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Abstract: The relativistic complete active-space second-order perturbation theory (CASPT2)
developed for the four-component relativistic Hamiltonian is introduced in this chapter.
This method can describe the near-degenerated and dissociated electronic states of
molecules involving heavy elements. This method is applicable for the systems which
can be described by neither DFT nor single reference methods, and the system with very
heavy-elements which cannot be described by quasi-relativistic approaches. The present
theory provides accurate descriptions of bonding or dissociation states and of ground
and excited states in a well-balanced way. In this review, for example, the ground and
low-lying excited states of diatomic molecules with 6p series, TlH, Tl2, PbH, and Pb2

are calculated with the Dirac–Coulomb (DC) CASPT2 method and their spectroscopic
constants and potential energy curves are presented. The obtained spectroscopic constants
are compared with experimental findings and previous theoretical works. For all the
molecules, the spectroscopic constants of DC-CASPT2 show reasonably good agreement
with the experimental or previous theoretical spectroscopic constants
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6.1. INTRODUCTION

For the computational investigation of molecular systems containing heavy atoms,
such as transition metals, lanthanides, and actinides, we could neglect neither
relativity nor electron correlation. Relativistic effects, both spin-free and spin-orbit,
increase with the nuclear charge of atoms. Therefore, instead of the nonrelativistic
Schrödinger equation, we must start with the Dirac equation, which has four-
component solutions. For many-electron systems, the four-component Hamiltonian
is constructed from the one-electron Dirac operator with an approximated relativistic
two-electron operator, such as the Coulomb, Breit, or Gaunt operator, within the no-
pair approximation. The four-component method is relativistically rigorous, which
includes both spin-free and spin-orbit effects in a balanced way. However it requires
much computational time since it contains more variational parameters than the
approximated, one or two-component method.

So far, to overcome the time consuming defect of the four-component method, we
have developed an efficient relativistic four-component polyatomic program REL4D
[1], as a relativistic part of program package UTChem [2]. One important feature
of REL4D is adoption of two-component Gaussian spinor with general contraction
scheme for basis functions. This is not likely to the other four-component programs
such as MOLFDIR [3] or DIRAC [4], and the adoption ensures more explicit
kinetic balance relationship. Furthermore, the size of basis sets is also reduced
compared to using decoupled scalar spin orbital basis which is used in MOLFDIR
and DIRAC. The compactness of basis sets is quite efficient especially in the
time-consuming parts such as two-electron integral evaluation [5] or molecular
spinor integral transformation [6]. In the released version of REL4D in 2004, Dirac-
Coulomb (DC) Hartree-Fock (HF), DC Kohn-Sham, and single reference electron
correlation methods, such as Møller–Plesset second-order perturbation theory (MP2)
are incorporated.

However, the systems with open shell d or f electrons tend to be near degen-
erated and single reference methods often do not work well. Instead, multireference
electron correlation methods based on the four-component relativistic Hamiltonian
become essential for the systems with heavy elements. Several multireference
methods based on the four-component Hamiltonian had been developed previ-
ously: the Fock-space coupled cluster method by Visscher et al. [7], the configu-
ration interaction (CI) method of Fleig et al. with the Kramers restricted MCSCF
wave function [8], the generalized multiconfigurational quasi-degenerate pertur-
bation theory (GMCQDPT) developed by Miyajima et al. [9] More recently,
the complete active-space second-order perturbation theory (CASPT2) based
on the four-component Dirac-Coulomb (DC) Hamiltonian was developed by
ourselves [10].

The non-relativistic CASPT2 method developed by Anderson et al. [11, 12] is one
of the most familiar multireference approaches. It is well established and has been
applied to a large number of molecular systems with the non- or quasi-relativistic
approaches. Because the CASPT2 method treats dynamic correlation effects pertur-
batively, it is less expensive than the multireference CI (MRCI) method. The
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inexpensiveness of the CASPT2 method allows us to handle a larger number of
active orbitals for correlation than the MRCI method. Molecules containing heavy-
element atoms often have many degenerated valence orbitals and the number of
determinants in the reference space tends to be large. This situation is undesirable
for the MRCI method, because the cost of MRCI drastically increases when the
dimensionality of the active space increases. If one handles a larger active space
in the MRCI method, one must often decrease the dimensionality of correlated
core or virtual space. Moreover, in the relativistic case, spin symmetry is not
available, and the correlation calculations become more expensive than for the
nonrelativistic case.

