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Abstract: Molecular chaperones interact with cellular proteins to ensure proper folding and transport
between or into organelles. They also associate with mature proteins that have unfolded
(and become prone to aggregation) because of an environmental insult such as heat shock.
There is a large body of evidence that protein quality control mechanisms involving the
HSP family of molecular chaperones, as well as proteasomal and lysosomal functions,
become impaired with aging and contribute to a variety of neurodegenerative diseases.
Promising therapeutic approaches tested in animal models of Parkinson’s and polyglu-
tamine diseases include the up-regulation of molecular chaperones to prevent protein
misfolding and aggregation and to facilitate clearance mechanisms. In spite of a slow
start, the role of molecular chaperones in Alzheimer’s disease is increasingly being eluci-
dated at the molecular level. This chapter summarizes the nature of the cellular stress
response that is induced in Alzheimer’s disease and examines current research related to
the function of molecular chaperones in the cellular metabolism of tau and �-amyloid
peptide
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HEAT SHOCK PROTEINS, THE AGING PROCESS
AND NEURODEGENERATION

Sophisticated quality control mechanisms are required to ensure the proper
synthesis, folding, post-translational modifications, and transport of proteins within
a highly crowded macro-molecular, intracellular environment that favors protein
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misfolding and aggregation (Ellis, 2001). Over the past few years, considerable
attention has been focused on a highly conserved family of proteins, termed
chaperones, which helps to fold proteins into their native conformations. Histori-
cally, chaperones are referred to as heat shock proteins (Hsp), if they respond to heat
shock, or glucose regulated proteins (Grp), if they respond to metabolic stress, such
as glucose insufficiency. Hsp are generally cytoplasmic, while the corresponding
Grp are components of the unfolded protein response (UPR) of the endoplasmic
reticulum and Golgi.

Protein misfolding results in the exposure of hydrophobic domains normally
buried in the interior of the native structure. Interactions between these exposed
hydrophobic regions lead to the formation of toxic aggregates, which include
oligomers, protofibrils and fibrillar deposits having the chemical signature of
amyloid. Hsp not only detect and refold denatured proteins, but are also actively
involved in the triage of unsalvageable products to the major cellular protein degra-
dation system, the proteasome. Thus, Hsp in the role of chaperones are key compo-
nents of the machinery that maintains a delicate balance between natively folded
functional proteins and aggregation-prone misfolded proteins. The latter may form
acutely to some cell stressors or build-up over a lifetime and lead to cell death.

The accumulation of misfolded proteins is one hallmark of aging. During the
life-span of a stable protein, various post-translational modifications occur (Harding
et al., 1989). In some cases, for instance oxidative damage, these modifications
induce conformational changes that impair protein function, and cannot be reversed
by Hsp. Therefore, the only solution to protect the cell from these misfolded
proteins is their elimination or sequestration. Aging is accompanied by decreases
in proteasome activity (Conconi et al., 1996) as well as autophagic lysosomal
protein degradation or “autophagy” (Cuervo and Dice, 2000). When the chaperone-
degradation system fails at any of several steps, abnormal proteins accumulate
as aggregates or inclusions. The problem may also be amplified when Hsp and
other protective chaperones get trapped over time in these insoluble inclusions,
therefore reducing their cellular levels and leaving the cell more susceptible to
further stresses. Indeed, as cells age they also lose their ability to fully activate
the unfolded protein stress response or UPR as defined below (Liu et al., 1989;
Fargnoli et al., 1990; Sherman and Goldberg, 2001). Thus, aging rats display reduced
levels of endoplasmic reticulum chaperones, increased ubiquitination and impaired
activation of the stress response in the hippocampus (Paz Gavilan et al., 2006).

Dysfunction of the protein folding and degradation machinery is also believed
to contribute to a variety of human diseases (Cummings et al., 1998; Lam
et al., 2000; Bence et al., 2001; morley and moromoto, 2004; Lindsten et al., 2002).
Thus, subtle impairments in the chaperone system that may occur with aging,
together with increases in abnormally folded client protein expression or production,
may result in aberrant accumulation and aggregation of cytotoxic proteins and
neurodegeneration (Cohen et al., 2006). Increasing evidence points to a critical
role for molecular chaperones in neurodegenerative diseases (DeArmond and
Prusiner, 1995; Bonini, 2002; Sakahira et al., 2002). Several neurodegenerative
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diseases also appear to involve an early impairment of the stress response (Batulan
et al., 2003; Magrane et al., 2005), further compromising the function and surviv-
ability of neurons. Since they are post-mitotic, dilution of cytotoxic misfolded
proteins by cell division is not an option. For instance, it has been recently
shown that abnormal S-nitrosylation of protein disulfide isomerase, an endoplasmic
reticulum chaperone, is found in brain samples of sporadic Parkinson’s and
AD cases. The S-nitrosylation modification blocks protein disulfide isomerase
protective function that is part of the endoplasmic reticulum stress response (Uehara
et al., 2006). In another case of endoplasmic reticulum chaperone dysfunction
in neurons, a mutation in the gene sil1 that encodes a co-chaperone of Grp78,
a crucial endoplasmic reticulum chaperone, leads to protein accumulation and
neurodegeneration (Zhao et al., 2005). Importantly, mutations that compromise the
activity of Hsp family members lead to several rare syndromes, such as hereditary
spastic paraplegia (mitochondrial Hsp60), desmin-related myopathy (�B-crystallin),
Marinesco-Sjogren syndrome (Sil1), axonal Charcot-Marie-Tooth disease and distal
hereditary motor neuropathy (Hsp27), and distal motor neuropathy (Hsp22) (Vicart
et al., 1998; Hansen et al., 2002; Evgrafov et al., 2004; Irobi et al., 2004; Anttonen
et al., 2005; Senderek et al., 2005).

