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Foreword

In theory, there is no difference between theory and practice.

But in practice, there is.

Yogi Berra

In the last decade, statistics education has received growing recognition as a disci-
pline and has begun to accumulate a body of research. However, this research has
not always had a meaningful and visible impact on student learning and classroom
practice. Even among those who consider statistics education their primary pro-
fessional focus, there has not been widespread effort to carefully consider existing
research in terms of its implications for content and pedagogy in practice. This is a
situation very much deserving of our attention if we wish to be taken seriously as
teaching professionals.

The Teaching Professional Challenge

Consider the following scenario:

You visit your doctor for advice about how to best treat a relatively common illness. The
doctor says “Well, I always just tell my patients to take an aspirin and get some sleep. It’s not
very effective, but some people get better. I know that there have been some recent research
studies looking at the effectiveness of this treatment and also looking at some alternative
approaches, but frankly I just haven’t had the time to read them carefully or to think about
how they might apply to my patients. So, why don’t you go home, take an aspirin and get
some sleep.”

How would you react? I am guessing that you wouldn’t just say thank you and
head home for a nap. I know I would be looking for a new doctor and would have
been extremely disappointed by a doctor that I felt did not live up to professional
expectations. We expect professionals to stay abreast of research in their respective
fields and for research to inform their practice.

Granted, the scenario above is contrived to make a point, but hopefully you can
already see where this is headed. While we expect professionals in other fields to
stay current and to be able to understand the implications of research on practice,
for some reason this has not been an expectation of teaching professionals. It seems
to me that this is an embarrassing situation and something we should be working
hard to change. This presents an enormous challenge, but also a great and exciting
opportunity.

v



vi Foreword

Where Do We Begin?

My hope is that statistics educators will take up the “teaching professional” chal-
lenge, and that is why I am delighted to see the publication of this book. It provides
an excellent starting point, providing a forum for sharing existing research results
relevant to statistics education and offering guidance in terms of implications for
classroom practice. Statistics education related research from across many disci-
plines has now been summarized in one coherent work, creating a solid foundation
for future statistics education research. This affords statistics educators easy access
to this body of work and insight into implications for classroom practice, and it also
provides great motivation for statistics education researchers to develop research
questions with potential classroom impact. But even more important, this book pro-
vides a model for linking research to practice that I hope will motivate statistics
educators to continue the process of seeking out (or conducting) relevant research
and using what is learned to make informed classroom decisions.

Moving Statistics Education Forward – Translating Research
into Practice

There are great opportunities on the horizon, should we choose to take advantage of
them – opportunities to facilitate changes that will lead to improved student under-
standing as well as opportunities to increase the perceived value and legitimacy of
statistics education as an important discipline. This book makes an important and
timely contribution by demonstrating how we, as statistics educators, can begin to
take advantage of these opportunities. What is needed now is the motivation, the
energy, and the dedication to acknowledge the value of statistics education research
by putting it into practice in ways that improve student learning.

Read this book and then use it as a model to help you put research into practice!

Roxy Peck California Polytechnic State University
San Luis Obispo, USA



Preface

Statistics education has emerged as an important discipline that supports the teach-
ing and learning of statistics. The research base for this new field has been increas-
ing in size and scope, but has not always been connected to teaching practice nor
accessible to the many educators teaching statistics at different educational levels.
Our goal in writing this book was to provide a useful resource for members of
the statistics education community that facilitates the connections between research
and teaching. Although the book is aimed primarily at teachers of an introductory
statistics course at the high school or college level, we encourage others interested
in statistics education to consider how the research summaries, ideas, activities, and
implications may be useful in their line of work as well.

This book builds on our commitment over the past decade to exploring ways to
understand and develop students’ statistical literacy, reasoning, and thinking. De-
spite living and teaching in two different countries, we have worked together to
understand and promote the scholarship in this area. After co-chairing five interna-
tional research forums (SRTL), co-editing a book (The Challenge of Developing Lit-
eracy, Reasoning, and Thinking, Ben-Zvi & Garfield, 2004b), and serving as guest
editors for two special issues of SERJ (Statistics Education Research Journal), it
seemed the right time to finally write a book together that is built on our knowledge,
experience, and passion for statistics education. It has been a great experience work-
ing on this book, which required ongoing reading, writing, discussing, and learning.
It took 3 years to write and revise this book, which required visits to each other’s
homes, phone calls, and innumerable email exchanges. We now offer our book to
the statistics education community and hope that readers will find it a useful and
valuable resource.

The book is divided into three parts. Part I consists of five chapters on impor-
tant foundational topics: the emergence of statistics education as a discipline, the
research literature on teaching and learning statistics, practical strategies for teach-
ing students in a way that promotes the development of their statistical reasoning,
assessment of student outcomes, and the role of technological tools in developing
statistical reasoning.

Part II of the book includes nine chapters, each devoted to one important statisti-
cal idea: data, statistical models, distribution, center, variability, comparing groups,
sampling and sampling distributions, statistical inference, and covariation. These
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viii Preface

chapters present a review and synthesis of the research literature related to the statis-
tical topic, and then suggest implications for developing this idea through carefully
structured sequences of activities.

Part III of the book focuses on what we see as the crucial method of bring-
ing about instructional change and implementing ideas and methods in this book:
through collaboration. One chapter focuses on collaborative student learning, and
the other chapter discusses collaborative teaching and classroom-based collabora-
tive research.

Although we have presented the chapters in Part II in the order in which we think
they may be introduced to students, we point out that readers may want to read these
chapters in an alternative order. For example, one of our reviewers suggested reading
Chapters 6, 9, and 10 before the rest of the chapters in Part II. Another suggestion
was to read Chapters 1 and 2 and then skip to Part II, then return to Chapters 3, 4, 5,
15 and 16.

The suggested activities in Part II have in many cases been adapted from activities
developed by others in the statistics education community, and we present a table
of all activities described in Part II that credits a source, where possible. However,
we note that sometimes it was impossible to track down the person who developed
an activity used in the book, because no one was willing to take credit for it. If
we have failed to credit a creator of an activity used in our book, we apologize
for this oversight. We also note that the activities and lessons are based on partic-
ular technological tools we like, such as TinkerPlots and Fathom, and certain Web
applets. However, we acknowledge that instructors may choose to use alternative
technological tools that they have access to or prefer.

This project would have been impossible without the help of several dedicated
and hard working individuals. First and most importantly, we would like to thank
four individuals who made important contributions to writing specific chapters. Beth
Chance took the lead in developing the chapters on assessment and technology
(assisted by Elsa Medina) and provided insightful feedback on the research chap-
ter. Cary Roseth wrote the majority of the chapter on collaborative learning and
provided feedback on the chapter on collaborative teaching and research as well.
Andy Zieffler provided valuable assistance in writing the chapter on covariational
reasoning and also gave helpful advice on additional chapters of the book.

The lessons and activities described in this book were developed and modified
over the past 4 years as part of a collaborative effort of the undergraduate statistics
teaching team in the Department of Educational Psychology at the University of
Minnesota. This team has included Beng Chang, Jared Dixon, Danielle Dupuis,
Sharon Lane-Getaz, and Andy Zieffler. We greatly appreciate the contributions of
these dedicated graduate students and instructors in developing and revising the
lessons, and particularly the leadership of Andy Zieffler in coordinating this group
and providing feedback on needed changes. We also appreciate Andy’s work in
constructing the Website that posts the lesson plans and activities described in Part
II, and the funding for this (as part of the AIMS project) by the National Science
Foundation (DUE 0535912).
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We gratefully acknowledge the tremendously valuable feedback offered by six
reviewers of our earlier manuscript: Gail Burrill, Michelle Everson, Randall Groth,
Larry Lesser, Roxy Peck, and Mike Shaughnessy. We hope they will see how we
have utilized and incorporated their suggestions. We also appreciate feedback and
encouragement offered by the original reviewers of first chapters and prospectus.
We also gratefully acknowledge the important contributions of advisers to the NSF
AIMS project who offered feedback on lessons and activities as well as on the Web-
site. They are Beth Chance, Bill Finzer, Cliff Konold, Dennis Pearl, Allan Rossman,
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book, and to Harmen van Paradijs, the editor, who skillfully managed the publication
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Joan B. Garfield University of Minnesota, USA
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Contents

Part I The Foundations of Statistics Education

1 The Discipline of Statistics Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Research on Teaching and Learning Statistics . . . . . . . . . . . . . . . . . . . . . 21

3 Creating a Statistical Reasoning Learning Environment . . . . . . . . . . . . 45

4 Assessment in Statistics Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Using Technology to Improve Student Learning of Statistics . . . . . . . . 91

Part II From Research to Practice: Developing the Big Ideas of Statistics

Introduction: Connecting Research to Teaching Practice . . . . . . . . . . . . . . . . 117

6 Learning to Reason About Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7 Learning to Reason About Statistical Models and Modeling . . . . . . . . . 143

8 Learning to Reason About Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

9 Learning to Reason About Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

10 Learning to Reason About Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

11 Learning to Reason About Comparing Groups . . . . . . . . . . . . . . . . . . . . 215

12 Learning to Reason About Samples and Sampling Distributions . . . . . 235

13 Learning to Reason About Statistical Inference . . . . . . . . . . . . . . . . . . . . 261

14 Learning to Reason About Covariation . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

xi



xii Contents

Part III Implementing Change Through Collaboration

Introduction: The Role of Collaboration in Improving Statistics
Education in Learning, in Teaching, and in Research . . . . . . 311

15 Collaboration in the Statistics Classroom . . . . . . . . . . . . . . . . . . . . . . . . . . 313

16 Collaboration in Teaching and Research . . . . . . . . . . . . . . . . . . . . . . . . . . 325

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

Appendix: Tables of Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405



Part I
The Foundations of Statistics Education



Chapter 1
The Discipline of Statistics Education1

The case for substantial change in statistics instruction is built
on strong synergies between content, pedagogy,
and technology.

Moore (1997, p. 123)Overview

This chapter introduces the emerging discipline of statistics education and considers
its role in the development of students who are statistically literate and who can think
and reason about statistical information. We begin with information on the growing
importance of statistics in today’s society, schools and colleges, summarize unique
challenges students face as they learn statistics, and make a case for the importance
of collaboration between mathematicians and statisticians in preparing teachers to
teach students how to understand and reason about data. We examine the differences
and interrelations between statistics and mathematics, recognizing that mathematics
is the discipline that has traditionally included instruction in statistics, describe the
history of the introductory college course, introduce current instructional guidelines,
and provide an overview of the organization and content of this book.

The Growing Importance of Statistics

No one will debate the fact that quantitative information is everywhere and nu-
merical data are increasingly presented with the intention of adding credibility to
advertisements, arguments, or advice. Most would also agree that being able to pro-
vide good evidence-based arguments and to be able to critically evaluate data-based
claims are important skills that all citizens should have, and therefore, that all stu-
dents should learn as part of their education (see Watson, 2006). It is not surprising
therefore that statistics instruction at all educational levels is gaining more students
and drawing more attention.

The study of statistics provides students with tools and ideas to use in order
to react intelligently to quantitative information in the world around them. Re-
flecting this need to improve students’ ability to think statistically, statistics and
statistical reasoning are becoming part of the mainstream school curriculum in

1 This chapter is partly based on the following paper: Ben-Zvi, D., & Garfield J. (in press).
Introducing the emerging discipline of statistics education. School Science and Mathematics.

J.B. Garfield, D. Ben-Zvi, Developing Students’ Statistical Reasoning,
C© Springer Science+Business Media B.V. 2008
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4 1 The Discipline of Statistics Education

many countries (e.g., Mathematics Curriculum Framework for Western Australia,
http://www.curriculum.wa.edu.au/; Mathematics National Curriculum for England,
http://www.nc.uk.net/; National Council of Teachers of Mathematics in the U.S.,
2000). At the U.S. college level enrollments in statistics courses continue to grow
(Scheaffer & Stasney, 2004). Statistics is becoming such a necessary and important
area of study, Moore (1998) suggested that it should be viewed as one of the lib-
eral arts, and that it involves distinctive and powerful ways of thinking. He wrote:
“Statistics is a general intellectual method that applies wherever data, variation, and
chance appear. It is a fundamental method because data, variation, and chance are
omnipresent in modern life” (p. 134).

The Challenge of Learning and Teaching Statistics

Despite the increase in statistics instruction at all educational levels, historically
the discipline and methods of statistics have been viewed by many students as a
difficult topic that is unpleasant to learn. Statisticians often joke about the negative
comments they hear when others learn of their profession. It is not uncommon for
people to recount tales of statistics as the worst course they took in college. Many
research studies over the past several decades indicate that most students and adults
do not think statistically about important issues that affect their lives. Researchers in
psychology and education have documented the many consistent errors that students
and adults make when trying to reason about data and chance in real world prob-
lems and contexts. In their attempts to make the subject meaningful and motivating
for students, many teachers have included more authentic activities and the use of
new technological tools in their instruction. However, despite the attempts of many
devoted teachers who love their discipline and want to make the statistics course
an enjoyable learning experience for students, the image of statistics as a hard and
dreaded subject is hard to dislodge. Currently, researchers and statistics educators
are trying to understand the challenges and overcome the difficulties in learning and
teaching this subject so that improved instructional methods and materials, enhanced
technology, and alternative assessment methods may be used with students learning
statistics at the school and college level.

In our previous book (Ben-Zvi & Garfield, 2004b) we list some of the reasons
that have been identified to explain why statistics is a challenging subject to learn
and teach. Firstly, many statistical ideas and rules are complex, difficult, and/or
counterintuitive. It is therefore difficult to motivate students to engage in the hard
work of learning statistics. Secondly, many students have difficulty with the underly-
ing mathematics (such as fractions, decimals, proportional reasoning, and algebraic
formulas) and that interferes with learning the related statistical concepts. A third
reason is that the context in many statistical problems may mislead the students,
causing them to rely on their experiences and often faulty intuitions to produce an
answer, rather than select an appropriate statistical procedure and rely on data-based
evidence. Finally, students equate statistics with mathematics and expect the focus
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to be on numbers, computations, formulas, and only one right answer. They are
uncomfortable with the messiness of data, the ideas of randomness and chance, the
different possible interpretations based on different assumptions, and the extensive
use of writing, collaboration and communication skills. This is also true of many
mathematics teachers who find themselves teaching statistics.

The Goals of This Book

Despite the growing body of research related to teaching and learning statistics,
there have been few direct connections made between the research results and prac-
tical suggestions for teachers. Teachers of statistics may be looking for suggestions
from the research literature but find it hard to locate them since studies are pub-
lished in journals from other disciplines that are not readily accessible. In addition,
many research studies have been conducted in settings that do not seem to easily
transfer to the high school or college classroom (e.g., studies in a psychology lab, or
studies in a teaching experiment at an elementary school), or have been carried out
using methods with which most statisticians are not familiar (e.g., studies involving
collection and analysis of extensive qualitative data). Statisticians, in contrast, are
more familiar with randomized controlled experiments and often look for studies
using these methods, set in high school or college classrooms, to provide results to
inform their teaching.

We find it fascinating that statistics education has been the focus for researchers
in many disciplines, perhaps because statistical reasoning is used in many disciplines
and provides so many interesting issues and challenges. Today, researchers in math-
ematics education study children’s understanding of statistical concepts as well as
how they learn to use data analysis meaningfully. They also study how K-12 teachers
understand statistical ideas and methods and how this affects the way they teach
children. Researchers in psychology explore judgments and decisions made in light
of uncertainty, and the use of intuitions and heuristics in dealing with uncertainty.
Researchers in educational measurement study the assessment of statistical anxiety
and attitudes towards statistics, as well as factors that predict student achievement in
statistics courses such as mathematics background and motivation. Only recently has
there been a core set of researchers looking at understanding of and reasoning about
particular statistical concepts, how they might be developed through carefully planned
sequences of activities, and how this might take place in the classrooms.

Our main goal in writing this book was to build on relevant research that informs
the teaching and learning of statistics to enhance two aspects of teachers’ knowl-
edge: their knowledge of what it means for students to understand and reason about
statistical concepts, and the pedagogical methods for developing understanding and
reasoning about these concepts. We try to summarize the research and highlight the
important statistical concepts for teachers to emphasize, as well as reveal the inter-
relationships among concepts. We also make specific suggestions regarding how to
plan and use classroom activities, integrate technological tools, and assess students’
learning in meaningful ways.
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The goals listed above are aimed to help instructors of statistics deal with the
challenges they face, to suggest ways that may help to make statistics instruction
more effective, and to engage students in reasoning and thinking statistically. By
compiling and building on the various research studies that shed light on the dif-
ficulties students have learning statistics, we are able to offer suggestions for how
students may be guided to construct meaning for complex statistical ideas, concepts
and procedures. The research literature is often difficult for statistics teachers to
find and access, synthesize, and apply to their teaching practice. Therefore, we try
in this book to provide links between the research literature and teaching practice.
We include examples, activities, and references to useful resources. We also incor-
porate many uses of instructional software and Web tools and resources. Finally,
we offer an accompanying Website with materials to supplement each chapter (see
http://www.tc.umn.edu/∼aims).

We begin this first chapter with a brief introduction and historical perspective of
the emerging field of statistics education and the development of the introductory
college course, we present arguments for how statistics differs from mathematics,
focus on the importance of statistical reasoning, and provide an overview of the
subsequent chapters in this book.

The Development of the Field of Statistics Education

Statistics education is an emerging field that grew out of different disciplines and is
currently establishing itself as a unique field of study. The two main disciplines from
which statistics education grew are statistics and mathematics education. As early as
1944 the American Statistical Association (ASA) developed the Section on Training
of Statisticians (Mason, McKenzie, & Ruberg, 1990) that later (1973) became the
Section on Statistical Education. The International Statistical Institute (ISI) simi-
larly formed an education committee in 1948. The early focus in the statistics world
was on training statisticians, but this later broadened to include training, or educa-
tion, at all levels. In the 1960s an interest emerged in the mathematics education field
about teaching students at the pre-college level how to use and analyze data. In 1967
a joint committee was formed between the American Statistical Association (ASA)
and the National Council of Teachers of Mathematics (NCTM) on Curriculum in
Statistics and Probability for grades K-12. In the early 1970s many instructional
materials began to be developed in the USA and in other countries to present sta-
tistical ideas in interesting and engaging ways, e.g., the series of books Statistics
by Example, by Mosteller, Rourke, and Thomas (1973e) and Mosteller, Kruskal,
Pieters, and Rising (1973a, 1973b, 1973c, 1973d), and Statistics: A Guide to the
Unknown by Tanur et al. (1972), which was recently updated (Peck et al., 2006).

In the late 1970s the ISI created a task force on teaching statistics at school level
(Gani, 1979), which published a report, Teaching Statistics in Schools throughout
the World (Barnett, 1982). This report surveyed how and where statistics was being
taught, with the aim of suggesting how to improve and expand the teaching of this
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important subject. Although there seemed to be an interest in many countries in
including statistics in the K-12 curriculum, this report illustrated a lack of coordi-
nated efforts, appropriate instructional materials, and adequate teacher training.

By the 1980s the message was strong and clear: Statistics needed to be incor-
porated in pre-college education and needed to be improved at the postsecondary
level. Conferences on teaching statistics began to be offered, and a growing group
of educators began to focus their efforts and scholarship on improving statistics
education. The first International Conference on Teaching Statistics (ICOTS) was
convened in 1982 and this conference has been held in a different part of the
world every 4 years since that date (e.g., ICOTS-7, 2006, see http://www.maths.
otago.ac.nz/icots7/icots7.php; ICOTS-8, 2010, see http://icots8.org/).

In the 1990s there was an increasingly strong call for statistics education to focus
more on statistical literacy, reasoning, and thinking. One of the main arguments pre-
sented is that traditional approaches to teaching statistics focus on skills, procedures,
and computations, which do not lead students to reason or think statistically. In their
landmark paper published in the International Statistical Review, which included
numerous commentaries by leading statisticians and statistics educators, Wild and
Pfannkuch (1999) provided an empirically-based comprehensive description of the
processes involved in the statisticians’ practice of data-based enquiry from problem
formulation to conclusions. Building on the interest in this topic, The International
Research Forums on Statistical Reasoning, Thinking, and Literacy (SRTL) began
in 1999 to foster current and innovative research studies that examine the nature
and development of statistical literacy, reasoning, and thinking, and to explore the
challenge posed to educators at all levels – and to develop these desired learning
goals for students. The SRTL Forums offer scientific gatherings every 2 years and
related publications (for more information see http://srtl.stat.auckland.ac.nz). Addi-
tional explanations and reference to publications explicating the nature and devel-
opment of statistical literacy, reasoning and thinking are summarized in Chapters 2
and 3 and other relevant chapters in this book.

One of the important indicators of a new discipline is scientific publications de-
voted to that topic. At the current time, there are three journals. Teaching Statis-
tics, which was first published in 1979, and the Journal of Statistics Education,
first published in 1993, were developed to focus on the teaching of statistics
as well as statistics education research. While recently the Statistical Education
Research Journal (first published in 2002) was established to exclusively publish
research in statistics education. More information on books, conferences, and pub-
lications in statistics education is provided at the resources section in the end of this
book.

Collaborations Among Statisticians and Mathematics Educators

Some of the major advances in the field of statistics education have resulted
from collaborations between statisticians and mathematics educators. For exam-
ple, the Quantitative Literacy Project (QLP) was a decade-long joint project of the
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American Statistical Association (ASA) and the National Council of Teachers of
Mathematics (NCTM) headed by Richard Scheaffer that developed exemplary mate-
rials for secondary students to learn data analysis and probability (Scheaffer, 1990).
The QLP first produced materials in 1986 (Landwehr & Watkins, 1986). Although
these materials were designed for students in middle and high school, the activities
were equally appropriate for college statistics classes, and many instructors began
to incorporate these activities into their classes. Because most college textbooks
did not have activities featuring real data sets with guidelines for helping students
explore and write about their understanding, as the QLP materials provided, addi-
tional resources continued to be developed. Indeed, the QLP affected the nature of
activities in many college classes in the late 1980s and 1990s and led to the Activity
Based Statistics project, also headed by Richard Scheaffer, designed to promote the
use of high quality, well structured activities in class to promote student learning
(Scheaffer, Watkins, Witmer, & Gnanadesikan, 2004a, 2004b).

Members of the statistics and mathematics education disciplines have also worked
together on developing the Advanced Placement (AP) statistics course. This col-
lege level introductory statistics course was first taught to high school students in
the U.S. in 1996–97 and the first exam was given in 1997, as part of the College
Board Advanced Placement Program. Currently hundreds of high school mathe-
matics teachers and college statistics teachers meet each summer to grade together
the open-ended items on the AP Statistics exam, and have opportunities to discuss
teaching and share ideas and resources.

More recent efforts to connect mathematics educators and statisticians to improve
the statistical preparation of mathematics teachers include the ASA TEAMS project
(see Franklin, 2006). A current joint study of the International Association for Statis-
tical Education (IASE) and the International Congress on Mathematics Instruction
(ICMI) is also focused on this topic (see http://www.ugr.es/∼icmi/iase study/).

Statistics and Mathematics

Although statistics education grew out of statistics and mathematics education,
statisticians have worked hard to convince others that statistics is actually a separate
discipline from mathematics. Rossman, Chance, and Medina (2006) describe statis-
tics as a mathematical science that uses mathematics but is a separate discipline,
“the science of gaining insight from data.” Although data may seem like numbers,
Moore (1992) argues that data are “numbers with a context.” And unlike mathe-
matics, where the context obscures the underlying structure, in statistics, context
provides meaning for the numbers and data cannot be meaningfully analyzed with-
out paying careful consideration to their context: how they were collected and what
they represent (Cobb & Moore, 1997).

Rossman et al. (2006) point out many other key differences between mathematics
and statistics, concluding that the two disciplines involve different types of rea-
soning and intellectual skills. It is reported that students often react differently to
learning mathematics than learning statistics, and that the preparation of teachers
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of statistics requires different experiences than those that prepare a person to teach
mathematics, such as analyzing real data, dealing with the messiness and variability
of data, understanding the role of checking conditions to determine if assumptions
are reasonable when solving a statistical problem, and becoming familiar with sta-
tistical software.

How different is statistical thinking from mathematical thinking? The following
example illustrates the difference. A statistical problem in the area of bivariate data
might ask students to determine the equation for a regression line, specifying the
slope and intercept for the line of best fit. This looks similar to an algebra prob-
lem: numbers and formulas are used to generate the equation of a line. In many
statistics classes taught by mathematicians, the problem might end at this stage.
However, if statistical reasoning and thinking are to be developed, students would
be asked questions about the context of the data and they would be asked to describe
and interpret the relationship between the variables, determining whether simple
linear regression is an appropriate procedure and model for these data. This type
of reasoning and thinking is quite different from the mathematical reasoning and
thinking required to calculate the slope and intercept using algebraic formulas. In
fact, in many classes, students may not be asked to calculate the quantities from
formulas, but rather rely on technology to produce the numbers. The focus shifts to
asking students to interpret the values in context (e.g., from interpreting the slope
as rise over run to predicting change in response for unit-change in explanatory
variable).

In his comparison of mathematical and statistical reasoning, delMas (2004) ex-
plains that while these two forms of reasoning appear similar, there are some differ-
ences that lead to different types of errors. He posits that statistical reasoning must
become an explicit goal of instruction if it is to be nourished and developed. He
also suggests that experiences in the statistics classroom focus less on the learning
of computations and procedures and more on activities that help students develop
a deeper understanding of stochastic processes and ideas. One way to do this is to
ground learning in physical and visual activities to help students develop an under-
standing of abstract concepts and reasoning.

In order to promote statistical reasoning, Moore (1998) recommends that students
must experience firsthand the process of data collection and data exploration. These
experiences should include discussions of how data are produced, how and why
appropriate statistical summaries are selected, and how conclusions can be drawn
and supported (delMas, 2002). Students also need extensive experience with recog-
nizing implications and drawing conclusions in order to develop statistical thinking.
(We believe future teachers of statistics should have these experiences as well). We
have tried to imbed these principles in specific chapters of this book (Chapters 6–14)
suggesting how different statistical concepts may be taught as well as in the overall
chapters on pedagogical issues in teaching statistics (Chapters 3–5).

Recommendations such as those by Moore (1998) have led to a more modern or
“reformed” college-level statistics course that is less like a mathematics course and
more like an applied science. The next sections provide some background on this
course and the trajectory that led to this change.
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Changes in the Introductory College Statistics Course

In his forward to Innovations in Teaching Statistics (Garfield, 2005), George Cobb
described how the modern introductory statistics course has roots that go back to
early books on statistical methods (i.e., Fisher’s, 1925 Statistical Methods for Re-
search Workers and Snedecor’s, 1937 Statistical Methods). Cobb wrote:

By 1961, with the publication of Probability with Statistical Ap-
plications by Fred Mosteller, Robert Rourke, and George Thomas,
statistics had begun to make its way into the broader academic
curriculum, but here again, there was a catch: in these early years,
statistics had to lean heavily on probability for its legitimacy. During
the late 1960s and early 1970s, John Tukey’s ideas of exploratory
data analysis (EDA) brought a near-revolutionary pair of changes to
the curriculum, first, by freeing certain kinds of data analysis from
ties to probability-based models, so that the analysis of data could
begin to acquire status as an independent intellectual activity, and
second, by introducing a collection of “quick-and-dirty” data tools,
so that, for the first time in history, students could analyze real data
without having to spend hours chained to a bulky mechanical calcu-
lator. Computers would later complete the “data revolution” in the
beginning statistics curriculum, but Tukey’s EDA provided both the
first technical breakthrough and the new ethos that avoided invented
examples. 1978 was another watershed year, with the publication of
two other influential books, Statistics, by David Freedman, Robert
Pisani, and Roger Purves, and Statistics: Concepts and Controver-
sies, by David S. Moore. I see the publication of these two books 25
years ago as marking the birth of what we regard, for now at least,
as the modern introductory statistics curriculum.

The evolution of content has been paralleled by other trends. One
of these is a striking and sustained growth in enrollments. Two sets
of statistics suffice here: (1) At two-year colleges, according to the
Conference Board of the Mathematical Sciences, statistics enroll-
ments have grown from 27% of the size of calculus enrollments in
1970, to 74% of the size of calculus enrollments in 2000. (2) The
Advanced Placement exam in statistics was first offered in 1997.
There were 7,500 students who took it that first year, more than in
the first offering of an AP exam in any subject. The next year more
than 15,000 students took the exam, the next year more than 25,000,
and the next, 35,000.

Both the changes in course content and the dramatic growth in
enrollments are implicated in a third set of changes, a process of
democratization that has broadened and diversified the backgrounds,
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interests, and motivations of those who take the courses. Statistics
has gone from being a course taught from a book like Snedecor’s,
for a narrow group of future scientists in agriculture and biology,
to being a family of courses, taught to students at many levels,
from high school to post-baccalaureate, with very diverse interests
and goals.

Guidelines for Teaching Introductory Statistics

In the early 1990s a working group headed by George Cobb as part of the Curricu-
lum Action Project of the Mathematics Association of America (MAA) produced
guidelines for teaching statistics at the college level (Cobb, 1992) to be referred to as
the new guidelines for teaching introductory statistics. They included the following
recommendations:

1. Emphasize Statistical Thinking

Any introductory course should take as its main goal helping students to learn
the basic elements of statistical thinking. Many advanced courses would be im-
proved by a more explicit emphasis on those same basic elements, namely:

The need for data

Recognizing the need to base personal decisions on evidence (data), and the
dangers inherent in acting on assumptions not supported by evidence.

The importance of data production

Recognizing that it is difficult and time-consuming to formulate problems and
to get data of good quality that really deal with the right questions. Most people
don’t seem to realize this until they go through this experience themselves.

The omnipresence of variability

Recognizing that variability is ubiquitous. It is the essence of statistics as a dis-
cipline and it is not best understood by lecture. It must be experienced.

The quantification and explanation of variability

Recognizing that variability can be measured and explained, taking into consid-
eration the following: (a) randomness and distributions; (b) patterns and devi-
ations (fit and residual); (c) mathematical models for patterns; (d) model-data
dialogue (diagnostics).

2. More Data and Concepts, Less Theory and Fewer Recipes

Almost any course in statistics can be improved by more emphasis on data and
concepts, at the expense of less theory and fewer recipes. To the maximum extent
feasible, calculations and graphics should be automated.
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3. Foster Active Learning

As a rule, teachers of statistics should rely much less on lecturing, much more on
the alternatives such as projects, lab exercises, and group problem solving and
discussion activities. Even within the traditional lecture setting, it is possible to
get students more actively involved. (Cobb, 1992).

The three recommendations were intended to apply quite broadly, whether or not
a course had a calculus prerequisite, and regardless of the extent to which students
are expected to learn specific statistical methods. Moore (1997) described these rec-
ommendations in terms of changes in content (more data analysis, less probability),
pedagogy (fewer lectures, more active learning), and technology (for data analysis
and simulations).

Influence of the Quantitative Literacy Project

In his reflections on the past, present and future of statistics education, Scheaffer
(2001) described the philosophy and style of the “new” statistics content that was
embedded in the revolutionary Quantitative Literacy Project (QLP) materials, de-
scribed earlier in this chapter. The QLP attempted to capture the spirit of modern
statistics as well as modern ideas of pedagogy by following a philosophy that em-
phasized understanding and communication. Scheaffer, the leader of this project,
described the guiding principles of QLP as:

1. Data analysis is central.
2. Statistics is not probability.
3. Resistant statistics (such as median and interquartile range) should play a large

role.
4. There is more than one way to approach a problem in statistics.
5. Real data of interest and importance to the students should be used.
6. The emphasis should be on good examples and building intuition.
7. Students should write more and calculate less.
8. The statistics taught in the schools should be important and useful in its own

right, for all students.

Scheaffer (2001) noted that these principles are best put into classroom practice with
a teaching style emphasizing a hands-on approach that engages students to do an
activity, see what happens, think about what they just saw, and then consolidate the
new information with what they have learned in the past. He stressed that this style
required a laboratory in which to experiment and collect data, but the “laboratory”
could be the classroom itself, although the use of appropriate technology was highly
encouraged. Scheaffer recognized that the introductory college course and the Ad-
vanced Placement High School course should also model these principles. Many of
the activities developed from these principles have been adapted into lessons that
are described in Part II of this book.
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Changes in the Introductory Statistics Course

Over the decade that followed the publication of the Cobb report (1992), many
changes were implemented in the teaching of statistics. Many statisticians became
involved in the reform movement by developing new and improved versions of the
introductory statistics course and supplementary material. The National Science
Foundation funded many of these projects (Cobb, 1993). But what effect did the
report and new projects have on the overall teaching of statistics?

In 1998 and 1999, Garfield (reported in Garfield, Hogg, Schau, and Whittinghill,
2002) surveyed a large number of statistics instructors from mathematics and statis-
tics departments and a smaller number of statistics instructors from departments of
psychology, sociology, business, and economics. Her goal was to determine how the
introductory course was being taught and to explore the impact of the educational
reform movement. The results of this survey suggested that major changes were
being made in the introductory course, that the primary area of change was in the
use of technology, and that the results of course revisions generally were positive,
although they required more time from the course instructor than traditional meth-
ods of teaching. Results were surprisingly similar across departments, with the main
differences found in the increased use of graphing calculators, active learning and
alternative assessment methods in courses taught in mathematics departments in
two year colleges, the increased use of Web resources by instructors in statistics
departments, and the reasons cited for why changes were made (more mathemat-
ics instructors were influenced by recommendations from statistics education). The
results were also consistent in reporting that more changes were anticipated, partic-
ularly as more technological resources became available.

Scheaffer (2001) wrote that there seems to be a large measure of agreement on
what content to emphasize in introductory statistics and how to teach the course.
This is reflected in the course guide for the Advanced Placement statistics course
which organized the content into four broad areas:2

� Exploring Data: Describing patterns and departures from patterns.
� Sampling and Experimentation: Planning and conducting a study.
� Anticipating Patterns: Exploring random phenomena using probability and sim-

ulation.
� Statistical Inference: Estimating population parameters and testing hypotheses.

However, Scheaffer noted further important changes needed, and encouraged teach-
ers of statistics to:

� Deepen the discussion of exploratory data analysis, using more of the power
of revelation, residuals, re-expression, and resistance as recommended by the
originators of this approach to data.

2 For more details on the AP statistics course, see http://www.collegeboard.com/student/testing/
ap/sub stats.html?stats.
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� Deepen the exposure to study design, separating sample surveys (random sam-
pling, stratification, and estimation of population parameters) from experiments
(random assignment, blocking, and tests of significant treatment differences).

� Deepen the understanding of inferential procedures for both quantitative and cat-
egorical variables, making use of randomization and resampling techniques.

The introductory statistics course today is moving closer to these goals, and we hope
that the lessons in this book will help accomplish Scheaffer’s recommendations.

The goals for students at the elementary and secondary level tend to focus more
on conceptual understanding and attainment of statistical literacy and thinking and
less on learning a separate set of tools and procedures. New K-12 curricular pro-
grams set ambitious goals for statistics education, including developing students’
statistical literacy, reasoning and understanding (e.g., NCTM, 2000; and Project
2061’s Benchmarks for Science Literacy, American Association for the Advance-
ment of Science, 1993).

As demands for dealing with data in an information age continue to grow, ad-
vances in technology and software make tools and procedures easier to use and
more accessible to more people, thus decreasing the need to teach the mechanics of
procedures but increasing the importance of giving more people a sound grasp of
the fundamental concepts needed to use and interpret those tools intelligently. These
new goals, described in the following section, reinforce the need to reexamine and
revise many introductory statistics courses, in order to help achieve the important
learning goals for students.

Current Guidelines for Teaching the Introductory
Statistics Course

In 2005 the Board of Directors for the American Statistical Association endorsed
a set of six guidelines for teaching the introductory college statistics course (the
Guidelines for Assessment and Instruction in Statistics Education (GAISE) Project,
Franklin & Garfield, 2006). These guidelines begin with a description of student
learning goals which are reprinted here:

Goals for Students in an Introductory Course: What It Means
to Be Statistically Educated

The desired result of all introductory statistics courses is to produce statistically
educated students, which means that students should develop statistical literacy and
the ability to think statistically. The following goals represent what such a student
should know and understand. Achieving this knowledge will require learning some
statistical techniques, but the specific techniques are not as important as the knowl-
edge that comes from going through the process of learning them. Therefore, we are
not recommending specific topical coverage.
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1. Students should believe and understand why

� Data beat anecdotes.
� Variability is natural and is also predictable and quantifiable.
� Random sampling allows results of surveys and experiments to be extended

to the population from which the sample was taken.
� Random assignment in comparative experiments allows cause and effect con-

clusions to be drawn.
� Association is not causation.
� Statistical significance does not necessarily imply practical importance, espe-

cially for studies with large sample sizes.
� Finding no statistically significant difference or relationship does not neces-

sarily mean there is no difference or no relationship in the population, espe-
cially for studies with small sample sizes.

2. Students should recognize:

� Common sources of bias in surveys and experiments.
� How to determine the population to which the results of statistical inference

can be extended, if any, based on how the data were collected.
� How to determine when a cause and effect inference can be drawn from an as-

sociation, based on how the data were collected (e.g., the design of the study)
� That words such as “normal,” “random” and “correlation” have specific

meanings in statistics that may differ from common usage.

3. Students should understand the parts of the process through which statistics
works to answer questions, namely:

� How to obtain or generate data.
� How to graph the data as a first step in analyzing data, and how to know when

that’s enough to answer the question of interest.
� How to interpret numerical summaries and graphical displays of data – both

to answer questions and to check conditions (in order to use statistical proce-
dures correctly).

� How to make appropriate use of statistical inference.
� How to communicate the results of a statistical analysis.

4. Students should understand the basic ideas of statistical inference:

� The concept of a sampling distribution and how it applies to making statistical
inferences based on samples of data (including the idea of standard error)

� The concept of statistical significance including significance levels and P-values.
� The concept of confidence interval, including the interpretation of confidence

level and margin of error.
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5. Finally, students should know:

� How to interpret statistical results in context.
� How to critique news stories and journal articles that include statistical infor-

mation, including identifying what’s missing in the presentation and the flaws
in the studies or methods used to generate the information.

� When to call for help from a statistician.

To achieve these desired learning goals, the following recommendations are
offered:

1. Emphasize statistical literacy and develop statistical thinking.
2. Use real data.
3. Stress conceptual understanding rather than mere knowledge of procedures.
4. Foster active learning in the classroom.
5. Use technology for developing conceptual understanding and analyzing data.
6. Use assessments to improve and evaluate student learning.

Although these guidelines are stated fairly simply here, there is more elaboration in
the GAISE report along with suggestions and examples (Franklin & Garfield, 2006).
It is also important to note that today’s introductory statistics course is actually a
family of courses taught across many disciplines and departments. There are many
different versions out there of the introductory course. For example, some courses
require a calculus prerequisite, and others do not require any mathematics beyond
high school elementary algebra. Some courses cover what we might consider more
advanced topics (like ANOVA and multiple regression), and others do not go beyond
a simple two sample t-test. Some course aim at general literacy and developing
informed consumers of data, while other courses are focused on preparing users and
producers of statistics. There is continuing debate among educators as to just what
topics belong in the introductory course and what topics could be eliminated in light
of the guidelines, advances in the practice of statistics, and new technological tools.

Despite the differences in the various versions of the introductory statistics
course, there are some common learning goals for students in any of these courses
that are outlined in the new guidelines. For example, helping students to become sta-
tistically literate and to think and reason statistically. However, working to achieve
these goals requires more than guidelines. It requires a careful study of research
on the development and understanding of important statistical concepts, as well as
literature on pedagogical methods, student assessment, and technology tools used
to help students learn statistics. We have written this book to provide this research
foundation in an accessible way to teachers of statistics.

Connecting Research to Teaching Practice

Now that statistics education has emerged as a distinct discipline, with its own pro-
fessional journals and conferences and with new books being published on teaching
statistics (e.g., Garfield, 2005; Gelman & Nolan, 2002; F. Gordon, & S. Gordon,
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1992; Moore, 2000), it is time to connect the research, to reform recommendations
(such as the Guidelines for Assessment and Instruction in Statistics Education –
GAISE, 2005a, 2005b) in a practical handbook for teachers of statistics. That is
what we aim to do in this book.

Our book is structured around the big ideas that are most important for students
to learn, such as data, statistical models, distribution, center, variability, comparing
groups, sampling, statistical inference, and covariation. In doing so, we offer our
reflections and advice based on the relevant research base in statistics education.
We summarize and synthesize studies related to different aspects of teaching and
learning statistic and the big statistical ideas we want students to understand.

A Caveat

A question raised by reviewers of an earlier version of this book was “how do
we know that the materials and approaches described in this book are actually
effective?” While statisticians and statistics educators would like “hard data” on
the effectiveness of the suggestions and materials we provide, we cannot provide
data in the form of results from controlled experiments. It is hard to even imagine
what such an experiment might look like, since the materials we provide may be
implemented in various ways. While we have seen the activities and methods used
effectively over several semesters of teaching introductory statistics, we have also
seen even the most detailed lesson plans implemented in different ways, where not
all activities are used, where there is more discussion on one topic than another, or
when the teacher does more talking and explaining than was indicated in the lesson
plan. These differences in implementation of the materials is partly due to the fact
that our materials are flexible and encourage discussion and exploration, but also to
the power of a teacher’s beliefs about teaching and learning statistics, the constraints
under which they teach, and the nature of different classroom communities and the
students that make up these communities.

Despite the lack of evidence from controlled experiments, we do have a strong
foundation in research as well as current learning theories for our pedagogical
method, which is described in detail in Chapter 3. Again, from our experience ob-
serving teachers using these materials, they appear to encourage the development of
students’ statistical reasoning. We have seen students develop confidence in using
and communicating their statistical reasoning as they are guided in the activities
described in our book. The materials that we describe, and which can be accessed
in the accompanying Website, provide detailed examples of how the pedagogical
methods may be used in a statistics course, and are based on our understanding of the
research and its implications for structuring sequences of activities for developing
key statistical ideas.

Our most important and overarching goal is to provide a bridge between edu-
cational research and teaching practice. We encourage readers to reflect on the key
aspects of the sample activities we describe as well as on the overall pedagogical
principles they reflect.
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Overview of This Book

The following chapter (Chapter 2) provides a brief introduction to the diverse re-
search literature that addresses the teaching and learning of statistics. We begin
with the earliest studies by psychologist Jean Piaget and then summarize research
studies from various disciplines organized around the major research questions
they address. We conclude this chapter with pedagogical implications from the re-
search literature. Chapter 3 addresses instructional issues related to teaching and
learning statistics and the role of learning theories in designing instructions. We
propose a Statistical Reasoning Learning Environment, (SRLE) and contrast this
approach to more traditional methods of teaching and leaning statistics. Chapter 4
discusses current research and practice in the areas of assessing student learning,
and Chapter 5 focuses on the use of technology to improve student learning of
statistics.

Part II of the book consists of nine chapters (Chapters 6 through 14), each fo-
cusing on a specific statistical topic (data, statistical models, distribution, center,
variability, comparing groups, samples and sampling, statistical inference, and co-
variation). These chapters all follow a similar structure. They begin with a snap-
shot of a research-based activity designed to help students develop their reasoning
about that chapter’s topic. Next is the rationale for this activity, discussion of the
importance of understanding the topic, followed by an analysis of how we view
the place of this topic in the curriculum of an introductory statistics course. Next,
a concise summary of the relevant research related to teaching and learning this
topic is provided, followed by our view of implications of this research to teaching
students to reason about this topic.

To connect research to practice, we offer in each chapter a table that provides a
bridge between the research and a possible sequence of practical teaching activities.
This list of ideas and activities can be used to guide the development of students’
reasoning about the topic. Following this table are descriptions of a set of sample
lesson plans and their associated activities that are posted on the accompanying
Website in full detail. The purpose of this brief description of the lessons is to ex-
plain the main ideas and goals of the activities and emphasize the flow of ideas and
their relation to the scholarly literature. The use of appropriate technological tools
is embedded in these sample activities.

The two chapters in Part III (Chapters 15 and 16) focus on one of the most
important ways to make positive changes happen in education, via collaboration.
Chapter 15 discusses the value and use of collaboration in the statistics classroom to
facilitate and promote student learning. Chapter 16 focuses on collaboration among
teachers. The first part of this chapter makes the case for collaboration among
teachers of statistics as a way to implement and sustain instructional changes and
as a way to implement a Statistical Reasoning Learning Environment described in
Chapter 3. The second part of the chapter describes collaboration among teachers
as researchers in order to generate new methods to improve teaching and learning
and to contribute to the knowledge base in statistics education. The goal of these
final chapters is to convince readers that collaboration is an essential way to bring
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about instructional change, to create new knowledge, and most important of all, to
improve student learning of statistics.

Supplementary Website for This Book

There is a Website with supplementary materials, produced by the NSF-funded
Adapting and Implementing Innovative Material in Statistics (AIMS) Project (see
http://www.tc.umn.edu/∼aims). These materials (which are described in detail in
the Introduction to Part II of this book) include a set of annotated lesson plans,
classroom activities, and assessment items.

Summary

Statistics education has emerged as an important area of today’s curriculum at the
high school and college level, given the growth of introductory courses, desired
learning outcomes for students, and the endorsement of new guidelines for teaching.
We hope that this book will contribute to the growth and visibility of the field of
statistics education by providing valuable resources and suggestions to all the many
dedicated teachers of statistics. By making the research more accessible and by
connecting the research to teaching practice, our aim is to help advance the field,
improve the educational experience of students who study statistics, overturn the
much maligned image of this important subject, and set goals for future research
and curricular development.



Chapter 2
Research on Teaching and Learning Statistics1

People have strong intuitions about random sampling;
. . . these intuitions are wrong in fundamental respects;. . .
these intuitions are shared by naive subjects and by trained
scientists; and . . . they are applied with unfortunate
consequences in the course of scientific inquiry.

(Tversky & Kahneman, 1971, p. 105)

Overview

This chapter provides an overview of current research on teaching and learning
statistics, summarizing studies that have been conducted by researchers from dif-
ferent disciplines and focused on students at all levels. The review is organized by
general research questions addressed, and suggests what can be learned from the
results about each of these questions. The implications of the research are described
in terms of eight principles for learning statistics from Garfield (1995), which are
revisited in light of results from current studies.

Introduction: The Expanding Area of Statistics
Education Research

Today, statistics education can be viewed as a new and emerging discipline, when
compared to other areas of study and inquiry. This new discipline has a research base
that is often difficult to locate and build upon. For many people interested in reading
this area of scholarship, statistics education research can seem to be an invisible,
fragmented discipline. This is because studies related to this topic of interest have
appeared in publications from diverse disciplines, and are more often thought of
as studies in those disciplines (e.g., psychology, science education, mathematics
education, or in educational technology) than in the area of statistics education.
In 2002, the Statistics Education Research Journal (http://www.stat.auckland.ac.nz/
∼iase/serj) was established, and the discipline now has its first designated scientific

1 This chapter is partly based on the following paper: Garfield, J., & Ben-Zvi, D. (2007).
How students learn statistics revisited: A current review of research on teaching and learning
statistics. International Statistical Review, 75(3), 372–396. (http://isi.cbs.nl/ISReview/abst753-8-
Garfield Ben-Zvi.pdf).

J.B. Garfield, D. Ben-Zvi, Developing Students’ Statistical Reasoning,
C© Springer Science+Business Media B.V. 2008
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journal, which focuses exclusively on high-quality research. This should make it
easier for future researchers to become acquainted with the discipline and locate
studies for literature reviews and for teachers of statistics to look for research rele-
vant to the teaching and learning of statistics.

In addition to SERJ, research studies related to statistics education have been
published in the electronic Journal of Statistics Education (JSE), conference pro-
ceedings such as The International Conference on the Teaching Statistics (ICOTS,
http://www.stat.auckland.ac.nz/∼iase/conferences), International Group for the Psy-
chology of Mathematics Education (PME, http://igpme.org), The Mathematics Ed-
ucation Research Group of Australasia (MERGA, http://www.merga.net.au), The
International Congress on Mathematics Education meetings (ICME, http://www.
mathunion.org/ ICMI), and The International Statistical Institute (ISI, http://isi.
cbs.nl). The numerous presentations and publications from these conferences re-
flect the fact that there now exists an active group of educators, psychologists, and
statisticians who are involved in scholarship related to the teaching and learning of
statistics. In addition, more graduate students are completing dissertations in various
departments that relate to teaching and learning statistics. Over 47 doctoral disserta-
tions have been reported since 2000 (see http://www.stat.auckland.ac.nz/iasedissert).

There is much to learn from the abundant current literature that offers important
contributions to understanding the nature of statistical reasoning and what it means
to understand and learn statistical concepts. In this chapter, we provide first an
overview of the foundational research conducted primarily by psychologists on how
people make judgments and decisions when faced with uncertainty. Much of the
literature summarized in previous reviews (e.g., Garfield & Ahlgren, 1988; Garfield,
1995; Shaughnessy, 1992; Shaughnessy, Garfield, & Greer, 1996) summarized this
line of research.

We then provide an overview of the more current research, summarizing a sam-
pling of studies that have been conducted by researchers from different disciplines
(psychology, mathematics education, educational psychology, and statistics educa-
tion). We organize these summaries according to the general research questions ad-
dressed, and suggest our view of what can be learned from the results. We describe
some of the research methods used in these studies, along with their strengths and
limitations. We then provide a summary of a newer focus of research that examines
the development of statistical literacy, reasoning, and thinking. We provide some
general implications from the research in terms of teaching and assessing students
and highlight eight principles for learning statistics. These implications provide a
basis for a pedagogical model, which we name as the Statistical Reasoning Learning
Environment (SRLE, described in detail in Chapter 3) as well as provide a founda-
tion for the specific research summaries and implications in Part II of this book.

Foundational Studies on Statistical Reasoning and Understanding

The initial research in the field was undertaken during the 1950s and 1960s by
Piaget and Inhelder (1951, 1975). This early work focused on the developmental
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growth and structure of people’s probabilistic thinking and intuitions. Although the
researchers of that period were not motivated by any interest in probability and
statistics as part of the school curriculum, this work inspired much of the later re-
search that did focus on learning and teaching issues (e.g., Fischbein, 1975).

During the 1970s, a new area of research emerged, conducted primarily by psy-
chologists studying how people make judgments and decisions when faced with un-
certainty. A seminal collection of these studies was published in 1982 (Kahneman,
Slovic, and Tversky, 1982). The researchers in this area focused on identifying many
incorrect ways people reason, labeling “heuristics” (explained below) and biases,
and then studying what factors affected these errors. Although a few psychologists
also designed training activities to overcome some misconceptions, these methods
were not necessarily embedded in a course or curriculum and focused on a particular
type of reasoning.

Most of the published research in this area consists of studies of how adults
understand or misunderstand particular statistical ideas. An influential series of
studies by Kahneman et al. (1982) revealed some prevalent ways of thinking about
statistics, called “heuristics,” that are inconsistent with a correct understanding. In
psychology, “heuristics” are simple, efficient rules of thumb hard-coded by evolu-
tionary processes, which have been proposed to explain how people make decisions,
come to judgments and solve problems, typically when facing complex problems or
incomplete information. These rules work well under most circumstances, but in
certain cases lead to systematic cognitive biases. Some salient examples of these
faulty “heuristics” are summarized below.

Representativeness: People estimate the likelihood of a sample based on how
closely it resembles the population. Use of this heuristic also leads people
to judge small samples to be as likely as large ones to represent the same
population. For example: Seventy percent Heads is believed to be just as
likely an outcome for 1000 tosses as for 10 tosses of a fair coin.

Gambler’s fallacy: Use of the representativeness heuristic leads to the mistaken
view that chance is a self-correcting process. People mistakenly believe past
events will affect future events when dealing with random activities. For ex-
ample, after observing a long run of heads, most people believe that now a tail
is “due” because the occurrence of a tail will result in a more representative
sequence than the occurrence of another head.

Base-rate fallacy: People ignore the relative sizes of population subgroups
when judging the likelihood of contingent events involving the subgroups,
especially when empirical statistics about the probability are available (called
the “base rate”). For example, when asked the probability of a hypothetical
student taking history (or economics), when the overall proportion of stu-
dents taking these courses is 70, people ignore these “base rate” probabilities,
and instead rely on information provided about the hypothetical student’s
personality to determine which course is more likely to be chosen by that
student.
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Availability: Strength of association is used as a basis for judging how likely an
event will occur. For example, estimating the divorce rate in your community
by recalling the divorces of people you know, or estimating the risk of a heart
attack among middle-aged people by counting the number of middle-aged
acquaintances who have had heart attacks. As a result, people’s probability
estimates for an event are based on how easily examples of that event are
recalled.

Conjunction fallacy: The conjunction of two correlated events is judged to be
more likely than either of the events themselves. For example, a description
is given of a 31-year old woman named Linda who is single, outspoken, and
very bright. She is described as a former philosophy major who is deeply con-
cerned with issues of discrimination and social justice. When asked which of
two statements are more likely, fewer pick A: Linda is a bank teller, than B:
Linda is a bank teller active in the feminist movement, even though A is more
likely than B.

Additional research has identified misconceptions regarding correlation
and causality (Kahneman et al., 1982), conditional probability (e.g., Falk, 1988;
Pollatsek, Well, Konold, & Hardiman, 1987), independence (e.g., Konold, 1989b),
randomness (e.g., Falk, 1981; Konold, 1991), the Law of Large Numbers (e.g.,
Well, Pollatsek, & Boyce, 1990), and weighted averages (e.g., Mevarech, 1983;
Pollatsek, Lima, & Well, 1981).

A related area of work in psychology has identified a way of thinking referred
to as the “outcome orientation.” Konold (1989a) described this way of reasoning
as the way people use a model of probability that leads them to make yes or no
decisions about single events rather than looking at the series of events. For exam-
ple: A weather forecaster predicts the chance of rain to be 70% for 10 days. On 7
of those 10 days it actually rained. How good were his forecasts? Many students
will say that the forecaster did not do such a good job, because it should have
rained on all days on which he gave a 70% chance of rain. They appear to focus
on outcomes of single events rather than being able to look at series of events –
70% chance of rain means that it should rain. Similarly, a forecast of 30% rain
would mean it would not rain. Fifty percent chance of rain is interpreted as meaning
that you cannot tell either way. The power of this notion is evident in the college
student who, on the verge of giving up, made this otherwise perplexing statement:
“I don’t believe in probability; because even if there is a 20% chance of rain, it could
still happen” (Falk & Konold, 1992, p. 155). Later work by Konold and colleagues
documented the inconsistency of student reasoning as they responded to similar
assessment items, suggesting that the context of a problem may affect students’ use
(or lack of use) of intuitions or reasoning strategies (see Konold, Pollatsek, Well, &
Gagnon, 1997).

Subsequent research to the foundational studies on faulty heuristics, biases, and
misconceptions focused on methods of training individuals to reason more correctly.
Some critics (e.g., Gigerenzer, 1996; Sedlmeier, 1999) argued that the cause of
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many identified misconceptions was actually people’s inability to use proportional
reasoning, required by many of these problems that involved probabilities. They
suggested to use a frequency approach (using counts and ratios rather than percents
and decimals), and observed that subjects performed better on similar tasks when
using frequencies rather than fractions or decimals.

Recognizing these persistent errors, researchers have explored ways to help
college students and adults to correctly use statistical reasoning, sometimes us-
ing specific training sessions (e.g., Fong, Krantz, & Nisbett, 1986; Nisbett, 1993;
Sedlmeier, 1999; Pollatsek et al., 1987). Some of these studies involve a training
component that takes place in a lab setting and involves paper and pencil assess-
ments of learning the concept of interest. Lovett (2001) collected participants’ talk-
aloud protocols to find out what ideas and strategies students were using to solve
data analysis problems. She found that feedback could be given to help students
improve their ability to select appropriate data analyses.

Researchers continue to examine errors and misconceptions related to statisti-
cal reasoning. Many of these studies focus on topics related to probability (e.g.,
Batanero & Sánchez, 2005; O’Connell, 1999; Fast, 1997; Hirsch & O’Donnell,
2001; Tarr & Lannin, 2005). However, other studies have examined misconceptions
and errors related to additional topics such as contingency tables (Batanero, Estepa,
Godino, & Green, 1996), sampling distributions (Yu & Behrens, 1995), significance
tests (e.g., Falk & Greenbaum, 1995), and a variety of errors in statistical reasoning
(e.g., Garfield, 2003; Tempelaar, Gijselaers, & van der Loeff, 2006).

What Can We Learn from These Studies?

The main message from this body of research seems to be that inappropriate reason-
ing about statistical ideas is widespread and persistent, similar at all age levels (even
among some experienced researchers), and quite difficult to change. There are many
misconceptions and faulty intuitions used by students and adults that are stubborn
and difficult to overcome, despite even the best statistics instruction. In addition,
students’ statistical reasoning is often inconsistent from item to item or topic to
topic, depending on the context of the problem and students’ experience with the
context. Although some types of training seem to lead to positive results, there is no
strong evidence that the results were sustained beyond the training sessions or could
be generalized beyond the specific types of problems used.

Recent Research on Teaching and Learning Statistics

In this section, we provide an overview of the more current research that has been
conducted by researchers from different disciplines, organized according to the gen-
eral research questions addressed. We also suggest our view of what can be learned
from the results.
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How Do School Students Come to Understand Statistics
and Probability?

In contrast to studies on misconceptions and faulty heuristics that looked at par-
ticular types of training to overcome or correct these types of problems, another
line of inquiry has focused on how to develop good statistical reasoning and under-
standing, as part of instruction in elementary and secondary mathematics classes.
Researchers began to take an interest in studying how children understand basic
concepts related to data analysis when these topics began to be added to the K-12
mathematics curricula (in the 1980s and 1990s, e.g., NCTM, 2000). These stud-
ies revealed many difficulties students have with concepts that were believed to
be fairly elementary such as the mean (Bright & Friel, 1998; Konold et al., 1997;
Mokros & Russell, 1995; Rubin, Bruce, & Tenney, 1991; Russell & Mokros, 1996;
Shaughnessy, 1992, 2007). Not surprisingly, most of the research examining school
children’s understanding of data analysis has been conducted by mathematics ed-
ucation researchers who have focused their studies on foundational concepts and
their interconnections, such as data, distribution, center, and variability (e.g., Bakker
& Gravemeijer, 2004; Cobb, McClain, & Gravemeijer, 2003b). The focus of these
studies was to investigate how students begin to understand these ideas and how
their reasoning develops when using carefully designed activities assisted by tech-
nological tools.

Studies focused on students in K-12 classes, investigating how they come to
understand statistical ideas such as data (e.g., Ben-Zvi & Arcavi, 2001), distribu-
tion (Pfannkuch, 2006b; Prodromou & Pratt, 2006; Reading & Reid, 2006; Wat-
son, 2005), variability (Bakker, 2004b; Ben-Zvi, 2004b; delMas & Liu, 2005;
Hammerman & Rubin, 2004; Reading, 2004), and probability (e.g., Abrahamson,
Janusz, & Wilensky, 2006; Pratt, 2007). Some involved teaching experiments (Steffe
& Thompson, 2000; Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003a) conducted
over several weeks, where a team of researchers and teachers teach and/or closely
observe the class to see how particular activities and tools help develop under-
standing of a statistical concept or set of concepts (e.g., Cobb, 1999; Saldanha &
Thompson, 2003; Shaughnessy, Ciancetta, Best, & Canada, 2004).

Interest in probability continues among mathematics educators, primarily doc-
umenting the difficulties students have understanding these concepts at different
grade levels, the common misconceptions about probability, and the role of com-
puter tools to help students develop reasoning about chance and uncertainty (see
Jones, Langrall, & Mooney, 2007). In a recent compilation of research studies in
this area, Jones (2005) remarks that there is a need to study the evolution and de-
velopment of students’ reasoning and to find ways to link ideas of chance and data,
rather than studying probability as a formal mathematics topic. This type of work
is currently underway by Konold who is developing the Model Chance software,
and conducting studies using the software with young children (Konold, Kazak,
Dahlstrom-Hakki, Lehrer, & Kim, 2007).
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What Can We Learn from These Studies?

The studies focused on developing students’ reasoning about data and chance sug-
gest that these ideas are often more complex and difficult for students to learn
than was assumed. Studies involving elementary and secondary school students that
focus on understanding of particular concepts (e.g., Ben-Zvi, Gil, & Apel, 2007;
Cobb et al., 2003b; Pfannkuch, 2006b) show that carefully designed sequences of
activities using appropriate technological tools can help students improve reasoning
and understanding over substantial periods of time (Ben-Zvi, 2000). These studies
suggest some possible sequences of activities that can help students develop ideas
of important concepts such as distribution, variability, and covariation, and offer
implications for the types of instructional activities and technological tools that may
facilitate students’ learning and reasoning. More implications are included later in
this chapter.

How Do Preservice and Practicing Teachers Develop
Understanding of Statistics?

A newer line of research that has also been the focus of studies by mathematics
educators is the study of preservice or practicing teachers’ knowledge of statistics
and probability, and how that understanding develops in different contexts (e.g.,
Leavy, 2006; Makar & Confrey, 2005; Pfannkuch, 2006b). Some studies of preser-
vice K-12 teachers focus on undergraduate college students majoring in elementary
or mathematics education and how they understand and reason about statistics (e.g.,
Groth & Bergner, 2005).

In one study, Groth and Bergner (2005) examined the use of metaphors as a way
to reveal student understanding, and were disappointed to note that students (pre-
service teachers) who have completed a course in statistics have limited and often
incorrect notions of the idea of sample. Leavy (2006) examined preservice teachers’
reasoning about the concept of distribution. In her one group pretest–posttest design
that took place during a semester-long mathematics methods course, participants
worked in small groups on two statistical inquiry projects requiring the collection,
representation, analysis, and reporting of data involving comparing distributions.
She found that many teachers appeared to be gaining in their ability to reason about
distributions in comparing groups while others failed to use the relevant content they
had learned when comparing groups of data (see also Ciancetta, 2007).

Stohl (2005) summarizes studies that examine teachers’ understanding and teach-
ing of probability. She addresses problems resulting from mathematics teachers’
more computational approach to thinking about probability and suggests ways to
better prepare teachers to understand and teach this challenging topic.

Some studies on practicing teachers examine how these “students” learn and rea-
son about statistics as a result of workshops or in-service courses (e.g., Mickelson
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& Heaton, 2004). Makar and Confrey (2005) and Hammerman and Rubin (2004)
suggest that teachers’ understanding of basic statistical analysis, such as comparing
two groups, can be very confused (e.g., wanting to compare individual data points
rather than group trends). However, they have found that with carefully designed
instruction using innovative visualization software (such as Fathom, Key Cur-
riculum Press, 2006; http://www.keypress.com/fathom, or TinkerPlots, Konold &
Miller, 2005; http://www.keypress.com/tinkerplots), they can be guided to reason
more statistically. Studies also focus on of how teachers teach and how their
knowledge affects their teaching of statistics (e.g., Canada, 2004, 2006; Makar
& Confrey, 2005; Rubin, Hammerman, Campbell, & Puttick, 2005; Pfannkuch,
2006b).

What Can We Learn from These Studies?

The studies focused on preservice and in-service K-12 teachers suggest that both
have many difficulties understanding and teaching core ideas of probability and
statistics. The studies suggest further explorations are needed in the issues of de-
veloping teacher knowledge of statistics as well as methods of helping teachers to
understand the big ideas of statistics. A current joint IASE-ICMI study is focused
on this issue (see http://www.ugr.es/∼icmi/iase study). Efforts such as the TEAM
project (Franklin & Mewborn, 2006) have attempted to bring mathematics educa-
tors and statisticians together to create new ways to prepare future K-12 teachers
of statistics, by making sure that these students have a course in statistics as part
of their requirements, taught in methods that emphasize conceptual understanding,
data exploration, and use of appropriate technology. How to help practicing teach-
ers develop a better knowledge of statistics is still an area that needs to be further
explored.

How Do College Students Learn Statistics?

Researchers across many disciplines have long been interested in the teaching and
learning of statistics in college classes perhaps because of the tremendous numbers
of students who enroll in introductory statistics course as a requirement for their
degree programs. Some of the studies on college level students examined a particular
activity or intervention; others have looked at use of a technological tool or teaching
method (e.g., Noll, 2007). Several statisticians who teach statistics have focused
their attention on studying students’ learning in their classes (e.g., Chance, 2002;
Lee, Zeleke, & Wachtel, 2002; Wild, Triggs, & Pfannkuch, 1997). Most of these
studies involve the researchers’ own classes, sometimes examining one class, or
involving multiple classes at the same institution.

Because of the large number and variety of studies in college settings, this sec-
tion is subdivided into several subsections that correspond to important questions
regarding the teaching and learning of statistics after secondary school.
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How Can Technology be Used to Promote Statistical Reasoning?

One of the major areas of current interest is the role technological tools (such as
computers, graphing calculators, software, and Internet) can play in helping students
develop statistical literacy and reasoning. Research on simulation training indicates
that even a well-designed simulation is unlikely to be an effective teaching tool
unless students’ interaction with it is carefully structured (Lane & Peres, 2006).
Simulations, however, can play a significant role in enhancing students’ ability to
study random processes and statistical concepts (Lane & Peres, 2006; Lane & Tang,
2000; Mills, 2004).

Using a collaborative classroom research model that implemented activities and
gathered data in three different institutions, delMas, Garfield, and Chance (1999)
studied the development of reasoning about sampling distributions, using a simu-
lation program and research-based activities. They found that student performance
on a specially designed posttest, to assess students’ reasoning about sampling dis-
tributions, improved as the activity was changed to imbed assessments within the
activity. They also found that having students make and test conjectures about dif-
ferent empirical sampling distributions from various populations. Lunsford, Rowell,
and Goodson-Espy (2006) replicated this study in a different type of undergraduate
course and found similar results.

Lane and Tang (2000) compared the effectiveness of simulations for teaching
statistical concepts to the effectiveness of a textbook; while Aberson, Berger, Healy,
Kyle, and Romero (2000) studied the impact of a Web-based, interactive tutorial
used to present the sampling distribution of the mean on student learning.

In a study of students’ reasoning about the standard deviation, delMas (2005) had
students manipulate a specially designed software tool to create histograms with the
highest or lowest possible standard deviation, given a set of fixed bars. He identified
some common ways students understand and misunderstand the standard deviation,
such as thinking of “spread” as spreading butter, being evenly distributed in a graph.
He also found that students had difficulty reasoning about bars in a histogram having
density, in that they represent several points on a particular interval on a graph.

How Effective is Online Instruction?

Another topic of interest to statistics educators has been the use of online instruction
either in a Web-based course or “hybrid/blended” course, in which a significant
amount of the course learning activity has been moved online, making it possible
to reduce the amount of time spent in the classroom. For example, Utts (2003) and
Ward (2004) found no differences in course performance for students in a hybrid
versus a traditional course, and concluded that hybrid courses were not resulting in
decreased student performance, although Utts noted lower evaluations by students
in the hybrid courses. However, no significant differences in course performance do
not imply that there were no real differences in student outcomes for the compared
instructional methods.
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What Do Students Remember After Taking Statistics?

Mathews and Clark (2003) and Clark, Karuat, Mathews, and Wimbish (2003) in-
vestigated high achieving students (an A grade in their first statistics course) from
four tertiary institutions on their understanding of the mean, standard deviation, and
the Central Limit Theorem. Their interviews of students within the first 6 weeks of
the term after the completion of the statistics course revealed that students tended to
have relatively unsophisticated understandings of the concepts of mean and standard
deviation and fragmentary recall of the Central Limit Theorem.

How Effective is Active Learning in Teaching Statistics?

Keeler and Steinhorst (1995), Giraud (1997), and Magel (1998) investigated dif-
ferent methods of cooperative learning in teaching statistics at their institutions,
and found generally positive results. Keeler and Steinhorst (1995) found that when
students worked in pairs, the final grades were higher and more students stayed in
the course than in previous semester. Giraud (1997) found that using cooperative
groups in class to work on assignments led to higher test grades than students in a
lecture class. Magel (1998) found that implementing cooperative groups in a large
lecture class also led to improved test scores compared to grades from a previous
semester that did not use group work.

Meletiou and Lee (2002) organized their curricula along a Project-Activities-
Cooperative Learning-Exercises model emphasizing statistical thinking and reason-
ing and an orientation toward investigating conjectures and discovery of results
using data. Students were assessed on their understanding at the beginning and end
of the course. Increased understanding was observed on tasks requiring statistical
reasoning such as deducing whether a set of data could have been drawn at random
from a particular population.

How Can Formal Statistical Ideas be Developed
from Informal Ideas?

Building on collaborative classroom research methods, Garfield, delMas,and
Chance (2007) used Japanese Lesson Study to design, test, and revise a lesson to
help students develop reasoning about variability, building formal ideas from infor-
mal ideas. Japanese Lesson Study builds on the idea that teachers can conduct their
own classroom research by carefully examining a particular problem in their class,
trying an activity or set of activities to develop student learning, and then to evaluate,
reflect, and revise the activity.

A group of novice and experienced teachers designed a lesson to help reveal and
build on students’ informal intuitions about variability, which was taught, observed,
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analyzed, and revised. Their study suggested a sequence of activities to help stu-
dents develop a deep understanding of the concept of variability and measures such
as range, interquartile range, and standard deviation. Schwartz, Sears, and Chang
(2007) used a similar approach to develop what they referred to as students’ prior
knowledge, using specific activities to motivate and engage students to develop more
formal reasoning about particular statistical concepts.

Can Training Improve Students’ Statistical
Problem Solving?

In one type of study, students are trained in a particular type of procedure to
see if this affects their performance on different outcome measures. For example,
Quilici and Mayer (2002) taught college students to sort statistics word problems
on the basis of structural features (i.e., whether the problem could be solved by
t-test, correlation, or chi-square statistics) rather than surface features (i.e., the
problem’s cover story). In this study, college students displayed a higher level of
structural awareness (i.e., sorting word problems on the basis of structural features)
at the end rather than the beginning of their first statistics course. Recognizing
that the problem one is working on can be solved using the same method as a
problem one already knows is an important skill in statistical problem solving.
Lovett (2001) collected participants’ talk-aloud protocols to find out what ideas
and strategies students were using to solve data analysis problems. She found that
feedback could be given to help students improve their ability to select appropriate
data analyses. Meyer and Lovett (2002) developed a computer-based training pro-
gram to provide scaffolding to guide students in analyzing data to solve statistical
problems.

What is the Role of Affect in Learning Statistics?

Several researchers have explored factors related to students’ success in statistics
classes. Most of these studies have examined noncognitive variables, such as stu-
dents’ attitudes and anxiety about statistics, (e.g., Schau & Mattern, 1997a). This
work has sometimes included development of instruments to assess student out-
comes (e.g., attitudes, anxiety, and reasoning). Studies have also examined rela-
tionships between different student characteristics (e.g., mathematics background,
statistics attitudes, or anxiety) and course outcomes for students taking statistics
in education or psychology courses (e.g., Elmore & Vasu, 1986; Wisenbaker &
Scott, 1997). In addition, some of these studies examined what graduate students
in education, psychology, or the social sciences know and understand while or af-
ter learning statistics (e.g., O’Connell & Corter, 1993; Earley, 2001; Finney, 2000;
Huberty, Dresden, & Bak, 1993).
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How Does Students’ Reasoning Develop During
a Statistics Course?

In a recent study, Zieffler (2006) studied the growth in the students’ reasoning
about bivariate data over an introductory statistics course. He found that most of
the growth in this reasoning, as measured by four administrations of a bivariate rea-
soning scale, happened before students formally studied a unit on bivariate data. His
results suggested that perhaps the course that was designed to help students develop
their general statistical reasoning, was helping them reason well about distributions
of bivariate data before they formally studied that topic. He recommended the use
of similar longitudinal studies, administering a set of items at three or more points
of time in order to model the growth of student during instruction, a suggestion
also included in the recent report on statistics in mathematics education research
(Scheaffer, 2007). In a related study, Zieffler, Garfield, delMas, and Gould (2007)
explore the growth in students’ statistical reasoning throughout a 14-week class that
embedded a sequence of simulation activities designed to develop student’s inferen-
tial reasoning. They found that students’ reasoning did not develop in a consistent
linear way throughout the course. They also found that in some cases students’ rea-
soning about concepts (such as sampling distribution) developed before the formal
study of that topic, supporting the previous results by Zieffler (2006) about bivariate
reasoning.

What Can We Learn from These Studies?

The many studies that focus on teaching and learning statistics at the college level
continue to point out the many difficulties college students have learning, remem-
bering, and using statistics, and point to some modest successes. These studies also
serve to illustrate the many practical problems faced by college statistics instructors
such as how to incorporate active or collaborative learning in a large class, whether
or not to use an online or “hybrid” course, or how to select one type of software tool
as more effective than another.

Many of these studies set out to answer a question such as “which is better?”
However, these studies reveal that it is difficult to determine the impact of a par-
ticular teaching method or instruction tool on students’ learning in a course due to
limitations in study design or assessments used. While teachers would like research
studies to convince them that a particular teaching method or instructional tool leads
to significantly improved student outcomes, that kind of evidence is not actually
available in the research literature. The results of many of the comparative studies
are usually limited to that particular course setting and cannot be generalized to
other courses. For example, if one study compared a particular type of active learn-
ing to a “traditional” course, results cannot be generalized to active learning vs. a
“traditional” course, because of the variety of methods of active learning and the
variety of “traditional” courses.

Though not based on comparative experiments, some recent classroom research
studies, while not trying to be comparative, suggest some practical implications for
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teachers. For example, developing a deep understanding of statistics concepts is
quite challenging and should not be underestimated. Research suggests that it takes
time, a well thought out learning trajectory, and appropriate technological tools,
activities, and discussion questions to develop deep understanding. Good reasoning
about important concepts can be developed very carefully using activities and tools
given enough time, and revisiting of these ideas.

The research studies on attitudes and anxiety suggest that there are few strong
(or large) predictors of how well students do in a statistics course, that there is
little change in attitudes from beginning to end of a first course in statistics (and
sometimes negative changes) and that difficulties in students’ reasoning and poor
attitudes are fairly widespread. The evidence does not show that if students are good
in mathematics or have good attitudes, they will be likely to succeed in statistics,
which is contrary to many teachers’ beliefs. Instead, students who may not be strong
in mathematics may work hard, enjoy the subject matter, and do very well in an
introductory statistics course. Variables such as motivation, conscientiousness, and
desire to learn may be better predictors.

These studies suggest the types of negative value judgments students place on
the study of statistics, how difficult they perceive the subject to be, and how use-
ful, as pertaining to either one’s course or the field in general. Nevertheless, the
studies suggest that teachers need to cultivate more positive beliefs about the value
of statistics and statistical literacy by being aware that students come to statistics
courses with a great variety of expectations and perspectives on what statistics is
about, and their own ability or lack of ability to succeed in the course.

One consistent problem in many of the quantitative studies focused on college
students has to do with the lack of high quality and consistent measures used to as-
sess student learning outcomes. It is very common for these studies to use final exam
scores or course grades as outcome measure. These measures are often problematic
because they are used with establishing evidence of validity and reliability and do
not necessarily measure outcome of general value to the wider community (Garfield,
2006). In the past few years, new instruments have been carefully developed and
studied (e.g., delMas, Garfield, Ooms, & Chance, 2007), which may lead to less
reliance on teacher made measures.

In recent years, there has also been more attention paid to distinguishing and
defining learning outcomes in introductory statistics courses, and the frequently
used terms for these outcomes refer to statistical literacy, statistical reasoning, and
statistical thinking. Clarifying desired learning outcomes can also help researchers
better develop and use appropriate measures in their studies, and to align these mea-
sures with learning goals valued by the statistics education community.

Distinguishing Between Statistical Literacy, Reasoning,
and Thinking

Although statistics is now viewed as a unique discipline, statistical content is
most often taught in the mathematics curriculum (K–12) and in departments of
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mathematics (college level). This has led to exhortations by leading statisticians,
such as Moore (1998), about the differences between statistics and mathematics.
These arguments challenge statisticians and statistics educators to carefully define
the unique characteristics of statistics and in particular, the distinctions between
statistical literacy, reasoning, and thinking (Ben-Zvi & Garfield, 2004a). We prefer
the following definitions:

Statistical literacy is a key ability expected of citizens in information-laden
societies, and is often touted as an expected outcome of schooling and as
a necessary component of adults’ numeracy and literacy. Statistical literacy
involves understanding and using the basic language and tools of statistics:
knowing what basic statistical terms mean, understanding the use of simple
statistical symbols, and recognizing and being able to interpret different rep-
resentations of data (Garfield, 1999; Rumsey, 2002; Snell, 1999). There are
other views of statistical literacy such as Gal’s (2000, 2002), whose focus is
on the data consumer: Statistical literacy is portrayed as the ability to inter-
pret, critically evaluate, and communicate about statistical information and
messages. Gal (2002) argues that statistically literate behavior is predicated
on the joint activation of five interrelated knowledge bases (literacy, statisti-
cal, mathematical, context, and critical), together with a cluster of supporting
dispositions and enabling beliefs. Watson and Callingham (2003) proposed
and validated a model of three levels of statistical literacy (knowledge of
terms, understanding of terms in context, and critiquing claims in the media).

Statistical reasoning is the way people reason with statistical ideas and make
sense of statistical information. Statistical reasoning may involve connecting
one concept to another (e.g., center and spread) or may combine ideas about
data and chance. Statistical reasoning also means understanding and being
able to explain statistical processes, and being able to interpret statistical
results (Garfield, 2002b). We see statistical reasoning as the mental repre-
sentations and connections that students have regarding statistical concepts.

Statistical thinking involves a higher order of thinking than statistical reason-
ing. Statistical thinking is the way professional statisticians think (Wild &
Pfannkuch, 1999). It includes knowing how and why to use a particular
method, measure, design or statistical model; deep understanding of the the-
ories underlying statistical processes and methods; as well as understanding
the constraints and limitations of statistics and statistical inference. Statistical
thinking is also about understanding how statistical models are used to sim-
ulate random phenomena, understanding how data are produced to estimate
probabilities, recognizing how, when, and why existing inferential tools can
be used, and being able to understand and utilize the context of a problem
to plan and evaluate investigations and to draw conclusions (Chance, 2002).
Finally, we view statistical thinking as the normative use of statistical models,
methods, and applications in considering or solving statistical problems.

Statistical literacy, reasoning, and thinking are unique areas, but there is some over-
lap with a type of hierarchy, where statistical literacy provides the foundation for
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Fig. 2.1 The overlap and
hierarchy of statistical
literacy, reasoning, and
thinking (Artist Website,
https://app.gen.umn.edu/artist)

reasoning and thinking (see Fig. 2.1). A summary of additional models of statisti-
cal reasoning and thinking can be found in Jones, Langrall, Mooney, and Thorn-
ton (2004).

There is a growing network of researchers who are interested in studying the
development of students’ statistical literacy, reasoning, and thinking (e.g., SRTL –
The International Statistical Reasoning, Thinking, and Literacy Research Forums,
http://srtl.stat.auckland.ac.nz/). The topics of these research studies conducted by
members of this community reflect the shift in emphasis in statistics instruction,
from developing procedural understanding, i.e., statistical techniques, formulas,
computations and procedures, to developing conceptual understanding and statis-
tical literacy, reasoning, and thinking.

Current research studies address this shift by concentrating on some core ideas
of statistics, often referred to as the “big ideas”. This research focus is parallel to
the increasing attention that is being paid in the educational research community
to the need to clearly define and focus both research and instruction, and therefore,
assessment, on the “big ideas” of a discipline (Bransford, Brown, & Cocking, 2000;
Wiggins & McTighe, 1998). The following sections offer a brief summary of some
of the research on reasoning about three of the key “big ideas”: distribution, center,
and variability. The amount of research in these areas illustrates the complexity of
studying and developing student’s reasoning about these ideas.

Limitations of Research Related to Teaching
and Learning Statistics

Given that research related to teaching and learning statistics has been conducted
across disciplines, in a fragmented, disconnected way, it is not surprising that several
limitations are apparent in this research. For example:
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� Too many small studies (e.g., conducted in one class or at one school) with too
broad a focus (e.g., “Is a Web-based class as effective as a “regular” class?”) that
cannot generalize answers to larger questions.

� Lack of connection to theory or previous research (which makes it difficult to
frame good questions or interpret results).

� Lack of focused questions on the effects of a particular tool or method or activity
on learning to understand a particular concept.

� Lack of appropriate research instruments to measure important student outcomes
(e.g., using only instructor-designed final exams or course grades as outcome
measures).

� Lack of connections among current research and researchers (due to different
disciplines, journals, theoretical backgrounds, problems, etc.).

� Failure to look beyond the researcher’s own discipline to other related studies,
perhaps thinking that the work in other disciplines does not apply to their ques-
tions, or because they do not know what is present there or how to find it.

� Failure to recognize and note that lack of a statistically significant effect does not
guarantee no effect (treatments may be causing differences that are not detected).

� Too many studies conducted by a single researcher rather than a collaborative
team, with different strengths and backgrounds (collaboration in research is de-
scribed in Chapter 16).

When teachers of statistics read about the results of a research study and consider
how it might affect their teaching, there are some important questions to keep in
mind. First of all, they should ask what the learning goals of the study were and
how they were measured. If a study uses final exam or course grades, it is useful to
know what these represent and that they measure learning goals of importance. For
example, a study that uses a final exam as a measure of student learning, where the
exam consists primarily of items that can be memorized or computed, most likely is
missing important information on student conceptual learning outcomes.

A second question to consider is whether the explanatory variables are well
defined and consistent with the researcher’s theory and beliefs about learning and
teaching. For example, a study that purports to be investigating the effectiveness of
active learning in a college statistics class, may be defining active learning as having
students work in pairs on completing a worksheet. This activity may not be viewed
as active learning by other educators and therefore, the results would not generalize
to the broad domain of active learning methods.

A third question to consider is whether the results of the study suggest something
useful for other teachers, such as a new way to help students understand a concept
or develop understanding. Do the results have specific implications for teaching,
rather than broad implications about a general tool or teaching method? Finally, did
the researchers carefully review the existing literature and was their study based
on previous studies and theories? If so, how do their results support, extend, or
contradict previous results and implications?

Given the growing numbers of students taking statistics at all levels and an in-
creasing need for these students to develop their statistical understanding and value
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statistics, more high-quality research is needed to provide guidance to teachers of
statistics. Much of this research will most likely involve some use of qualitative
methods, which are described in the following section.

Research Methodologies: Qualitative Methods

Many of the studies summarized in the chapters of Part II of this book, which pro-
vide a research base for the proposed lessons and instructional activities, have used
qualitative methods. Some studies utilize videotaped classroom observations and
teacher or student interviews as a way to gather data. Other sources of qualitative
data include students’ responses to open-ended questions, field notes of teachers
and researchers, and samples of students’ work (e.g., graphs constructed, statistics
projects).

Some studies combine qualitative data with quantitative data, using comparison
of pre-and posttest assessments data along with interviews and/or teaching experi-
ments. A few other studies include some quantitative data in the context of student
assessment, but it is hard to find a truly quantitative study in the research today that
applies an experimental design or multivariate model.

It may seem surprising that few statistical summaries are actually included in
these studies, given that the subject being studied is statistics. And it may seem
surprising that the research studies in this book are not traditional designed experi-
ments, involving control groups compared to groups that have received experimen-
tal treatment, the gold standard of experimental design. However, statistics educa-
tion currently, tends to follow the tradition of mathematics and science education,
in using mostly qualitative methods to develop an understanding of the nature of
students’ thinking and reasoning, and to explore how these develop (see Kelly &
Lesh, 2000).

Some promising new quantitative methods are beginning to be used in educa-
tional research (Scheaffer, 2007) as well as use of Rasch modeling to transform qual-
itative into quantitative data (see Watson & Callingham, 2003; Watson, Kelly, Call-
ingham and Shaughnessy, 2003) to model levels of statistical literacy. We believe
that research in statistics education will continue to involve methodologies that pro-
vide qualitative data, and describe some of these methods in the following section.

Teaching Experiments

Although referred to as “experiments,” teaching experiments are a type of classroom-
based research. They do not involve comparisons of a randomly imposed treatment
to a control and do not take place in controlled laboratory settings. Instead, teaching
experiments (which are sometimes called design experiments) take place in regular
classrooms and are part of students’ instruction in a subject. They involve design-
ing, teaching, observing, and evaluating a sequence of activities to help students
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develop a particular learning goal (Steffe & Thompson, 2000). The primary goal of
conducting a teaching experiment is not to assess the effectiveness of the preformu-
lated instructional design, but rather to improve the design by checking and revising
conjectures about the trajectory of learning for both the classroom community and
the individual students who compose that classroom. Thus, the goal is to integrate
the teacher’s instructional goals and directions for learning with the trajectory of
students’ thinking and learning. This can often result in “greater understanding of
a learning ecology – a complex, interacting system involving multiple elements of
different types and levels – by designing its elements and anticipating how those
elements function together to support learning” (Cobb et al., 2003a, p. 9).

This type of research is usually of high intensity (e.g., 20 weeks) and somewhat
invasive, in that each lesson in a particular design experiment is observed, video-
taped, and analyzed. The structure of teaching experiments varies greatly, but they
generally have three stages: preparation for the teaching experiment, the classroom
instruction and interaction with students, and debriefing and analyzing the teaching
episodes (Ben-Zvi, Garfield, & Zieffler, 2006). These are sometimes referred to as
the preparation phase, the actual experimentation phase, and the retrospective anal-
ysis (Gravemeijer, 2000). In longitudinal studies, these phases are repeated several
times (e.g., Hershkowitz et al., 2002).

The first stage in a teaching experiment is preparation for the actual study. It
is during this stage that the research team, which usually includes researchers and
teachers, envisions how dialogue and activity will occur as a result of planned class-
room activity. The researchers propose a sequence of ideas and knowledge that they
hope students will construct as they participate in the activities and classroom dia-
logue and plan instruction to help move students along this path toward the desired
learning goal.

During the actual teaching experiment, the researchers test and modify their con-
jectures about the statistical learning trajectory as a result of their communication,
interaction, and observation of students. The learning environment also evolves as
a result of the interactions between the teacher and students as they engage in the
content. The research team ideally meets after every classroom session to modify the
learning trajectory and plan new lessons. These meetings are generally audio-taped
for future reference. Because of the constant modification, classroom lessons cannot
be planned in detail too far in advance.

The research team performs the retrospective analysis after an entire teaching ex-
periment has been completed. It is during this stage that the team develops domain-
specific instructional theory to help guide future instruction. They also develop new
hypothetical learning trajectories for future design experiments.

Action Research

While many of the studies reviewed in this book take place in statistics classes,
most do not follow the rigor of the teaching experiment described above. Many
take the form of classroom or action research (e.g., delMas et al., 1999). Action
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research in education is an inquiry process in which teachers typically examine
their own educational practice systematically and carefully using the techniques of
research (Glanz, 2003). Action research has the potential to generate genuine and
sustained improvements in schools. It gives educators new opportunities to reflect
on and assess their teaching; to explore and test new ideas, methods, and materials;
to assess how effective the new approaches were; to share feedback with fellow
team members; and to make decisions about which new approaches to include in
the team’s curriculum, instruction, and assessment plans. The action research uses
an iterative cycle to study the impact of an activity on students’ reasoning as the
researchers develop a model of reasoning about a statistical concept.

General Implications of the Research Literature
for Teaching Statistics

Research studies across the disciplines that relate to statistics education provide
valuable information for teachers of statistics. For example, some of the studies
reveal the types of difficulties students have when learning particular topics, so that
teachers may not only be aware of where errors and misconceptions might occur
and how students’ statistical reasoning might develop, but also what to look for in
their informal and formal assessments of their learning.

We think that the research literature is especially important to consider because
it contradicts many informal or intuitive beliefs held by teachers. For example, that
students earning a grade of A in a statistics class understand the basic ideas of statis-
tics (e.g., Clark et al., 2003; Mathews & Clark, 2003), or that students’ reasoning
about statistics is consistent from topic to topic (e.g., Konold, 1995). In addition,
even the most clever and carefully designed technological tool or good instructional
activity will not necessarily lead students to correctly understand and reason about
an abstract statistical concept (e.g., Chance, DelMas, & Garfield, 2004).

Principles for Learning Statistics

After reviewing the research related to teaching and learning statistics over a decade
ago, Garfield (1995) proposed 10 principles for learning statistics. Despite the in-
creased number of studies since that article was published, we believe that these
principles are still valid. They are also consistent with recent cognitive psychology
publications on student learning, such as How People Learn (Bransford et al., 2000),
which focus on promoting learning for understanding, developing student-centered
learning environments, and rethinking what is taught, how it is taught, and how
it is assessed. These principles have been regrouped into eight research-supported
statements about student learning of statistics.

