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Abstract Numerical simulation of evolution of nonlinear gravity waves is pre-
sented. Simulation is done using two-dimensional code, based on conformal
mapping of the fluid to the lower half-plane. We have considered two problems:
(i) modulation instability of wave train and (ii) evolution of nonlinear Shrödinger
equation solitons with different steepness of carrier wave. In both cases we have
observed formation of freak waves.

1 Introduction

Waves of extremely large size, alternatively called freak, rogue, or giant waves, are
a well-documented hazards for mariners (see, for instance Smith 1976; Dean 1990;
Chase 2003). These waves are responsible for loss of many ships and many hu-
man lives. Freak waves could appear in any place of the world ocean (see Earle
1975; Mori et al. 2002; Divinsky et al. 2004); however, in some regions they are
more probable than in the others. One of the regions where freak waves are espe-
cially frequent is the Agulhas current of the South-East coast of South Africa (see
Grundlingh 1994; Gutshabash and Lavrenov 1986; Irvine and Tilley 1988; Lavrenov
1998; Mallory 1974). In the paper by Peregrine (1976) it was suggested that in ar-
eas of strong current such as the Agulhas, giant waves could be produced when
wave action is concentrated by reflection into a caustic region. According to this
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theory, a variable current acts analogously to an optic lens to focus wave action.
The caustic theory of freak waves was supported since that time by works of many
authors. Among them were Smith (1976), Gutshabash and Lavrenov (1986), Irvine
and Tilley (1988), Sand et al. (1990), Gerber (1987, 1993), Kharif and Pelinovsky
(2003). The statistics of caustics along with application to calculation of the freak
wave formation probability was studied in the paper of White and Fornberg (1998).

In our opinion, connection between freak wave generation and caustics for swell
or wind-driven sea is the indisputable fact. However, this is not the end of the story.
Focusing of ocean waves by an inhomogeneous current is a pure linear effect. Mean-
while, there is no doubts that freak waves are essentially nonlinear objects. They are
very steep. In the last stage of their evolution, the steepness becomes infinite, form-
ing a “wall of water.” Before this moment, the steepness is higher than that for the
limiting Stokes wave. Moreover, a typical freak wave is a single event (see, for
instance Divinsky et al. 2004. Before breaking it has a crest, three–four (or even
more) times higher than the crests of neighbor waves. The freak wave is preceded
by a deep trough or “hole in the sea.” A characteristic life time of a freak wave is
short – ten of wave periods or so. If the wave period is 15 s, this is just few minutes.
Freak wave appears almost instantly from a relatively calm sea. Sure, these peculiar
features of freak waves cannot be explained by a linear theory. Focusing of ocean
waves creates only preconditions for formation of freak waves, which is a strongly
nonlinear effect.

It is natural to associate appearance of freak waves with the modulation insta-
bility of Stoke’s waves. This instability is usually called after Benjamin and Feir;
however, it was first discovered by Lighthill (1965). The theory of instability was
developed independently by Benjamin and Feir (1967) and by Zakharov (1967).
Feir (1967) was the first who observed the instability experimentally in 1967.

Slowly modulated weakly nonlinear Stokes wave is described by nonlinear
Shrödinger equation (NLSE), derived by Zakharov (1968). This equation is inte-
grable (see Zakharov and Shabat 1972) and is just the first term in the hierarchy of
envelope equations describing packets of surface gravity waves. The second term in
this hierarchy was calculated by Dysthe (1979), the next one was found a few years
ago by Trulsen and Dysthe (1996). The Dysthe equation was solved numerically by
Ablovitz and his collaborates (see Ablovitz et al. 2000, 2001).

Since the first work of Smith (1976), many authors tried to explain the freak wave
formation in terms of NLSE and its generalizations, like Dysthe equation. A vast
scientific literature is devoted to this subject. The list presented below is long but
incomplete: Peregrine (1983); Peregrine et al. (1988), Tanaka (1990), Trulsen and
Dysthe (1996), Trulsen and Dysthe (1997), Trulsen (2000), Trulsen et al. (2000),
Ablovitz et al. (2000), Onorato et al. (2000, 2001, 2002).

