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Chapter 4
PHOSPHORUS NUTRITION 
OF TERRESTRIAL PLANTS

Philip J. White and John P. Hammond

INTRODUCTION

Phosphorus (P) is essential for plant growth and fecundity. It is an integral com-
ponent of genetic, metabolic, structural and regulatory molecules, in many of 
which it cannot be substituted by any other elements. Tissue P concentrations in 
well fertilized plants approximate 0.4–1.5% of the dry matter (Broadley et al. 
2004), most of which is present as nucleic acids and nucleotides, phosphorylated 
intermediates of energy metabolism, membrane phospholipids and, in some tis-
sues (principally seeds), as inositol phosphates. Some P also occurs in phospho-
proteins and as inorganic phosphate (Pi) and pyrophosphate (PPi). It has been 
estimated that small metabolites, nucleic acids and phospholipids contribute 
approximately equally to leaf P content in P-replete plants (Figure 4.1; Marschner 
1995; Dörmann and Benning 2002). Tissue P concentrations show no systematic 
differences between angiosperm species grown in P-replete conditions, but strong 
positive correlations occur between shoot P and shoot organic-N concentrations 
(Broadley et al. 2004). When plants are sampled from their natural environment, 
shoot N:P mass ratios vary between about 5:1 and 40:1 (e.g. Garten 1976; 
Thompson et al. 1997; Elser et al. 2000a; Tessier and Raynal 2003; Güsewell 
2004; McGroddy et al. 2004; Güsewell et al. 2005; Han et al. 2005; Niklas et al. 
2005; Wassen et al. 2005; Wright et al. 2005; Kerkhoff et al. 2006) and leaf N 
appears to scale as the 3/4 power of leaf P (Niklas et al. 2005; Niklas 2008). 
Ratios of 10:1 approximate the maximum critical organic-N:P ratios reported for 
a range of crop plants (Greenwood et al. 1980; Güsewell 2004). In general, leaf 
N:P ratios below 13.5 suggest N-limited plant growth, whilst leaf N:P ratios 
above 16 suggest P-limited plant growth (Aerts and Chapin 2000; Güsewell and 
Koerselman 2002; Tessier and Raynal 2003). Stoichiometric relationships 
between leaf N and leaf P appear to be a consequence of the requirements of N 
for proteins and of P for nucleic acids, membranes and metabolism (Elser et al. 
2000b; Niklas 2008). Plant relative growth rate (RGR) is positively correlated 
with rRNA concentration and negatively correlated with protein concentration 
(Ågren 1988; Elser et al. 2000b; Niklas 2008). Thus, shoots of fast-growing her-
baceous species characteristic of nutrient-rich, disturbed habitats tend to have 
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higher concentrations of N and P, but lower N:P ratios, than shoots of slow-
 growing species characteristic of infertile habitats (Grime et al. 1997; Thompson 
et al. 1997; Grime 2001; Güsewell 2004; Niklas et al. 2005). Similarly, shoot N:
P ratios increase during ontogeny as plant RGR declines (Güsewell 2004; Niklas 
2008) and, between tissues, structural tissues have higher N:P ratios than meta-
bolically active ones (Kerkhoff et al. 2006). This is consistent with the large P 
requirements for the growth of young tissues and the absolute cellular require-
ment for protein.

A lack of available P rapidly reduces plant growth rates. However, tissue P 
requirements and responses to P availability vary markedly between terrestrial plant 
species and among genotypes of a particular species (e.g. Bradshaw et al. 1960; 
Loneragan and Asher 1967; Rorison 1968; Ozanne et al. 1969; Greenwood et al. 
1980, 2005, 2006; Coltman et al. 1986; Johnston et al. 1986; Alt 1987; Fageria 
et al. 1988; Föhse et al. 1988; Gunawardena et al. 1993; Gourley et al. 1994; Yan et al. 
1995a,b, 2006; Beebe et al. 1997; Fageria and Baligar 1997, 1999; Li et al. 1997; 
Tian et al. 1998; Bolland et al. 1999; Narang et al. 2000; Sanginga et al. 2000; 
Baligar et al. 2001; Gaume et al. 2001; Górny and Sodkiewicz 2001; Liu et al. 
2001; Osborne and Rengel 2002; Güsewell et al. 2003; Trehan and Sharma 2003; 
Blackshaw et al. 2004; Gahoonia and Nielsen 2004a,b; Zhao et al. 2004; Zhu and 
Lynch 2004; Hipps et al. 2005; Ozturk et al. 2005; White et al. 2005a,b; Wissuwa 
2005; Oracka and Łapiñski 2006; Su et al. 2006; Marschner et al. 2007; Tesfaye 

Fig. 4.1 The effect of P supply on leaf dry weight (line), expressed as a percentage of the maxi-
mum, and the percentage contributions of small metabolites (open triangles), nucleic acids (open 
squares), phospholipids (open circles) and inorganic phosphorus (filled squares) to the total leaf P 
content. (Data taken from Marschner 1995.)
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et al. 2007; George and Richardson 2008), suggesting significant genetic variation 
in the ability of plants to acclimate to reduced P availability through the conserva-
tive use of P in tissues and/or an increased capability for P acquisition. Even mild 
P deficiency alters cellular biochemistry, biomass allocation and root morphology 
to match P acquisition with plant P requirements. Typical responses of plants to P 
starvation include the remobilization, reduction or replacement of P in inessential 
cellular compounds, the exudation of metabolites and enzymes into the rhizosphere 
to increase P availability and changes in root morphology and/or associations with 
microorganisms to acquire P more effectively from the soil. In this chapter, physio-
logical responses of plants to the vagaries of P availability will be reviewed and set 
in the context of their consequences for plant growth and survival in natural and 
agricultural ecosystems.

PHOSPHORUS-CONTAINING COMPOUNDS IN PLANTS

Phosphorus is present in many chemical forms in plant cells (Marschner 1995). 
Some cellular compounds containing P are present at low concentrations or can be 
diminished and/or replaced with little consequence. It is the P-containing com-
pounds that have unique cellular roles and those that are required in high concentra-
tions by plant cells that define the absolute P requirement of plants. The acclimatory 
responses of plants to P starvation are directed towards maintaining essential cellu-
lar functions, either by utilizing plant P efficiently or by increasing P acquisition by 
the root system.