The present chapter aims to introduce the DC-CASPT2 method. Theoretical
review of the four-component DC method, especially the way of taking two-
component basis set in REL4D, is described in Section 6.2. and theoretical review of
DC-CASPT2 is described in Section 6.3. Applications of the DC-CASPT2 method
for TlH, Tl2, PbH, and Pb2 molecules are discussed with their potential curves in
Section 6.4. Conclusions are described in the final Section, 6.5.

6.2. DIRAC-COULOMB HAMILTONIAN AND TWO-COMPONENT
BASIS SPINORS

Within the Born–Oppenheimer approximation, the total electronic Dirac-Coulomb
Hamiltonian is written as

ĤDC =
Nelec∑

�

ĥD���+
Nelec∑

�<�

ĝ�� � (6-1)

where

ĥD��� = c� ·p� + ��−1�c2 −V nuc���� (6-2)

and

ĝCoulomb
�� = 1

�r� − r�� � (6-3)

Here, ĥD��� and ĝCoulomb
�� are one- and two-electron operators, respectively. � and

� are Pauli matrices, c is the speed of light, Nelec is number of electrons, and V nuc���
is the nuclear attraction potential. The electron–electron repulsion is assumed to be
the Coulomb interaction and electron-positron interactions are disregarded with no
pair approximation.

As an approach analogous of nonrelativistic Hartree-Fock theory, the four-
component Dirac-Hartree-Fock wave function is described with a Slater determinant
of one-electron molecular functions

{
�i�r��� i = 1� � � � �N elec

}
,
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	HF �r1� r2� � � � � rNelec � = �N elec!�−1/2 ��1�r1��2�r2� � � � �Nelec �rNelec �� �
(6-4)

In the four-component case, a one-electron molecular function is not a scalar
function, but a four-component vector called molecular spinor.
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The upper two-component vector �2L
i is called the large-component spinor, and

the lower �2S
i is the small-component spinor. In the REL4D program, we use two-

component (large- and small-component) atomic spinors (
2L
p and 
2S

p � for basis set
expansion.
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� (6-6)

Each component of 
2L
p and 
2S

p is generally contracted with Gaussian type spherical
harmonics functions. Contraction coefficients of the basis sets are determined by
four-component atomic calculations [5].

On the other hand, in the pioneering DHF and post-DHF program package
MOLFDIR [3] and the well-developed four-component relativistic program package
DIRAC [4], the molecular four-component spinors are expanded into decoupled
scalar spin orbitals

�i =
nL
∑

�

cL�
�i 
L�

�

⎛

⎜
⎜
⎝

1
0
0
0

⎞

⎟
⎟
⎠+

nL
∑

�

c
L�
�i 
L�

�

⎛

⎜
⎜
⎝

0
1
0
0

⎞

⎟
⎟
⎠+

nS
∑

�

cS�
�i 
S�

�

⎛

⎜
⎜
⎝

0
0
1
0

⎞

⎟
⎟
⎠+

nS
∑

�

c
S�
�i 
S�

�

⎛

⎜
⎜
⎝

0
0
0
1

⎞

⎟
⎟
⎠ �

(6-7)

with 2nL large-component and 2nS small-component basis spinors. The scalar basis
functions of 
L and 
S must obey a kinetic balance relationship,


S
p = i�� ·p�
L

p (6-8)

to avoid variational collapse. Note that this relationship only satisfies with non-
relativistic atomic limit and is valid for primitive basis functions. Because of the
derivative operator in this condition, the number of basis set for small component is
almost twice larger than the number of basis set for large component, that is nS � 2nL.

The two-component basis spinors 
2L
p and 
2S

p in REL4D, on the other hand,
obey more explicit kinetic balance relationship,


2S
p = i�V −E −2c2�−1�� ·p�
2L

p � (6-9)
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Table 6-1. Wall times in seconds for computing ERI of Au2 with
[19s14p10d5f]/(6s4p3d1f)

Program MOLFDIR REL4D-Aa REL4D–Bb

The number of basis function
Large components 160 160 160
Small components 420 160 160

Wall time 274864 22458 6670

a REL4D-A– separate contraction coefficients for quantum number a = ±;
b REL4D-B – same contraction coefficients for quantum number a = ±.

which completely reproduces relativistic atomic limit and is valid for contracted
basis functions. The molecular spinor coefficients CL

pi and CS
pi are optimized

commonly among the � and � components of each large or small component.
Therefore the number of basis sets of large and small component is equal. If
one uses the same number of large-component basis sets in the two- and one-
component basis set expansion approaches, to realize same quality calculations, the
two-component basis set scheme requires almost two-thirds number of basis sets
of the one-component scheme. The compactness of basis sets is quite efficient,
especially in the routines which depend on higher order of basis set, such as
two-electron integral evaluation or molecular spinor integral transformation. For
example, Au2 system, REL4D is more than ten times faster for computing electron
repulsion integral, and eight times faster for computing molecular spinor integral
transformation than MOLFDIR as referred in Tables 6-1 and 6-2 [5, 6].