One cannot deny some advantages achieved by the use of the envelope equa-
tions. Results of many authors agree to one important point: nonlinear development
of modulation instability leads to concentration of wave energy in a small spatial
region. On the one hand, this is a “hint” regarding possible formation of freak wave.
On the other hand, it is clear that the freak wave phenomenon cannot be explained
in terms of envelope equations. Indeed, NLSE and its generalizations are derived by



Freak Waves: Peculiarities of Numerical Simulations 3

expansion in series on powers of parameter λ � 1/Lk, where k is a wave number,
L is a length of modulation. For real freak wave λ ∼ 1 and any “slow modulation
expansion” fails. However, the analysis in the framework of the NLS-type equations
gives some valuable information about formation of freak waves.

Modulation instability leads to decomposition of initially homogeneous Stokes
wave into a system of envelope solitons (more accurately speaking, quasi-solitons
Zakharov and Kuznetsov (1998); Zakharov et al. (2004)). This state can be called
“solitonic turbulence,” or, more exactly “quasisolitonic turbulence.” In the frame-
work of pure NLSE, solitonic turbulence is “integrable.” Solitons are stable, and
they scatter on each other elastically. However, even in this simplest scenario, spa-
tial distribution of wave energy displays essential intermittency. More exact Dysthe
equation is not integrable. In this model solitons can merge, and this effect increases
spatial intermittency and leads to establishing of chaotic intense modulations of en-
ergy density. So far this model cannot explain formation of freak waves with λ ∼ 1.

This effect can be explained if the envelope solutions of a certain critical ampli-
tude are unstable and can collapse. In the framework of 1D focusing NLSE solitons
are stable; thus solitons instability and the collapse must have a certain threshold in
amplitude. Instability of a soliton of large amplitude and further collapse could be a
proper theoretical explanation of the freak wave origin.

This scenario was observed in numerical experiment on the heuristic one-
dimensional Maida-McLaughlin Tabak (MMT) model (see Majda et al. 1997) of
one-dimensional wave turbulence (Zakharov et al. (2004)). At a proper choice of
parameters this model mimics gravity waves on the surface of deep water. In the
experiments described in the cited paper, instability of a moderate amplitude mono-
chromatic wave leads first to creation of a chain of solitons, which merge due to
inelastic interaction into one soliton of a large amplitude. This soliton sucks energy
from neighbor waves, becomes unstable, and collapse up to λ ∼ 1, producing the
freak wave. We believe that this mechanism of freak wave formation is universal.

The most direct way to prove validity of the outlined above scenario for freak
wave formation is a direct numerical solution of Euler equation, describing poten-
tial oscillations of ideal fluid with a free surface in a gravitational field. This solution
can be made by the methods published in several well-known articles (Dommermuth
and Yue (1987); West et al. (1987); Clamond and Grue (2001)). Here we use another
method, based on conformal mapping. It should be mentioned that idea to exploit
conformal mapping for unsteady flows was presented in Ovsyannikov (1973) and
later in Meison et al. (1981), Chalikov and Sheinin (1998). Method used in this
article has origin in Dyachenko et al. (1996), has been using in Zakharov et al.
(2002), and was finally formulated in Dyachenko (2001). This method is applicable
in 1 + 1 geometry; it includes conformal mapping of fluid bounded by the surface
to the lower half-plane together with “optimal” choice of variables, which guaran-
tees well-posedness of the equations (Dyachenko 2005) and existence of smooth,
unique solution of the equations for a finite time (Shamin 2006). Here we would
like to stress that one of the main goal of this paper is to demonstrate effectiveness
of the conformal variables to simulate exact 2D potential flow with a free boundary.
Earlier, fully nonlinear numerical experiments regarding wave breaking, freak wave



4 V.E. Zakharov et al.

formation, comparison with weakly nonlinear model (such as Nonlinear Shrodinger
equation) were done in the papers Dold and Peregrine (1986), Tanaka (1990), Ban-
ner and Tian (1998), Henderson et al. (1999), Clamond and Grue (2002). On the
other hand, using conformal approach we have studied in the paper Zakharov et al.
(2002) the nonlinear stage of modulation instability for Stokes waves of steepness
µ = ka � 0.3 and µ = 0.1.