1. Students learn by constructing knowledge. Teaching is not telling, learning is not
remembering. Regardless of how clearly a teacher or book tells them something,
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students will understand the material only after they have constructed their own
meaning for what they are learning. Moreover, ignoring, dismissing, or merely
“disproving” the students’ current ideas will leave them intact – and they will
outlast the thin veneer of course content (Bakker & Gravemeijer, 2004; Lehrer &
Schauble, 2007).

Students do not come to class as “blank slates” or “empty vessels” waiting
to be filled, but instead approach learning activities with significant prior knowl-
edge. In learning something new, they interpret the new information in terms of
the knowledge they already have, constructing their own meanings by connect-
ing the new information to what they already believe (Bransford et al., 2000).
Students tend to accept new ideas only when their old ideas do not work, or are
shown to be inefficient for purposes they think are important.

2. Students learn by active involvement in learning activities. Research suggests
that students learn better if they are engaged in, and motivated to struggle with
their own learning. For this reason, if no other, students appear to learn better
if they work cooperatively in small groups to solve problems and learn to ar-
gue convincingly for their approach among conflicting ideas and methods (e.g.,
Giraud, 1997; Keeler & Steinhorst, 1995; Magel, 1998). Small-group activities
may involve groups of three or four students working in class to solve a problem,
discuss a procedure, or analyze a set of data. Groups may also be used to work
on an in-depth project outside of class. Group activities provide opportunities for
students to express their ideas both orally and in writing, helping them become
more involved in their own learning. However, just being active and having a
good time is not enough to ensure learning. Good learning activities are care-
fully designed and the teacher has an important role to listen, probe, sum up,
and assess the main points (e.g., Chick & Watson, 2002; Courtney, Courtney, &
Nicholson, 1994; Perkins & Saris, 2001; Potthast, 1999).

3. Students learn to do well only what they practice doing. Practice may mean
hands-on activities, activities using cooperative small groups, or work on the
computer. Students also learn better if they have experience applying ideas in
new situations. If they practice only calculating answers to familiar, well-defined
problems, then that is all they are likely to learn. Students cannot learn to
think critically, analyze information, communicate ideas, make arguments, tackle
novel situations, unless they are permitted and encouraged to do those things over
and over in many contexts. Merely repeating and reviewing tasks is unlikely to
lead to improved skills or deeper understanding (e.g., Pfannkuch, 2005a; Watson,
2004; Watson & Shaughnessy, 2004).

4. It is easy to underestimate the difficulty students have in understanding basic
concepts of probability and statistics. Many research studies have shown that
ideas of probability and statistics are very difficult for students to learn and often
conflict with many of their own beliefs and intuitions about data and chance
(delMas et al., 2007; Jones et al., 2007; Shaughnessy, 1992, 2007).

5. It is easy to overestimate how well their students understand basic concepts. A
few studies have shown that although students may be able to answer some test
items correctly or perform calculations correctly, they may still misunderstand
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basic ideas and concepts. Also, students who receive top grades in a class may
not understand and remember the basic ideas of statistics (e.g., Clark et al., 2003;
Mathews & Clark, 2003).

6. Learning is enhanced by having students become aware of and confront their
errors in reasoning. Several research studies in statistics as well as in other
disciplines show that students’ errors in reasoning (sometime appearing to be
misconceptions) are often strong and resilient – they are slow to change, even
when students are confronted with evidence that their beliefs are incorrect
(Bransford et al., 2000).

Students seem to learn better when activities are structured to help students
evaluate the difference between their own beliefs about chance events and actual
empirical results. If students are first asked to make guesses or predictions about
data and random events, they are more likely to care about and process the ac-
tual results. When experimental evidence explicitly contradicts their predictions,
students should be helped to evaluate this difference. In fact, unless students are
forced to record and then compare their predictions with actual results, they tend
to see in their data confirming evidence for their misconceptions of probability
(e.g., Jones, Langrall, Thornton, & Mogill, 1999; Konold, 1989a; Shaughnessy,
1977). Research in physics instruction also points to this method of testing be-
liefs against empirical evidence (e.g., Clement, 1987).

7. Technological tools should be used to help students visualize and explore data,
not just to follow algorithms to predetermined ends. Technology-based instruc-
tion appears to help students learn basic statistics concepts by providing dif-
ferent ways to represent the same data set (e.g., going from tables of data to
histograms to boxplots) or by allowing students to manipulate different aspects
of a particular representation in exploring a data set (e.g., changing the shape
of a histogram to see what happens to the relative positions of the mean and
median). Instructional software may be used to help students understand abstract
ideas. For example, students may develop an understanding of the Central Limit
Theorem by constructing various populations and observing the distributions of
statistics computed from samples drawn from these populations (e.g., Ben-Zvi,
2000). The computer can also be used to improve students’ understanding of
probability by allowing them to explore and represent statistical models, change
assumptions and parameters for these models, and analyze data generated by
applying these models (Biehler, 1991; Jones et al., 2007).

Innovative new visualization software, such as Fathom (Key Curriculum
Press, 2006) and TinkerPlots (Konold & Miller, 2005) are available to students
at all levels to explore data and learn to reason statistically.

8. Students learn better if they receive consistent and helpful feedback on their
performance. Learning is enhanced if students have ample opportunities to ex-
press ideas and get feedback on their ideas. Feedback should be analytical, and
come at a time when students are interested in it (see Garfield & Chance, 2000).
There must be time for students to reflect on the feedback they receive, make
adjustments, and try again before being given a grade. For example, evaluation
of student projects may be used as a way to give feedback to students while they
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work on a problem during a course, not just as a final judgment when they are
finished with the course. Since statistical expertise typically involves more than
mastering facts and calculations, assessment should capture students’ ability to
reason, communicate, and apply their statistical knowledge. A variety of assess-
ment methods should be used to capture the full range of students’ learning,
e.g., written and oral reports on projects, minute papers (e.g., Angelo & Cross,
1993) reflecting students’ understanding of material from one class session, or
essay questions included on exams. Teachers should become proficient in devel-
oping and choosing appropriate methods that are aligned with instruction and
key course goals, and should be skilled in communicating assessment results to
students (e.g., delMas et al., 1999).

Summary

There has been a tremendous increase in research studies focused on teaching and
learning statistics and probability over the past 15 years. These studies continue
to span many different disciplines and differ in focus, theory, methodology, and
supporting literature. However, when reviewed together, they suggest the difficul-
ties students have learning statistics and the need to revise traditional methods of
teaching. The most recent studies on the development of particular types of learning
outcomes and reasoning about special topics offer many implications for changes
in curriculum and teaching methods. However, there are still many open questions
and much work is needed to offer more specific guidance to teachers of statistics.
Since research is now elucidating some conceptual foundations (e.g., notion of dis-
tribution, variability, sampling, and statistical inference) for statistics education, the
consequence is that statistics education is emerging as a discipline in its own right,
not an appendage to mathematics education.

We find the most helpful results to come from collaborative research projects, and
encourage future researchers to find collaborators, ideally from different disciplines,
to combine expertise in the content area (statistics), student learning (education
and/or psychology), and assessment. We provide some examples and suggestions
for collaborative research in Chapter 16. Eventually, we hope to see larger studies
on particular questions of interest conducted across several institutions, using high
quality measurement instruments. We are particularly interested in seeing studies
that use newer methods of analysis (e.g., hierarchical linear modeling, analysis of
longitudinal data) that allow the careful study of the growth of reasoning and learn-
ing over different instructional settings and/or over a period of time. The new guide-
lines for using statistical methods in mathematics education research (see Scheaffer,
2007) offer many useful suggestions for improving the growing field of statistics ed-
ucation research as well. We look forward to the wealth of results from new studies
that will inform our knowledge about how students learn statistics.

The research studies summarized in each chapter in Part II provide more de-
tails on the complexity of teaching and learning different statistical topics, explain-
ing why they are so difficult for students to learn. These studies suggest that it is
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important for teachers to move beyond a focus on skills and computations and the
role of teacher as the one who delivers the content. Instead, the suggested role of
teachers is to provide a carefully designed learning environment, appropriate tech-
nological tools, and access to real and interesting data sets, as well as scaffolding
guidance to students’ emerging statistical reasoning. Chapter 3 outlines a different
instruction model – Statistical Reasoning Learning Environment (SRLE) – where
the teacher orchestrates class work and discussion and provides timely and nondi-
rective interventions as a representative of the statistics discipline in the classroom.
This type of teaching requires a teacher who is aware not only of the complexities
and difficulty of the concepts but also of the desired learning goals – such as what
effective statistical literacy, reasoning, and thinking look like – so that assessments
can be examined and compared to these goals. The research provided in this chapter
and the chapters in Part II can help provide this knowledge base for teachers of
statistics.



Chapter 3
Creating a Statistical Reasoning
Learning Environment

Shorn of all subtlety and led naked out of the protective fold of
educational research literature, there comes a sheepish little
fact: lectures don’t work nearly as well as many of us would
like to think.

(Cobb, 1992, p. 9)

Overview

The research studies from the previous chapter suggested very different ways of
teaching than traditional lectures, which is how most current statistics instructors
learned this subject themselves. Leaving that familiar method to try active learning
techniques can be quite challenging. This chapter offers advice on how to deal with
many practical issues involved in student learning in an interactive statistics class
and describes ways to build what we refer to as a “Statistical Reasoning Learning
Environment” (SRLE).

Before addressing these practical instructional issues, we begin by considering
theories of learning that guide our actions as teachers. We summarize some of
the important aspects of current learning theories and provide a model of instruc-
tion based on these theories. We offer suggestions for facilitating successful class-
room discussions, building cooperative learning experiences for students (see also
Chapter 15), and using technology to support students’ construction of statistical
knowledge (more in Chapter 5). We also discuss challenges and constraints that
make it difficult to teach in a way that promotes statistical literacy and reasoning.

Theories of How Students Learn

Whether or not we are aware of it, our own theories of how students learn guide us as
we teach. Many times we tend to teach the way we have experienced instruction; we
teach the way we have been taught. Most of us experienced “traditional” methods
of teaching, where the instructor lectures and provides notes on an overhead or a
board (blackboard or white board), and we have taken notes. Sometimes lectures
have been stimulating, and we often have acquired knowledge. Sometimes we have
found it easier to read the notes or textbook and that has been sufficient to learn
the material. Sometimes this lecture/textbook strategy has been possible because
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what has been assessed on exams is our ability to remember what the instructor or
textbook has told us.

This sequence has been referred to as “teaching is telling and learning is remem-
bering” and is based on the assumption that knowledge consists of facts and skills
Thompson & Zeuli 1999. This theory assumes that the teachers “tell” students the
facts and skills they need to know, that students are empty vessels or blank slates in
which they receive the knowledge, and then they give it back. The degree to which
students give back or remember the correct knowledge is considered the degree to
which they have learned.

In fact, despite the literally thousands of efforts to sway instruction and student
learning away from “teaching is telling and learning is remembering” since World
War II, few have had significant or enduring effects (Cohen & Ball, 1999). In recent
years, the new science of learning is beginning to provide knowledge to signifi-
cantly improve students’ abilities to become active learners who seek to understand
complex subject matter and are better prepared to transfer what they have learned
to new problems and settings. In particular, the theory of learning called “construc-
tivism” describes learning as something quite different than the telling/remembering
sequence.

Constructivism

Although there are different versions of constructivism, the basic idea is that peo-
ple learn by constructing knowledge, rather than by receiving knowledge. In the
constructivist theory, the meaning of “knowing” has shifted from being able to re-
member and repeat information to being able to find and use it (Simon, 1995).

There are four characteristics of learning in constructivism: (a) an emphasis
on understanding; (b) a focus on the processes of knowing (e.g., Piaget, 1978;
Vygotsky, 1978); (c) the principle that people construct new knowledge and un-
derstandings based on what they already know and believe; and (d) the importance
of helping people take control of their own learning, predict their performances
on various tasks, and to monitor their current levels of mastery and understanding
(metacognition, e.g., Brown, 1975; Flavell, 1976).

In the most general sense, the contemporary view of learning in accordance with
the constructivist theory is that new knowledge and understandings are based on
the existing knowledge and beliefs we already have and are grounded in our ex-
periences (e.g., Cobb, 1994; Piaget, 1978; Vygotsky, 1978). We learn by doing.
And when we learn, our previous knowledge does not go away; it is integrated
with the new knowledge. One implication for teaching is that teachers need to pay
attention to the incomplete understandings, the false beliefs, and the naı̈ve renditions
of concepts that learners bring with them to a given subject. Teachers then need to
build on these ideas in ways that help each student achieve a more mature under-
standing. If students’ initial ideas and beliefs are ignored, the understandings that
they develop can be very different from what the teacher intends (Bransford et al.,
2000).
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Sociocultural Theory

A related important perspective is that of sociocultural theory that draws heavily on
the work of Vygotsky (1986), as well as later theoreticians (for example, Wertsch,
1991, 1998). Vygotsky described learning as being embedded within social events
and occurring as a learner interacts with people, objects, and events in the envi-
ronment. The sociocultural perspective has a profound implication concerning the
important role of enculturation processes in learning. Briefly stated, the process
of enculturation refers to entering a community or a practice and picking up their
points of view. The beginning student learns to participate in a certain cognitive and
cultural practice, where the teacher has the important role of a mentor and mediator,
or the “enculturator” (cf., Schoenfeld, 1992; Resnick, 1988). This is especially the
case with regard to statistical thinking, with its own culture, values, and belief sys-
tems, and habits of questioning, representing, concluding, and communicating (see
Chapter 1). Thus, for statistical enculturation to occur, specific thinking tools are to
be developed alongside cooperative and communicative processes taking place in
the classroom.

Building Instruction on Theories of Learning

The implication of these current theories of learning is that good instructional prac-
tice consists of designing learning environments that stimulate students to construct
knowledge. This involves activities that provide students many opportunities to
think, reason, and reflect on their learning, as well as discussing and reflecting with
their peers. It does not mean that teachers should never “tell” students anything
directly and instead should always allow them to construct knowledge for them-
selves. Rather it means that learning is enhanced when teachers pay attention to the
knowledge and beliefs that learners bring to a learning task, use this knowledge as
a starting point for new instruction, and monitor students’ changing conceptions as
instruction proceeds.

It should be apparent that it is easier to prepare a lecture than it is to design a
learning environment, where students engage in activities and discussions and/or
collaborative projects, supported by technological tools. While the first approach
is teacher centered: “what is it I want to tell my students,” “what material do I
want to cover,” etc., the second approach is more student-centered: “what can I
do to promote students learning,” “how can I engage students in learning, hands-on
activities, developing reasoning, discussing ideas, working in teams,” etc. According
to this latter approach, the teacher is cast as an instructional coach, a co-learner, an
enculturator, or a facilitator, rather than as a conduit of knowledge in a teacher-
centered classroom.

Why change from a teacher-centered approach to a student-centered approach?
We think the answer is that the second approach is more effective in helping students
build a deeper understanding of statistics and to be able to leave a class and use what
they have learned in subsequent classes or in the real world. One problem with the
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“teaching is telling” approach is that students rarely have a chance to develop a deep
understanding of what they have “learned,” and quickly forget it after they complete
a course.

A Statistical Reasoning Learning Environment (SRLE)

An effective and positive statistics classroom can be viewed as a learning environ-
ment for developing in students a deep and meaningful understanding of statistics
and helping students develop their ability to think and reason statistically. We call
this type of classroom the “Statistical Reasoning Learning Environment” (SRLE).
By calling it a learning environment, we emphasize that it is more than a textbook,
activities, or assignments that we provide to our students. It is the combination
of text materials, class activities and culture, discussion, technology, teaching ap-
proach, and assessment.

Our model is based on six principles of instructional design described by Cobb &
McClain (2004) that on first glance may seem very similar to the six Guidelines
for Assessment and Instruction in Statistics Education (GAISE, 2005a, 2005b) rec-
ommendations for teaching statistics. They include the use of real data, activities,
technology, and assessment; however, the Cobb and McClain’s principles go beyond
the more general GAISE guidelines, as shown by the bold formatting in their design
principles listed below:

1. Focuses on developing central statistical ideas rather than on presenting set of
tools and procedures.

2. Uses real and motivating data sets to engage students in making and testing
conjectures.

3. Uses classroom activities to support the development of students’ reasoning.
4. Integrates the use of appropriate technological tools that allow students to

test their conjectures, explore and analyze data, and develop their statistical
reasoning.

5. Promotes classroom discourse that includes statistical arguments and sus-
tained exchanges that focus on significant statistical ideas.

6. Uses assessment to learn what students know and to monitor the development
of their statistical learning as well as to evaluate instructional plans and
progress.

We now elaborate on each of these topics in the SRLE.

1. Focus on Developing Central Statistical Ideas (Content)

There are several key statistical ideas that we would like all students to understand
at a deep conceptual level. These ideas serve as overarching goals that direct our
teaching efforts and motivate and guide students’ learning. These include:
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� Data: Understanding the need for data in making decisions and evaluating infor-
mation, the different types of data, and how the methods of collecting data (via
surveys) and producing data (in experiments) make a difference in the types of
conclusions that can be drawn, knowing the characteristics of good data and how
to avoid bias and measurement error. Understanding the role, importance of and
distinction between random sampling and random assignment in collecting and
producing data.

� Distribution: Understanding that a set of data may be examined and explored
as an entity (a distribution) rather than as a set of separate cases; that a graph
of these (quantitative) data can be summarized in terms of shape, center, and
spread; that different representations of the same data set may reveal different
aspects of the distribution; that visually examining distributions is an important
and necessary part of data analysis, and that distributions may be formed from
sets of individual data values or from summary statistics such as means (e.g.,
sampling distributions of means). Distributions also allow us to make inferences
by comparing an obtained sample statistic to a distribution of all possible sample
statistics for a particular theory or hypothesis.

� Variability: Understanding that data vary, sometimes in predictable ways. There
may be sources of variability that can be recognized and used to explain the vari-
ability. Sometimes the variability is due to random sampling or measurement error.
Other times, it is due to the inherent properties of what is measured (e.g., weights of
4 year olds). An important part of examining data is to determine how spread out the
data are in a distribution. It is usually helpful to know a measure of center when in-
terpreting measures of variability, and the choice of these measures depends on the
shape and other characteristics of the distribution. Different variability measures
tell you different things about the distribution (e.g., standard deviation focuses on
typical distance from the mean, range tells the difference between the minimum
and maximum value, and IQR reveals the width of the middle half of the data).

� Center: Understanding the idea of a center of a distribution as a “signal in a
noisy process” (Konold et al., 2002), which can be summarized by a statistical
measure (such as mean and median). It is most helpful to interpret a measure
of center along with a measure of spread, and these choices often are based on
the shape of the distribution and whether or not there are other features such as
outliers, clusters, gaps, and skewness.

� Statistical Models: Understanding that statistical models may be useful in help-
ing us explain or predict data values. We often compare the data to a model (e.g.,
the normal distribution or a regression model) and then see how well the data
fit the model by examining residuals or deviations from the model. We also use
models to simulate data in order to explore properties of procedures or concepts.

� Randomness: Understanding that each outcome of a random event is unpre-
dictable, yet we may predict long-term patterns. For example, we cannot predict
if a roll of a fair die will be a 2, or any other number, but we can predict that over
many rolls about 1/6 will be 2’s.

� Covariation: Understanding that the relationship between two quantitative vari-
ables may vary in a predictable way (e.g., high values with one variable tend to
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occur with high values of another). Sometimes this relationship can be modeled
with a straight line (the regression line). This allows us to predict values of one
variable using values of the other variable. An association does not necessar-
ily imply causation, although there may be a causal relationship (a randomized
comparative experiment is needed to determine cause and effect).

� Sampling: Understanding that much of statistical work involves taking samples
and using them to make estimates or decisions about the populations from which
they are drawn. Samples drawn from a population vary in some predictable ways.
We examine the variability within a sample as well as the variability between
samples when making inferences.

� Statistical Inference: Understanding that making estimates or decisions is based
on samples of data in observational and experimental studies. The accuracy of
inferences is based on the variability of the data, the sample size, and the ap-
propriateness of underlying assumptions such as random samples of data and
samples being large enough to assume normally distributed sampling distri-
butions. A P-value is an indicator used to evaluate the strength of evidence
against a particular conjecture, but it does not suggest the practical impor-
tance of a statistical result. The P-value indicates how likely a sample or
experimental result as extreme as what was observed would be given a par-
ticular theory or claim and helps to answer the question “is this result due
to chance or due to an effect of interest (such as a condition in an
experiment).”

While most textbooks present material in a structure based on a logical analyses of
the content, students often see the content as a sequential set of tools and procedures
and do not see how the concepts are interrelated. For example, learning about dis-
tribution early in a course is rarely connected to the ideas of sampling distributions
later in a course. We advocate a focus on these key ideas and the interrelations
among them and suggest ways to present them throughout a course, revisiting them
in different contexts, illustrating their multiple representations and interrelation-
ships, and helping students recognize how they form the supporting structure of
statistical knowledge.

2. Use Real and Motivating Data

Data are at the heart of statistical work, and data should be the focus for statistical
learning as well. Throughout a course, students need to consider methods of data
collection and production and how these methods affect the quality of the data and
the types of analyses that are appropriate. Interesting data sets motivate students to
engage in activities, especially ones that ask them to make conjectures about a data
set before analyzing it.

The GAISE report that provides a set of six guidelines for teaching the introduc-
tory college statistics course (see Chapter 1; Franklin & Garfield, 2006) states:
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It is important to use real data in teaching statistics, for reasons of authenticity, for consid-
ering issues related to how and why the data were produced or collected, and to relate the
analysis to the problem context. Using real data sets of interest to students is also a good
way to engage them in thinking about the data and relevant statistical concepts. There are
many types of real data including archival data, classroom-generated data, and simulated
data. Sometimes hypothetical data sets may be used to illustrate a particular point (e.g.,
the Anscombe data (1973) illustrates how four data sets can have the same correlation, but
strikingly different scatterplots) or to assess a specific concept. It is important to only use
created or realistic data for this specific purpose and not for general data analysis and explo-
ration. An important aspect of dealing with real data is helping students learn to formulate
good questions and use data to answer them appropriately based on how and why the data
were produced.

There are a variety of easy ways to collect data sets, some of which are described in
Chapter 6 of this book. Many good data sets with a variety of contexts can be readily
accessed on the Web (see resources section of Chapter 6 on Data in the accom-
panying Website, http://www.tc.umn.edu/∼aims). The GAISE report (Franklin &
Garfield (2006) cautions teachers to make sure that the questions used with data
sets are of interest to students and that not all data sets interest all students, so data
should be used from a variety of contexts.

3. Use Classroom Activities to Develop Students’
Statistical Reasoning

An important part of the SRLE is the use of carefully designed activities that pro-
mote student learning through collaboration, interaction, discussion, data, and inter-
esting problems (e.g., McKeachie, Pintrich, Lin, Smith, & Sharma, 1990; Bransford
et al., 2000). The positive effects of active learning have been found for short-term
mastery, long-term retention, or depth of understanding of course material; acqui-
sition of critical thinking or creative problem-solving skills; formation of positive
attitudes toward the subject being taught; and increasing the level of confidence in
knowledge or skills.

The GAISE report (Franklin & Garfield, 2006) states:

Using active learning methods in class is a valuable way to promote cooperative learning, al-
lowing students to learn from each other. Active learning allows students to solve problems,
answer questions, formulate questions of their own, discuss, explain, debate, or brainstorm
during class. Thus they are involved in discovering, constructing, and understanding impor-
tant statistical ideas and modeling statistical thinking. Activities have an added benefit in
that they often engage students in learning and make the learning process fun. Other benefits
of active learning methods are the practice students get communicating in the statistical
language and learning to work in teams. Activities offer the teacher an informal method of
assessing student learning and provide feedback to the instructor on how well students are
learning. It is important that teachers not underestimate the ability of activities to teach the
material or overestimate the value of lectures, which is why suggestions are provided for
incorporating activities even in large lecture classes.
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We favor two different models of class activities in the SRLE. The first engages
students in making conjectures about a problem or a data set, as introduced in the
preceding section on using real data. This method involves discussing students’
conjectures, gathering or accessing the relevant data, using technology to test their
conjectures, discussing the results, and then reflecting on their own actions and
thoughts. An activity like this could be based on “can students in this class correctly
identify Coke or Pepsi in a blind taste test?,” or “which human body measurements
have a normal distribution?”

The second type of activity is based on cooperative learning, where two or more
students are given questions to discuss or a problem to solve as a group. For ex-
ample, students could be given an activity involving a Web applet for bivariate data
where they are asked to figure out a rule describing how individual points that seem
to be outliers may affect the correlation and fitting of a regression line for set of
bivariate data (e.g., the Least Squares Regression and Guess the correlation applets
in http://www.rossmanchance.com/applets/). They try different locations of a point,
seeing the resulting effect on the correlation coefficient and regression line. When
using cooperative learning activities, it is important that students work together
as a group (and often in pairs using technology), not just compare their answers
(Johnson, Johnson & Smith, 1998b). For practical and useful guidelines for using
cooperative learning activities see Chapter 15.

Instructors of large classes often feel that they are unable to introduce active
learning in their classes due to constraints of the physical setup as well as large
numbers of students. The GAISE report (Franklin & Garfield, 2006) suggests ways
that active learning can be implemented in these challenging situations. Sugges-
tions for using cooperative learning in a large class can be found in Chapter 15 of
this book.

4. Integrate the Use of Appropriate Technological Tools

It is impossible to imagine nowadays a statistics class that does not utilize technol-
ogy (e.g., computers, Internet, statistical software, graphing calculators, and Web
applets) in several ways. With the accessibility of computers and the prevalence
of graphing calculators, students no longer have to spend time performing tedious
calculations. After understanding how a formula works, they can automate this pro-
cedure using technology. This allows students to focus on the more important tasks
of learning how to choose appropriate analytic methods and how to interpret results.

But, technology offers much more than a quick way to generate statistics or graph
data. Technological tools also allow students to develop an understanding of abstract
concepts and the interrelationships between concepts.

We view technology as an integral part of the SRLE. Technology should be used
to analyze data, allowing students to focus on interpretation of results and testing of
conditions rather than on computational mechanics. Technological tools should also
be used to help students visualize concepts and develop an understanding of abstract
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ideas through simulations. Some tools offer both types of uses, while in other cases
a statistical software package may be supplemented by Web applets. Technology is
also used for course management with systems like Blackboard and WebCT that
are playing a larger role in communication and collaboration capabilities and in
assessment.

Regardless of the tools used, it is important to view the use of technology not
just as a way to compute numbers, but as a way to explore conceptual ideas and
enhance student learning, collaboration, and communication as well. We caution
against using technology merely for the sake of using technology (e.g., entering
100 numbers in a graphing calculator and calculating statistical summaries) or for
pseudo-accuracy (carrying out results to multiple decimal places). Not all techno-
logical tools will have all desired features. Moreover, new tools appear all the time
and need to be carefully evaluated for if and how they may best be used to enhance
student learning. We devote Chapter 5 to the subject of technology, giving examples
of innovative tools and ways to use these tools to help develop students’ reasoning.

5. Promote Classroom Discourse

Traditional statistics classes usually did not have much discourse, “giving” infor-
mation through lectures and asking questions to “get” some answers. This is dif-
ferent from the kind of dialogue where students respond to each other’s questions
and learn to question each other as well as defend their answers and arguments.
In today’s statistics classes, the use of activities and technology allows for a new
form of classroom discourse. Cobb & McClain (2004) describe the characteristics
of effective classroom discourse in which statistical arguments explain why the way
in which the data have been organized gives rise to insights into the phenomenon
under investigation; students engage in sustained exchanges that focus on significant
statistical ideas.

It can be very challenging to create an SRLE with classroom discourse that en-
ables students to engage in discussions in which significant statistical issues emerge
and where arguments are presented and their meaning is openly negotiated. We offer
these guidelines for teachers:

� Use good questions that encourage students to speculate and think and do not
necessarily have one right answer. For example, asking students what they think
a distribution of Grade Point Averages would look like for students in the class,
and why. Or asking students to reason about what might be compelling evidence
that a student can actually distinguish between two brands of soda in a blind taste
test.

� Require students to explain their reasoning and justify their answers. Then ask
other students if they agree or disagree and why.

� Create a classroom climate where students feel safe expressing their views, even
if they are tentative. This can be done if teachers encourage students to express
their conjectures, and asking other students to comment on these conjectures,
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and allowing students to test some of these conjectures using tools and software,
rather than telling them whether they are right or wrong. Questions that begin
with “what do you think” or “What would happen if” can lead to good class
discussions. Also, if a student responds to a question posed by the teacher, and
gives a wrong answer, it can be better to ask the class “what do you think?” and
let them try to think about how correct or incorrect the answer is and why, rather
than correcting the student.

In the lesson plans that accompany this book (fully presented in the accompanying
Website), we give examples of good questions to motivate students and engage them
in statistical reasoning. We also give questions that encourage students to discuss
and share their reasoning, as well as questions used to help wrap-up a class that has
been filled with activities and cooperative learning.

Managing discussions can be challenging and many instructors are nervous about
leaving their comfortable lecture mode for an open-ended class discussion. For more
information and practical advice about leading and managing discussions, see Davis
(1993), and McKeachie & Svinicki (2006).

6. Use Alternative Assessment

In recent years, we have seen many alternative forms of assessment being used in
statistics classes. In addition to quizzes, homework, and exams, many teachers use
student’s statistical projects as a form of authentic assessment. These projects vary
in structure, but typically allow students to pose or select a problem, gather or access
appropriate data to answer the problem, analyze the data, and write up the results
in a technical report and/or presentation. In many cases, projects allow students to
collaborate with peers and professionals. Other forms of alternative assessment are
also used to assess students’ statistical literacy (e.g., critique a graph in a newspa-
per), their reasoning (e.g., write a meaningful short essay), or provide feedback to
the instructor (e.g., minute papers).

Students will value what you assess. Therefore, assessments need to be aligned
with learning goals. Assessments need to focus on understanding key ideas and not
just on skills, procedures, and computed answers. This should be done with forma-
tive assessments used during a course (e.g., quizzes, small projects, or observing and
listening to students in class) as well as with summative evaluations (course grades).
Useful and timely feedback is essential for assessments to lead to learning. Types of
assessment may be more or less practical in different types of courses. However, it
is possible, even in large classes, to implement good assessments.

Although many statistics instructors have made important changes in their class
that emphasize newer learning goals such as conceptual understanding and devel-
oping students’ statistical literacy, reasoning and thinking, the quizzes and exams
given in most statistics classes still look very traditional. We see many examples in
textbooks and on Websites of assessments that continue to focus on computation,
definitions, and skills. Many instructors write their own assessments, and many of
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these include single number answers or forced choice options. While forced choice
items can be written in ways to assess students’ statistical reasoning (see Cobb &
1998), it is a difficult and challenging job to write such items. The ARTIST Web-
site (https://app.gen.umn.edu/artist) offers an item bank of more than a thousand
items that have been designed to measure students’ statistical literacy, reasoning
and thinking, many of which are in forced choice format but provide examples of
more reasoning-based items.

We offer a separate chapter in this book that details different types of assessment
methods, examples, and advice (see Chapter 4).

A Closer Look at the SRLE

We begin by describing and contrasting what is often referred to as a “traditional”
class to a class that embeds the SRLE perspective. We deliberately exaggerate in the
following description of the “traditional” class to illustrate the contrasting practices
and underlying ideas.

A Traditional Class

The students come to class, with no anticipation of what they will learn, ready to
copy down what the instructor has to say. The instructor presents a lecture that in-
cludes examples, some data analysis, perhaps some demonstrations. The students
listen, take notes, and perhaps ask questions. They leave class with a homework as-
signment that uses information from the class they just attended. They go home, try
to solve the problems by looking back at their notes or looking up worked examples
in the textbook, often getting frustrated if they don’t find an exact match.

Now picture a very different kind of class.

An SRLE Class

The students know that they have to prepare for class by reading a few pages in the
textbook. The text has been chosen so that it is current, high quality, and readable.
The students are given study questions to guide their reading and note taking. Their
introduction to new content takes place outside of class, as they read the material,
practice some examples, and jot down notes. Students are therefore prepared to
come to class with a preliminary exposure to words and techniques, a low level of
statistical literacy.

Imagine we are now going to “see” a class on comparing groups using boxplots.
Class begins with a short summary of what was learned in the previous class, and
students are asked if they have questions on the previous class or on the assigned
reading. Students ask some questions that are answered by other students and/or the
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instructor. The instructor rarely answers a question directly but often asks students,
“What do you think?” and if another student gives an answer asks, “Do you agree
with this answer? Why?”

Now the class is ready to begin the first activity. A question is given to the
students such as “Do you think that female college students spend more time on
cell phones than male students?” Additional questions are asked such as “What are
typical amounts of time students spend on their cell phones?” or “What type of
distribution would you expect to see for cell phone usage?”

Students get into small groups to discuss these questions and sketch possible
distributions, considering ideas of shape, center, and spread. The instructor asks the
groups to share their conjectures and reasoning, and they listen to each other and
compare their predictions. The students move to computers and access a data set
containing this information that has previously been gathered about the students in

Table 3.1 Major changes between a “traditional” statistics class and an SRLE class

Aspect of the course ‘Traditional” statistics class SRLE class

Focus of course Skills and procedures, covering
content

Big ideas, developing statistical
reasoning and thinking

Role of textbook Use for examples or homework
problems and to review for test

Read and take notes to prepare for
class

Center Teacher centered Student centered
Role of the teacher Delivers knowledge by telling and

explaining
Facilitates developing of

knowledge through discussion
and activities

Role of technology To compute or check answers,
construct graphs

To explore data, illustrate
concepts, generate simulations,
test conjectures, and collaborate

Discourse Teacher answers questions Teacher poses questions and
guides a discussion. Students
present arguments. Students
answer other students’ questions
and are asked if they agree or
disagree with answers. Peer and
instructor feedback.

Data Small data sets to illustrate and
practice procedures

Rich, real data sets to engage
students in thinking and
reasoning and making
conjectures. Many data sets are
generated by the students from
surveys and experiments.

Assessment Focuses on computations,
definitions, formulas. Focus on
short answer and multiple
choice tests. Often only a
midterm and final tests are
given.

Uses a variety of methods, assesses
reasoning and thinking. Formal
and informal assessment is an
integral part of learning and is
aligned with learning methods
and goals. Students may be
asked to explain their reasoning
and justify their conclusions.
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the class using an online student survey. Working in pairs, students generate graphs
and statistics to answer the questions on cell phone use.

Students may be guided to produce side by side boxplots, and see what these
reveal about the questions being investigated. They may also compare these boxplots
to two histograms or two dot plots, to see why side by side boxplots can be more
effective (as well as what information is lost) when comparing groups. Students
may talk about appropriate measures of center and spread for the cell phone data,
revisiting those ideas from previous lessons. They may notice outliers in the data
and discuss what to do: How to find out if they are legitimate values or errors, what
happens to the graphs and statistics if those extreme values are removed?

The teacher’s role in this class is to present the problem, guide the discussion, an-
ticipate misconceptions or difficulties in reasoning, make sure students are engaged
and on task and not experiencing any difficulties. The teacher has to know when
to end discussions, when to correct mistakes, and how to provide a good summary
for the activity using the work students have done, so students can appreciate what
they learned from the activity. At the end of class, after the wrap-up discussion and
summary, students may be asked to complete a brief assessment task, providing the
teacher with feedback on their learning for that class.

It should be apparent what a major change there has been in teacher’s role, stu-
dent’s role and responsibility, and other aspects of the course. We illustrate these
differences in Table 3.1.

Challenges in Moving to an SRLE

We have presented two extremes: a “traditional” class and a class based on the
SRLE. The contrast between these two approaches is large, and it is apparent that
even an eager and enthusiastic teacher who wants to move from a more traditional
approach to a more SRLE approach is faced with many challenges. These chal-
lenges include students, colleagues, and institution, as well as challenges inherent
in instructors.

Student Challenges

Students enroll in statistics classes for a variety of reasons, but mostly to fulfill
requirements for different majors. They tend to be a heterogeneous group, whose
backgrounds vary from weak to strong mathematically as well as in written skills
and ability to think critically. Students also vary in terms of their motivation, study
habits, and learning styles, and their ability and desire to work with others.

In addition, today’s teachers of statistics need to be aware that students often
bring some background knowledge of statistics from their prior educational ex-
periences and from the world around them. They are not blank slates who have
never heard of an average or seen a bar graph. They also bring intuitions and
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misconceptions about chance and randomness. They bring an understanding of
terms such as normal, random, average, sample that are not easily replaced by the
formal statistical use of these terms.

Many students are used to a classroom where the teacher tells and they listen. If
they miss class, they can borrow lecture notes. They are used to working on home-
work problems from the textbook that follow examples in the text or in class. They
are used to referring to a textbook only for examples of worked out problems, but
are not used to reading a textbook for building understanding or to prepare for class.

A class based on the SRLE can be quite a new experience for them and one that
at first may cause them discomfort. A close look at the lesson plans and activities
that accompany this book will make this evident. In our experience, students are so
unfamiliar with this type of class that even when they are developing and expressing
impressive statistical reasoning, they are not aware that they are learning anything.
They also find that being asked to reason is difficult, and they often want the teacher
to just tell them what to do to solve a problem.

What can we do to help students realize how much more they can learn and enjoy
in a class such as the one we describe in our book? (And do we have experience
helping students come to enjoy, value, and greatly benefit from such a course?). We
think it is important to explain to students the format of the course and the rationale
for teaching it in a way that may be unfamiliar to them and one that is not associated
experience taking mathematics courses. This is an excellent opportunity to point out
and demonstrate the difference between a statistics class and a mathematics class
and how statistics is not mathematics. We have found that using a first day class
activity that gets students collecting and informally looking at data and interacting
with each other in small groups is effective to help them see what the course is going
to look like while also illustrating important ideas about data analysis and statistics.
An example of such a first day activity is given in Chapter 6 on Data.

It helps if the instructor repeatedly points out to students what content and dispo-
sitions they are learning and how their statistical reasoning is developing. It is also
important that the assessment be aligned with the class experiences (the activities
are not just “for fun” but have important lessons that they will be responsible for),
and that quality feedback on assessments is provided on what students are learn-
ing. If class activities focus on analyzing data and discussions, but exams focus on
computations and procedures, students will be unhappy with this mismatch and will
focus only on the latter in their studies.

One of the biggest challenges is getting students to read their textbook. We find
that by giving short assignments from engaging and readable texts, along with study
questions to guide their reading and note taking, many students do learn how to
read their book to prepare for class. Students quickly learn that they cannot expect
the teacher to tell them what is in the text, and only by reading the textbook can
they fully benefit and learn from the in-class activities. Allowing students to use
their answered study questions on in class exams can also help motivate students to
complete the reading and note taking assignments. We have also found that students
tend to ask better questions when they have already read something about that day’s
topic, providing positive reinforcement to them as well.
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By focusing less on computations and more on reasoning, we find that students
can do well in this type of class regardless of their mathematical background. How-
ever, we do not teach a calculus-based class, but rather one for liberal arts students.
We do not think that students in our course need anything more than a basic famil-
iarity with elementary algebra to succeed in introductory statistics. In fact, students
are often surprised to learn that they have to read and write in what they thought
would be a “math” class, despite our efforts to convince them that “statistics is not
mathematics.” In fact, this requirement to think and explain can also be unsettling at
first. However, as more writing across the curriculum efforts are being implemented
in courses, students should be less surprised to have writing assignments in their
statistics course.

Students may have difficulty accepting that there is often more than one reason-
able answer to many statistics problems and that the goal of solving a statistical
problem is not obtaining “The One Correct Answer.” This may lead students to feel
confused and uncomfortable with the fuzziness of statistical answers and claims, but
with repeated experience they should learn to recognize and value the importance
of justifying answers and providing supporting evidence and arguments.

As students differ in their learning styles, background, and experiences, they also
differ in their ability and desire to work collaboratively in groups. Some students feel
that they work better alone or are afraid other students in the group will cause them
to receive a lower grade. There are many good techniques to help students learn
to work together collaboratively, and we offer practical suggestions on this topic in
Chapter 15.

Institutional Challenges

Many people find it difficult to change from a more traditional approach because
of institutional constraints. For example, their course is a prerequisite for a second
course, and they are forced to cover so many topics that they cannot spend time
going into depth on the big ideas. Another constraint is class size, as larger classes
can make activities and discourse more difficult. Finally, technology resources may
be unavailable (e.g., only have access to Excel or graphing calculators), or students
may have limited access to computers or Internet. A new challenge faced by many
statistics instructors is how to design a course that embraces the principles listed
above, but that is taught in a Web or hybrid learning environment that uses both
Web and face to face instruction.

It is hard to offer advice in this area. One suggestion is to talk to colleagues in
other departments about their desired learning goals for students and what ideas
they consider really important for students to learn and retain after taking a statis-
tics class. They might also discuss what might be removed from the course, if
these learning goals are achieved, since deep learning takes more time than sur-
face learning. Instructors can also share the GAISE guidelines that have been en-
dorsed by the American Statistical Association as support for making recommended
changes (Franklin & Mewborn, 2006). In addition, they can share the research
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showing that students do not learn much from traditional course (see Chapter 2),
that misconceptions are stubborn and hard to overcome, and that research provides
evidence that the SRLE method can be used to support desired changes. Finally,
we urge statistics instructors to truly collaborate with their colleagues in working
together to implement desired changes. (See more on instructor collaboration in
Chapter 16.)

Instructor Challenges

In order for the recommended changes to take place, it is crucial for a teacher to
embrace a students-centered approach to learning. For example, a teacher who is
used to traditional methods of “teaching is telling” will need to develop a different
perspective about his or her role as a facilitator of student learning. The instructor
has to believe that students can learn and develop understanding without the teacher
telling them everything they need to know. The readers of this book may be col-
lege teachers of statistics or high school teachers of statistics. While both types of
teachers may have very different backgrounds, they may feel a common lack of
confidence and support to teach using the methods suggested in this book.

While statisticians may know their subject matter very well and have experience
analyzing different data sets, they may feel more reticent to depart from the lecture
method. This is especially difficult if their experiences as students were only in the
“traditional” type of course format and they have not seen or experienced other mod-
els of teaching. Moore, Cobb, Garfield, & Meeker (1995) wrote that statistics faculty
are conservative and resist giving up the methods of lecturing, despite “waves of
technology and of educational reform” (p. 251). However, repeating the methods
that we experienced as students (lectures of new material followed by practicing
problems on isolated topics) does not work well for most students enrolled in in-
troductory statistics classes today. Hogg (1992) criticizes the reliance on traditional
methods of teaching statistics that lead to poor students’ outcomes. College teachers
of statistics who have not taken coursework on how students learn or have a back-
ground in teaching methods may want to refer to a good reference such How People
Learn (Bransford et al., 2000) as well as other references in this book about teaching
and learning for more background on educational theory and methods.

High school teachers typically have earned their degrees in mathematics or math-
ematics education and have taken course work in educational psychology and teach-
ing methods. They may have limited knowledge of statistics and experience in
analyzing data and using technology. So both sets of teachers have some areas in
which they can work to fill in gaps. The high school teachers can work to deepen
their knowledge of statistics (see, for example, Shaughnessy J. M., & Chance, B. L.,
2005) so that they may develop a deeper knowledge than they will be using to help
their students to learn.

A teacher (whether or not they are in a high school or college setting) will expe-
rience many challenges. These include time constraints in class and outside of class
and their own confidence, comfort, and patience. Time may be the most apparent
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challenge at first: time it takes to prepare for a new classroom environment; time
to review and think about using lesson plans rather than lecture notes; time it takes
to listen to and assess students; and time to review and reflect on what students are
learning and provide useful and timely feedback. It is also important to note that
tenure-track faculty who are interested using this approach may be pressured not to
spend so much time on their teaching, and instead put more time into research and
publication.

Another challenge is the loss of control, when the class becomes more student-
centered than teacher-centered. The instructor will most likely encounter situations
when data gathered (sometimes improperly) present surprises, experiments back-
fire, and technology crashes or fails. It is a challenge to not (quickly) tell students
answers, but to ask students what they think and to wait several seconds if no one re-
sponds to a question at first. Instructors who have not used cooperative learning can
find it quite difficult to monitor groups and make sure they are working smoothly.
Sometimes, interventions are needed if a group does not work well together or has
gone off track.

Finally, a teacher who has been confident and comfortable lecturing may be very
uncomfortable giving students an activity to work on in small groups, and walking
around listening, observing, and questioning. We know teachers who have feared
or experienced decreased rating in teaching evaluations when they switched from
lecture classes to active learning formats, and felt that students only wanted them
to lecture. Some students have been frustrated by not having an instructor tell them
what then need to know, and putting more demands on the students to prepare for
and participate in class.

We encourage confidence and patience. Confidence that students really can learn
well from each other when working collaboratively if given good activities and guide-
lines, confidence that students can learn from their textbook when given study ques-
tions and a good textbook, and confidence that teaching evaluations can be quite high
if active learning is used effectively. We also encourage teachers to find ways to give
students structured tasks outside of class to allow more class time for activities and
discourse. We also encourage collaboration (see Chapter 16) because it is always
easier to make changes when you are not the only one doing this. Chapter 16 offers
many suggestions for how to initiate or participate in a cooperative teaching group.

An Additional Challenge: Implementing the SRLE
in an Online Course

It is important to note that more and more introductory statistics classes today are
being taught in an online format or a hybrid format (part online, part face-to-face).
Students appear to value the flexibility of these courses and institutions have found
them to be increasingly cost-effective. There are additional challenges faced by an
instructor of an online or hybrid course who wishes to move to an SRLE, such as
how to find ways for students to make and test conjectures in small groups, how
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to develop good discussions, and how to guide students to use different technolog-
ical tools. While many of the online courses that are currently taught appear to be
more traditional in format, there are examples of courses that are working to make
students more engaged in activities and discussions (see Everson, 2006; Everson,
Zieffler & Garfield, in press; Tudor, 2006). We encourage more instructors of these
courses to find creative ways to implement important aspects of the SRLE into their
online learning environments.

Ways to Move to SRLE

The first step in moving towards the SRLE is to see how one’s current course and
materials align with the components of SRLE described in the previous sections
and then pick a starting point. For example, try an activity and discussion questions
included in the resources for this book.

The Website that accompanies this book provides complete lesson plans, student
handouts, and in some cases data sets, for an SRLE first course in statistics, as well
as other useful resources. Discussion questions, instructions, and sample students
results are on the Website. While some topics are not included in our materials,
you will find that others receive more emphasis in that they are introduced early
(in an informal way), then revisited in more formal ways (e.g., statistical models
and sampling variability). However, many aspects of these topics that can be found
in most introductory textbooks are missing from our lessons, as we have chosen
to emphasize the main ideas at a conceptual level and have left out many pro-
cedural aspects and applications of these ideas. A complete scope and sequence
for the topics and their sequences of activities can be found at the accompanying
Website.

In contrast to more traditional introductory courses, there is little focus on com-
putation, and instead technology is used to analyze data and the students’ role is
to use technology wisely and to interpret their results. There is no formal study
of probability and its rules, no computations involving z scores (but rather, use of
a Web applet and focus on the meaning of z scores), and no use of the z test for
quantitative data. Our materials may look like they are from a radically different
course and not one that readers may want to instantly try. However, we encourage
you to review and choose one activity or one lesson and try it out and see what
happens, rather than try to adopt all the lessons as an entire course.

It is also possible to adopt the principles of SRLE in a course that covers different
topics than the ones we have presented in the chapters in Part 2. We encourage
instructors to see how these principles may be used to design similar activities and
discussions for topics that are not addressed in our book. We also note that develop-
ing an SLRE for a course can be achieved by steady change over a period of time
and that it does not have to be a radical, all at once change. In fact, success may be
more likely if implemented over a period of time than if a traditional instructor tries
to leap into an SLRE in a single try.
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Summary

A Statistical Reasoning Learning Environment is quite different than a traditional
lecture-based classroom, but it may also be quite different from many statistics
classes that use some activities, real data sets, and technology tools. The six prin-
ciples outlined earlier are key elements in developing a class where students are
engaged in making and testing conjectures using data, discussing and explaining
statistical reasoning, and focusing on the important big ideas of statistics. The sub-
sequent chapters in this book provide guidance in moving to such a classroom.
The remaining chapters in Part I offer more detailed suggestions on assessment
(Chapter 4) and technology (Chapter 5), and the concluding chapters in Part III
offer additional guidance on collaboration (Chapters 15 and 16). The chapters in
Part II suggest lessons based on the SRLE model for each of the big ideas in an
introductory statistics course. These lessons can be adopted or modified as a way to
move toward the SRLE. The resources section at the end of this chapter provides
additional books and articles related to the issues raised in this chapter.



Chapter 4
Assessment in Statistics Education1

Teachers need to design assessments backward from the task,
asking at each step of the way “What’s the evidence I need of
students’ understanding? Will this assessment get at it?”

(Wiggins2)

Overview

How do we determine what students know and learn in our statistics classes? In
recent years, much attention has been paid to assessing student learning, examin-
ing outcomes of courses, aligning assessment with learning goals, and alternative
methods of assessment. This is especially true for statistics courses, where there is a
growing focus on newly identified learning goals such as statistical literacy, reason-
ing, and thinking. Over the past two decades, dramatic changes in the learning goals
of statistics has led to a corresponding rethinking of how we assess our students, and
it is becoming more common to use alternative assessments such as student projects,
technical reports, and oral presentations than in the past. Alternative assessment
tasks can also serve as a powerful learning tool, and in fact we view assessment as
an important component of the learning processes rather than only as a means for
testing of students’ outcomes.

In this chapter, we will consider the why and how of assessment of student
outcomes in statistics, including changes to traditional assessment practices and
consideration of new assessment tools, and how to utilize assessment feedback to
improve course planning and instruction. This chapter encompasses both research
studies about assessment in teaching and learning statistics and many resources on
using assessment in statistics education.

Definitions and Goals of Assessment

Assessments are used for many different purposes. Some of these include informing
students of their progress, informing teachers of individual student proficiency, and
providing feedback on how effectively students are learning the desired material

1 We gratefully acknowledge the major contributions of Beth Chance and Elsa Medina in the
writing of this chapter.
2 From: http://teacher.scholastic.com/professional/assessment/studentprogress.htm

J.B. Garfield, D. Ben-Zvi, Developing Students’ Statistical Reasoning,
C© Springer Science+Business Media B.V. 2008
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in order to modify instruction. In addition, student assessment data may be used
as a way to help instructors learn about and improve their courses, and to provide
information to evaluate curriculum and programs.

Two main types of assessment are often referred to as formative assessment
and summative assessment. Formative assessment is the in-process monitoring of
on-going efforts in an attempt to make rapid adjustments (e.g., a cook tastes the
soup and decides whether or not to add more spices). Summative assessment tends
to record overall achievement, often to compare outcomes to goals, and typically
occurs at the end of a process (e.g., the customers taste the soup and provide their
opinion). Adjustments based on results from summative assessments can be made
for the future, but are less immediately responsive. Formative and summative assess-
ments can have different dimensions, each of which may have different goals such
as promoting students’ growth, improving instruction, and demonstrating students’
procedural and conceptual understanding.

Three broad purposes of assessment are examined in the report, Knowing What
Students Know: The Science and Design of Educational Assessment (Pellegrino,
Chudowsky & Glaser, 2001). They are:

1. To assist learning,
2. To measure individual achievement, and
3. To evaluate programs.

The report goes on to describe the purpose of an assessment as determining prior-
ities, and how the context of use imposes constraints on the design. Assessment is
viewed as a process of reasoning from evidence. However, assessment results are
only estimates of what a person knows and can do. The report stresses that every
assessment, regardless of its purpose, rests on three pillars:

1. A model of how students represent knowledge and develop competence in the
subject domain,

2. Tasks or situations that allow one to observe students’ performance, and
3. An interpretation method for drawing inferences from the performance evidence

thus obtained.

These three foundational elements – cognition, observation, and interpretation –
comprise an “assessment triangle” that underlie all assessments and must be explic-
itly connected and designed as a coordinated whole.

Educational assessment does not exist in isolation, but must be aligned with cur-
riculum and instruction if it is to support learning. Therefore, assessment should be
carefully aligned with the important and valued learning goals. Since the focus of
this chapter is on assessing student learning, the next section attempts to define some
important learning goals for students. An example of using student data to assess an
undergraduate statistics program is given by Peck and Chance (2005).
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Defining Learning Goals: Statistical Literacy, Reasoning,
and Thinking

In defining student understanding, it is important to consider different aspects or
levels of understanding. Bloom’s Taxonomy (1956) has long been used to categorize
learning outcomes by their level of abstraction. These levels include:

� Knowledge: Can students recall basic information, terms, definitions?
� Comprehension: Can students understand, interpret, predict and make compar-

isons based on their knowledge?
� Application: Can students use the information to solve problems in novel situa-

tions?
� Analysis: Do students see patterns, connect and relate ideas, and make infer-

ences?
� Synthesis: Can students combine knowledge from several areas and generate

new ideas and make generalizations? Can they make predictions and draw con-
clusions?

� Evaluation: Can students make judgments and evaluations, recognizing strength
of evidence for a theory? Can they discriminate and make choices?

This taxonomy has been utilized by assessment writers to help write items to assess
a variety of levels of cognitive objectives. Despite its reputation and recognition,
writers using this taxonomy are often faced with the ambiguity of figuring out ex-
actly how to use it as they contextualize the cognitive objectives they want to assess.
In addition, Bloom’s taxonomy is fairly general, and several articles have pointed
out problems and limitations (e.g., Stanley & Bolton, 1957; Cox, 1965; Poole, 1971,
1972; Fairbrother, 1975; Phillips & Kelly, 1975; Orlandi, 1971; Ormell, 1974; Sax,
Eilenberg, & Klockars, 1972; Seddon, 1978). Many instructors have found it dif-
ficult to apply this six-level taxonomy, and some have simplified and collapsed the
taxonomy into three general levels (Crooks, 1988). One way to do this is to make the
first category – knowledge (recall or recognition of specific information), the second
category – a combination of comprehension and application, the third category –
“problem solving,” while collapsing the remaining three levels.

Specific guidelines within a discipline appear to be more useful than the general
categories such as those in Bloom’s taxonomy (1956). We have found that using
statistical literacy, reasoning, and thinking, as described in Chapter 2 helps distin-
guish between desired learning outcomes both in considering instructional goals as
well as in writing assessment items. We now show how these outcomes might be
assessed.

Statistical literacy involves understanding and using the basic language and tools
of statistics: knowing what basic statistical terms mean, understanding the use of
simple statistical symbols, and recognizing and being able to interpret different rep-
resentations of data (Rumsey, 2002).

Statistical reasoning is the way people reason with statistical ideas and make
sense of statistical information. Statistical reasoning may involve connecting one
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concept to another (e.g., center and spread) or combining ideas about data and
chance. Statistical reasoning involves understanding concepts at a deeper level than
literacy, such as understanding why a sampling distribution becomes more normal
as the sample size increases. Reasoning also means understanding and being able to
explain statistical processes and being able to interpret particular statistical results
(e.g., why a mean is much larger or smaller than a median, given the presence of an
outlier) (Garfield, 2002b).

Statistical thinking involves a higher order of thinking than does statistical rea-
soning. Statistical thinking has been described as the way professional statisticians
think (Wild & Pfannkuch, 1999). It includes knowing how and why to use a par-
ticular method, measure, design or statistical model; deep understanding of the
theories underlying statistical processes and methods; as well as understanding the
constraints and limitations of statistics and statistical inference. Statistical thinking
is also about understanding how statistical models are used to represent random
phenomena, understanding how data are produced to estimate probabilities, recog-
nizing how, when, and why to use inferential tools in solving a statistical problem,
and being able to understand and utilize the context of a problem to plan and evaluate
investigations and to draw conclusions (Chance, 2002).

Words that Characterize Assessment Items for Statistical Literacy,
Reasoning, and Thinking

One way to distinguish between these related outcomes is by examining the words
used in assessment of each outcome. Table 4.1 (modified from delMas, 2002) lists
words associated with different assessment items or tasks.

Table 4.1 Typical words associated with different assessment items or tasks

Basic Literacy Reasoning Thinking

Identify Explain why Apply
Describe Explain how Critique
Translate Evaluate
Interpret Generalize
Read
Compute

Next, we present three examples to show how statistical literacy, reasoning, and
thinking may be assessed.

Example of an item designed to measure statistical literacy:

A random sample of 30 first year students was selected at a public university to estimate
the average score on a mathematics placement test that the state mandates for all freshmen.
The average score for the sample was found to be 81.7 with a sample standard deviation of
11.45. Describe to someone who has not studied statistics what the standard deviation tells
you about the variability of placement scores for this sample.
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This item assesses statistical literacy because it focuses on understanding (knowing)
what the term “standard deviation” means. For more examples of items assessing
statistical literacy see Watson & Callingham (2003).

Example of an item designed to measure statistical reasoning:

Without doing any calculations, which of the following histograms, A or B, would you
expect have a higher standard deviation and why?

This item assesses statistical reasoning because students need to connect and reason
about how the standard deviation of a distribution is affected by spread from the
center (mean). They have to reason about the fact that Graph B would have a higher
average deviation from the mean than Graph A, because Graph A has a higher pro-
portion of its values clustered closer to the mean.

Example of an item designed to assess statistical thinking:

A random sample of 30 first year students was selected at a public university to estimate
the average score on a mathematics placement test that the state mandates for all freshmen.
The average score for the sample was found to be 81.7 with a sample standard deviation of
11.45.

A psychology professor at a state college has read the results of the university study. The
professor wants to know if students at his college are similar to students at the university
with respect to their mathematics placement exam scores. This professor collects informa-
tion for all 53 first year students enrolled this semester in a large section (321 students) of his
“Introduction to Psychology” course. Based on this sample, he calculates a 95% confidence
interval for the average mathematics placement scores exam to be 69.47–75.72. Below are
two possible conclusions that the psychology professor might draw. For each conclusion,
state whether it is valid or invalid. Explain your choice for both statements. Note that it is
possible that neither conclusion is valid.

a. The average mathematics placement exam score for first year students at the state college
is lower than the average mathematics placement exam score of first year students at the
university.

b. The average mathematics placement exam score for the 53 students in this section is lower
than the average mathematics placement exam score of first year students at the university.
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This item assesses statistical thinking because it asks students to think about the
entire process involved in this research study in critiquing and justifying different
possible conclusions.

Comparing Statistical Literacy, Reasoning, and Thinking
to Bloom’s Taxonomy

These three statistics learning outcomes also seem to coincide somewhat with
Bloom’s more general categories (1956) as they may be collapsed into the three
levels described in the previous section. We see statistical literacy as consistent with
the “knowing” category, statistical reasoning as consistent with the “comprehend-
ing” category (with perhaps some aspects of application and analysis), and statistical
thinking as encompassing many elements of the top four levels of Bloom’s taxon-
omy (application, analysis, synthesis, and evaluation).

Distinguishing among different types of desired learning outcomes can help
statistics educators design assessment tasks that address the different outcomes and
create classroom environments that allow multiple instructional methods and as-
sessment opportunities. As learning goals have changed, so have uses of assessment
in statistics instruction, moving away from focusing solely on the purpose of as-
signment grades as was common in the past (Garfield, 2000). A wide variety of
instruments and methods are now availableto help instructors evaluate how statisti-
cal understanding is developing, and what changes can be made to improve student
understanding. As a consequence, assessment has also been a topic of several re-
search studies in statistics education which we discuss below.

Research on Assessment in Statistics Education

Recent research on assessment in statistics education has focused on the design, use,
and evaluation of:

� instruments to assess cognitive outcomes,
� instruments to assess attitudes and dispositions, and
� alternative forms of assessment (such as, group work, portfolios, and projects)

focusing on application, interpretation, communication, and understanding of the
statistical process.

Assessing Cognitive Outcomes

Most assessments used in statistics courses and in statistics education research focus
on learning, or cognitive outcomes of instruction. Many of the measures of learning
and achievement used in courses provide only a single number summary of student
performance. Due to limitations in this approach, there has been an increasing need
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to develop assessment tools that better measure different types of conceptual un-
derstanding to allow assessment of the development of students’ reasoning, that are
feasible for large-scale testing. For example, the Statistical Reasoning Assessment
(Garfield, 2003) was developed as a multiple choice test where each correct and
incorrect response was mapped to a previously identified reasoning goal (e.g., com-
mon misconceptions such as the “law of small numbers” and “equiprobability bias,”
Garfield, 2002b), while focusing on students’ understanding of statistical concepts
and ability to apply statistical reasoning.

Studies by Konold (1995) suggest that students have deeply held, often contra-
dictory intuitions about probability and statistics prior to instruction that he main-
tains he would not have been able to as easily identify if he had not developed
new assessment items focused on conceptual change that forced him to “articulate
my major objectives and to evaluate the effectiveness of the materials I am de-
signing.” More recently, other instruments such as the Statistics Concept Inventory
(SCI, Allen, Stone, Rhoads, & Murphy, 2004) and the Comprehensive Assessment
of Outcomes in a first Statistics course (CAOS, Ooms, 2005) have continued this
focus on developing reliable and valid instruments to assess students’ conceptual
understanding of statistics. The SCI is modeled after the Force Concept Inven-
tory, which is used in assessing students’ misconceptions about Newtonian physics
(Halloun & Hestenes, 1985). The CAOS test focuses on statistical literacy and rea-
soning and has undergone extensive psychometric analyses, and baseline data have
been gathered for comparisons with normative data (delMas, Ooms, Garfield, &
Chance, 2006). Goals for both of these instruments include using them to collect
data across student groups and settings for comparative research studies. In addi-
tion to these comprehensive tests, 11 multiple-choice tests on individual topics are
available as online tests (delMas et al., 2006).

Research in science education has highlighted the effectiveness of assessment
in increasing student learning. For example, Posner, Strike, Hewson, and Gertzog
(1982) discuss a predict-and-test model as a way to get students to establish suffi-
cient cognitive dissonance that subsequent instructional intervention has a stronger
effect on changing common misconception. Applying this model in statistics educa-
tion, delMas et al. (1999) asked students to predict (through a quiz) the behavior of
sampling distributions of the mean for different populations before using technology
to check their answers. Students’ interaction with the technology appeared to have
much more impact on their learning when this pretesting step was used.

Assessing Attitudes and Dispositions

Research has demonstrated that students’ attitudes can be a powerful factor in their
learning of statistics (Gal & Ginsburg, 1994), and it is worthwhile to monitor student
attitudes at the beginning of the course as instruction is being planned, as well as
when the course is evaluated for overall quality and effectiveness. Although this
goal has received less attention in the past, partly due to the difficulty in assessing
affective factors such as attitudes and beliefs involved in the learning process, it
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is starting to receive more attention. Many researchers in the field of mathemat-
ics education, psychology, and cognitive sciences (Mandler, 1984; McLeod, 1989,
1992; Adams, 1989; Fennema, 1989; Schoenfeld, 1983) have stressed the need to
assess students’ affective domain because they influence the cognitive domain. In
particular, McLeod (1989) distinguishes between attitudes and beliefs and discusses
why these are important for the learning of mathematics, and also defines and dis-
tinguishes between other constructs such as emotions and dispositions that are less
stable and more likely to change over shorter periods of time. Preconceived notions
about the subject and its usefulness appear equally important in statistics education.

Some instruments have been used to assess students’ attitudes and beliefs about
statistics such as Attitudes Toward Statistics (Wise, 1985) and Survey of Attitudes
Toward Statistics (Dauphinee, Schau, & Stevens, 1997). However, these instruments
were not designed to provide causal information (Gal, I., & Garfield, J. , Eds.). One
may have to conduct interviews to find out why students have the beliefs they do
about statistics. This is a limitation in trying to assess students’ affective domain
since it is difficult to find the time for focus groups conducting interviews. Fur-
thermore, since attitudes and beliefs are very stable, it is difficult for an instructor
to make significant changes in attitudes during one course, but these assessment
instruments can at least inform a more long-term change in the teaching of statistics.

Alternative Assessment Methods

Even good students don’t always display a good understanding of what’s been taught even
though conventional measures . . . certify success.

(Wiggins & McTighe, 1998, p. 2)

As the instructional goals shift from computational skills to deeper conceptual un-
derstanding of basic statistical ideas, the need for alternative methods of assessment
is even stronger than before. As Wiggins and McTighe point out in the quote above,
conventional methods often fall short of giving the full picture of what students have
learned. Many innovative alternative assessment methods are available to teachers
of statistics such as projects and article critiques, which are described in a later sec-
tion of this chapter. While alternative assessment methods provide different types of
insight into students’ understanding and ability, they are also particularly conducive
to promoting student learning.

Informal assessments are also an alternative to traditional quizzes and exams.
During a lesson, questions can be posed orally to probe for common misconcep-
tions and allow students to discuss their ways of thinking. Students can be asked to
provide multiple solutions to a problem, and then asked to explain their reasoning.
Practice in explaining reasoning and supporting judgments and conclusions will
help them better perform these tasks on later assessments.

The focus on the integration of improved assessment methods and alternative
forms of assessment in introductory statistics allows instructors to assess students’
understanding at a deeper level, often highlighting very deeply held misconceptions
about probability and statistics. Development of new assessment instruments and
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tasks is improving our ability to document these misconceptions and their reasoning
processes, as well as track students’ development of conceptual understanding as
they learn new material. In particular, assessment tools can be utilized themselves
as powerful instructional interventions, especially once students and faculty become
more comfortable with the formative nature of this information rather than relying
on them only as summative evaluations.

Designing Assessments for Statistics Classes

Assessment should support the learning of important concepts or skills and provide
important information to both teachers and students National Council of Teachers of
Mathematics (NCTM), 1989, 2000). The NCTM Assessment Standards for School
Mathematics (1995) presents six assessment standards that address mathematics
(the content we teach), learning, equity, openness, inferences, and coherence. Due
to the multiple roles that assessment can play in statistics education, designing an
assessment plan takes careful consideration. Garfield (1994) offers the following
assessment framework from which to build:

� What is to be assessed (e.g., a concept, skill, attitude, or belief)
� The purpose of the assessment (e.g., to assign a grade, to help the teacher modify

instruction, to help the student identify strengths or weaknesses in their under-
standing)

� Who will do the assessment (e.g., self-assessment by the student, peer-evaluation,
instructor feedback)

� The method that will be used (e.g., project, quiz)
� The action/feedback that will be implemented as a result of the assessment

Each of these dimensions needs to be considered in designing an assessment to help
ensure that the assessment is aligned with course goals and is as effective as pos-
sible. Because assessing students can be time-consuming, in designing assessment
tasks we recommend a focus on two key tenets: (1) assess what is valued, and (2)
incorporate assessment into the learning process.

Assess What Is Valued

Students pay the most attention to the material on which they are assessed. Students
take their cues as to what is important in the course based on assessments. It is easy
to claim that clear communication, analysis, and synthesize of topics are goals of
the course. Yet even when a teacher models these skills during class, students will
not focus on them if they are not held responsible for demonstrating these types of
skills themselves “when it matters.”

To ensure the teacher is assessing what is valued, it can be helpful to first reflect
on what the teacher cares most that students should be able to do after they have
taken a statistics class. Should they remember a formula? Should they be able to
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make decisions and provide arguments based on evidence? Should students be able
to conjecture, build arguments, and pose and frame problems?

Incorporate Assessment into the Learning Process

It is also important to conceive of an assessment program as a process in which
students (and faculty) can receive formative feedback during the course, rather than
the traditional method of using assessments only to determine final course grades.
Taking advantage of the high importance students give to assessments provides an
opportunity for substantial learning and reflection (e.g., the predict-and-test model).
For these reasons, it is crucial to consider student assessment simultaneously with
the design of instructional activities and to consider how lessons learned from differ-
ent assessment components can inform other parts of the course (for example, using
quizzes as sample exam items to help prepare students for the types of questions
they may be asked).

A K–12 teacher may find that incorporating different types of assessments into
the learning process will help students develop the content knowledge and lan-
guage skills necessary for success in the next school level. However, independently
of what level is taught, teaching students how to learn and reflect on what they
know (referred to as a metacognitive activity) has been shown to improve under-
standing in different content areas (White & Frederiksen, 1998; Schoenfeld, 1987)
and would better prepare students to be life-long learners (Bransford, Brown, &
Cocking, 2000).

Different Types of Assessment

Many effective types of assessment tools exist, each with different goals and pur-
poses. Below we highlight a few common practices and their differing roles in the
overall assessment process: Homework, quizzes, exams, projects, critiquing/writing
assignment/lab reports, collaborative tasks, minute papers, and attitudinal measures.

1. Homework

Often students find statistical terminology and statistical way of thinking to be the
most challenging aspects of their first introduction to statistics. Providing them with
constant practice using terms and processes is an important component in develop-
ing their understanding and confidence with the material. Homework assignments
can clearly vary in length and formality (e.g., “practice problems”), but should pro-
vide students with guidance on how to focus their studying of the topics. For ex-
ample, they should include application and conceptual questions, especially if those
types of questions will be asked on exams. Questions can also be included that ask
students to reflect on the problem solving process. As with any assessment strategy,
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it is crucial to supply students with clear guidelines for the instructors’ expectations
(e.g., How much work needs to be shown in leading to the final answer? Should
computer output be included in the write up?). Students may not be accustomed to
being graded on their process (needing to supply more than just a final boxed answer
at the end) or even the correctness of their approach and they will require time to
adjust. Supplying guidelines for performance expectations can also help students
avoid time consuming sidetracks.

In grading homework assignments, it is quite valuable to provide feedback that
students can apply to later assignments. While student assistants can often help
grade assignments at the university level, questions that require more interpreta-
tion might be better graded by the instructor. Being open to alternative approaches
and interpretations is especially important in introductory statistics classes. We also
recommend providing students with access to model solutions, whether instructor
written or an anonymous student paper to help model peer work, and/or the oppor-
tunity to review and comment on faulty and correct solutions provided by other stu-
dents. (For a comprehensive review of research related to the effects of homework,
see Cooper, Robinson, & Patall, 2006.) Other practical considerations include how
much collaboration to allow among students in doing their homework. See Chapter
15 for a discussion on the benefits of collaboration in learning statistics.

The instructor also needs to decide on the level of support or scaffolding given
in response to student questions on the assignment. For example, how forthcoming
should the instructor be in supplying help, answers, or hints? Will responses to stu-
dents be more Socratic in nature to help students think through the process? Could
additional hints be accompanied by a deduction in points available for a particular
problem? Should the instructor choose to be generous in responding to questions
on student homework problems, but only if questions are posed at least 24 hours
prior to the due date? This type of structured support can encourage good habits in
students so that they do not delay working on their homework until the last minute.

2. Quizzes and Exams

Quizzes are useful for providing timely checks of student understanding and feed-
back on their progress while exams can assess cumulative knowledge over a longer
period of time. Low-stakes quizzes can be very helpful to students in getting a feel
for what types of questions may appear on exams, especially if exam questions
tend to be more conceptual in nature than textbook problems providing students
with some prior knowledge of what the planned focus will be for a particular exam
and the instructor’s grading style. Alternatively, quizzes can be more focused mini-
exams, with an accompanying higher weight in the overall course grade. This is
especially effective for minimizing grading efforts, allowing homework assignments
to be down-weighted or even optional.

One approach to consider is paired/collaborative quizzes. Significant student
learning occurs in the debates they have with each other in developing a unified
response. Students can also support each other and this approach may alleviate
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testing anxiety among many students. In this way, quizzes become a learning tool
as well as an assessment technique. Students can be given time to think individu-
ally before the group discussion and individually graded components can also be
incorporated if desired. Researchers such as Johnson and Johnson (1996) have also
discussed issues in forming these groups (e.g., homogenous or heterogeneous with
respect to prior performance?) and rearranging them during the term (see later com-
ments on collaborative tasks as well).

Another practical consideration is dropping a quiz grade (or more) in the overall
grade calculations. This can help ease tension if students must miss a class day, but
still provide incentives to attend class. A decision may depend on whether quizzes
are announced in advance and on how many are administered during the term. Use
of quizzes for attendance incentives can take more prominence for early morning
and Friday classes for college students.

Some instructors worry about using too much in-class time if quizzes are given
every week. Short quizzes can provide meaningful insight into students’ understand-
ing. The following example shows a one-question quiz that can help the instructor
to highlight and bring to class discussion a common misunderstanding:

Example (adapted from Ramsey & Schafer, 2002):

True or False? A sample histogram will have a normal distribution if the sample size is
large enough. Explain why. (Sample correct responses: False, because a large sample size
will give a better idea of the shape of the population from which the data have been sampled,
and that population may or may not have a normal distribution).

It is clear that numerous resources now exist for accessing existing assessment tools.
In selecting an assessment tool, it is important to consider what types of modification
are needed to adapt this instrument to align with the instructor’s learning goals.

Writing Good Items for Quizzes and Exams

Several statistics educators (e.g., Hubbard, 1997; Hayden, 1989) have suggested
ways of improving exam questions such as always providing a meaningful context,
using questions where the goal of the analysis has a purpose, asking more “what if,”
“construct a situation such that. . . ,” and comparative judgment questions, requiring
explanations with calculations, identification and justification of false statements,
and objective-format questions. Cobb (1998) offers ways to write good multiple
choice items to assess higher order thinking and reasoning. As an alterative to
writing items, the ARTIST project provides a selection of over 1000 high-quality
assessment items in an online, searchable data base (see Resources section). These
items are released only to instructors, and are not freely accessible on the Web by
students.

According to Wild, Triggs, and Pfannkuch (1997), multiple-choice questions can
still test higher level thinking skills. They provide examples of multiple-choice
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questions that can help students confront common misconceptions, interpret data,
select appropriate techniques for data analysis, and make appropriate inferences.
What multiple-choice questions cannot do is to assess open-ended thinking because
it does “little to help students develop their own voices” or demonstrate students’
ability to formulate questions emerging from the data.

The following guidelines can assist instructors in developing their own items for
quizzes and exams:

� Include items that allow students to express their reasoning and thinking and
demonstrate their use of statistical language.

� In using multiple-choice items, aim for 3–4 answer choices. Try to include re-
sponses that might match different types of student reasoning among the answer
choices and try to avoid options such as “none of the above.” (See Haladyna,
Downing, & Rodriquez, 2002 for additional practical suggestions for writing
multiple-choice items based on measurement research.)

� Add a contextual basis to existing questions that may lack a real or realistic con-
text. For example, rather than asking students to interpret a correlation of 1.2 (an
oblivious result of a calculation error), describe the problem being investigated
and the variables being examined (e.g., in a study of attitudes and achievement
in a statistics class, students were given assessments of math anxiety and algebra
proficiency).

� Build assessment questions around existing data sources. Finding interesting data
examples is often more difficult. So it may be useful to start with an interesting
research study and build the statistical concepts questions around that study.

Examples of Good Assessment Items

The following items provide some examples of good assessment items, based on the
guidelines in the previous section.

Example:

A study of 78 randomly selected seventh-grade students from a large Midwestern school
measured students’ “self-concept” (SC) through their score on Piers-Harris Children’s Self-
Concept Scale. Within the analysis, researchers found higher SC scores for 13 years com-
pared to 14 year olds and constructed a 95% confidence interval for this difference to be
(2.38, 29.44).

(a) Which is the best interpretation of this confidence interval?

� 95% of 13 year old and 14 years had a self concept score between 2.38 and 29.44.
� We are 95% confident that 13 year olds score between 2.38 and 29.44 points more

than 14 year old scores.
� We are 95% confident that the difference in mean concept scores for the 13 year

olds and 14 year olds in this study is between 2.38 and 29.44.
� 95% of intervals constructed this way will capture the difference in the population

means between 2.38 and 29.44.
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(b) Explain what is wrong with one of the above interpretations.
(c) Explain whether, and if so how, the above interval would differ if the confidence level

had been 99% instead of 95%.

This item challenges students not only to identify a correct answer but to also iden-
tify answers that are incorrect and explain why they are wrong. It also asks students
to reason about the effect of changing a confidence level to a higher value and why
that would affect the interval width.

Example (adapted from Rossman & Chance, 2001):

Construct a data set of 10 possible student test scores that range between 0 and 100 so the
mean is greater than median.

Students need to understand the properties of the measures to “work backwards” in
solving this problem.

Example (adapted from Hubbard, 1997):

Make up a problem that could be solved with the following output.

One-Sample T
Test of mu= 25 vs <25

N MEAN STDEV SE MEAN T PVALUE
40 23.63 3.95 0.538 –2.55 0.0054

This question requires students to not only piece together information from generic
computer output, but also to generate a suitable context (i.e., one quantitative vari-
able that is feasible for these summary statistics). This reversal in logic assesses their
understanding of and ability to apply the overall process of going from a research
question and data to an analysis.

Example (adapted from Chance, 2002):

Four different studies obtained data that were used in a test of the hypothesis H0: μ1 = μ2

= μ3. Based on the information below, order these studies from smallest P-value to largest
P-value. Provide an explanation for your choices. You will be graded primarily on your
explanations.
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Given to students who have not studied ANOVA (Analysis of Variance), this ques-
tion requires students to integrate and extend different ideas from the course (e.g.,
the effects of sample size, within group variation, and between group variation) on
the magnitude of the p-value. A scoring rubric is less concerned with the partic-
ular ordering selected (e.g., top left vs. bottom right) but more on which of these
factors are discussed by the student, the direction of the effect suggested, and the
consistency of the ordering with the written explanation.

Exam questions can also be designed that require more performance and pro-
duction by the students rather than memorization. Questions should also chal-
lenge students beyond traditional textbook problems, especially end of chapter
questions where the solution approach is determined by which chapter is being
discussed.

Example:

Your text states that “confidence intervals seek to estimate a population parameter with an
interval of values calculated from an observed sample statistic.” Convince me that you un-
derstand this statement by describing a situation in which one could use a sample proportion
to produce a confidence interval as an estimate of a population proportion. Clearly identify
the population, sample, parameter, and statistic involved in your example. Do not use any
example that appears in your book.

Example (adapted from Moore & McCabe, 2005):

A university is interested in studying reasons why many of their students were failing to
graduate. They found that most attrition was occurring during the first three semesters so
they recorded various data on the students when they entered the school and their GPA after
three semesters. [Students are given data set with numerous variables].

(a) Describe the distribution of GPA for these students.

(b) Is SAT-Math score a statistically significant predictor of GPA for students at this school?

(c) Is there a statistically significant difference between the mean GPA values among the
majors at this school?

It is very important to remember that if nontraditional item formats are to be in-
cluded on the exams, then students must be prepared in advance, e.g., through ex-
amples in review or earlier assignments and quizzes as discussed above. Students
can also be asked to develop and submit their own example questions as part of the
review process to help them anticipate what they will be asked. It is also impor-
tant to think of the overall time constraints in combining these questions with more
traditional type questions.

Even once the exam questions are developed, there are still many practical issues
in administering and grading student responses. Considerations include whether to
allow external aids (e.g., closed book vs. supplying formulas pages vs. open book),
the use of technology during the exam, whether exams should be timed, approaches
taken to constructing exams, how to prepare students for the exam (e.g., use of
review sheets, review problems), and how to provide the best feedback to students
postexam (e.g., is posting solutions online sufficient or should we always budget
class time for discussion?). There are many possible views on these issues. The
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ARTIST website contains an “Implementation Issues” section where leading statis-
tics educators offer their personal views and justifications, and a panel session at the
2005 Joint Statistical Meetings also discussed these issues (Dietz, Gould, Hartlaub,
& Rossman, 2005). Two suggestions we will highlight here are sharing exams with
colleagues and collecting feedback in advance, and jotting down ideas for exam
questions as they occur during class discussions, grading homework assignments,
or reading the newspaper.

3. Projects

Projects are an important tool for both assessing many aspects of student learning as
well as helping them experience different stages in posing and solving a statistical
problem. Projects usually involve collecting and analyzing real data, in ways that
make them a good authentic assessment (see Garfield, 1993). Projects can focus on a
particular aspect of the course (e.g., Smith, 1998) or be term-long, requiring students
to apply tools they learn throughout the course in one overall analysis (e.g., Chance,
2000, Fillebrown, 1994). See also the assignments John Holcomb and others have
posted on the ARTIST Website (https://ore.gen.umn.edu/artist/projects.html).
Holcomb provides a series of group assignments followed by individual take home
exams to perform similar analyses. Projects help students realize that the optimal
methods are not always practical or feasible and that compromises, with conse-
quences, have to be made. Students also realize that data can be messy and they must
consider data cleaning issues and unexpected sources of bias. Oral presentations can
also be required to help students to learn to effectively communicate their analysis.

With term-long projects, periodic reports should be required, to maintain con-
sistent progress on the project. Students can be required to work individually or in
groups. Group management becomes an issue in the latter case, and it may be worth
considering maintaining an individual component in assessing student performance
on the project. In designing a project assessment, it is important to simultaneously
consider how to assess the effectiveness of the project and student work. Students
can also be asked to provide group member evaluation, and presenters can be eval-
uated on how well they answer questions during the question/answer period after
presenting. For example, in an 8th grade class, students had to give oral presen-
tations of their projects. It was during the question/answer period that students’
misunderstandings or confusions were revealed (Lajoie, 1999). Starkings (1997)
warns about the demanding nature of projects, for both instructors and students, and
she provides advice to teachers planning to use projects in their classes.

4. Critiques/Writing Assignments

Most students will eventually find themselves to be consumers of statistical infor-
mation rather than producers. Therefore, if a course goal is developing students’
ability to process and analyze quantitative information in the media, assignments
can be designed to help develop these skills.
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Possible examples are:

1. Providing students with a journal article and asking them to evaluate the use of
statistics and the conclusions drawn.

2. Having students “role play” and asking them to explain some conflicting infor-
mation recently cited in the news to a parent, using statistical arguments, but in
a way a nonstatistician could understand.

3. Writing a “meaningful paragraph” in which students are given a short list of
statistical terms (e.g., sample, population, and sampling distribution) and are
asked to use these terms in a short essay that explains their understanding of
these terms in a particular context.

These tasks focus on requiring students to use their own words to explain their
understanding, an often different experience than directly solving a given problem.
Some examples are below.

Example (from Jordan, 2004):

Write a meaningful paragraph that includes the following terms: sampling distribution, pop-
ulation mean, sample mean, variability, normal distribution, sample size, and probability. A
“meaningful paragraph” is one continuous piece of writing, which uses all of the listed
words and in which the sentences “make sense and hang together.” That is, the ideas in
the paragraph illustrate that you understand the new terms in a way that allows you to
write “meaningfully” about them. You may not simply write seven sequential sentences, for
example, that merely define the terms; sentences must demonstrate relationships between
the terms.

Example (from Jordan, 2004):

Suppose you receive the following letter from your dad:

Hey Kiddo,

I am worried about Grandma. Remember that she was diagnosed with high blood
pressure? Well, she’s currently taking the medication Makemewell to lower her blood
pressure. At the time of Grandma’s diagnosis, her doctor said that a randomized,
double-blind experiment had been conducted and that Makemewell was shown more
effective in lowering blood pressure than a placebo. To be honest, I have no idea what
any of that means, but I believed and trusted the doctor. Now I’ve heard two stories that
make me think differently. Larry, our next-door-neighbor, was taking Makemewell
and he got a terrible fever that put him in the hospital. Also, my coworker, Sally,
actually had her blood pressure go up while she was taking Makemewell! I’m now
very suspicious of this medication.

I know that you’re taking a statistics course at college. Based on the information
I’ve given you, do you think Grandma should stop taking her medication? Whatever
your opinion, will you please explain yourself thoroughly and clearly? (I will draw
on your responses when I talk with the doctor.) And please don’t use any statistics
mumbo jumbo that I won’t understand. I really appreciate your help with this.

Love, Dad

Your assignment is to type a 1–2 page letter (single-spaced, 12-pt. font) responding to your
dad.
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Sometimes, models or examples can be used to help students see the desired features
of a finished writing assignment or project. However, students often fall into the
habit of using model papers as a template instead of using their own thinking. One
way around this is to give students the first model paper after they have submitted
their first assignment and then allowing them to use this model as they revise or
prepare the next, slightly different, assignment. Assignments that ask students to
address a particular audience (e.g., your father, the soda manufacturer) seem to work
well in engaging students (see Jordan, 2004).

Grading Writing Assignments

A key consideration in these types of assignments is how to grade them. Instructors
may benefit from considering articles on grading more generic writing assignments
(e.g., Elbow, 1997; Bean, 2001). Holistic scoring approaches can be useful in grad-
ing writing, if a rubric or guideline is used. This type of scoring is used in grading
open-ended problems in the Advanced Placement Statistics Exam and works well
for many assessment tasks in a statistics course. Instead of relying on an analytic
scale where points are deducted for each error, holistic scoring assigns points based
on a categorization of the overall quality of a student’s answer and explanation.
Careful design and use of scoring rubrics can produce more consistent scores, espe-
cially when only 3–5 points are assigned to each part of the rubric. The following
example is adapted from an assignment developed by Jordan (2004). In this case,
up to five points can be assigned to each criterion in the rubric.

Example: Rubric adapted from Jordan (2004) writing assigning.

Grading Criteria (20 points possible)

– The explanation to your dad convinces me (your teacher) that you understand the statis-
tical concepts involved in the assignment. (5 points)

– The explanation to your dad is thorough, well organized, and clear. (5 points)

– The explanation to your dad is presented in nontechnical terms that he will understand.
(5 points)

– You successfully paid attention to accepted conventions of language use (syntax, spelling,
grammar, readability, etc.) (5 points)

Example: Rubric for Wetzel (2004) assignment to determine solution to a problem
where they were to determine the weight of average McDonald’s French fry by
collecting and analyzing data.

Basics (5 points): Does the description of the problem solution include all of the required
parts including accurate and appropriate use of terminology?

� restatement
� measurements – including specifics
� questions to ask – including specifics
� extra demographic question
� how to get randomize – including specifics
� other data
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Organization (2 points): Is the description organized and neatly presented? Great answers
also include some pluses.
Pluses:

� Does the description include any significant extras (e.g., additional detail on the data
collection steps, use of terminology)?

� Significant improvements to a basic data collection design.
� Extra thought into the specifics of this context – recognizing potential problems and

giving solutions.

Minuses:

� Does the description indicate that the student is mimicking a book answer and not con-
sidering the context?

� Does the description include a design that would be extremely impractical?
� Does the randomization described introduce a significant confounding variable that was

not identified?

This problem requires thinking and possibly some research. A good answer will get 7 out
of 10 points; in order to get full credit, you need to provide a great answer.

Such scoring rubrics provide the statistics instructor with more flexibility in al-
lowing alternative solution approaches, and maintaining scoring consistency in a
justifiable manner, and can be used to emphasize to students the equal weight given
to both communication and calculation. Scoring rubrics should be provided to the
students with the assignment to help clarify expectations and standards.

Teachers may consider raising their expectations as the course progresses and
students build on earlier feedback. Students can also be required to submit self
(and group) evaluations. With longer assignments, intermediate deadlines and/or
the opportunity for revision may be possible.

5. Lab Reports

Most introductory statistics courses have some opportunities for students to also
produce data, using appropriate technology tools. Having students produce technical
reports that integrate computer output with discussion suitable for a nontechnical au-
dience, helps put students in the role of the statistical analyst. Students can be asked
to complete several reports during the term, with clear guidance for the technology
skills and discussion questions to be addressed, as well as guidelines for quality
report writing (e.g., Spurrier, Edwards, and Thombs, 1995). Chance (2000) imple-
mented a series of lab reports, increasing in their demand of students’ autonomy and
integration of ideas. Several of these reports focused on a full report (introduction,
data collection methods, analysis, discussion, conclusion) for analyses of data, stu-
dents collected themselves (see Guidelines for Lab Reports in the Appendix). These
reports were allocated 20 points for the computer output, 25 points for discussion
and interpretation, and 5 points for presentation.
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6. Collaborative Assessment Tasks

In a statistics course, asking students to work together to develop a common solution
can be very effective as students have varied backgrounds, experiences, and math-
ematical sophistication. This can be done through quizzes and projects as well as
in-class activities. Group work where students are responsible for jointly working
together and having to agree on one answer or write up can lead to good discus-
sions and arguments that involve explaining their statistical reasoning and enhances
student learning.

One particular approach to consider is to combine group assignments with indi-
vidual assessments, and even having a component of the individual assessment ad-
dress what they should have learned from the group assignment (e.g., what was your
project about?). For example, Harkness (2005) describes use of Readiness Assess-
ment Quizzes that may have three components: an individual component, a group
component, and an appeal process, based on reading assignments given to students
before class, prior to instruction on the material. These multiple-choice questions on
general concepts are first taken individually and then immediately retaken as a group
of three to five students. Each student receives an individual and a group grade, and
the belief is that this arrangement for the group work helps foster comprehension
across the group members.

