular configurations of limited-DOF parallel robots whose
legs can transmit forces and moments to the moving platform. Three example robots
were analyzed as illustrative examples. This method provides a physical meaning
and a geometrical interpretation of singular configurations for a familly of parallel
manipulators, which is of interest for the designer of new robots.
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Abstract. This work deals with the design of parallel cable-driven robots having more cables than
degrees of freedom (DOF). Compared to parallel robots with rigid links, this issue has a distinctive
property: the requirement of keeping the cables taut. In this paper, it is shown how numerical tools,
recently introduced elsewhere, can be used to solve the important practical problem of finding
geometries of robots such that a given prescribed workspace is fully included in the wrench-feasible
workspace. Then, in order to improve the solving procedure of this problem, it is shown that another
workspace is of interest: the wrench-closure workspace. Some of its relationships with the wrench-
feasible workspace are highlighted.

Key words: cable-driven robot, parallel robots, design, workspace.

1 Introduction

Many existing works deal with the limitation of the workspace of parallel cable-
driven robots induced by the unilateral nature of the forces applied by the cables
on the mobile platform. Most of them propose methods allowing to determine the
workspace of these robots, for instance, by means of a discretization method [7] or
by delineating its boundary [2, 9]. But very few of them tackle the difficult design
problem of finding robots having a prescribed workspace in which the cables remain
taut. In Section 2 of this paper, it is shown how numerical methods recently intro-
duced in [3] allow to work in the design framework of the so-called parameter space
approach [6] in order to find geometries of fully constrained parallel cable-driven
robots for which a prescribed workspace is fully included in the wrench-feasible
workspace (WFW). The WFW is appropriate for this type of cable-driven robots
since it ensures that the end-effector can exert or balance wrenches in all directions
of the task space with tension forces in the cables remaining below given limits [1].
An example presented in Section 3 illustrates the proposed method. Furthermore, in
Section 4, this example is used to motivate the interest of considering, together with
the WFW, another workspace: the wrench-closure workspace (WCW). In the con-
text of design dealt with in this paper, an important distinction between these two

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 71–78.
© Springer Science+Business Media B.V. 2008
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workspaces being that the WCW depends only on the geometry of the robot. Two
useful relationships between the WFW and the WCW are highlighted and proved
leading to a two-step approach to the design problem considered in this work. Fi-
nally, Section 5 illustrates briefly this approach and Section 6 concludes the paper.

2 Design Method

The relationship between the tensions in the m cables and the wrench f applied by
these cables on a reference point C of the mobile platform is given by [4, 8]

Wτ = f, (1)

where τ is the vector whose components are the tensions in the cables and W is the
n × m wrench matrix, n denoting the number of DOF.

Let the n-dimensional vector X denotes the pose of the mobile platform – for
instance, in the case of a 6-DOF robot, three components of X give the position of
C and the three others are angles defining the orientation of the mobile platform.
Moreover, let P be a vector of parameters defining completely, possibly with some
other constant parameters, the geometry of the robot, that is, the positions of the ac-
tuated reels at the base and the positions of the cables attachment points on the mo-
bile platform. Then, the wrench matrix W depends on both X and P: W = W(X,P).

Generally, the unilateral nature of the forces applied by the cables on the mobile
platform limits the workspace of parallel cable-driven robots. One can tackle this
problem by means of the WFW which is defined as follows [1].

Definition (WFW) The WFW is the set of poses X for which, for any wrench f in
[f], there exists a vector of cable tensions τ in [τ ] such that Wτ = f.

In this definition, [f] is the (bounded) set of wrenches that the cables must apply on
the mobile platform, called the required set of wrenches, and [τ ] is the set of allowed
cable tensions

[τ ] = {
τ | τi ∈ [τimin, τimax], 0 ≤ τimin < τimax, 1 ≤ i ≤ m }

. (2)

In [3], we proposed a numerical method based on interval analysis which allows
us to determine, for a given robot geometry P, whether or not a given box work-
space [X] is fully included in the WFW. A straightforward extension of this method
can handle sets [P] of robot geometries. The corresponding implementation in C++
provides a procedure denoted FullyIncluded() which takes as arguments a set of
robot geometries [P] and the box workspace [X]. When the procedure returns 1, the
method ensures that

∀ P ∈ [P],∀ X ∈ [X],∀ f ∈ [f], ∃ τ ∈ [τ ] such that Wτ = f. (3)
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Input: B, [X], [f], [τ ], ε
Output: Lin, Lout, Lneg
1. L ← B % Initialize list L with the search box B
2. while L �= ∅ do
3. [P] ← Extract(L)
4. included ← FullyIncluded([P], [X])
5. if included=1 then
6. Lin ← [P]
7. else if included=-1 then
8. Lout ← [P] % Pruning
9. else % included=0
10. if Size([P]) > ε then
11. L ← Bisect([P]) % Branching
12. else % [P] is too small to be bisected
13. Lneg ← [P]
14. end if
15. end if
16. end while

Fig. 1 A branch-and-prune algorithm to find robots having a prescribed workspace fully included
in the WFW.

In words: for all the robots geometries P in [P] the box workspace [X] is completely
included in the WFW. If it returns−1, the method ensures that

∀ P ∈ [P], ∃ X ∈ [X], ∃ f ∈ [f] such that ∀ τ ∈ [τ ], Wτ �= f, (4)

i.e., for all P in [P] the box workspace [X] is not fully included in the WFW – at
least one pose X ∈ [X] lies outside of the WFW. Finally, the procedure returns 0
when it is not able to conclude.

With the tool provided by the procedure FullyIncluded(), the design frame-
work introduced in [5] and [6, chapter 11] can be applied to the problem of finding
parallel cable-driven robots which have a prescribed workspace [X] fully included
in the WFW. A basic realization of this design methodology is depicted in Figure 1
where a branch-and-prune algorithm is used in order to explore the space of design
parameters P – which are geometric parameters in this paper.

3 Illustration

In order to illustrate the algorithm shown in Figure 1, let us consider the 3-DOF
planar parallel cable-driven robot shown in Figure 2(a). Its pose is given by X =
(x, y, φ)T where x and y are the coordinates of point C and φ is the angle defining
the orientation of the mobile platform. The design parameters that characterize the
geometry of the platform are its length lp and its height hp . The actuated reels fixed
to the base are located at the vertices of a square of side length 1 m. Hence, in this
example, P = (lp, hp)

T defines completely the geometry of the robot since the

73



M. Gouttefarde et al.

(a) 3-DOF planar parallel cable-driven robot (b) Geometry obtained for lp = 0.2
and hp = −0.2 (m)

Fig. 2 An illustration example.

platform is taken rectangular and the geometry of the base is fixed. Note that we
let lp and hp be negative in order to be able to consider robots with crossed cables.
For instance, the robot obtained for lp = 0.2 m and hp = −0.2 m is shown in
Figure 2(b).

The design problem to be solved in this example consists in finding the design
parameters P = (lp, hp)T such that the box workspace

[X] = ([0.3, 0.7], [0.3, 0.7], [−π/6, π/6])T (5)

is fully included in the WFW defined by [f] = ([−10, 10], [−10, 10], [−0.5, 0.5])T
and [τ ] = ([1, 55], [1, 55], [1, 55], [1, 55])T . The first two components of the re-
quired set of wrenches [f] correspond to ranges of forces (N) and the last one to a
range of moments (N.m) – hence, [f] has the shape of a box. The four components
of the box of allowed cable tensions [τ ] are ranges of forces (N).

To solve this problem, the algorithm shown in Figure 1 manages a list L
of boxes [P] of design parameters. Depending on the result of the procedure
FullyIncluded(), the current box [P] is put in the list Lin, in the list Lout (pruning)
or else, if not too small, [P] is bisected yielding two smaller boxes which are ad-
ded to L (branching). Thanks to the properties of the procedure FullyIncluded(),
briefly described in Section 2, the boxes in Lin provide an approximation of the set
of design parameters P for which [X] is fully included in the WFW. Lout provides
also an approximation but of design parameters P for which [X] is not fully included
in the WFW. The accuracy of these two approximations depends on the value of the
threshold ε. The smaller is ε, the better is the accuracy at the cost of a higher com-
putation time.
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Fig. 3 A design problem solved with the algorithm shown in Figure 1 (for ε = 0.005).

For the example introduced above, if the list L is initialized with the search box
of design parameters B = [X]ini = ([−0.2, 0.2], [−0.2, 0.2])T , the result obtained
is shown in Figure 3.

4 Relationship between the WFW and the WCW

Note from Figure 3 that only robots with crossed cables, i.e., robots for which lp is
negative or hp is negative, are solutions to the design problem introduced in Sec-
tion 3. Now, assume that the designer would prefer not to have crossed cables for
practical reasons. Then, a question is whether the set of allowed cable tensions [τ ]
can be enlarged so as to find robots with non-crossed cables solving the design
problem. Or else, is the set of geometric parameters considered too restrictive? Ob-
viously, in order to try to answer this type of questions, the algorithm of Figure 1 can
be applied again with larger sets [τ ]. But a more systematic and efficient approach
is obtained by considering the WCW.

Definition (WCW) The WCW is the set of poses X for which, for any wrench f in
Rn, there exists a vector of cable tensions τ ≥ 0 in Rm such that Wτ = f, where
the notation τ ≥ 0 means that all the components of τ are nonnegative.

A well-known characterization of the WCW is [8]: X belongs to the WCW if and
only if the wrench matrix W has full rank and its null space contains a vector z > 0
(Wz = 0). This characterization shows that the WCW depends only on the robot
geometry P since the two conditions that characterize a pose belonging to the WCW
are properties of W only whereas the WFW as defined in section 2 depends on the
geometry of the robot but also on [f] and [τ ].
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Moreover, let us prove two properties which highlight the relationship between
the WFW and the WCW. Since the focus of this paper is on fully constrained par-
allel cable-driven robots, henceforth, it is assumed that the robot must exert or bal-
ance wrenches in all directions. Then, mathematically speaking, the required set of
wrenches [f] contains a neighborhood of the null wrench 0, that is, an open ball of
radius r > 0 centered at 0. The following two properties hold.

Property 1 The WFW is a subset of the WCW.
Proof. Consider a pose X ∈ WFW and any wrench f in Rn. There exists a scalar

α > 0 such that ‖αf‖ < r . Hence, αf ∈ [f] and there exists τ ∈ [τ ] (thus τ ≥ 0)
such that Wτ = αf for X ∈ WFW. Consequently, W(τ/α) = f where τ/α ≥ 0:
X ∈WCW.

Property 2 For any bounded set of wrenches [f] and any pose X ∈ WCW, there
exists a (finite) set of allowed cable tensions [τ ] such that X ∈ WFW.

Proof. X ∈ WCW implies that there exists τ > 0 such that Wτ = 0 and, since
rank(W) = n, that for all f in [f], τ+ = W+f exists and satisfies Wτ+ = f where
W+ = WT (WWT )−1 is a generalized inverse. Now, since [f] is bounded, the set{
τ+ = W+f | f ∈ [f]} is bounded and this set translated by the vector ατ , denoted

S = {
τ+ + ατ | f ∈ [f]}, is bounded too. Moreover, by correctly choosing α,

namely
α = max

i

(
max
f∈[f]

((τmin − τ+i )/τi)
)
, τmin ≥ 0 (6)

S is fully included in the positive orthant of Rm and, thus, there exists a set of
cable tensions [τ ] satisfying Eq. (2) such that S ⊂ [τ ]. Finally, for all f in [f],
τ+ + ατ ∈ [τ ] and W(τ+ + ατ ) = f: [τ ] is such that X ∈WFW.

These developments motivate a two-step approach to the design problem intro-
duced in Sections 2 and 3.

Step 1: find the vectors of geometric parameters PWCW of robots for which the pre-
scribed workspace [X] is fully included in the WCW.
Step 2: among the vectors PWCW , find those for which [X] is fully included in the
WFW.

This two-step approach is completely justified by Property 1. Indeed, for any given
vector of parameters P, if [X] is not fully included in the WCW, it is necessarily
not fully included in the WFW since the WFW is a subset of the WCW. Hence, the
WCW depending only on the vector of geometric parameters P, Step 1 allows to
remove from the search all robots which are not solutions to the design problem due
to an inadequate geometry. Then, Step 2 searches among the remaining robots those
for which the set of allowed cable tensions [τ ] is large enough for [X] to be fully
included in the WFW. Moreover, if no such robots are found, Property 2 insures
that [τ ] can always be enlarged so as to find robots, among those not eliminated at
Step 1, such that [X] is fully included in the WFW. Note also that Step 2 can be
applied several times for various [τ ] without considering again and again vectors
P, namely those eliminated at Step 1, for which [X] is never fully included in the
WFW whatever the size of the set [τ ].
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Fig. 4 Result of Step 1 for the example of Section 3. Lin ≡ approximation of robots geometries
such that [X] ⊂WCW.

5 Example

The numerical method presented in [3] has been adapted to the case of the WCW
enabling the application of the algorithm of Figure 1 to the case of the WCW and,
thus, the practical realization of Step 1 of Section 4.

For instance, the application of Step 1 to the example of Section 3 yields the
result shown in Figure 4. The boxes of the list Lin provide an approximation of
the geometric parameters PWCW of robots such that the prescribed workspace [X]
is completely included in the WCW. On the contrary, the boxes of the list Lout
correspond to geometric parameters of robots for which [X] is not fully included
in the WCW. According to Property 1 of Section 4, whatever the size and shape of
the sets [f] and [τ ], [X] is not fully included in the WFW of a robot whose vector
of geometric parameters lies in Lout. Note that the question asked at the beginning
of Section 4 can now be answered: as seen in Figure 4, for the problem at hand, no
robot with non-crossed cables – lp and hp nonnegative – have [X] fully included in
the WCW. Again, by Property 1, whatever the size of the sets [f] and [τ ], none of
the robots with non-crossed cables will have [X] fully included in the WFW due to
the considered set of geometries P which is too restrictive.

Finally, the realization of Step 2 of Section 4 consists in applying the branch-
and-prune algorithm presented in Figure 1 with the list L initialized with the list of
boxes Lin shown in Figure 4 instead of the search box B (Step 1 in Figure 1). This
allows to exclude from the search the parts of the lp-hp plane covered by the boxes
of Lout (shown in Figure 4) which can never correspond to geometric parameters P
for which [X] is fully included in the WFW. This property of the two-step approach
proposed in Section 4 is especially useful when Step 2 is repeated several times
for different WFW, for example, when, for a given required set of wrenches [f], we
search for the set of allowed cable tensions [τ ] with the smallest τmax for which
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there exist geometric parameters P such that [X] is fully included in the WFW. To
this end, Step 2 can be repeated several times with different sets of tensions [τ ],
beginning the process with a large [τ ]. In fact, in this case, the computationally
intensive branch-and-prune algorithm presented in Figure 1 is called each time Step
2 is repeated. Therefore, Step 1 allows to avoid considering again and again the
boxes of Lout which, whatever the set [τ ], never correspond to robots for which the
prescribed workspace [X] is fully included in the WFW and, consequently, Step 1
avoids many useless computations.

6 Conclusions

This paper shows how numerical methods, introduced elsewhere, can be used to
determine solutions to the design problem of finding geometries of fully constrained
parallel cable-driven robots for which a given prescribed workspace is fully included
in the WFW. In this context, the study of the WCW is of interest since, contrary to
the WFW, it depends only on the geometry of the cable-driven robot. Moreover, the
WFW is proved to be a subset of the WCW. These two properties allow to utilize
the WCW in order to filter out, once and for all, robots geometries for which the
prescribed workspace is not fully included in the WFW whatever the size of the set
of allowed cable tensions.
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Abstract. A novel dimensional synthesis technique for solving the mixed exact and approximate
motion synthesis problem for spherical RR kinematic chains is presented. The methodology uses
an analytic representation of the spherical RR dyad’s rigid body constraint equation in combination
with classical geometric constructions for exact motion synthesis to yield designs that exactly reach
two of the prescribed orientations while approximating the remaining. The result is a mixed exact
and approximate motion dimensional synthesis technique that is applicable to spherical open and
closed kinematic chains. Here, we specifically address the design of spherical RR open and 4R
closed chains since they form the foundation of a new class of devices being developed called
PODs or Part Orienting Devices. An example that demonstrates the synthesis technique is included.

Key words: spherical mechanisms, exact motion synthesis, approximate motion synthesis.

1 Introduction

As a product is assembled in an automated factory, both the product and its indi-
vidual parts are picked up, reoriented and inserted into subassemblies or fixtures.
For a complex product, the number of manipulations could run into the thousands.
Parts are picked out of bins and placed into assemblies. Partial assemblies are ro-
tated to allow additional parts to be added. Fasteners are inserted to hold everything
together.

Typically, designers of assembly lines seek to keep the manipulations as simple
as possible. Rotations about vertical or horizontal axes are preferred, often of 90
or 180 (deg). These tasks have a well established set of solutions. However, oper-
ations which involve a translation along and/or a rotation about an axis which is
not vertical or horizontal is more challenging to the designer. Additional constraints
on the trajectory of the object (e.g. obstacle avoidance, or part meshing) increase
the difficulties. One solution is to use devices with a high number of degrees of
freedom, such as industrial robots. Robots can perform the tasks, but at penalties in
costs, setup time, and maintenance. A second solution is to use a cascading series

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
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of simple one degree of freedom devices. Creating this manipulation pipeline takes
a longer design time and is often more art than science.

Part Orienting Devices (PODs) offer another alternative. The synthesis algorithm
presented here is part of ongoing efforts directed at realizing the capability to design
these devices for spatial assembly tasks. These low degree-of-freedom devices are
capable of producing the necessary spatial reorientations often required in spatial as-
sembly tasks. Hence, PODs provide an alternative for solving spatial assembly tasks
that might otherwise require a robot or multiple single degree-of-freedom devices.

A well known result from screw theory is that moving an object from one spatial
location to another does not require six degrees of freedom. In fact, such motions can
be accomplished with a single degree of freedom twist about a screw axis. However,
it is rare that this solution is practical due to the location of the screw axis within the
workspace and the collisions and interferences between objects that result. PODs
are low degree-of-freedom machines that are a compromise between the 6 or more
degree of freedom industrial robot and the single degree of freedom twisting motion.
Here, the focus is on utilizing the spherical 4R closed chain architecture to serve as
the motion generator for a class of PODs to achieve two desired orientations exactly
while approximating a set of guiding orientations that take the workpiece from one
exact orientation to the other.

In related works [7] present the derivation of the constraint manifold for spher-
ical RR dyads using the image space representation of displacements. Their work
was an extension of the ideas presented in [8]. In [11] the design of spherical mech-
anisms to approximate spatial locations is presented. A robust synthesis algorithm
for spherical motion generation was presented by Al-Widyan and Angeles [1]. More
recently, [2] present the synthesis of spherical 4R mechanisms for 5 prescribed ori-
entations. Related ongoing efforts at the University of Dayton to advance the design
of PODs have been reported in [3, 6]. The methodology used here for performing
the dimensional synthesis for mixed exact and approximate orientation rigid body
guidance is based upon the works of Tsai and Roth [10] and McCarthy [5].

This paper proceeds as follows. First, the geometry and kinematics of the spher-
ical RR dyad and the spherical 4R closed chains are reviewed. Next, the synthesis
algorithm for solving the mixed exact and approximate motion synthesis problem
for spherical RR kinematic chains is presented. Finally, an example POD design is
presented; the synthesis of a spherical 4R closed chain to achieve two prescribed
orientations exactly while approximating three guiding orientations.

2 Synthesis Algorithm

A spherical 4R closed chain may be viewed as the combination of two spherical
RR dyads where each dyad consist of two R joints; one fixed and the other moving,
see Figure 1. The approach taken here is to synthesize two dyads separately and
then join their floating links to yield a kinematic closed chain. Let the fixed axis
be specified by the vector u measured in the fixed reference frame F and let the
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moving axis be specified by v measured in the moving frame M . Moreover, let l
define the moving axis v in the fixed frame F so that, l = [A]v where [A] is the
element of SO(3) that defines M with respect to F . Because the link is rigid, the
angle between the two axes of the dyad remains constant. This geometric constraint
may be expressed analytically as,

u · l = u · [A]v = cosα. (1)

This constraint equation is the foundation of the synthesis algorithm presented be-
low. In order to solve the mixed exact and approximate synthesis problem we first
solve the exact synthesis problem for 3 prescribed orientations.

2.1 Exact Synthesis for Three Orientations

First, we select the moving axis v. Second, we write Eq. (1) for each of the de-
sired orientations, [A]i , i = 1, 2, 3. Finally, we subtract the first equation from the
remaining two to arrive at a linear system of equations,

[P ]u = b, (2)

where

[P ] =
⎡⎢⎣ vT ([A]2 − [A]1)T

vT ([A]3 − [A]1)T
0 0 1

⎤⎥⎦ ,
b = [0 0 1]T , and u is the desired fixed axis. Note that we must solve Eq. (2) for
each prescribed moving axis to find its corresponding fixed axis. Moreover, note
that since we are using 3-vectors to define the axes when in fact they are simply
directions that only require 2 coordinates, the last row of [P ] is chosen to yield the
vector u that is the intersection of the fixed axis with the z = 1 plane. In the event
that [P ] is rank deficient (i.e. when the fixed axis does not intersect the z = 1 plane)
simply change the last row to any vector that does not lie in this plane (e.g. [1 0 0]T ).

2.2 Mixed Synthesis Algorithm

In the problem considered here we have 2 orientations to reach exactly and n ori-
entations that serve to guide the body from one exact orientation to the other. First a
desired moving axis v is selected. Next, we seek a corresponding fixed axis for the
dyad. The fixed axis is found by solving n 3 orientation problems to yield a set of
fixed axes ui , i = 1, 2, . . . , n. The 3 orientation problems are derived from the 2 ex-
act orientations along with 1 of the guiding orientations. Hence, there are n unique
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Fig. 1 Spherical 4R geometry and nomenclature.

3 orientation problems. We select the fixed axis u that is their normalized sum,

u =
∑

ui
‖∑ui‖ . (3)

It is beneficial to discuss the geometry underlying this approach. Consider the syn-
thesis of a spherical RR dyad for two exact orientations. Associated with the desired
moving axis is a great circle that is defined by the set of all fixed axis that solve the
problem. Now consider another orientation and one of the original 2 orientations.
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Fig. 2 The great circles associated with dyad #1.

For a desired moving axis there is again a great circle that represents all of the solu-
tion fixed axes. Fixed axes that guide a body through all 3 orientations must lie at
the intersections of these two great circles. Generally, these great circles intersect
in two points that define line; hence there is 1 unique fixed axis associated with 3
spherical orientations and a choice of moving axis. Finally, consider the exact 3 ori-
entation problem. The desired fixed axis lies at the intersection of 3 great circles;
the first associated with orientations 1 & 2, the second with 2 & 3, and the third
with 1 & 3. By solving all of the 3 orientation problems that include the two exact
orientations we guarantee that all resulting fixed axes lie on the great circle associ-
ated with these two orientations. Moreover, in Eq. (3) we utilize the fixed axis that
lies on the great circle associated with the two exact orientations and that is nearest
the great circles associated with the guiding orientations. Hence, the solution dyad
will guide the part exactly through the two prescribed orientations and nearest the
guiding orientations for the selected moving axis.

83



P. Larochelle

Fig. 3 The great circles associated with dyad #2.

3 Example

A common task in spatial assembly operations is the reorienting of a part by
successive rotations of 90 (deg) about two orthogonal axes; the so called 90-
90 problem. Here we employ the preceding methodology and design a POD to
achieve the desired motion by synthesizing a spherical 4R mechanism for 5 ori-
entations; 2 exact (the starting orientation and the final orientation after the 90-
90 rotations) and 3 guiding orientations as defined in Table 1 where [A] =
[Rotz(lng)][Roty(−lat)][Rotx(rol)]. In order to prescribe the size of the coupler
link and to eliminate the need for any extension or attachment to connect the mov-
ing body to the coupler these moving axes were selected: v1 = [1 1 1]T and
v2 = [1 0 0]T (see [4, 9]). The mixed synthesis algorithm yielded fixed axes:
u1 = [0.2745,−0.2745, 0.9216]T and u2 = [0.6780,−0.2839, 0.6780]T . The
great circles that illustrate the application of the algorithm to determine u1 are shown
in Figure 2 and those associated with u2 are shown in Figure 3. The great circle as-
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Fig. 4 The POD shown in orientation #1.

Fig. 5 Moving from orientation #1 to #2 (left) and from #3 to #4 (right).

sociated with the 2 exact orientations is thicker and the 3 fixed axes associated with
orientations 1-2-3, 1-3-5, and 1-4-5 are indicated by ◦ symbols on the great circle.
Recall that these axes are used in Eq. (3) to determine ui . The resulting POD is a
Grashof double-crank spherical four-bar mechanism that does not suffer from cir-
cuit, branch, or order defects. Its link lengths are: α = 57.8512, η = 54.7321,
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Fig. 6 The POD shown in orientation #5.

Table 1 Five prescribed orientations.

# Longitude Latitude Roll Motion Type

1 0.00 0.00 0.00 exact
2 25.00 25.00 0.00 approximate
3 45.00 45.00 0.00 approximate
3 65.00 65.00 0.00 approximate
5 90.00 90.00 0.00 exact

β = 47.3688, and γ = 27.2574 and the moving body is attached at 135 (deg) to the
coupler at the driven moving axis. The solution POD is shown in Figures 4–6.

4 Conclusions

A novel dimensional synthesis technique for solving the mixed exact and approxim-
ate motion synthesis problem for spherical RR open and 4R closed kinematic chains
has been presented. The methodology uses an analytic representation of the spher-
ical RR dyad’s rigid body constraint equation in combination with classical geomet-
ric constructions for exact motion synthesis to yield designs that exactly reach two
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of the prescribed orientations while approximating the remaining guiding orienta-
tions. Such part orienting tasks are common in automated assembly systems. Here,
we specifically address the design of spherical RR open and 4R closed chains since
they serve as the motion generators for a class of PODs, or part orienting devices,
that are being developed.

Acknowledgements

This material is based upon work supported by the National Science Foundation un-
der Grant No. #0422705. Any opinions, findings, and conclusions or recommend-
ations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

References

1. Al-Widyan, K. Angeles, J., The synthesis of robust spherical motion generators, in Proc. of
the 2004 ASME Design Engineering Technical Conferences, Paper # DETC2004-57422, Salt
Lake City, Utah (2004).

2. Brunnthaler, K., Schröcker, H.-P., Husty, M., Synthesis of spherical four-bar mechanisms
using spherical kinematic mapping, in Lenarčič, J. and Roth, B. (Eds.), Advances in Robot
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Abstract. Research in the optimum design of a manipulator has taken different directions. One
of those was to define the kinematic or dynamic parameters that determine the characteristics of
the manipulator in order to justify the best design. In most of the studies that are under way,
the possible solutions are restricted to one feasible region in which all of the geometrical and
dynamic restrictions as well as the power input on the drives have to be met with. However, all
these approaches lead to multiple solutions, since they are all within the feasible region, and it is
as of yet unknown which of those solutions is best. This paper tries to give a solution through an
energy approach where the optimum design in a multiple link system can be chosen, taking into
account the trajectory and the structure of the links, be it a serial or a parallel link system.

Key words: design, manipulators, energy saving, parallel singularities.

1 Introduction

The definition of the optimum design of a mechanical system depends of the ap-
proach to it. The optimum design could be the most economic, the one that uses less
infrastructure for its construction, the one that lasts longest in its use, or the one with
the least weight. In order to be able to know which the best solution is in a specific
case, it would depend on what it is, specifically, you are looking for. For example,
in aerospace systems the highest concern would be weight and stress tolerance.

In the case of manipulator design there are the following approaches.

1.1 Serial Manipulators

A first approach would be to define a feasible region in which the optimum design of
the manipulator has to be found. This region considers the geometrical restrictions
intrinsic of the manipulator, through inverse kinematic of the model, and the restric-
tions of the angles that can be reached by each joint, taking into account the points
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of the trajectory to be executed. This approach does not lead to an exact solution; it
only defines the feasible region of the design [9].

Other papers use the concept of the isotropic matrix within which the values of
the best dynamic condition of a manipulator are found, either serial or parallel. This
model involves dynamical values such as mass and inertial moment, and tries to
improve control of the movement of the manipulator. Different optimum solutions
are reached, since it is a region that is defined, not a point [8].

Other studies suggest that the design of manipulators should depend on the en-
ergy and the power input in the actuators that are necessary to complete the task.
Here, the point of origin of the manipulator is modified, while the dimensions of
the links are constant. In this case only key points of the trajectory are taken into
account, not the whole trajectory [10].

Others take a different approach to the design problem of the RRR manipulator:
through five points of a trajectory the concept of interval analysis is applied. They
try to find the right dimensions of the links by means of the Denavit and Harten-
berg parameters, using a numerical method that requires utmost computer resources.
Here solutions are also reached within the feasible region, however, with no indica-
tion as to which one is the best [7]. The efficient use of applied energy to the design
is another approach that can be found within the proposed models for special RRR
manipulators [5], where tubular sections with thin walls aiming for less mass and
sufficient strength, lower the energy demands of the manipulator.

1.2 Parallel Manipulators

Parallel manipulators require a higher complexity for their solution, since they do
not only present serial singularities that can be identified by their geometric config-
uration, but also parallel singularities, such as the geometric points in which control
over movement of the final link is lost.

One of the first steps would be to define the singularities for this specific model
[8, 10], through which the conditions for losing control of the manipulator are iden-
tified. These singularities will later be helpful in defining the regions in which the
movement can take place.

Another focus for solving parallel manipulators is the one described in [6], where
kinematics and inversed dynamics are applied. Due to the complex equations gener-
ated and the arising difficulty in their manipulation, the ideas of Newton-Lagrange
are not taken into account here. In order to find solutions for these systems, the
recursive approach is preferred.

More recent studies of parallel manipulators [7, 9] are focused on a possible
definition of regions through parallel and serial singular matrix, in order to find a
solution for a defined trajectory. In these cases systems are used that leave one free
variable, with which can be worked to avoid the singularities the system is exposed
to.
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Fig. 1 Kinds of systems.

1.3 Optimization Approach

The optimization model that is presented in this paper is based on the mechanical
energy of the model that is necessary in order to follow a defined trajectory. This
trajectory cannot be changed, be it because of the specific work it is executing or
because it has been optimized and it is considered to be the best trajectory. Examples
would be painting or welding procedures, where trajectory cannot be changed.

In our example, the software Mathematica 6 is used to develop the corresponding
equations, as well as in the search for the optimum point of the design.

2 Theoretical System Model

In order to define the system, concepts of classical thermodynamics will be used,
including three different kinds of systems: insulated systems, closed systems, and
open systems. As can be seen in Figure 1, the interactions between the system and
its environment define the kind of system that has to be used. The boundaries of the
system must be defined, for the interaction depends on them.

The property we are going to analyze is energy. Energy depends on the current
conditions of the system, such as velocity and position of the center of mass. The
equation of energy can then be expressed as follows:

δQ+ δW ext + δW int = dEext + dEint. (1)

The interactions between the system and its environment we are interested in
refer solely to one part of those energies. At this time it is not taken into account
that there are heat flows within the movement of the mechanical system, nor changes
in its internal energy, nor expansion work or deformation work. This leads us to the
simplified equation:

δW ext = dEPGrav + dEPElectr + dEPMagnet + dECLin + dECRot. (2)

Out of these energies there will only be taken into account those of mechanical
origin, giving no consideration to the transformation of energy that exists within the
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Fig. 2 System boundaries.

Fig. 3 Energy flow.

actuators. The model can be represented in the following schematic drawing. It is
made up by an inertial base of the mechanical system which provides the necessary
energy for the movement of the drivers, the system links, from the base to the ef-
fector link and the object to be moved or task to be done. The boundaries of the
system are around the mechanism links, being closed boundaries allowing the flow
of work and energy through them, however, not allowing mass exchange (Figure 2).

The next step consists in identifying the energy or work flows that have an effect
on the system. The energy that enters from the inertial base to the manipulator is
identified as the total amount of energy that enters the system. Next is the energy that
flows from the manipulator to the task or object to be moved. This is also identified
as loss of energy through heat by friction in the drivers and joints. However, there
still exists part of the energy within the process, which is the one needed to move
the manipulator links between the different positions. This is not a real flow across
boundaries, because the energy is used up by the system (Figure 3).

For this model the following simplifications are used: the links are solid rigid,
reason why the elastic effects and the expansion effects are not taken into account.
On the other hand, the drivers involved won?t present losses through friction. These
simplifications leave us with a model with only one entry, the provided energy to
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the manipulator, and one exit, the energy that goes to the task to be executed. We
are searching for the highest efficiency through least use of energy by the system
links. The amount of energy required to execute the task is generally fixed, such
as is the lifting of a weight or causing movement of different mechanisms. The
remaining flow which causes the movement of the manipulator is the one that is to
be optimized.

3 Method of Analysis

In order to obtain the optimum point the following steps have to be observed:

1. Trajectory function. An analytical function is needed that describes the task to be
executed, be it with restrictions of position, velocity or acceleration required for
certain points in order to obtain a continuum to evaluate.

2. Work ratio and feasible region. The work ratio is determined by the task to be ex-
ecuted, and the feasible region is determined by geometry and restrictions of the
manipulator. With these restrictions the serial and parallel singularities have to be
considered, since they define the feasible region in the manipulators. The mech-
anical system we analyze may have geometrical restrictions, assembly problems,
and limitations in the angles that can be reached. These restrictions are to be
expressed through the parameters of the design that is to be optimized. In this
case, the analysis will be restricted by the geometric configurations and Jacobian
matrix only, and the parameters of the design are the lengths of the links.

3. Energy function. A function is obtained by the trajectory and the dynamical prop-
erties of the model, like mass and inertia. This function includes all the potential
and kinetic energy of the link system. The variables of this function are the design
parameters, in this case, the lengths of the links.

4. Search for the optimum design point. Through the energy function of the system
the minimum point of process energy is obtained. It will be within the feasible
region. The search will be analytical or numerical. It depends on the complex-
ity of the trajectory and the geometrical configuration of the mechanical system.
The points with serial singularities will be automatically eliminated because they
would need infinite energy to reach that position; however, the parallel singular-
ities remain.

The complexity of the analysis is directly related to the complexity of the trajectory
and the proposed mechanical model. It depends on inverse kinematics associated
with trajectory and design parameters. Multiple configurations can be obtained, and
all of those will be evaluated in order to determine which is the best one.

93



A. Rojas Salgado and Y. Ledezma Rubio

Fig. 4 Mass and inertia of link i.

3.1 Energy Equations

The resulting equations will have to show the mechanical energy of the model, de-
pending on its design dimensions (Figure 4). The mass (m) depends on the length of
the link (Li) and the density of the bar (ρL). On the other hand, the inertia of each
link also depends on its length and shape, defined in this case as constant circular
section links that represent a bar.

Here the kinematics will be functions of the lengths of the links of the system.
Different configurations can be found as a solution to a given trajectory. For ex-
ample, in the case of serial manipulators of two and three links, an upper configur-
ation (A) and a lower configuration (B) arise, which would be the solutions for the
inverse kinematics model proposed.

For each of link i the following energy equation applies:

EClineali = miv
2
i

2
, (3a)

EAngular = Iiω
2
i

2
, (3b)

EPoti = mighi , (3c)

Eesl i = ECLinealesl i + ECAngularesl i + EPotesl i , (3d)

Etot =
n∑
i=1

Eesl i , (3e)

where vi stands for the velocity of the center of mass i, ωi is the angular velocity of
the link i, and hi is the distance to a point of reference with respect to the gravita-
tional field. Etot is given with respect to the design dimensions and the trajectory
(Eq. (4)), and we can do a search of which is the point of less energy and establish
it as the optimum.

Etot = [x(t), y(t), L1, L2, . . . , Li]. (4)
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Fig. 5 Geometrical model of RRR serial manipulator.

4 Case Studies

This method can be applied to any kind of kinematic chain, be it open or closed,
with one or more degrees of freedom. Two numerical simulations with respect to
the behavior of two representative systems have been executed: one serial RRR
manipulator, and one 3RRR parallel platform.

4.1 Serial Manipulator

With a serial manipulator of three degrees of rotational freedom in a plane move-
ment, straight, circular, polynomic and trigonometrical trajectories have been de-
scribed. The trajectories simulate any task to be executed, as can be the transfer of
an object or a task of complex painting. The trajectory the manipulator has to follow
is given by

x(t) = cos(t), (5a)

y(t) = sin(t); 0 ≤ t ≤ π

2
, (5b)

ϕ(t) = 2t . (5c)

The inverse kinematics of the model leads to two possible solutions; an upper
and a lower configuration. Figure 5 represents the upper configuration.

The equation for optimizing is

EGlobal =
tf∑
t0

Etot = f [x(t), y(t), ϕ(t), L1, L2, L3]. (6)

The restrictions that are geometrically imposed are caused by the serial singu-
larities that the manipulator may face. They are directly related to the work radius
of the manipulator. For each of those cases two different configurations have been
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Fig. 6 Serial RRR manipulator solutions A and B.

encountered, each with the same lengths of links. The only difference between the
two configurations is in potential energy (Figure 4).

L1 = 0.769679 [m],
L2 = 0.835033 [m],
L3 = 0.691782 [m].

With respect to global energy, there has to be said that the configuration with the
arm in the lower position (B) has less energy than the configuration with the arm in
upper position (A), as you can see at continuation.

EGlobal A = 1855.75 [J],
EGlobal B = 1487.78 [J].

For each of those cases two different configurations have been encountered, each
with the same lengths of links. The only difference between the two configurations
is in potential energy, due to their position (Figure 6).

4.2 Parallel Manipulator

The parallel manipulator is composed of a triangular plate connected by three arms
of two links with rotational articulations (3RRR). Here, the simulations consisted of
giving position and orientation to the triangular plate with unknown dimensions, and
to find out which is the configuration and length of the seven links of the manipulator
that requires the least amount of energy. In order to simplify matters, the near and
far links will be considered as of the same length, which reduces the variables to
three lengths.
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Fig. 7 Trajectory task of 3RRR manipulator.

Fig. 8 Proposed model, configuration AAA.

The proposed trajectory is explained in Eq. (7) with the following graphic (Fig-
ure 7):

x(t) = 0.5 sin(4πt), (7a)

y(t) = 0.5 cos(2πt), (7b)

ϕ = sin(4πt). (7c)

The potential energy was not taken into account, positioning the plate and the
arms in a plane movement perpendicular to the gravitational field. The results ob-
tained favored those lengths that adjusted best to the movement within the feasible
region, taking into account that the external singularities of this model are eliminated
because of their need of infinite energy in order to reach those positions (Figure 8).

Here the definitions of the Jacobian parallel and serial matrix have been used in
[1], resulting in a definition of the feasible region. The equation of energy remains
as in Eq. (6), with infinite energy for the serial singularities. Therefore they have
been eliminated in order to find the optimum point (Figure 9).

The solution for this trajectory is given by
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Fig. 9 Jacobian matrix, serial (Jq) and parallel (J θ).

EGlobal = 2503.98 [J],
L1 = 0.7775 [m],
L2 = 0.7778 [m],
L3 = 0.1500 [m].

5 Conclusions

The method of least energy demand offers an analysis that makes the lengths of the
links dependent on the proposed trajectory. This way the point of the best design
is obtained as the one that has the lowest energy consumption. The investigation is
now directed toward design and proof manipulators with the following features:

1. Use of the least amount of energy for a given task.
2. Reconfiguration of the model in order to use the least amount of energy for dif-

ferent tasks.

The advantage of this radical method is that it leads quickly to a solution. For
the example of the manipulator 3RRR you need merely 5 minutes with an Intel
processor at 1.4 GHz. It is true, while the complexity of the system increases, it will
be more difficult to find a solution, since it then will depend on the capacity of the
optimization method used, as well as on the complexity of the model equations of
proposed inverted kinematics, as it is the case with spatial manipulators.
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Abstract. This paper presents a methodology for constraining a spherical parallel manipulator
so that it guides a body through five task positions with one degree-of-freedom. A dimensional
synthesis procedure is used to constrain links of a 3-RRR spherical parallel manipulator using
two spherical RR chains to obtain a spherical ten-bar linkage. For our purposes, we begin with a
spherical parallel manipulator that has a base and platform that are isosceles spherical triangles.
Inverse kinematics analysis of the spherical manipulator provides a set of relative task positions
that are used to formulate the synthesis equations for spherical RR chains. The primary challenge
is the analysis of the resulting four loop spherical linkage in order to animate is movement.

Key words: kinematic synthesis, spherical parallel manipulator, spherical linkage synthesis, ten-

bar spherical linkage.

1 Introduction

In this paper, we constrain a spherical parallel manipulator to obtain a ten-bar spher-
ical linkage. This paper extends recent dimensional synthesis results for planar
eight-bar linkages [7] to the design of a spherical linkage.

We begin with an arbitrarily specified 3-RRR spherical parallel manipulator and
add two RR spherical chains to constrain its movement. Inverse kinematic analysis
of this manipulator for five task positions of the end-effector yield five configur-
ations for each link in the articulated system. This provides the data necessary to
formulate dimensional synthesis equations for a spherical RR chain connecting any
two links in the articulated system [6].

The result is a constrained spherical parallel manipulator that moves through five
task positions with one degree-of-freedom.

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 101–110.
© Springer Science+Business Media B.V. 2008
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Fig. 1 The 3-RRR spherical parallel manipulator formed by an end-effector supported by three
spherical 3R chains (figure used with the permission of R.I. Alizade).

2 Literature Review

This paper focuses constrains a 3-RRR spherical parallel manipulator, Figure 1, to
obtain a desired movement. The forward and inverse kinematics of this manipulator
was presented by Alizade et al. [1], and bulca et al. [3] analyzed its workspace.

Kong and Gosselin [5] classify the variety of structures available for spherical
parallel manipulators, see also [4]. The focus of these papers are on ways that links
and joints can be connected to obtain a “type” or topology for the system, and are
examples of type synthesis. Our goal is to determine the dimensions of a given ma-
nipulator system, which is termed dimensional synthesis.

Once the spherical manipulator is constrained to a ten-bar linkage, it must be
analyzed to determine its movement as a function of the input crank angle. We rely
on the results of Wampler [9] to analyze this four loop spherical linkage.

3 Spherical Parallel Manipulators

A spherical parallel manipulator is a system of rigid bodies assembled so the end-
effector moves about a fixed point in space. The 3-RRR spherical parallel manipu-
lator is a three legged platform manipulator that is constructed so the joint axes of
all of the revolute joints pass through this same fixed point. The result is that all of
the links of the system undergo pure spatial rotation about this fixed point.

The kinematics equations of a spherical 3R robot equate the 3× 3 rotation trans-
formation [D] between the end-effector and the base frame to the sequence of local
coordinate transformations around the joint axes and along the links of the chain,
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[D] = [G][Z(θ1)][X(α12)][Z(θ2)][X(α23)][Z(θ3)][H ]. (1)

The parameters θi define the movement at each joint and αi,j define the angular
length of the links. The transformation [G] defines the position of the base of the
chain relative to the fixed frame, and [H ] locates the task frame relative to the end-
effector frame. The matrix [D] defines the coordinate transformation from the world
frame F to the task frameM .

4 The Spherical RR Constraint

A fundamental step of our spherical ten-bar synthesis methodology consists of siz-
ing two spherical RR chains that constrains the three RRR spherical robot to one
degree-of-freedom. We expand the RR synthesis equations, [6], to apply to this situ-
ation (see also [2, 8]).

Let [Bl,j ] be five position of the lth moving link, and [Bk,j ] be the five positions
of the kth moving link measured in a world frame F , j = 1, . . . , 5. Let g be the
coordinates of the R-joint attached to the lth link measured in the link frame Bl .
Similarly, let w be the coordinates of the other R-joint measured in the link frame
Bk . The five positions of these points as the two moving bodies move between the
task configurations are given by

Gj = [Bl,j ]g and Wj = [Bk,j ]w (2)

Now, introduce the relative displacements

[R1j ] = [Bl,j ][Bl,1]−1 and [S1j ] = [Bk,j ][Bk,1]−1, (3)

so these equations become

Gj = [R1j ]G1 and Wj = [S1j ]W1 (4)

where [R11] = [S11] = [I ] are the identity transformations.
The point Gj and Wj define the ends of a rigid angular link of length ρ, therefore

we have the constraint equations

[R1j ]G1 · [S1j ]W1 = ‖Gj‖‖Wj‖ cos ρ (5)

These five equations can be solved to determine the design parameters of the spher-
ical RR constraint, G1 = (u, v,w), W1 = (x, y, z) and ρ. We will refer to these
equations as the synthesis equations for the spherical RR link.

To solve the synthesis equations, it is convenient to introduce the displacements

[D1j ] = [R1j ]T [S1j ], (6)

so these equations become
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Fig. 2 This figure shows our conventions for the synthesis and analysis of the spherical parallel
platform.

Table 1 Five task positions for the end-effector of the spherical platform in terms of longitude θ ,
latitude φ, and roll ψ .

Task Position (θ, φ,ψ)

1 (90◦,−60◦, 90◦)
2 (77◦,−35◦, 82◦)
3 (68◦,−9◦, 78◦)
4 (65◦,−1◦, 75◦)
5 (64◦, 7◦, 67◦)

G1 · [D1j ]W1 = ‖Gj‖‖Wj‖ cos ρ. (7)

Subtract the first of these equations from the remaining to cancel the scalar terms
‖Gj‖‖Wj‖ cos ρ, and the square terms in the variables u, v,w and x, y, z. The
resulting four bilinear equations can be solved algebraically, or numerically using
something equivalent to Mathematica’s Nsolve function by setting w = z = 1 to
obtain the desired pivots.

5 Synthesis of a Spherical Ten-Bar Linkage

To illustrate the proposed synthesis process, we attempt to constrain a spherical
parallel manipulator to one degree of freedom by adding two spherical RR chains.
Let the task positions in longitude, latitude and roll co-ordinates be as shown in
Table 1. Select the angular links with dimensions such that α12 = α23 = α45 =
α56 = α78 = α89 = 60◦. Also, we assume that the transformation [G] that defines
the base of the chain relative to the fixed frame, and the transformation [H ] that
locates the task frame relative to the end-effector frame for each of the 3R spherical
chains C1C2C3, C4C5C6, and C7C8C9 are as defined in Table 2.
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Table 2 The transformation [G] and [W ] used to locate the base of the chain relative to the fixed
frame and the task frame relative to the end-effector frame.

Spherical 3R Chain [G] = [Y(θ)][X(−φ)][Z(ψ)] [H ] = [Y(θ)][X(−φ)][Z(ψ)]
C1C2C3 (90◦,−60◦, 0◦) (−60◦, 0◦, 0◦)
C4C5C6 (90◦, 60◦, 0◦) (0◦,−60◦, 0◦)
C7C8C9 (90◦,−180◦, 0◦) (60◦, 0◦, 0◦)

Table 3 The spherical RR chain solutions obtained. The highlighted pivots were selected for the
design.

S/N G1 W1

1 (−0.9456,−0.0093, 0.3250) (−0.9138,−0.0213, 0.4057)
2 (−0.8793,−0.1323, 0.4575) (−0.8989,−0.1716, 0.4032)
3 (−0.3041,−0.6490, 0.6974) (−0.7338,−0.5137, 0.4445)
4 (0.5000,−0.8660, 0.0000) (0.5000, 0.8660, 0.0000)
5 (0.35 + 1.27i, 3.44 − 0.62i, 0.56 + 3.05i) (1.09 + 1.24i, 2.75 − 2.15i, 1.96 + 2.33i)
6 (0.35 − 1.27i, 3.44 + 0.62i, 0.56 − 3.05i) (1.09 − 1.24i, 2.75 + 2.15i, 1.96 − 2.33i)

S/N G2 W2

1 (0.54−29.18i, 20.60−2.00i, 20.96+2.72i) (9.63−26.69i, 19.50+4.76i, 18.49+8.88i)
2 (0.54+29.18i, 20.60+2.00i, 20.96−2.72i) (9.63+26.69i, 19.50−4.76i, 18.49−8.88i)
3 (0.11− 0.01i,−0.71− 0.01i, 0.70− 0.00i) (0.11− 0.01i,−0.71− 0.00i, 0.70− 0.00i)
4 (0.11+ 0.01i,−0.71+ 0.01i, 0.70+ 0.00i) (0.11+ 0.01i,−0.71+ 0.00i, 0.70+ 0.00i)
5 (0.1964,−0.6483, 0.7356) (0.2562,−0.6482, 0.7170)
6 (−0.2500,−0.4330, 0.8660) (0.5000, 0.8660, 0.0000)

Once the various spherical platform dimensions are identified, the positions of
its links for the various 3R chains, B1, B4, B3, B5, B6, and B7 can be determ-
ined by solving the inverse kinematics of the various spherical 3R chains. There-
fore we can identify five positions T B1

i , and T B3
i , i = 1, . . . , 5 for the design of

a spherical RR chain denoted G1W1 in Figure 2. We compute the displacements
[D1j ] = ([B1,j ][B1,1]−1)T [B4,j ][B4,1]−1, i = 1, . . . , 5, to synthesize the spherical

RR chain G1W1 using Eq. (7). Similarly, we identify five positions T B5
i , and T B7

i ,
i = 1, . . . , 5 for the design of a spherical RR chain G2W2.

The five task positions listed in Table 1 yield three design candidate to constrain
the spherical parallel manipulator, Table 3. Figure 3 shows the chosen design, and
Figure 4 shows the constrained spherical parallel manipulator passing through each
of the specified task positions.

6 Analysis of the Spherical Ten-Bar Linkage

The analysis of the spherical ten-bar linkage as shown in Figure 2 is equivalent to
the displacement analysis of a single loop spherical triangle G1C4W1, and a three
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Fig. 3 The resulting constrained 3-RRR spherical parallel manipulator, which is a spherical ten-bar
linkage.

Fig. 4 A sequence of images showing the movement of the spherical ten-bar linkage reaching each
of the five task positions.
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Fig. 5 The various basic spherical structures having three or fewer loops. In the first row, we have
the single-loop spherical triangle, and the two-loop pentad structure. The second row consists of
the three-loop type 3a, type 3b, and type 3c structures (figure used with the permission of C.W.
Wampler).

loop spherical type 3b structure C2C3C9C6C5G2 W2C8C7. See Figure 5 for the
various spherical structures having three or fewer loops.

To see how we can decompose this ten-bar spherical linkage into a spherical tri-
angle and type 3b structure, we label the links on the spherical linkage as 0, 1, . . . , 9
as shown in Figure 2. Given an input angle θ1, we can merge links 0 and 1 into a
composite rigid link. We use (01) to represent this composite link. Now, (01), 2, 3
forms a spherical triangle. We solve it to obtain two solutions. For each solution,
we merge them into one big composite link (0123). Now (0123) and 4, 5, 6, 7, 8, 9
forms a spherical type 3b structure. We solve it to obtain 24 solutions, hence a total
of 48 solutions for this ten-bar spherical topology.

6.1 Analyzing the Spherical Triangle

The loop equation for the spherical triangle G1C4W1 may be written as

ZG1S1Z4S2ZW1S3 = I (8)

where Zi is a joint rotation and Si is a side rotation and I is the identity rotation. Zi
is a rotation about the z-axis, and may be written in terms of a rotation angle θi as
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Zi =
⎡⎣cos θi − sin θi 0

sin θi cos θi 0
0 0 1

⎤⎦ . (9)

Let z = [
0 0 1

]T , cos θi = (1 − t2i )/(1+ t2i ) and sin θi = −2ti/(1+ t2i ). If we pre
and post multiply zT and ST3 z respectively, we can simplify Eq. (8) into

zT S1Ẑ4S2z = zT ST3 z(1+ t24 ). (10)

where S1 = Ry(2.37), S2 = Ry(2.52), and S3 = Ry(0.52) for θ1 = 0.34 rad, and

Ẑi =
⎡⎣1− t2i −2ti 0

2ti 1− t2i 0
0 0 1+ t2i

⎤⎦ . (11)

We solve this quadratic equation for t4.

6.2 Analyzing the Spherical 3b Structure

The loop equations for the three-loop spherical structure 3b C2C3C9C6C5G2W2C8
C7 can be written as

Z2S4Z5S5Z6S6Z3S7 = I,
ZW2S

′
8Z9S

′
9Z6S10ZG2S11 = I,

Z7S
′
12Z5S

′
5Z6S9Z9S13Z8S14 = I,

Using the simplification process as above, one obtains the following three equations
in t5, t6, and t9:

f1 : zT [S4Ẑ5S5Ẑ6S6 − ST7 (1+ t25 )(1+ t26 )]z = 0,

f2 : zT [S′8Ẑ9S
′
9Ẑ6S10 − ST11(1+ t26 )(1+ t29 )]z = 0,

f3 : zT [S′12Ẑ5S
′
5Ẑ6S9Ẑ9S13 − ST14(1+ t25 )(1+ t26 )(1+ t29 )]z = 0

where S4 = Ry(2.52), S5 = Ry(1.05), S′5 = Ry(1.05)Rz(−2.21), S6 = Ry(1.32),
S7 = Ry(1.05), S′8 = Ry(0.77)Rz(−0.99),S9 = Ry(1.32), S′9 = Ry(1.32)Rz(1.20),
S10 = Ry(0.26), S11 = Ry(0.06), S′12 = Ry(1.62)Rz(−2.78), S13 = Ry(1.05) and
S14 = Ry(1.05) for θ1 = 0.34 rad.

108



Synthesis and Analysis of a Constrained Spherical Parallel Manipulator

6.3 Elimination Procedure

To solve this system, first augment f1 with {1, t9, t29 , t39 } ⊗ {1, t5} ⊗ {1, t6}, f2 with
{1, t5, t25 , t35 } ⊗ {1, t6} ⊗ {1, t9}, and f3 with {1, t5} ⊗ {1, t6} ⊗ {1, t9} to get 40
equations in the 64 monomials m = {1, t5, t25 , t35 } ⊗ {1, t6, t26 , t36 } ⊗{1, t9, t29 , t39 }.
The excess of monomials over the equations is 64−40 = 24, so we must append 24
identities to get a system of 64 polynomials in 64 monomials. The 24 identities are
formulated such that they satisfy t9m1−m2 = 0, where m1 is the list of monomials
in the set [({1, t5, t25 , t35 }⊗{1, t2})

⋃{t26 , t5t26 , t36 , t5t36 }]⊗{1, t9}, and m2 = t9⊗m1.
Writing the equations in block matrix form and letting t9 = x we get

[K̂(x)]m =
[

Km
xm1 −m2

]
=

⎡⎣ K1 K2 K3 K4
I1x + C1 C2 0 0

0 I2x −I2 0

⎤⎦
⎧⎪⎪⎨⎪⎪⎩

y1
y2
y3
y4

⎫⎪⎪⎬⎪⎪⎭ = 0, (14)

where y1 = m1\y2, y2 = y3/x, y3 = m2\m1, y4 = m\(m1
⋃

m2), with A\B
defined as the set minus A− (A⋂

B), are the four partition sets of the monomials
m. I1,I2 are identity matrices and C2 are sparse, having a single entry of−1 in each
row of the pair. Now we reduce K4 to upper triangular form, and premultiply by a
matrix that annihilates y3, y4 to obtain,

[
0 0 I1 0
0 I2 0 K̃23

]⎡⎢⎢⎣
K̃11 K̃12 K̃13 U

K̃21 K̃22 K̃23 0
I1x + C1 C2 0 0

0 I2x −I2 0

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩

y1
y2
y3
y4

⎫⎪⎪⎬⎪⎪⎭ = 0. (15)

Multiplying this out and dropping the trailing trivial columns we manage to reduce
the system of 64 polynomial equations to a 24× 24 generalize eigenvalue problem,[

I1x + C1 C2

K̃21 K̃22 + K̃23x

]{
y1
y2

}
= 0. (16)

Each value of x = t9 has an associated eigenvector (y1, y2)
T . The eigenvectors are

up to scale corresponding to the monomial 1 in m1. Divide out the scale factor to
retrieve the values of the remaining joint angles t5, t6.

7 Comments

Our design process yields a spherical ten-bar linkage that guides a rigid body
through five arbitrary spatial orientations, however, it is known that a similar design
process exists to obtain a spherical four-bar linkage that achieves the same task.
While it seems obvious that fewer moving parts are preferred, we have found that it
is easier to obtain effective designs for six, eight and now ten-bar linkages.
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In our experience, the fewer number of dimensional parameters in a four-bar
linkage limits the designer’s options when flaws arise in the synthesis process, such
as branch and order defects and partial crank rotatability. On the other hand, the
increasing numbers of parameters in six, eight and ten-bar linkages provide increas-
ing numbers of alternative configurations and dimensional options that make it rel-
atively easy to find designs that avoid these flaws.

Furthermore, though there is almost no research in this area, it seems reasonable
to expect that optimization techniques can use these extra dimensional parameters
to obtain effective designs with constraints on fixed pivot locations, link lengths and
mechanical advantage in order to enhance performance.

8 Conclusions

This paper presents a strategy to constrain a 3-RRR spherical parallel manipulator
with two spherical RR chains to obtain a spherical ten-bar linkage. The resulting
device performs a one degree-of-freedom movement through five arbitrary task po-
sitions. The analysis of this resulting four loop spherical linkage is presented using
Wampler’s method. An example design and analysis is presented.

Acknowledgement

The support of the National Science Foundation grant 0456213 is gratefully ac-
knowledged.

References

1. Alizade, R.I., Tagiyev, N.R. and Duffy, J., A forward and reverse displacement analysis of an
in-parallel spherical manipulator. Mechanism and Machine Theory 29(1), 125–137 (1994).

2. Alizade, R.I. and Kilit, O., Analytical synthesis of function generating four-bar mechanism for
five precision points. Mechanism and Machine Theory 40(7), 863–878 (2005).

3. Bulca, F., Angeles, J. and Zsomber-Murray, P.J., On the workspace determination of spherical
serial and platform mechanisms. Mechanism and Machine Theory 34(3), 497–512 (1999).

4. Gallardo, J., Rodriguez, R., Caudillo, M. and Rico, J.M., A family of spherical parallel manip-
ulators with two legs. Mechanism and Machine Theory 43(2), 201–216 (2007).

5. Kong, X. and Gosselin, C.M., Type synthesis of 3-dof spherical parallel manipulators based on
screw theory. ASME Journal of Mechanical Design 126(1), 101–108 (2004).

6. McCarthy, J.M., Geometric Design of Linkages. Springer-Verlag, New York (2000).
7. Soh, G.S. and McCarthy, J.M., Synthesis of mechanically constrained planar 2-RRR planar

parallel robots. In Proceedings 12th IFToMM World Congress, Besancon, France (2007).
8. Suh, C.H. and Radcliffe, C.W., Kinematics and Mechanisms Design. John Wiley and Sons,

New York (1978).
9. Wampler, C.W., Displacement analysis of spherical mechanisms having three or fewer loops.

ASME Journal of Mechanical Design 126(1), 93–100 (2004).

110



A Nonholonomic 3-DOF Parallel Robot
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Abstract. This paper addresses the problem of devising a parallel robot that can achieve a general
position and orientation for its moving platform using three motors only. At first glance, this might
seem impossible but, by using nonholonomic joints, three motors can manoeuver to approximate
any six-degree-of-freedom motion for the platform. We analyze the case of a 3-UPU parallel robot
in which each universal joint attached to the base is substituted by a spherical joint whose motion is
constrained by a disk that can freely roll in contact with the sphere without slipping. The proposed
robot involves fewer links and actuators than standard six-degree-of-freedom robots offering a
large workspace free from leg interferences.

Key words: parallel robot, nonholonomic joint, Lie bracket, underactuated robot.

1 Introduction

Among all possible spatial three degree-of-freedom parallel robots, those based on
three UPU legs [15] have drawn the attention of many researchers because of its
fascinating properties. It consists of a fixed base and a moving platform connected
by three serial chains, with each chain having a universal-prismatic-universal joint
arranged in sequence as shown in Figure 1 (left). The universal joints are passive,
only the three prismatic joints are actuated. The platform has three degrees of free-
dom (DOF) with respect to the base that, in general, involve coupled translations
and rotations but, by properly arranging the universal joints, the moving platform
can undergo pure translational [3, 13] or spherical [4, 8] motions.

In this paper, each universal joint attached to the base is substituted by a passive
joint based on a sphere whose motion is constrained, as shown in Figure 1 (right),
by a disk that can freely roll in contact with the sphere without slipping. This no-slip
constraint is a nonholonomic constraint, a constraint in the velocity. The kinematics
of this element is equivalent to that of a unicycle on a sphere [5]. Since the disk
can only roll without slipping laterally with respect to the sphere, the sphere can
instantaneously only spin about xi and yi with respect to the base. Thus, from the
instantaneous kinematics point of view, this joint is equivalent to a universal joint.

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 111–118.
© Springer Science+Business Media B.V. 2008
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Fig. 1 A UPU leg (left); and the result of substituting the universal joint attached to the base by
the proposed nonholonomic joint (right).

The only difference being that yi remains fixed with respect to the base, independ-
ently of the orientation of the leg. Hence, the instantaneous kinematics and statics
of the resulting mechanism can be carried out using the same techniques applied to
the standard 3-UPU platform [7].

There are many examples of nonholonomic systems that involve wheels rolling
in contact without slipping on planes or spheres. These kind of mechanical systems
have received attention because they can access a configuration space with a higher
dimension than the number of its actuators. However, due to the nonintegrability of
the velocity constraints, nonholonomic systems cannot follow an arbitrary path in
the configuration space. Therefore, it is an important problem to find a feasible tra-
jectory between any two configurations that satisfies the nonholonomic constraints
[10]. In this paper, we concentrate ourselves on the rather simpler problem of decid-
ing if the proposed robot can manoeuvre in any direction from a given configuration.
This is achieved by using the concept of Lie bracket. Given two vector fields, the Lie
bracket tell us if infinitesimal motions along these vector fields can be used to loc-
ally generate a motion in a direction not contained in the subspace linearly spanned
by them.

To the best of our knowledge, the use of nonholonomic mechanical elements
as joints in Robotics has received little attention in the past. Two related previous
works are the two-motor actuated robot wrist described in [14], and the continuous
variable transmission described in [11].

This paper is structured as follows. Section 2 deals with the statics and the in-
stantaneous kinematics of the proposed robot. Section 3 discuses the mathematical
tools needed to decide if the proposed robot can manoeuvre in any direction from
an arbitrary configuration. Section 4 summarizes all possible singularities for the
proposed design and, finally, Section 5 offers the conclusions.
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ei1

ei2

hi = ei1 × ei2
Figi

Mizi

xi

yi

Fig. 2 The proposed robot and the relevant vectors associated with its ith leg, i = 1, 2, 3, used in
the the presented statics analysis.

2 Kinetostatics of the Proposed Robot

In this section, we analyze the statics of a single leg, then the statics of the whole
robot and, finally, its instantaneous kinematics.

Figure 2 shows the proposed robot. In our design the universal joints attached to
the platform are arranged so that the unit vectors ei2 and ei1 can be expressed as:

ei2 = R(n× ri ), ei1 = ei2 × gi,

where n is the normal to the platform, R is the rotation matrix from the platform
to the world reference frame, and ri is the unit vector from the platform reference
frame to the universal joint center. As a consequence, the vector orthogonal to both
vectors can be expressed as:

hi = ei1 × ei2 = ((R(n× ri ))× gi )×R(n× ri ).

As explained in the previous section, the nonholonomic joint attached to the base
is constrained to only rotate instantaneously about axes xi and yi , thus a torque
between the base and the leg can only be transmitted about axis zi = xi × yi .
Likewise, a torque between the leg and the platform can only be transmitted about
axis hi = ei1× ei2. Then, the torqueMizi on the base is transmitted through the leg
to the platform by projecting it on axis hi . In other words, the transmitted torque is
(Mizi · hi )hi . Moreover, a force directed along the leg, say Figi , and acting at the
universal joint center, generates the torque Rri × Figi on the platform.
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Now, let Fe and Me be a external force and a external torque, respectively, acting
on the platform. Then, the static equilibrium equations of the platform can be written
as:

Fe =
3∑
i=1

Figi

Me =
3∑
i=1

(Mizi · hi )hi +
3∑
i=1

Rri × Figi

which can be rewritten in matrix form as:(
g1 g2 g3

Rr1 × g1 Rr2 × g2 Rr3 × g3
· · ·

· · · 03×1 03×1 03×1
(z1 · h1)h1 (z2 · h2)h2 (z3 · h3)h3

)
⎛⎜⎜⎜⎜⎜⎜⎝
F1
F2
F3
M1
M2
M3

⎞⎟⎟⎟⎟⎟⎟⎠ =
(

Fe
Me

)
(1)

where the right-hand side of the above equation is known as the wrench applied on
the platform.

Finally, to obtain the linear mapping from the velocities in the prismatic actuators
(q̇1, q̇2, q̇3) to the platform linear and angular velocities (ẋ, ẏ, ż, θ̇x , θ̇y, θ̇z), that
is, the platform twist, one can rely on the fact that the twist and the wrench are
reciprocal to each other [1]. This permits to conclude that

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

ż

θ̇x

θ̇y

θ̇z

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

gT1 (Rr1 × g1)
T

gT1 (Rr1 × g1)
T

gT1 (Rr1 × g1)
T

01×3 (z1 · h1)hT1
01×3 (z2 · h2)hT2
01×3 (z3 · h3)hT3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1 ⎛⎜⎜⎜⎜⎜⎜⎜⎝

q̇1

q̇2

q̇3

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

= (
v1 v2 v3

)⎛⎜⎝ q̇1

q̇2

q̇3

⎞⎟⎠ . (2)

Note that the components of vectors v1, v2, and v3 are not derivatives of any
generalized coordinates of the moving platform as there is no representation of the
platform orientation whose derivatives correspond to angular velocities [9]. Never-
theless, since
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v2
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−εv1

−εv2[v1, v2]

Fig. 3 Geometric interpretation of the Lie bracket of the vector fields v1 and v2.

vi (0) = ∂x
∂qi

∣∣∣∣
x=0

, with x = (x, y, z, θx, θy, θz),

when analyzing the behavior of the proposed robot at a given configuration, say
x0, we can always change the world reference frame so that x0 = 0. Under this
circumstance, the matrix (v1v2v3) can be seen as an analytic Jacobian.

3 Locally Reachable Configurations

The configuration of the platform can be modelled as a point in R3 × SO(3) which
is locally diffeomorphic to R6, thus, equipped with a proper set of local coordinates,
we are going to treat the configuration space of the platform locally as R6.

As described in the previous section, the instantaneous motion of the proposed
robot can be described in terms of three vector fields – v1, v2, and v3 – associated
with the three actuated prismatic joints. Linear combinations of these vector fields
define a linear subspace in R6, denoted by Span(v1, v2, v3), describing all possible
instantaneous motions of the platform. We would like to know the reachable set of
configurations following these vector fields. While this is generally difficult glob-
ally, it is possible to learn something about the reachable set locally [2].

For two of our vector fields, say v1 and v2, consider the state reached from x0
by first following v1 for a small time ε, then following v2 for time ε, then following
−v1 for time ε, then following −v2 for time ε. Then, it can be shown that see [12,
p. 323]:

lim
ε→0

x(4ε) = x0 + ε2
(
∂v2

∂x
v1(x0)− ∂v1

∂x
v2(x0)

)
, (3)
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where the partial derivatives are evaluated at x0. The term multiplying ε2 represents
the net motion of the system which is technically known as the Lie bracket of v1
and v2 and denoted by [v1, v2].

The Lie bracket [v1, v2] defines a new vector field, and if it is not contained in
Span(v1, v2), then it represents a new motion direction that can be followed. Locally
generating motion in this direction is slower than following the vector field v1 and
v2 directly, as the net motion is only O(ε3) for time O(ε).

Since [v1, v2] is a vector field, we can calculate its Lie bracket with another
vector field, say v3. Since the resulting net motion would be O(ε9) for time O(ε),
these motions are not considered here for practical reasons. Hence, we limit our
analysis to Lie products of degree 1, that is, [v1, v2], [v2, v3], and [v3, v1]. Then,
if the dimension of the space Span(v1, v2, v3, [v1, v2], [v2, v3], [v3, v1]) is six at a
given configuration x0, the robot can locally manoeuver in any direction.

4 Singularities

Note that vector fields v1, v2, and v3 are undefined if the matrix in Eq. (2) cannot
be inverted, i.e., if it is rank deficient. The configurations where this happens cor-
respond to singularities of the robot. We can distinguish the following three cases:

(a) g1, g2 and g3 lie on a plane, or they are parallel to each other.
(b) h1, h2 and h3 lie on a plane, or any two of them are parallel.
(c) hi ⊥ zi , for i = 1, 2, 3. In this case, no torque can be transmitted from the base

to the platform, so that the platform gains an instantaneous degree of freedom.
This corresponds to an uncertain singularity, i.e. a singularity with increased
instantaneous mobility.

While the first case corresponds to a usual parallel-chain singularity, the other
two correspond to singularities classified in [17] as constraint singularities. These
singularities are not detected when directly computing the input-output velocity
equations without performing a complete statics analysis, as it has been done here.

Assuming that v1, v2, and v3 are well-defined, i.e., the robot is in a configuration
where none of the above conditions is satisfied, nonholonomic singularities have
also to be considered in our case. They are defined as those configurations in which
the robot cannot manoeuvre in any direction of the configuration space. They can
be characterized algebraically as those configurations satisfying∣∣ v1(x) v2(x) v3(x) [v1(x), v2(x)] [v2(x), v3(x)] [v3(x), v1(x)]

∣∣ = 0.

The explicit computation of the above expression requires a computer algebra
system. It remains to be seen how these singularities are distributed in the working
space of the robot.
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5 Conclusions

A car-like robot cannot move sideways but, by manoeuvring, it can reach any place
and orientation on a plane. In this paper, by introducing nonholonomic joints, we
have extended this behavior to parallel robots. This permits reducing the number of
actuators, and hence the complexity of the robot, at the cost of motion speed.

We have analyzed the case of a 3-UPU parallel robot in which each universal joint
attached to the base has been substituted by a nonholonomic joint whose instantan-
eous kinematics is equivalent to that of a universal joint. Many other architectures
can be devised based on this substitution.
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Abstract. This paper analyzes a new laparoscopic surgical setup with two surgical robots. Require-
ments and constraints are outlined and the architecture selected for the surgical robots is presented
and discussed. Analytical models of the inverse and forward kinematics are provided together with
a detailed analysis of mobility and constraints. The velocity kinematics is addressed and singularity
analysis outlined.

Key words: parallel mechanisms, robotic surgery, minimally invasive surgery.

1 Introduction and Surgical Requirements

In minimally invasive surgery (MIS) surgeon manipulates tissues using tools inser-
ted through small incisions. It has become standard for various surgical and dia-
gnostic procedures owing to minimal trauma caused to healthy tissues resulting in
less post-operative pain and shorter hospitalization. Drawbacks occurs are in the
form of drastically reduced haptic feedback, motion reversal effect and hand tremor.
Use of telerobotics restores the tactile cues and intuitive dexterity of the surgeon and
improves accuracy through force feedback, filtering of hand tremor and motion scal-
ing [1, 4]. In spite of extensive research, very few systems are fully commercially
available and are expensive and bulky, for instance Da Vinci System.

Hence the intention to design a low cost and portable system for laparoscopic
surgical and diagnostic procedures.

In a standard laparoscopic surgery generally 4 or more key holes are required
[5]: one for scope, two for tools manipulated by surgeon and one for surgical tool
handled by assisting nurse. In diagnostic and minor surgical procedures (gynecolo-
gical) two or even one hole(s) could be sufficient [4]. In an ideal setup, tools should
be placed at equal azimuth angles along a semi circular line (about 160 to 180 mm
long) centered on the projection of the target organ and π/3 elevation angle [6]. The
inter-port distance can be as close as 50 mm, but it is generally around 140 mm [3].
Angle between tools should be π/3. Workspace required to reach the full extent of
the abdomen cavity, laterally and longitudinally, is π/3 and π/2 cone angle respect-

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 119–126.
© Springer Science+Business Media B.V. 2008
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Fig. 1 Original (a) and new architecture (b) and (c).

ively [7]. Also surgeons spend 95% of the time in a conical workspace with vertex
angle of π/3. The extrusion of 100 mm is adequate.

On the bases of these requirements, a 4 degree of freedom (3 rotational and 1
translational) purely parallel architecture was selected [10] with 4 legs of the same
architecture.

2 Review of the Original Surgical System

A preliminary 3D virtual mock-up of the architecture in [10] was constructed, based
on drive components and link design selected through force requirements. Two such
virtual mock-ups were assembled to realize a surgical configuration with two sur-
gical robots and the possible collision of links was investigated for movements of
the robots in their entire work spaces. Due to the force requirements each robot has a
large footprint and in the surgical configuration with two units, it is very hard to find
a design avoiding collisions. As shown in Figure 1a, even with a design specifically
developed to avoid collisions, at inter-trocar distance of more than 300 mm there are
configurations in which arms are still inevitably interfering with each other.

The conclusion is that the architecture in [10] appears to be feasible for diagnostic
setups where only one robot is used, and a modified architecture may result in a
preferable setup for surgical applications requiring two robots.

Various modifications of the original architecture were attempted to preserve the
advantageous characteristics for surgical application. The result is new architecture
shown in Figures 1a and 1b.

3 Modified Architecture

The new architecture proposed is purely parallel with 4 serial leg chains. Two of
the legs (labeled L = A,B) have architecture (RRR)R|R) and each comprise of a
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Fig. 2 (a) Heave sub-chain for legs A and B, (b) schematics of the legs C and D.

spherical sub-mechanism formed by the revolute joints ξL1 , ξL2 , ξL3 (with directions
kL1 , kL2 , kL3 ) intersecting at point O and a heave sub-mechanism with two parallel
revolute joints ξL4 , ξL5 (with direction kL4 ‖ kL5 ), ξL4 ⊥ ξL3 . Other two legs (labeled
L = C,D) with architecture (RRR)|P) comprise of a spherical chain (ξL1 , ξL2 , ξL3 )
connected to the end effector by a prismatic joint ξL4 with direction parallel to ξL3 .
ξC4 and ξD4 are parallel and orthogonal to ξA5 and ξB5 . We consider geometries with
ξA5 ⊥ ξB5 because there seem to be no advantage in different orientations to obtain
the desired symmetric workspace.

Compared to the original mechanism in [10], in the new architecture the ori-
entation of the tool is commanded by the spherical legs C and D without heave
sub-mechanism which in the original mechanism created most of the collision prob-
lems. Legs A and B maintain the heave sub-mechanism required to command tool
extrusion and torsion.

In the surgical setup with two robots, the work-spaces of the robots are oriented
in a way that for any feasible torsion angle the legs A and B of both robots are
maintained away from each other while shorter and easier to design legs C and D
move in the space between the robots without collisions.

The following sections present the main steps undertaken to check the feasibility
of the new architecture for surgical application and elements of its design.

3.1 Geometry and Configuration Parameters

Consider Figure 2 (with details of the geometry and configuration parameters). A
fixed base coordinate frame Oibjbkb and a rotating frame Oiojoko are introduced.
The heave plane πLe for L = A,B is through O and orthogonal to ξL5 . Points PL4
and PL5 are at the intersection of ξL4 and ξL5 with πLe , respectively. rL4 is the distance
between PL4 andO . πLh is the plane orthogonal to ko through ξL5 , hL is the distance
between πAh and πLh (hA = 0). The extrusion of the end effector is measured by the
distance h between πAh and O . The tilt angle αL1 and azimuth angle βL1 place the

4-DOF Parallel Architecture for Laparoscopic Surgery
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Table 1 Geometry parameters (dimensionless referred to lL45).

leg lL45/l
L
45 hL/lL45 rL4 /l

L
45 αL34 αL1 βL1 αL12 αL23

A 1 –0.125 1.875 0.09774 0.69813 0 1.01229 1.01229
B 1.375 0.75 2.125 0.09774 0.69813 0.69813 1.01229 1.01229
C – – – – 0.69813 3.14159 1.01229 1.01229
D – – – – 0.69813 4.71239 1.01229 1.01229

base joints ξL1 , L = A,B,C,D, in Oibjbkb. αLij is the angle between ξLi and ξLj ,
where i = 1, 2 and j = i + 1.

A set of values shown in Table 1 for the geometry parameters has been heuristic-
ally selected from kinematics and work-space analysis. These values have been used
as reference to investigate the suitability of the new mechanism in surgical setups
with two robots.

To orientate Oiojoko w.r.t. Oibjbkb the tilt-and-torsion (T&T) representation
mentioned in [2] (angles {θ, φ,ψ}) is used for the more realistic depiction of con-
stant torsion movements of the surgical tool compared to other representations e.g.
Euler angles.

3.2 Mobility and Constraint Analysis

The mechanism is purely parallel. The constraint applied by each leg to the end-
effector is analyzed and the overall end-effector constraint and mobility is discussed.

In any legL, the twist systems spanned by all joint screws and by the passive joint
screws are labeled, TL and PL, respectively. The corresponding reciprocal wrench
systems are WL = T ⊥

L (wrenches, the leg can transmit to the base with all joints
free to move) and VL = P⊥

L (wrenches, transmitted by the leg with the actuated
joint locked).

Legs A,B and C,D are analyzed separately distinguishing for each of them
different subsets, CLi , of the feasible leg configuration space, CL, with different
relative location of the passive joints and consequently different types of constraint
systems. The classes for legs A,B are also mentioned in [12].

Consider first the legs A,B. The leg postures qL are described geometrically
referring to the planes πL23 through ξL2 , ξL3 , πL45 defined by ξL4 , ξL5 and π0 throughO
parallel to ξA5 , ξB5 . For each class, CLi , a subclass, CLi1, is defined by the additional
condition kL1 ‖ πL23.

CL1 = {qL | kL4 ∦ πL23 and O �∈ πL45}. VL = Span (ϕL0 ,ϕ
L), ϕL0 force at O

with direction kL5 , ϕL force along πL23 ∩ πL45. If qL ∈ CL11, WL = VL else WL =
Span (ϕL0 ).

CL2 = {qL | kL4 ‖ πL23 and O �∈ πL45}. VL = Span (ϕL0 ,µ
L), µL pure moment

orthogonal to πL23). If qL ∈ CL21, WL = VL else WL = Span (ϕL0 ).



