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Chapter 5
ROOT STRATEGIES FOR PHOSPHORUS 
ACQUISITION

Jonathan P. Lynch and Kathleen M. Brown

LOW SOIL P AVAILABILITY IS A PRIMARY CONSTRAINT 
TO PLANT PRODUCTIVITY

Soil infertility is a primary constraint to plant productivity over the majority of 
the earth’s land surface. Nitrogen is often limiting in young soils of the temper-
ate zone, while phosphorus (P) is a primary limitation in most forests, weath-
ered soils and the humid tropics, which support the majority of terrestrial plant 
biomass (Walker 1965; Lynch and Deikman 1998; Figure 5.1). Low soil P avail-
ability is caused by several factors, including the reactivity of orthophosphate 
(Pi) with common soil constituents such as Fe and Al oxides, resulting in com-
pounds of limited bioavailability, especially as soil weathering progresses, and 
the open-ended P cycle that tends towards depletion. Human activity in many 
managed ecosystems has reduced P bioavailability further through topsoil ero-
sion, acidification, and nutrient mining, especially in developing countries 
(Hartemink 2003). Approximately 50% of the agricultural soils in the world 
have been degraded significantly by human activity, including 75% of the agri-
cultural soils of Africa (Oldeman et al. 1991; Wood et al. 2000). Replenishment 
of soil P reserves through fertilization is common in developed countries, but 
the economic sustainability of this practice is in question, as economically 
recoverable P reserves are estimated to be 50% depleted by the middle of this 
century (Steen 1998; Abelson 1999). In many developing countries, especially 
in Africa, fertilizer use is negligible (World Bank 2004), and the productivity 
of many of these agroecosystems is P-limited. The development of crops and 
cropping systems with greater productivity on soils of low P bioavailability 
would substantially improve global food security (Lynch 2007). The response 
of terrestrial ecosystems to global climate change will depend on interactions 
of climate change variables with edaphic limitations to plant productivity, 
including P (Lynch and St. Clair 2004). The adaptation of plants to low P avail-
ability is therefore of considerable interest in both basic and applied plant 
biology.
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PHOSPHORUS IS AN IMMOBILE SOIL NUTRIENT

The large majority of P taken up by plant roots is in the form of orthophosphate 
(Pi; Smith et al. 2003). Because of its reactivity with many chemical and bio-
logical components of the soil, only a small part of the total P content of the soil 
occurs as Pi (Comerford 1998), and movement of Pi in the soil solution is slow. 
Transport of Pi through mass flow of water to the root surface is negligible, and 
diffusion of Pi in soils is typically in the order of fractions of a millimeter per 
day (Barber 1962, 1995). Phosphorus uptake creates ‘depletion zones’ around 
the root with little bioavailable P, that will only slowly recharge through diffu-
sion and mineralization (Hinsinger et al. 2005). This makes P the most immo-
bile, and often the least bioavailable, of the macronutrients. The immobility of 
P in soil typically results in large spatial variation in P bioavailability. Mature 
soils display large vertical gradients in P content and bioavailability, caused by 
continual deposition of P on the soil surface in shoot residues, and greater 
organic matter content, biological activity, and P turnover in the topsoil (Lynch 
and Brown 2001). Spatial variation in P bioavailability may also be created by 
soil fauna, especially ants and termites. A fundamental challenge in plant acqui-
sition of P is the need to explore a heterogeneous substrate and the need to place 
roots or root symbionts within millimeters of fresh P sources that have not 
already been depleted.

Fig. 5.1 Map of soil phosphorus availability. (Jaramillo and Lynch, unpublished, 2008.)
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ROOT TRAITS ARE KEY ADAPTATIONS TO LOW P 
AVAILABILITY

We focus here on root strategies for P-acquisition. By ‘strategy’ we mean traits or 
sets of traits that have adaptive value in acquiring P. By ‘trait’ we mean a ‘phene’ 
as a distinct element of an organism’s phenotype. Just as a genotype is comprised 
of many distinct genes, a phenotype is comprised of many distinct phenes. Phenes 
are generally more abstract and indistinct than genes, and have received less 
research attention, but phenes rather than genes determine fitness. Phenes rather 
than genes are subject to selection in plant domestication, and even today, are the 
basis of the vast majority of crop breeding. As an example of a phene that is impor-
tant for P-acquisition, root hair length is a phene controlled by multiple genes. 
Intraspecific variation for root hair length is an important determinant of P-acquisi-
tion (see below). The adaptive value of phenes may be affected by interactions with 
other phenes. In the case of root hairs, root hair length has strong synergism with 
root hair density (i.e. number of root hairs per unit root epidermal surface area) for 
P acquisition (Ma et al. 2001b). This type of synergism is useful to consider in the 
context of an ‘integrated phenotype’, i.e. a set of phenes whose interactions deter-
mine fitness in a particular environment. We consider a phene or integrated pheno-
type that enhances P-acquisition a ‘strategy’. The identification of adaptive 
strategies, and an understanding of the physiological and ecological tradeoffs 
 associated with them, are essential in understanding plant adaptation to P-limited 
ecosystems. This is especially important for breeding more P-efficient crops, an 
enterprise of great importance for global food security (Lynch 2007).

Given the low bioavailability and mobility of P in most soils, the ability of root 
systems to explore effectively the soil and exploit the rhizosphere, at minimal meta-
bolic cost, is essential to plant fitness. Roots display a variety of adaptations to low 
P availability (Lynch and Brown 2006), including mycorrhizal symbioses (Smith 
and Read 1997), root hair elongation and proliferation (Bates and Lynch 1996; Ma 
et al. 2001a,b), rhizosphere modification through secretion of organic acids (Jones 
1998; Ryan et al. 2001), protons (Hinsinger 2001), and phosphatases (Hayes et al. 
1999), and modification of root architecture to maximize P acquisition efficiency 
(Figure 5.2; Lynch and Brown 2001; Lynch 2005; George and Richardson 2008; 
Kirkby and Johnston 2008; Vance 2008; White and Hammond 2008). Phosphorus-
deficient plants typically have higher root to shoot ratios than high-P plants, either 
because of allometric relationships (Niklas 1994) or because of increased biomass 
allocation to roots (Gutschick 1993; Nielsen et al. 2001). Increased root growth is 
obviously beneficial for P-acquisition, but can slow overall plant growth because of 
the increased respiratory burden of root tissue (Van der Werf et al. 1992; Hansen 
et al. 1998; Nielsen et al. 1998, 2001; Lynch and St. Clair 2004).

These topics encompass several active fields of research with large literatures that 
cannot be adequately reviewed here. Several recent reviews summarize plant 
responses to low P availability, emphasizing cellular and biochemical or molecular 
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processes (Abel et al. 2002; Vance et al. 2003; Ticconi and Abel 2004; Tesfaye et al. 
2007), and specific adaptations to low P availability, such as cluster roots (Diem 
et al. 2000; Lamont 2003; Neumann and Martinoia 2002; Shane and Lambers 2005; 
Lambers et al. 2006), mycorrhizas (Harrison 1999; Smith et al. 2003; Oldroyd et al. 
2005) and rhizosphere modification (Hinsinger et al. 2003; Kochian et al. 2005). Our 
focus here is on strategies of the roots themselves, at the scale of the organ and organ-
ism, with particular attention to the functional importance of phenes involved with 
root growth and architecture for P-acquisition. While this subject has received less 
research attention than mycorrhizas, rhizosphere modification, cluster roots, and 
genetic responses to P stress, root growth and architecture have overarching impor-
tance at the organismal scale by determining the extent and localization of soil explo-
ration, and by locating the expression of other root traits in specific soil domains.