Nucleic acids

Phosphorus is an essential component of DNA and RNA, in which phosphodiester 
bridges link the deoxyribonucleotides or ribonucleotides. The requirement for 
DNA and RNA is greatest in tissues undergoing rapid cell division and/or cell 
expansion (Ågren 1988; Elser et al. 2000b; Niklas 2008). The plant cannot dispense 
with DNA or RNA and although DNA and RNA concentrations in plant cells can 
be reduced during P starvation this has a significant affect on plant growth rate 
(Raven 2008). In addition, P is required as ADP in photosynthesis and respiration, 
as ATP for energy transfer reactions in, for example, nucleic acid synthesis, metab-
olism, cytoskeletal rearrangements and membrane transport, as GTP for energy 
transfer reactions during nucleic acid biosynthesis, as NADPH in biosynthetic reac-
tions and as signaling molecules such as GTP and cAMP. It is possible for a cell to 
reduce some dependence on ATP by rerouting biochemical pathways and utilizing 
PPi as an energy substrate (Figure 4.2; Plaxton and Carswell 1999; Hammond 
et al. 2004; Hammond and White 2008a), but a finite requirement for ATP cannot 
be avoided.
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Phosphorylated metabolites

A considerable quantity of cellular P occurs in the many phosphorylated intermedi-
ates of metabolic pathways. Phosphorylated compounds occur, for example, in the 
Calvin cycle, in the photorespiratory pathway, in glycolysis, in the pentose  phosphate 

Fig. 4.2 Alternative metabolic processes for cytosolic glycolysis, mitochondrial electron trans-
port, chloroplast processes and tonoplast H+ pumping (bold arrows) that may enable plants to 
survive under P limiting conditions. Abbreviations for compounds are as follows; Glu-1-P, glu-
cose 1-phosphate; Glu-6-P, glucose 6-phosphate; Fru-6-P, fructose 6-phosphate; Fru-1,6-P2, 
fructose 1,6-bisphosphate; G3P, glyceraldehyde-3-phosphate; 1,3-DPGA, 1,3-dephosphoglycer-
ate; OAA, oxaloacetate; E4P, erythrose 4-phosphate; S3P, shikimate-3-phosphate; HT, hexose 
translocator; PEP, phosphoenolpyruvate; PPT, phosphoenolpyruvate/phosphate translocator; Pi, 
inorganic phosphate; TPT, triose phosphate/phosphate translocator; TrioseP, triose phosphates; 
XPT, xylulose 5-phosphate/phosphate translocator. (Figure redrawn from Plaxton and Carswell 
1999 and Flügge et al. 2003 by Hammond and White 2008.)
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pathway, in nitrogen and sulfur assimilation, in the pathways of amino acid and 
nucleotide metabolism, and in pathways leading to the synthesis of polyphenols 
and lignin (Coruzzi and Last 2000; Dennis and Blakeley 2000; Malkin and Niyogi 
2000; Siedow and Day 2000). In addition, where integrated metabolic transforma-
tions occur in different cellular compartments, it is often phosphorylated com-
pounds that are transported across membranes. There is some flexibility in these 
metabolic pathways and, when plants lack sufficient P, alternative pathways requir-
ing lower concentrations of phosphorylated intermediates are adopted (Figure 4.2; 
Plaxton and Carswell 1999; Flügge et al. 2003; Vance et al. 2003; Hammond et al. 
2004; Hammond and White 2008a).

Phospholipids

In cell membranes, P occurs in phospholipids (phosphatidyl serine, phosphatidyl 
ethanolamine, phosphatidyl choline, phosphatidyl inositol and diphosphatidylglyc-
erol), and the intermediate compounds of their biosynthesis (Somerville et al. 
2000). In addition to their structural roles, phospholipids serve as substrates for the 
production of biochemical signals, such as inositol trisphosphate (IP

3
), diacylglyc-

erol, lysophosphatidyl choline, jasmonate and free headgroups (inositol, choline, 
ethanolamine, serine). Membrane lipids are required in abundance by photosyn-
thetic tissues and tissue undergoing rapid cell division and/or cell expansion. The 
thylakoid membrane of the chloroplast is predominantly composed of sulphoqui-
novosyldiacylglycerol (SQDG), digalatosyldiacyglycerol (DGDG) and monogala-
tosyldiacyglycerol (MGDG), which is the most abundant lipid on the planet. By 
using these lipids in chloroplast membranes, plants reduce their requirements for 
phospholipids. Furthermore, when plants are starved of P, the relative abundance of 
SQDG, DGDG and MGDG increases in plant membranes, thereby contributing to 
tissue P economy (Essigmann et al. 1998; Härtel et al. 2000; Dörmann and Benning 
2002; Andersson et al. 2003, 2005; Jouhet et al. 2004; Benning and Ohta 2005; 
Kobayashi et al. 2006; Li et al. 2006). Interestingly, these lipids are also found in 
the peribacteroid membranes surrounding rhizobial symbionts in legumes, where, 
again, their relative abundance increases during P starvation (Gaude et al. 2004).

Inorganic and storage P

In P-replete plants, over 85% of the cellular Pi is located in the vacuole (Marschner 
1995). However, vacuolar Pi concentrations decrease rapidly when plants lack suf-
ficient P, to maintain cytoplasmic Pi concentration ([Pi]

cyt
) in the range 3–20 mM 

(Lee et al. 1990; Schachtman et al. 1998; Mimura 1999). If the P supplied to P-
replete plants is reduced to the minimal amount required for optimal plant growth 
only the P in the inorganic fraction decreases substantially, which reflects the mobi-
lization of surplus Pi from the vacuole (Figure 4.1; Marschner 1995). However, 
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when the P supply to plants is decreased from an optimal to a suboptimal level, the 
P associated with nucleic acids, lipids, small metabolites and inorganic fractions all 
decrease. In contrast to most other tissues, Pi concentrations in seed are low and 
phytate (IP

6
) is a dominant P fraction. In P-replete plants 50–90% of the total P in 

seeds occurs as phytate, but this value declines with decreasing P supply (Bieleski 
1973; Marschner 1995; Mengel and Kirkby 2001). Remarkably, it is estimated that 
the amount of P contained in seed phytate is as much as 50% of all phosphate ferti-
lizer applied annually on a global scale (Lott et al. 2000).

In addition, a small, but important, amount of P occurs in proteins. Phosphorylation 
and dephosphorylation of serine residues affects the activity of many enzymes 
(Raven 2008). Appropriate regulation of these enzymes is often critical for cellular 
homeostasis and, therefore, the P associated with this function is indispensable.