In broad terms, most of the neurodegenerative diseases can be considered
as disorders of protein misfolding, referred as “foldopathies” (Kosik and
Shimura, 2005). Several age-related disorders such as AD, Parkinson’s disease,
amyotrophic lateral sclerosis, prion diseases and the polyglutamine expansion
diseases share a common pathology related to protein misfolding and progressive
intracellular accumulation of specific but unrelated toxic proteins that target select
cell populations. Each protein abnormality also triggers a different cellular response
within the protein folding machinery and the degradation pathways. In this chapter,
we will review the nature of this stress with respect to AD and examine some
recent studies related to the function of heat shock and stress related proteins in the
cellular metabolism of tau and �-amyloid peptide.

APP PROCESSING AND INTRACELLULAR EVENTS
IN ALZHEIMER’S DISEASE

Alzheimer’s disease (AD) is the most common neurodegenerative disorder and the
leading cause of dementia. It is usually diagnosed through recognition of a restricted
impairment in memory that then expands to involve other cognitive process. AD
is associated with a characteristic combination of morphological brain alterations
and most often arises sporadically from the combination of genetic risk factors and
unknown environmental/ aging processes (sporadic AD) or much less often (2%)
directly from heritable defects in key proteins (familial AD, FAD). While mutations
in either the amyloid precursor protein (APP), presenilin-1 (PS1) or presenilin-2
(PS2) genes cause the majority of early-onset FAD, the molecular basis for the
later onset sporadic forms of AD remains largely unknown. However, evidence
implicates oxidative stress (Markesbery, 1997) and cardiovascular risk factors
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(de la Torre, 2002), as well as from the increased incidence of AD in individuals
possessing specific apolipoprotein E (APOE4) or sortilin-related receptor (SORL1)
genotypes (Cedazo-Minguez and Cowburn, 2001; Rogaeva et al., 2007).

The major pathological hallmarks in the brains of AD patients are extracel-
lular amyloid plaques and intracellular neurofibrillary tangles (NFTs). However,
amyloid angiopathy and inflammatory changes also occur in most cases. Amyloid
deposits are derived from the amorphous aggregation of a number of proteins, of
which a small peptide referred to as �-amyloid (A�) is the main component. The
other observable pathological structures, NFTs, are paired helical filaments derived
from the aggregation of hyperphosphorylated forms of the microtubule-associated
protein tau (�). It is now widely accepted that A� peptide has a primary role
in the development of AD (Hardy and Allsop, 1991; Hardy and Selkoe, 2002;
Wirths et al., 2004). However, in the order of events leading to AD, the exact
roles played by intracellular A� and � are still to be elucidated. Nevertheless,
increasing evidence both from transgenic mice expressing familial AD mutations
and human AD patients supports an early role for intracellular A� accumulation
(LaFerla et al., 2007). Indeed, although the formation of NFTs closely parallels
the progression and anatomic distribution of neuronal loss in AD, intraneuronal
A� accumulation precedes the deposition of amyloid plaques and the appearance
of NFTs, and correlates with the first indications of cognitive deficits (Gouras
et al., 2000; D’Andrea et al., 2001; Wirths et al., 2001; Oddo et al., 2003; Billings
et al., 2005; Oakley et al., 2006; Knobloch et al., 2007). It is worth mentioning
that intracellular A� has also been clearly associated with Down’s syndrome and
the human muscle disease inclusion body myopathy (Tseng et al., 2004). Several
observations also suggest that both intracellular amyloid and � pathologies may
be causally linked (Blurton-Jones and Laferla, 2006). Recent studies have shown
that the accumulation of intracellular A� in vivo inhibits the proteasome, and that
proteasome impairment leads to the buildup of abnormally phosphorylated � protein
(Oddo et al., 2004; Tseng et al., 2007).

The A� peptide is generated by endoproteolysis of the APP, a single pass, type I
membrane protein. Three different groups of enzymes, termed �-, �-, �-secretases,
sequentially cleave APP in two alternate processing pathways. In the most common
non-amyloidogenic pathway, membrane proximal cleavage by �-secretases (at a
position 83 amino acids away from the carboxy-terminus of APP) precludes gener-
ation of A� peptide. A large amino-terminal domain (sAPP�) is secreted into
the extracellular medium, and the resulting C83 fragment is then cleaved by a
�-secretase complex cleavage (composed of presenilin 1 or 2, nicastrin, anterior
pharynx defective and presenilin enhancer 2) to generate a short fragment named
p3. In the amyloidogenic pathway, cleavage of APP by �-site APP cleaving enzyme
1 (BACE1; at an extracellular position 99 amino acids away from the C-terminus
of APP) results in the release of sAPP� into the extracellular space, and subsequent
cleavage of the resulting C99 fragment by the �-secretase complex results in the
generation of A� peptide. Processing of APP by �-secretase occurs in endosomes
following cell surface receptor recycling, but can also occur in the endoplasmic
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reticulum/trans-Golgi network, prior to APP secretion, or at the plasma membrane
(Hardy and Selkoe, 2002; Kins et al., 2006; Vetrivel and Thinakaran, 2006).
Thereby, generation of A� peptide is likely to occur in several intracellular
compartments.

Several A� variants have been described which differ in their length. The most
abundant A� peptide is 40 residues long (A�40), whereas a small proportion
is 42 residues long (A�42). This longer variant is more hydrophobic and prone
to aggregation, and is the predominant form found both intracellularly and in
cerebral plaques (Gouras et al., 2000). The A�40 isoform is predominant in
congophilic angiopathy. A� can be found in different assembly states (monomers,
oligomers, protofibrils and fibrils), which have important physiological and patho-
logical effects. While monomeric A� appears to be the less neurotoxic species,
oligomers and protofibrils are the most pathological forms (Walsh et al., 2002;
Cleary et al., 2005; Lesne et al., 2006). Similar conclusions were drawn in a number
of other neurodegenerative diseases (Caughey and Lansbury, 2003). A� oligomer-
ization first occurs intraneuronally, when associated with synaptic pathology (Walsh
et al., 2000; Takahashi et al., 2004; Oddo et al., 2006). Although not clear yet, fibril
formation appears to result from � sheet formation and linear cross-stacking, since
the A�42 peptide contains exposed hydrophobic domains that can seed abnormal
protein aggregation (Bitan et al., 2003; Kayed et al., 2003).