123

CL3 = {qL |kL4 ∦ πL23 andO∈πL45}. VL = Span (ϕL0 ,ϕ
L⊥), ϕL⊥ pure force through

O on πL45 orthogonal to kL4 . WL = VL everywhere in CL3 .
CL4 = {qL | kL4 ‖ πL23 and O ∈ πL45}. VL = Span (ϕL0 ,µ

L,ϕL⊥). If qL ∈ CL41,
WL = VL else WL = Span (ϕL0 ,ϕ

L⊥).
In any nonsingular posture (linearly independent leg joint screws) Span (ϕL0 ) =

WL � VL, dim VL = 2. In any leg singularity Span (ϕL0 ) � WL ⊂ VL.
Consider now legs C,D. We have only one class with subclass:
CL1 = {qL | kL4 ∦ πL23 and O �∈ πL45}. VL = Span (ϕL01,ϕ

L
02,µ

L), ϕL01 and ϕL02
forces atO orthogonal to kL4 , µL moment orthogonal to πL23. If qL ∈ CL11, WL = VL
else WL = Span (ϕL01,ϕ

L
02).

For leg C,D in any nonsingular posture (with linearly independent leg joint
screws) Span (ϕL01,ϕ

L
02) = WL � VL, dim VL = 3. In any leg singularity

Span (ϕL01,ϕ
L
02) � WL ⊂ VL.

The WL and VL of the single legs combine in the end-effector spaces of struc-
tural constraints, W = ∑

LWL, and actuated constraints, V = ∑
L VL. If no

leg is singular, W = Span (ϕA0 ,ϕ
B
0 ,ϕ

C
01,ϕ

C
02,ϕ

D
01,ϕ

D
02). Because ξC4 ‖ ξD4 ⊥ π0,

W = W0 = Span (ϕx,ϕy), with ϕx and ϕy two forces at O lying in π0 with dir-
ections io, jo. dim W0 = 2 and the mechanism has 3 rotational and 1 translational
freedoms. dim V = 6 and the mechanism is correctly actuated.

Mechanism configurations with at least one qL ∈ CL3 ∪ CL4 , L = A,B, belong
to the extrusion boundary of the 4-dimensional workspace of the mechanism. The
remainder of the boundary contains configurations with qL ∈ CL11 ∪ CL21, L =
A,B, or qL ∈ CL11, L = C,D. All boundary configurations are at least IO-type
(Impossible Output) singular [8]. All mechanism configurations with at least one
singular leg are singular.

Configurations with qL ∈ CL1 ∪CL2 , L = A,B, and qL ∈ CL1 , L = C,D, belong
to the interior of the workspace. They can be singular although no leg is singular.
The following discussion of position and velocity kinematics is mainly addressed
to these mechanism configurations. In conclusion, we discuss the localization of
RO-type singularities in the interior boundary and show that with the set of geo-
metry parameters selected the desired workspace is singularity-free. There are no
constraint singularities because dim W < 3 [9].

3.3 Inverse Position Kinematics

The base joint angles are computed for given tool pose (BRo, h).
In each leg kL1 = [cβL1 cαL1 sβL1 cαL1 −sαL1 ]T . ko is along the axis of the tool. For

legs L = C,D, kL3 = BRoko, while kL2 can be computed as linear combination of
kL1 , kL3 , kL1 × kL3 :

kL2 =
(
1− (kL1 · kL3 )2

)−1[kL1 kL3 kL1×kL3 ][tL1 tL2 tL3 ]T (1)

4-DOF Parallel Architecture for Laparoscopic Surgery
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with tL1 = cL12 − cL23(k
L
1 · kL3 ), t

L
2 = cL23 − cL12(k

L
1 · kL3 ), c

L
ij = cαLij , sLij = sαLij ,

tL3 = δL
√
(|s12s23| + eLAB)(|s12s23| − eLAB), eLAB = kL1 · kL3 − cL12c

L
23. Knowing the

direction of kL2 w.r.t. kL1 the actuation angles can be finally computed.
For legs L = A,B, the angle ψLh is derived as:

cψLh =
(
(h+ hL)2 + rL4 2 − lL45

)
/(2hLrL4 ) (2)

while kA5 = kA4 = io, kB5 = kB4 = jo. Through vector projection we obtain: kL4r =
−sψLh jo + cψLh ko and kL3 = −s(αL34 + ψLh ) jo + c(αL34 + ψLh ) ko

Vector kL2 is obtained as in Eq. (1). PL5 = (h+ hL)ko, PL4 = rL4 kL4r .
A graphical mock-up was constructed based on inverse kinematics in Maple to

verify the mathematical model.

3.4 Forward Position Kinematics

The pose (BRo, h) of the end-effector is computed from given actuator angles. The
kL2 are available from the actuated joint angles. Finding BRo requires determination
of angles {θ, φ,ψ}. From Figure 2b, kC3 = kD3 = ko. ko can be obtained by linear
combination of kC2 , kD2 , kC2 × kD2 as outlined in Section 3.3. Angles φ and θ come
from kb · ko = cosφ, kb × ko = j′, jb · j′ = cos θ . Here j′ is the unit vector along
the T&T tilt axis.

When legsA,B have same geometry,ψA3 = ψB3 and h, kA3 ,ψA3 , kB3 are computed
solving a system of 7 equations: ko · kL3 = cosψA3 , kL2 · kL3 = cosαA23 (L = A,B)
kA3 ·kB3 = cos2 ψA3 plus the unit vector equations for kA3 and kB3 . ψh = ψA3 −αA23. h
is calculated from Eq. (2). Then io = kA3 × ko. Finally ψ is obtained from jo · jb =
cosψ , jo = ko × io.

3.5 Velocity and Singularity Analysis

We use the rotating reference frame Oiojoko for ease, and apply the method de-
tailed in [11]. The input-output velocity equation is of the form: [Za Zc ]T ξ =
[�θ̇a 02 ]T , where, out of singularities, Za = [ϕ̃A ϕ̃B µ̃C µ̃D]T , Zc = [ϕ̃x ϕ̃y ]T
(with the symbol∼ on a wrench denoting switching of force and moment compon-
ents), � = diag{ϕA ◦ ξA1 ,ϕ

B ◦ ξB1 ,µ
C ◦ ξC1 ,µ

D ◦ ξD1 }.
The different entries of Za and � can be calculated using the geometry of the

mechanism. In Oiojoko, the io and jo components of the translation velocity are
always zero due to W0 and we can consider the simplified end-effector twist ξ̄ with
the only three rotational and ko translational components. The final form of the
simplified velocity equations is:
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Table 2 Conformal conditioning maps (the smaller the darker) for given extrusion and torsion –
no singularities are present.

Extrusion hA τ = 5π/12 τ = π/2 τ = 2π/3 τ = 11π/12

(1.75) lA45

(2.125) lA45

(2.5) lA45

⎡⎢⎢⎢⎢⎢⎣
(kA2 × kA3 )

T(
kB2 × kB3

)T(
kC2 × kC3

)T(
kD2 × kD3

)T

∣∣∣∣∣∣∣∣∣∣

kA2 k
A
3 k
A
4

−rA45
kB2 k

B
3 k
B
4

−rB45

0

0

⎤⎥⎥⎥⎥⎥⎦ ξ̄ =

⎡⎢⎢⎢⎣
kA1 kA2 kA3 0 0 0

0 kB1 kB2 kB3 0 0

0 0 kC1 kC2 kC3 0

0 0 0 kD1 kD2 kD3

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
θ̇A1
θ̇B1
θ̇C1
θ̇D1

⎤⎥⎥⎥⎦ (3)

where rL45 in leg L = A,B is the distance between πL45 ∩ π0 andO .
Extensive iterations of singularity analysis were performed before getting the

geometry parameters listed in Table 1. The singularity free workspace obtained is a
truncated cone with half angle 13π/90 and extrusion range 90 mm (if lA45 is taken
as 120 mm). The torsional range of the mechanism is 2π/3, which is sufficient for
many surgical tools and procedures, though, it is targeted to extend the capacities of
the mechanism by further refinements. The analysis checked for RO-type singularit-
ies and was performed through C++ code based on conditioning of Z and � matrices
in Eq. (3). Color maps were generated to highlight the surfaces of singularity in the
workspace. Results for some workspace sections (at constant h and torsion) for the
torsional and extrusion range are shown in Table 2. White colors represent singular
configurations while colors from light gray to dark gray show conditioning of the
matrices. As the entries of matrix Z are non-homogeneous, the conditioning only
determines the presence or absence of singularities. Since the analysis performed
is at discrete locations it is not proven that no singularity exists in the workspace
between the examined configurations but the lattice of configurations examined is
very dense.

4-DOF Parallel Architecture for Laparoscopic Surgery

τ = π/4
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4 Conclusion

This paper presents a parallel architecture selected to develop a slave manipulator
for laparoscopic surgery setups employing two manipulators. The architecture pro-
posed overcomes some of the drawbacks of a previous version from which it is de-
rived. All favorable characteristics of the original mechanism are maintained. Kin-
ematics models, velocity patterns and singularities are discussed.
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Flapping-Wing Mechanism for a Bird-Sized
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Abstract. Birds daily execute complex maneuvers out of reach of current UAVs of comparable
size. These capabalities are at least partly linked to the efficient flapping kinematics. This article
describes the flapping wing mechanism developed within the ROBUR project to create a bird-sized
UAV relying on such advanced kinematics.

Key words: UAV, flapping-wing, parallel mechanism, modeling, control.

1 Introduction

The capabilities of Mini-UAVs have drastically increased thanks to recent advances
in terms of energy storage, effector power and electronic miniaturization, but they
still remain far below the maneuverability and energy efficiency exhibited by birds
and bats. An European kestrel for instance can stay above a point, fly forward at
varying speeds, glide or soar to save energy, while demonstrating maneuverability
capacities that far exceed those of the most efficient acrobatic aircraft. We have
chosen to study flapping-flight for bird-sized UAVs, i.e., with a wing-span ranging
from 0.5 to 1 meter and a weight of 500 g.

This article describes current research efforts targeted at designing a flapping-
wing platform within the ROBUR project [1]. Whereas current flapping-flight ar-
tifacts show a maneuverability similar to that of fixed-wing engines, our overall
objective is to design an aircraft whose capabilities will more closely resemble that
of a kestrel, or at least of a pigeon. To this end, the wing kinematics have to be
carefully controlled, for instance through the implementation of a neural network-
based closed-loop control. As a consequence, the mechanical instantiation of our
artificial bird must be able to move the wings on a wide range of periodical and non
periodical trajectories, while remaining as energy-efficient as possible. This makes
the corresponding wing-beat mechanism different from many mechanisms found in
the literature [2–5], because they generate periodical or quasi-sinusoidal movements
only. The design of such an improved device is especially challenging since, to prop-

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 127–134.
© Springer Science+Business Media B.V. 2008
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Fig. 1 The morphology of a simulated UAV.

erly size its actuators and mechanical parts, we must know the order of magnitude
of torques, angle ranges and dimensions, which strongly depend on the wing-beat
kinematics and the morphology of the artificial bird. The optimal kinematics, as well
as the required degrees of freedom and the required power to fly at a given speed,
being still open scientific questions, we want to address them while designing such
mechanism.

This article deals with the design, the modeling and the control of the flapping-
wing mechanism developed within the ROBUR project. In a first part, we briefly
describe the results obtained on the optimal design of bird morphology and kin-
ematics. Based on these results the wing beating mechanism that we have designed
is then presented. In a second and a third part, the system modeling and its control
are described.

2 Mechanical Design

In a first step, the morphology and kinematics the most adapted to several flying
speeds have been sought using an evolutionary algorithm. Figure 1a shows the wing
panels and their DOFs (dihedral (DI), sweep (SW), shoulder incidence (SINC) and
wrist incidence (WINC)). In Figure 1b possible morphologies corresponding to
boundary values of wing area (0.1–0.4 m2) and wing aspect ratio (4.5–10) are il-
lustrated.

128



Flapping-Wing Mechanism for a Bird-Sized UAVs: Design, Modeling and Control

Table 1 Angular ranges (in degrees) for the three DOFs (wing folding is not represented) for
Pareto-optimal individuals.

Speed (m/s) Dihedral Shoulder incidence Wrist incidence

6–8 15–50 0–30 10–50
10–12 25–45 0–15 8–15
16–20 30–65 0–5 1–10

Fig. 2 Wing-beating mechanism.

The results of this optimization give us the first insights of the typical mechanical
parameters required for a basic horizontal flight of a 0.5 kg UAV at different speed
[6]. Optimization lead to a minimum energy consumption of 20–50 W/kg for a 10–
12 m/s speed, with wing-beat frequencies between 3 to 5 Hz. Table 1 describes the
obtained angle ranges for the different DOFs, for Pareto-optimal kinematics. This
means that the UAV should at least allow the DOFs to move in these ranges for a
basic flight along a straight line.

Capitalizing on these results, we designed a wing-beating mechanism that allows
a wide range of dihedral and twist variations, with a high energetic and mechanical
efficiency. To reach such capabilities, an innovative mechanism was developed as
shown in Figure 2.

In this mechanism, the wings motion is produced by four position-controlled
brushless motors (each motor is about 30 W power and 100 g weight). These four
motors are associated two by two, constituting a parallel mecanism that uses two
connected rod-crank mechanisms. Thus, the wings can be moved to follow an arbit-
rary trajectory and the power required to execute the quasi-sinusoidal movements is
especially low. Each pair of motors is used to control: (1) the dihedral (DI) motion
and (2) the shoulder incidence (SINC) motion.
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Fig. 3 Kinematic schema of the parallel mechanism.

3 Kinematical Modelling

The wing-beating system is composed of two identical mechanisms. This element-
ary part is a parallel system actuated by two motors. The first one, located in the front
plane, is directely used to control the dihedral motion of the wings and the second
one, located on the rear plane, controls the shoulder incidence motion through two
conical gears. Each of these elementary systems is made symmetrical by using a
drive-belt component (see Figure 2). Thus, in this first prototype, the flapping mo-
tion is identical for left and right wings (both for dihedral and twist motion).

The elementary parallel mechanism is composed of five rods connected through
six revolute joints. Figure 3 shows the kinematic schema of this parallel mechan-
ism. Joint J1 and J2 are coupled by the drive-belt, joint J3 and J4 are actuated by
two motors, and the last two joints (J5, J6) remain free. The mobility index of the
mechanism is given by the classical Grubler equation:

m =
n∑
i=1

fi − 3(n− b)

where b is the number of moving bodies, n the number of joints, fi the number
of degrees of freedom of each joint i. In this case, the mobility index is m = 3
(5 bodies, 6 revolute joints), but the overall system mobility is reduced to m =
2 when the symmetry condition from the drive-belt is considered. As these two
degrees of freedom are actuated by two motors, the mechanism motion is completely
constrained.

For analysis purpose, the system can be simplified by the kinematically equiva-
lent system depicted in Figure 4b. Because of the symmetrical motion on joint J1

and J2 (angle θ ), the motion of points A3 and A4 is constrained to an horizontal axis
(Ai denotes the center of joint Ji). Thus, we can consider only the 3 rods mechanism
and express the kinematic relation between λ and the input angles α1 and α2. The
solution is obtained by solving the kinematical closure-form equations:{

b cosα1 + L cos γ − b cosα2 = λ
b sin α1 + L sin γ − b sin α2 = 0

(1)
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Fig. 4 Detailed kinematic schema.

Eliminating γ from these equations gives the following expression:

L2 = (
λ+ b(cosα1 − cosα2)

)2 + b2(sin α1 − sin α2)
2 (2)

Then, λ can be determined from this second order equation. When the solution
existence condition is satisfied (L >

√
2b), we obtain the following unique solution:

λ =
√
L2 − b2(sin α1 − sin α2)2 + b(cosα1 − cosα2) (3)

And considering the schema in Figure 4a, the wing flapping angle θ is given as a
function of λ:

θ = sin−1 L− λ
2a

(4)

The reader should notice that the parameters α1 and α2 are not directly the control
inputs. But, if we consider u = [u1 u2]t the input vector composed of the two motor
angles (corresponding to the joint angles of J3 and J4), there can be computed as
function of the parameters α1, α2 and the kinematical configuration of the mechan-
ism characterized by the angle θ :{

u1 =
(
α1 − π

2

)− θ
u2 =

(
α2 − π

2

)+ θ
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However for the mathematical description of the kinematical model, it is more ef-
ficient to consider the input parameters (α1, α2) instead of the motor angles (u1,
u2).

The system presents two control inputs α1 and α2 for one state parameter θ . So,
the mechanism is over-actuated and we need to determine the compatible angles.
Thus, let us introduce a new set of input variables α and ϕ, respectively the mean
input angle and the half-phase angle:{

α = 1
2 (α2 + α1)

ϕ = 1
2 (α2 − α1)

and

{
α1 = α − ϕ
α2 = α + ϕ

Equation (3) becomes:

λ =
√
L2 − 4b2 cos2 α sin2 ϕ + 2b sinα sinϕ (5)

And the relations between the motor angular positions (u1 and u2) and the new
variables become:{

u1 =
(
α − π

2

)− (θ + ϕ)
u2 =

(
α − π

2

)+ (θ + ϕ) and

{
α = 1

2 (u2 + u1)+ π
2

ϕ + θ = 1
2 (u2 − u1)

4 Motion Control of the Flapping Angle

In this part, we demonstrate that the previous choice of variables α and ϕ leads to
a simplified control model of the wings-flapping motion. It allows to define quasi-
sinusoidal motion given by the desired flapping frequency and amplitude.

Equation (5) can be differentiated with respect to α:

dλ

dα
= 2b cosα sinϕ

⎡⎣1+ 2b sin α sinϕ√
L2

4b2 − cos2 α sin2 ϕ

⎤⎦ (6)

By considering the schema depicted in Figure 3, one can conclude that the wing
angle θ is at its extremums when λ is also at its extremums. In order to find the
extremum positions αmin and αmax, the relation dλ/dα = 0 must be solved. This
leads to the following solutions: {

cosα = 0

sin ϕ = ± L
2 b

Thus, for any values of ϕ there are only two extremum positions at each periode
that are solutions of cosα = 0. When introducing this result in Equations (5) and
(4), we can find the maximum values for λ and consequently for θ :
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Fig. 5 Exemple of θ trajectory obtained with kinematic based control.

{
λmax = L± 2 b sin ϕ

a sin θmax = b sin ϕ
(7)

Figure 5 shows some trajectories θ obtained for different phase angles ϕ. The
motion is quasi-sinusoidal, its amplitude depends on ϕ and its frequency can be
modulated thanks to the velocity term α̇. So, if the desired quasi-sinusoidal traject-
ory is specified by its frequency fθ and its amplitude θmax, the velocity α̇ and the
phase are determined as follows:⎧⎨⎩ α̇ = 2πfθ

ϕ = sin−1
(a
b

sin θmax

) (8)

In order to extent this simple quasi-sinusoidal control to an arbitrary flapping mo-
tion, we need to investigate the differential kinematic model. The flapping velocity
is given by θ̇ that can be expressed as a function of the input velocities (α̇, ϕ̇):

θ̇ = dθ

dλ

(
dλ

dα
α̇ + dλ

dϕ
ϕ̇

)
= Jαα̇ + Jϕϕ̇ (9)

The corresponding Jacobian terms are determined from Equations (4) and (6):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Jα = dθ

dλ

dλ

dα
= − b cosα sin ϕ

a

√
1− (

L−λ
2a

)2

⎡⎣1+ 2b sin α sin ϕ√
L2

4b2 − cos2α sin2 ϕ

⎤⎦
Jϕ = dθ

dλ

dλ

dϕ
= − b sin α cosϕ

a

√
1− (

L−λ
2a

)2

⎡⎣1− 2b cosα cotα sin ϕ√
L2

4b2 − cos2α sin2 ϕ

⎤⎦ (10)
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Then, the control principle is to compute the instantanous velocities terms (α̇, ϕ̇)
as a function of the desired flapping velocity θ̇ c. This desired velocity becomes the
control input used to follow a desired trajectory θ(t) with a classical feedforward
controller:

θ̇ c = K1(θ − θm)+ θ̇ (11)

where θm is the measured flapping angle,K1 is a positive gain and θ̇ is the feedfor-
ward velocity computed from the trajectory θ(t). Then, the control law becomes:⎧⎨⎩ ϕ̇ = K2(ϕ

d − ϕm)
α̇ = 1

Jα
(θ̇ c − Jϕϕ̇) (12)

where ϕd is the phase angle determined from the maximum absolute values of the
flapping angle trajectory θ(t) on a given time horizon.

5 Conclusion

These results constitute the first stones of a long work towards a fully maneuver-
able flapping-wing UAV. Kinematical and morphological data from an evolutionary
optimization process have been used to properly dimension a flapping-mechanism
able to move the wing dihedral and incidence to follow arbitrary kinematics. The
kinematic model of this innovative parallel mechanism has been detailed in this pa-
per. Based on this model, a simple control law for quasi-sinusoidal motions has been
developed. Its extension to a velocity model based controller that is able to follow
various cyclic trajectories has been proposed.
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Abstract. The paper addresses the synthesis problem of repeatable Jacobian inverse kinematics
algorithms for robotic manipulators. For the kinematics of redundancy 1 this synthesis is accom-
plished by defining an extended Jacobian inverse that in certain sense approximates the Jacobian
pseudo-inverse. The approximation problem is formulated in differential geometric terms, and
solved using the existing results on the approximation of a prescribed codistribution by an inte-
grable codistribution. As an illustration, extended Jacobian inverses are derived for the normal
form kinematics of a stationary manipulator and a mobile robot.

Key words: robot kinematics, redundancy, extended Jacobian inverse, Jacobian pseudo-inverse,

distribution, approximation.

1 Introduction

Suppose that the map k : Rn −→ Rm, y = k(q), where m < n, denotes a
coordinate representation of the forward kinematics of a robotic manipulator. Given
a task space point yd , the inverse kinematic problem consists in determining a joint
position qd such that k(qd) = yd . This problem is usually solved by means of the
continuation method [4], in the following way. We choose an initial configuration
q0, take a smooth curve q(θ), θ ∈ R, such that q(0) = q0, and define a task space
error e(θ) = k(q(θ))− yd along this curve. The curve should render a convergence
of the error to 0; we let the convergence be exponential with a rate γ > 0, i.e.
d e(θ)/d θ = −γ e(θ). A differentiation of the error e(θ) leads to the differential
equation

J (q)
d q

d θ
= −γ (k(q)− yd)

for the curve q(θ), referred to as the Ważewski–Davidenko equation [2, 11]. From
this equation, for every right inverse J #(q) of the Jacobian J (q), we obtain an in-
verse kinematics algorithm in the form of a dynamic system

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 137–146.
© Springer Science+Business Media B.V. 2008
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d q

d θ
= −γ J #(q)(k(q)− yd), (1)

whose trajectory in the limit yields the solution, qd = limθ→+∞ q(θ) of the inverse
kinematic problem.

Geometrically, the columns of the matrix J #(q) may be treated as vector fields
spanning a distribution

D = spanC∞(Rn){J #
1 (q), . . . , J

#
m(q)} (2)

associated with (1). Among the most often used right inverses there is the Ja-
cobian pseudo-inverse (the Moore–Penrose inverse of the Jacobian), defined as
J #P (q) = J T (q)(J (q)J T (q))−1, and the extended Jacobian inverse J #E(q) =
J̄ (q)−1|m first columns, that, after introducing an augmenting kinematics map h :
Rn → Rn−m, results from the extended Jacobian

J̄ (q) =
[
J T (q)

(
∂h(q)
∂q

)T ]T
.

It is well known that the Jacobian pseudo-inverse algorithm has outstanding
(quadratic) convergence, whereas the extended Jacobian algorithm is repeatable.
Let us remind that an inverse kinematics algorithm is called repeatable, if every
closed path in the task space is transformed by the algorithm into a closed path in
the joint space. Repeatable control strategies become most advantageous when the
manipulator carries out cyclic sequences of tasks. It is well known that the Jacobian
pseudo-inverse inverse kinematics algorithm is not repeatable [3]. Necessary and
sufficient conditions for repeatability of inverse kinematics algorithms for station-
ary manipulators have been derived by Shamir and Yomdin [8], and generalized to
mobile manipulators by Tchoń [9]. These conditions require integrability of the as-
sociated distribution. By design, the extended Jacobian inverse kinematics algorithm
is repeatable.

An idea of making a fusion of convergence and repeatability inherent in these
two inverse kinematics algorithms comes from [5, 6], and consists in defining a
repeatable (e.g. extended Jacobian) inverse that optimally approximates, in the sense
of the minimization of an error functional, the Jacobian pseudo-inverse. Apparently,
the optimality conditions for this approximation problem look rather intractable,
moreover, topologically such an approximation presents a sort of ill-posed problem,
for the set of repeatable inverses is very small (of infinite codimension).

The objective of this paper is to set forth new a synthesis procedure of the
extended Jacobian inverse kinematics algorithms that approximate the Jacobian
pseudo-inverse. Instead of the variational approach, we take up a differential geo-
metric formulation of the approximation problem, adopting as a guideline the
method of approximation of codistributions expounded in [7]. A codistribution is a
geometric object dual to the distribution, spanned by differential one-forms that an-
nihilate the distribution. Given a codistribution, the method provides an integrable
codistribution that agrees with the original codistribution on certain submanifolds
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Fig. 1 3DOF manipulator.

and along a specific vector field associated with a homotopy map. The resulting
codistribution is spanned by differentials of certain functions that in the robotic con-
text compose into an augmenting kinematics map. For simplicity, we shall present
the main idea of this method restricting to the kinematics of redundancy 1. Both the
stationary and the mobile robot kinematics will be considered.

The composition of this paper is the following. In Section 2 we apply the codis-
tribution approximation method to the kinematics of a 3 degree-of-freedom (DOF)
manipulator. Section 3 will show corresponding results for a chained-form system.
Section 4 presents computer simulations. The paper concludes with Section 5.

2 Stationary Manipulator

In order to present the main ingredients of the differential geometric approximation
procedure, we shall use the kinematics of a 3DOF stationary manipulator studied in
[10] and shown in Figure 1.

As can be seen, the manipulator has 3 joint variables (x1, x2, x3) and 2 tasks
coordinates (y1, y2) describing the Cartesian position of the car W2 with respect
to the inertial coordinate frame fixed to the base. The joint variable x1 is moved
directly by the motor M1, similarly x3 is driven by M3. The position of W2 along
the runner P2 depends on x3, and also on the revolution angle of the toothed wheel
z2. This angle is coupled with the revolution angle of the toothed wheel z1 through
a transmission gear whose gear ratio is adjusted by the joint variable x2 moved by a
motorM2 (not shown in the figure). A computation yields the kinematics y1 = c1x1
and y2 = f2(x2)x1+c3x3 for constants c1 , c3 and a nonlinear function f2(x2). After
a change of coordinates q1 = c1x1, q2 = c3x3 and q3 = 1

c1
f2(x2) these kinematics

may be given the normal form k(q) = (q1, q2 + q1q3). Accordingly, the Jacobian
becomes

J (q) =
[

1 0 0
q3 1 q1

]
.
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By definition, the distribution (2) associated with the Jacobian pseudo-inverse
J #P (q) = J T (q)(J (q)J T (q))−1, is generated by the columns of J T (q). Equiv-
alently, this distribution may also be represented as

DP = spanC∞(R3){X1(q),X2(q)}, (3)

where X1(q) = (1, 0, 0)T , X2(q) = (0, 1, q1)
T .

In accordance with Sluis et al. [7], we begin the approximation procedure
with picking a one-form ω(q) = (0,−q1, 1) annihilating (3). Then, we intro-
duce a foliation of R3 whose leaves are vertical lines parallel to the unit vector
e3 = (0, 0, 1)T , i.e. Eα = {α1} × {α2} × R, where αi ∈ R. By means of the map
�t(q) = tq+(1− t)q3e3 = (tq1, tq2, q3)

T , t ∈ [0, 1], we establish a homotopy be-
tween R3 and the basic leaf E0 = {0}× {0}×R. A differentiation of this homotopy
yields a vector field

X(q) = d

d t

∣∣∣
t=1
�t(q) = (q1, q2, 0)T .

Now, our objective is to define a function h(q) such that its differential agrees with
ω(q) along the vector field X(q), and on the leaves of the foliation, i.e.

dh(q)X(q) = ω(q)X(q) and, for every α = (α1, α2), dh|Eα = ω|Eα . (4)

To this aim, let us compute F(q) = ω(q)X(q) = −q1q2, and divide the joint space
coordinates (q1, q2, q3) ∈ R3 into z = q3 along the leaves, and y1 = q1, y2 = q2
in the horizontal plane. For (y, z) close to E0 the conditions (4) result in a partial
differential equation

∂h ◦�s(y, z)
∂s

− F ◦�s(y, z)
s

∂h ◦�s(y, z)
∂z

= 0,

parametrized by y, whose characteristic equation takes the form

d z

d s
= −F(�s(y, z))

s
= sy1y2. (5)

The solution of (5) with initial condition z(0) = z0 is z(s) = z0 + 1
2y1y2s

2. After
taking s = 1 and setting z = z(1), we compute z0(y, z) = z− 1

2y1y2, and obtain the
augmenting kinematics function h(q) = q3 − 1

2q1q2. In conclusion, the resulting
extended Jacobian inverse

J #E1(q) = 1

1+ 1
2q

2
1

⎡⎢⎢⎣
1+ 1

2q
2
1 0

−q3 − 1
2q1q2 1

1
2q2 − 1

2q1q3
1
2q1

⎤⎥⎥⎦ . (6)

140



Extended Jacobian Inverse Kinematics and Approximation of Distributions

Alternatively, a similar derivation for the one-form ω(q) = (0, 1,−q−1
1 ), q1 > 0,

the foliation Ea,α = {a + α1} × R × {α3}, where a > 0, α1 > −a and α3 ∈ R
of the half-space (0,+∞)× R2 by horizontal lines such that the basic leaf Ea,0 =
{a} × R × {0}, and for the homotopy�t(q) = tq + (1 − t)(a, q2, 0)T leads to the
characteristic equation

d z

d s
= y2

sy1 + a .
Having solved this equation, we discover the augmenting function

h(q) = q2 − q3

q1 − a ln
(q1

a

)
, q1 > 0,

and obtain the extended Jacobian inverse

J #E2(q) =

⎡⎢⎢⎢⎢⎣
1 0

q3
−2q1 ln(

q1
a )+a ln(

q1
a )+q1−a

(−q1+a)(− ln(
q1
a )−q2

1+q1a)

ln(
q1
a )

ln(
q1
a )+q2

1−q1a

q3
−q3

1+2q2
1a−q1a

2+q1 ln(
q1
a )−q1+a

q1(−q1+a)(− ln(
q1
a )−q2

1+q1a)

−q1+a
− ln(

q1
a )−q2

1+q1a

⎤⎥⎥⎥⎥⎦ . (7)

Results of computer simulations illustrating the performance of extended Jacobian
inverses (6) and (7) compared with the Jacobian pseudo-inverse will be shown in
Section 4.

3 Chained-Form System

The codistribution approximation approach can also be applied to mobile robots and
mobile manipulators. As an example, we shall consider the chained-form system

q̇1 = u1 q̇2 = u2, q̇3 = q2u1, (8)

representing a feedback equivalent of the differential drive-type mobile platform.
The kinematics of this mobile robot are defined as the end-point map of the control
system (8), see [1]. Let q(t) = ϕq0,t (u(·)) denote the state trajectory of this sys-
tem steered by a control function u(·). Then, given a control time horizon T > 0,
the kinematics are a map from control functions into the state space of (8), iden-
tified with q(T ). Because the domain of the kinematics is an infinite dimensional
functional space, for computations we need to resort to a finite dimensional expan-
sion of control functions. In this way the kinematics become a map between finite
dimensional spaces. For the chained-form system we have adopted the controls

u1(t) = λ1 + λ2 sin t, u2(t) = λ3 + λ4 sin t .

A substitution into (8) and setting q0 = 0, T = 2π results in the kinematics
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q(T ) = K(λ) =
(
T λ1, T λ3,

1

2
T 2λ1λ3 − T λ2λ3 + T λ1λ4

)T
,

and the Jacobian

J (λ) =
⎡⎣ T 0 0 0

0 0 T 0
1
2T

2λ3 + T λ4 −T λ3
1
2T

2λ1 − T λ2 T λ1

⎤⎦ .
The derivation of the approximation will be done for the annihilating one-form

ω(λ) =
(

0, 1, 0,
λ3

λ1

)
, λ1 > 0,

and the foliation Ea,α = {α1 + a} × R × {α3} × {α4} with parameter a > 0,
where α1 > −a, α3, α4 ∈ R, so that the basic leaf Ea,0 = {a} × R × {0} × {0}.
Now, we choose the homotopy �t(λ) = tλ + (1 − t)(a, λ2, 0, 0)T , and derive the
characteristic equation

d z

d s
= − sy2y3

sy1 + a ,
whose solution yields the augmenting function

h(λ) = λ2 + λ3λ4

(λ1 − a)2
(
λ1 − a − a ln

(
λ1

a

))
,

defined for λ1 > 0. In consequence, the extended Jacobian inverse

J #E(λ) =

⎡⎢⎢⎢⎣
1 0 0

J #E
21 J #E

22 J #E
23

0 1 0

J #E
41 J #E

42 J #E
43

⎤⎥⎥⎥⎦ , (9)

where

J #E
21 = − λ3

2(−λ1 + a)(λ2
3λ1 − λ2

3a − λ2
3a(ln a + lnλ1)+ λ3

1 − 2λ2
1a + λ1a2)

×(
λ3T λ

2
1 − 2λ3T λ1a + λ3T a

2 − λ3T λ1a(ln a + lnλ1)+ λ3T a
2(ln a + lnλ1)+

4λ4λ
2
1 − 4λ4λ1a − 6λ4λ1a(ln a + ln λ1)+ 2λ4a

2(ln a + ln λ1)
)
,

J #E
22 = − (−λ1 + a + a(ln a + lnλ1))(λ3T λ1 − 2λ3λ2 − 2λ4λ1)

2(λ2
3λ1 − λ2

3a − λ2
3a(ln a + ln λ1)+ λ3

1 − 2λ2
1a + λ1a2)

,

J #E
23 = λ3

−λ1 + a + a(ln a + lnλ1)

(λ2
3λ1 − λ2

3a − λ2
3a(ln a + ln λ1)+ λ3

1 − 2λ2
1a + λ1a2)

,
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J #E
41 = − 1

2(−λ1 + a)λ1(λ
2
3λ1 − λ2

3a − λ2
3a(ln a + lnλ1)+ λ3

1 − 2λ2
1a + λ1a2)

×(− λ3T λ
4
1 + 3λ3T λ

3
1a − 3λ3T λ

2
1a

2 + λ3T λ1a
3 − 2λ4λ

4
1 + 6λ4λ

3
1a − 6λ4λ

2
1a

2+
2λ4λ1a

3 + 2λ2
3λ4λ

2
1 − 4λ2

3λ4λ1a(ln a + lnλ1)− 2λ2
3λ4a

2
)
,

J #E
42 = − 1

(λ2
3λ1 − λ2

3a − λ2
3a(ln a + lnλ1)+ λ3

1 − 2λ2
1a + λ1a2)

×(
2λ3λ4λ1 − 2λ3λ4a − 2λ3λ4a(ln a + ln λ1)+ λ3

1T − 2λ2
1T a + λ1T a

2−
2λ2λ

2
1 + 4λ2λ1a − 2λ2a

2
)
,

J #E
43 = (−λ1 + a)2

λ2
3λ1 − λ2

3a − λ2
3a(ln a + lnλ1)+ λ3

1 − 2λ2
1a + λ1a2

.

The results of computer simulations of the extended Jacobian inverse vs. the Jaco-
bian pseudo-inverse will be presented in the next section.

4 Computer Simulations

Computer simulations of the inverse kinematics algorithms defined by J #P , J #E1

and J #E2 for the stationary manipulator were run for yd = (0.9, 2) and q0 =
(0.1, 0, 0). Additionally, in the extended Jacobian inverse J #E2 we used a = 5.
The performance of these algorithms has been portrayed in the following figures.
Figures 2, 4 and 6 display the convergence in the joint space of solution of the dy-
namic system (1) for the Jacobian pseudo-inverse and for the extended Jacobian
inverses (6) and (7). Figures 3, 5 and 7 display the corresponding paths in the task
space.

The computations of the inverse kinematics for the chained-form system have
been carried out for T = 2π , q0 = (0, 0, 0), the desirable task space point
yd = (5, 5,−2), and the initial controls λ0 = (0.5, 0.2, 0.5, 0.2), using the in-
verses J #P and J #E . In the extended Jacobian inverse we set a = 100. The perfor-
mance of the inverse kinematics algorithms is visualized in the figures. Specifically,
Figures 8–11 display the convergence of the Jacobian pseudo-inverse and of the
extended Jacobian inverse in the control space. Figures 12 and 13 demonstrate the
paths of the chained-form system in the (q1, q2)-plane.

5 Conclusions

We have addressed the synthesis problem of repeatable inverse kinematics algo-
rithms for robotic manipulators. Special attention has been paid to the approxima-
tion of the Jacobian pseudo-inverse by an extended Jacobian inverse. The problem
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has been formulated in differential geometric terms as the approximation problem of
a codistribution associated with the pseudo-inverse by an integrable codistribution.
The approximation guarantees that the approximating and the approximated codis-
tributions will agree on leaves of a certain foliation of the configuration space and
along a characteristic direction. These requirements translate into a linear partial
differential equation whose characteristic equation provides the augmenting kine-
matics map defining the extended Jacobian inverse. This approach has been illus-
trated with the derivation of extended Jacobian inverse kinematics algorithms for a
stationary manipulator and a chained-form system.
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Abstract. A syzygy is a relation between invariants. In this paper a syzygy is presented between
invariants of sequences of six screws under the action of the Euclidean group. This relation is useful
in simplifying the computation of the determinant of a robot Jacobian and hence can be used to
investigate the singularities of robot manipulators.

Key words: Jacobians, determinants, singularities.

1 Introduction

Methods for determining singularities of serial and parallel manipulators generally
involve a combination of exact or symbolic algebraic manipulation, to obtain as
simple a form for the Jacobian or its determinant as possible, together with al-
gorithms from linear algebra and numerical analysis to obtain good approximate
solutions. The extent to which the former methods are effective depends on proper-
ties of the Euclidean geometry that describes the motion of the rigid components of
manipulators and on the specific architectural features of a given manipulator, such
as partitioning or symmetry.

In this paper we derive a new relation or syzygy among the Euclidean invari-
ants of sequences of screws that leads to a simplification in the calculation of the
Jacobian determinant for 6-dof manipulators. This is illustrated by some specific
applications.

2 Isometries and Invariants

The motion of a rigid link, in particular the end-effector of a robot manipulator or
platform relative to its home configuration, is described mathematically by a dis-
tance and orientation-preserving transformation of 3-space: a proper Euclidean iso-

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 147–154.
© Springer Science+Business Media B.V. 2008
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metry. The collection of these isometries forms a Lie group, denoted SE(3). For
a given choice of coordinate system such an isometry is represented by a rotation
about the origin together with a translation and so SE(3) is a product of the ro-
tation group SO(3) and the translation group R3, though the composition of two
Euclidean isometries is not component-wise or direct but ‘semi-direct’. There is a
6× 6 matrix representation of an isometry:

H =
(
R 0
T R R

)
, (1)

where R is a 3× 3 rotation matrix, T a 3× 3 skew-symmetric ‘translation’ matrix
and the composition of two isometries is given by matrix multiplication. For details
see for example Selig (2005).

If we chose a different initial coordinate system in 3-space then there would be
a different but related matrix representation of a given isometry. Specifically, if the
change of coordinates itself is represented by A ∈ SE(3) then H transforms to
H ′ = AHA−1; H and H ′ are said to be congruent.

Considering just rotations for the moment, an infinitesimal rotation at the home
configuration is a skew-symmetric matrix

� =
⎛⎝ 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

⎞⎠ (2)

and these form a 3-dimensional space. Once again an orthogonal change of coordin-
ates A (fixing the origin) results in a transformation of � to �′ = A�A−1. This is
known as the adjoint action of the rotation group SO(3). This action is exactly the
same as the effect of transforming the 3-vector ω = (ωx, ωy, ωz)T by the orthogonal
transformationA. In particular, invariants of the adjoint action of SO(3) are simply
invariants of its ordinary action on R3. Hence, writingQ for the 3× 3 identity mat-
rix, the quadratic form ωT Qω is an invariant of the adjoint action, while ωT1Qω2
is an invariant of pairs of infinitesimal rotations. In the theory of Lie groups, the
quadratic form ωT Qω is called the Killing form of the adjoint action.

Generalising to SE(3), the infinitesimal isometries now form a 6-dimensional
space. Its elements are combinations of infinitesimal rotations � (2) and infinites-
imal translations v. The infinitesimal isometries are twists, though frequently re-
ferred to as screws which, properly, are the collections of all non-zero multiples of
a given (non-zero) twist. However, we use the common term ‘screws’ here for the
6-vectors s = (ωT , vT )T . The adjoint action of SE(3) on its Lie algebra is given by
the matrix multiplication: (

R 0
TR R

)(
ω

v

)
. (3)

The Killing form is given by sT1Q∞s2 whereQ∞ is the 6×6 symmetric matrix given
below. It is degenerate, having only rank 3. There is a second, non-degenerate, in-
variant bilinear form for the adjoint action of SE(3), namely the reciprocal product
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sT1Q0s2:

Q0 =
(

0 I3
I3 0

)
, Q∞ =

(
2I3 0
0 0

)
.

Unlike the Killing formQ for SO(3) however the reciprocal product, regarded as a
quadratic form, the Klein form, is not positive definite. The ratio of the two quadratic
forms is the pitch of a screw:

p(s) = sT Q0s/sT Q∞s.

The set of screws for which sT Q∞s �= 0 but p(s) = sT Q0s = 0 can be identi-
fied with the set of lines in 3-space, the corresponding line being the axis of the
screw. The coordinates of ω, v are the Plücker coordinates of the line. The quad-
ric hypersurface sT Q0s = 0 (projectively, Klein’s quadric) includes the subspace
sT Q∞s = 0 of screws of pitch infinity, i.e. infinitesimal translations. Pairs of screws
for which sT1Q0s2 = 0 are called reciprocal. From the manipulator point of view,
screws of pitch zero and infinity correspond to the motions associated with revolute
and prismatic joints respectively.

3 The Syzygy

As motivation, we begin by looking at a syzygy among invariants of the group of
rotations SO(3). Weyl (1946, theorem 2.9.A) asserts that the invariants of the stand-
ard representation of SO(3) (i.e. its action on vectors in R3) are generated by the
scalar product of pairs of vectors and the scalar triple product of triples of vectors.

There is one form of syzygy between these invariants – that is to say, they are
not algebraically independent. Consider three arbitrary vectors a1, a2, a3 ∈ R3 and
write them as columns of a matrix 3× 3 matrix

M = (
a1 a2 a3

)
.

Then detM = a1 · (a2 × a3) is a basic invariant. We have

MTM =
⎛⎝a1 · a1 a1 · a2 a1 · a3

a2 · a1 a2 · a2 a2 · a3
a3 · a1 a3 · a2 a3 · a3

⎞⎠ (4)

and the matrix entries are themselves invariants. In the terminology of Section 2, the
left-hand side could be written as MTQM . Taking the determinant of both sides of
(4) gives the syzygy

det(M)2 = det
(
ai · aj

)
,

representing a polynomial identity between the basic invariants, of degree 6 in the
coordinates of the vectors. Given the identification of the standard representation
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with the adjoint representation for SO(3), we may also think of these as invariants
and a syzygy among invariants of the adjoint action.

By analogy we now exhibit an SE(3) syzygy. Begin with six screws s1, . . . , s6.
The reciprocal product sTi Q0sj of any pair is certainly invariant. Combine the
screws into the 6× 6 matrix

J = (
s1 s2 s3 s4 s5 s6

)
.

The adjoint action (3) of SE(3) on the individual screws gives rise to an action on J
and since detR = 1, the determinant of J is also an invariant. Now form the product

J TQ0J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sT1Q0s1 sT1Q0s2 sT1Q0s3 sT1Q0s4 sT1Q0s5 sT1Q0s6

sT2Q0s1 sT2Q0s2 sT2Q0s3 sT2Q0s4 sT2Q0s5 sT2Q0s6

sT3Q0s1 sT3Q0s2 sT3Q0s3 sT3Q0s4 sT3Q0s5 sT3Q0s6

sT4Q0s1 sT4Q0s2 sT4Q0s3 sT4Q0s4 sT4Q0s5 sT4Q0s6

sT5Q0s1 sT5Q0s2 sT5Q0s3 sT5Q0s4 sT5Q0s5 sT5Q0s6

sT6Q0s1 sT6Q0s2 sT6Q0s3 sT6Q0s4 sT6Q0s5 sT6Q0s6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5)

Each entry in the matrix is invariant, so taking determinants of each side of (5) gives
a syzygy of degree 12 in the screw coordinates:

det(J )2 = − det
(
sTi Q0sj

)
, (6)

the negative sign coming from the fact that det(Q0) = −1.

4 Applications

The key point is that the syzygy (6) enables us to find the determinant of a manipu-
lator Jacobian, at least up to sign, by finding the determinant of a symmetric matrix.
In particular, singularity detection, that is checking whether det J = 0, is feasible.
In general this leads to faster computation. Moreover in many particular cases the
matrix in (5) has a nice form, reflecting the intrinsic geometry of the manipulator.

4.1 Fast Computation

In general the determinant of a positive definite symmetric matrix can be found
using Cholesky decomposition, this algorithm is known to be about twice as fast
as LU decomposition which would be the appropriate method for a non-symmetric
matrix, see Press et al. (1992, section 2.9). Unfortunately the matrix of reciprocal
products is not necessarily positive definite so another algorithm must be used, for
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example LDLT decomposition (Bunch and Parlett, 1971), which is still twice as fast
as LU decomposition.

A simple count of the number of arithmetic operations involved in a symbolic
algebraic expression of the determinant, using Maple say, gives 3600 multiplications
for a general 6 × 6 determinant but only 2252 for a symmetric matrix. Moreover,
if the joints are revolute or prismatic, that is if the screws satisfy sTi Q0si = 0,
i = 1, . . . , 6, then the diagonals in the matrix in (5) are all zero and the number of
multiplications is reduced to 765. Similarly, additions are also reduced. Of course,
the matrix of reciprocal products has to be determined first, but given the simplicity
ofQ0, that involves only six multiplications per entry so 126 in all, by symmetry.

4.2 Wrist-Partitioned Serial Manipulators

In many cases, the matrix of reciprocal products has a special form, further simplify-
ing calculation of the Jacobian determinant and hence robot singularities. Consider
the singularities of a wrist-partitioned serial 6R robot (see, for example, Stanis̆ić and
Engelbert, 1988; Hayes et al., 2002). Not only are the computations accomplished
easily using the syzygy, but the approach yields a simple proof of the types of sin-
gularity that can occur. Notice that it is not even necessary to set up a particular
coordinate frame.

Since the last three joints of the robot comprise a wrist, the joint axes all meet
at the wrist centre. This means that the last three screws are mutually reciprocal
and hence the bottom right-hand corner of the matrix of reciprocal products is zero.
Since the top right and bottom left corners of the matrix are the transpose of each
other the expansion of the determinant leads to

det(J ) = ± det

⎛⎜⎝sT1Q0s4 sT1Q0s5 sT1Q0s6

sT2Q0s4 sT2Q0s5 sT2Q0s6

sT3Q0s4 sT3Q0s5 sT3Q0s6

⎞⎟⎠ .
If we are only interested in singularities the sign ambiguity is not important. Setting
this 3× 3 determinant to zero means that the columns (or rows) of the matrix must
be linearly dependent. Column dependence can be expressed by the equations

λsT1Q0s4 + µsT1Q0s5 + νsT1Q0s6 = 0,

λsT2Q0s4 + µsT2Q0s5 + νsT2Q0s6 = 0,

λsT3Q0s4 + µsT3Q0s5 + νsT3Q0s6 = 0, (7)

for some non-zero constants λ, µ and ν. These equations can be solved in two ways.
First, if the last three joints are linearly dependent, that is

λs4 + µs5 + νs6 = 0
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for some λ, µ, ν, then clearly (7) is satisfied. This occurs if and only the three screw
axes s4, s5 and s6 are coplanar and constitutes a wrist singularity. Likewise, if the
rows of the matrix are linearly dependent then for some α, β, γ not all zero

αsT1Q0s4 + βsT2Q0s4 + γ sT3Q0s4 = 0,

αsT1Q0s5 + βsT2Q0s5 + γ sT3Q0s5 = 0,

αsT1Q0s6 + βsT2Q0s6 + γ sT3Q0s6 = 0, (8)

and the same reasoning leads to a shoulder singularity of the first three joints when
they fail to span a 3-dimensional subspace. Whether or not such a singularity can
occur depends on the screw systems determined by the first three joints and so, in
turn, on the design parameters of the shoulder.

The second kind of solution is most easily derived from Equations (8) which are
satisfied if and only if there is a screw αs1 + βs2 + γ s3 reciprocal to each of s4, s5
and s6, and hence to all screws in the screw system S spanned by the last three joints.
Since their axes intersect in the wrist centre, S is a type IIA (p = 0) 3-system, which
is self-reciprocal (Gibson and Hunt, 1990). Hence the screw αs1 + βs2 + γ s3 lies
in S so it must also be a line through the wrist centre. In general, the s1, s2 and s3
form a 3-system corresponding to a projective 2-plane which will intersect the Klein
quadric in a conic. Each point on the conic represents a line in the screw system and
it is well known that such a set of lines form the regulus of a hyperboloid. If any
of these lines passes through the wrist centre then the configuration of the robot is
singular. In some cases the only possibilities are when the wrist centre lies on the
first or second joint axis.

However, there are some more complex situations. Consider the PUMA manip-
ulator where the first and second joint axes meet and the second and third joint axes
are parallel. In this case, the conic in the screw system degenerates into a pair of
lines. One of these corresponds to the lines in 3-space parallel to the second and
third joint axes, the other to the set of lines meeting both the first and second joint
axes. The PUMA then has singularities if its wrist centre lies in either the plane
containing the first and second joints or the plane containing the second and third
joints.

4.3 Serial Manipulators with Self-Reciprocal Subassemblies

In the previous example an important point was the fact that a subassembly of three
consecutive joints form a self-reciprocal screw system. Such systems are necessarily
3-systems and must consist only of lines. The fact that the system is self-reciprocal
ensures that the matrix of reciprocal products contains a diagonal 3 × 3 block of
zeros. Besides the IIA (p = 0) 3-systems met in the example above, there are two
other such systems: IIC (p = 0) systems and the IID system. These three screw
systems are also Lie subalgebras; this is important because it means that the screw
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system is invariant under motions of the manipulator and hence the the matrix of
reciprocal products will contain a block of zeros in every position of the manipulator.
There is another 3-system which is a subalgebra, the IIC (p �= 0) system, but it is
not self-reciprocal.

The IID system contains only screws of infinite pitch, that is infinitesimal trans-
lations. Cartesian-type and gantry robots contain subassemblies of prismatic joints
which generate this screw system. However their singularities are already easy to
analyse and we do not pursue this case.

The IIC (p = 0) systems can be generated by three parallel lines. Hence a robot
containing three consecutive parallel revolute joints satisfies this requirement. Such
designs are rare in commercially available robots at the moment. Examples are the
original Cincinnati Milacron T3 and the Telequipment MA2000 in which joints 2,
3 and 4 are parallel. Expanding the determinant of the matrix of reciprocal products
gives

det(J ) = ± det

⎛⎜⎝sT1Q0s2 sT5Q0s2 sT6Q0s2

sT1Q0s3 sT5Q0s3 sT6Q0s3

sT1Q0s4 sT5Q0s4 sT6Q0s4

⎞⎟⎠ .
By similar arguments to Section 4.2 we have three types of singularity. First, when
s2, s3 and s4 are linearly dependent, the three parallel joints must be coplanar and the
robot has an elbow singularity. Second, it may be possible for the other three joints
s1, s5 and s6 to be linearly dependent, though this will depend on the disposition
of these joints. Thirdly, the robot will be singular if a screw from the 3-system
determined by s1, s5 and s6 lies in the screw system determined by the three parallel
joint axes. For example this can happen in the T3 design if the last joint is parallel
to joints 2, 3 and 4.

The IIC (p = 0) systems can also be generated by a revolute joint and two
prismatic joints or two parallel revolute joints and a prismatic joint. These do not
seem to correspond to subassemblies of any design of robot that has been proposed.

4.4 Gough–Stewart Platforms

For Gough–Stewart platforms it is well known that the rows of the Jacobian matrix
can be found from the lines joining the passive spherical joints (Merlet, 2000). In-
deed if si is the unit line joining the passive spherical joints on the ith leg then the
corresponding row in the Jacobian matrix will be sTi Q0. WritingK for this Jacobian
and usingQ2

0 = I , the syzygy gives

− det(K)2 = det(sTi Q0sj ).

Since the screws si are lines, the diagonal of the matrix of reciprocal products will
consist of zeros. In the 3–3 design pairs of legs meet at the passive spherical joints
alternately on the base and the platform. In this way there are just three passive
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spherical joints on each. In this case consecutive leg axes are reciprocal, so that the
matrix of reciprocal products has the form

KQ0K
T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 sT1Q0s3 sT1Q0s4 sT1Q0s5 0

0 0 0 sT2Q0s4 sT2Q0s5 sT2Q0s6

sT3Q0s1 0 0 0 sT3Q0s5 sT3Q0s6

sT4Q0s1 sT4Q0s2 0 0 0 sT4Q0s6

sT5Q0s1 sT5Q0s2 sT5Q0s3 0 0 0

0 sT6Q0s2 sT6Q0s3 sT6Q0s4 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The zero-structure of this matrix renders the determinant relatively easy to compute.

5 Conclusions

We have presented a new syzygy among invariants of sets of screws. Using a couple
of examples we have shown how this relation enables easy determination and ana-
lysis of robot manipulator singularities.
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Abstract. The paper is devoted to the singularity robust Jacobian inverse kinematics algorithm
for mobile manipulators. The endogenous configuration space approach is assumed as a guideline.
The main contribution of the paper consists in establishing completeness of this algorithm, and in
stating its convergence condition in terms of the mobile manipulator’s dexterity matrix. Computer
simulations illustrate the performance and the convergence of the algorithm.

Key words: mobile manipulator, Jacobian inverse kinematics, singularity robust algorithm, per-

formance, convergence.

1 Introduction

A mobile manipulator is a mobile platform equipped with a stationary on-board
manipulator. In this paper we shall assume that the platform’s motion is subject to
nonholonomic constraints, while the on-board manipulator is holonomic. The no-
tion of the mobile manipulator covers both the stationary manipulator (when the
platform is immobilized) as well as the mobile platform (when the on-board ma-
nipulator is dismantled). Taking into account the properties of the platform and of
the on-board manipulator, it is natural to adopt as a model of kinematics of the
mobile manipulator a parametrized driftless control system with outputs. A con-
venient framework for the analysis of mobile manipulators has been provided by the
the endogenous configuration space approach [7]. According to this approach, the
mobile manipulator’s kinematics are defined as the end point map of the driftless
control system. The configurations of the mobile manipulators are identified with
control actions exerted on the system. The linear approximation of the system de-
termines the mobile manipulator’s Jacobian. The Jacobian allows for distinguishing
regular and singular configurations. The inverse kinematic problem is formulated as
a control problem with prescribed time horizon. The Jacobian inverse kinematics
algorithms are derived using the continuation method, that leads to the Ważewski–
Davidenko differential equation [1,10]. A solution of the inverse kinematic problem
is obtained as a limit point at infinity of the trajectory of a dynamic system associ-
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ated with the Ważewski–Davidenko equation. A derivation and a performance study
of several Jacobian inverse kinematics algorithms for mobile manipulators can be
found in [7–9].

There are two difficulties arising in connection with the Jacobian inverse
kinematics algorithms. The first of them results from a deterioration of the al-
gorithm’s performance in a vicinity of singular configurations. The second, even
more fundamental, follows from the fact that trajectories of the associated dynamic
system may exist on finite time intervals depending on initial conditions, what
means that generally there is no guarantee that the limit points can be achieved. If
the trajectories can be extended to infinity, independently of initial conditions, both
the associated dynamic system as well as the inverse kinematics algorithm, will be
called complete. In the literature concerned with motion planning of nonholonomic
systems several specific results can be found establishing the completeness of the
Jacobian pseudo-inverse algorithm for the unicycle and kinematic car platforms, and
for the rolling ball [2–4].

In this paper we examine the singularity robust Jacobian inverse kinematics al-
gorithm for mobile manipulators, defined by analogy with its counterpart for sta-
tionary manipulators, see [5]. By definition, the singularity robust algorithm oper-
ates at regular and singular configurations. Our main result consists in establishing
completeness of this algorithm, and in providing a condition of its convergence.
Contrary to the results for the Jacobian pseudo-inverse reported in the literature, our
result is independent of the particular form of the kinematics equations.

The composition of this paper is the following. In Section 2 we remind necessary
concepts of the endogenous configuration space approach. Section 3 introduces the
singularity robust Jacobian inverse, and presents the main result. Section 4 is de-
voted to computer simulations. The paper concludes with Section 5.

2 Basic Concepts

As we have already mentioned, the kinematics of a mobile manipulator is modeled
by the following parametrized driftless control system with outputs{

q̇ =G(q)u=∑m
i=1 gi(q)ui,

y = k(q,x)= (k1(q,x), . . . ,kr (q,x)).
(1)

In the system (1) the variables q ∈ Rn, x ∈ Rp and y ∈ Rr denote, respectively, the
generalized platform coordinates, the joint positions of the on-board manipulator,
and the task space coordinates. The dynamics of the control system come from the
nonholonomic motion constraints imposed on the platform, the output map defines
the end effector location in the task space in terms of the platform and manipulator
variables. The steering actions applicable to the system (1) include the platform
control functions u(t) and the manipulator’s joint positions x ∈ Rp playing the role
of parameters; both these actions will be referred to as the endogenous configura-
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tion (u(·),x) ∈X of the mobile manipulator. The endogenous configuration space
X∼=L2

m[0,T ]×Rp is an infinite dimensional Hilbert space equipped with the inner
product

〈(u1(·),x1),(u2(·),x2)〉RW =
∫ T

0
uT1 (t)R(t)u2(t)dt+xT1 Wx2, (2)

where T is the control time horizon, and R(t) and W denote symmetric, positive
definite weight matrices. The form of the inner product reflects the decomposition
of the mobile manipulator into the mobile platform and the on-board manipulator.
A choice of the weight matrices depends on the type of the mobile manipulator or
even on the type of its task; in particular these matrices should provide a proper
scaling and compensate for inconsistencies of measure units of physically different
quantities. The task space is a Euclidean space. To any initial platform coordinates
q0 ∈Rn and an endogenous configuration (u(·),x)∈X there corresponds a platform
trajectory q(t)= ϕq0,t (u(·)), and a task space trajectory y(t)= k(q(t),x).

The kinematics of the mobile manipulator are defined by means of the end point
map of the control system (1)

Kq0,T (u(·),x)= y(T )= k(ϕq0,T (u(·)),x). (3)

The associated infinitesimal kinematics are represented by the Jacobian

Jq0,T (u(·),x)(v(·),w) = C(T ,x)
∫ T

0
�(T ,s)B(s)v(s)ds +D(T,x)w. (4)

The Jacobian is computed using the linear approximation of the system (1) along
(u(t),x,q(t) = ϕq0,t (u(·)), therefore

A(t)= ∂(G(q(t))u(t))
∂q

, B(t) =G(q(t)), C(t,x)= ∂k(q(t),x)
∂q

, D(t,x)= ∂k(q(t),x)
∂x

.

The matrix�(t,s) is the transition matrix satisfying the evolution equation

∂

∂t
�(t,s)= A(t)�(t,s), �(s,s) = In.

Given the Jacobian, and a direction of motion η in the task space, we consider a
Jacobian equation

Jq0,T (u(·),x)(v(·),w) = η (5)

that should be solved for (v(·),w). The Jacobian equation is solvable, if the config-
uration (u(·),x) is regular, what means full rank of the dexterity matrix

Dq0,T (u(·),x)=D(T,x)W−1DT (T ,x)+

C(T ,x)

∫ T

0
�(T ,s)B(s)R−1(s)BT (s)�T (T ,s)ds CT (T ,x). (6)
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Whenever rankDq0,T (u(·),x) < r , the configuration (u(·),x) is singular.
Having introduced the kinematics (3), we shall address the inverse kinematic

problem: given the kinematics and a desirable point yd in the task space, find a
configuration (ud(·),xd) such that Kq0,T (ud(·),xd) = yd . In control theoretic ter-
minology the inverse kinematic problem amounts to defining a control ud(t) and a
parameter xd in the control system (1) initialized at q0, that will drive its output at
T to y(T )= yd . The inverse kinematic problem for mobile manipulators is usually
solved numerically, by means of Jacobian inverse kinematics algorithms.

A convenient way for deriving the Jacobian algorithms is offered by the con-
tinuation method [3, 6]. In accordance with this method, we choose a differentiable
curve (uθ (·),x(θ)) passing through an initial configuration (u0(·),x0)∈X, compute
the task space error

e(θ)=Kq0,T

(
uθ (·),x(θ)

)−yd, (7)

and require that the error obeys a differential equation

d e(θ)

dθ
=−γ S(θ)e(θ). (8)

The constant γ > 0 and the matrix S(θ) will ensure an asymptotic convergence
of the error to 0. A differentiation of the error formula (7) produces a Ważewski–
Davidenko equation

Jq0,T

(
uθ (·),x(θ)

) d
dθ

(
uθ (·),x(θ)

)=−γ S(θ)e(θ). (9)

To proceed, let us take a map J #
q0,T

(u(·),x) : Rr →X, and set

d

dθ

(
uθ (·),x(θ)

)=−γ J #
q0,T

(
uθ (·),x(θ)

)
e(θ). (10)

A substitution of (10) into (9) shows that

S(θ)= Jq0,T

(
uθ (·),x(θ)

)
J #
q0,T

(
uθ (·),x(θ)

)
. (11)

Now, if the matrix S(θ) renders the error (8) vanishing, the map J #
q0,T

(u(·),x) will
be called a dynamic inverse of the Jacobian. If this is the case, the system (10)
defines a Jacobian inverse kinematics algorithm. A solution of the inverse kinematic
problem is computed as a limit at θ→+∞ of the trajectory of (10). For example, by
taking as J #

q0,T
(u(·),x) the Jacobian pseudo-inverse, we obtain the Jacobian pseudo-

inverse inverse kinematics algorithm converging exponentially with the rate γ .
The design procedure of the inverse kinematics algorithms based on the dynamic

system (10) may be impaired by two main defects. The first defect consists in the
presence of kinematic singularities, the second results from the incompleteness of
the system (10). The lack of completeness causes that the system trajectories may
not extend to all θ ≥ 0, so the asymptotic behavior of the algorithm cannot be
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defined. In the next section we shall present a Jacobian inverse that is free from
both these defects.

3 Singularity Robust Inverse

Similarly as for stationary manipulators [5], the singularity robust Jacobian inverse
for mobile manipulators is defined as a solution to the Jacobian equation (5) associ-
ated with the following optimization problem

min
(v(·),w)

(
κ‖(v(·),w)‖2

RW +‖Jq0,T (u(·),x)(v(·),w)−η‖2), (12)

where κ > 0 is a parameter, ‖ · ‖RW denotes the norm induced by the inner product
(2) in the endogenous configuration space, and ‖ ·‖ is the standard Euclidean norm.
The objective function in (12) may be viewed either as a result of an aggregation of
a two-component vector optimization problem or, when κ is small, as a perturbation
of the objective function defining the Jacobian pseudo-inverse operator. Being a
solution of (12), the singularity robust Jacobian inverse operator

J #SRI
q0,T

(u(·),x) : Rr −→X

assumes the form [7](
J #SRI
q0,T

(u(·),x)η)(t)= [
R−1(t)BT (t)�T (T ,t)CT (T ,x), W−1DT (T ,x)

]×(
κIr +Dq0,T (u(·),x)

)−1
η. (13)

By definition, the operator (13) does not suffer from the presence of singular config-
urations. Plugged into the algorithm (10), this operator ensures the local existence
of trajectories of the dynamic system

d

dθ

(
uθ (·),x(θ)

)=−γ J #SRI
q0,T

(
uθ (·),x(θ)

)
e(θ). (14)

Suppose temporarily that a trajectory (uθ (t),x(θ)) of (14) exists for any θ ≥ 0, and
compute the matrix (11)

S(θ)= (
uθ (·),x(θ)

)=Dq0,T

(
uθ (·),x(θ)

)(
κIr +Dq0,T (uθ (·),x(θ))

)−1
.

By the Ważewski inequality [11] the error (7) is bounded in the following way

‖e(0)‖exp

(∫ θ

0
λM(s)ds

)
≤ ‖e(θ)‖ ≤ ‖e(0)‖exp

(∫ θ

0
λM(s)ds

)
(15)

where M(θ) = − 1
2γ (S(θ)+ ST (θ)), and λ, λ denote, respectively, the maximum

and minimum eigenvalue of a symmetric matrix. The matrix S(θ) appears to be
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symmetric, so M(θ) = −γ S(θ), and using (15), it can be shown that the singu-
larity robust Jacobian inverse kinematics algorithm converges, whenever the after-
mentioned integral diverges

lim
θ→+∞

∫ θ

0

λDq0,T (uα(·),x(α))dα
κ+λDq0,T (uα(·),x(α))

=+∞. (16)

Now, we shall show that all trajectories generated by the singularity robust inverse
algorithm indeed exist for every θ , i.e. the algorithm is complete. The operator norm
of (13) can be computed in the following way

‖J #SRI
q0,T

(u(·),x)‖ = sup
η �=0

‖J #SRI
q0,T

(u(·),x)η‖RW
‖η‖ = λ1/2

(κIr+Dq0,T (u(·),x))−2Dq0,T (u(·),x)).

(17)
Furthermore, if λDq0,T (u(·),x) denotes an eigenvalue of the dexterity matrix, then we
observe that

λ(κIr+Dq0,T (u(·),x))−2Dq0,T (u(·),x)) =
λDq0 ,T (u(·),x)

(κ+λDq0,T (u(·),x))
2
. (18)

The right hand side of (18) has the form of the function f (x)= x/(κ+x)2 for x ≥ 0.
It is easily checked that at x = κ this function reaches its maximum equal to 1/4κ.
All these observations allow us to make a conclusion that the norm (17) is upper
bounded, i.e.

‖J #SRI
q0,T

(u(·),x)‖ ≤ 1

2
κ−1/2. (19)

The local existence of trajectories of the system (14), the boundedness of the error
(15), and the bound (19) imply the completeness of the algorithm.

We conclude that the singularity robust Jacobian inverse kinematics algorithm
operates both at regular and singular configurations, and is complete. The algorithm
converges on condition (16) that is satisfied, if the trajectory (uθ (·),x(θ)) of the
dynamic system (14) stays within the set of singular configurations only on a finite
interval of the variable θ .

4 Computer Simulations

In this section we shall present results of applying the singularity robust Jacobian
inverse kinematics algorithm to a mobile manipulator composed of kinematic car
platform and an RTR on-board manipulator, shown in Figure 1. The variable q =
(x,y,ϕ,ψ) ∈ R4 describes the platform position, orientation and heading angle of
its front wheels. Variables x = (x1,x2,x3) ∈ R3 and y = (y1,y2,y3) ∈ R3 refer to
the joint and to the end effector position of the on-board manipulator. The lateral slip
of the platform’s wheels is not permitted. The control system (1) takes the following
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Fig. 1 Mobile manipulator.

Table 1 Largest task space errors.

q0 (10,0, π2 ,0) (10,10, π4 ,
π
4 ) (0,10,0,0) (0,10, π2 ,

π
4 )

max‖e(θ)‖ 6.485424E−04 9.186227E−08 1.470058E−04 1.627936E−05

q0 (0,0,0, π4 ) (0,0, π2 ,0) (10,10,− π4 ,0) (−10,10, π4 ,− π4 )
max‖e(θ)‖ 1.991798E−13 2.092102E−13 2.877973E−07 4.256074E−05

form {
q̇1 = u1 cosq3 cosq4, q̇2 = u1 sinq3 cosq4, q̇3 = u1 sinq4, q̇4 = u2

y = (q1+Lcos(x1+q3),q2+Lsin(x1+q3),x2+ l3 sinx3),

whereL= l2+ l3 cosx3. In simulations the unit geometric dimensions l= l2= l3= 1
of the mobile manipulator were assumed. The inverse kinematic problems consisted
in reaching the point yd = (0,0,0) from 8 initial platform’s states q0. Initial config-
uration of the on-board manipulator was set to x0 = (1,1,1), and the time horizon
T = 1. The control u(t) was devised from a 500 element basis consisting of piece-
wise constant functions. For each q0 100 simulations of (14) were run, starting from
a randomly generated u0(·). Parameters of the algorithm γ = 0.01 and κ = 10−6

were adopted. In each simulation 3000 steps of the algorithm were executed. In all
these experiments the algorithm has converged. The results are collected in Table 1
that shows the largest task space errors for diverse q0.

As can be seen from the table, the largest errors are generally acceptably small.
Moreover, in all cases the shape of the platform path appears to be satisfactory
and the error converges exponentially, as can be seen in Figures 2 and 3 corres-
ponding to q0 = (0,10,π/2,0) and u0 = (1,1). On the other hand, the observed
rate of convergence depends significantly on the initial control u0(·) and the ini-
tial platform coordinates q0. In simulations we have noticed a remarkable robust-
ness of the singularity robust algorithm against kinematic singularities. To confront
this aspect of the algorithm’s performance with that of the Jacobian pseudo-inverse,
two other simulations were run for the kinematic car type mobile platform shown
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Fig. 2 Singularity robust inverse: end effector
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Fig. 5 Singularity robust inverse: end effector
error.

in Figure 1 (the on-board manipulator dismantled). The initial control was chosen
close to the singular control u0 = (0.001,1). The initial platform coordinates were
taken as q0 = (1,1,3.14,1.57), the algorithm’s parameters γ = 0.01 and κ = 10−6.
The control basis included 200 elements. In simulations 1000 iterations were al-
lowed. Figures 4 and 5 demonstrate an economic manoeuvre and an exponential
convergence of the singularity robust algorithm, opposed to the erratic performance
and the lack of convergence of the Jacobian pseudo-inverse algorithm visualized in
Figures 6 and 7.

5 Conclusions

We have demonstrated completeness of the singularity robust Jacobian inverse kin-
ematics algorithm for mobile manipulators, and derived a condition for its conver-
gence. Computer simulations have confirmed that the algorithm converges inde-
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pendently of the initial configuration, performs satisfactorily, and shows consider-
able robustness with respect to kinematic singularities.
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Robots Based on Assur Group A (3.5)
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Abstract. The paper presents position analyses of open normal Assur groups A (3.5). Planar mech-
anisms can be considered to be composed of link groups (Assur groups) with zero mobility relative
to the links to which they are successively added. These Assur groups, which serve as modules in
the synthesis and analysis of complex planar mechanisms, might adopt a certain number of pos-
itions which allow choosing different solutions for the engineering task. An open normal Assur
group, for which we write A (3.5) in short, is an open kinematic chain of ternary links to which
5 binary links (legs) are attached. It is found that for a given set of system parameters an open
normal Assur group A (3.5) held together exclusively by rotor joints might theoretically adopt a
maximum of 54 different positions (real and complex). If the input rotor joints at the 5 legs of this
Assur group are successively exchanged by 1, 2, 3, 4, or 5 prismatic input joints, then the number
of its possible positions becomes 54, 46, 28, 16 or 8. An open Assur group A (3.5) might serve as
a basic mechanism for a parallel redundant planar robot.

Key words: Assur groups, position analysis, Sylvester’s elimination method.

1 Introduction

According to the definition given in the Terminology for the Theory of Machines
and Mechanisms [1], an Assur group is, the “smallest kinematic chain which when
added to, or subtracted from, a mechanism results in mechanism that has the same
mobility as the original”. In 1914 and 1915 the Russian scientist Assur published
two great articles [2] in which he proposed a structural classification of planar link-
ages with lower kinematic pairs (rotor joints or prismatic joints). Assur mainly dis-
tinguishes two special types of what, according to Shukowsky, we now call the open
and the closed normal chains. The open normal chain consists of n ternary and n+2
binary links interconnected by 2n+1 rotary or prismatic joints. Via the n+2 (rotary
or prismatic) half joints at the outer end of the binary links the normal open Assur
group can be brought into contact with any other mechanism provided that at its
contact points there are complementary half joints. If the Assur group is moun-
ted onto a rigid body the assembly is a rigid structure. With the number of bodies
b = 2n+3 and the number of joints j = 3(n+1) admitting only one relative degree

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 165–175.
© Springer Science+Business Media B.V. 2008
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Fig. 1 Assur group A (3.5) mounted on a rigid body by five R-joints.

of freedom (�mi = j ) for the mobility of the mounted open normal Assur group,
the topological formula of Grübler–Kutzbach yields:m = �mi −3(j −b+1) = 0.
In 1977, Artobolevski [3] proposed a nomenclature for Assur groups, according to
which an open kinematic chain consisting of ternary bodies to which k binary links
are attached is an Assur group of class 3 (as the greatest closed polygon has three
sides); and it is of order k as the number of guiding joints or inputs equals the num-
ber of attached binary links. In short, it is an Assur group A (3.k). The first position
analysis of the Assur group A (3.3) was given by Paisach in 1985 [4]. In 1993, Inno-
centi presented the position analysis of the Assur group A (3.4) [5]. In 1995, Lösch
[6] published a position analysis of the higher Assur groups A (3.5), A (3.6) and
A (4.4) on the basis of his “floating point Gröbner method”. Recently it has been
shown that the position analysis of a special Assur group simultaneously solves the
position analysis of a number of other general (i.e. not normal) Assur groups: in [7]
the authors derive from a nine-link Barranow truss nine Assur groups (with an equal
number of assembly configurations) and numerically determine the possible posi-
tions for a given set of system parameters. The main subject of the present paper is
the position analysis of the general normal Assur group A (3.5) whose input joints
are partly prismatic joints. These general Assur groups have never been analyzed.
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2 Position Analysis of the Assur group A (3.5)

Figure 1 shows an Assur group A (3.5) mounted onto a rigid body by rotor joints at
the points Aα. Its system parameters are given with the lengths Lα = AαB0α, the
heights cα and the segments aα, bα of the triangular links, the index α runs from 0
to 5. The position of the Assur group within its fixation is given with the four angles
ψ , ψ0, ψ1 and ψ2. The position analysis aims to find all sets of these four angles.

With

e01 = {cosψ0, sinψ0}, e02 = {− sinψ0, cosψ0},
e11 = {cosψ1, sinψ1}, e12 = {− sinψ1, cosψ1},
e21 = {cosψ2, sinψ2}, e22 = {− sinψ2, cosψ2},

the vertices of the ternary links are given by:

(1)
The four basic equations which determine the four position angles read:

With
sinψ = 2X/(1+X2), cosψ = (1−X2)/(1+X2),

sinψ0 = 2Y/(1+ Y 2), cosψ = (1− Y 2)/(1+ Y 2),

sinψ1 = 2x/(1+ x2), cosψ1 = (1− x2)/(1+ x2),

sinψ2 = 2y/(1+ y2), cosψ2 = (1− y2)/(1+ y2), (3)

we obtain the four algebraic basic equations in X, Y , x and y

P1(X, Y, x) = 0, P2(X, Y, x) = 0, P3(X, Y, y) = 0, P4(X, Y, y) = 0, (4)

which we are going to solve with Sylvester’s elimination method [9]. With the coef-
ficients in the two series expansions (which are functions only of X and Y )

P1 = p11x
2 + p12x + p13 = 0, P2 = p21x

2 + p22x + p23 = 0,

P3 = p31y
2 + p32y + p33 = 0, P4 = p41y

2 + p42y + p43 = 0, (5)

we can define the following two matrices or two vector matrices

G1 = (B11 −A1) · (B11 −A1)−L2
1 = 0, G2 = (B21 −A2) · (B21 −A2)−L2

2 = 0,

G3 = (B13 −A3) · (B13 −A3)−L2
3 = 0, G4 = (B22 −A4) · (B22 −A4)−L2

4 = 0.
(2)

B01 = L0{cosψ ,sin ψ}, B02 = B01 − e01a0 + e02c0, B03 = B02 + e01(a0 + b0),

B11 = B03 + e11a1 − e12c1, B12 = B03, B13 = B03 + e11(a1 + b1),

B21 = B02 − e21b2 − e22c2, B22 = B02 + e21(a2 + b2), B23 = B02.
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U =

⎡⎢⎢⎢⎣
0 p11 p12 p13

p11 p12 p13 0

0 p21 p22 p23

p21 p22 p23 0

⎤⎥⎥⎥⎦ , V =

⎡⎢⎢⎢⎣
0 p31 p32 p33

p31 p32 p33 0

0 p41 p42 p43

p41 p42 p43 0

⎤⎥⎥⎥⎦ , (6)

x = {x3, x2, x, 1}T , y = {y3, y2, y, 1}T . (7)

The equations P1 = 0, P2 = 0 or P3 = 0, P4 = 0 can therewith be written as matrix
equations

Ux = 0, Vy = 0, (8)

from which we obtain the following two equations in X and Y

F1(X, Y ) = Det U = 0, F2(X, Y ) = Det V = 0. (9)

Leaving aside the factor (1+X2)(1+ Y 2), the series expansions of these two equa-
tions in Y read

F1(X, Y ) = f11Y
6 + f12Y

5 + f13Y
4 + f14Y

3 + f15Y
2 + f16Y + f17 = 0,

F2(X, Y ) = f21Y
6 + f22Y

5 + f23Y
4 + f24Y

3 + f25Y
2 + f26Y + f27 = 0, (10)

where the coefficients f1α and f2α are polynomials of order six in X. With the
Sylvester matrix S and the vector matrix Y

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 f11 f12 f13 f14 f15 f16 f17

0 0 0 0 f11 f12 f13 f14 f15 f16 f17 0

0 0 0 f11 f12 f13 f14 f15 f16 f17 0 0

0 0 f11 f12 f13 f14 f15 f16 f17 0 0 0

0 f11 f12 f13 f14 f15 f16 f17 0 0 0 0

f11 f12 f13 f14 f15 f16 f17 0 0 0 0 0

0 0 0 0 0 f21 f22 f23 f24 f25 f26 f27

0 0 0 0 f21 f22 f23 f24 f25 f26 f27 0

0 0 0 f21 f22 f23 f24 f25 f26 f27 0 0

0 0 f21 f22 f23 f24 f25 f26 f27 0 0 0

0 f21 f22 f23 f24 f25 f26 f27 0 0 0 0

f21 f22 f23 f24 f25 f26 f27 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

Y = {Y 11, Y 10, Y 9, Y 8, Y 7, Y 6, Y 5, Y 4, Y 3, Y 2, Y, 1}T , (12)

the equations F1 = 0 and F2 = 0 can be written in the form of a single matrix
equation:

S(X)Y = 0, (13)

whose coefficient determinant must vanish. The equation Det [S(X)] = 0 yields a
polynomial of order 72 which can be factorized: the first factor reads (1+X2)9 and
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the second is a polynomial F(X) of order 54

F(X) =
54∑
1

akX
k = 0, (14)

which can be solved numerically, rendering 54 rootsXα (real or complex) forX. To
find the corresponding values Yα we can proceed as follows. By canceling the first
row in the matrix S(Xα) we obtain a matrix S• = {s•1, s•2, . . . , s•11, s

•
12} and from

S•(Xα)Y = 0 we deduce:

Yα = Det {s•1, s•2, . . . , s•10,−s•12}/Det {s•1, s•2, . . . , s•10, s
•
11}. (15)

With Xα and Yα the matrices U(Xα,Yα) and V(Xα,Yα) are given. By can-
celing the first row in the matrix U(Xα,Yα) or V(Xα,Yα) we obtain a matrix
U• = {u•1,u•2,u•3,u•4} or V• = {v•1, v•2, v•3, v•4} and find for the corresponding values
of xα or yα:

xα = Det {u•1,u•2,−u•4}/Det {u•1,u•2,u•3},
yα = Det {v•1, v•2,−v•4}/Det {v•1, v•2, v•3}. (16)

The angles determining the positions of the A (3.5) are then given by

{ψ,ψ0, ψ1, ψ2}α = 2 arctan{X,Y, x, y}α, α = (1÷ 54). (17)

2.1 Case Study A (3.5)

An Assur group A (3.5) with the system parameters p, L given by

p = {a0 = 3, b0 = 4, c0 = 2}, {a1 = 2, b1 = 3, c1 = 3}, {a2 = 3, b2 = 4, c2 = 2},
L = {L0 = 6, L1 = 8.072, L2 = 9.207, L3 = 8.364, L4 = 6.049},

is mounted with five R-joints at the following fixed points:

P = {A0 = {0, 0}, A1 = {5, 11}, A2 = {−5, 10}, A3 = {10, 6}, A−4 = {−7, 1}}.
Of the 54 positions we found in the process of the calculations described in Sec-
tion 2, we only report the twelve real positions,which are listed in Table 1 and shown
in Figure 2.

