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Abstract We analyze natural convection in porous layers subjected to gravity
modulation. In particular a linear stability analysis and weak non-linear analysis
is presented for both synchronous and subharmonic solutions and the exact point
for the transition from synchronous to subharmonic solutions is computed. It is
demonstrated that increasing the excitation frequency rapidly stabilizes the convec-
tion up to the transition point from synchronous to subharmonic convection. Beyond
the transition point, the effect of increasing the frequency is to slowly destabilize
the convection.The weak-non-linear results show that increasing the excitation fre-
quency rapidly decays the convection amplitude. An analogy between the inverted
pendulum with an oscillating pivot point and the gravity modulated porous layer is
developed and it is shown that the convection cell wavelength is related to the length
of the pendulum.

1 Introduction

The classical Rayleigh–Benard problem has been extensively studied for both pure
fluids and porous domains, with and without rotation. In both pure fluids and porous
media, the density gradient becomes unstable and fluid motion results when a criti-
cal temperature difference, measured by means of the Rayleigh number, is exceeded.
Comprehensive reviews are provided by Chandrasekar (1961) for pure fluids whilst
Bejan (1995) provides a review of the fundamentals of heat convection in porous
media.

The classical stability analysis no longer applies if the Rayleigh number (or the
temperature difference) is time dependant. Time dependant body forces may oc-
cur in systems, with density gradients, subjected to vibrations. The influence of
vibrations on thermal convection depends on the orientation of the time depen-
dant acceleration with respect to the thermal stratification. Much work has been
done for pure fluids for a vertically modulated fluid layer with constant vertical

S. Govender
University of Kwa-Zulu Natal, Durban, South Africa
e-mail: govenders65@ukzn.ac.za

P. Vadász (ed.), Emerging Topics in Heat and Mass Transfer in Porous Media, 133
C© Springer Science+Business Media B.V. 2008



134 S. Govender

stratification, i.e. modulated Rayleigh–Benard convection. Comprehensive analyses
by Gresho & Sani (1970), Wadih & Roux (1988), Christov & Homsy (2001) and
Hirata et al. (2001) are available for flow and heat transfer in a pure fluid layer sub-
jected to gravity modulation. Alex & Patil (2002a, b), Bardan and Mojtabi (2000)
and Bardan et al. (2004) provide the good references of work dealing with the effects
ofvibrationonflowandheat transfer inporousmedia. In the latter twostudieshowever,
an averaging technique is used whereby the vibration body force is split into a steady
and time dependant portion. It is also mentioned that with this method of solution,
the subharmonic modes are never captured. Govender (2004, 2005a) utilises a direct
method of solution and the resulting governing equation is cast into the canonical form
of the much publicized Mathieu equation. The author then analyses the problem and
recovers both the synchronous and subharmonic solutions in the parameter domain.
In addition Govender (2005b) provides a comprehensive weak-nonlinear analysis for
high frequency vibration. Also, Govender (2005c) provides an analysis for stability
analyses for gravity modulation with heating from below whilst Govender (2005d)
provides a stability analysis of low frequency vibration.

2 Problem Formulation

A shallow horizontal fluid saturated porous layer subject to vibration is presented in
Fig. 1. The porous medium is constrained by rigid horizontal plates, spaced a
distance H∗ apart, and oscillates parallel to the gravitational field in the vertical
direction. In addition the Darcy law is extended to include the time derivative while
the Boussinesq approximation is applied to account for the effects of the density
variations.

Subject to these conditions, the following dimensional set of governing equations
for continuity, Darcy and energy, is proposed:

∇∗ · V ∗ = 0, (1)

V ∗ = k∗
μ∗

[

−∇∗ p∗ − (ρ∗ − ρc∗ ) (g∗ + b∗ω∗ sin (ω∗t∗)) êz − ρc∗

φ

�V ∗
�t∗

]

, (2)

�T∗
�t∗

+ V ∗ · ∇∗T∗ = �∗∇2
∗ T∗. (3)

Fig. 1 Differentially heated
porous layer subjected to
vibration x*

z*

TH
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It should be borne in mind that if the temperature effects are removed from Eq. (2),
we obtain in the frequency domain a frequency dependant and complex valued
permeability whose real and imaginary parts show a behaviour that resembles the
Biot seepage law. The values �∗