SYMPTOMS OF PHOSPHORUS IMBALANCE IN PLANTS

The symptoms of P deficiency in plants reflect the roles of P in plant cells. Phosphorus 
deficiency results in a diminutive or spindly habit, acute leaf angles, suppression of til-
lering, prolonged dormancy, early senescence and decreased size and number of flow-
ers and buds (Bould et al. 1983; Bergmann 1992; Marschner 1995; Mengel and Kirkby 
2001). Symptoms of P deficiency occur first in older leaves. The development of dark 
green or blue-green foliage is among the first symptoms of P deficiency. Red, purple 
or brown pigments develop in leaves, especially along veins. This is a consequence of 
anthocyanin production, which is induced by increased leaf sucrose concentrations 
(Müller et al. 2005; Teng et al. 2005; Amtmann et al. 2006; Solfanelli et al. 2006) and 
is thought to protect nucleic acids from UV damage and chloroplasts from photoin-
hibitory damage caused by P-limited photosynthesis (Hoch et al. 2001). Severe P 
deficiency results in chloroplast abnormalities, such as a reduction in the number of 
grana and their morphology (Bould et al. 1983). There is a gradual reduction in rates 
of cell division, cell expansion, photosynthesis and respiration, and changes in the 
abundance of C, N and S metabolites and concentrations of plant growth regulator 
substances during P starvation (Bould et al. 1983; Marschner 1995).

In agriculture, P-deficiencies of crops are usually treated by the addition of P-
fertilizers to the soil. This has the added advantage of increasing soil P reserves for 
future crops. Foliar sprays of ammonium or potassium phosphate can be used, but 
may cause damage to the leaves (Bould et al. 1983). A lack of phytoavailable Zn 
in the soil can also cause P toxicity in crops (Loneragan et al. 1982). In nature, P 
rarely accumulates to toxic concentrations in plant tissues, except occasionally in 
species adapted to soils with excessively low P availability (Shane et al. 2004). 
However, in the laboratory, when roots of P-deficient plants are transferred to solu-
tions containing high Pi concentrations, P may accumulate to toxic levels in shoots 
(e.g. Green et al. 1973; Clarkson and Scattergood 1982; Cogliatti and Clarkson 
1983). This is a consequence of an innate inability to rapidly downregulate the high 
Pi uptake capacity of roots of P-deficient plants.
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PHOSPHORUS AVAILABILITY TO PLANTS

Phosphorus is the 11th most abundant element in the earth’s crust, and its concen-
tration in soils generally lies between 100 and 3,000 mg P kg-1 soil, or 200–6,000 kg 
P ha-1 (Hedley et al. 1995; Mengel 1997).

In the soil, P is present as free Pi in the soil solution, labile Pi bound to soil parti-
cles, especially clays, as insoluble inorganic salts, such as calcium (Ca) phosphate 
in alkaline soils or aluminum (Al) and iron (Fe) phosphates in acidic soils, as com-
plex organic compounds in the soil organic material, which may constitute 30–60% 
of the P in the topsoil, and the P in living soil biomass, which comprise about 5% of 
soil P (Mengel 1997; Hinsinger 2001; Oberson and Joner 2005; Turner 2007; Kirkby 
and Johnston 2008). These P sources must be solubilized or degraded (mineralized) 
to release soluble Pi for plant nutrition. The rates by which P is interconverted 
between these P fractions varies widely (Barber 1995; Mengel 1997), and both the 
amounts of P in each fraction and the rates of their interconversion are influenced by 
vegetation, amounts and chemical constituents of any Pi-fertilizers applied, the total 
P concentration in soil, soil structure, organic matter content and mineralogy, soil pH 
(Pi availability is highest between pH 6.5 and 7.5), temperature, soil moisture, and 
the abundance and identity of the soil micro-organisms present.

Nevertheless, P availability frequently limits plant growth in both natural and agri-
cultural ecosystems (Epstein 1972; Chapin et al. 1986; Ågren 1988; Vance et al. 2003; 
Güsewell 2004). The simple reason for this is that both plant roots, and their associated 
mycorrhizal fungi, can only acquire P as orthophosphate (Schachtman et al. 1998; 
White 2003), which is present at extremely low concentrations (<10 µM) in the soil 
solution due to the low solubility products of inorganic P salts (Bieleski 1973; Barber 
1995; Hedley et al. 1995; Marschner 1995). As a consequence, the diffusion of Pi 
through the soil solution is slow, and plant roots with their associated mycorrhizal 
fungi must occupy the soil volume at high density to acquire Pi at a sufficient rate for 
maximal growth (Bieleski 1973; Barber 1995; Marschner 1995). In addition, plant 
available Pi in the rhizosphere soil solution is rapidly depleted, and the replenishment 
of Pi in the rhizosphere soil solution from soil P sources is slow (Bieleski 1973; Barber 
1995). For these reasons, conventional agriculture applies Pi-fertilizers to increase Pi 
concentrations in the rhizosphere to maximize crop P uptake and growth. Unfortunately, 
the reserves of commercially exploitable Pi rock are currently estimated to last less 
than 150 years (Mengel 1997; Steen 1998; Vance et al. 2003; Cohen 2007), so alterna-
tive strategies for P-fertilisation of crops may be required in the future.

PLANT STRATEGIES TO INCREASE THE ACQUISITION OF P

A variety of strategies are employed by plants to mobilize and acquire Pi from 
the soil (Vance et al. 2003; Hammond et al. 2004; Ticconi and Abel 2004; 
Raghothama and Karthikeyan 2005; Rengel and Marschner 2005; White et al. 2005a; 
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Lambers et al. 2006; Jain et al. 2007b). In general, these utilize the excess carbon 
assimilated when plant growth is limited by factors other than photosynthesis 
(Mengel and Kirkby 2001; Morgan et al. 2005; Hermans et al. 2006; Hammond 
and White 2008a). In response to P deficiency: (1) Plant roots acidify the rhizo-
sphere and secrete low-molecular-weight organic anions and phosphatase 
enzymes into the soil to mobilize Pi from inorganic and organic P sources. (2) 
Plants invest a greater proportion of their biomass in their root system. (3) The 
morphology of the root system is altered, not only to explore the soil volume 
more effectively but also to exploit any localized patches of high Pi availability. 
(4) There is a general increase in the capacity of plant roots to take up Pi, accelerating 
the rate of Pi uptake from the soil solution. (5) Most plants foster symbiotic 
relationships with mycorrhizal fungi to increase their ability to explore the soil 
volume and mobilize P from remote inorganic and organic sources. None of 
these strategies are  mutually exclusive and plants often employ several simulta-
neously to avert P-deficiency.