BIOMASS ALLOCATION TO ROOTS

A common response of plants to P-deficiency is to increase their root to shoot dry-
weight (DW) ratio, resulting from a greater inhibition of shoot growth than root 
growth (Whiteaker et al. 1976; Lynch et al. 1991; Mollier and Pellerin 1999). 

Fig. 5.2 Changes in root architecture, morphology, and anatomy associated with adaptation to 
low phosphorus in common bean
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A portion of this apparent change in root to shoot DW ratio is allometric, i.e. root:
shoot ratios normally decline with growth, and since plants supplied with low P 
grow more slowly, their root to shoot ratios are higher at a given plant age. However, 
when this factor is eliminated by comparison of allometric coefficients among 
plants grown at different P levels, some genotypes show a greater allometric coeffi-
cient (larger increase in root DW relative to increases in shoot DW) with low P, 
while others do not. In the study of Nielsen et al. (2001), genotypes of common 
bean that were P-efficient (less yield depression under low P) maintained a higher 
root to shoot ratio (higher allometric coefficient) with continued growth, supporting 
the idea that root growth is valuable for P acquisition. Low P availability reduces 
leaf appearance, leaf expansion, and shoot branching (Radin and Eidenbock 1984; 
Lynch et al. 1991). Among annual plants, P-stress decreases shoot growth in dicots 
more than in monocots, possibly because of differences in leaf morphology 
(Halsted and Lynch 1996).

Root growth is a key trait for optimizing the efficiency of P acquisition and use 
in plants (Lynch 1995; Manske et al. 2000). Low P availability changes the distribu-
tion of growth among various root types. In common bean, growth of main root 
(primary and basal root) axes was maintained under low P, while initiation of lateral 
roots is reduced, so that lateral root density declines (Borch et al. 1999). Mean lat-
eral root length was unaffected. In experiments with maize subjected to P-starva-
tion, axile (seminal and nodal) root elongation and lateral root density were 
unaffected, but lateral root elongation was first promoted slightly, then severely 
retarded, as P-starvation proceeded (Mollier and Pellerin 1999). Initiation of new 
axile roots also ceased after six days of P-starvation. The maintenance of main root 
elongation in maize and bean could be interpreted as exploratory behavior, allowing 
these roots to grow maximally until they encounter localized patches of higher P 
availability. When the main root of a P-deficient plant encounters a patch of higher 
P availability, lateral roots may proliferate within the patch (see below; Robinson 
2005). In Arabidopsis seedlings deprived of added P, lateral root number was also 
reduced, but in this case the remaining lateral roots elongated at the expense of the 
primary root (Williamson et al. 2001; Lopez-Bucio et al. 2002; Al-Ghazi et al. 
2003). One reason for the discrepancy may be that Arabidopsis plants lack main 
roots other than the primary root (i.e. they have no root type analogous to the basal 
roots of legumes or the seminal roots of grasses), so that a subset of lateral roots 
must take over the functions of the other main roots in species with more complex 
root systems. We have observed genetic variation for the effect of buffered low P 
on lateral root length and number in maize, with some genotypes showing an 
increase and others showing a decrease in these variables (Zhu and Lynch 2004; 
Zhu et al. 2005a). Genotypes with increased or sustained lateral root development 
under P-deficiency had superior ability to acquire P and maintain growth.

In common bean, some genotypes preferentially increase growth of adventitious 
roots, which have the advantages of low construction cost and location in topsoil 
(see below; Miller et al. 2003; Ochoa et al. 2006). Adventitious rooting has long 
been associated with adaptation to waterlogging (Vartapetian and Jackson 1997) 
and has recently been associated with root rot resistance (Snapp et al. 2003; 
Roman-Aviles et al. 2004) and responses to root herbivory (Riedell and Reese 
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1999). In some crops, such as maize, a high proportion of the mature root system 
consists of adventitious roots, so prevention of adventitious rooting reduces water 
uptake even in well-watered plants (Jeschke et al. 1997). Under low P conditions, 
adventitious root development may be delayed or reduced, primarily as a result of 
overall growth inhibition (Pellerin et al. 2000; Miller et al. 2003; Ochoa et al. 
2006). In some genotypes of bean, the maintenance of adventitious root formation, 
when overall growth is inhibited by P-deficiency, results in an increased proportion 
of root length in the adventitious root system (Miller et al. 2003). This characteris-
tic was associated with plant P-efficiency traits in soils with poor P availability.

ROOT TRAITS AFFECTING SOIL EXPLORATION

Phosphorus distribution is highly heterogeneous in most soils, generally being great-
est in surface horizons and decreasing with depth (Chu and Chang 1966; Anderson 
1980; Pothuluri et al. 1986). The availability of soil P is also highly heterogeneous 
because of spatial heterogeneity of pH, eH, microbial activity, temperature, etc. 
(Barber 1995). Phosphorus mobilization and uptake by the root creates zones of P 
depletion that vary sharply on the scale of millimeters (Joner et al. 1995; Hinsinger 
et al. 2005). As a result of the development of P depletion zones around existing 
roots, P acquisition is highly dependent on continued root growth and exploration of 
new soil domains that have not yet been depleted of P (Barber 1995).

Topsoil exploration

Since the topsoil is generally the soil stratum with greatest P bioavailability, adapta-
tion to low soil P availability is associated with the extent of topsoil foraging among 
genotypes of maize and bean (Bonser et al. 1996; Ge et al. 2000; Liao et al. 2001; 
Ho et al. 2005; Zhu et al. 2005b). We recently reviewed the importance of topsoil 
exploration for plant P-efficiency traits (Lynch and Brown 2001).

Architectural traits associated with enhanced topsoil foraging in common bean 
include shallower growth of basal roots, enhanced adventitious rooting, and greater 
dispersion of lateral roots (Figure 5.2). There are several lines of evidence that shal-
lower basal root growth enhances topsoil foraging and thereby P acquisition 
efficiency. The geometric simulation model SimRoot was used to model the effect 
of changing basal root gravitropism on inter-root competition for P (Ge et al. 2000). 
This study showed that in soils with uniform P distribution, shallower root systems 
explored more soil per unit of root biomass than deeper systems, because shallower 
systems have more dispersed basal roots and therefore less inter-root competition, 
which occurs when neighboring roots have overlapping P depletion zones (Ge et al. 
2000). In stratified soils with more P in the topsoil, the simulations showed that 
shallower root systems acquired more P than deep ones, by concentrating root 
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foraging in the topsoil (Ge et al. 2000). These modeling results are supported by 
the significant correlation of basal root growth angle of young bean genotypes 
grown in growth pouches, with their yield in field trials in low P tropical soils 
(Bonser et al. 1996). In comparisons of individual plants grown in pots of soil, 
genotypes with shallower basal roots had greater Pi uptake than those with deeper 
root systems (Figure 5.3; Liao et al. 2001). Bean genotypes with shallower basal 
roots had  superior growth in a low P field trial in Honduras (Ho et al. 2005). 
Genetic analysis of bean lines segregating for basal root shallowness showed co-
segregation of QTL for root shallowness and Pi uptake in the field in Colombia 
(Liao et al. 2004). In maize, genotypes with shallower seminal roots (analogous to 
basal roots in dicots) had superior growth in low P soils in the field and glasshouse 
(Zhu et al. 2005b). Similar results have been observed with soybean (Zhao et al. 
2004). It therefore appears that basal root shallowness is an important trait for topsoil 
foraging and P acquisition efficiency in annual crops.