Consistent with clinical observations on the importance of intracellular accumu-
lation, we and others have reported on the toxic effects of intraneuronal A�
accumulation in model systems (LaFerla et al., 1995; Zhang et al., 2002; Magrane
et al., 2004). Observations made when using synthetic A� peptides applied to cell
cultures do not necessarily reflect what happens intracellularly when A� accumu-
lates (Zhang et al., 2003; Magrane et al., 2005). Accumulation of intracellular
A�42 may affect a variety of signal transduction pathways including Akt and
MAPK family members that have important roles in neuronal function (Yuan and
Yankner, 2000). We previously reported that intracellular A�42 deposition disrupts
signaling through the Akt pathway, both in vitro and in vivo (Magrane et al., 2005).
Others observed that the MAPK pathway may also be affected in an in vivo
model of intracellular A� accumulation (Echeverria et al., 2004). We first described
that the down-regulation of the Akt survival pathway caused a suppression of the
stress response (Magrane et al., 2005). Moreover, when � becomes abnormally
phosphorylated, it aggregates and loses its ability to maintain stability of the axonal
microtubules, which are the conduits for intracellular protein traffic (Mandelkow
et al., 1995). Thus, both aberrant processing of APP and/or post-translational modifi-
cations affecting �, generate species susceptible to aggregation and shown to be
neurotoxins. Several other common neurodegenerative diseases have pathological
features similar to AD, all characterized by inclusions of misfolded proteins. Indeed,
it has been shown that soluble oligomers from Alzheimer’s, Parkinson’s, polyglu-
tamine and prion diseases share a common structural feature that is recognized by
a single antibody, an observation that points to the highly related nature of these
diseases (Kayed et al., 2003).
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While many mechanisms have been suggested to explain the starting point of
AD pathogenesis, it is clear that neurons first fail in function and then die for lack
of ability to buffer multiple metabolic stresses arising from overproduction and/or
failure to clear neurotoxic amyloidogenic proteins. In the sequence of intraneuronal
events that lead to AD pathogenesis, alterations in APP processing, A� turn-over
and � phosphorylation factor early in the disease progression. One promising role for
Hsp in this process is to hasten A� removal. When clearance mechanisms become
overwhelmed, A� oligomers eventually form insoluble fibrils that are deposited as
amorphous inclusions that can include Hsp (Muchowski and Wacker, 2005). Hsp
have been shown to accumulate in senile plaques and to be up-regulated in AD
brain (Hamos et al., 1991; Perez et al., 1991; Yoo et al., 2001; Sahara et al., 2005).
While several members of the Hsp family are shown to interact with key players
of AD pathogenesis, not many studies have explored the role of the stress response
in AD. Most of them have focused on abnormal � phosphorylation and not until
recently, has the role of heat shock and stress proteins in A� accumulation been
addressed at the molecular level.

THE UPR AND CYTOPLASMIC CHAPERONE RESPONSES
TO ���-AMYLOIDOGENESIS

All proteins destined to the plasma membrane, including APP, first translocate
from ribosomes into the endoplasmic reticulum(ER), where a group of chaperones
work together to ensure the proper folding and assembly of nascent proteins,
so that trafficking towards the secretory and the endocytic/lysosomal pathways
can proceed. These chaperones include: BiP/Grp78 (glucose-regulated protein
78), Grp94, Grp170/ORP150, Grp58/ERp57, peptidyl prolyl isomerase, ERp72,
calnexin, calreticulin, EDEM, Herp, protein disulfide isomerase and co-chaperones
Sil1 and p58IPK. When misfolding and aggregation occurs in the endoplasmic
reticulum, a specific ER stress response, known as the unfolded protein response
(UPR) is activated. First, the response is initiated by the dissociation of BiP/Grp78
from unfolded protein “stress sensors” PERK (pancreatic ER serine/threonine
kinase) and Ire-1. Then, expression of endoplasmic reticulum-resident chaperones
(such as Grp78 and Grp94) is increased. Additionally, general protein synthesis
is attenuated by translational shut-down. A third arm of the stress response is the
activation of an endoplasmic reticulum-associated degradation (ERAD) pathway, by
which misfolded proteins are retrotranslocated into the cytosol for ubiquitination and
degradation (Bonifacino and Weissman, 1998; Ellgaard et al., 1999; McCracken and
Brodsky, 2003). When the problem persists, C/EBP homologous protein (CHOP)
and other factors are activated to induce apoptosis (Rao et al., 2004).

