
Chapter 3
Cell Membrane: Structure and Physical
Properties

The cell membrane (or plasma membrane) is a thin closed sheet that fulfils a double
role: (a) morphological – delimitates the cell from its external microenvironment
and confines all of its subcellular organelles; (b) functional – regulates the exchange
of substance between internal and external media, maintains actively the ionic asym-
metry between its sides, and intermediates internalization or externalization of phys-
ical and chemical signals important for cell functions.

The plasma membrane undergoes continual changes both in its molecular com-
position and its structure (i.e., spatial distribution of its components), although dur-
ing the entire lifespan of the cell its global architecture remains the same. It plays an
important role in the economy of the cell, exerting a selective control on the entire
traffic of ions, water, and molecules.

The membrane is involved also in intake (endocytosis) and secretion (exocyto-
sis) of large particles. For example, macrophages, involved in the immune defence
system, are able to engulf and destroy microbes and other foreign particles, this
complex cellular process being called phagocytosis (see chapter 4). Being placed at
the exterior of a cell, the membrane is also the first target of physical, chemical, and
biological agents such as thermal and mechanical stress, toxins, hormones, viruses,
microbes, etc. The membrane of specialized cells, such as neurons, is involved in
propagation of nervous signals (see chapter 6) towards other neurons in the brain
or muscle and glandular cells. Finally, the plasma membrane participates actively
in the process of cellular recognition during the complex process of morphogene-
sis, when some types of differentiated (i.e., specialized) cells are segregated to form
different types of tissues.

3.1 Membrane Structure

The cell membrane has a very complex anisotropic composition and spatial struc-
ture. This allows it to perform a wide variety of general as well as specialized tasks.
Although some membrane characteristics may vary from cell to cell, certain general
properties are the same for every cell, as we shall see below.
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74 3 Cell Membrane: Structure and Physical Properties

3.1.1 Chemical Composition of the Plasma Membrane

The main building blocks of all membranes are: lipids, proteins, glycoproteins,
lipoproteins, water and ions.

Lipid molecules are the most abundant components in the membrane. Lipid is
a generic term which includes a broad class of molecules, the most representative
being phospholipids and cholesterol. The chemical and physical properties of phos-
pholipids have been discussed in some detail in chapter 1, in particular their am-
phiphilic character, which leads to their self-association into micelles and bilayer
membranes. The molecule of cholesterol is a special type of amphiphile with a
single hydrocarbon tail which induces some rigidity into a lipid bilayer and con-
sequently, into a membrane.

Proteins are among the most important components of the cell membrane. There
exists a large variety of membrane proteins (e.g., channels, carriers, ion pumps,
etc.). Membrane proteins, although present in a smaller numbers than lipids, repre-
sent approximately 50% of the whole membrane mass (due to their large molecular
mass). While membrane proteins could play an important role in the membrane 3D
structure, they are involved especially in the membrane specific functions, as we
shall see later. In fact, most of the membrane specific functions are associated with
certain membrane proteins.

Glycolipids are formed, as their names suggest, by combinations between simple
sugars and lipids (e.g., glucosylcerebroside, in which glucose is covalently attached
to the lipid sphyngosine). Cell membranes contain 2–10% lipids complexed with
different kinds of sugars.

Glycoproteins are formed by chemical interactions between membrane proteins
and sugars, the latter being exposed exclusively towards the extracellular side of
the membrane (such as in the case of glycophorin) forming the so-called membrane
glycocalix.

Lipoproteins are represented by proteins chemically attached to membrane
lipids, and can be found on both sides of a membrane.

Water is the solvent for all molecules in the living matter, as we have already
seen in previous chapters, and it comes to no surprise that cell membranes too incor-
porate water molecules, either bound to the polar groups exposed on the polar side
of the membrane molecules (also called “structured water”) or unbound (i.e., bulk
water) within pores and some ionic channels traversing the membranes from one
side to another.

Ions are associated with membranes, either through simple adsorption to the two
membrane surfaces or by simply transiting the membrane through ionic channels
(membrane proteins) or ion pumps (membrane proteins with enzymatic character;
see chapter 4). Some of the ions most often encountered in association with the
membrane structure and functions are: H+, Na+, K+, Cl−, Ca++, HCO−

3 .
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3.1.2 Spatial Architecture of the Plasma Membrane

Over the past 70 years numerous structural models of the membrane have been pro-
posed mostly based on interpretation of the complex physical properties that natural
membranes exhibit. The great majority of models included as a common character-
istic the existence of a lipid bilayer, which confers an intrinsic thermodynamic sta-
bility to the membrane. We shall skip over the intricate history of membrane model
evolution over time, and shall present only the currently accepted structural model,
which can explain many of the membrane properties and functions and is able to
accommodate new experimental findings. This model, called the fluid mosaic model
of membrane, was elaborated by Singer and Nicolson (1972).

According to the fluid mosaic model, the basic structural frame of the cell mem-
brane is provided by a lipid bilayer in which all kinds of proteins and other complex
molecules mentioned above are embedded (Fig. 3.1). According to this model, the
proteins embedded in the phospholipid bilayer confer to the membrane a mosaic-
like aspect, while the fluid character is provided by the ability of all membrane com-
ponents to diffuse laterally in the bilayer “plane” (the membrane can be considered
practically a 2D structure).

The main structural and physical features of the fluid mosaic model of the mem-
brane are listed below and should be considered in conjunction with Fig. 3.1.

1. The energetic stability of the membrane structure is mainly ensured by non-
covalent hydrophilic and hydrophobic interactions exerted between membrane
molecules, and between them and the aqueous medium, as has been discussed in
detail in chapter 1. Other types of interactions are also involved (e.g., electrosta-
tic, hydrogen bonds, and van der Waals interactions).

Fig. 3.1 Fluid mosaic model of the cell membrane. Significance of the symbols: LBL – lipid bi-
layer; LML – lipid monolayer; BSP – bilayer symmetry plane; LPH – lipid polar heads; LHT –
lipid hydrophobic tails; Pi, Pp, Pa – integral, peripheral and, respectively, anchored proteins;
LTD – lipid translational diffusion; PTD – protein translational diffusion; PRD – protein rotational
diffusion.
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2. The quasilinear lipid molecules are almost perpendicular to the membrane sur-
faces, so that their polar heads, involved in hydrophilic interactions, are facing
the external and internal aqueous phases, while their tails (i.e., hydrocarbon
chains) are buried inside the membrane, forming a quasiliquid hydrophobic core
of the membrane. Generally roughly speaking, a lipid monolayer (also called
leaflet) could be considered as a mirror image of the other one. (This is perfectly
true only in the case of a planar bilayer composed of a single lipid species).
The thickness of the plasma membrane bilayer varies from case to case be-
tween 4 and 6 nm (Berg et al., 2002). The thickness of the plasma membrane
has been first estimated by Fricke (1927) from the relatively high electrical
capacitance (0.81µF/cm2) of the plasma membrane as obtained from dielec-
tric measurements of suspensions of cells in the audio/radio-frequency range.
By assuming the permittivity of the hydrophobic layer relative to free space
(ε0 = 8.854× 10−12 F/m) to be about 3, Fricke obtained a value of 3.3 nm for
the thickness of the membrane, which is in good agreement with the currently
accepted values, as mentioned above. More on the results of this kind of studies
will be presented in sections 3.3 and 3.4.