The fact that there are theoretically 54 positions of the Assur group A (3.5) with
five R input joints can be deduced from Wunderlich’s statements about the order
and circularity of higher coupler curves [8]. If the R-joint at point B03 in Figure 1
is open, point B12 describes a coupler curve of order n1 = 6 and circularity c1 = 3,
and point B03 describes a coupler curve of order n2 = 2× 32 = 18 and circularity
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Table 1 The 12 real solutions of the position angles for an Assur group A (3.5).

ψ ψ0 ψ1 ψ2

79.6552 –118.717 81.5456 30.3308
95.4418 –101.195 78.0196 64.1477
151.98 –23.2615 58.9456 35.0558

24.0422 –44.4756 –158.456 11.5488
57.2965 –45.8389 –114.597 57.2915
98.5112 53.7393 –69.1771 112.209
112.068 69.7956 –17.2945 –6.39256
117.216 64.2246 14.6902 124.093
68.6197 155.92 33.0685 –20.4594
39.9024 97.6492 –86.675 –38.656

–6.61052 25.6593 –125.032 –46.8777
–16.01 5.46725 –166.24 –44.3627

Fig. 2 The 12 positions of a normal Assur group A (3.5) with five R input joints.

c2 = 9, and these curves intersect in n1 × n2 − 2(c1 × c2) = 54 points. Therefore
54 positions of the Assur group A (3.5) are possible.
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Fig. 3 Assur group A (3.5)2P mounted on a rigid body with two input P -joints.

3 Position Analysis of the Assur group A (3.5)nP

If of the five input joints n R-joints are exchanged by n P -joints, then we shall write
for the Assur group: A(3.5)nP . In Figure 3 an Assur group with two input P -joints
is shown: . The position of the Assur group within its fixation at the rigid body is
again given with ψ , ψ0, ψ1 and ψ2 as long as the R-joint at A0 is not exchanged for
a P -joint, and even the scheme of calculation is the same as above.

3.1 Case Studies A (3.5)nP: n = 1, 2, 3, 4

For these four cases we assume the same system parameters p and the same points
of attachment P as in Section 2.1. For the lengths of the legs we put successively

L = {L0 = 6, L1 = 7.997, L2 = 9.207, L3 = 8.364, L4 = 6.049},
L = {L0 = 6, L1 = 7.997, L2 = 9.198, L3 = 8.364, L4 = 6.049},
L = {L0 = 6, L1 = 7.997, L2 = 9.198, L3 = 8.349, L4 = 6.049},
L = {L0 = 6, L1 = 7.997, L2 = 9.198, L3 = 8.349, L4 = 5.804},
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and for the unit vectors through the corresponding points of attachment we put

n11 = {−1, 0},
n12 = {0,−1},
n11 = {−1, 0}, n21 = (1/5){−3,−4}
n12 = {0,−1}, n22 = (1/5){4,−3}
n11 = {−1, 0}, n21 = (1/5){−3,−4}, n31 = (1/5){−4, 3},
n12 = {0,−1}, n22 = (1/5){4,−3}, n32 = (1/5){−3,−4},
n11 = {−1, 0}, n21 = (1/5){−3,−4}, n31 = (1/5){−4, 3}, n41 = {0,−1}
n12 = {0,−1}, n22 = (1/5){4,−3}, n32 = (1/5){−3,−4}, n42 = {1, 0}.

Therewith we have to solve the following four basic equations successively which
determine the four position angles:

G1 = (B11 − A1) · n12 − L1 = 0, G2 = (B21 − A2) · (B21 − A2)− L2
2 = 0,

G3 = (B13 − A3) · (B13 − A3)− L2
3 = 0, G4 = (B22 − A4) · (B22 − A4)− L2

4 = 0.

G1 = (B11 − A1) · n12 − L1 = 0, G2 = (B21 − A2) · n22 − L2 = 0,

G3 = (B13 − A3) · (B13 − A3)− L2
3 = 0, G4 = (B22 − A4) · (B22 − A4)− L2

4 = 0.

G1 = (B11 − A1) · n12 − L1 = 0, G2 = (B21 − A2) · n22 − L2 = 0,

G3 = (B13 − A3) · n32 − L3 = 0, G4 = (B22 − A4) · (B22 − A4)− L2
4 = 0.

G1 = (B11 − A1) · n12 − L1 = 0, G2 = (B21 − A2) · n22 − L2 = 0,

G3 = (B13 − A3) · n32 − L3 = 0, G4 = (B22 − A4) · n32 − L4 = 0.

The calculation procedure described in Section 2 yields:

A (3.5)1P : 54 positions, 10 real, A (3.5)2P : 46 positions, 8 real,
A (3.5)3P : 28 positions, 8 real, A (3.5)4P : 16 positions, 8 real.
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Fig. 4 Robot Assur group A (3.5)5P fixed on a rigid body with five input P -joints.

3.2 Case Study A (3.5)5P

Figure 4 shows an Assur group with five prismatic input joints serving as the basic
mechanism for a redundant planar robot. The twofold redundancy (2) can be used
to avoid singularity positions in which the robot would lose its maneuverability.

If five input joints are P -joints, the position of the Assur group within its fixations
can be given by the distance s (in Figure 4) together with the three anglesψ0,ψ1 and
ψ2. With B01 = {s, L6} (instead of B01 = L0{cosψ, sinψ} in the set of formulas
(1)), and with the parameters p, P as in Section 3.1

p = {a0 = 3, b0 = 4, c0 = 2}, {a1 = 2, b1 = 3, c1 = 3}, {a2 = 3, b2 = 4, c2 = 2},
p = {A0 = {0, 0}, A1 = {5, 11}, A2 = {−5, 10}, A3 = {10, 6}, A4 = {−7, 1}},
and with the unit vectors n as in Section 3.1 (4)

n11 = {−1, 0}, n21 = (1/5){−3,−4}, n31 = (1/5){−4, 3}, n41 = {0,−1},
n12 = {0,−1}, n22 = (1/5){4,−3}, n32 = (1/5){−3,−4}, n42 = {1, 0},
and finally with the lengths

173



K. Wohlhart

Fig. 5 Four real positions of a normal Assur group A (3.5)5P .

L = {L0 = 6, L1 = 7.997, L2 = 9.198, L3 = 8.349, L4 = 5.804},
the four equations to be solved read as in Section 3.1 (4) and take, with s = X and
the last three parts of the formula set (1), the form of four algebraic equations as in
formula (4). With the matrices U, V, x, y defined in Section 2 by the formulas (6),
(7), we find two equations in X and Y from the vanishing determinants:

Det U = 0 = F1(X, Y ) = (1+ Y 2)2[f11X
2 + f12X + f13] = 0,

Det V = 0 = F2(X, Y ) = (1+ Y 2)2[f21X
2 + f22X + f23] = 0,

where the coefficients in the series expansions are polynomials in Y of order 4. They
can be written in the form of a single matrix equation

S(Y ) ·X = 0 with S =

⎡⎢⎢⎣
0 f11 f12 f13
f11 f12 f13 0
0 f21 f22 f23
f21 f22 f23 0

⎤⎥⎥⎦ and X = {X3,X2,X, 1}T .

The condition det S = 0 yields a polynomial of order 8 in Y , which can be solved
numerically. From S(Yα)·Xα = 0 the corresponding valuesXα can then be obtained,
e.g. as the third component of the null space vector Xα . From U(Xα, Yα) · xα = 0
or V(Xα, Yα) · yα = 0 the corresponding values xα and yα can be found in the same
way. Finally with the sets {X,Y, x, y}α also the sets {s, ψ0, ψ1, ψ2} are known. For
the Assur group A (3.5)5P we have found eight positions, the four real of which are
shown in Figure 5.
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Kinematics of Free-Floating Systems through
Optimal Control Theory
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Abstract. This work presents a new method for solving the inverse kinematical problem for free-
floating space manipulators. It is based on a novel formulation of the problem within the frame-
work of optimal control theory for discrete linear systems, thanks to a reconsideration of the en-
ergy conservation property of this class of systems. This way, inverse kinematics is obtained in a
purely deductive manner, quite analogous to previous works by the author about dynamical for-
ward and backward models, for either multibody or continuous hyperredundant actuated mechan-
ical systems. One important by-product of the approach is an effective way for detecting dynamical
singularities for the considered class of systems.

Key words: inverse kinematics, dynamical singularities, optimal control.

1 Introduction

The purpose of this work is to present a new, recursive, method that solves the in-
verse kinematical problem – i.e. computes the joint velocities, given the end-effector
velocity – for a free-floating space system, the prototype of which is made of a
spacecraft and a serial manipulator fixed on it, with vanishing gravity. For such
systems, motion of the manipulator disturbs the attitude and position of the space-
craft, the converse being equally true, thereby making the localization of the ma-
nipulator end-effector inaccurate. To obviate these difficulties, one can either try
to compensate for disturbed spacecraft motion by using control devices (fuel jets
or reaction wheels) [6], which is generally a high energy consuming approach, or
consider these interactions while solving the inverse kinematic problem [2,7,9–11]:
the approach followed here falls into this second category. One interest in this prob-
lem comes from the fact that so-called dynamical singularities can occur in such
systems, due to the fact that the spacecraft is not fixed as for usual terrestrial ma-
nipulators [8,12] and these singularities cannot be predicted from the knowledge of
the system geometric parameters solely. The approach followed hereafter, which is
new, makes use of a suitable reformulation of the inverse kinematical problem as a
multistage optimal control problem, with independent variable the label of the bod-

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 177–184.
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Fig. 1 Spacecraft-manipulator free-floating system.

ies in the chain. To this end, the energy conservation property is considered anew,
leading to a purely deductive method for computing the searched after joint velo-
cities, in the same spirit as previous work by the author on dynamics of actuated
mechanical structures [3–5]. The paper consists of two main parts: in Section 3, for-
mulation of the inverse kinematics as a discrete optimal control problem is given.
Then, in Section 4, the solution of the latter is given, using classical results from op-
timal control theory, leading to a new, recursive algorithm for the inverse kinematics
of the system under study. It is followed by a discussion on the by-products of the
approach, especially the detection of dynamical singularities. Some conclusions are
given in Section 5.

2 Notations

The spacecraft+manipulator system is described (see Figure 1), in a galilean refer-
ence frame with originO, by one rigid body (the spacecraft) Cn and an serial chain
(the manipulator), which is constituted by n rigid bodies, C0 to Cn−1, labelled from
the end-effector back to the body attached to the spacecraft (opposite to the usual
numbering). To each body is attached a frame with origin Oj , about one axis of
which, uj , rotation only can be effected for actuation. Relevant geometric and in-
ertial parameters appear in Table 1. In the sequel, dots over some quantity indicate
differentiation wrt time. For a vector y ∈ R3, ŷ is the antisymmetric matrix such that
∀z ∈ R3, ŷz = y × z and× is the usual vector product. Whenever both formalisms
are used, no confusion should occur.
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Table 1 Geometric and inertia parameters.

qj Joint j position variable (a scalar) Mj Mass of Cj
Gj mass center of body j Ij Inertia of body Cj about Gj
uj unit vector along joint j rotation axis ωj Rotation velocity of Cj
Lj vector Oj−1Oj Vj Galilean velocity of Oj
Dj vector OjGj Vgj Galilean velocity of Gj

3 Statement of the Kinematical Problem

The energy conservation property for free-floating systems is first reconsidered. Fol-
lowing this, the kinetic energy is then computed and the design (geometric/kine-
matical) constraints are derived. Eventually a convenient discrete evolutionary op-
timization problem, to be solved in Section 4, is posed that leads in a natural way to
the new method for the inverse kinematics of the considered class of systems.

3.1 Problem Formulation

When considering a free-floating space system made of a platform (the spacecraft)
and a serial manipulator, one can consider that no potential energy exists (the gravity
vanishes) thereby reducing the total energy to its kinetic part. In that context, where
no external forces are applied, the kinetic energy, T , of the system is a first integral,
i.e. it is constant over the motion trajectories (other first integrals of course exist but
energy is sufficient here for the derivations in view). But this must be true while con-
sidering that the constraints imposed must remain valid over the considered motion.
One way for setting the above problem leads to finding the stationary conditions
(δT = 0) for the system kinetic energy subject to the constraints – in terms of velo-
cities – that link the bodies altogether. This is the main idea of the method exposed
hereafter.

3.2 Kinetic Energy of the System

The kinetic energy of the complete system is T = ∑n
i=0 Tj , where the kinetic

energy, Tj , of each body j writes, thanks to Koenigs theorem:

Tj = 1

2
ωTj Ijωj +

1

2
MjV

T
gj
Vgj (1)

As it is usual to consider velocities at the joints, Vj (because actuation applies at the
joints), one can use the fact that the field of velocities of a rigid body is a torsor in
order to write: Vgj = Vj +ωj ×Dj , leading to the expression of T , when gathering
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terms:

T = 1

2

n∑
j=0

(
V Tj ωj

T
)( MjI MjD̂

T
j

Mj D̂j Mj D̂j D̂
T
j + Ij

)(
Vj
ωj

)
(2)

3.3 Kinematical Constraints

For simplicity, the joints are supposed to be rotational only, but prismatic joints
could be treated equally at the cost of greater computational complexity. The only
modelling constraint on the multibody system is then that each body is rigid and is
attached to its neighbours at the rotatory joints, so that, in a fixed (Galilean) refer-
ence frame, with originO, one has again to write that the field of velocities for solid
bodies is a torsor:

Vj = Vj−1 + ωj−1 × Lj , j = 1, . . . , n (3)

On the side of rotations, at each joint one has:

ωj = ωj−1 + q̇j uj (4)

where q̇j are the joint velocities. Gathering the results while using matrix notation
for the ease of analogy with optimal control in standard Kalman form, one gets:(

Vj
ωj

)
=

(
I L̂Tj
0 I

)(
Vj−1
ωj−1

)
+

(
0
uj

)
q̇j (5)

Equation (5) is the simple consequence, in terms of velocities, of the geometric
constraints due to the design.

3.4 Kinematics as an Optimization Problem

As suggested by the above analysis and observing Eqs. (2) and (5), it is worth con-
sidering the following optimal control problem. Firstly, for simplifying the present-
ation and in accordance with usual notation of control theory, define the quantities
(I is the 3× 3 identity matrix):

Xj =
(
Vj
ωj

)
; Uj = q̇j+1; Fj =

(
I L̂Tj+1
0 I

)
; Gj =

(
0
uj+1

)

Aj =
(
MjI MjD̂

T
j

Mj D̂j Mj D̂j D̂
T
j + Ij

)
; J (Xj ) =

n∑
j=0

1

2
XTj AjXj (6)
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where Aj is obviously symmetric positive and, as a rule, definite. The inverse kin-
ematical problem posed in Section 3.1 can then be formulated as follows:

Find the critical points of J (δJ = 0), under the set of constraints:

Xj+1 = FjXj +GjUj , j = 0, . . . , n− 1 (7)

where the “initial” conditionX0 is known, as being the velocity of the end-effector.
Obviously, solving this problem will lead to the inverse kinematical problem solu-
tion, as by definition,Uj is q̇j . For that purpose, classical results from LQ multistage
optimal control theory and the weak Pontriaguine maximum principle are briefly re-
called in the following section. Detailed computations can be found in, e.g., [1].

4 Joint Velocities as the Optimal Control

Introducing Lagrange multipliers (costates), the constraint equations are adjoined
to the criterion J leading to an equivalent unconstrained optimization problem. The
solution of the latter is obtained in summary as follows. An augmented criterion J̄
is built:

J̄ = 1

2
XTn AnXn +

n−1∑
j=0

[
1

2
XTj AjXj − λTj+1(Xj+1 − FjXj −GjUj )

]
(8)

and a critical point for J̄ is obtained as a solution of δJ̄ = 0, leading to the necessary
(and sufficient as the criterion is quadratic positive definite) first order conditions
[1]:

∂J̄

∂λj
= ∂J̄

∂Xj
= ∂J̄

∂Uj
= 0, j = 0, . . . , n− 1 (9)

Explicit computation of these conditions leads to (j = 0, . . . , n− 1):⎧⎪⎨⎪⎩
Xj+1 = FjXj +GjUj
λj = FTj λj+1 + AjXj

0 = GTj λj+1

(10)

together with boundary conditions:X0 (given velocity of the end-effector) and λn =
AnXn, hence making the above a two-point boundary-value problem. The last of
Eq. (10) does not give an expression for the optimal control, making it a singular
problem. Instead, the second derivative ∂2J̄ /∂U2 vanishes and some extra work
is in order to make Uj appear, that satisfies the optimality system. To this end, an
efficient method for solving the above boundary value problem is the sweep method.
It is based on the search for an expression of the costate λj that is linear in the
state Xj , which writes that λj = SjXj , Sj a square matrix. Omitting the details
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that are routine (see [1]), the optimal control sequence Uj is computed as follows
(j = 0, . . . , n− 1):

1. Solve backwards the following equation for Sj , with terminal condition Sn = An
(as λn = AnXn):

Sj = FTj Sj+1Fj + (F Tj Sj+1Gj)(G
T
j Sj+1Gj)

−1(GTj Sj+1Fj )+ Aj (11)

2. Compute the optimal control (actually a feedback control) as:

Uj = −(GTj Sj+1Gj)
−1(GTj Sj+1Fj )Xj (12)

3. While solving the state equation (first of Eq. (10), which writes, after substitution
of Uj :

Xj+1 =
(
Fj −Gj (GTj Sj+1Gj)

−1(GTj Sj+1Fj )
)
Xj (13)

4.1 Inverse Kinematics Algorithm

The above computations lead to the inverse kinematics algorithm:

– Data: Lj ,Dj ,Mj , Ij , V0, ω0, Sn = An
– Begin

1. Compute Sj , j = n− 1, . . . , 0 through Eq. (11)
2. Compute Vj , ωj , j = 1, . . . , n through Eq. (13)
3. Compute q̇j , j = 1, . . . , n through Eq. (12)

– End

Notice that the complexity of the algorithm is low as there are only basic operations.
In particular, due to the definition of Gj as a column-vector, there is no matrix
inversion, as GTj Sj+1Gj in Eq. (13) is a scalar.

4.2 Discussion-Dynamic Singularities Analysis

The above developments have exhibited a new recursive inverse kinematics al-
gorithm for free-floating systems. But the novelty of the approach is not limited
to it as it is shown below, in particular as far as dynamical singularity analysis is
concerned.

• The second of Eq. (10), the adjoint equation, receives an obvious interpretation.
Substituting for Fj ,Aj ,Xj , we can write:

182



Kinematics of Free-Floating Systems through Optimal Control Theory

λj =
(

I 0
L̂j+1 I

)
λj+1 +

(
MjI Mj D̂

T
j

MjD̂j MjD̂j D̂
T
j + Ij

)(
Vj
ωj

)
(14)

the second term in the second member of this recursion is the kinetic torsor of the
j -th body. Thus for the recursion to be dimensionally homogeneous, λj has to be
homogeneous to a similar kinetic quantity. Actually, as it is the dual quantity of
the velocity for the kinetic energy metric, it is simply the kinetic torsor at joint j .
Thus Eq. (14) gives a recursion for its computation, starting from λn = AnXn,
Xn given as an output of the above algorithm.

• Relying upon the previous interpretation, reconsider now the definition of λj :
λj = SjXj . λj being a kinetic torsor andXj a velocity, Sj must be homogeneous
to an inertia (which is consistent with the initialization Sn = An). Thus Eq. (11)
gives a recursive way of computing the resulting inertias at each joint in the
overall system. As Sj is computed backwards from n to 0, one sees that velocities
at each joint depend on all inertias of the overall system, which was asserted
in [8], thanks to a clever choice of configuration parameters.

• Inspection of Eq. (13) shows at once that the recursive computation of the Xj ’s,
the velocities, can be done whenever the parenthesized expression, which obvi-
ously depends on inertias of the system through Sj , is not singular. This corrob-
orates the results of [8]. Thus singularities (kinematic as well as dynamic, but
for these last, kinetic would be a better descriptipon as only kinetic quantities
intervene) may appear whenever the following 6× 6 matrix is singular:

Fj −Gj(GTj Sj+1Gj)
−1(GTj Sj+1Fj ) (15)

Its possible rank deficiency can be easily checked at each step j . It can even be
reduced to a 3×3 matrix rank check. Hence, one has an efficientO(n) algorithm
to check the presence of these dynamical singularities. This has to be compared
to the usual O(n3) Jacobian determinant computation, a delicate computation
task.

• The formulation of the inverse kinematical problem as a LQ-optimal control
problem opens possibilities to address other questions related to the kinemat-
ics of the considered systems, but not touched upon in the present work, such as
imposing bounds on joint velocities, estimation in case of uncertainty. This will
be addressed in forthcoming publications.

5 Conclusions

A new recursive, efficient method has been presented for solving the inverse kin-
ematics of free-floating space systems. It leads to an efficient, computationally at-
tractive mean for dynamical singularities analysis. One important feature of the
approach is that it is purely deductive, thanks to a suitable formulation as a con-
strained, discrete evolution, optimal control problem, making useless to enter a
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priori into mechanical definitions, but letting interpretations come afterwards, once
logical formal computations have been done. Extensions are being studied.
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Abstract. A generic, or more properly 1-generic, serial manipulator is one whose forward kin-
ematic mapping exhibits singularities of given rank in a regular way. In this paper, the product-of-
exponentials formulation of a kinematic mapping together with the Baker–Campbell–Hausdorff
formula for Lie groups is used to derive an algebraic condition for the regularity.

Key words: generic manipulator, transversality, singularity, Lie group, product of exponentials.

1 Introduction

The idea of a generic manipulator was introduced by Pai and Leu [11], who ob-
served that mathematical singularity theory (e.g. [4]) may provide powerful tools
for exploring robot singularities. For a given manipulator one wants to understand
the singularity locus, how it partitions the joint space and how its image appears
in the workspace. A simple invariant of a singularity is its rank – the property of
1-genericity requires certain regularity or, more precisely, transversality conditions
for the forward kinematic mapping of a serial manipulator which ensure that the
locus of singularities of fixed rank must be a submanifold (smooth subset of the
joint space) whose dimension is determined by the number k of joints and the rank.
In particular, there will be no singularities if the rank is greater than a certain num-
ber depending on k (either 1 or 2). In particular, only for k = 6 did Pai and Leu
explicitly determine a general condition for 1-genericity of a kinematic mapping
and went on to show that the property held for certain partitioned manipulators
where one could consider separately rotational and translational kinematics. Sub-
sequent work on generic manipulators has been undertaken by Tsai et al. [13] who
extended these results to full 6-dof serial manipulators, Burdick [1] who obtained
specific equations for the bifurcation sets where the regularity fails in the case of
regional manipulators, and Lerbet and Hao [6] who, in studying over-constrained
closed loop mechanisms, showed how the transversality condition relates explicitly
to the algebra of the joint screws. The practical relevance of genericity was realised
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by Narasimhan and Kumar [10] who introduced a manipulator control algorithm
adapted to handle generic singularities.

In this paper, a different approach is presented to obtain results like those of Hao
and Lerbet, putting them in an algebraic context which shows how they can be gen-
eralised and potentially used to tackle substantial questions about the singularities
of classes of manipulator. For example, in singularity theory, the term generic is
used to describe any property of a family of mappings that is common to almost all
members of the family. ‘Almost all’ has a topological meaning – the set should be
open and dense. Openness ensures that any mapping with the property is surroun-
ded by a neighbourhood of mappings that share the property, so that the property is
stable. Density means that if a mapping fails to have the property, then arbitrarily
close to it is one that does – there are no open regions where every mapping fails to
have the property.

There is a specific set of tools that are used to guarantee genericity: transversal-
ity theorems. A survey of the technical details can be found in [2], where some of
these results first appeared. There is one set of transversality theorems that guaran-
tee genericity when one is interested in the infinite-dimensional space of all smooth
mappings between given manifolds. In this setting, 1-genericity is automatically
generic. However, families of serial manipulators are only ever finite-dimensional
and there is no certainty that the special associated families of kinematic mappings
sit nicely within the very large space of all mappings. In this setting, an Elementary
Transversality Theorem is required and a transversality hypothesis must be satisfied
before a conclusion of genericity can be drawn. The transversality condition estab-
lished here would seem to be quite applicable in establishing theorems of this kind
for 1-generic manipulators.

2 Jet Extensions of Kinematic Mappings

Suppose the forward kinematics of a serial manipulator withm joints is given by the
smooth function f : M(m)→ SE(3), whereM is them-dimensional joint manifold
(the superscript denoting the dimension) and SE(3) is the 6-dimensional Lie group
of Euclidean isometries describing the motion of the end-effector. A given set of
joint variables x ∈ M is a singularity of the robot kinematics if the rank of the
derivative Df (x) falls below the maximum possible value, i.e. the minimum of m
and 6. The number min{m, 6} − rankDf (x) is called the corank of the singularity.
We briefly present the key definitions; more details can be found in [2, 4, 7, 11].

One way to recognise a singularity is to consider the first-order Taylor expansion,
with respect to some choice of coordinates for M and SE(3), at points x ∈ M .
This includes information on the derivative Df (x) so it tells us whether there is a
singularity. Regarding x as a variable, there is a smooth map j1f , called the 1-jet
extension of f , which assigns to each x ∈ M the first-order Taylor expansion of f
at x. The values of this map lie in a space called the 1-jet bundle, which is itself a
smooth manifold. Locally this looks like a product of an open piece of M locally
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coordinatised by (part of) Rm, an open piece of SE(3) with coordinates in R6, and
the vector space of matrices M(Rm,R6) – the fibre of the bundle – representing
derivatives of a mapping Rm to R6 representing f in local coordinates. The matrices
of fixed corank s form a submanifold ofM(Rm,R6) of codimension s(|6−m|+ s),
so there is a submanifold�s of the jet bundle consisting of 1-jets of corank s having
the same codimension.

The 1-jet extension j1f is transverse to one of the submanifolds �s , denoted
j1f �∩�s , provided that whenever x ∈ M and j1f (x) ∈ �s , then the image of the
derivative of j1f at x spans a complement to the tangent space to �s in the tan-
gent space to the 1-jet bundle at j1f (x). If j1f is transverse to all the submanifolds
�s , s = 0, 1, . . . ,min{m, 6} then the manipulator is called one-generic, sometimes
abbreviated to simply generic. This is sufficient to ensure that the inverse image
�sf = (j1f )−1(�s) is either empty or a submanifold of M with the same codi-
mension as �s .

Transversality here depends on the second-order partial derivatives of f at x.
There is an invariant part of this family of second-order derivatives called the in-
trinsic second derivative. Consider for each xl , l = 1, . . . ,m, that part of the matrix(
∂2fj
∂xi∂xl

)
ij

given by restricting it to the kernel of Df (x) and then projecting the

result onto the cokernel, i.e. the quotient of Tf (x)SE(3) by the image of Df (x)
(the column space of the Jacobian matrix). Each of these could be written as a
s×(|6−m|+s)matrix with respect to some bases for the kernel and cokernel. A ne-
cessary and sufficient condition for transversality to�s is that thesemmatrices span
the vector space of all such matrices. Equivalently, the matrices obtained by restric-
tion but not projection, together with the submatrices formed by taking s columns
of the Jacobian should span the space of 6× s matrices.

A necessary condition for transversality to �s is that m ≥ s(|6 − m| + s). As a
consequence, for 1-generic manipulators�sf is empty for s ≥ 2 unlessm = 6, 7, 8
in which case �2f may be a a submanifold of codimension 4, 6 or 8 respectively.
In [13], it was also noted that for reasons of symmetry the resulting dimensions
in the cases m = 7, 8 are too small to occur transversely. However, one is often
interested not simply in a given manipulator but a family of manipulators in which
some design parameters may be altered. Suppose the design parameters lie in a
manifold B of dimension k. Then there is a family of kinematic mappings which
can be thought of as a function of the joint variables in M and parameters in B,
F : M × B → SE(3). For each b ∈ B, there is an ordinary kinematic mapping
Fb :M → SE(3), given by Fb(x) = F(x, b). So now we have a map

� : M × B → J 1(M, SE(3)), �(x, b) = j1Fb(x). (1)

In this situation one could encounter transversely singularity strata, �s , in the jet
bundle up to codimension m+ k. The Elementary Transversality Theorem (see for
example [4]) asserts that if If ��∩�s for all 0 ≤ s ≤ min{m, 6} then the set of
parameter values for which the individual kinematic mappings are 1-generic

{b ∈ B : j1Fb �∩�s, 0 ≤ s ≤ min{m, 6}}
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is open and dense in the parameter space B.

3 One-Genericity for Serial Manipulators

For a serial manipulator, the kinematic mapping as a function of the joint variables
θ1, . . . , θm can be written as a product of exponentials of the screws X1, . . . , Xm
representing the sequence of joints:

f (θ1, θ2, . . . , θk) = H · eθ1X1 .eθ2X2 · · · eθmXm. (2)

H ∈ SE(3) determines the home configuration, θ1 = · · · = θm = 0, of the end-
effector and, when considering the mapping in the neighbourhood of a given point,
we may choose end-effector and base coordinates so that H is the identity. In this
representation, the design parameters of the manipulator are only implicitly avail-
able via the sequence of screws X1, . . . , Xm. The exponential function, exp(θX) or
eθX, represents the position of a link attached by the joint represented by screw X
to the previous link, after the joint has moved through joint variable θ (either angle
of rotation for an R- or H-joint, or translation for a P-joint) as an element of SE(3).
It can be explicitly calculated in matrix form if screws and elements of SE(3) are
given matrix representations by means of the usual series expansion for the expo-
nential. In order to simplify exposition and concentrate on the most important case,
from here on we set m = 6.

Non-commutativity of Euclidean isometries means that the exponentials in (2)
cannot be reordered. The Lie bracket of a pair of screws is another screw defined as
follows: if X1,X2 are represented in Plücker coordinates by (ωi , vi ), i = 1, 2 then

[X1,X2] = (ω1 ∧ ω2,ω1 ∧ v2 − ω2 ∧ v1)

where ∧ is the standard vector product in R3. One way to think of the Lie bracket is
that it measures the infinitesimal difference between the effect of a pair of screws or
joints if one reverses the order in which they occur. The finite, rather than infinites-
imal,consequence for exponentials is expressed in the formula of Baker–Campbell–
Hausdorff; see, for example, [12]. For sufficiently small values of the joint variables,
multiple applications of the Baker–Campbell–Hausdorff formula convert (2) to a
single exponential in terms of the Lie brackets of pairs of joint screws:

f (θ1, . . . , θ6) = exp

⎛⎝ 6∑
i=1

θiXi + 1
2

∑
1≤i<j≤6

θiθj [Xi,Xj ] +O(3)
⎞⎠ (3)

where the coefficients of the order 3 and higher terms in the θis involve nested
brackets of the Xis. The kinematic mapping encompasses the full capability of the
end-effector motion; to obtain elementary kinematic notions such as velocity and
acceleration one considers a time-dependent path in the jointspace so that each joint
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variable is dependent on time t . Formulae for the velocity and acceleration that can
be found in, for example, [8, 12] can be obtained by differentiating with respect to
t , using the Chain Rule and the fact that (d/dt) exp(θ(t)X)|t=0 = θ̇ (0)X. Higher-
order derivatives are also considered in [9].

Since the exponential map on a Lie group provides a coordinate system on a
neighbourhood of the identity, the kinematic mapping with respect to these expo-
nential coordinates can be represented by the expression within the exponential in
(3). From this we are able to derive the following expression for the 1-jet extension,
see [2]:

j1f (θ) =
(

θ ,

6∑
i=1

θiXi, X1 + 1
2

6∑
j=2

θj [X1,Xj ], . . . ,

Xl − 1
2

l−1∑
j=1

θj [Xl,Xj ] + 1
2

6∑
j=l+1

θj [Xl,Xj ], . . . ,

X6 − 1
2

5∑
j=1

θj [X6,Xj ]
⎞⎠+O(2) (4)

where θ = (θ1, . . . , θ6).
From this we can deduce the following conditions for transversality to the singu-

larity strata �s . This represents a different derivation and clarification of the result
of Lerbet and Hao [6, appendix A].

Theorem 3.1 Suppose f is a serial manipulator kinematic mapping given by (2).
Necessary and sufficient conditions for j1f to be transverse to �s at θi = 0, i = 1,
. . . , 6 are as follows:

(a) If 0 ∈ �1f , let c ∈ R6 span the kernel ofDf (0). Then the vectors

X1, . . . , X6, [c1X1,X2], [c1X1 + c2X2,X3], . . . ,
[∑4

i=1 ciXi,X5

]
span R6.

(b) If 0 ∈ �2f , let c,d span the kernel of DF(0). Then the 6× 2 matrices (where
a | separates columns)(
Xi |Xj

)
, (1 ≤ i < · · · < j ≤ 6),

([c1X1,X2] | [d1X1,X2]) , ([c1X1 + c2X2,X3] | [d1X1 + d2X2,X3]) , . . .
. . . ,

([∑4
i=1 ciXi,X5

] ∣∣∣ [∑4
i=1 diXi,X5

])
spanM(2, 6).

(c) �3f is empty for s ≥ 3.

Proof. The matrices of second-order partial derivatives required for determining
transversality, described in Section 2, are found by differentiating with respect to
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each θi , i = 1, . . . , k the components in (4) that are in the fibre of the jet bundle.
They are

ϒl = 1
2

( [X1,Xl] · · · [Xl−1,Xl] 0 −[Xl+1,Xl] · · · −[X6,Xl]
)

(5)

for l = 1, . . . , 6. These must be restricted to the kernel of the Jacobian matrix.
Suppose c ∈ kerDf (0) then

Df (0)c =
6∑
i=1

ciXi = 0 (6)

while

ϒlc = 1

2

[
c1X1 + · · · + cl−1Xl−1 − cl+1Xl+1 − · · · − c6X6,Xl

]
. (7)

Adding 1
2×(6) to (7) and using the fact that [Xl,Xl] = 0 gives

ϒlc =
[
c1X1 + · · · + cl−1Xl−1,Xl

]
(8)

and the theorem follows from the general condition for transversality to the singu-
larity strata in Section 2.

Notes

1. It is important to observe that this is only a local condition for transversality –
it does not guarantee the global property of one-genericity unless it applies at
every singular configuration of a serial manipulator. To apply the result in that
way requires the presentation of the kinematic mapping to be re-calibrated so
that the joint screws X1, . . . , X6 are those in the current singular configuration.
Although they are not the same as those at another configuration, they are related.

2. A different formulation of the theorem could be given by subtracting 1
2×(6) from

(7) to obtain
ϒlc =

[−cl+1Xl+1 − · · · − c6X6,Xl
]
. (9)

3. The theorem can be generalised readily to cases where m �= 6.
4. The theorem can be generalised to the case of parametrised families of kinematic

mappings F : M × B → SE(3). The function � as in (1) can be written in
the form (4), with the parameters u1, . . . , uk in B appearing explicitly in the
formula. Then for transversality at (0, 0) ∈ M ×B, in addition to the matrices in
Theorem 3.1, we can also use the k matrices arising from the fibre components
of ∂�/∂ui , i = 1, . . . , k restricted to the kernel of DF0(0).

In [6, proposition 4.4], the authors observed that a necessary condition for trans-
versality to�1 follows from Theorem 3.1(a): the vector subspace�1 spanned by the
screws X1, . . . , X6 together with their pairwise brackets [Xi,Xj ], 1 ≤ i < j ≤ 6
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must be the whole 6-dimensional screw space, usually denoted se(3). In particu-
lar, the subalgebra � generated by X1, . . . , X6 must be the whole of se(3). In the
case m = 6 these conditions are trivial since then X1, . . . , X6 span a 5-space, but
there are no subalgebras of dimension 5 so the conditions are automatically satis-
fied. However the conditions are not sufficient, as can be seen by considering the
case where the screw dependency is defined by c1X1 + c3X3 = 0 and the bracket
[X1,X2] = 0. In this case all the brackets in Theorem 3.1(a) vanish so the screws
cannot span se(3).

Note that � is an invariant of the manipulator [6] and in the case that it is a
proper subalgebra of se(3), it is sensible to regard its corresponding subgroup as the
range of the kinematic mapping so that one considers, for example, a translational
or a rotational manipulator (see for example [6, 11]). In that case of course the
dimensions of the singularity strata change.

In general, there is a terminating nested sequence of vector subspaces

�0 ⊆ �1 ⊆ · · · ⊆ �r = �
where �0 is the subspace spanned by X1, . . . , Xm and �i+1 = �i + [�0,�i] for
i ≥ 0 (see [5, 12]). It is fairly easy to show that not only is the sequence independ-
ent of the spanning set of screws for �0, so it depends only on the screw system
spanned by them, moreover the sequence is invariant up to conjugation (i.e. under
the adjoint action of the Euclidean group) and hence the necessary condition r = 1
for transversality to �1 can be determined from the Gibson–Hunt class of the screw
system [3]. For example, if m = 4 and there is a singular configuration at which the
4 joint screws X1, . . . , X4 span a 3-system of type IB2 with pitch modulus hβ = 0,
so that a spanning set of screws, in Plücker coordinates, is

(1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0)

then �r = se(3) for r = 2 but not r = 1. It follows that in such a configuration the
serial manipulator kinematic mapping is not transverse to �1.

4 Conclusions

A straightforward condition for testing for manipulator genericity has been presen-
ted. The conditions in Theorem 3.1 would seem to lend themselves to further ana-
lysis of genericity for families of serial manipulators and the formula for the jet
extension of a kinematic mapping can be extended to consider higher-order singu-
larities and hence to the study of bifurcation sets such as those separating families
of cuspidal and non-cuspidal regional manipulators.
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Abstract. It is well established that finite displacement screws effective for the (incompletely spe-
cified) relocation of a body with symmetries form linearly combined sets if they are of a sin-screw
form Ŝ = sin 1

2 θ̂ ŝ, characterised by pitch PS = 1
2σ/tan 1

2 θ . This paper shows that screws of indef-
initely many other functional forms may be derived, each with a correspondingly distinct definition
of pitch, which in the same kinematical situations will also form sets of screws that are linearly
combined with dual coefficients. As example, screws of form Ŝ = sin θ̂ ŝ, of pitch PŜ = d/tan θ ,
are evaluated that describe displacement of a point-line.

Key words: kinematics, screw theory, finite displacement screw, pitch.

1 Introduction

Screws of a particular sin-screw form, Ŝ = sin 1
2 θ̂ ŝ, characterised by pitch PS =

1
2d/tan 1

2θ , have recently found use in representing the finite displacement of a rigid

body through a dual angle θ̂ = θ+ε d , −π < θ ≤ π , about a screw-axis sited in
the unit line ŝ, with |ŝ| = 1. Using that sin-screw form it is found, when a body with
spatial symmetries of figure is relocated – or, equivalently, when a displacement is
incompletely specified – that the (possibly infinite) set of screws available to the
body in achieving the relocation is described by linear combination of a small basis
of screws [2, 6, 7].

In this paper we show that these properties are by no means unique to the ’sin
half-angle’ screw form and that, for any such kinematic context, we may derive an
indefinitely large number of screw forms of quite different definition (and pitch),
each of which occur in similarly constituted linear combinations, formed with dual
coefficients in general.

It is not our purpose to advocate use of screw forms other than the sin-screw
form: that form, which – as the vector sub-component – has intimate connection
with the unit biquaternion for the displacement (see Eq. (4)), appears to represent
the displacement with least sign-ambiguity and to be the simplest to manipulate in
formal analysis. Rather, the purpose is to point out that when – in the course of

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 193–202.
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exploratory geometric analysis – a screw of different definition or a different pitch-
form appears, it does not necessarily betoken a distinct physical phenomenon but
may simply be, in effect, an alias for the sin-screw under the kind of derivation just
mentioned.

A number of investigations have recently been made into the formal underpin-
nings of finite displacements which have turned up suggestive measures of pitch for
the helicoidal vector fields under study. In one of these [4], for example, the pitch
measure P = d/sin θ has emerged which, though not that of the sin-screw, is re-
cognisable as the pitch-form associated with the screw T̂ = tan 1

2 θ̂ ŝ, obtained from

the sin-screw by the simple step of dividing by cos 1
2 θ̂ [3, 9, 11].

To show the ease of creating screw-forms, a new screw-form defined in terms of
the full- rather than half-dual angle, viz. Ŝ = sin θ̂ ŝ, characterised by pitch PŜ =
d/tan θ , is used in a typical kinematic context.

2 Notation and Basic Geometry

We write a screw Ŝ as a 3-vector of dual numbers

Ŝ = |Ŝ| (1+ε p) ŝ, ŝ = l+εM

ŝ2 = l2+ε 2 l ·M = 1+ε 0, l×M = R

}
(1)

in which ε is a quasi-scalar such that (a+ε b = c+ε d) ⇔ (a = c) ∧ (b = d) for
all real a, b, c, and d , and satisfying ε2 = 0. |Ŝ| is the real magnitude and p is
the real pitch of the screw Ŝ, and ŝ (written in lower case) is its normalised line
which, regarded as a screw in its own right, has unit magnitude and zero pitch. The
line ŝ of the screw is spatially located by the direction 3-vector of direction cosines
l = (l, m, n), and by the moment 3-vector M = (P, Q, R) which determines its
origin-radius 3-vector R.

Two screws Ŝ1, Ŝ2 are perpendicular if l1 · l2 = 0, and orthogonal if Ŝ1 · Ŝ2 = 0,
which implies that each intersects the other at right angles. The cross product Ŝ1×Ŝ2
is sited in their common perpendicular.

We represent the typical right-handed reference frame by orthogonal normalised
axial lines x̂i, ŷi, and ẑi for which

x̂i · ŷi = ŷi · ẑi = ẑi · x̂i = 0, x̂2
i = ŷ2

i = ẑ2
i = 1,

x̂i × ŷi = ẑi, ŷi × ẑi = x̂i, ẑi × x̂i = ŷi.

}
(2)

If, in some common frame, we know a general screw Ŝ and the i-frame axes x̂i, ŷi,
ẑi, we transform that screw into i-frame coordinates by

Ŝi =
⎡⎢⎣ x̂T

i

ŷT
i

ẑT
i

⎤⎥⎦ Ŝ =
⎡⎢⎣ x̂i · Ŝ

ŷi · Ŝ
ẑi · Ŝ

⎤⎥⎦
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in which the first-written matrix is 3× 3 dual orthogonal.

3 Specification of a Finite Displacement Screw

We represent the general finite displacement of a body – comprising translation
through distance d and rotation through angle θ ,−π < θ ≤ π , about the unit screw
axis ŝ (ŝ2 = 1) – by constructing the dual angle

1
2 θ̂ = 1

2θ+ε 1
2d so that sin 1

2 θ̂ = sin 1
2θ+ε 1

2d cos 1
2θ,

and by then writing the sin-screw

Ŝ = sin 1
2 θ̂ ŝ = sin 1

2θ (1+ε PS) ŝ where PS = 1
2d/tan 1

2θ. (3)

The sin-screw resultant, Ŝ, of successively applying two such screws, first Ŝ1 =
sin 1

2 θ̂1 ŝ1 and then Ŝ2 = sin 1
2 θ̂2 ŝ2, is conveniently written[

cos 1
2 θ̂

Ŝ

]
=

[
cos 1

2 θ̂1 cos 1
2 θ̂2 − Ŝ1 · Ŝ2

cos 1
2 θ̂2 Ŝ1 + cos 1

2 θ̂1 Ŝ2 − Ŝ1 × Ŝ2

]
, (4)

which comprises the biquaternion product rule [1].
An alternative form of finite displacement screw, which derives from the sin-

screw on division by cos 1
2 θ̂ , is the tan-screw, written [11]

T̂ = tan 1
2 θ̂ ŝ = tan 1

2θ (1+ε PT ) ŝ where PT = d/sin θ. (5)

Such manipulation of Eq. (4) yields the corresponding tan-screw resultant [11] of
applying two tan-screws, first T̂1, then T̂2, viz.

T̂ = T̂1 + T̂2 − T̂1 × T̂2

1 − T̂1 · T̂2
. (6)

Using the sin-screw form of Eq. (3) it is found, when a body with spatial sym-
metries of figure is relocated – or, equivalently, when a displacement is incompletely
specified in some coordinate(s) – that the (possibly infinite) set of screws available
to the body in achieving the relocation is described by linear combination of a small
basis of screws [2, 6, 7]. These findings, each dealing with particular kinematic in-
stances, have been generalised to treatment of the symmetry screws of any body
shape, and have been shown to extend equally to unit biquaternions in linear com-
binations [8,10]. This generalisation has been re-expressed in terms of the tan-screw
form of Eq. (5) [9].
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4 Generalisation to Other Screw Forms

We now show that this property – the capacity to form kinematically significant
linearly combined sets – is by no means retricted to sin-screws and tan-screws, or
to screws of their pitch-forms. For suppose that some kinematic situation (such as
those cited above) is described by such a set of sin-screws so that the typical screw
of the set is characterised by the dual-linear form

Ŝ = sin 1
2 θ̂ ŝ = X̂(. . .) x̂ + Ŷ(. . .) ŷ + Ẑ(. . .) ẑ, (7)

where x̂, ŷ, ẑ are mutually intersecting orthogonal unit lines for which

x̂ · ŷ = ŷ · ẑ = ẑ · x̂ = 0, x̂2 = ŷ2 = ẑ2 = 1,

and the dual-valued coefficients X̂(. . .), Ŷ(. . .), Ẑ(. . .) are functions of one or more
spatial variables applying in the particular kinematic context.

Since ŝ2 = 1, from Eq. (7) we readily derive

sin2 1
2 θ̂ = X̂2(. . .)+Ŷ2(. . .)+Ẑ2(. . .). (8)

If we assume that the sign of sin 1
2θ has been incorporated into the direction spe-

cified for the line ŝ, so that we may safely adopt the positive square root of sin2 1
2θ

wherever it occurs, we may multiply both sides of Eq. (7) by arbitrary powers g, h
of sin 1

2 θ̂ , cos 1
2 θ̂ to obtain

sing+1 1
2 θ̂ cosh 1

2 θ̂ ŝ = {
X̂2()+Ŷ2()+Ẑ2()

}g/2 {
1−X̂2()−Ŷ2()−Ẑ2()

}h/2
× {

X̂() x̂ + Ŷ() ŷ + Ẑ() ẑ
}
,

which, on the right-hand side, is again a linear combination of the same orthogonal
basis screws with coefficient functions parameterised in the same spatial variables.
The item on the left, when dual angles are expanded, takes the form

sing+1 1
2θ

{
1+ε 1

2d cot 1
2θ

}g+1 cosh 1
2θ

{
1−ε 1

2d tan 1
2θ

}h ŝ

= sing+1 1
2θ cosh 1

2θ
{
1+ε 1

2d
{
(g + 1) cot 1

2θ−h tan 1
2θ

}}
ŝ,

which is a screw of pitch p = 1
2d {(g + 1) cot 1

2θ−h tan 1
2θ}.

We may, further, observe that sums of such terms, with arbitrarily chosen expo-
nents gi and hi , and combined with arbitrarily chosen dual-valued functions Ci(),
of the same spatial parameters, such as∑

i Ci() singi+1 1
2 θ̂ coshi 1

2 θ̂ ŝ

=∑
i Ci()

{
X̂2()+Ŷ2()+Ẑ2()

}gi/2 {
1−X̂2()−Ŷ2()−Ẑ2()

}hi/2
× {

X̂() x̂ + Ŷ() ŷ + Ẑ() ẑ
}
,

(9)
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yield similar linear combinations.
We may, therefore, synthesise an arbitrarily large set of functions F̂ (θ̂) of the

dual angle θ̂ to serve as multipliers of the screw-axis line ŝ in screw forms F̂ (θ̂ ) ŝ
which can be expressed as sets of screws deriving as linear combinations of the
chosen basis.

5 The Full-Angle Sin Screw

To exemplify the results of the preceding section we now introduce a new screw
form – an “Ŝ-screw” – defined in terms of the full dual angle of displacement; thus,
in terms of quantities defined in Section 3,

Ŝ = sin θ̂ ŝ = sin θ (1+ε PŜ) ŝ where PŜ = d/sin θ. (10)

(whereas the definition of Ŝ at Eq. (3) involved the dual half-angle). Since Ŝ =
2cos 1

2 θ̂ Ŝ, we may write the resultant, Ŝ, of successively applying two such screws,

first Ŝ1 = sin θ̂1 ŝ1 and then Ŝ2 = sin θ̂2 ŝ2, as the doubled product of the two entries
on the right in Eq. (4), viz.

Ŝ = cos θ̂2 Ŝ1+cos θ̂1 Ŝ2− 1
2

[
1− Ŝ1 · Ŝ2

(cos θ̂1 + 1) (cos θ̂2 + 1)

]
Ŝ1 × Ŝ2

−1
2

[
Ŝ1

cos θ̂1 + 1
− Ŝ2

cos θ̂2 + 1

]
× (Ŝ1 × Ŝ2). (11)

To provide an exemplary set of Ŝ-screws in linear combination, we could adapt
a general method used elsewhere [8–10] in order to generate them directly from the
symmetry Ŝ-screws of a body undergoing displacement. But the visible growth in
complexity of Eq. (11) – a necessary component in the development – when it is
contrasted with its analogue in Eq. (4), makes this a tortuous course to follow.

Instead, we shall broadly follow the prescription of the preceding section. Having
outlined the known solution to a particular kinematic context as it is expressed in
sin-screws Ŝ, we shall convert those sin-screws to Ŝ-screws by multiplying by an
expression for 2cos 1

2 θ̂ .

6 Finite Displacement of a Body with Symmetries

We will restrict attention to properties of the point-line object, for which the set of
symmetry screws – the totality of finite displacements (screws) which leave the the
object invariant – consists of all possible pure rotations of the object about the line
component i.e. all sin-screws of the form
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Ŝ = sinψ l̂, −π < ψ ≤ π, (12)

where l̂ is the unit line component of the point-line object.
However, it will better serve to provide geometric context and to illustrate the

provenance of many linearly combined sets of screws if we consider the symmetry
screws of a body to be written more generally as

Ŝ = L̂ î + M̂ ĵ + N̂ k̂,

where L̂, M̂ , N̂ are dual-valued coefficient functions and î, ĵ, k̂ are orthonormal
axial lines fixed in the body.

Consider that we observe such a body to undergo a relocation which – because
its symmetries restrict our ability to distinguish apparently equivalent locations – is,
in effect, an incompletely specified displacement. Our goal is to identify all finite
displacement screws which are capable of producing the observed relocation. We
may generate the typical screw

• by, firstly, applying some particular displacement (screw) that carries the body
from its initial location into one of its symmetrically equivalent final locations;
this, so called, pilot screw is singled out for this role only and is not otherwise
distinguished among the screws effective for the displacement;

• by then applying to the body – in that final location – a typical member of the
set of symmetry screws which leaves the body apparently invariant by carrying it
into a symmetrically equivalent final location.

Thus, every screw effective for the observed relocation may be obtained as the res-
ultant of applying the pilot screw and one such symmetry screw.

Let the pilot displacement comprise translation dZ and rotation θZ, −π < θZ ≤
π , about a unit line ẑ so, by Eq. (10), the pilot screw is

ŜZ = sin 1
2 θ̂Z ẑ where θ̂Z = θZ+ε dZ.

We adopt ẑ and two further lines x̂, ŷ – which together satisfy orthonormality con-
ditions of Eqs. (2) – as the reference frame for all results.

Now the pilot displacement carries this xyz-frame, embedded in the body, from
an initial location x̂i, ŷi, ẑi to a final location x̂f, ŷf, ẑf with the z-axis ẑ = ẑi = ẑf
in common. It greatly simplifies later working to define the orthonormal axes x̂, ŷ,
ẑ to be the mean lines of those extremum axes, which are then expressed in that
reference location by

x̂i = cos 1
2 θ̂Z x̂−sin 1

2 θ̂Z ŷ,

ŷi = sin 1
2 θ̂Z x̂+cos 1

2 θ̂Z ŷ,

ẑi = ẑ,

x̂f = cos 1
2 θ̂Z x̂+sin 1

2 θ̂Z ŷ,

ŷf = −sin 1
2 θ̂Z x̂+cos 1

2 θ̂Z ŷ,

ẑf = ẑ.

We may now evaluate the resultant of applying the pilot screw,

Ŝ1 = sin 1
2 θ̂Z ẑ,

198



Alternative Forms for Displacement Screws and Their Pitches

and the symmetry screw (L̂, M̂, N̂) as expressed at the final location,

Ŝ2 = L̂(cos 1
2 θ̂Z x̂+sin 1

2 θ̂Z ŷ)−M̂(sin 1
2 θ̂Z x̂−cos 1

2 θ̂Z ŷ)+N̂ ẑ,

for which sin2 1
2 θ̂2 = L̂2+M̂2+N̂2, so that cos 1

2 θ̂2 =
√

1−L̂2−M̂2−N̂2. For the
resultant sin-screw, by use of Eq. (4) we find

cos 1
2 θ̂ =

√
1−L̂2−M̂2−N̂2 cos 1

2 θ̂Z−N̂sin 1
2 θ̂Z, (13)

Ŝ = L̂x̂+M̂ŷ+
[√

1−L̂2−M̂2−N̂2 sin 1
2 θ̂Z+N̂cos 1

2 θ̂Z

]
ẑ, (14)

the second of which shows, in its generalised terms, the provenance of many linearly
combined sets of screws of the kind considered in this paper.

7 Half-Angle Sin Screws for Displacement of the Point-Line

We can now make these results specific to the point-line symmetry object. Within the
displacing xyz-frame, we consider the line-component of the element to lie parallel
with the ŷ-axis. Generality is lost if the line is constrained to lie on the ŷ-axis since
some point of the line is then required – atypically – to traverse the screw axis ẑ itself
during the course of the displacement. Instead, we specify that the line-component
intersects the axis x̂ in a point at distance τ from ŷ, and we adopt that point as the
point-component.

So located, the symmetry screws of the point-line in Eq. (12) are expressed in the
functional forms ⎡⎣ L̂M̂

N̂

⎤⎦ = sinψ

⎡⎣ 0
1
ε τ

⎤⎦,
in which the real parameter ψ , −π < ψ ≤ π , may be arbitrarily chosen.

Since L̂2+M̂2+N̂2 = sin2ψ , so that
√

1−L̂2−M̂2−N̂2 = cosψ , with these
values Eqs. (13, 14) simplify to:

cos 1
2 θ̂ = cosψ cos 1

2 θ̂Z − ε τ sinψsin 1
2 θ̂Z, (15)

Ŝ = sinψ
[
ŷ + ε τ cos 1

2 θ̂Z ẑ
] + cosψ sin 1

2 θ̂Z ẑ, (16)

the second of which shows the two-system [5] of screws expected for the displace-
ment of a point-line [7], as generated by linear combination of the mutually perpen-
dicular, but not intersecting, sin-screws

ŷ + ε τ cos 1
2 θ̂Z ẑ,

sin 1
2 θ̂Z ẑ,
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with the real coefficient functions sinψ , cosψ parameterised by the variable ψ ,
−π < ψ ≤ π .

This basis pair, found earlier as both sin- and tan-screws [8,9], has been made the
subject of a theorem in a recent treatment of the point-line situation which adopts
their directions, and the mid-point between them, as defining a canonical system for
this kinematic context [12]. This adoption is not based on any fundamental charac-
teristic of the screws which distinguishes them from any others in the two-system,
but by the convenience for the human observer of indentifying the locations of those
particular screws within the physical reality of a practical situation.

At the values sinψ = ± sin 1
2 θ̂Z/

√
1+sin2 1

2 θ̂Z, cosψ = 1/
√

1+sin2 1
2 θ̂Z, the

two central principal screws [5] of the two-system are selected, viz.

Ŝ± = sin 1
2 θ̂Z√

1+sin2 1
2 θ̂Z

{
±[

ŷ + ε τ cos 1
2 θ̂Z ẑ

] + ẑ
}
, (17)

which are orthogonal, so that Ŝ+ · Ŝ− = 0, and therefore intersect one another
at right angles. In terms of these, the general member screw of Eq. (16) may be
restated, thus

Ŝ =
√

1+sin2 1
2 θ̂Z

2

{[
cosψ+ sinψ

sin2 1
2 θ̂Z

]
Ŝ+ +

[
cosψ− sinψ

sin2 1
2 θ̂Z

]
Ŝ−

}
.

Normalistion aside, this equation typifies the linear combination of orthogonal basis
screws with (more usually) dual-valued coefficient functions which is represented
in general form at Eq. (7).

8 Full-Angle Screws for Displacement of the Point-Line

As proposed earlier, we form the full-angle Ŝ-screws for displacement of the point-
line object by multiplying the cos 1

2 θ̂ expression of Eq. (15) into the half-angle Ŝ-
screw expression of Eq. (16), and doubling: in some respects, the least-rearranged
outcome, viz.

Ŝ = (sin 2ψ cos 1
2 θ̂Z−ε 2τ sin2 ψsin 1

2 θ̂Z)
[
ŷ + ε τ cos 1

2 θ̂Z ẑ
]

+ (cos2 ψ sin θ̂Z−ε τ sin 2ψsin2 1
2 θ̂Z) ẑ, (18)

is the most informative in that it preserves the identity of the lines of the basis screws
– which, of course, have not changed – while revealing that the coefficients are no
longer purely real.

The attempt, at those same basis screws, to allow a number of inherent references
to the full-angle θ̂Z to express themselves, as represented in the rearrangement:
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Ŝ = sin 2ψ
[
cos 1

2 θ̂Z ŷ + ε τ cos θ̂Z ẑ
] + cos2ψ sin θ̂Z ẑ

− 2ε τ sin2ψsin 1
2 θ̂Z ŷ, (19)

not only leaves the half-angle 1
2 θ̂Z still much in evidence but also splits the iden-

tity of the basis screw ŷ+ε τ cos 1
2 θ̂Z ẑ into two less comprehensible portions. This

unattractive situation is not appreciably changed if the Ŝ-screws are re-expressed in
terms of the central orthogonal principal screw basis of Eq. (17).

So, while we have demonstrated the feasibility, and ease, of expressing a chosen
kinematic situation in terms of full-angle Ŝ-screws, we do not find the representation
which they offer to be as directly informative as that found earlier for half-angle sin-
screws at Eq. (16).

9 Conclusion

It has been shown that in any kinematic situation which is described by a set of
sin-screws in linear combination, whether with real or dual coefficients, screws of
indefinitely many other functional forms may be derived, each with a correspond-
ingly distinct definition of pitch, which in the same kinematic situation will also
form sets of screws that are linearly combined, with – generally – dual coefficients.

It is clear that the scope of the demonstration could have been broadened:
sin-screws were adopted as the base type from which other screw-forms might
be derived because they have been central to most discussions of finite displace-
ment screws in the recent literature; a focus was maintained on derivation of
trigonometrically-related functional forms, rather than arbitrarily general forms, be-
cause these appear to be the most relevant to current and future work and might, in
any case, lead to quite general forms by way of Fourier synthesis.

As stated at the outset, the purpose was not to proffer new screw forms for use
but to indicate where connections may lie between screw- and pitch-forms newly
arising in analysis and those which have been used before.
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Strobl, Austria, June–July, J. Lenarčič and M.L. Husty (Eds.), Kluwer Academic Publishers,
pp. 317–326 (1998).

10. Parkin, I.A., The screws for finite displacement of a rigid body expressed in terms of its sym-
metry screws. In Proceedings of CK2005, International Workshop on Computational Kin-
ematics, Cassino, Italy, May, Paper 08CK2005, pp. 15 (2005).

11. Yang, A.T., Calculus of screws. In Basic Questions of Design Theory, W.R. Spillers (Ed.),
Elsevier, New York, pp. 265–281 (1974).

12. Zhang, Y. and Ting, K-L., On the basis screws and screw systems of point-line and line
displacements. Journal of Mechanical Design, Trans. ASME 126, 56–62 (2004).

202



MOTION PLANNING AND MOBILITY
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Abstract. This paper addresses validation of a curvature-theory-based time-invariant inverse kin-
ematic model and a related tracking algorithm for human motor control of reaching motions. Hu-
man subjects made unconstrained reaching motions in the horizontal plane to fixed targets at three
self-selected speeds. Consistent shoulder/elbow joint speed ratios for motions to the same target
across speeds were observed, indicating a time-invariant planning strategy. The inverse kinematic
model’s technique of relating joint motions with a Taylor series expansion is in concert with the
leading joint hypothesis. With this approach the tracking algorithm successfully replicated the ex-
perimental wrist trajectories, and also predicted the previously observed elbow-led motions for
reaching in the ipsilateral hemifield. The elbow leads the arm motion in this hemifield because
the shoulder approaches a dwell. A computationally frugal strategy of intermittent path correction
based on two error parameters is proposed.

Key words: curvature theory, motor control, arm kinematics, leading joint hypothesis.

1 Introduction

It has been proposed that the fundamental internal model employed by the human
central nervous system (CNS) for motor coordination of reaching motions is a time-
invariant inverse kinematic model [1] that can be mathematically described using
two-degree-of-freedom curvature theory for planar motions [8]. This mathematical
model matches the instantaneous geometric properties of the desired wrist path to
the instantaneous geometric properties of a corresponding path in the joint space
of the mechanism, i.e. the human arm. The elbow and shoulder joint motions are
coordinated through a Taylor series expansion such that one joint leads, and the
other is subordinate. This approach is implemented to track paths of arbitrary length
within a planar mechanism’s workspace via a tracking algorithm [2]. The use of the
Taylor series to relate joint motions echoes the recent leading joint hypothesis (LJH)
[5] which states that in multi-joint limb motion one joint, usually the proximal joint,
acts as a leading joint by moving independent of the other joints. The subordinate
joints then move such that the required end-effector motion is achieved. This hy-
pothesis grew in part from the work of Levin et al. [7] and Dounskaia et al. [4],

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 205–214.
© Springer Science+Business Media B.V. 2008
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Fig. 1 Schematic of experiment; (a) sensor locations with roman numerals – λ and µ indicate
upper and forearm angular displacements from their current positions; (b) the home position.

who also found that the shoulder is the leading joint for most hand movements in
the horizontal plane. Movements in the the ipsilateral hemifield are elbow-led. This
paper analyzes data from horizontal reaching motions performed by healthy human
subjects to validate the time-invariant model and the path-tracking algorithm.

2 Experimental Methods

Thirteen subjects with no history of neurological injury participated in this study,
complete details of which are in [3]. As shown in Figure 1, subjects sat upright
facing a set of nine targets (incandescent lights) arranged equidistantly along a hori-
zontal line. The targets were positioned with the fifth light in the subject’s mid-line
sagittal plane. An electromagnetic spatial tracking system recorded arm motions
with sensors placed at the sternum, shoulder (scapula), lower bicep, upper forearm,
and wrist (midpoint between the ulnar and radial styloids).

Each test began with the subject’s arm in a horizontal home position as shown in
Figure 1b, with the elbow bent to place the tip of the index finger near the sternum
marker (marker i in Figure 1a). A single target was illuminated, followed by an au-
dio cue of ‘slow’, ‘normal’, or ‘fast’, indicating the speed with which to reach toward
the target. Normal indicated the subject’s natural speed, while slow and fast indic-
ated exaggerated deviations from normal. The subject extended the arm to point at
the target and returned to the home position. Subjects were instructed to maintain the
horizontal orientation of the arm during the motion and to consistently use the same
three speeds throughout the experiment. The sequence of target illumination and the
speed cues was predefined, but unknown and seemingly random to the subject. The
subjects were unrestrained, but were instructed to keep their torsos as steady as pos-
sible, especially for contralateral reaching. The experiment ended when the subject
had pointed to all nine lights at all three speeds, first with the right hand and then
with the left, yielding 27 tests for each hand.
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3 Model and Algorithm Validation

The following analysis aims to validate the hypothesis that a two-degree-of-freedom
(DOF) curvature-theory model [8], along with the authors’ tracking algorithm [2]
can describe the internal inverse-kinematic model used by the CNS for planar arm
motions. The algorithm enables planar path tracking with two-DOF planar mechan-
isms. Consequently, the human arm is modeled as a planar revolute-revolute (RR)
mechanism, with the shoulder and elbow being parallel-axis revolutes. A planar tra-
jectory best representing the 3-dimensional wrist (marker v in Figure 1a) data, called
the experimental path, is first obtained. The validation is done by demonstrating
that a fourth-order polynomial fit to the experimental path, called the desired path,
can be tracked using the algorithm. The algorithm tracks the desired path using the
equivalent RR mechanism, the parameters of which, viz. the arm segment lengths
and the fixed shoulder location, are input to the algorithm. These are obtained by
analyzing the marker data from each test. The arm lengths for a particular subject
are constant, but the shoulder location varies for each test, as described below. The
tracking results indicate that the algorithm can effectively track the desired paths.
The experimental speed ratios, defined below, are obtained from the experimental
path via inverse kinematics, and the algorithm generates the modeling speed ratios
based on the desired path. Comparison of the experimental and modeling speed ra-
tios provides corroboration for the LJH.

3.1 Data Analysis and Experimental Speed Ratios

This section describes the methodology to obtain planar experimental and desired
paths, the equivalent RR mechanism for each test, and the joint trajectories and
speed ratios for tracking the experimental paths.

To obtain the experimental and desired paths, the motion of all the arm markers
is first expressed in a sternum-marker-fixed frame to eliminate any artifact due to
small torso movements. Next, the portion of the data with no arm motion, which
occurs at the beginning, at the end, and briefly at full arm extension, is eliminated.
A best-fit plane, termed the motion plane, is obtained such that the distance between
the position data of all the markers and the plane is minimized in a least-squares
sense. Each test has a unique motion plane onto which the data is projected. The
arm motion for each test is considered to lie entirely in its corresponding motion
plane. The projected wrist (marker v in Figure 1a) data is the experimental path,
and the fourth-order polynomial fit to the experimental path serves as the desired
path.

The parameters of the equivalent mechanism are obtained as follows. To obtain
the forearm length, the motion of the wrist (marker v in Figure1a) relative to the
upper arm (marker iii in Figure1a) is plotted for each test. This relative wrist path
is assumed to be a circular arc of radius equal to the distance from the elbow to
marker v, and a circle is fit in the least-squared sense [6] to each of the 27 relat-
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Fig. 2 Locating the shoulder center for each test. The equivalent shoulder center A is obtained by
averaging the magnitudes and directions of the best-fit circle centers (A1 and A2). Point A does
not lie in any motion plane. A1′ is the final shoulder center location for test 1 obtained by rotating
the position vector of point A until it lies in the motion plane P1. A2′ lies in motion plane P2.

ive wrist paths. The arithmetic mean of the least-squares-fit radii gives the forearm
length of the equivalent mechanism. The center of each best-fit circle gives the el-
bow position in a coordinate frame fixed at marker iii for the particular test and will
henceforth be called the elbow. The motion of the elbow, rather than marker iii, with
respect to the sternum frame is used to obtain the upper arm length and the shoulder
joint position. A circle is fit in a least-squares sense to the elbow motion expressed
in the sternum frame for each test. The arc length of the elbow motion varies signi-
ficantly for pointing to different targets. The elbow-path length for reaching in the
contralateral hemifield will be larger than that for reaching to a target in the ipsilat-
eral hemifield. Circles fit to longer elbow paths will provide more accurate estimates
of the upper arm length. Therefore, the upper arm length for the equivalent mech-
anism is a weighted average of the radii of the fit circles, with the weights based on
the arc lengths of the corresponding elbow paths. Longer paths have higher weights.
Note that the relative wrist paths are independent of the target location since each
motion involves similar flexion/extension of the elbow joint. Thus, the arithmetic
mean for the forearm length described above is justified.

The human shoulder does not remain stationary relative to the trunk during arm
motion. Consequently, the elbow motion relative to the trunk will not be circular,
and may be considered as a resultant of an upper-arm rotation about some center
and some motion of that center relative to the trunk. Modeling the shoulder joint as a
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Fig. 3 Rotation axis for locating the unique shoulder center for each test. The axis passes through
the sternum and is perpendicular to the position vector of the equivalent shoulder center and the
normal to the corresponding motion plane.

single-DOF, fixed-axis revolute is a rough approximation necessitated by the nature
of this analysis. The center of the best-fit circle to an elbow motion provides a poor
estimate of the center location of such a ‘shoulder-approximating’ revolute joint.
The following procedure, also illustrated in Figure 2, provides a better estimate.
To locate a fixed shoulder center, it is required to fix the direction and magnitude
of its position vector relative to the sternum-fixed frame. The circle fit to the elbow
motion for each test gives a center in the motion plane for the test, e.g. points A1 and
A2 in Figure 2. These are 3-dimensional position vectors expressed in the sternum-
fixed frame XYZ in Figure 2. The 27 centers are combined into a single equivalent
shoulder center by taking the weighted average of the directions and magnitudes of
these vectors separately, and then combining the results. The same weights from the
upper arm length computation are used. Point A in Figure 2 represents the equivalent
shoulder center. Because of the averaging operation, the equivalent shoulder center
does not lie in any of the 27 motion planes, in general. Therefore, for each test, the
equivalent shoulder center vector is rotated until a unique shoulder center position
in the test’s motion plane is obtained, e.g. points A1′ and A2′ in Figure 2. This
approach retains the length of the equivalent shoulder center position vector, and
compromises only the small change in its direction. The rotation of the equivalent
center’s position vector is illustrated in Figure 3. The position vector of point A
rotates about an axis passing through the sternum. To get the shoulder center for
test 2, i.e. point A2′, the axis of rotation is perpendicular to the position vector
of A and the normal to the motion plane P2. Therefore, the rotation axis for each
test will pass through the sternum, but will have a different orientation. Once the
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Table 1 Inputs to the path-tracking algorithm.

Parameter Value

Angle displacement 2◦
Reduced angle displacement 1◦
Permissible position error 0.5 cm
Permissible tangential error 25◦
Limit for curvature and rate of change of curvature 1.5× 10−3 cm−1, cm−2

Speed ratio limit 15

equivalent mechanism is defined, the shoulder and elbow joint displacements, λ
and µ respectively, for tracking the corresponding experimental paths are obtained
via inverse kinematics. The forearm and upper arm lengths and the shoulder center
determined above are used for this calculation. The experimental first-order speed
ratios are obtained from the joint trajectories as

n = dµ

dλ
= µ̇

λ̇
, (1)

where λ̇ and µ̇ are the joint velocities of the shoulder and elbow obtained by numer-
ically differentiating the joint displacements.

3.2 Model-Determined Speed Ratios

This section outlines the functioning of the path-tracking algorithm and the compu-
tation of the speed ratios. The fourth-order polynomial for the desired path, along
with the arm-segment lengths and the shoulder center determined in the last section
are inputs to the algorithm. Other inputs to the algorithm are the parameters listed
in Table 1, which were constant for all tests and subjects. These values are obtained
by trial and error.

To track the desired path, the tracking system starts from an initial pose corres-
ponding to the initial position of the subject’s arm, with the wrist on the desired path.
The curvature properties, viz. the tangent direction and the curvature of the desired
path are computed. Curvature theory [8] provides a way of mapping these values
onto the shoulder-based first- and second-order speed ratios. The first-order speed
ratio is defined by Equation (1), and the second-order speed ratio is n′ = dn/dλ.
Next, the leading joint-angle displacement, λ, is chosen. If the curvature properties
exceed the limits in Table 1, the reduced angle displacement is chosen. Otherwise,
the standard angle displacement is employed. The subordinate (elbow) joint dis-
placement µ is obtained via the second-order Taylor series

µ = nλ+ n
′

2
λ2. (2)
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Second-order tracking is implemented because first-order tracking produces signi-
ficant wrist oscillations about the desired path. If n′ is greater than the ratio limit in
Table 1, the elbow is chosen as the leading joint instead, and the inverse of Equa-
tion (2) is used. The speed ratio magnitude increases when the leading joint ap-
proaches a dwell, so the ratio limit detects this phenomenon. This joint switching
strategy is critical for producing good tracking. The strategy agrees with recent stud-
ies supporting the leading joint hypothesis (LJH) [5]. The LJH states that in multi-
articular limb motion there exists a leading joint, usually the proximal (shoulder)
joint, that creates the foundation of the required motion by moving independent of
the other joints. Based on this motion, the subordinate joint(s) move such that the
required end-effector motion is obtained. The advantage of the LJH is that it allows
the decomposition of the control problem into hierarchical components, which sim-
plifies the control process [5]. For this reason, the algorithm chooses the shoulder
joint as the leading joint, except when it switches based on the speed ratio.

As the mechanism advances through the computed joint displacements, the mo-
tion produces error in the tracking, such that the wrist no longer lies on the desired
path. The angle displacement in Table 1 refers to the leading joint displacement after
which the tracking system computes the tracking error by sensing the location of the
error point, and the tangent direction of the desired path at the error point. The error
point is the point on the desired path closest to the current wrist position. Two error
parameters, viz. position error and tangential error, are computed. Position error is
the distance between the error point and the current wrist position, while tangen-
tial error is the angle between the wrist path tangent and the desired path tangent
at the error point. If the current position or tangential error exceeds the permissible
limits specified in Table 1, path correction is accomplished by changing the wrist
trajectory tangent direction such that further motion reduces the position error. New
speed ratios corresponding to the corrected tangent are obtained. The process re-
peats until the desired path ends. The strategy of computing the speed ratios only
when some error parameter is exceeded serves to reduce the computational load on
the system. The modeling speed ratios are thus generated by the algorithm based on
the geometric properties of the desired path and the generated wrist path.

4 Experiment and Modeling Comparison

The experimental paths for most tests were curves with low curvature. The al-
gorithm, using second-order joint coordination, was able to track the paths to a
high accuracy of 0.5 cm position error, for path lengths between 10 to 20 cm. Each
motion was split into an outward motion toward the target and an inward motion
back to the home position. Figures 4 and 5 show typical results. The experimental
and modeling speed ratios for each were compared separately. Figure 4 shows the
speed ratios plotted against the normalized arc length for all speeds for an inward
motion from a light in the ipsilateral hemifield. Figure 5 shows the ratios for all
speeds for an outward motion to a light in the contralateral hemifield. Figures 4a
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Fig. 4 Ipsilateral reaching: (a) the modeling first-order speed ratios for one subject pointing inward
from light seven in Figure 1, with the right hand; (b) the experimental ratios for the same motion.

and 5a show the modeling ratios determined by the algorithm for tracking the de-
sired paths. In Figure 4a, a portion of the path is traversed with the shoulder leading,
and the remainder with the elbow leading. The shoulder-based first-order speed ratio
is defined by Equation (1), and the elbow-based ratio is its inverse. As indicated in
Figure 4b, the shoulder- or elbow-based ratio is plotted for the corresponding por-
tion of the experimental path. In Figure 5a, the entire path was traversed with the
shoulder leading, hence Figure 5b plots all shoulder-based ratios.