Experimental evidence points to endoplasmic reticulum being an important
cellular compartment in which A� generation can occur (Hartmann et al., 1997;
Wild-Bode et al., 1997; Tomita et al., 1998; Greenfield et al., 1999). Moreover,
endoplasmic reticulum-resident chaperones interact with APP and APP proteolytic
fragments (Yang et al., 1998b; Fonte et al., 2002; Hoshino et al., 2007) and thereby
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could affect the generation of A�. It has been suggested that mutations in the PS1
or PS2 genes contribute, in part, to neuronal vulnerability through down-regulation
of the UPR signaling pathway and impaired Grp78 induction (Guo et al., 1999;
Katayama et al., 1999, 2001, 2004; Niwa et al., 1999). Of note, not all studies
show such changes (Sato et al., 2001). This would have the undesirable effect of
impairing the neuron’s ER-based capability to prevent the accumulation of toxic
proteins. The phenomenon of decreased ER chaperone expression in familial AD
brain, (e.g. Grp78 levels (Kudo et al., 2002)), resembles what has been proposed
to occur during aging (Sherman and Goldberg, 2001). In sporadic AD brains on
the other hand, increased expression of proteins of the UPR has been observed in
neurons without signs of neurodegeneration or NFTs (Hamos et al., 1991; Chang
et al., 2002; Onuki et al., 2004; Hoozemans et al., 2005). This is in contrast to
other studies where a decrease in Grp78 or no changes were observed (Katayama
et al., 1999; Sato et al., 2000; Kudo et al., 2002). In another study, BiP/Grp78
is increased in AD brain coincident with down-regulation of cell cycle proteins
and G1 phase arrest (Hoozemans et al., 2006). To reconcile these studies, it is
plausible that initial activation of the UPR in viable AD neurons can be neuro-
protective, while sustained activation lead to failure and heralds neurodegeneration
(Ghribi et al., 2001; Chen et al., 2004; Tessitore et al., 2004; Brewster et al., 2006).
Involvement of the UPR has been demonstrated in other neurodegenerative condi-
tions such as juvenile Parkinson’s disease and in Pelizaeus-Merzbacher disease
(Imai et al., 2001; Southwood et al., 2002).

After the discovery that secretases are present in different compartments of the
secretory and the endosomal/lysosomal pathways, and that APP C-terminus bearing
fragments (CTF) and A� are generated intracellularly (Busciglio et al., 1993;
Wertkin et al., 1993; Cook et al., 1997; Hartmann et al., 1997; Skovronsky
et al., 1998), attention was put on potential ER quality control mechanisms that
could alter APP processing and A� production/removal. First, interactions between
APP and chaperones were revealed in the endoplasmic reticulum, where APP
folding and maturation occurs. Therein, holoAPP directly interacts with Grp78, a
resident chaperone that transiently associates with normally maturing polypeptides
and more stably with misfolded or incompletely assembled proteins. When Grp78
is over-expressed, APP translocation from the endoplasmic reticulum to the Golgi
is inhibited, APP maturation fails, and the levels of CTF and A� released into the
medium decrease (Yang et al., 1998b; Kudo et al., 2006; Hoshino et al., 2007).
Grp78 protects against excitotoxic and amyloid cell death (Yu et al., 1999). Next,
the over-expression of certain other chaperones in the endoplasmic reticulum, have
similar activities on APP processing. Thus, Grp170/ORP150 (oxygen-regulated
protein 150) decreased the levels of both A�40 and 42 released into the medium,
whereas calnexin decreased the release of only A�42 (Hoshino et al., 2007).
Transient interaction with calreticulin, which is involved in the maturation of
glycoproteins in the secretory pathway, is also required for APP trafficking
and maturation through the endoplasmic reticulum and early cis-Golgi. It is
known that holoAPP/calreticulin complex formation requires both prior binding
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to Grp78 and N-glycosylation to occur (Johnson et al., 2001). Despite this
interaction, calreticulin does not affect A� release into the medium (Hoshino
et al., 2007). Although it is unclear how these different effects on wild type
APP processing may occur, one possible explanation is that sublocalization of
the various ER chaperones leads to a differential ability to activate the ERAD
pathway. The data also suggests that expression of mutant APP, and in particular
A� production, activates the UPR (Hoshino et al., 2007), although the role of
intracellular A� accumulation was not explored. Induction of certain endoplasmic
reticulum chaperones could therefore be therapeutically beneficial for the treatment
of AD.

We turn attention now onto the cytoplasmic chaperone system. On the cytosolic
site of the endoplasmic reticulum, APP has been shown to interact with heat shock
cognate (Hsc) 73 (Kouchi et al., 1999). Although the significance of this interaction
remains unclear, it presumably facilitates APP ubiquitination and degradation. In
fact, the proteasome has been shown to be involved in the catabolism of APP and
its secretase cleavage products (Marambaud et al., 1997; da Costa et al., 1999;
Nunan et al., 2001; Flood et al., 2005; Kumar et al., 2007). This is reminiscent
of the increase in Hsc/Hsp70 bound to polyubiquitinated hyperphosphorylated �
that was observed in the presence of proteasome inhibitors (Petrucelli et al., 2004;
Shimura et al., 2004b). Moreover, CHIP (carboxy terminus of the Hsc70-interacting
protein) over-expression increases cellular APP levels and promotes both APP and
phospho-� ubiquitinations (Petrucelli et al., 2004; Shimura et al., 2004b; Kumar
et al., 2007) in accordance to a proposed role of CHIP to act as a molecular triage
center (Connell et al., 2001).

A�-targeted to the secretory pathway was found to activate the cytosolic stress
response and to interact with cytosolic signal and chaperone proteins (Suhara
et al., 2003; Magrane et al., 2004, 2005; Zhang et al., 2004; Kumar et al., 2007).
A stress response involving up-regulation of Hsp70 levels in AD and Down’s
syndrome temporal cortex confirms the in vitro data (Yoo et al., 1999). It is unclear
how A� exits the endoplasmic reticulum, although reverse translocation through the
ERAD pathway is a likely explanation. A� may also gain access to the cytosol due
to leakage from lysosomes (Yang et al., 1998a; McCracken and Brodsky, 2003).
Cytosolic A� has been shown to be highly cytotoxic to primary neurons (Zhang
et al., 2002), and A� expressed intracellularly in an in vivo model of AD was found
to interact directly with HSP70 family members (Fonte et al., 2002). Since Hsp70
has roles in preventing protein aggregation and promoting protein degradation
(Muchowski et al., 2000; Dul et al., 2001; Chan et al., 2002; Dou et al., 2003), it is
plausible that Hsp70 is critical in the proteasomal handling or in the sequestration
of intraneuronal A�. Interestingly, over-expression of some Hsp reduced intracel-
lular A� levels and, consequently, A�-induced neuronal death (Kumar et al., 2007).
Other mechanisms involving loss of Hsp function in AD are apparent. For instance,
mortalin (mtHsp70/Grp75) is a heat non-inducible mitochondrial protein that when
oxidatively damaged in AD, results in reduced mitochondrial import of essential
proteins (Yaguchi et al., 2007).
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REMOVAL OF HYPERPHOSPHORYLATED tau (�)