6.3. DIRAC-COULOMB CASPT2 METHOD

The formulation of the relativistic CASPT2 method is almost the same as the
nonrelativistic CASPT2 in the second quantized form. In this section, firstly we
express the relativistic Hamiltonian in the second quantized form, and then, we give
a summary of the CASPT2 method [11, 12].

Table 6-2. Wall times in seconds of the integral transformation by
MOLFDIR, DIRAC and REL4D in the Au2 calculation

Program MOLFDIR DIRAC REL4D

The number of basis function
Large components 160 160 160
Small components 420 422 160

Wall time 30080a 16691 4310

a This value was the interrupted result because the MOLFDIR program
was suspended with some program errors.
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The total electronic Hamiltonian (6.1) is rewritten in the second quantized form
as

Ĥ =∑

pq

hpqÊpq + 1
2

∑

p�q�r�s

�pq�rs�
[



EpqÊrs −�psÊrq

]
� (6-10)

Here, hpq is a relativistic one-electron molecular spinor integral, and �pq�rs� is a
two-electron molecular spinor integral written in chemist’s notation. The second
quantized formulation is same as the nonrelativistic one when we use an excitation
operator,

Êpq = â†
pâq� �p� q ∈ all molecular spinors� � (6-11)

The operator is different from the spin-averaged nonrelativistic excitation operator
denoted by

Êpq = 1
2

(
â†

p�âq� + â†
p�âq�

)
�p� q ∈ all molecular orbitals� � (6-12)

The absence of spin symmetry in the relativistic case makes the indices run over
all spinor space, which is twice as wide as the non-relativistic orbital space.

Here, we summarize the CASPT2 method [11, 12]. In perturbation theory in
the correlation problem, partitioning of the total Hamiltonian Ĥ into a 0th-order
Hamiltonian Ĥ0 and a small perturbation V̂ is a major problem. The 0th-order
wave function �0�, which is the eigenstate of Ĥ0, should be mostly close to the
exact eigenstate of Ĥ for the rapid convergence of the perturbation. As a 0th-order
wave function, the CASPT2 method adopts a multiconfigurational wave function
generated from the CASSCF or CASCI calculations.

To determine Ĥ0, the configurational space for the expansion of the wave function
is introduced. The space is divided into four subspaces: V0, VK, VSD, and VTQ���. V0 is
the one-dimensional space spanned by a CASSCF or CASCI reference function �0�.
VK is the space spanned by the orthogonal complements of �0�, which is obtained by
the same CASCI calculation that generates the reference function. VSD is the space
spanned by the single and double replacement states from the reference function,
and VTQ��� is the space spanned by all the higher order replacement states from
the reference function. Only the states in VSD contribute to the expansion of the
first-order wave function and the second-order correlation energy, because only
states in VSD interact with the reference function via the total Hamiltonian Ĥ . The
Ĥ0 in CASPT2 is constructed so that only VSD contributes to the expansion of the
first-order wave function. The resulting Ĥ0 is given by



H0 = 

P0



F


P0 + 

PK



F


PK + 

PSD



F


PSD + 

PTQ���



F


PTQ��� (6-13)

Here,


P0,


PK,


PSD, and


PTQ���denote projection operators to V0, VK, VSD, and VTQ���

subspaces, respectively.
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F in Eq. (6-13) is a sum of one-electron operators and is given by



F =∑

pq

fpq



Epq� (6-14)

Here, fpq is the generalized Fock matrix elements,

fpq = hpq +∑
rs

Drs ��pq �rs �− �ps �rq ��� (6-15)

where Drs is the first-order density matrix element.
The first-order wave function, which determines the second-order correlation

energy, is expanded with a set of �i� in VSD space as

�	1� =
M∑

i=1

Ci �i� � (6-16)

and the coefficients Ci are determined by the linear equations

M∑

j=1

Cj �i� 

H0 −E0 �j� = −�i� 

H �0� � i = 1� � � � ��� M (6-17)

where E0 = �0� 

H0 �0� is the 0th-order energy and M is the total number of states
�i�, which is the multiconfigurational state in VSD space, ÊpqÊrs �0�.