In crops such as bean, adventitious roots emerge from the subterranean portion 
of the hypocotyl and grow horizontally through the topsoil. Adventitious rooting is 
therefore an important element of topsoil exploration by the root system. Bean 
genotypes differ in their extent of adventitious rooting and in the regulation of this 
trait by P (Miller et al. 2003; Ochoa et al. 2006). As with basal root gravitropism, 
genotypic and P-induced adventitious rooting vary widely, from virtually no adven-
titious rooting in some conditions to dozens of adventitious roots in others (Miller 
et al. 2003; Ochoa et al. 2006). A field study in a tropical low P soil showed that 
bean genotypes with greater growth and Pi uptake had more adventitious rooting 
relative to basal root growth than did P-inefficient genotypes (Miller et al. 2003). 
Adventitious roots may have several benefits for topsoil exploration. Obviously, 
their horizontal growth concentrates their foraging activity in the topsoil. Other 
advantages may relate to the anatomical and morphological differences between 
adventitious roots and basal roots. In bean, adventitious roots have greater specific 

Fig. 5.3  Relationship 
between root shallowness 
and phosphorus uptake in 
recombinant inbred lines of 
common bean (Phaseolus 
vulgaris L.) growing in low-
P soil. (Data extracted from 
Liao et al. (2001). With 
 permission.)
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root length (root length per unit root mass) than other root types (Figure 5.4). This 
is advantageous for topsoil exploration because it enables the plant to explore a 
larger volume of soil per unit of metabolic investment in root tissue (Lynch and St. 
Clair 2004). Also, adventitious roots may have a greater abundance of aerenchyma 
than other root types (Vartapetian and Jackson 1997), which may be a mechanism 
of reducing the metabolic costs of soil exploration (see below). Finally, adventitious 
roots also have less lateral branching than basal roots, which would again serve to 
disperse root foraging over larger soil volumes for a given metabolic investment 
(Miller et al. 2003).

Reducing root metabolic costs of soil exploration

A number of studies have shown that the metabolic costs of soil exploration by 
root systems (which generally include mycorrhizal symbioses) are quite substan-
tial, and can exceed 50% of daily photosynthesis (Lambers et al. 2002). Following 
the economic paradigm of plant resource allocation (Bloom et al. 1985), we use 
the term “cost” to denote metabolic investment, including the production and 
maintenance of tissues, which is measurable in units of carbon (C is a convenient 
‘currency’ for our analysis- other ‘currencies’, including P itself, may also be use-
ful in some contexts; Koide and Elliott 1989; Snapp et al. 1995; Koide et al. 2000). 

Fig. 5.4 Specific root length and linear construction cost (in glucose equivalents per cm root 
length) of root classes of common bean (Phaseolus vulgaris L.). Each bar is the mean of four 
replicates, error bars = SEM. (From Lynch and Ho (2005). With permission.)
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Plant resource allocation to root growth typically increases under nutrient stress, 
and therefore the metabolic costs of root growth can be a significant component of 
plant fitness and adaptation under nutrient stress. All else being equal, a plant that 
is able to acquire a limiting soil resource at reduced metabolic cost will have supe-
rior fitness, because it will have more metabolic resources available for defense, 
growth, and reproduction.

The importance of root C costs in plant adaptation to low P is illustrated by our 
work with common bean. In bean, low P availability increases the fraction of daily 
photosynthate respired by roots by 75% in both P-efficient and P-inefficient geno-
types (Nielsen et al. 1998, 2001). However, P-efficient genotypes had greater root 
growth per unit root respiration than did P-inefficient genotypes (Figure 5.5; Nielsen 
et al. 2001), which enabled P-efficient genotypes to develop more than twice as much 
root biomass at low P than the P-inefficient genotypes. Phosphorus-stress slightly 
increased the specific respiration rate (i.e. respiration per unit biomass) of roots of the 
P-inefficient genotype, but halved the respiration rate of roots of the P-efficient geno-
type (Lynch and St. Clair 2004). Thus, adaptation to low P availability in this species 
is associated with the ability to explore the soil at minimal metabolic cost. We refer 
to the metabolic cost of P acquisition as ‘P acquisition efficiency’, or PAE.

Fig. 5.5 Relationship of root respiration and root relative growth rate in four genotypes of com-
mon bean (Phaseolus vulgaris L.). Open symbols represent genotypes that are P-inefficient (i.e. 
have poor growth in low-P media), closed symbols represent genotypes that are P-efficient. (From 
Nielsen et al. (2001). With permission)



92 J.P. Lynch, K.M. Brown

Several types of root traits could alter the relationship of root growth and root C 
cost. Geometric modeling suggests that root architecture can alter the C cost of soil 
exploration by regulating the extent of root competition within and among root 
systems (Ge et al. 2000; Rubio et al. 2001). The importance of root architecture for 
interplant competition for P was confirmed in field studies (Rubio et al. 2003). 
Morphological traits such as root hairs could enhance P acquisition at minimal root 
C cost (Bates and Lynch 2000a,b; Ma et al. 2001b). One mechanism of reducing 
root costs is to allocate more biomass to root classes that are less metabolically 
demanding per unit of P acquisition. We have shown that adventitious roots acquire 
P at less metabolic cost than basal and tap roots, and that P-stress increases relative 
biomass allocation to adventitious roots, especially in P-efficient genotypes (Miller 
et al. 2003).

Root respiration can be divided into three components: growth of new tissue, 
maintenance of existing tissue, and ion uptake and assimilation (Bouma et al. 1996; 
Amthor 2000; Lambers et al. 2002). As root systems mature and the proportion of 
non-growing tissue increases, maintenance respiration becomes an increasing frac-
tion of total respiration. Even in young bean plants, maintenance respiration com-
prises 90% of total root respiration (Table 5.1). In this context it is noteworthy that 
a under P-stress, a P-efficient bean genotype had 50% lower maintenance respira-
tion than a P-inefficient genotype (Ho et al. 2003; unpublished). Reduced mainte-
nance respiration of root tissue under P-stress is an important adaptation to low P 
availability, by making more fixed C available for continued root growth.

Aerenchyma reduces the metabolic costs of soil exploration

Aerenchyma is a series of air spaces formed in the root cortex, and the lysigenous 
type, found in crop plants such as maize, is formed by a regular pattern of collapsed 
cortical cells (Esau 1977; Jackson and Armstrong 1999). Root aerenchyma is an 
adaptation to hypoxia (reviewed in Jackson and Armstrong 1999). In C3 plants, 
aerenchyma may also provide a photosynthetic benefit by concentrating CO

2
 from 

root respiration and channeling it to leaf intercellular spaces (Constable and 
Longstreth 1994; Constable et al. 1992). Although the overwhelming majority of 
research on root aerenchyma has focused on its importance in hypoxia, root 

Table 5.1 Maintenance respiration dominates root respiration under low P in com-
mon bean. R

g
 = growth respiration, R

iu
 = ion uptake respiration, R

m
 = maintenance 

respiration. (Lynch and Ho 2005.)