Rhizosphere modification

Roots of P-deficient plants often release protons (H+) to acidify the rhizosphere 
(Marschner 1995; Hinsinger 2001). In addition, they secrete low-molecular-mass 
organic anions, such as carboxylates and piscidic acid (Jones 1998; López-Bucio 
et al. 2000b; Hocking 2001; Ryan et al. 2001; Dakora and Phillips 2002; Jones et al. 
2003; Delhaize et al. 2007). However, the effectiveness of these compounds in 
releasing Pi from soil minerals differs greatly (generally citrate > oxalate > malate 
= tartrate > acetate > succinate = lactate, but this order is dependent upon soil type; 
Jones 1998; Hinsinger 2001; Jones et al. 2003) and plant species differ in both the 
identity and quantity of the low molecular-mass organic acids they exude from their 
roots (e.g. Van ura and Hovadík 1965; Ohwaki and Hirata 1992; Dinkelaker et al. 
1995; Jones 1998; Neumann and Römheld 1999; López-Bucio et al. 2000b; 
Hinsinger 2001; Dakora and Phillips 2002; Dechassa and Schenk 2004; Jain et al. 
2007b), which may be related to their phylogeny, ecology and/or their ability to 
form mycorrhizal associations. Differences between genotypes of particular species 
in their ability to exude organic acids and to access different forms of mineral P 
have also been reported (Subbarao et al. 1997; Narang et al. 2000; Gaume et al. 
2001; Ishikawa et al. 2002; Liao et al. 2006; Pearse et al. 2007, 2008). Although 
organic anions released by roots are rapidly decomposed in the soil (Jones 1998; 
Jones et al. 2003), plant roots secrete these compounds in locations where the abun-
dance of microorganisms is low, such as the root apex or within clusters of lateral 
roots (Dinkelaker et al. 1995; Jones 1998; Gaume et al. 2001; Vance et al. 2003; 
Thornton et al. 2004; Lambers et al. 2006; Liao et al. 2006; Paterson et al. 2006). 
It is commonly observed that the release of carbon compounds increases microbial 
biomass and activity in the rhizosphere, but its consequences for microbial com-
munity structure and function are less well understood (Morgan et al. 2005). 
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Changes in microbial abundance and/or community structure can either promote or 
reduce Pi availability to plants, both directly and indirectly (Jones 1998; Barea 
et al. 2005; Morgan et al. 2005; Rengel and Marschner 2005; Marschner 2008).

Plant roots also secrete enzymes into the rhizosphere to release Pi from organic 
P compounds in the soil. These enzymes include acid phosphatases and phytases 
that hydrolyze organic phosphomonoesters, which are the dominant form of organic 
P in the soil, and apyrases and RNases that hydrolyze phosphodiesters (Thomas 
et al. 1999; Haran et al. 2000; Miller et al. 2001; Coello 2002; Wasaki et al. 2003; 
Tomscha et al. 2004; Zimmermann et al. 2004; Jain et al. 2007b). Although there 
is significant genotypic variation in the phosphatase activities secreted by roots 
both between and within plant species (Tadano and Sasaki 1991; Asmar et al. 1995; 
Li et al. 1997; Liu et al. 2001; Gaume et al. 2001), these are not always correlated 
with their ability to acquire P or grow in many soils (George et al. 2008). This may 
reflect the complementarity of the many compensatory mechanisms plants employ 
to acclimate to low P availability. It is noteworthy that rhizosphere microorganisms 
also release phosphomonoesterases and phosphodiesterases that contribute to P 
cycling in the soil and/or induce the release of these enzymes by plants (George and 
Richardson 2008; Marschner 2008).

Altered biomass allocation and root system modification

In response to P deficiency plants allocate more of their biomass to the root sys-
tem, thereby increasing root growth rates and the volume of soil the root system 
can explore (Vance et al. 2003; Hutchings and John 2004; White et al. 2005a; 
Hermans et al. 2006; Hammond and White 2008a). To exploit the local effects of 
secreting organic anions and enzymes into the rhizosphere, plants increase their 
root length density in regions of higher P availability. In response to P deficiency, 
plants preferentially produce roots in the topsoil, since P is often concentrated 
close to the soil surface (Barber 1995; Lynch and Brown 2001; Rubio et al. 2003; 
Liao et al. 2004; Ho et al. 2005; Zhu et al. 2005), proliferate lateral roots in P-rich 
patches (Drew 1975; Robinson 1994; Hodge 2004; Hutchings and John 2004) and 
increase the length and density of root hairs to enlarge the effective surface area of 
the root system, thereby increasing the volume of soil explored for minimal bio-
mass investment (Jungk 2001; Zhang et al. 2003). All these acclimatory responses 
increase P acquisition and plant growth, and there is considerable genetic variation 
both between and within plant species in these traits (e.g. O’Toole and Bland 
1987; Sattelmacher et al. 1990; Klepper 1992; Oyanagi 1994; Barber 1995; 
Bonser et al. 1996; Manske et al. 2000; Lynch and Brown 2001; Stalham and 
Allen 2001; López-Bucio et al. 2002; Chevalier et al. 2003; Rubio et al. 2003; 
Gahoonia and Nielsen 2004a,b; Liao et al. 2004; Yan et al. 2004; Zhu and Lynch 
2004; Ho et al. 2005; Malamy 2005; White et al. 2005a,b; Wissuwa 2005; Zhu 
et al. 2005, 2006; Reymond et al. 2006).
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Increased Pi uptake capacity

The Pi uptake capacity of plant root cells is also increased in P deficient plants 
(Epstein 1972; Lee et al. 1990; Schachtman et al. 1998; Smith FW et al. 2003; 
Raghothama and Karthikeyan 2005; Bucher 2007; Jain et al. 2007b) even in 
the mature, suberised parts of the root (Clarkson et al. 1978; Rubio et al. 
2004), but this is not considered to be a major factor affecting P acquisition 
efficiency (Barber 1995; Horst et al. 2001; White et al. 2005a; Lambers et al. 
2006). Differences in root:shoot biomass ratio, root growth rate, root hair pro-
duction and root system morphology generally account for most variation in P 
acquisition efficiency between and within plant species (Ozanne et al. 1969; 
Fageria et al. 1988; Föhse et al. 1988, 1991; Baligar et al. 2001; Lynch and 
Brown 2001; Dechassa et al. 2003; Wissuwa 2003; Zhu and Lynch 2004; 
White et al. 2005a; Zhu et al. 2005), although the exudation of organic acids 
contributes to the exceptionally high P acquisition efficiency of some crops, 
such as brassica (Hoffland 1992; Dechassa et al. 2003) and white lupin 
(López-Bucio et al. 2000b).