If the one-electron operator of Eq. (6-14) consists of only diagonal operators, that

is


F =∑

p
f ′

pp



Epp, the linear equations of Eq. (6-17) are separated into eight noninter-

acting subgroups. In this case, the evaluation of the inverse matrix of �i� 

H0 −E0 �j�,
which is required to solve Eq. (6-17), is also divided into eight subgroups and the
cost of calculation is decreased. Therefore, to obtain the diagonal Fock operator,
fpq is transformed to f ′

pq = �pq�p by a unitary transformation with block diagonal-
izations within three subspaces: inactive, active, and secondary. Molecular spinors
are also transformed by the unitary transformation. The transformed spinors are
used as a one-electron basis to obtain the first-order wave function. After solving
Eq. (6-17) within the eight subgroups, the second-order energy with the diagonal
Fock operator is evaluated by

E2 = �0� Ĥ �	1� (6-18)

The effects of the nondiagonal part of the Fock operator in Eq. (6-14) can be
estimated additionally with an iterative procedure [12]. More details are given in
refs. [11, 12].

In the relativistic CASPT2 method, the matrix elements �i� 

H0 − E0 �j� and

�i� 

H �0� are evaluated with the excitation operator in the spinor basis, rather than
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the nonrelativistic spin-averaged excitation operator in the orbital basis. Thus,
double-group symmetry can be used instead of the single-group treatment in the
nonrelativistic approach. Consequently, in the relativistic case, the complex values
of one- and two-electron integrals and CI coefficients must be handled. This makes
computational cost larger than in the nonrelativistic case.

6.4. APPLICATIONS

6.4.1. Computational Details

Low-lying states of TlH, Tl2, PbH, and Pb2 molecules were calculated with the four-
component DC-CASPT2 method. For the TlH and Tl2 molecules, various theoretical
calculations have been reported so far and readers are referred to refs. [13–16],
[17–22], for TlH and Tl2 respectively. For the PbH and Pb2 molecules, theoretical
applications are fewer, such as reference [23] for PbH and refs [19, 24] for Pb2. In
the TlH molecule, the Hartree–Fock (HF), the second-order Møller–Plesset (MP2)
theory, and the complete active-space configuration interaction (CASCI) based on
the DC Hamiltonian (DC-HF, DC-MP2, and DC-CASCI) were also calculated for
comparison with DC-CASPT2. The DC-CASCI wave function was used as the
reference function for DC-CASPT2. Molecular spinors were determined by the RHF
or ROHF methods. For virtual spinors, the improved virtual orbital (IVO) method
[25, 26] was adopted. Usually, CASSCF is used as the reference function of non-
relativistic CASPT2. While application of four-component relativistic CASSCF is
theoretically possible, analogues of Fleig’s work [8], it requires complicated calcu-
lations. Instead of CASSCF, we applied the CASCI-IVO method as the reference
function which is more simple and robust than CASSCF. We used DC-CASPT2
with the diagonal approximation [11] for the present calculations. The REL4D part
[1] in the UTChem program package [2] was used for the DC-HF [5], integral
transformation [6], and the DC-MP2 calculations. For IVO, DC-CASCI, and DC-
CASPT2 calculations, new programs were developed.

Spherical harmonic Gaussian-type basis spinors with general contraction were
used throughout this study. For TlH and Tl2 calculations, the exponents of the
Gaussian basis functions [27] determined by the spin-free third-order Douglas–Kroll
(DK3) method [28] with point-charge nucleus model were used, and contraction
coefficients were determined by the four-component atomic SCF calculation [29].
For PbH and Pb2 calculations, relativistic Gaussian basis set with finite nucleus
model determined by Faegri [30] was used. The finite nucleus model was adopted
for PbH and Pb2 calculations, whereas point-charge nucleus model was adopted for
TlH and Tl2. Outer exponents were decontracted to be valence triple-zeta quality
and several diffused primitive exponents were added by even tempered method
from division by 2.5. The size of the large-components basis sets is as follows;
H:[8s2p]/(5s2p), Tl:[28s23p15d11f]/(10s7p6d4f) for TlH and Tl2, H:[8s2p]/(5s2p)
and Pb:[25s21p14d9f]/(10s7p5d3f) for PbH, and Pb:[25s21p14d9f]/(10s9p5d3f) for
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Pb2. Spectroscopic constants of equilibrium bond lengths (Re), harmonic frequencies
(�e), adiabatic transition energies (Te), and dissociation energies (De) were obtained
by fitting to an analytical form using cubic splines. The dissociation energy was
obtained by substitution from the sum of energies of the atomic states to the
minimum energy of the molecular state. To simplify notations, we abbreviate the
taking of active space and active electrons in CASCI calculations to the form CASCI
(Nact, Nelec). Nact indicates the number of spinors in the active space, and Nelec