In the present article we perform similar experiment for waves of steepness µ �
0.15. This experiment could be considered as a simulation of a realistic situation. If
a typical steepness of the swell is 0.06÷0.07, in caustic area it could easily be 2–3
times more. In the new experiment, we start with the Stokes wave train, perturbed by
a long wave with 20 times less amplitude. We observe development of modulation
instability and finally the explosive formation of the freak wave that is pretty similar
to waves observed in natural experiments.

2 Basic Equations

Suppose that incompressible fluid covers the domain

−∞ < y < η(x, t). (1)

The flow is potential, hence

V = ∇φ , ∇V = 0, ∇2φ = 0. (2)

Let ψ = φ |y=η be the potential at the surface and H = T +U be the total energy.
The terms

T = −1
2

∫ ∞

−∞
ψφn dx, (3)

U =
g
2

∫ ∞

−∞
η2(x, t)dx (4)

are correspondingly kinetic and potential parts of the energy, g is a gravity acceler-
ation, and φn is a normal velocity at the surface. The variables ψ and η are canoni-
cally conjugated; in these variables Euler equation of hydrodynamics reads

∂η
∂ t

=
δH
δψ

,
∂ψ
∂ t

= −δH
δη

. (5)

One can perform the conformal transformation to map the domain that is filled
with fluid

−∞ < x < ∞, −∞ < y < η(x, t), z = x+ iy

in z-plane to the lower half-plane

−∞ < u < −∞, −∞ < v < 0, w = u+ iv
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in w-plane. Now, the shape of surface η(x, t) is presented by parametric equations

y = y(u, t), x = x(u, t),

where x(u, t) and y(u, t) are related through Hilbert transformation

y = Ĥ (x(u, t)−u) , x(u, t) = u− Ĥy(u, t). (6)

Here

Ĥ( f (u)) = PV
1
π

∫ ∞

−∞

f (u′)du′

u′ −u
.

Equations (5) minimize the action,

S =
∫

Ldt, (7)

L =
∫

ψ
∂η
∂ t

dx−H. (8)

Lagrangian L can be expressed as follows,

L =
∫ ∞

−∞
ψ(ytxu − xtyu)du+

1
2

∫ ∞

−∞
ψĤψu du− g

2

∫ ∞

−∞
y2xu du

+
∫ ∞

−∞
f
(
y− Ĥ(x−u)

)
du . (9)

Here f is the Lagrange multiplier, which imposes the relation (6). Minimization
of action in conformal variables leads to implicit equations (see Dyachenko et al.
(1996))

ytxu − xtyu = −Ĥψu

ψt yu −ψuyt +gyyu + Ĥ(ψt xu −ψuxt +gyxu) = 0. (10)

System (10) can be resolved with respect to the time derivatives. Omitting the de-
tails, we present only the final result

Zt = iUZu,

Φt = iUΦu −B+ ig(Z−u). (11)

Here
Φ = 2P̂ψ (12)

is a complex velocity potential, U is a complex transport velocity:

U = 2P̂
(−Ĥψu

|zu|2
)

(13)
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and

B = P̂
( |Φu|2

|zu|2
)

= P̂
(|Φz|2

)
. (14)

In (12), (13), and (14) P̂ is the projector operator generating a function that is ana-
lytical in a lower half-plane

P̂( f ) =
1
2
(
1+ iĤ

)
f .

In (11)
z(w) → w, Φ(w) → 0, at v →−∞.

All functions z, Φ , U , and B are analytic ones in the lower half-plane v < 0.
Recently, we found that (11) were derived in Ovsyannikov (1973), and we call

them here Ovsyannikov’s equations, OE. Implicit equations (10) were not known
until 1994, so we call them DKSZ-equations.