  % of total root respiration

Days after planting Phosphorus level R
g
 R

iu
 R

m

14  High 29 14 57
  Low 19  9 72
28  High 25 11 64
  Low  6  4 89
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aerenchyma can also be induced by suboptimal nutrient availability. In aerated 
solution, aerenchyma was observed in maize roots when N, P or S were omitted 
from the medium (Konings and Verschuren 1980; Drew et al. 1989; Bouranis et al. 
2003; Fan et al. 2003). The response to low P was also observed in common bean 
(Eshel et al. 1995; Fan et al. 2003) and rice (Lu et al. 1999). In maize the induction 
of aerenchyma by low P may be related to increased ethylene sensitivity of 
P-stressed roots (He et al. 1992).

Aerenchyma could be an important trait for plants experiencing edaphic stress, 
since living cortical cells are lost. This reduces root C costs by dramatically reduc-
ing maintenance respiration (Lynch and Brown 1998; Fan et al. 2003). Besides 
reducing the ongoing C cost of root maintenance, lysis of cortical cells may con-
tribute prefixed C to root apices. An additional benefit from aerenchyma formation 
would be the reduced P requirement of root growth, which in conditions of P limita-
tion can be as significant as C costs for metabolic efficiency (Snapp et al. 1995; 
Koide et al. 2000). Phosphorus released from cortical tissue by aerenchyma forma-
tion would be useful in meeting the P demands of new root elongation. A similar 
concept has been proposed for cortical senescence in grasses (Gillespie and Deacon 
1988; although see Lascaris and Deacon 1991).

Results from our laboratory support the hypothesis that aerenchyma formation 
is a useful adaptation to low P. In bean and maize, we observed substantial geno-
typic variation in the induction of cortical aerenchyma by P-stress (Fan et al. 2003). 
Differences in aerenchyma formation induced by ethylene treatments and geno-
typic variation were correlated with proportionate reductions in root P concentra-
tion in low-P roots. Reduced P requirement for soil exploration would be 
advantageous in conditions of low P availability. Phosphorus liberated by senescing 
cortical cells could be used for continued apical growth. In low P conditions, most 
of the Pi taken up by roots is utilized to meet local tissue demand (Snapp and Lynch 
1996). Variation in aerenchyma formation was disproportionately correlated with 
root respiration (Figure 5.6; Fan et al. 2003). Root segments with 20% cross sec-
tional area as aerenchyma had half the respiration of roots without aerenchyma. 
The disproportionate effect of aerenchyma on respiration may reflect the fact that 
the cortical cells lost during the formation of aerenchyma are metabolically active, 
while inactive tissues such as sclerenchyma and xylem vessels do not contribute 
to maintenance respiration. Results with isolated root segments were confirmed in 
intact plants; whole root systems of a maize genotype with abundant aerenchyma 
has less root respiration per unit of root length than did a genotype with less aeren-
chyma (Fan et al. 2003). In glasshouse and field studies, the high-aerenchyma 
maize genotype Oh43 had greater root growth in low P soil than the low-aeren-
chyma genotype, W64a (Zhu et al. 2004; unpublished). In maize, root porosity was 
highly correlated with sustained root growth under low P (Figure 5.7).

Genetic variation for aerenchyma induction in response to waterlogging has 
been observed in many species, including banana (Aguilar et al. 1999), wheat 
(Huang et al. 1994), barley (Garthwaite et al. 2003) and maize (Lizaso et al. 2001; 
Mano et al. 2006). Related species may also vary in constitutive (non-stressed) 
aerenchyma formation (Ray et al. 1998; Visser et al. 2000; Mano et al. 2007). We 
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observed large genotypic variation (200–300%) in aerenchyma formation in 
response to P-stress in both maize and bean (Fan et al. 2003). Such variation raises 
interesting questions regarding the adaptive importance and functional tradeoffs for 
aerenchyma in diverse environments. Possible tradeoffs to aerenchyma formation 
include reduced physical resistance to crushing (Striker et al. 2006, 2007), reduced 
radial water transport (Fan et al. 2007), reduced mycorrhizal habitat, and increased 
axial spread of root pathogens. The large intraspecific variation in important crop 
species (Fan et al. 2003; Mano et al. 2006) also makes aerenchyma amenable to 
plant breeding, as is currently underway to enhance flooding tolerance in maize and 
other grains (Ray et al. 1999; Setter and Waters 2003).

Fig. 5.7 Maintenance of root 
growth in a low-P field as related to 
cortical aerenchyma formation in 
unrelated maize (Zea mays L.) geno-
types. Root weights are expressed as 
the proportion of corresponding 
high-P roots. Each point is the mean 
of four replicates. (Zhu, Kaeppler, 
and Lynch, unpublished, 2004.)

Fig. 5.6 Increasing abundance of aerenchyma is associated with reduced respiration in maize (Zea 
mays L.) roots. Each data point is the mean of 6 measurements of respiration and 10–12 measure-
ments of aerenchyma on comparable root segments. (From Fan et al. (2003). with permission.)
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Root etiolation

Shoots respond to low light intensity by etiolation, enhanced elongation at the 
expense of radial thickening and lateral shoot growth. This response is adaptive by 
increasing the likelihood of the shoot growing into better illumination and by 
increasing light capture in competitive situations. We hypothesize that an analogous 
process occurs in roots sensing low P availability.

There are many reports of increased fineness of roots under nutrient deficiency, 
usually described as increased specific root length (SRL, root length per unit 
weight). However, increased SRL could result from the increased proportion of 
secondary roots, since comparisons are not usually made within root classes 
(Eissenstat et al. 2000; Forde and Lorenzo 2001). Evidence for increased, reduced, 
or unchanged SRL can be found in the literature, but most reports do not consider 
variation in tissue density or variation in SRL within root classes, and are therefore 
not direct measurements of root diameter (Ryser and Lambers 1995; Gahoonia and 
Nielsen 2004). Careful studies of the effect of nutrient stress on root diameter 
within root classes and orders are needed to determine whether root etiolation could 
be an adaptive trait.

Under low P availability, root elongation is emphasized at the expense of lateral 
branching (Borch et al. 1999) and secondary growth (Eshel et al. 1995). There have 
been a few reports on increased diameter of specific root classes under high nutrient 
availability, including nitrate (Hackett 1972; Drew and Saker 1978; Ryser and 
Lambers 1995) and P (Xie and Yu 2003; Zhu and Lynch 2004). Bean basal roots 
show increased root diameter under high P, primarily in the older parts of the root 
(Figure 5.8). The larger diameter of the older parts of basal roots grown in high P 
was largely a result of a greater area of the stele, both in absolute area and relative 
to total root area (Fan et al. 2003). Similarly, barley roots grown with high nitrate 
showed an increase in stele diameter (Drew and Saker 1978), so this response is not 
restricted to dicots. In our study of maize genotypes with contrasting P efficiencies, 
we found that lateral root SRL and diameter varied among genotypes, and that 
smaller diameter and greater SRL of lateral roots was associated with faster lateral 
root growth, which in turn was associated with higher shoot growth and P efficiency 
(Zhu and Lynch 2004). Furthermore, there was genetic variation in plasticity of this 
trait, i.e. its response to P availability.

Particular root types may be more likely to alter their diameter in response to 
nutrient stress. In studies of barley, high nitrate increased the diameter of first and 
second order lateral roots, but not seminal roots (Drew and Saker 1978). In our 
study of primary root elongation in Arabidopsis, no difference in diameter could be 
discerned between high and low P treatments (Ma et al. 2003). Timing and extent 
of etiolation may vary with root class, order, and extent of the nutrient stress. ‘Root 
etiolation’ is presumably adaptive by reducing the metabolic costs of root extension 
into new soil domains that may have greater P availability. This phenomenon 
deserves further study.