3. The membrane components can diffuse laterally in the membrane plane, their
diffusion coefficients (see chapter 4) depending on particles sizes and on their
interactions with other particles. The translational diffusion in the membrane has
been evidenced even before the fluid mosaic model was proposed, in the case of
the so called hybrid “supercells” obtained by fusion of two different cell species
(Frye and Edidin, 1970). The lateral (i.e., translational) diffusion, can also be eas-
ily evidenced using the technique of fluorescence recovery after photobleaching
(FRAP) of fluorescently-labeled membrane proteins (Goodwin et al., 2005). The
membrane components can also randomly rotate around their axes perpendicular
to the membrane plane.

4. Lipid molecules can undergo flip-flop movements, in which they can jump from
one lipid monolayer to another. These movements are energetically unfavorable
and, for this transition to occur, lipids are assisted by an enzyme (flippase) with
consumption of an ATP molecule (Lodish et al., 2004). This movement may play
a role in controlling the composition in lipids of the two membrane layers.

5. Proteins associated to the membrane are of three types (Lodish et al., 2004):
integral proteins, Pi, which are inserted into the membrane, lipid-anchored pro-
teins, Pa, and peripheral proteins, Pp, which are weakly bound to the membrane
(Fig. 3.1).

Integral proteins can be either transmembranar, crossing the membrane from
one face to another (e.g., the channels, carriers and ionic pumps) or may be em-
bedded more or less into only one monolayer. There exist integral proteins that
cross the bilayer only once (e.g., glycophorin A) (Lodish et al., 2004; Berg et al.,
2002), or several times. For instance the K+ channel (see chapter 7) crosses the
bilayer two times, while the mammalian glucose transporter crosses the bilayer
twelve times (Fig. 3.2). In all these cases, the intramembrane strands are orga-
nized as α-helices, but there are also proteins (e.g., porins) that are organized only
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Fig. 3.2 Various kinds of spatial relations between integral proteins and the bilayer frame. Signif-
icance of the symbols: GPD – Glycophorin dimer; TKC – tetrameric potassium channel; MGT –
Mammalian glucose transporter.

as β-strands and are able to traverse many times the lipid bilayer, forming, in the
case of bacteria (e.g., Escherichia coli), membrane channels for disaccharides,
phosphates and other small molecules. The segments of the integral proteins em-
bedded in the membrane are composed especially of hydrophobic amino acids,
while their parts exposed out of the lipid bilayers are predominantly formed from
hydrophilic amino acids.

Peripheral proteins can be easily removed from the membrane. They are very
important in the economy of the cell, for ensuring the transmission of many spe-
cific signals, either from the exterior to the interior of the cell or conversely, via
the integral proteins.

6. There is always a non-uniform distribution of proteins and protein-complexes
among the two phospholipids monolayers, which leads to an asymmetry of the
membrane. For instance, glycoproteins are only associated with the outer mono-
layer, forming the so called cellular glycocalix, while in the particular case of
erythrocytes, a peripheral protein called spectrin is associated only to the inter-
nal face of the membrane. Moreover, integral proteins are always exposing on
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the two membrane surfaces different portions of their strands, thereby contribut-
ing to the structural asymmetry of the membrane. Unlike lipids, proteins do not
undergo flip-flop motion, the asymmetric protein distribution being permanently
maintained in the membrane.

7. Due to the thermal motions of lipids, some pores could appear transiently at
random positions in the lipid matrix of the double layer, permitting a direct com-
munication between the interior and exterior of the cell (Popescu et al., 2003;
Movileanu et al., 2006). Due to the hydrophilic and hydrophobic interactions,
these pores are rapidly resealed.

In conclusion, the cell membrane is a complex and dynamic structure which accom-
plishes essential functions in the cell, as we shall see later, in next chapters.

3.2 Surface Charges

3.2.1 Origin of the Surface Charges

When microscopic or macroscopic objects are immersed in an aqueous electrolyte
solution, their surfaces become electrical charged, except for the particular case of
the so-called isoelectric pH, when their net surface charge is zero. The electrical
charge is due to the adsorption of anions and cations onto the body surfaces. As we
have seen in chapter 1, both types of ions are hydrated, but the cations have a thicker
hydration shell. As a result of this, the cation charges are more screened than those
of anions and their interaction with the immersed surfaces is weaker. This leads
to a preferential adsorption of anions as compared with cations. Alternatively, one
can say that the anions present greater polarizabilities and, consequently, are better
adsorbed. This mechanism of electrical charging of the surface is called extrinsic
charging mechanism, being induced by the immersion medium.

Observation: If the solution pH is decreased, the surface charges are strongly modified,
on one hand, due to H+ electrostatic interaction with already adsorbed anions and, on the
other hand, due to direct H+ adsorption onto the surface. Thus, beyond the isoelectric pH
the surface charge changes its sign. It is important to note that H+ is more easily adsorbed
onto neutral sites of a membrane surface, being associated only with one water molecule
(i.e., forming the so called hydronium ion: H3O+).

In the case of biological membranes, besides the extrinsic charging mechanism,
an intrinsic charging mechanism is also acting, due to the electrical dissociation of
the chemical groups on the membrane surface. Thus, at neutral pH, which character-
izes the great majority of biological liquids, most of the dissociable chemical groups
generate mainly negative charges. For instance, the phospholipid head groups can
dissociate to generate –H2PO4

−, –HPO4
−2, –PO4

−3, while the sialic acid associ-
ated with integral proteins generates –COO− groups. It is also possible for some
amino groups to become positively charged (–NH3

+). However, in physiological
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solutions, the contribution of the positive groups is overwhelmed by that of the neg-
ative groups, so that the intrinsic mechanism too leads to a net negative surface
charge. This is supported by the experimental evidence that cells migrate towards
the anode when subjected to an external electrical field.

Observation: Although the net surface charge of biological surfaces is negative, there may
be patches on the cell surface that are positively charged. Therefore one can speak of a
mosaic of electrical charges on the cell membranes both concerning their nature and their
charge signs. These surface charges form a dynamic electrostatic landscape with an irregu-
lar pattern.

3.2.2 Electrical Double Layer

Electrical charges on the surface of biological particles exert an antientropic effect
(i.e., ∆Sa < 0) on the populations of ions located in the vicinity of the surface.
This leads to a tendency to organize the nearby charges spatially, the counter-ions
(i.e., ions with opposite charge to surface) being electrostatically attracted, and the
co-ions (i.e., ions with same sign as the surface) being repelled. As a consequence,
the surface charges lead to generation of an electrical double layer, which roughly
consists of a layer of charges pertaining to the surface, and a layer of counter-ions
at a small distance.

By contrast to the antientropic effect of the surface charges, thermal agitation of
the ions has an entropic effect (∆Se > 0), disrupting the organization of the surface
charges, affecting thus the structure of the double layer (compared to what it would
be, for instance, at very low temperatures).