The sharp jumps in the speed ratios in Figure 4 correspond to the elbow tak-
ing over as the leading joint for ipsilateral motions, a behavior observed for both
hands in all subjects. This result agrees with the findings of Levin et al. [7] that
the elbow exerts the maximum interaction torque on the shoulder for motions that
involve small shoulder joint displacement and large elbow joint displacement, in-
dicating an elbow-led movement. Dounskaia et al. [4] made the same observation
in their experiment dealing with drawing movements. Dounskaia [5] proposed that
the elbow becomes the leading joint for motions where the mechanical advantage
of the shoulder cannot be used. The present work suggests a more fundamental ex-
planation. A leading joint cannot achieve good tracking if it is approaching a dwell
because any error in the leading joint motion will be amplified at the wrist. Further,
if the leading joint is stationary, the motion of the subordinate joint cannot be de-
rived from it. For ipsilateral reaching, the shoulder joint motion is small. Hence, the
elbow takes over as the leading joint for ipsilateral reaching motions. A rapid in-
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Fig. 5 Contralateral reaching: (a) the modeling first-order speed ratios for one subject pointing
outward to light eight in Figure 1, with the left hand; (b) the experimental ratios for the same
motion.

crease in the speed ratios indicates a joint’s proximity to a dwell, and the algorithm
successfully predicts this behavior via the speed ratio limit.

In contrast, the reaching movements in the contralateral hemifield do not exhibit
change in the leading joint. Further, the experimental ratios in Figure 5b show gentle
trends as compared to the sharp jumps in the ipsilateral hemifield. The modeling
ratios follow similar trends, but in steps resulting from the algorithm’s computation-
ally frugal strategy of recalculating the ratios only when the error is exceeded. Each
jump in the ratios indicates a correction and a subsequent recalculation of the speed
ratios. The jumps in the speed ratios in Figure 5a are comparable to the amplitude of
noise in the experimental data. Hence, the experimental data does not serve to valid-
ate or invalidate the idea of intermittent path correction. Additionally, no noticeable
pattern emerged from analyzing the inward and outward motions separately.

5 Conclusions

This paper presents experimental validation of a planar, time-invariant inverse kin-
ematic model for human motor control of reaching, and a path-tracking algorithm
based on the time-invariant model. Experimental data was collected by measuring
the arm motion of healthy individuals as they pointed to fixed targets in the ho-
rizontal plane at three self-selected speeds. An equivalent planar revolute-revolute
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mechanism approximating the subject’s arm was obtained through data analysis.
The algorithm used the equivalent mechanism to successfully track the experimental
paths closely. Second-order tracking is required to accurately match the experi-
mental path, suggesting that motor planning may involve second-order joint co-
ordination. The experimental first-order speed ratios for pointing to a target at three
different speeds are similar, indicating time-invariant planning in the central nervous
system. The algorithm correctly predicts the leading joint for motions in different
hemifields. The experimental data and the model together corroborate the leading
joint hypothesis by predicting elbow-led motions in the ipsilateral hemifield. Since
the subordinate joint motion is derived from the motion of the leading joint, poor
tracking results are obtained if a leading joint is near a dwell. This is because any
error at the leading joint will be amplified at the wrist. Further, at a dwell, the sub-
ordinate joint motion cannot be derived from the stationary leading joint. These are
more fundamental reasons for observed elbow-led motions in the ipsilateral hemi-
field than previously proposed.
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Abstract. This contribution attempts a clear definition of the mobility and phenomena such as
overconstrained, underconstrained and kinematotropical mechanisms in view of the configuration
space. The mobility is determined via a higher order approximation of the configuration space.
The central object is the tangent cone that is determined by higher derivatives of the closure map.
Explicit expression for the derivatives up to 4th degree are given. We further propose the concept
of a kinematic tangent cone, and put its use for mobility analysis up for discussion.

Key words: mobility, configuration space, singularities, higher order analysis.

1 Introduction

Any mobility criterion whatsoever attempts to estimate the dimension of the config-
uration space V – the solution set of the constraints. Higher order kinematic analysis
is a means to determine the structure the of the configuration space around a given
configuration, as pursued in [2, 5, 7]. Such an analysis approximates curves in V
passing though a specific configuration q ∈ V . Using time as curve parameter, the
analysis consists in determining admissible velocities, accelerations, jerks, and so
forth. The local DOF can be deduced from the dimension of the solution sets on the
different approximation levels. Clearly, the first order analysis reveals the instant-
aneous DOF, but the approximation order sufficient to deduce the finite DOF is yet
unknown. However, the information revealed by the second, third or fourth order is
usually enough to determine the linkage finite mobility. Nevertheless, higher order
approximations can always be performed for a particular mechanism. The higher or-
der analysis shall also enable to identify singular configurations, by comparing the
instantaneous and finite DOF. This fails for underconstrained mechanisms, where
this discrepancy is not due to a singularity of V (Section 3).

In this paper the concept of kinematic tangent cone is employed for the mobility
analysis of single-loop mechanisms that rests on higher order approximations of the
closure constraints. The advantageous feature is that the sufficient approximation
order can be identified.

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 215–224.
© Springer Science+Business Media B.V. 2008
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2 The Kinematics of a Single Kinematic Loop

The kinematic loop is regarded as a chain of one-DOF joints. Higher-DOF joints are
replaced by successive one-DOF joints. The joints of a kinematic loop are numbered
in increasing order with a = 1, . . . , n.

Denote with Ya ∈ R6 the screw coordinate vector of joint a deduced from a global
coordinate system. If Ŷa ∈ se(3) denotes the corresponding se(3) matrix [6], the
geometric loop constraints f (q) = I must be fulfilled, where f : Vn → SE(3) is
the closure map

f (q) := eŶ1q
1 · · · eŶnqn . (1)

qa are the joint variables, and q ∈ Vn is the representing point in the parameter
space Vn. The geometric constraints define the configuration space of the single-
loop mechanism

V := f−1 (I) = {q ∈ Vn | f (q) = I }, (2)

where q ∈ V n are admissible representing points.
At any q ∈ V holds f (q) = I , and the differential of the closure map is

df (q)(x) = df (q)(x)f−1(q) = Ĥa(q)x
a ∈ se(3), with the instantaneous screw

coordinate vectors
Ha (q) := Ad

eŶ1q
1 ···eŶa−1q

a−1Ya (3)

(for brevity, the summation convention Hab...x
b ≡ ∑

b Hab...x
b is used in

the paper). AdC denotes the 6 × 6 matrix representation of the adjoint map
Ad : SE (3)× se (3)→ se (3) , when using screw coordinates. Moreover, H (q)
is the Jacobian of f at q ∈ V . Preferably, q = 0 is assigned to the reference config-
uration, so that Ha (0) = Ya .

3 The Configuration Spaces of a Mechanism

The motion of a mechanism corresponds to a curve in V , and its local structure
reveals admissible motions. Since f is an analytic map between manifolds, V is a
real analytic variety.

Denote with d (q) the rank of the constraint Jacobian H (q), and with dmax :=
maxq∈Vn d (q). U (q) denotes an open neighborhood of q in Vn.

The differential (or instantaneous) DOF of a mechanism is δdiff (q) := n −
d (q) = dim kerH (q). A point q ∈ V is regular iff there is a neighborhood
U (q) such that δdiff (q) = δdiff (p) for all p ∈ U (q) ∩ V , otherwise it is singu-
lar. For V exists a stratification in a finite number of (not necessarily connected)
i-dimensional (i = 0, 1, . . .) manifolds Mi of regular and manifolds Si of singular
points [10]. The local DOF δloc (q) := dimq V is the local dimension of V . This
is the highest dimension of manifolds (later called modes) passing through q . If q
is regular, then V is locally an analytic δloc (q)-dimensional manifold. The global
DOF δ is the highest local dimension of V . The connected components of V are
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called the assemblies, and the connected submanifolds of V (only comprising reg-
ular points) are the motion modes of the mechanism. If a connected component of
V comprises motion modes of different dimensions, the mechanism is said to be
kinematotropic [11]. Denote with deg (q) := δdiff (q)− δloc (q) the degree of q that
quantifies the discrepancy of the differential and local DOF. It is worth to emphasize
that the differential DOF characterizes the instantaneous mobility of the mechanism,
whereas the local DOF determines the finite mobility, and is a topological property
of the configuration space. The differential DOF may even be different from the
local DOF in a mode of the mechanism. If there is a regular configuration q ∈ V
for which deg (q) > 0 , the mechanism is called underconstrained. A mechanism is
called overconstrained if in a motion mode d (q) < dmax.

4 Higher Order Local Analysis of a Single Loop

There are two geometric objects that reveal the local structure of the configuration
space: the tangent (vector) space and the tangent cone. The concept of tangent cone
was introduced by Whitney [9]. Lerbet was the first who applied this concept to the
analysis of mechanisms in [2]. The tangent cone to V is the best local approximation
of V in regular and singular configurations. Consequently, its dimension equals the
local mechanism DOF.

The tangent space to V at q ∈ V is generated by the ideal I (V , q) of analytic
germs over q , that vanish on V [9]:

TqV = {x | df (x) = 0, f ∈ I (V , q)} , (4)

where df (q) is the differential of f at q . In regular points, TqV consists of tangent
vectors to V , and dimTqV = dimq V , while in singular points dim TqV > dimq V .
It is, however, not always true that in regular points δdiff (q) = dim TqV . Generally,
the tangent space consists of admissible instantaneous motions so that its dimension
shall reveal the differential DOF. But for underconstrained mechanisms the dimen-
sion of the tangent space is only a lower bound on the differential DOF. Moreover,
the differential DOF is determined by the closure map, and not by the structure of
the configuration space. Thus TqV locally characterizes the topology of V , up to
first order, but not necessarily the first order kinematics.

The best local approximation of V in any point is the tangent cone. The tangent
cone to V in q is determined as [10]

CqV =
{
x ∈ Rn | d(∗)f (q) (x) , f ∈ I (V , q)

} ⊆ TqV . (5)

d(∗)f (q0) (q) is the leading homogeneous polynomial in the Taylor expansion of f
at q0

f (q0 + q) = f (q0)+ 1

1!d
(1)f (q0) (q)+ · · · + 1

m!d
(m)f (q0) (q)+ · · · (6)
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i.e. d(∗)f (q) := d(m)f (q) so that d(k)f (q0) ≡ 0, k < m and d(m)f (q0) �≡ 0.
CqV is a faithful approximation of V in any point q , and indeed δloc (q) =

dimCqV = dimq V . This is the set of tangent vectors on curves in V passing
through q . Generally CqV is a cone in Rn, which degenerates to a vector space
in regular points. In fact, q is a regular point of V if and only if CqV = TqV .

The obvious difficulty in applying the above definition is the lack of a construct-
ive definition of the ideal I (V , q), and neither (4) nor (5) allow for an immediate
evaluation. The tangent cone can further be determined via higher order analysis
[2, 7]. In both contributions explicit expressions for higher derivatives of the closure
map f are given as prerequisite for higher order analyses. Equivalent expressions
were reported in [5] that are stated below, in Equations (10) and (11). The sufficient
order is found in the course of the analysis of a particular mechanism.

In this paper we propose to approach the problem by further investigating the
closure map. The central object is the set of closure maps that can be obtained by
changes of the reference frame in which the closure map is expressed

Sf :=
{
MfM−1 | M ∈ SE (3) }. (7)

Sf is the similarity class of f with respect to frame transformations.
Following (4), it is now possible to introduce a ‘tangent space’ using the sim-

ilarity class of f . For h ∈ Sf holds h (q) = I in q ∈ V , so that dh (q) (x) =
dh (q) (x) h−1 (q) ∈ se (3). With a slight abuse of notation, denote with dhi (q) (x)
the components of the differential in vector representation. The vector space

TqV
(
Sf

) := {
x | dhi (q) (x) = 0, h ∈ Sf

} ≡ kerH (q) (8)

should be called the kinematic tangent space to V at q as it represents the first order
kinematic properties of the mechanism. This is the definition of the tangent space of
V generally found in the literature [3], although TqV (representing the structure of
V ) is generally a subspace of TqV

(
Sf

)
. The set

CqV
(
Sf

) := {
x | d(∗)hi (q) (x) = 0, h ∈ Sf

} ⊆ TqV (
Sf

)
(9)

should be called the kinematic tangent cone at q ∈ V .
Denote with H(i) (q) (x) := di−1H(1) (q) (x), where H(2) (q) (x) =

H
(2)
ab (q) x

axb, with H(2)ab := ∂qbH (1)a , and so forth for higher orders, whereH(1)a :=
Ha . H(i) (q) (x) comprises homogenous polynomials in x ∈ Rn of degree i. From
(3) follows

Ĥ
(2)
ab = [Ĥ (1)b , Ĥ (1)a ], b < a. (10)

Higher order derivatives follow by repeated application of ∂qc [Ĥ (1)b , Ĥ (1)a ] ≡
[∂qcĤ (1)b , Ĥ (1)a ] −[∂qcĤ (1)

a , Ĥ
(1)
b ] and the Jacobi identity. In particular

Ĥ
(3)
abc =

{
[[Ĥ (1)a ,Ĥ (1)b ], Ĥ (1)c ], c < b < a

[[Ĥ (1)a ,Ĥ (1)c ], Ĥ (1)b ], b ≤ c < a (11)
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Ĥ
(4)
abcd =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[Ĥ (1)c , [Ĥ (1)b , [Ĥ (1)d , Ĥ (1)a ]]] , c < b ≤ d < a
[Ĥ (1)b , [Ĥ (1)c , [Ĥ (1)d , Ĥ (1)a ]]] , b ≤ c ≤ d < a
[Ĥ (1)d , [Ĥ (1)c , [Ĥ (1)b , Ĥ (1)a ]]] , d < c < b < a
[Ĥ (1)c , [Ĥ (1)d , [Ĥ (1)b , Ĥ (1)a ]]] , c ≤ d < b < a
[Ĥ (1)d , [Ĥ (1)b , [Ĥ (1)c , Ĥ (1)a ]]] , d < b ≤ c ≤ a
[Ĥ (1)b , [Ĥ (1)d , [Ĥ (1)c , Ĥ (1)a ]]] , b ≤ d < c < a

In q ∈ V , the vector space of loop velocities is

Dq := span (Ĥ (1)1 (q) , . . . , Ĥ (1)n (q)) ⊆ se (3) . (12)

Denote with D the union of the vector spacesDq at all (not necessarily admissible)
configurations q ∈ Vn. It is well-known in screw theory that D can be constructed
via the sequence of vector spaces

D(i+1)
q := D(i)q + {[X,Y ] | X ∈ D(1)q , Y ∈ D(i)q }, (13)

with D(1)q := Dq . E.g., D(2)q is the vector space spanned by Ĥ (1)a (q) and their Lie
brackets (screw products) [6]. In each step the dimension of D(i) increases by at
least one, until D(κ+1)

q = D(κ)q , and, because se (3) is six-dimensional, κ < 6. The

respective vector space is denoted D := D
(κ)
q . D is obviously closed with respect

to the Lie bracket, and is hence a se (3) subalgebra - screw algebra generated by
Y1, . . . , Yn. Moreover, κ ≤ κmax, with κmax for the respective subalgebra. D is
indeed independent of q , but κmax depends on q . The subalgebra D is called the
closure algebra [8]. The Lie group generated by the algebra D is the image space
of f .

A closer look at (10) reveals that Ĥ (2)ab contains all linearly independent Lie

brackets of the vector fields Ĥ (1)ab . Also Ĥ (3)abc contains all brackets of the Ĥ (2)ab , and

so forth for Ĥ (i)ab.... Consequently

D(i)q := span
(
Ĥ (1)a (q) , Ĥ

(2)
ab (q) , . . . ,Ĥ

(i)
ab... (q)

)
. (14)

In the definition (9) of the kinematic tangent cone, the nonvanishing components
of d(i)f (q), and thus of H(i) (q), need to be identified. These components depend
on the reference frame, which is why the equivalence class Sf appears in (9). Let

M be the transformation of D(1)q in a minimal basis on the closure algebra. Denote

B(1)a (q) := AdMH(1)a (q) (15)

B
(i)
ab... (q) := AdMH(i)ab... (q) , with Ĥ (i)ab... (q) /∈D(i−1)

q , i > 1,

so that B(κ+1)
ab··· (q)≡ 0. The maps B(i) (q) (x) := B(i)ab... (q) xaxb . . . are homogen-

ous in x of degree i.
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Denote with Pi the operator that removes all those components from X̂ ∈ D(i)q
that appear in the expansion of D(i−1)

q , where P1 is the identity operator. In vector
notation, Pi is a projector matrix. It is now possible to introduce cones of degree i
as

KiqV := {x | P1B
(1) (q) (x) = . . . = PiB(i) (q) (x) = 0}. (16)

KiqV is defined by the leading homogeneous polynomials in the expansion of the
components of the closure map up to order i.

Obviously K1
qV ≡ TqV (Sf ), and δdiff (q) ≡ TqV (Sf ) = n − dimD(1)q . The

recursive formKiqV = {x ∈ Ki−1
q V | PiB(i) (q) (x) = 0} shows that the cones are

incremental refinements.
The kinematic tangent cone can be constructed when the constraint map, and

thusD is expressed in a minimal basis [4].

Theorem 1. In q ∈ V let M in (15) be the transformation of D(1)q in a minimal
basis. Then

CqV (Sf ) = KkqV , (17)

where k is the smallest such that P1 · . . . ·Pk ·Pk+1 = 0. It holds k ≤ κ , with κ such
that D(κ)q = D(κ+1)

q .

Remark 1. It can be shown that for se (3) always κ ≤ 4. Consequently CqV (Sf ) is
a cone of at most fourth degree. However, for all mechanisms that were investigated
by the authors, CqV (Sf ) is of first or second degree.

5 Examples

The following two examples show how the presented methodology can be used to
determine the local DOF in singular configurations of overconstrained and under-
constrained mechanisms. The details of the analyses are omitted.

5.1 Spatial 6R Mechanism with Partitioned Mobility

The spatial 6R mechanism in Figure 1a is analyzed in the shown configuration q0.
The closure algebra is determined by sequence of vector spaces D(1)q0 ⊂ · · · ⊂
D
(4)
q0 = D = se (3), with dimD(1)q0 = 2. According to (17) the kinematic tangent

cone is Cq0V
(
Sf

) = K4
q0
V

(
Sf

)
. The cones up to fourth order are
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e(1)

e(2)

e(3)

q1

q4 q6 q2

q3q5

Fig. 1 Overconstrained 6R mechanism in a singular configuration.

K1
q0
V

(
Sf

) = {
x ∈ R6 | x = (−s − u,−t − v, s, t, u, v)} ,

K2
q0
V

(
Sf

) = K2,1
q0 V

(
Sf

) ∪K2,2
q0 V

(
Sf

) ∪K2,3
q0 V

(
Sf

)
,

with K
2,1
q0 V

(
Sf

) = {
x ∈ R6 | x =

(
− t u
t+v ,−t − v,− u v

t+v , t, u, v
)}
,

K
2,2
q0 V

(
Sf

) = {
x ∈ R6 | x = (−s, 0, s,−v, 0, v)} ,

K
2,3
q0 V

(
Sf

) = {
x ∈ R6 | x = (−s − u, 0, s, 0, u, 0)} ,

K3
q0
V

(
Sf

) = K3,1
q0 V

(
Sf

) ∪ . . . ∪K3,5
q0 V

(
Sf

)
,

with K
3,1
q0 V

(
Sf

) = {
x ∈ R6 | x = (0,−v,−u, 0, u, v)} ,

K
3,2
q0 V

(
Sf

) = {
x ∈ R6 | x = (0,−t − v, 0, t, 0, v)} ,

K
3,3
q0 V

(
Sf

) = {
x ∈ R6 | x = (−u,−t, 0, t, u, 0)} ,

K
3,4
q0 V

(
Sf

) = K2,2
q0 V

(
Sf

)
, K

3,5
q0 V

(
Sf

) = K2,3
q0 V

(
Sf

)
K4
q0
V

(
Sf

) = K3
q0
V

(
Sf

)
.

The kinematic tangent space Tq0V
(
Sf

) ≡ K1
q0
V

(
Sf

)
is a four-dimensional vector

space in R6. The higher order analysis [7] shows that the tangent cone CqV equals
the kinematic tangent cone. The kinematic tangent cone at q0 is the union of five
two-dimensional vector spaces. The latter are tangent spaces Tq0V

i = K3,i
q0 V

(
Sf

)
,

i = 1, . . . , 5 to the irreducible components V i of the configuration space intersect-
ing in q0:

V 1 = {
q = (0,−q6,−q5, 0, q5, q6)

}
, V 2 = {

q = (0,−q4 − q6, 0, q4, 0, q6)
}
,

V 3 = {
q = (−q5,−q4, 0, q4, q5, 0)

}
, V 4 = {

q = (−q3, 0, q3,−q6, 0, q6)
}
,

V 5 = {
q = (−q3 − q5, 0, q3, 0, q5, 0)

}
.
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a)

c) � = 3 1, � =diff loc

(regular)

� = 4, � = 1diff loc

(singular)

q4

q6
q2

q3

q5

q1

q7

b) � = 3 1, � =diff loc

(regular)

Fig. 2 Overconstrained and underconstrained 7R mechanism in singular and regular configura-
tions.

The local DOF is δloc (q0) ≡ dimCq0V = 2. This mechanism is overconstrained.
Since dimK1

q0
V

(
Sf

)
> dimK2

q0
V

(
Sf

)
> dimCq0V

(
Sf

)
, there are four-dimen-

sional singular motions of first order and three-dimensional singular motions of
second order.

Figure 2a shows a 7R mechanism in the reference configuration q0. The closure
algebra is determined by the sequence of vector spaces D(1)q0 ⊂ D(2)q0 = D = se (3),
with dimD(1)q0 = 3. The kinematic tangent cone is Cq0V

(
Sf

) = K2
q0
V

(
Sf

)
, where

K1
q0
V

(
Sf

) = {
x ∈ R7 | x = (−s,−t + u+ 2v, s, t,−2u − 3v, u, v)

}
,

K2
q0
V

(
Sf

) = K2,1
q0 V

(
Sf

) ∪K2,2
q0 V

(
Sf

)
,

with K
2,1
q0 V

(
Sf

) = {
x ∈ R7 | x = (0,−t, 0, t, 0, 0, 0)} ,

K
2,2
q0 V

(
Sf

) = {
x ∈ R7 | x = (−s, 0, s, 0, 0, 0, 0)} .

The kinematic tangent space Tq0V
(
Sf

) ≡ K1
q0
V

(
Sf

)
is a four-dimensional vec-

tor space in R7, i.e. δdiff (q0) = 4. Again the tangent cone CqV can be shown
to be identical to the kinematic tangent cone. The latter is the union of the one-
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dimensional tangent spaces to the two one-dimensional motion modes V i intersect-
ing in q0:

V 1 = {
q = (0,−x4, 0, x4, 0, 0, 0)

}
, V 2 = {

q = (−x3, 0, x3, 0, 0, 0, 0)
}
.

In q0 the mechanism possesses the local DOF δloc (q0) = 1. Observing
δdiff (q0) < δloc (q0) suggests that q0 is a singular configuration. In fact, q0 is a
bifurcation point of V . From this configuration that the mechanism can enter the
motion modes in Figures 2b and 2c. Analyzing the configuration q1 in Figure 1b
leads to D(1)q1 ⊂ D(2)q1 = D = se (3), with dimD(1)q1 = 4, and

K1
q1
V

(
Sf

) = {
x ∈ R7 | x = (0,−t + u+ 2v, 0, t,−2u− 3v, u, v)

}
,

K2
q1
V

(
Sf

) = {
x ∈ R7 | x = (0,−t, 0, t, 0, 0, 0)} .

Hence, δdiff (q1) = 3 and δloc (q1) = 1. Although δdiff (q1) < δloc (q1) the configur-
ation q1 is not singular since δdiff is constant in a neighborhood of q1 in V . Rather,
the mechanism is underconstrained in this motion mode, with degree deg q1 = 2.
Moreover, the mechanism is overconstrained. Both modes, (b) and (c) comprise reg-
ular points of degree 2. The kinematic tangent spaces at any point in modes (b and
(c) are three-dimensional vector spaces, which cannot only consist of tangent vec-
tors to the one-dimensional manifold. It moreover comprises tangent vectors and
necessarily infinitesimal displacements. The latter displacements correspond to in-
finitesimal motions of joints 4, 5, 6 and 7.

It is obvious that it cannot be concluded whether or not a configuration is singular
by just comparing the differential and local DOF. Such a classification must be based
on the (proper) tangent space TqV .

6 Summary

The higher order analysis of the configuration of single-loop mechanisms was ad-
dressed in this paper aiming at the mobility determination. The concept of tangent
space and cone has been recalled as a means to tackle the mobility problem, given
that the dimension of the tangent cone equals the local mobility in a given con-
figuration. Noting that the methods for a higher order analysis, and thus for the
determination of the tangent cone, proposed in [2, 7] and elsewhere do not yield the
order that is sufficient for the computation of the mobility, the concept of kinematic
tangent cone was introduced. The latter is determined by the equivalence class of
closure maps obtained by frame transformations.

As prerequisite for the investigation, a clear definition of the mobility was given
in view of the configuration space as a variety. In particular, overconstrained and
underconstrained mechanisms are distinguished. It is pointed out that singular con-
figurations of underconstrained mechanisms can not be detected by simply compar-
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ing the differential and local DOF. Moreover, this classification in fact requires the
two differential geometric object, namely the tangent space and tangent cone.
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Abstract. The synthesis of a smooth curve to implement the test trajectory used in SCARA sys-
tems is the subject of this paper. The test trajectory includes square corners between its vertical and
horizontal segments, which are sources of velocity and acceleration discontinuities. Lamé curves
are used to smooth the corners to provide G2-continuity throughout the test trajectory. Moreover,
to make the overall trajectory as smooth as possible, the parameters defining this curve should
be selected so as to minimize a cost function. The trajectory is thus synthesized by minimizing
the root-mean-square (rms) value of the kinetic energy time-derivative, subject to inequality con-
straints, using the Orthogonal Decomposition Algorithm, which is based on gradient evaluations.

Key words: optimization, SCARA, Cartesian trajectory planning.

1 Introduction

One of the most typical tasks assigned to industrial robots is pick-and-place oper-
ations (PPO). It is highly desirable that the PPO be a smooth trajectory, which is
accomplished by securing the continuity of the curve, its tangent and its curvature.
Paul [11], Taylor [14], and Luh et al. [10], first proposed paths made up of straight
line segments connected together by smooth transitions with controlled accelera-
tion. These techniques, which define the path in Cartesian-space, imply an off-line
computation of the joint variables. It is advantageous to compute a trajectory in the
joint-space if the user is interested in defining the trajectory on-line, as in [1, 9]. In
this work, the trajectory will be defined in Cartesian-space.

Many researchers have attacked the problem of minimizing the cost and time of
moving a manipulator along a specific Cartesian path, see for instance [4, 6, 12, 13].
In general, their approaches consist of optimizing the joint motions with respect
to the dynamics of a manipulator. The approach presented in this paper differs in
that the focus is on the optimization of the Cartesian trajectory itself, to serve as a
test-cycle for SCARA (Selective Compliance Assembly Robot Arm) systems, serial
or parallel, executing PPO. In this vein, the geometric and inertial parameters of the
system at hand are not taken into account. The trajectory is optimized by minimizing

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 225–234.
© Springer Science+Business Media B.V. 2008
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Fig. 1 SCARA systems test trajectory.

the variation of the kinetic energy of the payload alone. Moreover, the motivation of
this work being the optimization of the McGill Schönflies Motion Generator (SMG)
[3], the focus is on four-dof (degree-of-freedom) Cartesian trajectory optimization.

Typically, SMG, or SCARA systems, are used for PPO in industry. A trajectory
for this type of operation has been adopted by the industry in order to provide a basis
for comparison among the different systems on the market. This trajectory involves
a vertical upward translation of 25 mm, a horizontal translation of 300 mm and a
final vertical downward translation of 25 mm as shown in Figure 1. The moving
platform (MP) of the SCARA system has to move through this trajectory back and
forth with a rotation of 180◦, along the horizontal segment, in a given cycle time.
Adept Technology1 boasts cycle times of 500 ms, while EPSON2 claims cycle times
of 409 ms.

As specified, the test trajectory includes square corners between its vertical
and horizontal segments, which are obvious sources of acceleration discontinuit-
ies. These corners have to be smoothed in order to remove these discontinuities.
The smoothing is typically done using circular arcs and ellipses, which are not the
most suitable choices, since these types of curves do not provide G2-continuity
when connected to straight segments. G2-continuity means position, tangent and
curvature continuity over a given geometric curve. Even when suitable curves like
cubic splines or clothoids [5] have been used to smooth the corners, no optimiza-
tion of their parameters has ever been made to render the trajectory as smooth as
possible.

The work reported here aims at the synthesis of an optimizedG2-continuous tra-
jectory to be used in SCARA systems. The parameters defining the trajectory are
to be determined such that a compromise between accelerations and maximum ve-
locities is made, in order to render the trajectory as smooth as possible. To achieve
this objective, the trajectory is optimized, under inequality constraints, by minim-
izing the root-mean-square (rms) value of the time-derivative of the kinetic energy
per unit mass of the payload.

1 http://www.adept.com/products/pdf/Quattro_ds.pdf
2 http://robots.epson.com/downloads/brochurefiles/EPSON_E2S_SCARA_Robots.pdf
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Fig. 2 Half of the proposed trajectory with its parameters.

2 The Proposed Smooth Trajectory

To simplify the derivations in the ensuing analysis, only the right half of the
smoothed trajectory will be synthesized, as shown in Figure 2. Parameters a and
b in Figure 2 are held constant to respect the standard test trajectory, at 150 (mm)
and 25 (mm), respectively. Moreover, the time tAD , required to traverse half of the
trajectory, equals one quarter of the cycle time of the test trajectory. Finally, the rota-
tion of the end-effector between points A andD is 90◦. Therefore, the optimization
is conducted by a suitable choice of parameters c and h. The curve parameters d and
e obey a linear relation with parameters c and h, namely, d = a − c and e = b− h.
The respective ranges of values for these parameters are 0 ≤ c ≤ a and 0 ≤ h ≤ b
to ensure that the solution has a physical meaning. The rotation of the optimized
trajectory is started as soon as the MP starts to move in the x direction, i.e., at point
B. For the synthesis of the curve BC, splines, clothoids and Lamé curves can be
used. Lamé curves are chosen because they allow a parametrization of the curve in
Cartesian coordinates and are analytic throughout the required path.

Lamé curves are defined by the equation

|u|m + |v|m = 1 m = 1, 2, . . . (1)

whence it is apparent that even-order, i.e., for m even, Lamé curves are analytic
everywhere. As m → ∞, Eq. (1) leads to a square shape. As the Lamé curve
with m = 2 is a circle, which has a constant curvature, and hence, cannot be blent
smoothly with a line, the next smallest curve of this family that allows for such
blending is the cubic Lamé curve. Therefore, as can be seen in Figure 2, for given
parameters d and e in the coordinate frame x2-z2, the equation of the Lamé curve of
choice becomes ∣∣∣x2

d

∣∣∣3 + ∣∣∣z2

e

∣∣∣3 = 1 (2)
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which apparently fails to be analytic everywhere. However, by limiting the curve
to the first quadrant, the absolute value in Eq. (2) can be dispensed with, thereby
rendering the cubic Lamé curve open but analytic everywhere.

For Eq. (1), the coordinates u and v can be defined explicitly in terms of θ [8] as

u(θ) = 1/(1+ tanm θ)1/m, v(θ) = tan θ/(1+ tanm θ)1/m (3)

where θ is measured with respect to the u-coordinate axis and is defined positive
counterclockwise. To apply the above parametrization to the coordinate frame x2-
z2, with m = 3, one can simply use an affine transformation scaling values of x2
and z2 by means of parameters d and e respectively, namely,

x2(θ) = d/(1+ tan3 θ)1/3, z2(θ) = e tan θ/(1+ tan3 θ)1/3 (4)

The length lc of the Lamé curve, defined by Eq. (2) can be expressed as

lc =
∫

dl =
∫ √

dx 2
2 + dz 2

2 (5)

in which dx2 and dz2 are the infinitesimal versions of the increments�x2 and �z2.
Eqs. (4) are used to slightly rearrange Eq. (5), thus obtaining

lc =
∫ π/2

0

√
x ′2(θ)2 + z′2(θ)2dθ =

∫ π/2

0

1+ tan2 θ

(1+ tan3 θ)4/3

√
d2 tan4 θ + e2dθ (6)

However, there is a problem when using Eq. (6) as it is expressed, since, when
θ → π/2, tan θ → ∞, which poses a numerical problem when computing the
integral. To circumvent this problem, the integral computation is divided in two
parts by using a reflection, with respect to a line x2 = z2, transforming the curve
F into a curve F� (see Figure 3). This affine transformation creates an intersection
point P , for which θ = 45◦ = π/4. Obviously, because of the reflection properties,
the length of the curve segment between points P and C is identical to the length of
the curve segment between points P and C�. Therefore, the total Lamé curve length
lc can be computed as

lc =
∫ π/4

0

1+ tan2 θ

(1+ tan3 θ)4/3

√
d2 tan4 θ + e2dθ (7)

+
∫ π/4

0

1+ tan2 θ

(1+ tan3 θ)4/3

√
d�2 tan4 θ + e�2dθ

where d� = e and e� = d .
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Fig. 3 Reflection of Lamé curve with respect to a line x2 = z2.

3 Trajectory Velocity Profile

To generate a motion along a trajectory, two important steps are required [5]: (1) to
define a geometry parameterized with respect to the displacement s along the tra-
jectory; and (2) to define a velocity profile stating the relation of this displacement
over time. The Cartesian position, velocity and acceleration parameterization of the
trajectory geometry, shown in Figure 2, with respect to the displacement s, starting
from point A at t = 0, is explained in detail in [7].

The trajectory, as introduced in Figure 2, can be divided, either in translation or
in rotation, into two periods: an acceleration period and a constant velocity period.
To define the overall velocity profile of the trajectory, piecewise polynomials are
used to blend these two periods [15]. In the translation case, since the MP has zero
velocity at pointA, it is obvious that an acceleration period follows any motion from
point A. The acceleration period in translation ends either at point B or at point C,
followed by a constant-velocity period. Now, for the rotation, since it is not possible
to start the rotation from point A, any velocity profile first starts with a constant
zero velocity period, followed by an angular acceleration period that can either end
at point D or be followed by a maximum constant angular velocity period. For the
velocity profile in this work, the angular acceleration period ends at pointD.

To relate the accelerating displacement of the MP with time over the trajectory,
a 4-5-6-7 interpolating polynomial is used in order to have smooth first-, second-,
and third-order derivatives for the displacements s(t) and φ(t), where φ(t) is the
angular displacement of the MP as a function of time. A non-dimensional 4-5-6-7
polynomial is defined as

229



J.-F. Gauthier et al.

p(τ) = −20τ 7 + 70τ 6 − 84τ 5 + 35τ 4 (8)

for τ ∈ [0, 1], so that its first derivative, with respect to τ , starts with a value of zero
at τ = 0, reaches a maximum value of 35/16 at τ = 0.5 and then returns to zero at
τ = 1.

Using suitable scaling factors, time can be related to τ , as s(t) or φ(t) can be
related to p(τ(t)). It is then possible to define the position, velocity and acceleration
in translation or in rotation during their respective acceleration period. To scale the
polynomial of Eq. (8) in displacement, one can use the scaling factors�sa and�φa ,
defined as

�sa = (se − ss) ≤ (h+ lc + c), �φa = (φe − φs) = π

2
(9)

where ss and se are, respectively, the starting and ending positions along the traject-
ory during the translation acceleration period, while φs = 0 and φe = π/2 are the
equivalents during the rotation acceleration period. For the time scale, one can use
�tt and �tr , defined as

�tt = (tte − tts) ≤ tAD, �tr = (tre − trs) ≤ tAD (10)

where tts and tte are, respectively, the starting and ending times of the translation
acceleration period, while trs and tre are the equivalents for the rotation accelera-
tion period. Only the first half of p(τ) as defined in Eq. (8) is required, i.e., for
τ ∈ [0, 0.5], so that both acceleration periods start with zero velocity and finish at
maximum velocity, with no discontinuity in the acceleration. As p(0.5) = 0.5, the
scales, in displacement and time, have to be doubled so that the scaled τ and p(τ)
values correspond to the desired time and displacements values. Then, to describe
the translation displacement, velocity and acceleration with respect to time during
the acceleration period, one obtains

sa(t) = 2�sap(τ) (11a)

ṡa(t) = (�sa/�tt )(dp(τ)/dτ) (11b)

s̈a(t) = (�sa/2(�tt)2)(d2p(τ)/dτ 2) (11c)

where
τ = τ (t) = t/2�tt , 0 ≤ t ≤ �tt (12)

Similarly, for the rotation part of the trajectory,

φa(t) = 2�φap(σ) (13a)

φ̇a(t) = (�φa/�tr )(dp(σ)/dσ) (13b)

φ̈a(t) = (�φa/2(�tr)2)(d2p(σ)/dσ 2) (13c)

where
σ = σ(t) = (t − trs )/�tr, 0 ≤ trs ≤ t ≤ �tr + trs (14)
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The variable σ is used in Eq. (13), instead of τ , to emphasize that the translation and
rotation acceleration periods are independent. In Eq. (14), the only case for which
trs = 0 is when the design variable h = 0, making point B coincide with point A in
Figure 2.

Using the properties of the 4-5-6-7 polynomial, the expressions for the maximum
velocity and angular velocity are

ṡmax = (35/16)(�sa/�tt ) (15a)

φ̇max = (35/16)(�φa/�tr) (15b)

Eqs. (11) to (14) are used to determine specific velocity profiles depending on
when the payload accelerates and when it coasts or decelerates. The velocity profile
proposed in this work, has an acceleration in translation from point A to point C,
followed by a displacement at maximum velocity ṡmax up to point D, while still
accelerating in rotation from point B to point D. This means that �tt = tAC =
tAD − tCD and�sa = h+ lc. Since the displacement at constant maximum velocity
ṡmax is from pointC to pointD, an expression for tCD can readily be found, namely,

tCD = c/ṡmax (16)

If Eq. (15a) is applied here, one obtains

ṡmax = (35/16)(h+ lc)/(tAD − tCD) (17)

Upon inserting Eq. (16) into Eq. (17), ṡmax can be found in terms of the trajectory
parameters c and h, namely,

ṡmax = (1/tAD)
[
(35/16) (h+ lc)+ c

]
(18)

It is now possible to define the translation velocity profile in terms of time and the
trajectory parameters c and h, namely,

s(t) = 2(h+ lc)p(τ ) (19a)

ṡ(t) = ((h+ lc)/tAC)(dp(τ)/dτ ) (19b)

s̈(t) = ((h+ lc)/2t 2
AC )(d

2p(τ)/dτ 2) (19c)

for t ∈ [0, tAC ], with τ = t/2tAC , and

s(t) = h+ lc + c(t − tAC)/tCD (20a)

ṡ(t) = ṡmax (20b)

s̈(t) = 0 (20c)

Now, referring to Eqs. (13a), (13b) and (13c), the rotation velocity profile for
φ(t) can be prescribed as

φ(t) = φ̇(t) = φ̈(t) = 0 (21)
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for t ∈ [0, tAB ], and as

φ(t) = πp(σ) (22a)

φ̇(t) = (π/2tBD)(dp(σ)/dσ) (22b)

φ̈(t) = (π/(2tBD)2)(d2p(σ)/dσ 2) (22c)

for t ∈ [tAB, tAD], with σ = (t − tAB)/2tBD . Since point B is reached somewhere
during the acceleration period, it is difficult to express tAB and tBD = tAD − tAB .
What is known is

s(tAB) = 2(h+ lc)p(τAB) = h (23)

where τAB is the value of Eq. (12) for t = tAB(c, h). This means that to solve
Eq. (23) for tAB , one needs to find the seven roots of the polynomial, which has to be
done numerically, and keep the one that is real and whose value lies between t = 0
and t = tAC . With the value of tAB thus found, the value of tBD can be computed,
which allows the results of Eqs. (22a–22c) to be computed for the angular velocity
profile.

4 Trajectory Optimization

A SCARA system produces motions with four-dof, three for positioning, one for
orienting of the MP. If vector v denotes the translation velocity of the MP and ω
its angular velocity around the z vertical axis of rotation with respect to the ground,
then the kinetic energy of the MP is defined as

T = 1

2
m‖v‖2 + 1

2
Icω

2 = 1

2
mṡ2 + 1

2
Icφ̇

2 (24)

where m denotes the mass of the payload, including that of the MP, and Ic denotes
the moment of inertia of the same about a vertical axis passing through its mass
center. The moment of inertia can also be expressed as Ic = mr2

c , where rc denotes
the radius of gyration of the payload. Moreover, since the objective is to minimize
the variation in kinetic energy over the trajectory, the derivative of T with respect to
time is required, namely

Ṫ = m
(
ṡs̈ + r2

c φ̇φ̈
)

(25)

where s = s(t, c, h) and φ = φ(t, c, h) are, respectively, the displacement in trans-
lation along the trajectory from point A to point D and the rotation of the end-
effector. For the given velocity profile, the rms value of time-derivative of the kinetic
energy is obtained, which is minimized in order to have the lowest possible variation
in kinetic energy over the trajectory. Therefore, using the rms2 value of the forego-
ing time-derivative over the test trajectory, the optimization problem is formulated
as
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Fig. 4 The objective function as a function of c and h.

F(x) = 1

m2

∫ tAD

0
Ṫ (t, x)2dt =

∫ tAD

0

(
ṡs̈ + r2

c φ̇φ̈
)2

dt → min
x

(26)

subject to the inequality constraints c ≥ 0 and h ≥ 0. Notice that (a) because of the
definition of the objective function F(x), this function is independent of the mass
and (b) the radius of gyration acts as a weighting factor between the translational
and the rotational parts of the objective function.

Referring to Figure 2, tAD is the time required to move from point A to point D
and is fixed, while x = [ c h ]T is the design vector containing the design variables
which will be optimized. The objective function in Eq. (26) is independent of the
mass of the payload, but it does depend on the radius of gyration of the payload,
which is actually defined by the properties of the product that has to be manipulated
through the trajectory by the SCARA system. In this work, the payload is modeled
as a circular cylinder, that has a mass of 2 kg and a diameter of 65 mm, for which
rc = 23 mm.

For the velocity profile, plotting the objective function as a function of c and h
(see Figure 4) shows that the objective function is smooth and has a well defined
minimum value. Using the Orthogonal Decomposition Algorithm [2] along with
slack variables, to transform the inequality constraints into equality constraints, the
optimum values were determined to be x = [126.1 0.0000]T mm. Since h = 0, the
MP starts to translate in the x direction as soon as the PPO motion starts.
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5 Conclusions

A general formulation of a smooth curve to implement the test trajectory of SCARA
systems was derived using Lamé curves. The parameters of the Lamé curves were
optimized by minimizing the time-derivative of the root-mean-square (rms) value
of the kinetic energy using the Orthogonal Decomposition Algorithm to achieve an
optimal test trajectory for the proposed velocity profile.
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Abstract. In this paper, we present a procedure to automatically generate the kinematic model
of parallel mechanisms as well as an algorithm for their singularity free path planning. Singular
positions are considered as obstacles that have to be bypassed while moving toward the goal. The
3-RPR planar parallel robot was taken as an example to illustrate the effectiveness of the procedure.
This proposed method can be easily extended to other similar parallel mechanisms.
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1 Introduction

Since the 1960s, serial robots have taken a great place in industry. They are used
in many industrial applications and in many domains replacing men in hard tasks
and hostile environments. However, in the last 20 years, researchers have been inter-
ested in another type of robots: parallel robots. Different structures of parallel ma-
nipulators have been studied (see, for example Clavel, 1988; Goudali et al., 1995;
Hesselbach et al., 1998). Currently, more than 100 different architectures have been
proposed and probably not all of them have been discovered. A review of most
known architectures is given by Merlet (2000).

Singularities may appear within the workspace. Singularities are dangerous and
thus should be detected and avoided while moving a parallel manipulator. This prob-
lem is very important and is widely studied in literature; see for instance Sen et al.
(1998) and Guanfeng et al. (2003).

Path planning in the case of parallel manipulators needs to include singularity
avoidance. Singularities are configurations where the robot becomes uncontrollable.
Many works considered the problem of detecting singularities in the case of parallel
manipulators (see Angeles et al., 2003; Li et al., 2006). Merlet (2001) proposed a
method to verify that a given trajectory is valid which means that it does not in-
tersect any singularity. Some researchers were interested in generating a singularity
free path (Dasgupta et al., 1998; Sen et al., 2003; Dash et al., 2005) Whereas Cortès
(2003) studied the problem of collision free path planning for parallel manipulators

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 235–242.
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Fig. 1 A mechanism and its corresponding graph.

and closed kinematic chains, he tried to generalize methods used with serial manip-
ulators but he did not consider the problem of singularity. However there are few
works that deal with both problems singularity and collision avoidance.

In Section 2, we present a method to derive the kinematic model of parallel mech-
anisms. This model is then used to detect singularity and to generate a desired path.
In Section 3, the 3-RPR planar parallel robot is used as an example to illustrate the
proposed method. Some concluding remarks are then presented at the end of this
paper.

2 Problem Formulation

2.1 Kinematic Model

A multibody mechanism is made of links and joints. The structure of a mechanism
can be presented by a graph as shown in Figure 1.

Each link has a position and an orientation in the 3D space. In order to determine
the position and the orientation of the link we can use either absolute coordinates or
joint coordinates.

We define the base link as the first link of a robot. Its position and orientation are
given with respect to the environment using absolute coordinates. In order to place
the robot we have only to move the base link. The base link is unique for each robot.

A serial link is held to another link (called father link) according to the joint
between both links.

Supported joints are revolute joints, linear joints, spherical joints and universal
joints.

A mobile link is positioned using absolute coordinates relative to the base link.
Constraints are used to restrict motion between two different links.
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Fig. 2 Modeling method.

2.2 Generating Closure Equations

As shown in Figure 2, a parallel manipulator is made of a base platform, a mobile
platform and serial legs. The idea is to replace a non actuated joint in each leg by
the corresponding constraints. These joints are called closure constraints.

The base platform is modeled using a base link while the mobile platform is
modeled by a mobile link. Legs are modeled using serial links.

By replacing only non actuated joints by constraints, we keep the actuated joint
coordinates in the generated equations.

Constraints between mobile links and some serial links give equations on opera-
tional variables and joint coordinates.

2.3 Extracting the Kinematic Model

The number of equations depends on the constraints used to model the mechan-
ism. A constraint of coincidence between two points gives three equations, which is
equivalent to a constraint of parallelism between two vectors. While a constraint of
coincidence between two links gives six equations.

The variables used to describe the motion of the mechanism depend on the links
used to build the model. A mobile link has six variables. The number of variables
given by a serial link depends on the nature of its corresponding joint. For a revolute
and a linear joint there is only one variable while for spherical joint there are three
variables and for universal joint there are two variables.

We call X the vector of variables. The equations can be written as

F(X) = 0, (1)

where F is a vector function.
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In order to obtain the kinematic model we only have to derive the function F
with respect to time, which yields:

EkẊ = 0. (2)

Ẋ is the derivative of vector X with respect to time.
The mobility of the system is given by

m = N − rg(Ek), (3)

where N is the dimension of the vector X.
By rearranging Equation (2) we can write

Mq̇a + Nq̇p +KẊop = 0, (4)

where q̇a is the vector of actuated variables, Ẋop the vector of output variables while
q̇p is the vector of the remaining variables, we call them passive variables.

M and K should be full rank matrices otherwise an actuated variable could be
changed without moving the mobile platform or an output variable could be changed
while actuators are locked, which means that the model does not completely de-
scribe the behavior of the mechanism.

M, N and K are evaluated at each step while moving the multibody mechanism.
In order to obtain the classical form of the kinematic model, it is necessary to

eliminate the matrix N from Equation (5). To do so, a matrix O is computed. The
columns of the matrix O are generated in the null space of matrix N using Gram–
Schmidt orthonormalization. We have:

OTN = 0 and rank(OTK) = rank(K), (5)

Bq̇a + AẊop = 0, (6)

B = OTM (7)

A = OTK. (8)

Once q̇a and Ẋop are known, q̇p are computed by solving Equation (4).
While moving the mechanism, singularities could be detected. They correspond

to a loss of rank of one of the matrices N, A or B.
The rank of these matrices is continuously checked while moving the multibody

mechanism.

2.4 Path Planning

We propose to adapt path planning concept and procedures that are used for serial
manipulators, as outlined in Lahouar et al. (2006). This method is based on the
alternation of two searching modes. The first one is a depth search mode active
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Fig. 3 Path planning algorithm.

when the robot is far from obstacles, so it evolves toward its goal. The second one
is a width search mode when the robot is near an obstacle it permits to find the best
way to avoid the obstacle. Although a grid is needed, it is not necessary to construct
it before beginning the path planning and the collision test is checked only for some
points which are selected by the algorithm. In the case of serial manipulators the
configuration space is used with this method as it is easier than planning in the
workspace. This is no longer justified in the case of parallel robots since forward
kinematics are more difficult than inverse kinematics. Figure 3 depicts the algorithm
used in generating obstacle and singularity free paths.

3 Application

The robot (Figure 4) is modeled by using a mobile link and two serial links for each
leg. There are three constraints between each leg and the mobile link which gives
the following geometrical equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1 cos qp1 − x = 0,

q1 sin qp1 − y = 0,

q2 cos qp2 + L− x − l cos θ = 0,

q2 sin qp2 − y − l sin θ = 0,

q3 cos qp3 + L
2 − x − l cos(θ + π/3) = 0,

q3 sin qp3 + L− y − l sin(θ + π/3) = 0.

(9)

By deriving these equations kinematic equations are obtained.

Mq̇a + Nq̇p +KẊop = 0. (10)
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Fig. 4 The 3-RPR parallel robot.

In order to eliminate the passive variables we use the Gramm–Schmidt orthogonal-
ization process in order to find a matrix O verifying the following constraints:

OTN = 0 and rank(OTK) = rank(K). (11)

Such matrix exists if the robot is not in a singular position. In this case, we can
find easily a matrix O verifying these constraints and without using the orthogonal-
ization process, which yields:

q̇a = −BẊop. (12)

3.1 Singularities

For this case the matrix B is written as follows:

B =

⎛⎜⎜⎜⎝
x y 0

x + l cos θ − L y + l sin θ l(L− x) sin θ + ly cos θ

x + l cos
(
θ + π

3

)− L
2 y + l sin

(
θ + π

3

)− L −l sin
(
θ + π

3

) (
x − L

2

)+
+ l cos

(
θ + π

3

)
(y − L)

⎞⎟⎟⎟⎠ .

(13)

Singular positions are given by the following equation:

det(B) = 0. (14)

These positions divide the workspace into two disjoint regions as shown in Figure 5.
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Fig. 5 Path planning results.

3.2 Path Planning

Figure 5 shows a complex surface representing all positions and orientations
(x, y, θ) of the platform corresponding to a singularity. The path starts at point A
(100, 180, 0.3) and ends in point B (100,−100, 0.4). When the singularity is ig-
nored during the path planning, we can notice that the obtained path is a straight
line, which is the shortest path between A and B (Figure 5). However, when the
singularity is taken into account, we can notice that the end effector avoids the sin-
gularity as it was an obstacle yielding the second path shown in Figure 5.

4 Conclusions

We presented a new tool for modeling parallel mechanisms with complex geometry.
The closure equations are automatically generated. The obtained model was used to
generate a singular free path. Singular positions are considered as obstacles that have
to be bypassed while moving toward the goal. The 3-RPR planar parallel robot was
taken as an example to illustrate the effectiveness of the procedure. This proposed
method can be easily extended to other similar parallel mechanisms.
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Abstract. In this work, a new approach for motion planning of kinematically redundant parallel
manipulators is proposed and compared with a method previously proposed by the authors. First,
motion planning is defined and thereafter overall motion planning (OMP) is introduced. OMP
consists of determining actuation schemes that optimise the manipulator’s performance while con-
sidering the entire given trajectory of the end-effector at once. Next, the OMP method is compared
to point-to-point motion planning. Two examples are given to compare the results of both methods.
It is shown that the proposed OMP method can generate actuation schemes for given trajectories
such that the manipulator avoids singular configurations.

Key words: path planning, actuation schemes, parallel manipulators, kinematic redundancy.

1 Introduction

In order for a manipulator to perform a task inside its workspace, its motion has
to be planned and actuation schemes for the actuators must be determined. Motion
planning and actuation schemes are important problems in robotics requiring good
knowledge of the manipulator’s kinematics. Motion planning has been addressed
extensively for serial manipulators [1–3].

In motion planning, obstacle avoidance and self-collision are critical issues for
both serial and parallel manipulators. In addition to that, for parallel manipulat-
ors, motion planning strictly depends on satisfying kinematic constraints [4] ren-
dering motion planning more difficult. One of the motion planning methods for
closed-loop mechanisms is called probabilistic roadmap. This method does not
require any structural information about the manipulator’s configuration space;
the only primary requirement is the ability to determine whether a given con-
figuration is collision-free or not. The roadmap can be used for many kinds of
robots with arbitrary degrees of freedom. In order to choose the nodes for the
roadmap, the method uses a probabilistic approach. It generates random configura-
tions, examines if they are collision-free and if so, integrates them into the roadmap
[5–7].

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 243–252.
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A local motion planner was proposed in [4]. Its application to non-redundant
manipulators yielded safe trajectories between two points which do not trespass
voids inside the manipulator’s workspace.

Motion planning for kinematically redundant planar parallel manipulators was
studied in [8, 9]. There, an objective function based on the proximity to singular
configurations was defined. It was then used to plan actuation schemes that avoid
singular configurations that cannot be avoided by non-redundant manipulators. The
approach was called point-to-point motion planning (PPMP) whereby every actu-
ation move is decided by maximising the distance to singular configurations based
on the current pose of the manipulator.

Redundancy in parallel manipulators was proposed in [10–12]. For parallel ma-
nipulators, redundancy can be separated into actuation redundancy and kinematic
redundancy. Actuation redundancy is defined as replacing existing passive joints
by active ones. Therefore, actuation redundancy does not change the mobility or
force workspace of a manipulator but may result in singularity reduction [13, 14].
Kinematic redundancy takes place when extra active joints and links are added. Kin-
ematic redundancy increases the mobility and results in an infinite number of solu-
tions for the inverse displacement problem (IDP). Adding kinematic redundancy has
various advantages such as avoiding most kinematic singularities, enlarging work-
space, as well as improving dexterity [15].

In serial manipulators, singular configurations solely depend on the relative loc-
ations of the joint axes [16]. On the other hand, for parallel manipulators, singular
configurations not only depend on the relative locations of the joints’ axes of one
branch, they also depend on the relative configurations of the other branches.

In this work, a new overall motion planning (OMP) is proposed for kinematically
redundant parallel manipulators. Considering a defined objective function, PPMP
can optimise the actuators’ next displacement values based on their current values.
Note that the solutions found at a current time-step may not result in optimal values
for the future time-steps. On the other hand, OMP considers the entire trajectory as
an objective function. This way, OMP also considers what is ahead on a trajectory to
find an optimal set of actuation schemes. Here, the OMP approach is first introduced
and qualitatively compared to the PPMP method. Results obtained for two different
trajectories are also used to compare the PPMP and OMP methods.

2 Motion Planning

Here, motion planning is defined as finding the actuation schemes of the active joints
of the manipulator such that the defined motion constraints for the manipulator will
be satisfied for a given path of the end-effector. Kinematic redundancy for parallel
manipulators results in having an infinite number of solutions for the IDP [15].
Having a locus or loci of solutions for the IDP, motion planning can be converted to
finding the best possible set of solutions of the IDP.
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2.1 Overall Motion Planning (OMP)

The OMP and PPMP methods take advantage of the existence of loci of IDP solu-
tions for the actuators of kinematically redundant parallel manipulators. Knowing
the trajectory of a manipulator’s end-effector, it is possible to obtain the extreme val-
ues (i.e., their upper and lower bounds) of the active joints for the manipulator from
the solution of the IDP. Next, based on the possible range of action of the actuators
for every point of the trajectory, it is possible to estimate the actuation scheme of
each actuator with n adjacent line segments (a.k.a. polyline) whose n+ 1 endpoints
will be called Control-Points or simply CPs. The following algorithm describes the
OMP method for a kinematically redundant parallel manipulator with one degree of
kinematic redundancy per limb (in most cases, this would mean two actuators per
limb). The algorithm can be expanded to more than two actuators per limb but it is
more complicated and also more computationally intensive.

1. Find the locus of IDP solutions for the given path for each actuated joint of a
Kinematically Redundant Limb (KRL).

2. From the locus of IDP solutions for each end effector pose, determine the range
of motion of all actuators of each KRL.

3. Select one of the actuators of each KRL as the optimisation variable.
4. Choose an initial set of values for the n+ 1 CPs for each KRL.
5. Connect the n+ 1 CPs with n line segments to create the polyline approximation

of the actuator trajectory.
6. Verify if any point along the polyline violates the actuator boundaries. If so,

replace infeasible actuator values by the boundary values.
7. Discretise each line segment of the polyline into N points and calculate the pro-

file for the optimised actuator of each KRL, then, calculate the other actuators’
profiles.

8. Compute an objective function, such as proximity to singular configurations, en-
ergy consumption or time, at each discretised point along the path.

9. Using an optimisation algorithm, find the optimal location of the CPs. Steps 5 to
8 are repeated every time the objective function is calculated.

The number of CPs can greatly affect the final results. For example, if the number
of CPs is too low, proper results may not be obtained. On the other hand, a very high
number of CPs is very computationally intensive. Therefore, the number of CPs of
the actuation schemes for a given trajectory should be selected with care.

To reduce the computational burden during the search for optimal actuation
schemes, these are estimated by polylines which connect the CPs with straight line
segments. Once the optimisation process is finalised, the polyline is replaced by
a high order polynomial or spline passing through all n + 1 control points. This
ensures continuity along the path in terms of joint velocities and accelerations.
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2.2 Comparison of PPMP and OMP Methods

As explained in [9], the PPMP method can avoid singularities and improve the actu-
ation schemes for a given trajectory. However, when using PPMP, solutions found at
a current time-step may not be optimal in future time-steps, thus producing config-
urations that are not optimal when the complete path is considered. PPMP is more
sensitive to the initial pose of the manipulator than OMP since once the motion is
initiated, it is not feasible to change the previous steps for PPMP. On the other hand,
the OMP considers the quality of the trajectory as a whole as the objective function
and after completion of the calculations, the motion commences. It can change the
initial pose of the manipulator such that it suits the whole trajectory.

Note that PPMP can be a real-time motion planner while OMP is an off-line one.
OMP generally requires more computation than PPMP. There are cases in which
PPMP and OMP have very similar results.

3 Kinematically Redundant 3-RPRR Manipulator

The 3-RPRR kinematically redundant planar parallel manipulator was proposed
in [9] where it was fully analysed from the point of view of kinematics, singu-
larities and workspace. Starting at the base, each of the 3-RPRR limbs has an active
revolute joint at pointAi followed by a prismatic actuator with length ρi (where i is
the branch index and i = 1, 2, 3). At the end of the prismatic joint there is a revol-
ute joint at Di followed by the distal link joining branch i to the end effector at Bi .
The 3-RPRR manipulator is illustrated in Figure 1 where the solid circles represent
active revolute joints and the empty ones represent passive joints.

The 3-RPRR parallel manipulator (Figure 1) stems from the non-redundant 3-
PRR planar parallel manipulator proposed in [17] whereby an active revolute joint
is added at the base allowing to actively vary the direction of the prismatic joint.
This change greatly improves the size and quality of its workspace [9].

The 3-RPRR has six actuated-joint degrees of freedom of which three are con-
sidered to be kinematically redundant. As mentioned earlier, kinematically redund-
ant manipulators provide an infinite choice for the solution of the inverse displace-
ment problem. As a result, an objective function may be defined in order to ensure
the path with the best characteristics is selected. As in [9], an objective function
based on proximity to singular configurations is selected. Unlike the PPMP object-
ive function in [9], the objective function for the OMP proposed here must consider
proximity to singular configurations for the entire trajectory.

To define the objective function, it is necessary to briefly explain the kinematic
equations of the 3-RPRR manipulator. The vector loop equation for branch i of the
manipulator can be stated as:

DiBi = DiAi + AiO +OP + PBi (1)
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Fig. 1 3-RPRR planar 6-DOF kinematically redundant parallel manipulator (if θis were fixed, the
manipulator would be a 3-PRR).

li
2 = (−ρicθi − xAi + xp + ric(φ+ψi))2 + (−ρisθi − yAi + yp + ris(φ+ψi ))2 (2)

li
2 = xli 2 + yli 2 = (licαi )2 + (li sαi )2 (3)

where c∗ and s∗ represent cos(∗) and sin(∗), respectively. Taking the derivative of
Equations (1) and (2) for all the manipulator’s branches with respect to time results
in an equation which transforms the velocity vector of the active joints into the
velocity vector of the end-effector and vice-versa. The equation can be shown as:

Jxẋ = Jqq̇ (4)

Jx and Jq are respectively referred to as the direct and inverse Jacobian matrices and
can be expressed as:

Jx =
⎡⎣a11 a12 a13
a21 a22 a23
a31 a31 a33

⎤⎦
3×3

(5)

Jq =
⎡⎣u1 v1 0 0 0 0

0 0 u2 v2 0 0
0 0 0 0 u3 v3

⎤⎦
3×6

(6)

where

ai1 = xp − xAi − ρicθ1 + ric(φ+ψi) ui = cθi ai1 + sθi ai2
ai2 = yp − yAi − ρisθ1 + ris(φ+ψi) vi = −ρisθi ai1 + ρicθi ai2
ai3 = −ris(φ+ψi)ai1 + ric(φ+ψi)ai2

(7)
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Fig. 2 Selected trajectories for the end-effector.

Here, the objective function for both the PPMP and OMP is defined based on the
Normalised Scaled Incircle Radius (NSIR) proposed in [8, 9]. The NSIR is an ap-
proach for measuring the proximity to direct and inverse kinematic singularities,
using the combination of a geometrical approach and the determinant of the inverse
Jacobian matrix over its maximum amount. The measure is normalised as it accounts
for the maximum possible values of its different parts resulting on a value between
zero and one where one indicates the best possible value and zero the worse (i.e., a
singular configuration).

Since for the OMP method the objective function must cover the whole traject-
ory’s NSIR values, the average of the NSIR values of the entire trajectory is used.
Also, to ensure no point within the trajectory is too close to a singular configura-
tion, the average NSIR value is multiplied by the minimum NSIR value within the
trajectory. As in [8, 9], for the PPMP, the objective function considered here simply
consists of the NSIR at each point of the given trajectory.

4 Case Study

To show how the OMP works and to compare it to the PPMP, two numerical ex-
amples are given. Figure 2 illustrates the two arbitrary trajectories of the centre of
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Fig. 3 Orientation of the end-effector throughout trajectory A.

Fig. 4 Actuation schemes for prismatic actuators using OMP (trajectory B).

the 3-RPRR manipulator’s end-effector. Also, Figure 3 shows the orientations of the
end-effector while tracking trajectory A. For trajectory B, the end-effector orienta-
tion is fixed and equal to φ = π/3.

For the current numerical examples, the geometric parameters of the 3-RPRR
manipulators are (Figure 1): A1A2 = A2A3 = A3A1 = 1.0 m, B1B2 = B2B3 =
B3B1 = 0.10 m, ri = 0.0577 m, li = 0.25 m,ψ1 = 7π/6,ψ2 = 11π/6,ψ3 = π/2,
ρmaxi = 0.577 m and ρmini = 0 m.

With the end-effector trajectory defined, the ranges of motion for the prismatic
and revolute actuators at each point along the trajectory are obtained from the IDP
solution. In this work, the actuation scheme for all three prismatic actuators are
used as the search parameters in the optimisation. Figure 4 depicts the ranges of
motion of the prismatic actuators for trajectory B. Once the ranges of motion of the
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Fig. 5 NSIR values of both PPMP and OMP for the test trajectories.

Table 1 NSIR comparison for trajectories A and B.

Trajectory A Trajectory B

Ave. Min. Ave. Min.

NSIR values for PPMP 0.543 0.221 0.225 0.080
NSIR values for OMP 0.633 0.302 0.565 0.229

actuators are obtained, it is possible to define the n+1 CPs within these bounds. For
the OMP, the initial CPs can be selected arbitrarily or can be provided from other
motion planning approaches such as the PPMP.

Here, the number of CPs is equal to 31 for both test trajectories thus resulting in
30 straight line segments creating the polyline. All n+ 1 CPs are evenly distributed
in λ and their ρi values chosen within the range of motion for the corresponding
prismatic joint. The arbitrary initial actuation scheme for trajectory B is shown with
asterisks in Figure 4. To ensure that the polyline for each actuator is entirely inside
the actuator’s range of motion, all values throughout the polyline are examined. All
values that violate the boundary are forced to the boundary values.

The results are obtained using the NSIR as the objective function within a con-
strained nonlinear multi-variable optimisation algorithm native to Matlab’s Optim-
isation Toolbox. As an example, Figure 4 illustrates the initial (asterisks) and final
results (circles) of the prismatic actuators using the OMP method on trajectory B.
Note that, as mentioned earlier, the actuation scheme for the revolute actuators (θi)
are calculated for every actuation scheme of the prismatic actuators (ρi).

Optimal NSIR values for both methods are illustrated in Figure 5. This figure
shows that the PPMP results in larger NSIR values than the OMP at some poses.
However, as shown in Table 1, the average and the minimum values of the NSIR,
when using OMP are significantly larger for both trajectories.
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5 Conclusions

A new motion planning approach for kinematically redundant parallel manipulators
was proposed. The overall motion planning (OMP) can be used when the whole
trajectory is known. The method considers the quality of the trajectory as a whole
in the objective function, allowing the manipulator to obtain good characteristics
throughout, in this case avoiding singular configurations. The OMP can also take
advantage of other approaches’ final results such as point-to-point motion planning
(PPMP) as the initial values for the OMP. From the point of computational expense,
OMP is significantly more demanding than PPMP but results show that the OMP
can yield higher quality actuation schemes than the PPMP. Here, a local optimisation
algorithm was used for determining the optimal actuation schemes of both PPMP
and OMP. In future work, the authors plan to use global optimisation methods as
they are likely to improve the results even further.
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Abstract. The problem of finding optimal configurations for parallel manipulators is investigated
in this paper. The task is assumed incompletely specified, namely, the orientation of the tool about
its axis is irrelevant to the task. To solve the problem, a procedure is proposed based on the feasibil-
ity maps associated with the specified path and an algorithm for trajectory planning into the maps.
The obtained motion of the manipulator is such that the condition number of the homogenized
parallel Jacobian matrix is optimized along the whole path. The study is illustrated on a planar 3-
RRR manipulator. The effectiveness of the proposed approach is demonstrated on an experimental
prototype.

Key words: parallel manipulators, trajectory planning, task accessibility, optimization.

1 Introduction

High global stiffness and the ability to achieve high accelerations are interesting
features of parallel manipulators. Such properties make this kind of manipulators at-
tractive for applications such as machining operations and material handling. How-
ever, the difficulty of planning singularity-free trajectories inside the workspace [1,
4–6] prevents a wide industrial exploitation of this kind of manipulators.

Typically, the trajectory planning problem consists in obtaining a set of joint tra-
jectories such that the accessibility to the whole desired path is guaranteed and the
performance of the manipulator is optimized. The condition number of the Jacobian
matrix is an interesting index that measures the accuracy of motion of the manipu-
lator and the uniformity of distribution of output velocities and forces in all direc-
tions [2].

To assist the trajectory planning problem, the notion of feasibility maps was pro-
posed [3]. The feasibility maps contain all the configurations that a given parallel
manipulator can reach to track a prescribed path while avoiding parallel singularit-
ies. No attempt was addressed in [3] to generate trajectories into these maps. The
present paper introduces an efficient algorithm to generate trajectories into the feas-
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Fig. 1 Symmetric planar 3-RRR parallel manipulator.

ibility maps, which is inspired from a typical algorithm previously used for mobile
robot path planning in rough terrains.

2 Preliminaries

The approach proposed in this paper pertains to situations in which a parallel manip-
ulator must follow a prescribed path, the orientation of the tool about its axis being
not specified. Such situations occur frequently in process tasks such as machining
(think of a hexapod machine used for milling). Without loss of generality, a general
3-DOF planar parallel manipulator with revolute joints is used throughout this paper
as illustrative example (Figure 1). This manipulator has been frequently studied [4–
10]. It consists of a triangular end-effector C1C2C3 (mobile platform) and a fixed
base A1A2A3, joined by three serial kinematic chains. The manipulator is assumed
symmetric, that is, the base and the mobile platform are equilateral triangles and
the link lengths are the same for the three legs. The radius of the circle that passes
through the vertices of the mobile platform is referred to as r, and the radius of the
circle that corresponds to the base triangle is referred to as R. The leg lengths are
referred to as l1 and l2. The three revolute joints located on the base, are the actuated
joint variables (θ1, θ2, θ3).

The output variables are the position coordinates (x, y) of the operational point
P chosen as the centroid of the platform, and the orientation ϕ of the platform. A
reference frame is centered at A1 with the X-axis passing through A2. The passive
and actuated joints are assumed unlimited.
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2.1 Velocity Equation and Singularities

The velocity equation of this manipulator can be written in vector form as:

At = Bθ̇ with t = [ṗ ϕ̇]T and θ̇ = [θ̇1 θ̇2 θ̇3]T , (1)

where θ̇ is the vector of actuated joint rates; A is defined as follows [3]:

A =
⎡⎢⎣ (c1 − b1)

T (c1 − b1)
TE(p− c1)

(c2 − b2)
T (c2 − b2)

TE(p− c2)

(c3 − b3)
T (c3 − b3)

TE(p− c3)

⎤⎥⎦ , (2)

where E represents a counterclockwise rotation of 90 deg.
Matrix A is singular whenever the axes B1C1, B2C2 and B3C3 intersect or are

parallel. This singularity is named parallel singularity. WhenB1C1,B2C2 andB3C3
intersect, the torsional stiffness about the intersection point is zero and the manip-
ulator cannot resist any torque applied at this point. When B1C1, B2C2 and B3C3
are parallel, the manipulator loses stiffness in a direction perpendicular to these axes
and the manipulator cannot withdraw any force in this direction. Matrix B is singu-
lar whenever pointsAi , Bi , and Ci are aligned for at least one value of i. Unlike the
preceding one, this singularity, called serial singularity, is not dangerous.

2.2 Working Modes

The working modes are directly related with the matrix B. A working mode is the set
of postures for which the sign of elements on the diagonal of B does not change or
some element of the diagonal does not vanish. The working modes separate inverse
kinematic solutions. The 3- RRR manipulator can operate in eight distinct working
modes [3], each one being associated with an inverse kinematic solution.

2.3 Condition Number

The condition number κ of a matrix M is defined as

κ = ‖M‖‖M−1‖, (3)

where ‖M‖ denotes any norm of M, such as the maximal singular value of M, which
we adopt here. With this norm, the condition number is determined as

κ = σM

σm
. (4)
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When applied to matrix B, this definition makes sense because this matrix is di-
mensionally homogeneous. Matrix A, however, is not homogeneous. Thus, it is not
possible to meaningfully order its singular values from smallest to largest. Dividing
the third column of A by a normalizing length yields a dimensionally homogen-
eous matrix Ā. Daniali et al. [11] proposed to use the characteristic length L. They
derived conditions under which a planar 3-DOF parallel manipulator has a configur-
ation where matrix Ā is isotropic: the two triangles must share a common centroid
at the isotropic configuration and the angles between the leg links must be equal.
However, their conditions provide L = √2r| sin(α)|, thus yielding several choices
for L (α is the angle between BiCi and CiP ). A convenient value of the character-
istic length was defined in [3] by setting α = 90 deg. By doing so, the manipulator
is as far as possible from parallel singularities at the isotropic configuration [3].

3 Feasibility Maps

A procedure to generate feasibility maps (FM) was presented in [3]. We are given a
path to be followed by a parallel manipulator and this path is incompletely specified,
for example only the Cartesian position (x, y) of P is required and the orientation ϕ
of the moving platform needs not be specified. These maps describe the behavior of
κ−1(Ā) over the whole desired path for all the feasible orientations of the manipu-
lator. An FM defines all the feasible orientations that can be used to accomplish the
desired task. Moreover, an FM allows one to select the orientations of the mobile
platform associated with the best values of κ−1(Ā) during the achievement of the
task. Note that an FM can be obtained for each working mode of the manipulator.
Therefore, by analyzing all the maps, we can also select the best working mode to
be applied.

An example of an FM of the 3-RRR manipulator is shown in Figure 2. The
desired path of P (Figure 2a) must be achieved during time T . The FM associated
with the first working mode (WM1) is illustrated in Figure 2b.

4 Searching for a Trajectory

A number of methods have been developed to solve the trajectory planning problem,
such as genetic algorithms [12], rapidly-exploring random trees (RRTs) [13, 14],
motion roadmaps [15], and dynamic programming by a recursive process [16]. In
the problem studied in this paper we have to search for a suitable continuous path
into a feasibility map such that the best orientations are selected to accomplish the
task.

Consider a prescribed path discretized into n regularly spaced points. We would
like to determine the orientation ϕ of the platform at each point of the path such
that κ−1(Ā) is a maximum. But, in the same time, the rotation angle of the platform
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Fig. 2 (a) Manipulator and a path to be followed; (b) feasibility map.

should not exceed a maximal value between two consecutive points along the path to
satisfy the actuator constraints. On the other hand, for a safe behavior of the manip-
ulator, index κ−1(Ā) should never drop below a given minimal value during motion.
Finally, the optimal kinematic inversion along a prescribed path can be regarded as
planning an optimal trajectory for a vehicle moving on a complex terrain that in-
cludes hills, valleys, and forbidden areas, the vehicle being subject to a minimal
turning radius and a maximal power and hence a maximal rate of climb. The surface
plot of κ−1(Ā) versus non-dimensional time (t/T ) and ϕ, defines a complex terrain
where valleys (resp. hills) are associated with regions where κ−1(Ā) is high (resp.
low) and where forbidden areas are associated with infeasible regions (the manipu-
lator cannot be assembled) or regions where κ−1(Ā) is too low. To find an optimal
trajectory from a starting point P0 = (t0/T , ϕ0) to a target point Pf = (tf /T , ϕf ),
we have adapted an algorithm [11] that was developed for a vehicle on a complex
terrain with constraints (maximal slope, minimal turn radius and forbidden areas).
The adapted algorithm consists in the following steps:

(a) For the first path point, P0, find an orientation ϕ0 of the platform such that
κ−1(Ā) is greater than a given minimum value (κ−1

min).
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Fig. 3 Experimental parallel manipulator.

1. At the next point Pi search for a value of ϕi subject to the following con-
straints:
(1a) κ−1(Āi ) ≥ κ−1

min;
(1b) κ−1(Āi ) is the maximum between those corresponding to orientations

of the platform in the interval ϕi−1 ± 2◦.
2. If κ−1(Āi ) at Pi does not satisfy the constraints, then returns to step (a). Oth-

erwise, continue the step 1 with the next path point up to the last point Pf .
Save the cost function (fcost) defined as the mean of the values of κ−1(Āi )
at all the path points.

(b) Return to step (a) until all the possible orientations of the platform at the first
point P0 have been explored. Then compare all the previously saved functions
fcost and choose the trajectory having the greatest fcost.

5 Case Study

For validation purposes, our approach was applied on an experimental manipulator
3-RRR. This manipulator has been developed by the research groups of ITLag and
IRCCyN. The values of its geometric parameters are: l1 = l2 = 26 cm, r = 29 cm
and R = 36 cm. The prototype is shown in Figure 3. It was required to guide along
the path shown in Figure 4 an axially symmetric tool fixed at the centroid of the
mobile platform.

We applied the proposed algorithm to find the orientations to be used by the
mobile platform during the task. The prototype was positioned in the first work-
ing mode (WM1). Figure 5a displays the optimal path found in the feasibility map.
Figure 5b displays the optimal values of κ−1(Ā) along the prescribed path. Finally,
Figure 6 shows a sequence of 4 configurations of the manipulator during the achieve-
ment of the task.
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Fig. 4 Desired path, P0(13.5, 25) cm, Pf (38, 25) cm, for WM1.

Fig. 5 (a) Optimal trajectory in the feasibility map for WM1. (b) Optimal values of κ−1(Ā) along
the prescribed path.

Fig. 6 Sample of manipulator configurations along the desired trajectory (WM1).

6 Conclusion

An algorithm was presented in this paper for planning trajectories of a parallel ma-
nipulator along a prescribed path where the orientation of the tool about its axis
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needs not be specified. The search of an optimal trajectory was carried out into the
feasibility map of the manipulator associated with one working mode. This map
makes it possible to identify the orientations of the mobile platform that define the
best values of a kinetostatic index κ−1(Ā) during the achievement of the task. To
find an optimal trajectory in the feasibility map, we have adapted a path planning
algorithm that was proposed in the past for a vehicle moving on a complex ter-
rain with constraints. The resulted motion of the manipulator is such that κ−1(Ā)
is as high as possible along the specified path and parallel singularities are avoided.
Consequently, the kinetostatic performance of the manipulator is globally optimized
during the task. The algorithm was successfully tested on a 3-RRR manipulator pro-
totype built at ITLag.

In the example shown in the paper, the manipulator could track the whole path
in a single working mode. In some cases, however, no solutions may be found when
the manipulator operates in a single working mode. This could arises when the
prescribed path is long; in such a case a parallel singularity is more likely to be
encountered. A possible solution is then to allow the robot to change its working
mode during motion. Simulation results have shown that it is possible [17] but they
need to be experimented on the ITLag’s prototype for validation. To the authors’
knowledge, such a global approach has not been proposed in the past.

The approach proposed in this paper is not limited to planar manipulators. It is ap-
plicable for hexapod-based parallel kinematic machines or other parallel machines.
This requires, however, to redefine the kinetostatic index κ−1(Ā).
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Abstract. Understanding the basis of human movement and reproducing it in robotic environ-
ments is a compelling challenge that has engaged a multidisciplinary audience. In addressing this
challenge, an important initial step involves reconstructing motion from experimental motion cap-
ture data. To this end we propose a new algorithm to reconstruct human motion from motion
capture data through direct control of captured marker trajectories. This algorithm is based on a
task/posture decomposition and prioritized control approach. This approach ensures smooth track-
ing of desired marker trajectories as well as the extraction of joint angles in real-time without
the need for inverse kinematics. It also provides flexibility over traditional inverse kinematic ap-
proaches. Our algorithm was validated on a sequence of tai chi motions. The results demonstrate
the efficacy of the direct marker control approach for motion reconstruction from experimental
marker data.