Tau (�) is normally a highly soluble and natively unfolded protein that undergoes
continuous turnover in neurons (Dickey et al., 2006). It remains unclear how
the quality control system is able to distinguish between normal phospho-� and
aberrantly hyperphosphorylated � species, although it has been demonstrated that
early in AD pathogenesis, a combination of abnormal phosphorylation and certain
conformational changes to � serves as the misfolding event that is recognized by
the chaperone machinery (Weaver et al., 2000; Ghoshal et al., 2001). Hyperphos-
phorylated � is toxic to neurons in vitro and in vivo and has been clearly implicated
in AD progression (Gomez-Isla et al., 1997; Gamblin et al., 2003; Kobayashi
et al., 2003; Roberson et al., 2007). The mechanisms underlying �-mediated neuro-
toxicity however remain unclear. Those isoforms phosphorylated by the kinases
glycogen synthase kinase 3beta (GSK3-�) and Cdk5 (Lucas et al., 2001; Cruz
et al., 2003; Noble et al., 2003) are particularly suspect. Many of these sites are
dephosphorylated by PP2A, and a deficiency of phosphatase activity has also been
implicated in � hyperphosphorylation and impairment of behavior performance in
rats (Sun et al., 2003). As is the case with A� entities, soluble � oligomers and/or
protofibrils probably mediate �-associated neurodegeneration (Dickey et al., 2006).
To reduce phosphorylated � concentrations and �-associated cellular toxicity, a
variety of protective mechanisms involving the stress response are activated. They
include binding of abnormal � to Hsp70 to prevent toxic conformations of the
protein, ubiquitination of � for degradation by the proteasome, segregation of �
aggregates from the cellular machinery, and recruitment of anti-apoptotic molecules.
Thus one mechanism for � accumulation may be insufficient Hsp-mediated phospho-
� ubiquitination and degradation.

Several studies have explored the role of Hsp in hyperphospho-� degradation, and
focused on a complex comprised of Hsp70/Hsc70, Hsp90 and the E3 ubiquitin ligase
CHIP (carboxy terminus of Hsc70-interacting protein). The Hsp/CHIP complex
is a highly sensitive and tightly regulated quality control mechanism, involving
multiple players that may also compete for the refolding or degradation of the
abnormal protein (Johnson et al., 1998; Grenert et al., 1999; Liou et al., 2003). CHIP
works together with BAG-1, an ubiquitin domain co-chaperone protein that accepts
substrates from Hsc/Hsp70 and presents them to the CHIP-ubiquitin conjugation
machinery and onto the proteasome (Luders et al., 2000; Demand et al., 2001; Qian
et al., 2006). The recognition of � by Hsc70 and Hsp90 suggests that phosphory-
lation may serve to disrupt the native structure of �, targeting it for processing by
the Hsc70/CHIP complex. The current view in the field is that if Hsc/Hsp70 system
is unable to restore proper folding of �, then the ubiquitin domain protein BAG-1
and the ubiquitin ligase CHIP, in collaboration with the E2 conjugating enzyme
UbcH5B, can shift the chaperone activity of Hsc/Hsp70 from protein folding to
an assist role in degradation (Petrucelli et al., 2004; Shimura et al., 2004b; Dickey
et al., 2007). CHIP appears to ubiquitinate phosphorylated �, not only to promote its
proteasomal degradation but also to sequester it into insoluble filamentous aggre-
gates and in so doing prevent cell death (Shimura et al., 2004b; Dickey et al., 2006).
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Correspondingly, deletion of CHIP in mice results in accumulation of soluble
phosphorylated � in the brain (Dickey et al., 2006). CHIP also acts as a stress sensor
(Qian et al., 2006) to positively regulate heat shock factor (HSF)-1 activity (Dai
et al., 2003) and to terminate HSP70 through degradation when misfolded protein
levels are returned to acceptable levels. HSF1 is a key transcriptional factor that
controls the levels of the constituents of the cellular stress response.

Induction of a stress response by increasing levels of Hsp70 (and 90) in
�-transfected cell cultures prevents insoluble � aggregates and � phosphorylation,
increases the solubility of � and promotes the normal association of � with micro-
tubules (Dou et al., 2003). The same authors also demonstrated that Hsp70 (and
Hsp90) bind � and that both Hsp levels are lower in the brains of AD patients
bearing � aggregates and in transgenic mice expressing a mutant form of human �
that is responsible for fronto-temporal dementia (Dou et al., 2003). Over-expression
of Hsp70 alone in vivo appears to reduce steady state levels and attenuate parti-
tioning of � into the high molecular weight detergent insoluble fraction (Petrucelli
et al., 2004).

Hsp27 has also been shown to bind directly to phosphorylated � and attenuate its
toxicity by facilitating its degradation (through an ubiquitin-independent pathway)
and/or dephosphorylation (Shimura et al., 2004a). Hsp27 plays a critical role in
neuronal metabolism and survival, and can inhibit caspase activation (Concannon
et al., 2003).