Due to these two opposite tendencies, a “tradeoff structure” of the ion popu-
lations near the surface is attained, in which the organizing effect of the surface
charges prevails near the surface (i.e., ∆Sa + ∆Se < 0), while leading to an overall
increase in entropy in the bulk solution (∆Sb > 0). With this, the second law of
thermodynamics is obeyed, because ∆Sa +∆Se +∆Sb > 0.

The tradeoff electrical double layer has two components (Fig. 3.3): a compact
or Helmholtz double layer (CDL) (Glaser, 2001), whose counter-ion charges do
not completely neutralize the surface charges, and a diffuse double layer (DDL),
whose counter-ion charges neutralize the charges left uncompensated by the CDL.
Within DDL, the counter-ions concentration decreases with distance from the sur-
face, while the concentration of co-ions increases. The specific dependence of ion
concentrations on distance will be derived below.

3.2.3 Gouy-Chapman-Stern Theory of the Electrical Double Layer

Gouy (1910) and Chapman (1913) independently developed a diffuse double layer
model in which ions are free to move (Brett and Oliveira Brett, 1993). In 1924, Stern
combined the Helmholtz model for CDL, with the Gouy-Chapman model for DDL
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Fig. 3.3 Schematic represen-
tation of an electrical double
layer near a planar surface
of a solid particle (hatched).
CDL – Helmholtz compact
double layer; DDL – diffuse
double layer; δ – compact
layer thickness; dD – Debye
length, Ψ0 – surface potential;
Ψδ – Stern potential (see text
for the physical meaning of
the parameters).

(Atkins and de Paula, 2002). Later, in 1947, Grahame developed a more complex
model, considering also the specifically adsorbed ions onto the solid surface (Brett
and Oliveira Brett, 1993).

3.2.3.1 Problem Formulation and Simplifications

In the case of smooth surfaces, the geometry of the double layer is rather simple:
if the surface has a planar or curved shape the double layer will have a planar or
curved shape too. By contrast, most biological particles present irregular surfaces,
which lead to electrical double layers with very complicated geometrical shapes that
lead to very elaborated mathematical models. For this reason, and for many other
reasons that will become clearer as we proceed with the mathematical treatment of
the double layer, we will make the following simplifying assumptions:

(a) For spheroidal particles (such as cells), the radii of the hydrated ions are much
smaller then the local radius of curvature of the surface (i.e., a few Ångstroms
vs. >5µm); therefore, the ions are considered as point charges.

(b) The double layer is located near the cell surface.
(c) The surface charges are assumed to be distributed uniformly over the cell sur-

faces. The lipid bilayer fluidity has the tendency to lead to uniform distribution
of the electrical charges on the surface, while the cytoskeleton has the opposite
tendency.

(d) Partly due to approximation (a), the mathematical treatment can be applied to a
very small area of the particle surface, so that even for spherical particles a pla-
nar model will provide a good approximation. From an electrical point of view,
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this amounts to assuming that the electrical potential to the “left” (Fig. 3.3) of
the double layer and inside the spherical particle is constant. This assumption
greatly simplifies the mathematical treatment of the physical model.

In addition to the geometrical simplifications suggested above, we shall also make
some assumptions concerning the electrolyte composition (less drastic than the ones
above). The aqueous medium is electrically neutral, and is composed of p kinds of
ions (both, anions and cations) of electrovalence, zk (k = 1, 2, . . . , p), having very
low concentrations (so that the solution could be considered dilute). An infinitesimal
volume, dV, centered on a point, P, located inside the double layer has a partial net
charge, dqk = zke dNk, where dNk is the number of ions of species k contained in
dV. We can now express the partial electrical charge density, ρk, of the element of
volume dV as:

ρk(P) =
dqk

dV
= nk(P)zke, (3.1)

where nk = dNk
/

dV represents the numeric concentration of the ionic species k
(i.e., the number of ions of the unit volume). The total charge density, ρ(P), at a
point, P, is given by the sum of each ion contribution:

ρ(P) =
p

∑
k=1

nk(P)zke. (3.2a)

Since, according to the approximations above, the double layer may be considered
planar, the charge density at any point contained in a plane parallel to the particle
surface and situated at the distance, x, from the surface will be always the same.
This means that the mathematical description of the double layer can be reduced to
a single spatial dimension, x. Thus the total charge density, at a distance, x, is given
by the sum of over all ion contributions:

ρ(x) =
p

∑
k=1

nk(x)zke. (3.2b)

3.2.3.2 Poisson-Boltzmann Equation and the Electrical Potential

Having defined the volume charge density, we can now relate the electrical potential,
Ψ , at any point in the double layer, to the charge density, according to the Poisson
equation:

∆Ψ(x) = −ρ(x)/ε, (3.3)

where ∆ (= ∇2) is the second order differential Laplacean operator, and ε is the
permittivity of the medium.

Observation: The permittivity varies with the distance from the double layer. However, the
exact form of its variation is usually unknown, so one has to make certain approximations,
as we shall see below.
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By combining equations (3.2b) and (3.3) and writing explicitly the one-
dimensional character of our problem, we obtain:

d2Ψ(x)
dx2 = − e

ε

p

∑
k=1

nk(x)zk. (3.4)

In order to solve the Poisson equation, we need to know how nk varies with distance.
In the Gouy-Chapman theory, it is assumed that the energetic states of each ion, k,
are described by a Boltzmann distribution, given the thermal equilibrium that is
normally attained by the ion populations. Therefore, one can write:

nk(x) = nk(∞)exp
[
− zkeΨ(x)

kBT

]
(3.5)

where nk(∞) represents the concentration of k ionic species in the bulk solution
(i.e., at x → ∞) and kB is the Boltzmann constant.

Combining equations (3.4) and (3.5), one obtains the so-called Poisson-
Boltzmann equation of the planar double layer:

d2Ψ(x)
dx2 = − e

ε

p

∑
k=1

zknk(∞)exp
[
− zkeΨ(x)

kBT

]
, (3.6)

which is a nonlinear differential equation that could be only numerically solved.
However, by making further approximations, equation (3.6) can be analytically

solved. Indeed, if we assume that the electrical potential at the particle surface,
Ψ(0) = Ψ0, is less than about 25 mV, the exponent in equation (3.6) is smaller than
0.01. Therefore, we can expand (3.6) in Taylor series around x = 0 and retain only
the first order term, to obtain:

d2Ψ(x)
dx2

∼= − e
ε

p

∑
k=1

zknk(∞)
[

1− zkeΨ(x)
kBT

]
. (3.7)

In this expression, the first part of the sum is
p
∑

k=1
ezknk(∞) = ρ(∞) = 0, because of

the neutrality of the solution. With this, equation (3.7) further simplifies to:

d2Ψ(x)
dx2

∼= κ2 Ψ(x), (3.8)

where we have introduced the customary notation:

κ =

[
e2

εkBT

p

∑
k=1

z2
knk(∞)

] 1
2

. (3.9)

Here, κ represents the Debye-Hückel parameter, which depends on the physical
properties of the electrolyte, and is independent of the nature of the particle surface.
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For the moment, we shall limit ourselves to stating that the Debye-Hückel parame-
ter depends on the square root of the ionic strength, I, of the electrolyte solution,
given by:

I =
1
2

p

∑
k=1

z2
kck(∞) =

1
2NA

p

∑
k=1

z2
knk(∞), (3.10)

where ck(∞) is the molar concentration of the k species, that is, ck(∞) = nk(∞)/NA
(NA being Avogadro’s number).