Note, (10) can be used to obtain the Lagrangian description of surface dynamics.
Indeed, from (10) one can get

Ψ = ∂−1Ĥ(ytxu − xtyu). (15)

Plugging (15) to (8) one can express Lagrangian L only in terms of surface eleva-
tion. This result was independently obtained by Balk (1996). In Dyachenko (2001)
(11) were transformed to a simple form, which is convenient both for numerical
simulation and analytical study. By introducing new variables

R =
1

Zw
, V = iΦz = i

Φw

Zw
(16)

one can transform system (11) into the following one:

Rt = i(URw −RUw),
Vt = i(UVw −RBw)+g(R−1). (17)

Now complex transport velocity U and B

U = P̂(V R̄+V̄ R),
B = P̂(VV̄ ). (18)

Thereafter, we call (17) and (18) Dyachenko equations, DE.
Both DKSZ-equations (10) and OE (11) have the same constants of motion

H = −
∫ ∞

−∞
Ψ ĤΨu du+

g
2

∫ ∞

−∞
y2xu dy, (19)

the same total mass of fluid
M =

∫ ∞

−∞
yxu du, (20)
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and the same horizontal momentum

Px =
∫ ∞

−∞
Ψyu du. (21)

The Dyachenko equations (17) and (18) have the same integrals. To express them in
terms of R and V , one has to perform the integration

Z = u+
∫ u

−∞

du
R

, Φ = −i
∫ u

−∞

V
R

du. (22)

3 Numerical Instability with Respect to Small Scale Perturbation

The problem of stability of the equations of motion of the fluid with a free sur-
face goes back to the famous work of Taylor (1950). He has found the relationship
between the growth rate of the interface instability, the wave-length of the perturba-
tion, and the gravity acceleration. Today we would say that Taylor instability is the
manifestation of the ill-posedness of the Cauchy problem for the case when gravity
acceleration is directed out of the fluid.

The problem of well-posedness of the Cauchy problem for the potential irrota-
tional flows with a free surface was studied in many papers. First time it was studied
by Nalimov in Nalimov (1974).

3.1 Instability of Φ-Z Equations

Let us consider (11) with (13) and (14). Stability of the large-scale solution with
respect to short-scale perturbation will be considered. Let this large-scale solution
have subscripts 0, namely, Φ0(w, t) and Z0(w, t). Obviously, perturbed solution is
the following:

Φ = Φ0 +δΦ , Z = Z0 +δZ. (23)

Characteristic wavenumber k of δΦ and δZ is much larger than characteristic
wavenumber k0 of Φ0 and Z0. Let us expand arguments of U and B in (13 and
14) up to the first order in δZ′ and δΦ ′:

iΦ ′

Z′Z̄′ + c.c. � iΦ ′
0

Z′
0Z̄′

0
+(Φ̄ ′

0 −Φ ′
0)

iδZ′

Z′2
0 Z̄′

0
+

iδΦ ′

Z̄′
0Z′

0
+ c.c.

Φ ′

Z′
Φ̄ ′

Z̄′ � Φ ′
0

Z′
0

Φ̄ ′
0

Z̄′
0
− Φ ′

0
Z′

0

Φ̄ ′
0

Z̄′
0

δZ′

Z′
0

+
Φ̄ ′

0
Z̄′

0

δΦ ′

Z′
0

+ c.c. (24)
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Now we can calculate U and B:

U � U0 +
i

Z′2
0 Z̄′

0

(
Φ̄ ′

0 −Φ ′
0
)

δZ′ +
iδΦ ′

Z̄′
0Z′

0
,

B � B0 − Φ ′
0

Z′
0

Φ̄ ′
0

Z̄′
0

δZ′

Z′
0

+
Φ̄ ′

0
Z̄′

0Z′
0

δΦ ′. (25)

When deriving (25) we have to calculate projector of (24). To do this we deal
with products like A0δZ′ and A0δ Z̄′. It is easy to see that due to the scale separation
of A0 and δZ the following relations are valid:

P̂(A0δZ′) � A0δZ′,

P̂(A0δ Z̄′) � 0. (26)

Now we are ready to write down the linearized equations for perturbations.