Hsp90 is involved in the folding and stabilization of multiple client proteins
(Zhao and Houry, 2005). A central role for Hsp90 in the development of AD and
associated tauopathies (Dickey et al., 2007) has resulted in the identification of
several Hsp90 inhibitors as potential therapeutic tools in neurodegenerative diseases
(Dickey et al., 2006; Waza et al., 2006a). Inhibition of Hsp90 by blockade of the
refolding pathway promotes degradation of proteins bound to Hsp90 and usually
causes the activation of the HSF1. Thus it has been recently reported that inhibition
of Hsp90 actually leads to a decrease in phosphorylated � levels. However, this
action proved independent of HSF1 activation. The mechanism is via increased
� turnover and degradation mediated by CHIP (Dickey et al., 2006). Although
somewhat alternative to the HSP90 results of Dou et al. presented above, this
is reminiscent of the proteasome-dependent reduction in mutant polyglutamine
expanded androgen receptor levels by a geldanamycin-like inhibitor of HSP90
(Waza et al., 2006b).

SMALL HSP, CHAPERONINS AND OTHER STRESS-RELATED
PROTEINS IN AD

Although the role of other stress-related proteins in AD remains largely unexplored,
some advances have been made more recently, specially related to small Hsp
(sHsp), chaperonins and Hsp104. The sHsp are a family of chaperones, with subunit
molecular masses ranging from 15 to 40 kDa, that bind to exposed hydrophobic
residues but lack active refolding capabilities (ATP-independent chaperones). They
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recognize proteins in the early stages of denaturation and help to maintain unfolded
proteins in a folding-competent state (Lee et al., 1997). Subsequent refolding is
thought to occur by Hsp70 and/or chaperonin function. In humans, the sHsp family
comprises 10 members, among which �B-crystallin, Hsp27, Hsp20, HspB2 and
HspB8 (Kappe et al., 2003).

�B-crystallin is the prototypical sHsp and contains a characteristic highly
conserved carboxy-terminus “�-crystallin domain” that defines the members of
this sHsp subfamily. �B-crystallin is the main component of the eye lens where
it maintains a clear amorphous composition by preventing denatured proteins
from aggregating to form opaque inclusions (Horwitz, 2000). Indeed, A� has
been observed to accumulate in the cataracts of AD patients and to colocalize
with �B-crystallin (Goldstein et al., 2003). �B-crystallin is expressed in both
neurons and glia of the normal brain, and in various neurodegenerative diseases,
including AD (Iwaki et al., 1992; Mao et al., 2001; Yoo et al., 2001). Changes
in expression of �B-crystallin and Hsp16, among others, in response to intracel-
lular A�42 expression have been observed (Link et al., 1999, 2003). In addition,
�B-crystallin was shown to directly interact with A� both in cell culture and
in a transgenic C. elegans model that expresses human A� intracellularly (Stege
et al., 1999; Liang, 2000; Fonte et al., 2002). As in the case with Hsp70/CHIP, this
sHsp associates with ubiquitinated � (Goldbaum and Richter-Landsberg, 2004). �B-
crystallin has been shown to increase the neurotoxicity of A�, possibly by preventing
its aggregation into insoluble fibrils (Stege et al., 1999; Raman et al., 2005;
Narayanan et al., 2006).

Hsp27 is expressed both in normal and AD brains, and appears to be associated
with amyloid plaques and NFT (Renkawek et al., 1994; Stege et al., 1999;
Wilhelmus et al., 2006a). Increased expression of Hsp27 has been found in AD
brains (Renkawek et al., 1993; Stege et al., 1999) and in Dementia with Lewy Bodies
(Outeiro et al., 2006). Furthermore, Hsp27 directly interacts with A� and inhibits
fibril formation in vitro, possibly by interfering with the nucleation process in the
early phase of amyloidogenesis (Kudva et al., 1997). In addition, Hsp27 binds to
hyperphosphorylated � and promotes its degradation by a proteasome-independent
pathway and, when over-expressed, prevents hyperphosphorylated �-mediated cell
death (Shimura et al., 2004a).

Although direct interaction between A� and some sHsp remains to be demon-
strated in vivo, and their potential role in intraneuronal A� aggregation has not been
proved, it has recently shown in vitro that Hsp20, Hsp 27 and �B-crystallin, but not
HspB2, bind to A�, prevents A� aggregation and attenuate toxicity (Lee et al., 2005,
2006; Wilhelmus et al., 2006b). While the usual function of sHsp is in intracellular
surveillance, they are also expressed by reactive astrocytes and their cytoprotective
role against experimental A� toxicity seems to be explained by interference with
extracellular oligomerization at the cell surface (Wilhelmus et al., 2006b). Immuno-
histological studies have found that extracellular HspB2 is strongly expressed in
fibrillar amyloid deposits around the cerebral vessels, and that Hsp20 is mainly
associated with non-fibrillar A� in diffuse senile plaques (Wilhelmus et al., 2006a).
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In addition, another member of the sHsp family, HspB8, binds to distinct A� species
and inhibits the aggregation of mutated huntingtin (Carra et al., 2005; Wilhelmus
et al., 2006c). The results suggest that while sHsp may have different affinities for
the various A� species and other amyloidotic proteins, they have potential to play
a significant role in A� deposition in AD brains.

Chaperonins (Cpn) are a family of sequence-related proteins of about 60 kDa
that are classified in two groups: group I chaperonins are found in bacteria
and organelles (mitochondria and chloroplasts), and group II chaperonins are
found in the cytosol of eukaryotes and Archaea. The mitochondrial chaperonin
Cpn60 is primarily found in the mitochondrial matrix. Both synthetic A� peptide
treatment and intraneuronal A� accumulation reduced levels of mitochondrial
Cpn60, without similarly affecting other Hsp levels, such as Hsp70 and Hsp90
(Zamostiano et al., 1999; Veereshwarayya et al., 2006). Mitochondrial Cpn60 over-
expression protected components of the electron transport chain and enzymes of
the mitochondrial matrix from A� expression-induced toxicity, although it had no
effect on A� levels or oligomerization (Veereshwarayya et al., 2006). Similarly,
reduced expression of mitochondrial Cpn60 has been reported in cells derived
from individuals with Down’s syndrome, which shares a number of characteristic
lesions with AD including intraneuronal A� accumulation (Bozner et al., 2002).
Similarly, cytoplasmic levels of Cpn60, a specific chaperonin for actin and tubulin,
also decrease in AD-affected neurons leaving the cytoskeletal proteins deficient and
aggregated (Schuller et al., 2001).