7. Minute Papers

Asking students to provide quick feedback on lessons and which topics are most and
least confusing, and/or on what aspects of the course instruction are they finding the
most and least helpful can help the instructor address common misconceptions or al-
ter the course. Minute papers also convey to students that their feedback is important
and can be used to help them reflect on the overall course goals and design. Students
use the last five minutes of class to respond to a few questions on a half sheet of
paper or index card (e.g., Angelo, T., & Cross, K. P., 1993). Minute papers can also
be used to give feedback to the instructor, especially early on or in the middle of
the term. This feedback may provide an instructor with ideas of things that can still
be changed in the class (e.g., several students reporting that it is difficult to read the
writing on the board) as well as allow the instructor to address and justify issues
that would not be changed (e.g., why they would not change the software package
being used).

Example:

What was the most important point of today’s lecture? What did you consider to be the
muddiest point of today’s lecture? What would you like to learn more about?

Example:

Please provide feedback on what is working best for you in this class as well as what you
would like me to change in the course structure and style.
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It is important for these submissions to be anonymous if the student chooses; this al-
lows students to feel more comfortable in giving honest responses. Many electronic
course delivery systems (e.g., Blackboard�) enable anonymous surveys, while also
tracking completion by individuals if credit is to be assigned. In large classes, sub-
sections of students can be polled on different days. Discussing with the students,
the feedback from the minute papers is very important. Sometimes examples can be
given of comments and summaries that can be used to give the class an idea of trends
in their responses. Students appreciate knowing that their opinion is important and
under consideration and that they are not alone in their confusion.

8. Student Reflections and Dispositions

Many of the above tools can include self-reflection components as well as formal
and informal opportunities for student feedback. Alternatively, students can be asked
to complete written journals in which they are expected to contribute more reflec-
tion on the process and sharing of their reactions to the materials. They can also
be asked to reflect on an experience with statistics that they have outside of the
classroom (e.g., playing bingo with Grandma or compiling and explaining statistical
cartoons).

Guidelines for Developing an Effective Assessment Plan

The previous section highlighted many different tools that can be used to assess
students, and described how to select a particular tool for a particular assessment
task. It is also important to consider how to combine the tools across the course.
In this way, the teacher can make sure that, as a collection, the assessment tasks
are aligned with the important goals for the course, that the action/feedback from
the different components inform each other, and that no undue burden is placed
on the instructor or the students. It may be useful, for example, for an instructor
at the beginning of the course to map out how different assessments in the course
align with learning goals of statistical literacy, reasoning, and thinking in order to
make sure that the collection of items and tasks effectively evaluate each type of
outcome.

It is crucial to consider the assessment plan as a course is designed and to clearly
lay out the goals and purposes of the assessments as part of the course syllabus.
Now, we offer some specific suggestions for developing an overall assessment
plan.

� Develop an assessment blueprint that matches instructional goals to the assess-
ment tools. This will involve analyzing the purpose and use of each assessment.
For example, to assess student literacy, consider requiring student interpretations
of articles and graphs. To include assessments of statistical thinking, consider
requiring a student project. In fact, Wiggins & McTighe (1998) recommend de-
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signing a course by beginning with the assessment goals (what outcomes are
desired) and then working backwards to design the instructional component of
the course.

� Provide clear guidelines ahead of time to the students (and follow them). Even
if there are problems with an assignment in progress, it is often better to follow
the assignment through to fruition and make notes for next time, rather than to
change an assignment on students’ midway.

� Use a variety of ways for students to demonstrate their understanding.
� Provide constructive and timely feedback so that there is a clear connection be-

tween the assessment and student learning.
� Challenge students to extend their knowledge (e.g., ask questions where a solu-

tion or approach is not obvious).
� Students need to feel the assessment is fair (to understand the purpose of the task

and to feel that individual grades are an accurate reflection of their knowledge
and effort).

� Focus on observable student behavior.
� Promote self-reflection and student responsibility.
� Consider the overall coordination of the assessment tasks throughout the course.

Do not try to change all of assessment practices at once or to utilize every assess-
ment task possible.

� Continually reflect on and refine your assessment practices and collaborate with
colleagues.

Practical Considerations

We conclude with some practical advice and things to consider. We begin with the
exhortation that assessment be viewed as an integral part of the learning process and
not as a separate method used only to evaluate performance and assign grades. With
all of the excellent assessment resources available, statistics teacher need not try to
write their own tests, and in fact, are advised to utilize high-quality assessment items
such as those at the ARTIST Website. We also advise instructors to think about
sampling learning outcomes rather than trying to assess all topics in a particular
test. It is important to remember that students’ preparation for a test is part of the
learning process; and one purpose of a test is to motivate study and integration of
concepts.

While it may seem that every assessment of students must be read by the in-
structor, this is not always necessary. Students may be used as peer reviewers of
papers and projects, which also helps their own learning. We also recommend that
instructors take advantage of informal opportunities to assess student learning by
carefully listening, asking questions, and observing students. Valuable information
can be gained on how students use the statistical language, express their reason-
ing, and make a statistical argument as they work together in groups during class
activities.
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A comment made by a statistics educator brings home the point about assessing
what is really valued (J. Witmer, personal communication, December 11, 2006). He
said that when he examined a recent test he gave to students, that a computer would
have earned a passing grade on it. That led him to reconsider the kinds of questions
he asked on exams and to move from more computational and procedural ques-
tions to questions focused more on statistical literacy and reasoning and conceptual
knowledge. This also relates to the issue of having students memorize material or
having them able to access and use appropriate resources when solving statistical
problems, as we do in real statistical work.

A final practical consideration is the use of computer-supported learning systems
(such as Blackboard�), which can help in assessing students’ work by tracking
ongoing assessment, allowing continual revision, providing feedback, supporting
collaboration, posting a paper or artifact in students’ galleries, etc.

Summary

Assessment has been referred to as a way to make visible students’ learning or rea-
soning. This is an important purpose of assessment because once reasoning is made
visible, it can be “discussed, challenged, and made more robust” (Hammerman &
Rubin, 2004, p. 37).

We encourage instructors to use assessment as a window to view student learning
in their classes, using both formal and informal methods. We hope that teachers will
move beyond using assessment solely as a mechanism for providing grades and
measuring achievement, relying only on students’ responses on exams for a picture
of what students know and what they do not understand. We encourage instructors
to use a variety of methods to better understand and measure student learning, taking
notes to identify useful and not so useful components of their assessment program so
that assessment tasks can be continually modified and improved, while focusing on
gathering useful feedback on their teaching and on students’ learning of important
ideas. We end with the motto that “success builds success”: We encourage instruc-
tors to make assessment a positive experience for students and one that will make
them feel successful about learning statistics.

Appendix – Sample Guidelines for a Lab Report

The goal of this written lab report is to effectively communicate results in a clear
and efficient manner. There is little point in getting the right answers unless it can be
understood by the intended recipients. The main features of good reports are clar-
ity, logical organization, succinctness, and clear labeling. The following guidelines
should be used in writing this type of report.

Your write-up should include the following sections:

I. Introduction: The Introduction should be worded carefully, as that may be as
far as some people get. It should provide a broad, general overview of the topic.
The goal is to convey to the reader, the goals and most essential outcomes of the



88 4 Assessment in Statistics Education

study. It is often easier to write this section after you have written the rest of the
report so you know what you are trying to summarize. This summary should
include your motivation for the study and why the reader should continue to
read your report. Some background can be given, but leave the details to the
body of the report.

II. Data Collection Methods: The goal of this section is to tell the reader precisely
how the data was collected (what did happen, not what was supposed to hap-
pen). This should be a description of the process, not the data. This description
should include details of the measuring instruments used, operational defini-
tions of basic measurements, randomization, precautions etc. There should be
enough detail so that someone could replicate your study.

III. Results: The goal of this section is to describe the data measured and the anal-
yses performed. You should use tables and graphs to summarize the data – an
effective summary is worth a thousand data points. You should also include any
changes that were made to the data (scaling, transformations, missing values,
points that had to be discarded). You should include a “map” telling the reader
how to find the information. Tables and figures need to be labeled and num-
bered for easy reference. Each figure or table should be able to stand on its
own and tell its own story (units!). Often Minitab can make the annotations for
you, but sometimes you may want to write in a title or label by hand or with
Word. Sometimes you can use computer output as is, and sometimes you will
want to select out relevant information and construct your own summaries (see
examples below).

Next, you should describe the analysis methods. Be complete in your de-
scription so that the reader can assess the validity of your methods. You need to
include a description of what was being tested, the statistical methods used, why
they were appropriate, and any conditions (and verifications) that were made.
You do not need to include all your output, but select the output that supports
your conclusions.

IV. Discussion: Now you get to interpret all the above results. You should include
any explanations you may have for what you have found in the data. Recall
any problems you had collecting the data (e.g., is it really a random sample?)
and how your interpretations may be limited. It is also possible to combine
this section with the previous one, with Minitab output interspersed through the
discussion.

V. Conclusion: Briefly summarize your report. What is your final answer to the
question? What are the implications of the results? Use nonstatistical language.
Include any ideas or suggestions you have for action and/or future experiments.

Appendix (Optional): If your raw data is too extensive to be included in the report, it
may be placed in an appendix (again, well labeled) when necessary. Any equations
or technical details can also be placed in an appendix.

Effective report writing is as laborious as it is vital. The following are some
additional suggestions from Chatfield’s Problem Solving – A Statistician’s Guide
book (1995):
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� Document your work before your memory starts to fade
� Before you start to write, formulate your plan of attack
� After the first draft is complete, put it aside for 24 hours, then read it through as

though seeing it for the first time.
� Use the spell checker
� It is often easier to write the body of the report then Introduction and Conclusion
� Ask another student to review it for you
� Review and revise

This type of writing takes practice; remember, we do not expect perfection on the
first time! Exemplary write ups will be placed anonymously on the course Web page
for your review.



Chapter 5
Using Technology to Improve Student Learning
of Statistics1

Interactive software data visualization tools which allow for
the creation of novel representations of data open up new
possibilities for students (and teachers) to make sense of data,
but also place new demands on teachers to assess the validity
of the arguments that students are making with these
representations, and to facilitate conversations in
productive ways.

(Hammerman & Rubin, 2004, p. 18)

Overview

This chapter presents a broad overview of the role technological tools can play
in helping high school and college introductory statistics students understand and
reason about important statistical ideas. The main goal of this chapter is to pro-
vide some background of how the technology tools have evolved, a sense of the
research findings and open questions on how technology impacts student learning,
and concrete advice, stemming from the research literature, information on using
how to use technological tools and how to avoid common pitfalls or ineffective
implementations. We first summarize the impact of technology on the content, ped-
agogy, and even format of introductory statistics courses. Then, we highlight some
of the common technological tools currently in use in statistics education and how
they can be utilized to support student learning. We summarize some of the re-
cent research insights gained with respect to using technology to aid instruction
and learning in probability and statistics. While not an exhaustive literature re-
view, the studies discussed provide additional context for a series of practical
recommendations to the instructor, along with a discussion of possible obstacles
and implementation issues, and questions to consider when selecting different
tools.

1 This chapter is based on the following journal article: Chance, B. L., Ben-Zvi, D., Garfield, J.,
& Medina, E. (2007, October). The role of technology in improving student learning of statistics.
Technology Innovations in Statistics Education Journal, 1(1). Retrieved October 21, 2007 from
http://repositories.cdlib.org/uclastat/cts/tise/vol1/iss1/art2/.

J.B. Garfield, D. Ben-Zvi, Developing Students’ Statistical Reasoning,
C© Springer Science+Business Media B.V. 2008
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Technology in Today’s Statistics Courses

It is hard to imagine teaching statistics today without using some form of technol-
ogy. However, just 20 years ago that was very common. Today’s statistics classes
may be taught in a classroom with a computer projected on a screen, or may take
place in a laboratory with students working at their own computers. Students com-
monly own a calculator more powerful than the computers of 20 years ago. Others
may use a portable computer (laptop) at school, home, and on the move. An ever-
growing format of teaching today is over the Internet, in the form of a Web-based
course with video-taped lectures, interactive discussions, collaborative projects, and
electronic text and assessment materials. The technology revolution has had a great
impact on the teaching of statistics, perhaps more so than many other disciplines.
This is not so surprising given that technology has changed the way statisticians
work and has, therefore, been changing what and how we teach (Moore et al., 1995).

Changes in Content

Technology has led to numerous changes in statistical practice. Many analytically
intractable problems that were previously inaccessible now have approximate solu-
tions (e.g., Bayesian methods). Many assumptions that were made so that statistical
models could be simplified and usable no longer need to be made. These changes
in statistical practice have a direct impact on the content that should be taught, even
in introductory material. For example, an entire branch of “resampling statistics”
(Good, 2006) now competes with model-based inferential models in practice, while
also appearing more intuitive to students. Another example is the use of statistical
tables such as the z and t tables, which are no longer needed to determine rejection
regions or estimate P-values when statistical software and calculators produce more
accurate results much more quickly. In fact, many statistics educators now argue that
previously standard topics in an introductory course (e.g., short-cut methods for
calculating standard deviation) are no longer necessary to discuss in class. Finally,
technology provides ways for us to visualize and explore data that have led to new
methods of data analysis.

Changes in Pedagogy

While the impact of technology on the practice of statistics is irrefutable, just as
powerful has been the impact of technology on statistics pedagogy and recom-
mended practices. For example, the National Council of Teachers of Mathematics
(NCTM) Principles and Standards for School Mathematics states that “the exis-
tence, versatility, and power of technology make it possible and necessary to reex-
amine what mathematics students should learn as well as how they can best learn
it” (NCTM, 2000). In particular, the Guidelines for Assessment and Instruction in
Statistics Education (GAISE, 2005a, 2005b) curriculum framework for PreK-12
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states that “advances in technology and in modern methods of data analysis of
the 1980s, coupled with the data richness of society in the information age, led
to the development of curriculum materials geared toward introducing statistical
concepts into the school curriculum as early as the elementary grades” (Franklin
& Garfield, 2006). Similarly, the GAISE College Report directly recommends the
use of technology for developing understanding of statistical concepts and analyz-
ing data in teaching an introductory, undergraduate statistics course (Franklin &
Garfield, 2006).

Moore (1997) urged a reform of statistics instruction and curriculum, based on
strong synergies among content, pedagogy, and technology. However, he cautioned
statisticians to remember that we are “teaching our subject and not the tool” (p. 135),
and to choose appropriate technology for student learning, rather than use the soft-
ware that statisticians use, which may not be pedagogical in nature. In fact, many
types of technologies are available nowadays for the statistics teachers. Teachers are
encouraged to view the use of technology not just as a way to compute numbers,
but as a way to explore concepts and ideas and enhance student learning (Friel,
2007; Garfield, Chance, & Snell, 2000). Furthermore, technology should not be used
merely for the sake of using technology (e.g., entering 100 numbers in a graphing
calculator and calculating statistical summaries), or for pseudo-accuracy (carrying
out results to a meaningless number of decimal places) (Franklin & Garfield, 2006).
More appropriate uses of technology are accessing, analyzing, and interpreting large
real data sets, automating calculations and processes, generating and modifying ap-
propriate statistical graphics and models, performing simulations to illustrate ab-
stract concepts and exploring “what happens if. . .” type questions.

Technology has also expanded the range of graphical and visualization tech-
niques to provide powerful new ways to assist students in exploring and analyzing
data and thinking about statistical ideas, allowing them to focus on interpretation of
results and understanding concepts rather than on computational mechanics. Graph-
ing calculators alone, highly valued for their ease of use, low-cost and portabil-
ity, have been instrumental in bringing statistical content to lower and lower grade
levels.

As the content and focus of the introductory statistics course are changing, statis-
tics courses are looking even more different than in the past. For example, students
are evaluated less on their ability to manipulate formulas and look up critical values,
and more on their ability to select appropriate analysis tools (e.g., choosing tech-
niques based on the variables involved), assess the validity of different techniques,
utilize graphical tools for exploration of data, deal with messier data sets, provide
appropriate interpretations of computer output, and evaluate and communicate the
legitimacy of their conclusions.

Changes in Course Format

Technology has also impacted course management in the ways information is pro-
vided to students and shared among students in a class. Course management sys-
tems like Blackboard and WebCT (both can be found at http://www.webct.com)
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are playing a large role, both in communication and collaboration capabilities
(e.g., on-line discussion boards, video presentations and tutorials, pooling data
across students, sharing instantly collected data across institutions), as well as in
assessment. It is feasible to administer on-line surveys and quizzes with instant
scoring and feedback provided to the students. New Web 2.0 tools such as Wiki
can facilitate collaborative learning and bring about instructional change to improve
student learning of statistics (Ben-Zvi, 2007). These learning systems give stu-
dents and teachers more opportunities for communication, feedback, reflection, and
revision.

Technology has a great potential to enhance student achievement and teacher
professional development, and it will most likely continue to impact the practice
and the teaching of statistics in many ways. However, technology has an impact
on education only if it is used appropriately. Therefore, the focus of this chapter
is on how technology can best be used to improve student learning. The follow-
ing sections survey the different types of tools that are currently available and how
technology can be used to support student learning. We summarize recent research
results on the role of technology in the statistics classroom and then, building on
this research, we suggest practical guidelines for selecting and using technology
for teaching statistics. In addition, we also describe obstacles and implementation
issues regarding the use of technological tools in the statistics classroom.

Technological Tools for the Teaching of Statistics and Probability

Using any new tool or representation necessitates change in the content and pedagogy of
statistics instruction, and in many cases teachers are unprepared for these changes

(Hammerman & Rubin, 2004, p. 18).

The types of technology used in statistics and probability instruction can be broken
into several categories: Statistical software packages, educational software, spread-
sheets, applets/stand-alone applications, graphing calculators, multimedia materi-
als, and data repositories. There is much overlap in the capabilities of the tools
across these categories, yet no one tool seemingly covers all possible educational
uses of technology (Ben-Zvi, 2000; Biehler, 1997a). We provide a brief sum-
mary of the types of tools available and some of their benefits and disadvan-
tages. Other resources such as The American Statistician (http://www.amstat.org/
PUBLICATIONS/tas) or The Journal of Statistical Software (http://www.jstatsoft.
org) regularly provide more comprehensive software reviews. The goal of this sec-
tion is to provide a flavor for the types of technological tools available, highlighting
some of the more common examples of each type of tool. It is important to remem-
ber that the focus of instruction should remain on the content and not the tool, and
to choose technology that is most appropriate for the student learning goals, which
could involve a combination of technologies. Since new software is continually be-
ing developed for K-16 education, the following discussion does not attempt to be
exhaustive.
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1. Statistical Software Packages

Statistical packages are software designed for the explicit purpose of performing
statistical analyses. Several packages have been used by statisticians for many
years, including SPSS (http://www.spss.com), S-PLUS (http://www.insightful.com),
R (http://www.r-project.org), SAS (http://www.sas.com), and Minitab (http://www.
minitab.com). These packages have been evolving into more menu-driven pack-
ages that are more user friendly for students. The term menu-driven is used to
describe a software program that is operated using file menus instead of com-
mands. Menu-driven is commonly easier for most users as it allows the user to
navigate using the mouse and to hunt and peck a bit more, which has both ad-
vantages (students do not feel as lost) and disadvantages (often using a trial and
error strategy rather than real thought when choosing a command). As these pack-
ages become more user friendly, they are being increasingly used in introductory
courses.

The statistical package Minitab, in particular, has always had a pedagogical focus
and is becoming increasingly feasible as a tool that allows student exploration and
construction of ideas (e.g., writing “macros” for repeated sampling, graphics that
update automatically as data values are added or manipulated, ease of changing
representations). DataDesk (Velleman, 1998; http://www.datadesk.com) is a sim-
ilar package, but has focused on data exploration and interactive graphics from
its initial development. DataDesk provides many unique tools that allow students
to look for patterns, ask more detailed questions about the data, and “talk” with
the program about a particular set of data. R (Verzani, 2005) is a language and
environment for statistical computing and graphics that provides a wide variety of
statistical and graphical techniques, including linear and nonlinear modeling, sta-
tistical tests, time series analysis, classification, and clustering. It is freely acces-
sible and is being increasingly used in introductory statistics classes. Additional
add-ons can be downloaded to improve the graphical interface of the program
(http://socserv.mcmaster.ca/jfox/Misc/Rcmdr).

More cost-effective alternatives to these packages include student versions, which
are smaller in scope (does not work for large data sets) and several stand alone statis-
tical packages are also now available for free or at minimal cost, online. For exam-
ple, StatCrunch (West, Wu, & Heydt, 2004; http://www.statcrunch.com), is a fully
functional, very inexpensive, Web-based statistical package with an easy-to-use in-
terface and basic statistical routines suited for educational needs.

2. Educational Software

Different kinds of statistical software programs have been developed exclusively
for helping students learn statistics. Fathom (http://www.keypress.com/fathom), a
flexible and dynamic tool was designed with the inputs of many statistics educators
and educational researchers to help students understand abstract concepts and pro-
cesses in statistics, and does not attempt to have the capabilities of more traditional
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Fig. 5.1 A Fathom slider allows students to gradually change the value of the correlation coeffi-
cient while a scatterplot immediately updates to reflect the new strength of association between the
variables

statistical software tools. Erickson (2002) described Fathom as a dynamic computer
learning environment for teaching data analysis and statistics based on dragging,
visualization, simulation, and networked collaboration. The strongest features of
Fathom are the easy access to multiple, linked representations (see Fig. 5.5) in-
cluding sliders (see Figs. 5.1 and 5.2), the ability to build and run simulations, and
the many different ways of importing data from a variety of sources. One small
example of the very dynamic, interactive features of Fathom is pointing on the edge
of a histogram bar and dragging the bar, which immediately updates the graph (see
Fig. 5.4).

TinkerPlots was developed to aid younger students’ investigation of data and
statistical concepts (Konold & Miller, 2005; http://www.keypress.com/tinkerplots).
This tool has been widely field tested in math classes in grades 4–8 in both the
United States and other countries (e.g., Ben-Zvi, 2006) with very positive results.
Students can begin using TinkerPlots without knowledge of conventional graphs or
different data types, without thinking in terms of variables or axes. By progressively
organizing their data (ordering, stacking, and separating data icons), students grad-
ually organize data to answer their questions and actually design their own graphs.

InspireData (http://www.inspiration.com/productinfo/inspiredata) is a commer-
cial extended version of TableTop that also focuses on visual representations in

Fig. 5.2 A Fathom slider allows students to change the sample size in a one-sample proportion
z-test and instantly see the effects on the sampling distribution, test statistic and P-value
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helping grade 4–8 students “discover meaning as they collect and explore data in
a dynamic inquiry process.” This package also offers linked representations, anima-
tions, and easier annotation of data analyses and presentations.

Some of these educational packages are also making it easier for students to
access large data sets (e.g., Census data) and for teachers to access predeveloped
classroom exercises. The limited statistical capabilities may prevent their use be-
yond an introductory course (though they are expanding, e.g., Fathom now offers
multiple regression), but have benefits in being less overwhelming to the students
and being more geared to the point-and-click generation.

3. Spreadsheets

Spreadsheets such as Excel (http://office.microsoft.com/) are widely available on
many personal computers. However, care must be exercised in using Excel as a
statistical educational package. Statisticians often criticize Excel’s calculation algo-
rithms and choice of graphical displays (Cryer, 2001; McCullough & Wilson, 1999;
Nash & Quon, 1996). For example, it is still very difficult to make a boxplot in Excel.
Even a histogram, one step in all statistical packages, requires a separate add-in
which can take several minutes to locate and install. Creating the histogram is then
still a nonintuitive process, with unappealing choices for bin limits, output location,
and outcome (the default outcome is a frequency table and not a graph). Moreover,
the bars in the Excel graph are not contiguous – misleading for students in under-
standing discrete vs. continuous data, and labeling is poor (see Fig. 5.3). Excel does
have some strengths in helping students learn to organize data and in “automatic
updating” of calculations and graphs as values are changed, and some advocate
Excel due to its widespread use in industry and relatively easy access (Hunt, 1996).
The statistical capabilities of Excel can also be expanded with additional add-ins
(often accompanying statistics textbooks).
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4. Applets/Stand-Alone Applications

Over the last decade, there has been extraordinary growth in the development of
on-line applets that can help students explore concepts in a visual, interactive, and
dynamic environment. An applet is a software component that usually performs a
narrow function and runs typically in a Web browser. Many of the applets are easy
for students to use and often capture an interesting “context” for students, e.g., the
Monty Hall problem (see for example http://www.shodor.org/interactivate/activities/
AdvancedMontyHall) and Sampling Reese’s Pieces (see for example http://www.
rossmanchance.com/applets/Reeses/ReesesPieces.html). In addition, a large num-
ber of computer programs can be downloaded from the Internet and run with-
out an Internet connection that allow students to explore a particular concept
(e.g., Sampling SIM allows the student to explore the nature of sampling dis-
tributions of sample means and sample proportions, freely downloadable from:
http://www.tc.umn.edu/∼delma001/stat tools/software.htm).

While these tools are too numerous to list here, the Consortium for the Advance-
ment of Undergraduate Statistics Education (CAUSE, http://www.causeweb.org)
provides a peer-reviewed annotated list of such tools. Applets can also be found with
the online National Council of Teachers of Mathematics (NCTM) Principles and
Standards for School Mathematics Electronic Examples (http://standards.nctm.org/
document/eexamples and http://illuminations.nctm.org/. See more applets and Web
resources in the Resources section at the end of this book). What these tools of-
ten gain in visualization and interactivity, they may sometimes lose in portability.
And while they can be freely and easily found on the Web, they are not often ac-
companied by detailed documentation and activities to guide student use. The time
required for the instructor to learn a particular applet/application determines how to
best focus on the statistical concepts desired, and developing detailed instructions
and feedback for the students may not be as worthwhile as initially believed.

5. Graphing Calculators

Perhaps the most portable technological tool and one that is being increasingly used
in 9–12 grades is the graphing calculator. A graphing calculator is a learning tool
designed to help students visualize and better understand concepts in mathematics,
statistics, and science (e.g., Dunham & Dick, 1994; Flores, 2006; Forster, 2007;
Marlena, 2007). Advancements in technology have made the graphing calculator a
powerful tool for analyzing and exploring data. Data can often be downloaded from
the Web, saving students’ time from keying in data. Some models provide an acces-
sible way for students to collect and measure light, temperature, voltage, or motion
data, and much more. Many statistical calculations, including inference procedures
and probability distributions are now standard in most brands. Simulations can also
be run in a reasonable time frame allowing students to explore concepts such as
sampling distributions (Herweyers, 2002; Koehler, 2006). Student learning time is
short with such technology and schools can purchase one classroom set for use at
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school or in a particular course. However, beyond the introductory statistics course,
graphing calculators are not a reasonable substitute for statistical packages. Students
also need to be wary that the output given by the graphing calculator is not sufficient
communication of statistical results (e.g., “calculator-speak,” graphs with no labels
and scales).

Since the calculators by Texas Instruments (and several versions of Casio calcu-
lators) are the most typically used in secondary schools and colleges, what follows
is a short description of some of the capabilities and limitations of these calcu-
lators for statistical analysis. The TI-73 Explorer that was designed specifically
for 6–8 grades includes data collection with CBL (Calculator-Based Laboratory),
descriptive statistics, and graphs for numeric and categorical data. It has a proba-
bility simulation application, which allows students to explore probability theory
with interactive animations that simulate rolling dice, tossing coins, and generat-
ing random numbers as well as creating bar graphs and tables. These features are
also available for other models, such as, TI-83 Plus, TI-84 Plus, and TI-89 Tita-
nium, which also provide tests of significance and confidence intervals (one and
two-sample procedures, chi-square tests, linear regression test, and ANOVA). It
is possible to add more advanced applications to later models, such as, residual
plots for analysis of variance, pairwise comparison in one-factor experimental de-
sign, and confidence intervals for contrasts used in one-factor experimental design
(see Kuhn, 2003).

Graphing calculators, however, bear several limitations and drawbacks. Some
representations and algorithms (e.g., ax + b vs. a + bx , residuals for transformed
data) are different from those in common software packages. For example, there
are circumstances where students using the TI-83’s random number generator for
a simulation study will all obtain the same set of values (Lee, 2005), and while
most statistics books provide tables based on the area under the standard normal
probability curve to the left of the z-value, the TI-83 and 84 calculators provide
the area between two values and the entries’ syntax may be confusing to students
(Lesser, 2007). There are also limitations in the level of numerical precision and
speed (e.g., for simulations) of these calculators.

6. Multimedia Materials

These materials often seek to combine several different types of technology. For ex-
ample, ActivStats (http://www.activstats.com) has been used in college classrooms,
combining videos of real world uses of statistics, mini-lectures accompanied by
animation, links to applet-like tools, and the ability to instantly launch a statistical
software package and analyze a data set. An advantage of such an environment is
that students only need to learn one type of technology. In fact, more and more,
entire lessons and even textbooks are written around these types of embedded tech-
nology to make them a “living” textbook, e.g., CyberStats (http://www.cyberk.com;
Symanzik & Vukasinovic, 2006). Many other multimedia resources are currently be-
ing developed around the world, several of which were described in the proceedings
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of the International Conferences on Teaching Statistics (ICOTS-5, Pereira-Mendoza,
Kea, Kee, & Wong, 1998; ICOTS-6, Phillips, 2002; ICOTS-7, Rossman & Chance,
2006).

7. Data and Materials Repositories

Another popular and important use of the World Wide Web in statistics instruc-
tion is in locating and using pedagogically rich data sets and explorative activities
for use with students (e.g., Schafer & Ramsey, 2003). Numerous data reposi-
tories exist. The Data and Story Library (DASL, http://lib.stat.cmu.edu/DASL)
and the Journal of Statistics Education (JSE) Dataset and Stories feature (see
http://www.amstat.org/publications/jse/jse data archive.html) are excellent starting
places. These data sets come with “stories” outlining their background and class-
room uses. CAUSE (http://www.causeweb.org) is again a good resource for datasets
and peer-reviewed classroom activities.

The many types of tools and resources listed earlier offer great choices for in-
structors, as well as decisions about how to best use these tools, how often to use
them, and for what purposes and activities. While many of the tools described are
bona fide research tools, others have been developed primarily for learning purposes.
We next discuss issues related to the uses of technological tools in helping students
learn and reason about statistics.

How Technology Can Support Student Learning

As more and more technological tools become available, and as student facility with
such tools greatly increases, it is becoming increasingly important to focus on the
best ways to use such tools in the classroom. Below we provide examples of some of
the effective uses of technology in the statistics classroom. It is important to keep in
mind that many of these learning tools have different goals and it may be necessary
to employ different tools for different learning goals and that a combination may
best aid students. If using a combination of technologies, it is important to address
learning curve issues for students. There is always overhead in learning to use a
tool itself before students can benefit from the tool for learning statistics. Students
do seem adept at learning to use different types of software in the same course, but
teachers may also aim for a more consistent look and feel, at least in the instructional
aids they provide to accompany the tools, and to consistently provide guidance on
when to use the different tools (e.g., in assessments).

Automation of Calculations. With technology, students can carry out many cal-
culations (and graphing tasks) in a short time, with high accuracy and few errors.
For example, allowing the computer or calculator to calculate the standard deviation
saves cognitive load and actual classroom time that can instead be spent on the larger
concept of variation and on properties of the calculated value. Reducing the focus
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Fig. 5.4 Bin widths are changed in Fathom just by dragging the edges of the histogram bars

on computations frees students to spend more time focusing on understanding the
concepts. There is also less focus on data entry, manipulating numbers in formulas,
and on exercises using only small and/or artificial data sets. Interactivity, such as
sliders, can help students focus on the effects of changing pieces in the calculation
without the burden of recalculating numerous terms. Assessment tasks can evaluate
student ability to explain concepts and justify conclusions rather than on how they
perform rote calculations.

Emphasis on Data Exploration. The use of technology amplifies students’ ability
to produce many graphs quickly and easily, leaving students more likely to examine
multiple graphs and different representations (Pea, 1987). For example, students can
think more about the effect of bin size in a histogram (e.g., smaller bin sizes in a
graph may reveal bimodal behavior that was initially hidden, see Fig. 5.4). Fathom,
for example, allows students to click on the edge of the bar and drag, immediately
updating the graph in a dynamic and interactive representation. Students may also
see how different graphs of the same data provide different pieces of a story by
generating different graphs on the same screen (Fig. 5.5).

Fig. 5.5 Students easily make transitions between graph types while specific cases are highlighted
in all graphs simultaneously (Fathom)
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Technology should be utilized in the classroom to encourage students to explore
data sets more in depth, to allow the data to tell a (possibly unexpected) story to the
student, and to consider related conceptual issues (e.g., Erickson, 2001).

Visualization of Abstract Concepts. Technology enables visualization of statis-
tical concepts and processes (Biehler, 1993), demonstration of complex abstract
ideas, and provision of multiple examples in seconds. Students are better able to
explore and “see” statistical ideas, and teachers are better able to present them to
students. Such tools give students and teachers much more flexibility to ask “what
if” questions. For example, we can select an individual data observation and drag it
to immediately see the effects on the graph and numerical calculations (Fig. 5.6).

Another example is how TinkerPlots allows students to see the data values “hid-
den” in boxplots, as shown in Fig. 5.7.

Simulations as a Pedagogical Tool. Technology can also play a significant role
in enhancing students’ ability to study random processes and statistical concepts
by giving them easy access to viewing and designing simulations (e.g., Chance
& Rossman, 2006; Lane & Peres, 2006; Lane & Tang, 2000; Mills, 2004). These
tools allow students to answer “what happens if this is repeated a large number
of times” through direct observation. For middle school students, software tools

Fig. 5.6 The applet “Least Square Regression” from the Rossmanchance Applet Collection
(http://www.rossmanchance.com/applets/index.html) allows student to add and drag a new obser-
vation to see how the regression line changes as the point relocates

Fig. 5.7 Comparing the number of raisins between two brands using boxplots with visible case
icons in TinkerPlots
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Fig. 5.8 Illustration of the Sampling Distributions applet from the “Rice Virtual Lab in Statistics”
(http://onlinestatbook.com/stat sim/sampling dist/index.html), which allows students to specify a
population shape (e.g., skewed), different sample statistics (e.g., mean), and sample sizes (e.g., n =
5 and n = 10). The above numerical and graphical displays results for 10,000 repetitions

such as ModelChance (http://www.umass.edu/srri/serg/projects/ModelChance, now
available within TinkerPlots) allow students to investigate real-world applications of
probability (e.g., false positives from medical screening), while helping them under-
stand the distinction between probability and statistics. For older students, abstract
concepts such as sampling distribution (Fig. 5.8) and confidence intervals (Fig. 5.9)
become more concrete. Students’ understanding is developed by carrying out these
repetitions, controlling parameters (such as sample size, number of repetitions), and
describing and explaining the behavior they observe rather than on relying exclu-
sively on theoretical probability discussions, which can often be counterintuitive to
students (delMas et al., 1999).

Students can also examine nontraditional distributions (e.g., the sampling dis-
tribution of a median) while easily analyzing the effects of different parameters
(e.g., sample size, population size, and number of samples) on such conceptual
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Fig. 5.9 Illustration of Simulating Confidence Intervals applet from the Rossmanchance Applet
Collection (http://www.rossmanchance.com/applets/index.html) to generate 300 different random
sample proportions and resulting confidence intervals, recording the percentage of intervals that
succeed in capturing the value of the population proportion

ideas (see Fig. 5.10). Students can modify these parameters and initial conditions
to explore and make their own conclusions.

Investigation of Real Life Problems. One of the most important uses of technol-
ogy is its capacity to create opportunities for curriculum and instruction by bringing
real-world problems into the classroom for students to explore and solve (Bransford
et al., 2000). Technology facilitates the discussion of more interesting problems and
data sets (which may be large and complicated), often accessed from the Internet.
We now have the power to have students analyze real and often messy data, giving
students a better idea of what statisticians do by having them go through the process
of collecting, analyzing, and making conclusions to investigate their own questions.
Assessment can focus on giving students data sets and having them complete a full
analysis on their own, which may include “cleaning” the data first (e.g., Holcomb,
2004). Such exercises empower students as users of statistics and allow them to
better understand and experience the practice of statistics (Ben-Zvi, 2004a).

Provision of Tools for Collaboration and Student Involvement. Course manage-
ment systems provide communication tools (such as discussion forums, file ex-
change, and whiteboard), productivity tools (online student guide, searching, and
progress review), student involvement tools (group work, self-assessment, student
community building, and student portfolios) as well as administration tools. In these
learning environments, it becomes easier for students to collaborate with other stu-
dents, which can help improve the writing and communication skills needed to
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Fig. 5.10 Illustration of change to sampling distribution of a median in the “Rice Vir-
tual Lab in Statistics” Sampling Distributions applet (http://onlinestatbook.com/stat sim/ sam-
pling dist/index.html)

convey their findings. They also allow students do more learning on their own,
outside of class, using Web-based or multimedia materials. This frees the instructor
to minimize lecture and to spend more time on data analysis activities and group
discussions.

While interest in using technology in teaching and learning statistics is great,
there is not a lot of data available that provide answers to all the questions teach-
ers may have regarding best uses of technology to support student learning. The
following section provides an overview of some of the current research on using
technology to teach statistics.

Overview of Research on Technology in Statistics Education

Research on the role of technology in teaching and learning statistics has been in-
creasing over the last decade. In 1996, a special International Association for Sta-
tistical Education (IASE) Roundtable was convened in Granada, Spain to discuss
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the current state of research on the role of technology in statistics education at that
time. While much of the work reported at the roundtable (Garfield & Burrill, 1997)
was on the development of new tools to help students learn statistics, there was
a clear call for more research on appropriate ways to use these tools to promote
student learning. It was suggested that a new research agenda was needed to identify
appropriate methodologies for future studies on this topic as well as to explore new
ways to use technology in studying this topic (Hawkins, 1997). Given the changes
in technology in the past decade, ideas about both of these aspects of technology are
still emerging. In this section, we highlight some of the more recent research ques-
tions being explored and the types of studies involved, particularly with respect to
developing students’ statistical reasoning. The following section will suggest some
implications from the research for teaching practice.

Ben-Zvi describes how technological tools are now being designed to support
statistics learning in the following ways (2000, p. 128):

1. Students’ active construction of knowledge, by “doing” and “seeing” statistics.
2. Opportunities for students to reflect on observed phenomena.
3. The development of students’ metacognitive capabilities, that is, knowledge

about their own learning and thought processes, self-regulation, and control.

In addition, technological tools can bring exciting curricula based on real-world
problems into the classroom; provide scaffolds and tools to enhance learning; and
give students and teachers more opportunities for feedback, reflection, and revision
(Bransford et al., 2000). The types of research studies that explore technology in
statistics education can be grouped into three categories:

1. Development, use, and study of particular tools (e.g., the creation and use of
Fathom software – Biehler, 2003; Minitools – Cobb et al., 1997).

2. How use of particular tools help develop students’ reasoning (e.g., use of Sam-
pling SIM software to develop reasoning about sampling distributions – Chance
et al., 2004).

3. Comparison of tools (e.g., comparing ActivStats, CyberStats, and M M∗Stat
multimedia – Alldredge & Som, 2002; Symanzik & Vukasinovic, 2002,
2003, 2006).

Some of the most informative studies were not designed to focus on the use of tech-
nology, but on larger teaching experiments that combined innovative instructional
activities and technological tools to promote student reasoning about a particular
topic, such as distribution (e.g., Bakker, 2004a, Cobb, 1999; Cobb & McClain,
2004). These studies focused on the use of a set of Minitools, applications cre-
ated to help students move along a learning trajectory. Similarly, the studies of
Makar and Confrey (2005) and Rubin, Hammerman, and Konold (2006) explore
teachers’ knowledge and reasoning as they use innovative software (Fathom or
TinkerPlots).

Although few studies have been empirical in nature in the field of statistics
education, such studies have provided valuable information on how technological
tools can both improve student learning of particular concepts as well as raise new
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awareness of student misconceptions or difficulties (e.g., Batanero et al., 1996;
Finch & Cumming, 1998; Shaughnessy, 1992). Cobb and McClain (2004) found
that students were able to more easily make and test conjectures when using such
tools to analyze data. While controlled experiments are usually not possible in edu-
cational settings, qualitative studies are increasingly helpful in focusing on the de-
velopment of concepts and the use of skills that technology is intended to facilitate.
Investigations by Miller (2000) and Lee (2000) are examples of qualitative studies
of how instructors can integrate technological tools to support a student-centered
learning environment for statistics education. Other examples are Biehler’s (1998)
use of videos and transcripts to explore students’ thinking as they interacted with
statistical software and research by delMas et al. (1999) that provides a model of
collaborative classroom-based research to investigate the impact of simulation soft-
ware on students’ understanding of sampling distributions.

One research area where empirical results have been less consistent is in the use
of simulation as a pedagogical tool. Research on simulation training indicates that
even a well-designed simulation is unlikely to be an effective teaching tool unless
students’ interaction with it is carefully structured (Lane & Peres, 2006). Chance and
Rossman (2006) illustrate how simulation can be a powerful tool in helping students
learn statistical ideas, particularly the ideas of long-run patterns and randomness, in
a concrete, interactive environment (e.g., using a simulation of sampling Reese’s
Pieces or shuffling playing cards to build on a tactile simulation while allowing the
user to easier adjust parameters such as sample size and immediately explore the im-
pact). Technology is also used in involving teachers in the design of computational
tools that presumably encourage them as designers to reflect upon the statistical
concepts incorporated in the tools under development. Healy (2006) describes how
involvement of Brazilian mathematics teachers in the collaborative simulation de-
sign process helped participants come to see distributions as statistical entities, with
aggregate properties that indicate how their data are centered and spread.

There have also been studies on the use of graphing calculators in teaching and
learning various subjects (e.g., mathematics – Marlena, 2007; chemistry – Moore-
Russo, Cortes-Figueroa, & Schuman, 2006; statistics – Collins & Mittag, 2005;
Forster, 2007). Five patterns and modes of graphing calculator tool use emerged
in a qualitative mathematics classroom-based study: computational tool, transfor-
mational tool, data collection and analysis tool, visualizing tool, and checking tool
(Doerr & Zangor, 2000). These researchers also found that the use of the calculator
as a personal device can inhibit communication in a small group setting while its
use as a shared device supported mathematical learning in the whole class setting.

Although research supports the use of technology to facilitate and improve the
learning of statistical concepts, Biehler (1997a) cautions that statistics educators
need a system to critically evaluate existing software from the perspective of ed-
ucating students and to produce future software more adequate both for learning
and doing statistics in introductory courses. Thistead and Velleman (1992), in their
summary of technology in teaching statistics, cite four obstacles that can cause
difficulties when trying to incorporate technology into college statistics courses:
equipment (e.g., adequate and updated computer labs), software (availability and
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costs), projection (of computer screens in classrooms), and obsolescence (of hard-
ware, software, and projection technologies).

Nowadays, we can see increased availability of computers, access to graphing
calculators and Internet, updated and more widely available software, often via CDs
bundled with textbooks or on the World Wide Web, and new methods of projecting
computer screens such as interactive white boards. But another obstacle is the fact
that it takes time and thought to effectively incorporate new technologies. Success
in the use of technology for teaching means success in placing teachers on the road
to new ideas and methods of teaching, not the sudden transformation of teaching
(Huffman, Goldberg, & Michlin, 2003). A first step on this road can be obtaining
information on how technology can be used to support and improve students’ learn-
ing in statistics courses and what technology is available to accomplish this goal.

Recommendations for Using Technology to Teach Statistics
and Probability

Articles and presentations on technology in statistics education have pointed to sev-
eral effective ways to use technology in the statistics classroom. Below we provide
a summary of our opinions, based on the literature as well as our own experience,
as to what are some important issues to consider.

� Too often in statistics courses, students become focused on the numerical cal-
culations. This tendency can be exacerbated in a computer-rich environment,
especially in using statistical packages that easily produce large amounts of (of-
ten unclear) output – students focus on the output instead of the process. Many
teachers also have such expectations and may rely on drill-and-practice uses
of technology rather than the student-centered, rich tasks that offer the greatest
value added for the use of technology (Means, Penuel, & Padilla, 2001). Rather
than let the output be the end result, we believe it is important to discuss the
output and results with students and require them to provide explanations and
justifications for the conclusions they draw from the output and to be able to
communicate their conclusions effectively. Although students can spend time
entering data (with an emphasis on ways to organize data, types of variables
etc.), it is more useful to have them do only small amounts of data entry and
spend more time exploring, analyzing, and interpreting data.

� While technology allows for more student-driven and open-ended explorations,
this may not happen right away, as students first need to become familiar with the
tool and how to use it. Sometimes students become overwhelmed or lost in the
details of the instructions or programming commands and do not see the bigger
statistical ideas being developed. For example, in exploring sampling distribu-
tions, they focus on how many trials to include in the simulation rather than how
the sample size affects the resulting empirical distribution. Teachers therefore
need to carefully structure explorations so that even while learning to use the
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software, students are able to focus on the concepts rather than only paying at-
tention to the technology or blindly following a list of commands. In this way,
students may discover and construct meanings for the big ideas of statistics as
they are guided through a series of investigations. For example, instructors can
provide detailed instructions and ask students to interpret the results, but then
also include follow-up questions asking students to explain the process in their
own words or to update the steps they learned to reflect a change in the scenario
or to apply the technique on their own to a new context.

Care also needs to be taken that students do not overuse the technology,
searching for menus without thinking about the statistical issues, or producing
computer output without interpretation. Some packages will even provide stu-
dents with interpretations (e.g., Fathom’s “verbose” feature provides interpre-
tations of confidence and P-values for the student), so the instructor needs to
consider how much of this interpretation they want the students to generate for
themselves.

Without this careful structuring and guidance, students may only be paying
attention to the software and not to the statistical problem or content (Collins,
Brown, & Newman, 1989). The student activities that include use of technology
should embed questions that guide students in an investigation of statistical prob-
lems and encourage the students to discuss and summarize the big concepts of the
lesson before they are summarized by the instructor. In this way, students should
learn to conduct their own explorations with less and less structure and support
from teachers. Both these points underscore that the accompanying instructions
are often more crucial in impacting student learning than the specific choice of
technological tool.

� Collaborative learning is often particularly helpful in statistics education, and
technology can be used to facilitate and promote collaborative exploration and
inquiry, allowing students to generate their own knowledge of a concept or new
method in a constructivist learning environment (Huffman et al., 2003; Miller,
2000). Interactions within the groups have an important role with questioning
and critiquing individual perspectives in a mutually supportive fashion so that a
clearer understanding of statistical concepts emerge and knowledge of statistical
ideas develops (Ben-Zvi, 2006). This type of iterative exploration of data also
mirrors statistical practice and helps students develop a “habit of inquiry” (Wild
& Pfannkuch, 1999).

� Statistics education is also characterized by the deep rooted misconceptions that
students often hold entering the course. Technology greatly facilitates employ-
ment of a “predict-and-test” strategy that has shown to be effective in establishing
the cognitive dissonance necessary for students to change their ways of thinking
about a concept (e.g., Posner et al., 1982). Students can be required to predict
what they will observe (e.g., expected shape of a distribution, effect of increas-
ing number of observations) and then use the technology to obtain immediate
feedback on their understanding. This is especially useful when the feedback
is directly observable without the need for a lot of inference by the students,
especially from numerical results that may not yet make sense to students.
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We also offer the following more general reminders to consider when planning to
use technology:

� Technology does not replace the teacher, but teachers need to actively observe
the students, identify their difficulties, probe their thought processes and the
conclusions they are forming, quickly curb any problems they are having with
the technology, keep students on task, and answer questions (Feenberg, 1999).
Teachers do not have downtime while students are interacting with technology.

� Technology should be chosen to facilitate student interaction and accessibility,
maintaining the focus on the statistical concept rather than on the technology
(Moore, 1997). This choice can depend on the learning curve, portability, and
flexibility of the tool (e.g., whether the technological tool can be utilized in other
places in the course such as using the same software to carry out other data
analysis or simulation tasks). It is important to consider the background of the
students and the goals of the course as well as the instructor’s comfort level and
knowledge.

� A supportive learning environment is needed that is rich in resources, aids explo-
ration, creates an atmosphere in which ideas can be expressed freely, provides
encouragement when students make an effort to understand, and allows students
(and teachers) the freedom to make mistakes in order to learn (e.g., Brown &
Campione, 1994; Cobb, Yackel, & Wood, 1992). Some students may still feel
anxious using technology, so it can be important to integrate the use of technol-
ogy gradually; it may be useful to provide examples of how the technology can
save them time and minimize errors in completing calculations.

Possible Obstacles to Incorporating Technology
in the Statistics Classroom

Integrating technology in the classroom has great potential to enhance teaching and
learning; turning that potential into a reality can be a complex and multifaceted task.
Some of the key factors for successfully integrating technology in the classroom are
well-defined educational visions, curriculum design, and teacher preparation and
support (Kleiman, 2004). This success comes with some “costs” and instructors and
administrators need to think carefully about how to best integrate the tools into the
classroom. This section presents some of the common obstacles teachers must face
to create rich learning environments with the use of technology and the need for
necessary support mechanisms to overcome them.

Need to Re-examine Student Learning Goals. While technology allows changes
in instructional focus, these changes need to be reflected in the course goals and
corresponding student assessments. At the high school level in particular, if stan-
dardized testing will be used as the one measure of students’ success, this will
impact how technology should be incorporated. For technology to gain the most
impact on student learning, other course goals will be necessary. At the college level,
changes in learning outcomes due to use of technology (e.g., doing away with the
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use of statistical tables and instead relying on software to compute P-values) may
require buy-in from colleagues and administrators. At any level, changes resulting
from incorporating technology may require endorsement from instructors, parents,
and students.

Lack of Awareness of and Comfort with New Technologies. Probability and statis-
tics are specialized subjects, and many schools may not have a faculty member
whose expertise is in these areas. Since teachers’ schedules are very demanding, lit-
tle time is available to learn about new technologies and their capabilities. Teachers
who have learned statistics decades earlier may not be comfortable using the new
tools and may not believe in the value of their use. In some cases, teachers may be
able to attend conferences and hear about new technologies, but there is usually not
enough time for them to appreciate the benefits of the technology and fully learn
how to effectively use it in the classroom. Unless teachers are provided with a long-
term support for learning to use and implement technology, they are unlikely to
use it in their classrooms. Internet-based communities of teachers are becoming an
increasingly important tool for overcoming teacher’s isolation and need for support
(e.g., Levin & Waugh, 1998).

Lack of Support for Teachers. According to Ritchie (1996), schools are not yet
effectively implementing instructional technologies in spite of the increase in the
capacity of available educational technology. This study identified lack of adminis-
trative support as one of the most critical impediments for the integration of instruc-
tional technology. Administrative support is needed in order to provide funding for
computer labs, consistent technical support for teachers, and on-going professional
development for teachers to have the opportunity to learn new technologies and their
uses in classrooms. Even when the technology is in place and the technical sup-
port is available, teachers need much more support and professional development
in learning how to implement a new pedagogy with technology since technology
alone does not make for effective teaching. To maximize the benefits of technology
for students, teachers need to spend time modifying what they will teach, how they
will teach it, and how they will assess it using technology (U.S. Congress, Office of
Technology Assessment, 1995).

Class Time Required for Exploration. One of the largest benefits of using technol-
ogy is allowing student exploration of concepts and deeper probing into large messy
data sets, but such investigations can be time consuming. However, time can be saved
by eliminating other components of the course such as hand calculations and replacing
them with better questions or richer discussions for the benefit of more meaningful
understanding by the students. Students’ education will also benefit by more of these
explorations occurring at lower grade levels, increasing student comfort with such
explorations and perhaps leading to a less impacted curriculum at the college level.

The Fact that Technology Can Fail. It is important to realize that computers can
crash, Internet sites may not be available, and so on. Therefore, teaching with tech-
nology means having a plan in case the technology fails during class. Contingency
plans include making handouts of the planned lessons or transparencies revealing the
expected outcomes. In fact, in probability and statistics, even working technology
can lead to unexpected results. It is important for both the teacher and student to be
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comfortable with randomness and approximations rather than clean proofs. When
technology does fail, the process of constructing the lesson often prepares teachers to
pose questions; this can lead students to have a discussion that can serve as pre-amble
to the next class meeting when the technology will function (Cardenas, 1998).

Time Needed to Implement Changes. Teachers should not expect inclusion of
technology in their classroom to show immediate improvements in student achieve-
ment or to be a solution to all teaching difficulties (U.S. Congress, Office of Technol-
ogy Assessment, 1995, p. 159). It is usually the case that effective use of technology
takes refinement, trial and error, and continual improvement. Teachers should not
be afraid to try something and fail; that does not mean the new teaching method is
a failure, but may indicate modifications that need to occur for the implementation
to be successful in an individual classroom. Educators cannot forget that part of
educating students is preparing them for life outside the classroom, so even if the
use of technology does not provide immediate success in the teaching and learning
of mathematics or statistics concepts, students are learning how to use technologies
that they may encounter in their future jobs.

Unclear Role of Distance Learning. The methods being developed for distance
learning, which incorporate many innovative uses of technology, may allow schools
to share resources and make a high-quality probability or statistics class at one
school available to others. However, with increased distance learning courses, it
is also unclear as to how much of a course can be taught exclusively using technol-
ogy, what the appropriate roles of an instructor should be, and how much emphasis
should still be placed on students generating calculations and graphs by hand. “Hy-
brid courses” that combine a distance component with less frequent face to face
meetings are also being used with greater frequency (e.g., Utts, Sommer, Acredolo,
Maher, & Matthews, 2003; Ward, 2004). Smith, Clark, and Blomeyer (2005) pro-
vide a synthesis of new research in K-12 online learning and Mayer (2001) provides
recommendations on effective multimedia presentations.

Issues to Consider when Selecting Technology
in a Statistics Class

Despite the obstacles listed above, it is still important to try to find ways to access
and utilize appropriate technology to help students learn statistics. The GAISE Col-
lege Report (Franklin & Garfield, 2006) lists some issues to consider when selecting
technological tools to use in helping students learn statistics:

� Ease of data entry, ability to import data in multiple formats
� Interactive capabilities
� Dynamic linking between data, graphical, and numerical analyses
� Ease of use for particular audiences and availability of good instructions and

materials to help learn and use the software.
� Availability to students, portability
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We believe that no one tool can do it all and that there are many good tools available
to use, many of which are free. Therefore, rather than thinking about one techno-
logical tool for students to use, we encourage teachers to think about what sets of
tools will help student best learn statistics in each unit of the course. What is used
to graphically explore data in one unit may not be the best to illustrate sampling in
another.

Implementation Issues

The GAISE Report advises educators to remember that technology still needs to
be used carefully. As stated earlier, instructors should first remember to worry less
about the specific choice of technology and instead on why and how it will be used.
Careful planning of the technology implementation is crucial to having a direct im-
pact on student learning. We list below some of the questions to consider when
planning how to use a particular technology tool with students. We do not try to
provide answers to these questions, because responses will vary from class to class,
topic to topic, and depending on choice of technology.

� How much time will students need to explore the technology? How can the
teacher make sure that videos and simulation games do not become “play time”
for students and that they are learning important ideas? How much instructor
demonstration should precede student use of the technology and how much de-
briefing afterwards?

� How can we avoid students thinking of the computer as a “black box”? How can
we make sure that students understand and trust (to a reasonable extent) what
technology produces? We do not want computer visualizations to just become
a black box generating data. We believe that is important for educators to use
a hands-on activity with devices such as dice or M&Ms to begin an activity,
and then move to the computer to simulate larger sets of results. In this way,
students may better understand the simulation process and what the data actually
represent. Follow-up assessment also needs to indicate to students that they will
be responsible for understanding and synthesizing what they have learned from
the technology.

� How consistently will the software be used? To what extent students will use the
software? Is it only used in class and assignments or can it be used on exams? Are
students assessed on how well they are able to use the software or is it optional to
use it? How accessible will the technology be for student’s use outside class? The
answer to this question will determine what kind of homework assessments or
group project teachers create. Teachers should keep in mind that students value
what is assessed, so assessments should be aligned with learning goals. If stu-
dents are expected to use a lab outside class, what are the lab hours and are these
accessible for most of students?

� How many different technologies are students expected to use? For which
technologies should students learn commands (i.e., software packages)? Which
technologies will be demonstrations only (i.e., applets)? Incorporating many
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technologies can be overwhelming for students and place conceptual understand-
ing in second place to technological skills.

Summary

Technology has been and will continue to be a major factor in improving student
learning of statistics. However, effective utilization of technology requires thought-
ful and deliberate planning as well as creativity and enthusiasm. Despite the end-
less capabilities that technology offers, instructors should be careful about using
sophisticated software packages that may result in the students spending more time
learning to use the software than applying it. Even in our advanced technological
society, some students are not always ready for the type of technology used in
courses. Choice of a particular technology tool should be made based on ease of
use, interactivity, dynamic linkages between data/graphs/analyses, and portability.
Good choices if used appropriately can enhance student collaboration and student-
instructor interactions, and often a combination of several different tools will be
necessary.

It is also crucial to consider how best to utilize the technology (e.g., allowing
predict-and-test learning situations and facilitating student interaction, not spending
large amounts of time entering data). There is a need for carefully designed learning
activities that guide and scaffold student interaction with technology. Set-up time
should be minimal, and students often, at least initially, need to be carefully guided
through the activity, with the steps building logically. As they gain more confidence
with the tool and fluency with the statistical language, teachers should gradually en-
courage students to conduct and make sense of their own explorations, with less and
less guidance and structure, while focusing on the overall larger statistical concept.

What is still lacking is more studies on the most effective ways of integrating
technology into statistics courses in developing students’ reasoning about particular
concepts, and determining appropriate ways to assess the impact on student learning
in these contexts. With an increased emphasis on statistics education at all educa-
tional levels, we hope to see more high-quality research projects in years to come
that will provide information on appropriate uses of technology to improve student
learning of statistics.
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From Research to Practice:

Developing the Big Ideas of Statistics



Introduction:
Connecting Research to Teaching Practice

In this section, we list the content of the chapters, describe the chapter structure,
provide a guide to the research-based lessons described in each chapter, provide
the theory behind the development of the lessons, and outline the resources in the
Website that accompany each chapter.

Chapter Content

Each chapter in Part II of the book (Chapters 6 through 14) addresses one important
topic or big idea in an introductory statistics course. These chapters are presented in
the following order:

Chapter 6 Learning to Reason About Data: the nature and role of data,
types of data, and methods of collecting and producing data.

Chapter 7 Learning to Reason About Statistical Models and Modeling:
the idea of a statistical model, the uses of models in statistics,
essential ideas of probability, the Normal distribution and
regression as statistical models.

Chapter 8 Learning to Reason About Distribution: the idea of statistical
distribution, understanding and interpreting graphical
representations of data, introduction to ideas of shape, center,
and spread.

Chapter 9 Learning to Reason About Center: the idea of center and
representativeness; measuring center of a distribution: uses,
properties, and interpretation of means and medians.

Chapter 10 Learning to Reason About Variability: the importance of
variability in statistical thinking, the omnipresence of variation,
sources of variability; measuring spread of a distribution: uses,
properties and interpretation of range, standard deviation, and
interquartile range.

Chapter 11 Learning to Reason About Comparing Groups: reasoning with
center and spread in comparing groups and making informal
inferences using boxplots.
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Chapter 12 Learning to Reason About Samples and Sampling
Distributions: sampling variability and sampling distributions,
the effect of sample size, the implications of the Central Limit
Theorem.

Chapter 13 Learning to Reason About Statistical Inference: tests of
significance, P-values, and confidence intervals.

Chapter 14 Learning to Reason About Covariation: scatterplots,
correlation, and simple linear regression.

These chapters present the idea and review research literature on this topic and sug-
gest ways to build classroom activities based on the research following a progression
of ideas (learning trajectory) to develop the concept.

Chapter Structure

Each chapter follows a parallel structure. This structure is outlined below:

1. Snapshot of a research-based activity

A quick glimpse of an innovative research-based classroom activity introducing the
statistical topic.

2. The rationale for this activity

An explanation of how and why this activity helps build reasoning about the topic.

3. The importance of understanding the topic

Description of the topic and its importance.

4. The place of the topic in the curriculum

An analysis of the place of the topic in the curriculum of an introductory statistics
course.

5. Review of the literature related to reasoning about the topic

A synthesis and summary of the most relevant, scholarly research on the topic.

6. Implications of the research: Teaching students to reason about the topic

A presentation of our views of the implications of the research about teaching the
topic.

7. Progression of ideas: Connecting research to teaching

A description that outlines the progression of ideas to provide a bridge between the
research and practical teaching activities. In a table format, we offer the suggested
significant milestones to reach the goal of understanding and reasoning about the
topic. This consists of subgoals and statistical ideas and concepts, which are listed
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in the left column of the table, with suggested activities for each subidea in the right
column. We realize that there may be many paths to the end goal, but we offer one
set that we have tried several times and feel is effective with students and appears
consistent with the research.

The activities listed in the table or described in the chapter do not attempt to cover
all the material that teachers may want to cover in this unit, but give examples of
the types of activities that reflect some of the suggested steps of the research-based
learning trajectory.

Please note that wherever we are aware of borrowing or adapting an activity, we
try to credit the author, which is shown in the Table of Activities in the Appendix to
this book (on page 391). There are some cases where there are so many versions of
an activity or we have been using and adapting an activity for so many years, that it
is hard to know exactly who created the original version.

8. Overview of the lessons

A description of the complete set of two to five lessons (and activities in these
lessons) that have been designed to develop reasoning about the topic (the actual
lessons are on the accompanying Website, http://www.tc.umn.edu/∼aims/).

As you read through these materials, please keep in mind that the lessons
do not replace a statistics textbook. This set of sample research-based lessons
is also not exhaustive in the content it includes, but provides an overall sense
of how the research implications can be integrated into an introductory course.
In fact, it might be that some instructors will want to adapt or use only one lesson
from this collection in a particular class or just one activity from within a lesson
or topic.

In addition to the activities included in the lessons that accompany each chapter,
the Website for this book provides suggestions for other types of activities instruc-
tors may want to consider.

9. Website resources for each chapter

Each chapter has a set of resources at the book’s Website (http://www.tc.umn.
edu/∼aims/), designed to supplement the print chapters with digital resources. They
include:

� The set of annotated lesson plans and activities
� Sample data files used in the lesson
� Blank student handouts for each activity
� Annotated activates that include possible students answers.

A Guide to the Research-Based Lessons

Each chapter in Part II is accompanied by a set of two to five lesson plans accessed
from the Website that illustrate how class sessions might be taught building on the
research reviewed in the book. A lesson plan gives the idea of what an entire class
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session might be. Each lesson contains one or more individual in-class activities
and includes overall lesson goals, opening discussion questions, and a wrap-up
discussion of the activities for the lesson. The theory behind the lessons and the
components of the lesson plans are described in detail below.

The Theory Behind the Lessons

The lesson plans and activities within the lessons were developed based on the fol-
lowing theory:

� Learning is constructive. Students learn and build understanding through reading
materials, discussions in class, and collaborative activities where they investigate
statistical problems and discuss their ideas and reasoning with other students
(see Chapter 15). Learning is facilitated by the making and testing of conjectures
(see Chapters 2 and 3).

� Learning the big ideas (see Chapter 3) of statistics requires an “unpacking” of
the ideas into components that begin with informal notions (based on and influ-
enced by students’ prior knowledge and intuitions), and build gradually toward
formal notions. Moving through the sequence of informal and formal ideas takes
extended time and places more importance on depth and reasoning as opposed
to breadth of knowledge.

� Learning and retaining the big ideas requires the ideas to be explicitly revisited
and reapplied in different contexts (and topics) after they are introduced. This
also involves transferring knowledge from earlier units to applications in later
units. This is based on the view of learning and development of understanding as
complex, iterative, and circular (non-linear) processes.

� Learning the big ideas is facilitated by examining real data sets that engage stu-
dents in statistical reasoning, although some formal aspects of the ideas may be
done without a context (e.g., the Central Limit Theorem).

� Statistical reasoning requires basic statistical literacy. The role of the textbook
is to help students develop basic literacy: becoming acquainted with language,
terms and symbols, and some basic content before coming to class.

� Statistical reasoning is best developed by in-class collaborative, inquiry-based
activities that engage students in making and testing conjectures and discussing
results of data analyses.

� Statistical thinking builds on statistical literacy and reasoning. It is developed by
explicit modeling of statistical thinking by the instructor throughout a course and
by the student participation in real world data collection, production and analysis
activities, including class activities and out of class student projects.

� Collaboration among students in the classroom facilitates and promotes student
learning by providing access to multiple voices and opinions; improving the
quality and completeness of student learning; and creating a positive and pro-
ductive learning environment (see Chapter 15).
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� Becoming knowledgeable in statistics involves both cognitive development and
“enculturation”, socialization of processes into the culture and values of “doing
statistics.” Thus, it is important to bring the practice of statistics in class closer
to what it means to use statistics within the discipline.

General Comments About the Lesson Plans

The Use of Learning Goals

The student learning goals may be used to help the instructor keep in mind the goals
of the lesson, to help summarize what was learned at the end of the lesson, and to
plan assessment of student learning and of the effectiveness of the lesson.

Students’ Prerequisite Knowledge for a Set of Lessons

Each chapter specifies some important prerequisite knowledge for the set of lessons.
However, we do not specify on each lesson plan what students are expected to know
before that particular lesson, as we do not believe in the linear progression of ideas
and development of understanding. We view learning as a complex, iterative, and
circular process. In our lessons, we emphasize making conceptual links among big
statistical ideas, and we highly recommend revisiting ideas and concepts that were
mentioned in previous units.

Teachers’ Own Knowledge of Statistics

We assume that readers of this book are already knowledgeable about the statistical
content covered in a first course. We are not trying to teach the readers (statistics
teachers) content. Instead, we are suggesting ways for them to teach the content to
students.

The Role of Simulations

One component of the lessons is the use of simulations and informal ideas of in-
ference early in the course and throughout the course, so that when students reach
the material of formal methods of statistical inference, they may build these formal
ideas on their informal notions. To do this, we introduce the Simulation of Samples
(SOS) Model shown in Chapter 6, early in the first set of lessons, when students
are learning about collecting and producing data. This model, based on the research
literature, presents a visual representation of three levels of data (population, sam-
ples, and sampling distributions). Many lessons on different topics involve repeated
sampling of simulated data and discussions about what is a “usual” value of the
sample statistic. In each case, the SOS Model is used to distinguish between the
three levels of data and to focus this final question of what is an unusual value for a
statistic on the third level.
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Websites Cited

We have tried to only cite stable, well-known and reliable Websites in the lessons
and activities of the following chapters. However, Website locations are likely to
change. Therefore, if you find an error message when trying to locate a reference
Website, we recommend using a search engine to locate the site using key words
or phrases (e.g., Guessing Correlation applet). We also note that many of the ref-
erenced Web applets require Java to be installed, which can be downloaded freely
from http://java.com/.

Finally, these lessons represent not only our views of what the research suggests,
but they are also colored by our own experiences as teachers and our views of best
practices of teaching particular topics. These lesson plans and activities are not the
only ones or necessarily the best ones, but they are the ones we have developed and
used and we find them to work well in promoting a Statistical Reasoning Learning
Environment (SRLE, Chapter 3). Our goal is to provide examples of resources that
may be reviewed to better illustrate our suggested sequences of activities, and may
be used as is or modified to be used in various courses.



Chapter 6
Learning to Reason About Data

High on my list of elements of statistical thinking is the claim
that data beat anecdotes. This is surely a learned principle,
and one much neglected by public opinion.

(Moore, 1998, p. 1257)

Snapshot of a Research-Based Activity on Distribution

Students arrive in class on the first day of their introductory statistics course. After
brief introductions, the instructor asks them to Meet and Greet each other. They
are asked to stand up, to take a pad of paper with them, and to meet at least five
other people by shaking hands and sharing five pieces of data about themselves.
This information is to be recorded on their paper:

1. Your name.
2. The number of credits you are taking this semester.
3. Your intended major or field of study.
4. Your gut reaction when you hear the word statistics.
5. If you are a senior (yes/no).

After students have walked around and gathered enough information, they sit back
down and engage in a class discussion about their data. They are asked to describe
how they recorded their data. Typically, some students write down every response
while others may set up a system of categories and tally marks. It is interesting
to see what different organization methods were used, which leads to a discussion
about what seems to be a good method to organize data and the different types of
variables used to collect data (and different types of data collected, e.g., numbers,
words, yes/no data; they are asked about how responses differ). Students are asked
to look at their data and see which, if any variables, led to a wide variety of responses
(variation in the data). There is usually more variation in credits or majors, and less
variation in reactions to the word “statistics” (which sadly, are often quite negative).
Students are asked about the questions used and if they could have been improved,
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or if they led to ambiguity of responses. For example, the question: “Are you a
senior?” could be answered based on number of credits or year in school, and those
might result in different answers.

Finally, the students are asked about what kinds of summaries can be made about
the class by looking at the data they collected. This leads to a discussion of their
sample of data, and how well their sample represents the entire class. This further
leads to the idea that their samples may be too small and possibly biased and that
there are better ways to take a sample of data.

Rationale for This Activity

The “Meet and Greet” activity is designed to immerse the students in data and ex-
ploratory data analysis from day 1, and to help them think about data collection as
well as what you can learn from data. The lesson helps students begin to see data
as a classifier, where they collect data to yield frequencies of particular values, and
to also begin to see data as an aggregate. These views of data are important and are
more advanced ways of thinking about data than simpler, intuitive methods of focus-
ing on individual data values (Konold & Higgins, 2002; Konold, Higgins, Russell,
& Khalil, 2003, described later in this chapter). This lesson also helps distinguish
statistics from mathematics, by focusing on data and the context of collecting and
interpreting data as “noisy” processes. Data that are not numerical are also exam-
ined, as three different types of data are informally handled. As we note later in the
chapter, there is not much of empirical research on how students develop important
ideas about data. This activity and others described in the chapter are often based
on implications from studies about the nature of reasoning about data as well as
more general research about student learning and effective pedagogical methods
for teaching statistics, where specific research studies on learning data are not yet
available.

The Importance of Understanding Data Collection
and Production

Statistics is the science of learning from data. Where the data come from matters.
(Moore, 2005, p. xviii)

David Moore eloquently reminds us that the most important information about any
statistical study is how the data were produced. “Before you trust the results of a
statistical study,” he exhorts, “ask about details of how the study was conducted.”
Moore goes on to state: “Data enlighten. They shed light in dark places” (Moore,
2005, p. xxiii). He explains that statistics can help guide us in using data to explore
the unknown: how to produce trustworthy data, how to look at data (starting with
plotting graphs), and how to reach sound conclusions that come with an indication
of just how confident we can be. The three important aspects of statistical science
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are data production, data analysis, and statistical inference (inferring conclusions
from data). This chapter deals with the first area, data production.

The Place of Data in the Curriculum

In “traditional” statistics classes, data are introduced on the first day, and distinctions
are made between different types of data (categorical and quantitative). In a subse-
quent unit of graphs, the distinction between these two types of data is revisited as
categorical data are tied to pie graphs and bar charts while quantitative data are rep-
resented in histograms and dot plots. From that point on, data are used by students
as they learn different statistical summaries and procedures. Many students could
leave their statistics course never questioning where data come from or realizing
that how data are gathered or produced is directly related to methods of analysis and
conclusions drawn.

Several years ago, this serious absence began to change as more and more text-
books included chapters on data collection (why and how to take samples and use
surveys) and methods of producing data (experimental designs) (e.g., De Veaux,
Velleman, & Bock, 2005; Moore, 2004; Peck, Olsen, & Devore, 2007; Rossman,
Chance, & Lock, 2001; Watkins, Scheaffer, & Cobb, 2004; Utts, 2004). However,
even with this added materials, many times that information was left behind and not
referred to later in the course and was treated as an isolated unit. Today’s curriculum
recommendations (e.g., the GAISE Project, see Franklin & Garfield, 2006) encour-
age the study of data production and the integration of this topic throughout a class.
Therefore, explorations of data include discussions about the purpose for which
the data were gathered and how. While there are many suggestions about how to
teach about data, so far there is little empirical research related to this topic. The
next section summarizes existing research as well as important work by influential
statisticians and uses this literature as a basis for suggesting a progression of ideas
and activities to develop reasoning about data.

Review of the Literature Related to Reasoning About Data

In our review of the published literature, we found that the majority of research
studies on reasoning about data were conducted at the primary school level, or iden-
tified how students reason about data rather than how to develop good reasoning
about data. In addition, we found articles by statisticians and statistics educators
expressing strong opinions about the topics related to data. For example, the statis-
tics education literature stresses the importance of using real (and to a lesser ex-
tent, realistic) data, the importance of students planning surveys and experiments
and collecting their own data, and reflecting on the processes and considerations
involved in formulating a statistical question that can be answered with a survey
or experimental study. In particular, the idea of where randomization plays a role
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in statistical study, either through random sampling or random assignment, is now
regarded as an extremely important topic for students to learn (Cobb, 2007; Franklin
& Garfield, 2006).

We begin this literature review with an overview of what statisticians and statis-
tics educators have written about the nature and importance of exploratory data
analysis and how we would like students to think about data, which have provided a
basis for the learning goals related to this topic. Then, we summarize the literature
that relates to how students understand and reason about data and methods used to
collect or produce data.

The Nature of Exploratory Data Analysis

“Statistics is the science of learning from data” (Moore, 2005, p. xviii). One ap-
proach to learn from data is Exploratory Data Analysis (EDA), developed by Tukey
(1977). EDA is the discipline of organizing, describing, representing, and analyzing
data, with a heavy reliance on informal analysis methods, visual displays and, in
many cases, technology. The goal of EDA is to make sense of data, analogous to
an explorer of unknown lands (Cobb & Moore, 1997, p. 807). The original ideas of
EDA have since been expanded by Mosteller and Tukey (1977) and Velleman and
Hoaglin (1981), and others. They have become the accepted way of approaching
the analysis of data (Biehler, 1990; Moore, 1990, 1992). EDA has been widely
adopted by statistics educators, in large part, because it serves the need for more
data and what we can learn from them, and does not focus on the underlying the-
ory and complicated recipes (Biehler & Steinbring, 1991; Cobb & Moore, 1997;
Scheaffer, 2000).

According to Graham (1987), Kader and Perry (1994), Nicholson, Ridgway and
McCusker (2006), and others, data analysis is viewed as a four-stage process: (a)
specify a problem, plan, pose a question, and formulate a hypothesis; (b) collect and
produce data from a variety of sources (survey, experiments); (c) process, analyze,
and represent data; and (d) interpret the results, discuss, and communicate conclu-
sions. In reality, however, statisticians do not proceed linearly in this process, but
rather iteratively, moving forward and backward, considering and selecting possible
paths (Konold & Higgins, 2003). Thus, “data analysis is like a give-and-take con-
versation between the hunches researchers have about some phenomenon and what
the data have to say about those hunches. What researchers find in the data changes
their initial understanding, which changes how they look at the data, which changes
their understanding” (Konold & Higgins, 2003, p. 194).

The focus of EDA is not on a set of techniques, but on making sense of data,
how we dissect a data set, what we look for, how we look, and how we interpret.
EDA postpones the classical statistical inference assumptions about what kind of
model to fit to the data, with the more direct approach of “letting the data speak
for themselves” (Moore, 2004, p. 1); that is, allowing the data to reveal the un-
derlying structure and model through the translating eyes of a statistically literate
viewer.
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Statistical Thinking About Data

Based on in-depth interviews with six professional practicing statisticians and 16
statistics students, Wild and Pfannkuch (1999) provide a comprehensive descrip-
tion of the processes involved in statistical thinking, from problem formulation to
conclusions. They suggest that a statistician operates (sometimes simultaneously)
along four dimensions: investigative cycles, types of thinking, interrogative cycles,
and dispositions. In solving statistical problems, the statisticians interviewed were
particularly interested in giving prominence to grasping the dynamics of the sys-
tem under investigation, problem formulation, and measurement issues. In the first
stages of the investigation, statisticians also attended to data-related issues such as
sampling design, data collection, data management, and data cleaning. Some types
of the statisticians’ thinking that emerged from the interviews are inherently statis-
tical, such as the recognition of need for data, consideration of variation, reasoning
with statistical models, and integrating the statistical and contextual.

Although statistical thinking is a synthesis of statistical knowledge, context
knowledge, and the information in data to produce implications, insights, and con-
jectures, these researchers found that the earliest stages of a statistical investigation
are driven almost entirely by context knowledge. The statistical knowledge con-
tributes more as the thinking crystallizes. There is a back and forth shuttle between
thinking in the context sphere and the statistical sphere that goes on during all phases
of the statistical investigation (Wild & Pfannkuch, 1999).

Research on Students Reasoning About Data and Data Analysis

In a “teaching experiment”1 conducted with lower secondary school students in
Germany by Biehler & Steinbring (1991), data analysis was introduced as “detec-
tive” work. Teachers gradually provided students with a data “tool kit” consisting
of tasks, concepts, and graphical representations. The researchers concluded that
all students succeeded in acquiring the beginning tools of EDA, and that both the
teaching and the learning became more difficult as the process became more open.
There appears to be a tension between directive and nondirective teaching methods
in this study. A study by de Lange, Burrill, Romberg, and van Reeuwijk (1993)
reveals the crucial need for professional development of teachers in the teaching of
EDA in light of the difficulties teachers may find in changing their teaching strategy
from expository authority to guiding and from the precision of mathematics to the
messiness of statistics.

Based on their observations of school students’ reasoning about data, Konold,
Higgins, Russell, & Khalil (2003) suggest a framework for describing increasing
levels of complexity in how people understand data, focusing on how different
representations and uses of these representations highlight or de-emphasize the

1 See page 37 Chapter 2 for a description of a teaching experiment.
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aggregate characteristics of data. Konold and colleagues (Konold & Higgins, 2002;
Konold et al., 2003) argue that children see data in several simpler ways before
ever noticing aggregate and emergent features of data sets. Their fourfold schema
includes the following different ways of viewing data, which we consider useful for
examining the thinking of adults as well as children:

1. Data as a pointer to the data collection event but without a focus on actual data
values – in this view, data remind children of their experiences, “We looked at
plants. It was fun.”

2. Data as a focus on the identity of individual cases – these can be personally
identifiable, “That’s my plant! It’s 18 cm tall,” extreme values, “The tallest plant
was 37 cm,” or interesting in some other way.

3. Data as a classifier, which focuses on frequencies of particular attribute values, or
“slices,” without an overall view – “There were more plants that were 15–20 cm
than 10–15 cm.”

4. Data as an aggregate, focusing on overall and emergent characteristics of the data
set as a whole, for example, seeing it as describing variability around a center,
or “noise” around an underlying “signal” (Konold & Pollatsek, 2002) – “These
plants typically grow to between 15 and 20 cm.”

More information on the aggregate view of data and distribution is provided in
Chapter 8.

Generating and Formulating Statistical Questions

In their review of the research literature on teaching students to generate questions,
Rosenshine, Meister, and Chapman (1996) wrote:

“Question generation is an important comprehension-fostering (Palincsar & Brown, 1984)
and self-regulatory cognitive strategy. The act of composing questions focuses the student’s
attention on content. It involves concentrating on main ideas while checking to see if content
is understood (Palincsar & Brown, 1984). Scardamalia and Bereiter (1985) and Garcia and
Pearson (1990) suggest that question generation is one component of teaching students to
carry out higher level cognitive functions for themselves” (p. 181).

Rosenshine, Meister, and Chapman (1996) found that teaching students to generate
questions about the material they have read resulted in gains in comprehension, as
measured by tests given at the end of the intervention. Generating and formulating
a statistical question, which is the starting point of any statistical investigation, is a
challenging task for school and college students. In their chapter, “Reasoning about
Data”, Konold and Higgins (2003) described this challenge:

“One of the first challenges is to transform that general question about the real world into
a statistical one, one that we can answer with data . . . Among other things, the statistical
question allows us to develop measurement instruments and data-collection procedures. By
analyzing the data, we answer our statistical question, which ideally, but not always, tells
us something about the real question we started with.
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In learning how to formulate questions and to collect and analyze data to answer them, stu-
dents must learn to walk two fine lines. First, they must figure out how to make a statistical
question specific enough so that they can collect relevant data yet make sure that in the
process they do not trivialize their question. Second, they must learn to see the data they
have created as separate in many ways from the real-world event they observed yet not fall
prey to treating data as numbers only. They must maintain a view of data as “numbers in
context” (Moore, 1992) while at the same time abstract the data from that context” (p. 195).

Studies on Students’ Reasoning About Data Collection
and Study Design

The guidelines for teaching the introductory college statistics course (The GAISE
Project, Franklin & Garfield, 2006) suggest goals for students in an introductory
course that include understanding random sampling and random assignment and
the distinction between them. Random sampling allows results of surveys and ex-
periments to be extended to the population from which the sample was taken. Ran-
dom assignment in comparative experiments allows cause and effect conclusions to
be drawn.

Although there is consensus among statistics educators that student data collec-
tion and analysis projects are of substantial value, the planning and piloting phases
of data collection are often neglected. Short and Pigeon (1998) asked their college
freshman introductory statistics, graduate statistics, and pre-service teachers to write
protocols or detailed plans for how the data would be collected for a data investi-
gation project, and to plan and conduct pilot studies before embarking on full scale
data collection. They found that the protocol and pilot study assignments developed
important global problem-solving and communication skills in students. One of the
most important advantages of careful planning of data collections and subsequent
analyses that is reported is that students keep the structure of the data they collect
within the boundaries of their statistical expertise.

Another essential part of effective statistical study design is deciding when
and how to conduct experimental studies rather than nonexperimental ones. This
can be challenging even for college students. Heaton and Mickelson (2002) found
that undergraduates had some difficulty matching appropriate data collection meth-
ods to the quantifiable questions they had posed for class projects. Derry, Levin,
Osana, Jones, and Peterson (2000) described the development of undergraduates’
statistical thinking ability in regard to study design and documented students’ ten-
dency to confuse the concepts of random sampling and random assignment after the
course.

Given the difficulties college students have exhibited with deciding when and
how to conduct experiments, one would expect experimental design to be a non-
trivial matter for high school students. Groth (2003) asked high school students
how they would go about designing studies to answer several different quantifiable
questions. This study provides a picture of levels of thinking one might expect from
high school students in regard to the design of statistical studies.
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The role of “data creation” in learning about data analysis was studied by
McClain and Cobb (2001). The researchers developed an approach in which the
teacher talked through the data creation process with the middle school students.
These conversations often involved extended discussions during which the teacher
and students together framed the particular phenomenon under investigation, clari-
fied its significance, delineated relevant aspects of the situation that should be mea-
sured, and considered how they might be measured. The teacher then introduced the
data the students were to analyze as being produced by this process. The researchers
found that the data creation process grounded the students’ activity in the context
of a problem or question under investigation and improved their ways of reasoning
about data as they made statistical arguments in the course of their analyses.

Reasoning About Random Samples and Sampling

Confusion about random samples and sampling applies to school and college stu-
dents as well as adults. In their seminal paper, “Belief in the Law of Small Num-
bers,” psychologists Tversky and Kahneman (1971) wrote:

The research suggests that people have strong intuitions about random sampling; that these
intuitions are wrong in fundamental aspects; that these intuitions are shared by naı̈ve sub-
jects and by trained scientists, and that they are applied with unfortunate consequences in
the course of scientific inquiry . . . People view a sample randomly drawn from a population
as highly representative, that is, similar to the population in all essential characteristics.
Consequently, they expect any two samples drawn from a particular population to be more
similar to one another and to the population than sampling theory predicts, at least for small
samples. (p. 24)

Since the publication of this article, many researchers have examined and described
the difficulties students have understanding samples, sampling variability, and in-
evitably, sampling distributions and the Central Limit Theorem (CLT). For exam-
ple, Pollatsek, Konold, Well, and Lima (1984) administered a questionnaire to 205
undergraduate psychology students in the United States. In one experiment, sub-
jects estimated (a) the mean of a random sample of ten scores consisting of nine
unknown scores and a known score that was divergent from the population mean;
and (b) the mean of the nine unknown scores. The modal answer (about 40% of
the responses) for both sample means was the population mean. The results extend
the work of Tversky and Kahneman (1971) by demonstrating that subjects hold a
passive, descriptive view of random sampling rather than an active balancing model.
This result was explored further in in-depth interviews with 31 additional students,
where subjects solved the problem while explaining their reasoning. The interview
data replicated the first experiment and further showed (a) that subjects’ solutions
were fairly stable – when presented with alternative solutions including the correct
one, few subjects changed their answer; (b) little evidence of a balancing mecha-
nism; and (c) that acceptance of both means as the population mean is largely a
result of the perceived unpredictability of “random samples.”
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In a summary of articles by psychologists on the topic of reasoning about sam-
ples, Well et al. (1990) noted that people sometimes reason correctly about sample
size (e.g., that larger samples better represent populations) and sometimes do not
(e.g., thinking that both large and small samples equally represent a population).
To reveal the reasons for this discrepancy, they conducted a series of experiments
that gave college students questions involving reasoning about samples and sam-
pling. The researchers found that students used sample size more wisely when
asked questions about which sample size is more accurate than on questions that
asked them to pick which sample would produce a value in the tail of the popu-
lation distribution, indicating that they do not understand the variability of sample
means.

Understanding the relationship between sample and population requires grasp-
ing the representative nature of a random sample. Although studies of elemen-
tary students have found that even young children have rich informal knowledge
about samples and sampling, they also have numerous difficulties in reasoning
about these ideas (Jacobs, 1999; Metz, 1999; Schwartz, Goldman, Vye, & Barron,
1998; Watson and Moritz, 2000a). For example, students were reluctant to gener-
alize from a sample to a population since they seriously doubted that any infer-
ence can be drawn beyond the sample at hand, or believed that information on all
cases is necessary to draw a conclusion about a population (Metz, 1999). Studies
have found that elementary students were often not able to differentiate between
results produced by biased and unbiased sampling techniques, and struggled to
grasp the idea of randomness and random sampling, preferring convenience sam-
pling over random sampling (Jacobs, 1999; Schwartz, Goldman, Vye, & Barron,
1998). Although students tend to prefer convenience samples and tend to accept
stratified samples when thinking about surveys, they seem comfortable with the
concept of randomly generating data when considering games of chance (Konold &
Higgins, 2003.)

In a rare study at the college level, Dietz (1993) reports on results of a teaching
experiment in several introductory statistics courses of undergraduate mathematics
education and statistics students. One activity was designed to stimulate students,
who had not yet studied sampling, to think creatively about methods of selecting
a representative sample from a population. The students generated possible meth-
ods for selecting a representative sample, computed various summary statistics and
made plots for the variables in each sample, compared their samples statistics to the
population parameters and evaluated the advantages and disadvantages of the pro-
posed sampling methods. Dietz reported that the students have “invented” simple
random sampling, systematic sampling, stratified sampling, and various combina-
tions thereof. Students, however, had difficulties in evaluating and discussing the
various “invented” sampling methods, since they based their evaluation primarily
on sample and population measures of central tendency, but ignored the differences
in variability. Being actively involved in their own learning and construction of
sampling ideas, students better understood and longer remembered ideas related
to sampling methods. Chapter 12 in this book further discusses the literature related
to reasoning about samples and sampling.
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Implications of the Research: Teaching Students
to Reason About Data

The literature reviewed suggests that an important component of a statistics course
should be on the nature of data, where data come from, how to produce or collect
good data (random samples and sampling), and what types of analyses and con-
clusions are appropriate for data collected in different ways. In order to do this,
good, rich data sets are needed. Some of these may be collected by and about the
students in the course to engage them in the data collection process. Other data
sets may be used as well but always considering the context and the source of
data.

In trying to help students develop statistical reasoning about data, it appears help-
ful to model for them the kinds of questions we need to ask about data in a study,
such as:

1. Was this an observational or experimental study? What types of conclusions are
therefore appropriate?

2. What methods or precautions were taken to prevent biased data?
3. How and where was randomization used in the study (random sampling? random

assignment?).
4. What other precautions were taken (e.g., was the study double-blinded, how were

the questions phrased, was there consistency across all measurements? Are the
units and measurements clear, e.g., what “operational definitions” were made
along the way?).

After a unit on data collection and production is finished, these questions should be
revisited throughout the course, so that students are not presented with data sets to
analyze without considering where the data come from and what types of analyses
are appropriate.