Observation: The ionic strength, I, depends on the second power of the electrovalences, zk.
Therefore two solutions with same concentration can present quite different ionic strengths
and thus can have quite different influences on the surface charge screening. Indeed, if a
solution contains, e.g., Al3+ and another contains Na+, the contribution of the trivalent ions
to the sum (3.10) will be nine times greater than that of monovalent sodium ions.

By using equation (3.10), equation (3.9) becomes:

κ =
[

2e2NA

εkBT
I
] 1

2

=
[

2F2

εRT
I
] 1

2

, (3.11)

where the following relations have been used: eNA = F (Faraday’s number) and
kB = R/NA.

For x ranging over the interval (0, δ ), there are no electrical charges, and the
Poisson-Boltzmann equation (3.8) reduces itself to the Laplace equation, which can
be solved by successive integrations to give:

Ψ(x) = ax+b, (3.12)

where a and b are two constants that can be determined from the boundary condi-
tions at x → 0 (which gives b = Ψ0) and x → δ

(
giving a = (Ψδ −Ψ0)

/
δ
)
. Thus,

Ψ(0 < x < δ ) =
Ψδ −Ψ0

δ
x+Ψ0, (3.13)

and therefore in the Stern space, 0 < x < δ , the absolute value of electrical potential
decreases linearly with the distance from the charged surface.

The general solution of equation (3.8) for x ∈ [δ ,∞) is:

Ψ(x) = Aexp(−κx)+Bexp(+κx). (3.14)

By imposing the following boundary conditions Ψ(x → δ ) = Ψδ (Stern potential)
and Ψ(x → ∞) = 0 (that is, far enough from the surface, the potential vanishes, due
to electroneutrality of the medium), it results B = 0, so that the particular solution
of the equation (3.14), having a physical meaning, is of the form:

Ψ(x ≥ δ ) = Ψδ exp [−κ(x−δ )] . (3.15)

Therefore, the absolute value of the electrical potential decreases exponentially with
the distance for x ≥ δ . This means that the electrical potential generated by the
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surface charges is screened by the counter ionic atmosphere. Moreover, this screen-
ing depends on the ionic strength, which is included in κ (Debye-Hückel parameter)
through equation (3.11), the solutions with a greater ionic strength being more ef-
fective in charge screening.

At this point, we can discuss the physical meaning of the Debye-Hückel parame-
ter. By convention, because the DDL has no precise boundaries, the “thickness” of
the DDL is defined as the distance, dD, at which the electrical potential decreases
by e (e being the base of the natural logarithm, or the Euler number) as compared
to Ψδ , namely

Ψ(dD) = Ψδ e−κ(dD−δ ) = Ψδ /e. (3.16)

Thus, 1/κ = dD − δ ≈ dD(δ � dD), that is, the reciprocal of Debye-Hückel para-
meter is equal with the thickness of the diffuse double layer (Figs. 3.3 and 3.5) and
called Debye length.

The Debye length is a measure of how far the effect of surface charges may be
felt into the bulk of the solution. It depends on the ionic strength of the solution.
Thus, in Ringer solution (a solution of salts in water that prolongs the survival time
of excised tissue), the Debye length is 7.8 Å (Hille, 2001), while in physiological
saline (i.e., 0.145 M NaCl) it is 8 Å.

Therefore the effect of surface charges on the ions in physiological solutions ex-
tends into the double layer over distances much shorter than the size of the macro-
molecules (Hille, 2001).

Observation: In the case of the natural plasma membrane, the Stern layer (Fig. 3.3) is
also populated with ions entering into or exiting from the membrane (due to membrane
permeability to ions), and relation (3.16) does not hold any more.

Quiz 1. Plot the Debye length as a function of concentration for solutions of NaCl hav-
ing the following concentrations: (a) 1µM; (b) 10 µM; (c) 100 µM; (d) 1 mM; (e) 10 mM;
(f) 100 mM.

3.2.3.3 Measuring the Electrochemical Potential Through Electromigration

Particles migrating through an aqueous milieu carry along an ionic shell of thick-
ness a. The sum of the particle radius and the shell thickness is referred to as the
electrokinetic radius, rek. The surface of separation, at x = a, between the moving
and non moving part of the charge cloud is called the “slipping plane” or shear plane
(Fig. 3.4).

Depending on their surface charges, biological particles (cells, organelles,
viruses, etc.) suspended in physiological solutions can migrate in an electrical
field, E, with different mobilities, u, defined as:

u = v/E (3.17)

where v is the relative velocity of the particle driven by the electrical field. This phe-
nomenon of migration of electrically charged particles in an electrical field is called
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Fig. 3.4 Geometrical and electrokinetic radii of an electrically charged particle. The potential mea-
sured in the slipping plane is called the zeta potential (ζ ), and can be determined experimentally
from measurements of electrokinetic mobility, i.e., from electrophoresis (see text below); r0 is the
particle radius; rek is the effective radius of the particle including part of the counterion cloud.

electrophoresis and has practical applications in biophysics and colloidal chemistry,
as we will discuss briefly below.

Figure 3.5 shows an example of variation of electrical potential with distance
from the charged surface, as predicted by a combination of equations (3.13) and
(3.15). Generally, one can find the following relation among the three defined
potentials:

|ζ | < |Ψδ | < |Ψ0| . (3.18)

The electrical potential, at the distance x = δ (i.e., at the slipping plane) is called
electrokinetic potential or zeta potential, Ψ(δ ) = ζ , while the other potentials have
been defined in the discussion above. The zeta potential is the only potential related
to the electrical double layer that can be measured directly (by electrophoresis), and
as such, it provides an indication of the order of magnitude of the other potentials.

In the case of spherical particles of geometrical radius, r0, the most general theory
giving mathematical relation between ζ and u (electrophoretic mobility), is due to
Henry.

According to the Henry theory (Hunter, 1987), the relation is:

uHR =
2
3

εζ
η

f (κr0) (3.19)

where ε represents the dielectric constant of the solution, η is its dynamical viscos-
ity coefficient, and f (κr0) is the empirical Henry function, taking values over the
range [1, 3/2], for ζ < 25mV.
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Fig. 3.5 Dependence of electrical potential in the double layer on the distance x from the surface
for positive (top panel) and negative (bottom) charge density of the compact double layer. Signifi-
cance of the symbols: CDL – compact double layer; DDL – diffuse double layer; SP – Stern plane;
SS – slipping plane; Ψ0 – surface electrical potential; Ψδ – Stern electrical potential; LP, EP – linear
and respectively, exponential portion of the potential’s spatial dependence.