96 J.P. Lynch, K.M. Brown

Like shoot etiolation, root etiolation increases exploration at the expense of 
mechanical strength. Finer roots may be able to penetrate smaller pores in soil, but 
have less ability to push soil particles aside, so roots grown in soils with high bulk 
density tend to have a larger diameter and reduced branching (Bennie 1991). In 
experiments on the effects of co-occurring soil compaction and P-deficiency, roots 
increased their diameter with increasing bulk density only when supplied with P 
(Hoffmann and Jungk 1995). Root etiolation may also have negative tradeoffs in 
terms of turnover rates, desiccation tolerance, susceptibility to herbivory and other 
characteristics (Eissenstat et al. 2000).

Root hairs

Root hairs are subcellular protrusions of root epidermal cells that are important for 
the acquisition of relatively immobile nutrients such as P (Clarkson 1985; Peterson 
and Farquhar 1996; Jungk 2001). Several lines of evidence indicate that root hairs 
contribute to Pi acquisition. First, mathematical modeling indicates that root hairs 
substantially increase Pi acquisition from the soil solution, by expanding the soil 
volume subject to Pi depletion through diffusion to the root surface (Bouldin 1961). 
Indirect evidence from autoradiography demonstrated that root hairs increase the 

Fig. 5.8 Cross-sectional area of common bean (Phaseolus vulgaris L.) basal roots grown for six 
weeks with high (1 mM, HP) or low (1 µM, LP) phosphorus. Total cross-sectional area was measured 
from segments of the most basal (2 cm from point of origin), central, and apical (2 cm from root tip) 
portions of one basal root from each of six plants per genotype and treatment. Values shown are 
means, error bars = __SEM. (Graph created from data in Fan et al. (2003). With permission.)
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size of Pi depletion zones around roots (Lewis and Quirk 1967; Bhat and Nye 
1974). The inclusion of root hairs improved estimates of crop Pi uptake in simula-
tion models (Itoh and Barber 1983a,b). More recently, direct evidence was provided 
for Pi uptake by root hairs (Gahoonia and Nielsen 1998).

Root hairs may also assist the dispersion of exudates such as organic acids 
throughout the rhizosphere, which improve P bioavailability in many soils 
(Hinsinger 2001; Ryan et al. 2001). Mutants of Arabidopsis and barley lacking root 
hairs have severely impaired Pi uptake (Bates and Lynch 2000a,b; Gahoonia and 
Nielsen 2003) and in the case of Arabidopsis, reduced competitiveness in low P soil 
(Bates and Lynch 2001). Both root hair length (Bates and Lynch 1996) and root hair 
density (Ma et al. 2001a) are highly regulated by P availability, which suggests that 
they have value to plants in low P soil. Geometric modeling indicated that responses 
of root hairs to P availability interact synergistically to improve P acquisition (Ma 
et al. 2001b). Variation among species in root hair length is correlated with P acqui-
sition (Itoh and Barber 1983b; Föhse et al. 1991; Gahoonia et al. 1999), as is 
intraspecific variation among genotypes of white clover (Caradus 1981), barley and 
wheat (Gahoonia et al. 1997, 2001; Gahoonia and Nielsen 1997), common bean 
(Miguel 2004; Yan et al. 2004), and turfgrass (Green et al. 1991).

Genotypic variation in root hair length and density in maize and common bean 
is controlled by several major Quantitative Trait Loci (QTL; Yan et al. 2004; Zhu 
et al. 2005c), suggesting that this trait could be selected in crop breeding programs 
through marker aided selection (MAS), as well as through direct phenotypic 
screening. Root hairs are particularly important for P acquisition in non-mycorrhizal 
plants, since mycorrhizal hyphae fulfill some of the same functions as root hairs. 
However, genotypic variation in root hair length and density is important for PAE 
regardless of the mycorrhizal status of the plant (Figure 5.9; Miguel 2004). Root 
hairs are attractive targets for crop breeding programs because there is large 
genotypic variation, substantial effect of this variation on PAE (regardless of myc-
orrhizal status), relatively simple genetic control, and opportunities for direct phe-
notypic selection (Gahoonia and Nielsen 2004; Lynch 2007).

Root turnover

Root senescence, or turnover, could have positive or negative effects on the effi-
ciency of Pi acquisition. Negative effects would result if roots were lost in fertile 
soil domains, resulting in loss of prior metabolic investment in those roots, as well 
as the opportunity costs of P that is unexploited, or worse, exploited by a competi-
tor. Positive effects could result from the pruning of roots in infertile soil domains, 
thereby avoiding ongoing maintenance costs of unproductive organs, which is 
important, since maintenance costs rapidly overtake construction cost in most roots 
(e.g. Table 5.1; Peng et al. 1993; Nielsen et al. 1998). It has also been proposed that 
greater root turnover or “root renewal” could enhance P acquisition by increasing 
soil exploration and by replacing older roots with younger ones more active in Pi 
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uptake (Steingrobe et al. 2001). Regulated senescence of roots would permit the 
remobilization of root resources, including carbohydrates and nutrients, to other 
plant activities, notably to reproductive growth in annual plants. In common bean, 
there is no evidence that roots in infertile soil domains are preferentially senesced 
(Snapp and Lynch 1996), or that programmed root senescence occurs during repro-
ductive development (Fisher et al. 2002). It appears that significant root turnover 
observed in the field is the result of biotic and abiotic stress rather than programmed 
plant responses (Eissenstat and Yanai 1997; Fisher et al. 2002). This is supported 
by the observation that P availability was positively associated with soil biological 
activity and fine root turnover in a Hawaiian montane forest (Ostertag 2001). A 
report of increased root turnover with lower P availability in barley late in the sea-
son (Steingrobe et al. 2001) may have been confounded by P effects on phenology 
(see below). Therefore, traits that affect root lifespan, such as defense chemistry or 
tissue composition, may have only indirect effects on low P adaptation.

TARGETING P MOBILIZATION IN THE RHIZOSPHERE

Several root traits contribute to Pi acquisition by increasing the bioavailability of P 
in the rhizosphere. Exudation of carboxylates, such as citrate and malate, is particu-
larly important for Pi acquisition from P-fixing soils. Deprotonated carboxylates 
chelate Al3+, Fe3+ and Ca2+, which results in mobilization of Pi from bound forms 
(Hinsinger 2001). This activity is complemented in neutral and alkaline soils by 

Fig. 5.9 Longer root hairs improve phosphorus acquisition in the presence and absence of mycor-
rhizal inoculation in common bean (Phaseolus vulgaris L.). Plants were grown for 28 days in 
low-P soil with (+VAM) or without (-VAM) mycorrhizal inoculum. Genotypes are recombinant 
inbred lines having long or short root hairs. Each bar is the mean of four replicates, error bars = 
SEM. (Miguel 2004.)
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rhizosphere acidification, which results in increased solubility of Ca-phosphates 
(Hinsinger 2001). Although carboxylate release from roots is accentuated under P-
deficiency conditions in many species, recent evidence showed that this activity is 
constitutive in three genotypes of chickpea (Wouterlood et al. 2004; Wouterlood 
et al. 2005). The subject of organic acid excretion and its importance for release of 
Pi from inorganic forms has been discussed extensively in several recent reviews 
(Hinsinger 2001; Kochian et al. 2004). Organic acid excretion is also important for 
aluminum tolerance, which is related to P efficiency traits, since excess aluminum 
availability coincides with P deficiency in many acid soils (Kochian et al. 2005). 
Overexpression of enzymes responsible for organic acid production in roots 
improves plant growth in soils with excess aluminum or low P availability (Koyama 
et al. 2000; Lopez-Bucio et al. 2000; Tesfaye et al. 2001).