Role of Technology in Learning to Reason About Data

The computer has had a major impact on the use of real data in introductory statistics
classes. Many rich data sets are available on the World Wide Web, and most are eas-
ily accessible by statistical software packages. For example, Fathom (Key Curricu-
lum Press, 2006) and TinkerPlots (Konold & Miller, 2005) allow easy access to data
files stored on the Internet. Data can be loaded from a Website in a variety of ways,
and the software will attempt to interpret the incoming data as cases in a collection.
While not 100% foolproof, this feature can greatly reduce the amount of work nec-
essary to get data into a suitable form. Furthermore, Fathom can directly import
samples of U.S. census microdata (data about individual people) from the Inte-
grated Public Use Microdata Series Web site (IPUMS, http://www.ipums.umn.edu/)
at the University of Minnesota, which is a coherent US census database spanning
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1850–2004. This is a rich source of interesting data, which Fathom makes easy to
access and explore.

While some Websites provide data sets that have been cleaned up and formatted
to use in teaching statistics (e.g., DASL, http://lib.stat.cmu.edu/DASL/), others may
be messy and need cleaning before their use. Some instructors are now teaching stu-
dents to clean and manage data as part of their introductory course (e.g., Gelman &
Nolan, 2002; Holcomb & Spalsbury, 2005). The activities allow students to develop
their reasoning about what the data represent, what constitutes an outlier or an error,
where and how the data were produced, and similar questions. With the abundance
of data that are now available in downloadable form, it seems inappropriate to have
student spend time entering data by hand into the computer or calculator, other
than a few examples to learn and experience the basic process of data entry and
storage.

Progression of Ideas: Connecting Research to Teaching

Introduction to the Sequence of Activities to Develop Reasoning
About Data

Statistics is the science of data. We therefore begin the study of statistics by intro-
ducing the basic ideas about data: Any set of data contains information about some
group of individuals, the information is organized in variables, and data represent
values of a variable and show the variability of something that is measured. Data
are to be viewed as numbers with a context, where the context provides meaning.
There are different ways to produce data: by taking measurements, sometimes in
the context of an experiment, and by asking questions, such as on a survey. Data
vary based on how they are collected. The data collection method matters, because
it can affect the quality of the data. Therefore, you need to know the source of the
data.

Two methods of gathering data are surveys and experiments. These can be stud-
ied in any order, but we present samples and surveys first. Students learn about
different types of sampling methods and the kinds of data they produce. They learn
about a random sample, its characteristics, and how to take a random sample (e.g.,
simple random sample, stratified random sample). They learn that a random sample
is needed to generalize to a larger group (population) and why this is important.
They learn about characteristics of good samples and bad samples, the idea of bias,
and what can lead to bias or bad data in a sample survey (e.g., voluntary response
samples, poorly worded questions).

When studying about how to produce data in an experiment, students learn the
importance and purpose of randomization to infer cause and effect. They learn about
the basic principles of statistical design of experiments (control, randomization, and
replication), and what makes it bad, i.e., confounding of the effect of a treatment
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with other influences, such as lurking variables, lack of randomization which causes
bias, or systematic favoritism, in experiments.

After understanding basic ideas of surveys and experiments, students can learn
what questions to ask about data collection when looking at data, and how to look
at a statistical problem by considering the entire process. This is the beginning of
statistical reasoning, which can be developed through subsequent units on data ex-
ploration and analysis. Therefore, throughout a course, students need to remember
the importance of asking questions about where data come from, why they were
gathered, and how that relates to the questions being investigated and the methods
of analysis.

Data Sets Used in Lessons in This Book

Two main data sets were collected from students and repeatedly used in the lessons
in this book. They are a student survey and a set of body measurements. Both are
multivariate data sets and while in most cases, activities have students examine one
variable at a time, the students also look at the variables together, getting a sense of
the multivariate data and how information on one variable may inform understand-
ing data gathered on other variables.

The survey data can be collected through an online form and contains many
questions that have to do with time (see Fig. 6.1). The body measurements data
were collected as part of an activity in the unit on Center and Spread (see Chapters 9
and 10). The variables measured for this data set are shown in Fig. 6.2.

Table 6.1 shows a suggested series of ideas and activities that can be used to guide
the development of students’ reasoning about data. While the accompanying Web-
site (http://www.tc.umn.edu/∼aims) includes some activities (organized in lessons)
that illustrate these steps, many are described more generically. The activities that
are not included in the Website are marked by the symbol ❖.

Introduction to the Lessons

There are four lessons on collecting and producing data. They begin with types of
data and types of variables and the variability of data. The lessons provide students
with experience using different methods of sampling to develop an appreciation
for random sampling and help students understand different sources of variability
and bias in data. Students examine surveys and consider the impact of question
wording. They design and conduct an experiment to illustrate principles of ran-
dom assignment as well as issues involved in designing good experiments. The
importance of samples and the role of samples in making inferences are revisited
throughout these lessons as a preliminary introduction to informal ideas of statistical
inference.
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First Day Student Survey Questions

1. Which statistics course are you in?

2. Which section are you in?

3. What is your gender? [Male, Female]

4. What is your age in years?

5. In which month of the year were you born?

6. Which day of the month were you born on?

7. How many statistics courses are you enrolled in this semester?

8. In which year did you start college?

9. Which semester did you start college? [Fall, Winter/Spring, Summer]

10. In which year do you expect to graduate from college?

11. How many credits are you registered for this semester?

12. How many college credits have you completed?

13. What is your cumulative GPA?

14. How many hours per week do you typically study, on the average?

15. How many miles do you travel (one way) from your current home to campus each
day, to the nearest mile?

16. How many minutes do you estimate it will take you to travel to school each day this
semester, on the average?

17. What type of transportation will you use most often to get to school this semester?
[Walk, Car, Bus, Bike, Other]

18. How many minutes do you exercise each week, on the average?

19. Estimate the number of minutes you typically spend each week communicating with
your parents (email, phone, in person, etc.).

20. Estimate the number of minutes you spend each day eating (meals and snacks).

21. How many minutes each day do you typically spend on the Internet?

22. How many hours of sleep do you get on a typical week night (Monday through
Thursday)?

23. About how many emails do you send each day?

24. About how many emails do you receive each day?

25. How many minutes do you talk on a cell phone on a typical week day (Monday
through Friday)?

Fig. 6.1 First-day student survey questions

Body data collection sheet
(Each student should complete this sheet and enter the measurements into the Instructor’s
computer.)

1. Head circumference

2. Student’s head

3. Height

4. Arm span

5. Kneeling height

6. Hand length

7. Hand span

Fig. 6.2 The variables measured for the body measurement data set
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Table 6.1 Sequence of activities to develop reasoning about data2

Milestones: ideas and concepts Suggested activities

Formal ideas of data

� Data are values of a variable

� Measurements produce data
� Data show variability
� Data are numbers with context
� There are different kinds of

data
� Some variability in data is due

to measurement process
� Importance of taking good

measurements by asking clear
questions

� It is important to look at
multiple variables (Multivariate
data) to better understand and
describe a group

� Sources of bias in questions

� Importance of asking clear,
unambiguous questions in
collection survey data

� Idea, purpose and importance
of random sampling

� Different methods and reasons
to take samples

� Purpose of experiments to
produce data to determine
cause and effect

� Purpose of randomization in an
experiment

� Idea of making an inference
based on a result of an
experiment (using simulation)

� Importance of randomization
in drawing inferences about
results of an experiment

� Importance of knowing sources
of data: data coming from
samples or from experiments

� Meet and Greet Activity (Lesson 1: “Data and
Variability”)

� Meet and Greet Activity (Lesson 1)
� Meet and Greet Activity (Lesson 1)
� Variables on Back Activity (Lesson 1)
� Meet and Greet Activity (Lesson 1)

� Meet and Greet, Variables on Back, and Develop-
ing a Class Survey Activities (Lesson 1)

� Developing a Class Survey Activity (Lesson 1)

� Developing a Class Survey Activity (Lesson 1)

� How you Ask a Question Activity (Lesson 2:
“Avoiding Bias”)

� Critiquing the Student Survey Activity (Lesson 2)

� The Gettysburg Address Activity (Lesson 3:
“Random Sampling”)

� Student Survey Sampling Activity (Lesson 3)

� Taste Test Activity (Lesson 4: “Randomized Ex-
periments”)

� Taste Test Activity (Lesson 4)

� Taste Test Activity (Lesson 4)

❖ Activity involving random assignment, with in-
troduction to permutation test to informally test if
results of the experiment are surprising or due to
chance. (The symbol ❖ indicates that this activity
is not included in these lessons.)

❖ Activity where students identify whether the re-
search is a survey (observational data) or an ex-
periment

2 See page 391 for credit and reference to authors of activities on which these activities are based.
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Table 6.1 (continued)

� Good data vs. bad data ❖ Activity where students identify potential sources
of bias or confounding

� What type of conclusions can
be drawn based on the type of
data

❖ Activity identifying the type of conclusion given
a study description

� What kinds of questions to ask
about where data come from

❖ Activity where students ask appropriate questions
for given sets of data

Building on formal ideas of data in subsequent topics
� Two sources of variation in

measurement data

� How Big is Your Head Activity (Lesson 1 in the
Variability Unit, Chapter 10)

� Reducing variability in
measurement data

� Gummy Bears Activity (Lesson 2 in the Compar-
ing Groups Unit, Chapter 11)

� Determining cause and effect
from an experiment

� Gummy Bears Revisited Activity (Lesson 4 in the
Statistical Inference Unit, Chapter 13)

� Correlation does not imply
causation

� Credit Questions Activity (Lesson 1 in the Co-
variation Unit, Chapter 14)

Lesson 1: Data and Variability

The goal of the first lesson is to help students see that there are different types of data
and different ways to aggregate and display data. This lesson also helps students to
see the importance of context and how statistics differs from mathematics in the
emphasis of context. Student learning goals for this lesson include:

1. To get started with the statistical process of gathering and interpreting data.
2. To see that there are different types of data and that data vary.
3. To see and consider different sources of variability in data.
4. To develop a survey to use to gather data for future activities (student survey).
5. To see that statistics is different from mathematics and that context of the data is

important.

Description of the Lesson

This first class of the course begins with a question about what kinds of students
enroll in this class. That leads into the Meet and Greet Activity, which is described
in detail in the beginning of this chapter. In this activity, students informally dis-
cuss many important statistical ideas, such as, methods for data recording, types of
variables, types of data, variation in data, question wording, data summaries and
representations, sample of data, sample represents the population, sample size, bias,
and sampling processes.
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The students are then asked to think about other types of information that would
be interesting to gather from members of the class (Developing a Class Survey
Activity). They get into small groups and brainstorm a set of five questions, with
the restriction that these questions collect different kinds of data, so that there is
at least one question that asks for numerical data, one that asks for categorical
(nominal) data and one that asks for yes/no data. Students are encouraged to think
of interesting ideas to ask that would produce data they would care about, so not
just “year in school” or “gender.” The students discuss and create questions that are
turned into the instructor, who (before the next class) compiles and edits them into a
class survey that they will complete online. This final version of the survey includes
additional questions added by the instructor, which will be an important source of
data to use in activities on other statistical topics.

A final activity of the first day is to give students an opportunity to reason about
data (Variables on Backs Activity). Students each have a card taped to their back
that has a question on it. Once again, they stand up and walk around the room, this
time recording students’ responses to the question on their back without knowing
what the question is. All the questions are numerical and no units are allowed to be
given. Examples of questions are “how many hours did you sleep last night?,” “How
old is our current president?,” “How many counties are in this state?,” and “what is
the last digit of your ID number?”

After the data are collected, students sit down and look at their data and draw a
graph of their choosing (any graph will do). They use this graph to make a guess
about what question is taped to their back. They take turns standing up, showing
their graph to the class and explaining their reasoning (e.g., “I think my question is
how many pets you have because the data I got have lots of 0s, a few ones, and 2s”).
After they have explained their reasoning, they can take off the card and see what
question was actually taped to their back. The class discussion after this activity
involves how students reasoned about their data, and what they thought about and
considered as they investigated their question.

A wrap-up discussion includes comparison of statistics to mathematics, how
numbers in statistics have a context, and the importance of considering the context
of data.

Students are also told that this is the kind of activity they will be doing in class:
gathering and analyzing data, and using samples of data to make inferences. It is
stressed that data are the focus of the course, that we strive to collect good data,
and that we are interested in studying the variability in data. They can be asked to
summarize why data vary and sources of variability in data.

Lesson 2: Avoiding Bias

The focus of the second lesson is on helping students understand the idea of biased
data and ways to avoid biased data in question wording and survey administration.
Students suggest and discuss methods of obtaining unbiased data from a survey.
Student learning goals for this lesson include:
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1. To recognize common instances of bias resulting from how questions are worded
or by methods or taking surveys.

2. To learn characteristics of good questions that can be answered by data.
3. To see that how you ask a question makes a difference in the quality of data

collected.

Description of the Lesson

Students first see a cartoon that shows a character answering a question on a survey,
which illustrates the idea of biased data from a survey and leads to a general discus-
sion about other factors that can bias survey results, leading to bad data. After an
initial discussion of how and why we take samples, and the use of surveys, students
begin the first activity.

Next, in the How you Ask a Question activity, students respond to a set of three
questions. What they do not know is that there are two different sets of these ques-
tions, worded in different ways. After the questions are answered, a show of hands
is asked for the answers to each question, and it is clear that students have responded
differently. One student is asked to read aloud their question 1, and then a student
reads the other version of question 1. Students are then allowed to see the two sets of
questions, and the data are summarized and compared for the two surveys. A discus-
sion ensues on wording effects, how the wording of a question makes a difference
in how people respond, the idea of bias in data, and different sources of bias.

This leads into the next activity Critiquing the Student Survey, where students
read and critique the student survey they helped develop on the first day of class
and determine if any of the questions was poorly worded and could lead to biased
data. They suggest ways to improve question wording. (Note: they will take the
revised survey online outside of class). Finally, students work in groups to discuss
what kinds of questions might be posed and answered using the survey data, such
as relationship and comparison type questions. They are encouraged to use the new
statistical vocabulary they are learning as they talk about surveys, samples, popula-
tions, and related terms.

A wrap-up discussion summarizes what students have learned about the meaning
and sources of bias in data. They begin to consider ideas of samples in taking surveys
as a segue to the next day’s topic on types of sampling methods.

Lesson 3: Random Sampling

Lesson 3 focuses on methods of taking samples: why they are important, how to take
good samples, how samples differ from each other, and the importance of random
sampling. Students take what they think is a representative sample using their judg-
ment, and then compare this to a random sample. They see that nonrandom samples
are usually biased. Student learning goals for this lesson include:
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1. To understand reasons for using samples in statistical work.
2. To learn to use the basic vocabulary of sampling and surveys.
3. To understand why good samples are important and how we use samples to make

inferences.
4. To understand why we rely on chance rather than our own judgment to pick a

sample.
5. To learn how to take a Simple Random Sample (SRS) and why SRSs are so

important.
6. To recognize and implement several kinds of probability samples (stratified ran-

dom sample cluster sample, multistage sample, systematic sample).

Description of the Lesson

The lesson begins by asking students to suggest good ways to take a representative
sample of five students from the class, and they discuss methods of obtaining fair
and representative samples for surveys or research purposes. This leads into the
Gettysburg Address activity. Students are shown the famous Gettysburg Address by
Abraham Lincoln and told that statistics are often used in analysis of writing style
and to identify authors of different writings. Their task is to take a good, representa-
tive sample of words from the Gettysburg Address. They do this, and then compute
the average word length, being told that average word length is one statistical charac-
teristics of a writer’s style. A dot plot of the different sample averages is constructed
and examined. The true population average word length is then compared to this
plot, and typically, it is not anywhere the center of the graph.

Students then take Simple Random Samples of words from the Gettysburg
Address, which is quickly and easily done using Sampling Words Java applet
(http://www.rossmanchance.com/applets/index.html). They can plot distributions of
sample averages and see that these samples are unbiased, and that the true population
mean is in or near the center. They repeat this activity with a larger sample size and
see the effect. A discussion of bias, representative samples, and the effect of sample
size is followed by an activity (Student Survey Sampling) where students discuss
how they would apply different sampling strategies to taking samples of data from
students who have completed the Student Survey.

Lesson 4: Randomized Experiments

This final lesson in the Data unit involves carrying out a randomized experiment,
and then considering what is a surprising result. After the randomized experiment
is complete and data are gathered, students run a simulation so that they have a
distribution of possible results under a chance model to compare with their sample,
in order to judge if a particular result is likely to be due to chance, or is too surprising
to be attributed to chance. Student learning goals for this lesson include:
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Levels of Data 
The Simulation of Samples (SOS) Model 

Coke Pepsi Taste Test
The Sampling and Inference 
Process 

Level 1: 
Population 

Assume no one can really tell 
the difference and is just 
guessing each time they taste a 
soda. 

1. 

Generate data based the model 
that everyone is guessing and 
can’t really tell the difference. 
How many would they get right 
just by chance? How many 
would they get wrong? 

2. 

Level 2: 
Samples & 
sample statistics 

Compute the proportion of 
correct guesses for each sample 
of 10 guesses. 

3. 

Graph these proportions (show 
the distribution). 

4. 

Level 3: 
Distribution of 
sample statistics 

Show your result compared to 
the distribution of guesses. Does 
it seem likely that you were just 
guessing? 

5. 

… 
Sample 1: Sample 2: Sample 3: Sample 4: Sample 5: Sample k: 

_ _ ˆ = p _ _ ˆ = p _ _ ˆ = p _ _ ˆ = p _ _ ˆ = p _ _ ˆ = p 

Sampling distribution 

Fig. 6.3 The Simulation of Samples (SOS) Model for the taste test

1. To apply the characteristics of a well-defined experiment.
2. To experience the difference between an experiment and an observational study.
3. To learn to recognize instances of confounding in an experiment.
4. To learn the importance of randomization, in randomizing the assignment of

treatments, and how that protects against confounding and makes cause and
effect statements possible.

5. To develop an informal idea of statistical inference, as the extent to which a result
is surprising given a certain claim or theory.

6. To become introduced to and familiar with the Simulation of Samples (SOS)
Model (Fig. 6.3) as a way to represent data in a simulation.

Description of the Lesson

The lesson begins with the students being asked how many of them believe that
they can correctly identify Coke and Pepsi in a blind taste test. They discuss how to
determine if somebody really knows how to distinguish the two or if they are just
guessing.

After a discussion about the characteristics of a good experiment and what is
needed (randomization, control, and replication), students are given the details of
the experiment to be performed (Taste Test activity). Those students who think they
can identify the colas become the tasters. A group of students are assigned to pour
the tastes in paper cups, with the order assigned by coin tosses. Another group of
students are runners, who bring the tastes to the tasters, not knowing which is which.
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The fourth group of students is recorders, who write down what the tasters think
each taste is: Coke or Pepsi. The experiment has 10 trials: each taster has 10 blind
tests of the soda. After the data are collected, the results are analyzed and each
student receives a score for their total of correct identifications.

Next, the class discusses how high a score must be to believe that the student
really was not just guessing. The Sampling SIM program is run to simulate what
we could expect from 10 trails of this experiment if students really were guessing.
They can then compare the results of the student guesses to this distribution, to see
if the result is in the tails (surprising) and how far in the tails, or in the center (not
surprising).

A visual model of the simulation process, adapted from Lane-Getaz (2006), the
Simulation of Samples (SOS) Model is introduced (see Fig. 6.3). This model is used
to help students understand and distinguish between the statistical model used to
generate the simulation, the sample data generated, and the distribution of sample
statistics for these samples (see Chapter 13 for more detail on this model). The SOS
Model is also used to substrate the process of comparing students’ experimental
results to those generated by a particular model or theory (i.e., what if the student
was just guessing).

Summary

The four sample lessons in the Data unit help students realize the importance of
data and data collection methods in statistics. The class survey that students helped
to design was used to collect data that will be analyzed in several subsequent lessons
and introduces the importance of a multivariate data set. The ideas of sources of data,
data collection methods, measurement issues, and variability of data will be revisited
and emphasized again in many of the subsequent lessons. Finally, the importance of
randomization and the use of simulation to make an inference about a surprising
result are introduced.



Chapter 7
Learning to Reason About Statistical Models
and Modeling

One of the most overworked words in statistics education and
mathematics education is “model.” Appearing in a variety of
dissimilar contexts, its usage is at best unclear, and at worst,
inappropriate.

(Graham, 2006, p. 194)

Snapshot of a Research-Based Activity

Class begins with a discussion about the “One-Son Policy” that was proposed for
families in China to keep the birth rate down, but to allow each family to have a
son. This policy allowed a family to keep having children until a son was born, at
which point no more children were allowed. Students are asked to speculate about
what would happen to the ratio of boys to girls if this policy was introduced and
about what they would predict the average family size to be. Most students think
that this policy would result in more boys or a higher ratio of boys to girls. Others
think it might result in more girls, because a family might have several girls before
they have a boy. Some students think that the average number of children might also
increase under this policy.

After students make and explain their conjectures, they discuss how to model this
process so that they can simulate data to estimate what would be the ratio of boys
to girls and average family size if the One-Son Policy were implemented. First,
students are introduced to the idea of making small tokens labeled “Boy” and “Girl”
to model the problem. They are guided to put equal numbers of these tokens in a
container, assuming boy and girl babies are equally likely. The students then draw
from tokens, one at a time from the container with replacement, writing down the
outcomes, for example, B, GB, B, GGGB, etc.

The students are asked to consider other ways that they might model this prob-
lem and generate data, without labeling tokens “Girl” and “Boy”, and use a coin.
A suggestion is made to simulate data by tossing coins, with a Head representing a
Girl and a Tail representing a Boy. The students discuss their assumptions for this
simulation, such as, assuming the coin tosses are equally likely to land Tails up or
Heads up, and that the result is unpredictable, a random outcome. Preliminary data

J.B. Garfield, D. Ben-Zvi, Developing Students’ Statistical Reasoning,
C© Springer Science+Business Media B.V. 2008

143



144 7 Learning to Reason About Statistical Models and Modeling

are gathered and examined, and students are surprised to see that the ratio of boys
to girls is close to 1 and that the average family size is smaller than predicted. They
predict what they think would happen if more data are gathered.

Students are then guided to use the Fathom software (Key Curriculum Press,
2006) to simulate larger data sets to answer this question. They discuss the appro-
priateness of the coins and Fathom simulations for modeling birth rates, and students
bring in their own knowledge of boys being more likely to be born than girls, so that
it is not exactly 50% boys and 50% girls. However, they note that the coin model
was helpful in providing data that approximates real results and helps estimate an
answer to the original questions about what would happen if the One-Son Policy
were adopted. The students also see that it can be easier to simulate data by finding
a useful model than to try to work out a complex probability problem.

Rationale for This Activity

The One-Son Modeling activity can take place on early in a class, even on the second
day (after the first lesson plan for the topic of Data, from Chapter 6). We have intro-
duced it this early in a course because of the importance of introducing the ideas of
random outcome, model, and simulation. These ideas are interconnected and nicely
illustrated in this first activity. The students can see that the results of a coin toss are
random,but that repeated tossesyieldpredictablepatterns (e.g., halfTails, halfHeads).
They see that coin tosses can be used as a model for birth rates, but that the model is not
perfect, just useful. In other words, students see that statistical models can be useful for
simulating data to answer real world questions, but they are not perfect fits to reality.
They are also exposed to simulation of data as a way to examine chance phenomena,
and this sets the stage for simulations as a helpful process that is used throughout
the course. The research basis for this activity comes from some of the research on
understanding models and modeling described in this chapter that suggests the need
for students to create simple models for chance events, and to use chance devices such
as coins or cards to simulate data before having a computer produce larger amounts
of simulated data. We have added on the importance of using language about models
and drawing students’ attention to the fact that what they are doing is creating a model
to represent a problem and using the model to produce data to solve the problem.

The Importance of Understanding Statistical Models
and Modeling

It is the job of statisticians to represent the data taken from the real world with theoretical
models.

(Graham, 2006, p. 204)

Statisticians use models in different ways, and some of these uses appear in intro-
ductory statistics courses. Two main uses of statistical models are (see schematic
illustration in Fig. 7.1):
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1. Select or design and use appropriate models to simulate data to answer a research
question. Sometimes, the model is as simple as a random device, sometimes it
takes the form of a statement (such as a null hypothesis) that is used to gen-
erate data to determine if a particular sample result would be surprising if due
to chance. As George Cobb states: Reject any model that puts your data (the
investigated sample) in its tail (2005). Sometime a data set is used to simulate
(bootstrap) more data, creating a simulated population distribution to use in mak-
ing statistical inferences.

2. Fit a statistical model to existing data or data that you have collected through
survey or experiment in order to explain and describe the variability. This may
be as simple as fitting the normal distribution to a data set, particularly when
checking assumptions when using a particular procedure. It may involve fitting
a linear model to a bivariate data set to help describe and explain a relationship
between two variables. In advanced courses, data modeling is an essential tech-
nique used to explore relationships between multiple variables. In all of these
cases, we examine the fit of a model to data by looking at deviations of the data
from the model.

Figure 7.1 shows the commonalities and differences between these two uses of
statistical models as well as their role in the ongoing cycle of statistical investiga-
tive work.

Why should students in introductory statistics class need to learn about statistical
models? Because models are a foundational part of statistical thinking, working with
models is a big element of the real work of statisticians. It is surprising; therefore,
that little explicit attention is paid to the use of models in most introductory courses.
The words “model” or “modeling” hardly appear in most introductory statistical
textbooks. When these words are used, it is often in the context of a linear model
for bivariate data or the normal distribution as a mathematical model. Sometimes,
the term is used in connection with probability, as in probability models. Although
many statisticians talk about the importance of data modeling and fitting models to
data, most students can take an introductory statistics course and never understand
what a statistical model is or how it is used.

The models statisticians use are actually mathematical models. David Moore
(1990) describes the role of mathematical models in the data analysis process:
“Move from graphic display to numerical measures of specific aspects of the data
to compact mathematical models for the overall pattern” (Page 104). The two most
commonly used mathematical models in an introductory statistics class are the nor-
mal distribution and the linear regression models. Although these two topics involve
the use of mathematical models that are fitted to sample data, students rarely see
these topics as related, or as examples of two different kinds of statistical models
that help us analyze data.

The normal curve, which is perfectly symmetric and does not reflect the ir-
regularities of a data set, is an idealized model that nicely fits many distributions
of real data, such as measurements and test scores. Moore (1990) comments that
moving from observations of data to an idealized description (model) is a substantial
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Fig. 7.1 Uses of models in statistical analysis

abstraction, and the use of models such as the normal distribution and the uni-
form distribution is a major step in understanding the power of statistics. Some
software packages, such as Fathom, allow students to superimpose a model of the
normal distribution on a data set. This feature helps students judge the degree of
how well the model fits the data and develops students’ understanding of the model
fitting process.

The Place of Statistical Models and Modeling in the Curriculum

We find the lack of explicit attention to statistical models (other than probability
models, in a mathematical statistics class) surprising. While there are examples of
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ways to model probability problems using concrete materials and or simulation
tools (see Simon, 1994; Konold, 1994b), these do not appear to be part of most
introductory statistics classes, and do not appear to be part of an introduction to the
use of models and modeling in statistics. We have thought carefully about how to
incorporate lessons on statistical models and modeling into an introductory course.
Rather than treat this topic as a separate unit, we think that activities that help stu-
dents develop an understanding of the idea and uses of a statistical model should be
embedded throughout the course, with connections made between these activities.

The One-Son Modeling activity described earlier is a good way to introduce the
related ideas of model, random outcome, and simulation. In the following unit on
data (see Lesson 4, Chapter 6), we revisit the idea of modeling and simulation after
students conduct a taste test and want to compare their results to what they would
expect due to chance or guessing (the null model). The normal distribution is in-
formally introduced as a model in the unit on distribution (Chapter 8) and revisited
in the units on center (Chapter 9), variability (Chapter 10), and comparing groups
(Chapter 11). After completing the topics in data analysis, the topic of probability
distribution can be examined as a type of distribution based on a model. The normal
distribution is then introduced as a formal statistical model (probability distribution)
and as a precursor to the sampling unit (this activity is described in the end of this
chapter). The sampling unit (Chapter 12) revisits the normal distribution as a model
for sampling distributions. In the unit on statistical inference (Chapter 13), models
are used to simulate data to test hypotheses and generate confidence intervals. Here
a model is a theoretical population with specified parameters. Statistical models are
used to find P-values if necessary conditions are met. The final model introduced
after the unit on statistical inference is the regression line as a model of a linear
relationship between two quantitative variables (see Chapter 14). This model is also
tested by using methods of statistical inference and examining deviations (residu-
als). We find that the idea and use of a statistical model is explicitly linked to ideas
of probability and often to the process of simulation. Therefore, we briefly discuss
these related topics as well in this chapter.

Review of the Literature Related to Reasoning About Statistical
Models and Modeling

All models are wrong, but some are useful.
(George Box, 1979, p. 202)

Models in Mathematics Education

Several researchers in mathematics education have applied mathematical modeling
ideas to data analysis (e.g., Horvath & Lehrer, 1998). Lehrer and Schauble (2004)
tracked the development of student thinking about natural variation as elementary
grade students learned about distribution in the context of modeling plant growth at
the population level. They found that the data-modeling approach assisted children
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in coordinating their understanding of particular cases with an evolving notion of
data as an aggregate of cases. In another study by the same researchers, four forms
of models and related “modeling practices” were identified that relate to developing
model-based reasoning in young students (Lehrer & Schauble, 2000). They found
that studying students’ data modeling, in the sense of the inquiry cycle, provided
feedback about student thinking that can guide teaching decisions, an important
dividend for improving professional practice.

A related instructional design heuristic called “emergent modeling” is discussed
by Gravemeijer (2002) that provides an instructional sequence on data analysis
as an example. The “emergent modeling” approach was an alternative to instruc-
tional approaches that focus on teaching ready-made representations. Within the
“emergent modeling” perspective, the model and the situation modeled are mutu-
ally constituted in the course of modeling activity. This gives the label “emergent”
a dual meaning. It refers to both the process by which models emerge and the pro-
cess by which these models support the emergence of more formal mathematical
knowledge.

Models in Statistical Thinking

Statisticians . . . have a choice of whether to access their data from the real world or from a
model of the real world.

(Graham, 2006, p. 204)

How students understand and reason about models and modeling processes has re-
ceived surprisingly little attention in statistics education literature. This is surprising
since statistical models play an important part in statistical thinking. The quote by
Box, “All models are wrong, but some are useful” (1979, p. 202), is a guiding prin-
ciple in formulating and interpreting statistical models, acknowledging that they are
ideal and rarely match precisely real life data. The usefulness of a statistical model
is dependent on the extent that a model is helpful in explaining the variability in
the data.

Statistical models have an important role in the foundations of statistical think-
ing. This is evident in a study of practicing statisticians’ ways of thinking (Wild
& Pfannkuch, 1999). In their proposed four-dimensional framework for statistical
thinking, “reasoning with statistical models” is considered as a general type of think-
ing, as well as specific “statistical” type of thinking, which relates, for example, to
measuring and modeling variability for the purpose of prediction, explanation, or
control. The predominant statistical models are those developed for the analysis
of data.

While the term “statistical models” is often interpreted as meaning regression
models or time-series models, Wild and Pfannkuch (1999) consider even much sim-
pler tools such as statistical graphs as statistical models since they are statistical
ways of representing and thinking about reality. These models enable us to summa-
rize data in multiple ways depending on the nature of the data. For example, graphs,
centers, spreads, clusters, outliers, residuals, confidence intervals, and P-values are



Review of the Literature Related to Reasoning About Statistical Models and Modeling 149

read, interpreted, and reasoned with in an attempt to find evidence on which to base
a judgment.

Moore (1999) describes the role of models to describe a pattern in data analysis
as the final step in a four-stage process.

When you first examine a set of data, (1) begin by graphing the data and interpreting what
you see; (2) look for overall patterns and for striking deviations from those patterns, and
seek explanations in the problem context; (3) based on examination of the data, choose ap-
propriate numerical descriptions of specific aspects; (4) if the overall pattern is sufficiently
regular, seek a compact mathematical model for that pattern (p. 251).

Mallows (1998) claims that too often students studying statistics start from a par-
ticular model, assuming the model is correct, rather than learning to choose and fit
models to data. Wild and Pfannkuch (1999) add that we do not teach enough of
the mapping between the context and the models. Chance (2002) points out that,
particularly, in courses for beginning students, these issues are quite relevant and
often more of interest to the student, and the “natural inclination to question studies
should be rewarded and further developed.”

Reasoning About a Statistical Model: Normal Distribution

There is little research investigating students’ understanding of the normal distribu-
tion, and most of these studies examine isolated aspects in the understanding of this
concept. The first pioneering work was carried out by Piaget and Inhelder (1951,
1975), who studied children’s spontaneous development of the idea of stochastic
convergence. The authors analyzed children’s perception of the progressive regu-
larity in the pattern of sand falling through a small hole (in the Galton apparatus
or in a sand clock). They considered that children need to grasp the symmetry of
all the possible sand paths falling through the hole, the probability equivalence
between the symmetrical trajectory, the spread and the role of replication, before
they are able to predict the final regularity that produces a bell-shaped (normal)
distribution. This understanding takes place in the “formal operations” stage (13- to
14-year-olds).

In a study of college students’ conceptions about normal standard scores, Huck,
Cross, and Clark (1986) identified two misconceptions: On the one hand, some stu-
dents believe that all standard scores will always range between −3 and +3, while
other students think there is no restriction on the maximum and minimum values
in these scores. Others have examined people’s behavior when solving problems
involving the normal distribution (Wilensky, 1995, 1997). In interviews with stu-
dents and professionals with statistical knowledge, Wilensky asked them to solve
a problem by using computer simulation. Although most subjects in his research
could solve problems related to the normal distribution, they were unable to justify
the use of the normal distribution instead of another concept or distribution, and
showed a high “epistemological anxiety,” the feeling of confusion and indecision
that students experience when faced with the different paths for solving a problem.
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In recent empirical research on understanding the normal distribution, Batanero,
Tauber, and Sánchez (2004) studied students’ reasoning about the normal distribu-
tion in a university-level introductory computer-assisted course. While the analysis
suggests that many students were able to correctly identify several elements in the
meaning of normal distribution and to relate one to another, numerous difficulties
understanding normal distributions were identified and described. The main conclu-
sion in this study is that the normal distribution is a very complex idea that requires
the integration and relation of many different statistical concepts and ideas. The
authors recommend the use of appropriate activities and computer tools to facilitate
the learning of basic notions about normal distributions (see causeweb.org for some
of these resources).

Understanding Ideas Related to Probability Models

The research reviewed in Chapter 2 along with literature reviews by Falk and Konold
(1998); Shaughnessy (2003); Jones (2005) and others illustrate the conceptual dif-
ficulties students have in understanding basic ideas of probability such as random-
ness. For example, Falk & Konold, (1994, 1997) found that people attempting to
generate random number sequences usually produce more alternations of heads and
tails than expected by chance. A related research result is that students tend to think
that all models of random events are ones with equally likely outcomes. Lecoutre
(1992) refers to this misconception as the “equiprobability bias,” which she found
students to use in solving different types of probability problems.

Reasoning About the Use of Models to Simulate Data

Studies on the use of simulations cover many different topics, such as how students
and teachers understand statistical models in simulating data (e.g., Sánchez, 2002),
the use of simulation to illustrate abstract concepts such as sampling distributions
(e.g., Saldanha & Thompson, 2002) and learning to formulate and evaluate infer-
ences by simulating data (e.g., Stohl & Tarr, 2002). While there is a strong belief
that physical simulations should precede computer simulations, this has not yet been
a topic of empirical study. Helpful guidelines for secondary school students on how
to select models to simulate problems are included in the Art and Techniques of
Simulation – a volume in the Quantitative Literacy Series (Gnanadesikan, Scheaffer,
& Swift, 1987).

Biehler (1991) has presented an extensive analysis of the capabilities and limita-
tions of simulation techniques in teaching statistics; he points out that “the different
roles, goals and pedagogical perspectives for simulations have not yet been clearly
analyzed and distinguished.” He suggests a basic distinction between “the use of
simulating as a method for solving problems, similar to the professional use outside
school and the use of simulation to provide model environments to explore, which
compensate for the ‘lack of experience” (p. 183).



Implications of the Research Teaching Students to Reason About Statistical Models 151

To study teachers’ opinions about the instructional use of models in simulating
data, Sánchez (2002) interviewed six high school teachers who participated in a
workshop of simulation activities using Fathom. The analysis of their responses
included four general aspects: the role of simulation in teaching; the different steps
to follow in a simulation; the complexity of starting situations; and the statistical
concepts that take part in simulation activities. The results show that teachers deem
as important only certain aspects of simulation, but neglect the fundamental con-
cepts of randomness and distribution. Sánchez noted that the teachers have centered
their attention in certain modeling aspects like formulation of a model and its sim-
ulation, but neglected other aspects like the analysis of results and the validation of
the model.

Implications of the Research: Teaching Students to Reason
About Statistical Models and Modeling

Other than some literature on reasoning about the normal distribution or a linear
relationship in bivariate data, there is little research illuminating how students come
to learn and use statistical models. Therefore, we are speculative in putting together
a research-based sequence of activities for this topic.

The literature reviewed implies that it is important to make models an explicit
topic in the introductory statistics course, and to help students develop this idea
and its multiple meanings and uses through experiences with real statistical prob-
lems and data, rather than through a formal study of probability. The literature also
suggests that understanding the idea of randomness is difficult and that carefully
designed activities should be used to help students understand the ideas of random
outcomes, random variables, random sampling, and randomization.

There are also implications from the literature about the role of probability in
an introductory college statistics course. It is suggested that in order for students to
develop a basic understanding of statistics in a first college course, they only need
the basic ideas of probability that were introduced above. As Garfield and Ahlgren
wrote in 1988 “useful ideas of inference can be taught independently of technically
correct probability.” Therefore, we propose helping students understand the ideas
of random outcomes and a probability distribution. They do not need to learn the
language and laws of probability in such a course. Indeed, research shows that even
if students encounter these topics in probability in an introductory statistics course,
few students understand and can reason about this topic (see reviews by Garfield &
Ahlgren, 1988; Hawkins & Kapadia, 1984; Shaughnessy, 2003).

We agree with David Moore’s (1997) claim that mathematical probability is
a “noble and useful subject” and should be part of the advanced coursework in
statistics, and instead of being part of the introductory course, should be learned
in a separate course that is devoted to this topic. The literature also implies that
in order to develop a deep understanding of the basic ideas outlined in Chapter 3,
the traditional course should be streamlined. Following the lead of Moore (1997),



152 7 Learning to Reason About Statistical Models and Modeling

our candidate for the guillotine is formal probability. Moore recommends that an
informal introduction to probability is all that is needed and that this begins with
experience with chance behavior, usually starting with physical devices and moving
to computer simulations that help demonstrate the fundamental ideas such as the
Law of Large Numbers.

Technological Tools to Help Students Develop Reasoning
About Models

Many Web applets are available to help students see and use the normal distri-
bution (e.g., http://www.rossmanchance.com/applets/NormalCalcs/ NormalCalcu-
lations.html) and fit a line to data (e.g., http://www.math.csusb.edu/faculty/stanton/
m262/regress/regress.html). Applets can also be used to simulate data for a proba-
bility problem (see rossmanchance.com). The simulation tool Probability Explorer
(Stohl, 1999–2005; http://www.probexplorer.com/) enables school students and
teachers to design, simulate, and analyze a variety of probabilistic situations. Model
Chance is a new program that is now being developed as part of the TinkerPlots
project, to help student model problems and simulate data to estimate answers to
these problems (http://cts.stat.ucla.edu/projects/info.php?id=4).

Progression of Ideas: Teaching Students to Reason
About Statistical Models and Modeling

Introduction to a Sequence of Activities to Develop Reasoning
about Statistical Models and Modeling

While most textbooks do not introduce the term “model” until the normal distri-
bution and may not use it again until regression, we believe that the term should
be introduced early in a course and used frequently, to demonstrate and explain
how models are used in statistical work. Since there is no empirical research on an
optimal approach for helping students develop the idea of model in an introductory
statistics class, we offer one of several possible sequences of activities that we have
found useful in our courses. These activities develop the idea of a model to simulate
data, and the idea of a model to fit to a given set of data.

We believe that the idea of a model can be presented informally in the first few
days of class using a fairly simple context. Physical simulations using devices such
as coins can be used to model a random variable as part of solving a problem,
and once data have been simulated using coin tosses, the computer can be used
to quickly produce large amounts of simulated data. It is important that students
be made aware of the use of a model, to represent key features of the event and to
produce simulated data.
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In the Taste Test activity in the Data topic (see Chapter 6), when the notion of
an experiment is introduced, the idea of a null model (what would happen if results
were only due to chance) can be reintroduced. In this context, the model is used
to simulate data to informally determine a P-value, indicating whether or not an
individual’s identification of soda brand in a blind taste test may not just be due to
chance. The formal idea of model may be encountered in the context of random
variables. Students can model random outcomes such as coin tosses, dice throwing,
and drawing of cards. Each time students can describe the model, e.g., for a standard
deck of Poker cards, where the outcome is a Heart, this can be modeled as a binomial
variable with a probability of 1/4. These models can be used to simulate data, which
leads to examining probability distributions. Different probability problems can also
be modeled first using coins or dice, and then using applets or software to simulate
data. In this case, the problem is modeled by the coins or dice, and then this model is
replicated by a technology tool. After generating empirical probability distributions
for binomial random variables, the probability distribution for the normal distribu-
tion can be introduced as a model that is often used to describe and interpret real
data. This model is seen again as students begin to examine distributions of sample
means and the Central Limit Theorem. Null models are encountered again in the unit
of inference to generate distributions of sample statistics to run tests of significance.
In our proposed sequence of activities, the final model presented is that of the linear
model, used in the unit on covariation, to model the relationship of two quantitative
variables.

What is unique about the lessons in this chapter is that unlike all the other chap-
ters in part II of this book, we are not offering a unit on models but rather providing
several activities that illustrate and use the idea of statistical models throughout
an introductory course. While the informal ideas of model are introduced at the
beginning of a course, the formal ideas are encountered midway through the course,
and then revisited at additional times in other topic areas, rather than in a set of
sequential lessons in a unit of their own. Table 7.1 shows a suggested series of ideas
and activities that can be used to guide the development of students’ reasoning about
models and modeling.

Introduction to the Lessons

Three lessons are designed to help students develop an understanding of the im-
portance and use of statistical models. Other activities involving models are inter-
spersed throughout other topics in this book. The first lesson has students model
birth outcomes in a situation where there is a “One-Son Policy.” A probability model
is used to simulate data that is summarized to answer some research questions. The
second activity in this lesson has students use first a physical and then a computer
simulation to model the “Let’s Make a Deal” game, using the simulated data to
find the best strategy for playing the game. The second lesson has students create
binomial models for different random devices (coins, dice, and cards) and use these
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Table 7.1 Sequence of activities to develop reasoning about statistical models and modeling1

Milestones: ideas and concepts Suggested activities

Informal ideas prior to formal study of statistical models

� Models can be used to portray simple
random outcomes. Random devices
and computers can be used to simulate
data to answer a question about this
context

� One-Son Modeling Activity (Lesson 1: “Us-
ing Models to Simulate Data”)

� A random outcome, unpredictable, but
giving a predictable pattern over the
long run. The more data there is, the
more stable is the pattern

� Let’s Make a Deal Simulation (Lesson 1)

� Designing and using a model can help
to answer a statistical question

� Let’s Make a Deal Simulation (Lesson 1)

� The idea and importance of random
samples (revealing the predictable
pattern of random outcomes)

� The Gettysburg Address Activity (Lesson 3,
Data Unit, Chapter 6)

� Models can be used to generate data to
informally test an experimental result
to provide evidence about whether or
not this result is due to chance

� Taste Test Activity (Lesson 4, Data Unit,
Chapter 6)

� Distinguish between the model, the
simulated data, and the sample data

� Taste Test Activity (Lesson 4, Data Unit,
Chapter 6)

� The normal distribution as a model for
some distributions of real world data

� Sorting Histograms Activity (Lesson 2, Dis-
tribution Unit, Chapter 8)

� The mean is a good summary of the
center of a normal distribution

� Choosing an Appropriate Measure of Center
Activity (Lesson 2, Center Unit, Chapter 9)

� The mean and standard deviation are
good summaries for a normal
distribution

� How do Students Spend their Time Activity
(Lesson 4, Comparing Groups Unit, Chap-
ter 11)

Formal ideas of statistical models

� Random variables and random
outcomes

� Coins, Cards, and Dice Activity (Lesson 2:
“Modeling Random Variables”)

� Equally likely model does not fit all
random outcomes

� Coins, Cards, and Dice Activity (Lesson 2)

� A probability distribution as a model � Coins, Cards, and Dice Activity (Lesson 2)
� Probability problems can be modeled

using random devices and simulation
tools

❖ Activity where cards are used to model a
problem, such as Random Babies activity in
Chance and Rossman (2006) (The symbol ❖
indicates that this activity is not included in
these lessons.)

1 See page 391 for credit and reference to authors of activities on which these activities are based.
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Table 7.1 (continued)

� Characteristics of normal distribution as a
model

� What is Normal? (Lesson 3: “The Normal
Distribution as a Model”)

� What does normal data look like? � What is Normal? (Lesson 3)
� Using the normal distribution as a Model � Normal Distribution Applications (Lesson 3)

Building on formal ideas of models in subsequent topics

� How and why the sampling distribution of
means can be modeled by the normal
distribution

� Central Limit Theorem Activity (Lesson 3,
Samples and Sampling Unit, Chapter 12)

� The null hypothesis as model to which we
compare sample data

� Balancing Coins Activity (Lesson 1, Statisti-
cal Inference Unit, Chapter 13)

� When testing a hypothesis, it is often
important to check the condition of
normality of the sampling distribution

� Research Questions Involving Statistical
Methods (Lesson 5, Statistical Inference Unit,
Chapter 13)

� The regression line is a useful model of
bivariate relationships between
quantitative variables

� Diamond Rings Activity (Lesson 2, Covaria-
tion Unit, Chapter 14)

� Checking the fit of a model to data, by
examining residuals from a
regression line

� da Vinci and Body Measurements Activity
(Lesson 2, Covariation Unit, Chapter 14)

to generate and then simulate data (on the computer) to examine and compare prob-
ability distributions (each having a different shape and expected value). The third
lesson introduces the normal distribution as a model of a probability distribution.
This model is used to fit to samples of data (e.g., do the data sets appear to have a
normal distribution?) and to demonstrate when it is appropriate to use this model in
analyzing data.

Lesson 1: Choosing Models to Simulate Data

The first lesson begins with the One-Son Modeling activity described at the begin-
ning of this chapter. Next, students consider the chances of wining on the game
show Let’s Make a Deal to determine whether one strategy has a higher chance of
wining than another, modeling the game first with cards and then with a Web applet.
The student learning goals for this lesson include:

1. Be able to use simulation as a tool for answering statistical questions
2. Be able to develop models to simulate data
3. Examine probability as an indication of how likely is an event to happen.
4. Realize that their intuitions about probabilities may be misleading.
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Description of the Lesson

The students are told about the “One-Son policy” that was proposed for China as a
way to decrease their birthrate, but still allow families to produce a son.

In the early 1990’s China considered adopting a “One-Son Policy”, to help reduce their
birthrate by allowing families to keep having children until they had a son. Under this plan
a family has a child. If it is a son, they stop having children. If it is a daughter, they can try
again. They can keep trying until they have a son and then they stop having children.

The following questions are posed to students to engage them in reasoning:

1. If a country adopted a policy that let families have children only until they had a
boy, and then they had to stop, what would you expect to happen?

2. What would the average number of children per family be? Would you expect
more boys or more girls overall?

Students present their answers and reasoning. Simulation is introduced as a tool
statisticians use to generate data to estimate an answer to this type of question.

Working in pairs, students take a yogurt container that contains two slips of paper.
One is labeled “B” for boys. One is labeled “G” for Girls. They randomly draw one
slip of paper from the container and that will be the first child born in a simulated
family. If they draw a “B”, then they are told to stop; the family is done having
children. They enter the data on a chart indicating the result for the first family. If
the result is a “G”, they draw again. They keep drawing until they draw a “B”, then
they stop and enter the data on the chart for that family. Students repeat this process
for five simulated families, getting results such as: GB, B, GGB, B, GB, etc.

After this first round of collecting simulated data, the number of children in each
family is counted along with the number of girls and the number of boys. Students
examine this small set of data and are asked if the results confirm their original pre-
dictions. Next, they consider what they would get if they did not have slips of paper,
but instead only had a coin. Students figure out how to do this same simulation using
only one coin that is tossed. They discuss and write out the process so that another
group could run the simulation by following their directions. Students usually de-
termine that one outcome (heads) will represent a Boy and the other outcome will
represent a Girl. They describe how to repeatedly toss a coin until it lands heads,
recording the data each time to simulate families. Next they simulate this data using
the coin, generating data for five more families.

Now student groups have data for 10 simulated families based on the two sets
of simulations. They tally the total number of girls, the total number of boys, find
the ratio of boys to girls, and find the average number of children per family. Again,
they compare these results to their initial conjectures. These results are also shared
with the class and graphed on the board.

Next, students are asked what they would expect to find if they repeated this
simulation many more times. They are shown how to use the Fathom to run this
simulation and to gather data for more simulated families, as shown in Fig. 7.2.
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Fig. 7.2 Running the One-Son simulation in Fathom

A discussion of these data reveals that the results tend to stabilize as more data are
collected. Students are asked what they would expect if more data were generated,
and this leads to an informal discussion of the Law of Large Numbers. Next, a dis-
cussion of choosing models to simulate data leads students to consider real life fac-
tors to consider using a coin or an equally likely binomial model to simulate births.
They suggest ways in which the model of equally likely outcomes may not perfectly
fit the data, such as the fact that the probability of having a boy is actually more
than .5. They consider how these factors could affect simulated results. A wrap-up
discussion includes issues involved in selecting and using models (first the coin, and
then the computer simulation of a binomial model with p = .5) to simulate a real
world phenomenon (birth rates of boys and girls).

Students are next introduced to an activity (Let’s Make a Deal Simulation), where
they will check their intuitions about chance events by using simulation to determine
probabilities in a game show setting. Let’s Make A Deal is introduced as a popular
TV game show from the 1970s.

The task: Suppose you are given three doors to choose from. Behind one door there is a
big prize (a car) and behind the other two, there are goats. Only Monty Hall knows which
door has the prize. You are asked to select a door, and then Monty opens a different door,
showing you a goat behind it. Then you are asked the big question: Do you want to stay
with your original door, or switch to a different door? What would you do?

Students discuss in small groups whether they think there is a higher chance of
winning the prize if they stay with their first door selection or should they switch
to the remaining door and why. A show of hands in the class indicates that most
students think that either the contestant should stay with the first choice or that
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it does not make a difference; staying or switching are equally likely to result in
winning a prize.

Next, students think about how they could test these conjecture. They design a
simulated game using index cards. Each group is given three index cards, and they
write lightly on each one of the following outcomes: “Goat”, “Goat”, and “Car”.
One person is the game host (Monty Hall) and knows where the car is when the cards
placed face down in order. The other group members take turns being contestants.
A recording sheet is used to write down what strategy was used each time (stay or
switch doors) and what the outcome was (“Win” or “Lose”). After a few rounds, the
data are pooled for the class, and it appears that “switch” is resulting in more wins.
But is that just due to chance or a stable result? Students then use a Web applet
that simulates this problem to quickly simulate large amounts of data, revealing
that the chance of winning when they switch doors is about 2/3, and the chance
of winning when they stay with their first choice about 1/3. Students are asked
about the correctness of their original intuitions and why they were incorrect. A
quick explanation may be given about why this happens, or students may be given
a written explanation about why it pays to switch doors when playing this game.

The Let’s Make a Deal Simulation activity concludes with a discussion about
the use of models and simulations to easily generate data to estimate answers to
statistical questions, and when to trust results of simulations (e.g., when the model
is a good fit to the problem and when there are enough simulations to generate a
stable result).

Lesson 2: Modeling Random Variables

This lesson engages students with modeling random variables using coins, cards,
and dice. Students construct probability distributions to represent each of the scenar-
ios and make predictions on probabilities of other events based on these histograms.
They first generate data with concrete materials and then move to Fathom to simulate
larger data sets and see the stable trend emerge. Student learning goals for this lesson
include:

1. Understand use of models to represent random variables and simulate data.
2. Understand how to interpret visual representations for probability.
3. Use a simulation to generate data to estimate probabilities
4. Gain an informal understanding of probability distributions as a distribution with

shape, center, and spread.

Description of the Lesson

Students begin by considering different random devices they have encountered, such
as coins, cards, and dice (the Coins, Cards, and Dice activity). Then they make
conjectures about the expected number of:
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� Heads on five tosses of a fair coin?
� Hearts in five draws from a poker deck?
� Twos in five rolls of a fair die?

They then reason about what is the same and what is different about these three
experiments. Next, students are led to define three random variables as follows:

X : Number of heads in five tosses
Y : Number of hearts in five cards dealt
Z : Number of 2’s in five rolls

They now create models of each variable to generate (by using the actual devices)
and then simulate data using the computer, which can be graphed and summarized
to compare the distributions for each random variable.

Students begin with the Coin variable. They toss a coin five times and count the
number of heads and then repeat this 10 times, making a frequency distribution for
the number of heads that show up on each toss of five coins. Each time they toss the
five coins, they check the value of X (Number of heads in five tosses) in the table,
then find the relative frequency probability for each value of X . Next, students open
a Fathom file that generates data based on this model of equally likely outcomes as
shown in Fig. 7.3.

Students are asked how the simulated data compare to the data they generated
by physically tossing coins, and if they expect these results to be similar for all
students in the class. This leads to a discussion of the idea of two aspects of a
random outcome: (1) that an individual outcome is unpredictable but (2) that you
can predict patterns of outcomes for many repetitions, such as the proportion of

Fig. 7.3 Simulating the number of heads in five tosses of a fair coin in Fathom
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Fig. 7.4 The results of simulating the number of heads in five tosses of a fair coin in Fathom

heads for many tosses of a fair coin. The simulation is repeated for 500 trials, and
relative frequencies are found for the six possible outcomes (0–5 heads). Students
again discuss whether they think the results will vary from student to student and
see that the larger sample size has much less variability. They graph the data and
informally describe shape, center, and spread. They see that the expected number of
heads for five tosses would be 2–3 heads, but that results can vary from 0 to 5 heads.
They can generate the mean and standard deviation and interpret these values for
the distribution (see Fig. 7.4).

The next part of the Coins, Cards, and Dice activity has students take a deck of
cards, shuffle, draw a card, replace it, draw, and replace, five times. They count the
number of hearts that showed up in their sample of five draws (with replacement). A
discussion of the term “replacement” challenges students to reason about why they
would replace the card drawn each time and how that would affect the results of the
experiment so it is not similar to the coin tosses. This is an informal introduction to
the idea of independent events without going into probability theory. Next, students
use Fathom to simulate this experiment. They discuss what the model will be, that
it is no longer one of equally likely outcomes, but that the chance of getting one
heart when randomly drawn from a deck is now one-fourth. The students run a
new simulation based on a binomial model with p = .25, graph the results, and find
measures of center and spread, which are different from those in the Coin example
(Fig. 7.5).

This activity is repeated a third time for the Dice example. First, students roll a
dice five times counting the number of 2s that show up. They record the data and
compare it with the class. Then they simulate the data on Fathom, first discussing
how the model must be changed, based on the new probability of getting a two,
which is one-sixth.

The results of the three experiments are compared. Students consider what was
the same and what was different across the three experiments and how the differ-
ences in the experiments reveal themselves in the histograms of data. The expected
value is also compared for each experiment, as well as where the same value (e.g., 4)
appears in each histogram. This can lead to a discussion on how likely this outcome
is (or is not) for each experiment, based on whether it is in the tail of the distribution,
a precursor of the P-value concept.
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Fig. 7.5 The Fathom simulation of the number of hearts in cards

Lesson 3: The Normal Distribution as a Model

This lesson introduces students to the formal model of the normal distribution. The
characteristics are examined, as students make and test conjectures about whether
data gathered on different variables have a normal distribution. The unique char-
acteristics of the mean and standard deviation in a normal distribution are used to
examine percentages of data within one, two, and three standard deviations of the
mean. The idea of the standard normal z-score is introduced and used to locate
different areas of the distribution, using a Web applet. Student learning goals for
this lesson include:

1. Understand and reason about the normal (and standard normal) distribution as
a model

2. Understand and reason about the important characteristics of this distribution,
e.g., the percentages of data within 1, 2 and 3 standard deviations of the mean.

3. Use standard deviations and z-scores to measure variation from the mean.
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Description of the Lesson

Students are asked what they think when they hear the word “normal” and how they
could tell if something is not normal. They contrast a normal data value (e.g., body
temp of 98.6 F) in different contexts. They discuss how they think statisticians use
this word and how their use is different from everyday use. Note, they have used the
term normal curve informally in the unit on distribution (Chapter 8) when describing
the shape of a data set.

In the What is Normal activity, students consider again the body measurements
gathered earlier in the course (for which some may show a symmetric, bell-shaped
pattern and others do not).

� Height
� Hand span
� Hand length
� Kneeling height
� Arm span
� Head circumference

The students make conjectures about which of these variables would have data sets
that when graphed appear to have a normal distribution and why they predict those
variables to have a normal distribution. They consider how to test their conjectures,
and use the computer to generate graphs in Fathom. Next they select one distribution
that looks approximately normal, to draw a picture of the graph on their handout and
label the axes, the mean, and two standard deviations in each direction. Then they
mark their own data value for this measure (e.g., their height) on the graph. They
describe the location of their value in the overall graph as follows: Are you close
to center? In the tails? An outlier? Next students find the z-score for their body
measurement for that variable and explain what this z-score tells about the location
of their body measurement relative to the class mean.

Students are instructed to open a Web applet that gives areas under the curve
for a normal distribution. They use this applet to find the proportion of the dis-
tribution that is more than their value (e.g., what is the proportion of the curve
representing values higher than their height) and then less than their value. Students
discuss whether the obtained results from the applet makes sense to them and why
or why not.

Next, students find the value that is one standard deviation above the mean and
one standard deviation below the mean. They use the Applet to find the proportion
of the distribution that is between these two values, and then repeat this for two and
three standard deviations above and below the mean.

A class discussion focuses on which of the body measurements seemed to be
normal and how they can tell how well the normal model fits a data set. Statisticians
fit models to data, and this is illustrated by drawing a curve over the plot of a data
set. Students consider and discuss how good a fit there is of the model to the data.

Next, students re-examine the use of the Web applet. They see that when they
found the proportions of the distribution that were above and below their own
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data value, it was from a normal distribution that has the class mean and standard
deviation as the class data. They used the model of the normal curve to estimate
proportions. Students see that it depends on how well the data fit the model and that
when they use z-scores to find percentages (probabilities) using the normal curve,
they are using a statistical model. The use of models to explain, describe, estimate,
or predict is revisited, recalling the earlier use of models to simulate births of boys
and girls.

In the Normal Distribution Applications activity, students apply the use of inter-
vals used with the normal distribution (i.e., the middle 68, 95, 99.7%, referred to as
the Empirical Rule) to real data sets. They explore and discuss when it is appropriate
to use this rule (a model) to describe or make inferences about a particular set of
data. They explore when and how to use the model to solve the problems in context.
A last part of the activity is to see a Fathom demo on “What are Normal Data?”

In a final wrap-up discussion, students are given this popular quote by Box, “all
models are wrong, but some are useful” (1979, p. 202) and discuss how this quota-
tion applies to the normal distribution as a model.

Summary

Models are one of the most important and yet least understood ideas in an intro-
ductory statistics course. This chapter has tried to make the case that the idea of
statistical model should be made explicit and used repeatedly in an introductory
statistics course, so that students become familiar with the importance of models
and modeling in statistical work. We believe that ideas of probability are best in-
troduced in this context, without having to go into the formal rules and vocabulary
that are better saved for a course in mathematical statistics or probability. We also
encourage the explicit discussion of how models are used to simulate data, from
informal uses early in the course to formal uses as part of tests of significance later
in the course. When introducing and using the normal distribution as a model of
certain univariate data sets or the regression line as a model of certain bivariate data
sets, we hope instructors will describe the importance and use of these modes, and
fitting models to data, modeling important aspects of both statistical practice and
statistical thinking for the students to see.



Chapter 8
Learning to Reason About Distribution

Statisticians look at variation through a lens which is
“distribution”.

(Wild, 2006, p. 11)

Snapshot of a Research-Based Activity on Distribution

Groups of three to four students are each given an envelope containing 21 differ-
ent pieces of paper, each with a different histogram printed on it. Students sort the
graphs into piles, so that the graphs in each pile have a similar shape. After sorting
them into the piles (e.g., normal/bell-shaped, left-skewed, right-skewed, bimodal,
and uniform), students choose one histogram from each pile that best represents
that category, and these selections are shared and discussed as a class. Students use
their own informal language to “name” each shape: bell-shaped, bunched to one
side, like a ski slope, camel humps, flat, etc. These informal names are matched to
the formal statistical terms such as normal, skewed, bimodal, and uniform. Finally,
students consider which terms are characteristics (e.g., skewness) that can apply to
graphs in more than one category (e.g., a distribution that is skewed and bimodal)
vs. those that can only be labeled by one name (e.g., uniform or normal distribution).

Rationale for This Activity

Although this activity may seem like a game for elementary school students, the
activity involves some important challenges and learning outcomes for high school
and college students in a first statistics course. First of all, this activity helps students
look at histograms as an entity, rather than as a set of data values and cases, which
research has shown to be a key problem in reasoning about distributions. Secondly,
students often fail to see the general shape of distributions, because of the effects of
randomness (the “noise”); and expect to see perfect shapes like the models given in
their textbooks. This activity helps them see that there are many types of “normal”
distributions or skewed distributions. They learn to look beyond the individual fea-
tures of the graph and see the more general or global characteristics. Finally, this
activity focuses on the language used to describe distributions, which can often be
confusing to students. The word “normal” in statistics refers to a bell-shaped curve
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that has certain characteristics while in everyday life it means typical or not unusual.
Students can take an informal name of a shape (e.g., ski slope for a right-skewed
distribution) and map them to the correct statistical labels, which can then be used
to help remind them of the statistical term (e.g., a teacher talking about a skewed
curve can say, “remember it is like a ski slope”).

The Importance of Understanding Distribution

We begin this section with a poignant illustration, offered by Bill Finzer to par-
ticipants at the Fourth International Research Forum on Statistical Reasoning,
Thinking, and Literacy, the focus of which was on “Reasoning about Distribution”
(Makar, 2005)

The Little Prince, by de Saint-Exupéry (2000) begins with this drawing.

To adults, the drawing looked exactly like a hat.
To the child artist who drew it and to the little prince, it was a drawing of a
boa that had eaten an elephant.

If the little prince showed this picture to a statistician, he would say: “This
represents a distribution of data.”

We like this example because it shows how statisticians look at irregular shapes of
data sets and look beyond the details to see a general shape and structure. This is
usually a first step in any data analysis and leads to important questions about the
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data to be analyzed, such as: What mechanism or process might have led to this
shape? Are there any values that need to be investigated (e.g., possible outliers)?

A graph of a distribution reveals variation of a quantitative variable. According
to Wild (2006), statisticians respond to the “omnipresence of variability” in data
(Cobb & Moore, 1997) by investigating, disentangling, and modeling patterns of
variation represented by distributions of data. He suggests that statisticians look at
variation through a lens that is “distribution.”

Students encounter two main types of “distribution” in an introductory statistics
class. The first type is distributions of sample data that students learn to graph, de-
scribe, and interpret. These are empirical distributions of some particular measured
quantity. The second type of distribution encountered is a theoretical one, e.g., nor-
mal or binomial distributions, which are actually probability models (Wild, 2006).

Although the two types share many common features (e.g., they can be described
in terms of shape, center, and spread), it is important to help students distinguish be-
tween them because of the way in which we use them. The distinction that underlies
empirical versus theoretical distributions relates to variation. When examining an
empirical distribution, the focus is on description and interpretation of the message
in the data, and thinking about what model may fit or explain the variation of the
data. Theoretical distributions are models to fit to data, to help explain, estimate,
or make predictions about the variability of empirical data. Yet, a third type of
distribution, students encounter in a statistics course is a distribution made up of
sample statistics, which again has both empirical and theoretical versions. These
sampling distributions are discussed in detail in Chapter 12.

The Place of Distribution in the Curriculum

Empirical distributions are the foundation of students’ work in an introductory
statistics course, either beginning a course or following a unit on collecting and
producing data (experiments and surveys, Chapter 6). This chapter focuses mainly
on teaching and learning issues related to empirical distributions, while Chapters 7
and 12, respectively, also discuss theoretical distributions. In addition, this chapter
focuses on understanding a single distribution, primarily in the form of dotplots
and histograms, while Chapter 11 examines these graphs along with boxplots in the
comparison of two or more distributions.

The methods of Exploratory Data Analysis introduced by Tukey (1977) have had
a big impact on the way distributions are taught in today’s courses. Students use
many ideas and tools to explore data and learn to think of data analysis as detective
work. Students usually learn multiple ways to graph data sets by hand and on the
computer. These methods include dotplots (also called line plots), stem and leaf
plots, histograms, and boxplots. Students learn that different graphs of a data set
reveal different characteristics of the data. For example, a histogram or dotplot gives
a better idea of the shape of a data set, while a boxplot is often better at revealing
an outlier. A stem-and-leaf plot or dotplot may give a better idea of where there are
clumps or gaps in the distribution.
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Current statistical software programs (e.g., TinkerPlots, Fathom) allow students
to easily manipulate data representations, for example, to transform one graph of
a data set to another, display several interlinked graphs of the same data set on
one screen (a change in one will show in the others), and some allow students to
highlight particular data values and see where they are located in each graph. These
explorations are used to ask questions about the data: What causes gaps and clusters?
Are outliers real data values or errors in data collection or coding? What factors may
help explain the features revealed in a graph of a distribution? In most introductory
courses along with learning how to graph distributions of data, students are taught
to look for specific features of distributions and begin to describe them informally
(e.g., estimate center and range) and then more formally (e.g., shape, center, and
spread).

Distribution is one of the most important “big ideas” in a statistics class. Rather
than introduce this idea early in a class and then leave it behind, today’s more inno-
vative curriculum and courses have students constantly revisit and discuss graphical
representations of data, before any data analysis or inferential procedure. In a similar
vein, the ideas of distributions having characteristics of shape, center, and spread can
be revisited when students encounter theoretical distributions and sampling distri-
butions later in the statistics course.

Review of the Literature Related to Reasoning
About Distribution

The research literature provides a strong case that understanding of distributions,
even in the simplest forms, is much more complex and difficult than many statistics
teachers believe. Although little of the research includes college students, the results
of studies on precollege level students and precollege level teachers demonstrate the
difficulty of learning this concept, some common misconceptions, and incomplete
or shallow understandings that we believe also apply to college students.

Much of the research on distribution emerged because of the consensus in the
statistics education community that it is a basic building block for a web of key sta-
tistical ideas, such as variability, sampling, and inference (e.g., Garfield & Ben-Zvi,
2004; Pfannkuch & Reading, 2006). Other studies (e.g., Reading & Shaughnessy,
2004; Watson, 2004) focused on broader questions than how students reason about
distribution, but yielded relevant results. For example, Chance et al. (2004) assert
that the knowledge of distribution and understanding of histograms are necessary
prerequisites to learning and understanding sampling distributions.

Developing an Aggregate View of Distribution

A major outcome of several studies on how students solve statistical problems is
that they tend not to see a data set (statistical distribution) as aggregate, but rather
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as individual values (e.g., Hancock, Kaput, & Goldsmith, 1992). Konold & Higgins
(2003) claimed that, “students need to make a conceptual leap to move from seeing
data as an amalgam of individuals each with its own characteristics to seeing the
data as an aggregate, a group with emergent properties that often are not evident in
any individual member” (p. 202). They explained this challenging transition in the
following way:

With the individuals as the foci, it is difficult to see the forest for the trees. If the data values
students are considering vary, however, why should they regard or think about those values
as a whole? Furthermore, the answers to many of the questions that interested students—
for instance, Who is tallest? Who has the most? Who else is like me?—require locating
individuals, especially themselves, within the group. We should not expect students to begin
focusing on group characteristics until they have a reason to do so, until they have a question
whose answer requires describing features of the distribution. (Konold and Higgins, 2003,
p. 203)

To explore the emergence of second graders’ informal reasoning about distribution,
Ben-Zvi and Amir (2005) studied the ways in which three second grade students
(age 7) started to develop informal views of distributions while investigating real
data sets. They described what it may mean to begin reasoning about distribution by
young students, including two contrasting distributional conceptions: “flat distribu-
tion” and “distributional sense”. In the “flat distribution” students focused just on the
values of distribution and did not refer at all to their frequencies, while students who
started acquiring a “distribution sense” showed an appreciation and understanding
that a distribution of a variable tells us what values it takes and how often it takes
these values. The gradual transfer from the incomplete perception of a distribution
towards the more formal sense of distribution presented an immense challenge to
these students.

In a teaching experiment with older students (seventh grade students in Israel),
Ben-Zvi and Arcavi (2001) show how students were able to make a transition from
local to global reasoning, from individual-based to aggregate-based reasoning.
The researchers found that carefully designed tasks (e.g., comparing distributions,
handling outliers), teachers’ guidance and challenging questions, along with mo-
tivating data sets and appropriate technological tools helped students to make this
transition.

Konold, Pollatsek, Well, and Gagnon (1997) interviewed two pairs of high-
school students who had just completed a year-long course in probability and statis-
tics. Using software and a large data set students had used as part of the course,
these students were asked to explore the data and respond to different questions
about the data and to support their answers with data summaries and graphs. The
results suggest that students had difficulty in thinking about distributions and instead
focused on individual cases. They did not use the methods and statistics learned in
the course when comparing two distributions, but instead relied on more intuitive
methods involving comparisons of individual cases or homogeneous groups of cases
in each group. Results were re-analyzed along with results from two other studies
(Konold, Higgins, Russell, & Khalil, 2003) and the following types of responses
were suggested as ways students reason about a distribution of data.



170 8 Learning to Reason About Distribution

1. Seeing data as Pointers (to the larger event from which the data came).
2. Seeing data as Case-values (values of an attribute for each case in the data set).
3. Seeing data as Classifiers (giving frequency of cases for a particular value).
4. Seeing data as an Aggregate (the distribution as an entity with characteristics

such as shape, center, and spread).

The authors note that although an important goal in statistics is to help students see
a distribution as an aggregate, they feel it is important to pay attention to students’
initial views of data and to carefully help them gradually develop the aggregate view
(Konold et al., 2003).

Understanding the Characteristics of a Distribution

Several studies focused on how students come to conceive of shape, center, and
spread as characteristics of a distribution and look at data with a notion of distribu-
tion as an organizing structure or a conceptual entity. For example, based on their
analysis of students’ responses on the National Assessment of Educational Progress
(NAEP) over the past 15 years, Zawojewski and Shaughnessy (2000) suggest that
students have some difficulty finding the mean and the median as well as difficulty
selecting appropriate statistics. They explain that one of the reasons that students
do not find the concepts of mean and median easy may be that they have not had
sufficient opportunities to make connections between centers and spreads; that is,
they have not made the link between the measures of central tendency and the
distribution of the data set. Mokros and Russell (1995) claim that students need
a notion of distribution before they can sensibly choose between measures of center
and perceive them as “representatives” of a distribution.

Reasoning About Graphical Representations of Distributions

One of the difficulties in learning about graphical representations of distributions
is confusion with bar graphs. In elementary school, students may use bars to rep-
resent the value of an individual case (e.g., number of family pets), or a bar can
represent the frequency of a value (e.g., number of families with one pet). Today,
some statistics educators distinguish between these two types of representations,
referring to case-value plots as the graphs where a line or bar represents the value
of an individual case, or student. In contrast, the bars of a histogram represent a
set of data points in an interval of values. While case-value and bar graphs can
be arranged in any order (e.g., from smallest to largest or alphabetical by label),
bars in a histogram have a fixed order, based on the numerical (horizontal) scale.
Furthermore, while the vertical scale of a histogram is used to indicate frequency
or proportion of values in a bar (interval), the vertical scale for a bar graph may
represent either a frequency or proportion for a category of categorical data, or it
may represent magnitude (value of a case presented by that bar). These differences
can cause confusion in students, leading them to try to describe shape, center, and
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spread of bar graphs or to think that bars in a histogram indicate the magnitude of
single values (Bright & Friel, 1998).

Establishing connections among data representations is critical for developing
understanding of graphs; however, students cannot make these connections easily
and quickly. To find instructional strategies that help learners understand the impor-
tant features of data representations and the connections among them, Bright and
Friel (1998) studied ways that students in grades 6, 7, and 8 make sense of informa-
tion in graphs and connections between pairs of graphs. They report that students
benefited from these activities by recognizing the importance of “the changing roles
of plot elements and axes across representations”, and, therefore, suggest that teach-
ers need to “provide learners with opportunities to compare multiple representations
of the same data set” (p. 87). They also suggest to promote rich discourse about dis-
tributions of data in the classroom to help students understand the important aspects
of each representation.

Students’ recognition of graphical aspects of a distribution as an entity was
studied by Ainley, Nardi, and Pratt (2000). They observed young students (8–12
years) who collected data during ongoing simple experiments and entered them
in spreadsheets. They noted that despite limited knowledge about graphs, students
were able to recognize abnormalities (such as measurement errors) in graphs and
to take remedial action by adjusting the graphs toward some perceived norm. The
researchers have labeled this behavior, “normalizing,” an activity in which children
construct meanings for a trend in data and in graphs. Ainley and her colleagues claim
that children gained this intuitive sense of regularity from everyday experience,
experience gained during the activity, their sense of pattern, or from an emerging
perception of an underlying mathematical model. The researchers recommend the
use of computer-rich pedagogical settings to change the way in which knowledge
about data graphs is constructed.

Helping Students to Reason with Graphs of Distributions

Students often see and use graphs as illustrations rather than as reasoning tools to
learn something about a data set or gain new information about a particular prob-
lem or context (Wild & Pfannkuch, 1999; Konold & Pollatsek, 2002). Current re-
search on students’ statistical understanding of distribution (e.g., Pfannkuch, 2005a;
Watson, 2005) recommends a shift of instructional focus from drawing various kinds
of graphs and learning graphing skills to making sense of the data, for detecting and
discovering patterns, for confirming or generating hypotheses, for noticing the unex-
pected, and for unlocking the stories in the data. It has been suggested that reasoning
with shapes forms the basis of reasoning about distributions (Bakker, 2004a; Bakker
and Gravemeijer, 2004).

Others refer to developing skills of visual decoding, judgment, and context
as three critical factors in helping students derive meaning from graphs (Friel,
Curcio and Bright, 2001). Reasoning about distributions is more than reasoning
about shapes. It is about decoding the shapes by using deliberate strategies to
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comprehend the distributions and by being cognizant of the many referents, which
are bound within the distributions. Furthermore, students have to weigh the evidence
to form an opinion on and inference from the information contained in the distribu-
tions (Friel et al., 2001). Such informal decision-making under uncertainty requires
qualitative judgments, which are much harder than the quantitative judgments made
by statistical tests (Pfannkuch, 2005a).

In one of the rare studies at the college level, delMas, Garfield, and Ooms
(2005) analyzed student performance on a series of multiple-choice items assess-
ing students’ statistical literacy and reasoning about graphical representations of
distribution. They found that college students, like younger peers in middle school
described above, confused bar graphs and histograms, thinking that a bar graph of
individual cases, with categories on the horizontal scale, could be used to estimate
shape, center, and spread. They also thought that such a bar graph might look like
the normal distribution. They tended to view flat, rectangular-shaped histograms as
a time series plot showing no variation, when these graphs typically show much
variation in values. The researchers also identified errors students make in reading
and interpreting horizontal and vertical axes. Based on the difficulties students ap-
peared to have reading and interpreting histograms, the authors questioned whether
students should be taught to use only dotplots and boxplots to represent data sets.
After questioning colleagues, they concluded that there were important reasons to
keep histograms in the curriculum as a way of representing distributions of data,
because of the need for students to understand the ideas of area and density required
for understanding theoretical distributions, and because dotplots are not feasible for
very large data sets.

Technological Tools to Develop the Concept of Distribution

Technology can play an important role in developing distributional reasoning by
providing easy access to multiple representations and endless opportunities to in-
teractively manipulate and compare representations of the same data set. However,
this is not a simple task. Biehler (1997b) reports that despite using an innovative
software tool to generate and move between different graphs of data, interpreting
and verbally describing these graphs were profoundly difficult for high school and
college students, unless they had a conceptual understanding of the foundational
concepts.

To study the impact of technology on distributional understanding, Cobb (1999),
McClain & Cobb (2001), and Bakker & Gravemeijer (2004) examined how a hy-
pothetical learning trajectory, translated into a particular instructional sequence,
involving the use of Minitools (Cobb et al., 1997) supported the development of
students’ statistical reasoning about distribution. Minitools are simple but inno-
vative Web applets that were designed and used to assist students to develop the
concept of distribution. Results of these teaching experiments suggest that students’
development of relatively deep understandings of univariate distribution are feasible
goals at the middle school level, when activities, discussion, and tools are used in
particular ways.
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Fig. 8.1 Life span of
batteries displayed by a
case-value bar graph in
Minitool 1 (sorted by size).
Each horizontal bar
represents the life span in
hours for a particular battery

For example, one aspect of distribution, shape, can be seen by looking at
histograms or dotplots. To understand what dots in a dotplot represent, students
need to realize that a dot corresponds to a value of a particular variable, and each
dot represents one case that has that particular value. To help students develop this
insight, a tool shows them case-value bars (Minitool 1, see Fig. 8.1). These bars
seem to correspond to students’ intuitive ways of organizing and displaying a set of
data. Students then are helped to make a transition to a second Minitool (Fig. 8.2),
which takes the end points of the case-value bars and stacks them in a dotplot. While
each case in Minitool 1 is represented by a bar whose relative length corresponds to
the value of the case, each case in Minitool 2 is represented by a dot in a dotplot.
Figures 8.1 and 8.2 display just one data set at a time; however, all given data sets
in Minitools include two groups (e.g., comparing two brands of batteries), which
better help students develop distributional reasoning.

Minitool 2 has options to organize data in ways that can help students develop
their understanding of distributions. For example, the dotplot can be divided into
equal groups or into equal intervals, which support the development of an under-
standing of the median and quartiles, boxplot, density, and histogram, respectively

Fig. 8.2 The same data set of
life span of batteries
displayed by a dotplot in
Minitool 2
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Fig. 8.3 (a) Four equal group and boxplot overlay option with and without data. (b) Fixed interval
width and histogram overlay options with and without data

(see Fig. 8.3). Many of the features of the Minitools have been incorporated into the
recently published TinkerPlots software (Konold & Miller, 2005).

The combination of the two Minitools graphs was found to be useful in helping
students develop the idea of distribution. Bakker and Gravemeijer (2004) identified
patterns of student answers and categorized an evolving learning trajectory that had
three stages: Working with graphs in which data were represented by horizontal bars
(Minitool 1, Fig. 8.1), working with dotplots (Minitool 2, Fig. 8.2), and focusing
on characteristics of the data set, such as bumps, clusters, and outliers using both
Minitools.

Based on their research, Bakker and Gravemeijer (2004) suggest several promis-
ing instructional heuristics to support students’ aggregate reasoning of distributions:
(1) Letting students invent their own data sets could stimulate them to think of a
data set as a whole instead of individual data points. (2) Growing samples, i.e.,
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letting students reason with stable features of variable processes, and compare their
conjectured graphs with those generated from real graphs of data. (3) Predictions
about the shape and location of distributions in hypothetical situations. All these
methods can help students to look at global features of distributions and foster a
more global view.

Implications of the Research: Teaching Students to Reason
About Distribution

The results of these studies suggest in general that it takes time for students to de-
velop the idea of distribution as an entity, and that they need repeated practicing in
examining, interpreting, discussing, and comparing graphs of data. It is important to
provide opportunities for students to build on their own intuitive ideas about ways
to graph distributions of data. Some of the research suggests that students use their
own informal language (e.g., talking about ‘bumps’ and ‘clumps’ of data) before
learning more formal ones (e.g., mode, skewness). The research also suggests that
teachers begin having students use graphical representations of data that show all the
data values (e.g., dotplots or stem-and-leaf plots) and carefully move from these to
more abstract and complex graphs that hide the data (e.g., histograms and boxplots),
showing how different graphs represent the same data. Several studies suggest a
sequence of activities that leads students from individual cases (case-value bars) to
dotplots to groups of data points (clusters in intervals) to histograms. This sequence
can later be used to develop the idea of a boxplot (see Chapter 11). New computer
tools (e.g., Minitools, TinkerPlots, and Fathom) show promise for helping to guide
students through this process and to allow them to connect different graphical rep-
resentations of distributions.

Teaching Students the Concept of Distribution

The strongest message in the research on understanding graphs and distributions
is that statistics teachers need to be aware of the difficulties students have devel-
oping the concept of distribution as an entity, with characteristics such as shape,
center, and spread. While most textbooks begin a unit on descriptive statistics with
graphs of data, when to use them, how to construct them and how to determine
shape, estimate center and spread, we believe that there are some important steps to
precede this. We think it is best to begin data explorations with case-value bars
that represent individual cases, a type of graph students are very familiar with
and that is more intuitive for them to understand and interpret. Then, this type of
graph can be transformed to a dotplot using diagrams or a tool such as Tinker-
Plots. For example, a diagram of case-value bars such as the one shown below
(Fig. 8.4), for a set of students test scores, can be converted by the students to
a dotplot (Fig. 8.5), taking the end point of each case-value and plotting it on a
dotplot.



176 8 Learning to Reason About Distribution

Fig. 8.4 Exam scores displayed by a case-value bar plot in TinkerPlots

We then suggest having students talk about categories that are useful for grouping
the data, such as students who scored in the 40s, 50s, 60s, etc. (Fig. 8.6). These
groupings could lead to bars of a histogram (Fig. 8.7). Students should be encour-
aged to compare the three types of graphs of the same data, discussing what each
graph does and does not show them, how they compare, and how they are different.
We also suggest moving from small samples of data to large samples, to continu-
ous curves drawn over these graphs to help students see that plots often have some
common shapes. This can also be done by giving students sets of graphs to sort and
classify, as described in the snapshot of an activity in the beginning of this chapter,
so that students can abstract general shapes for a category of graphs of distributions.

Another way to help students develop ideas of distribution is to help them dis-
cover characteristics of distribution. Giving them sets of graphs to compare can help

Fig. 8.5 The same exam scores displayed by a dotplot in TinkerPlots
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Fig. 8.6 Exam scores grouped by bins of 10 in TinkerPlots

do this. For example, an activity originally developed by Rossman et al. (2001) giv-
ing students a set of graphs that are similar in shape and spread, but have different
centers can allow students to discover these characteristics. This can be repeated
with distributions that have similar shapes and centers but differ in spread. We
provide examples of these activities in Lesson 1. We focus on characteristics of
distribution first using dotplots, which are easier for students to read and interpret
than histograms.

The research suggests that having students make conjectures about what a set of
data might look like for a particular variable and sample, can help students develop
their reasoning about distribution. Rossman and Chance (2005) have also built on
these ideas in their activities that have students match different dotplots to variables,
forcing students to reason about what shape to expect for a particular variable, (e.g.,
a rectangular distribution for a set of random numbers or a skewed distribution for
a set of scores on an easy test). We think it is important to have students do both
activities: Draw conjectured distributions for variables and match distributions to
variable descriptions. After students have studied measures of center and spread,

Fig. 8.7 Exam scores displayed by a histogram in TinkerPlots
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it is suggested that they try to match graphs of distributions to a set of summary
statistics, as in the histogram matching activity by Scheaffer, Watkins, Witmer and
Gnanadesikan (2004b, pp. 19–21). An even more challenging version of this activity
is to have students match two different representations of the same data set, such as
histograms to boxplots (also found in Scheaffer et al., 2004b, pp. 21–22), which we
include in Chapter 11 on Comparing Groups.

Finally, the research suggests that technology can be used to help students see
the connections between different graphical representations of data, helping stu-
dents to build the idea of distribution as an entity. We see three important uses
of technology:

1. To visualize the transition from case-value graphs to dotplots to histograms, all
based on the same data set.

2. To illustrate the ways that different graphs of the same data reveal different as-
pects of the data, by flexibly having multiple representations on the screen at the
same time, allowing students to identify where one or more cases is in a graph.

3. To flexibly change a graph (e.g., making bins wider or narrower for histograms)
so that a pattern or shape is more distinct, or to add and remove values to see the
effect on the resulting graph.

Fortunately, today’s software tools and Web applets readily provide each of these
different types of functions.

Progression of Ideas: Connecting Research to Teaching

Introduction to the Sequence of Activities to Develop Reasoning
about Distribution

Although most statistics textbooks introduce the idea of distribution very quickly,
amidst learning how to construct graphs such as dotplots, stem and leaf plots, and
histograms, the research literature suggests a learning trajectory with many steps
that students go through in order to develop a conceptual understanding of distri-
bution as an entity. Students need to begin with an understanding of the concept
of variable, and that measurements of variables yield data values that usually vary.
A set of data values can be visually displayed in different ways, the most intuitive
way being individual cases, e.g., case-value graphs. After students understand how
to interpret case-value graphs, they can be guided to understand dotplots, and then
histograms, as one representation is mapped or transformed to the next, showing
their correspondence. In this process, it is important to emphasize the role of group-
ing the data into different intervals (bin size), which has an effect on the graph shape,
and the possible interpretations that can be drawn from it.

When first looking at dotplots and histograms, students should be encouraged to
use their own language to describe characteristics, and to move from small samples of
data to larger ones, as they move from empirical distributions (dotplots) to theoretical
distributions (density curves). Throughout each of these phases, students should make
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conjectures about data sets and graphs for particular sets of data where they can reason
about the context, and then should be allowed to test these conjectures by comparing
their graphs to real graphs of data. The ideas of distribution are explicitly revisited
in every subsequent unit in the course: in studying measures of center and spread,
in reasoning about boxplots when comparing groups, when studying the normal dis-
tribution as a model for a univariate data set, when studying sampling distributions,
understanding P-values, and reasoning about bivariate distributions.

Table 8.1 shows the steps of this learning trajectory and what corresponding ac-
tivities may be used for each step.

Table 8.1 Sequence of activities to develop reasoning about distribution1

Milestones: ideas and concepts Suggested activities

Informal ideas prior to formal study of distribution

� Understand that variables have values that vary
and can be represented with graphs of data

� Variables on Back Activity (Lesson 1,
Data unit, Chapter 6)

� Understand simple graphs of data where each
case is represented with a bar (e.g., case-value
graphs)

❖ An activity where students summarize
and interpret data sets that are of inter-
est to them, such as class survey data
given in case-value plots. Have stu-
dents arranged the points on the hor-
izontal scale in different orders. (The
symbol ❖ indicates that this activity is
not included in these lessons.)