/
H∗ , μ∗�∗

/
kc∗ and �Tc = (TH − TC ) are used

to scale the filtration velocity components (u∗, v∗, w∗), reduced pressure (p∗), and
temperature variations (T∗ − TC ), respectively, where �∗ is the effective thermal
diffusivity including the effect of the ratio between the heat capacity of the fluid and
the effective heat capacity of the porous domain, μ∗ is the fluid’s viscosity and kc∗

is a characteristic permeability associated with the porous matrix. The height of the
layer H∗ is used for scaling the variables x∗, y∗, and z∗. Accordingly, x = x∗

/
H∗,

y = y∗
/

H∗ , and z = z∗
/

H∗. The time variable is scaled using H 2
∗
/
λ∗ , hence

t = t∗�∗
/

H 2
∗ . In the current study a linear approximation was assumed for the re-

lationship between the density and temperature, in the form ρ∗ = ρc∗ (1 − β∗�TcT )
where β∗ is the thermal expansion coefficient. Subject to the dimensional analysis,
the following system of dimensionless equations result:

∇ · V = 0, (4)
(

1

V a

�

�t
+ 1

)

V = −∇ p − R
[
1 + δ sin (�t)

]
T êz, (5)

�T

�t
+ V · ∇T = ∇2T . (6)

The symbols V , T and p represent the dimensionless filtration velocity vector,
temperature and reduced pressure, respectively, and êz is a unit vector in the z-
direction. In Eq. (5), � is the scaled frequency, defined as � = ω∗ H 2

∗
/
λ∗ , whilst

the non-dimensional amplitude δ is defined as δ = κ Fr�2, where κ = b∗
/

H∗ and
Fr is the modified Froude number defined as Fr = �2

∗
/(

g∗ H 3
∗
)
. The parameter

V a is the Vadasz number, as pointed out by Straughan (2000), and includes the
Prandtl and Darcy numbers as well as the porosity of the porous domain and is
defined as

V a = φ Pr

Da
. (7)

In Eq. (7) Pr = ν∗
/
λ∗ is the Prandtl number, Da = kc∗

/
H 2

∗ is the Darcy number,
φ is the porosity and ν∗ stands for the kinematic viscosity of the fluid. It is only
through this combined dimensionless group that the Prandtl number affects the flow
in the porous media, see Vadasz (1998) for a full discussion on the numerical values
that Pr can assume in a typical porous medium. In Eq. (5) one also observes the
Rayleigh number, R; defined as R = β∗�TC g∗kc∗ H∗

/
ν∗�∗ . As all boundaries are

rigid, the solution must follow the impermeability conditions there, i.e. V ·ên = 0 on
the boundaries, where ên is a unit vector normal to the boundary. The temperature
boundary conditions are: T = 1 at z = 0, T = 0 at z = 1 and ∇T · ên = 0
on all other walls representing the insulation condition on these walls. The partial
differential equations (4–6) forms a non-linear coupled system which together with
the corresponding boundary conditions accepts a basic motionless solution with a
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parabolic pressure distribution. The solutions for the basic temperature and flow
field is given as, TB = 1 − z and VB = 0. To provide a non-trivial solution to the
system it is convenient to apply the curl operator (∇×) twice on Eq. (5) and consider
the z-component, to obtain,

(
1

V a

�

�t
+ 1

)

∇2V + R
[
1 + δ sin (�t)

]∇2
H T êz = 0, (8)

for a solenoidal velocity field, Eq. (4). The Laplacian operator in Eq. (8) is defined
as ∇2

H ≡ �2
/

�x2 + �2
/

�y2 for cartesian co-ordinates.