For the largest biological particles suspended in relatively dilute electrolyte
(i.e., cells), κr0 > 100. In this situation, f (κr0) = 3/2, and (3.19) reduces to the
simpler Helmhlotz-Smoluchowski formula:

uHS =
εζ
η

. (3.20)

In the opposite case when smaller biological particles are taken into account
(e.g., viruses), κr0 < 0.1, and f (κr0) = 1, and (3.19) reduces to the Hückel formula:

uHK =
2
3

εζ
η

. (3.21)

For the intermediate cases, 0.1 < κr0 < 100, one must employ the more general
Henry formula.

Observation: The electrical double layer around biological particles is also involved in the
electrostatic interaction between cells suspended in a physiological solution.
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Practically, the mobility of single cells subjected to external electrical fields
can be determined under an optical microscope; the technique is called micro-
electrophoresis and can be used for determination of the zeta potential.

Electromigration of ultra-small biological particles is used widely in biologi-
cal and biochemical laboratories for separation and identification of fluorescently
stained macromolecules or fragments of macromolecules, such as for DNA frag-
ment identification in gel-electrophoresis.

3.2.3.4 Surface Charge Density and the Electrical Capacitance
of the Double Layer

In this section, we will derive a simple relationship between a specific electrical
capacitance of the electrical double layer and the Debye length, thereby providing
a means for determining the later. We begin by writing the surface charge density
of the diffuse layer as the line integral of the total volume charge of the counter ion
layer, namely:

σDDL = ∑
k

∫ ∞

δ
zkenk (x)dx =

∫ ∞

δ
ρ(x)dx. (3.22)

The integral can be also obtained by integrating the Poisson equation (3.3). Thus:

σDDL = −εDDL

∫ ∞

δ

d2Ψ
dx2 dx = −εDDL

dΨ
dx

∣∣∣∣
∞

δ
= −εDDL

(
0− dΨ

dx

∣∣∣∣
δ

)
. (3.23)

From (3.15),
dΨ
dx

= −κΨδ exp [−κ (x−δ )], and therefore:

σDDL = −εDDLκΨδ . (3.24)

Similarly, for the singularity at x = 0 (i.e., the fixed surface charge), we obtain:

σCDL = −εCDL
Ψδ −Ψ0

δ
, (3.25)

where we have used the approximation (d) in section 3.2.3.1, to set the potential
at x = 0 equal to a constant, Ψ0. This approximation is also valid for a planar lipid
bilayer with symmetrical electrical double layers.

Since σDDL = −σCDL (due to electroneutrality of the system), we get:

Ψδ = Ψ0
εCDL

εCDL + εDDLκδ
=

Ψ0

1+
εDDL
εCDL

κδ
. (3.26)

For small concentrations (c → 0, i.e., weak electrolytes) or, equivalently, κδ � 1,
equation (3.26) gives Ψδ ≈Ψ0. The charges on the Stern layer are compensated only
at large distances from the surface. On the other hand, if the concentration is large
(i.e., strong electrolytes), we have κδ � 1, and equation (3.26) gives|Ψδ | � |Ψ0|. In
this case, the Stern layer almost completely neutralizes the adsorbed charges.
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By using equations (3.24) and (3.26), we can now determine the specific electri-
cal capacitance (i.e., capacitance divided by the surface area) of the electrical double
layer, simply as the ratio between the surface charge density and the potential dif-
ference detected between an electrode placed at x = 0 and another one for x → ∞,
namely:

CDL =
σDDL

Ψ (∞)︸ ︷︷ ︸
0

−Ψ0
=

−εDDLκΨδ
−Ψ0

=
εDDLκ

1+ εDDL
εCDL

κδ
. (3.27)

As we mentioned in the preceding sections of this chapter, in general, the permit-
tivity varies with the distance from the particle surface and into the bulk of the
electrolyte in a manner unspecified. We will take this variation into account by dis-
tinguishing between the three main layers, namely εCDL < εDDL < εwater.

For small concentrations, c→ 0 and CDL → εDDLκ . If we consider, for example, a
10 mM KCl solution, and εDDL ≈ 30ε0, we obtain a capacitance of the double layer
CDL ≈ 100µF/cm2. Conversely, this capacitance can be determined from electri-
cal measurements on lipid bilayers, and the Debye length can thus be determined
experimentally. We will discuss methods for measuring electrical capacitances of
membranes in the next sub-section.

3.3 Static Electrical Properties of Planar Membranes

As it was mentioned in section 3.1, the thickness of the plasma membrane has
been determined indirectly from measurements of permittivity and conductivity of
cell suspensions subjected to alternating fields in the audio/radiofrequency range
(Fricke, 1927). This method, generically known as dielectric or impedance spec-
troscopy, has since been applied to the study of electrical properties of artificial as
well as natural membrane bilayers. By selecting the range of frequencies of the ap-
plied field, one can obtain information about different layers of the cell membrane
as well as of other membranes internal to the cell. In this section, we will introduce
the reader to the principles of the dielectric spectroscopy method and will discuss
its application to the determination of the dielectric properties of the main layers
(electrical double layer, the polar head region, and the hydrophobic core) of artifi-
cial lipid bilayers, as well as of the plasma membrane of the cell. The main goal will
be to illustrate that, in spite of the difficulties one faces in trying to directly observe
the plasma membrane, there are very good reasons to believe that the membrane
model introduced in section 3.1, which considers that the membrane consists of a
lipid-bilayer matrix, is correct.

3.3.1 Electrical Parameters as Complex Quantities

Throughout section 3.3, we will employ the concepts of complex permittivity and
complex conductivity, which will be defined momentarily.
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To begin with, let us define an “alternating” electric field, E(t), as

E(t) = E0e jωt (3.28)

where E0 is the constant part (amplitude) of the field, ω(= 2π f with f being the
frequency) is the angular frequency of the field and j =

√−1.
The general expression for an electrical current density [J = I/(Sur f acearea)] is

given by the Ohm law for variable fields,

J(t) = σE(t)+
∂D(t)

∂ t
(3.29)

where D is electrical displacement (= ε E with ε the permittivity).
The above equation suggests that the conductivity, σ , is related to instantaneous

motion of charges (either translation of rotation), while the permittivity, ε , is related
to a delay in the particle response to the applied field.

For a constant permittivity, equations (3.28) and (3.29) give:

J = (σ + jωε)E
de f
= σ∗E (3.30)

where we have introduced the notation, σ∗, which represents the complex conduc-
tivity. It is also possible to introduce a quantity called complex permittivity, defined
by the following relations:

ε∗
de f
=

σ∗

jω
= ε − j

σ
ω

de f
= ε − jε ′. (3.31)

Both σ∗ and ε∗ are very useful in the theory of dielectrics, because they offer a
synthetic way of dealing with the true permittivity and conductivity at the same time.

Materials characterized both by permittivity and conductivity (i.e., present both
free and bound charges) are generically referred to as dielectrics.