Improved symbiotic associations

To increase their exploration of the soil, most land plants form associations with 
mycorrhizal fungi (Harrison 1999; Karandashov and Bucher 2005; Bucher 2007; 
Smith and Read 2007). This association can benefit both partners, with the fungi 
receiving C from the plants and the plants receiving P and other mineral ele-
ments from the fungi. It is estimated that between 4% and 20% of net photosyn-
thate is transferred from plants to their fungal partners (Johnson et al. 1997; 
Morgan et al. 2005). In return, the fungal partner acquires the mineral elements 
for the symbiosis. The fungal hyphae enlarge the volume of soil explored, 
increase the surface area for Pi uptake, extend into soil pores too small for roots 
to enter and, in some cases, hydrolyze organic P compounds that plants cannot 
(Bieleski 1973; Harrison 1999; Karandashov and Bucher 2005; Morgan et al. 
2005; Bucher 2007). Consequently, roots of mycorrhizal plants can acquire 
between three to five times more Pi than those of non-mycorrhizal plants when 
grown in low P soils (Bieleski 1973; Marschner 1995; Johnson et al. 1997; 
Smith SE et al. 2003; Smith and Read 2007). By contrast, when Pi is readily 
available to plants, the C costs of mycorrhizal associations are not compensated 
for by improved P nutrition and a reduced mycorrhizal colonization of roots is 
often observed (Johnson et al. 1997; Graham 2000; Morgan et al. 2005). It is, 
perhaps, also noteworthy that nodulation and nodule growth in legumes are 
increased as plant P status improves, and this beneficial symbiosis stimulates 
plant growth enormously (Marschner 1995; Vádez et al. 1999; Schulze et al. 
2006; Raven 2008).
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CO-ORDINATING PLANT RESPONSES TO VARIATIONS 
IN P SUPPLY

Plants respond both to tissue P status, enabling the efficient use of C, N, S and P 
resources within the plant, and to local variations in soil Pi availability, enabling the 
proliferation of roots in Pi rich patches (Figure 4.3; White et al. 2005a; Amtmann 
et al. 2006; Hammond and White 2008a). Many of the responses of plants to P 
starvation appear to be initiated, or modulated, by a decrease in the delivery of Pi 
to the shoot (Figure 4.3[1]; Jeschke et al. 1997; Mimura 1999) and the consequent 
reduction in the Pi available for shoot metabolism. This often results in an immedi-
ate reduction in shoot growth rate before root growth is affected (Clarkson and 
Scattergood 1982; Cogliatti and Clarkson 1983). A reduction in [Pi]

cyt
 impacts 

directly on photosynthesis, glycolysis and respiration (Plaxton and Carswell 1999; 
Hammond et al. 2004; Hammond and White 2008a), and changes in carbohydrate 
metabolism are reinforced by transcriptional reprogramming (Hammond et al. 2003, 
2005; Wu et al. 2003; Misson et al. 2005; Hermans et al. 2006; Wasaki et al. 2006; 
Morcuende et al. 2007; Müller et al. 2007). This results in organic acids, starch and 
sucrose accumulating in leaves of P starved plants (Figure 4.3[2]; Rao 
et al. 1990; Cakmak et al. 1994; Ciereszko and Barbachowska 2000; Müller et al. 2004, 
2005, 2007; Wissuwa et al. 2005; Hermans et al. 2006; Morcuende et al. 2007). 
Metabolism is rerouted by employing reactions that do not require Pi or adenylates 

Fig. 4.3 Hypothetical signaling cascades initiating acclimatory responses to P starvation. (Based 
on reviews by White et al. 2005a; Amtmann et al. 2006; and Hammond and White 2008a.)
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(Plaxton and Carswell 1999; Vance et al. 2003; Hammond et al. 2004; Hammond 
and White 2008a) and, under severe P-deficiency, intracellular phosphatases and 
nucleases are induced that remobilize P from cellular metabolites and nucleic acids 
(Bariola et al. 1994; Berger et al. 1995; Bosse and Köck 1998; Brinch-Pedersen et 
al. 2002; Petters et al. 2002; Hammond et al. 2003; Wasaki et al. 2006; Morcuende 
et al. 2007; Müller et al. 2005, 2007). A general decrease in tissue RNA concentra-
tion is also observed (Hewitt et al. 2005). Increased leaf sucrose concentrations 
lead indirectly to (i) a reduction of photosynthesis through the downregulation of 
many photosystem subunits and small subunits of RuBisCo (Paul and Pellny 2003; 
Lloyd and Zakhleniuk 2004; Amtmann et al. 2006; Hermans et al. 2006; Rook et 
al. 2006), (ii) an increase in leaf sulfolipid and galactolipid concentrations through 
the upregulation of genes involved in their biosynthesis (Essigmann et al. 1998; 
Dörmann and Benning 2002; Yu et al. 2002; Andersson et al. 2003, 2005; 
Hammond et al. 2003; Frentzen 2004; Benning and Ohta 2005; Franco-Zorrilla et 
al. 2005; Misson et al. 2005; Cruz-Ramírez et al. 2006; Kobayashi et al. 2006; Li et 
al. 2006), and (iii) the production of anthocyanins through a transcriptional cascade 
involving the transcription factors TTG1-TT8/EGL3-PAP1/PAP2 (Figure 4.3[3]; 
Lloyd and Zakhleniuk 2004; Teng et al. 2005; Amtmann et al. 2006; Solfanelli et 
al. 2006). An increased leaf sucrose concentration also results in the upregulation 
of transporters delivering organic acids and sucrose to the phloem, which facilitates 
the movement of these compounds to the root (Figure 4.3[4]; Gaume et al. 2001; 
Hermans et al. 2006).