δZt = i
(

U0 − i
Z′

0Z̄′
0

(
Φ ′

0 − Φ̄ ′
0
))

δZ′ − δΦ ′

Z̄′
0

,

δΦt =
Φ ′2

0

Z′2
0 Z̄′

0
δZ′ + i

(
U0 +

i(Φ ′
0 + Φ̄ ′

0)
Z′

0Z̄′
0

)
δΦ ′ + igδZ. (27)

Now we treat all functions with subscript . . .0 in (27) as constants. This is so-
called “method of frozen coefficient,” which is widely used in analysis of numerical
schemes.

Let δZ and δΦ ∼ exp(iωt − iku). Then the following dispersion relation can be
derived:

ω = kVD ±
√

gk
1
Z̄′

0
. (28)

Here VD has a meaning of Doppler frequency shift and is equal to

VD =
Ψ ′

0
Z′

0Z̄′
0
− Ĥ

ĤΨ ′
0

Z′
0Z̄′

0
. (29)

So, from (28) immediately follows that for gravity waves ω has imaginary part,
which grows as a function of k:

γ =
1
2

√
gk

η ′
x√
X ′ .

It means that large scale solution is unstable with respect to the perturbation.
This instability takes place only in the numerics when dealing with Ovsyannikov

equations.
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3.2 Stability of R-V Equations

Doing similar analysis for R-V equations one can easily derive the following set of
equations for perturbations:

δRt = VDδR′ − i|R0|2δV ′ +b11δR+b12δV,

δVt = VDδV ′ +b21δR+b22δV, (30)

with

b11 = −i(U ′
0 +R0V̄ ′

0 −R′
0V̄0),

b12 = i(R̄0R′
0 −R0R̄′

0),

b21 = g+ i(V̄0V ′
0 −B′

0) = g+ g̃,

b22 = i(R̄0V ′
0 −R0V̄ ′

0). (31)

Coefficient b21 = g+ g̃ is pure real. Indeed,

g̃− ¯̃g = i(V̄0V ′
0 −B′

0 +V0V̄ ′
0 − B̄′

0),

= i
∂
∂u

(V0V̄0 −B0 − B̄0) = 0.

Applying “method of frozen coefficient” one can obtain the following dispersion
relation:

ω = kVD + iΩ ± 1
|Z′

0|
√

(g+ g̃)k−Ω 2. (32)

while

Ω =
i
2

(
V̄ ′

0
Z′

0
− V ′

0
Z̄′

0

)
,

g̃ = i(V̄0V ′
0 −B′

0).

Note, VD, Ω , and g̃ are pure real values.
Although ω in (32) has imaginary part, it doesn’t grow as a function of k (of

course, if g̃ does not exceed g). This property makes the system of equation (17)
numerically stable with respect to small scale perturbation.

4 Freak Waves as a Result of Modulation Instability

Here we study modulation instability of uniform wave train of Stokes wave numeri-
cally. For time integration the standard Runge–Kutta method of the fourth order was
used.
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Question of great interest is the nonlinear stage of the instability. Here and every-
where below we do simulation in periodic domain L = 2π and

g = 1.

Wavetrain of the amplitude a with wavenumber k0 is unstable with respect to large
scale modulation δk. Growth rate of the instability γ is

γ =
ω0

2

((
δk
k0

)2

(ak0)2 − 1
4

(
δk
k0

)4
) 1

2

. (33)

Here ω0 is the linear dispersion relation for gravity wave

ω0 =
√

gk0.

• The shape of Stokes progressive wave is given by

y =
c2

2g

(
1− 1

|Zu|2
)

,

while Φ is related to the surface as

Φ = −c(Z−u), V = ic(R−1).

The amplitude of the wave h/L is the parameter for initial condition. (For the
sharp peaked limiting wave h/L � 0.141).

• Put 100 such waves with small perturbation in the periodic domain of 2π .

In such a way we prepared initial wave train with the steepness µ � 0.095. Main
Fourier harmonic of this wave train is k = 100. Similar problem was studied in
Song and Banner (2002). But instead of long wavetrain they studied evolution of
small group of waves.