Let us assume that such a dielectric material is placed between the plates of a
parallel-plate capacitor and subjected to a voltage U. A quantity, called admittance,
Y, will be measured, which relates to the complex conductivity through:

Y
de f
=

I
U

=
JS
Ed

= σ∗ S
d

, (3.32)

where S is the surface area of each of the two identical plates, and d is the separa-
tion between them. Y is a complex number and can be rewritten, by taking equa-
tion (3.30) into account, as:

Y = σ
S
d

+ jωε
S
d

= G+ jωC, (3.33)

where G represents the conductance and C the capacitance of the dielectric material.
Equation (3.33) corresponds to a parallel combination of a conductance, G, with a
capacitance, C. One can also define the inverse of the admittance or the impedance:
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Z
de f
=

1
Y

=
1

G+ jωC
. (3.34)

Observation: If a system consists of a series combination of two admittances Y1 and Y2, the
equivalent admittance is:

1
Y

=
U1 +U2

I
=

1
Y1

+
1
Y2

, or Z = Z1 +Z2 (3.35)

where U1 and U2 are two potential differences applied to each circuit of admittance Y1 and
Y2, respectively. If C1 = 0 and G2 = 0, equation (3.34) gives:

Z =
1

G1
+

1
jωC2

= R1 +
1

jωC2
(3.36)

which upon a re-notation gives the definition of the impedance for a series combination of
a resistor and a capacitor,

Z = R+
1

jωC
. (3.37)

3.3.2 Dielectric Relaxation of a Dielectric Multi-Layer

3.3.2.1 Interfacial Maxwell-Wagner Polarization

Let us consider a system formed of two stacked dielectric layers “sandwiched” be-
tween the plates of a parallel-plate capacitor. Each of the two layers (Fig. 3.6) can
be represented by a parallel combination of capacitance and conductance (i.e., com-
plex permittivity multiplied by a geometrical factor – see equation (3.33), for the
case of a parallel-plate capacitor).

The measured admittance of the circuit is:

Y =
[
1
/
(G1 + jωC1)+1

/
(G2 + jωC2)

]−1
. (3.38)

Rearranging the right-hand side of this equation, one obtains (Hanai, 1960):

C∗ = Ch +
Cl −Ch

1+ jωτ
− j

Gl

ω
, (3.39)

where the following convenient notations have been introduced:

Ch =
C1C2

C1 +C2
,

Cl =
C1G2

2 +C2G2
1

(G1 +G2)
2 ,

τ =
C1 +C2

G1 +G2
,
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Fig. 3.6 Two stacked dielectrics placed between the plates of a parallel-plate capacitor (a), each
being characterized by an electrical capacitance Ci and a conductance Gi (i = 1, 2) (b), present an
equivalent capacitance C and conductance G (c), which are both frequency dependent, as described
in the text.

(a parameter that has dimension of time), and

Gh =
G1G2

G1 +G2
.

Further, if we divide the whole relationship (3.39) by the geometrical factor, S/d, to
return to complex permittivity, we get the Debye dispersion function (Debye, 1945;
Takashima, 1989),

ε∗ = εh +
εl − εh

1+ jωτ
− j

σl

ω
, (3.40)

where τ is the relaxation time, εl and σl are the limiting permittivity and conduc-
tivity at low frequencies (i.e., for ω → 0), εh and σh the limiting permittivity and
conductivity at high frequencies (i.e., for ω → ∞) and εl − εh = δε is called the
dielectric increment.

Observation: A conductivity increment, σl −σh = δσ , can also be defined, but it is rarely
used in practice.

By defining τ in terms of a characteristic frequency, fc (= 1/2πτ), and using the
frequency f instead of the angular frequency ω , we can re-write equation (3.40) as:

ε∗ = εh +
εl − εh

1+ j f
/

fc
− j

σl

2π f
. (3.41)

Finally, by using the Kramers-Krönig relationship between δε and δσ , which for
the Debye case takes the simple form (Hanai, 1960; Takashima, 1989) δε = τ ·δσ ,
we obtain
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ε = εh +
εl − εh

1+
(

f
/

fc
)2 , (3.42)

for the real part of the equation (3.41), and

σ = σl +
σh −σl

1+
(

f
/

fc
)2 ·

(
f
/

fc
)2

, (3.43)

for the imaginary part. These two quantities represent the equivalent permittivity
and the equivalent conductivity, respectively, of the stack of two dielectric layers,
and both depend on the frequency of the applied field as shown in Fig. 3.7. This
frequency dependence is called dielectric dispersion.

Interestingly, a system formed by two dielectric layers stacked together behaves
similarly to a pure system of permanent dipoles placed in an alternating electrical
field, for which Debye equation has actually been derived initially. The role of elec-
trical dipoles is played in this case by the accumulation of electrical charges at the
interface between the two dielectric layers; the frequency dependence arises from
the fact that the magnitude of the charge falls off with the increase in the frequency
of the applied field. The mechanism of dielectric dispersion is known in the literature
on dielectric spectroscopy as Maxwell-Wagner interfacial polarization or simply as
interfacial polarization.

More insight can be gained into the relevance of this phenomenon to the study
of biological systems by considering the case of dielectric particles suspended in
electrolytic solutions. A mathematical treatment will be presented in section 3.3.3.
Next, we focus our attention on the application of a model for stacked dielectric
layers to probing the molecular organization of bilayer lipid membranes.

Fig. 3.7 Real [equation (3.42)] and imaginary [equation (3.4)] parts of the Debye dispersion func-
tion [equation (3.41)] and their parameterization.
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3.3.2.2 The Dielectric Structure of Synthetic Lipid Bilayers
and Plasma Membranes

It is possible to create experimentally bilayer lipid membranes that fill a small orifice
in a slab of solid material immersed in an electrolyte, and to study the properties of
the bilayer. Even before the fluid mosaic model of the membrane has been proposed
(Singer and Nicolson, 1972), several researchers have used this method to study the
dielectric behaviour of lipid bilayers as a function of the frequency of an alternating
field applied between two electrodes each located on one side of the membrane (see,
e.g., Ashcroft et al., 1981; White, 1973).

We will show here that, by using the lipid bilayer as a model for natural mem-
branes and by regarding it as a dielectric multilayer, it is possible to validate the
structural aspect of the Singer-Nicolson model by comparing its predicted disper-
sion curves to the experimental data. In doing so, we take into account not only the
layered structure of the bilayer itself, but also an electrical double layer capacitance
for each side of the lipid bilayer, as given by equation (3.27). This membrane model
and its equivalent electrical circuit is shown in Fig. 3.8. By using this dielectric
model, one can derive a formula for the real part of the admittance of the membrane
(i.e., for equivalent conductance, G) and one for the imaginary part of the admit-
tance divided by the frequency (which provides the equivalent capacitance, C), in
terms of the specific electrical properties of each dielectric layer.

Fig. 3.8 Structural model of a bilayer lipid membrane placed in an electrolytic solution and its
equivalent electrical circuit. Note that each lipid monolayer contributes an identical group of capac-
itance and conductance. CP, CA and CH represent the capacitances, and GP, GA and GH represent
the conductances of the membrane layers.
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Ashcroft and co-authors (1981) have performed measurements of capacitance
and conductance of lipid bilayers (made from egg phosphatidyl-choline dissolved
in n-tetradecane or n-decane solvents) in aqueous electrolyte solutions of KCl with
various concentrations ranging from 1 to 1,000 mM. The results of their measure-
ment of the electrical capacitance for the case of phosphatidyl-choline/tetradecane
bilayer in 1 mM KCl solution are shown in Fig. 3.9, together with the curve pre-
dicted by the model from Fig. 3.8.