The preferential allocation of C to the root system, and the resulting increased 
root:shoot biomass ratio, appears to be a direct consequence of altered shoot 
metabolism and is mediated by increased translocation of sucrose to the root 
(Figure 4.3[5]; Hermans et al. 2006; Hammond and White 2008a). In addition, the 
sucrose delivered to the root acts as a systemic signal (indicating low shoot P status) 
that can initiate changes in gene expression to alter root biochemistry and remodel 
root morphology (Liu et al. 2005; Amtmann et al. 2006; Hermans et al. 2006; 
Hernández et al. 2007; Karthikeyan et al. 2007; Tesfaye et al. 2007; Hammond and 
White 2008a). Increased root sucrose concentrations appear to upregulate genes 
encoding riboregulators, Pi transporters, RNases, phosphatases and metabolic 
enzymes in combination with the PHR1 transcriptional cascade (Figure 4.3[6]), 
whilst its effects on lateral rooting occur through modulation of auxin transport 
(Figure 4.3[7]) and those on root hair development are contingent upon changes in 
auxin transport and the local production of ethylene (Figure 4.3[8]).

The PHR1 protein is a MYB transcription factor that binds to an imperfect-palindromic 
sequence (P1BS; GNATATNC) present in the promoter regions of many genes 
whose expression responds to P starvation (PSR genes). These include genes encoding 
transcription factors, protein kinases, Pi transporters, RNases, phosphatases, metabolic 
enzymes and enzymes involved in the synthesis of sulfolipids and galactolipids 
(Figure 4.3; Rubio et al. 2001; Hammond et al. 2004; Franco-Zorrilla et al. 2004; 
Schünmann et al. 2004; Misson et al. 2005; Jain et al. 2007b). The expression of 
PHR1 appears to be constitutive, but the PHR1 protein is targeted by a small ubiquitin-like 
modifier (SUMO) E3 ligase (SIZ1), whose expression is increased by P starvation 
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(Miura et al. 2005). Since the Arabidopsis siz1 mutant constitutively exhibits 
 phenotypic characteristics of P-deficient plants, it is hypothesized that SIZ1 acts as 
a repressor of plant responses to P starvation (Miura et al. 2005). One target of the 
PHR1 protein appears to be the microRNA family, miR399 (Bari et al. 2006; Chiou 
2007). The expression of miR399 is specifically and rapidly up-regulated by P star-
vation (Fujii et al. 2005; Bari et al. 2006; Chiou et al. 2006). The target gene for 
miR399 is an ubiquitin E2 conjugating enzyme, also identified as the gene responsi-
ble for the pho2 mutant phenotype (AtUBC24; At2g33770; Sunkar and Zhu 2004; 
Fujii et al. 2005; Aung et al. 2006; Bari et al. 2006; Chiou et al. 2006) and the 
expression of AtUBC24 is downregulated during P starvation (Fujii et al. 2005; Bari 
et al. 2006; Chiou et al. 2006). It is thought that AtUBC24 is a negative regulator of 
the expression of a subset of P starvation responsive genes, possibly through other 
intermediary transcription factors (Chiou 2007). Interestingly, there is some 
sequence similarity between miR399 and the TPSI1/Mt4/At4 family of non-coding 
transcripts, which allows them to bind to miR399 (Shin et al. 2006; Chiou 2007; 
Franco-Zorrilla et al. 2007). The expression of the TPSI1/Mt4/At4 family is induced 
rapidly and specifically in response to P starvation (Liu et al. 1997; Burleigh and 
Harrison 1999; Martín et al. 2000; Hou et al. 2005; Shin et al. 2006), and these non-
coding transcripts sequester miR399 and serve to attenuate the miR399- mediated 
transcriptional responses to P starvation (Franco-Zorrilla et al. 2007). The recent 
characterization of the At4 T-DNA knockout mutant suggests that it has a role in the 
internal redistribution of P from the shoots to the roots (Shin et al. 2006). It has a 
similar phenotype to the pho2 mutant, which accumulates more P in leaves than 
wildtype plants (Delhaize and Randall 1995).

Recently, it has become apparent that most alterations in root morphology in 
response to P starvation arise from the interplay of local and systemic signals. 
Changes in the concentration, transport and/or sensitivity to auxin, ethylene, cyto-
kinin and sucrose have all been implicated in the remodeling of root morphology 
in P-deficient plants (Martín et al. 2000; Forde and Lorenzo 2001; López-Bucio 
et al. 2002, 2003, 2005; Al-Ghazi et al. 2003; Casimiro et al. 2003; Casson and 
Lindsey 2003; Ma et al. 2003; Vance et al. 2003; Hammond et al. 2004; Ticconi 
and Abel 2004; Franco-Zorrilla et al. 2005; Malamy 2005; Nacry et al. 2005; White 
et al. 2005a; Amtmann et al. 2006; Jain et al. 2007a; Karthikeyan et al. 2007; 
Hammond and White 2008a), and the observed changes in concentrations of plant 
growth regulators are consistent with changes in the expression of genes known to 
be regulated by, or involved in the regulation of, auxin, ethylene, cytokinin and 
sucrose in roots of P-deficient plants (Al-Ghazi et al. 2003; Casson and Lindsey 
2003; Uhde-Stone et al. 2003; Wu et al. 2003; Misson et al. 2005; Hermans et al. 
2006; Hernández et al. 2007).