indicates the number of electrons in the active space. For the CASPT2 calculations,
we also use abbreviations such as CASPT2(Ninact, Nact, Nsec) with the number
of spinors in inactive space, Ninact, active space, Nact, and secondary space, Nsec,
respectively.

6.4.2. TlH Molecule

The DC-CASCI (12, 4) calculation was performed to construct reference functions.
The active space includes the molecular spinors, which have atomic nature of 6s1/2,
6p1/2, 6p3/2 of Tl and 1s1/2 of H, and two virtual molecular spinors. The DC-
CASPT2 (10, 12, 110) calculation followed and this choice of active space provided
smooth potential curves for four low-lying states of TlH at the DC-CASPT2
level.

The potential curves for the ground state with the DC-HF, DC-MP2, DC-CASCI,
and DC-CASPT2 methods are illustrated in Figure 6-1, which shows that the
deviation of the multireference methods, DC-CASCI and DC-CASPT2, from the
single-reference methods, DC-HF and DC-MP2, becomes significant in the region
of longer bond length. From the spectroscopic constants listed in Table 6-3 with
experimental data [31], the DC-CASPT2 method provides better agreement with
experiment for the three properties, Re, �e, and De than the DC-HF, DC-CASCI,
and DC-MP2 method.

In the bonding region, the ground state of DC-CASCI is mainly contributed
by the DC-HF determinant and the DC-HF weight is about 97%. The static
correlation of DC-CASCI provides 0.052 Å longer bond length and 190 cm−1

smaller harmonic frequency than the DC-HF results. The DC-CASCI results
overestimate the experimental bond length and underestimate the experimental
frequency. The dynamic correlation by DC-CASPT2 corrects the bond length
and frequency of DC-CASCI toward the experimental values. The deviation
of the DC-CASPT2 result from the experimental values (Re = 1�870 Å
and �e = 1391 cm−1) is 0.023 Å in bond length and 40 cm−1 in harmonic
frequency.

The ground state and three low-lying states calculated at the DC-CASPT2 level
are shown in Figure 6-2 and assigned as 0+(I), 0−, 1, and 0+(II), from the lower
states respectively. In our calculation, only the 0+(II) state has minimum energy
among the excited states. This state has a dissociation channel of the 2P3/2 excited
state of Tl and the 1S1/2 ground state of H, while the other three states have a
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Figure 6-1. Potential energy curves of the ground state of TlH with various four-component electron
correlation methods

dissociation channel of the 2P1/2 ground state of Tl and the 1S1/2 ground state
of H. The spectroscopic constants of the 0+(II) state are listed in Table 6-4 with
experimental findings [32] and the previous theoretical work by Rakowitz et al.[15]
Our DC-CASPT2 result for 0+(II) state agrees with both experiments and the
theoretical spin-orbit CI works very well.

Table 6-3. Spectroscopic constants of ground state TlH (0+
g � at several

calculation levels

Method Re (Å) �e (cm−1� De(eV)

Present calculations
DC-HF 1.871 1447 –
DC-MP2 1.869 1425 –
DC-CASCI 1.923 1257 1.45
DC-CASPT2 1.893 1351 1.87

exp.a 1.870 1391 2.06

a Ref. [31].
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Figure 6-2. Potential energy curves of low-lying TlH states at the DC-CASPT2 level. 0+: ,
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6.4.3. Tl2 Molecule

The DC-CASCI (16, 2) calculation was performed to construct reference functions.
The active space includes the molecular spinors, which have atomic nature of 6p
spinors of two Tl and four virtual molecular spinors. We followed this with the
DC-CASPT2 (12, 16, 128) calculation, and nine low-lying states were obtained.
Potential curves of the nine low-lying states of Tl2 calculated at the DC-CASPT2
level are shown in Figure 6-3. The spectroscopic constants of the ground state (0−

u )
at the DC-CASCI and DC-CASPT2 levels are listed in Table 6-5 with the Raman
experimental data [33] and the two-component Kramers restricted (KR) CI results
with relativistic effective potential (REP), reported by Kim et al. [17] and Han et al.
[18], and the spin–free DK2-CASPT2 results with perturbative spin–orbit coupling
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Table 6-4. Spectroscopic constants of the excited state of TlH (0+
g (II))

at the DC-CASPT2 level with previous findings

Method Re (Å) De(eV) Te(eV)