For perturbation small value for Fourier harmonic with kp = 1 was set. So, that

Rk = Runperturbed
k +0.05R100 exp−ikpu .

Surface profile of this initial condition is shown in Fig. 1.
Fourier spectrum of the initial condition is shown in Fig. 2.
After sufficient large time, which is more than 1,300 wave periods, one can ob-

serve freak wave formation, as it is shown in Fig. 3. Freak wave grows from mean
level of waves to its maximal value for several wave periods, than vanishes or breaks.

Detailed view at the freak wave at the moment of maximal amplitude is shown
in Fig. 4. This set of experiments is similar to that of Dold and Peregrine (1986),
Tanaka (1990). The difference is that we were able to increase the accuracy of the
simulation, and consider much longer wavetrains. Also (due to using conformal
mapping) we can simulate breaking with multivalued surface profile. Accuracy in
the simulation is very important because the freak wave appears in a very subtle
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Fig. 2 Fourier coefficients |Rk| for initial condition (µ � 0.095)

manner on the phase relations between Fourier harmonics of the surface. Moreover,
for shorter wavetrains, threshold of modulation instability increases and breaking
does not happen even for large steepness. In our experiments we have observed
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threshold of steepness for wave breaking a little less than in Tanaka (1990), but
above µ = 0.1. Still, surface profile from Tanaka (1990) (Fig. 5) is very similar to
the picture in Fig. 4 with µ = 0.095.

During numerical simulation of the final stage of freak wave formation, resolu-
tion must be increased to resolve high curvature of the surface profile. To do this we
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have been increasing number of Fourier harmonics, which reached 220 at the end
(T = 802.07). Fourier coefficients of Rk are shown in Fig. 5.

If amplitude of the wave train is large, then freak wave may eventually break.
Such a picture is presented in the Fig. 6, which corresponds to the other numerical
simulation with the initial steepness µ � 0.14.
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5 Exact Equations and Nonlinear Shrödinger Approximation

Evolution of weakly nonlinear Stokes wavetrain can be described by nonlinear
Shrödinger equation (NLSE), derived by Zakharov (1968). This equation is inte-
grable (see Zakharov and Shabat 1972) and is just the first term in the hierarchy of
envelope equations describing packets of surface gravity waves. The second term in
this hierarchy was calculated by Dysthe (1979), the next one was found a few years
ago by Trulsen and Dysthe (1996). The Dysthe equation was solved numerically by
Ablovitz and his collaborates (see Ablovitz et al. 2000).

Since the first work of Smith (1976), many authors tried to explain the freak
wave formation in terms of NLSE and its generalizations, like Dysthe equation. A
vast scientific literature is devoted to this subject. The list presented below is long
but incomplete: Ablovitz et al. (2000), Onorato et al. (2000, 2001, 2002), Peregrine
(1983); Peregrine et al. (1988), Trulsen and Dysthe (1996, 1997), Trulsen (2000),
Trulsen et al. (2000), Clamond and Grue (2002).

One cannot deny some advantages achieved by the use of the envelope equa-
tions. Results of many authors agree in one important point: nonlinear development
of modulation instability leads to concentration of wave energy in a small spatial
region. This is a “hint” regarding possible formation of freak wave. On the other
hand, it is clear that the freak wave phenomenon cannot be explained in terms of
envelope equations. Indeed, NLSE and its generalizations are derived by expansion
in series on powers of parameter λ � 1/Lk, where k is a wave number and L is a
length of modulation. For real freak wave λ ∼ 1 and any slow modulation expansion
fails. At this point interesting question rises: what happens to NLSE approximation
when increasing the steepness of the carrier wave? In particular, we study “exact”
soliton solutions for NLSE placed in the exact equations (17).

Such type of problem was considered in the Henderson et al. (1999), but with
low resolution, and small length of periodic carrier. Also in Clamond and Grue
(2002) numerical solutions for envelope equation was compared with “almost” exact
equations.

For (17) NLSE model can be derived for the envelope of R.