Contact of the root cap of P-starved plants with media lacking Pi appears to be 
necessary and sufficient to reduce meristematic activity in primary roots and slow 
their growth, in a response mediated by multicopper oxidases (Ticconi et al. 2004; 
López-Bucio et al. 2005; Sánchez-Calderón et al. 2005, 2006; Svistoonoff et al. 
2007; Jain et al. 2007a). The proliferation of lateral roots of P starved plants in 
regions of increased Pi availability is also contingent upon growth of the primary 
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root apex through these regions (Drew 1975; Robinson 1994; López-Bucio et al. 
2003) but appears to be initiated by changes in auxin transport (López-Bucio et al. 
2002, 2003, 2005; Al-Ghazi et al. 2003; Casimiro et al. 2003; Casson and Lindsey 
2003; Malamy 2005; Nacry et al. 2005; Jain et al. 2007a), with greater sucrose 
availability increasing the responsiveness to auxin (Nacry et al. 2005; Jain et al. 
2007a). It is also promoted by the reduction in cytokinin concentrations in roots of 
P-deficient plants (Martín et al. 2000; López-Bucio et al. 2002; Franco-Zorrilla 
et al. 2002), but the changes in cytokinin signaling during P starvation appear to 
be a secondary consequence of crosstalk between sugar and local P-signaling cas-
cades (Franco-Zorrilla et al. 2005). This phenomenon is comparable to the prolif-
eration of specialized cluster roots in regions of local Pi enrichment observed in 
diverse non-mycorrhizal plant species when they lack sufficient P (Dinkelaker 
et al. 1995; Shane et al. 2003; Shen et al. 2005; Lamont 2003; Lambers et al. 
2006). The  initiation and elongation of root hairs, once thought to be root cell 
autonomous, and regulated solely through local interactions between increasing 
auxin and ethylene concentrations (Bates and Lynch 1996; Jungk 2001; Casson 
and Lindsey 2003; Ma et al. 2003; Ticconi and Abel 2004; Zhang et al. 2003; He 
et al. 2005; Amtmann et al. 2006), now also appears to be modulated by plant P 
status through sucrose  supply to the roots, since the roots of P starved plants have 
more and longer root hairs when supplied with sucrose (Jain et al. 2007a). Finally, 
the topsoil-foraging phenotype of P-deficient plants appears to be modulated pri-
marily by the sensitivity of root gravitropism to ethylene, which increases with P 
starvation (Basu et al. 2007)

THE INFLUENCE OF P NUTRITION ON THE ECOLOGY 
OF TERRESTRIAL PLANTS

The most limiting, or most toxic, mineral element in an environment is likely to 
determine its ecology. In terrestrial ecosystems, recent anthropogenic inputs have 
raised N availability and most environments are now limited by the availability of 
P (Chapin et al. 1986; Güsewell 2004; Wassen et al. 2005). Thus, P availability will 
determine both primary production and species diversity of these ecosystems. In 
wild plants, as in agricultural plants, competitive advantage is gained by effective 
P acquisition and efficient utilization of P for growth and reproduction, and wild 
plants show the full range of responses to low P availability described in the previ-
ous sections. One proxy for the competitive ability of a species growing on P-limited 
soils is a high tissue N:P ratio, although slow growing species, perennials and 
legumes can provide exceptions (Güsewell 2004; Niklas 2008). The remobilization 
of P from senescing to developing leaves (Aerts 1996; Aerts and Chapin 2000; 
McGroddy et al. 2004; Güsewell 2005), and the storage of P between growth 
seasons (Güsewell et al. 2003; Güsewell 2004), are important factors for the P 
economy of wild plants, as is the ability to maintain the P-demands of symbiotic 
N-fixation in N-limited environments (Raven 2008). Supplying reproductive tissues 
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with P is essential. Seeds have higher N and P concentrations and lower N:P ratios 
than vegetative tissues, and wild plants typically allocate between 15% and 60% of 
their P to reproduction depending upon P availability in their environment (Fenner 
1986; Güsewell 2004). Tissue N:P ratio also determines the vulnerability of plants 
to herbivores, decomposers and pathogens.

In soils with extremely low P availability, such as those of Western Australia and 
South Africa, plants must be capable of acquiring P from less abundant and less 
readily-available P sources. This often requires special adaptations, and the flora of 
these regions is dominated by non-mycorrhizal plants that utilize tissue P efficiently 
and produce lateral or cluster roots that secrete citrate in local patches of P-rich soil 
(Dinkelaker et al. 1995; Lamont 2003; Lambers et al. 2006). Such plants include 
Lupinus and Kennedia (Fabales), Cyperaceae and Juncaceae (Poales), and 
Proteaceae (Proteales). Similarly, species that can solubilize P effectively in clayey, 
acid or alkaline soils often dominate the vegetation of these areas. Thus, it is note-
worthy that calcicole and calcifuge plants differ in their efflux of organic acids 
(Ström 1997; Jones 1998). The ability to form mycorrhizal associations does not 
appear to be a specific adaptation to low P availability, since it was an obligate 
requirement for plants to colonize the land and most plant species maintain these 
associations (Karandashov and Bucher 2005; Smith and Read 2007). However, the 
costs and benefits to plants of this symbiosis depend critically on P availability and 
plant P requirements, and it may be disadvantageous under some circumstances 
(Johnson et al. 1997; Graham 2000; Morgan et al. 2005). In less extreme environ-
ments, slower-growing stress-tolerant species with low tissue P requirements and 
high N:P ratios often dominate when P is limiting (Thompson et al. 1997; Grime 
et al. 1997; Aerts and Chapin 2000; Grime 2001; Güsewell 2004). Since grami-
noids generally have lower tissue P concentrations and higher tissue N:P ratios than 
forbs, mixed pastures on soils with a low P availability are generally dominated by 
grasses that can also acquire Pi effectively (Güsewell 2004). It is thought that the 
diversity of plant species is highest in P-limited soils since P is relatively immobile 
in the soil and different plants show contrasting foraging strategies and/or acquire 
P from different sources, thereby minimizing competition (Janssens et al. 1998; 
Güsewell 2004; McCrea et al. 2004; Güsewell et al. 2005). In fact, a recent survey 
of temperate Eurasia suggests that P-limitation favors the persistence of endangered 
plant species (Wassen et al. 2005). However, this is not always observed. For example, 
shifts in the dominance of clonal graminoids can reduce the diversity of plant species 
on soils with low P availability through exclusion (Güsewell 2004).

Species composition changes rapidly after mineral fertilization and the long-
term effects of a single fertilization event can persist for many decades, through its 
combined effects on plant and microbial community structures (Güsewell 2004). In 
the first year, the effects of fertilisation are often determined by the responses of 
species that dominated the original plant community that grow rapidly or are better 
able to exploit the timing or method of fertilisation. In subsequent years, subordi-
nate or new species with different nutrient requirements may increase in abundance 
and reach dominance. Intriguingly, a heterogeneous distribution of mineral availa-
bility can increase the total biomass of plant communities more than a homogeneous 
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supply (Hutchings and John 2004). It is expected that P-fertilisation will promote 
the growth of faster-growing plants with higher P requirements for growth and 
lower tissue N:P ratios (e.g. Bradshaw et al. 1960; Mamolos et al. 1995; Thompson 
et al. 1997; Elser et al. 2000b; Güsewell et al. 2003). These are primarily ruderal 
plant species, which are often annual species or short-lived perennials with high 
reproductive allocation and, consequently, greater P requirements, but also include 
competitive plant species (Thompson et al. 1997; Güsewell 2004; Han et al. 2005). 
An increase in the abundance of forbs and bryophytes, relative to grasses, is often 
observed following P fertilization (Güsewell 2004). In addition, since P-fertilisation 
promotes the growth of legumes and nitrogenase activity in their nodules (Smith 
1992; Stöcklin et al. 1998), P-fertilisation of a N-limited environment can alter 
plant communities dramatically by increasing N availability.