Since a considerable proportion of P can occur in organic forms, plants can 
increase P availability in the rhizosphere by secreting phosphohydrolases to miner-
alize Pi from organic compounds (Marschner 1995; Abel et al. 2002; Vance et al. 
2003). Secreted acid phosphatases have been shown to be upregulated under P 
deficiency (Marschner 1995; Vance et al. 2003; Tomscha et al. 2004). Their signifi-
cance for P nutrition under P-limiting conditions has been demonstrated (Barrett-
Lennard et al. 1993; Li et al. 2003, 2004; Tomscha et al. 2004), although their 
importance seems to vary with species, cropping system, and forms of organic P in 
the soil (Yun and Kaeppler 2001; Li et al. 2003, 2004; George et al. 2005). Exudate 
metabolism and production by rhizosphere microflora introduce significant com-
plexity in the relationship between root release of exudates and the effectiveness of 
exudates in improving Pi acquisition by the root.

The strong interactions of root exudates with the chemical and biological char-
acteristics of the rhizosphere highlight the important role of root architecture in 
placing exudates in specific soil domains. Many well-developed soils such as 
Spodosols, Mollisols, Andisols, Ultisols, Alfisols, and Gelisols, together compris-
ing some 39% of the earth’s ice-free land surface, have highly differentiated hori-
zons that vary sharply in chemical, physical, and biological properties (Soil Survey 
Staff 1999). Phosphatases are useful for mobilization of organic phosphate esters, 
which are found in organic-matter rich surface horizons but, in most soils, are 
scarce in subsurface horizons several centimeters away. Carboxylates are especially 
useful in liberating Pi adsorbed to oxide surfaces, which are common in subsurface 
horizons but less so in the topsoil. Root architectures that deploy roots to surface or 
subsurface horizons should therefore have a significant impact on the functional 
importance of exudates for P acquisition. This largely unexplored topic is an exam-
ple of trait synergy (see below).

Cluster roots

Cluster roots are zones of tightly packed, short, hairy rootlets that occur widely in 
Proteaceae (where they are called proteoid roots) and in several other plant families 
(Barber 1995; Diem et al. 2000; Neumann and Martinoia 2002; Lamont 2003; 
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Shane and Lambers 2005; Lambers et al. 2006). Cluster roots provide a unique 
mechanism for acquiring P in extremely P-poor environments by concentrating the 
P-mobilizing mechanisms described above into a small volume of soil. Cluster root 
formation and attendant secretion of organic acids, H+ ions, and acid phosphatases 
are promoted by P-deficiency and in some species under other conditions such as 
Fe and N deficiency (Skene 2001; Neumann and Martinoia 2002; Lamont 2003; 
Vance et al. 2003).

Only a few crop species form cluster roots, notably white lupin and some 
Cucurbitaceae (Waters and Blevins 2000; Neumann and Martinoia 2002). While 
white lupin has been studied extensively, the impact of cluster roots on other crops 
has received little attention. One report on cucurbits implicates cluster root formation 
in Fe(III) reduction (Waters and Blevins 2000). We have failed to observe cluster root 
formation in P-stressed cucurbits (Postma and Lynch 2006; unpublished data). This 
adaptation may not be significant for Pi acquisition for crops other than white lupin.

The fact that so few species employ this strategy, and the Proteaceae are endemic 
to soils with extremely low P availability, indicates that there are significant trade-
offs to this strategy. One is that cluster roots have a high metabolic requirement. 
Lambers and colleagues estimate that over half of all photosynthetic carbohydrate 
production is required for the growth, respiration, and exudate production by clus-
ter roots of one species (Lambers et al. 2006). Another potential liability to local-
ized rhizosphere acidification is the release of toxic metals including aluminum or 
heavy metals. A comparison of cluster forming vs. non-cluster forming lupins 
showed that the cluster forming species took up more Cd, a toxic contaminant of P 
fertilizer sources (Brennan and Bolland 2003). The risk of metal toxicity may be 
one reason that cluster-rooted species are often found on sandy soils with low metal 
content. There may be additional tradeoffs associated with concentration of root 
foraging activity in limited domains, such as reduced acquisition of more mobile 
and dispersed nutrients, as well as water.

MYCORRHIZAL SYMBIOSES

The majority of higher plant species have mycorrhizal symbioses with fungi that 
assist nutrient acquisition (Smith and Read 1997). Ectomycorrhizas enhance P 
acquisition via mobilization of sparingly soluble P complexes, whereas both ecto-
mycorrhizas and the vesicular-arbuscular mycorrhizas common in many annuals 
and hardwood species enhance Pi acquisition because they increase the volume of 
soil explored beyond the depletion zone surrounding the root itself. In exchange for 
Pi supplied to the plant, the fungal symbiont obtains reduced carbon. Therefore, the 
carbon cost to the plant of mycorrhizal symbioses is one component of the cost of 
Pi acquisition in most species. In bean, mycorrhizal colonization increased root Pi 
acquisition, but the resulting increase in shoot photosynthesis did not result in 
increased plant growth because of greater root respiration (Nielsen et al. 1998). At 
high P supply, mycorrhizal colonization reduced the growth of citrus seedlings 
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because of greater root carbon cost (Peng et al. 1993). In general, the costs of the 
mycorrhizal symbiosis in various herbaceous and woody species ranges from 4% 
to 20% of daily net photosynthesis (Koch and Johnson 1984; Harris and Paul 1987; 
Douds et al. 1988; Jakobsen and Rosendahl 1990; Eissenstat et al. 1993; Nielsen 
et al. 1998). The greater metabolic burden of mycorrhizal roots may contribute to 
the non-beneficial or even parasitic role that mycorrhizal fungi play in agroecosystems 
(Ryan and Graham 2002).

Mycorrhizal symbioses have attracted a great deal of attention by researchers in 
the past 30 years. The importance of mycorrhizal symbioses for Pi acquisition has 
led some mycorrhizal researchers to the belief that root traits are secondary or triv-
ial in importance for Pi acquisition compared to fungal-assisted Pi acquisition 
(Smith et al. 2003). In this context it is useful to consider the strong correlations 
observed between Pi uptake and root traits such as root hair length (Figure 5.10; 
Miguel 2004; see also references cited above) and root shallowness (Lynch and 
Brown 2001) even in the presence of mycorrhizas. This could signify that mycor-
rhizal foraging is incomplete and can be supplemented by direct root foraging. 
Alternatively, extraradical hyphae could be restricted to the volume of soil near the 
root (Owusu-Bennoah et al. 2002), so that root architectural patterns have a strong 
influence on foraging patterns by the fungal symbiont. In our research with maize, 
soybean, and common bean, we have observed similar genotypic rankings for plant 
growth in low P soil in the field where mycorrhizas are formed and in controlled 
environments without mycorrhizas (Bonser et al. 1996; Miguel 2004; Ho et al. 
2005). This suggests that for these annual crops, mycorrhizal symbiosis changes 
the effective fertility status of the soil environment but does not represent a selec-
tion criterion (either through natural selection or in plant breeding) among geno-
types, possibly because it is ubiquitous.