R = 1+R1 e−ik0u−ω0t + · · ·

iR1t +
1
8

ω0

k2
0

R1uu +
1
2

ω0k2
0|R1|2R1 = 0.

Initial conditions consist of “linear wave carrier” e−ik0u, modulated in accordance
with soliton solution for NLSE:

R(u) = 1+ s0
e−ik0u

cosh(λk0u)
,

V (u) = −ic0s0
e−ik0u

cosh(λk0u)
. (34)

Here s0 is the steepness of the carrier wavetrain, c0 is the phase velocity of the
carrier.
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First comparison of fully nonlinear model for water wave with NLSE was done
in Clamond and Grue (2002) for the wave carrier with the steepness µ � 0.091. For
such steepness there was a good agreement between two models, but only for the
short time. After finite time weakly nonlinear model (NLSE) ceases to be valid.

In our work we want to study the situation with larger and smaller steepness to
find out how NLSE approximation breaks.

5.1 Small Steepness

First experiment was intended to observe how NLSE works. In the initial conditions
(34) we used

s0 � 0.07, λ = 0.1, k0 = 100.

Initial surface of fluid is shown in Fig. 7.
After couple of thousands wave periods, soliton changes a little as it is seen in

Fig. 8. Also in the Figs. 9 and 10 Fourier spectra of the soliton at both moments of
time are presented.

So, one can see that for the steepness µ ≤ 0.07 NLSE model is quite reasonable.
Another numerical experiment showing effective simulation with (17) along with

applicability NLSE model for moderate steepness, µ � 0.085, is the collision of two
solitons.

In Fig. 11 initial condition is shown. Moment of collision is shown in the Fig. 12
and detailed view showing carrier wavetrain under the envelope is in the Fig. 13.
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Fig. 7 Initial surface profile like for NLSE soliton with µ � 0.07
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Fig. 8 Surface profile like for NLSE soliton with µ � 0.07 at T = 1,500

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0 500 1000 1500 2000 2500 3000 3500 4000 4500

|R
k|

k

Fig. 9 Fourier harmonics of the initial soliton with µ � 0.07

After second collision (recall that boundary conditions are periodic) solitons are
plotted in Fig. 14. Fourier spectra of these two solitons at the moments of time T =
0.05, 30.8, and 250.0 are shown in Figs. 15–17.
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Fig. 10 Fourier harmonics of the soliton with µ � 0.07 at T = 1,500
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Fig. 11 Initial surface profile of two NLSE solitons with µ � 0.085
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Fig. 12 Two NLSE solitons with µ � 0.085. collide at T = 30.8

−0.002

−0.0015

−0.001

−0.0005

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

−0.4 −0.2  0  0.2  0.4

Y
 (

X
)

X

Fig. 13 Detailed view of two colliding NLSE solitons with µ � 0.085 at T = 30.8
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Fig. 14 Two NLSE solitons with µ � 0.085 after two collisions at T = 250.0
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Fig. 16 Fourier spectrum of two colliding NLSE solitons with µ � 0.085 at T = 30.8
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Fig. 17 Fourier spectrum of two NLSE solitons with µ � 0.085 at T = 250.0
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5.2 Large Steepness

Now let us turn to the higher steepness of the carrier,

µ = 0.1.

In the Fig. 18 there is initial condition. Again, after couple of thousand wave periods,
soliton changes a little as it is seen in Fig. 19. In Figs. 20 and 21 Fourier spectra of
the soliton at both moments of time are presented.

From this pictures one can see that for steepness µ � 0.10 some corrections to the
NLSE model are desirable. Dysthe equations are exactly intended for that situation.

But what happens when further increasing the steepness? Below we consider the
case of the steepness of the carrier

µ = 0.14.