Key words: human motion synthesis, operational space formulation, task/posture decomposition,

prioritization, marker space.

1 Introduction

The central nervous system (CNS) is able to elegantly coordinate the complex struc-
ture of the human body to perform movements of great agility and sophistication.
An effective way of understanding human movement involves mimicking motions
which are optimal in performance. Such optimal movements include those exhibited
by highly skilled practitioners in sports and the martial arts. Human motor perform-
ance depends on skilled motor coordination and posture control as well as physical
strength and perception. Drawing inspiration from their biological counterparts hu-
manoid robots are being imbued with skilled dynamic behaviors. Enhancing the
authenticity of synthesized human motion in robotic systems has been a continu-
ing challenge that draws together researchers from the fields of physiology, neuros-
cience, biomechanics, and robotics. This challenge has been addressed by research-
ers through retargetting methods [1, 10]. Additionally, adapting existing motion for
a human character with a given set of constraints has been explored [4,9]. However,
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these techniques, which map motion-capture data to different characters and scenes,
require inverse kinematic computations.

We propose a new algorithm to reconstruct human movement through direct con-
trol of optical marker trajectory data. This approach directly projects marker points
onto a simulated human model and tracks the trajectory in Cartesian space. Tracking
the desired trajectories is accomplished using the operational space control frame-
work [5]. With our algorithm we can drive a simulated model of the human body
to experimental marker locations in real-time. This allows smooth tracking of the
desired marker trajectories and extraction of joint angles within a reasonable er-
ror boundary. Further, the task/posture decomposition used in the operational space
method constitutes a natural decomposition for dealing with marker data, thus avoid-
ing the performance of inverse kinematics.

The algorithm presented here is validated through a sequence of slow tai chi
motions. Tai chi motions are light, lively, and balanced, and they constitute a rich
variety of motions useful for testing purposes. With our new algorithm we show that
human movement can be controlled and reconstructed in real-time. This facilitates
the investigation of other high performance dynamic skills.

2 Direct Marker Control Approach

Optical motion capture constitutes a common and effective method for capturing
human motion. A series of markers attached to a subject’s body are imaged by a set
of cameras and the spatial positions of the markers are triangulated from the image
data. A number of post processing steps need to be performed to convert the raw
marker positions into useful kinematic data. The most significant step is to convert
the marker trajectories into joint space trajectories. This has commonly been done
using inverse kinematic techniques.

As an alternative to performing inverse kinematics on marker data we propose
to dynamically track the markers using a task-level control approach. We will refer
to this approach as direct marker control. For the purposes of our direct marker
control application, we will define task space as the space of Cartesian coordinates
for the motion capture markers. However, it must be noted that marker trajectories
obtained through motion capture are not independent. For example, markers on the
same body link are rigidly constrained to each other and the relative motion between
markers on adjacent links is limited by the freedom in the connecting joints. To
accommodate for motion dependencies the markers are grouped into independent
subsets, {m1, . . . ,mn}. Each subset, mi , is represented by a single task vector, xmi ,
that is formed by concatenating the Cartesian coordinates of the individual markers
contained within that subset. Using a prioritized control approach a hierarchy of
marker task vectors is formed where the tasks that are lower in the hierarchy are
projected into the null space of the tasks that are higher in the hierarchy. At the end
of this recursive process, independent subsets of marker tasks are obtained, ensuring
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the overall feasibility of the marker control. The operational space formulation [5]
is then used to directly control the marker trajectories.

2.1 Prioritized Control in Marker Space

In this section, we develop the proposed framework for direct control of marker
trajectories. The need to address high performance dynamic behaviors and the need
for flexibility over traditional inverse kinematic approaches constitute the motivation
for our approach.

A behavioral task generally involves descriptions of various parts of the multi-
body mechanism, each represented by an operational point xt(i). The full task is
represented as an m× 1 vector, xt , formed by vertically concatenating the coordin-
ates of all operational points. The Jacobian associated with this task is denoted as
Jt . The derivation of the operational space formulation begins with the joint space
dynamics of the robot [8]

Aq̈ + b + g = � (1)

where q is the the vector of n generalized coordinates of the articulated system,A is
the n×n kinetic energy matrix, b is the vector of centrifugal and Coriolis generalized
forces, g is the vector of gravity forces, and � is the vector of generalized control
forces.

Task dynamic behavior is obtained by projecting (1) into the space associated
with the task, which can be done with the following operation

J
T

t [Aq̈ + b + g = �] =⇒ �t ẍt + µt + pt = J Tt � (2)

Here, J
T

t is the dynamically-consistent generalized inverse of Jt [8],�t is them×m
kinetic energy matrix associated with the task and µt and pt are the associated
centrifugal/Coriolis and gravity force vectors.

The operational space framework [5] is used as the basis for our direct marker
control algorithm. In this formulation, the task behavior is divided into a set of
independent task points and the torque component for the task is determined in a
manner that compensates for the dynamics in task space. For a task behavior, xt ,
with decoupled dynamics and unit inertial properties ẍt = F ∗t , this torque is given
by the force transformation

�task = J Tt Ft (3)

where Jt is the Jacobian of the task and Ft is the operational space force. This
operational space force is given by

Ft = �tF ∗t + µt + pt (4)

A task/posture decomposition allows us to represent the dynamics of a simulated
human subject in a relevant task space that is complemented by a posture space. The

265



E. Demircan et al.

total control torque is decomposed into two dynamically decoupled torque vectors:
the torque corresponding to the commanded task behavior and the torque that only
affects posture behavior in the null space of the task

� = �task + �posture = J Tt Ft +NTt �p (5)

In this expression NTt is the null space projection matrix, and �p is the torque pro-
jected into the null space.

The prioritized control framework [7, 11] is used to control the collection of
marker task vectors. In this framework the torque decomposition is:

� = J Tt Ft +NTt (J Tp Fp) (6)

where the posture torque can be rewritten as

�posture = (JpNt )T Fp = J Tp|tFp|t (7)

Consequently, Equation (5) can be represented as:

� = J Tt Ft + J Tp|tFp|t (8)

Alternately, if an additional task is projected into the posture we express this as

� = J Tt1 Ft1 + J Tt2|t1Ft2|t1 (9)

This is generalized for an arbitrary number of additional tasks

� = J Tt1 Ft1 + J Tt2|t1Ft2|t1 + · · · + J Ttn|tn−1|···|t1Ftn|tn−1|···|t1 (10)

2.2 Direct Marker Control Formulation

For the application to marker space we will usemi to denote the task for a particular
marker subset. Equation (10) then becomes:

� = J Tm1
Fm1 + J Tm2|m1

Fm2|m1 + · · · + J Tmn|mn−1|···|m1
Fmn|mn−1|···|m1 (11)

The Jacobian and the force associated with marker space are deduced from the above
equation as follows:

J⊗ �

⎡⎢⎢⎢⎣
Jm1

Jm2|m1
...

Jmn|mn−1|···|m1

⎤⎥⎥⎥⎦ and F⊗ �

⎡⎢⎢⎢⎣
Fm1

Fm2|m1
...

Fmn|mn−1|···|m1

⎤⎥⎥⎥⎦ (12)

The overall control torque is then
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� = J T⊗F⊗ (13)

An analysis on the bounds of the joint space errors can be performed using the
Jacobian associated with the marker space. We note

�x⊗ = J⊗�q (14)

The inverse of this relationship is

�q = J̄⊗�x⊗ (15)

where J̄⊗ is the dynamically-consistent generalized inverse of J⊗. Joint angles ob-
tained through prioritized control in marker space deviate from the actual values but
are bounded by:

|�q| ≤ |J̄⊗||�x⊗| (16)

This allows us to tune the prioritized marker controller to accommodate the desired
accuracy, for given configurations.

3 Simulation and Validation

A series of real-time movements performed by a tai chi master were recently cap-
tured using an optical marker system to provide validation for our new algorithm.
The subject was a fifty-five year old male of average build. An eight-camera retro-
reflective motion capture system was used to capture his movements at a rate of
60 Hz.

Among the motions performed, a sequence of slow movements were chosen for
validation and real-time simulation. Marker data of the recorded motion were then
segmented and smoothed using the EvART software (Motion Analysis Corpora-
tion).

Marker trajectories were imported into the SAI environment [6] which allows
dynamic 3D simulations. Our existing human model which consists of 25 joints,
was scaled to match the anthropometry of the tai chi master. The data used in this
model have been derived from SIMM models [2]. The skeleton has been modeled
as a multibody system within SAI and scaled based on body segment mass-center
locations [3]. Figure 1 depicts the scaled human model simulated in the SAI envir-
onment.

The human motion reconstruction described in Section 2 was executed using cru-
cial upper body joint marker trajectories (e.g. shoulder, elbow and wrist of both right
and left arms). Sets of two decoupled markers were grouped into distinct marker
subsets. The first subset consisted of the right shoulder and the left wrist mark-
ers and the second set consisted of the left elbow and the right wrist markers. The
markers were then directly tracked through the entire movement sequence using
prioritization.
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Fig. 1 The scaled human model of the tai chi master simulated in the SAI environment. Markers of
the right shoulder and the left wrist are selected to form the first marker set to be controlled (dark
spheres). The second subset is formed by the left elbow and the right wrist markers (light spheres).

Joint angles over the entire trajectory were directly obtained as a natural con-
sequence of the direct marker control approach, thus avoiding any need for comput-
ing inverse kinematics. Figure 2 illustrates the joint angles obtained through direct
marker tracking.

The commanded and tracked positions of the controlled markers, as well as the
joint angles, were recorded during real-time simulation. Figure 3 shows the com-
parison between tracked and commanded positions of each tracked marker. The
consistency between the two curves in each plot suggests the efficacy of the human
motion reconstruction algorithm proposed.

Bounds on the joint angle errors can be addressed using Equation (15). We can
compute the maximum and minimum joint angle error bounds among all the joints.
Thus

�qmax = max(�q) and �qmin = min(�q) (17)

where �q = J̄⊗�x⊗. Figure 4 shows the margin of marker position errors and the
margin of joint angle errors respectively. Maximum and minimum joint angle error
magnitudes vary stably over the trajectory, suggesting well bounded errors on the
joint angles.
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Fig. 2 Joint angles obtained through direct control of marker data. The joint angles for the
shoulder, elbow and wrist segments are shown for the corresponding arm. Smooth joint space
trajectories are generated without inverse kinematics.

4 Conclusions

In this paper, we presented a new algorithm to control marker trajectories based
on the operational space method of Khatib [5], and task/posture decomposition us-
ing prioritization. The algorithm reconstructs human motion in real-time through
smooth tracking of marker trajectories. This facilitates the extraction of joint angles
without the need for inverse kinematic calculations. The algorithm also easily ac-
commodates anthropometric scaling of the simulation model to the human subject.

We validated our new algorithm through a set of tai chi movement data. The
results illustrate smooth tracking of the marker trajectories in marker space. Smooth
joint angles trajectories were obtained as a natural output of the marker tracking
methodology. A bound on the joint space error was obtained and the results of this
analysis indicated stable error bounds over the trajectory. The errors can further be
decreased with a more precise camera calibration during motion capture experiment
and a more accurate model scaling of the simulation.

There are plans to extend our algorithm to address task/posture decomposition
in the camera space of the optical motion capture system. This may exploit further
advantages of our approach by accommodating arbitrary operational spaces. Ad-
ditionally, where precise knowledge of the subject anthropometry is not known a
priori, our approach can be adapted so that limb lengths can be adjusted until they
optimally track the marker data. This provides a way of inferring more precise an-
thropometry through direct tracking of marker data. By extending our new algorithm
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Fig. 3 Tracked and goal trajectories of markers. The tracked trajectories (solid lines) are shown
for markers attached to the wrist, shoulder, and elbow segments. It can be seen that the generated
trajectories closely track the corresponding goal trajectories (dotted lines).
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Fig. 4 Margin of marker position errors and margin of joint angle errors over the trajectory. Joint
angle error magnitudes show a stable variation over the trajectory, thus ensuring well bounded
errors on the joint angles.

to incorporate other operational spaces, we hope to synthesize and investigate motor
control models for skilled human movement using a task-level framework.
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Abstract. In this paper we present two results on geometry of parallel manipulators with planar
platform and base (Stewart–Gough type platforms). In the first one we show that for this type
of manipulators there is always one quadratical equation on Euler parameters between equations
describing the geometry of the platform. This equation has a strong geometrical meaning – it is
identically zero iff the platform is architecturally singular. This yields a very simple system of
equations for architectural singularity and proves automatically the self-mobility. In the second
result we describe a large class of manipulators with self-motions, a special case of which was
already discussed in Borel (1908) and Bricard (1906).

Key words: Stewart–Gough platforms, architectural singularity, self-motions.

1 Introduction

Self-motion of a Stewart–Gough platform is an important phenomena in geometry
of parallel manipulators – it yields an uncontrolable motion of the manipulator. It
is a motion of the manipulator with locked length of legs of the manipulator and
therefore it is at the same time a Borel–Bricard motion, a space motion with six
spherical trajectories. In this paper we shall concentrate at manipulators with planar
platform and base. We describe a new class of self-motions for them.

To describe the geometry of such a manipulator, we shall use the parametrization
of a spatial motion by using Euler and Study parameters (see Botema and Roth,
1990; Husty, 1996). Any space motion is a curve at the group of spatial motions.
We use the Study representation of the displacement group of the Euclidean space
in the projective space P7 with homogeneous coordinates x0, . . . , x3, y0, . . . , y3.

Let S be the set in P7 determined by

U = x0y0 + x1y1 + x2y2 + x3y3 = 0,

where x2
0 + x2

1 + x2
2 + x2

3 �= 0, the so-called Study quadric.
We can normalize coordinates in S by
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κ ≡ x2
0 + x2

1 + x2
2 + x2

3 = 1.

In this way a space motion is represented by a curve on S.
The manipulator consists of two parts – platform and base. To describe its mo-

tion, we have to describe the relative position of these two parts. The upper part
of the platform lies in the moving space, the lower is in the fixed space. The upper
part of the platform will be described by using lower case letters, for the base we use
capital letters. We choose coordinate systems in such a way, that the third coordinate
of points of the platform and base is equal to zero and therefore it will be omitted.

The platform consists of six pointsmi = [ai, bi ], i = 1, . . . , 6, similarly the base
is determined by pointsMi = [Ai,Bi ], i = 1, . . . , 6.

The connection between a point m = [a, b] of the platform and point M =
[A,B] of the base is given by a homogeneous quadratic equation in Study paramet-
ers as follows:

h = Rκ + 4(y2
0 + y2

1 + y2
2 + y2

3)+ 2(x2
3 − x2

0)(Aa + Bb)+ 2(x2
2 − x2

1)(Aa − Bb)
+ 4[x0x3(Ab − Ba)− x1x2(Ab + Ba)(x0y1 − y0x1)(A− a)
+ (x0y2 − y0x2)(B − b)− (x1y3 − y1x3)(B + b)
+ (x2y3 − y2x3)(A+ a)] = 0, (1)

where R = A2 + B2 + a2 + b2 − r2, and r is the distance of points M and m.
The procedure to obtain this equation is in detail described in several papers (see for
instance Husty, 1996) and we leave it out. Substitution of coordinates of pointsMi
andmi for i = 1, . . . , 6 yields six equations h1 = 0, . . . , h6 = 0, which completely
describe the mutual position of the two parts of the manipulator.

2 Movability of Architecture Singular Platforms

To solve the direct problem for such a manipulator we have to solve equations
hi = 0, i = 1, . . . , 6, U = 0, κ = 1, with given geometry of the platform and
given distances of points mi and Mi, i = 1, . . . , 6. We obtain eight quadratical
equations for eight unknown study parameters xj , yj , j = 0, 1, 2, 3. This problem
has in general finite many solutions, self-motion appears if the problem has infinite
many solutions, all hyper-quadrics hi = 0, i = 1, . . . , 6, U = 0 have a curve in
common. To solve this problem looks to be very difficult and not many self-motions
are known.

Equations hi = 0, i = 1, . . . , 6, U = 0 are “almost” linear in yj , j = 0, . . . , 3
and therefore there is a chance to find a linear combination of these equation in such
a way that yj will dissappear.

Let q = k1h1+ k2h2+ · · ·+ k6h6 be such a linear combination with coefficients
ki , i = 1, . . . , 6. We shall look for condition for ki such that q does not contain yj .
We must have k1 + k2 + · · · + k6 = 0, because of quadratical terms. Simple look at
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the structure of the equation h = 0 shows that in total we obtain equations

�ki = 0, �kiAi = 0, �kiBi = 0, �kiai = 0, �kibi = 0, (2)

with summation over i from 1 to 6.
As a result we obtain five homogeneous linear equations for coefficients ki , i =

1, . . . , 6. From linear algebra we know that such a system always has a nontrivial
solution. This means that there is always such a linear combination of equations
hi = 0 without yj .

We can show that the following is true.

Theorem. Let the system (2) have maximal rank. Then the unique quadratical equa-
tion q = 0 constituted from hi = 0 disappers iff the manipulator is architecturally
singular.

For the definition of architectural singularity, see Ma and Angeles (1992), Merlet
(1992) and Karger (2003).

Corollary. This means that architecture singular manipulators have always continu-
ous movability.

It follows from the fact that in general the solution of equations hi = 0, i = 1, . . . , 6,
U = 0 with respect to yj , j = 0, . . . , 3 leads to three algebraic homogeneous equa-
tions in xj , j = 0, . . . , 3 of degrees two, four and eight. If the quadratical equation
disappears, the spherical image of the motion is given as the intersection of two al-
gebraic surfaces and therefore it is a curve. This curve must of course be understood
in algebraic sence, it can be imaginary or consist only of several isolated points.

Proof of the Theorem. Equation q = 0 is identically equal to zero iff all its
coefficients are equal to zero. There are essentially five coefficients in this equation,
as wee see from its form. It is easy to see that

µ1(x
2
0 + x2

1 + x2
2 + x2

3)+ µ2(−x2
0 + x2

3)+ µ3(−x2
1 + x2

2)

= (µ1 − µ2)x
2
0 + (µ1 − µ3)x

2
1 + (µ2 + µ3)x

2
2 + (µ1 + µ2)x

2
3 ≡ 0

iff µ1 = µ2 = µ3 = 0.
For this reason we obtain five equations:

�kiRi = 0, �kiAiai = 0, �kiAibi = 0, �kiBiai = 0, �kiBibi = 0,
(3)

with ki given by (2). These equations are equivalent with equations for architectural
singularity for platforms with planar platform and base, they are rather complicated
and we do not give them here. Their equivalent version is given in Karger (2003,
equations 4), including cases with four collinear points, see also Karger (2008).

Remark 1. Both mentioned systems of equations are rather complicated, in (3)
after (2) is solved each of them has 720 terms in general. The equivalence is to be
understood that both systems have the same set of relevant solutions, they also have
trivial solutions, which can be different.
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Remark 2. The procedure used above does not work for general type of parallel
manipulators (with nonplanar platform or base), because it is not possible to find
a linear combination of equations hi = 0, i = 1, . . . , 6 which does not contain
yj , j = 0, 1, 2, 3. Therefore also the structure of architecture singular non-planar
parallel manipulators is entirely different from the one described here (see Karger,
2008). On the other side, the problem of movability is much easier, it is possible to
prove it directly for almost all cases.

3 A Class of Self-motions

In this section we shall describe self-motions of a rather general class of Stewart–
Gough type platforms. This class is a generalization of the self-motion of the ori-
ginal platform, proposed by Stewart, we shall similarly as in Husty and Karger
(1998) look for self-motions described by a planar curve lying in the plane x0 = 0
in Euler parameters.

For symmetry reasons we shall not use the quadratic equation q = 0 described
above, but use the standard way. We denote Ui = h1 − hi , i = 2, . . . , 6, to solve
equations U2 = 0, U3 = 0, U4 = 0, U = 0 for yj , j = 0, . . . , 3 and substitute the
result into U5.

We notice that U6 is obtained from U5 by replacing the index 5 by 6. This fact
will play an important role in what follows.

The computation with general values of coordinates of points Mi and mi leads
to complicated formulas. For this reason we have to specify systems of coordinates
in the moving and fixed spaces. If we do not want to loose the generality of com-
putations, we have to admitt only such changes of frames which will preserve the
equation x0 = 0. This means that we can use all translations in both spaces. For this
reason we can use points m1 andM1 as origins of coordinates in both spaces.

Now we look at the quaternionic representation of the orientation group. The
number 1 as a quaternion represents the direction orthogonal to the plane x0 = 0.
This shows that the group preserving the plane x0 = 0 is at the same time the group
preserving the number 1.

As the action of the orientation group in moving and fixed spaces on quaternion
α is given by the formula α1 = g1αḡ2, with g1, g2 unit quaternions, we see that the
number 1 is preserved iff g1 = g2. Therefore we can use one copy of the orientation
group for coordinate changes, in fixed or moving space. This means that we can
suppose for instance that the plane of the platform is the plane with third coordinate
zero. Rotation around the third axis remains.

We shall consider only a special case, we suppose that the plane of the base is also
the plane with third coordinate zero (it seems that the general case gives no solution
anyway). This means that we can rotate coordinates in the plane of the platform.
Therefore we can without loss of generality suppose A1 = B1 = 0, a1 = 0, b1 = 0,
b2 = 0. Using this simplification, the equation U5 = 0 still has 762 terms, but the
general computation is possible. We obtain
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U5 = x2
1 (s1x1 + s3x2)+ x2

2(s4x1 + s2x2)+ (s5x1 + s6x2)x
2
3 . (4)

We would like to solve the equation U5 = 0 identically and then by substitution
of index 6 for 5 we shall have also U6 = 0, a self motion given by h1 = 0. To obtain
U5 ≡ 0, we have to solve equations si = 0, i = 1, . . . , 6. Denote

s̄3 = s3 − s2, s̄4 = s4 − s1, s̄5 = s5 − s1, s̄6 = s6 − s2.
Equations s̄3 = 0, . . . , s̄6 = 0 do not contain Ri ,i = 1, . . . , 6 and they are linear in
A5, B5 and in a5, b5.

s̄3 and s̄4 have 132 terms, s̄5 42 and s̄6 only 24. We solve last two equations for
A5, B5 and substitute the result into s̄3 and s̄4. Let us now suppose that pointsmi,Mi
for i = 1, 2, 3, 4 are given. Equations s̄3, s̄4 are two cubic equations in a5, b5. They
present two cubic curves in the plane of coordinates a5, b5. They have in general
nine points in common. Inspection shows that one point is at infinity, four points are
points mi, i = 1, 2, 3, 4, two of the points do not have correspondingA5, B5.

The remaining two points we take for pointsm5,m6 and we obtain a self-motion.
Inspection of the result shows that it is a special case of an architecture singular
platform, with self-motion with planar spherical image. This is interesting, but not
what we are looking for.

So let us look for the special case where these two cubic curves coincide. This
happens iff equations s̄3 and s̄4 are proportional. We obtain only one condition, it
is a cubic expression in coordinates of points mi,Mi . If this condition is satisfied,
we have a whole cubic of points in the plane of the platform which have spherical
trajectories and the manipulator has a self-motion. As it is not possible to present
the general computation, we shall give two examples.

Example 1. We choose

M1 = [0, 0], M2 = [3, 0], M3 = [1, 5], M4 = [0, 3],
m1 = [0, 0], m2 = [2, 0], m3 = [3, 2], m4 = [1, 3]

and proceed with the computation. We obtain

A5 = (−24a5−b5+18a5b5−3b2
5)/((3b5−4)(7a5−10)), B5 = 5b5/(3b5−4).

Cubic curves are

s̄3 = 63b3
5 − 1080b2

5a5 − 4044b5a
2
5

+ 1479b2
5 − 6372a2

5 + 7818b5a5 − 114b5 + 12744a5,

s̄4 = 135b3
5 − 4584b2

5a5 − 1386b5a
2
5

+ 5403b2
5 − 252a2

5 + 15636b5a5 − 18114b5 + 504a5.

Resultant of s̄3 and s̄4 with respect to b5 is equal to
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a5(a5 − 1)(a5 − 2)(a5 − 3)(7a5 − 10)2(277a2
5 − 1179a5 + 820).

From this equation we see clearly that cubics s̄3 = 0 and s̄4 = 0 have their nine
common points distributed as follows:

a) one point is at infinity,
b) pointsm1,m2,m3,m4,
c) two points do not have corresponding points in the base,
d) two points remain, we take them for points m5,m6.

The result is

a5,6 = [1179± 13
√
(2849)]/554, b5,6 = [1614± 40

√
(2849)]/277,

A5,6 = [−1435± 41
√
(2849)]/812, B5,6 = [735± 8

√
(2849)]/203,

where the sign plus is for fifth point, minus is for the sixth point. Computation of
the Jacobian shows that it is equal to zero. This shows that we have an architecture
singular.

Example 2. Now we shall describe a manipulator with self-mobility which is not
architecture singular. We choose the same pointsm1,m2,m3,m4,M1,M2,M3 as in
Example 1. We leave the pointM4 general and specify it later to satisfy the condition
of proportionality of equations s̄3 and s̄4.

Denote T = s̄3−λs̄4, where λ is the unknown proportionality factor. T is a cubic
expression in a5, b5, the coefficient at b3

5 yields λ = 7(B4 + 2A4)/[5(2B4 − 15)].
Substitution of this value into T shows that T factors into two parts, one of them is
a cubic expression T1 in coordinates A4, B4 of the pointM4 of the form
T1 = 98A2

4(8B4 − 165)+ T2, where T2 is linear in A4. (The other factor is only
a combination of both cubics, it is not interesting.)

Any point of T1 = 0 can be chosen for point M4, to simplify computations we
choose B4 = 165/8 and T1 becomes linear in A4 and we haveA4 = −21155/1872.

Equation s̄3 simplifies to

s̄3 = 2707b3
5 + b2

5(3354a5 + 42462)

+ b5(−400a2
5 + 14255a5 − 171916)+ 11250a5(a5 − 2).

This equation yields a cubic with the property that any six points of this cubic can be
chosen as points m1, . . . ,m6 and together with corresponding points M1, . . . ,M6
we obtain a parallel manipulator with self-motion. The correspondence between
points m = [x, y] andM = [X,Y ] of the platform and base is given by the rule

X = (16842xy + 40605y − 60150x − 5414y2)/[4(7y − 25)(301+ 50x)],
Y = −55y/[2(7y − 25)].

During the self motion all points of the cubic run on spherical trajectories with
centers again on a cubic. The motion itself is represented by a planar curve of degree
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Fig. 1 Two cases of the platform from Example 2.

six in Euler parameters, it does not make sense to present its equation. It depends on
three parameters R1, R2, R3 and it has 93 terms. Special choice of these parameters
shows that the motion can be real. In Figure 1 two pairs on the cubic have been
chosen, we have obtained manipulators with self-motion.

Remarks. The general condition for geometry of the manipulator which leads to
self-motions is very complicated algebraic condition for pointsmi ,Mi , i = 1, . . . , 4
(it is the general counterpart of the equation T1 for the special case of Example 2,
it has about 1000 terms). It would be interesting to find special cases for which the
condition has geometrical interpretation. An inspiring case is considered in papers
of Borel (1908) and Bricard (1906). They consider so-called homological configur-
ations.

A configuration of pointsm1, . . . ,m4 andM1, . . . ,M4 in plane is called homolo-
gical if there is a point O such that points O,m1,M1,m3,M3 and O,m2,M2,m4,
M4 are on straight lines. In our denotation we take O for origin, mi = [ai, bi],
Mi = [Ai,Bi ]. We suppose b1 = 0, B1 = 0. The configuration is homological
if b3 = B3 = 0, b2 = ka2, B2 = kA2, b4 = ka4, B4 = kA4 for some k. If for
such configuration A1 + a1 = A3 + a3, the necessary condition for self-motion is
automatically satisfied and we have always self-motion.

Another case is the original Stewart–Gough platform. For special geometry of
this manipulator we obtain a self-motion with a whole cubic of points running
on spherical trajectories. One such case is given in Figure 2, where we present a
Stewart–Gough platform with self-motion.

Conclusion

Beside of the proof of self-mobility of architecture singular platforms with both
platform and base planar we have found a large class of self-motions of such plat-
forms.

The condition of self-mobility is a large algebraic equation in coordinates of
points mi,Mi , i = 1, . . . 4. Special solutions can be found, one of them is the
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Fig. 2 Example of a Stewart–Gough platform with self-motion.

case considered by Borel and Bricard, another one is the original Stewart–Gough
platform. Other special cases still have to be discovered.
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Abstract. We consider surfaces whose support function is obtained by restricting a quadratic poly-
nomial to the unit sphere. If such a surface is subject to a rigid body motion, then the Gauss image
of the characteristic curves is shown to be a spherical quartic curve, making them accessible to
exact geometric computation. In particular we analyze the case of moving surfaces of revolution.

Key words: envelope, characteristic curve, support function, parameterization.

1 Introduction

Envelopes of moving surfaces are needed for computing the swept volume which is
traced out by a moving solid. They can be obtained by collecting the characteristic
curves, where the moving surface touches its envelope at a given time. In Robotics,
these computations are related to the problem of collision detection. Other applica-
tions include the numerical simulation of milling processes, where the tool can be
modeled as a surface of revolution.

Abdel-Malek et al. [1] gave a detailed survey about swept volume computation
with many related references. Peternell et al. [5] computed the boundary of the swept
volume generated by a general moving object, which is assumed to be given as a tri-
angular mesh. Special attention is paid to the choice of the time-step for computing
the characteristic curves.

Envelopes of certain specific classes of surfaces have been analyzed in more
detail. Flaquer et al. [4] studied envelopes of moving quadric surfaces, in particular
moving planes, spheres, cylinders and cones. In all these cases, the characteristic
curves are algebraic space curves of degree 4. Xia and Ge [8] considered cylinders as
an example for milling tools and generated an exact representation of the boundary
surface.

We discuss the case of surfaces which are specified by their support functions.
These surfaces can explicitly be parameterized by its inverse Gauss maps and we
use this observation to characterize the characteristic curves. The case of surfaces
with quadratic support functions is discussed in detail, since they allow the exact

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 283–290.
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computation of the characteristic curves. General support functions can be approx-
imated by surfaces with piecewise quadratic ones, which are defined over a given
spherical triangulation. This should make it possible to extend the results of this
paper to more general objects.

2 Support Functions

We recall the support function representation of surfaces (see e.g. [6]). Consider a
given function h ∈ C∞(S2,R), where S2 denotes the unit sphere in R3. We use this
function to associate with each point n ∈ S2 the plane with the unit normal n and
oriented distance h(n) to the origin.

The envelope of the two-parameter family of planes obtained by varying n in S2

describe a surface and the given function h is called the support function of this
surface. For any h ∈ C∞(S2,R), a parameterization xh ∈ C∞(S2,R) of the surface
is given by its inverse Gauss map,

xh(n) = h(n)n+ (∇S2h)(n), (1)

where (∇S2h) is the intrinsic gradient of the support function h with respect to the
unit sphere S2. If the support function h is obtained by restricting a suitable function
h0 ∈ C∞(R3,R) to the unit sphere S2, then

(∇S2h)(n) = (∇h0)(n)− [(∇h0)(n) · n]n. (2)

This parameterization, whose domain is the unit sphere, can now be composed with
any parameterization of S2, e.g., by spherical coordinates.

In this paper we are particularly interested in the case where the support function
is the restriction of a trivariate quadratic polynomial to S2. We call the corresponding
envelopes quadratically supported surfaces (QSS). The class of QSS is closed under
translations, offsetting and rotations, as these geometric operations correspond to the
addition of constants and homogeneous linear polynomials, and to the composition
with rotations, respectively.

Example 1. Let n = (x, y, z)� and consider the two support functions

h(n) = x2 + y2 + 3

2
z2 and h(n) = x2 + y2 − z2. (3)

The associated QSS have the parametric representations xh(n) =⎛⎝−x3 − xy2 − 3
2xz

2 + 2x
−yx2 − y3 − 3

2yz
2 + 2y

−zx2 − zy2 − 3
2z

3 + 3z

⎞⎠ and

⎛⎝−x3 − xy2 + xz2 + 2x
−yx2 − y3 + yz2 + 2y
−zx2 − zy2 + z3 − 2z

⎞⎠ , (4)
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Fig. 1 Quadratically supported surfaces (QSS).

respectively. Both support functions describe surfaces of revolution, shown in Fig-
ure 1, and the profile curve of the second one is a special trochoid.

3 Motions, Velocities, Characteristics

As usual, we describe a rigid body motion by a time-dependent transformation

x′ = t(α)+ U(α)x (5)

between world coordinates x′ and moving coordinates x, where the parameter α
represents the time, the vector t(α) represents the translation of the origin, and the
special orthogonal matrix U(α) specifies the rotation. For an arbitrary but constant
value of α, we compute the velocity vector v′ of a fixed point x in the moving system

v′ = ṫ+ U̇x, (6)

where the dot indicates differentiation with respect to α and the argument α has
been omitted. This velocity is transformed into the moving system

v = U�v′ = U� ṫ+ U�U̇x = U� ṫ+ ω × x, (7)

where ω denotes the angular velocity.
We consider a surface in the moving space, which is assumed to be given by its

support function representation. The surface touches the envelope along the charac-
teristic curve. Let

vh(n) = U�ṫ+ ω × xh(n) (8)

be the velocity of the point xh(n), then the characteristic curve consists of all points
where the inner product of the velocity and the surface normal n vanishes,
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vh(n) · n = 0. (9)

In the case of a moving QSS, the Gauss image of the characteristic curve (i.e., the
spherical curve obtained by collecting the surface normals along it) is particularly
simple:

Theorem 1. The Gauss image of the non-degenerate characteristic curve of a mov-
ing QSS is a spherical quartic.

Proof. After substituting Eqns. (1), (2) and (8) into Eq. (9), one gets after a short
computation(

U�ṫ+ ω′ × (∇h)(n)
)
· n+ (h(n)− (∇h)(n) · n) (ω × n) · n︸ ︷︷ ︸

=0

= 0. (10)

If h is a trivariate polynomial of degree 2, then this equation is of degree 2. The
Gauss image of the characteristic curve consists of all surface normals that satisfy
Eq. (10) and n · n = 1. Consequently, it is either the intersection of two quadric
surfaces, or it degenerates into the entire unit sphere. �

Summing up, the Gauss image of the characteristic curve is the zero set of the two
quadratic polynomials

f (n) =
(
U�v̇+ ω′ × (∇h)(n)

)
· n and g(n) = n� · n− 1. (11)

The envelope surface can be generated by collecting all characteristic curves ob-
tained for different values of α and transforming them into world coordinates.

4 Characteristic Curves for QSS of Revolution

In this section we compute a parameterization of the characteristic curve for a fixed
time α. Its Gauss image is the intersection curve of the two quadrics defined by the
quadratic polynomials in Eq. (11).

Dupont et al. [3] described a sophisticated algorithm for the computation of a
near-optimal parameterization of the intersection curve of two quadric surfaces. This
algorithm assumes that the coefficients of the two quadratic equations belong to the
field Q of rational numbers. The intersection curve is parameterized with the help
of square-root functions of certain polynomials, which belong to the ring of polyno-
mials over a special field extension of Q. In the most general case, the computation
of the exact parameterization requires the solution of a quartic equation, and the
corresponding field extension.

In the remainder of this paper we restrict ourselves to QSS which are surfaces of
revolution with respect to the z-axis. The support function then takes the form

hR(n) = a(x2 + y2)+ bz2 + cx + dy + ez+ f. (12)
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We assume that the coefficients a, b, c, d, e, f are in the field Q of rational numbers,
and that the components of the angular velocity ω and the translational velocity ṫ
are also from this field.

Lemma 1. There exists a point P on the Gauss image of the characteristic curve
with coordinates in the field extension Q(

√
r), where r is an integer.

Proof. We consider an arbitrary but fixed rational number z0. If we substitute
z = z0 in Eq. (11), then this equation becomes linear in the remaining variables x
and y. Indeed, quadratic terms in Eq. (11) may be present only in [ω′ × (∇hR)(n)] ·
n = [(∇hR)(n)× n] · ω′, and a short computation confirms that

(∇hR)(n)× n =
⎛⎝ 2(a − b)yz0 − ey + dz0

2(b − a)xz0 + ex − cz0
cy − dx

⎞⎠ . (13)

Consequently, the points on the Gauss image of the characteristic curve with z = z0
can be found by solving a single quadratic equation. Since the Gauss image of the
characteristic curve is always non-empty, it is possible to choose z0 such that real
solutions exist. �

Based on this result we compute a parameterization of the Gauss image of the char-
acteristic curve by the Enhanced Levin’s method of [7], which is summarized below:

1. Find a real point P on the intersection curve f (n) = g(n) = 0. This point serves
as the center of the stereographic projection into the xy-plane (another plane may
be used).

2. Let Q = (ξ, η, 0)�. The image of the spherical quartic under the stereographic
projection is the planar cubic curve defined by the cubic polynomial

c(ξ, η) = Resultant

(
1

t
f (tQ+ (1− t)P), 1

t
g(tQ+ (1− t)P ; t

)
. (14)

3. Find a square-root parameterization of c(ξ, η) = 0 and project it back onto the
unit sphere.

The first part of the last step will be explained in more detail. First we find a point
R on the cubic curve. For instance, it can be chosen as the intersection point of the
curve tangent at P with the xy-plane. In this case, the coordinates of R are again in
Q(
√
r). We then consider the pencil of lines(

ξ(s, t)

η(s, t)

)
= t

(
1
s

)
+ (1− t)R, (s, t) ∈ R, (15)

and substitute into the cubic polynomial c(ξ, η) = 0. After factoring out the trivial
solution t = 0, we solve the resulting equation, which is quadratic in t , for t and get
a solution of the form

t (s) = k(s)±√�(s)
m(s)

, (16)
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Fig. 2 Characteristic curves on a moving non-convex QSS of revolution.

where the three polynomials k(s), �(s) andm(s), which possess the degrees 2, 4 and
3, respectively, belong to the ring of polynomials over the field extension Q(

√
r).

The projection of the cubic back onto the sphere, and the computation of the
characteristic curve by substituting the result into Eq. (1) involves only rational op-
erations. We summarize the results of this section.

Theorem 2. The characteristic curve of a QSS of revolution, where the coefficients
of the support functions and the components of velocity and angular velocity are
rational numbers, possesses a parameterization(

r1(s,
√
�(s)), r2(s,

√
�(s)), r3(s,

√
�(s))

)�
. (17)

The rational functions ri : R2 → R, i = 1, 2, 3, and the quartic polynomial �(s)
have coefficients in the field extension Q(

√
r), where r is an integer.

5 Examples

Example 2. We consider a motion with ṫ(α) = (1, 1, 0)� and

U = 1

9

⎛⎝ 5 cosα + 4 2− 2 cosα − 6 sinα 4− 4 cosα + 3 sinα
2− 2 cosα + 6 sinα 8 cosα + 1 2− 2 cosα − 6 sinα
4− 4 cosα − 3 sinα 2− 2 cosα + 6 sinα 5 cosα + 4

⎞⎠
(18)

and apply it to the non-convex QSS of revolution from the second section. Figure 2
shows several positions of the moving non-convex surface and the corresponding
characteristic curves.

In order to obtain expressions with rational coefficients, we substitute both
sin α = 2β/1+ β2 and cosα = 1− β2/1+ β2 in U�, while U�U̇ is a constant
matrix, as U describes a uniform rotation with axis direction (2, 1, 2)�. As an ex-
ample, we consider β = 2, i.e., α ≈ 0.927, where the two quadratic equations,
which define the Gauss image, are

f = 15x − 20xz− 9y + 40yz+ 12z and g = x2 + y2 + z2 − 1. (19)
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Fig. 3 Several characteristic curves of
a moving convex QSS of revolution,
forming the envelope surface.

A possible center of projection is found after choosing z0 = 1
2 ,

P =
(
−15

73
+ 77

292

√
6, −33

73
− 35

292

√
6,

1

2

)�
. (20)

After projecting the spherical quartic into a planar cubic we obtain a parameteriza-
tion of the form c(s) = (c1(s), c2(s), 0), where

ci(s) = Ai(s)+ Bi(s)√C(s)
438D(s)

(21)

with certain polynomialsAi , Bi , C andD with coefficients in Q(
√

6). For instance,

D(s) = 5032323912s3+ (7828867480
√

6+ 7806587880)s2 (22)

+ (4537170456
√

6+ 46260368554)s+ 10293044615
√

6+ 24121304410.

Finally, the coordinates of the characteristic curve in the moving system are given
by expressions of the form(

p7(s)
√
C(s)+ p9(s)

) (
p16(s)

√
C(s)+ p18(s)

)(
p4(s)

√
C(s)+ p6(s)

)3
(p3(s))

3
, (23)

where pi represents a polynomial of degree i with coefficients in Q(
√

6).

Example 3. We performed a similar computation for a screw motion of the convex
surface. The resulting characteristic curves are shown in Figure 3.

Example 4. We modeled a robot-like structure by composing three spheres and two
non-convex QSS. This structure performs a motion which is generated by two uni-
form rotations of the arms. Figure 4 shows some characteristic curves which are cre-
ated during this motion. A collision detection can now be done by checking intersec-
tions between the characteristic curves and the environment. This type of robot-like
structures could be used as bounding volumes for real mechanical devices.
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Fig. 4 Characteristic curves of
several positions of a moving
robot-like structure, forming the
envelope surface.
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Abstract. Actuators based on Dielectric Elastomer films have been rising as a promising techno-
logy in robotic and mechatronic applications. Their overall behavior is highly influenced by the
geometry and structural properties of the frame that is coupled with the active film. In this paper, a
compound-structure compliant frame is proposed with the aim of obtaining an actuator capable of
providing a quasi-constant force over a certain range of motion. A “diamond” shaped frame, de-
signed to support the pre-stretched active film, is coupled with a “delta” shaped element, designed
to modify the overall actuator stiffness and improve its performance. Both the diamond and the
delta element are fully compliant mechanisms whose main structural parameters are calculated us-
ing pseudo-rigid-body models and then verified through finite element analysis. Simulations show
promising performance of the proposed actuator.

Key words: dielectric elastomer actuators, frame design, compliant mechanisms.

1 Introduction

Dielectric Elastomers (DE) belong to the class of smart materials widely known as
electroactive polymers (EAPs) and can be used for linear actuation in robotics and
mechatronics. DE are used as films that need to be coupled with a supporting frame
whose structural characteristic and geometry highly influence the overall actuator
performances. Objective of the present paper is to design a compound-structure flex-
ible frame which enables obtaining an actuator capable of providing a quasi-constant
force over a certain range of motion. In particular, a compliant “diamond”, similar
to the one adopted in Plante (2006), is coupled with a compliant “delta” mechan-
ism (Figures 1(a) and 1(b)), in order to modify the DE actuator output and obtain
a constant force over a given displacement. A pseudo-rigid-body model (PRBM)
(Howell, 2001) of the system is then derived and used for a first attempt sizing of
the flexible hinges.

Finally, some finite element analysis (FEA) results are reported, that confirm the
expected behavior of the proposed frame.

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 291–299.
© Springer Science+Business Media B.V. 2008
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Fig. 1 Concept behind the proposed solution. 3D model (a), assembly exploded view (b), and
compound-structure frame schematic (c).

2 General Aspects of Frame Design

In general, the film deformation produces a variation of the actuator length
l = |(P − O)|, where P and O are, for instance, two points of the actuator ly-
ing on its axis of symmetry (Figure 1(c)), and a force having the same direction of
vector OP that can be supplied to an external user. This force, called the actuator
available thrust, Fa , is the resultant of two internal forces:

• The frame reaction force, Fs , due to the frame own stiffness, that is a function of
the actual actuator configuration. The flexible frame behaves, in general, like a
non-linear compression spring coupled in parallel with the DE.

• The DE film force Ff which represents the resultant force in the direction of
actuation defined by vector OP due to the stress field arising in the DE. This
field depends on the amount of given pre-stretch, on the applied electric potential
(voltage), and on the actuator configuration. If material viscoelasticity and hys-
teresis are neglected, the film behaves, in general, as a non-linear tension spring.
Figure 2 plots the theoretical film force against the actuator length l = l0 + x
for a diamond shaped DE, where l0 is the actuator initial length under no load
and no voltage and x is the actual actuator stroke. It can be seen that a voltage
application (DE film activation) causes the force Ff to drop (Plante, 2006).

The force Fa is therefore given by the difference between the film and the frame
force (Fa = Ff − Fs ). Conventionally,Fa is the force that an external user supplies
to the actuator.

Assuming the film electromechanical characteristics as given, the elastic frame
stiffness can be designed in order to obtain an actuator capable of providing a
quasi-constant force over a given range of motion. Let us suppose to couple the DE
with a compliant mechanism whose elastic reaction force increases as the distance
|P − O| increases during the actuator outstroke. The operating principle is illus-
trated in Figure 3 where the moduli of the forces are shown. An actuator working
cycle (Vogan, 2004) is represented by the path ABB ′′A′′. Three different curves
for Fs are represented assuming that the actuator stroke x and the initial length l0
are invariant. Let us consider first, a frame force-position (FP) curve depicted by
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Fig. 2 Diamond shaped DE film force under different actuation voltages, Material = VHB4905,
r2 = 55 mm (Figure 5), DE film thickness t = 1.5 mm, pre-stretch ratio in the thrust direction
λ1 = 2.2, pre-stretch ratio in the direction perpendicular to the trust direction λ2 = 5, stress field
based on a first order Ogden model (Ogden, 1972).
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Fig. 3 FP curves qualitatively showing the moduli of Ff and Fs .

the curve s1, where the frame configuration is defined as the length l = |P − O|.
It can be seen that, for a large part of the stroke, Fa maintains a constant value,
F on
a , equal to the distance B ′C1 if the DE film is activated, whereas it maintains a

constant value, F off
a , equal to the distance A′C1 if the DE film is inactivated. If the

actuator is required to supply a larger thrust when the DE film is active (actuator on
ON-state mode), a frame FP profile alike curve s2 can be chosen, so as to increase
F on
a from B ′C1 to B ′C2 (and consequently decrease F off

a ). The actuator thrust on
ON-state mode F on

a is maximized by designing a frame that provides a FP profile
alike curve s3. In such a case, however, no restoring force can pull back the actuator
to its initial position when the voltage is switched off (actuator on OFF-state mode)
and a returning device has to be provided. Alternatively, the frame can be designed
to maintain a restoring force, F off

a , to a minimum sufficient to overcome the actuator
internal dissipative forces during the backstroke; this last solution will be sought for
hereafter.
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One way to achieve the wanted result is to couple a given frame geometry (e.g. a
diamond, see Figure 1(b)) that optimizes the DE film behavior under activation with
an additional mechanism capable of modifying the overall actuator FP profile. In
the case of coupled mechanisms, the resultant frame force Fs is the sum of the force
Fsd , generated by the frame that supports the DE film, and the force Fsc, generated
by the additional mechanism.

With regard to preferable geometries of DE supporting frame, previous work
by Plante (2006) and Vogan (2004), demonstrated that diamond shaped compliant
mechanisms exhibit good characteristics in terms of DE properties exploitation. For
such geometries, since the obtainable Fsd monotonically increases during the actu-
ator outstroke, the additional mechanism should provide a force Fsc whose value
decreases along a relevant part of the actuator outstroke. In general, this behavior
is exhibited by mechanisms characterized by unstable equilibrium positions at cer-
tain configurations. Plante (2006) and Vogan (2004) proposed the use of a bistable
“snap through buckled beam” element or the use of an “over the center” mechan-
ism. The authors themselves remarked both the advantages and the critical aspects
of such designs. Our proposal is to couple a compliant “diamond” with a double
slider-crank mechanism, which reaches an unstable configuration when the crank is
perpendicular to the slider direction of motion. Both the diamond and the delta are
fully compliant mechanisms that need to be suitably sized for the specific applica-
tion.

3 Analytical Model Development

As previously stated, the actuator available thrust is given by:

Fa(V, x) = Ff (V, x)− Fs(x) (1)

where x is the actuator stroke and V is the voltage applied to the DE film. Fs is also
given by:

Fs(x) = Fsd(x)+ Fsc(x) (2)

Fsd and Fsc being forces supplied by the diamond frame and the delta mechanism
respectively. The engineering drawing of the diamond frame is depicted in Figure 4;
it features rigid links connected by elastic joints (small-length flexural pivots). In
order to allow a comparison with previously published results, the diamond mech-
anism size, initial length, and stroke are the same as those described in Plante (2006).
Due to the symmetry of both mechanism and load, the diamond frame of Figure 4
can be schematized as the mechanism depicted in Figure 5(a) where

⊕
means flex-

ural hinge. In addition, half frame can be modeled as a slider-crank mechanism
(Figure 5(b)).

A PRBM is used to derive the FP relationship as a function of the flexure com-
pliances. The torques Ti due to the deflection of the small-length flexural pivots are
given by:
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Fig. 5 Diamond frame schematic (a) and slider-crank mechanism half diamond model (b).

Ti = −Ki i, i = 1, . . . , 3, (3)

where, with reference to Figure 5, ϑ2 is the crank angle, ϑ3 is the connecting rod
angular position, r2 and r3 are crank and connecting rod lengths respectively (Fig-
ure 5(a)), ϑ20 and ϑ30 are the uninflected positions of the elastic joints, K1, K2,
K3 are the torsional stiffnesses of the pivots to be designed, and  1 = ϑ2 − ϑ20,
 2 = (ϑ2 − ϑ20)− (ϑ3 − ϑ30),  3 = ϑ3 − ϑ30.

The diamond frame is designed such that r3 = r2. From the mechanism position
analysis the following relationships are found:

ϑ3 = 2π − ϑ2, l0 + x = 2r2 cos(ϑ2) (4)

If the compliant diamond frame is formed by a monolithic piece, then
ϑ30 = 2π − ϑ20. The FP relationship can be found using the principle of virtual
work (Howell, 2001), and solving for the output force as a function of the crank
angle:

Fsd = −Keq

r2

(ϑ2 − ϑ20)

sin(ϑ2)
(5a)
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Fig. 7 Delta element schematic (a), slider crank mechanism half model (b).

where

ϑ2 = acos
(
x + l0

2r2

)
, Keq = K1 +K3 + 4K2, (5b)

and l0 is the initial actuator length under no applied load and no voltage. Equa-
tion (5a) shows that the frame force, in the output direction, is highly affected byK2,
the stiffness of the external pivots (see Figure 4). Supposing K1 = K3 = 0 (living
hinges) thenK2 = Keq/4. From the value ofK2, the dimensions of the small-length
flexural pivots can be derived. Supposing the flexures being straight beam hinges
with rectangular cross section then Ki = EIa/L, where E is the frame material
Young modulus, L is the length of the small-length flexural pivot, and Ia = h3w/12
is the moment of inertia of the pivot cross sectional area with respect to the axis a
(h and w being pivot thickness and width respectively, whereas a is the barycentric
axis parallel to the width).

With regard to the “delta” element, its engineering drawing is depicted in Fig-
ure 6. It features four beams, considered as perfectly rigid, connected by six elastic
joints. The delta frame can be modeled as a double slider-crank mechanism with
rotational springs on the slider pivots (Figure 7(a)). Due to symmetry, half frame
can be modeled as a single slider-crank mechanism (Figure 7(b)). The torque due to
the deflection of the flexural pivot is given by:
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Fig. 8 Diamond frame FP curves, ϑ20 = 55◦, r2 = 55 mm (a) and delta element FP curves,
ϑ30c = −38◦, r2c = 33 mm, r3c = 46.5 mm.

T3c = −K3c 3c (6)

where, with reference to Figure 7, ϑ2c is the crank angle, ϑ3c is the connecting rod
angular position, r2c and r3c are the crank and the connecting rod lengths respect-
ively (Figure 7(a)), ϑ30c is the uninflected position of the flexural pivot, K3c is the
pivot torsional stiffness to be designed, and  3c = ϑ3c − ϑ30c. From the position
analysis of the mechanism, the following relationships are found:

ϑ3c = asin
(−r2c sin(ϑ2c)

r3c

)
, ϑ2c = acos

(
(x + l0)2 + r2c2 − r3c2

2xr2c

)
(7)

The delta length and the diamond length are constrained to be equal by design (Fig-
ure 1(c)). Solution of the slider-crank mechanism via the principle of virtual work
leads to the following FP relationship for the delta element:

Fsc = 2K3c

r3c

(ϑ3c − ϑ30c) cos(ϑ2c)

sin(ϑ2c − ϑ3c)
(8)

Figures 8(a) and 8(b) show the FP curves of the compliant mechanisms as a func-
tion of the parametersK2 andK3c respectively. In particular Figure 8(a) shows that
the diamond is capable of supplying negative forces in virtue of its own stiffness
(K2 �= 0) whereas Figure 8(b) shows that the delta FP curves are close to a straight
line with a negative slope around the unstable equilibrium point (USP). From Fig-
ures 2, 8(a), and 8(b), it can be seen that a proper choice of K2 and K3c makes
it possible to conceive a quasi constant force actuator capable of sustaining com-
pressive forces. In particular K2 is chosen such that the film force under no voltage
and the diamond reaction force have the same moduli around the USP of the delta
element whereas K3c is chosen so as to flatten the “film + diamond” FP curve. The
characteristic dimensions of the final frame design are found by a trial and error
procedure based on the analytical model developed. Final design data (including
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Table 1 Frame structural parameters.

Parameter Diamond frame Delta element

Characteristic dimensions K2 = 0.094 Nm/rad K3c = 0.450 Nm/rad
ϑ20 = 55◦ ϑ30c = −38◦
r2 = 55 mm r2c = 33 mm, r3c = 46.5 mm

Material Delrin Polypropylene
Flexural pivots (w × h × l) 1 × 1 × 2.8 (mm) 1.5 × 1.5 × 1.5 (mm)
Living hinges (w × h × l) 1 × 0.2 × 0.8 (mm) 1.5 × 0.2 × 1.2 (mm)

Stiffness ratio between 35 337
flexural pivot and living hinge
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Fig. 9 Analytical FP curves showing DE film force Ff and overall frame force modulus |Fs | (final
design) (a), DE actuator FP curves when coupled with the delta element (final design) (b).

materials) are reported in Table 1. Figures 4 and 6 show the diamond and the delta
element in the rest configuration.

In order to validate the above mentioned analytical results, neo-Hookean material
constitutive models of both diamond frame and delta element final designs were ana-
lyzed through the finite element method. As depicted in Figures 8(a) and 8(b), the
FEA results (dotted line) show good agreement with the behavior predicted by the
PRBM for most of the usable actuator stroke. Note that the discrepancies between
FEA and PRBM results, which can be seen in Figure 8(b) for delta lengths below
30 mm, are due to the large deflections, and thus moments, arising in the living
hinges when the delta is mostly folded. Indeed, such bending moments are not ac-
counted for in the PRBM and are overestimated by the Neo-Hookean model used
in the FEA. The FP relationship of the overall frame force Fs is plotted in modulus
against the theoretical DE film force Ff in Figure 9(a). The frame behavior is as
expected (similar to curve the s3 in Figure 3). Figure 9(b) shows the overall actuator
FP curve (compound-structure frame coupled with the DE film). The backstroke
available thrust keeps a value close to zero over the range 24–36 mm (in this range
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a maximal deviation by 0.15 N is admitted). In order to prevent the actuator from
working in the non-linear range, mechanical stops can be provided.

4 Conclusions

A novel design for a dielectric elastomer actuator has been proposed. The well
known “diamond” actuator has been coupled with a “delta” compliant mechan-
ism in order to obtain a constant available thrust over a certain range of motion.
Both the coupled compliant mechanisms were sized on the basis of pseudo-rigid-
body models and the chosen designs were verified using finite element analysis. The
overall behavior of the actuator model confirms that compound-structure frame can
be a efficient tool as long as the additional mechanism can be tailored to achieve
specific response without any need to modify the basic frame geometry. Further
important issues still deserve an in-depth investigation, such as, for instance, the
achievable fatigue life and the actuator weight to power ratio obtainable using such
a compound-structure frame.
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Abstract. The direct kinematic problem in parallel manipulators has multiple solutions that are
traditionally called assembly modes. Non-singular transitions between some of these solutions
have been detected and shown in the past. Cusp points have been defined as special points on the
projection of the singularity curve onto the joint space that have the property of allowing such a
non-singular transitions when encircling them. In this paper the authors will show that the condi-
tion for such a transition is more general. Authors also argue about the need for a differentiation
between the concept of assembly mode and solution of the direct kinematic problem.

Key words: planar parallel manipulators, singularities, assembly modes, configuration space,

cusp points.

1 Introduction

In general, parallel manipulators have multiple solutions of the Direct Kinematic
Problem (DKP) that are called assembly modes. Singularities of the DKP are found
by analysis of the conditions that make the determinant of the DKP Jacobian,
|JDKP |, vanish. These singularities are very important because the platform be-
comes uncontrollable. The DKP singularity locus divides the configuration space
into parts with a different sign of |JDKP |.

Therefore, a DKP singular configuration is reached when several DKP solutions
coalesce at the same posture, i.e. the solution has a multiplicity equal to two or
higher [5]. The hypothesis that two assembly modes were separated by one of these
singularities was proposed also in [5]. Hence, any path joining two distinct DKP
solutions should cross one of these singular postures.

However, in [6] it was shown on the 3-RPR planar parallel manipulator that this
assumption was not always verified. The use of the configuration space was pro-
posed in [9] to show these transitions by plotting one output variable against two
inputs (with the third input constant). Some special points on the projection of the
singularity locus onto the joint space, where three DKP solutions simultaneously
coalesce, were found and called cusp points. A non-singular transition of DKP solu-

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 301–310.
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tion was possible by encircling them, and a procedure to check them was also given
in [9].

Concepts such as aspects, i.e. the maximal singularity free domains where more
than one DKP solution can be found, and uniqueness domains, where only one DKP
solution exists, were introduced in [2, 3, 10]. Further explanations on how it is pos-
sible to make a non-singular change of assembly mode in this kind of robots, called
cuspidal, have been provided in [7,12,13]. The first example of a planar parallel ma-
nipulator performing a non-singular transition between two DKP solutions without
encircling a cusp point in the singularity curves of the joint space was pointed out
in [1].

In the present paper, we propose a more general condition for such transitions,
and argue about the convenience of the current definition of assembly mode. To
illustrate this new type of transition between DKP solutions, the 3-PRR planar plat-
form will be used. The main difference between this manipulator and the widely
referenced 3-RPR platform is the existence of multiple Inverse Kinematic Problem
(IKP) solutions or working modes (in the 3-PRR). The only other cuspidal planar
platform with this latter property analyzed up to date is the 3-RRR robot [4].

IKP singularities, where the determinant |JIKP| vanishes, are workspace bound-
aries. At these postures, a dependence among the output variables of the platform
is verified, so they may be considered inappropriate at an operational level due to
manipulability restrictions. However, they do not imply a loss of control of the robot.

Each working mode has its own DKP singularities which divide the workspace
into a set of singularity free regions associated with positions with different sign
of |JDKP|. A common practice in the use of manipulators is to keep them at all
time in the same singularity free region, so the practical workspace remains limited.
However, in [8] it was explained how several singularity free regions associated to
different working modes can be joined to achieve a larger practical workspace. IKP
singularities are considered as gates which allow the transition among singularity
free regions associated to different working modes without risk of uncontrollability.

2 Showing Transitions on a Reduced Configuration Space

The configuration space is the locus of postures of a mechanism in a mixed domain
which includes input and output variables simultaneously. Its projections onto the
input or output variables spaces are the joint space and workspace respectively. The
aforementioned projections can be used to plot the singularity locus and locate mul-
tiple solutions of the DKP. For the 3-RPR planar parallel manipulator used in [6]
these plots are shown in Figures 1 and 2.

In this manipulator, the singularity locus is a surface that splits the workspace
into two unconnected subspaces of postures with different sign in the |JDKP|. The
number of different solutions of the DKP in this manipulator is six at most (Si in
Figure 1b), and are equally distributed at both sides of that singular surface. There-
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Fig. 1 (a) 3-RPR planar parallel manipulator. (b) Singularity locus and multiple DKP solutions Si
in the workspace (for L1 = L2 = L3 = 15).

Fig. 2 (a) Singularity locus in the joint space. (b) Section at a constant value of input L1.

fore, two DKP solutions of the same sign could be joined by non-singular paths [7]
(as from S1 to S2 in Figure 1b).

In the joint space (Figure 2a), if an input L1 is taken constant, a plane section
is obtained with some singular curves (Figure 2b). A cusp point Ci corresponds
to the coalescence of three assembly modes. Encircling it produces a non-singular
transition between two solutions of the DKP with the same sign of the |JDKP| [9].

However, McAree and Daniel [9] and Zein et al. [13] showed that if an input
variable, e.g. L1, is kept constant and one output variable, e.g. θ , is plotted against
inputs L2 and L3, it is possible to get a reduced configuration space that is more
suitable to show non-singular transitions of assembly mode. To obtain the reduced
configuration space equation, ζ(L2, L3, θ) = 0, it is necessary to make an algebraic
manipulation of the 3-RPR loop closure equations and provide a certain constant
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Fig. 3 (a) 3-RPR reduced configuration space. (b) Projection onto the joint space.

value for the input L1:

(x − Ax1)2 + (y − Ay1)2 = L1
2, (1)

(x + h2 cos(θ)− Ax2)2 + (y + h2 sin(θ)− Ay2)2 = L2
2, (2)

(x + h3 cos(θ + α)− Ax3)2 + (y + h3 sin(θ + α)− Ay3)2 = L3
2. (3)

This subspace is a surface as in Figure 3a. Multiple solutions of the DKP are the
intersections with a vertical line (L2, L3), and a path between them is shown as a
curve on that surface. DKP singularity curves are given by the points in that surface
with horizontal normal and for this example split the surface in two by the sign of
|JDKP| as mentioned above.

The projection of the DKP singularity curves in Figure 3a on the L2L3 plane is
depicted in Figure 3b, that is the same plot obtained in Figure 2b as a section of the
singularity locus in the joint space. One non-singular path joining two solutions of
the DKP is also projected and encircles the cusp point Ci .

In many occasions these singularity curves split the surface in several unconnec-
ted sheets (four sheets in Figure 4a), each for an assembly mode, and here it comes
the hypothesis in [5]. However, in [9] it was shown that when the nonlinear system
of DKP equations has a threefold root, the surface is folded like in Figure 4b. Then,
three solutions of the DKP coalesce in one point Ci , i.e. a DKP solution with multi-
plicity three. Therefore, it is possible to come up with a non-singular path that joins
two assembly modes with the same sign by encircling such a point Ci .

3 A General Condition for Non-Singular Assembly Mode
Changing

This representation of the reduced configuration space as a surface suggests the idea
of a more general condition for non-singular transitions between multiple solutions
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Fig. 4 Reduced configuration space. (a) Unconnected sheets. (b) Folded sheet.

Fig. 5 Another type of folding of the configuration surface.

of the DKP. For example, an helicoidal folding of the surface as shown in Figure 5
could also be valid, and may be other possibilities exist. The projection of the singu-
larity curve on the joint plane would not have a cusp point but another characteristic
point at a loop of the projected curve, a double point, Di . At this point there are
two couples of solutions of the DKP that coalesce simultaneously, i.e. two distinct
solutions of multiplicity two.

The reduced configuration space of the previous section is a part of the config-
uration space (L1 constant), therefore checking the existence of a folding of the
helicoidal type requires an iterative search with all values of L1. The 3-RPR planar
parallel manipulator does not have such a folding, and it can be checked in every
possible plane section of the singularity locus plotted in the joint space in Figure 2a.
Other planar manipulators such as the 3-RRR and the 3-PRR have it. A 3-PRR
planar manipulator with a parallel layout of the sliding guides will be used (Fig-
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ure 6a). This topology, firstly proposed in [1] has two advantages, it presents such
helicoidal surface and the surface has the same shape for any value given to input
s1. The constraint equations for this example are:

(x − s1)2 + y2 = L1
2, (4)

(x + R√3 cos(θ)− s2)2 + (y + R
√

3 sin(θ))2 = L2
2, (5)(

x + R√3 cos
(
θ + π

3

)
− s3

)2 +
(
y + R√3 sin

(
θ + π

3

)
−H

)2 = L3
2. (6)

Doing an algebraic manipulation of Eqs. (4), (5) and (6), the following expres-
sions are obtained:

x = λ(s1, s2, s3, θ), (7)

y = µ(s1, s2, s3, θ). (8)

And finally, introducing Eqs. (7) and (8) into Eq. (4), the reduced configuration
space equation is achieved (the extended form of this equation is not shown due to
its complexity):

ζ(s1, s2, s3, θ) = 0. (9)

Once the geometric parameters are defined, Eqs. (9), (7) and (8) can be used to
solve the DKP, which is known to have multiple solutions. Given the values of the
input variables si it is possible to find several ways of assembling the mechanism,
defined by different values of the output variables x, y and θ . This kind of ma-
nipulator can have a maximum of six different DKP solutions. In a general case,
parameters si and θ are enough to define completely the configuration of the robot.
There is only one case where the procedure shown is not applicable, when a degen-
eracy of the DKP occurs and Eqs. (7) and (8) cannot be obtained [11]. In this case,
another output parameter different from θ should be used to plot the configuration
space surface.

For a null value of s1, the resultant implicit function ζ(s2, s3, θ) = 0 can be
depicted as the surface shown in Figure 6b. The singularity curves are given by
points with horizontal normal on this surface, namely:

ζ(s2, s3, θ) = 0, (10)
∂ζ

∂θ
= ξ(s2, s3, θ) = 0. (11)

One of the sheets of the surface folded helicoidally is shown in more detail in Fig-
ure 7 along with a path connecting two solutions of the DKP, completely contained
in such a sheet and not encircling a cusp point. In the case of a manipulator present-
ing multiple IKP solutions like this one, each sheet is composed by several adjacent
regions associated with the different working modes of the manipulator. These re-
gions are separated by the IKP singularity curves. When postures with |JIKP| = 0
are reached, a dependence among the output velocities is achieved, so there are ma-
nipulability restrictions, but this does not imply a risk of uncontrollability as in a
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Fig. 6 (a) 3-PRR manipulator. (b) Reduced configuration space.

DKP singularity. Moreover these postures allow the transition between regions as-
sociated with the eight different working modes of this manipulator, enlarging the
practical workspace. The path shown in Figure 7 crosses IKP singularity curves, so
it may not be theoretically considered a non-singular transition between two DKP
solutions, but since it is completely contained in a DKP singularity free sheet, the
control of the robot is never lost. The sequence of input values for the elliptical path
shown in Figures 7 and 8 is given by the following parametric expressions:

s2 = 17.5+ 5 cos(t) cos(9π/2)− 2.7 sin(t) sin(9π/2), (12)

s3 = 9+ 5 cos(t) sin(9π/2)+ 2.7 sin(t) cos(9π/2). (13)

with parameter t going from one DKP solution at t1 = −π/8 to another solution at
t7 = −π/8− 2π , corresponding to the inputs: s1 = 0, s2 = 21.70 and s3 = 11.18.

As mentioned in the previous section, DKP singularity curves in that reduced
configuration space are the edges of the sheets in which the surface is divided. The
projection of the DKP singularity curves on the s2s3 plane can be obtained as an
equation ψ(s2, s3) = 0, which comes from the elimination of the output variable θ
from the system of equations given by Eqs. (10) and (11). Sometimes, those posi-
tions form a set of different closed curves ψi . In the example considered here, DKP
singularities are composed by three different closed curves in the reduced config-
uration space, and therefore, also in the projection over the joint space as shown in
Figure 8.

In this reduced joint space, this type of DKP solution changing imply the exist-
ence of a path encircling a loop in the singularity curve, as shown in Figure 8. In
fact, it could be considered that the existence of this loop and its associated double
point Di , is actually a more general mathematical condition than the existence of a
cusp point Ci , since the latter is a degeneracy of the former. Those special points
should be searched in each single closed curve. This process is necessary because
an analysis of the whole equation ψ(s2, s3) = 0 will provide points like ei in Fig-
ure 8 as double points. But those points come from the crossing of different edge
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Fig. 7 Non-singular assembly mode change without encircling a cusp point.

curves and do not allow the transition between DKP solutions. Taking into account
this issue, the mathematical conditions verified in double and cusp points are:

∂ψi/∂s2 = ∂ψi/∂s3 = 0 (or∞). (14)

It has been shown how it is possible to make a transition between certain DKP
solutions, namely those which are in the same DKP singularity free regions or
sheets. No way of physically distinguishing when a DKP solution becomes another
has been found. The transition between both DKP solutions is completely smooth.
Neither a DKP singularity is reached, nor the platform has to be disassembled.
Therefore, all the DKP solutions in the same sheet of the configuration space cannot
be distinguished in practice. This fact suggests that, may be the concepts of DKP
solution and assembly mode should be differentiated. On the one hand, the number
of DKP solutions is simply the number of different mathematical solutions of the
constraint equations’ system for given values of the input variables. On the other
hand, the number of assembly modes should be the number of isolated subspaces
into which the configuration space is divided by the DKP singularity locus.
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Fig. 8 Singularity locus in the joint space.

Hence, an assembly mode can be composed of more than one DKP solution,
namely, those which can be joined without losing control. Three types of transitions
between two different DKP solutions can be found. First, if both are located in dis-
joint surfaces of the configuration space, the mechanism needs to be disassembled
to change between them. Second, if they are in the same surface but in different
DKP singularity free sheets (Figure 4a), both solutions can be joined crossing a
DKP singularity. And third, if they are in the same DKP singularity free region, the
transition between them is done in a completely smooth way and there is no way of
distinguishing when exactly the assembly mode is changed, no matter if the working
mode (IKP solution) has changed or not (Figures 4b and 5). In the latter case both
solutions could be considered as belonging to the same assembly mode.

4 Conclusions

The concepts presented in this paper provide a better understanding on how differ-
ent solutions of the DKP, traditionally called assembly modes, can be joined without
losing the control of the robot, and hence without disassemble the mechanism. The
graphics shown have been used as an auxiliary tool to inspire the general mathemat-
ical conditions which characterize this problem. A procedure which allows to know
if a mechanism has the ability of doing this has been presented. Encircling a cusp
point is not the only way of doing a non-singular assembly mode change. A more
general way to do this is encircling a loop in the DKP singularity curves plotted
in the joint space. This loop is defined by the existence of a double point. A cusp
point is a degeneracy of such loop. These singularity curves have to be separated
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into simple closed curves to look for double points. It would be interesting to find
a way of posing the mathematical conditions in a symbolical form and then obtain
the relations among the different geometric parameters of the manipulator which
ensure the capability of passing between certain DKP solutions. Moreover, it has
been introduced the reason why the concept of assembly mode should be redefined.
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Abstract. This paper deals with a new planar parallel mechanism with variable actuation and its
kinetostatic performance. A drawback of parallel mechanisms is the non-homogeneity of kineto-
static performance within their workspace. The common approach to solve this problem is the
introduction of actuation redundancy, that involves force control algorithms. Another approach,
highlighted in this paper, is to select the actuated joint in each limb with regard to the pose of the
end-effector. First, the architecture of the mechanism and two kinetostatic performance indices are
described. Then, the actuating modes of the mechanism are compared.

Key words: parallel mechanism, regular dextrous workspace, variable actuated mechanism.

1 Introduction

A drawback of serial and parallel mechanisms is the inhomogeneity of the kin-
etostatic performance within their workspace. For instance, dexterity, accuracy and
stiffness are usually bad in the neighbourhood of singularities that can appear in the
workspace of such mechanisms. As far as the parallel mechanisms are concerned,
their inverse kinematics problem (IKP) has usually many solutions, which corres-
pond to the working modes of the mechanism [4]. Nevertheless, it is difficult to
come up with a large workspace free of singularity with a given working mode.
Consequently, a trajectory planning may require a change of the working mode by
means of an alternative trajectory in order to avoid singular configurations. In such
a case, the initial trajectory would not be followed. The common approach to solve
this problem is to introduce actuation redundancy, that involves force control al-
gorithms [1]. Another approach is to use the concept of joint-coupling as proposed
by Theingin et al. [15] or to select the actuated joint in each limb with regard to
the pose of the end-effector [2], as highlighted in this paper. Therefore, we intro-
duce a planar parallel mechanism with variable actuation, also known as variable
actuated mechanism (VAM). First, the architecture of the mechanism and two kin-
etostatic performance indices are described. Then, the actuating modes (AMs) of
the mechanism are compared based on their kinetostatic performance.

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis

© Springer Science+Business Media B.V. 2008
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Fig. 1 3-RRR PPM with variable actuation.

2 Preliminaries

This section deals with the kinematic modeling of a new variable actuated mechan-
ism (VAM), its singularity analysis, the presentation of some performance indices
and the concept of regular dextrous workspace.

2.1 Mechanism Architecture

The concept of VAM was introduced in [2, 15]. Indeed, they derived a VAM from
the architecture of the 3-RPR planar parallel manipulator (PPM) by actuating either
the first revolute joint or the prismatic joint of its limbs. This paper deals with the
study of a new VAM illustrated in Figure 1. This mechanism is derived from the
architecture of the 3-RRR PPM. As a matter of fact, the first link of each limb
of the conventional 3-RRR manipulator is replaced by parallelogram AiBiDiEi to
come up with the mechanism at hand. Accordingly, links AiBi and BiCi can be
driven independently, i.e., angles αi and δi are actuated and uncoupled, by means
of an actuator and a double clutch mounted to the base and located in point Ai ,
i = 1, 2, 3.
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Table 1 The eight actuating modes of the 3-RRR VAM.

Actuating mode number Driven links Active angles

1 RRR1-RRR2-RRR3 A1B1, A2B2, A3B3 α1, α2, α3
2 RRR1-RRR2-RRR3 A1B1, A2B2, A3E3 α1, α2, δ3
3 RRR1-RRR2-RRR3 A1B1, A2E2, A3B3 α1, δ2, α3
4 RRR1-RRR2-RRR3 A1E1, A2B2, A3B3 δ1, α2, α3
5 RRR1-RRR2-RRR3 A1B1, A2E2, A3E3 α1, δ2, δ3
6 RRR1-RRR2-RRR3 A1E1, A2E2, A3B3 δ1, δ2, α3
7 RRR1-RRR2-RRR3 A1E1, A2B2, A3E3 δ1, α2, δ3
8 RRR1-RRR2-RRR3 A1E1, A2E2, A3E3 δ1, δ2, δ3

It turns out that the VAM has eight actuating modes as shown in Table 1. Indeed,
the actuating mode of the mechanism depends on its actuated joints. For instance,
the first actuating mode corresponds to the 3-RRR mechanism, also called RRR1-
RRR2-RRR3 mechanism in the scope of this paper, as the first revolute joints (loc-
ated in point Ai) of its limbs are actuated. Likewise, the eighth actuating mode cor-
responds to the 3-RRR manipulator, also called RRR1-RRR2-RRR3 mechanism,
as the second revolute joints (located in point Bi ) of its limbs are actuated.

The moving platform pose of the VAM is determined by means of the Cartesian
coordinates (x, y) of operation point P expressed in frame Fb and angle φ, namely,
the angle between frames Fb and Fp. Moreover, the passive and actuated joints do
not have any stop. Points A1, A2 and A3, (C1, C2 and C3, respectively) lie at the
corners of an equilateral triangle, of which the geometric center is point O (point
P , resp.). The length of links AiBi and BiCi is equal to 3.0, i = 1, 2, 3. The length
of segmentA1A2 (C1C2, resp.) is equal to 10.0 (5.0, resp.). The unit is not specified
as absolute lengths are not necessary to convey the idea.

2.2 Kinematic Modeling

The velocity ṗ of point P can be obtained in three different forms, depending on
which leg is traversed, namely,

ṗ = α̇1E(c1 − a1)+ δ̇1E(c1 − b1)+ φ̇E(p− c1) (1)

ṗ = α̇2E(c2 − a2)+ δ̇2E(c2 − b2)+ φ̇E(p− c2) (2)

ṗ = α̇3E(c3 − a3)+ δ̇3E(c3 − b3)+ φ̇E(p− c3) (3)

with matrix E defined as

E =
[

0 −1
1 0

]
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ai , bi and ci are the position vectors of pointsAi , Bi and Ci , respectively. α̇i , δ̇i and
φ̇ are the rates of angles αi , δi and φ depicted in Figure 1, i = 1, 2, 3.

The kinematic model of the VAM under study can be obtained from Eqs. (1)-(c)
by eliminating the idle joint rates. However, the latter depend on the actuating mode
of the mechanism. For instance, δ̇1, δ̇2 and δ̇3 are idle with the first actuating mode
and the corresponding kinematic model is obtained by dot-multiplying Eqs. (1)-(c)
with (ci − bi )T , i = 1, 2, 3. Likewise, δ̇1, δ̇2 and α̇3 are idle with the second actu-
ating mode and the corresponding kinematic model is obtained by dot-multiplying
Eqs. (1)-(b) with (ci − bi )T , i = 1, 2, and Eq. (3) with (c3 − a3)

T .
The kinematic model of the VAM can now be cast in vector form, namely,

At = Bq̇ with t = [ṗ φ̇]T and q̇ = [q̇1 q̇2 q̇3]T (4)

with q̇ thus being the vector of actuated joint rates. q̇i = α̇i when link AiBi is
driven and q̇i = δ̇i when link AiEi is driven, i = 1, 2, 3. A and B are respectively,
the direct and the inverse Jacobian matrices of the mechanism, defined as

A =
⎡⎣ (c1 − h1)

T −(c1 − h1)
TE(p− c1)

(c2 − h2)
T −(c2 − h2)

TE(p− c2)

(c3 − h3)
T −(c3 − h3)

TE(p− c3)

⎤⎦ (5)

B = diag
[
(ci − bi )TE(bi − ai )

]
, i = 1, 2, 3 (6)

where hi = bi when link AiBi is driven and hi = ai when link BiCi is driven,
i = 1, 2, 3.

When A is non-singular, we obtain the relation

t = Jq̇ with J = A−1B (7)

Likewise, we obtain
q̇ = Kt (8)

when B is non-singular with K denoting the inverse of J.