Fig. 5.10 Effect of root hair length 
on phosphorus content of common 
bean (Phaseolus vulgaris L.) geno-
types. Plants were grown for 35 days 
in low-P soil in the field in Costa 
Rica. Each point is the mean of four 
replicates of one genotype; the set of 
genotypes are six recombinant 
inbred lines having long or short root 
hairs. (Miguel 2004)
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PHENOLOGY

Some annual plants respond to P stress by delayed maturation (Rossiter 1978; 
Chauhan et al. 1992; Ma et al. 2002). This could be adaptive for P acquisition by 
permitting continued root growth, and by extending the period of time in which 
existing roots acquire Pi. Time is particularly important for Pi acquisition, since Pi 
diffusion through soil is slow, as is recharge of P-depleted soil (Tinker and Nye 2000). 
We call this phenomenon ‘root foraging duration’ by analogy with leaf area duration. 
We have observed that root foraging duration (the integral of root length over time) 
is highly correlated with Pi acquisition in Arabidopsis genotypes of contrasting phe-
nology (Figure 5.11). In addition to possible benefits for Pi  acquisition, an extended 
growing season would also increase the metabolic utility of acquired P, for example 
by extending the time leaf P could be employed to generate photosynthates. In other 
words, the utility of P to the plant is dependent on the length of time the P is used by 
the plant, which in general would be greater with an extended growing season. 
Phenology is responsive to P availability in some plants and there is a range of maturi-
ties available within crop species. If it is demonstrated that delayed maturation is a 
positive adaptation to low P availability, genotypic variation for this trait may have 
value in crop breeding programs, especially in tropical agroecosystems where 
temperature and moisture availability do not limit the effective growing season.

TRAIT SYNERGY

Several root strategies for Pi acquisition may have functional interactions with each 
other or with other plant traits. These interactions could be positive or synergistic in 
improving P efficiency traits, or they may be antagonistic. An example of trait 

Fig. 5.11 Plant phosphorus content and root foraging duration for seven genotypes of Arabidopsis 
thaliana grown in soils with high and low phosphorus availability. Total phosphorus acquired is 
strongly correlated with root foraging duration, with plants grown in high phosphorus soil acquiring 
more phosphorus at a given level of root foraging duration. (Nord and Lynch, unpublished, 2007)
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synergy in Pi acquisition is the interaction of four distinct root hair traits; root hair 
length, root hair density, the distance from the root tip to the first appearance of root 
hairs, and the pattern of root hair bearing epidermal cells (trichoblasts) among non 
hair bearing cells (atrichoblasts). Low P availability causes coordinated increases in 
root hair length and density in many species (Brewster et al. 1976; Foehse and Jungk 
1983; Bates and Lynch 1996; Ma et al. 2001a). In Arabidopsis, low P availability also 
shortens the distance from the first root hair to the root tip, and changes the geometry 
of trichoblasts by increasing the number of trichoblast files, caused by cortical reor-
ganization (Ma et al. 2001a, 2003). Geometric modeling showed that the combined 
effect of these four traits on Pi acquisition was 371% greater than their additive 
effects, demonstrating substantial morphological synergy (Ma et al. 2001b). 
Synergism among root hair traits may account for their coordinated regulation.

Traits of individual root axes such as root hairs and root exudates may have syn-
ergism with root architectural traits, which locate root axes in soil domains with 
varying P availability. For example, longer root hairs would be expected to provide 
greater benefit to the plant if they were positioned in P-replete topsoil as opposed 
to P-deficient subsoil. Phosphatases that mobilize Pi from soil organic matter would 
be more useful if exuded by shallow roots than by deep roots, since in most soils 
organic matter decreases with depth. In contrast, organic acids that mobilize Pi 
from Fe and Al oxides may be more useful when released into deeper soil horizons 
where these forms of P predominate. Root architectural traits may themselves dis-
play interactions, by altering the extent of inter-root competition, which is an 
important component of overall root foraging efficiency (Ge et al. 2000; Rubio 
et al. 2001, 2003). For example, root systems combining deep rooting (through, for 
example, lateral branching from the deeper parts of the primary and basal roots) 
with shallow rooting (through adventitious roots or shallow basal roots) would be 
expected to be more complementary than root systems in which distinct root classes 
competed for the same soil niche (Walk et al. 2006). This is especially relevant in 
the context of drought, since in many environments water is a deep soil resource 
while P is a shallow resource (see discussion below). We know very little about the 
interaction of traits related to P acquisition, despite the importance of trait interac-
tions for whole plant performance. This is pertinent to plant breeding, since traits 
under distinct genetic control could be combined to maximize positive synergy.

TRADEOFFS

The utility of a trait for plants in low P environments must take into account poten-
tial tradeoffs of the trait for other plant processes. The most obvious tradeoff for 
many traits is simply the opportunity cost resulting from diversion of plant 
resources from other functions. For example, the production of adventitious roots 
reduces the development of basal roots, which in certain soils can be detrimental to 
overall plant P acquisition (Walk et al. 2006). Since soil resource distribution is 
heterogeneous, architectural tradeoffs can also occur when the exploitation of one 
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soil domain reduces exploitation of another soil domain with its attendant 
resources.

An important tradeoff or opportunity cost to topsoil foraging is increased sensitiv-
ity to drought stress, since water is a deep soil resource in many environments. A 
comparison of deep-rooted and shallow-rooted bean genotypes showed that while 
shallower genotypes had superior growth under P stress, deep-rooted genotypes had 
superior growth under water stress (Figure 5.12; Ho et al. 2005). These results are 
 consistent with economic optimization modeling of the relationship between root 
architecture and multiple resource acquisition, particularly water and P (Ho et al. 
2004). The general solution of the model states that a plant will locate its roots at a 
soil depth where the marginal benefit of water and P acquisition will exactly equal the 
marginal cost of inter-root competition (Ho et al. 2004). Indeed, bean genotypes that 
are best adapted to low P environments, where P is localized in the surface soil, tend 
to have a shallower basal root angle, whereas genotypes that are adapted to terminal 
drought environments have deeper root systems (Ho et al. 2005). This example illus-
trates the importance of considering tradeoffs in assessing the adaptive importance of 
specific root traits, especially in crop breeding for distinct environments.

The large genotypic variation for root traits that appear to be positive adaptations 
for nutrient acquisition may be caused or maintained by tradeoffs incurred by cer-
tain phenotypes. For example, long, dense root hairs improve Pi acquisition at mini-
mal metabolic cost (see references above), yet a large proportion of crop genotypes 
have few, sparse root hairs, and many genotypes display plasticity in root hair traits, 
so that under high fertility, root hairs are suppressed. This could suggest that there 
are potential costs to root hairs, such as increased susceptibility to root pathogens. 
Similarly, cortical aerenchyma appears to reduce the metabolic costs of soil explo-
ration (see references above), yet substantial intraspecific variation for constitutive 
aerenchyma formation exists, and aerenchyma formation is suppressed under high 
fertility. This suggests that there are potential costs to aerenchyma formation, such 
as reduced radial transport of water (Fan et al. 2007) and nutrients, or reduced 
mycorrhizal habitat. Such questions are largely unresolved.