Quiz 2. Derive expressions for the equivalent conductance and capacitance of the model
membrane presented in Fig. 3.8. Use equation (3.33) to express the admittance of each
dielectric layer in terms of its specific conductance and capacitance.

To test the dielectric model of the lipid membrane, Ashcroft et al. have adjusted
the C and G values corresponding to each dielectric layer until the simulated capa-
citance curve (represented by lines in Fig. 3.9) accurately fitted the data (represented
by filled circles or triangles). These best-fit values have then been taken as the ac-
tual electrical properties of each particular layer. (Conductance dispersion curve and
conductances for each layer have also been obtained by Ashcroft et al., but these are
not very relevant to our discussion here.)

The specific capacitances of each dielectric layer for the membrane for bilayers
immersed in 10 mM KCl solution were: 43µF/cm2 for the polar head layer (which
includes the electrical double layer), 45µF/cm2 for the acetyl region layer, and
0.54µF/cm2 for the hydrophobic layer. (Note that these values include a factor of
two that comes from the double layered structure of the membrane). Of these three
values, most important for our discussion here are the first value, which compares
well to what is expected (∼100µF/cm2) from electrical double layer considerations

Fig. 3.9 Specific electrical capacitance of a model lipid bilayer in 1 mM aqueous KCl solution as
a function of frequency of an applied electrical field. Points, experimental data; lines, simulations
by using the model in Fig. 3.8. The filled circles and the solid line represent the data for the bi-
layer alone, while the dashed line and the triangles include uncorrected contribution from the bulk
electrolyte. Note that there are two interfaces for each lipid monolayer, viz., one between the po-
lar head layer and electrolyte and one between the hydrophobic layer and the acetyl layer, each
of which contributes one dispersion (for a total of two sub-dispersions) represented by “P-A” and
“A-H,” respectively. (Figure adapted from Ashcroft et al., 1981).



3.3 Static Electrical Properties of Planar Membranes 95

(see section 3.2), and the one obtained for the hydrophobic layer. The latter, can be
used to estimate the thickness of the hydrophobic layer (by using a value of 2.1 for
the relative dielectric constant of that layer), which turns out to have a thickness of
3.5 nm. This value is very close to the one obtained by Fricke for the plasma mem-
brane (mentioned in section 3.1.) from measurements in the radiofrequency range
(Fricke, 1927) of plasma membrane, and for very good reasons.

To be meticulous, however, we should remark that slightly larger values
(0.73µF/cm2) have been obtained for the specific capacitance of the hydrophobic
layer (Benz and Janko, 1976) in the case of bilayers that contained no dissolved sol-
vent (alcohol) in their hydrophobic core (so-called black lipid bilayers). In this case,
the membrane thickness is slightly smaller, since only the lipid tails are occupying
now the hydrophobic layer volume.

3.3.3 Dielectric Properties of Random Suspensions of Particles
with Particular Relevance to Biological Cells

Specific capacitance of the plasma membrane can be measured for instance by using
micropipette techniques, in which portions of the membrane are attached to the
tip of a micropipette and subjected to an applied electrical field (see, e.g., Asami
and Takashima, 1994). However, to determine the dielectric properties of biological
cells in a completely noninvasive manner, one typically performs measurements on
suspensions.

Dielectric properties of systems of microscopic particles depend on a number of
physical as well as geometrical factors:

1. Electrical properties of the particles and the suspending medium (see below)
2. The particles concentration (see below)
3. The particle shape (Takashima, 1989)
4. Whether or not the particle has a peculiar structure (i.e., it is itself heterogeneous,

see below)
5. Whether the particles are individually dispersed to form random suspensions

(Raicu et al., 1996, 1998a) or more orderly aggregates (Raicu et al., 1998b, 2001)

In this regard, one distinguishes three types of aggregates: (a) dilute random sus-
pensions of particle aggregates; (b) concentrated suspensions of aggregates; and
(c) large, self-similar aggregates, such as percolation and Cantorian fractals (see
chapter 5 for a discussion of fractals and fractal structures in biophysics).

In this book we are only interested in the rather simple theory of Maxwell-
Wagner relaxation as it applies to the plasma membrane.

3.3.3.1 Homogeneous Particles in Applied Homogeneous Electrical Field

In order to determine the equivalent dielectric constant of a suspension, one has to
calculate, by solving the Laplace equation (Jackson, 1998) the electric potential at a
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Fig. 3.10 The geometry parameters necessary for the determination of the potential of a suspension
of spherules of radius a (at a point, P, within the suspension). The complex permittivity, ε∗s , is
assumed to be distributed at random in a uniform medium of complex permittivity, ε∗e .

point, P, due to a spherule of radius a placed in an electrical field, E0. Then, a region
in space, containing n spherules, delimitated by an imaginary sphere of radius, R, is
considered as having dielectric properties similar to the whole suspension of interest
(Fig. 3.10). The distances from each spherule to the point, P, are considered so large
that the spherules can be regarded as being all located at the same distance r from
the point P. The potential is then obtained as a superposition of all the potentials
calculated for each spherule (Hanai, 1960; Takashima, 1989):

Φ(r,θ) = −E0r · cosθ +n
a3

r2 · ε∗s − ε∗e
ε∗s +2ε∗e

E0 cosθ . (3.44)

where n is the number of particles and θ represents the angle between �E0 and�r.
Next, the potential due to the large sphere of radius, R, assumed to be homoge-

neous and having the complex permittivity, ε∗, is obtained as:

Φ(r,θ) = −E0r · cosθ +
R3

r2 · ε∗ − ε∗e
ε∗ +2ε∗e

E0 cosθ . (3.45)

Since the potentials determined by the two methods should be equal (they charac-
terize the same system), we obtain:

ε∗ − ε∗e
ε∗ +2ε∗e

= p · ε∗s − ε∗e
ε∗s +2ε∗e

(3.46)

where p = n a3

R3 is the volume fraction of the suspended particles.
Upon some algebraic manipulation of equation (3.46), an equation formally

equivalent to the Debye equation (see equation 3.41) is obtained for the equivalent
complex permittivity of the suspension, ε∗ (Hanai, 1960).



3.3 Static Electrical Properties of Planar Membranes 97

3.3.3.2 Particles Covered by a Thin Membrane: The Single-Shell Model

Mile and Robertson (1932) made use of the classical potential theory and calculated
the potential outside of a shelled sphere suspended in a medium of permittivity
ε∗e as:

Φ(r,θ) = −E0r · cosθ+n
R3

r2 · (ε∗m−ε∗e )(ε∗i +2ε∗m)+(ε∗i −ε∗m)(ε∗e +2ε∗m)v
(ε∗m+2ε∗e )(ε∗i +2ε∗m)+2(ε∗i −ε∗m)(ε∗e −ε∗m)v

E0 cosθ ,

(3.47)
where ε∗e , ε∗i , ε∗m represent the complex permittivities of the layers in Fig. 3.11. The
equation for permittivity, obtained from equality of this potential to the one given
by equation (3.45), is:

ε∗ − ε∗e
ε∗ +2ε∗e

= p · (ε∗m − ε∗e )(ε∗i +2ε∗m)+(ε∗i − ε∗m)(ε∗e +2ε∗m)v
(ε∗m +2ε∗e )(ε∗i +2ε∗m)+2(ε∗i − ε∗m)(ε∗e − ε∗m)v

, (3.48)

where p = na3
/

Rc
3 and v = (Rc −d)3

/
Rc

3 (see Fig. 3.11). This equation is some-
times improperly attributed to Pauly and Schwan (1959).