Another chaperone-related family of proteins is the class I family of Clp/Hsp100
AAA+ ATPases, to which Hsp104 belongs. Hsp104 does not associate with any
protease or ligase, unlike other Clp1 proteins, and does not protect from denatu-
ration, but it acts as a molecular chaperone to rescue proteins from an aggregate
state, with the help of the Hsp70 system (Parsell et al., 1994; Lee et al., 2004).
Hsp104 was shown to inhibit both A� and �-synuclein aggregate formation in vitro
(Kong et al., 2005).

NEUROPROTECTION AND THERAPEUTIC STRATEGIES

Several studies have convincingly demonstrated that increased chaperone expression
can suppress the neurotoxicity caused by accumulation of neurotoxic proteins. Inter-
ventions that enhance or boost a deficient stress response may have therapeutic
value in limiting the neuronal dysfunction and loss that defines neurodegenerative
disease states (Rochet, 2007). Thus, Hsp can delay the onset and the outcome
of protein-misfolding diseases, such as in transgenic models of Parkinson’s and
polyglutamine diseases such as spinocerebellar ataxia (Warrick et al., 1999; Chan
et al., 2000; Fernandez-Funez et al., 2000; Kazemi-Esfarjani and Benzer, 2000;
Cummings et al., 2001; Auluck et al., 2002). Recent findings suggest that Hsp
can also be neuroprotective in AD, but this area of research remains largely
unexplored having been focused on in vitro and cell culture studies. The lack of
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suitable animal models that accurately replicate the characteristics of the human
disease and the complex etiology of AD are possible reasons for this state.
Hsp have been shown to modulate the aggregation of A� peptide in a cell-free
system (Evans et al., 2006; Wilhelmus et al., 2006b) and enhance clearance of
exogenous A�42 in rat hippocampus in vivo (Takata et al., 2003). We demon-
strated that the endogenous modest activation of the neuronal stress response was
insufficient to prevent A�42-induced cell death and that over-expression of Hsp70
reversed A�42 toxic effects (Magrane et al., 2004), a result confirmed by others
(Zhang et al., 2004). Intraneuronal A�42 accumulation was shown to compromise
neuron survival by impairing full expression of the stress response. Thus, when
inherent cellular protection mechanisms were boosted, A�42-induced neuronal
death was prevented (Magrane et al., 2005). More recently, over-expression of
Hsp70 and Hsp90, together with CHIP, reduced intracellular A� levels and, conse-
quently, A�-induced neuronal death (Kumar et al., 2007). Additionally, it has been
suggested that induction of certain endoplasmic reticulum chaperones can be thera-
peutically beneficial for the treatment of AD since it decreases A� production
(Hoshino et al., 2007).

In keeping with the potential for direct increase in Hsp levels, stimulation of
HSF1 maybe similarly beneficial. Down-regulation of HSF1 in transgenic worms
that over-express intracellular A�42 resulted in accelerated paralysis and increased
protein aggregation (Cohen et al., 2006). Inhibition of HSF-1 also accelerates aging
in wild type (Garigan et al., 2002) and decreases longevity in c.elegans in which an
age-1 gene mutation in the insulin signaling pathway extends lifespan (Morley and
Morimoto, 2004). Although never tested in models of AD, activation of HSF1 and
the downstream expression of the stress response has been proven to be therapeu-
tically effective in several neurodegenerative diseases. Thus, the Hsp90 inhibitor
geldanamycin activates HSF1 and inhibits �-synuclein aggregation and toxicity
both in vitro and in vivo (McLean et al., 2004; Auluck et al., 2005). Furthermore,
geldanamycin and radicicol, another Hsp90 inhibitor, suppressed huntingtin aggre-
gation and toxicity in organotypic cultures derived from huntingtin transgenic mice
(Hay et al., 2004). Similarly, celastrol, a recently identified drug compound and
a component of Chinese herbal medicines, was reported to induce the cellular
stress response by activating HSF1 (Westerheide et al., 2004) and to improve
memory in normal Sprague-Dawley rats (Allison et al., 2001). Arimoclomol, another
HSF1 activator, improves neuronal survival in SOD1 mutant amyotrophic lateral
sclerosis mice (Kieran et al., 2004). Acetyl-L-carnitine, a mitochondrial antiox-
idant, up-regulates Hsp in cortical neurons exposed to A�42-oxidative stress (Abdul
et al., 2006).

Another relevant Hsp-directed therapeutic strategy would be to remove hyper-
phosphorylated �. Reduction of insoluble � aggregates and � phosphorylation was
achieved in culture by over-expression of Hsp70 and Hsp90, and in vivo by Hsp70
alone (Dou et al., 2003; Petrucelli et al., 2004). Recently, a novel Hsp90 inhibitor
promoted selective decreases in phosphorylated � in a mouse model of tauopathy
(Dickey et al., 2007).
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Table 1. Heat shock proteins in Alzheimer’s disease: Cytoplasmic and mitochondrial chaperone families

Family Function AD mechanisms References

Hsp100: 104–110 ATPase activity. Thermal
tolerance, protein
disaggregation and
refolding. Works with
Hsp70

Inhibits A� aggregation Kong et al. (2005)

Hsp90 ATPase activity. Interacts
with signal transduction
molecules, nuclear hormone
receptor maturation,
stabilizes misfolded
proteins, prevents
aggregation of refolded
peptides, and ensures correct
assembly and folding of
newly synthesized client
proteins. Hsp90 inhibitors
activate HSF1