2.3 Singularity Analysis

The singular configurations associated with the direct-kinematic matrix of PPMs are
well known [12]. For the 3-RRR PPM, such configurations are reached whenever
lines (B1C1), (B2C2) and (B3C3) intersect (possibly at infinity). For the 3-RRR PPM,
such configurations are reached whenever lines (A1C1), (A2C2) and (A3C3) inter-
sect. Consequently, the singular configurations associated with the direct-kinematic
matrix of the VAM are reached whenever lines (H1C1), (H2C2) and (H3C3) in-
tersect where Hi stands for Bi (Ai , resp.) when link AiBi (BiCi , resp.) is driven,
i = 1, 2, 3.

From Eq. (6), the singular configurations associated with the inverse-kinematics
of the VAM are reached whenever points Ai , Bi , and Ci are aligned.
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2.4 Performance Indices

We focus here on issues pertaining to manipulability or dexterity. In this regard, we
understand these terms in the sense of measures of distance to singularity, which
brings us to the concept of condition number in [9]. Here, we adopt the condition
number of the underlying Jacobian matrices based on the Frobenius norm as a means
to quantify distances to singularity and the transmission angle.

2.4.1 Condition Number

The condition number κF (M) of a m × n matrix M, with m ≤ n, based on the
Frobenius norm is defined as follows

κF (M) = 1

m

√
tr(MTM)tr

[
(MTM)−1

]
(9)

Here, the condition number is computed based on the Frobenius norm as the latter
produces a condition number that is analytic in terms of the posture parameters
whereas the 2-norm does not. Besides, it is much costlier to compute singular values
than to compute matrix inverses.

The terms of the direct Jacobian matrix of the VAM are not homogeneous as they
do not have same units. Accordingly, its condition number is meaningless. Indeed,
its singular values cannot be arranged in order as they are of different nature. How-
ever, from [11] and [13], the Jacobian can be normalized by means of a normalizing
length. Later on, the concept of characteristic length was introduced in [14] in or-
der to avoid the random choice of the normalizing length. For instance, the previous
concept was used in [5] to analyze the kinetostatic performance of manipulators
with multiple inverse kinematic solutions, and therefore to select their best working
mode.

2.4.2 Transmission Angle

The transmission angle can be used to assess the quality of force transmission in
mechanisms involving passive joints. Although it is well known and easily com-
putable for 1-DOF or single loop mechanisms [3, 8], it is not extensively used for
n-DOF mechanical systems (n > 1) [2].

The transmission angle ψi is defined as an angle between vectors of force Fci
and translational velocity Vci of a point to which the force is applied as illustrated
in Figure 2. When link AiBi is driven, the direction of force Fci is the direction of
link BiCi , namely,

γi = arctan

(
yCi − yBi
xCi − xBi

)
, i = 1, 2, 3 (10)
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Fig. 2 Transmission angle of the 3-RRR manipulator.

Table 2 Cartesian coordinates of instantaneous centres of rotation.

I1 I2 I3

xIi
b3 − b2

tan(γ2)− tan(γ3)

b1 − b3

tan(γ3)− tan(γ1)

b2 − b1

tan(γ1)− tan(γ2)

yIi
b3 tan(γ2)− b2 tan(γ3)

tan(γ2)− tan(γ3)

b1 tan(γ3)− b3 tan(γ1)

tan(γ3)− tan(γ1)

b2 tan(γ1)− b1 tan(γ2)

tan(γ1)− tan(γ2)

Conversely, when link AiEi is driven, the direction of force Fci is the direction of
line (AiCi), namely,

γi = arctan

(
yCi − yAi
xCi − xAi

)
, i = 1, 2, 3 (11)

The instantaneous centre of rotation depends on the leg under study. For example,
instantaneous centre of rotation I1 associated with leg 1 is the intersecting point of
forces Fc2 anf Fc3. Table 2 gives the Cartesian coordinates of instantaneous centre
of rotation Ii associated with the ith leg of the VAM, expressed in frame Fb, with
bi = yCi − xCi tan γi , i = 1, 2, 3. The direction of Vci is defined as,

βi = arctan

(
yCi − yIi
xCi − xIi

)
+ π

2
, i = 1, 2, 3 (12)

The transmission angle related to the ith leg of the VAM is defined as follows:
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ψi = |γi − βi |, i = 1, 2, 3 (13)

and the transmission angle ψ of the mechanism is defined as,

ψ = max(ψi), i = 1, 2, 3 (14)

Finally, the smaller ψ , the better the force transmission of the mechanism.

2.4.3 Regular Dextrous Workspace

A manipulator had better keep good and homogeneous performance within its work-
space. For that reason, the concept of regular dextrous workspace is introduced
in [6]. In fact, the regular dextrous workspace of a manipulator is a regular-shaped
workspace included in its Cartesian workspace with good and homogeneous per-
formance. As we focus on the kinetostatic performance of the VAM in the scope of
this paper, we consider only the condition number of its kinematic Jacobian matrix
and its transmission angle as performance indices.

3 Actuating Modes Comparison

For the VAM under study, the inverse condition number of its kinematic Jacobian
matrix, i.e., κ−1

F (J) with J defined in Eq. (7), varies from 0 to 1 within its work-
space W . Likewise, its transmission angle ψ , defined in Eq. (14), varies from 0 to
90◦ within W . From [2], a mechanism has good kinetostatic performance as long as
its transmission angle is smaller than 75◦. Let us assume that the kinetostatic per-
formance are good as well as long as κ−1

F (J) > 0.15. Therefore, we claim that the
VAM and its actuating modes (AMs) have good kinetostatic performance as long as
κ−1
F (J) is higher than 0.15 and ψ is smaller than 75◦.

First, let us compare the size of the workspace corresponding to AMs of the VAM
given in Table 1, based on the two previous kinetostatic performance indices. In this
vein, let us consider that the orientation, φ, of the moving platform of the VAM is
constant and the latter stays as far as possible from singular configurations, i.e., let
φ be equal to 17.5◦. From Table 3, we can notice that the size of the workspace
corresponding to the 2nd, 3rd and 4th AMs is the same. Likewise, the size of the
workspace corresponding to the 4th, 5th and 6th AMs is the same. This is due to
the symmetric architecture of the mechanism. Moreover, the largest workspace is
obtained with the 1st AM and the smallest one with the 8th AM. Finally, we can
notice that the two kinematic performance indices give similar results.

In order to compare the AMs of the VAM, we also assume that its regular dex-
trous workspace (RDW) is a cylinder, of which the section depicts the position (x, y)
of its moving platform and the height shows the rotation φ of the latter. Let φ vary
between 5◦ and 25◦. Figures 3a–e (Figures 4a–e, resp.) illustrate the kinetostatic
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Table 3 Ratio of the VAM actuating modes workspace size to the VAM workspace size with
κ−1
F (J) > 0.15 and ψ < 75◦, φ = 17.5◦ .

Actuating mode Workspace size ratio [%]

number κ−1
F (J) > 0.15 ψ < 75◦

1 88.27 83.16
2,3,4 75.33 71.93
5,6,7 62.26 70.76

8 52.15 71.86
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Fig. 3 RDW obtained with κ−1
F (J) > 0.15 of the (a) VAM; (b) 1st AM; (c) 2nd, 3rd and 4th AM;

(d) 5th, 6th and 7th AM; (e) 8th AM.

performance of the VAM and its AMs within the workspace based on κ−1
F (J) (ψ ,

resp.). The dark zones depict the positions of P , in which φ cannot vary continu-
ously between 5◦ and 25◦. The dark gray zones depict the positions of P , in which φ
can vary continuously between 5◦ and 25◦, but κ−1

F (J) (ψ , resp.) is not necessarily
higher (smaller, resp.) than 0.15 (75◦, resp.). The light gray zones depict the posi-
tions of P , in which φ can vary continuously between 5◦ and 25◦ and κ−1

F (J) (ψ ,
resp.) is higher (smaller, resp.) than 0.15 (75◦, resp.). Finally, the circles describe
the RDW of the VAM and its AMs based on κ−1(J) (ψ , resp.).

Table 4 gives RDW radius of the VAM and its AMs obtained with κ−1
F (J) > 0.15

and ψ < 75◦. We can notice that the results obtained with the two kinetostatic per-
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Fig. 4 RDW obtained withψ < 75◦ of the (a) VAM; (b) 1st AM; (c) 2nd, 3rd and 4th AM; (d) 5th,
6th and 7th AM; (e) 8th AM.

Table 4 RDW radius of the VAM and its AMs obtained with the two kinetostatic performance
indices.

Actuating mode
number

RDW radius

κ−1
F (J) > 0.15 ψ < 75◦

1 1.89 2.18
2, 3, 4 1.47 1.65
5, 6, 7 1.45 1.66
8 1.23 1.35

VAM 2.60 2.71

formance indices are similar. Besides, the largest RDW is obtained with the 1st AM
and the smallest one with 8th AM.

4 Conclusions

In this paper, we introduced a new planar parallel mechanism with variable actu-
ation, which is derived from the architecture of the 3-RRR and 3-RRR PPMs. Then,
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we used two indices, namely, the condition number of its kinematic Jacobian matrix
and its transmission angle to compare its actuating modes. The concept of regular
dextrous workspace was also used. It turns out that the mechanism with variable ac-
tuation can cover almost all its workspace with good and homogeneous kinetostatic
performance as it takes advantage of the best performance of its actuating modes.
Finally, for the mechanism at hand, we introduced equivalent bounds for the con-
dition number and the transmission angle, which allow us to conclude that the two
indices give similar results.

References

1. Alba-Gomez, O., Wenger, P. and Pamanes, A. (2005), Consistent kinetostatic indices for
planar 3-DOF parallel manipulators, application to the optimal kinematic inversion, in Pro-
ceedings of the ASME 2005 IDETC/CIE Conference.

2. Arakelian, V., Briot, S. and Glazunov, V. (2007), Increase of singularity-free zones in the
workspace of parallel manipulators using mechanisms of variable structure, Mechanism and
Machine Theory, Available online at www.sciencedirect.com.

3. Balli, S. and Chand, S. (2002), Transmission angle in mechanisms, Mechanism and Machine
Theory 37(2), 175–195.

4. Chablat, D. and Wenger, P. (1998), Working modes and aspects in fully-parallel manipulator,
in Proceeding IEEE International Conference on Robotics and Automation, pp. 1964–1969,
May.

5. Chablat, D., Wenger, P., Caro, S. and Angeles, J. (2002), The isoconditioning loci of planar
three-DOF parallel manipulators, in Proceedings DETC ASME, Montreal, Canada.

6. Chablat, D., Wenger, P., Majou, F. and Merlet, J.P. (2004), An interval analysis based study for
the design and the comparison of 3-DOF parallel kinematic machines, International Journal
of Robotics Research 23(6), 615–624.

7. Chablat, D. and Wenger, P. (2004), The kinematic analysis of a symmetrical three-degree-
of-freedom planar parallel manipulator, Proceedings CISM-IFToMM Symposium on Robot
Design, Dynamics and Control, Montreal.

8. Chen, C. and Angeles, J. (2005), A generalized transmission index for spatial linkages, in
Proceedings of the ASME 2005 IDETC/CIE Conference.

9. Golub, G.H. and Van Loan, C.F. (1989), Matrix Computations, The Johns Hopkins University
Press, Baltimore.

10. Gosselin, C. and Angeles, J. (1991), A global performance index for the kinematic optimiza-
tion of robotic manipulators, ASME Journal of Mechanical Design 113, 220–226.

11. Li, Z. (1990), Geometrical consideration of robot kinematics, The International Journal of
Robotics and Automation 5(3), 139–145.

12. Merlet, J-P. (2006), Parallel Robots, Springer, Dordrecht.
13. Paden, B. and Sastry, S. (1988), Optimal kinematic design of 6R manipulator, The Interna-

tional Journal of Robotics Research 7(2), 43–61.
14. Ranjbaran, F., Angeles, J., Gonzalez-Palacios, M.A. and Patel, R.V. (1995), The mechanical

design of a seven-axes manipulator with kinematic isotropy, ASME Journal of Intelligent and
Robotic Systems 14(1), 21–41.

15. Theingin, Chen, I.-M., Angeles, J. and Li, C. (2007), Management of parallel-manipulator
singularities using joint-coupling, Advanced Robotics 21(5/6), 583–600.

320
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Abstract. In this article we give first results on Stewart Gough Platforms with planar base and
platform, whose singularity set for any orientation of the platform is a cylindrical surface with
rulings parallel to a given fixed direction p in the space of translations. In this case the singularity
set can easily be visualized as curve by choosing p as projection direction. Moreover the compu-
tation of singularity free zones reduces to a 5-dimensional task. We prove that there do not exist
non-architecturally singular Stewart Gough Platforms with planar base and platform and no four
anchor points collinear which possess such a singularity surface.

Key words: Stewart Gough Platform, planar parallel manipulator, cylindrical singularity surface,

architecture singular manipulators.

1 Introduction

The geometry of the parallel manipulator is given by the six base anchor points
Mi := (Ai, Bi , Ci)T in the fixed space and by the six platform anchor points mi :=
(ai, bi, ci )

T in the moving space. By using Euler Parameters (e0, e1, e2, e3) for the
parametrization of the spherical motion group the coordinates m′

i of the platform
anchor points with respect to the fixed space can be written as m′

i = K−1R·mi + t
with

R := (rij ) =
⎛⎝e2

0 + e2
1 − e2

2 − e2
3 2(e1e2 + e0e3) 2(e1e3 − e0e2)

2(e1e2 − e0e3) e2
0 − e2

1 + e2
2 − e2

3 2(e2e3 + e0e1)

2(e1e3 + e0e2) 2(e2e3 − e0e1) e2
0 − e2

1 − e2
2 + e2

3

⎞⎠ , (1)

the translation vector t := (t1, t2, t3)
T and K := e2

0 + e2
1 + e2

2 + e2
3. Moreover it

should be noted that K is used as homogenizing factor whenever it is suitable.
It is well known (see e.g. [5]) that the set of singular configurations is given by

Q := det(Q) = 0, where the ith row of the 6× 6 matrix Q equals the Plücker
coordinates (li ,̂ li ) := (R·mi + t−KMi ,Mi× li ) of the carrier line of the ith leg.

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 321–330.
© Springer Science+Business Media B.V. 2008
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As we consider only manipulators with planar platform we may suppose ci = 0
for i = 1, . . . , 6. We set up the planar base in a more general position as

C1 = 0, Ci = [C2(B3Ai − A3Bi)+ A2C3Bi ] /(A2B3) for i = 4, 5, 6. (2)

Moreover it was proven by Karger in [2] that for planar parallel manipulator with
no four points on a line we can assume A1 = B1 = B2 = a1 = b1 = b2 = 0 and
A2B3B4B5a2(a4 − a3)coll(3, 4, 5) �= 0 with

coll(i, j, k) := ai(bj − bk)+ aj (bk − bi)+ ak(bi − bj ). (3)

Note that coll(i, j, k) = 0 characterizes collinear platform anchor points mi ,mj

and mk .

2 Preliminary Considerations

The set of Stewart Gough Platforms whose singularity set for any orientation is a
cylindrical surface with rulings parallel to a given direction p also contains the set of
architecture singular manipulators. This is due to the fact that the singularity surface
of these manipulators equals the whole space of translations for any orientation.

It can easily be seen from the following example that the above two sets are
distinct:

The non-planar manipulator determined by m1 = m2, m3 = m4, m5 = m6 and
M1M2 ‖ M3M4 ‖ M5M6 ‖ p has for any orientation of the platform a cylindrical
surface with rulings parallel to the direction p without being architecturally singular
(see Figure 1). This manipulator is only in a singular configuration iff the three
planes [M1,M2,m1], [M3,M4,m3] and [M5,M6,m5] have a common intersection
line.

As the direct kinematics of this manipulator can be put down to that of a 3-dof RPR
parallel manipulator, a rational parametrization of its singularity surface according
to Husty et al. [1] can be given. The singularity surface is a quadratic cylinder due
to the (singular) affine correspondence between the base and the platform (cf. [3]).

Moreover, if M1, . . . ,M6 are coplanar we get an example for a planar parallel
manipulator with this property. Now the question arises, if there also exist non-
architecturally singular planar manipulators with no four anchor points on a line
possessing such a singularity surface. In the following section we prove that such
manipulators do not exist.
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Fig. 1 Non-planar manipulator with cylindrical singularity surface: (a) Axonometric view. (b) Pro-
jection direction is p: The singularity surface (with respect to the barycenter of the platform) is
displayed as conic.

3 The Main Theorem and Its Proof

Theorem. The set of planar parallel manipulators with no four anchor points on a
line which possess a cylindrical singularity surface with rulings parallel to a given
fixed direction p for any orientation of the platform equals the set of planar archi-
tecture singular manipulators (with no four anchor points on a line).

The analytical proof of this theorem is based on the following idea: We choose an
Cartesian frame in the base such that one axis ti is parallel to the given direction
p. Then Q := det(Q) = 0 must be independent of ti for all e0, . . . , e3, tj , tk with
j �= k �= i �= j . Our proof is based on the resulting equations and [2, theorem 1].

We have to distinguish between two cases given in the following subsections.

3.1 Base Is Not Parallel to p

The proof of the case where the base is orthogonal to p is hidden in the proof of
theorem 1 given by Karger [2]. Therefore this case which corresponds to C2 =
C3 = 0 by eliminating t3 fromQ does not need be discussed.

For all other directions we start analogously to Karger’s proof by setting t1 =
t2 = 0 and performing the same elementary operations with the matrix Q as de-
scribed on page 1154 of the cited paper. Then the last row of Q is of the form

(r11K1 + r12A2K2, r21K1 + r22A2K2, r31K1 + r32A2K2, r21C2K3 + r22C2K4,

r31A2K3 + r32A2K4 − r11C2K3 − r12C2K4,−r21A2K3 − r22A2K4)D
−1

(4)
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with D := A2B3B4B5coll(3, 4, 5) and rij of Eq. (1). It should be noted that K1 =
K2 = K3 = K4 = 0 are the four conditions given in [2] which are satisfied iff a
planar manipulator (with no four points on a line) is architecturally singular.

NowQ can be written as

Q = A2
2(r11r22 − r12r21)Q3t

3
3 + A2B3Q2t

2
3 +Q1t3 +Q0. (5)

With the coefficientsQ1,Q2 and Q3 the steps (a) and (b) on p. 1155 of [2] can be
done one by one. The steps (c) and (d) are different and therefore given here.

Step (c) K1 = 0, K2 = 0, K4 �= 0

After substituting Euler parameters ei into Q1 and Q2, we can factor out K of Qi
(i = 1, 2); let us call the remaining coefficient againQi (i = 1, 2).

(A) Let B4b3 − B3b4 �= 0.
From the coefficient of e2

0 inQ2 we express A5. Denote the coefficients of e5
0e1 and

e5
2e3 ofQ2 by v1 and v2, respectively, and express a5 from v1+v2. Now B3−b3 = 0

orB4−b4 = 0 must be different from zero; we may supposeB3−b3 �= 0. Therefore
we can express a4 from v1 = 0. The coefficient e1

0e
5
1 of Q2 yields a3 = a2A3/A2.

Now the coefficients of e4
0e2e3 and e0e1e

4
2 of Q2 can only vanish (without contra-

diction) if K3 = 0. The coefficient e3
0e

3
3 of Q2 yields C3 = C2A3/A2. Finally we

get as coefficient of e3
0e

2
1e2 of Q2 the expression A2B3K4a2coll(3, 4, 5), a contra-

diction.

(B) Let B4b3 − B3b4 = 0, i.e. b4 = b3B4/B3.
From v1 + v2 = 0 we get b5 = b3B5/B3. Let us denote the coefficients of e0e

5
1,

e1e
5
3, e5

0e2 ofQ2 by v3, v4, v5. From v2 − v3 = 0 and v4 + v5 = 0 we compute A4
and A5. NowQ1 factorizes intoKA2F1[16]F2[2316]/(a2B3), where the number in
the square brackets denotes the number of additive factors in the expression.

• ad F1 = 0: From the coefficient of e0e3 we express a3 = a2A3/A2. If we denote
the coefficients of e2

i by qi , the sum q0+ q1+ q2+ q3 yields A2B3, a contradiction.

• ad F2 = 0: We denote the coefficients of e3
0e1, e0e

3
1, e2

0e1e3 and e1e
2
2e3 by p1, p2,

p3 and p4. The equations p1 + p2 = 0 and p3 − p4 = 0 can only vanish (without
contradiction) if K3 = 0 or C2 = C3 = 0. As the later case can be neglected we set
K3 equal to zero. The equation w1 − w2 = 0 vanishes (without contradiction) for
C2 = 0 or F3[12] = 0, where w1 and w2 are the coefficients of e4

0 and e4
1. If C2 = 0

we obtain C3 = 0 from w1 + w2 = 0.

(i) Let n := B3B4a5(a4 − a3) + B3B5a4(a3 − a5) + B4B5a3(a5 − a4) �= 0. Then
we can express a2 = d/n from F3[12] = 0 with

d := a2
3B4B5(a5 − a4)+ a2

4B3B5(a3 − a5)+ a2
5B3B4(a4 − a3). (6)
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From the coefficient of e3
0e1 we compute C2. Plugging the obtained expression into

F2 yields K4B4B5b3F4[80]F5[96]/(A2dn). Now the coefficient of e0e1 of F4[80]
as well as the one of F5[96] yields A2B3d = 0, a contradiction.

(ii) Let n = 0. For h := B3a4(a5 − a3) + B4a3(a4 − a5) �= 0 we can compute B5
from n = 0. Substituting this into F3[12] yields the contradiction. If h = 0 we can
compute a5 from this equation under the assumption B3a4−B4a3 �= 0. Substituting
this into n = 0 yields

a4a3B4B3 (a4 − a3) (B3 − B4)/(B3a4 − B4a3) = 0. (7)

Now we have to distinguish between the following two cases:

� a3 = 0 or a4 = 0: Without loss of generality we assume a3 = 0 and a4 �= 0.
Now the coefficient of e2

1e2e3 of F2 can only vanish (without contradiction) if
A2B3a4−B3a2A2+B4a2A3 = 0 or C2 = 0. For the later we obtainC3 = 0 from
w1 = 0. Therefore we set a4 = a2(B3A2 − B4A3)/(A2B3) and substitute this
into w1 = 0. This equation can only vanish (without contradiction) for C3 = 0.
The coefficient of e2

0e
2
1 of F2 yields the contradiction.

� B3 − B4 = 0: Substitution B3 = B4 into F3[12] yields B4B5a3a4(a3 − a4) and
therefore the above case; i.e. a3 = 0 or a4 = 0.

The last missing case is B3a4 − B4a3 = 0. Plugging a3 = a4B3/B4 into h = 0
yields the contradiction. This finishes step (c).

Step (d) K1 = 0, K2 = 0, K4 = 0, K3 �= 0

(A) Let B3b5 − b3B5 �= 0.
We compute the coefficients li of e5

0e2, e0e
5
2, e5

1e3 and e1e
5
3 of Q2 which are of the

form:

l1 = A2B3K3(A2 − a2)F6[12], l2 = A2B3K3(A2 + a2)F7[12], (8)

l3 = A2B3K3(A2 − a2)F7[12], l4 = A2B3K3(A2 + a2)F6[12]. (9)

The equations A2 − a2 = 0 and A2 + a2 = 0 yield a contradiction.

(i) If we assume b4 �= 0 we can compute a4 and A4 from F6[12] = 0 and
F7[12] = 0. Now the sum of the coefficients of e3

0e
3
3 and e3

1e
3
2 of Q2 yield

A2C2B3K3coll(3, 4, 5) which implies C2 = 0. The sum of the coefficients of e4
0e

2
3

and e2
1e

4
2 ofQ2 yield A2C3a2K3coll(3, 4, 5) and therefore C3 = 0.

(ii) If b4 = 0 we proceed similar and compute from F6 = 0 and F7 = 0
the unknowns a4 and A3. By performing the same steps as above we also obtain
C2 = C3 = 0.

(B) Let B3b5 − b3B5 = 0, e.i. b5 = b3B5/B3.
In this case we look at l1 + l3 and l1 + l4 which are of the form:
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l1 + l3 = C2K3b3F8[12] and l1 + l4 = b2
3K3(A3C2 −A2C3)F9[12]/B2

3 , (10)

respectively. Moreover the linear combinations m1 − m2 and m1 + m3 are of the
form

m1+m3 = C2K3b
2
3F9[12]/B3 and m1−m2 = b3K3(A3C2−A2C3)F8[12]/B3,

(11)
wherem1,m2,m3 are the coefficients of e2

0e
4
3, e2

1e
4
2 and e4

1e
2
2 ofQ2. As C2 = C3 =

0 can be neglected we set F8[12] and F9[12] equal to zero and compute A4 and A5
from it. In the next step we factorize Q1 which yields A2b3B4B5K3KF1[16]F10
[144]coll(3, 4, 5)/(a2B3).

(i) In step (c) it was already shown that F1[16] = 0 yields a contradiction.

(ii) Therefore we proceed by computing the sum of the coefficient of e3
0e1 and e0e

3
1

of F10[144] which results in a2B
2
3C2. With C2 = 0 the difference of the coefficient

of e3
0e2 and e0e

3
2 of F10[144] yield a2A2B

2
3C3 and thereforeC3 = 0, which finishes

this part.

3.2 Base Is Parallel to p

In this case we take as translation vector t := (cosϕt1−sinϕt2, sin ϕt1+cosϕt2, t3)T

and set C2 = C3 = 0. After performing again the same elementary operations with
the matrix Q as above and replacing the sixth row by Eq. (4), we have to distinguish
between the following two cases.

3.2.1 M1M2 Is Parallel to p

If we set ϕ = 0 the t1 axis is parallel to p (⇒ Q must be independent of t1). We
denote the coefficients of t i1t

j

2 t
k
3 fromQ byQi,j,k . FromQ1,0,1 we can factor outK

and from Q1,0,0 we can even factor out K2. We denote the coefficient of ea0e
b
1e
c
2e
d
3

ofQi,j,k by P i,j,ka,b,c,d and compute

P
1,0,1
4,1,1,0 − P 1,0,1

1,4,0,1 − P 1,0,1
1,0,4,1 + P 1,0,1

0,1,1,4 = K1B3B4B5coll(3, 4, 5) (12)

P
1,0,1
0,2,2,2 + P 1,0,1

2,0,2,2 − P 1,0,1
2,2,0,2 − P 1,0,1

2,2,2,0 = K2A2B3B4B5coll(3, 4, 5) (13)

which yields K1 = K2 = 0. Now we consider

P
1,0,0
3,1,2,0 − P 1,0,0

2,0,3,1 − P 1,0,0
1,3,0,2 + P 1,0,0

0,2,1,3 = K3a2B3B4B5coll(3, 4, 5) (14)

P
1,0,0
3,2,1,0 − P 1,0,0

2,3,0,1 − P 1,0,0
1,0,3,2 + P 1,0,0

0,1,2,3 = K4a2B3B4B5coll(3, 4, 5) (15)

which finishes this part of the proof.
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3.2.2 M1M2 Is Not Parallel to p

As this part of the proof is too long to be presented here in its full length we refer to
the corresponding technical report [7]. In the following we only give a sketch of the
proof as well as the two special solutions S1 and S2 which cause difficulties.

First of all we can assume sinϕ �= 0 if we eliminate t1 from Q. If we assume
additionally K2 = 0, one can show in a similar way as above that also K1 = K3 =
K4 = 0 must hold. But if we assume K2 �= 0 there exist two solutions which fulfill
all equations resulting from the coefficients of t1 ofQ without contradicting

A2B3B4B5a2(a4 − a3)coll(3, 4, 5)K2 sin ϕ �= 0. (16)

These two solutions S1 and S2 are given by

S1 : Ai = Bi cotϕ, Aj = Bj cotϕ, Ak = A2 + Bk cotϕ, (17)

bk = 0, a2 = ak, ai = K1bi/(K2A2), aj = K1bj/(K2A2), (18)

K3 = 0 and K4 = 0 (19)

and

S2 : Ai = A2 + Bi cotϕ, Aj = A2 + Bj cotϕ, Ak = Bk cotϕ, (20)

ai = a2 + biK3/K4, aj = a2 + bjK3/K4, ak = bk = 0, (21)

A2K2 +K4 = 0 and K1 +K3 = 0 (22)

for i, j, k ∈ {3, 4, 5} and i �= j �= k �= i. In the following we show that these
solutions also imply contradictions for the choice of M6 and m6, respectively.

First of all we can set A2 = 1 due to A2 �= 0. Then we replace Ki in Eqs. (22)
and (19) by the expressions given in [2, eq. (4)]. If we plug now the expressions of
Eqs. (17) and (18) into the resulting equations of Eq. (19) we get

K3 = (A6 − B6 cotϕ)(ak − a6) and K4 = (A6 − B6 cotϕ)b6, (23)

respectively. The solution a6 = ak and b6 = 0 contradictsK2 �= 0. If A6 = B6 cotϕ
the four base anchor points M1,Mi ,Mj and M6 are collinear.

For the second solution we proceed similarly, i.e. we plug the expressions of
Eqs. (20) and (21) into the equations of (22). We end up with

K1+K3 = (1−A6+B6 cotϕ)a6 and K2+K4 = (1−A6+B6 cotϕ)b6. (24)

The solution a6 = b6 = 0 again contradicts K2 �= 0. The other solution A6 =
1+B6 cotϕ implies the collinearity of the four base anchor points M2,Mi ,Mj and
M6. This finishes the proof of the given theorem. �
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4 A Further Example

The two solutions S1 and S2 imply a further example for an planar parallel manip-
ulator with cylindrical singularity surface beside the one given in Section 2. The
computation of the corresponding manipulator can be done as follows:

S1: If we set A6 = B6 cotϕ there are two conditions left, which derive from [2,
eq. (4)]. Solving these two equations for the variables K1 and K2 yield:

K1 = a6s/(b6BiBj (bi − bj )) and K2 = s/(BiBj (bi − bj )) (25)

with

s := BiBjb6(bi − bj )+ BjB6bi(bj − b6)+ BiB6bj (b6 − bi). (26)

As special case we obtain

a6 = b6 = 0 and K2 = bibjB6(Bj − Bi))/(BiBj (bi − bj )). (27)

S2: For A6 = 1+ B6 cotϕ analogous computations yield

K1 = s(a6 − a2)/(b6BiBj (bi − bj )), K2 = s/(BiBj (bi − bj )), (28)

with s of Eq. (26). Here the special case is given by

a6 = a2, b6 = 0 and K2 = bibjB6(Bj − Bi)/(BiBj (bi − bj )). (29)

It should be noted that we can assume BiBj (bi − bj ) �= 0, otherwise D of Eq. (4)
is equal to zero which is forbidden (division by zero).

Moreover it should be mentioned that if s = 0 holds the manipulator is architec-
turally singular due to K1 = K2 = K3 = K4 = 0. The condition s = 0 expresses
that the cross ratio of the base anchor points Mx,Mi ,Mj ,M6 and of the corres-
ponding platform anchor points mx,mi ,mj ,m6 is the same.

In the architecturally singular case the carrier lines of the involved four legs be-
long to a ruled quadric, which can also degenerate into two planes (cf. 8th entry
in the list of architecture singular Stewart Gough Platforms given by Karger in [4,
theorem 3]).

It follows immediately from the expressions of ai and aj given in Eqs. (18) and
(21), respectively, that the platform anchor points mi ,mj and mx of solution Sx
(x = 1, 2) are collinear. If we plug now the obtained expressions for K1 and K2
(given in Eqs. (25) and (28), respectively) of solution Sx into ai and aj , we can see
that also m6 is located on the line spanned by mi ,mj and mx . For both special cases
(given in Eqs. (27) and (29), respectively) this is trivially true due to mx = m6.

Therefore the geometric properties of the planar parallel manipulator with cyl-
indrical singularity surface corresponding with solution S1 and S2 can be summar-
ized as follows:
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Fig. 2 Planar parallel manipulator with cylindrical singularity surface: (a) General case. (b) Special
case.

(i) Mi ,Mj ,Mk,Ml are collinear, (iii) MmMn ‖ MiMj ‖ p,
(ii) mi ,mj ,mk,ml are collinear, (iv) and mm = mn.

For the special cases we have the additional condition mk = ml . The manipulator
and its special case is given in Figures 2a and 2b, respectively.

This manipulator is in a singular position iff mm = mn lies in the carrier plane
of the base or if the carrier lines of Mi ,Mj ,Mk,Ml and mi ,mj ,mk,ml intersect
each other. Therefore the quadratic singularity surface always splits into two planes
(parallel to p).

5 Remarks

Remark 1. The known examples of planar parallel manipulators with a cylindrical
singularity surface (given in Sections 2 and 4) raise the question if such manipulators
with a cubic singularity surface exist. A complete list of planar parallel manipulators
with a cylindrical singularity surface is in preparation [8].

Remark 2. It should be noted that the proof of the second direction (det(Q) = 0 ⇒
K1 = K2 = K3 = K4 = 0) of theorem 1 given by Karger [2] can be replaced
just by four equations, namely by Eqs. (12–15). As the four conditionsK1 = K2 =
K3 = K4 = 0 are expressed by not more than four equations, we have found the
shortest possible analytical proof of the second direction of the cited theorem.

Remark 3. Röschel and Mick proved in [6, 9] that planar parallel manipulators are
architecturally singular iff {Mi ,mi} for (i = 1, . . . , 6) are four-fold conjugate pairs
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of points with respect to a 3-dimensional linear manifold of correlations or one of
the two sets {Mi} and {mi} is situated on a line.

It would be nice to have such a geometric proof for the given theorem too. It might
be possible to prove in a similar way to [6, 9] that planar parallel manipulators with
no four points on a line and a cylindrical singularity surface must consist of four-fold
conjugate pairs of anchor points.

6 Conclusion

We presented first results on planar parallel manipulators whose singularity set for
any orientation is a cylindrical surface with rulings parallel to a given fixed direction
p in the space of translations. We proved that there do not exist non-architecturally
singular Stewart Gough Platforms with planar base and platform and no four anchor
points collinear which possess such a singularity surface.

As by-product of our proof we gave the shortest possible analytical proof for the
second direction (det(Q) = 0 ⇒ K1 = K2 = K3 = K4 = 0) of theorem 1 given
by Karger [2]. Moreover, we presented two examples of planar manipulators with
cylindrical singularity surface. A complete list of such planar parallel manipulators
is in preparation [8].
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ness matrix of parallel compliant mechanisms. The proposed formulation is more general than any
other stiffness matrix found in the literature since it can take into account the stiffness of the passive
joints and remains valid for large displacements. Then, the conservative property, the validity,and
the positive definiteness of this matrix are discussed.
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1 Introduction

The stiffness matrix of a mechanism is defined as the Hessian matrix of a potential.
For example, the Cartesian stiffness matrix is the square matrix of second-order
partial derivatives of potential ξf associated with wrench f with respect to the vector
of Cartesian coordinates, noted x:

KC = ∂2ξf

∂x2 . (1)

Thus by definition, a stiffness matrix is a symmetric matrix [3]. A stiffness mat-
rix is also conservative [1]. And since the Hessian matrix of a potential is used to
determine the stability of an equilibrium [5], a stiffness matrix can be either positive-
definite or negative-definite.

In this paper, a stiffness matrix that considers the external loads, the changes of
the geometry of the mechanism and the stiffness of any joint – even the passive
ones – is presented. The kinematic model of a parallel mechanism that takes into
account the passive joints is first introduced. Then, expressions for the potential
energy are derived in order to obtain a general form of the Cartesian stiffness matrix
of a compliant mechanism. The correctness and the properties of this matrix are then
discussed and applied in a simple parallel mechanism.

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 331–341.
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2 Model of a Parallel Mechanism

2.1 Geometric Constraints

In a parallel mechanism, some geometrical constraints between the joint coordinates
corresponding to the closure of loops formed by legs must always be satisfied. These
constraints are written as K(θ) = 0, where θ is the joint coordinate vector of the
mechanism.

Therefore, a vector of generalized coordinates χ is defined such that λ, the vector
of the kinematically constrained coordinates and θ , the complete joint coordinate
vector of the mechanism, always satisfy the geometric constraints. One has:

λ = λ(χ) and θ = θ(χ) =
[

χ

λ

]
, (2)

where λ = [λ1, · · · , λc]T – c being the number of constrained coordinates – and θ =
[θ1, · · · , θm]T with m the number of joints in the mechanism and θk the coordinate
of the kth joint.

2.2 Kinematic Constraints

The variation of the kinematically constrained (dependent) joint coordinates is de-
scribed by a matrix G and a matrix R defined as

G = dλ

dχ
and R = dθ

dχ
=

[
1l
G

]
, (3)

where 1l stands for the l × l identity matrix. The relations between the variation of
the joint coordinates and the variation of the generalized coordinates are expressed
as dλ = Gdχ and dθ = Rdχ .

2.3 Kinematic Model

2.3.1 Pose of the Platform

Represented by a vector x, it is defined as the average pose of the end-effector of all
legs of the mechanism, namely

x = 1

n

n∑
i=a

xi , i ∈ {a, · · · , n} , (4)
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where xi =
[
cTi ,q

T
i

]T
is the pose vector of the ith leg and where ci is the position

vector of a chosen point on the platform while qi is a quaternion vector describing
the orientation of the platform. All legs are indexed from a to n.

2.3.2 Jacobian Matrix Jθ

The Jacobian matrix Jθ of a parallel mechanism in which all joints – even the passive
ones – are considered is written as

Jθ = ∂x
∂θ
= 1

n

n∑
i=a

∂xi
∂θ
. (5)

2.3.3 Jacobian Matrix J

In this Jacobian matrix, only the generalized coordinates are considered. It is defined
as

J = ∂x
∂χ

= ∂x
∂θ

∂θ

∂χ
= JθR. (6)

2.3.4 Kinematic Model

Thus, the kinematic model of the complete mechanism can be written in different
equivalent forms, namely

dx = Jθdθ = JθRdχ = Jdχ . (7)

2.3.5 Inverse Kinematic Model

From Eq. (7), the inverse kinematic model of the mechanism is expressed as

dχ = J−1dx, dλ = GJ−1dx and dθ = RJ−1dx. (8)

If the number of components in x is larger than six, then J−1 should be replaced by
the Moore–Penrose generalized inverse.
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3 Cartesian Stiffness Matrix of a Compliant Mechanism

3.1 Potential Energy of a Mechanism

The potential energy stored in the compliant joints of a compliant mechanism, noted
ξθ , is calculated as

ξθ =
∫ θ

θ0

τTθ dθ =
∫ χ

χ0

τTχ dχ +
∫ λ

λ0

τ Tλ dλ, (9)

where τ θ , τχ and τ λ are the vectors of joint torques/forces respectively associated
with the joints corresponding to vectors θ , χ or λ and where θ0, χ0 and λ0 cor-
respond to the unloaded configuration of the mechanism. In the particular – but
frequent – case of compliant joints with constant stiffness, ξθ is written as

ξθ = 1

2
(χ − χ0)

TKχ(χ − χ0)+ 1

2
(λ− λ0)

TKλ(λ− λ0), (10)

where Kχ and Kλ are the (diagonal) joint stiffness matrices.
The potential energy ξf associated to the external wrench f is equal to the work

provided by f and is defined as

ξf =
∫ x

x0

fT dx, (11)

where x0 corresponds to the unloaded configuration.
The potential energy due to the external wrench ξf is equal – apart from a con-

stant ξ0 – to the energy stored in the mechanism. (ξf = ξθ + ξ0). From Eq. (8), this
can be written as∫ x

x0

fT dx =
∫ x

x0

τ Tχ J−1dx+
∫ x

x0

τTλGJ−1dx+ ξ0. (12)

3.2 Cartesian Static Equilibrium

Differentiating Eq. (12) with respect to the pose x leads to the Cartesian static equi-
librium of a compliant mechanism. It is written as

dξf

dx
= dξθ

dx
+ dξ0
dx

⇔ f = J−T τχ + J−TGT τλ. (13)

In the most general case, the stiffness of these joints is not constant and the corres-
ponding forces/torques are defined as
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τχ =

∫ χ
χ0

Kχdχ =
∫ x

x0
KχJ−1dx,

τ λ =
∫ λ
λ0

Kλdλ =
∫ x

x0
KλGJ−1dx.

(14)

3.3 Cartesian Stiffness Matrix

The definition of the Cartesian stiffness matrix of a mechanism is given in Eq. (1)
and is equivalent to KC = df/dx. Therefore, using Eqs. (13) and (14), it is obvious
that KC is not constant and depends on the stiffness of the joints and the geomet-
ric configuration of the mechanism. To obtain this function, the right-hand side of
Eq. (13) is differentiated with respect to x

d2ξθ

dx2 = d

dx

(
J−T

∫ x

x0

Kχ J−1dx+ J−TGT
∫ x

x0

KλGJ−1dx
)
, (15)

which leads to
d2ξθ

dx2 = A+ B+ J−TKχJ−1, (16)

where

A = dJ
dx

−T
(τχ +GT τ λ) and B = J−T

dG
dx

T

τ λ + J−TGTKλGJ−1 (17)

3.3.1 Matrix A

First, the derivative of the inverse of a matrix can be written as

dJ−T

dx
= −J−T

dJT

dx
J−T . (18)

Thus, matrix A can be expressed, using Eq. (13) as

A = −J−T dJT

dx
(J−T τχ + J−TGT τ λ) = −J−T dJT

dx
f. (19)

Using the chain rule, the derivative is written as

dJT

dx
f =

(
dJT

dχ
f
)
dχ

dx
=

(
dJT

dχ
f
)

J−1. (20)

Hence, a matrix that captures the effect of the external wrench can be defined as

KE = −dJT

dχ
f = −

[(
dJT

dχ1
f
)
· · ·

(
dJT

dχm
f
)]
, (21)
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where χi is the ith joint coordinate of χ and (dJT /dχi)f is a vector forming the ith
column of l × l matrix KE . Indeed matrix KE is equal to the opposite of the matrix
noted KG in [1].

Therefore from Eqs. (19) and (20), the matrix A introduced in Eq. (16) is equal
to

A = −J−T
(
dJT

dχ
f
)

J−1 = J−TKEJ−1. (22)

3.3.2 Matrix B

Using the chain rule, the right-hand element of matrix B introduced in Eq. (16), can
be differentiated as

dGT

dx
τ λ =

(
dGT

dχ
τλ

)
dχ

dx
=

(
dGT

dχ
τλ

)
J−1. (23)

A matrix KIG that captures the effect of the changes of geometry of the kinematic
constraints, is defined as

KIG = dGT

dχ
τ λ =

[(
dGT

dχ1
τ λ

)
· · ·

(
dGT

dχm
τλ

)]
, (24)

where (dGT /dχi)τλ is a vector forming the ith column of l × l matrix KIG.
Moreover, another matrix noted KIK that captures the effect of the stiffness of the
kinematically constrained joints, is defined as

KIK = GTKλG. (25)

Matrices KIG and KIK are functions of the generalized coordinates and they rep-
resent the contribution of the kinematically constrained joints to the stiffness of the
mechanism. This contribution is assembled in a matrix KI , defined as

KI = KIG +KIK = dGT

dχ
τλ +GTKλG. (26)

Thus, according to Eqs. (17), (23), (25) and (26), B is equal to

B = J−TKIJ−1. (27)

3.3.3 Cartesian Stiffness Matrix

Finally, combining eqs. (16), (22) and (27), the Cartesian stiffness matrix of a com-
pliant mechanism is written as

KC = J−T
(
Kχ +KI +KE

)
J−1. (28)
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This matrix includes the three contributions that determine the stiffness of a mech-
anism according to our initial assumption (no gravity and no dynamical effects),
namely: the stiffness of the kinematically unconstrained joints (Kχ ), the stiffness
due to the passive joints and the internal torques/forces (KI ) and the stiffness due to
the external loads (KE).

3.4 Stiffness Matrix Expressed in Generalized Coordinates

In the domain of generalized coordinates, the stiffness of the mechanism is described
by a matrix KM defined as

KM = Kχ +KI +KE. (29)

Therefore, the relation between the stiffness in the generalized domain and in the
Cartesian domain is written under a familiar form, namely

KC = J−TKMJ−1 or KM = JTKCJ. (30)

4 Properties of the Stiffness Matrix

4.1 Conservativity of the Matrix

Since the Cartesian stiffness matrix has been calculated by differentiating three
torques/forces, namely f, τχ and τλ, which are in turn expressed as the derivat-
ive of a potential function, KC is by definition a conservative matrix. Thus, KC is
proved symmetric and satisfying the exact differential condition [1].

4.2 A Matrix of a More General Application

The Cartesian stiffness matrices found in the literature can be easily obtained from
the matrix presented here. The matrices for serial mechanisms [1, 4] in which there
are no passive joints and no internal wrenches such that KI = 0. As well as the
matrices in which the external wrench is not taken into account [2, 4] such that
KE = 0.

337



C. Quennouelle and C.M. Gosselin

�

x = [
x, y

]T

ρa ρb

θa θb

A
B

Fig. 1 2-DoF parallel mechanism in unstable static equilibrium.

4.3 Positive Definite Property

The stiffness matrix of a compliant mechanism can be positive definite, semi-
positive definite or non-positive definite.

The 2-DoF mechanism presented in the configuration shown in Figure 1 is used
to illustrate this property.

4.3.1 Parameters of the Mechanism

The articular coordinates of this mechanism are θa , θb, ρa and ρb, while the pose of
the platform is x = [

x, y
]T

. The two base points of the legs, noted A and B, are
defined by vectors a = (0, 0) and b = (L, 0). The revolute joints are not compliant
while both prismatic compliant joints are identical, the free length of their equivalent
linear spring is noted ρ0 and their stiffness coefficient is noted kρ . In the configura-
tion presented in Figure 1, the parameters are θa = 0, θb = π , ρa = ρb = L/2 and
the external wrench f = 0.

4.3.2 Pose of the End-Effector

The coordinates of leg a are arbitrarily chosen as the generalized coordinates of the
mechanism, noted χ . Then, the pose and the Jacobian matrix can be expressed as

x =
{
ρa cos θa
ρa sin θa

and J =
[−ρa sin θa cos θa
ρa cos θa sin θa

]
. (31)

4.3.3 Geometric Constraints

The two kinematically constrained joints, noted λ, are θb and ρb. The geometric
constraints that represent the condition of rigidity of the platform, are then written
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as

xa − xb = 0 ⇔
{
ρa cos θa − (ρb cos θb + L) = 0,
ρa sin θa − ρb sin θb = 0.

(32)

The retained solution of the latter equation is written as

ρb =
√
ρ2
a − 2ρaL cos θa + L2, θb = arctan

(
ρ1

ρb
sin θa,

ρ1

ρb
cos θa

)
. (33)

4.3.4 Kinematic Constraints

Thus, matrix G defined in Eq. (3) can be derived from the geometric constraints. G
is written as

G = dλ

dχ
= J−1

b Ja. =

⎡⎢⎢⎢⎢⎣
−(cos θaL− ρa)ρa
ρ2
a − 2ρaL cos θa + L2

− sin θaL

ρ2
a − 2ρaL cos θa + L2

ρa sin θaL√
ρ2
a − 2ρaL cos θa + L2

−(cos θaL− ρa)√
ρ2
a − 2ρaL cos θa + L2

⎤⎥⎥⎥⎥⎦ .
(34)

4.3.5 Torque/Force Vectors

The force associated to the passive compliant joint ρb is written as τρ = kρ(ρb−ρ0).

4.3.6 Stiffness Matrices Due to Passive Joints

The four components of KIK , defined in Eq. (25), can be analytically calculated as

KIK(1, 1) = ρ2
a sin2 θaL

2kρ

ρ2
b

, KIK(2, 2) = (cos θaL− ρa)2kρ
ρ2
b

, (35)

KIK(1, 2) = KIK(2, 1) = ρa sin θaLkρ(cos θaL− ρa)
ρ2
b

. (36)

4.3.7 Stiffness Matrices Due to Internal Wrenches

The four components of matrix KIG, defined in Eq. (24), can be analytically calcu-
lated as

KIG(1, 1) = −ρa
2 sin2 θaL

2τρ

ρ3
b

+ ρa cos θaLτρ
ρb

, (37)
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KIG(1, 2) = KIG(2, 1) = sin θaLτρ
ρb

+ (cos θaL− ρa) τρρa sin θaL

ρ3
b

, (38)

KIG(2, 2) = τρ

ρb
+ (cos θaL− ρa) τρ

2ρ2
b

. (39)

4.3.8 Negative Definite Matrices

In the presented configuration, matrices KM and J are functions of three parameters
only, namely kρ , L and ρ0. They are written as

KM =
[
kρL(

1
2L− ρ0) 0

0 2kρ

]
and J =

[
0 1
L/2 0

]
, (40)

and the Cartesian stiffness matrix (Eq. (30)) is calculated as

KC =
[

2kρ 0
0 2kρ(L− 2ρ0)/L

]
. (41)

Therefore, this formulation of the Cartesian stiffness matrix demonstrates that a
stiffness matrix can be negative definite: the presented configuration is stable with
respect to axis (Oy), only if ρ0 < L/2, i.e., if the linear springs are in tension.

5 Conclusion

The presented formulation of the stiffness matrix is a generalization of the already
existing stiffness matrices, since it can take into account non-zero external loads,
non-constant Jacobian matrices and stiff passive joints, this later point being its
main novelty.
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Abstract. This paper deals with the problem of representing the rotational error of spatial robots
with three orientational degrees of freedom (DOF). Typically, the errors on each of three Euler
angles defining the orientation of an end-effector are analyzed separately. However, this is wrong
since an accuracy measure should depend only on the “distance” between the nominal pose and
the actual one, and not on the choice of reference frame in which these are represented. Several
bi-invariant metrics for rotational error exist but are single-parameter and, by definition, disregard
the shape of the robot end-effector. Yet, robot end-effectors are typically axisymmetric. Therefore,
we propose a two-parameter measure of rotational errors that is better suited for such robot end-
effectors.

Key words: accuracy analysis, rotational errors, Euler angles, distance metrics.

1 Introduction

Knowing the exact positioning accuracy is an important challenge when designing
a robot. Such an analysis is useful for optimization procedures occurring in the
design stage of a new robot. Many tools have been developed in order to promptly
estimate the accuracy of a robot. The most common performance indices used to
indirectly optimize the accuracy of a robot are the dexterity index (Gosselin, 1992),
the condition numbers, and the global conditioning index (Gosselin and Angeles,
1991).

Another way to estimate the accuracy of a robot is to use the first order approx-
imation of the direct kinematic model that maps the input error vector δq to the
output error vector δp through the linear relation δp = Jδq, where J is the Jacobian
matrix of the robot. However, such an approach will only give a rough estimate of
the maximal errors occurring in the workspace. This estimate is relevant for infin-
itesimal errors and far from singularities, but on real robots, errors are not always
small.

Furthermore, all of the above tools essentially take into account only errors in
the inputs. Yet, errors are due to various factors such as manufacturing tolerances,

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 345–352.
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backlash, compliance, sensor errors and control errors. Besides, once a prototype is
built, it is important to be able to simply measure and quantify these errors, which
is obviously not done using the Jacobian matrix of the robot.

Clearly, from the industrial point of view, the best accuracy measure would be
the maximum translational and maximum rotational errors over a given portion of
the workspace (Briot and Bonev, 2008; Merlet, 2006a) or at a given nominal con-
figuration. However, while representing the accuracy for planar robots is simple to
realize (Briot and Bonev, 2008), this problem is much more complicated when the
number of orientational DOFs increases.

Several papers deal with the accuracy of robots with several orientational DOFs
(Jelenkovic and Budin, 2002; Kim and Choi, 2000; Merlet and Daney, 2007; Rop-
ponen and Arai, 1995; Wang and Ehmann, 2002; Zhao et al., 2002). In all of these
works, the authors analyze the rotational accuracy of robots by considering the er-
rors on three Euler angles. However, such an analysis is wrong because these errors
depend on the choice of reference frame in which the nominal pose and the ac-
tual one are expressed. Yet, obviously, a rotational error should depend only on the
“distance” between the nominal orientation and the actual one.

For the design of mechanisms, defining metrics for measuring the distance
between one pose (position and orientation) and another is of utmost importance
and is still an area of ongoing research (Larochelle et al., 2007). For representing
the accuracy of a robot in industry, however, it is meaningless to combine transla-
tional and rotational errors in a single measure. Fortunately, for the specific case of
body orientations, there exists a family of bi-invariant metrics (Park, 1995; Gupta,
1997). Certainly, the most intuitive one is the rotation angle about a unique axis that
brings one reference frame to coincide with another.

Single-parameter invariant measures of rotational error are relevant only for
asymmetric robot end-effectors. However, robot end-effectors usually have axial
symmetry (in most industrial robots, which are sold without an end-effector, the
flange on which an end-effector is mounted is axisymmetric). That is why, in this
paper, we propose a pair of rotational error measures that is better suited for such
end-effectors. These measures are not invariant because their raison d’être is to de-
pend on an end-effector reference frame that takes into account the axial symmetry
of the end-effector. However, our measures depend only on the orientation of the
actual reference frame with respect to the nominal one.

The remainder of this paper is organized as follows. Section 2 deals with the
definition of the proposed measure for orientational accuracy. In Section 3, the new
error measure is illustrated on a well-known spherical robot called the Agile Eye.
Conclusions are given in the last section.
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2 Representation of Rotational Errors

To describe the orientation of a body, three consecutive rotations about some of
the three axes of the base reference frame are generally used. The angles of these
rotations are referred to as Euler angles.

As previously mentioned, the offsets between the corresponding Euler angles
associated with two reference frames varies significantly with the choice of base
reference frame that is used to define these Euler angels. Therefore, such an offset
cannot be used for measuring rotational errors. As a matter of fact, the same is true
when considering the individual x, y and z translational errors, though these errors
are bounded by the distance between the origins of the first two reference frames.
This distance is, in fact, used in industry to represent translational errors, which is
the only accuracy measure currently used (ISO 9283 standard).

Thus, it would be great if a similar invariant metric for the “distance” between
two orientations existed. Such metrics exist and the best known one is the rotation
angle about a unique axis that brings one reference frame to coincide with another.
This angle is not only physically meaningful but also quite easy to compute from
the trace of the rotation matrix that represents the orientation of one reference frame
with respect to the other.

The only problem with such single-parameter invariant metrics is that robot end-
effectors are typically axisymmetric. In some cases, when axisymmetric tools are
used, the rotation about the tool axis is even irrelevant. Therefore, if industry ever
becomes interested in rotational errors, it will more likely look for a two-parameter
metric – one measure that reflects the deviation of the axis of symmetry and, for
example, another that reflects the rotation about this axis of symmetry.

Consider two different orientations of an axisymmetric robot end-effector: a
nominal one denoted by the index 0, and another one denoted by the index 1. Let d0
and d1 be two unit vectors parallel to the axis of symmetry of the robot end-effector
in each of the two orientations (Figure 1). The first meaningful parameter character-
izing the change of orientations is clearly the angle α between vectors d0 and d1. Its
expression is trivial:

α = cos−1(dT0 d1). (1)

Now, consider that we render the axes of symmetry of both end-effectors of Figure 1
coincident by rotating end-effector 1 about an axis v0 normal to d0 and d1. The
smallest angle to which end-effector 1 needs to be rotated about the d0 axis in order
to coincide with end-effector 0 will be denoted by β and will be our second error
measure.

Of course, while the choice for the first measure is pretty obvious and unques-
tionable, there might be other alternatives for the second one. However, we believe
that our choice is the most logical and intuitive one.

It can be shown that angles α and β are actually the tilt and torsion angles (to
a sign difference) of the Tilt-and-Torsion (T&T) three-angle orientation paramet-
erization introduced in Bonev (2002). Therefore, angle β can be found using the
following equation:
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Fig. 1 Measuring the rotation errors of a robot end-effector.

β =
{ |atan 2(r3,2/ sinα,−r3,1/ sin α)+ atan 2(r2,3/ sin α, r1,3/ sin α)|, if α �= 0,

|atan 2(r2,1, r1,1)|, if α = 0 (2)

where ri,j (i, j = 1, 2, 3) are the elements of the rotation matrix that represents the
orientation of the reference frame associated with the real pose with respect to the
reference frame associated with the nominal pose. Note that β does not depend on
the choice of the x and y axes.

Obviously, 0 ≤ α < 90◦ in the context of accuracy analysis. In this range,
angles α and β are the direct equivalent of the translational and rotational errors,
respectively, associated with planar 3-DOF motion.

3 Example: The Agile Eye

In this section, for simplicity, we address the problem of computing the rotational ac-
curacy of a parallel robot in the presence of active-joint errors only. Specifically, we
will analyze the rotational accuracy of the well known spherical parallel robot called
the Agile Eye (Figure 2a). Its kinematics, singularities (Figure 2b), workspace, and
working and assembly modes have been studied in detail in several papers (Bonev
and Gosselin, 2005, 2006; Bonev et al., 2006). Therefore, we will recall only one
important fact before focusing on the accuracy analysis.

The Agile Eye is a very particular parallel robot with its Type 1 (serial) and Type
2 (parallel) singularities coinciding and degenerating to six curves as shown in Fig-
ure 2b using a T&T angles coordinate system. Each curve corresponds to finite self
motions of both the platform and the legs.

3.1 Accuracy Analysis

In order to compute the rotational errors of the Agile Eye, we use T&T angles
(φ, θ, σ ) and the following discretization method. For a fixed torsion angle σ , we
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Fig. 2 (a) A CAD model of the Agile Eye at its reference configuration (zero active-joint variables
and φ = 0◦, θ = 0◦ and σ = 60◦ T&T angles) and (b) its singularity loci.

discretize the orientation space (φ, θ). At a given nominal orientation (φ0, θ0, σ0)

of the mobile platform, we compute the active-joint variables (q10, q20, q30) for one
given working mode using the inverse kinematics. Clearly, we should stick to the
same working mode throughout the whole workspace. Then, assuming that active-
joint variable qi can vary from its nominal value qi0 by an error ε (in our study,
ε = ±0.01◦), we discretize the active-joint interval from qi0 − ε to qi0 + ε and
for each set of active-joint variables solve the direct kinematics. For the Agile Eye,
the direct kinematics can be found analytically. As presented in Bonev et al. (2006),
there are four non-trivial solutions which define the assembly modes of the robot.
Therefore, the problem is to know which of the obtained solutions is the desired as-
sembly mode corresponding to the nominal configuration. Fortunately, this problem
has already been solved in Bonev et al. (2006).

Of course, the direct kinematics of parallel robots can rarely be solved analyt-
ically. Therefore, in such cases, a numerical method should be used, such as the
Newton–Raphson algorithm. This method is much more time-consuming, but, when
sufficiently far from singularities, it converges to the appropriate assembly mode of
the robot.

Thus, for a given nominal configuration, it is possible to compute all possible
rotational errors α and β, and to retain their maxima. These maximal errors are
presented in Figure 3 using T&T polar plots for several constant torsions. We can
think of these polar plots as the equivalent of constant-orientation polar plots for
planar robots.

Analyzing Figure 3, it appears that our rotational errors grow considerably near
singularities (represented by crosses and dotted lines in Figure 3), which is perfectly
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Fig. 3 Rotational errors of the Agile Eye for σ ∈ [0◦, 120◦].
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normal. An unexpected result is, however, the fact that, when computing the rota-
tional errors, most of the time, the maximal output errors occur when the active-joint
variables are inside their error intervals, whereas it has been demonstrated in Briot
and Bonev (2008) that for planar parallel robots, the maximal output errors can only
occur when at least two of the active-joint variables are at the extremes of their error
intervals. This observation suggests that it should be impossible to find a manage-
able analytic expression for the output (rotational) errors of even a simple spherical
parallel robot such as the Agile Eye. A simple discretization method such as ours
will be sufficient but more time-consuming and less accurate. However, more effi-
cient approaches could be used, such as interval analysis (Merlet, 2006a).

It should also be noted that the curves are periodic, but not symmetric, which is
due to the fact that the output errors depend on the robot’s working mode.

4 Conclusions

In this paper, we addressed the problem of representing rotational errors of spatial
robots. A review of previous works has shown that, most frequently, authors ana-
lyze the errors on each Euler angle defining the orientation of a robot end-effector.
However, this is generally wrong since an accuracy measure should depend only on
the “distance” between the nominal pose and the actual one, and not on the choice
of reference frame in which these are expressed. In contrast, several bi-invariant
metrics for rotational error exist. However, they are single-parameter and, by defini-
tion, disregard the shape of the robot end-effector. Yet, most robot end-effectors are
axisymmetric. Therefore, the choice of end-effector reference frame is not arbitrary
and users are likely to be interested in more than one rotational error measure. To
fill this gap, we propose a pair of measures of rotational errors that is better suited
for such robot end-effectors.

In order to present the efficiency of our approach, we applied it to compute the
output errors of a well-known spherical parallel robot called the Agile Eye. It was
shown that its accuracy depends on the working mode and is poor near singularities.
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Abstract. Angular-velocity estimation from point-acceleration measurements is now common
practice in biomechanics, and is starting to gain some interest within the robotics community.
In this paper we propose two methods for the estimation of the rigid-body angular velocity from
the centripetal component of its acceleration field. These methods rely on the adjoint matrix of
the symmetric component of the associated angular acceleration matrix. Simulation shows that the
methods proposed here can be more robust than their current counterparts.

Key words: angular velocity, rigid-body acceleration field, biomechanics, accelerometer, strap-

down inertial measurement unit.

1 Introduction

The fast navigation of mobile robots over rough terrain requires a robust estimation
of their velocity and position variables. These vehicles are generally equipped with
arrays of different contactless sensors such as accelerometers, gyroscopes, range
sensors, magnetometers, and tilt sensors, which are often used faute de mieux [7]. In
particular, mechanical gyroscopes need to be coupled with other angular sensors, as
the shocks involved tend to undermine their accuracy. Due to their inherent simpli-
city, accelerometers are generally more robust than gyroscopes in that respect, which
could make them useful at measuring translations and rotations. Such a concept was
recently proposed by Lin et al. [4].

On the other hand, in the field of robotic manipulation, common practice is
to estimate the angular velocity of the robot end-effector by taking the time-
derivative of encoder readouts. This technique is inaccurate when some of the
links of the kinematic chain exhibit compliance, a situation that arises in long-
reach manipulators [5] and in manipulators that generate high accelerations [3].
The vibrations inherent to these manipulators may be alleviated through con-
trol, provided some feedback on the actual pose of the end-effector is available.
Among the sensors that have been proposed to measure the vibrations of the end-
effector, we find piezoelectric elements [9], strain gages [2], and accelerometers

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 353–360.
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[5]. In the latter method, Parsa [5] used the accelerometer readouts to estimate
the acceleration field of the robot end-effector, and, from there, its twist and pose
parameters.

In this paper, progress is reported on just a piece of the problem addressed by
[5], namely, the estimation of the rigid-body angular velocity from the centripetal
component of its acceleration field. Besides classical applications in biomechan-
ics [8, 10], the proposed estimation technique is potentially useful to both mobile
robots and flexible manipulators.

2 Rigid-Body Acceleration Field

Assume that n accelerometers are attached at n points {Pi}ni=1 of a rigid body mov-
ing in space. The position of each point Pi in a frame with origin at the fixed point
O is given by vector pi ∈ R3. Let us also define B, a landmark point on the rigid
body, and its position b ∈ R3 in the same frame. This allows the definition of body-
fixed vectors ri ≡ pi −b, i = 1, . . . , n. The acceleration of point Pi may be written
as

p̈i = b̈+Wri , i = 1, . . . , n, (1)

where W ≡ 	̇ +	2 is the angular-acceleration matrix [1], 	 ≡ CPM(ω), ω is the
rigid-body angular velocity, and CPM( · ) returns the cross-product matrix1 of ( · ).
Apparently, from Eq. (1), one may infer W from the accelerations of at least three
non-collinear points. The angular-acceleration matrix represents the rigid-body ac-
celeration field.

In this paper, we are interested in the estimation of the rigid-body angular velo-
city from centripetal acceleration (CA) measurements, techniques which we label
CA methods. The centripetal component of the acceleration field corresponds to the
symmetric component of W,

WS ≡ 1

2

(
W+WT

)
= 	2. (2)

2.1 Existing CA Methods

The most frequent instances of the CA method found in the literature [5, 6] consist
in taking the square-root of a linear combination of the diagonal entries of WS ,
which may be summarized as

1 CPM(a) is defined as ∂(a× b)/∂b, for any a,b ∈ R
3.
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if tr(ŴS) < 0 and ω̂TA �= 03

ζ̂i = ŵi,i − (1/2)tr(ŴS), i = 1, 2, 3,

ω̂CAD,i = sgn(ω̂T A,i)u(ζ̂i)
√
ζ̂i , i = 1, 2, 3,

else
ω̂CAD = 03,

end (3)

where ŵi,j is the (i,j ) entry of ŴS , 03 is the three-dimensional zero-vector, sgn(·)
is the signum function, u(·) is the Heaviside (step) function, and the “hat” symbol
( ·̂ ) refers to an estimate of the quantity ( · ). The angular velocity estimate ω̂TA
obtained from tangential acceleration (TA) is used here to resolve the sign ambiguity
inherent to CA methods. This estimate is computed from the preceding centripetal
acceleration estimate as

ω̂TA(t) = ω̂CA(t −�t)+
∫ t

t−�t
ˆ̇ω(τ )dτ. (4)

Indeed, the centripetal component of the acceleration field does not provide any
information on the sign of ω, since

WS = 	2 = CPM(ω)CPM(ω) = CPM(−ω)CPM(−ω).

As it uses only the diagonal entries of WS , this algorithm will be referred to as the
CAD method.

An alternative method was reported by Peng and Golnaraghi [6]. The authors
nonetheless point out that this algorithm is prone to singularity problems. This ap-
proach uses the off-diagonal entries of WS to estimate the square of the components
of the angular velocity. This approach, labelled the CAOD method, is summarized
below:

for i, j, k = 1, 2, 3, i �= j �= k �= i,
ξ̂i = ŵi,j ŵk,i/ŵj,k,
ω̂CAOD,i = sgn(ω̂T A,i)u(ξ̂i )

√
ξ̂i .

end (5)

3 First Method: Computing the Adjoint Matrix of WS

From Eq. (2), one notices that WS has a rank of two, just as 	. Moreover, ω is bound
to lie in the one-dimensional nullspace N {WS} of WS , since WSω = 	2ω = 03.
Hence, the nullspace of WS provides a suitable estimate of the direction of ω. As
per the relation

adj(WS)WS = WSadj(WS) = det(WS)1n×n = O3×3, (6)
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where O3×3 is the 3 × 3 zero-matrix, the range of the adjoint matrix2 adj(WS) of
WS is bound to lie in the nullspace of WS itself. Hence, any vector u that does not
lie in the nullspace of adj(WS) provides an estimate adj(WS)u of the direction of ω.
In fact, one may verify that adj(WS) = adj(	2) = ‖ω‖2

2ωωT , which shows that any
vector that is not orthogonal to ω is suitable. For robustness, u has to be as parallel
to ω as possible. An estimate of this vector is given by the TA method, thus leading
to the algorithm

if tr(ŴS) < 0 and ω̂TA �= 03

‖ω̂CAAD‖2 =
√
−(1/2)tr(ŴS),

v = adj(ŴS)ω̂TA,

ω̂CAAD = (‖ω̂CAAD‖2/‖v‖2)v,
else

ω̂CAAD = 03.

end

which is labelled the CAAD method, AD standing for “adjoint”.

4 Second Method: Augmenting Matrix WS with the Range of Its
Adjoint Matrix

The idea is to compose a full-rank matrix X for which the product Xω is known
a priori. Such a matrix can be obtained by stacking the additional row xT adj(WS)

at the bottom of WS , where x ∈ R3 is not orthogonal to ω. Let R{ · } and S{ · }
represent the range and the support space (or row space) of { · }, respectively.
Since adj(WS)x ∈ R{adj(WS)} = N {WS}, we have S{[WS adj(WS)x]T } =
S{WS} ⊕ N {WS} = R3, with ⊕ indicating, as usual, the direct sum of the two
vector-space operands. As in the adjoint method, let us choose x = ω̂TA to be
our best estimate of a vector that is not orthogonal to ω, thus leading to the mat-
rix [WS adj(WS)ω̂TA]T . Hence, we will call this approach the augmented mat-
rix method, or, for short, CAAM. However, the current form of the augmented
matrix is not yet satisfactory because it is not dimensionally homogeneous. In-
deed, in such a case, choosing inappropriate units renders the matrix ill-conditioned
and prone to round-off errors due to the finiteness of the machine precision. To
avoid such problems, we normalize all quantities using the estimate of the norm
‖ω̂CA‖2

2 = −(1/2)tr(WS), which yields

X ≡
[ −2WS/tr(WS)

4ω̂
T
TAadj(WS)/(tr(WS)

2‖ω̂TA‖2)

]
=

[
	2/‖ω‖2

2
ω̂
T
TAωωT /(‖ω‖2

2‖ω̂TA‖2)

]
.

2 Not to be confused with the adjoint or Hermitian transpose of a linear operator.
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Notice that X is isotropic, since we have, for a perfect estimate ω̂TA = ω, XTX =
13×3. For ideal measurements, the mapping of uω ≡ ω/‖ω‖2 onto the range of
X is Xuω = [0 0 0 1]T ≡ ξ . The least-square approximation of this overde-
termined system is found using Householder reflections, which yields

if tr(ŴS) < 0 and ω̂TA �= 03

‖ω̂CAAM‖2 =
√
−(1/2)tr(ŴS),

X̂ =
[

−2ŴS/tr(ŴS),

4ω̂
T
TAadj(ŴS)/(tr(ŴS)

2‖ω̂TA‖2)

]
, ξ =

[
03
1

]
,

{Q,R} ← Householder(X̂),
uω ← Backsubstitution(R,QT ξ),

ω̂CAAM = (‖ω̂CAAM‖2/‖uω‖2)uω,

else
ω̂CAAM = 03.

end

5 Simulation

In order to compare the robustness of the foregoing methods with that of the previ-
ously proposed ones, the motion of a brick freely rotating in space was simulated.

5.1 Accelerometer Array

The inertial measurement unit (IMU) used to estimate the angular velocity of the
brick is assumed to be an array of four triplets of mutually orthogonal accelero-
meters, attached to four of the vertices of the parallelepiped. The layout is depicted
in Figure 1, where unit vector ei gives the sensitive direction of the ith acceler-
ometer, whereas point Pi gives its location on the brick. Apparently, all direction
vectors are parallel to four of the parallelepiped edges; moreover, P1 = P2 = P3,
P4 = P5 = P6, P7 = P8 = P9 and P10 = P11 = P12. The brick dimensions
are chosen to be a = 0.07 m, b = 0.14 m, and c = 0.21 m, in the X-, Y - and
Z-axis direction, respectively. Let us also define frame B, which is attached to the
brick and has its origin B located at the brick centroid. All vector quantities in this
simulation are to be expressed in frame B.

The ith accelerometer output is decomposed into one deterministic part ai,r ,
which is the actual point-acceleration, and two stochastic parts δai,b and δai,n,
which are the bias and noise errors, respectively. This gives, at an instant t , ai(t) =
ai,r (t) + δai,b + δai,n(t). In this equation, the bias error is assumed to be time-
independent and normally distributed, while the noise is assumed to be white and
normally distributed as well. The mean and variance of δai,b are taken to be 0 and
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Fig. 1 A brick rotating freely in space.

300 mg, respectively, while the mean and variance of δai,n are taken to be 0 and 75
mg, respectively. A sampling rate of 100 Hz is assumed.

5.2 Trajectory

We assume that neither force nor moment is applied to the brick throughout the
simulation. Hence, the angular momentum is preserved, which gives

IB ω̇ + ω × IBω = 03, (7)

where IB is the brick inertia matrix calculated with respect to point B and expressed
in frame B. Upon assuming a constant density ρ of the brick material, we obtain
IB = ρ diag(10.9, 8.4, 4.2) · 10−6 m5 whence the brick motion is independent of
ρ. We choose the initial condition to be ω0 = [13.33 17.77 22.21]T rad/s, as
represented in Figure 1, where one can see that this vector is parallel to one of the
great diagonals of the parallelepiped, its magnitude being 10π rad/s.

5.3 Results

The estimates obtained from the existing and proposed CA methods appear in Fig-
ure 2. The CAD method exhibits discontinuities whenever one of the components
approaches zero, and this, to the point that sign errors are introduced in the es-
timates. The same problem occurs with a higher amplitude in the CAOD method.
Apparently, in this situation, the proposed CA methods are more robust than the
existing ones, as can be appreciated from Figure 2b.

The overall performance of a method may be assessed by taking the rms-value of

the magnitude of its associated error, i.e., δωrms =
√
(1/n)

∑n
i=1 ‖ω̂i − ωi‖2

2.The
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Fig. 2 Angular velocity estimates from (a) existing and (b) proposed CA methods.

Table 1 Error and cost comparisons.

Method δωrms Flops Square-roots

CAD 27.2 rad/s 18 3
CAOD 55 rad/s 21 3
CAAD 1.3 rad/s 60 2
CAAM 2.05 rad/s 202 6

rms-values resulting from the foregoing simulation are gathered in Table 1, along
with the costs associated with their computation. The proposed methods come with
heavier computational burdens that correspond roughly to three and ten times those
of the already-existing CA methods. In the opinion of the authors, this drawback is
less important than the additional robustness provided by the CAAD and CAAM
methods, since most applications involve other computations that are far more in-
tensive.

6 Conclusions

Two methods were proposed for the estimation of the angular velocity from centri-
petal acceleration measurements taken at a constellation of points of a rigid body.
In the simulated situation, these methods appear to be more robust than the two ex-
isting CAD and CAOD methods. In fact, sign errors render the CAD and CAOD
methods unreliable whenever one of the angular velocity components reaches zero;
for that reason, their rms-values are significantly higher than those of the other meth-
ods. The proposed CA methods circumvent that problem, by relying instead on the
square-root of the magnitude of the angular velocity – except, of course, when all
the angular velocity components reach zero. We must state, however, that the CAD
and CAOD methods are computationally less intensive than the proposed methods.
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Abstract. The concept of distance between two rigid-body poses is central for lots of applications:
path planning, positioning precision, mechanism synthesis, etc. When real motion tasks are con-
sidered, the definition of a distance must take into account the size of the rigid body that performs
the task for providing useful pieces of information about the task. In this context, a geometric ap-
proach to identify distance metrics, meaningful for kinematics tasks, will be presented together
with criteria to evaluate the parameters that appear in the formulas.

Key words: SE(3), metrics, positioning precision, mechanism synthesis.

1 Introduction

The need of comparing a reached rigid-body pose (position and orientation) with
a desired rigid-body pose arises in many robotics applications. For instance, the
evaluation of positioning precision, or of path-planning results, or of mechanism-
synthesis solutions are only some tasks that require such a comparison. In these
applications, the type of comparison can be implemented by means of a real-valued
mapping, ρ(x1, x2), of two six-tuples (i.e., ρ : R6 × R6 → R), x1 and x2, (x1 and
x2 identify the two rigid-body poses) which satisfies the three properties (positive
definiteness, symmetry, and triangle inequality) of distance metrics.

Defining a distance metric in the configuration space (c-space) of a rigid-body
is a difficult problem many researchers have dealt with. It has been mainly ad-
dressed according to the two following approaches: (i) the attempt to introduce a
distance metric directly in the c-space (Ravani and Roth, 1983; Kazerounian and
Rastegar, 1992; Rico-Martinez and Duffy, 1995; Park, 1995; Zefran et al., 1996;
Lin and Burdick, 2000; Eberharter and Ravani, 2004; Zhang and Ting, 2005); (ii) the
attempt to approximate the displacement in the c-space with a spherical or hyper-
spherical displacement, and, then, to use a distance metric of the spherical, SO(3),
or hyper-spherical, SO(N), space (McCarthy, 1983; Larochelle and McCarthy, 1995;
Etzel and McCarthy, 1996; Larochelle, 1999; Tse and Larochelle, 2000; Belta and
Kumar, 2002; Angeles, 2005; Larochelle et al., 2007).
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In this literature, a metric is said to be bi-invariant if it depends neither on the
choice of the reference system fixed to the rigid body (body frame), nor on the
choice of the reference system fixed to the observer (inertial frame) (Figure 1).
Moreover, a metric is said left-invariant (right-invariant), if it does not depend on
the choice of the body frame (the inertial frame).

With reference to the above-reported definitions, the following results have been
demonstrated: (1) no bi-invariant Riemannian metric can be defined in the special
Euclidean group, SE(3) (Park, 1995); (2) the size of the rigid-body must be con-
sidered for defining meaningful distance metrics (Kazerounian and Rastegar, 1992;
Rico-Martinez and Duffy, 1995); (3) bi-invariance is not necessary to define mean-
ingful distance metrics (Lin and Burdick, 2000).

In this paper, some methods to generate families of distance metrics are presen-
ted. Then, among these families, a specific one is selected by using the criterion that
a limitation on the distance metric must have a clear geometric meaning. Eventually,
it is presented how to determine the distance-metric parameters so that a limitation
imposed on the actual pose of a rigid body through that distance metric constrains
the maximum displacement of the rigid-body points.

The advantage of the proposed approach is that it immediately visualizes which
limitation on the rigid-body actual pose is imposed when a condition on the distance
metric is given.

2 Generation of Distance Metrics

A distance metric in an n-dimensional c-space (n ≤ 6) is a real-valued mapping
d : Rn × Rn → R of type d(y1, y2), where y1, y2 ∈ Rn identify two poses in the
c-space, that satisfies the following properties:

d(y1, y2) = d(y2, y1) (symmetry);
d(y1, y2) > 0 if y1 �= y2 and d(y1, y2) = 0 if y1 = y2 (positive definiteness);
d(y1, y2) ≤ d(y1, y3)+ d(y3, y2) for any y3 ∈ Rn (triangle inequality).

It is easy to demonstrate the following proposition:

Proposition 1. If di(y1, y2) for i = 1, . . . ,m are m different distance metrics
defined on the same n-dimensional c-space, then any linear combination, δ(y1, y2),
with non-negative coefficients of the di(y1, y2) is a distance metric of the same c-
space, provided that at least one coefficient be different from zero. In formulae:

δ(y1, y2) ∈
⎧⎨⎩ ∑
i=1,m

aidi(y1, y2) | (ai ≥ 0) & (∃k : ak �= 0)

⎫⎬⎭ .
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Fig. 1 Notation.