� A distribution is a way to collect and examine
statistics from samples

� Gettysburg Address Activity

(Lesson 3, Data unit, Chapter 6)
� A distribution can be generated by simulating

data

� Taste Test Activity (Lesson 4,

Data unit, Chapter 6)
� Understanding a dotplot ❖ An activity where students see how the

data can be represented in a dotplot,
and how this plot gives a different pic-
ture than a case value plot

Formal ideas of distribution

� Characteristics of shape, center, and spread for a
distribution

� Distinguishing Distributions Activity
(Lesson 1: “Distributions”)

� Features of graphs, clustering, gaps, and outliers
of data

� Distinguishing Distributions Activity
(Lesson 1)

� A continuous curve as representing a distribution
of a large population of data

� Growing a Distribution Activity

(Lesson 1)
� An understanding of histogram by changing one

data set from a dotplot to a histogram, by
forming equal intervals of data. Recognizing the
difference between these two types of graphs

� What is a Histogram Activity

(Lesson 2: “Reasoning about

Histograms”)

� The abstract idea of shape of histogram and
recognition of some typical shapes

� Sorting Histograms Activity

(Lesson 2)

1 See page 391 for credit and reference to authors of activities on which these activities are based.
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Table 8.1 (continued)

Milestones: ideas and concepts Suggested activities

� Understand that histograms may be
manipulated to reveal different aspects of a
data set

� Stretching Histograms Activity
(Lesson 2)

� Recognize where majority of data are, and
middle half of data

❖ An activity where students describe
graphs in terms of middle half of data
and overall spread

� Recognize the difference between bar graphs
of categorical data, case value graphs, and
histograms of quantitative data

❖ An activity where students examine
and compare these three types of
graphs that all use bars in different
ways

� Only certain types of graphs (e.g., dotplots and
histograms) reveal the shape of a distribution

� Exploring Different Representations
of the Same Data Activity (Lesson 2)

� Reason about what a histogram/dotplot would
look like for a variable (integrate ideas of
shape, center, and spread) given a verbal
description or sample statistics

� Matching Histograms to Variable
Descriptions Activity (Lesson 2)

Building on formal ideas of distribution in subsequent topics
� Idea of center of a distribution and how

appropriate measures of center depend on
characteristics of the distribution

� Activities in Lessons 2 (Center Unit,
Chapter 9)

� Idea of variability of a distribution and how
appropriate measures of variability depend on
characteristics of the distribution

� Activities in Lessons 1 and 2
(Variability Unit, Chapter 10)

� How a boxplot provides a graphical
representation of a distribution

� Activities in Lessons 1, 2, 3, and 4
(Comparing Groups unit, Chapter 11)

� How boxplots and histograms reveal different
aspects of the same distribution

� Matching Histograms to Boxplots
Activity (Lesson 3, Comparing
Groups Unit, Chapter 11)

� Probability distribution as a distribution of a
random variable that has characteristics of
shape, center, and spread

� Coins, Cards, and Dice Activity
(Lesson 2, Modeling Unit, Chapter 7)

� The normal distribution as a model of
univariate data that has specific characteristics
of shape, center, and spread

� Activities in Lesson 3, The Normal
Distribution as Model (Models Unit,
Chapter 7)

� The idea of sampling distribution as
distributions of sample statistics that can be
described in terms of shape, center, and spread

� Activities in Lessons 1, 2, and 3
(Samples and Sampling Unit,
Chapter 12)

� How statistical inferences may involve
comparing an observed sample statistic to a
sampling distribution

� Activities in Lessons 1 and 2,
(Inference Unit, Chapter 13)

� Bivariate distribution as represented in a
scatterplot

� Activities in Lesson 1 (Covariation
Unit, Chapter 14)

� Characteristics of a bivariate distribution such
as linearity, clusters, and outliers

� Activities in Lesson 1 (Covariation
Unit, Chapter 14)
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Introduction to the Lessons

The two lessons on distribution contain many small activities, which together lead
students from exploring one set of data in a simple, intuitive form, to more sophis-
ticated activities that involve comparing and matching graphs. While it is not at all
“traditional” to spend two full class sessions on the idea of distribution and basic
graphs, we feel strongly that unless students understand this idea early on, they will
not understand most of the subsequent course material at a deep level.

Lesson 1: Distinguishing Distributions

In the first activity of this lesson, students are given several different groups of dot-
plots and asked to determine the distinguishing feature that distinguishes each of the
dotplots in a group. In this way, the students discover the characteristics of shape,
center, and spread, and features such as clusters, gaps, and outliers. The activity also
helps students see distributions as a single entity with identifiable characteristics.
The second activity has students make predictions about graphs for a variable mea-
sured on their class survey and then make and test predictions about what would
happen if the sample size were increased. Student learning goals for this lesson
include:

1. To develop the idea of a distribution as a single entity rather than individual
points.

2. To recognize different characteristics of a distribution and understand these char-
acteristics in an intuitive, informal way.

3. To recognize differences between graphs of small and large samples, and how
graphs of distributions stabilize as more data from the same population is added.

4. To develop an understanding of a density curve as it represents a population.

Description of the Lesson

The lesson begins with a discussion of the term “distribution” and how this differs
in everyday usage and in statistics. Students reason about and discuss pattern, what
we need to know to draw a reasonable graph without knowing the data values.

Next, in the Distinguishing Distributions activity, students are given a series of
dotplots that depict the distributions of hypothetical exam scores in various classes.
For example, they are asked:

For classes A, B, and C, what is the main characteristic that distinguishes these three graphs
from each other? What might explain this difference? (Fig. 8.8)

Each set of graphs reveals a different characteristic of distribution: e.g., center,
spread, shape, and outliers. Students are then asked what features are important
to examine when describing distributions, what to look for, features that are always
present such as shape, center and spread, and ones that might be present or absent,
depending on the data set.
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Fig. 8.8 Distributions of hypothetical exam scores in various classes

The following activity (Growing a Distribution) has students making predictions
about number of hours students in their class study each week, both in terms of a
typical value and a range of values. Next, they gather a sample of five data values
from students in the class and graph this using a dotplot. More data are gathered
(e.g., the entire class) and new dotplots are generated and described. Then students
are asked to imagine if four classes of students were combined, and to draw their
imagined plot of study hours per week. Finally, they consider all students at the
university, and draw a smooth curve to represent this population. The students repeat
this by looking at dotplots of three other variables based on student survey data, and
then draw a smooth curve to represent the distribution of all students at their school
for these variables.

A wrap-up discussion focuses on differences between dotplots and smooth
curves. Students discuss what we mean by the term distribution, what are some of
the common characteristics of a distribution of quantitative data, what information
a graph of a distribution provides and what information a histogram provides that is
not revealed by looking at a bar graph or case value graph (e.g., shape, center, and
spread). The students consider when a histogram might be a better representation
of data than a dot plot, what information can be determined by looking at a dotplot
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more easily than in a histogram, and what information is lost or not shown by a
histogram.

Lesson 2: Exploring and Sorting Distributions

This lesson begins with a data set of body measurements gathered from a set of
students that includes kneeling heights. After students make some predictions about
this variable, they examine and describe a dotplot of class data on kneeling heights.
The students are led through a transformation of this dot plot into a histogram, using
TinkerPlots software. They compare different representations of the same data to see
how different features are hidden or revealed in different types of graphs.

In the third activity, students sort a set of histograms into different piles accord-
ing to general shape, which leads students to recognize and label typical shapes,
guiding them to see these distributions as entities, rather than as sets of individual
values. The students further develop the idea of shape by changing bin widths on
histograms using Fathom software to manipulate and reveal how the size of the bins
used affects the stability of the shape. In the fifth and final activity, students match
histograms to variable descriptions, reasoning about the connections between visual
characteristics of distributions and variable contexts.

Student learning goals for this lesson include:

1. To understand how a distribution is represented by a histogram and that a his-
togram (or dotplot) allows us to describe shape, center, and spread of a quantita-
tive variable in contrast to a bar graph (bar chart).

2. To understand the differences between case value graphs, bar graphs (case-value
bars) of individual data values and graphs displaying distributions of data such
as histograms.

3. To understand how graphical representations of data reveal the variability and
shape of a data set.

4. To recognize and label typical shapes of distribution, using common statistical
terms (normal, skewed, bimodal, and uniform).

5. To understand that the shape of a graph may seem different depending on the
graphing technique used, so it may be important to manipulate a graph to see
what the shape seems to be.

Description of the Lesson

In the What is a Histogram activity, students begin by making conjectures about
what they would expect to see in the distribution of kneeling height data. This data
set is then used to help students develop an understanding of a histogram, by using
TinkerPlots to sort the data into sequential intervals, and then fuse the intervals
into bars.
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Fig. 8.9 Kneeling heights scattered dots in TinkerPlots

They begin with a graph of the data values, scattered as shown in Fig. 8.9, and
after playing with and examining the data, are guided to arrange the dots into case-
value bars, to sort the smaller values of kneeling heights as shown in Fig. 8.10.

Students are then guided to use the Separate operation in TinkerPlots to separate
the cases into intervals that are then fused into a histogram, as shown in Figs. 8.11
and 8.12.

In the Stretching Histograms activity, students use a histogram applet to ex-
amine the effect of bin width on shape, seeing that larger and smaller bin widths
may obscure shape and details (such as gaps, clusters, and outliers). Students are
then encouraged to think about the difference between the different types of plots
they have seen (Exploring Different Representations of Data activity). These plots

Fig. 8.10 A case-value graph ordered by kneeling heights
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Fig. 8.11 Stacked kneeling height data with frequencies noted in each interval

include the dotplot, the case-value graph (value bar graph), and the histogram. They
are then asked to consider which graphs help them better estimate the lowest five
values, where “most” of the kneeling heights are clustered, the middle or typical
value of kneeling heights, the spread, and the shape of the data. Students discuss
how to determine the best representation to answer a particular question and why
one representation may be better than another.

In the next activity (Sorting Histogram), students work in small groups to sort
a set of 21 different graphs, representing different data sets. Students sort the stack
of graphs into piles, according to those that look the same or similar, then describe
what is similar about the graphs in each group, pick one representative graph for

Fig. 8.12 A histogram presenting the kneeling height in seven bins
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each group, and come up with their own term to describe the general shape of each
group. A whole class discussion follows where group results are compared and then
the correct statistical terms for the graphs (uniform, normal, right- and left-skewed,
bimodal) can be introduced or reinforced. Models (uniform, normal) are described
in terms of symmetry and shape (bell-shape or rectangular). Other distributions that
do not fit these models can be described in terms of their characteristics (skewness,
bimodality or unimodality, etc.). A discussion of which descriptors can and cannot
go together may follow. For example, normal and skewed cannot go together.

During this discussion, some important points are addressed:

� Ideal shapes: density curves vs. histograms (theoretical vs. empirical distribu-
tions)

� Different versions of ideal shapes
� Idea of models, characteristics of distributions
� Statistical words vs. informal descriptors
� Other ways to describe a distribution
� Why is it important to describe a distribution?
� Normal, skewed, uniform, bimodal, and symmetric: which can be used together?

How well do they fit the graphs? Which fit best?

Next, students work in groups to discuss and sketch what they expect for the general
shape for some new data sets, and use the statistical terms to describe the shape of
each. For example, the salaries of all persons employed at the University or grades
on an easy test. There is another whole class discussion to compare answers and
explanations.

The final activity (Matching Histograms to Variable Descriptions) has students
match descriptions of variables to graphs of distributions, helping to develop stu-
dents’ reasoning about behavior of data in different contexts and how this is related
to different types of shapes of graphs. A wrap-up discussion focuses on the charac-
teristics of distributions and how they are revealed in different types of graphs.

Summary

Understanding the idea of distribution is an important first step for students who
will encounter distributions of data and later distributions of sample statistics as
they proceed through their statistics course. While most textbooks ask students to
look at a histogram or stem plot and describe the shape, center, and spread, many
students never understand the idea of distribution as an entity with characteristics
that reveal important aspects of the variation of the data. The focus of the activities
described in this chapter is on developing a conceptual understanding of distribu-
tion, and we have not included activities where students learn to construct different
graphs, a topic well covered in most textbooks. We encourage instructors to repeat-
edly have students interpret and describe distributions as they move through the
course, whether plots of sample data or distributions of sample statistics.



Chapter 9
Learning to Reason About Center

A statistician sees group features such as the mean and
median as indicators of stable properties of a variable
system—properties that become evident only in the aggregate.

(Konold & Pollatsek, 2002, p. 262)

Snapshot of a Research-Based Activity on Center

Pairs of students are given a set of 10 small Post-It R© notes and a number line that
goes from 17 to 25. They are asked to think about a group of college students whose
mean age is 21, and construct a dot plot, using the Post-It R© notes, of an age distri-
bution with a mean of 21. Most of the students quickly figure out that they can stack
all 10 Post-It R© notes at the 21 point. But then, they are told that one of the values
is 24, so they have to figure out where the other values are on the number line (e.g.,
move one note to 18, to balance out the 24, being 3 units above the average of 21).
Students are instructed to move one Post-It R© note to 17, and arrange the rest of the
Post-It R© notes so the mean is still 21. Finally, they move all of the Post-It R© notes
so that none are at 21 but the mean age is 21. Students use different strategies to do
this, such as making sure that every note above the mean has a value equally placed
below the mean. Other students may balance one note that is four units above the
mean with two notes that are two units below the mean, etc. Different results are
compared and discussed.

Students are then instructed to draw dot plots of 10 points that have the same
mean of 21, and then draw deviations from the mean for their graphs. They consider
how the deviations balance each other out, so that if one value is moved producing a
deviation of −3, another value must be moved to have a deviation of +3. This leads
to a discussion of what a mean “means” in terms of these deviations all cancelling
each other out to be zero.

Rationale for This Activity

Although most students have learned how to calculate means before entering their
statistics course, research studies reveal that few understand what a mean really is or
what it tells us about data. Research also shows that students often have difficulty
understanding how the mean and median differ and why they behave differently
(e.g., in the presence of outliers). This activity helps students to build a conceptual
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understanding of what the mean and median actually mean and how they are affected
by the different values in a data set. This lesson also introduces the idea of deviation
early in the course, as a way to understand the idea of a mean and what it represents.
This deviation idea, which begins to connect ideas of center and variability, is re-
visited when learning about variability and the standard deviation, and again when
considering residuals in a regression analysis. This activity helps students develop
a conceptual and a procedural understanding of the mean. By having the students
physically manipulate data values on a number line, they are better able to see and
reason about the idea of deviation from the mean and the balancing of these deviations.

The Importance of Understanding Center

The idea of data as a mixture of signal and noise is perhaps the most fundamental concept
in statistics.

(Konold & Pollatsek, 2002, p. 259)

Understanding the idea of center of a distribution of data as a signal amidst noise
(variation) is a key component in understanding the concept of distribution, and is
essential for interpreting data graphs and analyses. While students develop informal
ideas of center in the earlier units as they graph and describe distributions of data,
they later encounter the idea of center more formally as they learn about different
measures of center, how to compute them, what information they provide, and how
we use them. However, it is impossible to consider center without also considering
spread, as both ideas are needed to find meaning in analyzing data.

The Place of Center in the Curriculum

Traditional textbooks first introduce center, thenintroduce spread, and then move on
to the next topic. However, it may be more helpful to study these topics together
because they are so interrelated (Konold & Pollatsek, 2002; Shaughnessy, 1997).

It is hard to imagine a situation where one would summarize a data set us-
ing only a measure of center without talking about the spread of the data or how
much variability there is around that measure of center. However, there are many
instances, particularly in the media, in which only measures of center are provided
for a data set, in some cases, leading to incorrect conclusions. When comparing
groups or making inferences we need to examine center and spread together: the
signal, and the noise around the signal. While these ideas are introduced in early
units on exploring data, these concepts re-appear when looking at theoretical mod-
els such as the normal distribution and sampling distributions. Later on, the ideas of
center (and spread) are revisited when making statistical inferences about samples
of data.
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Review of the Literature Related to Reasoning About Center

(The knowledge of) computational rules not only does not imply any real understanding of
the basic underlying concept, but also may actually inhibit the acquisition of more adequate
(relational) understanding.

(Pollatsek, Lima, & Well, 1981, p. 202)

Understanding Means

How students understand ideas of center has been of central interest in the re-
search literature. Research on the concept of average or mean was at first the
most common topic studied on learning statistics in the school level (see Konold
& Higgins, 2003; Shaughnessy, 1992, 2003). The studies suggested that the con-
cept of the average is quite difficult to understand by children, college students, and
even elementary school preservice and in-service teachers (Russell, 1990; Groth &
Bergner, 2006).

Early research typically focused on the single idea of center rather than look-
ing at the interrelated concepts of center and spread, and on procedural under-
standing. These studies focused primarily on the mean, either as a simple average
of a single data set or a weighted mean. An early interest was on students’ un-
derstanding of the mean as a balance model (e.g., Hardiman, Well, & Pollatsek,
1984; Strauss, 1987), which is a common method taught in a statistics course.
A balance model illustrates how values are placed on a balance beam at dis-
tances from the mean so that the deviations from the mean are equal. Hardiman
et al. (1984) tested whether improving students’ knowledge of such balance rules
through experience with a balance beam promoted deep understanding of the mean.
Forty-eight college students enrolled in psychology classes participated in the study
which involved pretest, training, and posttest of paper and pencil items. Students
who were given the balance training performed significantly better on the posttest
problems.

Other studies identified several characteristics of the mean and then examined
students’ understanding of these characteristics (Goodchild, 1988; Mevarech, 1983;
Strauss & Bichler, 1988; Leon & Zawojewski, 1993). Mevarech (1983), for exam-
ple, found that high school students made mistakes in solving problems about means
because they believed that means have the same properties as simple numbers, and
that it is helpful to provide students corrective-feedback instruction as they solve
problems involving reasoning about the mean. Strauss and Bichler (1988) found
that fourth- through eighth-grade students had a difficult time understanding seven
properties of the mean. Leon and Zawojewski (1993) looked at school and college
students’ understanding of four components of the mean. Using different testing
formats, they found that some properties of the mean are better understood than
others. The two properties, “the mean is a data point located between the extreme
values of a distribution,” and “the sum of the deviations about the mean equals zero”
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were better understood by students in this study than the two properties, “when the
mean is calculated, any value of zero must be taken into account,” and “the average
value is representative of the values that were averaged.”

Gal, Rothschild, and Wagner (1989, 1990) found that sixth-grade students are
generally unable to use the mean to compare two different-sized sets of data. Later
work showed that students had difficulty working backward from a mean to a data
set that could produce such a mean (Cai, 1998). Study by Mokros and Russell (1995)
expanded on this task by having students manipulate data values to produce a given
mean and studying how students reasoned during this process.

Earlier research has also concentrated on understanding weighted means.
Pollatsek et al. (1981) reported data from interviews of college students indicat-
ing difficulties they had in understanding the need to weight data in computing
a mean. While mathematically sophisticated college students can easily compute
the mean of a group of numbers, this study indicated that a surprisingly large pro-
portion of these students do not understand the concept of the weighted mean,
which is a concept that they often encounter (e.g., grade point averages). When
asked to calculate a mean in a context that required a weighted mean, most sub-
jects answered with the simple or unweighted mean of the two means given in
the problem, even though these two means were from different-sized groups of
scores. Callingham (1997) found that the same problem in a study of preservice
and in-service teachers. As a result of their study, Pollatsek et al. (1981) wrote that
“for many students dealing with the mean is a computational rather than a con-
ceptual act” (p. 191). They concluded that knowledge of “computational rules not
only does not imply any real understanding of the basic underlying concept, but
may actually inhibit the acquisition of more adequate (relational) understanding”
(p. 202).

What students remember about the mean? In general, it appears that many stu-
dents who complete college statistics classes are unable to understand the idea of
the mean. Mathews and Clark (2003) analyzed audio-taped clinical interviews with
eight college freshmen immediately after they completed an elementary statistics
course with a grade of “A.” The point of these interviews was neither to see how
quickly isolated facts could be recalled, nor was the point to see how little students
remember. Rather, the goal was to determine as precisely as possible the conceptions
of mean, standard deviation, and the Central Limit Theorem, which the most suc-
cessful students had shortly after having completed a statistics course. The results
are alarming since these top students demonstrated a lack of understanding of the
mean, and could only state how to find it, arithmetically. Interviewing along the
same lines, a larger (n=17) and more diverse sample of college students from four
distinct campuses, Clark et al. (2003) found overall the same disappointing results.
These researchers call, therefore, for pedagogical reform that will dis-equilibrate the
process image of statistical concepts that students bring with them to college in order
to enable them to encapsulate the process of statistical concepts into objects that are
workable entities (Sfard, 1991). For example, they recommend creating situations
in which students have to determine and reflect which measure of center is more
appropriate.
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Understanding Medians

Difficulties in determining the medians of data sets have also been documented
by research. Elementary school teachers have difficulty determining the medians
of data sets presented graphically (Bright & Friel, 1998). Only about one-third
of twelfth grade students in the United States who took the NAEP test were
able to determine the median when given a set of unordered data (Zawojewski &
Shaughnessy, 2000).

Measures of Center as Typical Values

The typical value interpretation of the arithmetic mean has received a great deal of
attention in curriculum materials and in research literature (Konold &
Pollatsek, 2002). The following is an example of a problem set in a typical value
context:

The numbers of comments made by 8 students during a class period were 0, 5, 2, 22, 3, 2,
1, and 2. What was the typical number of comments made that day? (Konold & Pollatsek,
2002, p. 268)

Several studies have provided insights about students’ thinking in regard to typ-
ical value problems. Mokros and Russell (1995) studied the characteristics of
fourth through eighth graders’ constructions of “average” as a representative num-
ber summarizing a data set. Twenty-one students were interviewed, using a series
of open-ended problems that called on children to construct their own notion of
mathematical representativeness. They reported that students may respond to typical
value problems by: (i) locating the most frequently occurring value; (ii) executing an
algorithm; (iii) examining the data and giving a reasonable estimate; (iv) locating the
midpoint of the data; or (v) looking for a point of balance within the data set. These
approaches illustrate the ways in which school students are (or are not) developing
useful, general definitions for the statistical concept of average, even after they have
mastered the algorithm for the mean.

Levels of Reasoning About Measures of Center

In an investigation of the development of school students’ thinking in regard to
measures of center, Watson and Moritz (1999) placed a structure on the categories
of thinking documented by Mokros and Russell (1995). Continuing this line of re-
search, Watson and Moritz (2000c, 2000d) also used the SOLO taxonomy (Structure
of Observed Learning Outcomes, see Biggs and Collis, 1982) to rank students’
responses to interview questions about averages. They observed movement from
Unistructural, to Multistructural, and finally to Relational levels of reasoning as
students developed from thinking about centers first from “mosts and middles” and
finally to the mean as “representative” of a data set. Jones, Thornton, Langrall,
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Mooney, Perry, and Putt (2000) and Mooney (2002) found that the ability to be
thoughtful and critical about applying formal measures to typical value problems
marks a relatively sophisticated level of statistical reasoning.

Measures of Center as “Signals in Noisy Processes”

A rich spectrum of student reasoning about center is identified by Konold and
Pollatsek (2002): mean as typical value, mean as fair share, mean as data reducer,
and finally, mean as signal amid noise. These researchers suggest that students
should be given more opportunities to work with statistical problems set in contexts
that involve searching for “signals in noisy processes.” The following item is an
example of a data analysis problem that involves detecting a signal in a noisy
process:

A small object was weighed on the same scale separately by nine students in a science class.
The weights (in grams) recorded by each student were 6.2, 6.0, 6.0, 15.3, 6.1, 6.3, 6.2, 6.15,
6.2. What would you give as the best estimate of the actual weight of this object? (Konold &
Pollatsek, 2002, p. 268)

In the case of the repeated measures problem above, the arithmetic mean of the
weights that are bunched closely together could be viewed as a signal that esti-
mates the true weight of the object. The measurement of the object can be viewed
as a noisy process that contains variation stemming from various possible sources.
Konold and Pollatsek (2002) acknowledge the possible cognitive complexity in us-
ing repeated measurement problems with students, pointing out that the mean as
a reliable indicator of signal was not universally accepted by scientists during the
early development of the discipline of statistics (Stigler, 1986). Hence, they call
for more research on students’ thinking in such contexts in order to help advise
instruction.

Patterns of thinking about average in different contexts were investigated by
Groth (2005) who studied fifteen high school students. He used problems set
in two different contexts: determining the typical value within a set of incomes
and determining an average set in a signal-versus-noise context. Analysis of the
problem-solving clinical interview sessions showed that some students attempted
to incorporate formal measures, while others used informal estimating strategies.
Students displayed varying amounts of attention to both data and context in formu-
lating responses to both problems. Groth pointed out the need for teachers to be con-
scious of building students’ statistical intuitions about data and context and informal
estimates of center, and connecting them to formal measures without implying that
the formal measures should replace intuition.

Selecting an Appropriate Measure of Center

Another focus of research has been on the challenge of choosing an appropriate
measure of center to represent a data set. The National Assessment of Education
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Progress (NAEP) data confirm that school students frequently make poor choices
in selecting measures of center to describe data sets (Zawojewski & Shaughnessy,
2000). Choosing an appropriate measure of center was also a challenge for students
enrolled in an Advanced Placement high school statistics course (Groth, 2002).
Similar results were found by Callingham (1997) who administered an item con-
taining a data set structured, so that the median would be a better indicator of
center than the mean, to a group of preservice and in-service teachers. Calling-
ham reports that most of them calculated the mean instead of the more appropriate
median.

In a study on statistical reasoning about comparing and contrasting mean, me-
dian, and mode of preservice elementary school teachers, Groth and Bergner (2006)
described four levels, basing these on the SOLO Model:

� Unistructural-level: responses did not contain any strategy other than definition-
telling when asked to compare and contrast the three measures.

� Multistructural-level: responses included definition-telling along with a vague
notion that the mean, median, and the mode are all tools that can be used to
analyze a set of data; responses did not reflect an understanding that each of the
measures is intended to measure what is central or typical to data sets.

� Relational-level: responses differ from Multistructural responses in that they in-
cluded recognition of the fact that the mean, median, and mode all measure the
center of the data or what is typical about the data in some manner.

� Extended abstract-level: responses include all of the characteristics of those clas-
sified at the relational level, but go beyond relational-level responses in that they
included discussions of when one measure of center might be more useful than
another.

Groth and Bergner’s (2006) study illustrated that attaining a deep understand-
ing of these seemingly easy statistical concepts is a nontrivial matter, and that
there are complex conceptual and procedural ideas that need to be carefully
developed.

Using the History of Measures of Center to Suggest Instruction

The history of statistics can be a source of inspiration for instructional design.
Bakker and Gravemeijer (2006) systematically examined examples of how mea-
sures of center were described and used, starting in ancient historical periods, and
from countries such as India and Greece, in contexts involving mathematics and
science. Based on their analysis of these examples, Bakker and Gravemeijer (2006)
formulate hypotheses about how students in grades 7 and 8 (12–14-years old) could
be supported in learning to reason with mean and median. The following ideas
stemming from the historical phenomenology were found to be most fruitful for
helping young children understand center.
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1. Estimation of large numbers can challenge students to develop and use intuitive
notions of mean.

2. Students may use the midrange as a precursor to more advanced notions of
average.

3. Repeated measurement may be a useful instructional activity for developing un-
derstanding of the mean (cf., Petrosino, Lehrer, & Schauble, 2003).

4. To support students’ understanding of the median, it is helpful to let them visu-
ally estimate the median in a dot plot and look for a value for which the areas on
the left and right are the same.

5. Skewed distributions can be used to make the usefulness of the median a topic
of discussion.

Such a historical study can help to “unpack” and distinguish different aspects and
levels of understanding of statistical concepts and help instructional designers to
look through the eyes of students. Note that some of these hypotheses are in accor-
dance with the results of the research studies described above.

Implications of the Research: Teaching Students to Reason
About Center

What has been striking over 25 years of research is the difficulty encountered by
students of all ages and teachers in understanding concepts related to center. Al-
though students may be able to compute simple arithmetic means, they need help
in understanding what means actually mean. Activities can help students develop
meaningful models such as balancing of data values by manipulating deviations
from the mean to sum to zero.

The research suggests that careful attention be paid to developing the concepts
of measures of center, focusing on mean and median rather than mode. These ideas
should be first introduced informally as students estimate and reason about typical
value for data sets, both large and small, prior to formally studying these topics in
a unit on measure of center. Students may be asked to make and test conjectures
about typical values using real data sets. The research also suggests that students
have opportunities to explore the characteristics of the mean and median and how
they are affected by different types of data sets and distributions. Developing an
understanding of deviation may be an important part of understanding the mean
as a balance point, so activities helping students to see and reason about devia-
tions may help them better understand the mean. The literature suggests both vi-
sual, interactive activities as well as explorations with real data utilizing technology
to produce measures of center, especially for data sets where values are changed
(e.g., outliers are added or removed). Finally, the idea of the center as a signal in
a noisy process should be developed, examining trends in repeated measurements.
This also suggests that ideas of center be introduced along with ideas of spread or
variability, and that these ideas are repeatedly connected as students explore and
interpret data.
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Progression of Ideas: Connecting Research to Teaching

Introduction to the Sequence of Activities to Develop Reasoning
About Center

The idea of typical value as a summary measure of data set, shown graphically, is
first introduced in early units whenever students make or examine graphs of numer-
ical data. While students may intuitively look at the mode or peak of a graph or
look at the middle value on the horizontal axis, they can be guided to think about
the mean and median as typical values by looking at different graphs where mode
or middle scale value do not seem to represent good “typical” values. This will help
motivate the need for examining different measures of center and when to use them.
These informal examinations and estimates should include estimates of spread of
the data as well, as students respond to questions such “what is a typical value for
these data” and “how spread out are the data?,” learning to connect ideas of center
and variability from the beginning of the course.

When formal measures of center are introduced, students are guided to explore
their properties using physical and then computer manipulations of data. Properties
of the mean and median can be explored and examined in this way. It is helpful for
students to actually work backwards, starting with a given value of mean or median
to reason about how different data sets may be constructed and altered to produce
those given values. This can be done first for mean and then for median. Students
then conjecture what typical values they might find for different types of variable,
taking into account the shapes and characteristics of graphs of these variables. These
conjectures can then be tested using real data and technology, and discussions can
examine which measures are more useful summaries for each variable and why.

When students begin to study formal measures of variability, they see the rela-
tionship between mean and standard deviation, and between medial and Interquartile
Range, and how it makes sense to use these pairings when summarizing different
types of distributions (e.g., means and standard deviations for symmetric distribu-
tions, medians and IQR for very skewed distributions, and distributions with out-
liers). The idea of examining center at the same time as variability as a way to
compare groups is then encountered as students learn about and compare boxplots.
When the Normal distribution is introduced, students will see that the mean has
special properties and use in relation with stand deviations and z-scores.

The mean is again examined when learning about samples and how the mean
stabilizes as sample size gets very large, and the role of the mean in the Central
Limit Theorem. As students move from sampling to statistical inference, they again
encounter the mean, distinguishing between using the mean in an inference based
on a large sample from using the mean as a summary measure of a single data set
(when a median might be a better typical value given the shape of the distribution).
The measures of center are also encountered in the unit on covariation when students
look at trends by examining medians of sequential boxplots, and later as centers of
distributions of the two variables. Table 9.1 shows a suggested series of ideas and
activities that can be used to guide the development of students’ reasoning about
models and modeling.
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Table 9.1 Sequence of activities to develop reasoning about center1

Milestones: ideas and concepts Suggested activities

Informal ideas prior to formal study of center

� Idea of center as a typical or representative
value for a graph of a variable (e.g., dot)

� Distinguishing Distributions (Lesson 1, Dis-
tribution Unit, Chapter 8)

� The mean as somewhere in between the high-
est and lowest value, but not necessarily the
middle value or the midpoint of the horizontal
scale

� What does the Mean Mean Activity (Lesson
1: “Reasoning about Measures of Center”)

Formal ideas of center

� Properties of the mean as a balance point and
the value for which all deviations from that
value sum to zero

� What does the Mean Mean Activity (Lesson
1)

� How the mean is affected by extreme values � What does the Mean Mean Activity (Lesson
1)

� The median as the middle value in a data set � What does the Median Mean Activity (Les-
son 1)

� Properties of the median: under what condi-
tions it changes or stays the same

� What does the Median Mean Activity (Les-
son 1)

� Comparing properties of the mean and median � Means and Medians Activity (Lesson 1)
� The idea of a typical value � What is Typical Activity (Lesson 2: “Choos-

ing Appropriate Measures”)
� Understanding why and how to use appropri-

ate measures of center for a sample of data for
a particular variable

� Choosing an Appropriate Measure of Center
Activity (Lesson 2)

Building on formal ideas of center in subsequent topics

� How center and spread are used together to
compare groups

� Activities in Lessons 1, 2, 3 and 4, Comparing
Groups Unit (Chapter 11)

� The idea and role of mean in normal
distribution

� What is Normal Activity (Lesson 3, Statistical
Models Unit, Chapter 7)

� Recognize stability of measures of center as
sample size increases. When sample grows,
see how measures of center predict center of
larger population, and how it stabilizes (varies
less)

� Sampling activities in Lessons 1, 2, and 3,
Samples and Sampling Unit (Chapter 12)

� Role of mean in making inferences � Activities in Lessons 1, 2, 3, 4, and 5 (Statisti-
cal Inference Unit, Chapter 13)

� Role of mean in bivariate distribution ❖ An activity involving fitting and interpreting
the regression line to bivariate data. (The sym-
bol ❖ indicates that this activity is not in-
cluded in these lessons.)

1 See page 391 for credit and reference to authors of activities on which these activities are based.
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Introduction to the Lessons

There are two lessons on reasoning about measures of center. They begin with the
physical activity described earlier where students manipulate Post-It R© notes on a
number line to develop an understanding of mean, and then median. Students use
a Fathom demo to contrast how the mean and median behave for different types of
data sets. Students make and test conjectures about typical values, testing these us-
ing software to generate graphs and statistics. The last activity has students compare
features and uses of different measures of center when summarizing sample data.

Lesson 1: Reasoning About Measures of Center

While students have heard of means and medians before they enter an introductory
high school or college statistics course, this lesson helps them develop a conceptual
understanding of the mean and median. There are three parts to the lesson: an activ-
ity where students move dots on a plot to explore properties of the mean, a similar
activity with the median, and then Fathom demos to further illustrate the properties
of these concepts. Student learning goals for this lesson include:

1. Develop a conceptual understanding of the mean.
2. Understand the idea of deviations (differences from the mean) and how they

balance out to zero.
3. Understand how these deviations cause the mean to be influenced by extreme

values.
4. Develop an understanding of the median as a middle value that is resistant to

extreme values.
5. Understand the differences between mean and median in their interpretation and

properties.
6. Understand how to select appropriate measures of center to represent a sample

of data.

Description of the Lesson

In the first activity described at the beginning of the chapter, (What does the Mean
Mean activity) students are told that the average age (mean) for students in the class
is 21 years and consider what we know about the distribution of students’ ages for
this class (e.g., “Are they all about 21 years old?”), and explain their answer first in
a small group and then to the class. They also explain where this value of 21 came
from and how it was produced. Students make conjectures about the ages of these
10 students and use 10 Post-It R© notes to form a series of dot plots on a given number
line so that the average is 21 years. Students move one Post-It R© note to 24 years, and
later one to 17, and figure out how to move one or more of the other Post-It R© notes
to keep the mean at 21 years, discussing their strategies and reasoning with their
group and then the class. The term deviation is introduced to represent the distance
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of each data value from the mean and students examine deviations for their plots
under different conditions, seeing how they have to balance to zero.

In the second activity (What does the Median Mean?), students reduce their Post-
It R© notes to 9 and arrange them on the same number line used earlier so that the
median is 21 years. Again, they are given different constraints (e.g., change one of
the values that is currently higher than 21 years) and they determine if and how the
median is affected. Finally, students discuss and summarize what would they have
to do with a data value in the plot in order to change the median.

In the final activity of this lesson (Means and Medians), students observe and
discuss two Fathom Demos: The Meaning of Mean and Mean and Median to further
understand properties of these measures. The lesson ends with a wrap-up discussion
about use interpretation, and properties of the mean and median.

Lesson 2: Choosing Appropriate Measures

This lesson introduces the idea of choosing an appropriate measure of center to
describe a distribution. It has students predict typical values for variables that have
different distributions. The lesson then has students find the actual mean and median
for those variables using computer software and examine the distributional features
that made their prediction closer to either the mean or median. It also introduces the
idea of outlier influence on these measures of center. Student learning goals for this
lesson include:

1. Deeper conceptual understanding of mean and median.
2. Understand when it is better to use each as a summary measure for a distribution

of data.
3. How to generate these statistics using Fathom Software.

Description of the Lesson

Students are first asked how we can describe the typical college students taking
an introductory statistics course, and in what ways do students in this class differ?
They discuss how people use the words: typical, average, and normal in an everyday
sense and how these words are used as statistical terms: mean, median, center, and
average.

In the What is Typical activity, students consider a set of variables that were mea-
sured on their first day of class Student Survey. Working in pairs, they predict what
they might expect as a typical value for all students enrolled in their statistics class
this term. They are reminded that a typical value is a single number that summarizes
the class data for each variable. They write their prediction in the “First Prediction”
column of the table shown below (Table 9.2).

Next, they generate dot plots of the data using Fathom software to see if their
original predictions seemed reasonable. Based on the graphs, they are allowed to
make revised predictions for the typical value for each of the variables, which are
written in the table above in the “Revised Prediction” column.
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Table 9.2 Predicting and verifying typical values in the What is Typical Activity

Attribute from Student Survey First
Prediction

Revised
Prediction

Statistics from
Fathom
Mean Median

Age
Number of statistics courses you are taking
this semester
Credits registered for this semester
Total college credits completed
Cumulative GPA
Hours a week you study
Number of emails you send each day
Number of emails you receive each day

Students use Fathom to find the mean and median for each of these variables
and complete the last two columns of the table above. They discuss how close were
their revised predictions to the “typical” values produced by Fathom and for which
attributes were their predictions most accurate. They also consider what results were
most surprising to them and why, and whether in general, were their revised predic-
tions closer to the means or medians of these variables.

Students are asked to discuss:
� Which measures of center were closest to their intuitive ideas of “typical” values?
� What information do means and medians provide about a distribution?
� How to decide whether to use the mean or median to summarize a data set?
� In statistics, what do they think is meant by the word “typical”?

In Choosing an Appropriate Measure of Center activity, students suggest conditions
where the mean and median provide similar information and when they give differ-
ent information for the same data set. This leads to a discussion of which measure
is more appropriate for each variable and why, and how to choose the best measure
of center for a data set.

Students are asked if it is all right to compute a mean or median without first
looking at a graph of data and then why that is not a good idea. They reason about
what information is missing if all they are given is a measure of center, including
what they know and not know if all they were given were measures of center. This
provides a segue to discussion on spread (the next unit) and reinforces the con-
nection between center and spread. In a wrap-up discussion, students are asked to
imagine a variable that could be measured in two different settings that might yield
data sets that have the same mean and different amounts of spread, one with a little
spread and one with a lot of spread, and explain their reasoning.

Summary

The two lessons in the unit on measures of center are closely connected to ideas
of distribution and variability, so that the ideas of mean and median are always



200 9 Learning to Reason About Center

connected to these concepts and contexts. The intent of the lessons is to help students
build a conceptual understanding of mean and median as well as the idea of center
of a distribution, through physical manipulations of data values, making and testing
conjectures about typical values, and discussing the use and properties of these two
measures. While the concepts may seem simple, and not worth two full lessons, we
believe that that these lessons provide important foundations for and connections to
subsequent units in the course.



Chapter 10
Learning to Reason About Variability

Variation is the reason why people have had to develop
sophisticated statistical methods to filter out any messages
from the surrounding noise.

(Wild & Pfannkuch, 1999, pp. 235–236)

Snapshot of a Research-Based Activity on Variability

Students are given pairs of histograms with the assignment to discuss and deter-
mine which graph in each pair would have a higher standard deviation and why.
First, students are encouraged to actually draw deviations on the histograms and
draw lines from the mean to represent the number of deviations for each bar of the
histogram (e.g., a bar representing five values would correspond to five lines of the
same length, showing deviations from the center). Some of the histograms are easier
to compare than others, such as those that have a few bars close to the center versus
a histogram with most bars far from the center (see examples in Fig. 10.1 ). The
difficult comparisons are for graphs that have the same range, the same frequencies
for each bar, but different numbers of bars (representing different possible values of
the variables).

Thinking about the size and number of deviations from the mean helps the stu-
dents reason about which graph would have a larger standard deviation. It also helps
them confront some misleading intuitions such as looking at graph A in the second
example below, and initially describing this graph as having no variability, because
it is confused with a time series graph or a bar graph where the height of the bars
indicates that they all have the same measurement. Drawing deviations from the
center helps students to realize that this histogram is different than a bar graph
or time series, and that there are different deviations from the center that can be
“averaged” to produce an estimate of the standard deviation.

After students compare and discuss their answers, they enter the data for each
graph into Fathom (Key Curriculum Press, 2006) and have the standard deviations
computed. They use Fathom to calculate the actual squared deviations from the
mean for each graph. After the students have checked their answers in this way, the
class discusses each pair of histograms and why the standard deviations were larger
or smaller in each pair. As they do this, they construct a set of factors that appear to
influence the size of the standard deviation (e.g., more bars farther from the mean)
and those that do not seem to affect the size (e.g., “bumpiness” of the graph, or
different heights of the bars).

J.B. Garfield, D. Ben-Zvi, Developing Students’ Statistical Reasoning,
C© Springer Science+Business Media B.V. 2008
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c. Both graphs have the
same standard deviation.

Fig. 10.1 Comparing standard deviations of pairs of histograms from the What Makes the Standard
Deviation Larger or Smaller activity

Rationale for This Activity

The standard deviation is an important and much-used measure of variability, but
one that is almost impossible for beginning statistics students to understand. While
students learn what the standard deviation is and how it is calculated, they rarely
have an understanding of what this measure is and how to interpret it. The activity
described above is a culminating activity in the unit on variability, because it helps
students recognize and integrate several sub ideas (e.g., a graphical representation of
distribution, the mean of a distribution, spread, and deviation). The idea of standard
deviation as an average distance from the center is developed by first having students
estimate the mean of each graph, taking into account both value (on the number line)
and density (frequency of each bar). Students are guided to reason about deviations
from the mean and think about how values close to and far from the mean affect
those deviations and squared deviations.

Entering the data from each histogram themselves (to find the actual standard
deviations for each pair of graphs), helps students remember that each bar in the
histogram represents one or more pieces of data of the same value, distinguishing
these graphs from case value graphs (see more on this issue in Chapter 8). Seeing
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the squared deviations illustrates how deviations far from the mean have a greater
impact on the size of the standard deviation.

The Importance of Understanding Variability

Variability is . . . the essence of statistics as a discipline and it is not best understood by
lecture. It must be experienced.

(Cobb, 1992)

A major goal of most introductory statistics courses is to help students understand
and be aware of the omnipresence of variability and the quantification and explana-
tion of variability (Cobb, 1992). These two topics are also highlighted in the GAISE
report (2005a, 2005b):

The omnipresence of variability: Recognizing that variability is ubiquitous. It is
the essence of statistics as a discipline and it is not best understood by lecture. It
must be experienced.
The quantification and explanation of variability: Recognizing that variability
can be measured and explained, taking into consideration the following: (a)
Randomness and distributions; (b) patterns and deviations (fit and residual); (c)
mathematical models for patterns; (d) model-data dialogue (diagnostics).

Understanding the ideas of spread or variability of data is a key component of un-
derstanding the concept of distribution, and is essential for making statistical infer-
ences. While students develop informal ideas of spread in the earlier unit on graph-
ing and describing distributions, they later encounter these ideas more formally as
they learn about different measures of variability (e.g., range, standard deviation,
and interquartile range), what they mean, how to interpret them, how they compare
to each other as statistical summaries of data, and what information they provide
and do not provide, and how we use them in analyzing data.

There has been increasing attention paid to the importance of students developing
an understanding of and appreciation for variability as a core component of statis-
tical thinking (Cobb, 1992; Moore, 1998). However, it is impossible to consider
variability without also considering center, as both ideas are needed to find meaning
in analyzing data.

The Place of Variability in the Curriculum

The idea of spread, or variability should permeate the entire curriculum. We advo-
cate introducing ideas of spread first informally, and later formally. Ideas of vari-
ability can be introduced the first day of class (see lessons from the data unit) and
revisited in the unit on distribution, where students describe the spread or clustering
of values in a graph of a distribution. When center is introduced, the idea of deviation
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from the mean is used to help understand the meaning of the mean, and this idea of
deviation from the mean is then revisited when studying standard deviation. While
range is a fairly easy concept for students to understand, standard deviation is much
more difficult. Interquartile range is also a difficult concept, and best introduced in
the context of comparing groups with boxplots, when it is illustrated visually by the
width of the box.

It is hard to imagine a situation where one would summarize a data set using only
a measure of center or using only a measure of spread. When comparing groups
or making inferences, we need to look at center and spread together: the signal,
and the noise around the signal. Therefore, ideas of center and spread are most
often seen and used together, whether informally describing distributions, looking
at theoretical models such as the normal distribution and sampling distributions, or
in making inferences.

Review of the Literature Related to Reasoning About Variability

Variation vs. Variability

Before we begin to summarize current research on reasoning about variability, we
want to address the question of terminology. An inconsistent use of terminology is
noticeable in research studies about variability. While some use “variability” and
“variation” interchangeably, others distinguish between the meanings of these two
words. Reading and Shaughnessy (2004) suggest the following distinctions: vari-
ation is a noun describing the act of varying, while variability is a noun form of
the adjective “variable,” meaning that something is likely to vary or change. Since
this distinction has not yet been agreed upon in the statistics education research
community, we note this argument but have chosen to use the term variability as the
general, omnibus term for these ideas in this chapter.

The Emergent Research About Variability

Recent discussions in the statistics education community have drawn attention to
the fact that statistics text books, instruction, public discourse, as well as research
have been overemphasizing measures of center at the expense of variability (e.g.,
Shaughnessy, 1997). Instead, there is a growing consensus to emphasize general
distributional features such as shape, center, and spread and the connections among
them in students’ early experiences with data. It is also suggested to focus students’
attention on the nature and sources of variability of data in different contexts, such as
variability in a particular data set, outcomes of random experiments, and sampling
(Shaughnessy, Watson, Moritz, & Reading, 1999; Gould, 2004). These views are
supported by a review of several studies by Konold and Pollatsek (2002) that has
shown that “the notion of an average understood as a central tendency is inseparable
from the notion of spread” (p. 263). Their well-known metaphor for data as signal
and noise implies that students should come to see statistics as “the study of noisy
processes – processes that have a signature, or signal” (p. 260).
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Difficulties in Understanding Variability

Despite the widespread belief in the importance of this concept, current research
demonstrates that it is extremely difficult for students to reason about variability
and that we are just beginning to learn how reasoning about variability develops
(Garfield & Ben-Zvi, 2005). Understanding variability has both informal and formal
aspects, moving from understanding that data vary (e.g., differences in data values)
to understanding and interpreting formal measures of variability (e.g., range, in-
terquartile range, and standard deviation). While students can learn how to compute
formal measures of variability, they rarely understand what these summary statistics
represent, either numerically or graphically, and do not understand their impor-
tance and connection to other statistical concepts. What makes the understanding
of the concept even more complex is that variability may sometimes be desired
and of interest, and sometimes be considered error or noise (Gould, 2004; Konold
& Pollatsek, 2002), as well as the interconnectedness of variability to concepts of
distribution, center, sampling, and inference (Cobb et al., 2003b).

These difficulties are evident, for example, in a series of interview studies with
undergraduate students who had earned a grade of A in their college statistics course,
Mathew and Clark (2003) found that students could not remember much at all about
the standard deviation. In another interview study of introductory statistics students’
conceptual understanding of the standard deviation, delMas and Liu (2005) designed
a computer environment to promote students’ ability to coordinate characteristics
of variation of values about the mean with the size of the standard deviation as a
measure of that variation. delMas and Liu found that students moved from simple,
one-dimensional understandings of the standard deviation that did not consider vari-
ation about the mean to more mean-centered conceptualizations that coordinated the
effects of frequency (density) and deviation from the mean.

In a study investigating students’ statistical reasoning, using the Statistical Rea-
soning Assessment (SRA), Garfield (2003) found that even students in introductory
classes that were using reform textbooks, good activities, and high-quality technol-
ogy had significant difficulty reasoning about different aspects of variability, such
as representing variability in graphs, comparing groups, and comparing the degree
of variability across groups.

Developing Students Reasoning About Variability

A variety of contexts have been used in statistics education to study students’ rea-
soning about variability at all age levels. For example, in a study of elementary
students, Lehrer and Schauble (2007) contrast students’ reasoning about variabil-
ity in two contrasting contexts: (a) measurement and (b) “natural” (biological).
When fourth-graders were engaged in measuring the heights of a variety of objects,
distribution emerged as a coordination of their activity. They were able to invent
statistics as indicators of stability (e.g., center corresponded to “real” length) and
variation of measure (e.g., spread corresponded to sources of error such as tool,
person, trial-to-trial). In the context of natural variation activity (growth of plants),
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these same students (now fifth-graders) had difficulties handling sources of natural
variation and related statistics. Activities that promoted investigations of sampling
(e.g., “what would be likely to happen to the distribution of plant heights if we grew
them again”) and comparing distributions (e.g., “how one might know whether two
different distributions of height measurements could be considered ‘really’ differ-
ent”) were found useful in developing students’ understanding of variability.

In a design research conducted with students in grades 7 and 8 (Bakker, 2004b),
instructional activities that could support coherent reasoning about key concepts
such as variability, sampling, data, and distribution were developed. Two instruc-
tional activities were found to enable a conceptual growth: A “growing a sample”
activity that had students think about what happens to the graph when bigger sam-
ples are taken, and an activity requiring reasoning about shape of data.

The advantage in discussing ideas of variability in connection with ideas of center
was described by Garfield et al. (2007). In this study with undergraduate students,
results indicated that students could develop ideas of “a lot” or “a little” variability
when asked to make and test conjectures about a series of variables measuring minutes
per day spent on various activities (e.g., time spent studying, talking on the phone,
eating, etc.). They also found that by having students reason abut the distributions
of these variables informally, they could move them toward comparisons of formal
measures of variability (e.g., standard deviation, range, and interquartile range).

Other contexts examined include variability in data (Ben-Zvi, 2004a; Groth,
2005; Konold & Pollatsek, 2002; Petrosino, Lehrer, & Schauble, 2003), bivariate
relationships (Cobb et al., 2003b; Hammerman & Rubin, 2003), comparing groups
(Ben-Zvi, 2004b; Biehler, 2001; Lehrer & Schauble, 2002; Makar & Confrey, 2005),
probability contexts (Reading & Shaughnessy, 2004), measures of spread such as
the standard deviation (delMas & Liu, 2005), and sampling (Chance et al., 2004;
Watson, 2004). These studies are mostly exploratory and qualitative, and their re-
search goal is often to explore what and how students come to understand ideas of
variability in the different contexts. The kinds of questions and activities used in
these studies suggest ways we can help students develop reasoning about variability
across an entire course as well as assess informal and formal aspects of students’
understanding of variability.

Levels of Reasoning About Variability

Based on results from a large sample of students on a survey of variability tasks,
Watson et al. (2003) propose a model of students’ reasoning about variability. Using
the SOLO model (Biggs & Collis, 1982), they qualitatively describe four hierarchi-
cal levels of progressively sophisticated understanding of reasoning about variabil-
ity: Prestructural, Unistructural, Multistructural, and Relational. They suggested that
this scale might be useful in tracking student improvement over time and in relation
to particular sequences of learning activities. The descriptions of these levels, as
well as the work on informal and formal ideas of variability (Garfield et al., 2007)
suggest the need for carefully designed activities to lead students to develop higher
or more formal levels of reasoning.



Implications of the Research: Teaching Students to Reason About Variability 207

Implications of the Research: Teaching Students to Reason
About Variability

Noticeably lacking in the current research literature are studies of how to best impact
the learning of college students who are typically introduced to variability in a unit
of descriptive statistics, following the units of graphing univariate data and measures
of center. Measures of variability (or spread) are then introduced, and students learn
to calculate and briefly interpret them. Typically, only the formal notion of vari-
ability as measured by three different statistics (i.e., the range, interquartile range,
and standard deviation) is taught. Students often do not hear the term “variabil-
ity” stressed again until a unit on sampling, where they are to recognize that the
variability of sample means decreases as sample size increases. When students are
introduced to statistical inference, variability is then treated as a nuisance parameter
because estimating the mean becomes the problem of importance (Gould, 2004).

Given this typical introduction in textbooks and class discussion, it is not sur-
prising that few students actually develop an understanding of this important con-
cept. Good activities and software tools designed to promote an understanding of
variability do exist. However, they are typically added to a lesson or given as an
assignment instead of being integrated into a plan of teaching, and their impact on
student understanding has not been subjected to systematic study. So, while there
have been positive changes in introductory statistics classes, they still fall short of
giving students the experiences they need to develop statistical thinking and a deep
understanding of key statistical concepts.

We would like our students to follow the way statisticians think about variability.
When statisticians look at one or more data sets, they often appraise and compare
the variability informally and then formally, looking at appropriate graphs and de-
scriptive measures. They look at both the center of a distribution as well as the
spread from the center, often referring to more than one representation of the data
to lead to better interpretations. Statisticians are also likely to consider sources of
variability, including the statistical and measurement processes by which the data
were collected.

Konold and Pollatsek (2002) offer the following suggestions about how we might
help students and future teachers develop ideas of the signal-noise perspective of
various statistical measures:

1. Using processes involving repeated measures;
2. Explorations of stability such as drawing multiple samples from a known popu-

lation and evaluating particular features, such as the mean, across these replica-
tions;

3. Comparing the relative accuracy of different measurement methods;
4. Growing samples – students observe a distribution as the sample gets larger;
5. Simulating processes – students investigate why many noisy processes tend to

produce mound-shaped distributions;
6. Comparing groups; or
7. Conducting experiments.
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Garfield and Ben-Zvi (2005) outline a list of increasingly sophisticated ideas for
constructing “deep understanding” of variability. This list offers a sequence through
which students may be guided to develop a deep understanding of this concept, as
shown below:

1. Developing intuitive ideas of variability
2. Describing and representing variability with numerical measures
3. Using variability to make comparisons
4. Recognizing variability in special types of distributions
5. Identifying patterns of variability in fitting models
6. Using variability to predict random samples or outcomes
7. Considering variability as part of statistical thinking

Progression of Ideas: Connecting Research to Teaching

Introduction to the Sequence of Activities to Develop Reasoning
About Variability

Table 10.1 shows a series of steps that can be used to help students first build
informal and then formal ideas of variability. These ideas are first introduced in
earlier units on data, distribution, and center. Then the formal idea of standard de-
viation is introduced and is used to examine and reason about data. The concept
of interquartile range is introduced in the later unit on comparing groups, a unit
that helps connect ideas of center and spread visually and for the purpose of com-
paring sets of data to answer a research question. The idea of variability is visited
again in the unit on models, when the normal distribution is introduced and the
unique characteristics of the mean and standard deviation are shown as part of the
Empirical Rule. The interconnections of center and spread are also demonstrated
in the sampling, statistical inference, and covariation units. Each time the basic
idea of variability is explicitly revisited in that particular context, emphasized, and
discussed.

Introduction to the Lessons

While students have been informally introduced to the idea of spread and range ear-
lier, this set of lessons looks more closely at variability and the standard deviation.
First, students collect measurements to help them recognize two ways of looking
at variability, as noise and as diversity. They informally think about a measure
of spread from the center. The second lesson helps develop the idea of standard
deviation and encourages students to reason about how this statistics is used to mea-
sure and represent variability and factors that affect the standard deviation, making
it larger or smaller.
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Table 10.1 Sequence of activities to develop reasoning about variability1

Milestones: ideas and concepts Suggested activities

Informal ideas prior to formal study of variability
� Data vary. Values of a variable illustrate

variability

� Meet and Greet Activity (Lesson 1, Data Unit,
Chapter 6)

� Variability in Results from a random
experiment

� Activities in Lessons 1 and 2, Statistical Models
Unit (Chapter 7)

� Informal idea of spread of data by examining a
graph or comparing graphs

� Distinguishing Distributions Activity (Lesson
1, Distributions Unit, Chapter 8)

� Range as a simple measure of spread ❖ An activity where students describe distribu-
tion, and note range as a measure of spread.
(The symbol ❖ indicates that this activity is not
included in these lessons.)

Formal ideas of variability
� Two ideas of variability: diversity or

measurement error

� How Big is Your Head Activity (Lesson 1:
“Variation”)

� Sources of variability, a lot and a little
variability

� How Big is Your Head Activity (Lesson 1)

� Averaging deviations from the mean as a
measure of spread

� Comparing Hand Spans Activity (Lesson 2:
“Reasoning about the Standard Deviation”)

� Standard deviation as a measure of average
distance from the mean

� Comparing Hand Spans Activity (Lesson 2)

� Understanding factors that cause the standard
deviation to be larger or smaller

� What Makes the Standard Deviation Larger or
Smaller Activity (Lesson 2)

� How center and spread are represented in
graphs?

❖ An activity where students match a set of
graphs to the corresponding set of statistics

Building on formal ideas of variability in subsequent topics
� Range and IQR in a boxplot � How Many Raisins in a Box Activity (Lesson

1, Comparing Groups Unit, Chapter 11)
� Variability within a group and variability

between groups

� Gummy Bears Activity (Lesson 2, Comparing
Groups Unit, Chapter 11)

� What makes the range and IQR larger and
smaller?

� How do Students Spend their Time Activity
(Lesson 4, Comparing Groups Unit,
Chapter 11)

� Understanding how and why center and spread
are used to compare groups

� How do Students Spend their Time Activity
(Lesson 4, Comparing Groups Unit,
Chapter 11)

� Role of mean and standard deviation in
describing location of values in a normal
distribution

� Activities in Lesson 3, Statistical Models Unit
(Chapter 7)

� Understanding why and how variability
decreases as sample size increases in sampling
distributions

� The Central Limit Theorem Activity (Lesson 3,
Samples and Sampling Unit, Chapter 12)

� Understanding ideas of variability between and
within groups when comparing samples of data

� Gummy Bears Revisited Activity (Lesson 4,
Statistical Inference Unit, Chapter 13)

� Variability of data in a bivariate plot � Interpreting Scatterplots Activity (lesson 1, Co-
variation Unit, Chapter 14)

1 See page 391 for credit and reference to authors of activities on which these activities are based.
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Lesson 1: Variation

This lesson is designed to help students reason informally about variability. Students
compare measurements for two sets of repeated measurements, to discover two kind
of variability: (1) variability as an error of measurement (repeated measures of the
same head circumference); and (2) variability as an indicator of diversity (measure-
ments of different people’s head circumferences). Students are then introduced to
the concept of signal and noise, and discuss the stability of the mean as more data
are collected. Student learning goals for the lesson include:

1. Understand different types (sources) of variability (when it’s desired and when
it’s noise).

2. Understand the ideas of mean as signal and variability as noise, from repeated
measurements in an experiment.

3. Understand that it is desirable to reduce variability in measurement (by using
experimental protocols).

Description of the Lesson

Students are asked to think about variability in the class, and in particular, of head
sizes. In the How Big is Your Head activity, they plan a method to measure the
circumference of each of their heads, keeping track of the decisions they make
about measuring. A class discussion about this results in a common protocol to
use. Students are given a measuring tape to use, and they measure each of their
heads using the protocol established and they record the data on the board (or on a
computer spreadsheet).

Next, as a class, the students choose one person who will have their head mea-
sured by every student in the class. These measurements are also recorded for the
class. Students then work with a partner to obtain a set of additional body mea-
surements (all in centimeters) listed in Fig. 10.2. These data will be used in other
activities in the course. These data are later entered in Fathom.

Body Data Collection

Height (with shoes on): __________ 

Arm Span (from fingertip to fingertip with arms out-stretched): __________ 

Kneeling Height: __________ 

Hand Length (from the wrist to the tip of the middle finger): __________ 

Hand Span (from the tip of the thumb to the tip of the pinkie while hand is 

stretched): __________ 

Fig. 10.2 Record sheet for the body measurements survey
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Fathom is used to create a plot of students’ head sizes so that they may be exam-
ined and summarized. Unusual values are examined and discussed to see if they are
legitimate or the result of a faulty measurement process.

Students then select two numbers that seem reasonable for completing the fol-
lowing sentence. (Note: There is more than one reasonable set of choices.)

The typical head circumference for students in this class is about cm give or take
about cm.

These answers as discussed and lead to a discussion of possible reasons for the
variability in the measurements of students’ head circumferences. Students then
consider whether the observed variability could be reduced and if so, how that might
happen. They offer suggestions for ways to make the measurements more standard.

Next, the class examines data for the repeated measurements of one student’s
head circumference. These data are entered into Fathom and are graphed and sum-
marized in terms of shape, center, and spread. This graph is then compared to the
first graph of all students’ head circumferences and reasons for the differences are
discussed. This time, the students suggest that the variability is solely due to the
measurement process and talk about ways to reduce that variability.

A class discussion of the difference between these two sets of measurements of
head circumference includes the different types and sources of variability, and when
we might expect (and accept) variability in measurements and when we want to
keep it as small as possible. The concepts of signal and noise are revisited, and the
idea of variability as noise in the case of the repeated measurements of one head is
discussed.

A wrap-up discussion includes suggestions for different sources of variability
in data; the two kinds of variability are: “diversity” (spice of life) and “error or
noise”. Students are asked which type of variability we would like to have large and
which we would like to have small, and why. They finally come up with some other
examples of signal and noise, and to consider what is important in examining and
interpreting signal and noise when we explore data.

Lesson 2: Reasoning About the Standard Deviation

This lesson encourages students to reason about the standard deviation. Students
begin by visualizing and estimating average distances in an activity involving hand
spans. The next part of the lesson is designed to help students improve their rea-
soning about and understanding of variability by thinking about what a standard
deviation is and applying that knowledge to determine which of two graphs has a
higher standard deviation. Student learning goals for the lesson include:

1. Understand and informally estimate deviations from the mean and “typical” de-
viation from the mean.

2. Understand standard deviation as a measure of spread.
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3. Understand what makes standard deviations larger or smaller, what types of
graphs reveal different amounts of variation.

4. Reason about connections between measure of center and spread, and how they
are revealed in graphical representations of data.

Description of the Lesson

In the first activity, Comparing Hand Spans, students examine and compare their
hands and think about variability in hand spans. Students find the hand span for
every person in their group. They use a dot plot to examine how these values vary.
They suggest two sources of variability in these measurements, i.e., two reasons
why the measurements are not all the same.

Next, students record initials above the dots to identify each case. They find the
mean and mark it with a wedge (�) below the correct place on the number line.
They estimate how far each of their hand span measurements is from the mean of
their group. They make a second dot plot, this time of the differences (deviations)
from the mean for each student in their group, and find the mean of these differ-
ences (deviations). Using the idea of deviations from the mean, students suggest a
“typical” distance (deviation) from the mean.

Fathom is used to re-create the dot plot and to check their calculations and to
compute the standard deviation of the group’s hand span data. Students compare
the actual standard deviation to the “typical” distance (deviation) the group found
earlier and to speculate about the difference in these values.

Students then access the entire set of Hand Spans for the class that were gathered
in the pervious activity and find the standard deviation of these measurements. This
statistic is compared to the standard deviation of hand spans for the small group of
four originally produced, and differences are discussed. Finally, students discuss the
idea of a “typical” deviation and the standard deviation.

The second activity What Makes the Standard Deviation Larger or Smaller con-
tinues the discussion of a typical, or standard, deviation from the mean. First, stu-
dents examine the following dot plot (Fig. 10.3 ), which has the mean marked by
a vertical line. Students consider how large the deviations would be for each data
point (dot).

Next students draw in the plot each deviation from the mean as shown below
(Fig. 10.4 ).

Next, students reason about the average size (length) of all of those deviations,
and use this to estimate the standard deviation. They draw the estimated length of
the standard deviation. This process is repeated with a second dot plot as shown
below (Fig. 10.5 ).

Then students are given a histogram (Fig. 10.6 ) and they use the same process,
thinking about dots “hidden” by the bars, to draw and estimate the length of the
standard deviation. The mean of the data set is given (2.57). Students are encouraged
to draw in the appropriate number of dots in each bar of the histogram to make sure
they have the appropriate number of deviations.
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Fig. 10.3 Dot plot from the
What Makes the Standard
Deviation Larger or Smaller
activity

Fig. 10.4 Drawing deviations
from the mean in a dot plot
from the What Makes the
Standard Deviation Larger or
Smaller activity

Fig. 10.5 Second dot plot
from the What Makes the
Standard Deviation Larger or
Smaller activity

Students are then given six pairs of histograms, for which they are to try to deter-
mine which graph in the pair would have a larger standard deviation or would they
be the same, and why. The mean for each graph is given just above each histogram.
In doing so, students try to identify the characteristics of the graphs that make the
standard deviation larger or smaller. Two such pairs of histograms are shown above
in Fig. 10.1.

After students complete the set of comparisons, their answers can be discussed
and compared as a class and correct answers provided (e.g., the actual size of
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Fig. 10.6 A histogram from
the What Makes the Standard
Deviation Larger or Smaller
activity

the standard deviation for each graph in the activity). Students elaborate on which
graphs were harder to compare, which were easier and why.

In a wrap-up discussion, students comment on why we need measures of vari-
ability in addition to measures of center, and why variability is so important in data
analysis. They speculate on why variability is the basis of statistical analysis and
how we represent and summarize variability.

Summary

The two lessons in this unit focus mainly on the ideas of types of variability and the
meaning of the standard deviation. If students can develop an understanding of this
important measure of spread, it will help them learn and reason about the related
concept of sampling error in the unit on sampling (Chapter 12) and margin of error
in the unit on inference (Chapter 13). The next chapter (Chapter 11) introduces the
range and interquartile range as measures of spread in the context of using boxplots
to compare groups.



Chapter 11
Learning to Reason About Comparing Groups

As statistics moves to the forefront in education, much interest
is developing around the process of comparing two groups . . .
(which) previews an important concept later developed in
introductory college statistics courses: statistical inference.

(Makar & Confrey, 2002, p. 2)

Snapshot of a Research-Based Activity on Comparing Groups

Students are shown a bag of gummy bears (a rubbery-textured confectionery,
roughly two cm long, shaped in the form of little bears) and two stacks of books:
one is short (one book) and one is high (four stacked books). They are shown a
launcher made with tongue depressors and rubber bands (see Fig. 11.1), and are
asked to make a conjecture about how the height of a launching pad will result in
different distances when gummy bears are launched. The students discuss different
rationales for launches traveling farther from either of the height conditions. They
are then randomly assigned to small groups to set up and gather data in one of the
two conditions, each small group launching gummy bears 10 times to collect data
for their assigned height (short or high stack of books).

Once the data are recorded, they are analyzed using boxplots to compare the
results for the two conditions. The boxplots are used to determine that the higher
launch resulted in further distances.

Students had previously completed an activity that showed them how dot plots
can be transformed into boxplots, and are reminded again of the dots (individual data
values) hidden within or represented by the boxplot. Their attention is drawn to two
types of variability, the variability between the two sets of data (resulting from the
two conditions) and the variability in the data: within each group (in each boxplot).
Students recall earlier discussions in the variability unit on error variability (noise)
and signals in comparing these groups, and they realize the need for an experimental
protocol that will help to keep the noise small and reveal clearer signals, so that
true difference can be revealed. This experiment is revisited in a later activity when
they are able to use a protocol to gather data with less variability and analyze the
difference using a t-test (in the Inference unit, see Chapter 13).

J.B. Garfield, D. Ben-Zvi, Developing Students’ Statistical Reasoning,
C© Springer Science+Business Media B.V. 2008
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Fig. 11.1 Example of the launching set-up for gummy bears (from Cobb & Miao, 1998)

Rationale for This Activity

While this activity is often used to illustrate the principles of experimental design,
we use it in this unit on comparing groups with boxplots for many reasons. First, it
provides an interesting and motivating context for comparing two groups of data: to
answer a question using an experiment. Second, this activity helps students deepen
their understanding of variability, what causes it, how it affects an experiment, how
it is revealed in graphs, and its role in comparing two groups of data. Finally, we
believe that it is important to revisit principles of experimental design and methods
of collecting data so that students can deepen their understanding of these concepts
in different contexts and connect these principles to the new topics being studied.

The Importance of Reasoning About Comparing Groups

Comparing two groups of data is an intuitive and interesting task frequently used
to engage students in reasoning about data. Many research studies compare two or
more groups, either on an experimental variable (e.g., use of a new drug) or on an
observational variable (e.g., gender, or age group). While many statistics courses
first teach students to graph, summarize, and interpret data for a single group, of-
ten activities involving comparisons of more than one group are more interesting
and provide the context for meaningful learning. While dotplots can be useful for
comparing small data sets, we believe that boxplots are a very useful graphical rep-
resentation for comparing larger data sets. Although boxplots are often very difficult
for students to understand, we think that this graph is extremely useful because it
facilitates the comparison of two or more groups, allowing for easy comparisons of
center (median), variability, (range and interquartile range) and other measures of
location (upper and lower quartile) as well as identifying outliers that may not be
revealed in a histogram. While our lessons are designed to help students construct
an understanding of boxplots as they may be used to compare data sets, we believe
that it is always helpful for students to use different graphical representations in
exploring and analyzing data.

The reasons for including “Comparing Groups” as a separate topic of instruction
include:
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1. Comparing two or more groups can be structured as an informal and early ver-
sion of statistical inference, and can help prepare students for formal methods of
statistical inference.

2. Problems that involve group comparisons are often more interesting than ones
that involve a single group.

3. Research shows that students at all ages do not have good intuitive strategies for
comparing groups and may have some common misconceptions regarding group
comparisons, that need to be explicitly addressed in instruction (e.g., Konold
et al., 1997).

4. Comparing groups motivates the need for and use of advanced data representa-
tions such as boxplots, a graphical display that is best employed in group com-
parison situations, but which is not easily understood or interpreted by students.

Comparing Groups with Boxplots

Boxplots are part of various graphical tools developed by Tukey (1977) for the
purpose of analyzing data. In their review of the literature, Bakker, Biehler, and
Konold (2004) suggested why educators began to introduce even young students to
boxplots.

First, the boxplot incorporates the median as the measure of center, and some early research
had suggested that the median is easier for students to understand as a measure of center
than is the mean (Mokros & Russell, 1995). Boxplots also provide, in the Interquartile
Range (IQR), a measure of the degree of spread and an alternative to the computationally
more challenging standard deviation (SD). (Besides, a clear geometrical interpretation of
the SD can only be developed in the context of normal distributions.) Furthermore, boxplots
depict both the measure of spread and center pictorially, which is largely why boxplots are
such a powerful way to quickly compare several groups at once. Therefore the boxplot and
the interquartile range promised to provide better tools for developing an initial feeling for
spread than other graphs and measures of spread. (p. 164–5)

Bakker et al. (2004) describe boxplots as “conceptually rich” tools. To understand
them, interpreters need at least to know what minimum, first quartile, median, third
quartile, and maximum are. In many situations, they need to understand that the
median is used as a measure of the center of a distribution; that the length of the box
(not its width) is a measure of the spread of the data; and that the range is another
measure of spread” (p. 166).

TinkerPlots, software for precollege-level students (Konold & Miller, 2005;
http://www.keypress.com/tinkerplots), includes a simple graphic display called the
“hatplot” that can be used to guide students to the more sophisticated idea of a
boxplot. Each hat is composed of two parts: a central “crown” and two “brims” on
each side of the crown. The “crown” is a rectangle that, in the case of percentile
hatplot, shows the location of the middle 50% of the data – the Interquartile Range
(IQR). The brims are lines that extend out to the minimum and maximum values
of the data set. There are four different options for how the crown of a hatplot
is formed: based on percentiles (the default, see example in Fig. 11.2), the range,
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Fig. 11.2 Three parallel percentile hatplots of basketball player’s height by their position in
TinkerPlots

the average deviation, and the standard deviation. Thus, hatplots can be seen as a
generalization of a boxplot, and may provide means for allowing students to build
on intuitive ideas they have about distributions (Konold, 2002a).

The Place of Comparing Groups in the Curriculum

While this topic can be introduced early in a class, the formal study of comparing
groups and boxplots usually takes place after students have studied measures of
center and spread, as well as the topic of graphical representations of distributions.
However, the ideas of quartile and interquartile range may be introduced at the same
time students are learning about boxplots.

After students study this topic, it is helpful to combine all the topics of data
analysis and examine them together before moving on to topics leading to statis-
tical inference. We, therefore, offer suggestions in this chapter for activities that
integrate ideas of distribution shape, center, and spread, along with comparison of
different methods of graphically representing data. Informal inferences are made
when comparing groups in this part of a course, laying the foundations for more
formal study of statistical inference (see Chapter 13). When groups are compared
later on, such as in two sample tests of significance, boxplots are used again to help
examine variability between and within groups. Boxplots are revisited again in the
unit on covariation (Chapter 14) when multiple boxplots are graphed over time, and
the medians help students spot a linear trend.

Review of the Literature Related to Reasoning
About Comparing Groups

Studies on comparing groups have focused on how learners approach this topic,
what their typical strategies and difficulties are, and how to help them develop their
reasoning about comparing groups. Early works indicated and demonstrated that
the group comparison problem is one that students do not initially know how to ap-
proach and encounter many difficulties with negotiating comparison strategies. Var-
ious strategies to improve students reasoning about comparing groups were studied,
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as well as the role of graphical representations (emphasis on boxplots) in supporting
making sense of comparing data sets situations.

Difficulties in Reasoning About Comparing Groups

Primary school students’ use of intuitions and statistical strategies to compare sim-
ple data sets using line plots was explored by Gal et al. (1989, 1990). Although
some students in their study used statistical strategies for comparison, many others
focused only on some features of the data, but did not offer a complete synthesis.
Others have used incorrect strategies, such as finding totals when they were inap-
propriate due to different sample sizes, or inventing qualitative explanations such as
being better because data are more spread out.

In a follow up study, Watson and Moritz (1999) further identified and detailed
categories of school students’ reasoning in comparing two data sets. In their study,
88 students in grades three to nine initially compared data sets of equal sizes, but
were not able to attend to the issue of unequal sample size. Only in higher reason-
ing levels, the issue of unequal sample size was resolved with some proportional
strategy employed for handling different sizes. The researchers recommend the use
of a combination of visual and numerical strategies in comparisons of data sets,
“hopefully avoiding the tendency to “apply a formula” without first obtaining an
intuitive feeling for the data sets involved” (p. 166).

This recommendation is supported by additional studies showing that students
who appear to use averages to describe a single group or know how to compute
means did not use them to compare two groups. Gal et al. (1990) found that sixth
and ninth grade students did not resort to proportional reasoning or visual compari-
son of graphs to reach appropriate comparing groups conclusions. Difficulties were
found in a case study of two pairs of high school students who were interviewed
after a year-long course in which they had used a number of statistics including
means, medians, and percents to make group comparisons (Konold et al., 1997).
In this study, students did not use any of these comparison techniques during the
interview. The researchers claimed that the students’ failure to use averages when
comparing two groups “was due in part to their having not made the transition from
thinking about and comparing properties of individual cases, or properties of collec-
tions of homogeneous cases, to thinking about and comparing group propensities”
(p. 165). It seems, therefore, that one challenge in instruction of this topic is to
make students comfortable summarizing a difference by comparing two groups us-
ing some representative measure of center (see Chapter 9 on reasoning about center),
a prerequisite to understand the rationale of statistical inference in their advanced
studies.

Konold and Higgins (2003) suggested that students’ difficulties in compar-
ing groups stemmed from their initial inability to apply “aggregate-based reason-
ing” – understanding a distribution as a whole, an entity that has many features
such as center, spread, and shape (See Chapter 8 on the concept of distribution).
Bright and Friel (1998), for example, found that eighth grade students using a
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stem-and-leaf plot to compare groups, could identify a “middle clump” (where the
majority of values are) in a single distribution, but could not use this information to
make comparisons. Several students compared just selected individuals from each
group. Ben-Zvi (2004b) similarly describes how seventh grade students attend to
local details of the comparisons, such as comparing the difference between two
cells in frequency table, the difference in heights of two adjacent bars in a double
bar chart, or comparing disjoint edge values in the distributions, but find it hard to
spot and describe the difference between the two distributions as a whole.

Instructional Approaches to Develop Reasoning
About Comparing Groups

Researchers have offered different methods, instructional materials and sequences,
and technological tools to overcome these difficulties. For example, Cobb (1999)
suggests that the idea of “middle clumps” (“hills”) helps students gradually develop
their reasoning about comparing groups. Students in seven and eight grades, who
used the Minitools software (Cobb et al., 1997), began to make decisions about
group difference by comparing the numbers of cases in each group within narrow
intervals of the range, and gradually moved to referring to global features of the
distributions such as shape, center, and spread.

The introduction of new technological tools to support students’ reasoning about
comparing distributions has created new opportunities in the pedagogy and research
of this topic. Hammerman and Rubin (2004) describe how teachers used a new
dynamic data visualization tool (TinkerPlots) to divide distributions into slices and
consequently compare frequencies and percentages within these slices to make in-
ferences (see grey-shaded “slices” in Fig. 11.3). The type of thinking observed was
“slice-wise comparison across groups,” which tended to ignore the distribution as a
whole. The researchers suggest that using this new tool engendered and made visi-
ble thinking that had previously lain dormant or invisible. These teachers’ slice-wise
comparison reasoning seemed to be an extension of the “pair-wise comparison” type
of reasoning, which involves comparisons of two individual cases or data values,
that other researchers have documented (e.g., Ben-Zvi, 2004b; Moritz, 2004).

In a follow up study, Rubin et al. (2005) found that teachers characterized data
using both traditional aggregate measures such as the mean and median as well as
novel methods for looking at data such as numbers or percentages around cut points,
modal clumps, and overall shape. Teachers using TinkerPlots and Fathom (Key Cur-
riculum Press, 2006; http://www.keypress.com/fathom) increased their confidence
in what these measures were telling them when the stories each measure or char-
acterization told pointed in the same direction. Similarly, when multiple samples
from the same population gave some consistency in measures, their confidence
in the measure was increased (such as in Fig. 11.3). By contrast, when measures
pointed in different directions, teachers were found to spend time further exploring
the data so that they can better understand what story was really being told, and
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Fig. 11.3 Height data by gender, with mean, median, and IQR marked (From Rubin, Hammerman,
Campbell, and Puttick, 2005)

exploring the meaning of the measures to understand what each was telling them.
Such explorations become necessary in part when the shape of data is not bell-
shaped and symmetric (e.g., skewed distributions), suggesting the importance of
learners working with data sets of various shapes in order to more robustly under-
stand the meaning behind various data analytic tools.

Two different kinds of measures of data distributions – rule-driven measures and
value-driven measures were identified by Rubin et al. (2005) as they studied the
development of teachers’ reasoning about comparing groups. While both of these
can describe data in an aggregate way, the researchers believe that value-driven
measures are easier to use at first, perhaps until the meaning and implications of
the rule that produce a rule-driven measure are clear. They also described how some
people use rule-driven measures to create a value around which to make a value-
driven comparison, and speculated about the relative power of using such a value
rather than one chosen at random, although context driven values might be more
powerful still.

Research on Learning to Understand Boxplots in Comparing
Groups Situations

As described earlier, the boxplot is a valuable tool for data analysis. The use of
boxplots allows students to compare groups of data by examining both center and
spread, and to contrast from within group variability to between groups variability.
However, several research studies have identified problems students having under-
standing and reasoning about boxplots. For example, Bakker et al. (2004) claim
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that several features of boxplots make them particularly difficult for young stu-
dents to use in authentic contexts. For example, boxplots obscure information on
individual cases, the median (shown by the line in the box) does not appear to be
as intuitive to students as a measure of center, and the use of quartiles (to con-
struct the box and show the upper and lower boundaries of the box) are difficult for
students to fully understand. Bakker et al. (2004) suggest an explanation for these
difficulties.

Quartiles are particularly tricky. Not all integers can be divided by 4, and there is the addi-
tional complexity of how to deal with cases that have the same value. There are different
ways of doing this, and thus different definitions of quartiles. Computer programs use dif-
ferent definitions, and these definitions are not always well-documented (Freund & Perles,
1987) . . . Quartiles do not match well the way students tend to conceive of distributions.
In several recent studies, researchers noted that students tend to think of a distribution as
comprising three parts, rather than four. They think about (a) the majority in the middle
(which usually includes more than 50% of the cases); (b) low values; and (c) high values
(Bakker & Gravemeijer, 2004; Konold, Robinson, Khalil, Pollatsek, Well, Wing, & Mayr,
2002). Students also referred to the center majorities as “clumps,” which was why Konold
and colleagues (2002) propose calling them “modal clumps.” (p. 167–8)

In light of these major hurdles, Bakker et al. (2004) recommend that educators con-
sider the various features of boxplots and carefully determine whether, how, and
when to introduce boxplots to students at a particular grade level.

Boxplots are difficult even for teachers to fully understand. In a study of sec-
ondary teachers at the end of a professional development sequence, Makar and
Confrey (2004) used interviews to study how teachers reasoned with boxplots with
Fathom to address the research question, “How do you decide whether two groups
are different?” The researchers found that the teachers were generally comfort-
able working with and examining traditional descriptive statistical measures as a
means of informal comparison. However, they had major difficulties in regard to
variability, in particular how to (1) interpret variability within a group; (2) inter-
pret variability between groups; and (3) distinguish between these two types of
variability.

Implications of the Research: Teaching Students to Reason
About Comparing Groups

The research studies highlight that students have many difficulties understanding
comparing groups, boxplots and the related ideas of quartiles, median, and in-
terquartile range. It is not intuitive for students to look at data as an aggregate when
comparing groups, so they need to be guided in this process. There are many times
in an introductory statistics course when it is appropriate to compare two or more
sets of data, and over time the guidance can be decreased. It may help to begin with
more informal intuitive comparing methods first and then eventually move to more
formal methods.
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Group comparisons require students to revisit and integrate previously learned
ideas about distribution: shape, center, and spread. Difficulties students have in
roughness of quartiles and various methods for finding them, can be helped if stu-
dents find quartiles by dividing data “roughly” into four groups, and not worrying
about more precise computational details.

In order to understand the ideas of center and variability represented in the
boxplots, students should have many opportunities to look at multiple graphs and
multiple statistics for the same variables, so that they may see how these ideas are
reflected using these different types of summaries. This also helps them to see that
we do not just compare means or medians when comparing groups, but we also
need to examine variability. Statistical thinking should be modeled for students as
comparison of groups involves discussions of variability between and variability
within groups, and how that affects inferences, even if they are informal. For exam-
ple, even though one group has a high mean than the other, there is so much scatter
and spread in the groups that it is hard to tell what the “trend” or “signal in the
noise” is.

Since students often do not see the data values hidden in a boxplot, they tend to
equate length of whiskers or width of the box with amount of data. Therefore, stu-
dents need opportunities to see the data behind the box, using physical and computer
examples. Students may confuse the height of a horizontal boxplot with frequency
of data, so it is important to have students notice and play with this dimension so
they realize that it does not indicate anything about the variable or its frequency.
Finally, counterintuitive examples may help students improve their understanding
and reasoning, such as presenting students with two groups of data where one has
a higher interquartile range, but the other has a higher standard deviation, and why
these are different.

The Role of Technology in Helping Students to Reason
About Comparing Groups

Research suggests that students should be scaffolded to reason with boxplots through
keeping the data in dotplot form, under the boxplots (Bakker et al., 2004). We find
TinkerPlots useful for helping students learn to understand and reason about box-
plots. This tool allows students to see how a dotplot can be transformed to a boxplot,
first showing where the dots are in boxplot before they are hidden.

While different Web applets exist for boxplots, they typically show the five num-
ber summary for a boxplot of data, allow one group to be expanded into several
boxplots based on a categorical variable (e.g., http://www.shodor.org/interactivate/
activities/boxplot/?version=1.4.2 & browser=MSIE & vendor=Sun Microsystems
Inc.0), or rotate back and forth between a boxplot and histogram of data (e.g.,
http://nlvm.usu.edu/en/nav/frames asid 200 g 4 t 5.html?open=instructions). These
applets can be useful to help students interpret boxplots and learn how different
features of data sets are presented differently in a histogram or a boxplot.
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Progression of Ideas: Connecting Research to Teaching

Introduction to the Sequence of Activities to Develop Reasoning
About Comparing Groups

Students begin comparing groups informally when they examine graphs for different
variables and data sets in the earlier unit on distribution, and as they examine graphs
of data in units on center and variability. Boxplots are introduced as a more formal
method of comparing two groups of data, once students have already studied basic
ideas of center and spread. Discussions can be focused on what we compare, when
we compare two dotplots, and which is center and spread. Students discuss where
the middle half of the data is in the groups being compared, which can be graphically
illustrated using a hatplot (from TinkerPlots). This allows students to see the data
set as an entity rather than as points or slices of data (see Chapter 8), and to compare
the middles of the two data sets. Medians can then be added to the hatplots, which
transforms them into boxplots. Once boxplots have been introduced, students should
be encouraged to make the connections back to dotplots, seeing how the dots in a
dotplot map to a boxplot, an idea that is often hidden and confusing to students.
Advantages of using boxplots to compare groups can be examined, as students see
that it is easy to compare both center and spread simultaneously when comparing
boxplots for data sets.

In order to further develop students’ reasoning about boxplots, students can be
given sets of boxplots and histograms and match the two graphs that are for the
same set of data, allowing then to think about how features of a histogram would
show up in a boxplot (e.g., symmetry, skewness, outliers) and vice versa. Students
can then be given different sets of boxplots to compare as they answer research
questions about how these plots reveal group differences. This can lead to infor-
mal inferences with boxplots as students consider differences in means relative to
variability. Table 11.1 shows a series of steps that can be used to help students first
build informal ideas and then formal ideas of comparing groups with boxplots.

Introduction to the Lessons

There are four lessons that lead students to compare groups and develop the idea of
boxplot as a graphical representation of data that reveals both center and spread and
facilitates comparisons of two or more samples of data. The lessons begin with a
comparison of two brands of raisins to show that boxplots help in making compar-
isons and informal inferences. Then students are guided to examine more carefully
the characteristics of a boxplot, moving from a dotplot to a hatplot to boxplot, to
show how the dots are hidden by the plot, and what the parts of the box represent.
The second lesson has students make informal inferences using boxplots to compare
distances for Gummy Bears launched using two different heights for launching pads
and focuses on comparing groups of data using boxplots. The third lesson develops
students’ understanding and use of boxplots by having them interpret boxplots in
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Table 11.1 Sequence of activities to develop reasoning about comparing groups with boxplots1

Milestones: ideas and concepts Suggested activities

Informal ideas of comparing groups

� Informal comparisons of dot plots and his-
tograms

� Activities in Lessons 1 and 2 of the Distri-
bution Unit (Chapter 8)

� Comparison of graphs to determine which
has a higher and lower standard deviation

� What Makes the Standard Deviation
Larger or Smaller Activity? (Lesson 2,
Variability Unit, Chapter 10)

Formal ideas of comparing groups with boxplots

� Data as an aggregate rather than points and
slices when comparing groups

� How Many Raisins in a Box Activity (Les-
son 1: “Understanding Boxplots”)

� How a boxplot represents a data set, how
points are “hidden” in a boxplot

� How Many Raisins in a Box Activity (Les-
son 1)

� Coordination of comparisons of center and
spread in comparing groups

� Gummy Bears Activity (Lesson 2: “Com-
paring Groups with Boxplots”)

� How variability between groups and vari-
ability within groups are used in compar-
ing groups

� Gummy Bears Activity (Lesson 2)

� Advantages of using boxplots to compare
groups

� Comparing Boxplots Activity (Lesson 2)

� How to make informal inferences from
comparisons of samples of data using box-
plots

� Interpreting Boxplots Activity (Lesson 3:
“Reasoning about Boxplots”)

� Understanding how features of data are re-
vealed in different graphs of the same data

� Matching Histograms to Boxplots Activity
(Lesson 3)

� Integrating reasoning about shape, center,
and spread in different graphical represen-
tations

� How do Students Spend Their Time Ac-
tivity (Lesson 4: “Comparing Groups with
Histograms, Boxplots, and Statistics”)

Revisiting the idea of comparing groups in subsequent units

� Variability between groups and variability
within groups when making formal infer-
ences involving two samples of data

� Gummy Bears Revisited Activity (Lesson
4, Statistical Inference Unit, Chapter 13)

answering different research questions, and then match boxplots to histograms. The
final lesson, integrates all the main ideas in data analysis as students use boxplots
(and other graphs and statistics) to analyze a multivariate data set, exploring which
variables have larger and smaller amounts of variability.

1 See page 391 for credit and reference to authors of activities on which these activities are based.
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Lesson 1: Understanding Boxplots

This lesson introduces the boxplot as a way to graphically compare two or more
groups of data. It has students progress from comparing groups with dotplots, to
using hat plots (a feature of TinkerPlots) and finally moving to boxplots. By using
TinkerPlots, students are able to see the data values “hidden” in a boxplot. Students
then examine and compare two groups of data in a series of questions using box-
plots. Student learning goals for this lesson include:

1. Understand that a boxplot shows where certain percentages of data lie.
2. Understand that a boxplot offers a good way to compare groups of data.
3. Begin to reason about comparing groups using boxplots.
4. Learn how to read and interpret boxplots.
5. Become more fluent in comparing groups of data by comparing shapes, centers,

and spreads of two data sets given in boxplots.

Description of the Lesson

The lesson begins with a question about how different brands of the same food
product vary, and whether all similar products (of the same size) give the same
amount (e.g., number of M&M candies in a small bag, or “does the same size bag of
potato chips from two competing companies, give the same amount of chips in each
box?”). Students are asked how they can make an informed decision about which
product to purchase, and this leads to the need to collect and examine some data.