DC-CASPT2 1�861 0.85 2.09
SOCIEXa 1�86 – 2.07
exp.b 1�86 – 2.18

a Rakowitz et al. Spin-orbit CI with energy extrapolation [15]; b Ref.
[32].

by Roos et al. [19] The states obtained by DC-HF and DC-MP2 methods are 0+
g ,

which have different symmetry from the ground state, and hence the results of
DC-HF and DC-MP2 are not included in Table 6-3. For the excited states, the DC-
CASPT2 results are listed in Table 6-6 compared with the two-component KRCI
method by Kim et al. [17]
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Table 6-5. Spectroscopic constants of the ground state Tl2 (0−
u ) at several calcu-

lation levels

Method Re (Å) �e (cm−1) De(eV)

DC-CASCI 3.56 39 –0.01
DC-CASPT2 3.04 84 0.51
KRCI-REPa 3.30 55 0.32
KRCI-REPb 3.11 75 0.34
CASPT2-SOCc 3.09 75 0.43
exp.d 3.00 78 0�43±0�04

aTwo-component KR-RASCI(ras1 = 4,ras2 = 12,ras3 = 36) with REP by Kim
et al. [17]; bTwo-component KR-RASCI(ras1 = 24,ras2 = 4,ras3 =full virtual
spinors) with REP Han et al. [18]; cSpin–free CASPT2 with perturbative spin–
orbit coupling (SOC) by Roos et al. [19]. The dissociation energy is D0 value;
dRef. [33]. The dissociation energy is D0 value.

In Table 6-3, the spectroscopic constants of the ground state (0−
u ) with DC-

CASPT2 (Re = 3�04 Å, �e = 84 cm−1, and De = 0�51 eV) show satisfactory
agreement with the experimental results (Re = 3�0 Å, �e = 78 cm−1, and D0 =
0�43 ± 0�03 eV) [33]. From the comparison to the DC-CASCI result (Re = 3�56
Å, �e = 39 cm−1, and De = −0�01 eV), dynamic correlation by DC-CASPT2 is
very important for the weak bonding description of the Tl2 molecule. The present
DC-CASPT2 method yields the similar result in comparison with the previous
theoretical results. For the properties in the excited states in Table 6-4, DC-CASPT2
and KRCI by Kim et al. have relatively similar values of Te among the lower four
states, 0−

u , 1u(I), 0+
g (I), and 0+

u . Other properties, Re, �e, and De of these states
are not very similar because the CI calculation by Kim et al. uses a smaller spinor
space in correlation than the present DC-CASPT2 calculation.

Table 6-6. Spectroscopic constants of the nine low-lying states of Tl2 at the DC-CASPT2 level with
previous theoretical results

DC-CASPT2 KRCI-REPa

�e De Te �e De Te

State Re (Å) Re (Å)
(cm−1) (eV) (eV) (cm−1) (eV) (eV)

0−
u 3�04 84 0�51 0 3�30 55 0�32 0

1u(I) 3�07 79 0�37 0�135 3�36 47 0�20 0�115
0+

g (I) 2�90 79 0�36 0�146 3�62 29 0�15 0�169
0+

u 2�97 98 1�24 0�198 3�16 73 0�90 0�232
2g 2�74 123 0�81 0�622 3�08 62 0�17 0�973
0+

g (II) 3�08 111 0�74 0�690 3�34 66 0�42 0�727
1u(II) – – – (∼0.7) 3�33 54 0�32 0�824
2u 3�09 60 0�52 0�917 3�26 64 0�51 0�628
1g – – – (∼0.9) 2�96 87 0�47 0�662

aTwo-component KR-RASCI(4, 12, 36) with REP by Kim et al. [17]