Fig. 2 Geometric meaning of the condition δT (O1,O2) < c.

Considering the displacement of a body frame from the coincidence with the
inertial frame to an assigned rigid-body pose, and, then, giving the geometric para-
meters of that displacement is a common way to identify the assigned pose in the
c-space.

The special Euclidean group, SE(3), collects all the possible displacements of a
rigid body. SE(3) admits 10 subgroups (Hervé, 1978) with dimension greater than
zero and lower than six (lower-mobility subgroups). The elements of SE(3) are 4×4
transformation matrices that depend on six geometric parameters. These parameters
can be collected in the six-tuple x. Hereafter, the six-tuple x will be confused with
the element of SE(3) which is computed through the entries of x, and the same
simplification of notation will be used for the subgroups of SE(3).

A generic element of SE(3) can be always obtained through the composition
of elements that belong to particular lower-mobility subgroups (e.g. one translation
composed with one spherical motion). This property allows a rigid-body pose to
be parameterized through a six-tuple, x, whose entries can be collected into p nk-
tuples, ky with k = 1, . . . , p and

∑
k=1,p nk = 6, where each ky identifies an

element of a given lower-mobility subgroup, Sk with dimension nk . In formulae:
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x ∈ {(1yT , . . . , pyT )T | ky ∈ Sk ⊂ SE(3) for k = 1, . . . , p}.
In this context, it is easy to demonstrate the following proposition:

Proposition 2. If δk(ky1,
k y2) is a distance metric of Sk , then any linear combin-

ation, ρ(x1, x2), where x1 = (1yT1 , . . . ,
pyT1 )

T and x2 = (1yT2 , . . . ,
pyT2 )

T , of the
δk(

ky1,
k y2) with positive coefficients is a distance metric of SE(3). In formulae:

ρ(x1, x2) ∈
{ ∑
k=1,p

bkδk(
ky1,

k y2) | (x1 = (1yT1 , . . . ,
p yT1 )

T )

& (x2 = (1yT2 , . . . ,
p yT2 )

T ) & (∀bk > 0)

}
.

Proposition 2 makes it possible to generate a large family of distance metrics
of SE(3) by decomposing a generic displacement into displacements of lower-
mobility subgroups, and by defining one distance metric in each subgroup. Once a
family of distance metrics is determined, how to select meaningful distance metrics
among the members of this family still is an open problem. In the next section, this
problem will be addressed by looking for distance metrics that have an immediate
geometric meaning.

3 Choice of Meaningful Distance Metrics

The decomposition of a generic rigid-body displacement into displacements that be-
long to lower-mobility subgroups can be implemented in many ways. Nevertheless,
only some subgroups have distance metrics that are easy to use and with a straight-
forward geometric interpretation. The subgroup of the spatial translations, T (3),
and the subgroup of the spherical motions, S(3), are among these subgroups. Since
any displacement can be obtained by composing one spatial translation with one
spherical motion, T (3) and S(3) will be used to decompose spatial displacements.

When a rigid body is constrained to translate, its pose (≡ position) is uniquely
identified by the coordinates of the origin,O (Figure 1), of the body frame measured
in the inertial frame.

The following distance metric is commonly adopted in T (3)

δT (O1,O2) = |O2 −O1|, (1)

where O1 and O2 are two position vectors, measured in the inertial frame, that locate
the position of the origin of the body frame in the two poses, and |(·)| denotes the
magnitude of the vector (·).

The distance metric δT (O1,O2) is bi-invariant in T (3). Moreover, a limitation
on δT (O1,O2) (e.g. δT (O1,O2) < c) has a clear geometric meaning. In fact, it
means that O2 must be located inside a sphere with center O1 and radius given by
the imposed condition (Figure 2).
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Fig. 3 Relationships between two poses of the same body frame.

When a rigid body is constrained to perform spherical motions with the same
center, hereafter assumed coincident with the origin of the body frame, its pose (≡
orientation) is uniquely identified by the rotation matrix, R(θ), whose column are
the three unit vectors of the body-frame axes projected onto the inertial frame (Fig-
ure 1). Such a matrix can be written as an explicit function of three independent
parameters, which, in the notation adopted here, are collected in the 3-tuple vecθ .
The set that collects all the rotation matrices is named SO(3), and the above con-
siderations state an isomorphism between S(3) and SO(3).

In the literature, a number of distance metrics have been proposed for SO(3)
(e.g., Ravani and Roth, 1983; Park, 1995; Larochelle et al., 2007). The following
distance metric is among the proposed ones:

δs(θ1, θ2) = cos−1
(

tr(R(θ1))
TR(θ2))− 1

2

)
, (2)

where R(θ1) and R(θ2) are the two rotation matrices that locate the two rigid-body
orientations with respect to the inertial frame (Figure 3), the image of cos−1(·) is
restricted to the range [0, π], and tr(·) denotes the trace of the matrix (·).

The distance metric δs(θ1, θ2) is bi-invariant. It measures the convex rotation
angle, in radians, of the finite rotation that brings the first rigid-body orientation to
coincide with the second one. On a unit sphere, centered at the center of the spherical
motion, such an angle measures the length of the great-circle arc between two points
that lie on the equatorial circle perpendicular to the rotation axis, and coincide with
each other after the above-mentioned finite rotation.

A limitation on δs(θ1, θ2) (e.g. δs(θ1, θ2) < φ) has a clear geometric meaning.
In fact, it means that each body-frame axis at the second orientation is confined to
lie inside a circular cone with vertex at the center of the spherical motion, cone axis
coincident with the homologous body-frame axis at the first orientation, and vertex
angle given by the imposed condition (Figure 4).
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Fig. 4 Geometric meaning of the condition δs (θ1, θ2) < φ.

The distance metrics (1) and (2), and Proposition 2 can be used to generate the
following family of distance metrics of SE(3):

ρu(x1, x2) = δT (O1,O2)+ uδs(θ1, θ2), (3)

where x1 = (OT1 , θ
T
1 )
T , x2 = (OT2 , θ

T
2 )
T , and u is an arbitrary positive constant

that is evaluated in the same unit as δT .
The analysis of definition (3) reveals that a limitation on ρu(x1, x2) expressed in

the following form:
ρu(x1, x2) < h, (4)

implies the following limitations on δT and δs , and the associated geometric mean-
ings:

δT (O1,O2) < h, (5a)

δs(θ1, θ2) <
h

u
. (5b)

Since the value of ρu(x1, x2) depends on the choice of the origin,O, of the body
frame, the distance metrics defined by (3) are, in general, left-invariant.

3.1 Determination of the Parameter u

The meaning of ρu(x1, x2) depends on the value of the parameter u and on the
choice of the origin, O, of the body frame. In this section, these parameters are
determined so that a limitation on ρu(x1, x2) corresponds to a constraint on the
maximum displacement the rigid-body points can perform.
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Fig. 5 Displacement of a rigid-body point, P , from the position P1 to the position P2 (O1 and O2
have the same meaning as in Figure 3).

The displacement, (P2−P1), of a rigid-body point,P , at distance r from a rotation
axis passing through the body-frame origin,O, is the vector sum of the displacement
of O, which has magnitude δT (O1,O2), and the displacement due to the rotation,
which has magnitude 2r sin(δs(θ1, θ2)/2) and is located in a plane perpendicular to
the rotation axis (Figure 5).

The maximum magnitude of (P2 − P1) occurs when the two vector components
are parallel, and r has its maximum value, rmax, which coincides with the maximum
distance of P from O. Thus, the following relationship holds:

|P2 − P1| ≤ δT (O1,O2)+ 2rmax sin

(
δs(θ1, θ2)

2

)
. (6)

Moreover, the following mathematical relationship holds, too:

2rmax sin

(
δs(θ1, θ2)

2

)
< rmaxδs(θ1, θ2). (7)

With reference to Figure 5, relationship (7) expresses the fact that the chord is
shorter than the arc.

Relationships (6) and (7) demonstrate the following inequality:

|P2 − P1| < ρrmax(x1, x2), (8)

where
ρrmax(x1, x2) = δT (O1,O2)+ rmaxδs(θ1, θ2). (9)

Therefore, if the parameter u is chosen equal to rmax, a condition on the maximum
point displacement will be imposed through a limitation on ρrmax(x1, x2).
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Moreover, since choosing the geometric centroid of the rigid body as originO of
the body frame reduces the value of rmax, such a choice is advisable when a specific
limitation on the orientation error (i.e., a specific condition (5b)) is not necessary. In
doing so, condition (5b) becomes looser and easier to satisfy.

4 Conclusions

A technique for generating families of distance metrics of SE(3) has been presen-
ted. Among these families, a specific one has been selected which has the property
that a limitation on its distance metrics has a clear geometric meaning.

Eventually, the distance-metric parameters have been determined so that a limit-
ation imposed on that distance metric constrains the maximum displacement of the
rigid-body points.

The proposed distance metric is simple to be used, and has the advantage that it
allows the immediate visualization of which limitation is imposed on the rigid-body
actual pose when a condition on the distance metric is given.

Future investigations will try to determine the distance-metric parameters accord-
ing to other design criteria and to study other families of metrics generated with the
proposed technique.
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Abstract. The positioning accuracy of robotic manipulators can be enhanced by identification and
correction of the geometry parameters of the controller model in a way that it best matches the
real physical robot. This procedure, denoted as kinematic calibration, is performed by analyzing
the difference between conflicting information gained by the kinematic model and corresponding
redundant measurement information. Most traditional robot calibration approaches require extra
sensors or special constraint fixtures in order to obtain redundancy. This paper proposes a new
calibration method that does not require any special calibration equipment, thus being very eco-
nomical. The presented technique which is designed to be applied to parallel robots is based on a
working mode change and incorporates special knowledge about serial singularities. Exemplarily
the approach is verified by means of simulation studies on a 3-RRR-structure.

Key words: parallel kinematics, calibration, singularity, working mode.

1 Introduction

The absolute positioning accuracy of industrial robots highly depends upon the kin-
ematic controller model, defining the manipulator geometry. Manufacturing errors
and assembly tolerances cause a deviation between the model parameters and the
real robot’s geometry. In consequence the controller internal model equations do
not represent the reality what leads to limited absolute accuracy. A kinematic calib-
ration helps to overcome this drawback. Its purpose is to adjust the parameters in a
way to more closely replicate the physical manipulator [11].

Parametric calibration in general requires redundant measurement information
that is usually obtained by additional internal or external measurement systems such
as lasertracker-devices, theodolites, camera systems or passive joint sensors. Altern-
atively the robot’s degree of freedom (dof) may be restrained by passive mechanical
devices. In that case the actuator encoders of the system deliver enough information
allowing for parameter identification. Various calibration techniques are compared
in [6]. Recently singularity based calibration was introduced [8, 9] constituting a
new class of robot calibration methods that is completely free of any additional cal-

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 371–380.
© Springer Science+Business Media B.V. 2008
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ibration equipment. Redundancy is in that case achieved by special knowledge about
singularities of type II, also known as direct kinematic singularities.

Although very promising, singularity based calibration as initially introduced
has several drawbacks which limit its application, see [8]. In order to overcome
these drawbacks while still profiting from the advantages, a new calibration scheme
is proposed here which can also be categorized into the class of singularity based
techniques. In comparison to the method presented in [8] this contribution provides
an idea on how to calibrate a robot by utilizing special knowledge about type I – not
type II – singularities. Due to the abandonment of external measurement systems
or constraint devices the proposed calibration approach is very inexpensive com-
pared to other techniques. Moreover, it can be automated and repeated whenever
necessary.

2 Idea of the Calibration Scheme

As the title of this paper implies a basic step of the calibration technique proposed
here is to change the working mode of a parallel robot. According to [1] the working
mode is defined as one of the several solutions of the inverse kinematic problem
(IKP). Consequently, whenever a working mode is changed a special configuration
has to be passed where several solutions of the IKP, at least those between which is
switched, coincide. Such configuration is called, inverse kinematic singularity, type
I singularity or serial singularity [3, 10]. For parallel robots the IKP is decoupled
for each of the limbs connecting base and end-effector platform, meaning that it can
be independently solved for each limb. This implies, that each limb may cause an
inverse kinematic singularity.

Geometrically type I singularities occur, if the links of a limb are completely
stretched or folded upon each other [3]. From a physical point of view the singularity
constitutes a situation in which the actuator of the limb which causes the singularity
is not participated in compensating for forces acting on the end-effector [5]. This
well known fact is the starting point for the new calibration approach presented
here. As will be shown it allows for an experimental identification of the singular
configuration during a working mode change. In comparison with corresponding
information obtained from the kinematic model such measurements enable a robot
calibration.

As a prerequisite for the calibration scheme it is assumed that the actuator
forces/torques of the robot’s motors can be monitored during singularity passing.
This is valid assumption because the vast majority of industrial robots is driven by
electrical motors for which the actuator current, which can be read from the drive
amplifier is directly proportional to the motor torque. Furthermore we assume that
each motor is equipped with a position measurement system, allowing to monitor
the actuator coordinates.

For the new calibration scheme it is required that the working mode change is
conducted by moving just one of the actuators of the system while holding the oth-
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Fig. 1 3-RRR mechanism changing its working mode: (a) before, (b) in, (c) after inverse singular
configuration.

ers at a constant position as exemplarily shown in Figure 1 for the 3-RRR struc-
ture. The motors which remain at a constant position during singularity passing
are called fixed actuators in what follows. Their coordinates are described by
qfixed = {qf 1, qf 2}, while the moving motor’s coordinate is qm. For simplicity only
cases are considered, for which a working mode change occurs in the limb, whose
actuator is moved.

The motion which is performed in order to make the structure pass the singularity
induces a dynamic wrench (forces and torques) to each of the links of the manip-
ulator. With respect to the moving actuator these wrenches may be split into two
groups. Part of the wrenches act on the links belonging to the limb which contains
the moving motor. These cause an actuator torque/force1 τFm at the moving motor.
The remaining forces are discharged into the limb, which contains the moving ac-
tuator via the end-effector and thus may be considered as end-effector forces. They
cause a torque τFEE at the moving motor. Thus in total the torque of the moving
actuator is

τmtotal = τFm + τFEE (1)

In type I singularities, because τFEE vanishes as stated above, Equation (1) simplifies
to

τ
sing
mtotal = τFm (2)

The amount of τFm is unknown, however, we know that the term is independent
of the payload m (mass and inertia parameters of the end-effector), because a dy-
namic wrench caused by the payload is contained in term τFEE . This means that
if an inverse kinematic singularity is repeatedly passed on the same trajectory (the
same path, with the same acceleration- and velocity-parameters) but with differing
payloads m1 and m2, then τ sing

Fm
remains the same. As a singularity condition it holds

τ
sing
mtotal(m1) = τ sing

mtotal(m2) = τFm (3)

1 In accordance to the 3-RRR robot used as an example within this paper we only talk about
actuator torques, because this special manipulator only contains rotary motors.
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Fig. 2 Torque plots for the moving actuator during transiting a singularity of type I with different
payload masses.

This behavior is exemplarily depicted in Figure 2 which shows two actuator-torque-
plots τ1,mtotal(t) and τ2,mtotal(t) as a function of time t , obtained for a same trajectory
which guides the structure through a singularity of first type. The only difference in
both plots is that different payload parameters m1 and m2 have been used.

At time tsing both curves intersect, so that singularity condition (3) is ful-
filled. If the motor position qsing

m has been monitored at the same time as the mo-
tor torque, then qsing

m , which corresponds to the singularity, can be obtained as
q

sing
m = qm(tsing).

The plots in Figure 2 have been generated by means of a multi-body-simulation
model of the 3-RRR structure, implemented in SimMechanics©. By means of a co-
simulation it could be verified that the interference of both curves indeed occurs at
a serial singular configuration.

The described approach allows to detect qsing
m experimentally. Furthermore, since

particular geometric conditions need to be fulfilled at a singular configuration of
type I, it is possible to compute the actuator coordinate qsing

m (k) which corresponds
to a singularity from the kinematic model including the kinematic parameters k.
Comparing both information yields a residual

r(k) = q̂sing
m − qsing

m (k) (4)

Passing the inverse kinematic singularity at different locations allows for a for-
mulation of different residual functions. These may be assembled in a vector
r(k). Ideally, if the kinematic model exactly matches the real robot-structure, then
r(k) = 0. Since we assume parameter errors, mathematical optimization methods
may be applied to find k such that the deviations in r(k) are minimized.
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It is convenient to perform the described calibration procedure in a way, that the
end-effector payload parameters have to be changed only once during the whole
process. Besides this no manual action is required. By means of an automatic tool
changer the calibration process can be completely automated. It should be noted that
although the proposed technique relies on force measurements no dynamic model
of the robot is required. Even the payload parameters do not need to be known. The
only thing to guarantee, is that the payload parameters are really different.

Finally a limitation should be mentioned. For parallel kinematic machines with
extendable legs, such as the 3-RPR structure [12] or the Gough-platform [4] the
presented calibration approach is not applicable. This is because for such manipu-
lators a type I singularity in the sense as described above only occurs if the length
of the extendable leg equals zero. This situation is only of theoretical interest but
physically not possible.

3 Validation

In order to validate the presented robot calibration approach, the well-known
3-RRR-structure [7] already shown in Figure 1 will be calibrated in a simulation-
experiment. The 3-RRR-mechanism is a fully parallel planar manipulator. Its end-
effector platform, guided by three independent kinematic chains, can be controlled
in three dof, the two translations along the x- and y-axes and a rotation around the
z-axis of a Cartesian base coordinate frame. Each of the three identical limbs of the
3-RRR-structure is composed of two links – a crank and a bar element which are
connected to each other by a revolute joint. Two additional revolute joints connect
the limb to the base-platform and the end-effector-platform, respectively.

3.1 3-RRR-Robot Kinematics

For a kinematic description of the 3-RRR manipulator two coordinate systems –
a base frame {O} and a platform frame {P } – are introduced. In addition several
geometric parameters are necessary in order to characterize the kinematic behavior.
For each of the three limbs i = {1, 2, 3} these are (Figure 3):

• two parameters combined in a vector rAi = [rAi ,x, rAi ,y ]T pointing from the
base frame’s originO to base joint Ai . rAi is expressed in the base frame {O};

• two parameters building a vector rPCi = [rPCi,x, rPCi ,y ]T pointing from the
platform frame’s origin P to platform joint Ci . rPCi is expressed in the platform
frame {P };

• one parameter si defining the length AiBi of the crank element;
• one parameter Si defining the length BiCi of the rod connecting crank and end-

effector platform.
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Fig. 3 Kinematic scheme of the 3-RRR mechanism.

Table 1 Nominal kinematic parameters for kinematic limb i of the 3-RRR-structure.

Parameter Value [mm]

rAi ,x
L

2 cos(30◦) cos(i · 120
◦ + 90◦)+ L

2

rAi ,y
L

2 cos(30◦) sin(i · 120
◦ + 90◦)+ sin(60◦)L

3
rPCi ,x

l
2 cos(30◦) cos(i · 120

◦ + 150◦)
rPCi ,y

l
2 cos(30◦) sin(i · 120

◦ + 150◦)
si 30
Si 60

Helping-
variable Value [mm]

L 120
l 20

These parameters can be computed according to the definitions given in Table 1.
While typical kinematic problems, such as the inverse or the direct kinematic

problem are concerned with relating end-effector and actuator coordinates, the cal-
ibration approach presented here requires to determine the actuator coordinate qsing

m

from arbitrary given fixed actuator coordinates qfixed and a vector of kinematic para-
meters k (see Equation (4))

q
sing
m = fSKPI (k,qfixed) (5)

We refer to this problem as the Singular Kinematic Problem (SKP) of type I.
Unfortunately the 3-RRR-structure’s SKP cannot be solved analytically. Hence,

an iterative numeric search is conducted in order to evaluate its solutions. The gen-
eral idea of this approach is adopted from [9]: In a first step the 3-RRR-structure
is decomposed by disconnecting the limb which contains the moving actuator at
platform-jointCm (Figure 4). Considering that the two motors of the remaining sys-
tem are held at constant known values qf 1 and qf 2, we are left with a four bar
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Fig. 4 Disassembled structure for SKP-solution.

linkage defined by the four corner points Bf 1, Bf 2, Cf 1 and Cf 2. Introducing of
a virtual motor in one of the passive revolute joints, say Bf 1, allows for a defined
actuation of the four-bar mechanism. That is, given a motor coordinate qvirt of the
virtual actuator the coordinates of the variable pointsCf 1 and Cf 2 can be computed
analytically. Additionally it is possible to evaluate the coordinates of Cm which
in turn allows to solve the inverse kinematics of the disassembled link, leading to
qm(qvirt). The procedure to vary qvirt and to compute a corresponding Cm is re-
peatedly conducted until one of the two geometric conditions AmCm = |Sm + sm|
orAmCm = |Sm−sm| is satisfied. They indicate that the links of the limb containing
the moving actuator are completely stretched or folded upon each other respectively
and hence, the mechanism is in an inverse kinematic singularity. Once the itera-
tion is terminated with qsing

virt , the IKP is solved for the disconnected limb, leading

to qsing
m (q

sing
virt ). In simulation studies this algorithm proved to work successful and

reliable.

3.2 Simulation Studies

For a proof of principle but without a loss of generality only the three parameters
S1, S2 and S3 of the 3-RRR mechanism have been considered to be disturbed by
tolerances within the simulation studies. A vector kreal containing the actual robot
geometry-parameters is generated which adds random values in the range [±1 mm]
to the nominal values of the kinematic parameters that are supposed to be identified
by the calibration process. Nominal parameters knom were already given in Table 1.

Gathering of redundant measurement information is simulated by application of
q̂

sing
m,j = fSKPI (k

real,qfixed,j ), where j indicates a specific configuration, defined
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Fig. 5 Typical parameter convergence behavior as found in the simulation studies of the new cal-
ibration approach.

by a randomly generated vector qfixed,j . This result is compared to q
sing
m,j =

fSKPI (k,qfixed,j ) in a residual rj (k) according to Equation (4), with k the current
parameter set. Generallym ≥ n independent residuals are required for the identific-
ation of n kinematic parameters. Hence qfixed,j is set to j = 1, . . . ,m different val-
ues. All rj (k) are then assembled in r(k) = [r1, . . . , rj ]T . Starting with k = knom,
the goal is to find an optimal parameter set kopt that best fits the real robot-structure
by minimization of r(k). For mathematical convenience a function F is defined
as F = rT r. Minimization of F is then performed by the Levenberg–Marquardt al-
gorithm [13] that has been proven to be successful in various calibration approaches,
e.g. [8, 9, 14].

Our first experience with the new calibration approach shows that the identifica-
tion problem is often ill-conditioned. It is thus recommended to carefully choose the
m different measurement configurations. For this reason we applied an algorithm,
similar to that proposed in [2], in order to ensure a numerically stable parameter
estimation process.

Figure 5 illustrates a typical result of our calibration studies. It shows the devi-
ation between the real and the current parameters in each iteration step of the identi-
fication procedure. As can be seen the parameters converge to the real values within
a small number of iteration steps indicating that the algorithm works successful.

Clearly, more realistic simulations could have been conducted by considering
measurement noise. However, estimating noise amplitudes is not a simple task in
our case. This is because in addition to the actuator-position-signals the motor-
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torque-signals will be noisy as well. Both signals effect the computation of qsing
m

in a different way and the combination of both effects is hard to predict without
detailed investigations. Thus, the consideration of noise influence will be subject to
further research work.

4 Conclusions

A robot calibration approach, intended to be applied to parallel robots has been
presented. It almost exclusively relies on the information delivered by the robot-
system itself. Hence, because no special calibration equipment is required within
the parameter identification method, the proposed technique is very economical. The
basic idea of the new calibration scheme has been derived and validated by means
of simulation studies on a simple planar parallel structure. The results emphasize
the promising potential of the approach. Future work will focus on investigation of
the effect of sensor noise in the actuator position, as well as in the actuator-torque
signal.
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Springer, Dordrecht, pp. 331–338.

9. Last, P., Schütz, D., Raatz, A., Hesselbach, J. (2007), Singularity based calibration of 3-
DOF fully parallel planar manipulators. In Proceedings of the 12th IFToMM World Congress,
Besancon, France.

379



P. Last et al.

10. Merlet, J. (2006), Parallel Robots, 2nd edition, Springer, Dordrecht.
11. Mooring, B.W., Roth, Z.S., Driels, M.R. (1991), Fundamentals of Manipulator Calibration,

John Wiley and Sons.
12. Murray, A.P., Pierrot, F. (1998), N-position synthesis of parallel planar RPR platforms. In
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Abstract. Kinematic calibration helps improve the accuracy on any manipulator whereas an ex-
tended kinematic model will help even further by providing a closer kinematic representation of
the physical manipulator. In this paper an augmented kinematic model of the 3-PRS manipulator
is developed. The original architecture and kinematics of the manipulator are presented. The re-
vised kinematic model is then presented, followed by a derivation of the new inverse and forward
displacement solutions. Simulation results show that the augmented model improves the accuracy
of the manipulator by several orders of magnitude assuming even moderate deviations from the
nominal kinematic model.

Key words: parallel manipulator, calibration, kinematics.

1 Introduction

One of the great challenges when working with manipulators is pose seeking. While
it is relatively simple to reproduce a recorded position with high accuracy, it is far
more difficult for a manipulator to attain an arbitrary position within its task space.
This is the distinction between repeatability and accuracy and it is generally accep-
ted that robotic manipulators are much better at the former than the latter [1]. The
main cause for this discrepancy is differences between the real manipulator and the
theoretical kinematic model (e.g., links are not exactly as long as specified or angles
between joints do not match the design). To correct for these defects, the parameters
defining the true model need to be measured. This kinematic calibration process has
seen a variety of solutions in recent years (e.g., [2, 3]).

Unfortunately, this type of calibration will only improve performance to an ex-
tent. In many cases, it is not just the parameters within the model that may be erro-
neous, but instead the model itself. That is, when kinematic models of manipulators
are developed, certain assumptions are made about the geometry of the mechanism
(e.g., certain angles are assumed equal, some links are assumed parallel or perpen-
dicular, etc.). While convenient, these assumptions may not always be reasonable,
especially as manipulators are required to be increasingly accurate. Therefore, when

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 381–390.
© Springer Science+Business Media B.V. 2008
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Fig. 1 The 3-PRS manipulator. Fig. 2 Vector model of the 3-PRS.

calibrating a particular manipulator, the kinematic model should be reviewed, and
augmented where necessary.

The focus of this paper is the review and augmentation of the kinematic models
of the 3-PRS parallel manipulator originally developed in [4–6]. In this paper, the
assumptions made in the original models are studied. The model is then corrected
by the addition of a number of architectural parameters to improve the kinematic
model.

2 Ideal Kinematics of the 3-PRS

2.1 Kinematic Parameters

The 3-PRS manipulator has three identical branches, each with five degrees of free-
dom. Starting at the base, each branch consists of an actuated prismatic joint (P)
fixed to the base, followed by a passive revolute joint (R) about which rotates a
fixed-length leg link. Finally, connecting the limb to the end effector is a passive
spherical joint (S). The manipulator is shown schematically in Figure 1 where the
architectural parameters of the ideal kinematic model are shown. The accuracy of
these quantities will reflect the accuracy of the kinematic models and are the main
parameters being adjusted during calibration.

2.2 Inverse Displacement Solution

The inverse displacement solution for the 3-PRS was developed in [4] and later
generalised in [5]. Both these models use vectors defined in Figure 1 and make
the following assumptions: (a) all branches are identical, (b) the directions of the
prismatic and revolute joints are perpendicular, (c) axis of the revolute joints are
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parallel to the base frame, and (d) the line of action of all prismatic joints (i.e., Li
for i = 1, 2, 3) intersect at a common point.

The 3-PRS manipulator has three degrees of freedom (DOF), however, it is a spa-
tial manipulator, which means the end effector can move in all six directions (e.g.,
x, y, z, ψ , θ , φ). Motion in all directions can not be controlled independently, that
is, only three of the task-space variables can be made independent. Therefore, the
remaining variables are dependent, meaning their values can always be calculated
from the independent variables based on the motion constraints imposed by the kin-
ematic structure. Choice of which variables to select as independent is arbitrary and
is usually determined by the task at hand. In [4] and most others have used: the el-
evation of the end effector (displacement along the inertial Z axis), and the tip and
tilt angles of the end effector platform (rotations around the inertial X and Y axes
defined respectively by ψ and θ ). This leaves displacements along X and Y , and
rotations aroundZ (φ) as the dependent variables. In fact, calculating the dependent
variables from the task variables is the focal point of the IDS. Once the full pose
of the end effector is known in space, the position of each spherical joint is easily
calculated.

To obtain the dependent variables (x, y, and φ), the method shown in [4] exploits
the fact that the spherical joints are limited in the positions they can occupy. Based
on the assumptions regarding the direction of the revolute joint on branch i, the
spherical joint i traces a circle about the revolute joint, and must always lie on a
plane that is perpendicular to the XY plane and contains the prismatic joint. Using
these assumptions, a simple set of constraint equations can be written that defines
the possible positions of each spherical joint.

Substituting the expressions for the position of each spherical joint (calculated
from end effector pose) into these constraint equations will yield a system of three
equations where only x, y, and φ are unknown.

2.3 Forward Displacement Solution

The goal of the FDS is to obtain the desired end effector pose given the position
of the actuators. Tsai et al. [6] developed a solution for the forward displacement
problem for the 3-PRS. They showed that an analytical solution is possible. How-
ever, there are 64 different solutions, and trying to identify the desired solution can
be quite challenging. Instead, Tsai et al. suggested a method where an optimisation
strategy is used to obtain a solution.

Because the position of the prismatic joints is known, so too is the position of
the revolute joint axes. Since the length of the leg links is fixed, each spherical joint
can only be located on a circle centred on the revolute joints. The position of each
spherical joint can be written in terms of λi which is defined as the angle of the
leg link to the inertial XY plane. Further, the spherical joints are all fixed to the end
effector platform, so the distance between any two joints is both constant and known.
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This allows a vector loop equation to be written for each branch combination, which
results in three equations where λ1, λ2 and λ3 are the only unknowns (see Figure 1).

Unfortunately, this set of equations is non-linear, which makes a closed form
solution difficult, and as previously mentioned, yields many solutions. Instead, these
solutions are solved numerically. Tsai et al. found that by using this method, they
could compel the desired solution by adding additional behaviour constraints to the
optimisation algorithm. For this work, a simpler method was used. By estimating the
inclination angles λi based on the actuator positions, a simple unconstrained local
search algorithm (in this case the Levenberg–Marquardt algorithm in [7]) could be
used.

After the optimisation, the values of λi are used to calculate the position of each
spherical joint. From here, it is a simple matter to obtain the position and orientation
of the end effector.

3 Additional Kinematic Parameters

As previously mentioned, earlier models make several assumptions about the geo-
metry of the manipulator. To begin, consider the angles between branches: β1 and
β2. These measurements assume that the angles between the prismatic joints at the
base of the manipulator are the same as the angles between the attachment points of
the spherical joints on the end effector platform. Instead, αi is used here to repres-
ent the angle between the end effector frame’s X axis and the point where the ith
spherical joint connects to the platform.

To the same end, it is unlikely that the line of action of all three prismatic joints
(Li for i = 1, 2, 3) will intersect exactly at the origin. To account for this, vector bi0
pointing from the origin of the inertial frame to the zero position of each prismatic
joint is added. This new point is labelled as Bi0 (see Figure 3). Combined with γi
and the new angles βi , each prismatic joint can now be positioned and oriented
anywhere in space completely independent of one another.

Next, the axis of the revolute joints are considered. In the previous model it was
assumed that they are both perpendicular to the direction of the prismatic joint, and
parallel to the inertial XY plane. To eliminate such assumption, two angles are ad-
ded to each branch: κi and ζi . Angle κi describes the rotation of the revolute joint
about an axis parallel to the Z axis, but located at Bi . Next, angle ζi describes the
rotation of the revolute joint about an axis that is the projection of Li onto the XY
plane and intersects the revolute joint (see Figure 3). Normally four parameters are
required to completely define a revolute joint [8], because this joint is passive, how-
ever, there is no need to measure the angulation, and therefore no need to incorporate
the joint offset. Furthermore, because the first joint of each branch is prismatic, we
can position any reference frame directly on the centre of rotation of the revolute
joint, and thus also avoid the typical translation along the joint’s axis.

Finally, the spherical joints were also assumed to be ideal in previous models.
It was shown in [9] that the error caused by imperfect spherical joints is in fact
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Table 1 Kinematic parameters in the complete augmented model.

For each branch i αi βi li γi κi ζi bix0 biy0 biz0
Other rp

quite small relative to other types of joints, and is in fact negligible. Based on this
information, here it is considered reasonable to model the spherical joints as ideal.

After adding the parameters discussed in this section, the kinematic model will
now have 28 independent kinematic parameters, which are summarised in Table 1.
It should be noted that while these are all independent parameters, parameters α1,
β1, ζ1, b1

x0, b1
y0 and b1

z0 are likely to be set equal to zero. By doing so, the origin of
the inertial frame is located at the zero position of the prismatic joint of branch 1,
which is aligned with the X axis. Further, the revolute joint of branch 1 is also set
parallel to the XY plane. This fixes the manipulator in space and gives a point of
reference for all the other parameters. Depending on the calibration strategy being
used fixing the manipulator’s location in space may be necessary.

4 Augmented Inverse Displacement Solution

4.1 Augmented Constraint Equations

With a comprehensive kinematic model defined, the next step is to solve the inverse
displacement problem. As before with the ideal model, there are only three inde-
pendent task variables (z, θ , ψ) leaving the other variables as dependent (x, y, φ).
Similarly, once these six variables are known, so are the locations of the spherical
joints, and so it is again simple to obtain the actuator positions in the same manner.

Unfortunately, obtaining the dependent variables from the task variables is no
longer straightforward. Previously, the spherical joints were constrained to lie on
vertical planes that contained all the elements of the corresponding branch. With the
addition of variables ζi and κi , the constraint is no longer planar. Angle κi represents
the twist between the leg link li and the corresponding prismatic joint. When this
angle is non-zero, the circle traced by the spherical joint is skewed with the prismatic
joint. As the prismatic joint translates, this circle is extruded to form a cylinder. The
resulting cylinder is elliptical because the circle is skewed with the extrusion axis.
In most cases the aspect ratio of the ellipse will be so extreme, that the cylinder
appears as two parallel planes in the region of interest.

These elliptical cylinders represent the constraint equations for the spherical
joints when using the augmented model. In order to define each cylinder, a few
frames of reference need to be defined first. All of these frames are shown in Fig-
ure 3 for branch 2 (i.e., i = 2), and are defined such that {0} indicates frame 0. The
frames are:
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Fig. 3 Various frames used to derive the constraint equations.

• {Ui}: origin located at Bi0, UiX axis points along the projection of the prismatic
joint onto the inertial XY plane, UiZ lies on the same plane and UiY is perpen-
dicular to the other two.

• {Vi}: origin located at Bi , ViZ axis aligned with the axis of the revolute joint.
Frame is obtained by taking the ideal revolute joint and rotating by UiRVi =
RY (κi)RX(ζi).

• {Wi}: origin coincident with {Ui} but the WiX axis is aligned with the prismatic
line of action, Li .

From this point forward, the branch indices i will be omitted for the sake of brev-
ity. Of course, all that follows is repeated once for each branch of the manipulator.

To formulate the equation of the constraint cylinder, one starts by defining the
circle traced by the centre of the spherical joint when allowed to freely rotate about
the axis of the revolute joint. This circle can be defined simply with respect to {Vi}
by three vectors each representing a point on the circle. The points are chosen as:

VG = l
⎡⎢⎣1 0 −1√

2
0 1 −1√

2
0 0 0

⎤⎥⎦ (1)

These vectors expressed in {W }. By ignoring the X components of each of these
rotated vectors, a projection of the circle onto frame {W } is obtained. This projection
of the circle forms a cross section of the constraint cylinder, because the X axis of
{W } is aligned with the direction of the prismatic joint. Since this cross section will
be elliptical, it can be defined by the general equation for an ellipse as:

E1y
2 + E2z

2 + E3yz = 1 (2)

This equation can be written once for each point on the circle (e.g., the columns
of VG) projected into {W } (i.e., the columns of matrix WG). Solving the system of
equations it is possible to obtain the values of the ellipse’s coefficients: E1, E2 and
E3.

When the ellipse defined by this equation is extruded along the WX axis, it gen-
erates an elliptical cylinder whose representative equation represents the possible
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locations of the spherical joint expressed in terms of {W }. To express this equa-
tion in terms of the inertial frame ({0}), first obtain expressions for WX, WY and
WZ in terms of {0}. Substitution of these expressions into equation (2) produces the
equation for an elliptical cylinder in {0}. That is:

D1x
2 +D2y

2 +D3z
2 +D4xy +D5xz

+D6yz+D7x +D8y +D9z+D10 = 1 (3)

This equation completely defines the surface of possible locations for the spherical
joints. Relative to the end effector platform, the position of the spherical joint can
also be written as:⎡⎣ rxry

rz

⎤⎦ =
⎡⎣x + (cθ cφ + sψsθ sφ)a′x + (sψ sθcφ − cθ sφ)a′yy + cψsφa′x + cψcφa′y
z + (sψcθ sφ − sθ cφ)a′x + (sθ sφ + sψcθ cφ)a′y

⎤⎦ (4)

where a′∗ are the elements of the spherical joint vector a′ relative to {0′}.
Substituting Equation (4) into Equation (3), yields:

C1x
2 + C2y

2 + C3c
2
φ + C4xy + C5xsφ + C6xcφ + C7ysφ + C8ycφ

+ C9sφcφ + C10x + C11y + C12sφ + C13cφ + C14 = 1 (5)

where the definition of all the coefficients is omitted here for brevity.
Rewriting this same equation once for each branch produces a system of three

non-linear equations.

4.2 Constraint Equations

Because the system of equations obtained from Equation (5) is highly non-linear, a
closed-form solution is unlikely, if possible at all. Further, as was the case with the
FDS developed in [6], the number of solutions would make identifying the correct
one just as onerous. Thus, a numerical technique is applied to solve the equations.

Similar to the FDS, an unconstrained local search algorithm is implemented. Ini-
tially, the ideal constraint solution is solved to approximate x, y and φ. To improve
this first estimate, the position of the spherical joints are evaluated, and then adjus-
ted based on the values of ζi and κi . For example, a positive value of κ1 indicates
a clockwise twist of the leg link with respect to the prismatic joint (as seen looking
in the direction of the negative Z axis). This will cause the spherical joint’s posi-
tion to be adjusted by a distance approximately equal to (l1 · XY) sin(κ1), where
(l1 ·XY) is the projection of li onto the XY plane. From these adjusted positions of
the spherical joints, the values of x, y and φ are recalculated.

Using these estimated values, a first round optimisation is performed. The goal
of this initial optimisation is to obtain values of x, y and φ that result in spherical
joint positions on the correct side of the constraint surfaces in Equation (5). Because

387



S.M. O’Brien and J.A. Carretero

the 3-PRS manipulator must always have the legs inclined towards the centre, only
one side of each constraint cylinder is feasible, and this will depend on the value of
κi . In the same manner that the spherical joint positions were estimated a priori to
this optimisation, it is possible to estimate the correct distance each spherical joint
should be from the plane bisecting the constraint cylinder. Using the x, y and φ at
each iteration to calculate the current position of each spherical joint, it is possible to
evaluate the actual distance to this bisection plane. By minimising the discrepancy
between this distance and the estimate, the optimisation ensures that the calculated
location of the centres of the spherical joints are on the correct side of the constraint
cylinder, and also serves as an improved starting point.

With these improved values of x, y and φ, a final optimisation is performed. This
time, however, the constraint equations derived in Section 4.1 are minimised. A very
low termination threshold is used at this stage, as any error in the constraint equa-
tions will translate directly to error in the spherical joint positions, which in turn im-
pairs the accuracy of the actuator position calculations. The Levenberg–Marquardt
algorithm is the algorithm used in both optimisation procedures. The implementa-
tion in [7] is used in this work.

5 Augmented Forward Displacement Solution

Unlike the inverse displacement solution, few changes were needed when solving
the augmented forward displacement problem. Because all the kinematic parameters
are known, it is still possible to calculate the position of the revolute joint with the
prismatic joint position. The leg link inclination angle, λi , is no longer a measure of
the angle between the leg link and the XY plane, but it can still be used in the same
manner as described in Section 2.3. A slight adjustment is made when estimating λi
to account for the changes caused by κi .

The vector loop equations can be derived in exactly the same manner as in Sec-
tion 2.3, and the optimisation yields the angles, λi , necessary to satisfy these equa-
tions. From here, while the position of the spherical joints is adjusted by the values
of κi and ζi , the procedure is the same. The end effector pose is calculated in the
same fashion.

6 Results

Results for the augmented kinematic model of the 3-PRS manipulator have been
very encouraging thus far. In order to simulate the error that arises as a result of the
numerical solution of the constraint equation, the IDS is executed first. Using the
resulting actuator positions, the FDS is subsequently executed. The position of the
spherical joints is recorded for each of the two solutions, and compared. The repor-
ted overall error is measured as the 2-norm of the distances between corresponding
spherical joints in each solution.
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Fig. 4 Error between the IDS and FDS versus parameter κ1 for both the full model (left) and the
planar model (right) that ignores κ .

In general, the resulting error appears as in Figure 4 (left). The vast majority of
the time (approx. 98.5% of tests) the error is less than 10−8 m, meaning errors of less
than 10 nm. The formations of horizontal lines around 10−4 to 10−6 m are caused
when κi of any one or more of the branches approaches zero. When this occurs, the
distance between the two sides of the elliptical constraint cylinder is so small, that
the optimisation algorithm can jump from one side to the other in a single iteration.

Because of these errors, a model that did not include κi was also considered.
Such a model has the significant advantage that a closed-form solution is possible,
which would greatly decrease the time required to solve the IDS. Without κi , the
constraints on the spherical joint positions is no longer a cylinder, but a plane (al-
though inclined due to ζi). This resulted in a linear system which allowed for an
analytical solution which, in turn, performed much faster.

Unfortunately, when compared against the full augmented model, the results
were somewhat disappointing. To test the planar version of the augmented model
(all parameters except κi), the IDS was executed, and then the FDS for the full model
was used as a baseline for comparison. The results are shown in Figure 4 (right). In
general there was at least about 10−3 m of error when using the planar model. Also,
as κi approached zero, the error decreased significantly as would be expected (in-
deed, if all κi = 0, then the model is exactly the planar model).

It should be noted however, that the increase in accuracy is not without a price.
As mentioned previously, the augmented kinematic model precludes a closed-form
solution for the inverse displacement problem. The numerical solution is approxim-
ately equivalent to solving the ideal IDS n times, where n is the number of iterations
required for the algorithm to converge. Results showed that between 10 and 30 iter-
ations were generally required to attain convergence. Generally speaking however
this is still quite good, especially when compared to the FDS, which has numerical
solutions four layers deep.

The advantage of testing the planar model is that even when the full model en-
counters difficulty with small values of κ , the error is still better than that demon-
strated by the planar model for similar values. This indicates that although in a very
small number of cases the optimisation algorithm is terminating on the wrong side
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of the constraint cylinder, the two sides are so close together that either one is still an
improvement over a reduced kinematic model. Overall the model allows for a much
more accurate representation of the 3-PRS manipulator that should prove useful for
calibration.

7 Conclusions

This work presented an extended kinematic model for the 3-PRS manipulator that,
compared to previous models, can better match a physical manipulator. With proper
calibration, this will allow for greater absolute accuracy when controlling a 3-PRS
manipulator. The augmented model also allows for improved performance during
calibration. Each parameter that is added reduces the number of deviations being
estimated by all other parameters. That is, in a reduced model, the remaining para-
meters will be distorted to compensate for the deviation of the absent parameters.
Future work includes experiments on an existing 3-PRS model to verify that the
work presented here translates to real world applications, as well as to quantify the
actual improvement in accuracy.
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Abstract. This paper investigates how parameter identification can improve the calibration of elast-
ically averaged parallel manipulators. The method developed is applied to a needle manipulator
for intra-Magnetic Resonance Imaging (MRI) prostate cancer treatment. The device uses MRI-
compatible Dielectric Elastomer Actuators to precisely guide a needle during its insertion for tak-
ing biopsy or implanting radioactive seeds in the prostate. Here, an analytical model of the device
is presented and a sensitivity analysis identifies the key model parameters. Parameter identification
is conducted with an optimization algorithm. The method is tested on both simulated parameter
values and experimental data. The results show that the method can improve the device accuracy
by at least one order of magnitude (on simulated parameters).

Key words: binary actuation, parallel, dielectric elastomer, calibration.

1 Introduction

Binary actuation such as proposed by Anderson and Horn (1967) and Roth et al.
(1973) is a design paradigm for robotic and mechatronic systems that uses a large
number of binary (bistable) actuators to achieve continuous-like motion. System
design and control is greatly simplified compared to continuous systems since high
precision sensors and low level control is not needed. A major challenge of design-
ing practical binary systems is the development of binary actuators and systems
architectures that are appropriate for systems containing 10 to 100 actuators. Con-
ventional actuators are too heavy and expensive.

DeVita et al. (2007) proposed a new design paradigm for binary systems called
elastically averaged parallel actuation using Dielectric Elastomer Actuators (DEAs).
DEAs are a promising technology for binary systems such as demonstrated by
Wingert et al. (2002) and Plante et al. (2007). These actuators have good perform-
ance and are lightweight and low cost. Therefore, they are practical for systems with
large numbers of actuators. They have also been shown to be MRI-compatible.

A functional prototype developed by Tadakuma et al. (2008) experimentally
demonstrated the feasibility of elastically averaged parallel systems using binary

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 391–398.
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Fig. 1 Elastically averaged parallel manipulator for MRI-guided prostate cancer therapy.

Fig. 2 Schematic of the proposed manipulator.

DEAs, see Figures 1 and 2. In this case, the device is used as a needle manipulator
for intra-MRI prostate cancer therapies. It would be guided by surgeons using real-
time MR images to drive a needle inside the prostate and reach millimeter sized
tumors. The device would allow accurate biopsies and the injection of therapeutic
agents like radioactive pellets or liquid nitrogen. Treatment costs and duration would
be reduced while improving success rates.

The elastically averaged manipulator of Figures 1 and 2 consists of two planes
each with 6 bistable DEAs and 6 springs. Needle motion is achieved by changing the
position of the center points of each plane when the static equilibrium of the spring
system is altered by the position (extended or retracted) of the bistable actuators.
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To date, the kinematics of elastically averaged parallel manipulator remains
largely unaddressed as most work on binary system addressed the kinematics of
serial chain (snake-like) mechanisms (see, for example, Chirikjian and Burdick,
1995). Such configurations offer large workspaces but have low stiffness and com-
pactness compared to the elastically averaged parallel approach.

This paper shows that the kinematic model of an elastically averaged parallel
manipulator can be improved through a relatively simple parameter identification
method. A model of the system is presented and its key parameters are identified
through sensitivity analysis. Parameter identification is then conducted on simu-
lated parameter values as well as on experimental data. Results show that parameter
identification can improve the system accuracy by at least one order of magnitude
(on simulated parameters).

2 Analytical Development

2.1 Manipulator Model

Binary manipulator inputs can be represented in a binary sequence of 0 and 1:

Q = [a1 a2 . . . a2], (1)

where ai = 1 or 0 is the state (extended or retracted) of the ith bistable assembly and
n is the total number of bistable modules. These inputs define a finite set of discrete
points within the system’s workspace, here 212 = 4096 points. Systems workspaces
are, in general, not evenly distributed. Analytical models that map the manipulator
output points for any given inputs are essential to their design and control.

The spatial configuration of an elastically averaged parallel manipulator can be
found from the static equilibrium of the springs system such as proposed by Devita
et al. (2007). Here, this is done independently on each plane of the device. Spring
deformations and applied forces in one plane of the device are represented schemat-
ically in Figure 3 (showing only 3 springs). Referring to the figure, the model uses
the following inputs:

ki stiffness of ith spring
l0i = l0iwi position vector of the ith undeformed spring
βi = βiwi pre-stretch vector of the ith spring
δi = δiwi stroke vector of ith bistable module; the magnitude of the stroke

vector is given by δi = ζiai with ai (0 or 1) the state of the bistable
module and ζi the stroke

fext external force vector at center point
W weight vector at center point

in order to compute the following output parameters:

u = ue displacement vector of the center point
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li = livi position vector of the ith deformed spring
Fi = Fivi internal force vector of the ith spring

In the above lists, wi , vi and e are the respective unit vectors of the undeformed
direction of the ith spring, the deformed direction of the ith spring, and the dis-
placement of the center point.

Static equilibrium requires that the sum of the forces at the center point is zero:∑
forces =

∑
i

Fi + fext +W = 0. (2)

The internal force of the ith spring is found from the spring elongation and is given
by:

Fi = (ki(li − l0i )vi = ki[(l0i + βi + δi)wi − ue− l0ivi ]. (3)

Eqs. (2) and (3) are solved iteratively for the displacement vector of the center
point: u. The method is used to find the center point locations of each plane,
u1 = (x1, y1, z1) and u2 = (x2, y2, z2), from which the needle tip (end effector)
location can be found by:

ud = (xd, yd , zd) = u1 + zd
p
(u2 − u1), (4)

where p and zd are geometric parameters defined in Figure 2.
This paper uses the nominal parameter values of the prototype shown in Figure 1.

These are:

• kPlane 1 =
[

3k
2
k
2 k

k
2 k

k
2

]
and kPlane 2 =

[
k
2 k

k
2
k
2
k
2

]
and k = 0.044 N/mm;

• l0i = 86 mm, βi = 0 mm, ζi = 13 mm for all i;
• zd = 610 mm , p = 180 mm;
• fext = W = 0.

Note that the prototype of Figure 1 was built at twice its clinical size to accommod-
ate current handmade actuators.

2.2 Sensitivity Analysis

A sensitivity study is conducted to identify the parameters of the manipulator that
have the most influence on its accuracy. The parameters considered are spring
length, spring stiffness, and actuator stroke (l0i , ki , ζi). Dimensional and geometric
errors of the various parts composing the manipulator structure are not considered
here. These errors would be small with proper manufacturing techniques.

Errors are introduced using randomly generated numbers following normal dis-
tributions. These distributions are centered on the nominal parameter values:

l̃0i = l0i + σli z, k̃i = ki + σki z, ζ̃i = ζi + σζi z, (5)
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Fig. 3 Analytical model variable definition: (a) node and center point displacements, (b) free body
diagram.

where z is a random number centered around 0 and the standard deviations are
adjusted by the fraction ρ of the nominal value covering 6 standard deviations giv-
ing: 6σli = ρl0i , 6σki = ρki , and 6σζi = ρζi . Unless explicitly noted, values of
ρ = 30% (99.7% of all values are within ±15% of the nominal values) are used
everywhere in this paper

Two workspaces are computed: one with errors and one without. The metric
used to quantify accuracy is the mean output error between each corresponding
end-effector locations (needle tip):

ε = 1

n

n∑
i=1

√
(x̃di − xdi )2 + (ỹdi − ydi )2, (6)

where x̃di , ỹdi are the coordinates with errors, xdi , ydi are the coordinates without
errors, and n is the number of points.

Sensitivity analysis results are shown in Table 1 for 5 combinations of parameter
errors. Each combination is repeated 50 times on 54 randomly selected points for a
total of 2700 points. Table 1 shows that spring stiffness and actuator stroke are the
dominant parameters and that spring length can be neglected. This is explained by
the fact that, in Eq. (3), spring length is multiplied by the difference in unit vectors
wi and vi which appears to be very small, at least for this manipulator configuration.
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Table 1 Sensitivity analysis of the manipulator model.

Parameter Errors Mean Output Error

Spring Spring Actuator Mean (mm) Max. (mm) Std. dev. (mm)
length (ρ) stiffness (ρ) stroke (ρ)

30% 0 0 0.03523 0.07773 0.01130
0 30% 0 0.7506 1.719 0.355
0 0 30% 0.9948 1.654 0.2875
0 30% 30% 1.333 2.613 0.4100

30% 30% 30% 1.353 2.651 0.4298

2.3 Parameter Identification

Parameter identification is done on spring stiffness and actuator strokes (ki, ζi) with
a multivariable optimization algorithm (Nelder–Mead method, Matlab’s fminsearch
function). Starting from the nominal parameter values, the algorithm minimizes the
mean output error (Eq. (6)) by calibrating the parameters toward their true experi-
mental values. The method is tested on simulated experimental data obtained using
randomly generated spring stiffness and actuator strokes, see Eq. (5).

Parameter identification is performed for 2 to 100 calibration points taken ran-
domly from the simulated data. The effect of unaccounted errors like dimensional,
geometric, and measurement errors is studied by adding random noise to the cal-
ibration points. The noise follows a normal distribution with a fraction ρ = 10%
(estimate of a high quality system).

Figure 4 illustrates how parameter identification improves model accuracy on
100 random points for 50 calibration points with noise. Figure 5a shows how para-
meter identification reduces the mean output error on 1000 random points. The
figure shows that a minimum number of calibration points is needed for effective
performance. Without noise, a minimum of ∼40 calibration points or 10% of the
total number of points is needed to keep the error reduction around a factor of∼40.
With noise, the error reduction keeps increasing and reaches a maximum factor of
∼20 at 100 calibration points. Noise obviously reduces calibration performance and
must be minimized. From these results, it appears that parameter identification has
the potential to improve system accuracy by at least one order of magnitude with
enough calibration points.

3 Experimental Results

Parameter identification is further illustrated on experimental points taken with the
laboratory prototype of Figure 1. This device was not built with high precision stand-
ards and contains too many unaccounted errors (dimensional, geometric, measure-
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Fig. 4 Uncalibrated (a) and calibrated (b) model performance.

ment) to yield precise experimental data. However, it does provide some interesting
results for illustrative purposes.

Here, the prototypes’ 12 actuator strokes and 12 spring stiffness are identified
using only 13 experimental points. The results are shown in Figure 5b for the same
points. Points from the calibrated model are measurably closer to the experimental
data than points from the uncalibrated model (see the dashed circles). Mean out-
put error is reduced by a factor of 2.26, from 3.18 mm to 1.4 mm. This suggests
that parameter identification can increase system accuracy even with limited exper-
imental data.

4 Conclusion

This paper showed how parameter identification can be used to calibrate an elast-
ically averaged parallel manipulator using binary actuators to improve accuracy.
Parameter identification was done with an optimization algorithm using simulated
experimental data and limited experimental data. The results show that the method
has the potential to significantly improve model accuracy. Such methods can lead to
self-calibrating, very high precision binary manipulators. Future works will include
the development of a high precision prototype to conduct a thorough experimental
validation.
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Fig. 5 (a) Mean output error reduction on simulated data. (b) Experimental results.
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Abstract. This paper formalizes the robustness of a virtual human dynamic equilibrium through
the residual radius of its admissible generalized force set. The admissible generalized force set is
defined as the image of the contact force constraints (corresponding to the Coulomb model) in
the generalized force space. This set is approximated by a polyhedron and its residual radius is
computed using a linear program. The measure relevance is analyzed from experimental data of a
sit-to-stand motion on which residual radius is evaluated.

Key words: equilibrium robustness, residual radius, human motion, postural stability.

1 Introduction

Generating whole body motion for virtual human that appears natural is a long
standing problem in character animation, highligting the lack of a solution to Bern-
stein’s redundancy problem. A lot of studies have identified invariants in various mo-
tions such as minimum jerk for reaching movements [1], minimum torque change,
minimum muscle tension change, minimum motor command change, minimum of
biological noise, etc.). Such models are well suited to generate reference trajectories
which can be further modified to compensate expected perturbations in a feedfor-
ward way. Additionaly, sensory-driven feedback strategies are needed to cope with
unexpected disturbances.

However, some strong perturbations cannot be compensated due to limitations in
contact forces and joint torques. Some “distance to constraint violation” may there-
fore be monitored in order to ensure equilibrium by triggering adjustment motion
when necessary.

The “quality” of equilibrium for humanoid robots is generally measured as the
distance between some caracteristic point (ZMP, CdM projection, FRI) and the sup-
port polygon borders. Popovic [7] offers a comprehensive review of those caracter-
istic points and study their evolution during human walk. But these measures are
only valid if the contacts are coplanar. Harada [3] extended the ZMP measure in or-
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der to handle situations where the upper-limbs are in contact with the environment.
However, the limits in frictional contact forces are still not taken into account.

To overcome this restriction the force closure measures which have been de-
veloped in the past for grasp and fixture analysis can be +revisited. Wieber [8], then
Hirukawa et al. [4] have proposed a formulation of the frictional constraints as a
feasable contact wrench domain that has led to a more universal measure, however,
to our knowledge, this measure has never been used to evaluate the set of possible
human motions.

This paper is concerned with the quantification of a posture quality regarding the
dynamical balance. We first consider a single body in contact and show how the
set of feasable contact wrenches can be computed (Section 2). We then define its
residual radius as a measure of the contact set quality (Section 3). This method is
then generalized to the case of a virtual human in contact with its environment in
Section 4. Finally, the relevance of the measure is evaluated on a sit-to-stand motion
in Section 5.

2 Resistable and Applicable Contact Wrenches

Let us consider a rigid body b in contact at m points with bodies ei (i = 1, . . . ,m)
from its environment.

For each contact point (let us say the i-th), we can define the frame {ci} and the
contact force f ci . Considering the punctual with friction contact model, when no
sliding occurs, the overall friction force lies within a revolution cone:

Fci =
{
f ci : f T

ci

[
0 0 0
0 1 0
0 0 1

]
f ci ≤ µi [ 1 0 0 ] f ci

}
(1)

where µi is the static coefficient of friction. The set of wrenches that these contact
forces can produce is called the set of resistable contact wrench Wc :

Wc =
{
wc : wc = Gf c; ∀f c ∈ Fc1 × · · · × Fcm

}
with f c =

⎡⎣ f c1

...
f cm

⎤⎦ (2)

If the body b is a manipulated object,G is called the grasp matrix. A planar example
is depicted in Figure 1, where the resistable contact wrench set is unbounded but
does not span the entire R3.

The image of a revolution cone through a linear application (i.e. the grap matrix)
cannot be computed directly. Therefore, we approximate it by a linear cone. Let
us choose p regularly spaced unitary vectors on the Coulomb cone border of the
i-th contact and call them f

j
ci (where j = 1..p). The set spanned by their positive

combinations is a convex linear cone:
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Fig. 1 A rigid body b in contact with two other bodies (left) and the set of resistable contact wrench
wb ∈ Wc (right). The wrench is expressed in the frame {b}.

F ∗
ci =

⎧⎨⎩f : f =
p∑
j=1

ajf
j
ci ; aj ≥ 0

⎫⎬⎭ = pos
(
f 1

ci , . . . ,f
p
ci

)
(3)

which (as any polyhedron) can also be defined as a generalized inequality:

F ∗
ci =

{
f : Acif ≤ bci

}
(4)

where the rows of Aci are vectors chosen normal to the facets and outgoing. The set
{f 1

ci , . . . ,f
m
ci } is called the vertice representation of F ∗

ci and Aci and bci are called
its half-space representation.

The image W∗
c of F ∗

ci × · · · × F ∗
cm through the grasp map is also given by a

positive combination:

W∗
c =

{
wc : wc =

m∑
i=1

(
S ciAdb

)T
f ci where f ci ∈ F ∗

ci

}
(5)

= pos
(
w1

c1
, . . . ,w

j
ci , . . . ,w

p
cm

)
where w

j
ci =

(
S ciAdb

)T
f
j
ci (6)

When a grasping problem is considered, the contact force is often actively con-
trolled and also limited by additional (actuators-related) constraints. Wc is then re-
placed by the set of applicable contact wrench Wc :

W c =
{
wc : wc = Gf c; ∀f c ∈ Fc1 × · · · × Fcm : χ

(
f c

) = 1
}

(7)

where χ
(
f c

) = {
1 if the additional constraints hold

0 otherwise
(8)

A common choice for χ is to limit the total normal contact force, because its ap-
proximation leads to the following convex hull:



402 S. Barthélemy and P. Bidaud

W
∗
c = α

⎧⎨⎩w : w =
m∑
i=1

p∑
j=1

ai,jw
j
ci ; 0 ≤ ai,j ≤ 1

⎫⎬⎭
= α conv

(
0,w1

c1
, . . . ,w

j
ci , . . . ,w

p
cm

)
(9)

where α ∈ R+ is a scale factor. Mishra [6] proposed several other choices for χ .

3 Residual Ball and Radius

3.1 Definition

For a manipulation task, W c (or Wc) is strongly related to the grasp quality: it can be
used to check whether some expected external wrench we (for instance the wrench
of gravity and inertial effects) is sustainable or not (simply check if we ∈ W c).
Moreover, the “further” we is from the boundary of W c , the “more robust” is the
grasp. Kirkpatrick et al. [5] used the residual radius of Wc (or Wc) as a quantitative
measure of this robustness.

Let us consider the largest hypersphere centered at we and fully contained inside
W c . The hypersphere is called the residual ball and its radius the residual radius.
Physically, the residual radius is the norm of the largest wrench which can be sus-
tained in any direction.

3.2 Implementation

Finding the largest hypersphere included in the polyhedron W∗
c can be written as

the following linear program (LP): maximize r subject to dr ≤ b − Ac, where A,
b are W∗

c half-space representation, c is the hypersphere center and d is computed
from A as follows:

A = (aij ), d = (di) , di =
∑
j

√
a2
ij

In what follows, we make use of the polyhedral computation library cddlib written
by Fukuda [2] to compute the half-space representations (A and b).

The process of computing the residual radius can be summarized as follows:

1. for each contact, compute the vertices f
j
ci ,

2. compute each vertice image in the wrench space w
j
ci ,

3. compute the half-space representation of W∗
C,

4. compute the center c of the sphere (which is given by the external wrenches),
5. solve the LP to compute the residual radius.
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Fig. 2 The virtual human with 36 active dof and the homogeneous transformation matrix account-
ing for the position of the free floating reference body (the pelvis).

4 Virtual Human Dynamics

Let us consider the problem of controlling a multi-legged system such as a human.
These systems are underactuated and thus rely on the contact forces to produce
motion. Therefore, the limitations holding on the contact forces reduce the range of
possible motions. We will show here how these limitations can be accounted for in
the configuration space and then generalize the residual radius measure.

4.1 Equations of Motion

We model the virtual human as set of rigid bodies linked together by a tree-like
structure. The mechanism has n = 36 degrees of freedom (dof). Let us denote
q ∈ Rn the generalized coordinates of these joints. The whole system can be viewed
as a free flying robot, whose configuration is given by the vector q and the pose of
a “reference” body Hr (see Figure 2). The generalized velocities and accelerations

are then respectively ν =
[

vr
q̇

]
and ν̇ =

[
v̇r
q̈

]
.

Assuming that all the contacts occur with static bodies, the condition of adhesion
and non-lifting are written as 3m kinematic constaints:

0 = Jc(q )ν̇ + J̇c(q , q̇ )ν (10)

where Jc ∈ R(3m×(n+6)) is the Jacobian of all the contact points.
The Newton–Euler equations of motion are given by

M(q )ν̇ + N(q , ν)ν = g(Hr, q )+ Sγ (t)+ Jc(q )
Tf c (11)

where M,N ∈ R(n+6)×(n+6) are respectively the inertia and non-linear effects
matrices, g ∈ Rn+6 is the vector of gravitational generalized forces, and γ (t) ∈ Rn
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are the control input functions which are mapped with the constant matrix S =[
06×6
In×n

]
into the actively controlled joints. Eventually, f c accounts for the contact

forces, which can also be viewed as the Lagrangian multipliers of the contact-related
kinematic constraints.

4.2 Resistable Generalized Contact Force

When considering the virtual human equilibrium, we are interested in the impact
of the contact force limitations on the set of admissible generalized forces. In Sec-
tion 2, we mapped the Coulomb cones through the grasp matrix into the resistable
contact wrench, we may extend this method by mapping the friction cone through
the transposed contact point Jacobian into the generalized force space Tc. Its linear
approximation F ∗

cm is given by:

T ∗
c =

{
τ : τ = Jc(q )

Tf c : f c ∈ F ∗
ci × . . .× F ∗

cm

}
(12)

= pos
(
τ 1

c1
, . . . , τ

j
ci , . . . , τ

p
cm

)
where τ

j
ci = Jci (q )

Tf
j
ci (13)

T ∗
c is a polyhedron into R(n+6) which represents the set of generalized contact

forces which can be sustained by the contact forces. One can compute its residual ra-
dius as in Section 3.2. However, it is harder to give a physical meaning to the radius
in this space. Moreover, computing the half-space representation of this polyhedron
in this high-dimensional space is time consuming. Therefore, we will only consider
a subset of the generalized forces. As the ground force limitations are much more
restrictive for the unactuaded DOFs than for the actuated ones (because in the latter
case, the actuators can compensate for the restrictions), we choose to consider the
generalized forces corresponding to the unactuated DOFs. In the case of a virtual
human, the only unactuated DOFs are the ones positioning the root body (the bust),
therefore the 6 corresponding generalized forces consist of a wrench and the meas-
ure developed for the grasping can be applied directly by replacing G with the first
6 lines of Jc(q )

T.
Let us multiply the dynamic equilibrium equation with P⊥ = [

I6×6 036×36
]
, it

becomes:

P⊥
(
M(q )ν̇ +N(q , ν)ν − g(Hr, q )

) = P⊥Jc(q )
Tf c (14)

One can then compute the residual radius measure on the resulting 6-dimensional
space as follows:

1. for each contact, compute the vertices f
j
ci ,

2. compute each vertice image through P⊥J T
c ,

3. compute the half-space representation of the polyhedron,
4. compute the center c = P⊥ (

M(q )ν̇ + N(q , ν)ν − g(Hr, q )
)
, of the sphere,

5. solve the LP to compute the residual radius.
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Fig. 3 (Right) The virtual human at the beginning of the sit-to-stand motion, in contact with the
ground and the seat. The linearized friction cones appear in yellow. (Top left) Resistable contact
moment (numerical values in Nm). (Bottom left) Resistable contact force (numerical values in N).

4.3 Evaluation on Human Motion

In order to evaluate the relevance of this measure, we computed it on a sit-to-stand
motion recorded with an optical motion tracking system.

The subjet is initially sitting on a stool, with its bottom in contact with the stool
and each foot in contact with the ground. We modeled the contact between each foot
and the ground as well as between each thick and the stool with respectively 4 and
1 punctual with friction contacts (see Figure 3).

We computed the measure as detailed in Section 4.2, using the captured motion
as input. We choose the frame {b} to be parallel to the inertial frame with its origin
at the virtual human center of mass. The corresponding set of resistable generalized
contact force space at the beginning of the motion is shown in Figure 3 together
with the residual ball.

Figure 4 shows the evolution of the residual radii of both torque and force com-
ponents during the motion. One can notice that:

• there is a discontinuity when the seat contacts lift off,
• the radii present a maximum when the normal force is the highest, that is when

the vertical acceleration is maximal;
• the radii reach low level, indicating that the system is really near to tip.

This evolution is very conform to expectations and suggests that the proposed meas-
ure can be successfully used to monitor the equilibrium stablility during a motion.
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Fig. 4 Residual radii of the contact wrench (force and torque) evaluated over the time during a
sit-to-stand motion. The origin of time is chosen at the lift-off.

5 Conclusion and Perspectives

We defined a measure of dynamic equilibrium robustness and showed its relevance
on a sit-to-stand motion. Further work is needed to study how sensitive the meas-
ure is to errors in contact parameters estimation. Checking the measure behaviour
against other human motions, typically involving contacts between the upper limbs
and the environment would also be useful. Eventually, we could use the measure to
adjust a virtual human posture in order to improve its equilibrium robustness.
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A Geometrical Characterization of Workspace
Singularities in 3R Manipulators
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Abstract. In this paper we present an algorithm, based on a level set representation of a cross-
section of the Cartesian workspace of 3R regional manipulators, which is useful to show clearly
the nature of the cusps and double points on the boundary. Furthermore it is shown that singular-
ities of the level set surface (graph of the level set) characterize non-generic manipulators and we
demonstrate the non-singular posture change ability of cuspidal manipulators with help of the level
set surface.

Key words: serial manipulators, workspace, singularities, level set, posture change.

1 Introduction

Workspace analysis of serial manipulators is of great interest since the workspace
geometry can be considered a fundamental issue for manipulator design, robot
placement and trajectory planning. Great attention has been addressed to manip-
ulators’ classification as function of geometric singularities [1, 3, 7, 8, 10, 11].

Cuspidal manipulators are said to be non-singular posture changing because of
the presence of cusps on the boundary curve [11]. In this paper we give a new insight
into this phenomenon using the level set representation of the workspace cross-
section introduced in [4]. It is shown that singularities of the graph of the level set
correspond to non-generic manipulators. The set of singularities of the manipulator
itself corresponds to contour curve on the level set surface. It is believed that this
representation yields a lot of insight into the internal structure of the workspace
cross-section and especially shows nicely why cuspidal manipulators have the non-
singular posture change ability.

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 411–418.
© Springer Science+Business Media B.V. 2008
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Fig. 1 A kinematic scheme for a general 3R manipulator .

2 Level Set Workspace Analysis for 3R Manipulators

A general 3R manipulator is sketched in Figure 1, in which the kinematic parameters
are denoted by the standard Hartenberg and Denavit (H-D) notation. Without loss
of generality the base frame is assumed to be coincident with X1Y1Z1 frame when
θ1 = 0, a0 = 0, d1 = 0. The point H is placed on the X3 axis at a distance a3
fromO3, as shown in Figure 1. The general 3R manipulator is described by the H-D
parameters a1, a2, d2, d3, α1, α2, θi (i = 1, . . . , 3), as shown in Figure 1. r is the
distance of point H from the Z1-axis and z is the axial reach, both are expressed in
H-D parameters. The position workspace of the 3R manipulator can be obtained by
a θ1 rotation of the generating torus that is traced from H by full revolution of θ2
and θ3.

The workspace boundary of a general 3R manipulator can be expressed as func-
tion of radial and axial reaches, r and z respectively, with respect to the base frame.
The reaches r and z can be evaluated as functions of coordinates of the position
vectors in the form

r0 = (Hx0 )2 + (Hy0 )2 = (Hx1 cos θ1 −Hy1 sin θ1)
2 + (Hx1 sin θ1 +Hy1 cos θ1)

2,

z = Hz0 , (1)

which can be equivalently expressed in the form

r0 = (Hx1 )2 + (Hy1 )2, z = Hz1 , (2)

in which Hi is the position vector with respect to reference frame i.
Equation (2) represents a 2-parameter family of curves, whose envelope gives

the cross-section workspace contour in a cross-section plane as a function of the
H-D parameters that can be used to express the vector components Hx1 ,H

y

1 and
Hz1 in the form of a ring equation [2]. In the following this two-parameter set of
functions Eq. (2) is interpreted as a level set. The level set of a differentiable function
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Fig. 2 A kinematic scheme of level set workspace representation for a general 3R manipulator:
top and front view.

f : Rn→ R corresponding to a real value c is the set of points [9]:

{(x1, . . . , xn) ∈ Rn : f (x1, . . . , xn) = c}. (3)

The level set interpretation has been successfully applied to the workspace analysis
of 3R manipulators in [4–7], because it provides a lot of geometric insight into the
internal structure of the cross-section of the manipulators workspace.

The level sets belonging to constant values of θ3 are curves in the rz-plane.
Therefore, this one parameter set of curves can be viewed as the contour map of
a surface S, which conveniently can be used to analyze the workspace of a manipu-
lator. Using Eq. (2) the surface S is defined via the functions

X2 = r2
0 , Y = z, Z = tan

θ3

2
. (4)

By performing the half-tangent substitution v = tan θ3/2 in Eq. (4) and eliminating
the parameter v one can obtain an implicit equation of the surface S: F(X, Y,Z) =
0. The surface S is an algebraic surface of degree 20 as shown in [6]. Geometrically,
S is generated by taking a cross-section of the workspace that is parameterized by
θ2 and θ3 and explode the overlapping level set curves (θ3 = const.) in the direction
of the Z-axis, as shown in the example in Figure 2. The major advantage of this
procedure is that on S one can see clearly the number of solutions of the Inverse
Kinematics (IK) belonging to one point of the workspace cross-section. In particular
one can identify the regions with one, two, or four solutions as delimited by contours
of the envelope boundary. In Figure 2 this is shown for a general illustrative case
with H-D parameters α1 = π/3, α2 = π/2, a1 = 1.3, a2 = 5, a3 = 2.5, d1 = 2.1,
d2 = 2.3. In Figure 2 on the left-hand side the level set curves are shown in the
cross-section plane and the right-hand side shows the level set surface S in a front
view.
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Fig. 3 Two axonometric views of the level set workspace representation for a general 3R manipu-
lator:

In the workspace cross-section two different one-parameter sets of level-curves
can be traced as function of θ3 = const. and θ2 = const., respectively. In Figure 3
the corresponding surface S is displayed in a three-dimensional view. Geometrically
the level set curves in the cross-section in Figure 2 (left) are the orthogonal projec-
tions of the intersection curves with planes Z = const. and the surface S onto the
XY -plane. The level set curves for θ3 = const. in Figure 2 (right) are therefore the
horizontal parameter lines. Additionally, in Figure 3 we have displayed a gross line
parallel to the Z-axis (X = 6, Y = 0, Z = Z). This line shows clearly four inter-
section points with the surface S (in the right figure the surface is upside down!).
Therefore, the corresponding point X = 6, Y = 0 in the level set plane in Figure 2
(left) corresponds to a four fold solution of the IK.

3 Singularities, Cusps and Double Points

Singularities of the manipulator can be easily visualized within the setting of the
level set surface: They are either singularities of S or they must be on the boundary
of the level set itself. Geometrically the boundary of the level set in the XY -plane
corresponds to those points on S which have a tangent plane being in edge view with
respect to the level set plane XY . Or with other words: whenever a Z-axis parallel
line is tangent to S then the tangent point of this line corresponds to a boundary point
of the level set and therefore is also a singular point of the manipulator workspace.
Points on a surface having tangent planes in edge view with respect to a projection
direction are called contour points. The set of all contour points on S is called the
contour curve c. The orthogonal projection of the contour curve onto the level set
plane is the boundary curve of the level set. As each projection ray is tangent to S
the tangent point itself corresponds to a twofold solution of the IK.
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Fig. 4 Singularities of projected curves.

3.1 Singularities of the Boundary Curve

A cusp of the projected contour curve (boundary of the level set) comes from the
following geometric feature: whenever a projection ray is tangent in a point of the
(space)curve, then the projected curve has a cusp in the projection of this point. In
Figure 3 point C is projected to a cusp Cp.

A double point of the boundary comes from the following geometric property:
whenever a projection ray is a secant of the contour curve then the (two) intersection
points of the ray with c map to a double point of the boundary. In Figure 3 points
A,B are projected to a double point Ap = Bp.

3.2 Singularities of Surface S

Singularities of the level set surface S can be computed as functions of H-D para-
meters. The occurrence of singularities on S makes the corresponding manipulator
non-generic [1]. The equation of surface S consists of two parts S1 and S2, as shown
in [4, 6]. Zeros of the set of equations S1 = 0, S2 = 0; ∂S2/∂X = 0; ∂S2/∂Y = 0
and ∂S2/∂Z = 0 identify the singularities of the surface S. This set of equations is
equivalent to three polynomials in the form

P1 = d2
3 sin2(α2)+ (a3 − a2)

2, P2 = c4 cos4(α2)+ c2 cos2(α2)+ c0,

P3 = (a2
3 − a2

2) cos2(α2)− d3 sin2(α2), (5)

in which the coefficients ci are given by

c0 = [(a2
2 + a2

3)+ d2
3 ][(a2

2 − a2
3)+ d2

3 ], c2 = 2[(a2
3 + d2

3 )
2 + a2

2(d
2
3 − a2

3)],
c4 = (a2

3 + d2
3 )

2. (6)
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Fig. 5 Singularities of projected curves.

In particular, the polynomials Pi vanish for the following conditions:

• P1 is equal to zero if a2 = a3 and either d3 = 0 or α2 = 0.
• P2 is equal to zero if α2 = π/2 (because c4 = 0 has no real solution) and c0 = 0.

From this follows α2 = π/2, a2 = ±a3 and d3 = 0.
• The condition P3 = 0 gives the most general case for the singularities of the

level set surface S. In particular, since a3 cannot be zero, one can set a3 = 1 to
obtain a 2-parameter set of possible design conditions. This set is represented by
a surface � in the three-dimensional affine design (sub)space with coordinates
α2, a2, d3. The surface � representing the singularity condition P3 = 0 when
a3 = 1 is displayed in Figure 5. In addition, it can be noted that the zeros of P1
and P2 are contained in P3. These zero conditions are represented by the gross
lines in Figure 5.

All singularities of S have the kinematic meaning that the end-effector point H
is placed on the second rotation axis. An arbitrary rotation about this axis does
not move the manipulator out of the singularity. Furthermore it should be noted
that a singularity of a surface always belongs to the contour curve and therefore
every singularity of S belongs in the projection to the boundary of the level set.
In some cases this projection of surface singular points may lead to an acnode,
which also belongs to the boundary. In Figure 6 we show for example the level set
and the corresponding level set surface S of a non-generic manipulator having two
singularities on the level set surface.

4 Non-Singular Posture Change and Level Set Surface

It was shown in previous papers (see e.g. [12]) that cuspidal robots have the ability
of posture change without crossing a singularity. Using the level set surface and the
explanation of cusps and double points on the boundary of the level set itself, it is
quite natural to understand how this can be possible. In Figure 7 this is demonstrated
with the same H-D parameters as Figure 2. The two pointsH1 andH2 belong to the
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Fig. 6 Level set and level set surface of a manipulator with H-D parameters α1 = α2 = π/s,
a1 = 1, a − 2 = 2, a3 = 5/2, d2 = d3 = 0.