Associated with A�

plaques. Binds to APP
and �. Complexes with
CHIP. Inhibition of
Hsp90 hastens
phospho-� and
polyglutamine protein
degradation by the
proteasome

McLean
et al. (2004); Auluck
et al. (2005); Zhao
and Houry (2005);
Dickey et al. (2006);
and Waza
et al. (2006a)

Hsc70–73
(non-inducible)

Hsp70
(stress-inducible):
cytoplasmic

ATPase activity. Regulates
protein transport and cell
cycle. Anti-apoptotic. Binds
to, stabilizes and correctly
folds nascent polypeptides,
refolds denatured proteins,
prevents aggregation.
Down-regulates HSF1

Binds to APP, A�

and phospho-� in
complex with CHIP.
Reduces levels of
phospho-�, promotes its
ubiquitination and
increases levels of
inert-insoluble �.
Reduces A� levels and
reverses A� and �

toxicities

Kouchi et al. (1999);
Fonte et al. (2002);
Dou et al. (2003);
Magrane
et al. (2004);
Petrucelli
et al. (2004);
Shimura
et al. (2004b); Zhang
et al. (2004);
Magrane
et al. (2005); and
Kumar et al. (2007)

mitochondrial
(mortalin)

ATPase activity.
Mitochondrial import of
proteins and energy
production. Interacts with
mtHsp60

Unknown Yaguchi et al. (2007)

Hsp60 (chaperonins)
cytoplasmic
(TCP1)

Binds to partially folded
polypeptides to assist in
mature folding (e.g. actin,
tubulin), refolds denatured
proteins, facilitates
degradation

Levels are reduced in
A�-expression systems.

Zamostiano
et al. (1999)

mitochondrial
(Group 1)

Facilitates protein folding in
the mitochondria. Interacts
with mortalin

Protective vs. A�

toxicity to PDH,
�KGDH and electron
transport components

Bozner et al. (2002);
Veereshwarayya
et al. (2006)

(Continued)



Hsp, Upr chaperones and Alzheimer’s disease 39

Hsp40 Co-chaperone to Hsp70,
aiding ATP hydrolysis and
the closing of the Hsp70
pocket to release folded
substrate

No action reported
in AD yet, but
suppresses inclusion
formation in mutant
�-synuclein, SOD1 and
polyglutamine models

Minami et al. (1996);
Jana et al. (2000);
McLean
et al. (2002);
Takeuchi
et al. (2002);
Klucken
et al. (2004);
Muchowski and
Wacker (2005)

Small Hsp: ATP independent.
�B-crystallin Cytoskeletal stabilization,

suppresses aggregation of
partial denatured proteins

Interacts with A�, APP
and ubiquitinated �, may
increase A� toxicity

Stege et al. (1999);
Liang (2000); Fonte
et al. (2002);
Narayanan
et al. (2006)

Hsp27 Assembles into dynamic
oligomers, binds to released
cytochrome c and inhibits
caspase activation, stabilizes
intermediate microfilaments
and actin. Suppresses
aggregation and heat
inactivation of proteins. Cell
survival and metabolism
homeostasis

Binds phospho-�,
promotes its
dephosphorylation and is
neuroprotective
versus � toxicity
(ubiquitin-independent).
Binds A� and prevents
fibril formation.
Increased expression in
AD brain. Associated
with plaques

Renkawek
et al. (1993); Kudva
et al. (1997); Stege
et al. (1999);
Concannon
et al. (2003);
Shimura et al. (2004)

Hsp20 Binds A� and prevents
fibril formation,
associated with plaques
in AD brain.

Lee et al. (2005);
Wilhelmus
et al. (2006)

HspB2, B8 Suppresses A� toxicity
in vitro. Associates with
vascular A�

Wilhelmus
et al. (2006)

CONCLUSION

Although still far from application to patients with AD, the sum of these studies
provide a rationale for the development of novel therapeutic strategies designed to
up-regulate endogenous Hsp levels in order to prevent or reverse protein misfolding
and to boost aggregate-clearance mechanisms (see Table 1). Therapeutic stimu-
lation of inducible chaperones like the HSP70 and the small Hsp27 hold promise to
restore several proteolytic systems that become overwhelmed in neurodegenerative
diseases. Desirable outcomes are to increase ubiquitin-proteasome throughput to
reduce levels of soluble toxic proteins, as well as to promote aggresome formation
(a centrosome-associated, membrane bound structure to sequester small aggregates)
and lysosomal autophagy to clear the bulkier protein aggregates. Given that Hsp
are located primarily in intracellular compartments, Hsp induction is likely to
protect against A� and � toxicity by binding oligomeric species inside the cell, in
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distinction to effects on extracellular aggregates or plaques and intracellular inclu-
sions. This view is supported by some studies that show inclusion body formation
per se in �-synuclein and polyglutamine models is not affected by chaperone
expression (Warrick et al., 1999; Cummings et al., 2001; Zhou et al., 2001; Auluck
et al., 2002). This prediction however deserves to be tested in AD transgenic
animals. Moreover, the consequences of possible feedback repression of HSF1
also need to be worked out. Further understanding of the cooperative interactions
among molecular chaperones that affect APP processing, intraneuronal A� accumu-
lation and abnormal � phosphorylation would strengthen the chances to translate
present knowledge into a practical drug. Delineation of the mechanism behind the
impact of the aging process on the stress response will go a long way to develop
therapeutic approaches to reverse the toxic effects of aggregated A� peptides and
� proteins in AD. Various animal models support the notion that a critical link
between aging and the response to misfolded protein stress is mediated by HSF-1
and its HSP transcriptional targets (Hsu et al., 2003; Morley and Morimoto, 2004).
The inseparable relationship between AD and aging augers the same benefit.
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