In the Fig. 22 there is initial condition. Very fast, after couple of dozen wave pe-
riods, soliton drastically changes as it is seen in Fig. 23. One can see freak wave
at the surface (in Fig. 24). In the Figs. 25 and 26 Fourier spectra of the soliton at
both moments of time are presented. They demonstrate the quality of the numerical
simulation. The tail of the spectrum in Fig. 26 shows that the resolution decreases
(aliasing errors “go up”); however, the simulation remains stable.
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Fig. 18 Initial surface profile like for NLSE soliton with µ � 0.10
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Fig. 19 Surface profile like for NLSE soliton with µ � 0.10 at T = 2,345
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Fig. 20 Fourier harmonics of the initial soliton with µ � 0.10

From the last case, with the steepness µ = 0.14, one can see that envelope ap-
proximation completely fails. Such event as one single crest (freak wave) can not be
described in terms of wave envelope.
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Fig. 21 Fourier harmonics of the soliton with µ � 0.10 at T = 2,345
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Fig. 23 Surface profile like for NLSE soliton with µ � 0.14 at T = 38.4
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Fig. 24 Zoomed surface profile near freak wave µ � 0.14 at T = 38.4
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6 Do Freak Waves Appear from Quasisolitonic Turbulence?

Let us summarize the results of our numerical experiments. Certainly, they repro-
duce the most apparent features of freak waves: single wave crests of very high am-
plitude, exceeding the significant wave height more than three times, appear from
“nowhere” and reach full height in a very short time, less than ten periods of sur-
rounding waves. The singular freak wave is proceeded by the area of diminished
wave amplitudes. Nevertheless, the central question about the physical mechanism
of freak waves origin is still open.

In our experiments, the freak wave appears as a result of development of modu-
lation instability, and it takes a long time for the onset of instability to create a freak
wave. Indeed, the level of perturbation in our last experiment is relatively high.
The 2–3 inverse growth-rate is enough to reach the state of full-developed instabil-
ity, when the initial Stokes wave is completely decomposed. Meanwhile, the freak
wave appears only after 15th inverse growth-rates of instability. What happens after
developing of instability but before formation of freak wave?

During this relatively long period of time, the state of fluid surface can be char-
acterized as quasisolitonic turbulence, which consists of randomly located quasi-
solitons of different amplitudes moving with different group velocities. Numerical
study of interaction of envelope soliton was done in Clamond and Grue (2002). Such
interaction leads to formation of wave with large amplitude. Here we can think in
terms of quasisolitonic turbulence. Such turbulence was studied in the recent work
of Zakharov et al. (2004) in a framework of so-called defocusing MMT model:

i
∂Ψ
∂ t

=
∣∣∣∣ ∂
∂x

∣∣∣∣
1/2

Ψ +
∣∣∣∣ ∂
∂x

∣∣∣∣
3/4

⎛
⎝
∣∣∣∣∣
∣∣∣∣ ∂
∂x

∣∣∣∣
3/4

Ψ

∣∣∣∣∣
2 ∣∣∣∣ ∂

∂x

∣∣∣∣
3/4

Ψ

⎞
⎠ . (35)

This is a heuristic model description of gravity surface waves in deep water. In
this model, quasi-solitons of small amplitude are stable, interact inelastically, and
can merge. Above some critical level quasi-solitons of large amplitude are unstable.
They collapse in finite time forming very short wave pulses, which can be consid-
ered as models of freak waves. Equation 35 has the exact solution:

Ψ = Aeikx−iωt

ω = k1/2
(

1+ k5/2 A2
)

. (36)

This solution can be constructed as a model of the Stokes wave and is unstable
with respect to modulation instability. Development of this instability was stud-
ied numerically. On the first stage, the unstable monochromatic wave decomposes
to a system of almost equal quasi-solitons. Then, the quasi-solitonic turbulence is
formed: quasi-solitons move chaotically, interact with each other, and merge. Fi-
nally they create one large quasi-soliton, which exceeds threshold of instability and
collapses, creating a freak wave.
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One can think that a similar scenario of freak wave formation is realized in a
real sea. We like to stress that the key point in this scenario is the quasi-solitonic
turbulence and not the Stokes wave. The Stokes wave is just a “generator” of this
turbulence. The quasisolitonic turbulence can appear as a result of instability of
narrow spectral distributions of gravity waves.

The formulated above concept is so far a hypothesis, which has to be confirmed
by future numerical experiments.
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