170 M. Abe et al.

6.4.4. PbH Molecule

The DC-CASCI (10, 3) calculation was performed to construct reference functions.
The active space includes the molecular spinors, which have atomic nature of
6s1/2, 6p1/2, and 6p3/2 of Pb and 1s1/2 of H and three virtual molecular spinors.
This was followed with the DC-CASPT2 (26, 10, 86) level of calculation which
provided smooth curves both at the bonding and dissociation regions for five of
the low-lying states. These potential curves are represented in Figure 6-4. The
spectroscopic constants of the lowest lying states (� = 1/2 (ground) and � = 3/2)
at the DC-CASCI and DC-CASPT2 level of computation are compared and listed
in Table 6-7 with the experimental data [34]. Theoretical calculations using the
generalized relativistic effective core potential (GRECP) followed by multireference
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Figure 6-4. Potential energy curves of the five low-lying states of PbH at the DC-CASPT2 level.
1/2: , 3/2:
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Table 6-7. Spectroscopic constants of the two low-lying states of PbH with experimental findings and
previous calculation. BSSE is estimated by counterpoise correction (CPC)

Method Re (Å) �e (cm−1) De(eV) Te (eV)

1/2 state (ground state)
DC-CASCI (10, 3) 1�830 1628 0�69 0
DC-CASCI (10, 3)+CPC 1�830 1627 0�87 0
DC-CASPT2 (26, 10, 86) 1�816 1601 1�39 0
DC-CASPT2 (26, 10, 86)+CPC 1�849 1514 1�42 0
GRECP/5eMRD-CIa 1�871 1686 1�44 0
exp.b 1�838 1564 ≤ 1.59 0

3/2 state
DC-CASCI (10, 3) 1�806 1708 0�80 0.805
DC-CASPT2 (26, 10, 86) 1�790 1685 1�39 0.829
GRECP/5eMRD-CIa 1�855 1727 – 0.797
exp.c – – – ∼ 0�855

afive electrons MRD-CI calculation with GRECP by Isaev et al. [23]; bRef. [34]; cUnpublished data by
Fink et al.

single- and double-excitation configuration interaction (MRD-CI) method by Isaev
et al. [23] are also listed.

For the ground state, we performed counterpoise corrections (CPC) to estimate
basis set superposition error (BSSE). While DC-CASPT2 without CPC provides
slightly shorter bond length (0.016 Å) and larger frequency (37 cm−1) than exper-
imental values, CPC improves these values toward the experiment, longer bond
length (0.011 Å) and smaller frequencies (50 cm−1). The present DC-CASPT2-CPC
results show good agreement with experiment. The effects of CPC are 0.033 Å in
bond length, 87 cm−1 in harmonic frequency, and 0.03 eV in dissociation energy.
For the first excited state, 3/2(I), the excitation energy of DC-CASPT2 (0.829 eV)
is quite close to the experimental value (∼0.855 eV). The 3/2(I) state have shorter
bond length and larger harmonic frequency than the ground state and this tendency
is similar to the previous calculation with GRECP/MRDCI method. Atomic spectra
of Pb at the DC-CASPT2 level are also consistent with experimental values: First
excitation energy, 0.830 eV, and second excitation energy, 1.278 eV, are obtained
by the DC-CASPT2 method, whereas experimentally they are determined 0.970 eV
and 1.320 eV respectively [35].

6.4.5. Pb2 Molecule

The DC-CASCI (12, 4) calculation was performed to construct reference functions.
The active space includes the molecular spinors, which have atomic nature of 6p1/2

and 6p3/2 of Pb. This was followed with the DC-CASPT2 (24, 12, 160) level
of calculation and the potential energy curves are illustrated in Figure 6-5a. This
figure includes all the states which go to the first, second, and third dissociation
channels, except 1u(II) state, which had intruder state problem. For simplification
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Figure 6-5a. Potential energy curves of the ten low-lying states of Pb2 at the DC-CASPT2 level.
0g: , 0u: , 1g: , 1u: , 2g: , 2u:

of Figure 6-5ca, gerade and ungerade symmetries are separately represented in
Figures 6-5cb and 6-5cc, respectively. In Table 6-8, spectroscopic constants of
the ground state, 0g, at the DC-CASPT2 with and without CPC are listed with
experimental data [36, 37] and a previous theoretical work with spin–free Douglas-
Kroll CASPT2 with perturbative spin–orbit coupling (SOC) by Roos et al. [19].
[25s21p14d9f]/(10s9p5d3f) basis set, triple zeta (TZ) quality with two s-type and
two p-type diffuse primitive functions (TZ+2s+2p), was used to obtain the whole
potential curves and spectroscopic properties of ground and excited states. To
estimate the effects of BSSE for the ground state, two types of basis sets were also
used, TZ with two s-type primitive functions (TZ+2s) and TZ with two s−, two
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Figure 6-5b. Potential energy curves of the gerade states of Pb2 at the DC-CASPT2 level. 0g(I), 0g(II),
0g(III), 1g(I), 1g(II), and 2g(I) states are included. 0g: , 1g: , 2g:

p−, and one d-type primitive functions (TZ+2s+2p+1d). Spectroscopic constants
of two excited states, 0g(III) and 1u(I), were analyzed and listed in Table 6-9.