Dänzer (1993) and, later, Pauly and Schwan (1959) have undertaken detailed
analyses of the equation for shelled spheres (equation 3.48) and found after some-
what cumbersome calculations that it is exactly decomposable into two terms of a
Debye type, corresponding to the two interfaces of the particles.

Fricke (1955) had generalized the Mile and Robertson model to include multi-
shelled particles, and obtained an equivalent admittance of the form of a continued
fraction. Later, Irimajiri et al. (1979) have shown that a number of sub-dispersions
equal to the number of interfaces should be expected for multi-shelled particle sus-
pensions. For single-shelled particles, therefore, two sub-dispersions are expected
to occur, but usually only one sub-dispersion is important – the one due to the polar-
ization at the interface between the suspending medium and cell membrane. Pauly
and Schwan (1959) have derived this result by considering the following reasonable
approximations:

σm

σe
,

σm

σi
,

d
R
� 1, (3.49)

Fig. 3.11 The single-shell
dielectric model of a particle
covered with a thin shell.

Rc

d 

e*e 

e*i

e*m
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which state that the cell membrane is insulating, compared to the internal and
external electrolytes, and very thin. Thus, the parameters for the equivalent Debye
equation are:

σl = σe
2(1− p)

2+ p
(3.50)

δε ≡ εl − εh =
9p

(2+ p)2

RCm

ε0
(3.51)

τ ≡
1

2π fc
= RCm

(
1
σi

+
1− p
2+ p

1
σe

)
, (3.52)

where Cm is the specific plasma membrane capacitance, defined as

Cm =
Membrane capacitance

Surface area
≡ εm

d
. (3.53)

Cm can be easily obtained from equation (3.52), upon knowledge of the volume
fraction, p (derived from 3.50).

By performing dielectric measurements on suspensions of cells, it has been pos-
sible to determine the specific electrical capacitance of the plasma membrane for
many different types of biological cells. For instance, a value of 0.72µF/cm2 has
been obtained for erythrocyte ghosts (Asami et al., 1989), while for yeast cells val-
ues between 0.65–0.75µF/cm2 have been reported (Raicu et al., 1996, 1998a).

For a better understanding of those results, in which a constant membrane ca-
pacitance is obtained at all frequencies above kHz-region, it is necessary to discuss
them in light of the results presented above for lipid bilayers. Specifically, it was
observed that the dielectric dispersion of the membrane itself takes place at low
frequencies. After 1 kHz, the only contribution to the membrane capacitance is due
to the hydrophobic layer alone; this is therefore the contribution that was expected
to be obtained from measurements of cells in suspension, which are carried out at
frequencies above 1 kHz. Therefore, one can conclude that the capacitance of bio-
logical cell membrane, measured in radiofrequency range provides a value for the
thickness of the hydrophobic layer of the order of 3–4 nm, which supports the cur-
rent membrane model, in particular the fact that a lipid bilayer provides a matrix for
all membrane components.

References

Asami, K. and Takashima, S. (1994) Membrane admittance of cloned muscle cells in culture: use
of a micropipette technique, Biochim. Biophys. Acta, 1190: 129

Asami, K., Takahashi, T. and Takashima, S. (1989) Dielectric properties of mouse lymphocytes
and erytrocytes, Biochim. Biophys. Acta, 1010: 49

Ashcroft, R. G., Coster, H. G. L. and Smith, J. R. (1981) The molecular organisation of bimolecular
lipid membranes. The dielectric structure of the hydrophilic/hydrophobic interface, Biochim.
Biophys. Acta, 643: 191



References 99

Atkins P. and de Paula J. (2002) Atkins’ Physical Chemistry, 7th ed., Oxford University Press,
New York

Berg, J. M., Tymoczo, J. L. and Stryer, L. (2002) Biochemistry, 5th ed., W. H. Freeman, New York
Brett, C. M. A. and Oliveira Brett, A. M. (1993) Electrochemistry. Principles, Methods, and Ap-

plications, Oxford University Press, Oxford/New York/Tokyo
Benz, R. and K. Janko (1976) Voltage-induced capacitance relaxation of lipid bilayer membranes.

Effects of membrane composition, Biochim. Biophys. Acta, 455: 721
Dänzer, H. (1938) In: E. B. Rajewsky (ed.) Ergebnisse der Biophysikalischen Forschung, Georg

Thieme, Leipzig, p. 193
Debye, P. (1945) Polar Molecules, Dover, New York
Fricke, H. (1927) The electric capacity of suspensions of red corpuscles of a dog, Phys. Rev.,

26: 682
Fricke, H. (1955) The complex conductivity of a suspension of stratified particles of spherical

cylindrical form, J. Phys. Chem., 59: 168
Frye, C. D. and Edidin, M. (1970) The rapid intermixing of cell surface antigens after formation

of mouse-human heterokaryons, J. Cell. Sci., 7: 319
Glaser, R. (2001) Biophysics, Springer, Berlin/Heidelberg/New York
Goodwin, J. S., Drake, K. R., Remmert, C. L. and Kenworthy, A. K. (2005) Ras diffusion is sensi-

tive to plasma membrane viscosity, Biophys. J., 89 (2): 1398
Hanai, T. (1960) Theory of the dielectric dispersion due to the interfacial polarization and its ap-

plication to emulsions, Kolloid. Z. 171: 3
Hille, B. (2001) Ion Channels of Excitable Membranes, Sinauer, Sunderland, MA
Hunter, R. J. (1987) Foundations of Colloid Science, Vol. 1, Oxford University Press, Oxford
Irimajiri A., Hanai T. and Inouye H. (1979), A dielectric theory of ‘multi-stratified shell’ model

with its application to a lymphoma cell, J. Theor. Biol., 78: 251
Jackson, J. D. (1998) Classical Electrodynamics, Wiley, New York, p. 154
Lodish, H., Berk, A., Matsudaira, P., Kaiser, C. K., Krieger, M., Scott, M. P., Zipursky, S. L. and

Darnell, J. (2004) Molecular Cell Biology, 5th ed., W. H. Freeman, New York
Mile, J. B. and Robertson, H. P. (1932) By assuming the material to be made up of elements of

different relaxation times, interface may play a large role during the formation of a field-induced
dipole moment, Phys. Rev., 40: 583

Movileanu, L., Popescu, D., Stelian, I. and Popescu, A. I. (2006) Transbilayer pores induced by
thickness fluctuations, Bull. Math. Biol. 68: 1231
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