Fig. 7 Non-singular posture change.

same end-effector position. On the level set surface they are apart. They easily can
be connected with a curve on S that does not cross the contour curve on the surface.
Therefore the path of the end effector corresponding to this curve is singularity free.
On the left figure one can see clearly that on the level set plane (projection plane) the
path seems to cross the boundary curve. From the three-dimensional figure on the
right it is obvious that this intersection is only apparent. To make the path on S such
that it will be singularity free on just has to take care of the contour curve and the
pullback of the cusp to S. The preimage of the cusp is the point on the contour curve
having a tangent parallel to the projection rays. This tangent is the light parallel line
to the projection ray connectingH1 and H2.
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5 Conclusions

In this paper we have shown a level set representation of the workspace cross-section
of 3R manipulators as a useful means to identify workspace singularities and to
clearly show the nature of cusps and double points on the cross-section boundary
of the workspace of three-revolute manipulators. In particular, the proposed formu-
lation has been exploited by the level set analysis to characterize the non-singular
posture changing ability of cuspidal manipulators. Furthermore it was shown that
level set surfaces having singularities characterize non-generic manipulators.
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Abstract. This paper presents the equilibrium analysis of a planar tensegrity mechanism. The
device consists of a base and top platform that are connected in parallel by one connector leg
(whose length can be controlled via a prismatic joint) and two spring elements whose linear spring
constants and free lengths are known. The paper presents three cases: (1) the spring free lengths
are both zero, (2) one of the spring free lengths is zero and the other is non-zero, and (3) both
free lengths are non-zero. The purpose of the paper is to show the increase in complexity that
results from non-zero free lengths. It is shown that 6 equilibrium configurations exist for case 1,
20 equilibrium configurations exist for case 2, and 62 configurations exist for case 3.

Key words: planar mechanisms, tensegrity.

1 Introduction

The word tensegrity is a combination of the words tension and integrity (Edmond-
son, 1987; Fuller, 1975). Tensegrity structures are spatial structures formed by a
combination of rigid elements in compression (struts) and connecting elements that
are in tension (ties). No pair of struts touch and the end of each strut is connected to
three non-coplanar ties (Yin et al., 2002). The entire configuration stands by itself
and maintains its form solely because of the internal arrangement of the struts and
ties (Tobie, 1976).

The development of tensegrity structures is relatively new and the works related
have only existed for approximately 25 years. Kenner (1976) established the rela-
tion between the rotation of the top and bottom ties. Tobie (1976) presented proced-
ures for the generation of tensile structures by physical and graphical means. Yin
(2002) obtained Kenner’s results using energy considerations and found the equilib-
rium position for unloaded tensegrity prisms. Stern (1999) developed generic design
equations to find the lengths of the struts and elastic ties needed to create a desired
geometry for a symmetric case. Knight (2000) addressed the problem of stability of
tensegrity structures for the design of deployable antennae.

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 419–427.
© Springer Science+Business Media B.V. 2008
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Fig. 1 Compliant mechanism.

2 Problem Statement

The mechanism to be analyzed here is shown in Figure 1. The top platform (indic-
ated by points 4, 5, and 6) is connected to the base platform (indicated by points 1,
2, and 3) by two spring elements whose lengths are L1 and L2 and by a variable
length connector whose length is referred to as L3. Although this does not match
the exact definition of tensegrity, the device is prestressed in the same manner as a
tensegrity mechanism. The exact problem statement is as follows:

Given:
L12 distance between points 1 and 2
p3x, p3y coordinates of point 3 in coord. system 1
L45 distance between points 4 and 5
p6x, p6y coordinates of point 6 in coord. system 2
L3 distance between points 1 and 4
k1, L01 spring constant and free length of spring 1
k2, L02 spring constant and free length of spring 2

Find: All static equilibrium configurations.

It is apparent that since the length L3 is given, the device has two degrees of
freedom. Thus there are two descriptive parameters that must be selected in order
to define the system. For this analysis, the descriptive parameters are chosen as the
angles γ1, the angle between the x1 axis and the line defined by points 1 and 4, and
γ2, the angle between the x1 axis and the line defined by points 4 and 5. No other
set of tested parameters yielded a less complicated solution than is presented here.
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3 Solution Approach

Two possible solution approaches were considered, i.e. (1) satisfy force and mo-
ment conditions for equilibrium and (2) obtain configurations of minimum potential
energy. Each approach was found to realize the same set of constraint equations. As
such, obtaining the condition for force and moment balance is presented here.

The first step of the analysis is to determine the coordinates of the six points in
terms of the base coordinate system as expressed in terms of the descriptive para-
meters γ1 and γ2. The coordinates of the three points in the base may be written
with respect to the x1y1 coordinate system as

P1 =
[

0
0

]
, P2 =

[
L12
0

]
, P3 =

[
p3x
p3y

]
. (1)

The coordinates of the three points in the top platform may be written as

P4 =
[
L3c1
L3s1

]
, P5 =

[
L3c1 + L45c2
L3s1 + L45s2

]
, P6 =

[
L3c1 + p6xc2 − p6ys2
L3s1 + p6xs2 + p6yc2

]
,

(2)
where si and ci , i = 1, 2, represent the sine and cosine of the angle γi .

A free body diagram of the top platform indicates that the sum of the forces
along the three connector lines must equal zero at equilibrium. The unitized Plücker
coordinates of a connector line can be obtained as

$ = 1

di

⎡⎣ xt − xb
yt − yb

[(xbi+ ybj)× ((xt − xb)i+ (yt − yb)j)] · k

⎤⎦ , (3)

where (xt , yt ) and (xb, yb) are respectively the coordinates of the points on the top
and bottom platforms that are on the line and di is the distance between the points
that is calculated as

d2
i = (xt − xb)2 + (yt − yb)2. (4)

For the two spring connectors, i = 1, 2 and

d2
1 = 2L3L45(c1c2 + s1s2)− 2L12(L3c1 + L45c2)+ L2

12 + L2
3 + L2

45, (5)

d2
2 = 2L3(p6xs2 + p6yc2 − p3y)s1 + 2(p6yp3x − p6xp3y − L3p6yc1)s2

+ 2L3(p6xc2 − p3x)c1 + L2
3 + p2

3x + p2
3y + p2

6x + p2
6y. (6)

The force in each of the springs can be written as

f1 = k1(d1 − L01), (7)

f2 = k2(d2 − L02). (8)
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The summation of the three forces that are acting on the top platform may be written
as

f1$1 + f2$2 + f3$3 = 0. (9)

It is interesting to note that this equation implies that a necessary condition for static
equilibrium is that the three line coordinates are linearly dependent.

The three line coordinates which were defined by (3) may now be written as

$i = [li , mi, ni ]T , i = 1, . . . , 3. (10)

Equation (9) may be rearranged as

f3

⎡⎣ l3
m3
n3

⎤⎦ = −
⎡⎣ f1l1 + f2l2
f1m1 + f2m2
f1n1 + f2n2

⎤⎦ . (11)

In order for a solution to exist, it is necessary that the three scalar equations
represented by (11) be satisfied. Since n3 = 0, the equation represented by the third
row of (11) may be written as

f1n1 + f2n2 = 0. (12)

Eliminating the unknown f3, from the two scalar equations obtained from the first
two rows of (11) gives

l3(f1m1 + f2m2)−m3(f1l1 + f2l2) = 0. (13)

Equations (12) and (13) represent the conditions that must be satisfied for the mech-
anism to be in static equilibrium. All the terms in these equations have been defined
in terms of the descriptive parameters γ1 and γ2.

4 Case 1 – Both Free Lengths Equal Zero

For this simple case it is assumed that the free lengths of the two springs, i.e. L01
and L02, are both equal to zero. The forces in the two springs as defined in (7) and
(8) now reduce to

f1 = k1d1, (14)

f2 = k2d2. (15)

Substituting these expressions as well as the line coordinate terms defined by (3)
into (12) and (13) give

L3(k1L12 + k2p3x)s1 + [k1L12L45 + k2(p3xp6x + p3yp6y)]s2
− k2L3p3yc1 + k2(p3xp6y − p3yp6x)c2 = 0, (16)
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(k1L45 + k2p6x)(c1s2 − s1c2)+ k2p6y(c1c2 + s1s2)
+ (k2p3x + k1L12)s1 − k2p3yc1 = 0. (17)

Note that since the free lengths of the springs are zero that the terms d1 and d2 have
vanished.

The solution for the values of the angles γ1 and γ2 that simultaneously satisfy
(16) and (17) proceeds by defining their tan-half angles as

xi = tan
γi

2
(18)

and then introducing the trigonometric identities

si = 2xi
1+ x2

i

, ci = 1− x2
i

1+ x2
i

. (19)

Substituting (19) into (16) and (17) and rearranging yields

(A1x
2
2+A2x2+A3)x

2
1+ (A4x

2
2+A5x2+A6)x1+ (A7x

2
2+A8x2+A9) = 0, (20)

(B1x
2
2 +B2x2+B3)x

2
1 + (B4x

2
2 +B5x2+B6)x1+ (B7x

2
2 +B8x2+B9) = 0, (21)

where the coefficients A1 through B9 can be evaluated in terms of given values.
Crane and Duffy (1998) show how Bezout’s method can be used to yield in gen-

eral eight solutions for x1 and x2 that satisfy the bi-quadratic equations (20) and
(21). In this case the solution was found symbolically to reduce to sixth degree.

Several numerical examples were evaluated. Typically four real solutions and two
complex solutions were obtained. All six cases satisfied the equilibrium conditions
defined by (12) and (13).

5 Case 2 – One Non-Zero Free Length

For this case it is assumed that the free length of spring 1 is non-zero and the free
length of spring 2 is zero. The forces in the two springs as defined in (7) and (8) are
now written as

f1 = k1(d1 − L01), (22)

f2 = k2d2. (23)

Substituting (22) and (23) as well as the line coordinate terms defined by (3) into
(12) and (13) and rearranging now gives

A1d1 + A2 = 0, (24)

B1d1 + B2 = 0, (25)
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where the terms A1 throughB2 are expressed in terms of the sines and cosines of γ1
and γ2. Equations (24) and (25) express the necessary and sufficient condition for
an equilibrium configuration. Note that the square of the distance between points 2
and 5, i.e. d2

1 , is expressed in terms of the angles γ1 and γ2 in Equation (5).
Equations (24), (25), and (5) are treated simply as a set of three equations in the

three unknowns γ1, γ2, and d1, and no attempt is made to manipulate the equations
so that one variable is eliminated by direct substitution. Substituting the tan-half-
angle identities, (19), into these three equations and rearranging yields

(E1x
2
2 + E2x2 + E3)d1 + E4x

2
2 + E5x2 + E6 = 0, (26)

(F1x
2
2 + F2x2 + F3)d1 + F4x

2
2 + F5x2 + F6 = 0, (27)

(G1x
2
2 +G2x2 +G3)d

2
1 +G4x

2
2 +G5x2 +G6 = 0, (28)

where the coefficients E1 throughG6 are functions of x1.
Sylvester’s elimination procedure is used to solve the set of equations (26)

through (28). These three equations are multiplied by x2, d1, and d1x2. Equations
(26) and (27) are multiplied by d2

1 and d2
1x2. This results in a total of 16 equa-

tions in the set of ‘variables’ d3
1x

3
2 , d3

1x
2
2 , d3

1x2, d3
1 , d2

1x
3
2 , d2

1x
2
2 , d2

1x2, d2
1 , d1x

3
2 ,

d1x
2
2 , d1x2, d1, x3

2 , x2
2 , x2, and 1. A necessary condition for a solution to exist for

these 16 ‘linear’ ‘homogeneous’ equations is that they be linear dependent and thus
the determinant of the coefficient matrix must equal zero. Since the coefficients E1
throughG6 are 2nd order in the variable x1, expansion of the determinant results in
a 32nd degree polynomial in the variable x1. Values for x2 and d2 that correspond
to each solution of x1 are then readily obtained.

Several numerical examples for this case were performed. Eight of the 32 solu-
tions for x1 were equal to +i or −i which means that the 32nd degree polynomial
in x1 may be divided by the factor (1+x2

1)
4. Four of the solutions correspond to the

case where points 2 and 5 are coincident. It can be shown that the value of x1 when
the two points are coincident may be determined from

(L2
3 + L2

12 − L2
45 + 2L3L12)x

2
1 + (L2

3 + L2
12 − L2

45 − 2L3L12) = 0. (29)

Thus, the remaining 24th degree polynomial may be divided by this factor to result
in a 20th degree polynomial in x1. It is concluded that the correct degree of the
solution is 20.

6 Case 3 – Both Free Lengths Are Non-Zero

For this case, the free lengths of both springs are non-zero and the forces in the
two springs are defined in (7) and (8). Substituting (7) and (8) as well as the line
coordinate terms defined by (3) into (12) and (13), substituting the tan-half angle
identities for the sines and cosines of γ1 and γ2, and rearranging now gives
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(C1x
2
2+C2x2+C3)d1d2+ (C4x

2
2+C5x2+C6)d1+ (C7x

2
2+C8x2+C−9)d2 = 0,

(30)
(D1x

2
2 +D2x2+D3)d1d2+ (D4x

2
2 +D5x2+D6)d1+ (D7x

2
2 +D8x2+D9)d2 = 0,

(31)
where the coefficients C1 through D9 are functions of x1. Substituting the tan-half
angle identities into (5) and (6) and rearranging gives

(M1x
2
2 +M2x2 +M3)d

2
1 + (M4x

2
2 +M5x2 +M6) = 0, (32)

(N1x
2
2 + N2x2 +N3)d

2
2 + (N4x

2
2 +N5x2 +N6) = 0, (33)

where the coefficients M1 through N6 are functions of x1. The definition of the
coefficients C1 throughN6 are not listed here for brevity.

Equations (30) and (31) are divided by d1d2, Equation (32) is divided by d2
1 , and

Equation (33) is divided by d2
2 to yield the four equations

(C1x
2
2+C2x2+C3)+(C4x

2
2+C5x2+C6)d2i+(C7x

2
2+C8x2+C9)d1i = 0, (34)

(D1x
2
2 +D2x2+D3)+ (D4x

2
2 +D5x−2+D6)d2i+ (D7x

2
2 +D8x2+D9)d1i = 0,

(35)
(M1x

2
2 +M2x2 +M3)+ (M4x

2
2 +M5x2 +M6)d

2
1i = 0, (36)

(N1x
2
2 +N2x2 +N3)+ (N4x

2
2 +N5x2 +N6)d

2
2i = 0, (37)

where d1i = 1/d1 and d2i = 1/d2. Equations (34) through (37) are expressions that
must be solved at an equilibrium configuration and are expressed in terms of the
four unknowns x1 (which is embedded in the coefficients), x2, d1i , and d2i .

Sylvester’s elimination procedure is used to obtain a single polynomial in x1.
Equations (34) through (37) can be treated as four ‘homogenous’ equations in the
15 unknowns d2

2ix
2
2 , d2

2ix2, d2
2i , d

2
1ix

2
2 , d2

1ix2, d2
1i , d2ix

2
2 , d2ix2, d2i , d1ix

2
2 , d1ix2,

d1i , x2
2 , x2, and 1. Equations (34) and (35) are multiplied by d1i , d2i , d1id2i , d2

1i ,
d2

2i , d
2
1id2i , and d1id

2
2i , Equation (36) is multiplied by d1i , d2i , d1id2i , and d2

2i , and
Equation (37) is multiplied by d1i , d2i , d1id2i , and d2

1i to yield a set of 26 equations
in a total set of 39 unknowns. Multiplying all 26 of these equations by x2 finally
results in a total set of 52 ‘homogeneous’ equations in 52 unknowns.

A non-trivial answer will exist for these equations if the determinant of the 52×
52 coefficient matrix equals zero. Since the coefficients are functions of the variable
x1, a polynomial in x1 will result. An analysis of the degree of the coefficients as
functions of x1 indicated that the resulting polynomial would be of degree 104.

Corresponding values for the parameters x2, d1i , and d2i can be obtained by
evaluating the coefficients C1 through N6 for a particular solution of x1 and then
solving any set of 51 of the 52 equations as true non-homogenous equations for the
particular unknowns x2, d1i , and d2i . In this problem this requires that a 51 × 51
matrix must be inverted for each of the 104 solutions for x1.

A numerical example was run and 104 solution sets of x1, x2, d1, and d2 were
obtained. Twenty-six of the x1 solutions were equal to ±i. These solutions are often
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referred to as circular points at infinity and it must be the case that the 104th degree
polynomial can be divided by (1 + x2

1)
13. It was not surprising that these solutions

occurred as the termsM1, M3, N1, and N3 all equaled (1+ x2
1).

Of the remaining 78 solutions, 40 were real and 38 were complex. Corresponding
values for x2, d1i , and d2i were obtained for the remaining 78 solutions. All 78 of the
solutions were then substituted into (34) through (37) to see if they indeed satisfied
the constraint equations. Sixteen of the real solutions did not satisfy (34) through
(37) which means that extraneous roots were indeed introduced in the elimination
process. It is concluded from this example that no more than 62 solutions exist.
Further analysis must be conducted to obtain an elimination procedure that does not
introduce extraneous roots.

7 Conclusions

The purpose of this paper was to show the significant increase in complexity that
results when springs with non-zero free lengths are incorporated in pre-stressed
mechanisms. It has been shown that six equilibrium configurations exist for the
case of a simple planar mechanism with two springs where both springs have zero
free lengths. Twenty equilibrium configurations were found for the case where one
of the springs had a non-zero free length. For the case where both springs had non-
zero free lengths, 78 solutions sets were obtained once the circular points at infinity
were disregarded. Sixteen of these 78 did not satisfy the equation set which means
that the presented elimination technique introduced extraneous roots. The remain-
ing 62 solutions satisfied the equations, but two solutions in the numerical example
resulted in cases where the lines along the three legs did not intersect which is puzz-
ling.

Additional work needs to be done before this simple case is fully understood.
The approach presented here does however bound the dimension of the solution.
The goal of the authors is to extend this work to spatial devices in order to develop
a thorough understanding of the nature of these pre-stressed mechanisms.
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Inverse Kinematics of Robot Manipulators with
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Abstract. The growing research area of physical Human–Robot Interaction (pHRI) claims for
safe robot control algorithms in the presence of humans. Managing kinematic redundancy via fast
techniques is also mandatory for interaction tasks with humans. It is worth noticing that control
points on a manipulator can change, e.g., depending on possible multiple collisions (intentional
or accidental) with the interacting users. An approach is presented for changing the control point
in real time with corresponding proper inverse kinematics. Whole-body modelling is adopted for
such a task. A simulation case study is proposed.

Key words: multiple-point control, inverse kinematics, skeleton algorithm, whole-body model-

ling.

1 Introduction

A central idea in physical Human-Robot Interaction (pHRI) for anthropic domains
[1] is the possibility of safely controlling the motion of an arbitrary part of the
articulated structure of a robot, via direct touch or remote operation. Eventually,
every point on such a robot can collide with a human user, resulting in (even severe)
damages. In addition, the different postures that robots assume during their motion
can scare the users, leading to sudden movements and forcing the robot control
architecture to react properly to such unexpected behaviours.

Multiple control points have then to be considered. The approach presented in
[2] takes into account the cited issues via multiple fixed control points. The inherent
limitation of this solution is the fact that the control points have to be chosen manu-
ally before the experiments. This drawback has been solved in [4], according to
the following criteria: geometric environment modelling for analytic computation,
multiple-point approach both for multiple inputs and multiple outputs of the robot,
arbitrary selection of the control points on the robot, reactive real-time control for
safety.

The resulting whole-body modelling is completed in this paper, where the fol-
lowing additional issues are suggested and developed in detail: inverse kinematics,

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 429–438.
© Springer Science+Business Media B.V. 2008
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Fig. 1 For the DLR Justin manipulator (a), a skeleton can be found (b) by considering the axes of
the arms and the spine of the torso. Segments are drawn between the Cartesian positions of some
crucial joints.

management of possible discontinuities, fast Jacobian computation via symbolic de-
scription and its consequences.

2 Whole-Body Modelling with the Skeleton Algorithm

As briefly introduced, an approach which automatically selects a control point on a
whole kinematic structure, based on sensor information and analytical computation,
is useful for pHRI applications. In addition, the control points should be computed
fast, based on a model of the environment which leads to simple distance computa-
tion and trajectory determination.

These considerations lead to the so-called “skeleton algorithm” developed for
collision avoidance applications (see [4] and references therein) whose steps in-
clude: building a proper model of the robot, namely the skeleton, useful for analyt-
ical computation; finding the control points along the skeleton, via distance com-
putation or explicit user’s decision; generating trajectories and corresponding joint
commands for the controller.

2.1 Skeleton-Based Modelling

The problem of analyzing the whole volume of the parts of a manipulator is sim-
plified by considering a skeleton of the structure, and proper volumes surrounding
it. With reference to the DLR Justin manipulator [3], such a skeleton is reported in
Figure 1.
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If segments are built that “span” the kinematic structure of a manipulator (see
Figure 1), its whole shape can be modelled. The underlying idea is that a solid of
revolution can express the shape of a link, but this can be partially modified using
properly the distance functions from every point of the link, resulting in a bounding
volume around the point. These multiple volumes form a virtual region which has
to approach the real volume of the considered part of a manipulator. Automatic
skeleton building from Denavit–Hartenberg (DH) parameters is possible. In fact, a
standard DH table gives the possibility of computing the Cartesian position of each
joint. These positions can constitute the ends of the segments of the skeleton (nodes),
and some of these possible nodes will be discarded if they coincide with other nodes
already present in the skeleton. It is important to consider segments which cover the
spine of all the mechanical parts: this has a reflex on DH tables when manipulator
links have parts on both sides of a revolute joint as, e.g., for counterbalances or for
allocating motors.

Building the skeleton, the focus is then on distance evaluation from the segments
on the robot (bounding volumes) to the environment: this is the basis for motion con-
trol in an unstructured domain. The complete environment has to be modelled with
geometric figures. In the design of the skeleton, some heuristics can help in discard-
ing useless computation; nevertheless, the general case of computing all possible
distances between simple objects like segments, regions of a plane (circles, rect-
angles) or points has the only limit of the time complexity for modelling the whole
operation environment. The distances between these simple objects can be obtained
via analytical formulas [5].

3 Inverse Kinematics with Multiple Control Points

Every point on the structure can be considered a control point, identified by a set of
DH parameters.

The proposed symbolic approach is based on the consideration that, if one con-
siders a manipulator and its direct kinematics equation, changing the value of its
DH parameters results in the kinematics equations of another manipulator, whose
end-effector is located before the real end-effector: that is equivalent to moving the
control point of the structure.

In detail, since control points always lie on the spine of the robot links, the direct
kinematics and the Jacobian computation can be carried out in a parametric way for
a generic point pi , which is located after the i-th joint. Considering the homogen-
eous transformation relating the (i − 1)-th frame (corresponding to the i-th joint)
to the next frame, by simply replacing the DH parameter corresponding to the link
length with the distance to the considered control point, a new “shorter” manipu-
lator is considered for control. The values of direct kinematics and Jacobian for the
specified control point have then to be considered by setting to 0 the DH values cor-
responding to frames located below the control point in the kinematic chain. If the
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displacements on the links vary continuously and sequentially, from the tip of the
robot towards the base and vice versa, the whole skeleton can be spanned.

In order to generate proper reference motion for the control points, in general,
potential fields or different techniques can be used in order to generate the forces
or velocities which will produce the desired motions. In [4] it is discussed how,
e.g., repulsion forces can be derived from a potential function. These forces can
be naturally used to compute avoidance torques at the manipulator joints via the
Jacobian transpose. Nevertheless, it should be pointed out that suitable repulsion
velocities could be likewise generated in lieu of forces.

The interesting implementation in velocity control will be presented, since the
differential kinematics equation has an important modification, due to the fact that
not only the joint angles, but also other kinematic parameters in the DH table may
change during the task. The additional suggested tools for a velocity-level imple-
mentation are the choice of a modular Jacobian, and the proper management of a
moving control point.

3.1 Modular Jacobian

The need for a modular Jacobian comes from the number of matrix multiplications
which are necessary for an arbitrary number of degrees of freedom (DOFs). For the
purpose of control, the Jacobian matrix is the cornerstone: similarly to the previous
discussion, a symbolic Jacobian can be used, where the kinematic parameters in
the DH table change as described above, allowing the motion of the control point.
The dimensions of such a matrix change, depending on the available DOFs before
the control point. The crucial aspect is that derivation of the differential kinematics
equation is affected by the motion of the multiple control points. This can be also
taken into account in a symbolic expression, as discussed below.

3.2 Differential Kinematics with Moving Points

Considering the direct and differential mappings with the standard DH parameters,
the usual differential kinematics equation does not take into account the possibility
of varying those kinematic parameters other than joint values. A complete model is
as follows. The direct kinematics equation can be written in the form

pi = k(q i ) (1)

where the vector q i contains the vectors of the standard DH variables d i , ai , θ i ,
αi . The differential mapping, discarding possible variations of the values in αi , is
therefore
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ṗi =
dk

dt
= ∂k

∂θ i

∂θ i

∂t
+ ∂k

∂ai

∂ai

∂t
+ ∂k

∂d i

∂d i

∂t

= J θ,i (θ i , ai , d i )θ̇ i + J a,i(θ i , ai , d i )ȧi + J d,i(θ i , ai , d i )ḋ i . (2)

Given a control point pi , the matrices J a,i and J d,i in (2) are the Jacobians
which express the contribution to the motion of the control point of the variations
of the DH values which characterise the control point. Moreover, θ i expresses the
vector of the joint values which contribute to the motion of the control point. Notice
that J θ,i is the ordinary Jacobian up to the control point, for a given set of DH
parameters.

There are proper ways [6] for reducing the number of nonnull values in the d i and
ai vectors of DH parameters. Often, this is intrinsically forced by the manipulator’s
design. As a simple case, consider a manipulator kinematics where only some values
in the vector d i change. In this situation, the way to compute the joint variables for
a moving point on the skeleton of the robot is the following:

θ̇ i = J
†
θ,W,i(ṗi − J d,i(θ i , ai , d i )ḋi ) (3)

where the subscriptW for the pseudoinverse of the Moore–Penrose Jacobian matrix
J

†
θ,W,i (corresponding to the control point pi) is referred to possible joint involve-

ment weighing. Based on these simple modifications, multiple-point control, which
has shown to be central in interaction with robots, can be accomplished easily both
in force and velocity control.

The main issue is that the control points, with the associated Jacobian, move on
the robot; therefore, this motion is taken into account in the differential kinematics.

3.3 Continuity of Moving Control Points

When a control point is computed automatically, e.g., via distance evaluation from
the closest obstacle (or goal) to the skeleton of the manipulator, there is the possibil-
ity that its position changes in a discontinuous fashion. Consider as an example the
case of multiple obstacles approaching an articulated robot. Moreover, some heur-
istics or the need for a reduced number of control points can result in some sudden
change of control point, and therefore of the corresponding DH values.

In order to avoid this problem, the DH values for the control point have to be
forced to vary with continuity and in the right sequence: this corresponds to moving
to the next control point always lying on the skeleton. This can achieved, e.g., via
spline interpolation resulting in moving the current control point towards next node
of the skeleton, and then from there to the new control point, via a sequence of
Cartesian positions of the joints, i.e., the nodes of the skeleton [5]. The sequence
of variation of the DH parameters is important for simulating such a motion on the
spine of the links, and the use of spline interpolation is suggested for specifying
values of the higher-order derivatives of DH values.
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(a) (b) (c)

Fig. 2 The control point (small circle) on the skeleton, automatically computed as the closest to a
moving object (big circle), can give a discontinuity to reference trajectories, moving abruptly on a
new segment.

In order to reach the new control point via interpolation, a delay is to be con-
sidered before the change of the control point is performed. This delay has to be
compatible with parameters related to the current motion of the robot such, e.g., the
time-to-collision.

The possibility of smoothly moving the control point is useful also for forcing its
motion on the skeleton in case of distance computation between parallel segments,
where the computed closest point can move abruptly from an end to the other of the
segment of the skeleton, in case of motion of an obstacle segment passing through
a configuration which results in a parallelism with respect to the segment on the
manipulator’s skeleton.

Both first- and second-order inverse kinematics schemes [7] can be easily mod-
ified for taking into account the presence of the moving control point with variable
kinematic parameters. In the case of second-order algorithms, the derivatives of the
additional Jacobian matrices which have been introduced have to be computed also.

With reference to Figure 2, it can be seen that a single control point which is
automatically computed as the closest to a collision, based on environment model-
ling, can move abruptly on the articulated structure. The use of different filters for
the motion on the control point depends on the control algorithm too: if the control
uses higher order derivatives of the position, motion has to be smooth enough to
ensure continuity of these data.

Figure 3 shows an example of variation of the DH parameters which identify the
control point for a three-link planar manipulator, whose lengths are 0.4 m, 0.3 m,
0.2 m. In such a manipulator, only the values in the vector ai , i.e., ai(1), ai(2),
ai(3), change for a control point pi on the skeleton. If the control point moves from
the middle of the first link (p1) to the middle of the third link (p2), the resulting
continuous and sequential change in the DH parameters, obtained via cubic spline

434



Inverse Kinematics of Robot Manipulators with Multiple Moving Control Points

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

[m]

[m
]

p
1

p
2

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

[s]

a
i
(1)

a
i
(2)

a
i
(3)

(b)

Fig. 3 When a control point’s position is expected to change, e.g. from p1 to p2 (a), the desired
new DH parameters are to be reached sequentially and with continuity (b).

interpolation, is reported. The time for reaching the desired final value for each
parameter has been set always equal to 0.1 s. This time interval is a parameter for the
spline interpolator. In this case, the change of three parameters results in reaching
control point after 0.3 s. Meanwhile, the control point is moving on the skeleton and
its motion is taken into account as described above.

4 A Simulation Case Study

A short example is here reported for simplicity. Consider the case of a 3-link planar
manipulator approaching an object located in the position pg . If one just wants that
the robot hits the object, the closest point on the object from pg, i.e., the point pc,
has to be attracted. Inverse kinematics can be performed as introduced for a single
moving control point, which has to be driven towards pg . A velocity is commanded
which is proportional to the difference between pg and pc. When the manipulator
moves, if pc is automatically computed as the closest to the goal point, its desired
location may change abruptly from one link to the other (see Figure 3). For the
simulations, the length of each link is 0.2 m, the goal position is pg =

[
0 −0.2

]T ,
and the motion of the control point is limited to the last two links.

In order to smoothen the change of control point’s position, a spline interpolation
for the DH values of pc is used. This results in a sliding motion of the control point
pc on the manipulator up to the new desired one. The resulting Cartesian motion
and joint motions corresponding to the moving pc is reported in Figure 4. Notice
that a damped-least-squares solution has been adopted in the pseudoinversion of the
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Fig. 4 (a) Time history of the Cartesian motion of control point (thick line) and end-effector (thin-
line): notice that the control point moves soon to the new desired value. (b) Joint motion in the
proposed case study.

Jacobian matrix; notice also that, in the final part of the trajectory, the desired direc-
tion for the control point is unfeasible (singular direction). These two last remarks
are reported for suggesting the need for more global approaches including proper
trajectory planning, in order to avoid local minima during the motion. As a simple
example, the desired velocity for reaching the goal point pg can be interpolated for
avoiding high speeds in the first part of the motion.

From Figure 5 it is possible to observe the progressive modification of the values
in the ac vector (according to the notation introduced in Section 3.2), corresponding
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Fig. 5 Time history of the values in the vector a.

to the motion of pc, which is initially located at the end-effector (default) and then
moves to the second link.

Notice that the desired positions of pc during the simulations are reached after
fixed time slots, specified for the spline interpolators. During this time, no additional
new desired points are computed. If the control point does not change any longer,
the scheme coincides with the well-known closed-loop inverse kinematics (CLIK)
with no feedforward of velocity.

5 Conclusion

An approach to inverse kinematics for possibly moving control points on the kin-
ematic chain of a robot manipulator has been introduced in this paper. It is based on
whole-body modelling: analytical computation or explicit choice may be used for
setting the control points. Such control points are forced to move smoothly on the
spine of the links of the considered robot manipulator. Simulation results have been
provided for a simple planar robot manipulator; future work will be aimed at testing
the approach on spatial manipulators, such as the DLR Justin manipulator.
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On the Delassus Parallelogram
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Abstract. A general type of articulated parallelogram including four H joints with parallel axes and
related pitches was discovered by Delassus in 1922. Therefore, it is called Delassus parallelogram.
The planar or pseudo-planar parallelograms can be considered to be special cases. The possibly
singular posture of a sub-chain HHH in a HHHH Delassus parallelogram is also introduced through
a special case of degeneracy of Ball’s cylindroid. A practical consequence is that the singularity of
flattened parallelogram can be avoided under a scalar condition on the screw pitches of a Delassus
parallelogram. Thus, the workspace of manipulators implementing parallelograms can be enlarged.

Key words: parallelogram, hinged parallelogram, pseudo-planar motion, Delassus’ linkages, sin-

gular posture, twist, cylindroids.

1 Introduction

The hinged parallelogram (Hervé and Sparacino, 1991; Wohlhart, 1992) is a simple
means to produce translational motion without implementing the prismatic P pair.
The simplest parallelogram is a planar linkage with four bars jointed by four revolute
R pairs. Opposite bars have equal lengths. This parallelogram was used in several
manipulators (Clavel, 1987; Hervé, 1991; Wenger and Chablat, 2000; Gao et al.,
2002; Angeles, 2004), especially in the Delta robot. Actually, helical H pairs (or
screw joints) can also achieve this function. The relative translational 1-dof motion
between two opposite bars will be introduced for the pseudo-planar case. Moreover,
the paradoxical chain of Delassus parallelogram is further studied. The possibly
singular posture of a sub-chain HHH in the Delassus parallelogram is got rid of
through a special case of degeneracy of Ball’s cylindroid (Ball, 1900).

After recalling some properties of the pseudo-planar parallelograms, we extend
them to one of the Delassus paradoxical linkages, which is an articulated parallelo-
gram with four H pairs having related pitches. It may be worth mentioning that all
the Delassus linkages were recalled by Waldron (1968). The article will emphas-
ize the Delassus parallelogram linkage and the avoidance of its singular posture by
using Ball’s cylindroid method and intrinsic coordinate-free approach.

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
and Design, 439–449.
© Springer Science+Business Media B.V. 2008
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2 The Pseudo-Planar Parallelogram

The pseudo-planar four-bar linkages are characterized by the four screw H pairs
with parallel axes and equal pitches. When bar lengths are those of a parallelogram,
the relative motion between the opposite bars is a one-degree-of-freedom (1-dof)
translational motion.

2.1 Chain of Two Hs with Parallel Axes and the Same Pitch

Referring to Figure 1, the three vectors (i, j,k) make up an orthonormal vector
basis. Adding the datum of any origin O, (O, i, j,k) is a Cartesian frame of ref-
erence of the Euclidean affine three-dimensional (3D) space of classical geometry.
A serial concatenation of two helical (or screw) H pairs with axes parallel to k
is considered. In this HH chain, a first H pair has the fixed axis (A,k) and the
pitch p. The real number k = p/2π is called reduced pitch. In fact, (A,k) is
a frame of reference of the axis. Any point P along this axis is represented by
P = A + zk where the real number z is called the point abscissa in the frame
(A,k). The vector P − A = (AP) = zk characterizes the position of P in
the frame (A,k). In order to obtain simple expressions, A is chosen in the plane
P l(O,⊥k), which passes throughO and is perpendicular to k. This screw pair gen-
erates the 1D group {H(A,k, p)}, which is a Lie subgroup of the 6D Lie group
of general displacements. The conventional notation {H(A,k, p)} is a short for
{H(A,k, p); θ | θ ∈ R}, R denoting the set of real numbers. By a transforma-
tion H(A,k, p; θ) of {H(A,k, p)}, any pointM1 belonging to the moving body of
the pair is transformed intoM ′

1

M1 → M ′
1 = A+ θkk+ exp(θk×)(AM1), (1)

the parameter θ is an angle of rotation of the moving body from an arbitrarily chosen
home configuration of the H pair. For simplifying calculation, we will choose θ = 0
when the point B of the moving body is located at the fixed point B = A+ ri. The
linear operator exp(θk×) acting on the vector (AM1) is the exponential series of
the skew-symmetric linear operator θk× of the vector product by θk,

exp(θk×)(AM1) = (AM1)+ θk× (AM1)+ (θ2/2!)(k×)2(AM1)+
+ · · · + (θn/n!)(k×)n(AM1)+ · · · . (2)

When the angle θ has only the infinitesimal value dθ , exp(dθk×)(AM1) is equal to
(AM1) + dθk× (AM1). Then, (AM′

1) − (AM1) is an infinitesimal vector dM1 =
dθ [kk+k× (AM1)]. The mapping M1 → dM1 = dθ [kk+k× (AM1)] is the twist
of the foregoing screw motion. dM1/dθ = kk+ k × (AM1) is called rate of twist.
The previous expression of the twist depends on a point A, which is located on the
screw axis. Another expression of the same twist at the originO is readily obtained
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using (AM1) = (AO) + (OM1). Therefore, the general expression of the twist of
a screw with an axis parallel to k has the form dθ [tO + k× (OM1)] where tO is a
vector depending on the choice ofO. Classically, the pitch of such a twist is proven
to be the scalar product k · tO and the foot N of the perpendicular drawn fromO to
the screw axis is given by (ON) = k× tO .

The second H pair from the fixed base generates the group {H((B,k, p)}. Due to
the relative motion of this H pair, any pointM2 of the moving body is transformed
intoM ′

2
M2 → M ′

2 = B + ϕkk+ exp(ϕk×)(BM2). (3)

The value 0 of the angle ϕ is chosen for an arbitrarily given home configuration of
the second H pair.

In Figure 1, let M be any point belonging to the moving end body of the serial
HH chain. Any change of the position of M can be achieved through two steps. In
the first step, the second H moves with an angle ϕ while the first H keeps its home
pose (θ = 0); M becomes Mi . In the second step, the second H is locked (angle ϕ
keeps its value) and the first H moves with an angle θ , Mi becomes M ′. The first
step of the change of pointM position is expressed by

M → Mi = B + ϕkk+ exp(ϕk×)(BM), (4)

where B is at its home position A + ri and the transform Mi − B = (BMi ) =
ϕkk+ exp(ϕk×)(BM) is followed by the second transform

Mi → M ′ = A+ θkk+ exp(θk×)(AMi )

or (AM′) = θkk+ exp(θk×)(AMi ). (5)

Using (AMi ) = (AB)+ (BMi ) yields

(AM′) = θkk+ exp(θk×)(AB)+ exp(θk×)(BMi ). (6)

As the chosen home configuration is such as (AB) = ri,
exp(θk×)(AB) = r exp(θk×)i = r(cos θ i+ sin θ j). (7)

Noticing that exp(θk×)(ϕkk) = ϕkk,

(AM′) = r(cos θ i+ sin θ j)+ θkk+ ϕkk+ exp(θk×) exp(ϕk×)(BM)

= r(cos θ i+ sin θ j)+ (θ + ϕ)kk+ exp[(θ + ϕ)k×](BM). (8)

This is an explicit expression of a transformation H(A,k, p; θ)H(B,k, p; ϕ) of
the 2D product {H((A,k, p)}{H(B,k, p)}.
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2.2 Parallel Mechanism Generating Circular Translation

Let us assume that M is any point belonging to a moving platform connected to a
fixed base by two limbs. One limb is the previous HH chain. The Hs have parallel
axes and the same pitch p. p = 0 is a possible special case, that is, the planar RR
chain. The second limb is a PPP generator of 3-dof spatial translation. The set of
feasible displacements generated by the PPP limb is the 3D group {T } of spatial
translations. The group {T } is the set of point transformations

M → M ′ =M + ai+ bj+ ck, (9)

which is also expressed by (MM′) = ai + bj + ck. The parameters a, b and c are
the scalar values of the rectilinear translations produced by the P pairs from a given
home configuration of the PPP chain. For any point M , the feasible displacements
of the moving platform for the HH-PPP parallel mechanism have to satisfy both

M → M ′ = M + ai+ bj+ ck (10a)

and

M → M ′ = A+ r(cos θ i+ sin θ j)+ (θ + ϕ)kk+ exp[(θ + ϕ)k×)](BM). (10b)

The solution is obviously obtained with (θ + ϕ) = 0, exp[(θ + ϕ)k×)](BM) =
(BM) = (BA)+ (AM) = −ri+ (AM) and A+ (AM) = M . Therefore, Eq. (10b)
becomes

M ′ = M + r(cos θ − 1)i+ r sin θ j. (11)

This point transformation is clearly a translation depending on only one parameter,
namely θ .M being given,M ′ moves in a plane parallel to P l(O,⊥k). Let CM be a
point associated to M by (CMM) = ri.
(CMM′) = (CMM)+ r(cos θ − 1)i+ r sin θ j = ri+ r(cos θ − 1)i+ r sin θ j

= r cos θ i+ r sin θ j. (12)

Clearly, any point M of the end effector moves on a circle of center CM with the
radius r . This circular translation can be produced by an infinity of mechanisms,
which are congruent to the mechanism depicted in Figure 2 by any given translation.

In Figure 3, two mechanisms produce the same circular translation. That way,
rigidly connecting two end effectors having the same motion leads to a pseudo-
planar linkage that generates circular translation, as shown in Figure 4.
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Fig. 1 Two Hs chain. Fig. 2 A HH-PPP parallel chain.

Fig. 3 Two mechanisms generating the same circular translation.

Fig. 4 A pseudo-planar parallelogram.

3 The Delassus Parallelogram

Assume that the two screw pitches shown in Figure 1 are not equal. For instance, the
pitch of the first H pair is p = 2πm and the second H has the pitch q = 2πn. Then,
p − q = 2π(m − n) �= 0. In a similar way, the explicit form of a transformation
belonging to the product {H(A,k, p)}{H(B,k, q)} for any pointM , is derived as

(AM′) = r(cos θ i+ sin θ j)+ (mθ + nϕ)k+ exp[(θ + ϕ)k×)](BM). (13)

Translation is achieved with θ + ϕ = 0 or ϕ = −θ

443



C.-C. Lee and J.M. Hervé

Fig. 5 A new mechanism.

(AM′) = r(cos θ i+ sin θ j)+ θ(m− n)k+ exp(0k×)(BM)

= r(cos θ i+ sin θ j)+ θ(m− n)k+ (BM)

= r(cos θ i+ sin θ j)+ θ(m− n)k+ (BA)+ (AM)

= r(cos θ i+ sin θ j)+ θ(m− n)k− ri+ (AM). (14)

Hence,

(AM′)− (AM) = (MM′) = r(cos θ i+ sin θ j)+ θ(m− n)k− ri
= r(cos θ − 1)i+ sin θ j+ θ(m− n)k. (15)

From any given pointM of the end effector, a corresponding point CM is associated
by CM = M − ri. It is straightforward to establish that

(CMM′) = r cos i+ r sin θ j+ θ(m− n)k. (16)

So, M ′ moves on a helix of pitch 2π(m− n) = p − q = d . Such a helix is drawn
on a cylindrical surface having the axis (CM,k) with the radius r . The end-effector
motion is a translation along a helix or a helical translation.

Several limbs producing the same helical translation can be placed in-parallel
between a fixed base and a moving end effector. The case of two limbs corresponds
to the parallelogram linkage found out by Delassus in 1922. Besides, parallel chains
with more than two limbs are new. For instance, the mechanism depicted in Figure 5
is a new mechanism with two independent closed loops. Three HH limbs connect
in parallel a fixed frame to a moving platform. The four real numbers p, d , e, and f
can be chosen arbitrarily. The platform motion is helical translation with the pitch
p − (p + d) = p + e − (p + e + d) = p + e + f − (p + e + f + d) = −d and
the radius r . In the noteworthy special case of d = 0, the motion of the coupler is a
circular translation.
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4 Singular Postures

The pseudo-planar parallelogram is singular when the four H axes are in a plane. In
this posture, the four twists belong to a 2D vector space. Locally, the dof is 2. As it is
well known in the case of a planar parallelogram, the pseudo-planar parallelogram
can work with two 1-dof modes. The planar projection of the linkage can be either
a parallelogram or a crossed parallelogram. A bifurcation (Lee and Hervé, 2005)
happens at the above-mentioned singular posture.

Here, we focus on the case of the Delassus parallelogram, which is more intric-
ate. The detection of the possible singular postures of a HHH sub-chain with three
parallel axes can be done through the method used by Ball (1900) when he found
out the cylindroid. The linear span of two given twists is characterized by geometric
conditions (Lee and and Hervé, 2007). Thus, these conditions allow the identifica-
tion of the twists, which belong to the 2D vector space of the two given twist. One
has to notice that when the two given twists have parallel axes, Ball’s cylindroid is
degenerated and, therefore, a specific study of this special case is required.

Let us consider two H pairs with pitches p = 2πm and q = 2πn and parallel
axes (A,k) and (B,k). Assume that both A and B belong to the plane P l(O,⊥k)
and do not coincide. The expression of the twist of the first H with respect to O
is d1M = ϕ[k × (OM) + (OA) × k + mk] and the twist of the second one is
d2M = ϕ[k× (OM)+ (OB)×k+nk]; for brevity, θ and ϕ are shortened notations
standing for dθ and dϕ, which are infinitesimal angles. Then, the twist of a serial
concatenation of the two H pairs, which is the resultant twist dRM is

dRM = d1M+ d2M

= θ [k× (OM)+ (OA)× k+mk] + ϕ[k× (OM)+ (OB)× k+ nk]
= (θ + ϕ){k× (OM)+ {[θ(OA)+ ϕ(OB)]/(θ + ϕ)} × k

+ [(θm+ ϕn)/(θ + ϕ)]k}. (17)

This resultant twist has the general form dRM = (θ + ϕ)[k × (OM) + tRO ] with
tRO = [θ(OA)+ ϕ(OB)]/(θ + ϕ)× k + [(θm+ ϕn)/(θ + ϕ)]k. One can readily
identify the twist of a screw pair with the angle αR = θ + ϕ and an axis parallel to
k. The reduced pitch is kR = k · tRO and

kR = (θm+ ϕn)/(θ + ϕ) or 2πkR = (θp + ϕq)/(θ + ϕ). (18)

Setting cθ = θ/(θ + ϕ) and cϕ = ϕ/(θ + ϕ), the pitch 2πkR of the resultant twist
is expressed as cθp + cϕq .

The vector of the perpendicular drawn fromO to the axis of the resultant twist is
given by (ONR) = k× tRO . By vector calculation using the formula of the double
vector product, it is straightforward to establish

(ONR) = [θ(OA)+ ϕ(OB)]/(θ + ϕ) = cθ (OA)+ cϕ(OB). (19)
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Fig. 6 Delassus parallelogram or sub-chain HHH in a possible singular pose.

From the previous expression, NR is the barycenter (center of mass) of the point
A and the point B with the mass cθ = θ/(θ + ϕ) and the mass cϕ = ϕ/(θ + ϕ),
respectively. In other words, it is a parametric representation of the straight line
AB. That proves that necessarily NR belongs to the line AB. Clearly, the resultant
twist axis and the other two axes have to lie in the same plane. One can readily
demonstrate

(NRA) = (OA)− (ONR) = ϕ(BA)/(θ + ϕ) = cϕ(BA). (20)

By the same token,

(NRB) = −θ(BA)/(θ + ϕ) = −cθ (BA). (21)

The expressions in Eqs. (20) and (21) show that the coefficients cθ = θ/(θ +ϕ) and
cϕ = ϕ/(θ + ϕ) can be expressed with ratios of parallel vectors that are derived of
the arrangement on a straight line of the three points A, B and NR , namely cθ =
θ/(θ + ϕ) = (BNR)/(BA) and cϕ = ϕ/(θ + ϕ) = (ANR)/(AB).

Now, we consider a Delassus parallelogram whose bar lengths are given and the
pitches are p, q , p + d and q + d as shown in Figure 6. We consider a posture
including three Hs with parallel axes lying in a plane. Clearly, when three axes are
in a plane, the four axes are in the same plane.

Obviously, there are four possibilities (I, II, III and IV) for excerpting HHH sub-
chains from a HHHH chain. Each sub-chain is obtained by locking any one of H
pairs in the chain with four Hs. First, for possibility I , the screw at D is locked in
Figure 6. Let us check if the HHH sub-chain pose of the screws at A, B and C is
singular.

We derive the pitch of the singularity from the arrangement of A, B and C on a
straight line, in which, (AB) = ai, (BC) = bi, and

cθ = (BC)/(BA) = −b/a; cϕ = (AC)/(AB) = (a + b)/a. (22)
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Fig. 7 A sub-chain HHH in a possible singular pose.

From the previous characterization of a singular posture of a HHH chain when
two of its H pairs have parallel axes, the pose of the HHH sub-chain of the screws
at A, B and C is singular iff the pitch of the screw at C is

cθp + cϕq = −bp/a + (a + b)q/a = b(q − p)/a + q, (23)

which corresponds to d = b(q − p)/a. This singularity can be avoided by an ad-
equate choice of the pitch q + d of the screw at C, that is, d �= b(q − p)/a.

Secondly, the screw at B is assumed to be locked for possibility II, Figure 6.
Then we verify if the HHH sub-chain of the screws at A, D and C undergoes a
singular pose. In the previous calculation, we just exchange a and b and replace q
by p + d . When the singularity happens, the pitch of the screw at C is equal to
[ad+b(p+d)]/b based on Eq. (18). Then, we obtain the equation for the unknown
d as follows:

q + d = [ad + b(p + d)]/b⇒ d = b(q − p)/a. (24)

Amazingly, we obtain the same condition as cited above, namely d = b(q − p)/a.
Next, we further only lock the screw at A for possibility III as shown in Figure 7.

Is the HHH sub-chain of the screws at B, C andD in a singular pose? It is seen that

cθ = (CD)/(CB) = a/b and cϕ = (BD)/(BC) = (b − a)/b. (25)

The pitch of the singularity is qa/b + (q + d)(b − a)/b through Eq. (18). Hence,
we obtain the following equation for the unknown d

qa/b+ (q + d)(b − a)/b = p + d ⇒ d = b(q − p)/a. (26)

Once more, we obtain the same magnitude of d .
Finally, for possibility IV, we investigate if the HHH sub-chain of the screws at

B, A and D, shown in Figure 7 is at a singular pose. By the same way, we obtain
again the same condition of singularity, which is d = b(q − p)/a.
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An algebraic reasoning confirms and summarizes these findings. Let $A, $B , $C
and $D denote the twists in the screws at A, B, C and D, respectively. In a first
step, we have proven that the twist $C belongs to the linear span of $A and $B iff
d = b(q − p)/a. This is expressed by $C ∈ span($A, $B) ⇔ d = b(q − p)/a.
$C ∈ span($A, $B) implies that $C can be a vector of a vector base of span($A, $B);
therefore span($A, $B) = span($A, $C). In a second step, we have proven $C ∈
span($A, $D) ⇔ d = b(q − p)/a; then $C ∈ span($A, $D) ⇒ span($A, $D) =
span($A, $C). Hence, iff d = b(q − p)/a, then the four twists of a Delassus par-
allelogram linkage in a straight-line posture belong to the same 2D vector space,
which is the linear span of any two distinct twists among $A, $B , $C and $D .

5 Conclusion

Besides the planar and pseudo-planar parallelograms, which can produce 1-dof
translation along a circle, the Delassus parallelogram produces generally 1-dof
translation along a helix. By an adequate choice of the screw pitches, circular trans-
lation can also be generated by a Delassus parallelogram. There is a special kind
of Delassus parallelograms, which undergo a singular pose when the four bars are
parallel to a straight line. The condition tying the bar lengths and the screw pitches
in this kind of linkage is simple. As a consequence, the Delassus parallelograms
can be used for avoiding the singularity of the flattened parallelogram and, thus,
the workspace of manipulators implementing parallelograms can be enlarged. It is
quite clear that several novel linkages including Delassus’ parallelograms can be
envisioned from this work.
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Applications
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Abstract. This paper presents the recent results from a newly designed parallel wire robot which
is currently under construction. Firstly, an overview of the system architecture is given and tech-
nically relevant requirements for the realization are identified. A technique to compute and transfer
an estimation of the workspace to CAD tools is presented. Furthermore, tools to solve the forward
kinematics of some special configuration under real-time requirements are explored. Simulation
results show the feasibility of the presented algorithms.

Key words: wire robot, workspace, forward kinematics.

1 Introduction

Compared to other manipulators like industrial robots and Stewart–Gough plat-
forms, parallel wire robots are able to achieve very high velocities and accelerations.
Furthermore, large workspace and high payloads are possible due to the efficient
force transmission through the wires. In the last decade, a lot of research has been
carried out to study both, theory (see e.g. [3, 4, 8]) and implementation [1, 5] of
these robots.

A new wire robot WiRo (Figure 1a) is currently being setup at the laboratories of
Fraunhofer IPA. This new robot provides six degrees-of-freedom with seven wires
and focuses on industrial applications in the field of material handling as well as
fast pick-and-place applications. The aim of the demonstrator is to implement latest
techniques in kinematics and control on industrial hardware capable of working in
an automation environment. Among other things, two important issues arise in the
construction of a wire robot which will be the topic of this paper. Firstly, one need
to quickly calculate and visualize an estimate of the workspace during the construc-
tion process. Secondly, one has to provide all kinematic relationships required by
an industrial robot controller. The calculation of the inverse kinematic function for
set-value generation is trivial for parallel wire robots. On the other hand, forward
kinematics is needed for some control algorithms, including workspace supervision
and detection of failures. The calculation of the forward kinematics under real-time

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
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Fig. 1 A spatial wire robot. (a) CAD Draft of WiRo. (b) Geometry and kinematics.

requirements restricts the available computation time, and necessitate a strictly de-
terministic behavior for the computational time.

2 Kinematic Foundation

For better reference, the kinematic basics of wire robots are briefly reviewed. Fig-
ure 1b shows the kinematic structure of a spatial wire robot, where the vectors ai
denote the proximal attachment points on the frame, the vectors bi are the relative
positions of the distal attachment points on the movable platform, and li denote the
length of the wires. Applying a vector loop, the closure-constraint reads

li = ai − r − Rbi for i = 1, . . . ,m (1)

where the vector r is the Cartesian position of the platform and the rotation matrixR
represents the orientation of the platform. The unit vector along the tension becomes
ui = li |li |−1. For force equilibrium it holds that [6, 8]

(
u1 . . . um

b1 × u1 . . . bm × um
)

︸ ︷︷ ︸
A(r,R)

⎛⎜⎝ f1
...

fm

⎞⎟⎠
︸ ︷︷ ︸
f

+
(
f
p

τp

)
︸ ︷︷ ︸
w

= 0, (2)

where f
p
, τp are the applied forces and torques, respectively, acting on the platform

and f is the vector of the wire forces. The matrixA is referred to as structure matrix
and permits to investigate existence and quality of the workspace. There are a couple
of sophisticated criteria to analyze the workspace based on the structure matrix (see
e.g. [2]). For the conceptual study of the wire robot WiRo, the notion of controllable
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workspace is used [9]. Thus, the following method is used to determine an index κ
for the workspace. If the matrix A(r,R) has the maximal rank of six for a given
pose r, R, let k be an arbitrary element of the one-dimensional kernel (or nullspace)
of A. One can determine such an element k for example by application of a singular
value decomposition of the matrix A. Then the index κ is defined as

κ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min(k)
max(k)

if min k > 0

max(k)
min(k)

if max k < 0

0 otherwise.

(3)

For κ = 0 the pose r, R does not belong to the workspace and for κ = 1 the forces
in all wires are equal providing an optimal transmission. Note, that the index rates
the distribution of forces within the wires.

3 Determination of the Hull of the Workspace

In this paper, the translational workspace for a given orientation of the wire robot
is represented by a triangulation of its hull. The idea for the determination of the
workspace is to start with an identity sphere in the estimated center m̂ of the work-
space and to successively extent the sphere in radial direction. Clearly, this assump-
tion may lead to an underestimation of the workspace and the estimation depends on
chosen value of m̂. Contrary, for most technical application, only robots with a com-
pact workspace are interesting and therefore it seems reasonable to restrict the quick
design procedure to such a subspace. The surface of the sphere is approximated by
triangles which are created from iterative subdivision of the faces of an octahedron.

Fig. 2 (a) Unit octahedron. (b) Subdivision step for triangles.
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In the first step, the eight faces of an octahedron (Figure 2a) located around the
point m̂ are described as triplets of vertices, e.g. F1 = {vA, vB, vC}i . Initially, there
is a set L = {F1, . . . , F8} containing eight faces. These faces of the octahedron
are subdivided into four congruent triangles (Figure 2b). This is done by construct-
ing the three vertices vAB ,vAC ,vBC for each triangle Fi in L and projecting the
generated vertices onto a unit sphere

vij =
vi + vj
|vi + vj |

, i, j ∈ {A,B,C}, i �= j. (4)

Then, the original triangle Fi is replaced by the four triangles (vA,vAB , vAC), (vB ,
vAB , vBC), (vC, vBC, vAC), (vAB, vAC, vBC). This process is repeated ni times
thus generating a set L containing nT = 22ni+3 triangles.

In the second step, the vertices of the triangles are projected onto the hull of the
workspace. Starting from the estimated center m̂ of the workspace, the line

L : x = m̂+ λvi λ ∈ [0..r] (5)

is searched by a regula falsi method for the border of the workspace, which is defined
by a given value κs . This is done by the algorithm

1. Let λmin = 0 be the lower bound and λmax = r be the upper bound.
2. If λmax − λmin < ε, stop the line search.
3. Let λ = 1

2 (λmax + λmin) and evaluate x = m̂+ λvi .
4. Calculate the quality index κ(x) of the resulting position x.
5. If κ > κs then let λmin = λ else let λmax = λ.
6. goto step 2

Finally, one ends up with the vertex v(h)i = m̂ + λvi approximating the hull of the
workspace. The correspond triangles are rendered into a new set L(h). In the presen-
ted example these data are directly written in the stereo-lithography data file format
(STL) which can be loaded and visualized with most CAD tools (Figure 1a). In or-
der to cope with holes within the workspace, it is trivial to add a second procedure
that evaluates the line from the center to boarder with a given step size.

4 Forward Kinematics for Real-time Requirements

For the control of the robot, one has to solve the forward kinematics of the robot,
i.e. given the geometry defined by ai, bi and the actual length of the wires li , one
has to determine the pose of the platform. There are two major requirements for that
calculation. Firstly, it must be very efficient in order to achieve appropriate cycle
times for the controller. The selected controller works with a frequency of 1 kHz
due to the high velocities of the platform. For online trajectory planning, a multiple
of that value is needed. Secondly, the controller requires strict realtime capabilit-
ies of the kinematic function. Therefore, the calculation time must be bounded to a
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Fig. 3 Six-degree-of-freedom parallel wire robot with three distinct attachment points on the plat-
form.

known value. Thus, explicit formulas are desired and the derived formulas are based
on work by Thomas et al. [7] which takes robots with a so-called “3-2-1” configur-
ation into account. For parallel wire robots with seven wires, the distal attachment
points B1, . . . , B7 can be written as three distinct attachment points BA, BB, BC on
the platform. Furthermore, it the configuration it is assumed that either two or three
wires share a common attachment point on the movable platform. This configur-
ation is shown in Figure 3 and was used for the proposed robot as well as for a
couple of recently built wire robots, since it minimizes the restrictions caused by
wire interference elsewhere in workspace [8].

The calculation presented derives the equations in closed-form as they are used
for the controller. It is entirely based on a geometric procedure. Firstly, it is recalled
that the distal attachment points Bi have to be located on spheres Si with radii li
center around the proximal attachment points Ai . If three attachment points on the
platform coincide as shown for BC in Figure 3, their location in space can be calcu-
lated from the intersection of three spheres. Once BC on the platform is known, the
distance between BC and BA, BB can be used as distance constraint. Thus, one can
apply the same procedure to determine BA, BB as well. This provides a closed-form
solution for the forward kinematics of the robot. Therefore, the determination of the
intersection of three spheres is described in the next section.

An important step in solving this special forward kinematic problem is to com-
pute the intersection of the three given spheres S1, S2, S3 defined by their centers
m1,m2,m3 and the radii r1, r2, r3, respectively. Generally, there are four possibil-
ities for the number of intersections. There might be no solution, one solution, two
symmetric solutions, or an infinite number of solutions. The latter case only oc-
curs if m1,m2,m3 define a line. From a kinematic point of view, one of the three
constraints degenerates and this happens only in a singular configuration. Firstly,
intersection occurs between the spheres only if

|ri − rj | < |mi −mj | < ri + rj for i, j ∈ 1, 2, 3, i �= j (6)
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holds. Otherwise there is no solution because the distance between the spheres is
either too big or too small. Now, the plane E3 is defined by m1,m2,m3. Then its
normal vector is given by

n0
3 = (m1 −m2)× (m1 −m3) (7)

and the unit normal vector is computed from n3 = n0
3|n0

3|−1. Furthermore, the
planes defined by the intersection of S1, S2 and S1, S3, respectively, are given by

E1 : x .n1 =
m2

2 −m2
1 − r2

2 + r2
1

2
(8)

E2 : x .n2 =
m2

3 −m2
1 − r2

3 + r2
1

2
(9)

where the normal vectors n1, n2 are constructed from n1 = m2−m1, n2 = m3−m1.
The sought intersection(s) xi of all three spheres is located on the line

L : x = x0 + λn0
3, (10)

where x0 is the intersection of the planes E1, E2, E3. Therefore, one can compute
x0 from the linear system

[
n1 n2 n

0
3

]T
x0 =

⎡⎢⎢⎢⎣
m2

2 −m2
1 − r2

2 + r2
1

2
m2

3 −m2
1 − r2

3 + r2
1

2
m1 . n0

3

⎤⎥⎥⎥⎦ . (11)

The parameter λ is then determined from

λ = ±
√
r2

1 − (x0 −m1)
2. (12)

Substituting λ into Eq. (10) yields the two points of intersections.
Since the intersection of two spheres yields two solutions in regular configura-

tions of the robot, up to eight different sets of solutions for BA, BB, BC can be de-
termined. Finally, one has to check which of these solutions is the sought by testing
a redundant constraint. This is done by testing if the distance between the points
BA, BB matches the known distance between these points.
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Fig. 4 Workspace of WiRo for different values of κ = {0.1, 0.3, 0.5, 0.7}.

Table 1 Geometrical parameters of the wire robot WiRo.

Leg i

Property 1 2 3 4 5 6 7

ai [0, 0, 0]T [X, 0, 0]T [X,Y, 0]T [0, Y, 0]T [0, 0, Z]T [X, 0, Z]T [X2 , Y, Z]T
bi [−B2 , 0, 0]T [B2 , 0, 0]T [0,W, 0]T [0,W, 0]T [−B2 , 0, 0]T [B2 , 0, 0]T [0,W, 0]T

5 Simulation Results

5.1 Workspace Determination

In this section, some simulation results for the determination of the hull of the work-
space are presented. The geometrical parameters of the machine frame and the mov-
able platform are given in Table 1, where the following values of the parameter are
used B = 0.25, W = 0.25, X = 4, Y = 3, Z = 2. Figure 4 presents the results
of the workspace determination for different values κ = {0.1, 0.3, 0.5, 0.7}. The
accuracy for the line search was ε = 0.0001 and the subdivision depth was set to
ni = 5 generating 213 = 8192 triangles. The computational time with a straight-
forward implementation in Matlab was 12 s for each hull on an Intel Core 2 Duo,
2.4 GHz. Optimized implementations are expected to compute each hull in less then
1 second enabling the user to perform the design of the workspace in an interactive
manner.

5.2 Forward Kinematics

The algorithm described in Section 4 was implemented in plane C++. The imple-
mentation is free from any loops or iterative procedures. No numerical libraries are
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used beside the standard libraries. The algorithm shows a good computational per-
formance with 87673 evaluations per second (measured on an Intel Core 2 Duo,
2.0 GHz). Based on this results, no difficulties are expected for the desired cycle
time of 1 ms and the integration into the industrial real-time controller.

6 Conclusions

This paper presents some tools which are useful to develop and control a wire ro-
bot in an industrial environment. The algorithm used for workspace determination
is simple but effective and allows the user to quickly determine an estimation of
the workspace. The results can be fed back into the CAD system for evaluation and
layout planning. The computation of the forward kinematics is based on simple geo-
metric considerations and allows for real-time capable computation. Experimental
evaluations and measurement is planned for future work. There will be a focus on
studying the impact of simplifications in the kinematic functions and shortcomings
in the winches as well as in the mechanical realization of the attachment points on
the platform.
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Abstract. Parallel robots offer higher stiffness and smaller mobile mass than serial ones, thus
allowing faster and more precise manipulations that fit medical applications, especially surgery.
This paper presents the kinematic modeling and a method for workspace generation for a new
parallel robot used for minimally invasive surgery. Using the developed model of the parallel robot
and the kinematic modeling, some numerical and simulation tests are presented.

Key words: parallel robot, minimally invasive surgery, kinematics, workspace.

1 Introduction

Brown (2005) and Plitea et al. (2007) already showed that the progresses from en-
gineering and medicine have opened the way for the use of the robots in the operat-
ing rooms. Robots are useful tools in minimally invasive surgery (MIS), providing
benefits such as reduction in hand tremor, navigation, and workspace scaling.

Regarding the application of robots for medical applications there are some in-
vestigators focused on exploring the capabilities of robots in this field (Ben-Porat,
2000; Glozman, 2001; Grace, 1993). The AESOP robotic arm, used to guide a tiny
camera inside the body, was the first robotic system used in surgery dating from
1993 (Brown University, 2005). It was produced by Computer Motion, which de-
veloped several such versions of AESOP until they created ZeusTM Robotic Surgical
System with three robotic arms attached on the side of the operating table.

A competitor of Computer Motion, Intuitive Surgical, designed another revolu-
tionary equipment, da VinciTM Surgical System, which became the market compet-
itor of Zeus until 2003 when the two companies merged (Brown University, 2005).

Most of the robots, which assist the surgeons, are serial robots (Brown University,
2005). The serial module generates a large workspace while the parallel module is
steadier and offers a high accuracy during the surgical operation.

The actual robotic systems have drawbacks such as: they are large and cumber-
some, occupying large volumes around the operating table and above the patient;
the surgeon’s console ergonomics imposes a very high number of training hours; the

Jadran Lenarčič and Philippe Wenger (eds.), Advances in Robot Kinematics: Analysis
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surgeon relies only on visual feedback loosing the tactile facilities; and the current
systems are limited to certain types of surgery and the market price is prohibitive.

Parallel robots offer a higher stiffness and smaller mobile mass than serial robots,
thus they allow faster and more precise manipulations (Merlet, 2000). In the field of
robotics assisted surgery, the drawbacks of serial robots motivate the search of task
oriented robot architectures that best fit a specific group of medical applications.

Professor Moshe Shoham performed extensive studies regarding the perform-
ances of the surgeon in endoscopy, focused on the fulcrum effect (Ben-Porat et al.,
2000) and the development of new miniaturized robots which can be mounted on
the bones and a research regarding the different methods for scanning and surface
recognition of bones before the surgical intervention (Glozman et al., 2001).

Simaan et al. (2004) developed a new robotic model designed for the MIS of the
throat, which could manipulate of two up to three instruments for the suture and
handling of soft tissue, using as single access route, the mouth of the patient.

The requirements for minimally invasive robotic assisted surgery are given in
Ortmaier et al. (2004).

Lum et al. (2004) presented the kinematics of a serial spherical mechanism used
for MIS procedures. Beasly et al. (2004) investigated the kinematic error correction
for minimally invasive surgical robots.

In the case of a robotic of a robotic system for MIS, previous studies have shown
that the parallel and hybrid structures are more adequate than serial ones in this field.
They represent a boost in robotic surgery in terms of increased performances and
safety and lower costs.

The paper is organized as follows: Section 2 is dedicated to the presentation of
the parallel mechanism for MIS. Section 3 deals with the kinematics of the studied
structure. Section 4 presents the workspace generation of the mechanism. Some nu-
merical and simulation results obtained from kinematics are presented in Section 5.
The conclusions of this work are presented in Section 6.

2 The New PARAMIS Parallel Robot

We established at first the requirements for a base robotic module for surgical instru-
ments positioning (Plitea, 2006): the robot should have low sizes; the robot assisted
procedure must present a minimal damage to the patient; the robot structure must
be rigid and stable in the Operating Room (OR); the robot should have 3 DOF (1
translation and 2 rotations) which should cover the entire surgical field.

Starting from these requirements, a new parallel structure – PARAMIS has been
developed, which could be used for surgical instruments positioning (Plitea et al.,
2007), see Figure 1. The low-cost structure will allow a wider spread or the robot
in the OR, an easier acceptance and a better feedback for further improvements.
The structure has 3 DOF and it consists of three actuated joints (two of them are
prismatic and one rotational one). The passive joints are two cylindrical joints, one
prismatic joint and one Cardan joint. The particularity of the motion is the fact that
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Fig. 1 Kinematic scheme of the parallel robot for MIS.

Fig. 2 The angles of the passive Cardan joint for PARAMIS robot.

the endoscope will move around a fixed point in space, which is the entrance point
of the trocar in the abdominal wall of the patient (the point B whose coordinates are
XB , YB , ZB).

The geometrical parameters of the parallel robot are represented by b, d , h; XB ,
YB , ZB , Figure 1; the angles ϕ, θ are also presented Figure 2. The endoscope can
be positioned in any point of the abdominal area using 3 DOF of the robot to offer
the surgeon the best possible details of the surgical field.
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3 Kinematics

In Plitea et al. (2007) the inverse and direct geometric models of the structure were
already presented. In order to obtain the kinematic equations, we start from this
geometric model. The equations which define the coordinates of E point located on
the laparoscope are:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
f1(XE, q1, q2, q3) ≡ XE + hXB − XE

h1
− [
b +

√
d2 − (q2 − q1)2

]
cos q3 = 0,

f2(YE, q1, q2, q3) ≡ YE + hYB − YE
h1

− [
b +

√
d2 − (q2 − q1)2

]
sin q3 = 0,

f3(ZE, q1) ≡ ZE + hZB − ZE
h1

− q1 = 0,

(1)
where

h1 =
√
(XB −XE)2 + (YB − YE)2 + (ZB − ZE)2, (2)

Using the matrix representation, the kinematic model for velocities is:

AẊ + Bq̇ = 0, (3)

where A is the direct Jacobian matrix and B is the inverse Jacobian matrix. Using
(1), the direct Jacobian matrix A has the form:

A =

⎡⎢⎢⎢⎢⎢⎣
1− h

h1
+ h(XB−XE)2

h3
1

h(XB−XE)(YB−YE)
h3

1

h(XB−XE)(ZB−ZE)
h3

1

h(YB−YE)(XB−XE)
h3

1
1− h

h1
+ h(YB−YE)2

h3
1

h(YB−YE)(ZB−ZE)
h3

1

h(ZB−ZE)(XB−XE)
h3

1

h(ZB−ZE)(YB−YE)
h3

1
1− h

h1
+ h(ZB−ZE)2

h3
1

⎤⎥⎥⎥⎥⎥⎦ (4)

and the inverse Jacobian matrix B has the form:

B =

⎡⎢⎢⎣
cos q3

q1−q2√
d2−(q2−q1)

2
cos q3

q2−q1√
d2−(q2−q1)

2
sin q3

[
b +√

d2 − (q2 − q1)2
]

sin q3
q1−q2√

d2−(q2−q1)
2

sin q3
q2−q1√

d2−(q2−q1)
2

− cos q3

[
b +√

d2 − (q2 − q1)
2
]

−1 0 0

⎤⎥⎥⎦ .
(5)

In the case of direct kinematic model for velocities the driving velocities q̇ =
[q̇1, q̇2, q̇3]T are given and the end-effector velocities Ẋ = [ẊE, ẎE, ŻE]T are com-
puted. As input data for this kinematic model we have the inverse and geometric
model and the geometric parameters of the PARAMIS parallel mechanism. Using
(3) we obtain:

Ẋ = −A−1Bq̇. (6)

The inverse of A matrix has been computed:
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A−1 = h1

(h1 − h) (7)

×

⎡⎢⎢⎣
1− h

h3
1
(XB −XE)2 − h

h3
1
(YB − YE)(XB −XE) − h

h3
1
(ZB − ZE)(XB −XE)

− h

h3
1
(XB −XE)(YB − YE) 1− h

h3
1
(YB − YE)2 − h

h3
1
(ZB − ZE)(YB − YE)

− h

h3
1
(XB −XE)(ZB − ZE) − h

h3
1
(YB − YE)(ZB − ZE) 1− h

h3
1
(XB −XE)2

⎤⎥⎥⎦.
Using (5) and (7), the vector Ẋ components are computed.

In the case of inverse kinematic model for velocities, the end-effector velocities
Ẋ = [ẊE, ẎE, ŻE]T are given and the driving velocities q̇ = [q̇1, q̇2, q̇3]T are
computed. As input data for this kinematic model we have the inverse and geometric
model and the geometric parameters of the PARAMIS parallel mechanism. Using
(3) we obtain:

q̇ = −B−1AẊ. (8)

The inverse of the B matrix has been computed:

B−1 =

⎡⎢⎢⎢⎢⎣
0 0 −1

cos q3

√
d2−(q2−q1)

2

q2−q1
sin q3

√
d2−(q2−q1)

2

q2−q1
−1

sin q3
1

b+
√
d2−9q2−q1)

2
− cos q3

1
b+
√
d2−(q2−q1)

2
0

⎤⎥⎥⎥⎥⎦ . (9)

Using (4) and (9) the vector q̇ components are computed.
Through the differentiation of Equation (3), we obtain

AẌ + ȦẊ + Bq̈ + Ḃq̇ = 0. (10)

From (10), if the end-effector velocities Ẍ = [ẌE, ŸE, Z̈E]T are given, the driving
accelerations q̈ = [q̈1, q̈2, q̈3]T could be computed. As input data in this case, we
have the inverse and geometric model, the inverse and direct kinematic model for
velocities and the geometric parameters of the PARAMIS parallel mechanism.

4 Workspace Generation

For the geometrical generation of the workspace of point E (the laparoscope ex-
tremity where the camera is placed) the first step is the determination of the work-
space of point A, keeping in mind that point B is fixed in space and AE has a
constant length. The workspace of point A can be easily determined, by computing
the cross-sections within the workspace in a plane parallel to OXY which for the
limits imposed for q1 and q2 will have the same shape for any position of the Z axis.

For the workspace generation for point E, it has to be considered that the lap-
aroscope (or any other surgical instrument) has a constant length and will always
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Fig. 3 Workspace generation of E point for PARAMIS.

pass through a fixed point in space. The workspace of point E is obtained by gen-
erating two intermediate workspaces whose intersection will represent the effective
workspace.

The first intermediate workspace is generated by projecting the point A from
sections parallel withOXY plane. The second one is generated from sections of the
workspace of pointA perpendicular on the planeOXY . The intersection of the two
intermediary volumes will result in the workspace of point E presented in Figure 3.

5 Numerical and Simulation Results

The kinematic modeling has been implemented in the kinematic module (kinemat-
ics) of the developed simulation system for parallel robots (Pisla, 2001, 2005). In the
simulation is included the parallel robot with the instrument and the virtual human
body (Figure 4).

The simulation enabled the validation of the structure from the points of view of
both engineers and surgeons and opened the way for the next step in the PARAMIS
robotic design evolution, the construction of an experimental model (Figure 5).

For the parallel robot constructive design, an optimal solution for the building of
the robot column (base) was proposed, which concentrates all the actuation motors.

For the experimental model building, the following aspects have been taken into
account: the robot should be modular, the actuation system should be identical for
all motors and with the same control interface, in our case electrical actuation; as it
is possible for the robot to suffer some small modifications, the components should
be simple and cheap regarding the manufacturing costs and processing technologies.

For the numerical simulation, the experimental model was considered: b =
256.4 mm; h = 270 mm; d = 545.4 mm. The coordinates of the point B are:
XB = 679.2 mm; YB = 0 mm; ZB = 400.1 mm. The starting point of the moving
path are:XE = 679.2 mm; YE = 0; ZE = 281.1 mm. The inverse geometric model
delivers the starting joint coordinates: q1 = 551.1 mm; q2 = 847.7 mm; q3 = 0.
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Fig. 4 The virtual robotic system.

Fig. 5 The robot experimental model

For the validation of the kinematic model of the robot, direct and inverse kinematic
models have been numerically solved.

For inverse kinematic problem, the selected trajectory of the end-effector is a
straight line parallel to the Z axis starting from XE = 679.2 mm; YE = 0 mm
and ending with XE = 679.21 mm; Ye = 0; Z1 = 331.1 mm, the maximum
velocity being vmax = 10 mm/s and the maximum acceleration amax = 5 mm/s2.
The kinematic diagrams valid for s = XE , v = ẊE , a = ẌE are represented in
Figure 6.

For the case where t1 < t2 (Figure 6a), the following equations are valid:
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Fig. 6 Kinematic diagrams of the test trajectories for two time conditions.

Fig. 7 Kinematic results of the inverse kinematic model for PARAMIS robot.

t1 = vmax

amax
, t2 = |sf − si |

vmax
, t3 = |sf − si |

vmax
+ vmax

amax
, (11)

whereas for the case where t1 > t2 (Figure 6b), we take:

t12 =
√
|sf − si |
amax

, t3 = 2t12. (12)

The results from the inverse kinematics are presented in Figure 7.
The diagrams represent a linear motion, along the Z axis, of the point E of the

laparoscope, which is obtained by the simultaneous motions of the active joints q1
and q2. As shown in the graphics the accelerations and speeds for all components
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are equal as well as the variation of the displacement. For this type of motion the
joint coordinate q3 = 0.

6 Conclusions

The kinematics of a new developed parallel robot for camera positioning in MIS was
presented. An analytical approach for kinematics solving was suggested. A geomet-
rical method for the workspace generation of the parallel robot was proposed. The
obtained numerical and simulation results have shown that the kinematic models
could be successfully implemented in the control algorithms of the experimental
model, which will be further build. The results obtained are useful for the designers
not only to understand the distribution of characteristics of the workspaces for vari-
ous geometrical parameters of parallel structure, but also to optimize the PARAMIS
parallel robot.

The future research will be directed to the dynamic modeling of this new paral-
lel structure for MIS, the building of its prototype and experimental testing under
laboratory conditions.
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