The ground state properties of DC-CASPT2 summarized in Table 6-8, are
reasonably consistent with the experimental data and the previous calculations,
except that dissociation energy was underestimated in our calculations. In the case
of Pb2, unlikely to PbH, CPC did not give improvement in all types of the basis sets,
and the CPC effects are 0.034 Å in bond length, 3.4 cm−1 in frequency, and 0.10 eV
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Figure 6-5c. Potential energy curves of the ungerade states of Pb2 at the DC-CASPT2 level. 0u(I),
0u(II), 1u(I), and 2u(I) states are included. 0u: , 1u: , 2u:

in dissociation energy when TZ+2s+2p basis was used. Among the three types
of basis sets, the largest basis set provides closest results to the experiment and
the deviations of CPC become also smallest. In this molecule, the basis-set depen-
dency is important, and more additional functions are required not only diffuse but
also polarization, for accuracy beyond the present calculations. In Figure 5a, while
the ground state exists and dissociates solely, low-ling excited states are closely
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Table 6-8. Spectroscopic constants of the ground state of Pb2 (0g), with various basis sets at the
DC-CASPT2 level. BSSE is estimated by counterpoise correction (CPC)

DC-CASPT2 without CPC DC-CASPT2 with CPC

�e �e

Basis setsa Re (Å) De(eV) Re (Å) De(eV)
(cm−1) (cm−1)

TZ+2s 2�983 103�4 0�927 3�018 98�4 0�506
TZ+2s+2p 2�969 107�4 0�525 3�003 104�0 0�424
TZ+2s+2p+1d 2�968 109�2 0�630 3�000 106�7 0�550

Previous works Re (Å) �e (cm−1) De(eV)

CASPT2+SOCa 2.937 104 0.917
exp. 2�932b 110c 0�86c

aSpin–free CASPT2 with perturbative spin–orbit coupling (SOC) by Roos et al. [19]; bRef. [36]; cRef.
[37]

located each other and show complex structures, like avoided crossings. The states
with double minimum or pertubatively unstable were eliminated from spectroscopic
calculations and 1u(I) and 0g(III) are analyzed . There are neither experimental nor
theoretically work before for the excited state of Pb2, and this is the first prediction
for the system.

6.5. CONCLUSIONS

We have reviewed the relativistic CASPT2 method with the four-component Dirac
Hamiltonian, which has been proposed by our group recently. Because of the
high computational demands of relativistic multireference correlation methods, the
perturbative approach of dynamic correlation in the present method provides feasible
calculations and the ability to use wider correlated spinor spaces than the relativistic
multireference CC or CI methods. As examples, 6p series diatomic molecules
are calculated with the CASPT2 diagonal approximation based on CASCI-IVO
reference functions. The relativistic CASPT2 method shows good agreement with

Table 6-9. Spectroscopic constants of low-lying states of Pb2 molecule (0g(I),
0g(III) and 1u(I)), at the DC-CASPT2 level. The size of basis set for Pb is
[25s21p14d9f]/(10s9p5d3f)

Re (Å) �e (cm−1) De(eV) Te(eV)

0g(I) 2�969 107�4 0�525 0
1u(I) 2�800 184�8 0�790 0�722
0g(III) 3�123 79�9 0�462 1�497
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experimental and previous accurate ab initio calculations for the spectroscopic
constants of both ground and low-lying excited states.

Because of highly accurate treatment of relativity with the four-component Dirac
Hamiltonian, the present theory makes it possible to investigate molecules involving
any heavy-element atoms. Since the present method is multireference-base, we can
handle the systems with complicated electronic structures, for examples, lanthanide
and actinide compounds, which often have a large number of near-degenerated
states. Besides, unlikely to single-reference methods, the CASPT2 method can
describe dissociation of bonding and effective to tract chemical reactions. Thus,
it is expected that the relativistic CASPT2 will be a powerful tool to search new
chemical reactions with heavy-element atoms.
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