PHOSPHORUS MANAGEMENT FOR SUSTAINABLE 
AGRICULTURE

Given that P limits agricultural productivity, and that Pi fertilizers are a finite 
resource, agronomists and plant breeders must work together to reduce the Pi-fertilizer 
inputs to agriculture without compromising yield or quality. This might be effected 
by improved agronomic strategies, greater use of alternative P-fertilizers, such as 
manures, animal wastes and recovered phosphates (Raven 2008), and through the 
development of crop genotypes that are more efficient in acquiring P from the soil 
and/or in utilizing P more economically in their tissues (Gahoonia and Nielsen 
2004a; White et al. 2005a; Lambers et al. 2006).

In many developed countries, generous applications of P fertilizers in the past 
have led to an increase in soil P reserves, especially in arable areas, and many crops 
now show little response to P-fertilizer applications (Mengel and Kirkby 2001; 
Kirkby and Johnston 2008). In these circumstances, recommended fertilizer appli-
cations are often based on replacing P losses to the environment plus the P offtake 
by crops (e.g. Defra 2000). To reduce P fertilizer inputs to these crops, management 
practices should optimize the timing, placement and formulation of P-fertilizers to 
reduce P losses to the environment. This can be assisted by the use of decision sup-
port systems (Mengel 1997; Heathwaite et al. 2003; Fixen 2005; Zhang et al. 2007; 
Hammond and White 2008b), modern fertilizer placement techniques (Bryson 
2005; Gregory and George 2005; White et al. 2005b) and the use of slow release 
fertilizers (Perrott and Kear 2000). These techniques can be complemented by 
growing crops that acquire P effectively from agricultural soils. For example, since 
P becomes concentrated in the surface/ploughed layers of agricultural soils, crop 
genotypes with a topsoil foraging phenotype would maximize P acquisition, but 
could make them susceptible to other edaphic or climatic stresses, such as drought. 
To reduce the P off-take by crops, the plant P requirements for optimal yields must 
be minimized. In regions where low soil P availability compromises crop produc-
tion, which apparently exceed 5.7 billion hectares of potential agricultural land 
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worldwide, improved agronomic practice and plant breeding should aim to increase 
P availability and acquisition. Liming can improve P availability in Pi-fixing soils 
with low pH (Mengel and Kirkby 2001). In some situations, the incorporation of 
soil organic matter into soils will improve the use of soil and fertilizer P, since 
organic compounds compete with Pi for binding sites on clays (Mengel 1997; Horst 
et al. 2001). Crop traits that improve P availability and acquisition include the 
development of an extensive root system, the release of organic acids and enzymes 
into the rhizosphere and the cultivation of beneficial associations with soil micro-
organisms. Again, a reduced plant P requirement for optimal yields may be 
beneficial.

The P-use efficiency (PUE) of plants has been defined in many ways (Gourley 
et al. 1994; Baligar et al. 2001; Greenwood et al. 2005; Gregory and George 2005; 
White et al. 2005a). The following four definitions are used most often: (1) the 
increase in yield per unit P in the soil, which is often referred to as agronomic P 
efficiency (APE), (2) the amount of P in a plant divided by its root biomass, which 
is referred to as P acquisition efficiency (PAE), (3) the amount of P in a plant 
divided by the amount of P in the soil, which is referred to as P uptake efficiency 
(PUpE), and (4) crop yield divided by amount of P in the plant, which is referred 
to as tissue, or physiological, P utilization efficiency (PUtE). It will be apparent that 
APE is the product of PUpE and PUtE. For this reason, genetic strategies to 
increase the yield of crops on low P soils have focused on improving P acquisition 
by roots and tissue P utilization efficiency.

Earlier in this chapter, it was observed that greater root:shoot biomass ratios, 
root growth rates and root hair production, together with the proliferation of lateral 
roots in regions of local P availability and the exudation of organic acids and 
enzymes into the rhizosphere are the traits required for effective P mobilization and 
acquisition by plants. There is considerable genetic variation in all these traits in 
most crops, which might be selected through conventional breeding programs. In 
addition, it has been suggested that knowledge of the mechanisms whereby plants 
sense and respond to P availability in soils could facilitate selection, breeding and 
GM approaches to improve crop production on soils with low P availability (Vance 
et al. 2003; Hammond et al. 2004; White et al. 2005a; Jain et al. 2007b). The tran-
scriptional cascades controlling appropriate facets of root morphology and/or the 
release of organic acids and enzymes into the rhizosphere could be targeted. 
Transgenic plants secreting more and/or different organic acids and hydrolytic 
enzymes into the rhizosphere have been engineered (Koyama et al. 2000; López-
Bucio et al. 2000a,b; Richardson et al. 2001; Mudge et al. 2003; Zimmermann
et al. 2003; George et al. 2004, 2005a,b; Xiao et al. 2005, 2006; George and 
Richardson 2008). However, although these genetic manipulations have shown 
promising results, they have not always been successful in promoting plant growth 
in natural soils (Delhaize et al. 2001; George et al. 2004, 2005a,b; George and 
Richardson 2008).

There is considerable variation both between and within crop species in the critical 
tissue P concentration required for maximum growth (Fageria et al. 1988; Fageria 
and Baligar 1997, 1999; Baligar et al. 2001; Osborne and Rengel 2002; Bentsink 
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et al. 2003; Trehan and Sharma 2003; Zhu and Lynch 2004; Ozturk et al. 2005; 
White et al. 2005a,b). However, differences in the response of yield to P fertilisa-
tion do not appear to be correlated with PUtE (Greenwood et al. 1980; Alt 1987; 
Föhse et al. 1988; Fageria and Baligar 1999; Ozturk et al. 2005). Thus, selection 
for greater PUtE does not appear to be an effective strategy for developing crops 
that yield well on soils with low P availability. However, genotypes of crops that 
yield well and have lower tissue P concentrations can be used to reduce P-fertilizer 
inputs to soils on that require only maintenance P fertilisation.
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