In the How Many Raisins in a Box activity, students are given small boxes of
raisins and data are collected on the number of raisins in each box for two competing
brands. The data are first collected as two dotplots, but then the class discusses a
better way to graphically compare the two data sets. TinkerPlots is used to help
develop an understanding of a boxplot. First students talk about ways to compare
the two data sets; one option is to compare where most of the data are, and then
where the middle halves of the data are. The hatplots graphs in TinkerPlots are
used, where the “hat” is the middle fifty percent of the data, and the outer brims are
the remaining quarters of the data set, as shown in Fig. 11.4.

Fig. 11.4 Comparing two data sets (brand of raisins) using the hatplot graph in TinkerPlots
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Next, the medians are added to the plots by clicking on the Median icon (shown
in Fig. 11.4 as red “⊥”). Students can count the data values above and below the
median and the values in each part of the hatplot.

Finally, the hatplots are converted to boxplots and the individual data values can
be hidden (Fig. 11.5). By going back and forth between the hatplot that shows the
data values and the boxplot that hides the data values, students are led to see that
the two plots include the same data points (number of raisins in a box), that the box
of the boxplot is the hat of the hatplot, and that the “whiskers” of each boxplot also
includes the same data points as the “brims” of the hat in the hatplot. They can see
that the median is now included inside the box of the boxplot as well, and that this
is the only important difference between the two plots other than hiding the data
values. Students see the individual data points disappear as they go from hatplots
to boxplots, illustrating how the boxplot represents the same number of data points
(boxes of raisins), the median is still in the same place, and that there are equal
numbers of boxes of raisins on either side of the median and in each whisker.

A discussion follows on how boxplots help compare the two brands of raisins
showing differences in the center and spread of the numbers of raisins per box.
They discuss why this difference exists as well as why there is variability from box
to box, and come up with reasons for the two types of variability, within and between
brands of raisins. They also make inferences about what they believe to be true for
the larger population of boxes of raisins for each brand, based on these samples of
data, making informal inferences.

Students then try to reason about and draw two boxplots, with 20 data values
each, so that one has a long tail and one has a short tail, but both have five data
values in the tail. Next, they reason about and draw a boxplot that would have the
mean equal to a quartile, and then two different boxplots that both have ten data

Fig. 11.5 Converting hatplots to boxplots and the option of hiding the individual data values in
TinkerPlots
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values lower than the median. How outliers are determined and represented may
also be discussed along with how Fathom and other statistical software packages
represent outliers on boxplots.

In a wrap-up discussion, students consider pairs of dotplots, histograms and
boxplots, and discuss which type of graphical display makes it easier to iden-
tify shape, center, and spread, and which type makes it easier to compare groups
of data.

Lesson 2: Comparing Groups with Boxplots

This lesson continues to use boxplots to compare groups, but this time the focus
is on an experiment. Students make and test conjectures about how the height of a
launching pad will result in distances when gummy bears are launched. Two types
of variability are examined: the variability within each group and the variability
between groups. This also help students distinguish between error variability (noise)
and signals (trends), in comparing groups, and then realize the need for little noise
and clearer signals, revisiting these ideas from the center and variability units (see
Chapters 9 and 10). Student learning goals for this lesson include:

1. Use boxplots as a way to compare results of an experiment.
2. Deepen understanding of boxplots as a graphical representation of data.
3. Use boxplots to visually represent different types (sources) of variability (when

it is desired and when it is noise).
4. Revisit the ideas of mean as signal and variability as noise, from repeated mea-

surements in an experiment.
5. Recognize stability of measures of center as sample size increases. When sample

grows, see how measure of center predict center of larger population, and how it
stabilizes (varies less) as sample grows.

6. Distinguish between variability within treatments and variability between treat-
ments.

7. Understand that it is desirable to reduce variability within treatments (by using
experimental protocols).

8. Revisit idea that the only way to show cause and effect is with a randomized
experiment.

Description of the Lesson

Students are shown a gummy bear and a launching system made from a tongue
depressor and rubber bands. They make conjectures about the following question:

Will gummy bears travel a farther distance if they are launched from a steeper height or a
lower height? (A stack of four books, or one book)
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They are then given supplies and told how to launch gummy bears and how to mea-
sure the distances that they travel. They are asked how students should be assigned
to conditions, so that the results may be used to infer cause and effect relationships.
Then, randomization is used to assign them to a group that will gather data for one
of the two conditions. Students working in groups gather data for their condition:
height of one book or height of four books. Data are gathered for 10 launches, and
recorded in a table. Data are collected from each group and entered into Fathom.
Students are asked how they think the data should be summarized and graphed so
that they can compare the difference in distances for the two conditions. Various
summaries can be generated and various graphs can be examined. Boxplots of a set
of data are shown in Fig. 11.6.

Fig. 11.6 Boxplots comparing the difference in gummy bear distances for the two conditions in
Fathom

The following questions are used to guide the discussion of results:

� Is there variability in the measurements for each condition? How do we show
that variability?

� Is there variability between the two groups (conditions)? How do we look at and
describe that variability?

� Why did we get different results for each group within a condition?
� What represents the signal and what represents the noise for each condition?
� How could we get the signal clearer? What would we have to do? (e.g., add more

teams to each condition? Have each team launch more bears?)
� If we made a plot of the sample means from each group, how much variability

would you expect to see in the distribution? Why?
� Based on our experiment, are we willing to say that a higher launch ramp caused

the gummy bears to go farther? What are important parts of an experiment that
are needed in order to show causation?
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� What are some different sources of variability? There are two kinds of variability:
“diversity” and “error, or noise.” Which do we like to have large? Which do we
like to have small? Why?

The second activity, Comparing Boxplots, focuses student’s attention on the differ-
ent kinds of information in a boxplot (e.g., quartiles) and how these can be used in
comparing groups. In a wrap-up discussion, students summarize and explain how
boxplots help make the comparison of results more visual and apparent, and how
they help us examine signal and noise in this experiment.

Lesson 3: Reasoning About Boxplots

This lesson consists of activities that can be used to help students develop their rea-
soning about boxplots and to deepen their understanding of the concepts of distribu-
tion, center, and spread, and how they are interrelated. There are two activities. One
has students practice comparing boxplots and second has students try to compare
and match histograms to boxplots for the same variables. Student learning goals for
this lesson include:

1. Gain experience in using boxplots to compare data sets and draw informal infer-
ences about the populations represented.

2. Move from scaffolded questions to guide their interpretation and comparison of
boxplots to situations where the scaffolding is removed and having to analyze
the boxplot comparison without guidance.

3. Deepen their reasoning about different representations of data by having to match
different graphs of the same data.

Description of the Lesson

In the first activity, Interpreting Boxplots, students compare and interpret boxplots.
They are given different research questions along with two side by side boxplots.
They are asked questions that guide them to make comparison based on the box-
plots. The early questions direct their attention to percentages of data in different
parts of the boxplot as shown in Fig. 11.7.

The following graph shows the distribution of ages for 72 recent Academy Award
winners split up by gender (36 females and 36 males). Use the graph to help answer
the following questions.

a) Estimate the percentage of female Oscar winners that were younger
than 40.

b) The oldest 50% of male Oscar winners are between which two ages?
c) What would you expect the shape of the distribution to be for male Oscar

winners? Explain.
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Fig. 11.7 The distribution of ages for 72 recent Academy Award winners split up by gender

d) Explain how to find the Interquartile Range (IQR) for the female Oscar
winners.

e) Now, find the IQR for the female Oscar winners.
f) What information does the IQR of the female Oscar winners offer us? Why

would a statistician be more interested in the IQR than in the range?
g) Compare the medians for male and female Oscar winners. What do you conclude

about the ages of male and female Oscar winners? Explain.
h) Compare the IQR for the male and female Oscar winners. What do you conclude

about the ages of male and female Oscar winners now? Explain.

Then other graphs are given with more open ended questions and students work in
pairs to discuss and answer these questions. A class discussion allows comparison
of answers and explanations of student reasoning.

In the second activity, Matching Histograms to Boxplots, students are given a set
of five histograms and a set of five boxplots as shown in Fig. 11.8.

Students match each histogram to a boxplot of the same data. This activity
requires them to think about how shape of a histogram might be represented in a
boxplot, how the median shown in a boxplot might be located in a histogram, and
how spread from the center is represented in both types of graphs (e.g., a histogram
that is more bell shaped has more clustering to the center and therefore would show
a smaller IQR as represented by the width of a boxplot).

A group discussion follows where students are asked which graphs were the
easiest to match and why, and which were the most difficult to match and why.
They identify how they made the matches, making their reasoning explicit. In a
final wrap-up discussion, students are asked what different information is given
by histograms and boxplots, and what similar information each provides. They
comment on when it is better to use a histogram or a boxplot for a data set and
they come to realize the importance of looking at more than one graph when
analyzing data.
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Fig. 11.8 Matching histograms to boxplots activity

Lesson 4: Comparing Groups with Histograms, Boxplots,
and Statistics

This lesson builds upon and integrates the ideas of distribution: shape, center, and
spread as they analyze a multivariate data set. Students make and test conjectures
about variability expected for different variables, and then use graphs and statistics
to test their conjectures. The lesson shows that in analyzing real data, we draw on
a variety of methods and the answers we give depend on the methods we use. The
analysis of multivariate data challenges students to see what they can learn from
these data about how students spend their time. Student learning goals for this lesson
include:
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1. Review the concepts of distribution, center, and spread.
2. Understand how the concepts of distribution, center, and spread are related.
3. Know when to use each type of measure of center and variability.
4. Use boxplots to compare groups.
5. Realize that more than one graph is necessary to understand and analyze data,

and that while boxplots are useful to compare groups, histograms (or dotplots)
are also needed to better see the shape of the data.

6. Informally analyze a multivariate data set to find answers to open-ended ques-
tions that have different possible solutions.

Description of the Lesson

In the activity, How do Students Spend their Time, students consider and discuss
how similar or different students are in their class in how they spend their time each
day. Students are then divided into groups of three or four and predict the average
number of minutes per day that students in this class spend on various activities.
They record their predictions in a table (Table 11.2).

Students consider the variables and discuss with their group how much variability
they would expect to see for each one as well as the shape of the distribution. Then
they identify one of the variables that they think will have little variability and why
they would expect this variable to have a little variability, discuss the shape of this
distribution and then draw an outline of what they expect this graph to look like,
labeling the horizontal axis with values and the variable name and where they expect
the mean or median to be. After sharing their results in a whole class discussion, they
repeat this activity for a variable that think would have a lot of variability.

Data gathered on the First Day of Class Survey (described in Chapter 6 on data,
and converted from hours per week to minutes per day) are examined, using soft-
ware, so that students can compare their predictions to the actual results, discussing
any differences they found. In the last part of the activity, students compare side
by side boxplots, histograms, and summary statistics for the entire data set of daily
times. Students consider and discuss what information is shown in each graph, about

Table 11.2 Students’ prediction table in the How do students spend their time? activity

Variable Activity Prediction of Average Time
Spent (minutes per day)

Travel Traveling to school
Exercise Exercise
Parents Communications with parents

by email, phone, or in person
Eating Meals and snacks
Internet Time on the Internet
Study Study time
Cell phone Talk on cell phone
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the variability of the data, and what each summary statistics tells them as well as
which graphs and statistics are most appropriate for summarizing each variable.
Using all of these data, students then discuss and determine which variable has the
smallest and which has the largest amount of variability and justify their answers.

In a wrap-up class discussion, results are compared and the issue emerges that
you can answer this question in different ways, depending on the choice of graphs
or statistics used. For example, interquartile range may be larger for one variable
when you show boxplots, but the standard deviation may be larger for another vari-
able because of outliers in the data set. Students then revisit what each measure of
variability tells and how these relate to measures of center and shape of distribution.
Students come to explain that there is no simple answer, and the shape, center, and
spread are all interconnected. For example, for a skewed distribution with outliers, it
is not helpful to use the standard deviation as a measure of variability. Also, it is not
helpful to only consider variability; these measures need to be examined along with
measures of center in order to meaningfully describe and analyze data. Students
also may comment that side by side boxplots were much easier for comparing all
the variables than individual dotplots or histograms.

Summary

The activities in this unit provide an important bridge from concepts of distribution,
center, and variability (the elements of data analysis) to the ideas of statistical infer-
ence. At the same time, the topic of comparing groups helps students integrate and
build on ideas of shape, center, and spread, learned in the previous units. Because
research has suggested that students often fail to understand or correctly interpret
boxplots, we have described a full sequence of activities that are designed to help
students better understand and reason about boxplots as a method of graphically rep-
resenting data as well as an efficient way to compare groups. Without such a careful
progression of ideas along with software to help students see the points hidden by
the graph, we do not believe most students will understand and correctly use and
interpret these graphs.



Chapter 12
Learning to Reason About Samples
and Sampling Distributions

Why is the role of sample size in sampling distributions so
hard to grasp? One consideration is that . . . the rule that the
variability of a sampling distribution decreases with
increasing sample size seems to have only few applications in
ordinary life. In general, taking repeated samples and looking
at the distribution of their means is rare in the everyday and
only recent in scientific practice.

(Sedlmeier & Gigerenzer, 1997, p. 46)

Snapshot of a Research-Based Activity on Sampling

The activity begins with the teacher holding up a bag of Reese’s Pieces candies,
which includes a mixture of three different colors (orange, yellow, and brown) and
asking students to make conjectures about what they might expect the number of or-
ange candies to be if they take repeated samples of 25 candies from the bag. Students
propose different numbers such as 10 or 15. They are also asked if they would be
surprised (and complain) if they had only 5 orange candies in their sample of 25 can-
dies. Students consider the variation they would expect to see from sample to sample
in the proportion of orange candies, acknowledging that they would not expect every
sample of 25 to have exactly the same number of orange candies. Then they count
proportions of orange Reese’s Pieces in samples of 25 candies presented to them in
small paper cups, reporting their counts to be numbers like 11, 12, 13, and 14.

The students plot their individual sample proportions of orange candies in a dot
plot on the board and use the data to discuss the variability between samples, as well
as to estimate the proportion of candies in the large bag from which the candies were
sampled. Then students use a Web applet that simulates sampling Reese’s Pieces
from a hypothetical population (Reese’s Pieces Sampling applet from the Rossman-
Chance Website, http://rossmanchance.com, Fig. 12.3). Students then compare their
individual proportions to distributions of sample proportions produced by a claim
about the population proportion of orange candies. They predict and test the effect
of taking larger or smaller samples on the closeness of each sample proportion to
the population parameter, using simulated data from the Web applet. By the end of
this activity, students have determined if a result of 5 orange candies in a random
sample of 25 Reese’s Pieces is surprising and would be cause for complaint.

J.B. Garfield, D. Ben-Zvi, Developing Students’ Statistical Reasoning,
C© Springer Science+Business Media B.V. 2008
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Rationale for This Activity

This Reese’s Pieces Activity helps students focus on how they may expect sample
statistics to vary from sample to sample when taking repeated samples from a popu-
lation, an idea that develops slowly with repeated experience with random samples.
Students’ intuitions about variability between samples are often misleading: many
students think samples should be more similar to each other and to the population
parameter or more variable than what we can expect due to chance. In this lesson,
students also develop an informal sense of statistical inference when they determine
if a particular sample result is surprising or unusual, by comparing this result to a
simulated distribution of sample statistics.

The approach used in this lesson is to develop conceptual thinking before stu-
dents are introduced to the formal ideas of sampling distribution and statistical
inference. By preceding the computer simulation with a parallel concrete activity,
students are more likely to understand and believe the results of the simulation tool,
and are able to develop reasonable ideas of sampling variability. Finally, by having
students make conjectures that they test with data, they become more engaged in
reasoning about the statistical concepts than if the concepts were presented to them.

The Importance of Understanding Samples
and Sampling Distributions

Taking samples of data and using samples to make inferences about unknown pop-
ulations are at the core of statistical investigations. Although much of data analysis
involves analyzing a single sample and making inferences based on this sample,
an understanding of how samples vary is important in order to make reasoned
estimates and decisions. Most introductory statistics classes include distinctions
between samples and populations, and develop notions of sampling variability by
examining similarities and differences between multiple samples drawn from the
same population. In high school and college classes, the study of sampling variabil-
ity is extended to examining distributions of sample statistics. Looking at distribu-
tions of sample means for many samples drawn from a single population allows us
to see how one sample compares to the rest of the samples, leading us to determine
if a sample is surprising (unlikely) or not surprising. This is an informal precursor
to the more formal notion of P-value that comes with studying statistical inference.
We note that simulations based on randomization activities, such as those described
in Chapter 7 on models, can also be used to examine the place of an observed value
in a distribution of sample statistics to judge whether this result may be explained
by chance or due to a particular treatment or condition.

Comparing means of samples drawn from the same population also helps build
the idea of sampling variability, which leads to the notion of sampling error, a funda-
mental component of statistical inference whether constructing confidence intervals
or testing hypotheses. Sampling error indicates how much a sample statistic may
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be expected to differ from the population parameter it is estimating. The sampling
error is used in computing margins of error (for confidence intervals) and is used in
computing test statistics (e.g., the t statistic when testing hypotheses)

The idea of a sample is likely to be a familiar one to students. They have all taken
samples before (for example, tasting a food sample at a grocery store) and have an
idea of a sample as something that is drawn from or represents something bigger.
Students seem to have an intuitive sense that each sample may differ from the other
samples drawn from the same larger entity. It may, therefore, seem surprising that
students have such difficulty understanding the behavior of samples when they study
statistics, how they relate to a population, and what happens when many samples are
drawn and their statistics accumulated in a sampling distribution.

The two central ideas of sampling: sampling representativeness and sampling
variability have to be understood and carefully balanced in order to understand sta-
tistical inference. Rubin, Bruce, and Tenney (1991) cautioned that over reliance on
sampling representativeness leads students to think that a sample tells us everything
about a population, while over reliance on sampling variability leads students to
think that a sample tells us nothing useful about a population. In fact, the ideas of
sample and sampling distribution build on many core concepts of statistics, and if
these concepts are not well understood, students may never fully understand the
important ideas of sampling. For example, the fundamental ideas of distribution and
variability underlie an understanding of sampling variability (how individual sam-
ples vary) and sampling distribution (the theoretical distribution of a sample statistic
computed from all possible samples of the same size drawn from a population). The
idea of center is also involved (understanding the mean of the sampling distribu-
tion) as is the idea of model (the Normal Distribution as a model that fits sampling
distributions under certain conditions). We also interpret empirical sampling distri-
butions of simulated or collected data in similar ways, sometimes referring to these
as, for example, a distribution of 500 sample means, rather than referring to it as
a (theoretical) sampling distribution. Finally, samples and sampling variability also
build on basic ideas of randomness and chance, or the study of probability.

The Place of Samples and Sampling Distributions
in the Curriculum

The teaching of sampling variability typically comes later in introductory statistics
courses, after the study of the foundational concepts of distribution, center, and vari-
ability. It is often introduced after the formal study of the Normal Distribution and
its characteristics, and after studying probability. However, in recent years, some
textbooks introduce ideas of sampling early in a course, along with informal ideas
of inference that are revisited throughout the course until formalizing them later in
chapters on significance tests and confidence intervals.

Sampling and sampling distributions are prerequisite topics that precede the for-
mal methods of making statistical inferences (constructing confidence intervals and
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finding P-values used to compare a sample of data to a distribution based on a
null hypothesis). Often the culminating lesson on sampling distributions is one that
introduces and illustrates the Central Limit Theorem (CLT).

The implications of this important theorem are that for large sample sizes, dis-
tributions of sample statistics (typically, means and proportions) will be normal or
approximately normal. This fact allows us to use the normal probability distribution
to estimate probabilities for different intervals of values of sample means (given
a particular population or hypothesis) and allows us to use the z or t distribution
when making formal inferences. Although this theorem is usually included in every
introductory statistics course as a prerequisite for learning statistical inference, most
students never appear to understand this theorem during a course, although some are
able to repeat or identify correct definitions.

Before technology tools were readily available, most text books showed some
pictures of different shaped curves, and then presented what sampling distributions
would look like for a few different sample sizes. The purpose was to show that
curves of these sampling distributions became more normal and narrower as the
sample size increased. Then students were told how to calculate the standard er-
ror (sigma over the square root of n, σ√

n
, for the sample mean) and to use this

to find probabilities (e.g., that a sample mean is larger than 3, under a particular
null hypothesis). Students often confuse the standard error with the sample standard
deviation (s) and the population value (�). Some typical textbook questions ask
students to calculate a probability for a single value (convert x to z using �) and
then repeat the problem for the same value but of a sample mean (convert x̄ to z
using σ√

n
). Students often fail to notice or understand the difference between these

two procedures.

Review of the Literature Related to Reasoning About Samples
and Sampling Distributions

Because sampling and sampling distributions are so confusing to students, there has
been a considerable amount of research on this topic, particularly with college stu-
dents. However, even at the elementary and secondary levels, studies have examined
how students understand and misunderstand ideas of samples and sampling.

Studies of Students in Precollege Level Settings

A study of students’ conceptions of sampling in upper elementary school by Jacobs
(1999) suggested that students understood the idea that a sample is a small part
of a whole and that even a small part can give you an idea of the whole. Wat-
son and Moritz (2000a, 2000b) also studied children’s intuitive ideas of samples,
and identified six categories of children’s thinking about this concept. They point
out that while students have a fairly good “out of school” understanding of the
concept of sample, they have difficulty making the transition to the formal, sta-
tistical meaning of this term and the related connotations. For example, one can
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make good generalizations from a small sample of food or blood to the larger
entity from which it was drawn, but these intuitive ideas do not generalize to the
notion of sampling variation and the need for large, representative samples in mak-
ing statistical estimates. Watson and Moritz (2000a) suggest making explicit these
differences (e.g., between taking a small cube of cheese which represents a homo-
geneous entity, with taking a sample from the population of fifth grade students
to estimate a characteristic such as height, which is a population that has much
variability). Watson (2004), in a summary of research on reasoning about sampling,
describes how students often concentrate on fairness, and prefer biased sampling
methods such as voluntary samples because they do not trust random sampling
as a process producing fair samples. Saldanha and Thompson (2002) found both
of these types of conceptions on sampling in high school students in a teaching
experiment conducted in a statistics class. Not surprisingly, they found that only
the concept of sampling as part of a repeated process with variability from sam-
ple to sample supported the notion of distribution needed to understand sampling
distributions.

In a teaching experiment with eighth grade students, Bakker (2004b) was able
to help students understand that larger samples are more stable (less variable) and
better represent the population, using a sequence of “growing samples” activities.
In a growing a sample activity (see Chapter 8), students predict and explain what
happens to a graph when bigger samples are taken (Konold & Pollatsek, 2002). The
goal of the growing samples activity was to use imagined and computer-simulated
sets of data to build students’ reasoning about sampling in the context of variability
and distribution. Activities were designed to begin with students’ own ideas and
guide them toward more conventional notions and representations. Bakker (2004b)
suggests that asking students to make conjectures about possible samples of data
push them to use conceptual tools to predict the distributions, which helps them
develop reasoning about samples.

Studies Involving College Students

Confusion about sampling has been found in college students and professionals. In
their seminal paper, “Belief in the Law of Small Numbers,” psychologists Tversky
and Kahneman (1971) wrote:

The research suggests that people have strong intuitions about random sampling; that these
intuitions are wrong in fundamental aspects; that these intuitions are shared by naı̈ve sub-
jects and by trained scientists, and that they are applied with unfortunate consequences in
the course of scientific inquiry . . . People view a sample randomly drawn from a population
as highly representative, that is, similar to the population in all essential characteristics.
Consequently, they expect any two samples drawn from a particular population to be more
similar to one another and to the population than sampling theory predicts, at least for small
samples. (p. 24).

Since the publication of this article, many researchers have examined and described
the difficulties students have understanding samples, sampling variability, and in-
evitably, sampling distributions and the Central Limit Theorem. In a summary of
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articles by psychologists on this topic, Well, Pollatsek, and Boyce (1990) noted
that people sometimes reason correctly about sample size (e.g., that larger samples
better represent populations) and sometimes do not (e.g., thinking that both large
and small samples equally represent a population). To reveal the reasons for this
discrepancy, they conducted a series of experiments that gave college students ques-
tions involving reasoning about samples and sampling variability. For example, one
problem described a post office that recorded the heights of local males when they
turned 18. The average height of 18 year old males is known to be 5 ft 9 in. (1.75
m). Information is given on two post offices: A which registered 25 males and B
which registered 100 males. Students are asked which set of heights would have a
mean closer to 5 ft 9 in. Most were able to correctly pick B, which had a larger set
of males. Students were also asked to estimate the percentage of days for each post
office that produced an average height greater than 6 ft (1.83 m). Fewer students
were able to reason correctly about this problem.

The first part of this problem looked at the accuracy of small samples compared to
large samples and the second part asked students to think about which sample mean
would be more likely to fall in the tail of a distribution of sample means, far away
from the population mean. The researchers found that students used sample size
more wisely when asked the first type of question (which sample size is more ac-
curate) than on the question that asked them to pick which sample would produce a
value in the tail of the population distribution, indicating that they do not understand
the variability of sample means. They also noted that students confused distributions
for large and small samples with distributions of averages based on large and small
samples. The authors concluded that students’ statistical intuitions are not always
incorrect, but may be crude and can be developed into correct conceptions through
carefully designed instruction.

Summarizing the research in this area as well as their own experience as statistics
teachers and classroom researchers, delMas, Garfield, and Chance (2004) list the
following common misconceptions about sampling distributions:

� The sampling distribution should look like the population (for n > 1).
� Sampling distributions for small and large sample sizes have the same variability.
� Sampling distributions for large samples have more variability.
� A sampling distribution is not a distribution of sample statistics.
� One sample (of real data) is confused with all possible samples (in distribution)

or potential samples.
� The Law of Large Numbers (larger samples better represent a population) is con-

fused with the Central Limit Theorem (distributions of means from large samples
tend to form a Normal Distribution).

� The mean of a positive skewed distribution will be greater than the mean of the
sampling distribution for large samples taken from this population.

In addition, students have been found to believe that a sample is only good (e.g.,
representative) if the sample size represents a large percentage when compared to
the population (e.g., Smith, 2004). To confront the common misconceptions that
develop and to build sound reasoning about samples and sampling distributions,
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statistics educators and researchers have turned to technological tools to illustrate
the abstract processes involved in repeated sampling from theoretical populations
and help students develop statistical reasoning.

In a series of studies, Sedlmeier and Gigerenzer (1997) revealed that when sub-
jects seem to have a good understanding of the effect of sample size, they are think-
ing of one frequency distribution (for a sample). When subjects show confusion
about sample size, they are struggling with the more difficult notion of sampling dis-
tribution (statistics from many samples). Sedlmeier (1999) continued this research,
and found that if he converted items that required subjects to consider sampling dis-
tributions, to ones that instead required frequency distributions, higher percentage
of correct solutions were obtained.

Building on this work, Saldanha and Thompson (2002) studied high school stu-
dents’ reasoning about samples and sampling distributions in a teaching experiment.
They identified a multiplicative concept of samples that relates the sample to the
population as well as to a sampling distribution in a visual way. This interrelated set
of images is believed to build a good foundation for statistical inference, which sug-
gests that instructors clearly help students distinguish between three levels of data:
the population distribution, the sample distribution, and the sampling distribution.
Lane-Getaz (2006) provides such a visual model in her Simulation Process Model,
which we have adapted and called the Simulation of Samples (SOS) Model. This
model, shown in Fig. 12.1, distinguishes between the first level of data (population),
many random samples from the population (level 2) along with sample statistics for
each sample, and the distribution of sample statistics (Level 3). In the last level, a
sample outcome can be compared to the distribution of sample statistics to deter-
mine if it is a surprising outcome, an informal approach to statistical inference.

Simulation of Samples (SOS) Model: Quantitative Data The Sampling and Inference 
Process 

Levels of 
Data 

Level 1: 
Population Specify the model: What if … 

(Null condition) 
1. 

Generate data based on the 
model (simulate random 
samples) 

2. 

Compute sample statistics 3. 

Level 2: 
Samples & 
sample 
statistics 

Compile distribution of sample 
statistics 

4. 

Assess rareness of observed 
statistic. (Reject model if the 
observed statistic is in tail.) 

5. 

Level 3: 
Distribution 
of sample 
statistics 

Fig. 12.1 The Simulation of Samples model (SOS) for quantitative data
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Use of Simulations to Develop Reasoning About Sampling

There are several articles (see Mills, 2002 for a review of these articles) that dis-
cuss the potential advantage of simulations in providing examples of the process of
taking repeated random samples and allowing students to experiment with variables
that affect the outcomes (sample size, population parameters, etc.). In particular,
technology allows students to be directly involved with the “building up” of the

Fig. 12.2 Screen shots of the Sampling SIM software
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sampling distribution, focusing on the process involved, instead of being presented
only the end result. Recently, numerous instructional computer programs have been
developed that focus on the use of simulations and dynamic visualizations to help
students develop their understanding of sampling distributions and other statistical
concepts (e.g., Aberson, Berger, Healy, Kyle, & Romero, 2000). However, despite
the development of flexible and visual tools, research suggests that just showing
students demonstrations of simulations using these tools will not necessarily lead to
improved understanding or reasoning.

Chance, delMas, and Garfield (2004) report the results of a series of studies
over a 10-year period that examined various ways of having students interact with
the Sampling SIM software (delMas, 2001a). Sampling SIM software, described in
more detail later in this chapter, is a program that allows students to specify dif-
ferent population parameters and generate random samples of simulated data along
with many options for displaying and analyzing these samples (see Fig. 12.2). They
found that it worked better to have students first make a prediction about a sampling
distribution from a particular population (e.g., its shape, center, and spread), then
to generate the distribution using software, and then to examine the difference be-
tween their prediction and the actual data. They then tried different ways to embed
this process, having students work through a detailed activity, or be guided by an
instructor. Despite students appearing to be engaged in the activity and realizing
the predictable pattern of a normal looking distribution for large samples from a
variety of populations, they nonetheless had difficulty applying this knowledge to
questions asking them to use the Central Limit Theorem to solve problems. An
approach to using the software combines a concrete activity (Sampling Reese’s
Pieces) with the use of some Web applets, before moving to the more abstract Sam-
pling SIM Software. This sequence of activities will be described in the following
section.

Implications of the Research: Teaching Students to Reason
About Samples and Sampling Distributions

We believe that it is important to introduce ideas of sample and sampling to students
early in a statistics course, preferably in a unit on data production and collection. By
the time students are ready to study the formal ideas of sampling distributions, they
should have a good understanding of the foundational concept of sample, variabil-
ity, distribution, and center. They should also understand the model of the Normal
Distribution and how that model may be used to determine (or estimate) percentages
and probabilities (e.g., use the Empirical Rule).

As students learn methods of exploring and describing data, they should be en-
couraged to pay attention to ideas of samples and to consider sampling methods
(e.g., where did the data come from, how was the sample obtained, how do different
samples vary). By the time students begin the formal study of sampling variability,
they should understand the nature of a random sample and the idea of a sample
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being representative of a population. They should understand how to choose a good
sample and the importance of random sampling.

The study of sampling variability typically focuses on taking repeated samples
from a population and comparing sample statistics, (such as the sample mean or
the sample proportion). There is a lack of agreement among college statistics teach-
ers and textbooks about whether to begin the study of sampling distributions with
proportions or means. Both have their advantages and disadvantages. Chance and
Rossman (2001) present both sides of the disagreement in the form of a debate. They
conclude that it is more important to pay careful attention to ideas of data collection
and sampling throughout the introductory course, than which statistic is introduced
first. They recommend that much time should be spent on sampling distributions so
that students will be able to use these ideas as a basis for understanding statistical
inference.

DelMas et al. (2004) list desired learning outcomes for the situation where dis-
tributions of means are used. These learning outcomes include understanding that:

� A sampling distribution for means (based on quantitative data) is a distribution
of sample means (statistics) of a given sample size, calculated from samples that
are randomly selected from a population with mean μ and standard deviation �.
It is a probability distribution for the sample mean.

� The sampling distribution for means has the same mean as the population (pa-
rameter).

� As n gets larger, variability of the sample means gets smaller (as a statement,
a visual recognition, and as a prediction of what will happen or how the next
picture will differ).

� The standard error of the mean is a measure of variability of sample statistic
values.

� The building block of a sampling distribution is a sample statistic. In other words,
the units shown in the distribution are sample statistics, rather than individual
data values (e.g., measurements).

� Some values of statistics are more or less likely than others to result from a
sample drawn from a particular population.

� It is reasonable to use a normal approximation for a sampling distribution under
certain conditions.

� Different sample sizes lead to different probabilities for the same value (know
how sample size affects the probability of different outcomes for a statistic).

� Sampling distributions tend to look more normal than the population, even for
small samples unless the population is Normal.

� As sample sizes get very large, all sampling distributions for the mean tend to
have the same shape, regardless of the population from which they are drawn.

� Averages are more normal and less variable than individual observations. (Again,
unless the population is Normal.)

� A distribution of observations in one sample differs from a distribution of statis-
tics (sample means) from many samples (n greater than 1) that have been ran-
domly selected.
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� A sampling distribution would look different for different populations and sam-
ple sizes (in terms of shape, center, and spread, and where the majority of values
would be found).

� Some values of the sample mean are likely, and some are less likely for different
sampling distributions. For sampling distributions for a small sample size, a par-
ticular sample mean that is farther from the population mean may not be unlikely,
but this same value may be unlikely for a sample mean for a larger sample.

� That the size of the standard error of the mean is determined by the standard devi-
ation of the population and the sample size, and that this affects the likelihood of
obtaining different values of the sample mean for a given sampling distribution.

Moving from Concrete Samples to Abstract Theory

The research suggests that when students view simulations of data, they may not un-
derstand or believe the results, and instead watch the simulations without reasoning
about what the simulation represents. Therefore, many instructors find it effective
to first provide students with concrete materials (e.g., counting Reese’s Pieces can-
dies or pennies) before moving to an abstract simulation of that activity. One nice
feature of the Reese’s Pieces Samples applet described below is that it provides an
animation to show the sampling process that can later be turned off, to provide data
more quickly when students understand where the data values are coming from.

One of the challenges in teaching about sampling distributions is that students
are already familiar with analyzing samples of data, a concrete activity. When they
are asked to imagine many, many samples of a given sample size, they are forced
to grapple with the theory that allows them to later make inferences. Many students
become confused and think the point is that they should always take many samples.
It is difficult for students to understand that in order to later make inferences from
one single sample from an unknown population; they must first observe the behav-
ior of samples from a known population. This is far from a trivial task, and using
technology seems to help. It is also helpful to show a model of the sampling process
that distinguishes between three levels: the population, the samples, and the sample
statistics calculated from those samples (see the SOS Model in Fig. 12.1 above).

Technological Tools to Visualize Sampling
and Sampling Distributions

Perhaps the first technology tool designed to illustrate sampling and the Cen-
tral Limit Theorem (CLT) was the Sampling Laboratory, which ran only on the
Macintosh platform, described by Rubin and Bruce (1991). This program visually
illustrated the process of taking samples from a population and accumulating dis-
tributions of particular characteristics (e.g., mean or median). Individual samples
could also be displayed. Since then, many Web applets and simulation programs
have been developed and are often used to visually illustrate the CLT. Sampling SIM
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software (delMas, 2001a) as mentioned earlier is a free-standing program that was
developed to develop students’ reasoning about sampling distributions. Students
may select different types of populations (e.g., right-skewed, bimodal, normal) as
well as different means and standard deviations, and then explore the impact of
changing these parameters on the resulting simulated data. Figure 12.2 shows three
windows that may be displayed simultaneously in the Sampling SIM program (del-
Mas, 2001a). The Population window shows a population that may be continuous
(as shown), discrete (bars), or binomial. Users may select particular populations of
interest (e.g., normal, skewed, bimodal), choose one of the irregular shapes shown at
the bottom of the Population window, or create their own distributions by raising and
lowering the curve or bars using the mouse. The Samples window shows a histogram
of each random sample that is drawn along with the sample statistics. The Sampling
Distribution window shows the distributions of sample statistics as they accumulate,
during the sampling process. Lines show the placement of the population mean and
median, and a curve representing the Normal Distribution can be superimposed on
the distribution of sample statistics, as well as the outline of the original population.

Among the best of the many Web applets that simulate sampling and sam-
pling distributions are applets from the RossmanChance Website (http:// rossman-
chance.com/) that help students make the bridge between sampling objects to

Fig. 12.3 Reese’s pieces sampling applet from the RossmanChance Web site
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sampling abstract data values. For example, the Reese’s Pieces Samples applet
(see Fig. 12.3) samples colored candies from a population that has a specified
percent of orange candies. Different sample sizes and numbers of samples can
be drawn. Animation shows the candies being sampled, but this can be turned
out after a while to expedite the sampling. There are other RossmanChance Web
applets that illustrate sampling coins to record their ages, and sampling word
lengths from the Gettysburg Address (see Fig. 12.4, used in the Gettysburg Ad-
dress Activity, Lesson 3, Unit on Data, Chapter 6). An advantage in using these
applets is that they may be preceded by actual physical activities in class (taking
samples of candies, coins, and words), which provide a real context for drawing
samples.

Programs such as Fathom (Key Curriculum Press, 2006) can also be used to
illustrate the sampling process, allowing for parameters to be varied such as sample
size, number of samples, and population shape. Although not as visually effective
as a computer screen, samples may also be taken and accumulated using graphing
calculators. Despite the numerous software tools that currently exist to make this
difficult concept more concrete, there is still little research on the most effective
ways to use these tools. For example, if a teacher shows a demonstration of the
software to the students, is that effective? Is it better for students to interact with the

Fig. 12.4 Sampling words applet from the RossmanChance Website
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software directly, taking their own samples? How much guidance should be given
to students when using the software? Are some tools more effective than others? All
of these research questions are waiting to be investigated.

Progression of Ideas: Connecting Research to Teaching

Introduction to the Sequence of Activities to Develop Reasoning
About Samples and Sampling Distributions

Back in 1991, Rubin and Bruce proposed a sequence of ideas to lead high school
students to understand sampling as they participated in activities using Sampling
Lab software. Their list included:

1. A sample statistic is not necessarily the same as the corresponding population
parameter, but it can provide good information about that parameter.

2. Random samples vary, especially for small samples. Therefore, the sample statis-
tics will vary for each sample as well.

3. The variation from sample to sample is not due to error, but is a consequence
of the sampling process. It occurs even with unbiased sampling methods and
carefully chosen samples.

4. Although sample statistics vary from population parameter, they vary in a pre-
dictable way. Most sample statistics are close to the population parameter, and
fewer are extremely larger or smaller than the population value.

5. Despite sampling variation, a large enough random sample can be used to make
a reasonably good prediction for a population parameter.

6. The goodness of a particular estimate is directly dependent on the size of the
sample. Samples that are larger produce statistics that vary less from the popula-
tion value.

The research and related literature reviewed suggest a progression of activities that
can be used to help students develop the ideas of sampling variability and sampling
distributions described above. Table 12.1 contains a progression of ideas that build
on those suggested by Rubin and Bruce (1991) along with types of activities that
may be used to develop these ideas.

One important implication from the research is that it takes time to help students
develop the ideas related to sampling distribution, longer than just one class session
which is the amount of time typically allotted. In addition, prior to a formal unit on
sampling distribution, students need experience in taking samples and learning how
samples do and do not represent the population. This may be part of an early unit on
collecting data through surveys and experiments, where they learn characteristics of
good samples and reasons for bad samples (e.g., bias). Another implication is that
a visual model (e.g., the SOS model, Fig. 12.1 above) may help students develop a
deeper understanding of sampling distribution and inference, if it is repeatedly used
when dealing with repeated samples and simulations.
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Table 12.1 Sequence of activities to develop reasoning about samples and sampling distributions1

Milestones: ideas and concepts Suggested activities

Informal ideas prior to formal study of samples and sampling distributions

� Population parameter is fixed, but sample
statistics vary from sample to sample

� The Gettysburg Address Activity
(Lesson 3, Data Unit, Chapter 6)

� The idea of a random sample � The Gettysburg Address Activity
(Lesson 3, Data Unit, Chapter 6)

� As a sample grows, or as more data are
collected, at some point the sample pro-
vides a stable estimate of the population
parameter

� Growing a Distribution Activity (Les-
son 1, Distribution Unit, Chapter 8)

� Larger random samples are more likely to
be representative of the population than
small ones

❖ An Activity where samples are taken
from a specified population and the
size of the sample is increased to de-
termine at what point the estimates of
the population are stable. (The symbol
❖ indicates that this activity is not in-
cluded in these lessons.)

� The size of a representative sample is not
related to a particular percentage of the
population. A large well-chosen sample
can be a good one even if it is a small per-
cent of the population

❖ An activity where different sample
sizes are examined in light of how well
they represent the population in terms
of shape, center, and spread

Formal ideas of samples and sampling distributions

� Sample variability: Samples vary for a
given sample size, for a random sample
from the same population

� Reese’s Pieces Activity (Lesson 1:
“Sampling from a Population”)

� Variability of sample statistics from sam-
ple to sample

� Reese’s Pieces Activity (Lesson 1)

� There are three levels of data involved in
taking random samples: the population,
the individual samples, and the distribu-
tion of sample statistics

� Reese’s Pieces Activity (Lesson 1)

� How and why statistics from small sam-
ples vary more than statistics from large
samples

� Reese’s Pieces Activity (Lesson 1)

� Sample statistics can be graphed and sum-
marized in a distribution, just as raw data
may be graphed and summarized

� Reese’s Pieces Activity (Lesson 1)

1 See page 391 for credit and reference to authors of activities on which these activities are based.
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Table 12.1 (continued)

Milestones: ideas and concepts Suggested activities

� Understanding that a simulation of a large
number (e.g., 500) sample statistics is a
good approximation of a sampling distri-
bution

❖ An activity using a simulation com-
puter tool that draws students’ atten-
tion to these ideas

� Understanding that for a large number of
trials (simulations) what is important to
focus on is the change in sample size, not
the change in number of simulations

❖ An activity using a simulation com-
puter tool that draws students’ atten-
tion to these ideas

� Although sample statistics vary from pop-
ulation parameter, they vary in a pre-
dictable way

� Body Temperatures, Sampling Words,
and Sampling Pennies Activities (Les-
son 2: “Generating Sampling Distribu-
tions”)

� When and why a distribution of sample
statistics (for large enough samples) looks
bell shaped

� Central Limit Theorem Activity (Les-
son 3: “Describing the Predictable
Pattern: The Central Limit Theorem”)

� Distributions of sample statistics tend to
have the same predictable pattern for large
random samples

� Central Limit Theorem Activity
(Lesson 3)

� Understanding how the Central Limit The-
orem describes the shape, center, and
spread of sampling distributions of sample
statistics

� Central Limit Theorem Activity
(Lesson 3)

Building on formal ideas of samples and sampling distributions in subsequent topics

� Understand the role of sample variability
in making statistical inferences

� Activities (Lessons 1, 2, 3, and 4, Sta-
tistical Inference Unit, Chapter 13)

Introduction to the Lessons

Building on the basic idea of a sample, these lessons provide students with experi-
ence across different contexts with how samples vary and the factors that affect this
variability. This leads to the idea of accumulating and graphing multiple samples
from the same population (of a given sample size), which leads to the more abstract
idea of a sampling distribution. Different empirical sampling distributions are gener-
ated and observed, to see the predictable pattern that is a consequence of the Central
Limit Theorem (CLT). Finally, students use the CLT to solve problems involving the
likelihood of different values of sample means. Believing that it is more intuitively
accessible to students, we begin the study of sampling with proportions and then
move to sample means.
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Lesson 1: Sampling from a Population

In this lesson, students make and test conjectures about sample proportions of
orange-colored candies. They take physical samples from a population of colored
candies (Reese’s Pieces) and construct distributions of sample proportions. Students
then use a Web applet to generate a larger number of samples of candies, allowing
them to examine the distribution of sample proportions for different sample sizes.
Students map the simulation of sample proportions to the Simulation of Samples
(SOS) Model (Fig. 12.1), a visual scheme that distinguishes between the population,
the samples, and the distribution of sample statistics (see also Chapter 6 where this
model is first introduced). Student learning goals for this lesson include:

1. Understand variability between samples (how samples vary).
2. Build and describe distributions of sample statistics (in this case, proportions).
3. Understand the effect of sample size on: how well a sample resembles a popula-

tion, and the variability of the distribution of sample statistics.
4. Understand what changes (samples and sample statistics) and what stays the

same (population and parameters).
5. Understand and distinguish between the population, the samples, and the distri-

bution of sample statistics.

Description of the Lesson

The lesson begins with a discussion of questions relating to what information a
small sample can provide about a population. Students discuss their opinions about
whether a small sample of Reese’s Pieces can provide a good estimate of the propor-
tion of orange Reese’s Pieces candies produced by Hershey Company, and whether
or not they would be surprised if they found only 5 Orange Reese’s Pieces in a cup
of 25 candies. These questions lead to a general discussion of sampling that reviews
previous material covered in the introductory course, such as: What is a sample?
Why sample? What do we do with samples? How should we sample? What is a
good sample?

Students are then guided through the Reese’s Pieces activity. They are first asked
to guess the proportion of each color candy in a bag of Reese’s Pieces and predict the
number of orange candies that they would expect in 10 samples of 25 candies. Next,
each student is given a small paper cup of Reese’s Pieces candies, and is instructed
to count out 25 without paying attention to the color. Then they count the number of
orange candies and find the proportion of orange candies for their sample (of 25).

These proportions are collected and graphed and the class is asked to describe
the graph in terms of shape, center, and spread. Note: this is not an actual sampling
distribution because it does not consist of all possible samples from the population,
but it is a distribution of sample means (and can serve as an approximation to the
sampling distribution). This is an important distinction to make when generating or
simulating sample data.
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Students are asked to consider what they know and do not know: they do know
the sample statistics but do not know the population parameter. They are asked to
consider what is fixed and what changes (i.e., the sample statistics change from sam-
ple to sample; the population proportion stays the same regardless of the sample).
Attention is drawn to the variability of the sample statistics, and students refer back
to their predicted sample statistics for 10 samples earlier in the activity. Finally,
students are asked to produce an estimate of the proportion of orange candies in the
population of all Reese’s Pieces candies.

Next, students use a Web applet from RossmanChance Website that has a picture
of a large container of Reese’s Pieces and allows them to draw multiple samples
of any size. They use the proportion of orange candies given at the Website (.45),
and then draw samples size 25 and watch as distributions of samples proportions
are visually created (see Fig. 12.3 above). They are asked to consider what kinds of
sample statistics they might expect if there were 10 candies in each sample instead of
25, or 100 candies in each sample. It is easy to change the sample size in the applet
and simulate data to see how it affects the variability of the sample proportions
for different sample sizes. Students are asked to complete a blank copy of the SOS
Model for the simulation of Reese’s Pieces they completed.

After completing the activity using the applet, a wrap-up discussion is used to
draw students’ attention to the important aspects of the concept they have just seen
demonstrated. Students are asked to distinguish between how samples vary from
each other, and variability of data within one sample of data. The Law of Large
Numbers is revisited as it relates to the fact that larger samples better represent the
population from which they were sampled. There can be a discussion of how big a
sample needs to be to represent a population. (Students mistakenly think a sample
has to be a certain percentage of the population, so a random sample of 1000 is not
big enough to represent a population of one million.) Finally, students discuss the
use of a model to simulate data, and the value of simulation in allowing us to deter-
mine if a sample value is surprising (e.g., 5 orange candies in a cup of 25 candies).

Lesson 2: Generating Sampling Distributions

In this lesson, students first speculate about the distribution of normal body tem-
peratures and then contrast typical and potentially unusual temperatures for an in-
dividual person with a typical and potentially unusual values of means for samples
of people. Students contrast the variability of individual values with the variability
of sample means, and discover the impact on variability for different sample sizes.
Web applets are used to simulate samples and distributions of sample means from
two additional populations, revealing a predictable pattern as they generate sample
means for increasingly large sample sizes, despite the differing population shapes.
At the end of the lesson, students discuss how to determine if one value of a sample
statistic is surprising or unusual, a precursor to formal statistical inference. Student
learning goals for this lesson include:
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1. Be able to generate sampling distributions for the sample mean, for different
populations shapes.

2. Observe a predictable pattern (more normal, narrower, centered on the popula-
tion mean) as the sample size increases.

3. Be able to distinguish between the population distribution, sample distribution,
and the distribution of sample means.

4. Use the Simulation of Samples (SOS) Model to explain the process of creating
sampling distributions.

Description of the Lesson

Class discussion begins with discussion about what is meant by a “normal” body
temperature (e.g., healthy), what might be an unusual “normal” body temperature
for someone who is not sick, and at what point they would consider someone sick as
their temperature is too far beyond the expected range of natural variability. Students
are also asked to consider and discuss at what point they would consider the mean
temperature for a group of students to be unusual or suspicious. They are asked to
consider any one person and how likely a person would be to have a body temper-
ature of 98.6◦F (37◦C). This leads to the first activity (Body Temperatures), where
students make conjectures about what they would expect to see in a distribution of
normal body temperatures for the population of healthy adults in terms of shape,
center, and spread. They draw graphs of what they would expect this distribution to
look like.

Then, students are asked to consider where some particular values would be lo-
cated on their graphs: 99.0, 98.0, and 97.2◦F (37.2, 36.7, and 36.2◦C). They are
asked to think about whether or not any of these values would be considered un-
usual or surprising. They are asked to consider a temperature of 96◦F (35.6◦C).
Most students will most likely say that this is a surprising body temperature for a
normal adult. Then they are asked to think about how to determine what a surprising
or unusual value is.

This question leads to a discussion about how much statistical work has to do
with looking at samples from populations and determining if a particular result is
surprising or not, given particular hypotheses. If a result is surprising, students are
told, we often call that a statistically significant result. Students are told that they
will be looking at what leads to a sample or research results that are “statistically
significant.”

Students are guided to begin by looking at z scores, which are computed using
population values for μ and �. They are given these values and are asked to find z
scores for the body temperatures considered earlier: 99.0, 98.0, and 97.2◦F. Students
are next asked to think about z scores that would be more or less surprising, if
they represent an individual’s body temperature. The next part of the activity is
designed to help move students from considering individual values to considering
averages.
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As the discussion continues, students are asked to consider a random sample of
10 students who have their temperatures taken using the same method. They are
asked whether they would predict if the average temperature for this sample would
be exactly 98.6◦F or close to this value, and to give their reasons. They are then
asked what about another sample of 10 different students and if that sample would
have the same mean as the first sample of 10 or whether it would produce a different
mean. Students are asked to think about what would cause differences in sample
means.

Working in pairs, students are asked to write down plausible values for five stu-
dents’ body temperatures and then to write down plausible values of sample mean
body temperatures for five random samples of ten college students (n = 10). Stu-
dents are asked to think about and describe how they would expect these two sets of
temperatures to compare and which set would have more variability and why. They
are asked to think about what would happen if they took five random samples of 100
people, what the means of those samples of 100 people might be. Fathom is used to
simulate a population of body temperatures with the given values of μ and �, and
samples sizes are varied to allow students to compare their estimates with simulated
data (see Fig. 12.5 for a graph of the population).

In the next activity (Sampling Words), students return to the Web applet at Ross-
manChance Website that visually illustrates sampling words from the Gettysburg
Address, as shown in Fig. 12.4 (Note, Lesson 3 in Chapter 6 uses this applet to take
random samples). Students use the applet to sample five words and list the word
lengths, then discuss how they vary. They find the mean and standard deviation for
their set of five word lengths and consider what would be an unusual value (word
length).
Students are asked to compare the mean and standard deviation for their sample
of five word lengths to the given values of μ and � for the population. They next
begin taking samples of five words at a time, using the software, and examine the

Fig. 12.5 Fathom simulation
of human body temperatures

temp
97.5 98.0 98.5 99.0 99.5 100.0

Collection 2 Dot Plot
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sample means. They are asked to consider what would be unusual values of means
for samples of this size and to consider criteria to use in determining what a sur-
prising value would be. Next, they generate a distribution of 500 sample means for
samples of size 5 and use it to determine where their hypothetical “unusual” value
would be. They are instructed to change the sample size to 10 and determine what
differences will result for a new distribution of 500 sample means. They then repeat
this for sample size of 20 and 50.

A whole class discussion follows where students are asked to compare these
distributions in terms of shape, center, and spread, to discuss what is different about
them, and how their unusual value fits on each. They are then guided to compute z
scores for this value and compare them.

In the third activity (Sampling Pennies), students take simulated samples from
a third population (ages of pennies) to see if they notice the same predictable pat-
tern. They use the Sampling Pennies applet at RossmanChance.com, which shows a
skewed distribution of dates on pennies from which they sample and use to generate
distributions of sample means. Students vary parameters on the applet starting with
small sample sizes and increasing to large sample sizes. Each time, they take 500
samples and look at the distribution of sample statistics (means or proportions) to
describe a predictable pattern.

In a wrap-up discussion, students refer back to the beginning activity that looked
at the variability of individual body temperatures from a normal (distribution) pop-
ulation and note that:

� Some temperatures are more likely than others.
� To see if a value is more or less likely (or surprising) we needed to look at their

relative position in the distribution.
� Number of standard deviations above and below the mean (z scores) can tell us

if something is unlikely or unusual. This can also be done for sample means after
we learn the appropriate way to find z scores for a sample mean.

� Sample means vary too, but they tend to vary less than individual values.
� Means from smaller samples vary more than from large ones.
� There was a predictable pattern when we took larger sample sizes and plot-

ted their means. The predictable pattern was: Symmetric, bell shaped (even
when the populations were skewed), centered on μ, and smaller spread (less
variability).

� To determine if a sample mean is unusual or surprising, we need to compare it to
many other sample means, of the same size, from the same population. This is a
distribution of sample means.

� If a distribution of sample means is normal, we can use z scores to help us see if
values are unlikely or surprising.

Students also discuss how each of the simulations is modeled by the SOS model. The
next lesson helps us determine when it is appropriate to assume that a distribution
of sample means is normal so that we may use z scores to see if values are unlikely
or surprising.
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Lesson 3: Describing the Predictable Pattern – The Central
Limit Theorem

This lesson moves students from noticing a predictable pattern when they gener-
ate distributions of sample statistics to describing that pattern using mathematical
theory (i.e., the Central Limit Theorem, CLT). Students investigate the impact of
sample size and population shape on the shape of the sampling distribution, and
distinguish between sample size and number of samples. Students then apply (when
appropriate) the Empirical Rule (68, 95, 99.7% within 1, 2, and 3 standard devi-
ations from the mean) to estimate the probability of sample means occurring in a
specific interval. Student learning goals for this lesson include:

1. Discover the Central Limit Theorem by examining the characteristics of sam-
pling distributions.

2. See that the Central Limit Theorem describes the predictable pattern that students
have seen when generating empirical distributions of sample means.

3. Describe this pattern in terms of shape, center, and spread; contrasting these
characteristics of the population to the distribution of sample means.

4. See how this pattern allows us to estimate percentages or probabilities for a par-
ticular sample statistic, using the Normal Distribution as a model.

5. Understand how the SOS Model represents the Central Limit Theorem.
6. Understand how we determine if a result is surprising.

Description of the Lesson

The lesson begins with a review discussion of the previous lessons on samples and
distributions of sample statistics. This includes revisiting ideas of variability in data
values and in sample means, how to determine if a particular value or sample statis-
tics is unlikely (surprising) using z scores, that statistics from small samples have
more variability than those from large samples, and there is a predictable pattern
when plotting the means of many large random samples of a given sample size from
a population.

Students are asked to compare z scores for individual words to z-scores for means
of word lengths (from the Gettysburg Address) and use z-scores as a yardstick for
distance from a mean. They are asked to consider which is important: the number
of samples or sample size, and what these terms mean. This is because students of-
ten confuse number of samples (an arbitrary number when performing simulations)
with sample size. The point is made that we often used 500 samples because the
resulting distribution of sample means is very close to what we expect the sampling
distribution to look like in terms of shape, center, and spread.

The focus of the main activity of this lesson (Central Limit Theorem activity) is
to examine and describe in detail the predictable pattern revealed with different pop-
ulations, parameters, and sample sizes. The students are asked to make predictions,
generate simulations to test them, and then evaluate their predictions. Their predic-
tions are about what distributions of sample means will look like as they change the
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population shape and sample size. Each time, they take 500 samples, which provides
a picture that is very close to what they would get if they took all possible samples.

This activity can be done using different simulation tools, but we prefer to use
Sampling SIM software (delMas, 2001a) and a set of stickers that can be printed
using a template available at the Website. These stickers show three columns of
distributions, each headed by a specified population (see Fig. 12.6). Students are

Fig. 12.6 Stickers for the Central Limit Theorem Activity
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asked to consider three populations, one at a time, and to predict which of five
distributions shown on the stickers will correspond to a distribution of 500 sample
means for a particular sample size. They test their conjecture by running the sim-
ulation, then affix the sticker that matches that simulation result in a “Scrapbook.”
When the activity is finished, students have striking visual record that allows them
to see and describe what happens when different sized samples are taken from a

Normal
Population 
μ = 5.00 
σ = 1.805 

Skewed 
Population 
μ = 6.81 
σ = 2.063 

Multimodal 
Population 
μ = 5.00 
σ = 3.410 

Distribution of Sample Means 
n = 2

Distribution of Sample Means
n = 2

Distribution of Sample Means 
n = 2

Guess 1: A B C D E Guess 4: A B C D E Guess 7: A B C D E

Mean of x  = 4.93

SD of x  = 1.244

Mean of x  = 6.86

SD of x  = 1.480

Mean of x  = 5.10

SD of x  = 2.403 
Distribution of Sample Means 
n = 9

Distribution of Sample Means 
n = 9

Distribution of Sample Means 
n = 9

Guess 2: A B C D E Guess 5: A B C D E Guess 8: A B C D E

Mean of x  = 5.01

SD of x  = 0.578

Mean of x  = 6.80

SD of x  = 0.694

Mean of x  = 5.00

SD of x  = 1.125
Distribution of Sample Means 
n = 16

Distribution of Sample Means 
n = 16

Distribution of Sample Means 
n = 16

Guess 3: A B C D E Guess 6: A B C D E Guess 9: A B C D E

Mean of x  = 5.00

SD of x  = 0.454

Mean of x  = 6.83

SD of x  = 0.500

Mean of x  = 5.00

SD of x  = 0.845

Fig. 12.7 Sample of a sampling scrapbook at the end of the Central Limit Theorem Activity
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Normal, a skewed, and a trimodal distribution (see Fig. 12.7). If it is not possible to
use stickers, copies of the pages shown in Figs 12.6 and 12.7 can be used instead.

As students work through this activity, they see that the predictable pattern is true
regardless of population shape, and that (surprisingly) as the sample size increases,
the distributions look more normal and less like the population (for non Normal
populations). They are encouraged to develop a theory of how to evaluate whether a
sample mean is surprising or not. Students are then guided to use the Central Limit
Theorem to apply the Empirical Rule (68, 95, and 99.7% of data within 1, 2, and 3
standard deviations in a Normal Distribution) to sampling distributions that appear
to be normal.

In a wrap-up discussion, students are asked to contrast the Law of Large Num-
bers to the Central Limit Theorem and also to discuss how they are connected. For
example, when a large sample size is generated, individual samples better represent
the population (Law of Large Numbers) and their sample statistics are closer to
the population parameters. When graphing 500 of these sample means, they will
cluster closer to μ resulting in less variability (smaller standard error) and a sym-
metric bell shape. Students are asked to distinguish between: populations, samples,
and sampling distributions. They are asked to discuss what is similar and what
is different and why. Finally, they work in small groups to respond to questions
such as: How can we describe the sampling distribution of sample means without
running simulations? For random samples size 100 from a population of human
body temperatures, what would be the shape, center, and spread of the distribution
of sample means? And which would be more likely to be closest to 98.6◦F: A
mean temperature based on 9 people or a mean temperature based on 25 people?
Finally, students are asked to use the SOS Model to represent the Central Limit
Theorem.

Summary

We believe that ideas of samples and sampling distributions should be introduced
early in a statistics course and that by the time students reach the formal study of
sampling distributions, they have already generated and examined different distribu-
tions of sample statistics while making informal inferences. Even given that back-
ground, we believe that the full set of activities described in this chapter are needed
in order for students to understand and appreciate the Central Limit Theorem. Then,
when the formal study of inference is introduced we encourage the revisiting of
ideas of sampling distribution and the reference to the Simulation of Samples (SOS)
Model (Fig. 12.1) so that students can see the role of a sampling distribution in
making statistical inferences.



Chapter 13
Learning to Reason About Statistical Inference

Despite all the criticisms that we could offer of the traditional
introductory statistics course, it at least has a clear objective:
to teach ideas central to statistical inference.

(Konold & Pollatsek, 2002, p. 260)

Snapshot of a Research-Based Activity on Statistical Inference

Students revisit an activity conducted earlier in the semester in the unit on compar-
ing groups with boxplots (Gummy Bears Activity in Lesson 2, Chapter 11). Once
again, they are going to design an experiment to compare the distances of gummy
bears launched from two different heights. The experiment is discussed, the students
form groups, and the conditions are randomly assigned to the groups of students.
This time a detailed protocol is developed and used that specifies exactly how stu-
dents are to launch the gummy bears and measure the results. The data gathered
this time seem to have less variability than the earlier activity, which is good. The
students enter the data into Fathom (Key Curriculum Press, 2006), which is used to
generate graphs that are compared to the earlier results, showing less within group
variability this time due to the more detailed protocol.

There is a discussion of the between versus within variability, and what the
graphs suggest about true differences in distances. Fathom is then used to run a
two sample t test and the results show a significant difference, indicated by a small
P-value. Next, students have Fathom calculate a 95% confidence interval to estimate
the true difference in mean distances. In discussing this experiment, the students
revisit important concepts relating to designing experiments, how they are able to
draw casual conclusions from this experiment, and the role of variability between
and within groups. Connections are drawn between earlier topics and the topic of
inference, as well as between tests of significance and confidence intervals in the
context of a concrete experiment.

The metaphor of making an argument is revisited from earlier uses in the course,
this time in connection with the hypothesis test procedure. Links are shown between
the claim (that higher stacks of books will launch bears for farther distances), the
evidence used to support the claim (the data gathered in the experiment), the quality
and justification of the evidence (the experimental design, randomization, sample
size), limitations in the evidence (small number of launches) and finally, an indicator
of how convincing the argument is (the P-value). By discussing the idea of the
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P-value as a measure of how convincing our data are in refuting a contradictory
claim (that the lower height resulted in farther distances), students see that the farther
they are from this contradictory claim, the more likely we are to win our argument.
As they have seen in earlier uses of informal inference throughout the course, the
farther in the tails, the smaller the probability of observing what was seen in the
sample if the contradictory claim is true and the smaller the P-values. So they link
small P-values with convincing evidence and a more convincing argument.

Rationale for This Activity

Unlike many of the topics in previous chapters of this book, there is little empirical
research on teaching concepts of inference to support the lessons described in this
chapter. However, there are many studies that document the difficulties students
have reasoning and understanding inferential ideas and procedures. Therefore, we
are much more speculative in this chapter, basing our lessons and activities more
on writing by influential statistics educators as well as general research-based peda-
gogical theories. Later in this chapter, we address the many questions we have about
appropriate ways to help students develop good reasoning about statistical inference
and some promising new directions that are just beginning to be explored.

This particular activity is introduced near the end of a course that is designed to
lead students to understand inferences about one and two means. We use it at a time
where the material often becomes very abstract and challenging for students, a time
where it is often hard to find a motivating activity for students to engage in. Now
that students have already conducted this experiment, they are more aware of the
need to use good, consistent protocols for launching gummy bears, to decrease the
variability within each condition, and to provide a convincing argument supporting
their claim and refuting the alternative claim. Also, now that students are acquainted
with formal methods of making statistical inferences, they can do a statistical com-
parison of the difference in distances using a two-sample test of significance. The
use of the argument metaphor helps students connect the confusing terminology
used regarding hypothesis tests to something they can understand and relate to, and
builds upon earlier uses of this metaphor and associated terms throughout the course.

The Importance of Understanding Statistical Inference

Drawing inferences from data is now part of everyday life but it is a mystery as to why and
how this type of reasoning arose less than 350 years ago.

(Pfannkuch, 2005b, p. 267)

Drawing inferences from data is part of everyday life and critically reviewing re-
sults of statistical inferences from research studies is an important capability for
all adults. Methods of statistical inference are used to draw a conclusion about a
particular population using data-based evidence provided by a sample.
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Statistical inference is formally defined as “the theory, methods, and practice
of forming judgments about the parameters of a population, usually on the basis
of random sampling” (Collins, 2003). Statistical inference “moves beyond the data
in hand to draw conclusions about some wider universe, taking into account that
variation is everywhere and the conclusions are uncertain” (Moore, 2004, p. 117).
There are two important themes in statistical inference: parameter estimation and
hypothesis testing and two kinds of inference questions: generalizations (from sur-
veys) and comparison and determination of cause (from randomized comparative
experiments). In general terms, the first is concerned with generalizing from a small
sample to a larger population, while the second has to do with determining if a
pattern in the data can be attributed to a real effect.

Reasoning about data analysis and reasoning about statistical inference are both
essential to effectively work with data and to gain understanding from data. While
the purpose of exploratory data analysis is exploration of the data and searching
for interesting patterns, the purpose of statistical inference is to answer specific
questions, posed before the data are produced. Conclusions in EDA are informal,
inferred based on what we see in the data, and apply only to the individuals and
circumstances for which we have data in hand. In contrast, conclusions in statistical
inference are formal, backed by a statement of our confidence in them, and apply
to a larger group of individuals or a broader class of circumstances. In practice,
successful statistical inference requires good data production, data analysis to ensure
that the data are regular enough, and the language of probability to state conclusions
(Moore, 2004, p. 172).

The Place of Statistical Inference in the Curriculum

The classical approach to teaching statistical inference was a probability theory-
based explanation couched in formal language. This topic was usually introduced
as a separate topic, after studying data analysis, probability, and sampling. How-
ever, most students had difficulty understanding the ideas of statistical inference
and instructors realized something was wrong about its place and portion of the
curriculum. For example, an important part of Moore’s (1997) plea for substantial
change in statistics instruction, which is built on strong synergies between content,
pedagogy, and technology, was the case to depart from the traditional emphasis of
probability and inference. While there has been discussion on whether to start with
means or proportions first in introducing inference (see Chance & Rossman, 2001),
there has been some mention about ways to bring ideas of inference earlier in a
course. The text book Statistics in Action (Watkins et al., 2004) does a nice job of
introducing the idea of inference at the beginning of the course, asking the funda-
mental question - ‘is a result due to chance or due to design’, and using simulation
to try to address this question.

We believe that ideas of inference should be introduced informally at the be-
ginning of the course, such as having students become familiar with seeing where
a sample corresponds to a distribution of sample statistics, based on a theory or
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hypothesis. Thus, the informal idea of P-value can be introduced. These types
of informal inferences can be part of units on data and on distribution (does this
sample represent a population? would it generalize to a population?), comparing
groups (do the observed differences lead us to believe there is a real difference in
the groups these samples represent?), sampling (is a particular sample value surpris-
ing?), and then inference (significance tests and confidence intervals). By integrating
and building the ideas and foundations of statistical inference throughout the course,
we believe that students should be less confused by the formal ideas, procedures, and
language when they finally reach the formal study of this topic; however, there is
not yet empirical research to support this conjecture. We also recommend revisiting
the topic of inference in a subsequent unit on covariation, where students build on
applying their inference knowledge to test hypotheses about correlation coefficients
and regression slopes.

Review of the Literature Related to Reasoning About
Statistical Inference1

Historically, there were huge conceptual hurdles to overcome in using probability models to
draw inferences from data; therefore, the difficulty of teaching inferential reasoning should
not be underestimated.

(Pfannkuch, 2005b, p. 268)

Difficulties in Inferential Reasoning

Research on students’ informal and formal inferential reasoning suggests that stu-
dents have many difficulties in understanding and using statistical inference. These
results have been obtained across many populations such as school and college
students, teachers, professionals, and even researchers. Many types of misunder-
standings, errors, and difficulties in reasoning about inference have been studied and
described (e.g., Carver, 1978; Falk & Greenbaum, 1995; Haller and Krauss, 2002;
Mittag & Thompson, 2000; Oakes, 1986; Vallecillos and Holmes, 1994; Wilkerson
and Olson, 1997; Williams, 1999; Liu, 2005; Kaplan, 2006). In addition to studies
documenting difficulties in understanding statistical inference, the literature con-
tains studies designed to help explain why statistical inference is such a difficult
topic for people to understand and use correctly, exhortations for changes in the
way inference is used and taught, and studies exploring ways to develop students
reasoning about statistical inference.

1 We gratefully acknowledge the contributions of Sharon Lane-Getaz as part of her dissertation
literature review with Joan Garfield.
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Survey Studies on Assessments of Students’ Understanding
Statistical Inference

In a study of introductory students’ understandings about “proving” the truth or
falsity of statistical hypotheses, Vallecillos and Holmes (1994) surveyed more than
400 students from different fields who responded to a 20-item survey. One of the
interesting results in this study was that nearly one-third of the answers reflected
a faulty belief that hypothesis tests logically prove hypotheses. Additional mis-
understandings were found among introductory statistics students at the end of
a one-semester introductory statistics course by Williams (1997, 1999). Williams
interviewed eighteen respondents and found that statistical ideas of P-values and
significance were poorly understood. In an earlier study, Williams (1997) identified
several sources of students’ misunderstanding of P-values such as inadequate or
vague connections made between concepts and terms used, and confusion between
P-value and significance level. Williams (1999) also found that many introductory
students believed that the P-value is always low.

To assess graduate students’ understanding of the relationships between treat-
ment effect, sample size, and errors of statistical inference, Wilkerson and Olson
(1997) surveyed 52 students. They found many difficulties students had, such as
misunderstanding the role of sample size in determining a significant P-value. Sim-
ilar results were documented in a study by Haller and Krauss (2002), who surveyed
instructors, scientists, and students in psychology departments at six German uni-
versities. The results showed that 80% of the instructors who taught courses in quan-
titative methods, almost 90% of instructors who were not teaching such courses, and
100% of the psychology students identified as correct at least one false meaning of
P-value (Haller and Krauss, 2002).

Additional difficulties in reasoning about inference were identified such as confu-
sion about the language of significance testing (Batanero et al., 2000) and confusion
between samples and populations, between α and Type I error rate with P-value
(Mittag & Thompson, 2000). In sum, survey studies have identified persistent mis-
uses, misinterpretations, and common difficulties people have in understanding of
inference, statistical estimation, significance tests, and P-values.

Students’ responses to inference items were described as part of an examination
of data from a national class test of the Comprehensive Assessment of Outcomes in
a first Statistics course (CAOS – delMas et al., 2006). A total of 817 introductory
statistics students, taught by 28 instructors from 25 higher education institutions
from 18 states across the United States, were included in this study. While the re-
searchers found a significant increase in percentage of correct scores from pretest
to posttest on items that assessed understanding that low P-values are desirable in
research studies, ability to detect one misinterpretation of a confidence level (95%
refers to the percent of population data values between confidence limits), and abil-
ity to correctly identify the standard interpretation of confidence interval, there were
also items that showed no significant gain from pretest to posttest. For these items,
less than half the students gave correct responses, indicating that students did not
appear to learn these concepts in their courses. These items included ability to detect
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two misinterpretations of a confidence level (the 95% is the percent of sample data
between confidence limits, and 95% is the percent of all possible sample means be-
tween confidence limits), and understanding of how sampling error is used to make
an informal inference about a sample mean. There was also a significant increase
in students selecting an incorrect response (26% on pretest and 35% on posttest),
indicating that they believed that rejecting the null hypothesis means that the null
hypothesis is definitely false. In addition, although there was statistically significant
gain in correct answers to an item that assessed understanding of the logic of a
significance test when the null hypothesis is rejected (37% correct on the pretest
to 47% correct on the posttest), there were still more than half the students who
answered this item incorrectly on the posttest.

Why Is Statistical Inference so Difficult to Learn and Use?

Reasoning from a sample of data to make inferences about a population is a hard no-
tion to most students (Scheaffer, Watkins & Landwehr, 1998). Thompson, Saldanha
and Liu (2004) examined this difficulty, noting that literature on statistical inference
“smudges” two aspects of using a sample.

The first aspect regards attending to a single sample and issues pertaining to ensuring that
an individual sample represents the population from which it is drawn. The second aspect
regards the matter of variability amongst values of a statistic calculated from individual
samples. The two aspects get “smudged” in this way: (1) we (researchers in general) hope
that people develop an image of sampling that supports the understanding that increased
sample size and unbiased selection procedures tend to assure that a sample will look like
the population from which it is drawn, which would therefore assure that the calculated
statistic is near the population parameter; (2) we hope that people develop an image of
variability amongst calculated values of a statistic that supports the understanding that as
sample size increases, the values of a statistic cluster more tightly around the value of the
population parameter.

(Thompson et al., 2004, p. 9)

Thompson et al. (2004) state that they see ample evidence from research on under-
standing samples and sampling that suggests that students tend to focus on individual
samples and statistical summaries of them instead of on how collections of samples
are distributed. There is also evidence that students tend to base predictions about a
sample’s outcome on causal analyses instead of statistical patterns in a collection of
sample outcomes. They view these orientations as problematic for learning statisti-
cal inference because they appear to “disable students from considering the relative
unusualness of a sampling process’ outcome” (Thompson et al., 2004, p. 10). These
authors report on a study that explored students developing reasoning about inference
in two teaching experiments in high school mathematics classes that involve activities
and simulations to build ideas of sampling needed to understand inference. They found
that those students who seemed to understand the idea and use a margin of error for a
sample statistics had developed what. Saldanha and Thompson (2002) called a “mul-
tiplicative conception of sample” – a conception of sample that entails recognition of
the variability among samples, a hierarchical image of collections of samples that si-
multaneously retain their individual composition, and the idea that each sample has an
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associated statistic that varies as samples varied. This study suggested that if students
could be guided to develop this reasoning, they would be better able to understand
statistical inference. Indeed, Lane-Getaz (2006) developed a visual diagram to help
students develop this type of reasoning that has been adapted and used in the lessons
in this book (Simulation of Samples Model, see Chapters 6 and 12).

Other studies designed to reveal why students have difficulty learning statistical
inference have examined how this reasoning develops and offer suggested ways to
help students move toward formal inference (e.g., Biehler, 2001; Konold, 1994b;
Liu, 2005; Pfannkuch, 2006a).

Using Simulation to Illustrate Connections Between Sampling
and Inference

Recent research suggests that improving the instruction of sampling will help students
better understand statistical inference (e.g., Watson, 2004). This can be done by using
good simulation tools and activities for teaching sampling distribution and the Central
Limit Theorem (e.g., delMas et al., 1999; Chance et al., 2004).

However, using these simulation tools is not enough; they need to be linked to
ideas of statistical inference. Lipson (2002) used computer simulations of the sam-
pling process and concept maps to see how college students connected sampling
concepts to statistical inference. She found that while the simulations appeared to
help students understand some aspects of sampling distributions, students did not
appear to be linking these ideas to hypothesis testing and estimation. In a subsequent
study, Lipson, Kokonis, and Francis (2003) devised a computer simulation session
to support the development of students’ conceptual understanding of the role of the
sampling distribution in hypothesis testing. The researchers identified four devel-
opmental stages through which students progress while using the visual simulation
software: (a) recognition of the software representations, (b) integration of the three
concepts of population, sample, and sampling distribution; (c) contradiction that the
sample may not be typical of the hypothesized population, and (d) explanation of
results from a statistical perspective. A stumbling block for the students appeared to
be that that they looked for a contextual explanation rather than a statistical explana-
tion, even when they acknowledged the low probability of the sample coming from
hypothesized population. The researchers concluded that current software supported
the recognition stage only, and suggested that students need to have a substantial
experience in thinking about samples and sampling.

Some statistics educators (e.g., Biehler, 2001; Gnanadesikan et al., 1987; Jones,
Lipson & Phillips, 1994; Konold, 1994b; Scheaffer, 1992) advocate that inference
should be dealt with entirely from an empirical perspective through simulation
methods to help students understand how statistical decisions are made. One such
approach is the resampling method. Konold (1994b) used his DataScope Software
(Konold & Miller, 1994) tool to introduce resampling methods to help students
develop a more intuitive idea of a P-value. Mills (2002) summarizes papers that give
examples of how simulation can be used to illustrate the abstract ideas involved in
confidence intervals; however, it is difficult to locate research studies that document
the impact of these methods on students’ reasoning.
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Informal Reasoning About Statistical Inference

A topic of current interest to many researchers as well as teachers of statistics is
informal inferential reasoning rather than formal methods of estimation and tests of
significance (e.g., Pfannkuch, 2005a). As new courses and curricula are developed,
a greater role for informal types of statistical inference is anticipated, introduced
early, revisitedoften, anddeveloped throughuseof simulationand technological tools.

Informal Inferential Reasoning is the cognitive activities involved in informally
drawing conclusions or making predictions about “some wider universe” from data
patterns, data representations, statistical measures and models, while attending to
the strength and limitations of the drawn conclusions (Ben-Zvi et al., 2007). Infor-
mal inferential reasoning is interconnected to reasoning about distribution, measures
of centre, variability, and sampling within an empirical enquiry cycle (Pfannkuch,
2006a; Wild & Pfannkuch, 1999).

Rubin et al. (2006) conceptualize informal inferential reasoning as statistical
reasoning that involves consideration of multiple dimensions: properties of data
aggregates, the idea of signal and noise, various forms of variability, ideas about
sample size and the sampling procedure, representativeness, controlling for bias,
and tendency. Bakker, Derry, and Konold (2006) suggest a theoretical framework of
inference that broadens the meaning of statistical inference to allow more informal
ways of reasoning and to include human judgment based on contextual knowledge.

Using the Logic of an Argument to Illustrate Hypotheses Testing

Ben-Zvi (2006) points out that informal inference is closely related also to argu-
mentation. Deriving logical conclusions from data – whether formally or informally
– is accompanied by the need to provide persuasive explanations and arguments
based on data analysis. Argumentation refers to discourse for persuasion, logical
proof, and evidence-based belief, and more generally, discussion in which disagree-
ments and reasoning are presented (Kirschner, Buckingham-Shum, & Carr, 2003).
Integration and cultivation of informal inference and informal argumentation seem
to be essential in constructing students’ statistical knowledge and reasoning in rich
learning contexts. This view is supported by Abelson (1995), who proposes two
essential dimensions to informal argumentation: The act or process of deriving con-
clusions from data (inference), and providing persuasive arguments based on the
data analysis (rhetoric and narrative).

Part of making a statistical argument is to know how to examine and portray
the evidence. In statistical inference, this means understanding how a sample result
relates to a distribution of all possible samples under a particular null hypothesis.
Therefore, one type of informal inference involves comparing samples to sampling
distributions to get a sense of how surprising the results seem to be. This type of
informal reasoning is based on first having an understanding of sampling and sam-
pling distributions (see Chapter 12).
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Students’ Dispositions Regarding Statistical Inference

Another important research topic is students’ dispositions and their relation to sta-
tistical proficiency. Kaplan (2006) studied the extent to which differences in psy-
chological dispositions can explain differences in the development of students’ un-
derstanding of hypothesis testing. Kaplan investigated undergraduate students who
have taken an algebra-based statistics course. She used large samples to find rela-
tionships between statistics learning and dispositions and smaller samples to un-
cover themes and common conceptions and misconceptions held by undergraduate
statistics students. No relationships were found between the statistics learning and
the dispositions that were studied: “Need for Cognition,” and “Epistemological Un-
derstanding.” The research did identify three emergent themes in the student discus-
sions of hypothesis testing: how students consider the experimental design factors
of a hypothesis test situation, what types of evidence students find convincing, and
what students understand about P-values.

Teachers’ Understanding of Statistical Inference

Content and pedagogical-content knowledge of statistics teachers have a consider-
able influence on what and how they teach in the classroom. Liu (2005) explored
and characterized teachers’ understanding of probability and statistical inference,
and developed a theoretical framework for describing teachers’ understanding. To
this end, she analyzed a seminar with eight high school teachers. Liu revealed that
the teachers experienced difficulties in understanding almost every concept that is
entailed in understanding and employing hypothesis testing. Beyond the complexity
of hypothesis testing as a concept, Liu conjectured that teachers’ difficulties were
due to their lack of understanding of hypothesis testing as a tool, and of the char-
acteristics of the types of questions for which this tool is designed. Although the
teachers were able to root the interpretation of margin of error in a scheme of
distribution of sample statistics, some of them were concerned with the additive
difference between a population parameter and a sample’s estimate of it. This study
revealed a principle source of disequilibrium for these teachers: They were asked to
develop understandings of probability, sample, population, distribution, and statisti-
cal inference that cut across their existing compartments.

Implications of the Research: Teaching Students to Reason
About Statistical Inference

Deepen the understanding of inferential procedures for both continuous and categorical
variables, making use of randomization and resampling techniques.

(Scheaffer, 2001)

The research suggests that understanding ideas of statistical inference is extremely
difficult for students and consists of many different components. Many of these
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components themselves are difficult for students to understand (e.g., sampling dis-
tributions). Simulation and resampling methods are viewed as having the poten-
tial to offer a way to build informal inferences without focusing on the details of
mathematics and formulas. In addition, using data sets and questions in early data
analysis units to have students consider informal inferences (e.g., what does this
sample suggest about the population, what do we believe about the difference in
means for these two groups that these two samples come from) may help develop
formal ideas of inference in later units.

In studying the difficulties students have reasoning about statistical inference,
many different types of errors and misunderstanding have been identified, as well
as a detailed description about what it means to reason about different aspects of
statistical inference. Being aware of the complexities of the ideas as well as the
common misunderstandings can help teachers be on the alert for student difficulties
through formal and informal assessments that can be used for diagnostic purposes.

Some of the ideas related to correct (and incorrect) reasoning about two as-
pects of statistical inference: P-values and confidence intervals have been de-
tailed by the Tools for Teaching and Assessing Statistical Inference Project (see
http://www.tc.umn.edu/∼delma001/stat tools/). For example, some common mis-
conceptions about P-values and confidence intervals are summarized as follows:

Misconceptions about P-values

� A P-value is the probability that the null hypothesis is true.
� A P-value is the probability that the null hypothesis is false.
� A small P-value means the results have significance (statistical and practical

significance are not distinguished).
� A P-value indicates the size of an effect (e.g., strong evidence means big effect).
� A large P-value means the null hypothesis is true, or provides evidence to sup-

port the null hypothesis.
� If the P-value is small enough, the null hypothesis must be false.

Misconceptions about Confidence Intervals

� There is a 95% chance the confidence interval includes the sample mean.
� There is a 95% chance the population mean will be between the two values

(upper and lower limits).
� 95% of the data are included in the confidence interval.
� A wider confidence interval means less confidence.
� A narrower confidence interval is always better (regardless of confidence level).

Suggestions for Teaching Statistical Inference

As mentioned at the beginning of this chapter, there is little empirical research
on the effectiveness of different instructional strategies, sequences of activities, or
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technological tools in helping students develop correct reasoning about statistical
inference. However, there are many strong and often conflicting beliefs among
statistics educators about optimal methods of teaching these ideas. Arguments have
been made for teaching inferences on proportions before means, teaching confi-
dence intervals before tests of significance, not teaching students the method of
pooling variances in comparisons of two-sample means, and abandoning t-tests
altogether and instead using resampling and randomization methods. We describe
below some of the suggestions that we believe to be aligned with the approaches
described in our book and which we have used to build our suggested sequences of
activities, acknowledging that they are not necessarily based on empirical research
studies, and that their effectiveness is untested at this point.

Connecting Statistical Inference to Data Collection, Description,
and Interpretation

Rossman and Chance (1999) offer “Top Ten” list of recommendations for teach-
ing the reasoning of statistical inference. Their goal is to help students to focus
on investigation and discovery of inferential reasoning, proper interpretation and
cautious use of results, and effective communication of findings. The list includes
the following recommendations:

1. Have students perform physical simulations to discover basic ideas of inference.
2. Encourage students to use technology to explore properties of inference proce-

dures.
3. Present tests of significance in terms of P-values rather than rejection regions.
4. Accompany tests of significance with confidence intervals whenever possible.
5. Help students to recognize that insignificant results do not necessarily mean

that no effect exists.
6. Stress the limited role that inference plays in statistical analysis.
7. Always consider issues of data collection.
8. Always examine visual displays of the data.
9. Help students to see the common elements of inference procedures.

10. Insist on complete presentation and interpretation of results in the context of
the data.

Presenting Statistical Inference as Argumentation

A more recent approach to teaching statistical inference is to connect these ideas
to the making of an argument, as described earlier by Ben-Zvi (2006). The logic of
arguments can be used to explain the reasoning of a hypothesis test as follows:

� In statistics, we argue about claims (hypotheses) we believe to be true or false.
While we cannot prove they are true or false, we can gather evidence to support
our argument.

� A hypothesis test can be viewed as a method for supporting an argument.
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� An argument (hypothesis test) may originate from two different perspectives:
wanting to argue against a claim (i.e., the null hypothesis) or wanting to argue
for a claim (i.e., the research (alternative) hypothesis).

� Just as in real life, even if we convince someone by our argument, we are only
convincing them with evidence, we cannot really establish if our claim is actually
true or not. In a hypothesis test, we only decide if the evidence is convincing
enough to reject the null hypothesis, but not prove it is true or false.

� In order to make a good argument, we need four building blocks:

1. A clear claim we are making (and a counterclaim that includes all other pos-
sibilities).

2. Data to support our argument.
3. Evidence that the data are accurate and reliable, not misleading.
4. A good line of reasoning that connects our data to our argument.

� In real life when we make an argument, the resolution is that we win or lose the
argument based on how convincing our argument is. This is based on the strength
of our evidence, and how we use the evidence to support our case. In a hypothesis
test, the result is to reject or fail to reject the null hypothesis, which is based on
the size of the obtained P-value.

� We need to see how far away our data are from the claim we are arguing against.
Therefore, we look for data that are far from what we would expect if the claim
we are arguing against is true. A low P-value results from data that are far from
the claim we are arguing against, and the lower (farther) they are, the stronger
the evidence.

Introducing the idea of an argument would seem to be a useful way to help students
understand the process of making and testing hypotheses, and may help students
better understand this complex and often counterintuitive procedure.

Basing Inference on Simulation and Randomization

While many educators have advocated the use of simulations to help students un-
derstand the connections between sample, population, and sampling distribution in
inference, to illustrate the abstract ideas of confidence interval (e.g., Mills, 2002)
others have suggested that traditional approaches to inference be replaced entirely
with resampling methods (e.g., Simon, Atkinson, & Shevokas 1976; Simon, 1994;
Konold, 1994b). More recently, in light of flexible and accessible technological
tools, educators such as Cobb (2007) and Kaplan (2007) have suggested radically
different approaches to statistical inference in the introductory course. Their sug-
gestions place inference as the focus of a course that teaches three R’s: Randomize
data production, Repeat by simulation to see what’s typical, and Reject any model
that puts your data in the tail of the distribution (see Cobb, 2007). We find these
ideas very appealing but have not yet explored ways to build a sequence of lessons
around them and experimented with them in our classes.
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Progression of Ideas: Connecting Research to Teaching

Introduction to the Sequence of Activities to Develop Reasoning
About Statistical Inference

The sequence of ideas and activities for inference represent one of many possible
ways to guide students to develop good inferential reasoning, and we do not have
a strong conviction that this sequence is an optimal one. Although we have used
these lessons and find them to work well in engaging students, we believe that it
might be better to adopt more of an informal and conceptual approach, rather than
leading students to learn the formal aspects of testing hypotheses and construct-
ing confidence intervals. However, we provide examples in this chapter of how to
build lessons about inference on the previous big ideas and activities, and make
connections between foundational concepts and the formal aspects of statistical
inference.

We suggest that ideas of informal inference are introduced early in the course
and are revisited in growing complexity throughout the course. Underlying the
development of this inferential reasoning is a fundamental statistical thinking el-
ement, consideration of variation (Moore, 1990; Wild & Pfannkuch, 1999), and
how variability of data and samples is a key part of making inferences. This means
that students have opportunities to see and describe variability in samples through-
out the course as they make informal inferences about how these samples relate
to the population from which they were drawn, and whether these samples lead
us to infer about what that population might be. When ideas of formal inference
are eventually introduced, they are devoid of computations and formulas so that
students can focus on what the ideas of null and alterative hypothesis mean, the
idea of P-value, and types of errors. The computer is used to run tests and gener-
ate confidence intervals before students see the formulas. The culmination of this
progression of ideas is giving students a set of research questions and associated
data and having them use their statistical thinking to choose appropriate proce-
dures, test conditions, arrive at conclusions, and provide evidence to support these
conclusions.