Fig. 5.12 Shoot biomass at 44 days 
after planting for three shallow-
rooted and three deep-rooted com-
mon bean (Phaseolus vulgaris L.) 
genotypes in the field. HP = high 
phosphorus availability, LP = low 
phosphorus availability, IR = irri-
gated, NI = non-irrigated. Each bar 
is the mean of four replicates, error 
bars = SEM. (From Ho et al. (2005). 
With permission)
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RESPONSES TO HETEROGENEOUS P AVAILABILITY

In addition to the variability in P availability with soil depth (discussed above), P 
availability may be heterogeneous in space and time as a result of organic matter 
decomposition, variation in soil composition, competition with the same or other 
root systems, water availability, temperature, etc. (Jackson and Caldwell 1993). 
Many plants have the ability to respond to these patches of higher nutrient availabil-
ity in ways that are expected to increase their ability to compete for these nutrients. 
The responses of root systems to heterogeneous nutrient distribution have been 
reviewed recently (Hodge 2004), so this topic will be discussed here only in the 
context of agroecology.

When P-stressed plants encounter a patch of higher P availability, one advanta-
geous response is to proliferate roots to enhance Pi acquisition from the patch. Root 
proliferation has been observed in nutrient patches and includes increased number, 
length, and branching of lateral roots. The extent to which this occurs varies among 
species, some showing very dramatic effects (e.g. barley; Drew 1975), while others 
show little or no response (Campbell et al. 1991; Farley and Fitter 1999). To com-
plicate matters further, plants may alter root development in nutrient patches when 
roots of another plant (even of the same species) are competing within the patch 
(Robinson et al. 1999; Gersani et al. 2001; Maina et al. 2002). The available data 
justifies the conclusion that root proliferation in nutrient patches is likely to be use-
ful for plants grown in intercrop systems, as is the case for many crops grown in 
poor soils in the tropics and subtropics.

INTERPLANT COMPETITION

The utility of traits for P efficiency will be most evident in competitive environ-
ments, including those experienced by wild plants, crops in subsistence agroecosys-
tems, and in the high-density genetic monocultures typical of commercial 
agriculture. Traits influencing P efficiency will affect plant productivity, and 
thereby competitive performance, under P-stress. An example of this is the positive 
effect of root hairs on plant performance in mixed stands of Arabidopsis at low P 
but not at high P (Bates and Lynch 2001). Traits influencing Pi acquisition can 
directly affect interplant competition by removing soil P that could be accessed by 
competitors. For example, bean genotypes with shallow basal roots out-compete 
genotypes with deep basal roots in low P fields (Rubio et al. 2003), because of 
enhanced topsoil exploitation and reduced competition among roots of the same 
plant (Rubio et al. 2001).

At the population level, competition among root systems can be important in 
determining the utility of root traits for P efficiency. This appears to be the case 
for plasticity of basal root shallowness, for which genetic variation exists, i.e. 
some genotypes respond to P-stress by becoming more shallow, whereas others are 
unaffected or become deeper (Bonser et al. 1996; Ho et al. 2004, 2005). Plasticity 
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of root shallowness would generally be considered a useful trait, since plasticity 
would permit a plant to modify its root architecture to adapt to the prevailing 
edaphic stress. However, if all plants in a population were equally plastic, and 
therefore had the same root architecture, greater interplant competition would 
occur than if distinct root phenotypes existed in a population, thereby permitting 
complementary exploitation of distinct soil domains. Theoretical modeling 
showed that interplant competition could be important in determining an optimal 
balance of plastic and non-plastic root phenotypes under conditions of P-stress and 
combined P and water stress (Figure 5.13; Ho 2004). This suggests that genetic 
mixtures or multilines may have better performance in low P agroecosystems than 
genetic monocultures, especially in drought-prone environments.

ECOSYSTEM ISSUES

A better understanding of plant adaptations to P-stress is critically needed for two 
of the greatest challenges facing humanity in the 21st century: eliminating world 
hunger and understanding how natural and managed ecosystems will respond to 
global climate change.

The development of crops with superior growth in low P soil and with better 
responsiveness to applied P inputs would have tremendous value in many develop-
ing countries, where yields are limited by low soil fertility and fertilizer use is mini-
mal (World Bank 2004). Since genotypic variation for PAE is much larger than 
variation for P use efficiency in crop plants, development of P-efficient crops is 
likely to have a great impact on agricultural productivity in these agroecosystems 
(Lynch and Beebe 1995). Although such genotypes would extract more P from the 
soil than conventional genotypes, they may actually enhance soil fertility in the 

Fig. 5.13 The theoretical relation-
ship of the equilibrium steady-state 
fraction of plastic plants in a popula-
tion and drought frequency, where 
spatial competition is considered, 
under (a) low, (b) intermediate or (c) 
high drought intensity. Plastic plants 
in this model respond to low P avail-
ability by increasing topsoil forag-
ing, which incurs costs in conditions 
of terminal drought, and when 
neighboring individuals have the 
same phenotype. (Ho 2004)
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long term through beneficial effects on soil erosion and nutrient cycling, as well as 
benefits they accrue to farm income and thereby the use of fertility amendments 
(Lynch and Deikman 1998). For example, P runoff from common bean plots in a 
farmer’s unfertilized field varied substantially among genotypes (Figure 5.14; 
Henry and Lynch 2007; unpublished).

Several genetic traits have been identified with potential utility in breeding P 
efficient crops, as discussed above, including root exudates, root hair traits, cortical 
aerenchyma, topsoil foraging through basal or adventitious rooting, and the use of 
multiline mixtures of root phenotypes. Deployment of these traits through plant 
breeding programs is resulting in progress in several crops including common bean 
(CIAT 1999) and soybean (Yan 2005). The success of this effort would constitute a 
second ‘Green Revolution’, benefiting the resource-poor farmers who were largely 
left behind by the first Green Revolution, and who represent the single largest 
human labor occupation (Lynch and Deikman 1998). A better understanding of the 
biology of traits associated with P efficiency, especially how these traits combine 
and their tradeoffs in specific production environments, is needed to guide plant 
breeding efforts.

We will not be able to understand or manage ecosystem responses to global 
change unless we learn more about how global change variables such as CO

2
, tem-

perature, and ozone interact with the edaphic stresses prevalent in most terrestrial 
ecosystems (Lynch and St. Clair 2004). The vast majority of research on plant 
response to global change has focused on leaf responses and has not considered 
edaphic stresses other than water and possibly nitrogen with any rigor, despite the fact 
that plant responses to edaphic stresses are primary limitations to plant productivity in 

Fig. 5.14 Effect of genotype on phosphorus runoff from an unfertilized on-farm site in Costa 
Rica during one growing season. Beans were planted at densities typical of local practice. (Henry 
and Lynch, unpublished, 2007)
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most forests and managed systems. Plants limited by low soil P availability may 
respond to elevated CO

2
 by producing more exudates and by altered root growth 

and architecture, which may partially alleviate P stress, but interactions with other 
global change variables such as drought are likely to be detrimental, as discussed 
above. This topic merits research.

CONCLUSIONS

Low soil P availability is a primary constraint to plant growth on earth. Accordingly, 
plants express a wide array of root strategies that improve Pi acquisition, including 
increased biomass allocation to roots and to specific root classes within the root 
system, root architectural traits that enhance topsoil foraging, including basal root 
gravitropism, adventitious rooting, and lateral root branching, reduced metabolic 
costs of soil exploration, via formation of cortical aerenchyma, the formation of 
finer roots and possibly root etiolation, root hairs, P-solubilizing root exudates, 
mycorrhizal symbioses, phenological plasticity, and morphological plasticity. 
Ecological tradeoffs and interactions among these traits are poorly understood but 
are likely to be important in determining the functional utility of these traits, espe-
cially in competitive environments. A better understanding of these traits is needed 
to guide the development of more P efficient crops for developing nations, and to 
understand how ecosystems will respond to global climate change.
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