In addition to the progression from informal to formal methods of statisti-
cal inference, we suggest the use of two important pedagogical methods. One
is the modeling by the teaching of statistical reasoning and thinking in making
statistical inference. This means, making their thinking visible as they go from
claims to conclusions, checking conditions, considering assumptions, questioning
the data, choosing procedures, etc. The second is the use of the argumentation
metaphor for hypothesis testing as described earlier. This means using the lan-
guage of arguing about a claim, whether we believe a claim is true, the role of
evidence and using that evidence well, and what it takes to be convinced that the
claim is true or false. Table 13.1 shows a suggested series of ideas and activities
that can be used to guide the development of students’ reasoning about statistical
inference.
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Table 13.1 Sequence of activities to develop reasoning about statistical inference2

Milestones: Ideas and concepts Suggested activities

Informal ideas prior to formal study of statistical inference

� Making inferences and generalizations
from a sample of simulated data

� One Son Activity (Lesson 1, Statistical
Models and Modeling Unit, Chapter 7)

� Statistical inference as an argument ❖ An informal discussion early in a course
about the nature of statistical inference,
and comparing this to making an argument
and providing evidence to support your
claim. (The symbol ❖ indicates that this
activity is not included in these lessons.)

� Random sample and how it is representa-
tive of a population

� The Gettysburg Address Activity (Lesson
3, Data Unit, Chapter 6)

� Results being due to chance or due to de-
sign (some other factor)

� Taste Test Activity (Lesson 4, Data Unit,
Chapter 6)

� As a sample grows, the characteristics be-
come more stable, that with more data you
can better generalize to a population

� Growing a Distribution Activity (Lesson
1, Distribution Unit, Chapter 6)

� Two samples of data may or may not rep-
resent true differences in the population

� Activities in Lessons 1–4, Comparing
Groups Unit (Chapter 11)

� When comparing groups, you must take
into account the variability between
groups relative to the variability within
each group

� Gummy Bears Activity (Lesson 2, Com-
paring Groups Unit, Chapter 11)

� If the normal distribution provides a good
model for a data set we may make infer-
ences based on the Empirical Rule

� Normal Distribution Applications Activity
(Lesson 3, Statistical Models and Model-
ing Unit, Chapter 7)

� We can make inferences by comparing a
sample statistic to a distribution of sam-
ples based on a particular hypothesis

� Activities in Lessons 1 and 2, Samples and
Sampling Unit (Chapter 12)

Formal ideas of statistical inference

� Hypothesis test as making an argument � Modeling Coin Tosses Activity (Lesson 1:
“Testing Statistical Hypotheses”)

� Hypothesis test, null and alternative hy-
pothesis

� Balancing Coins Activity (Lesson 1)

� The idea of a P-value � P-values Activity (Lesson 2)
� Types of errors and correct decisions � Types of Errors Activity (Lesson 2)
� What is needed to test a hypothesis? � Types of Errors and P-values Activities

(Lesson 2)

2 See page 391 for credit and reference to authors of activities on which these activities are based.
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Table 13.1 (continued)

� Confidence interval as an estimate of
parameter, with margin of error

� Introduction to Confidence Intervals (Les-
son 2)

� Understanding how confidence inter-
vals may be presented in different
ways

� Introduction to Confidence Intervals (Les-
son 2)

� Understanding what 95% refers to in a
confidence interval

� Estimating with Confidence, Estimating
Word Lengths, and What Does the 95%
Mean Activities (Lesson 3: “Reasoning
about Confidence Intervals”)

� A statistically significant difference
between two groups where randomiza-
tion of conditions has taken place

� Gummy Bears Revisited Activity (Lesson
4: “Using Inference in an Experiment”)

Building on formal ideas of statistical inference in subsequent topics

� Statistically significant correlation co-
efficient

� Activities in Lesson 3, Covariation Unit
(Chapter 14)

� Statistically significant regression
slope

� Activities in Lesson 3, Covariation Unit
(Chapter 14)

� There are many types of statistical in-
ferences, and software may be used by
correctly choosing the commands

� Research Questions Involving Statistical
Methods Activity (Lesson 5: “Applying
Methods of Statistical Inference”)

� Understanding that the interpretation
of P-values and confidence depends
on assumptions being met

� Research Questions Involving Statistical
Methods Activity (Lesson 5)

Introduction to the Lessons

There are five lessons on statistical inference that begin with informal ideas and
lead to running tests of significance and confidence intervals on the computer. The
focus is on understanding the ideas and methods and interpreting the results, rather
than on formulas and computing test statistics. The lessons proceed very slowly,
building on informal ideas from previous lessons and also integrating ideas of ar-
gumentation. The final lesson provides students with an opportunity to think sta-
tistically and to integrate and apply their knowledge, as they are given only re-
search questions and a data set and need to answer the questions using the data and
software.
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Lesson 1: Testing Statistical Hypotheses

This lesson uses the context of balancing a coin on its edge to introduce formal
ideas of testing hypotheses. The proportion of heads obtained when a balanced coin
falls is used to test a null distribution based on equally likely outcomes. The idea
of the P-value is examined visually and conceptually, and then P-values are found
using simulation software. The argumentation metaphor is used to explain the logic
of testing hypothesis. Student learning goals for this lesson include:

1. Connect informal to formal ideas of statistical inference.
2. Introduce the process and language of significance tests.
3. Use Sampling SIM to conduct an informal test of significance.
4. Understand the use of P-value in a test of significance.

Description of the Lesson

In the Modeling Coin Tosses activity, the instructor holds up a penny and asks what
students expect if the coin is tossed. It is agreed while the outcome of a toss is
unpredictable, that they expect a fair penny to land with Heads up half the time and
with Tails up half the time. Students make a conejcture about what would happen
if they balance a coin on its edge and let it fall, and if this is done many times,
would it also land Heads and Tails in fiarly equal numbers. They are asked how
to determine if a balanced coin is just as likely to land Heads up as it is to land
Heads down.

Students discuss in pairs and then write down possible numbers of Heads they
might expect to get for 8 sets of 10 tosses of a fair penny (e.g., list the number of
Heads out of 10 for eight repetitions of this experiment). They are asked whether
they expect to get 5 Heads each time, or if they expected some variability between
results of each set of 10 tosses, and how variable they expected each set of 10 to be
in the number of Heads produced. Students also reason about what outcomes they
would consider to be less likely if using a “fair” coin and why.

Next, students use Sampling SIM to model tossing a fair coin ten times. They
sketch the resulting distribution of sample proportions and describe it in terms of
shape, center, and spread. Students shade in areas of the distribution that include
what they would consider to be surprising results, so that if they obtained one of
those results, they might question the assumption that the coin is equally likely to
land Heads up or down (probability of Heads is 0.5).

In the Balancing Coins activity, students are asked what they think will happen
if they balance sets of 10 pennies on their edge and let them fall, and if they ex-
pect the same number of Heads and Tails when flippoing a coin (p = 0.5). They are
introduced to the idea of testing a statistical hypothesis, as shown below:

Idea 1: Balancing a coin is a “fair” process: Heads and Tails are equally likely to result.
Idea 2: Balancing a coin is an “unfair” process: There will be a higher percent of Heads or
Tails.
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These ideas are then written as statistical hypotheses:

Null hypothesis: The proportion of Heads when we balance a coin repeatedly is 0.5.
Alternative hypothesis: The proportion of Heads when we balance a coin repeatedly is not
0.5. (In other words the proportion is more, or less, than 0.5.)

The null hypothesis is discussed as an idea of no difference from the norm or prior
belief (e.g., getting the same results as tossing fair coins). The alternative hypothesis
is discussed as a statement that there will not be an equal number of Heads and Tails,
something contrary to the first idea.

Students are told that we gather evidence (data) and determine whether or not
it supports the null hypothesis or whether it provides convincing support for an
alternative hypothesis. To do this, students design an experiment to lead them to
make a decision about which of the two hypotheses are supported by the data. They
discuss what is needed to test a hypothesis or to make a good argument given this
context:

1. A hypothesis to test (e.g., the proportion of Heads is 0.5) (The claim).
2. A sample of data which gives us a sample statistic (e.g., a sample proportion).
3. A sampling distribution for that statistic (based on the null-hypothesis) so we can

see how unusual or surprising it is, by seeing if it is far off in one of the Tails
(surprising) or in the middle (not surprising). This sampling distribution is based
on the null hypothesis and the sample size for our sample data. If our sample
statistic is in one of the Tails, that would lead us to reject H0 (A method to test
the claim).

4. A decision rule: how far is far off in the Tails? How far in one of the Tails does
our sample statistic need to be for us to decide it is so unusual and surprising that
we reject the idea stated in H0, that the coin is equally likely to land Heads up or
Heads down when we balance it? (How to evaluate the strength of the evidence.)

Students then get in groups and balance coins, counting the result when the coins
fall. The numbers of Heads and Tails are tallied, proportions of Heads for each set of
10 balances are found and gathered for the class. The sample proportions typically
range from 0.5 to 0.9.

The next discussion regards an appropriate sampling distribution to use to judge
whether their results are due to chance or whether the chances of getting Heads when
balancing a coin is greater than 0.5. They decide to refer to the simulation created
earlier (in the Modeling Coin Tosses Activity, Lesson 1), which allows a comparison
of their sample statistics to what they would expect if the coin is equally likely to
turn up Heads or Tails when balanced. Students use their sketches made earlier in
the activity to determine whether or not this result is in a tail. They mark the sample
proportion for their group in the graph and discuss whether they think this result is
surprising, and why or why not. This leads to an examination of what percent of
the distribution has values more extreme than theirs. They use Sampling SIM to find
this area.

This value is discussed as the chance of getting the result students got or a more
extreme one, and is referred to as a P-value. The role of the P-value in making
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a decision is seen as helping determine which of the two hypotheses seems more
likely. Students discuss how small a P-value must be to be judged surpassing and
leading them to reject the null hypothesis. Again, the argument metaphor is used,
and the P-value is described as an indicator of how convincing the evidence is
against the claim (null hypothesis). The farther it is in the tails, the more we are
convinced that the null hypothesis (claim) is false. So the smaller the P-value, the
stronger is the evidence. Students evaluate their P-values and determine whether
they reject the claim that the coin is equally likely to land Heads up or Heads down
when balanced on its edge. The class then combines their data to get a better, more
stable estimate of the proportion of Heads, and test this result using the Sampling
SIM software and finding the P-value via simulation.

Students are asked what conclusion can be drawn about the original research
question, and then apply the same procedure in determining whether or not they
believe a Euro coin is equally likely to land Heads up or down when tossed, using
data from a series of 100 tosses of a Euro coin.

A wrap-up discussion reviews the process of hypothesis testing (hypotheses,
data-sample statistic, sampling distribution, and decision rule) and how this process
maps to making a convincing argument. The Simulation of Samples (SOS) Model is
revisited and used to map the different levels of data: population, sampling distribu-
tion, and sample value.

Lesson 2: P-values and Estimation

This lesson builds on the previous lesson, using the context of balancing coins to
test hypothesis and learn the language of tests of significance. This lesson also in-
troduces the idea of a confidence interval, helping students see the two parts of the
interval (e.g., sample statistic and margin of error) and different ways or reporting
confidence intervals. Students also begin to interpret a confidence interval. Student
learning goals for this lesson include:

1. Review use of simulations for inference.
2. Review the process for hypothesis testing.
3. Learn about the two types of errors when conducting tests of significance.
4. Use Fathom to conduct a test of significance.
5. Understand the idea of a confidence interval as a way to estimate a parameter.

Description of the Lesson

After balancing pennies in the previous lesson, students are asked if they think that
balancing the Euro coin will yield equally likely chances of getting Heads and
Tails. In the P-values activity, they are given a sample result from a person who
balanced a Euro 100 times and got 31 Heads. First, students repeat the process they
used earlier, of finding this sample proportion and comparing it to the simulated
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sampling distribution for a null hypothesis of equally likely outcomes. Next they
use Fathom software to find P-values without simulation. These two P-values are
compared and students reason about why the P-value from the simulation is not
exactly the same as the one produced by Fathom (Sampling SIM ran 500 simulations
while Fathom is basing their result on the true sampling distribution of all possible
samples).

In the Types of Errors activity, students review the steps of the previous lesson
(Lesson 1 on Testing Statistical Hypotheses) discussing the components needed to
test a hypothesis and how these compare to the argumentation process. They map
the types of errors (Type 1 and Type 2) to this context of balancing the Euro coin.
For example:

1) We select Ha but it is the wrong decision because H0 is true (Type 1 error).
2) We select H0 but it is the wrong decision because H0is not true (Type 2 error).

Another context is provided and students try to reason about what the different types
of errors would mean in that context and the importance of keeping the chance
of making these errors small. The idea of alpha as the chance of making a Type
1 error is contrasted to the idea and role of the P-value, and what is meant by
the term “statistically significant.” This term is compared to winning an argument
because the evidence is strong, and compelling. However, winning an argument
by presenting strong evidence may also result in an error, if the claim being dis-
puted is actually true. So this parallel is drawn to rejecting a hypothesis when it is
actually true.

The next activity, Introduction to Confidence Intervals, examines what happens
after a null hypothesis is rejected. In this case, balancing a Euro will result in an
equal number of Heads and Tails. Students are referred back to the Euro data and
make a conjecture about the proportion of Heads they would expect to find in a large
number of repetitions of this experiment. When students give different answers or
ranges of answers, it is suggested that because we are unsure about giving a single
number as our estimate, due to variability of our sample data, we might feel more
confident about offering a range of values instead. Students are asked what interval,
or range of values, might give an accurate estimate of possible values for this “true”
proportion of Heads when a Euro coin is balanced on its edge and falls down. To
move to the formal idea of a confidence interval, students are given the following
news clip to read:

A recent poll of people in the military stated: While 58% say the mission (being
in Iraq) is clear, 42% say that the U.S. role is hazy. The survey included 944
military respondents interviewed at several undisclosed locations throughout
Iraq. The margin of error for the survey, conducted from Jan. 18 through Feb.
14, 2006, is ± 3.3 percentage points.
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Students are guided to use the information stated above to obtain an interval estimate
for the percentage of all people in the military who believe the mission is hazy. They
construct a confidence interval using this information. They see that they need two
pieces of information that are given in this article: This information is then related
back to the problem of finding a confidence interval for the proportion of Heads
when balancing a Euro coin. This includes:

� A sample statistic (e.g., the class proportion of Heads when balancing coins),
and,

� A margin of error (an estimate of how much this statistic varies from sample to
sample for a given sample size, calculated from the sample data and information
from the sampling distribution for the sample statistic).

Students are shown two ways to present confidence intervals:

� The sample average, plus or minus a margin of error (e.g., estimating the average
textbook price for statistics, $80 ± $15).

� The two endpoints (low and high values) of the interval. (e.g., $65–$95).

The relationship of the confidence level to the idea of error is examined, and stu-
dents reason about what a confidence interval tells about estimating a parameter and
possibly making an error about that estimate. Students see that a confidence interval
provides two kinds of information: an interval estimate for the population parameter
(rather than a single number estimate) and a level of confidence (how confident we
are that our interval includes the population value we want to estimate).

A wrap-up discussion includes what the term “margin of error” means, and how
this term is used when interpreting results from a poll. Students describe the sample
and the population for the survey reported above and critique it, referring back to
material from the unit on Data related to designing good surveys (Lessons 1 and 2
in the unit on Data, Chapter 6). Students also consider and discuss different inter-
pretations of the poll results, such as: Can we use our interval to give a guess about
the true percentage of all people in the military that believe the mission is hazy?
How? How sure are we? Are there any problems with generalizing from our sample
of 944 military respondents to all people in the military?

Lesson 3: Reasoning About Confidence Intervals

This lesson helps students develop their reasoning about confidence intervals by
using simulation to make and test conjectures about factors that affect confidence
intervals. They also have opportunities to discuss common misconceptions as they
critique interpretations of confidence intervals. Student learning goals for this lesson
include:

1. Develop reasoning about confidence interval.
2. Understand what 95% confident actually means.
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3. Understand how sample size and confidence level affect the length of the confi-
dence interval.

4. Become familiar finding a confidence interval using Fathom software.
5. Understand connections between confidence intervals and hypothesis tests.

Description of the Lesson

In the Estimating with Confidence activity, students return to the question from the
previous lesson: “What is the true (expected) proportion of Heads when a Euro is
balanced?” Now that they believe that the proportion of Heads when a Euro balanced
is not equal to 0.5, then what is it? Students now know the idea of a confidence
interval. Fathom is used to produce a confidence interval for the sample of data
based on balancing a Euro coin. The class discusses how to interpret this result and
are asked what type of estimate might be more informative about the location of the
actual population parameter, a narrower or wider interval, and why.

Connections are then made between testing a hypothesis and estimating with a
confidence interval, and students see how a confidence interval can be used to test
a hypothesis. Students make a conjecture about how the confidence interval would
be different if they had only 50 pieces of data rather than 100, and then if they
had 1,000 data values and why. This conjecture will be examined later in a sim-
ulation activity. Students reflect on the previous unit on sampling and distinguish
between the sample statistic and a population parameter for the Euro coin exam-
ple, and how much they would expect a sample statistic to vary from a population
parameter.

In the Estimating Word Lengths activity, students return to the Gettysburg Ad-
dress activity from the unit on Data (Lesson 3 in Chapter 6) in which they sampled
words from the Gettysburg Address. They use the Gettysburg Address as a popu-
lation and take samples and construct confidence intervals to see how they behave
and how to interpret them. They use the Gettysburg Address Web applet to take a
random sample of 25 words and then use Fathom to find a 95% confidence interval
to estimate the true mean word length for all of the words in the Gettysburg Ad-
dress. Next, the students draw their confidence intervals on the board, one on top of
another. These intervals are compared to the true population mean word length, and
students examine how many of the intervals generated by the class overlap the true
population mean. Students are asked what percentage of all the intervals in the class
they would expect to not overlap the population mean and find it is close to what
they have generated.

The next activity (What Does the 95% Mean?) leads students use Sampling SIM
to make and test conjectures about confidence intervals. They sample data from
different populations such as a normal curve as well as for a skewed distribution,
which is shown in Fig. 13.1.

Students generate 200 95% confidence intervals for samples of size 25 and ex-
amine how many do not include the population mean (shown as red lines) and how
close the proportion of intervals that include the mean is to 95% (see Fig. 13.2).
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Fig. 13.1 A right-skewed population produced by Sampling SIM

They use the results from Sampling SIM to help answer the following questions that
target common misconceptions about confidence intervals:

1. Does the level of confidence, 95%, refer to the percent of data values in the
interval?

2. Does the level of confidence, 95%, refer to the location of the sample mean or
locating the population mean? Explain.

3. Does the level of confidence, 95%, refer to a single interval (e.g., the one you
found in Fathom) or to the process or creating many intervals (e.g., all possible
intervals)? Explain.

Next, students use the Sampling SIM to make and test conjectures about what fac-
tors affect the width of the confidence interval. They then test these conjectures by
increasing and decreasing the level of confidence, and changing the sample size,
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Fig. 13.2 Two hundred 95% confidence intervals (sample size 25) from a right-skewed population
in Sampling SIM

Fig. 13.3 Two hundred 95% confidence intervals (sample size 50) from a right-skewed population
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Fig. 13.4 Two hundred 99% confidence intervals (sample size 25) from a right-skewed population

generating new simulated intervals each time. See Fig. 13.3 for larger sample size
and Fig. 13.4 for larger confidence level.

A discussion follows about what type of width (narrow or wide) gives the most
precise estimate of the population parameter, and what level of confidence (lower or
higher) most often includes the true population parameter being estimated.

A wrap-up discussion includes when and why we use a confidence interval in
a statistical analysis and why we say “95% confident” instead of “95% probabil-
ity.” Students consider why and how confidence intervals and hypothesis tests are
connected, and what is unique about each approach and the information it provides.

Lesson 4: Using Inference in an Experiment

This lesson described at the beginning of this chapter revisits an earlier experiment,
giving students a chance to try to reduce within group variation and better detect
a difference in the two conditions. Data are gathered and analyzed first graphically
and then using Fathom to run a two sample t-test. The logic of hypothesis tests and
comparison to making an argument are revisited for this context. Student learning
goals for the lesson include:

1. Understand the idea of a two-sample hypothesis test.
2. Differentiate between a one-tailed and a two-tailed test.
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3. Use Fathom to conduct a two-sample test.
4. Understand the idea of a two-sample confidence interval (difference in means).
5. Use Fathom to conduct a confidence interval to estimate a difference in means.
6. Revisit the ideas of designing an experiment and making cause and effect infer-

ences.
7. Revisit ideas of within and between group variation and how they affect a two

sample comparison.
8. Revisit ideas of how to reduce variation within a condition, and ideas of signal

and noise in repeated measurements within each condition.

Description of the Lesson

In the Gummy Bears Revisited Activity, students reflect on the earlier Gummy Bear
activity (Lesson 2 in the Comparing Groups Unit, Chapter 11) and discuss how to
determine if there is a difference between two conditions in an experiment, in this
case, if there are different average launching distances for the one book or four book
launching pads. Students are asked, in light of recent discussions and activities on
statistical inference, to suggest how, if a difference in sample means is observed, this
is not just due to chance.

The students redo the experiment after first discussing a careful and systematic
protocol to follow in launching the Gummy bears. Treatments are assigned to groups
and each group produces data for 10 launches. Students use Fathom to produce side
by side boxplots, discussing what the boxplots suggest about the differences in flight
distances for the two conditions. Students are asked how to determine if the observed
difference in group means is statistically significant and what this means. The null
and alternative hypotheses are constructed and Fathom is used to run the test. Stu-
dents contrast one and two tailed tests for this experiment, and run the test both
ways using Fathom, contrasting the difference in results. Students explain what the
results of the hypothesis test suggest about the difference between the two launching
heights. Next, students use a confidence interval to estimate the mean difference in
average launch. They discuss what it means if a difference of 0 is in the interval or
is not in the interval. Since 0 was not in the interval, they concluded that this is a
statistically significant difference in flight distances.

In a wrap-up discussion, students suggest reasons to use a one-tailed or two-tailed
test of significance, and advantages and disadvantages of each method. They reason
about how the type of test (one or two tailed) affects the P-values obtained and
which method is more conservative. Finally, students give a full statistical conclu-
sion about the comparison of flight distances for short vs. high launching pads.

Lesson 5: Solving Statistical Problems Involving
Statistical Inference

This lesson comes at the end of a course, after the study of covariation (see Chapter
14) and helps students connect and integrate concepts and processes in statistical
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inference, developing their statistical thinking. Student learning goals for the lesson
include:

1. Review the process of conducting and interpreting a test of significance.
2. Review the process for finding, reporting, and interpreting confidence intervals.
3. Review the conditions/assumptions that are necessary for our inferences to be

valid.
4. Be able to research questions to appropriate inferential procedures.
5. Practice using Fathom to conduct tests of significance and to find confidence

intervals.
6. Be able to interpret and justify results of statistical inferences.

Description of the Lesson

Discussion begins by looking back at the first few days of the course when students
simulated data to estimate whether a sample statistic might be due to either chance
or to some other factor. For example, if a student was able to correctly identify Coke
of Pepsi in a blind taste test vs. the student was a lucky guesser. The discussion
then proceeds to when students learned how to use Fathom to generate P-values
and confidence intervals to help in making inferences and decisions about popu-
lation parameters. Now that software can be used to generate statistical results for
inferences, students consider the decisions that have to be made, for example:

a. What type of analysis to run (e.g., test or estimate, one or two samples, etc.).
b. What conditions to check.
c. How to interpret the results (and also know if we made a mistake).

In the Research Questions Involving Statistical Methods activity, students are re-
minded that the computer will generate P-values for tests of significance and con-
struct confidence intervals for population parameters, even if the conditions are not
checked and met. The class discusses how one should interpret the results of a pro-
cedure where the conditions are not met. Next, students are given the following
table (Table 13.2) to discuss and complete it together, which will serve as a guide
for running different analyses to produce inferential statistics in Fathom.

Students are then given a set of research questions (as shown below in Table 13.3)
and a data set to use in answering the questions, using Fathom software. The data
set contains the body measurements for a random sample of 50 college students.
First, the instructor models statistical thinking, talking out loud and demonstrating
the questions and steps and interpretations involved in answering one or two of the
questions on the list below. Working together, students then discuss each question,
select appropriate procedures, test conditions, generate graphs and analyses, and
interpret their results.
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Table 13.2 A guide for running different analyses to produce inferential statistics in Fathom

Type of procedure Example of research question Fathom instructions

One sample confidence
interval for proportion

What is the proportion of college
students who graduate in 4 years
from your school?

One sample confidence
interval for a mean

What is the average number of credits
earned by students when they
graduate with a bachelor’s degree?

One sample hypothesis test
for a proportion

Is the proportion of students who
withdraw during their first year
equal to 0.15 (The proportion who
withdrew 5 years ago)?

Is the proportion of students who
withdraw during their first year less
than 0.15?

One sample hypothesis test
for a mean

Is the average number of years it takes
to finish a degree equal to 5?

Is the average number of years it takes
to finish a degree greater than 4?

Two sample confidence
interval for the difference
between two means

What is the difference in the average
number of hours spent studying
each week between physics majors
and English majors?

Two sample hypothesis test
to compare two means

Is there a difference in the mean GPAs
of first year and fourth year
students?

Table 13.3 Selecting appropriate procedures and hypotheses to given research questions

Research question Type of procedure Null and
alternative
hypothesis (if
appropriate)

What proportion of students in this class
has a larger arm span than height?

What is the average hand span for
students in this class?

What is the difference in hand spans for
males and females?

Is the average height for female students
greater than 163 cm?

Is the proportion of male students who are
taller than 172.72 cm different from
0.5?

Is there a difference between males and
females in head circumference?
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After students complete this work, group answers to the questions are shared and
justified.

Summary

Most students studying statistics encounter great difficulty when they reach the
topics of statistical inference. Some instructors have compared student response to
lecturers on this topic as “the deer in the headlight” phenomena, as students seem
frozen, confused, and scared when learning these difficult topics. The research lit-
erature documents the difficulty students have understanding inference, and typical
misconceptions that persist regarding P-values and confidence intervals.

Although many statistics courses put statistical inference at the end of a first
course in statistics, we have illustrated a research-based approach that first presents
informal ideas of inference early in the class and revisits these ideas again and again,
so that when the formal ideas are introduced later they are more intuitive and easier
to understand. The idea of statistical hypotheses as making arguments is used to
help make this difficult topic more accessible to students. At the end of the course,
students are given a set of research questions and need to integrate and apply all
that they have learned to determine what procedures are needed and appropriate,
to provide answers, and to justify their conclusions. This process is first modeled
by their instructor and then they have the opportunity to use and develop their own
statistical thinking by approaching these questions as statisticians, rather than just
solving a series of textbook problems for each given procedure. This approach also
differs from more standard approaches because the computational procedures are
not emphasized. Instead, the process of using the computer to test hypotheses and
estimating parameters is stressed, along with how to do this wisely and how to
justify and interpret results.



Chapter 14
Learning to Reason About Covariation1

Even young children have the tendency to use the covariation
of events as an indicator of causality.

(Zimmerman, 2005, p. 22)

Snapshot of a Research-Based Activity on Covariation

It is the first day of a unit on bivariate data. Students consider what kind of pattern
they expect to see between the number of semesters a college student has been
in school and the cumulative number of credits she/he has earned. They make a
conjecture about the data they would see if they took random samples of 100 col-
lege students, each group sampled from all students who are beginning their first,
second, third, fourth, fifth, and sixth semesters of college. Then, working in groups,
students sketch a sequence of boxplots showing what they would predict to be the
distributions of cumulative college credits for these six groups of 100 randomly
selected college students who have been enrolled for one to six semesters.

Students discuss their reasoning as they do this, commenting that during the first
semester, students take from 10 to 18 credits, but most take about 13–15 credits.
They reason about center and spread as they draw a predicted boxplot for the first
semester. For each subsequent semester, they also think about expected typical val-
ues and spread around those values, drawing a total of six parallel boxplots. They
share their reasoning with the class, explaining that they expect more variability
over time even though they expect an average increase in cumulative credits. Next,
they generate and examine graphs and summary statistics for actual random samples
of data for 100 students for each of the first six semesters of their enrollment, and
compare these to their conjectures. See a sample of such graphs in Fig. 14.1.

Students’ attention is drawn to both center and spread of the boxplots for each
semester and how they change over time. Students then discuss and write an ex-
planation about what these graphs indicate about the relationship between length
of time in school and cumulative credits earned. They are asked questions about
how well they think these data generalize to all students at their institution and what
types of inferences they would be willing to make based on these data. Students

1 We gratefully acknowledge the major contribution of Dr. Andrew Zieffler to the writing of this
chapter.

J.B. Garfield, D. Ben-Zvi, Developing Students’ Statistical Reasoning,
C© Springer Science+Business Media B.V. 2008
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Fig. 14.1 A sequence of boxplots showing the distributions of cumulative college credits for six
samples of 100 randomly selected college students, representing first through sixth semesters

then consider a variable that has an inverse relationship with number of credits, so
that values of this variable get smaller as the number of credits gets bigger. They
suggest, for example, the time left before graduation: that with more credits, there is
a shorter time left before graduation. They are asked if this ‘negative’ relationship is
a weak one, or if they think it is a strong one, and it is decided that the relationship
is just as strong as the positive relationship with number of semesters in school.

Finally, a discussion about causation is introduced as the students are asked to
discuss whether the number of semesters of being in school “causes” them to have
more credits, and whether a cause and effect can be determined by examining this
bivariate data set.

Rationale for This Activity

Students may have seen scatterplots before and may have ideas of trends over time,
but most likely do not think about variability in bivariate data. This activity begins
by having them think about variability at six intervals, as well as thinking about the
linear trend, based on the centers (median values) for data in these intervals. Thus,
they are guided to examine and interpret bivariate data by looking for a trend as well
as scatter from the trend, by focusing on both center and spread for one variable (y)
relative to values of a second, ordinal variable (x) (an approach suggested by Cook
& Weisberg, 1999). This activity helps students begin to reason about the idea of a
linear relationship between two variables and helps prepare them to better interpret
and reason about scatterplots of data. When they examine scatterplots, they can try
to remember the idea of parallel boxplots and how they represent a series of mini
distributions of the y variable, each having center and spread, for the x variable, as
shown in Fig. 14.1.

This lesson also brings up informally two important ideas that are often difficult
for students to understand about covariation. The first is that covariation between
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two variables does not mean that one causes the other. The second point is the idea
that a negative association between two variables does not imply a weak association.

The Importance of Understanding Covariation

Reasoning about association (or relationship) between two variables, also referred
to as covariational reasoning, or reasoning about bivariate data, involves know-
ing how to judge and interpret a relationship between two variables. Covariational
reasoning has also been defined as the cognitive activities involved in coordinating
two varying quantities while attending to the ways in which they change in relation
to each other (Carlson, Jacobs, Coe, Larsen, & Hsu,). This type of reasoning may
take a very mathematical form (e.g., a linear function), a statistical form (reason-
ing about a scatterplot), or a more qualitative form (e.g., causal predictions about
events, based on observed associations, such as spending more time studying seems
to lead to better tests grades, as described in causal model theory in psychology).
Covariational reasoning is also viewed as playing an important role in scientific
reasoning (Koslowski, 1996; Schauble, 1996). Although covariation between events
is a necessary but not sufficient basis for inferring a causal relationship, it is a basis
for making causal inductive inferences in science (Zimmerman, 2005).

The concept of covariation may be unique in that is an important concept in
the different fields of psychology, science, mathematics, and statistics, and that co-
variational reasoning is described somewhat differently in each discipline. Statisti-
cians may be surprised that reasoning about covariation, which they think of as a
statistical topic focusing on bivariate distributions of data, is much more complex
than the familiar caution that “correlation does not imply causation,” and is beyond
reasoning about scatterplots, correlation, and regression analyses. Indeed, cognitive
psychologists McKenzie and Mikkelsen (2007) wrote that covariational reasoning
is one of the most important cognitive activities that humans perform.

It is our view that to deeply understand covariation in a statistical context, one
must understand all the aspects of covariation described in the other disciplines, as
well as understand aspects unique to statistics (such as model fitting and residuals)
because of the inherent variability of real data. Such an understanding involves ideas
of structure and strength of a bivariate relationship as well is its role in causal models
and in predicting events, and the changing values of one variable relative to another,
as expressed in a line. It is no wonder that students have difficulty understanding
concepts related to covariation, including the correlation coefficient, r -squared, and
a regression line.

Watkins et al. (2004) describe six features of a bivariate relationship that may
be used to guide students as they learn to examine and reason about bivariate data.
These are:

1. The individual variables and their variability.
2. The shape of a pattern revealed in a bivariate plot in terms of linearity, clusters,

and outliers.
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3. The trend if there is one (positive or negative).
4. The strength of the trend: strong or weak, varying or constant.
5. Whether the pattern may generalize to other situations (can be tested with infer-

ential methods, and is also based on how the sample was obtained).
6. If there are plausible explanations for the pattern? Is it plausible that one vari-

able may have a causal relationship or might a third, lurking variable cause the
relationship.

These ideas may be developed informally and then revisited in more formal ways.

The Place of Covariation in the Curriculum

Topics involving covariation may be introduced at various times in the curriculum.
In some introductory courses and textbooks, scatterplots are introduced as part of a
data analysis unit. The topic of correlation and regression may be introduced before
or after the topic of statistical inference, with arguments made for each placement
of the topic (see Zieffler, 2006). Related ideas of contingency tables and chi-square
tests often appear in a separate unit, many times at the end of a course.

We believe that the topic of covariation may be informally introduced in a unit on
collecting and producing data, and that graphs of bivariate data may be informally
introduced as part of data analysis, but that the formal study of bivariate data takes
place after the study of statistical inference. Our reasons for this are that the study
of covariation builds on and integrates many topics studied earlier in the course,
and we can revisit and deepen these ideas as topics taught near or at the end of
an introductory course. These ideas include distribution of data, center and spread,
variability, fitting a model to data, using experiments to infer causation, using cor-
relation to explore relationships among observational variables, and using statistical
inference to run tests on correlations and regression coefficients to see if observed
relationships may be generalized.

We realize that it is somewhat controversial to delay the study of scatterplots,
correlation, and simple linear regression to near the end of the course. We do this
based on our review of the research literature, our findings that students are able to
informally reason about bivariate data well before formal instruction on this topic
(see Zieffler, 2006) and based on our positive experience teaching the topic at this
final point in a course. However, instructors who want to introduce some of the
lessons and activities in this chapter at an earlier point in their course are welcome
to do so. Finally, we want to revisit the idea mentioned in Chapter 6 about the impor-
tance of students being exposed to multivariate data sets. Once again, the data sets
in this chapter are multivariate, and while students may examine pairs of variables
at a time, they are also encouraged to look at the data sets in a multivariate way,
disusing and integrating information about relationships between pairs of variables
to better understand the variability of individual variables as well as aspects of the
multivariate data set.
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Review of the Literature Related to Reasoning About Covariation

Because of its important role in so many disciplines, covariational reasoning has
been the focus of research in psychology, science, and mathematics education, in
addition to statistics education. The research studies related to covariational under-
standing and reasoning are quite diverse, and vary according to the disciplinary field
of the researchers. These studies are summarized in four main areas: judgment of
covariation, understanding covariation as functional relationships, covariational rea-
soning in science education, and covariational reasoning and judgments in statistics.

Judgment of Covariation

Research by psychologists provides much of the seminal work in covariational
reasoning research. Since the seminal study by Inhelder and Piaget (1958), psychol-
ogists have produced several robust findings, based on large sample sizes and use
of randomized treatment designs and analyses, spanning five decades of research in
this area. Regardless of the importance that covariational reasoning seems to play
in the day-to-day lives of people, much of the research from the field of psychology
has generally concluded that people are surprisingly poor at assessing covariation.
A robust finding is that peoples’ prior beliefs about the relationship between two
variables have a great deal of influence on their judgments of the covariation be-
tween those variables (e.g., Jennings, Amabile, & Ross, 1982; Kuhn, Amsel, &
O’ Loughlin, 1988).

This finding is related to another consistent finding, that of illusory correlation.
An illusory correlation exists when a subject believes there is a correlation between
two uncorrelated events. This, for example, could encompass relying more on memory
rather than examining the data/cases presented (e.g., subjects would suggest a positive
relationship exists between price and quality even though the data would suggest
otherwise), and viewing data/cases that confirm their expectations as more relevant
than disconfirming cases (e.g., McGahan, McDougal, Williamson, & Pryor, 2000).

Additional studies have examined how people reason about covariation of data in
contingency tables, indicating that people tend to not treat the four cells of a 2-by-2
contingency table as equally important. In fact, peoples’ judgments seem to be most
influenced by the joint presence of variables and least influenced by the joint absence
of variables (e.g., Kao & Wasserman, 1993). Other studies showed that people have
difficulty when a bivariate relationship is negative (e.g., Beyth-Marom, 1982), and
that peoples’ covariational judgment of the relationship between two variables tends
to be less than optimum (i.e., smaller than the actual correlation presented in the data
or graph) (e.g., Jennings et al., 1982). Still another consistent finding in these studies
is that subjects have a tendency to form causal relationships based on a covariational
analysis (e.g., Ross & Cousins, 1993,).

Research studies have also examined the conditions and accommodations under
which people tend to make better covariational judgments. For instance, researchers
have found that subjects tend to make more accurate judgments when the variables
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to be examined are continuous rather than dichotomous (e.g., Jennings et al., 1982),
and other studies have suggested that certain accommodations such as detailed
instructions (Alloy & Abramson, 1979), easy to process formats (Ward & Jenk-
ins, 1965), subjects being told non-contingency is possible (Peterson, 1980), and
low frequency of data/cases (Inhelder & Piaget, 1958) might help subjects more
accurately judge covariation. Subjects have also been shown to make more accurate
judgments when data are presented simultaneously rather than when it is presented
one case at a time (e.g., Seggie & Endersby, 1972).

Understanding Covariation as Functional Relationships

Studies on covariational reasoning by mathematics education researchers tend to
focus on lines and understanding functions, or on aspects of bivariate reasoning that
might be used in algebra and calculus. For example, Carlson et al. (2002) classified
college students’ mental actions affecting reasoning about covariation as follows:

1. The coordination of the value of one variable with changes in the other.
2. The coordination of the direction of change of one variable with changes in the

other.
3. The coordination of the amount of change of one variable with the amount of

change in the other.
4. The coordination of the average rate of change of the function with uniform

increments of change in the input variable.
5. The coordination of the instantaneous rate of change of the function with contin-

uous change in the independent variable for the entire domain of the function.

Carlson’s studies suggested that most students could determine the direction of
change, but that many had difficulties constructing images of continuous rate of
change, even after completion of a second course in calculus. The researchers noted
that students have particular problems representing and interpreting graphical dis-
plays. In some cases, mathematics education researchers have suggested the need
for teachers to have students think about covariation as it occurs in functions in
terms of real-life dynamic events (e.g., Carlson et al., 2002).

Other researchers have pointed out that covariational reasoning is used exten-
sively in both algebra (Nemirovsky, 1996) and calculus (Thompson, 1994). In par-
ticular, studies suggest that this type of reasoning plays a major role in students’
understanding of the derivative, or rate of change (e.g., Carlson et al., 2002), and
that this interpretation of covariation is slow to develop among students (e.g., Monk
& Nemirovsky 1994; Nemirovsky, 1996). Studies from mathematics education have
also shown that not only is students’ ability to interpret graphical and functional
information slow to develop, but also that students tend not to see the graph of a
function as depicting covariation (Thompson, 1994).
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Covariational Reasoning in Science Education

Researchers in science education have focused on either the psychological aspect
of covariation in relation to identifying causal factors or on the mathematical as-
pects of covariation, such as reasoning about lines and functions. Some researchers
have studied how students use covariational reasoning in solving science problems,
finding that students tend to use sub-optimal solution strategies to determine if a
relationship exists or does not exist in a set of bivariate data, and that students tend
to infer a causal relationship from correlational data (e.g., Adi, Karplus, Lawson, &
Pulos, 1978).

In a more recent study by Kanari and Millar (2004), students’ approaches to data
collection and interpretation were studied as they investigated relationships between
variables, as part of students’ ability to reason from data. The authors argue that it is
reasoning from data that distinguishes scientific reasoning from logical reasoning.
They found that students of all ages had a much lower success rate in investigations
where the dependent variable did not covary with the independent variable, than in
those where it did covary. They suggest that school science investigations should in-
clude both covariation and non-covariation cases to develop students’ covariational
reasoning.

Covariational Reasoning and Judgments in Statistics

Statistics education research has generally focused on studying students’ covaria-
tional reasoning as part of instruction in statistics. The methodologies used have been
primarily qualitative, following the format of design experiments (e.g., Cobb et al.,
2003a) while other studies on covariational reasoning in statistics education have used
methods in psychology, using a qualitative coding scheme to help categorize re-
sponse data (e.g., Batanero, Estepa, & Godino, 1997; Moritz, 2004; Morris, 1997;
Stockburger, 1982).

In one of the earlier studies, Stockburger (1982) asked university students en-
rolled in an introductory statistics course to complete many times four computer
exercises, such as estimating the correlation coefficient. Stockburger found that stu-
dents in general did very poorly on these exercises, and their ability to estimate
correlation improved after using the computer software.

The impact of computers in developing understanding of statistical association
was studied by Batanero et al. (1996, 1997). Students were asked to assess the
existence of correlation between two variables given to them in a two-by-two con-
tingency table. The researchers then identified incorrect covariational strategies em-
ployed by the students (drawing on strategies first outlined in 1958 by Inhelder &
Piaget). Both studies (Batanero et al. (1996, 1997) found an overall general improve-
ment in student strategies. They also both revealed the persistence of what they refer
to as a unidirectional misconception. That is, students only perceive a relationship
among the variables in the positive direction.

Both studies also showed that students maintained their causal misconception
throughout the duration of the experiments. Both studies also showed that students
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had problems with several features of association such as distinguishing between the
roles of independent and dependent variables and reasoning about relationships that
were negative. Finally, students realized that the absolute value of the correlation
coefficient was related to the magnitude of the relationship, but did not relate that
idea to the spread of scatter around the regression line.

Other studies have examined students’ covariational reasoning as they study re-
gression and reported some of the difficulties associated with this topic including
problems with interpretation (e.g., Sánchez, 1999), and problems with the coeffi-
cient of determination, or r2 (Truran, 1997). Konold (2002b) presents a different
view of whether or not people can make accurate covariational judgments. He sug-
gests that people are not poor at making these judgments, but rather they have trou-
ble decoding the ways in which these relationships are displayed (e.g., scatterplots
or two-by-two contingency tables). His research has been on middle school students
using TinkerPlots (Konold & Miller, 2005). Konold found that students were better
able to make covariational judgments using a super-imposed color gradient function
in TinkerPlots, possibly because relationships between variables are explored by use
of only one dimension (e.g., horizontal axis) for one variable and color gradient for
the other (see Fig. 14.2). In addition, the task is broken up into two smaller parts:
First, students anticipate what will be seen and second, that they then examine the
new display.

In a study of younger children, Moritz (2004) had students translate verbal state-
ments to graphs and also translate a scatterplot into a verbal statement, and related

Fig. 14.2 A TinkerPlots graph displays how data of Ozone levels in New York City on 111 suc-
cessive days in 1973 are associated with the maximum daily temperature2

2 The TinkerPlots graph in Fig. 14.2 displays data of Ozone levels (Ground-level Ozone in parts per
billion) in New York City on 111 successive days from May to September in 1973. To explore the
relationship between Ozone levels and temperature (Maximum temperature in degrees Fahrenheit)
we first presented the Ozone level on the x-axis, “fully separated” the cases, and then colored the
icons with the green temperature gradient. We notice how as we move up the Ozone scale we tend
to go from the lower temperatures (the lighter green) to the higher temperatures (the darker green)
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tasks. The students were given a written survey that included six or seven open-
ended tasks involving familiar variables. The variables were also chosen so that stu-
dents would expect a positive covariation, but the data given in the task represented
a negative covariation. Moritz (2004) found many of the same student difficulties
as other studies have revealed: that students often focused on isolated data points
rather than on the global data set (e.g., Ben-Zvi & Arcavi, 2001). He also found
that students would often focus on a single variable rather than the bivariate data,
and that several students had trouble handling negative covariations when they are
contradictory to their prior beliefs.

Two more recent design experiment studies investigated the role of technology in
helping students reason about bivariate data, and how students differentiate between
local and global variation in bivariate data. Gravemeijer (2000) results suggest that
students need an idea of the global trend (prior expectation) and that students have
a hard time distinguishing between arbitrary and structural covariation. He suggests
that students examine and compare several univariate data sets (time series) as an
introduction to examining bivariate data.

This approach was used by Cobb et al. (2003b) to help students view bivariate
data as distributed in two-dimensional space, to see scatterplots as situational texts,
and to track the distribution of one variable across the other (scan vertically rather
than diagonally). Using the Minitools software (Cobb, Gravemeijer, Bowers, &
Doorman, 1997) students examine the “vertical variation” across levels of x in
graphs of bivariate data. Students were asked to compare differences in the dis-
tribution of the y-variable at different levels of the x-variable (see Fig. 14.3).

The results of their study suggested that the shape of a distribution is a better
place to start than is variability, and that there be a continued focus on relative den-
sity and on the shape of the data within vertical slices. They also suggested that an
emphasis on shape could lead to a discussion of strength and direction in a bivariate

Fig. 14.3 Minitools software allows students to start looking at the local variation for different
values on the x-axis in addition to the global trend



298 14 Learning to Reason About Covariation

plot and that the focus on vertical distribution could lead to a more intuitive idea of
the line of best fit.

A recent study by Zieffler (2006) examined students’ development of reasoning
about quantitative bivariate data during a one-semester university-level introductory
statistics course. He found a surprising result that the most growth in covariational
reasoning occurred early in the course, during the unit on data analysis, and before
formal study of bivariate data. One plausible explanation was that students were de-
veloping their statistical reasoning in this earlier part of the course and that facilitated
the growth in covariational reasoning, even before formal instruction on that topic.

Another result of his study is that students seemed to better reason and learn infer-
ence when the bivariate unit came at the end of the course after inference rather than
as part of or immediately following a unit on exploring data, based on a comparison
of two different sequences of course topics in his study. However, no difference was
found in students’ performance on an assessment of covariational reasoning.

The Role of Technology in Helping Students to Reason
About Covariation

The research also suggests that particular types and uses of technology may help
students make more accurate judgments of covariation (Batanero et al., 1996, 1997;
Cobb et al., 2003b; Gravemeijer, 2000; Konold, 2002b; Stockburger, 1982). The
appropriate use of visualizations can change students’ statistical conceptualizations
(Rubin, 2001) - particular software that provide flexible, dynamic capabilities and
multiple, linked representations - allowing students to display, manipulate, and an-
alyze data. This type of technology (e.g., TinkerPlots and Fathom) appears to help
students understand and apply covariational reasoning (Carlson et al., 2002; Rubin,
2001). Fathom (Key Curriculum Press, 2006) allows additional capabilities such as
visually fitting a regression line and visually showing the changing squared devia-
tions from the line as a line is fitted to the data, as shown in Fig. 14.4.

Fig. 14.4 Screen shot of Fathom printout showing squared residuals
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Fig. 14.5 Students guess at the appropriate correlation in the Guessing Correlations applet

In addition to software that allows students to explore and manipulate bivariate
data, there are also Web applets that help students reason about and understand
particular concepts. For example, an applet that lets students click on a graph, cre-
ating points on a scatterplot, where a changing correlation coefficient indicates the
effect of each added point on the correlation (e.g., http://www.stat.vt.edu/∼sundar/
java/applets/CorrCreateApplet.html), and an applet that lets students visually fit a
line to a bivariate plot (e.g., Regression by Eye applet from the Rice Virtual Lab in
Statistics http://www.ruf.rice.edu/∼lane/stat sim/reg by eye/index.html).

Another tool that helps students reason about bivariate relationships is the Guess-
ing Correlations applet, such as the one at http://www.stat.uiuc.edu/courses/stat100/
java/GCApplet/GCAppletFrame.html. Students are shown a set of four scatterplots
and asked to match them to four correlation coefficients (see Fig. 14.5). As students
examine and reason about these relationships, they develop a better sense of the
different degrees of covariation, and factors that make the correlation coefficient
larger and smaller.

Summary of the Literature Related to Developing
Covariational Reasoning

Looking at the studies across the different disciplines together, we note the following
general findings:

� Students’ prior beliefs about the relationship between two variables have a great
deal of influence on their judgments of the covariation between those variables;

� Students often believe there is a correlation between two uncorrelated events
(illusory correlation);

� Students’ covariational judgments seem to be most influenced by the joint pres-
ence of variables and least influenced by the joint absence of variables;
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� Students have difficulty reasoning about covariation when the relationship is neg-
ative;

� Students’ covariational judgment of the relationship between two variables tends
to be less than optimum (i.e. smaller than the actual correlation presented in the
data or graph); and

� Students have a tendency to form causal relationships based on a covariational
analysis.

These findings along with the suggestions based on design experiments lead to some
implications for helping students reason about covariation.

Implications of the Research: Teaching Students to Reason
About Covariation

The research studies reviewed have many implications for the teaching and assess-
ment of bivariate data. Reasoning about covariation seems to build upon reasoning
about distribution, especially the concepts of shape and variability (Cobb et al.,
2003b; Gravemeijer, 2000; Konold, 2002b). It is suggested that instruction focus on
relative density and on the shape of the data within vertical slices, leading to ideas
of strength and direction in a bivariate plot, which could lead to a more intuitive
idea of the line of best fit.

The research suggests that using data that has a context seems to be important
for better student understanding of covariation (Adi et al., 1978; Cobb et al., 2003b;
Gravemeijer, 2000; Moritz, 2004). This especially helps when the data are mean-
ingful to the students (Moritz, 2004). In addition, the persistence of the positive
unidirectional misconception described above implies that teachers should provide
tasks that have students interpret and reason about data sets that have negative corre-
lations and no covariation, which are less intuitive and require more thinking on the
student part. An awareness of typical students’ difficulties identified in the research
literature can help teachers be on the lookout for these errors and misconceptions as
students work together during activities and during class discussions, as well as on
assessments of learning.

Progression of Ideas: Connecting Research to Teaching

Introduction to the Sequence of Activities to Develop Reasoning
About Covariation

Table 14.1 shows a suggested series of ideas and activities that can be used to guide
the development of students’ reasoning about covariation. This sequence of activ-
ities presented in lessons are designed to lead students through a progression of
ideas to help them understand the idea of covariation of data and develop covari-
ational reasoning. This includes learning to understand and reason about graphs
of bivariate relationships, interpreting and understanding features of bivariate data,
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Table 14.1 Sequence of activities to develop reasoning about covariation3

Milestones:ideas and concepts Suggested activities

Informal ideas prior to formal study of covariation

� Understanding when to infer causa-
tion: from an experiment, rather than
from correlated variables

� Taste Test Activity, Lesson 4, Data Unit
(Chapter 6)

Formal ideas of covariation

� Understanding ideas of trend by recog-
nizing a positive linear pattern in the
medians of vertical boxplots

� Credit Questions Activity (Lesson 1: “Rea-
soning about Scatterplots and Correlation”)

� Understand the nature of bivariate data
and the idea of covariation of two
quantitative variables

� Interpreting Scatterplots Activity (Lesson 1)

� Points in a scatterplot represent pairs
of data for individual cases, measured
on each variable

� Interpreting Scatterplots Activity (Lesson 1)

� The idea of a linear trend in a bivariate
plot

� Interpreting Scatterplots Activity (Lesson 1)

� Understanding how to distinguish be-
tween a positive trend and a nega-
tive trend, and how this differs from
strength of the trend

� Interpreting Scatterplots Activity (Lesson 1)

� Reasoning about factors that could
cause a linear trend in bivariate data,
and that there could be a lurking vari-
able (or a causal relationship)

� Interpreting Scatterplots Activity (Lesson 1)

� Reasoning about what would be
needed to establish a causal rela-
tionship between two correlated
variables

� Interpreting Scatterplots Activity (Lesson 1)

� Structure and strength in a bivariate
plot: linearity, direction, closeness to
the model of straight line

� Reasoning about the Correlation Coefficient
Activity (Lesson 1)

� A correlation coefficient as a measure
of the strength and direction of the lin-
ear relationship

� Reasoning about the Correlation Coefficient
Activity (Lesson 1)

� Understating how different aspects of a
bivariate data, as revealed in a scatter-
plot, affect the correlation coefficient

� Guessing Correlations Activity (Lesson 1)

3 See page 391 for credit and reference to authors of activities on which these activities are based.
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Table 14.1 (continued)

Milestones:ideas and concepts Suggested activities

� Understanding how the same correlation
coefficient may be obtained for very dif-
ferent sets of bivariate data

❖ An activity where students examine the cor-
relation in data sets that have the same cor-
relation coefficient, but are very different, in-
cluding nonlinear patterns, such as Anscombe
Data (1973). (The symbol ❖ indicates that
this activity is not included in these lessons.)

� Fitting a model of a line to data. � Diamond Rings Activity (Lesson 2: “Fitting a
Line to Data”)

� Strength of the relationship is based on
how well the line (model) fits the data

� Diamond Rings Activity (Lesson 2)

� Linear regression as way to model a linear
relationship.

� Diamond Rings Activity (Lesson 2)

� Regression model in explaining the rela-
tionships between two quantitative vari-
ables

� da Vinci and Body Measurements Activity
(Lesson 2)

� What the slope and intercept mean in a bi-
variate data model

� da Vinci and Body Measurements Activity
(Lesson 2)

� How and why better predictions have less
scatter around the line (and fitted values)

� da Vinci and Body Measurements Activity
(Lesson 2)

� Understanding the idea of residuals as de-
viations from the line (model) as provid-
ing evidence to assess how well the line
provides a model for a bivariate data set

� da Vinci and Body Measurements Activity
(Lesson 2)

� Understanding how to generalize bivariate
relationships to a larger population

� Testing Relationships: Admissions Variables,
and Baseball Variables Activities (Lesson 3:
“Inferences involving Bivariate Data”)

� Understanding how to interpret inferences
about correlation coefficients and regres-
sion slopes

� Testing Relationships: Admissions Variables,
and Baseball Variables Activities (Lesson 3)

� Understanding that it is important to con-
sider the size of the correlation in addition
to the size of the P-value: practical vs. sta-
tistical significance

� Testing Relationships: Admissions Variables,
and Baseball Variables Activities (Lesson 3)

Building on formal ideas of covariation in subsequent topics

� Knowing how to recognize when a test
of a correlation coefficient or regressions
slope is appropriate to answer a research
question

� Research questions involving statistical meth-
ods activity (Lesson 5, Inference Unit,
Chapter 13)
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understanding and reasoning about the correlation coefficient, modeling bivariate
data with a line, and making inferences about the nature of bivariate relationships.
These activities build on foundational concepts such as distribution, variability,
model, deviation, and inference.

Introduction to the Lessons

There are three lessons on covariation that focus entirely on the concepts and ideas
without going into the mathematics. The activities in the lesson lead students to first
think about linear trend in the presence of variability, as they move from examinations
of parallel boxplots to a scatterplot to a fitted line. They develop the idea of correlation
as a measure of a linear relationship between two variables, and then use the line as
a model to explain and make predictions based on this relationship. Finally, students
learn to apply ideas of inference to this topic by using tests of significance to test that
the correlation coefficient and regression slope are different than zero.

Lesson 1: Reasoning About Scatterplots and Correlation

This lesson, as described briefly at the beginning of the chapter, guides students to
develop reasoning about bivariate data by beginning with parallel boxplots and mov-
ing to scatterplots that are viewed as a series of vertical slices of data. In this way,
ideas of center and spread are brought to and integrated into reasoning about bivari-
ate distributions. Students learn how to examine and interpret scatterplots and begin
to connect values of the correlation coefficient to different types of scatterplots.
Causal factors are also discussed. Student learning goals for this lesson include:

1. Understand the nature of bivariate data and what that points in a scatterplot rep-
resent.

2. Understand and describe shape (form), trend (direction), and variation (strength)
in a scatterplot.

3. Answer contextual questions using information obtained from a scatterplot.
4. Know that a scatterplot is the appropriate graph to create to answer certain ques-

tions about the relationship between two quantitative variables.
5. Estimate correlation coefficients from a scatterplot.
6. Understand that correlation is only about strength of linear trend.
7. Understand that a high correlation does not imply that the data are linear.
8. To be aware of lurking variables and to understand that correlation does not

imply causation.

Description of the Lesson

The lesson begins with a problem involving real student data (Credit Questions
activity). Students are told that university guidance counselors are interested in
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the number of credits students accumulate as they progress through their degree
programs. They are interested in studying how long it takes a student to reach 60
credits (the requirement to reach Junior status), and how the length of time a college
student has been in school relates to the number of credits she/he accumulates.

Students are asked to imagine six cohorts of students whose credit loads are
examined, each group coming from all students in their first, second, third, fourth
fifth, or sixth semesters of college. Students are asked to reason about if they expect
the average number of credits that these students have accumulated would differ
for students in each different semester of college. Students also reason about the
variation in the total number of credits accumulated each semester of enrollment.

Next, working in groups, students make conjectures about such a data set. They
discuss and then draw boxplots based on their predictions of what those distributions
of cumulative credits would look like for random samples of 100 students for each
of the six different cohorts. A class discussion follows as students discuss, based on
their own knowledge and experience, what they expect to find in terms of number
of credits across six semesters for students, focusing on center and spread for the
number of credits for each subsequent semester and how the variability increases for
each subsequent semester. Students are then given a data set and use it to generate
actual boxplots that are used to test their conjectures. Students describe the relation-
ship they see between length of time a college student has been in school and their
cumulative number of credits, discussing trend as well as variation around the trend,
in formal language.

Students are asked if they are willing to generalize about the relationship found
to the population of all students at the University, based on these data. They also
talk about the fact that there is a strong trend, but that one variable does not cause
the other, revisiting ideas of correlation and causation from the earlier unit on data
(Chapter 6). Students are asked to speculate about variables that could have an op-
posite or inverse relationship with these variables, distinguishing between a positive
and negative trend, acknowledging that a positive or negative trend be strong or
weak.

In the Interpreting Scatterplots activity, students are given a scatterplot represent-
ing the relationship between gestation period (length of pregnancy) and lifespan for
a sample of 62 different animals, which has a moderate, positive trend. They first
try to separate the points into several different vertical slices, or distributions, to
determine how the centers and spread of those distributions are changing, building
on the previous boxplot activity. They are asked if the data indicate a relationship
between the two variables, and to describe the pattern and features of the plot.
Students then examine a series of scatterplots and discuss different features that
they see: lots of scatter, little scatter, linear and nonlinear patterns, positive and
negative directions, different steepness of the linear pattern, outliers, clusters of
points, etc. In the Reasoning about the Correlation Coefficient activity, students
discuss different features of a scatterplot and how they are used to interpret and
describe bivariate relationships. The correlation coefficient is discussed as a mea-
sure of the linearity of the pattern of points, and how it shows direction as well as
strength.
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The next activity (Guessing Correlations) has students using a Web applet to
reason about the correlation coefficient and how different factors make it larger or
smaller. Using the Guessing Correlations applet (http://www.stat.uiuc.edu/courses/
stat100/java/GCApplet/GCAppletFrame.html), students go through several rounds,
talking in pairs about their choices, until they are comfortable estimating the degree
of linearity (correlation) in a dataset. A class discussion follows about what they
learned from this activity as well as the importance of examining a scatterplot to
learn about the relationship between two variables, and not just calculating a corre-
lation coefficient. Students discuss how the correlation coefficient helps summarize
the relationship between two quantitative variables much like the mean or standard
deviation can be used to describe and summarize a single variable.

A wrap-up discussion has students summarize what the points in the scatterplot
represent, what kind of questions can be answered by examining a scatterplot and
correlation for two variables, what is considered a “low” correlation, and what in-
formation a correlation does and does not provide about two variables. Students are
asked whether a high correlation indicates causation, and how they would determine
casual factors.

Lesson 2: Fitting a Line to Data

This lesson focuses on using the regression line to model bivariate relationships.
Students fit lines to data, discuss the interpretation of the lines in terms of direction
and size of the slope. Students use a regression line to predict values of y based on
values of x . They fit lines to data seeing how the sums of squares are minimized for
the regression line. They also learn about the dangers of extrapolation and see how
outliers may affect the fitted line. Student learning goals for this lesson include:

1. Understand the idea of a line as a model of bivariate relationship.
2. Be able to interpret the slope and y-intercept of a line of best fit in the context of

data.
3. Be able to use a line to predict y from a given x .
4. Understand that a predicted value is not the same as the actual value (in most

cases) and that the difference is the residual.
5. Be able to interpret what the residual means in the context of the data.
6. Understand that extrapolation is not appropriate.
7. Use Fathom to create the line of best fit from a given set of data.
8. Be able to read Fathom output for the line of best fit.
9. Understand the effect of an outlier on the fitted regression line.

Description of the Lesson

The lesson begins with an examination of a data set on diamond rings (Diamond
Rings activity). Students discuss and make conjectures about what they would
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expect to find in terms of a relationship between the price of a diamond ring and
the number of carats in the diamond. Next they generate a scatterplot using Fathom
that contains the prices of diamond rings and the carat size of their diamond in each
ring. The data look very linear, and students use Fathom to first estimate where a
line would best fit the data. They revisit the idea of fitting a model to a data set (see
Chapter 7), this time using a line as a model of the bivariate relationship. They com-
pare the conjectured lines to the regression line ($̂ = −154.94 + 2220.66(Carat)),
which is shown in Fig. 14.6.

Students discuss if the regression line seems to be a good model and how well it
fits the data. They informally discuss the line: its steepness and direction, and what
that indicates about the relationship between the two variables. They also use the
line to make informal predictions for different carat sizes, discussing how the actual
prices for each carat size vary, and that the prediction has error involved. Students
also begin to talk about the scatter of points around the line, as an indication of fit
or lack of fit. They talk about residuals as the vertical deviation of individual points
from the line, and see that there can be an average deviation that indicates fit, and
that for this graph that would be smaller than for the graph of animal data viewed in
the previous lesson, which had more scatter around a fitted line.

The second activity, da Vinci and Body Measurements, has students analyze body
measurements to see if they conform to the “ideal” bivariate relationships described
by Leonardo da Vinci, as listed below:

� Height is equal to the span of the outstretched arms.
� Kneeling height is three-fourths of the standing height.
� The length of the hand is one-ninth of the height.

Students access the body data collected earlier and begin to examine the three rules
listed above. They first make and examine scatterplots for each pair of variables.
Next they use Fathom to draw on the graphs the line of best fit. They use the graphs

Fig. 14.6 Relationship between the price of a diamond ring (US$) and the number of carats in the
diamond
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and lines to make predictions of particular values of height, kneeling height, and
hand length, based on measurements of arm span and height. These are compared
to the ideal values based on Leonardo’s “rules.” The slopes of the lines are also com-
pared to his rules to see how closely they correspond. Students are asked questions
about x values that are beyond the domain of x values in the data set, leading to a
discussion on extrapolating values and why that is not a good thing to do.

Students discuss how well a line models the relationships shown in each part of
body data. They are guided to think about residuals as an indicator of fit, and then
use the “Show Squares” feature in Fathom to incorporate the least squares criteria
on their regression lines. They try using movable lines and see that the sum of these
squares is bigger for all lines except the regression line.

In the wrap-up to the lesson, students are asked what they conclude about
Leonardo’s “rules” and to explain their response. Students are given a scatterplot
and a regression line and make a prediction for a value that produces an unusual
result, due to extrapolation, leading them to figure out what was wrong. Next, they
are given a scatterplot of a dataset that is not linear, and they are asked whether or not
a line of best fit could be used to predict a value of y in this situation. Finally, they
see a demonstration that shows the effect of outliers on a regression line and reason
about why they see two different effects, depending on when the outlier forces the
line or is away from the line.

Lesson 3: Inference Involving Bivariate Data

Lesson 3 has students make statistical inferences, by testing hypotheses about the
correlation coefficient and regression slope for a sample of bivariate data. Students
learn to do this using Fathom, and to compare these procedures to significance tests
involving a two sample test of means (see Chapter 13). Student learning goals for
the lesson include:

1. To learn how to use Fathom to apply a test procedure involving the correlation
coefficient and regression slope.

2. To continue to apply graphical and descriptive methods learned earlier in con-
junction with this test.

3. To revisit and build on the ideas of statistical inference in the context of bivariate
data.

4. To revisit importance of assumptions and testing conditions when making statis-
tical inferences.

Description of the Lesson

The lesson begins with a discussion of whether or not students believe there is a rela-
tionship between the amount of time a student spends studying per week and his/her
cumulative GPA (Grade Point Average). Students reason about and describe their
conjectures about that relationship. Next, they examine the relationship between
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hours studied per week and cumulative GPA for a random sample of undergraduate
students who have taken statistics in this department.

In the Testing Relationships: Admission Variables activity, Students use Fathom
to test their conjectures, examining the relationship between hours studied and cu-
mulative GPA. They produce and examine scatterplot and correlation coefficients
and describe how well their conjectures matched the data and analyses.

Students are then asked if they think the relationship will hold for all under-
graduate statistics students in the department, the population from which the data
were sampled. They consider what they learned in the previous unit on inference
(Chapter 13) and reason about how to determine if the correlation they found and
regression slope are actually different than in the population. They write null and
alternative hypotheses for these tests. They discuss what null distribution to compare
their sample to, and how to find a P-value to determine how unlikely their sample
results are (or results more extreme than theirs) if the null hypothesis is true.

Next, students use Fathom to run these tests and generate P-values, which they
theninterpret,answeringthequestionaboutwhether theresultsof thesignificance tests
suggest that there isapositive relationshipbetweenhoursstudiedandcumulativeGPA.
A discussion follows on the assumptions that are involved in making this inference.

In the Testing Relationships: Baseball Variables activity, students examine a sec-
ond data set that contains player payrolls and won/lost records for a sample of
National League Baseball teams. The research question of interest is: Is there a
relationship between a baseball team’s payroll and winning percentage? Students
create, examine, and interpret a scatterplot to investigate the relationship between
payroll and winning percentage for the sample data. They then generate a corre-
lation coefficient, and test the hypothesis that it is significantly different from 0,
and contrast the process used to conduct a hypothesis test for the correlation to the
process used to conduct a hypothesis test for the mean. What is the same? What is
different? A discussion follows where students compare and contrast the methods
used to test hypotheses about the difference in two means and the relationship be-
tween two variables. The sampling distributions for each type of test are compared.
In each case, the types of procedures, decisions, and errors are reviewed in light of
a problem with a context that is provided.

This final lesson in the unit revisits the ideas of covariation, relationships, and
causation. The two-sample test is revisited as a way to test for cause and effect in an
experiment, while correlation and regression model covariation that may involve a
causal factor, but do not provide evidence of causation.

Summary

Covariation is an important and difficult topic for students to learn and reason about.
We have introduced lessons that build ideas informally, remove calculations, and
focus on the concepts and reasoning. We have left out many traditional topics of
bivariate data in the hope that students will study them in more detail in further
coursework in statistics. Instead, we have tried to use this unit as a way to revisit
and deepen understanding of previous concepts in the context of bivariate data.
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Introduction:
The Role of Collaboration in Improving
Statistics Education in Learning, in Teaching,
and in Research

The more voices we allow to speak about one thing, the more
eyes, different eyes we can use to observe one thing, the more
complete will our concept of this thing, our objectivity, be.

(Nietzsche)

The two chapters in Part III conclude our book by focusing on one of the most
important ways to make positive changes happen in education, via collaboration.
Chapter 15 discusses the value and use of collaboration in the statistics classroom to
facilitate and promote student learning. Chapter 16 focuses on collaboration among
teachers and among classroom researchers. The first part of this chapter makes the
case for collaboration among teachers of statistics as a way to implement and sustain
instructional changes and as a way to implement a Statistical Reasoning Learning
Environment (SRLE, Chapter 3). The second part of the chapter describes collabo-
ration among teachers as researchers in order to generate new methods to improve
teaching and learning and to contribute to the knowledge base in statistics education.
As an introduction to Part III, we begin by describing the practice of statistics as a
collaborative endeavor.

Collaboration is a fundamental aspect of human activity and society, which refers
to all processes wherein people work together with others to achieve a common goal.
Collaboration applies both to the work of individuals as well as to larger collectives
and societies. Research into the general nature and processes of collaboration has
intensified with the growing importance of collaboration in many fields, and the ad-
vent of the Internet (collaborative editing, computer-mediated communication, etc.).

Most statistical work is collaborative. Statisticians need to be able to work
smoothly on teams and to communicate effectively with their collaborators, who
may have little or no background in statistics. This is true across academe, busi-
ness and industry, where statisticians offer statistical consulting for various projects
in different disciplines. In this role, they provide guidance in thinking about and
making decisions regarding the statistical aspects of research projects at various
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stages including design, data collection as well as data analysis. The contributions of
these statisticians are greatest when statistical thought is integrated with contextual
knowledge in the content areas of the research project. In a true collaboration, the
statistician collaborates on the overall problem (not just the statistical questions) as
an equal researcher, sharing responsibility for project success or failure, as well as
for publication and patenting. Nearly all graduate and even undergraduate programs
in statistics today prepare their students to be statistical consultants, and some also
prepare their students in communication skills, realizing statistical practice requires
high level skills in teamwork, collaboration, and communication.

If statistics instruction should resemble statistical practice, even for nonstatistics
majors, then students should learn about and experience collaboration, teamwork,
and develop their communication skills as part of their learning. However, there
are additional important reasons to use collaboration in the classroom, which are
described in Chapter 15. Chapter 16 examines the positive impact of collaboration
among teachers of statistics, in teaching as well as in research.

The goal of these final chapters is to convince readers that collaboration is an
essential way to bring about instructional change, to create new knowledge, and
most important of all, to improve student learning of statistics.



Chapter 15
Collaboration in the Statistics Classroom1

A crucial difference exists between simply putting students in
groups to learn and in structuring cooperation among
students.

(Johnson, Johnson, & Smith, 1991, p. iv)

Overview

This chapter attempts to make a convincing case for the use of cooperative learning
experiences for students in the statistics classroom. It builds on the premise that
statistics instruction ought to resemble statistical practice, an inherently cooperative
enterprise. Statisticians typically need to work on teams and communicate effec-
tively with their collaborators, who may have little or no background in statistics.
Today, nearly all graduate and even undergraduate programs in statistics prepare
their students to be statistical consultants, and some also prepare their students in
communication skills, realizing statistical practice requires high level skills in team-
work, collaboration, and communication.

We present definitions and examples of cooperative learning, the theory and
research that support the use of cooperative learning, and examples and practical
tips for successful implementation of this instructional method. While this chapter
focuses on cooperative learning in the classroom, the following chapter (Chapter 16)
focuses on collaboration among statistics educators and researchers. The argument
is made that collaboration among both parties – i.e., among students and among
educators and researchers – ultimately enhances and sustains the other.

Cooperative Learning in the Statistics Classroom

Collaboration is not only just an end goal of statistics instruction, but also a means
to help students learn statistics. Indeed, educators, psychologists, and statisticians
alike have all called for students to have opportunities to work together as they
learn statistics (e.g., Garfield, 1993; Hogg, 1992; Lovett & Greenhouse, 2002).
The recently adopted GAISE guidelines (see Chapter 3 and Franklin & Garfield,

1 This chapter is based on the article: Roseth, C. J., Garfield, J. B., & Ben-Zvi, D. (2008).
Collaboration in learning and teaching statistics. Journal of Statistics Education, 16(1). Online:
http://www.amstat.org/publications/jse/v16n1/roseth.html.

J.B. Garfield, D. Ben-Zvi, Developing Students’ Statistical Reasoning,
C© Springer Science+Business Media B.V. 2008
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2006) make similar recommendations explicit, stating that, “As a rule, teachers of
statistics should rely much less on lecturing, and much more on the alternatives
such as projects, lab exercises, and group problem solving and discussion activities”
(http://www.amstat.org/education/gaise/GAISECollege.htm).

While increasing collaboration and active learning are relatively simple ideas,
implementing such methods is not. Statistics educators may reasonably ask how
these teaching methods should be translated to the statistics classroom. As high-
lighted by the 7th International Conference on Teaching Statistics (ICOTS), work-
ing cooperatively in statistics education involves obvious benefits and challenges,
with the latter raising questions about the degree to which cooperative methods
actually translate to statistics education (Osvaldo Fabbroni, Chang Lee, Lievesley,
Martin-Guzman, Morettin, & Rossman, 2007). This chapter addresses this issue by
providing specific examples of how statistics educators may apply a cooperative
framework to classroom teaching, student assessment, and teacher collaboration.
Thus, the purpose of this chapter is a practical one, connecting a theoretical frame-
work to guidelines and materials for statistics teachers.

This first section focuses on practical tips and materials for successfully imple-
menting cooperative learning methods in the statistics classroom. We begin, how-
ever, by differentiating the terms peer learning, active learning, cooperative learning,
and group work. We also introduce social interdependence theory (Deutsch, 1949,
1962; Johnson & Johnson, 1989, 2005), the guiding theoretical framework for much
of the research on the effects of cooperation.

Definition of Terms

How is Cooperative Work Different from Group Work?

To use cooperative learning effectively, statistics teachers must realize that not all
groups are cooperative groups. Study groups, lab groups, and discussion groups
may be groups, but they are not necessarily cooperative. In fact, while some kinds
of groups facilitate student learning and increase the quality of life in the classroom,
other types may hinder student learning and create disharmony and dissatisfaction
in the classroom (Fiechtner & Davis, 1992).

How is Cooperative Learning Different from Active Learning?

Cooperative learning and active learning are often used interchangeably to describe
instructional methods that allow students to solve problems, participate in activ-
ities, and discuss content with students. While cooperative learning is a form of
active learning, however, active learning is not necessarily cooperative. An impor-
tant distinction is that cooperative learning methods capitalize on the motivational
and epistemic processes that occur between individuals rather than students’ epis-
temic curiosity, work ethic, or the provocative nature of a given activity. From the
cooperative learning perspective, engagement and interest are primarily derived
from the way peers’ individual goals are linked to each other. Simply put, knowing



Definition of Terms 315

that your peers’ success depends on your own – that you “sink or swim” together –
is a powerful motivator (Kohn, 1986).

An example helps to illustrate this distinction. Consider an activity focusing
on understanding the standard deviation (for the original lesson plan, see http://
www.causeweb.org/repository/StarLibrary/activities/delmas2001). In this activity,
student pairs must decide whether one histogram has a larger standard deviation
than another histogram, or if the two histograms have the same standard deviation.
This lesson is clearly active in that students are not passive recipients of the teacher’s
knowledge. Simply asking students to complete the activity, however, – even asking
students to work together in completing the activity – does not make the activity
cooperative. Indeed, it is possible that some students may choose not to engage in
the activity, preferring instead to let their partner do all of the work.

Now, consider how the histogram activity may be structured cooperatively. Stu-
dent pairs are again presented with several pairs of histograms and must decide
whether one histogram has a larger standard deviation than another histogram, or if
the two histograms have the same standard deviation. The key instructional step is
then explaining the cooperative goal structure. Specifically, students are told that
after completing the histogram activity, individual students will then form new
groups of two and compare their answers. The new pairs must reach consensus
about their answers and, most importantly, both individuals must be able to ex-
plain what characteristics of the graphs support their answer. The instructor will
randomly select one individual from the new pairs to explain their answer for a given
problem.

The cooperative structure described above builds on social interdependence the-
ory (Deutsch, 1949, 1962; Johnson & Johnson, 1989, 2005), the basic premise of
which is that the way in which interdependence is structured moderates how individ-
uals interact which, in turn, determines outcomes. Cooperative goal structures result
in promotive interaction (such as mutual help and assistance, sharing resources and
information, acting in trustworthy and trusting ways), competitive goal structures
result in oppositional interaction (such as obstructing of each other’s goal achieve-
ment efforts, hiding resources and information from each other, acting in distrustful
and distrusting ways), and the absence of goal structures results in the absence of
interaction. The basic model proposed by social interdependence theory may be
represented as follows:

Goal structures (Interdependence) → Interaction patterns → Situational outcomes

What is Different About the Cooperatively Structured
Histogram Activity?

When individuals perceive that they can reach their goals if and only if the other
individuals with whom they are cooperatively linked also reach their goals, social
interdependence theory predicts that individuals tend to seek outcomes that are
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beneficial to all those with whom they are cooperatively linked. Thus, in the his-
togram activity, individuals know that, after working together, they must indi-
vidually present their answers to another student. Students also know that, after
reaching consensus with their second partner, they are also individually respon-
sible for justifying their answer to the instructor. In short, whether or not indi-
vidual students complete the histogram activity successfully depends on realiz-
ing the right answer with his or her partners. It is in this way that cooperative
goal structures tend to result in promotive interaction while competitive and in-
dividualistic goal structures result in oppositional or no interaction, respectively.
Readers interested in the empirical support of social interdependence theory are
referred to several meta-analyses studies (e.g., Johnson & Johnson, 1989; Johnson,
Maruyama, Johnson, Nelson, & Skon, 1981; Roseth, Johnson, & Johnson, 2008).
Readers are also referred to related meta-analyses on cooperative effects, albeit
from slightly different theoretical orientations (e.g., Ginsburg-Block, Rohrbeck, &
Fantuzzo, 2006; Rohrbeck, Ginsburg-Block, Fantuzzo, & Miller, 2003; Slavin,
1980, 1983, 1995).

From a cooperative learning perspective, any activity may be motivating and
interesting if cooperative structures link students’ goals, behavior, and outcomes.
In this book, we use cooperative learning as a term for all forms of peer learning
in which students work together to maximize their own and each other’s learning
(Johnson, Johnson, & Holubec, 1998a). Thus, by cooperative learning, we also in-
clude collaborative learning, peer tutoring, cross-age tutoring, and other teaching
strategies aimed at structuring the way students interact with each other as they
learn. For excellent reviews of these methods, see O’Donnell (2006), Boud, Cohen,
and Sampson (2001), and Falchikov (2001). Also, for research focusing on cooper-
ative learning in statistics education, see Chick and Watson (2002), Courtney et al.
(1994), Giraud (1997), Keeler and Steinhorst (1995), Magel (1998), Perkins and
Saris (2001), and Potthast (1999).

Implementing Cooperative Learning

The following sections highlight materials and provide practical tips for effectively
using cooperative learning in the statistics classroom. These recommendations are
meant to address common concerns about using group work, some of which make
instructors reluctant to adopt more student-centered methods or, alternatively, to
stop using them after initial difficulties. Our hope is to provide practitioners with the
tools and understanding needed to capitalize on the benefits of cooperative learning.

We begin by providing a general introduction to the steps typically involved in a
cooperative lesson. We then provide examples of how these methods may be used
in the statistics classroom, focusing especially on the use of cooperative learning
assessment procedures. We emphasize three statistics activities that are also part of
a cooperative learning module available online at the Consortium for the Advance-
ment of Undergraduate Statistics Education (CAUSE, http://serc.carleton.edu/sp/
cause/cooperative/example.html).



Implementing Cooperative Learning 317

Conducting a cooperative lesson typically involves four steps: (a) making pre-
instructional decisions about the lesson, (b) explaining the task and cooperative
structure to students, (c) monitoring and, if necessary, intervening with each learn-
ing group, and after the lesson, (d) processing and evaluating student achievement
(Johnson et al., 1998a; see also Davis, 1993). While detailed instructions for accom-
plishing each of these steps is beyond the scope of this book, we offer a few helpful
hints.

Making pre-instructional decisions. Planning a lesson begins with specifying the
academic objectives. In cooperative learning, it is also recommended that educators
specify the social skill objectives that specify what interpersonal and small group
skills are to be emphasized during the lesson. The importance of social skills cannot
be overstated as, increasingly, large numbers of children, adolescents, and young
adults do not possess the social skills necessary to establish and maintain positive
relationships with their peers. Further, research suggests that educators must con-
front social norms making academic disinterest increasingly acceptable (Steinberg,
Brown, & Dornbusch, 1996). Instructors must create the conditions in which stu-
dents feel safe to say things like, “That’s interesting. Tell me more.” Thus, social
skill objectives may enhance student participation in statistics activities.

Explaining the task and cooperative structure to students. The second and ar-
guably most important step in a cooperative lesson is telling your students what to
do and how to do it. It is here that instructors must (a) assign students to groups,
(b) specify the criteria for successfully completing the activity, and (c) structure the
cooperative goals linking individual students.

� Group size. Cooperative learning groups typically range in size from two to five.
In general, remember that as the size of the learning group increases, so too
do the resources needed to help the group succeed (Johnson & Johnson, 2006).
Thus, smaller groups are typically more successful than larger groups of students,
especially when time is short and/or students lack the skills to work with several
peers at once. Larger groups also decrease individual member’s opportunity to
contribute; correspondingly, smaller groups make it more difficult for students
to hide and not contribute their share of the work. Smaller groups also make it
easier to identify any difficulties students may have in working together.

� Individual accountability. Instructors must be clear about the criteria by which
student performance will be evaluated. Following Brophy (2004), effective cri-
terion make goals immediate (here and now rather than for the distant future),
specific (“answer all questions with no more than one mistake” rather than “do
your best”), and challenging (i.e., difficult but reachable). For example, instead
of saying “compare the two distributions with your neighbor,” it is much more
effective to say: “With your neighbor, identify three similarities and three dif-
ferences between the two distributions. After 5 min I will call on one student to
share their answers with the class.”

� Make positive interdependence explicit. Above all, cooperative goal structures
must be made explicit. For example, when using a problem set to review
for a quiz, cooperation may be structured by saying: “Each of you has two
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responsibilities. First, you are each responsible for learning how to solve the
problems and, so doing, preparing for the quiz. Second, you are responsible for
making sure that every member of your group also knows how to solve the prob-
lem. Each member of the group will receive 5 extra points on their individual
quiz if all their group members score above 85%.”

Monitoring and intervening during the cooperative activity. Once an activity begins,
instructors must monitor and, when necessary, intervene in students’ group work.
This is not the time to get a cup of coffee. To the contrary, cooperative learning
requires that teachers observe interaction among group members, assessing both
academic progress and the appropriate use of interpersonal and small group skills.
This is also the time when the window to student’s reasoning and thinking begins to
open. Student discourse provides a uniquely powerful way for educators to under-
stand how students understand a given concept (Case, 1992).

Group processing. Finally, time should be given for students to process, reflect,
and evaluate what was helpful and unhelpful in completing the assignment. For
example, instructors may ask students to identify at least two behaviors that were
helpful to the group and at least two behaviors that would help the group perform
even more effectively in the future (Davis, 1993). Not only do these discussions
help to clarify whether learning objectives were achieved, they also help to reinforce
classroom norms, values, and behavioral expectations. Statements like, “Raise your
hand if everyone in your group participated in your discussion” makes it clear that,
in this classroom everyone’s participation is expected and valued.

Group processing may occur at two levels. Each learning group may discuss
what they accomplished or, in whole-class processing, the teacher may give the
class feedback with students sharing specific examples from their own groups. For
more on group processing, readers are referred to Johnson et al. (1991, 1998), Rau
and Heyl (1990), and Walvoord (1986).

Practical Tips

In this section, we suggest some practical tips for statistics instructors willing to try
cooperative learning in their classes.

Assigning students to groups. For brief exercises, students may work effectively
with their friends. For extended cooperative activities however, letting students as-
semble into groups of their own choosing is typically not successful (Fiechtner &
Davis, 1992).

Random groups, especially for one-time projects, are easy to assemble. They can
be set up before class using a roster or they can be formed spontaneously by having
students count off. For example, in a group of 40 students where you want groups of
four, ask students to count off from 1 to 10, repeating this four times. Then, ask that
all the “1’s” get together in a group, the “2’s” in a second group, etc. This method
works well in creating heterogeneous groups as it rearranges students who started
the class sitting together.
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Using base groups to check in and track preparation for class. In addition to us-
ing different, informal learning groups to complete activities during class, students
may also be assigned to a consistent base group. These students can be given the
task of checking in with each other at the beginning of class, to ask each other ques-
tions, compare notes, and discuss their preparation for class. In our own teaching,
we have even had students in a base group give themselves a daily rating on how
well prepared they are for class. The base group then calculates the group mean
and charts it over time. By looking at the group average fluctuate over the semester,
students recognize that they are accountable to their peers and gain awareness of
their study habits. Students also gain additional experience looking and interpreting
real data.

Getting groups started on an activity. We suggest that students’ first interaction
with each other be structured. Never let groups suffer through the awkward silence
of “getting started.” Social roles inevitably take over in such instances – e.g., the
“talkers” always talk, and the “quiet” students always remain quiet. Cooperative
groups work best when social roles are trumped by interdependent roles and goal
structures. An easy way to structure the way groups get started is to say some-
thing like, “You’re probably wondering who will start? The person born closest
(or farthest) from this room should begin.” Using questions like this provides a
quick way for students to interact personally without being too distracting or too
“touchy-feely.”

Importantly, “structured starts” can also be used post hoc. Anytime instructors
hear silence after beginning an activity is an ideal time to say, “You’re probably
wondering who will go first. . . ” Structuring the start, even after the fact, helps stu-
dents begin their work as quickly and as effectively as possible.

Assigning roles to group members. Another practical tip is to assign roles to
students that give them a specific task in the group. Assigning roles can help to
avoid traditional social roles (e.g., female students serving as the note-taker or male
students serving as the group spokesman), and they can also be used to develop
thinking and reasoning skills. Roles can also help “level” perceptions of different
status among group members (see Cohen, 1994; Cohen & Lotan, 1997). Following
Garfield (1993) and Johnson et al. (1998), examples of such critical-thinking roles
include the following:

� Summarizing out loud: A student summarizes out loud what has just been read
or discussed as completely as possible and without referring to notes or the orig-
inal material. Students vocalize their understanding in order to make the implicit
reasoning process overt and thus open to correction and discussion.

� Seeking Accuracy: A student seeks accuracy by correcting a member’s summary,
adding important information he or she did not include, and pointing out the ideas
or facts that were summarized incorrectly (e.g., “I’m not sure if that is right. I
thought it was. . . ”).

� Seeking Elaboration: A student relates material being learned to earlier learned
material and to other things they know (e.g., “This is like what we studied last
week. . . ” or, “How does this relate to. . . ?”).
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� Extending Answers: A student extends other members’ answers or conclusions
by adding further information or implications (e.g., “Here is something else to
consider. . . ” or, “I also think that. . . ”).

� Probing Questions: A student asks questions of the group that lead to deeper
understanding of synthesis (e.g., “Would it work in this situation. . . ?,” “What
else makes you believe. . . ?” or, “Would this also work. . . ?”).

Helping students build their teamwork skills. The greater the students’ teamwork
skills, the higher will be the quality and quantity of their learning. Operationally,
teamwork skills are defined by specifying which behaviors are and are not appropri-
ate within learning groups. It is not enough to tell students what skills you wish to
see them use during the lesson. Teachers must also explain exactly what is expected
by modeling the skill in front of the class. Students must have a clear idea of what
the skill sounds and looks like. For example, consider what it looks and sounds like
when students do not pay attention. Not paying attention often looks like slouching,
reading the newspaper, completing the Sudoku, checking e-mail, sleeping, etc. Not
paying attention can also sound like finger tapping, turning pages, gossiping with a
peer, typing, snoring, etc. In our experience, demonstrating such behaviors can offer
a moment of levity in the classroom, with humor making it “safe” for students to
engage in more productive behaviors that, in other contexts, may not be socially ac-
ceptable among their peers. Practical examples of social skills that enhance critical
thinking were provided above (see “assigning roles to group members”).

Helping a group that is not working well together. Not every group will work
well together. Students vary in their preparation, motivation, and preferences for
learning. If a group does not seem to be working well together it is important to try
to figure out the cause. Is one student unprepared and perhaps not willing to help?
Are students sitting silently because they don’t understand where to begin? The
teacher can help by going to the group and asking a question or offering a prompt
to get them going. If one student seems to be a problem, the teacher can invite that
student into the hallway and find out what seems to be going wrong. If a student
says that the rest of the group members are not contributing or that they themselves
have not prepared well, the instructor can offer advice to the student or the group,
as appropriate.

Here again we emphasize that forming different, random groups for each activity
can prevent the problem of some groups working consistently better than others.
Simply put, random assignment ensures that individual differences in achievement,
interpersonal skills and the like are evenly distributed across learning groups. Over
time, these differences are also distributed across all learning groups, ensuring that –
again, over time – any effects of between-group differences are minimized. Impor-
tantly, randomization of student groups also helps students to get to know as many
of their classmates as possible, a key step in turning a classroom into a caring,
supportive learning community. Consider the following student’s comment on the
introductory statistics course evaluation:

I have never had a professor or instructor that was this effective . . . I always felt valued,
always . . . we would work in groups frequently which always helped . . . Big picture: he
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provided a unique learning environment that will help a variety of learning styles . . . Work-
ing in groups has made a big impact. Having built rapport with the other students quickly in
the semester helped. Having a base group and assigned seating really helped me not feel so
lost. Having to report to what level we did our homework to our base groups, made each of
us accountable and probably made each of us come to class more and do homework more.
Overall, I can’t compare his style to any other professor or instructor I have ever had here. . .

Assessment and Cooperative Learning

Assessment provides yet another opportunity to capitalize on the effects of cooper-
ative activities. For example, in the GIG procedure (Group preparation, Individual
assessment, Group assessment; Johnson & Johnson, 2002), students first meet in
their cooperative learning groups to discuss study questions and to come to con-
sensus about the answers. The cooperative goal is to ensure that all group members
understand how to answer the study questions correctly. Next, students take the
assessment (e.g., quiz, test, etc.) individually, the task (obviously) being to answer
each question correctly. Last, after all group members have finished the individual
portion of the assessment, the group as a whole then meets again to complete the
group portion of the test.

There are a myriad of ways of using the GIG procedure. As suggested earlier,
extra credit may be awarded if every member of the learning group scores above
a certain threshold on the individual assessment. Other times, students may meet
in their cooperative learning groups and retake the entire test, the cooperative goal
being to reach consensus on the answers and to ensure that all members can explain
the answer. Calling on individual members of a group is, again, one way to ensure
that individuals are accountable for contributing to the group goal.

In our own undergraduate statistics courses, we use a procedure whereby students
complete the individual portion of a quiz at home. Individual questions emphasize
statistical literacy, thus providing each student with a structured review of the ma-
terial. The next day, students turn in their individual quiz and meet in cooperative
learning groups to complete the group portion of the quiz. For the group portion, stu-
dents are randomly assigned to groups of three, thus ensuring that different students
work together during every assessment. Group quiz questions emphasize statistical
reasoning and thinking, thus going beyond the individual portion of the quiz and
capitalizing on the power of group discourse to realize deeper understanding of the
concepts.

In our version of group assessment, every individual member of the group writes
their own answers to each question. Students are told that one, randomly chosen
member of each group will have their quiz graded, and that their score will be given
to the group as a whole. Thus, we structure the sink-or-swim requirement, with the
cooperative goal of getting the best possible grade encouraging discourse, helping,
and individual accountability. Group members also review each other’s quiz answers
until every member is satisfied with each other’s answers. If students cannot agree
on an answer, instructors intervene and/or encourage them to compare their answer
with an adjacent group. As in other cooperative activities, these assessments serve
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as windows to students’ reasoning and thinking. The group quizzes also reinforce
and deepen students’ understanding of the course’s more complex topics. It is our
experience that an incredible amount of learning occurs during these group assess-
ments, with students often leaving class smiling and saying, “I really understand
this now!”

Using Cooperative Learning in Large Classes

A frequently asked question about implementing cooperative groups in statistics
classes is how to do this in a large class. This is a reasonable concern, as the logistics
of managing large groups does require some additional planning. We emphasize
however that cooperative learning can be used in classes of almost any size. In fact,
many faculty have commented that cooperative learning is especially important in
large classes, where getting students involved can be especially challenging (e.g.,
MacGregor, Cooper, Smith, & Robinson, 2000). Few if any students are willing to
ask questions and volunteer answers in front of hundreds of classmates, but there is
nothing threatening about speaking with two or three people in a small group. Thus,
Felder (2001) has argued that the only difference between a large and small class is
the number of small groups that you have working at one time.

In statistics classes, Magel (1998) and Harkness (2005) write about their experi-
ences using small groups for learning and assessment in large statistics classes, both
finding very positive results. Also interesting are the reports of eight engineering
faculty who use cooperative learning in classes ranging from 20 to 400 students (see
http://clte.asu.edu/active/implework.htm). While noting that adjustments for class
size have to be made, these faculty also describe very positive experiences. Some
tips for implementing cooperative groups in large classes include:

1. Find good ways to quickly assign students to groups, such as giving them a
group number as they walk in the classroom, and then showing on an overhead
the location of where each group number will meet that day.

2. Assign regular seats to students and then assign long term base groups based
on seating location, so groups of 2–4 students sitting near each other form a
group. Allow students time to discuss content, make conjectures, and question
each other’s conclusions or assertions during specific times in the class. The
Think-Pair-Share method works particularly well for such discussions (Ledlow,
2001).

3. After a group activity, call on randomly selected students from a few groups to
report on the results of their group activity. Let students know in advance that
this will occur, so they know they each have to be accountable for the results of
the group activity.

4. Establish a signal for quickly getting groups to stop talking and listen to the
instructor – e.g., use a whistle or turn the lights off and on.
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5. Use undergraduate teaching assistants and undergraduate peer teachers to facili-
tate small group work. Have these facilitators walk around during class activities,
listen to student discussion and answer questions.

For more suggestions for managing cooperative learning activities in large classes,
see Smith (2000), MacGregor et al. (2000), and the Website, “Implementing
Cooperative Learning – Working with Large Classes” (http://clte.asu.edu/active/
implework.htm).

Online Materials for Statistics Educators

While many activities can be easily structured to facilitate cooperative learning, we
highlight three statistics activities that are already structured for cooperative learn-
ing. They are available online at the Consortium for the Advancement of Undergrad-
uate Statistics Education (CAUSE; see http://serc.carleton.edu/sp/cause/cooperative/
example.html).

� Body Measures: Exploring Distributions and Graphs – Using cooperative learn-
ing methods, this lesson introduces distributions for univariate data, emphasizing
how distributions help us visualize central tendencies and variability. Students
collect real data on head circumference and hand span, then describe the distri-
butions in terms of shape, center, and spread. The lesson moves from informal to
more technically appropriate descriptions of distributions.

� Histogram Sorting – Using cooperative learning methods, this activity provides
students with 24 histograms representing distributions with differing shapes and
characteristics. By sorting the histograms into piles that seem to go together, and
by describing those piles, students develop awareness of the different versions
of particular shapes (e.g., different types of skewed distributions, or different
types of normal distributions), and that not all histograms are easy to classify.
Students also learn that there is a difference between models (normal, uniform)
and characteristics (skewness, symmetry, etc.).

� Understanding the standard deviation: What makes it larger or smaller? –
Using cooperative learning methods, this activity helps students develop a better
intuitive understanding of what is meant by variability in statistics. Emphasis
is placed on the standard deviation as a measure of variability. This lesson also
helps students to discover that the standard deviation is a measure of the density
of values about the mean of a distribution. As such, students become more aware
of how clusters, gaps, and extreme values affect the standard deviation.

Summary

The purpose of cooperative learning is ultimately to improve the learning of every
individual student. Using these methods, students learn statistics in ways that not
only enhance their statistical reasoning and communication skills, but also give
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them practice in working collaboratively, which models the collaborative nature
of real statistical work. Cooperative learning groups also enhance critical thinking,
conceptual understanding, and other higher order skills.

Group work does not necessarily constitute cooperative group work. Thus, statis-
tics educators must understand the theoretical underpinnings of these methods and
become experienced through practicing this method. An important way to support
instructors in this process is through collaborative teaching groups. Indeed, it is our
belief that successfully using cooperative learning depends, at least in part, on suc-
cessful collaboration among statistics educators and researchers, the subject of the
next chapter.



Chapter 16
Collaboration in Teaching and Research

What is good for students is even better for faculty.
(D. W. Johnson, R. T. Johnson, & Smith, 1991, p. 115)

Overview

While cooperative learning has been widely promoted for use in the classroom, it
has been much less visible as a method of faculty development and instructional
change. The same authors who have widely disseminated research on the positive
effects of collaboration in student learning, state that “the research that validates the
use of cooperative learning in the classroom also validates the use of cooperative
faculty teams at the department or college level” (Johnson et al., 1991, p. 115). These
authors note that most faculty are not used to, nor skilled in working in groups with
their peers. However, the use of cooperative faculty groups can be a powerful way
to bring about needed changes in teaching and curriculum, such as those outlined in
Chapter 3 of this book. This chapter describes and advocates the use of two different,
but related forms of faculty collaborations: in a teaching group and in a research
group. There is also a description of Japanese Lesson study and its use to help
faculty collaborate in the improvement of teaching and the production of research-
based lessons.

Collaboration in Teaching Statistics

Most people who teach statistics (and this is also true in other disciplines) do so in
relative isolation, even if they have colleagues who also teach statistics. What we do
in our classrooms is often known only by us and by our students. Academic freedom
allows many college faculty to develop and teach courses without any collaboration
with other colleagues, and rarely do we have our colleagues sit in our classes to
even see how we are teaching. In this chapter, we propose a major alternative to the
teaching of statistics as a solo activity. We build an argument for forming a collabo-
rative teaching group with other faculty either at the same school or at comparable
schools, to discuss and share teaching experiences and ideas and to provide support
with teaching challenges.

In an article devoted to this topic, Rumsey (1998) described cooperative teaching
of statistics as “an environment where teachers share ideas and experiences, support
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each other, and work together toward a common goal of quality teaching. Individual
accountability is reflected by the performance and effectiveness of each instructor.”

What Collaboration in Teaching Provides

We see six main reasons why forming a collaborative teaching group can help us
become better teachers of statistics.

1. When we collaborate with other teachers, we can accomplish more and at a
higher level than working alone (Rumsey, 1998). For example, we can produce
better materials, assessments, and teaching techniques by building on the diverse
backgrounds and experiences of the teachers in the group.

2. Collaboration promotes reflection on our teaching by verbalizing and justifying
what we believe and practice, which also leads us to question our beliefs and
practices.

3. Collaboration can motivate and support us in making changes that may be daunt-
ing to try on our own. It can provide an environment to reflect on these changes
and move forward, rather than abandoning efforts when they are not immediately
successful.

4. Collaboration provides a mechanism to develop and maintain a level of con-
sistency from section to section within the same course. For example, collab-
oratively developing and using a common syllabus, teaching materials and as-
sessment materials facilitates consistency, and developing these as a group with
discussion about what is important for students to learn can ensure that they are
high quality and represent a shared vision.

5. Collaboration provides a sense of community: Working together toward a mutual
goal also results in emotional bonding where group members develop positive
feelings toward the group and commitment toward working together. Rumsey
(1998) notes that discussions and group decision making about teaching, testing
and grading, as well as soliciting and providing feedback to peers, creates an
atmosphere of teamwork and community that can improve and enhance our work
environment and our job satisfaction.

6. Collaboration provides support and guidance for new teachers: New instructors
can benefit from the support and experience a more positive beginning to their
career teaching statistics.

Cooperative teaching groups can expand our knowledge and awareness of other
perspectives on teaching and learning. Verbally sharing and discussing ideas with
colleagues can help us better articulate our goals for students, help us reflect on
activities in ways that allow us to improve them, and provide insights into ways to
improve teaching. For example, in a discussion with colleagues about the sequence
of activities used in the distribution unit (Chapter 8), it became clear that the order
should be reversed, an approach we probably would not have considered without
this discussion.
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While most teachers may keep their teaching experiences to themselves, espe-
cially when things do not go well in a particular class, a cooperative teaching group
provides support in challenging situations. Such a group can also provide advice and
support in dealing with difficult situations (e.g., technology problems or a student
having problems using the software).

The Role of Collaborative Teaching in Supporting Innovation
and Change

A very important type of support offered by a cooperative teaching group is sup-
port for a teacher trying to move from a lecture style of teaching to a more active
learning approach, especially a teacher who has felt comfortable lecturing and is
not initially comfortable in a student-centered classroom. Colleagues can offer tips,
advice and empathy while supporting their peer in making this difficult change. This
may prevent the instructor from saying (as we have heard others say) “I have tried
cooperative groups, but it didn’t work for me so I am going back to the lecture
method I’m used to.”

As readers may have recognized in reading Chapter 3 in this book, developing
a Statistical Reasoning Learning Environment (SRLE) is a radically different ap-
proach to teaching than what is being done in most introductory statistics classes to-
day. We suspect that some instructors who may be interested in trying this approach
may find it daunting to undertake on their own and may worry that their colleagues
or department will not be supportive of their efforts. Therefore, we encourage the
use of a cooperative teaching group to discuss the desired changes, what it would
take to implement them, and how to provide the necessary support. It might be that
one member of the group begins one change in the desired direction and reports on
this to the group for feedback, or that several members of the group together try to
implement a change and discuss their efforts and results. We strongly believe that
this type of collaborative teaching group can play a major role in supporting and
sustaining instructional innovation and curricular change.

It is important to note that beginning a collaborative teaching group takes com-
mitment. Rumsey (1998) also points out that the main disadvantage of coopera-
tive teaching is that it demands time, and in fact may require a large initial time
commitment. However, she also points out that once the group is established and
new materials and methods are in place, the individual time commitment diminishes
and takes on more of a maintenance role. She also notes that any attempt to make
changes in teaching requires a large amount of effort on the part of the instructor,
but that a collaborative teaching group can minimize the amount of effort needed.

How Does a Collaborative Teaching Group Work?

We provide six examples of different types of collaborative teaching groups. The
first four are more structured around specific courses at a single institution. The last
two are more informal and include faculty from multiple institutions.



328 16 Collaboration in Teaching and Research

Introductory Statistics at Kansas State

Rumsey (1998) described weekly teaching meetings of a faculty member and gradu-
ate teaching assistants. The primary goals were to offer a forum to confirm statistical
concepts, to discuss and present ways to teach the concepts in the spirit of general
education, and to provide a testing ground for new ideas. Each meeting included
an overview of the material for the upcoming week (based on a common syllabus).
They discussed the teaching philosophy, which was to move from the traditional
approach (hand computations and formulas, the flow-chart approach to working
problems, daily lectures, and small, contrived datasets and examples) toward an
environment of discovery, hands-on activities, critical thinking, and making con-
nections to the students’ everyday lives and professional careers through relevant,
real-world examples. Discussion topics included textbook selection, writing good
assessment items, implementing teaching techniques such as group work or leading
good discussions, and ways to bring more relevance into the classes. After the first
semester of cooperative teaching, the format and goals of the group were altered as
needs changed and more resources had been collected or developed.

Rumsey (1998) felt positive about the use of cooperative teaching in helping the
department move to a more “general education” approach to teaching statistics than
a traditional, more mathematical approach. She wrote:

The cooperative teaching approach allows us to implement the pedagogical themes of gen-
eral education in a way that minimizes the overall amount of additional time and effort.
This is accomplished through teamwork and cooperation among instructors as they develop
and share ideas, receive and offer feedback, and work together toward the common goal
of teaching introductory statistics in the best way possible. We are very happy with the
progress we have made in establishing a teaching resource notebook and a weekly teaching
meeting structure; ideas are collectively developed, presented, tested, and written down in
an organized form for easy retrieval and use. Our instructors have the responsibility and the
freedom to develop their own teaching styles and leadership qualities; this is an important
investment in the future of statistics education.

A Cooperative Model at Auckland, New Zealand

Wild (2006) describes using quality management ideas and teamwork to implement
systems to deliver continual improvement in the Auckland University large first-year
service courses despite a continual turnover of personnel. This collaborative team
serves over 3,500 students per year. It has a small stable core of people who do much
of the teaching and almost all of the development. Their aim in collaborating with
each other is to find “ways to seal enhancements permanently into the system as a
whole so that the courses improved each time they were taught, regardless of who
taught them.”

The group of teachers works collectively on a common product used by all. They
share their best ideas and favorite tricks with the rest of the team, so everyone
can take advantage of them in order to try to capture as much as possible of what
makes the best teachers good and transfer that to everyone in the group; this way
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everyone in the group can learn from and take advantage of these best practices.
The teamwork produced a very flexible, well-integrated learning environment with
high-quality activities and supporting materials such as animated Lecture Slides
with narrated soundtrack, extensive Computer Manuals and Tutorials with narrated
movies, Applets, video clips, a large online test bank with extensive feedback, on-
line Forums that get tens of thousands of hits each month, extensive use of online
surveys, and instant-messaging discussion groups.

Wild (2006) notes that it became clear that when the system retains the most
important contributions from those who move on, teacher turnover is an advantage
rather than a burden. It continually revitalizes the team with fresh ideas, enthusi-
asm, and creativity. There has been recognition of the team’s success in the form
of several university teaching awards and a national teaching excellence award. The
team members also find time for other cooperative activities such as being involved
in the development of the national curriculum for statistics in schools and run-
ning nation-wide outreach activities like the New Zealand CensusAtSchool project
(http://www.censusatschool.org.nz/) and teacher workshops.

Wild (2006) describes some of the advantages of the collaborative teamwork:

The team is very productive because they are no longer doing their preparation work in
parallel reinventing their own slightly different versions of the wheel. They are working
closely together, are regularly in discussion and sparking ideas off one another . . . This way
of working is particularly valuable where there is turnover or where you have, from time
to time, to use inexperienced people and want to avoid significant drops in the quality of
teaching and assessment experienced by students. But there also are a myriad of unexpected
subtle ways in which teamwork can increase quality and creativity. Much of it stems from
the way in which smart, committed people who are teaching the same material, regularly
discussing their experiences and polishing a common set of resources, continually learn
from one another and their environment. It is superb for teacher development.

Introductory Graduate and Undergraduate Statistics Courses
at the University of Minnesota

The Department of Educational Psychology has always provided statistics courses
for students in the department as well as students across the University of Minnesota.
In 1998, the department chair asked one of the authors (Joan Garfield) to take charge
of the introductory graduate and undergraduate statistics courses, which at that
time were challenging. Various faculty and graduate students taught the course, and
the courses were taught in inconsistent ways. Many students did not complete the
courses and had to retake them, and complaints about instructors were frequently
made to the department chair. Garfield was given carte blanche to redesign the
courses and work with graduate students to prepare them to teach a newer, more
effective introductory course. Thus, the original objectives were to improve the in-
troductory course, to ensure that the multiple sections were taught in an effective
and consistent way, and to prepare graduate students to teach these courses.

The course revisions built on current theories of learning – actively engaging
students in constructing knowledge, using cooperative groups to enhance student
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learning, and utilizing state of the art technology to analyze data and to illustrate
abstract concepts. In addition, a variety of high-quality assessment methods were
introduced to evaluate student learning and for course evaluation and improvement.

As the new courses were being designed and implemented, the department con-
structed a state of art computer lab to support the teaching of these courses. This
lab allowed the integration of multimedia software as well as statistical software
into these classes. A collaborative teaching group was established that consisted of
Garfield and the graduate students who were either serving as Teaching Assistants
(TAs) or course instructors. All of these students were required to attend weekly
meetings, and all future course instructors were required to first serve as a TAs and
attend every class session to see how activities and technology were used, and how
discussions and collaborative learning were facilitated.

The weekly meetings were used to discuss the course content, to share activities
used to develop concepts, to have TAs share problems they noticed in their grading,
to discuss ways to help students better understand these areas, and to make sure that
the courses were being taught in fairly consistent manners. Each instructor used the
same textbook and covered the same content, but wrote their own syllabus and ex-
ams. However, copies of materials were widely shared so that new instructors did not
have to start from scratch. Garfield was also able to help alert the instructors to dif-
ficult concepts and misconceptions students have in each topic area, often justifying
choices of activities, technology, and content. For example, she needed to explain
why software used for teaching (e.g., Data Desk) was different than software used
for research (e.g., SPSS). She provided supervision for the instructors by observing
them teach and providing feedback on their teaching. By observing them at different
points in time, she could monitor changes and improvements in their teaching. She
also had the instructors give out midterm feedback forms, which were discussed as
a group noting similarities and sometimes differences from section to section. This
model seemed to help graduate students prepare to teach the introductory course,
and some positive outcomes were soon noted:

1. Fewer complaints about instructors
2. Fewer incompletes and dropouts
3. Increased demand for the courses
4. Higher mean ratings on course evaluations
5. Increased interest from graduate students to serve as TAs in preparation to teach

the introductory courses.

One of the first graduate students to become a TA and teach this course was Michelle
Everson, who became such a popular and effective teacher, she was hired as a full
time Instructor to oversee the introductory graduate course and coordinate the col-
laborative group of teachers and TAs for this course. She now meets regularly with
the instructional staff for this class, prepares and revises course materials, observes
the teachers, collects and monitors midterm feedback from students in the course as
well as end of course evaluations, and provides feedback to the graduate students
teaching these courses. Dr. Everson has developed an innovative online version of
the introductory courses (see Everson, 2006) and is preparing graduate students to
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teach this online course as well as the in class version of the course. She meets
with the online instructors and TAs in a separate collaborative teaching group.

Graduate students who wish to teach the undergraduate course continue to serve
as TAs first, sitting on the entire course for at least one semester. The course instruc-
tors vary from graduate students to PhDs who teach the course on an adjunct basis.
Over the past few years, this group has decided to change textbooks, software, and
sequences of course content, all as a result of group discussions.

Collaboration in a Complete and Radical Revision
of the Undergraduate Course

The current version of the undergraduate introductory course that served as the
model for lessons described in this book was the result of an intense, two-year
teaching collaboration. This collaboration began in the summer, as a faculty mem-
ber met with two graduate students weekly, to completely redesign the course. The
impetus for this change was the desire to use a new textbook that seemed more
aligned with their curricular goals (Statistics in Action by Watkins et al., 2004), the
desire to use Fathom software (Key Curriculum Press, 2006), the desire to better
utilize the classroom computer lab, and the goal of focusing on the big ideas of
statistics rather than procedures. They also wanted to develop a course aligned with
the GAISE guidelines (see Chapter 1; Franklin & Garfield, 2006). The way to do this
transformation was through intense, ongoing, collaboration. Both graduate students
were experienced high school teachers who had also taught the previous version of
this course at the college level.

The group developed a lesson plan format (as a result of the Japanese Lesson
study project, described later in this chapter) and decided to use it in developing
lessons for each day of the course. The plan was to divide the course into topic
areas, and each took some of these areas. They developed lesson plans and produced
accompanying student handouts. They tried to focus on the big ideas, create good
discussion questions to engage students and have them make and test conjectures
using data, and gather and use data from the students.

Each week that summer, the group met for several hours to review lesson plans
and student activities, discuss, argue, and revise them. During the fall semester,
the group continued to meet weekly to debrief how the lessons went and to look
ahead at the lessons to come. The group also discussed assessments used in the
course in terms of their development, use, and the feedback provided. Although it
was a challenging experience for the two graduate students, they were also excited
by the positive results they were seeing. The collaborative group provided support,
encouragement, and positive feedback.

The collaborative teaching group resulted in a unique and innovative course that
none of the participants could have designed alone, provided a mechanism to teach
this course in a reflective way that allowed them to evaluate and improve it, and
developed materials that could be shared with the wider statistics education com-
munity (as part of an NSF grant and this book). The lessons have continued to
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change as the new members are added each year and as some students graduate and
leave. However, each year a group of faculty and students continues to meet weekly
to discuss the activities, design new assessments, and make revisions to the course
materials.

The two types of collaborative groups used in this department as described above
had similarities and differences. However, they both led to many positive outcomes,
which include:

1. Development of a course that focuses on the big ideas, incorporates innovative
technology, and has students actively engaged in learning statistics.

2. Courses that are taught in a fairly consistent way across sections. In the under-
graduate course, the same syllabus and assessment are used across sections.

3. Student satisfaction with the undergraduate and graduate introductory statistics
courses has been consistently higher. The doctoral students teaching the courses
typically receive positive or excellent student teaching evaluations. Several have
won graduate student teaching awards for excellence in teaching.

4. Increased numbers of sections of each course due to high student demand, from
6 a year to almost 20 sections a year (with up to 35 students per section).

5. More diversity in the areas of specialization of the graduate students in this
program (e.g., Learning and Cognition, Quantitative Methods, and School Psy-
chology) as students from different areas express their desire to participate in
teaching and assisting in teaching statistics. Therefore, this is also creating a
diverse group of excellent teachers of statistics.

6. Two fulltime instructors (former graduate students in the department) now su-
pervise each of the statistics courses and meet with each instructional team, as
described above. They also observe and supervise the new group of doctoral
students teaching the courses.

A Collaborative Group across Institutions

A more informal group of teachers of statistics was formed in fall 2005 in the
Twin Cites area of Minnesota. This group, called Stat Chat is described as an
informal but informative monthly get-together of local statistics educators (see
http://www.macalester.edu/∼kaplan/statchat/index.html). The group is convened by
three faculty and draws about 12–20 participants at each meeting. After a year of
loosely organized meetings (e.g., various presentations of current projects and teach-
ing methods), the meetings now have a different theme each month (e.g., online
assessment, simulation software, connecting to other disciplines). Meetings follow
a structure that includes dinner and “Data for Dessert,” (a presentation of a dataset
or method for collecting data that might be useful for a class).

The main part of the meeting consists of a presentation (e.g., implementing the
GAISE guidelines in a course) or a series of small presentations (e.g., different
uses of online assessments) interspersed with discussion. Another format is to have
a general topic (e.g., using Bayesian statistics in an introductory statistics class)
and no presentations, just discussion. The benefits are that participants share ideas
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and materials, raise issues that lead to reflections on teaching practice, and suggest
solutions to practical problems that arise in teaching (e.g., how to deal with cheating
in an online testing format).

Meeting in the evening on one designated day per month (e.g., the last Tuesday
of each month) seems to help people commit to coming to the meetings. Materials
are posted to the Website from each presentation, and additional materials may be
added that are discussed or seem relevant. Anyone in the group is invited to suggest
a topic, give a presentation, or lead a discussion.

A Virtual Collaborative Teaching Group

Another option for faculty who do not have colleagues or graduate students available
to form a collaborative group is to form a group with colleagues at other institutions.
One informal collaboration among teachers of statistics at different institutions is the
Isolated Statisticians Group (see http://www.lawrence.edu/fast/jordanj/isostat.html).
This is a collection of academic statisticians, each of whom is usually the only
statistician (or one of two) in a mathematics department. Their Website states: “In
such circumstances it is difficult to have meaningful discussions with departmen-
tal colleagues about the fine points of teaching or practicing statistics.” While this
group has many members, a few active participations on the email listserv raise
questions or provide suggestions in responses to questions, mostly about teaching
statistics (e.g., how to choose a good text for a mathematics statistics course, a good
Web applet to use for a particular topic, how to help students overcome a particular
misconception about randomization).

Many group members meet at the annual mathematics and statistics conferences.
This loose collaboration provides some support but many of the members are silent,
so there is less of a sense of developing shared materials and approaches than in a
formal group. With today’s technological advances, it seems possible that a collabo-
rative group could be formed by statistics teachers at different schools, which could
be maintained using Web conference calls, collaborative editing Websites (such as
Wikis), and emails.

How to Get Started: Forming a Collaborative Teaching Group

Cooperative activity among faculty should be as carefully structured as is coop-
erative interactions among students in classrooms (Johnson et al., 1998b). These
authors provide many practical suggestions for what they term Collegial Support
Groups, groups to support colleagues in implementing cooperative learning in the
classroom. However, their suggestions generalize to cooperative teaching groups
such as those described earlier. Johnson et al. (1998b) suggest three key activities of
such a group:

1. Frequent professional discussions about student learning
2. Discussing, planning, and developing curriculum materials
3. Teaching together and/or observing each other teach.
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These authors also discuss how such a group can provide support and leadership in
implementing cooperative learning strategies in one’s classes, an experience that can
be challenging and difficult for many instructors used to teaching in more traditional,
teacher-centered formats.

Based on her experience at Kansas State, Rumsey (1998) offered some practical
tips for forming and using a cooperative teaching group to promote instructional
change: These include creating an agreed upon structure, being clear and realistic
about expectations of group members, being flexible and creative while at the same
time, being organized, and offering support and guidance in a structured environ-
ment. Weekly teaching meetings help greatly in this regard.

We think that there are many ways to start such a group. In the examples de-
scribed above or by Rumsey, there was often a faculty member who started the
group and required graduate teaching assistants to participate. It is also possible
to start such a group with faculty colleagues and invite interested students to join.
It helps to have one person who is wiling to schedule and run the meetings and
coordinate the group, although tasks can often be divided among, and selected by,
group members. We encourage members of the group to observe each other’s classes
to see how the same lesson can be taught. It is very illuminating to then compare
the different outcomes of the same lesson in two different settings by two different
teachers.

Summary: Collaborative Groups to Implement Change
in Teaching

The social psychologist Kurt Lewin is credited with the saying that “the way to
change individuals is by changing groups” (D. Johnson, personal communication,
December 14, 2006). Johnson, an international expert on collaboration, sees col-
laborative teaching groups as a method to engender real and sustained changes in
teaching. He also suggested that such a group can serve as a way for novice teachers
to become aware of and comfortable using approaches to teaching that are different
than their own training. Consider a new PhD in statistics who has only experienced
traditional methods of teaching and is now at an institution where active learning is
encouraged. Never having experienced active learning, this person may be reluctant
to try something other than lectures. A collaborative teaching group can help the
new teacher by sharing experiences, inviting the person to see their classes, and
providing guidance and support.

While many academics may initially feel most comfortable thinking about and
making decisions about teaching on their own, we strongly urge them to consider
forming a collaborative group with other statistics teachers. We realize that there
is an investment in time involved, but even devoting one hour per week to such
a group can have major, positive benefits. The positive benefits of participating in
a collaborative group include promoting and sustaining innovation and changes in
teaching and can lead to improved statistical teaching, and, we believe, to improved
student learning.
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Collaboration in Producing New Knowledge: Collaborative
Classroom-Based Research

Another important area of collaboration is in classroom-based research. Members
of collaborative classroom research group may be statistics faculty but may also
include colleagues in other disciplines such as psychology, measurement, and/or
mathematics education.

What is a Collaborative Classroom Research?

Classroom research, also referred to as action research, is an increasingly popular
approach to educational research, where research is conducted in the classroom,
focusing on problems and questions that arise from teaching. In contrast to more
traditional forms of scientific or lab-based research, classroom research does not
attempt to answer questions definitively nor to find and generalize solutions to prob-
lems. While classroom research is often described in the context of elementary and
secondary education, it is recommended for use by postsecondary instructors as a
tool for studying and improving their classes (Cross & Steadman, 1996).

Classroom research can also be done collaboratively, which brings in more view-
points, perspectives, and instructional settings. delMas et al. (1999) developed a
model of collaborative classroom research for statistics education. They outline four
stages, structured around the following questions:

1. What is the problem? What difficulties are students having (across the different
classes taught by the group of teachers) learning a particular topic or learning
from a particular type of instructional activity? The identification of the problem
emerges from the teachers’ experience in the classroom, through observing stu-
dents, reviewing student work, and reflecting on this information. Once a prob-
lem begins to be identified, published research is studied to better understand the
problem, to see what has already been learned, and to understand what might be
causing the difficulty.

2. What technique might be developed and used in each of the teacher’s classrooms
to address the learning problem? A new instructional technique may be designed
and implemented in class, a modification may be made to an existing technique,
or alternative materials may be used, to help address the learning problem.

3. What types of evidence might be gathered in each classroom to help evaluate
whether the new technique or materials is effective? Types of assessments and
data need to be gathered and evaluated, that will provide feedback on effective-
ness of the technique or materials.

4. What should be done next in each class setting, based on what was learned?
Once a change has been made, and data have been gathered and used to evaluate
the impact of the change, the researchers consider how the technique or materials
might be further modified to improve student learning. They also address the
question of how should new data be gathered and evaluated.
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For each stage, the statistics instructors would discuss and come to consensus on
responses to these questions, leading them to carry out a focused research project
within their own classrooms, allowing them to jointly create materials, design meth-
ods, and compare results. These stages are carried out in an iterative cycle, as new
information gathered in each round often leads back to modifying and trying out
new materials and methods.

The authors point out that while the results of many classroom research studies
may not be viewed as suitable for dissemination because they focus on a partic-
ular class setting and are not generalizable, nevertheless the results of a carefully
designed collaborative classroom research project can yield valuable insights into
the teaching and learning of statistics. They concluded that collaborative classroom
research is an exciting and productive model for research in statistics education and
encouraged other statistics faculty to try out this model in their own classrooms
as a way to better understand and improve student learning of statistics. (Note:
the third lesson in the Sampling Unit, Chapter 12, resulted from their research
findings.)

For more information on the results of this collaborative research group as they
studied students’ reasoning about sampling distributions and how that was impacted
by an instructional material and Sampling SIM software, see Chance et al. (2004).
Lunsford et al. (2006) extended this research and method as they investigated stu-
dent understanding of sampling distributions, finding similar results but with a dif-
ferent population of students.

Japanese Lesson Study as One Form of Collaborative
Classroom Research

Japanese Lesson Study (JLS) is a method used by teachers to collaboratively de-
velop “research lessons” that are used by teachers to carefully and systematically
study how to achieve a particular learning goal (Bass, Usiskin, & Burrill, 2002;
Hiebert, Morris, & Glass, 2003; Fernandez, Cannon, & Chokshi, 2003). JLS has
been studied and written about extensively and is the focus of many new research
projects in mathematics and science education (e.g., Fernandez, 2002; Lewis, 2000;
Lewis & Tsuchida, 1998). Rather than offer a new technique for teaching students,
it offers a set of concrete steps that teachers can take, over time, to improve their
teaching (Stigler & Hiebert, 1999).

These lessons embody theories about how to help students reach particular learn-
ing goals (Hiebert, Gallimore, & Stigler, 2002). They are classroom lessons taught
to a regular class of students but that have special features linked to the research
process. According to Lewis and Tsuchida (1998), JLS lessons are focused on im-
portant learning goals, carefully planned in collaboration with other teachers, ob-
served by teachers, recorded, discussed, and then revised. They consist of research
lessons developed over time by a study group and contain descriptions of the learn-
ing goals, the rationale for the lesson design, descriptions of activities, anticipated
responses of students, and suggested responses by the teachers. These lessons may
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be disseminated widely to other teachers, provide a professional knowledge base for
teachers, and thereby contribute to the improvement of teaching and learning.

Roback, Chance, Legler, & Moore (2006) summarize Curcio (2002), in outlining
several important aspects of a lesson study group:

1. Collaborative planning. It is recommended (Fernandez, 2002) that groups of 4–6
teachers come together for 10–15 hours over 3–4 weeks to carefully plan a single
specific lesson (as opposed to a longer unit of material) that will address one or
more overarching goals.

2. Teaching and observing. One member of the group teaches the lesson as de-
signed, while the other group members and outsiders observe the class, taking
detailed notes regarding the reactions and engagement of the students.

3. Analytic reflection. The teacher, other group members, and observers gather soon
after the lesson has been taught to share thoughts and insights, and to evaluate
the success of the lesson in meeting its objectives.

4. Ongoing revision. Based on experience and evidence, the lesson is often revised
and taught again, and the process is repeated.

Japanese Lesson Study in Statistics

There have been a few uses of JLS method in the context of a college statistics
course. One group took place in the Department of Educational Psychology at the
University of Minnesota, with two faculty members, one full time instructor, and
several graduate students (Garfield et al., 2007). The second group was based at
St. Olaf College in Minnesota, with faculty from several different colleges (Roback
et al., 2006).

The University of Minnesota JLS Group

This group decided to try to adapt JLS to college statistics classes as a way to exam-
ine and develop students’ statistical thinking and reasoning about variability. They
saw JLS as a form of design experiment (Cobb et al., 2003a; The Design-Based
Research Collective, 2003) in that JLS could be used to enrich their understanding
of students’ reasoning and learning (e.g., lesson designs are based on hypotheti-
cal learning trajectories and developed through iterative design cycles that com-
pare teacher/researcher conjectures to dense descriptive observations of the learning
environment). Their main research question became: Can we construct activities
through a JLS process that will engage students, elicit and build on their informal
intuitions about variability, and help develop their formal reasoning about variabil-
ity? A secondary research goal was to see how the JLS experience impacted novice
and experienced teachers of statistics (Garfield, delMas, & Chance, 2005).

The JLS group at the University of Minnesota began in September, 2003, and
originally consisted of two faculty, one full-time instructor, and four doctoral
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students who teach their own sections of introductory statistics. It took five sessions
to discuss the learning goal and design a lesson that was ready to be taught. The
group developed a plan that involved immersing students in a real data set (data
on graduating seniors) and required them to use technology to test their conjec-
tures about the data. After developing the lesson as a group, one person taught the
lesson in a class, and the others observed, taking notes on their observations of
how students were engaged, their conjectures, reasoning, and misconceptions. The
group also collected student worksheets and minute papers written by the students
to provide data on the impact of the lesson.

At the next group meeting, the lesson was debriefed and critiqued. During spring
semester, the group continued to meet every other week and developed a new version
of this lesson, based on a new set of data, collected from students in all sections of
the introductory statistics classes on the first day of spring semester. One of the TAs
taught the revised lesson, which was broken into two parts. The group observed
the lesson, and later discussed and critiqued it, and then developed the second part,
which was taught during the next to last week of the semester. Again, the lesson was
later discussed and critiqued and further revisions were made.

As a result of the JLS group, two research-based lessons were developed, that
included a student activity sheet, a data set, teacher notes, and observation notes.
These two lessons appeared to lead students to a deeper understanding of statistical
measures of variability and their complexities as well as limitations. This evidence
was based on written student assessments as well as observations of students work-
ing in groups during the lessons.

In addition to the production of innovative lesson plans that seemed to be ef-
fective in moving students toward statistical thinking by developing their reasoning
about variability, the JLS experience had important effects on both the novice and
experienced teachers. See Garfield et al. (2007) for more details on this lesson and
the research results.

Impact on Experienced Teachers

Collaborative discussions and planning of lessons appeared to be very productive
for teachers of statistics. It forced questions about the relationship of an activity to
important learning goals, and it challenged the group to predict how students might
respond and how to respond to their responses. It also helped all participants to
clarify and deepen their own understanding of the concept of variability and develop
a better knowledge of how students come to learn and reason about variability.

The group also felt that their experience in the JLS group over the year deepened
their own understanding of the complexities of the concept of variability and helped
them to better understand students’ difficulties with this concept and the related sta-
tistical measures. They also benefited from the experience of observing the teaching
of their research lessons, activities that allowed students to construct knowledge
and engage in statistical thinking, rather than just follow procedures to a predictable
outcome.
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Impact on Novice Teachers

The JLS group was ostensibly used to develop a lesson in statistics, but this expe-
rience was also designed to impact novice teachers by modeling the development
of lessons that engage students in active learning, stimulate good discussions, and
lead to important learning goals. The lessons developed provided an alternative to
lecturing, working out problems, and offering explanations, which is the dominant
method that all of the graduate students (novice teachers) had experienced as stu-
dents of statistics.

By the end of the year, these TAs appeared to believe that a well-designed activity
to help students construct important ideas is an important and valuable instructional
method and that developing such an activity with colleagues, discussing, trying it,
watching it, evaluating, and revising it, is a useful method of ongoing professional
development.

Because of the conversations and group discussions, the TAs appear to have
carried over some of the techniques used in the research lesson in their courses.
They recognized the power of an activity that engages students in reasoning about
statistics and were impressed with the end results of the lesson and students’
understanding. This was quite a contrast to their own experience as students of
statistics.

The St. Olaf College JLS Group

A second JLS group consisted of faculty from different colleges met at
St. Olaf College in 2004. They wrote about their experience getting started (Roback
et al., 2006):

We began our undertaking intrigued by what we knew of Japanese Lesson Study, but ex-
tremely “green” with respect to its implementation. Not only were we newcomers to the
ideas shaping lesson study, but we could find nothing in the literature to guide the im-
plementation of lesson study specifically at the college level, especially in an upper-level
statistics course. Thus, we embarked on a pilot implementation – a preliminary attempt
to assess the feasibility of Japanese Lesson Study principles in upper-level undergraduate
statistics courses. We hoped to gain insight into concrete benefits and potential pitfalls.

In the end, this group focused on developing a lesson for a Mathematical Statistics
course at St. Olaf that was taught in the spring semester. The course has a prerequi-
site of Probability Theory, so it was targeted toward juniors and seniors who were
mathematics majors or statistics concentrators with no previous course in applied
statistics. They spent their first meeting watching a videotape overview of Japanese
Lesson Study (Curcio, 2002) and discussing the lesson study philosophy and pro-
cess. The goal of their second meeting was to brainstorm about big goals and content
for a research lesson. The discussion was wide-ranging, and it consumed much of
the next few meetings as they discussed the important ideas they wanted students to
remember from this statistics class. Eventually, a lesson was collaboratively devel-
oped on goodness-of-fit tests and sampling distributions.
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Specific objectives used to develop and later evaluate the lesson were:

1. engaging students in an active way with lesson material;
2. having students apply statistical thinking to develop a test statistic;
3. having students suggest the need to examine an empirical sampling distribution

(assuming the null is true) to decide if an observed test statistic value is surpris-
ing;

4. introducing the theory of the chi-square statistic, distribution, and goodness-of-fit
test; and

5. extending goodness-of-fit tests from the categorical to the discrete to the contin-
uous case.

The lesson was taught in the next-to-last week of the semester, immediately after
a unit on regression analysis and inference. Only one of the group members was
able to observe the class and take notes on his observations. Roback et al. (2006)
provide complete details of this lesson. In reflecting on their use of the lesson study
experience, they wrote:

Is lesson study a worthwhile endeavor at the undergraduate level, and, in particular, for an
upper-level course such as Mathematical Statistics? Our pilot experience with lesson study
principles suggests that the answer is yes, with proper preparation, faculty commitment, and
realistic expectations.

They also described specific benefits as:

1. Focused and energized collaboration.
2. Insight into student learning.
3. Development of a strong lesson plan.
4. Facilitation of pedagogical research.

The authors also offer suggestions for other colleagues interested in forming a lesson
study group for a college statistics course, noting that focusing intensely on a single
lesson can provide an “achievable and generalizable” means for examining an entire
course as a whole. They note that this process required commitment and time, but
that this results in a valuable and worthwhile experience “which has had a lasting
impact on our teaching beyond the single lesson on which we collaborated.”

Summary of Japanese Lesson Study in Statistics

Japanese Lesson Study may be viewed as a special type of collaborative teaching
group, as well as a unique form of collaborative classroom research. By bringing
together a set of teachers who teach the same course and having them together
develop a research-based lesson to achieve an important learning goal, these groups
are contributing to the knowledge base for teaching statistics (Stigler & Hiebert,
1999). Indeed, it was the JLS experience at the University of Minnesota that led to
the creation of the series of lessons that are now part of this book and will contribute
to the knowledge base for statistics education. We encourage teachers of statistics
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to consider forming collaborative groups, and to try develop a “research” lesson
that involves students in constructing knowledge of an important statistical idea.
We believe that going through the process of designing, teaching, critiquing, revis-
ing, and re-teaching this lesson will not only contribute important new knowledge
to teaching statistics, but will also ground this knowledge in practical classroom
context. Thus, we see collaborative classroom research as a vital way to connect
research and teaching practice.

Summary of Collaboration among Teachers and Researchers

Ultimately, our success in teaching for understanding depends on our design skills: our
abilities to deign activities and assessments that naturally raise questions and new ideas
instead of telling students what we know, and assuming they understand.

(Wiggins & McTighe, 1998, p. 175)

We see collaboration as the mechanism to achieve what Wiggins and McTighe de-
scribe in the above quote. Collaborative learning moves to a more student-centered
approach where students are learning from experience and from each other, rather
than “receiving” knowledge from the teacher. Teachers working together collabora-
tively can help lead and support each other in moving to a more student-centered
classroom that uses collaboration in effective ways. And collaborative classroom
research can help develop and identify effective activities and assessments to con-
tribute to the knowledge base on teaching and learning statistics. It is our belief that
all of these forms of collaboration are forms of “communities of practice”1 (Lave &
Wenger, 1991), in that all involve learning as part of a group (whether students
learning from each other, teachers learning from each other, or researchers learning
from their collaborative project as well as from each other). These different types of
collaboration are all needed to improve student learning of statistics, so we end our
book with a plea for statistics teachers to build on the collaborative foundations of
statistical work and try one or more of these methods in the coming year.

1 The concept of a community of practice (often abbreviated as CoP) refers to the process of so-
cial learning that occurs when people who have a common interest in some subject or problem
collaborate over an extended period to share ideas, find solutions, and build innovations.
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Resources

This section provides useful information on major books, conferences, and publica-
tions in statistics education.

Chapter 1: The Discipline of Statistics Education

A. Professional Organizations that Support Statistics Education

� The Consortium for the Advancement of Undergraduate Statistics Education
(CAUSE)

http://www.causeweb.org/

Arising from a strategic initiative of the American Statistical Association, CAUSE
is a national organization whose mission is to support and advance undergraduate
statistics education in four target areas: resources, professional development, out-
reach, and research.

� The American Statistical Association, Section on Statistical Education

http://www.amstat.org/sections/educ/

This is an active group of statisticians and statistics educators who are involved
in and dedicated to the teaching of statistics. They organize sessions on statistics
education at the annual Joint Statistics Meetings (see below) and produce a newslet-
ter on current activities and news related to teaching and learning statistics. They
oversee nominations and awards for excellence in teaching statistics.

� The International Association for Statistical Education (IASE)

http://www.stat.auckland.ac.nz/∼iase/

IASE (a section of The International Statistical Institute) is the international um-
brella organization for statistics education. IASE seeks to promote, support, and
improve statistical education at all levels everywhere around the world. It fosters
international cooperation and stimulates discussion and research. It disseminates
ideas, strategies, research findings, materials and information using publications,
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international conferences (such as ICOTS, the International Conference On Teach-
ing Statistics, every four years), and has a rich Website.

� The Mathematics Association of America, Special Interest Group in Statistics
Education (SIGMAA)

http://www.pasles.com/sigmaastat/

This is a special interest group for mathematicians who teach statistics. The pur-
pose of this group is to facilitate the exchange of ideas through meetings, sessions,
publications, and electronic media about teaching statistics and the undergraduate
curricula; to foster increased understanding of statistics among members of the
Mathematics Association of America (MAA) and among broader constituencies;
to promote the discipline of statistics among students; and to work cooperatively
with other organizations to encourage effective teaching and learning of statistics.

� The National Council of Teachers of Mathematics (NCTM)

http://www.nctm.org/

Data and Chance are among the five main content areas in the Principles and Stan-
dards for School Mathematics document (National Council of Teachers of Mathe-
matics, 2000). The NCTM has published many books about teaching statistics at the
school level (some of them are mentioned below).

B. Publications

I. Books on Teaching Statistics

� Ben-Zvi, D., & Garfield, J. (Eds.) (2004). The challenge of developing statistical
literacy, reasoning, and thinking. Dordrecht, The Netherlands: Kluwer Academic
Publishers.

This book collects, presents, and synthesizes cutting edge research on different as-
pects of statistical reasoning, and applies this research to the teaching of statistics to
students at all educational levels. It presents the research foundation on which teach-
ing should be based. The chapters in this volume are written by leading researchers
in statistics education.

� Burrill, G. F. (Ed.) (2006). Thinking and reasoning with data and chance:
Sixty-eighth NCTM yearbook. Reston, VA: National Council of Teachers of
Mathematics.

The sixty-eighth NCTM yearbook (2006) focuses on students’ and teachers’ learn-
ing and reasoning about data and chance. Topics include the relation between math-
ematics and statistics, the development and enrichment of mathematical concepts
through the use of statistics, and a discussion of the research related to teaching and
learning statistics. The accompanying CD offers support material for many of the
articles, including lessons, software demonstrations, and video clips of classrooms.



Resources 375

� Garfield, J. (Ed.) (2005). Innovations in teaching statistics (MAA Notes Volume
65). Washington, DC: Mathematics Association of America.

A book of stories about teaching statistics. These stories are told by fourteen dif-
ferent instructors of innovative statistics courses, who demonstrate that learning
statistics can be a positive, meaningful, and even exciting experience. In the classes
of the instructors whose stories fill this book, students are engaged in learning, are
empowered to do statistics, and appreciate the instructional methods of their teach-
ers. Each chapter begins by describing how the author became a teacher of statis-
tics, then provides details about the courses they currently teach, describing their
teaching methods, textbook, types of student assessments, and uses of technology.
One typical class is described in detail, to provide a snapshot of what each person’s
teaching looks like. The writers then tell the story of the process they went through
in developing an innovative course, and conclude their chapters with a discussion of
their future plans for course revision or development.

� Gelman, A., & Nolan, D. (2002). Teaching statistics: A bag of tricks. New York:
Oxford University Press.

This book provides a wealth of demonstrations, examples, and projects that involve
active student participation. Part I of the book presents a large selection of activities
for introductory statistics and Part II gives tips on what does and what does not
work in class. Part III presents material for more advanced courses on topics such
as decision theory, Bayesian statistics, and sampling.

� Gordon, F., & Gordon, S. (Eds.) (1992). Statistics for the twenty-first century
(MAA Notes Volume 26). Washington DC: Mathematical Association of America.

This book suggests innovative ways of bringing an introductory statistics course to
life. The articles focus on current developments in the field, and how to make the
subject attractive and relevant to students. All articles provide suggestions, ideas,
and a list of resources to faculty teaching a wide variety of introductory statistics
courses. Some of the ideas presented include exploratory data analysis, computer
simulations of probabilistic and statistical principles, ”real world” experiments with
probability models, and individual statistical research projects to reinforce statistical
methods and concepts.

� Moore, T. L. (Ed.) (2000). Teaching statistics: Resources for undergraduate in-
structors (MAA Notes Volume 52). Washington DC: Mathematics Association
of America.

This book is a collection of articles on various aspects of statistics education along
with a collection of descriptions of several effective and innovative projects. The
book opens with a classic article produced by the MAA Focus Group on Statistics
Education during the infancy of the statistics education reform movement. Follow-
ing sections include motivation for and advice on how to use real data in teaching,
how to choose a textbook at the introductory or mathematical statistics level, how
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to make effective use of technology, and how to more effectively assess students by
going beyond the reliance on in-class examinations.

� Shaughnessy J. M., & Chance, B. L. (2005). Statistical questions from the class-
room. Reston, VA: National Council of Teachers of Mathematics.

This book deals with the teaching of some of the more difficult conceptual conun-
drums in teaching introductory statistics.

� The Best of Teaching Statistics: Three collections of articles from Teaching
Statistics.

Some of the best articles from Teaching Statistics have been put together in the
following three publications.

1. The Best of Teaching Statistics – published in 1986 and available online: http://
www.rsscse.org.uk/ts/bts/contents.html.

2. Teaching Statistics at its Best – 50 of the best articles from Volumes 6–14 (Edited
by D. Green, 1994). Some of the articles are available online: http://www.rsscse.
org.uk/ts/best.html.

3. Getting the Best from Teaching Statistics – The latest anthology with arti-
cles from Volumes 15–21. Available online: http://www.rsscse.org.uk/ts/gtb/
contents.html.

� The Navigations Series on Data Analysis and Probability, published by the
National Council of Teachers of Mathematics, Reston, VA.

Grade-band books with activities and materials to implement ideas from the NCTM
Principles and Standards for School Mathematics (2000). There are four books –
Navigating through Data Analysis and Probability (prekindergarten–grade 2, grades
3–5, 6–8, and 9–12), and two books – Navigating through Probability (grades 6–8,
and 9–12).

II. Journals and Newsletters

� Statistics Education Research Journal (SERJ)

http://www.stat.auckland.ac.nz/∼iase/serj

SERJ is a peer-reviewed electronic journal of the International Association for Sta-
tistical Education (IASE) and the International Statistical Institute (ISI). SERJ is
published electronically twice a year and is free. SERJ aims to advance research-
based knowledge that can help to improve the teaching, learning, and under-
standing of statistics or probability at all educational levels and in both formal
(classroom-based) and informal (out-of-classroom) contexts. Such research may ex-
amine, for example, cognitive, motivational, attitudinal, curricular, teaching-related,
technology-related, organizational, or societal factors and processes that are related
to the development and understanding of statistical knowledge. In addition, research
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may focus on how people use or apply statistical and probabilistic information and
ideas, broadly viewed.

� Journal of Statistical Education (JSE)

http://www.amstat.org/publications/jse/

The JSE disseminates knowledge for the improvement of statistics education at all
levels, including elementary, secondary, post-secondary, post-graduate, continuing
and workplace education. It is distributed electronically and, in accord with its broad
focus, publishes articles that enhance the exchange of a diversity of interesting
and useful information among educators, practitioners, and researchers around the
world. The intended audience includes anyone who teaches statistics, as well as
those interested in research on statistical and probabilistic reasoning. All submis-
sions are rigorously refereed using a double-blind peer review process.

� Teaching Statistics

http://www.rsscse.org.uk/ts/

Teaching Statistics seeks to help those teaching any type of statistics to pupils aged
9–19 by showing how statistical ideas can illuminate their work and how to make
proper use of statistics in their teaching. It is also directed toward those who teach
statistics as a separate subject and to those who teach statistics in conjunction with
mathematics courses. In the United States, teachers will find it useful in teaching
the data-handling aspects of the Principles and Standards for School Mathematics
(NCTM, 2000).

� STATS Magazine

http://www.amstat.org/advertising/index.cfm?fuseaction=stats

Stats is a lively magazine, directed toward student members of the American Sta-
tistical Association (ASA) and the ASA school membership. Stats features career
information, student experiences, current problems, case studies, first person stories
from leaders in the field, and humor.

� Statistics Teacher Network

http://www.amstat.org/education/stn/

The Statistics Teacher Network (STN) is a newsletter published three times a year by
the American Statistical Association and the National Council of Teachers of Math-
ematics Joint Committee on Curriculum in Statistics and Probability for Grades
K-12. STN is a free publication whose purpose is to keep grades K-12 teachers
informed of statistical workshops, programs, and reviews of books, software, and
calculators. In addition, articles are included describing statistical activities that have
been successful in the classroom.
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� Newsletter of the Section on Statistical Education of the American Statistical
Association

http://www.amstat.org/sections/educ/newsletter/index.html

The newsletter provides section members with: (1) short descriptions and references
to resources where they can learn about new ideas in how to teach or how people
learn statistics; (2) news items about current happenings in the teaching of statistics
that are of interest to teachers of statistics but are not directly applicable to classroom
practice; and (3) actual descriptions of teaching ideas.

� International Statistical Review

http://isi.cbs.nl/isr.htm

The International Statistical Review provides a comprehensive review of work in
statistics, over the whole spectrum of the statistical profession, including the most
relevant aspects of probability. It publishes original research papers of wide inter-
est; integrated critical surveys of particular fields of statistics and probability; and
reports on recent developments in statistics, computer facilities, survey programs,
teaching methods and experience.

III. Articles on the Introductory Statistics Course

These are important articles on undergraduate statistics education that often provide
historical insights into developments and issues regarding the introductory statistics
course.

Cobb, G. W. (1993, July). Reconsidering statistics education: a National Science Foundation
conference. Journal of Statistics Education, 1(1). Retrieved November 6, 2006, from
http://www.amstat.org/publications/jse/v1n1/cobb.html

Cobb, G. W., & Moore, D. S. (1997). Mathematics, statistics, and teaching. American Mathemati-
cal Monthly, 104, 801–823.

Garfield, J., Hogg, B., Schau, C., & Whittinghill, D. (2002, July). First courses in statistical science:
the status of educational reform efforts. Journal of Statistics Education, 10(2). Retrieved
November 6, 2006, from http://www.amstat.org/publications/jse/v10n2/garfield.html

Moore, D. S. (1992). Teaching statistics as a respectable subject. In F. Gordon & S. Gordon (Eds.),
Statistics for the Twenty-First century (pp. 14–25). Washington DC: The Mathematical Associ-
ation of America.

Moore, D. S. (1995, January). The craft of teaching. MAA FOCUS, 15(2), 5–8. Retrieved Novem-
ber 6, 2006, from http://www.stat.purdue.edu/ ∼dsmoore/articles/Craft.pdf

Moore, D. S. (1997). New pedagogy and new content: The case of statistics. In-
ternational Statistical Review, 65, 123–137. Retrieved November 6, 2006, from
http://www.stat.purdue.edu/∼dsmoore/articles/PedagogyContent.pdf

Moore, D. S. (1998, December). Statistics among the liberal arts. Journal of the
American Statistical Association, 93(144), 1253–1259. Retrieved November 6, 2006, from
http://www.stat.purdue.edu/∼dsmoore/articles/LibArts.pdf

Scheaffer, R. L. (2001, Winter). Statistics education: perusing the past, embracing the present,
and charting the future. Newsletter for the Section on Statistical Education, 7(1). Retrieved
November 6, 2006, from http://www.amstat.org/ sections/educ/newsletter/v7n1/Perusing.html
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C. Conferences

� ICOTS – International Conference on the Teaching of Statistics (2010, every four
years)

http://www.stat.auckland.ac.nz/∼iase/conferences

The ICOTS conferences, held by IASE, are the most important events on the inter-
national statistics education calendar. ICOTS-7, Brazil, 2006, see http://www.maths.
otago.ac.nz/icots7/icots7.php; ICOTS-8, Slovenia, 2010, see http://icots8.org/.

� SRTL – Statistical Reasoning Thinking and Literacy International Research Fo-
rums (2009, every two years)

http://srtl.stat.auckland.ac.nz/

The SRTL series of biennial research forums brings together researchers working
in the fields of statistical reasoning, thinking, and literacy. SRTL5 on “reasoning
about statistical inference – innovative ways of connecting chance and data”, The
University of Warwick, United Kingdom, 2007, see http://srtl.stat.auckland.ac.nz/
srtl5/research forums. SRTL6 on “the role of context and evidence in informal in-
ferential reasoning”, The University of Queensland, Brisbane, Australia, 2009, see
http://srtl.stat.auckland.ac.nz/srtl6/research forums.

� IASE Roundtable (2008, every 4 years)

http://www.stat.auckland.ac.nz/∼iase/conferences

These are small workshop conferences that bring together a select international
group of experts to address a particular theme and to make recommendations from
which institutions and individuals engaged in statistical education and training (in
developed and developing countries) may benefit. The 2004 Roundtable addressed
Curricular Development in Statistics Education. The 2008 will address Statistics
Education in School Mathematics: Challenges for Teaching and Teacher Education.
IASE Roundtables are held near the site of ICME conferences (listed below).

� IASE Satellite Conferences (2007, every two years)

http://www.stat.auckland.ac.nz/∼iase/conferences

These are themed conferences held in close proximity to the ISI congresses. The
2005 conference focused on Statistics Education and the Communication of Statis-
tics, and the 2007 conference on Assessing Student Learning in Statistics.

� American Statistical Association with Mathematical Association of America
Joint Statistical Meetings (JSM) – (every year)

http://www.amstat.org/meetings/jsm/2007/index.cfm

JSM is the largest gathering of statisticians held in North America. The Section
on Statistical Education of the American Statistical Association organizes a wide
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variety of invited and contributed paper sessions as well as roundtable discussions
and posters.

� USCOTS – United States Conference on Teaching Statistics (2009, every two
years)

http://www.causeweb.org/uscots/uscots05/

USCOTS is a U.S. conference that focuses on undergraduate level statistics ed-
ucation (including Advanced Placement Statistics), targeting statistics teachers. It
aims at sharing ideas, methods, and research results regarding what teachers want
to know about teaching statistics; facilitating incorporating new ideas, methods, and
resources into existing courses and programs; and promoting connections between
all teachers of undergraduate level statistics throughout the United States

� The International Statistical Institute (ISI) Session (2009, every two years)

http://isi.cbs.nl/

The biannual scientific conference of the International Statistical Institute (ISI) has
been held since 1853, recent sessions attracting in excess of 2,000 delegates. Par-
ticipants include academics, government and private sector statisticians and related
experts from various institutes. ISI Sessions provide an opportunity for statisticians
to attend scientific meetings focusing on their own specialty and at the same time ab-
sorb new research in other statistical fields that may have unanticipated applications
to one’s own specialty.

� Joint Mathematics Meetings (every year)

http://www.ams.org/amsmtgs/national.html

The Joint Mathematics Meetings are held for the purpose of advancing mathematical
achievement, encouraging research, and providing the communication necessary to
progress in the field. The SIGMAA for Statistics Education (listed above) organizes
several sessions on teaching statistics and has its annual business meeting at this
conference.

� ICME – International Congress on Mathematical Education (2008, held every
four years)

http://www.mathunion.org/o/Organization/ICMI/ICME congress.html

A major event in the life of the international mathematics education community
is formed by the quadrennial International Congress on Mathematical Education,
ICME, held under the auspices of the International Commission on Mathematical
Instruction (ICMI, http://www.mathunion.org/ICMI/). This major scientific gather-
ing includes several sessions on statistics education.
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D. Websites

� CAUSE (Consortium for the Advancement of Undergraduate Statistical Education)

http://www.causeweb.org/

Arising from a strategic initiative of the American Statistical Association, CAUSE
is a national organization whose mission is to support and advance undergraduate
statistics education, in four target areas: resources, professional development, out-
reach, and research.

� International Statistical Literacy Project

http://www.stat.auckland.ac.nz/∼iase/islp

The mission of the International Statistical Literacy Project (ISLP) is to provide
those interested in statistical literacy with information and resources, and to aid them
in the development of statistical literacy around the world. It replaces the World
Numeracy Project of the International Statistical Institute (ISI).

� The International Association for Statistical Education (IASE) Website

http://www.stat.auckland.ac.nz/∼iase/

The IASE Website disseminates ideas, strategies, research findings, publications,
materials, and information related to statistics education.

� Adapting and Implementing Innovative Material in Statistics Project (AIMS)

http://www.tc.umn.edu/∼aims/

This project is about adapting and implementing innovative materials for introduc-
tory statistics courses. These materials include textbooks, software, Web resources,
and special simulation tools, lesson plans, and student activity guides. The sug-
gested lessons are designed to involve students in small and large group discussion,
computer explorations, and hands-on activities.

� The Guidelines for Assessment and Instruction in Statistics Education (GAISE)

GAISE College Report:
http://www.amstat.org/Education/gaise/GAISECollege.htm
GAISE PreK-12 Report:
http://www.amstat.org/education/gaise/GAISEPreK-12.htm

Chapter 2: Research on Teaching and Learning Statistics

A. Books

� Ben-Zvi, D., & Garfield, J. (2004). The challenge of developing statistical lit-
eracy, reasoning, and thinking. Dordrecht, the Netherlands: Kluwer Academic
Publishers.
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This book collects, presents, and synthesizes cutting edge research on different as-
pects of statistical reasoning and applies this research to the teaching of statistics
to students at all educational levels. It presents the research foundation on which
teaching should be based. The chapters in this volume are written by leading re-
searchers in statistics education.

� Lajoie, S. P. (1998). Reflections on statistics: Learning, teaching, and assessment
in grades K-12 (studies in mathematical thinking and learning series). Mahwah,
NJ: Lawrence Erlbaum Associates.

This volume represents the emerging findings of an interdisciplinary collabora-
tion among a group of mathematics educators, cognitive scientists, teachers, and
statisticians to construct an understanding of how to introduce statistics education
and assessment for students in elementary and secondary schools. A premise of
this volume is that when students are introduced to statistics at the K-12 level
and provided with opportunities to do statistics that are related to actual life situ-
ations, they will be better prepared for decision making in the real world. The book
is organized around four interdependent themes: content, teaching, learning, and
assessment.

� Lovett, M. C., & Shah, P. (Eds.) (2007). Thinking with data (Carnegie Mellon
Symposia on Cognition Series). Mahwah, NJ: Lawrence Erlbaum
Associates.

A collection of papers presented at the 33rd Carnegie Symposium on Cognition:
Thinking with Data. This volume is organized around three themes: (a) reasoning
about uncertainty and variation (b) statistical reasoning and data analysis, and (c)
learning from and making decisions with data.

B. Articles

These are important articles on the nature, scope, and main themes of research in
statistics education.

Batanero, C., Garfield, J., Ottaviani, M. G., & Truran, J. (2000, May). Research in statistical edu-
cation: Some priority questions. Statistical Education Research Newsletter, 1(2), 2–6. Retrieved
December 3, 2006, from http://www.stat.auckland.ac.nz/∼iase/serj/newsmay00.pdf

Joliffe, F. (1998). What is research in statistics education? In L. Pereira-Mendoza (Ed.), Proceed-
ings of the fifth international conference on teaching statistics (pp. 801–806). Singapore: In-
ternational Statistical Institute. Retrieved April 20, 2008, from http://www.stat.auckland.ac.nz/
∼iase/publications/2/Topic6x.pdf

Jones, G. A., & Thornton, C. A. (2005). An overview of research into the teaching and learning of
probability. In G. A. Jones (Ed.), Exploring probability in school: Challenges for teaching and
learning, (pp. 65–92). New York: Springer.

Shaughnessy, J. M. (2007). Research on statistics learning and reasoning. In F. K. Lester (Ed.), Sec-
ond handbook of research on mathematics teaching and learning (pp. 957–1010). Information
Age Pub Inc.
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C. Websites

� CAUSE (Consortium for the Advancement of Undergraduate Statistical
Education): Research Section

http://www.causeweb.org/research/

These Web pages include lists of important reading in or related to research in statis-
tics education, a searchable data base of abstracts of over 2000 articles related to
the research in statistics education, and practical advice about conducting statistics
education research. Links are provided to journals that publish research in this area,
to conferences where statistics education research is presented, and to Websites of
active statistics education research groups and their projects.

Chapter 3: Creating a Statistical Reasoning Learning
Environment

A. Websites

� Webinars of the Consortium for the Advancement of Undergraduate Statistics
Education (CAUSE)

http://www.causeweb.org/webinar/

Free monthly Web-based seminars for up to 25 statistics educators. Sessions are
recorded for others to view later.

B. Books and Articles

� Burrill, G. F. (Ed.) (2006) Thinking and reasoning with data and chance: The
sixty-eighth NCTM yearbook. Reston, VA: National Council of Teachers of
Mathematics.

This book focuses on students’ and teachers’ learning and reasoning about data
and chance. Topics include the relationship between mathematics and statistics, the
development and enrichment of mathematical concepts through the use of statistics,
and a discussion of the research related to teaching and learning statistics. The ac-
companying CD offers support material for many of the articles, including lessons,
software demonstrations, and video clips of classrooms.

� Davis, B. G. (1993). Tools for teaching (Jossey-Bass Higher and Adult Education
Series). San Francisco: Jossey-Bass.

A compendium of classroom-tested strategies and suggestions designed to im-
prove the teaching practices of all college instructors, including beginning, mid-
career, and senior faculty members. The book describes 49 teaching tools that cover
both traditional practical tasks – writing a course syllabus, delivering an effective
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lecture – as well as newer, broader concerns, such as responding to diversity on
campus and coping with budget constraints.

� Moore, D. S. (1995). The craft of teaching. Mathematical Association
of America FOCUS, 15(2), 5–8. Retrieved April 20, 2008, from http://www.stat.
purdue.edu/∼dsmoore/articles/Craft.pdf

This paper presents David Moore’s philosophy of teaching statistics, composed on
the occasion of winning a major teaching award. David Moore is a well-known
statistician (and former President of the American Statistical Association) who has
had a major impact on the reform of the introductory statistics course.

� Moore, T. L. (Ed.) (2000). Teaching statistics: Resources for undergraduate in-
structors. (MAA Notes Number 52). Washington DC: Mathematics Association
of America.

This book is a collection of articles on various aspects of statistics education along
with a collection of descriptions of several effective and innovative projects. The
book opens with a classic article produced by the MAA Focus Group on Statistics
Education during the infancy of the statistics education reform movement. Subse-
quent sections include motivation for and advice on how to use real data in teaching,
how to choose a textbook at the introductory or mathematical statistics level, how
to make effective use of technology, and how to more effectively assess students by
going beyond the reliance on in-class examinations.

� Shaughnessy J. M., & Chance, B. L. (2005). Statistical questions from the class-
room. Reston, VA: National Council of Teachers of Mathematics.

This small book presents eleven short discussions of some of the most frequently
asked questions about statistics. Some of the questions, such as “What is the dif-
ference between a sample and a sampling distribution?” involve major concepts in
statistics. Other questions such as “Why are deviations squared?” deal briefly with
some of the more technical aspects of the mathematics in statistical theory. The
authors offer teachers of statistics some quick insight and support in understanding
these issues and explaining these ideas to their own students.

Chapter 4: Assessment in Statistics Education

A. Books

� Angelo, T., & Cross, K. P. (1993). A handbook of classroom assessment tech-
niques for college teachers (2nd ed.). San Francisco: Jossey-Bass.

A collection of practical ways to assess student learning and for giving the instruc-
tor student feedback on various course components; includes ideas like the minute
paper and the punctuated lecture.
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� Gal, I., & Garfield, J. (Eds.) (1997). The assessment challenge in statistics
education. Amsterdam: IOS Press. Retrieved April 26, 2008, from http://www.
stat.auckland.ac.nz/ ∼iase/publications/assessbk/

A collection of articles, both conceptual and practical, on issues of assessment in
statistics education.

� Gold, B., Keith, S., & Marion, W. (Eds.) (1999). Assessment practices in un-
dergraduate mathematics, MAA Notes #49. Washington, D.C.: Mathematical
Association of America.

A collection of articles discussing assessment practices and techniques ranging from
program assessment to classroom assessment to assessment of teaching.

� Pellegrino, J. W., Chudowsky, N., & Glaser, R. (Eds.) (2001). Knowing what
students know: the science and design of educational assessment. National
Research Council. Available from http://www.nap.edu/catalog.php? record
id=10019

This report reviews and synthesizes advances in the cognitive sciences and mea-
surement and explores their implications for improving educational assessment. It
addresses assessments used in both classroom and large-scale contexts for three
broad purposes: to assist learning, to measure individual achievement, and to evalu-
ate programs.

� Wiggins, G., & McTighe, J. (2006). Understanding by design (2nd ed.). Engle-
wood NJ: Prentice Hall.

This book brings to bear the author’s understanding of teaching for understanding
and its implications for performance-based assessment including pragmatic advice,
background, and extensive references. An accompanying workbook is the Under-
standing by design: professional development workbook (2004, workbook ed.) by
the same authors, published by the Association for Supervision and Curriculum
Development (ASCD).

B. Articles

Below are two important articles on alternative methods of assessment in the in-
troductory statistics course. In addition, there are many readings at the ARTIST
Website (https://app.gen.umn.edu/artist/).

Chance, B. L. (2000). Experiences with authentic assessment techniques in an introductory statis-
tics course. In T. L. Moore (Ed.) Teaching statistics: resources for undergraduate instructors
(pp. 209–218). Washington D.C: Mathematical Association of America.

Garfield, J. (2000). Beyond testing and grading: New ways to use assessment to improve student
learning. In T. L. Moore (Ed.) Teaching statistics: resources for undergraduate instructors (pp.
201–208). Washington DC: Mathematical Association of America.
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C. Assessment Items

� ARTIST

https://app.gen.umn.edu/artist/

One of the broadest endeavors is the ARTIST project, which provides a variety of as-
sessment resources including sample assignments, research instruments, discussion
of implementation issues, and the Assessment Builder, which provides free down-
loadable access to over 1,000 high-quality assessment items that focus on statistical
literacy, reasoning, and thinking.

� Survey of Attitudes Toward Statistics (SATS)

http://www.unm.edu/∼cschau/satshomepage.htm

This is a tool for assessing student’s attitudes towards statistics.

D. Research Instruments

A collection of research instruments can be found at the ARTIST Website (https://
app.gen.umn.edu/artist/).

Chapter 5: Using Technology to Improve Student Learning
of Statistics

A. Websites

� Consortium for the Advancement of Undergraduate Statistics Education (CAUSE)

http://www.causeweb.org

A collection of resources and services aimed at supporting and advancing undergrad-
uate statistics education in the areas of resources: peer-reviewed collections of exam-
ples, datasets, activities, tools, professional development, outreach, and research.

� CHANCE Database

http://www.dartmouth.edu/∼chance

A collection of materials related to a quantitative literacy course developed around
current news stories involving probability and statistics. Resources include an on-
going archive of articles, videos, data, activities, and other teaching aids.

� The Data and Story Library (DASL)

http://lib.stat.cmu.edu/DASL

A library of datafiles and stories illustrating basic statistical methods. Searches can
be conducted by topic, statistical method, or data subjects.
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� Journal of Statistics Education(JSE) Data Archive

http://www.amstat.org/publications/jse/jse data archive.html

A collection of datasets submitted by instructors with background details and in-
structions for classroom use.

� Rice Virtual Lab in Statistics

http://www.ruf.rice.edu/∼lane/rvls.html

Includes java applets that can be downloaded for off line demonstrations, an online
statistics text, case studies, and an analysis lab of basic statistical analysis tools.

� Rossmanchance Applet Collection

http://www.rossmanchance.com/applets/index.html

An informal collection of applets useful for data analysis, sampling distribution sim-
ulations, probability, and inference.

� Tools for Teaching and Assessing Statistical Inference

http://www.tc.umn.edu/∼delma001/stat tools

A collection of materials and software geared to helping students understand core
concepts underlying statistical inference, including sampling distributions, confi-
dence intervals, and P-values.

� Illuminations: The National Council of Teachers of Mathematics (NCTM)

http://illuminations.nctm.org/

A selected Web Links that are useful school mathematics education resources on
the Internet. A section on data analysis & probability is provided. Each resource has
been approved by an NCTM editorial board.

� The National Library of Virtual Manipulatives (NLVM)

http://nlvm.usu.edu/en/nav/vlibrary.html

A library of interactive, Web-based virtual manipulatives or concept tutorials, mostly
in the form of Java applets, for mathematics instruction (K-12 emphasis). The
project in Utah State University includes data analysis & probability learning tools
related to the Principles and Standards for School Mathematics (NCTM, 2000).

� Statistics Online Computational Resource (SOCR)

http://www.socr.ucla.edu/

This resource provides portable online aids for probability and statistics education,
technology-based instruction, and statistical computing. SOCR tools and resources
include a repository of interactive applets, computational and graphing tools, in-
structional and course materials.
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� Interactive: Shodor Education Foundation

http://www.shodor.org/interactivate/activities/tools.html

A collection of interactive Java-based courseware for exploration in science and
mathematics that includes sections on statistics and probability.

B. Books and Journals

� Technology Innovations in Statistics Education (TISE)

http://repositories.cdlib.org/uclastat/cts/tise

An online journal that reports on studies of the use of technology to improve statis-
tics learning at all levels, from kindergarten to graduate school and professional
development.

� The 1996 IASE Roundtable on the Role of Technology

http://www.stat.auckland.ac.nz/∼iase/publications.php?show=8

The proceedings of the 1996 International Association for Statistical Education
(IASE) Roundtable that discussed the current state of research on the role of tech-
nology in statistics education (Garfield & Burrill, 1997).

� The 2003 IASE conference on Statistics Education and the Internet

http://www.stat.auckland.ac.nz/∼iase/publications.php?show=6

The proceedings of a conference that was dedicated to the recent increase in the use
of the Internet as a resource for helping teach statistics.

C. Articles

Garfield, J., Chance, B. L., & Snell, J. L. (2000). Technology in college statistics courses. In D.
Holton et al. (Eds.), The teaching and learning of mathematics at university level: An ICMI study
(pp. 357–370). Dordrecht, The Netherlands: Kluwer Academic Publishers. Retrieved April 20,
2008, from http://www.dartmouth.edu/∼chance/teaching aids/books articles/technology.htm

Malone, C. J., & Bilder, C. R. (2001, July). Statistics course Web sites: beyond syl-
labus.html. Journal of Statistics Education, 9(2). Retrieved December 18, 2006, from
http://www.amstat.org/publications/jse/v9n2/malone.html

Mulekar, M. (2000, July). Internet resources for AP statistics teachers. Journal of
Statistics Education 8(2). Retrieved December 18, 2006, from http://www.amstat.org/
publications/jse/secure/v8n2/mulekar.cfm

Rubin, A. (2007). Much has changed; little has changed: Revisiting the role of technology in
statistics education 1992-2007. Technology Innovations in Statistics Education, 1(1), Article
6. Retrieved April 20, 2008, from http://repositories.cdlib.org/uclastat/cts/tise/vol1/iss1/art6.

Velleman, P. F., & Moore, D. S. (1996). Multimedia for teaching statistics: Promises and pitfalls.
The American Statistician, 50, 217–225.
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D. Statistical Software for Teaching Statistics

The following are well-known statistical software packages but by no means is an
exhaustive list.

� DataDesk (http://www.datadesk.com)
� Fathom (http://www.keypress.com/fathom)
� JMP (http://www.jmp.com)
� Minitab (http://www.minitab.com)
� Model Chance (http://www.umass.edu/srri/serg/projects/ModelChance)
� ProbSim (http://www.umass.edu/srri/serg/software/download-chanceplus/

ProbSimdl.html)
� R (http://www.r-project.org)
� StatCrunch (http://www.statcrunch.com)
� TinkerPlots (http://www.keypress.com/tinkerplots)

E. Other Statistical Software

� ActivStats (http://www.activstats.com)
� CyberStats (http://www.cyberk.com)
� Excel (http://office.microsoft.com)
� SAS (http://www.sas.com)
� S-plus (http://www.insightful.com)
� SPSS (http://www.spss.com)
� STATA (http://www.stata.com)

F. Class Management Software

� Blackboard (http://www.webct.com)
� Moodle (http://moodle.org)

Chapter 15: Collaboration in the Statistics Classroom

A. Websites

� Collaborative Learning: Group Work and Study Teams

http://teaching.berkeley.edu/bgd/collaborative.html

Barbara Gross Davis (University of California Berkeley) presents a helpful
set of guidelines and advice on using collaborative learning in the college
classroom.
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B. Articles

Dunn, D. S. (1996). Collaborative writing in a statistics and research methods course. Teaching of
Psychology, 23(1), 38–40.

Verkoeijen, P. P. J. L., Imbos, Tj., van de Wiel, M. W. J., Berger, M. P. F., & Schmidt,
H. G. (2002, July). Assessing knowledge structures in a constructive statistical learning
environment. Journal of Statistics Education 10(2). Retrieved December 30, 2006, from
http://www.amstat.org/publications/jse/v10n2/verkoeijen.html

Chapter 16: Collaboration in Teaching and Research

Books

� Lewis, C. (2002). Lesson study: A handbook of teacher-led instructional im-
provement. Philadelphia: Research for Better Schools.

This handbook illuminates both the key ideas underlying lesson study and the prac-
tical support needed to make it succeed in any subject area. It addresses topics in-
cluding the basic steps of lesson study, supports, misconceptions, system impact,
how to pioneer lesson study in your setting, schedules, data collection examples,
protocols for lesson discussion and observation, and instructional plans.



Appendix: Tables of Activities

Table 1 Table of activities by chapter1

Topic and
Chapter

Lesson Name
and Number

Activity Title Credits and References

Chapter 6
Data

1. Data and Variability Meet and Greet
Developing a Class
Survey
Variables on Backs Rossman and Chance

(2004)
2. Avoiding Bias How you Ask a

Question
Critiquing the Student
Survey

Rossman and
Garfield(2001)

3. Random Sampling Gettysburg Address Chance and Rossman
(2005)

Student Survey
Sampling

4. Randomized
Experiments

Taste Test Snell, Peterson, Moore,
and Garfield (1998)

Chapter 7
Statistical
Models and
Modeling

1. Using Models to
Simulate Data

One-Son Modeling
Activity

Konold (1994a) Also
mentioned in simon
(1994)

Let’s Make a Deal
Simulation

Snell et al. (1998)
Shaughnessy and
Dick (1991)

2. Modeling Random
Variables

Coins, Cards, and Dice

3. The Normal
Distribution as a
Model

What is Normal?
Normal Distribution
Applications

1 Note: all activities without specific references in this table were developed by members of the
EPSY 3264 Team: Joan Garfield, Andy Zieffler and Sharon Lane-Getaz.
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Table 1 (continued)

Topic and
Chapter

Lesson Name
and Number

Activity Title Credits and References

Chapter 8
Distribution

1. Distinguishing
Distributions

Distinguishing
Distributions

Rossman and Chance
(2002)

Growing a Distribution Bakker (2004b)
2. Exploring and

Sorting
Distributions

What is a Histogram?
Stretching Histograms

Exploring Different
Representations of Data
Sorting Histograms Garfield (2002a)
Matching Histograms to
Variable Descriptions

Rossman and
Chance(2002)

Chapter 9
Center

1. Reasoning about
Measures of Center

What does the Mean
Mean?
What does the Median
Mean?
Means and Medians Erickson (2002)

2. Choosing
Appropriate
Measures

What is Typical?
Choosing an
Appropriate
Measure of Center

Chapter 10
Variability

1. Variation How Big is Your Head?

2. Reasoning about
the Standard
Deviation

Comparing Hand Spans Watkins, Scheaffer and
Cobb (2004)

What Makes the
Standard Deviation
Larger or Smaller?

delMas (2001b)

Chapter 11
Comparing
Groups

1. Understanding
Boxplots

How Many Raisins in a
Box?

2. Comparing Groups
with Boxplots

Gummy Bears Scheaffer et al.
(2004a, b)

Comparing Boxplots
3. Reasoning about

Boxplots
Interpreting Boxplots
Matching Histograms to
Boxplots

Scheaffer et al.
(2004a, b)

4. Comparing Groups
with Histograms,
Boxplots, and
Statistics

How do Students Spend
Their Time?

Garfield et al. 2007
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Table 1 (continued)

Topic and
Chapter

Lesson Name
and Number

Activity Title Credits and References

Chapter 12
Samples and
Sampling
Distributions

1. Sampling from a
Population

Reese’s Pieces Rossman and
Chance(2002)

2. Generating
Sampling
Distributions

Body Temperatures
Sampling Words
Sampling Pennies

3. Describing the
Predictable Pattern:
The Central Limit
Theorem

Central Limit Theorem Garfield, delMas
and Chance (2000)

Chapter 13
Statistical
Inference

1. Testing Statistical
Hypotheses

Modeling Coin Tosses
Balancing Coins Scheaffer et al.

(2004a, b)
2. P-values and

Estimation
P-values Seier and Robe

(2002)
Types of Errors Seier and Robe

(2002)
Introduction to Confidence
Intervals

3. Reasoning about
Confidence
Intervals

Estimating with Confidence
Estimating Word Lengths
What Does the 95% Mean? Garfield et al.

(2000)
4. Using Inference in

an Experiment
Gummy Bears Revisited Scheaffer et al.

(2004a, b)
5. Solving Statistical

Problems
Involving
Statistical
Inference

Research Questions
Involving Statistical
Methods

Chapter 14
Covariation

1. Reasoning about
Scatterplots and
Correlation

Credit Questions

Interpreting Scatterplots

Cook and
Weisberg(1999)
Cook and
Weisberg(1999)

Reasoning about the
Correlation Coefficient
Guessing Correlations

2. Fitting a Line to
Data

Diamond Rings
da Vinci and Body
Measurements

Chu (2001)
Watkins et al.
(2004)

3. Inferences
Involving Bivariate
Data

Testing Relationships:
Admissions Variables
Testing Relationships:
Baseball Variables
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Table 2 The sequence of activities table

This table provides a list of all activities in Table 1 in the actual order in which they can be taught

Topic Lesson Name and Number Activity Title

Data 1. Data and Variability • Meet and Greet
• Developing a Class Survey
• Variables on Backs

Statistical
Models and
Modeling

1. Using Models to Simulate
Data

• One-Son Modeling Activity
• Let’s Make a Deal Simulation

Data 2. Avoiding Bias • How you Ask a Question
• Critiquing the Student Survey

3. Random Sampling • Gettysburg Address
• Student Survey Sampling

4. Randomized Experiments • Taste Test

Distribution 1. Distributions • Distinguishing Distributions
• Growing a Distribution

2. Exploring and Sorting
Distributions

• What is a Histogram?
• Sorting Histograms
• Matching Histograms to

Variable Descriptions
• Creating graphs for variables

without data
• Exploring Different

Representations of the Same Data

Center 1. Reasoning about Measures
of Center

• What does a Mean Mean?
• What does a Median Mean?
• Means and Medians

2. Choosing Appropriate
Measures

• What is Typical?
• Choosing an Appropriate

Measure of Center

Variability 1. Variation • How Big is Your Head?
2. Reasoning about the

Standard Deviation
• Comparing Hand Spans
• What Makes the Standard

Deviation Larger or Smaller?

Comparing
Groups

1. Understanding Boxplots • How Many Raisins in a Box?
2. Comparing Groups with

Boxplots
• Gummy Bears
• Comparing Boxplots

3. Reasoning about Boxplots • Interpreting Boxplots
• Matching Histograms to Boxplots

4. Comparing Groups with
Histograms, Boxplots, and
Statistics

• How do Students Spend Their
Time?

Statistical
Models and
Modeling

2. Modeling Random
Variables

• Coins, Cards, and Dice

3. The Normal Distribution
as a Model

• What is Normal?
• Normal Distribution Applications
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Table 2 (continued)

Topic Lesson Name and Number Activity Title

Samples and
Sampling
Distributions

1. Sampling from a
Population

• Reece’s Pieces

2. Generating Sampling
Distributions

• Body Temperature
• Sampling words
• Sampling Pennies

3. Describing the Predictable
Pattern: The Central Limit
Theorem

• Central Limit Theorem

Statistical
Inference

1. Testing Statistical
Hypotheses

• Modeling Coin Tosses
• Balancing Coins

2. P-values and Estimation • P-values
• Types of Errors
• Introduction to Confidence

Intervals
3. Reasoning about

Confidence Intervals
• Estimating with Confidence
• Estimating Word Lengths
• What Does the 95% Mean?

4. Using Inference in an
Experiment

• Gummy Bears Revisited

Covariation 1. Reasoning about
Scatterplots and
Correlation

• Credit Questions
• Interpreting Scatterplots
• Reasoning about the

Correlation Coefficient
• Guessing Correlations

2. Fitting a Line to Data • Diamond Rings
• da Vinci and Body Measurements

3. Inferences involving
Bivariate Data

• Testing Relationships: Admissions
Variables

• Testing Relationships: Baseball
Variables

Statistical
Inference

5. Solving Statistical
Problems Involving
Statistical Inference

• Research Questions Involving
Statistical Methods
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196, 264, 275, 291–292, 296, 298–299,
302–303, 305–308, 340

Repeated sampling, 95, 121, 241
Resources

articles, 378–381, 385, 388
assessment, 86
books, 374–376
professional organizations, 373

S
Sample, 236–237
Sampling

bias, 239
Sampling distributions, 236–250
Statistical inference

confidence intervals, 261, 264, 267, 270,
271, 273, 275, 278, 280–284

formal inference, 267, 273
informal inference, 262, 264, 266, 268,

270, 273
tests of significance, 268, 271, 275, 278,

286
Statistical literacy, 33
Statistical reasoning, 34

Statistical Reasoning Learning
Environment (SRLE), 48–50

Statistical thinking, 34
Students

challenges, 57–59

T
Teachers’ knowledge

college, 60
elementary, 191, 193
secondary, 222

Teaching
implications, 39
Issues, 23

Teacher preparation, 38, 110, 330
Technology, 386, 388

Data Desk, 330
dynamic and interactive graphics, 95
dynamic and interactive representation, 101
Fathom, 106, 133, 144, 198, 279, 281, 286
graphing calculator, 98–99
interactive animations, 99
interactive environment, 96, 98, 107
interactive tools (software), 29, 91
interactive white board, 108
Internet, 29, 52, 92, 98, 104, 108, 111, 132
Issues, 112–113
Java applets, 98, 299, 387
Minitab, 88, 95, 97
Minitools, 106, 172–175, 220, 297
Model Chance, 26, 152
simulation software, 107, 267, 276, 332
spreadsheets, 97
statistical software, 95
TinkerPlots, 28, 41, 96, 102–103, 106, 132,

168, 174–177, 183–184, 217–218, 220,
223, 226–227, 296, 298

Websites, 381, 383, 386, 389
Wiki, 94, 333

Test of significance, 262, 276, 278, 285–286
Thinking

mathematical, 9
statistical, 34

Trend, 10, 28, 85, 158, 171, 194–195, 218,
223, 228, 290, 292, 297, 303–304

V
Variability

interquartile range, 203–208, 214
range, 201, 203–209, 214
sampling variability, 62, 118, 130,

236–237, 239, 240, 243, 244, 248
standard deviation, 211–214
variance, 79, 99, 271

Variable
lurking variable, 134, 292, 301, 303
variation, 210–211
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