3 Linear Stability Analysis

The basic motionless solution is VB = 0 and TB = 1 − z. Assuming small pertur-
bations around the basic solution in the form V = V B + V ′ and T = TB + T ′, and
linearising equations (6) and (8) yields the following linear system,

(
1

V a

�

�t
+ 1

)

∇2V ′ + R
[
1 + δ sin (�t)

]
[

�2T ′

�x�z
êx + �2T ′

�y�z
êy − ∇2

H T ′êz

]

= 0,

(9)
[

�

�t
− ∇2

]

T ′ − w′ = 0, (10)

where w′ is the perturbation to the vertical component of the filtration velocity. The
boundary conditions in the z−direction required for solving Eqs. (9) and (10) are
w′ = T ′ = 0 at z = 0 and z = 1. In the x-direction �T

/
�x = 0 at x = 0 and

x = L . The coupling between Eqs. (9) and (10) can be removed by considering the
vertical component of Eq. (9) and eliminating w′ to provide one equation for the
temperature perturbation in the form

(
1

V a

�

�t
+ 1

)

∇2

[
�

�t
− ∇2

]

T ′ − R
[
1 + δ sin (�t)

]∇2
H T ′ = 0. (11)

Assuming an expansion into normal modes in the x- and y-directions, and a time-
dependant amplitude θ (t) of the form,

T ′ = θ (t) exp
[
i
(
sx y + syz

)]
sin (π z) + c.c, (12)

where c.c. stands for the complex conjugate terms and s2 = s2
x + s2

y . Substituting
Eq. (12) into the Eq. (11) provides an ordinary differential equation for the ampli-
tude θ (t),

d2θ

dt2
+ 2p

dθ

dt
− F (α) γ

[(
R̃ − R̃o

) + R̃δ sin (�t)
]
θ = 0, (13)
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where α = s2
/
π2, γ = V a

/
π2 and R̃ = R

/
π2. In Eq. (13), 2p = π2 (α + 1 +

V a), F (α) = π4α
/

(α + 1) and R̃o is the un-modulated Rayleigh number defined as
R̃o = (α + 1)2

/
α. Using the transformation t = (

π
/

2 + 2τ
)/

�, equation (13) may
be cast into the canonical form of the Mathieu equation, as outlined by McLachlan
(1964), and is given as

d2 X

d�2
+ [a + 2q cos (2�)] X = 0. (14)

The solution to Eq. (14) follows the form X = G (�) eστ where G (�) is a periodic
function with a period ofπ or 2π andσ is a characteristic exponent which is a complex
number and is a function of a and q respectively. In this chapter the definitions for a, q
and σ are obtained upon transforming Eq. (13) to the canonical form and is defined as,

2√−a
= �

[
F (α) γ

(
R̃ − η

)]1/2
, (15)

1

2
q = F (α) γ R̃δ

�2
= F (α) γ R̃κ Fr, (16)

σ = −2p
/

�, (17)

where η is a parameter defined as,

η = −R̃o
(α + 1 − γ )2

4γ (α + 1)
. (18)

When σ = σr = 0, the solution to Eq. (14) is defined in terms of Mathieu functions,
cn and dm , such that for each Mathieu function, cn and dm , there exists a relation
between a and q. This relationship is shown in Fig. 2 for the Mathieu functions d0,
c1 and d1 for small values of q.

It is observed from Fig. 2 that d0, c1 and d1 separates the stable and unstable so-
lutions. If the other Mathieu functions (viz. cn and dm where n = 2, 3, 4..N and
m = 2, 3, 4, ..M) are superimposed on Fig. 2 one would observe that the regions
separated by the Mathieu functions in the a–q plane are alternately stable and un-
stable. For our analysis we consider only small values of q, so the analysis around
the Mathieu functions d0, c1 and d1 is sufficient. Upon examining Fig. 2, one is able
to note that the region below curve d0, and the region enclosed between curves c1

and d1 correspond to the unstable zones. The narrow region between curves d0 and
c1 represent the stable zones. In principle the regions enclosed by even indices of dm

(i.e. m = 0, 2, 4, 6..) yields synchronous solutions whilst those regions enclosed by
odd indices of dm (i.e. m = 1, 3, 5, 7..) yields subharmonic solutions thus implying
that the a–q plane consists of alternating regions of synchronous and subharmonic
solutions. In the stable regions of Mathieu’s equation, � is complex with a negative
real part. Since � is a function of a and q, which are dependant on γ, R̃, α, δ and �,
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Fig. 2 Mathieu chart clearly
demarcating the stable and
unstable zones
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the stability porous layer is also seen to depend on these variables as well. In addition
there are solutions to Eq. (14) for a > 0 and a < 0 ; also, q may be replaced by
−q with no effect on the solution. In this study for a porous medium heated from
below the numerical values for a are less than zero and are defined by Eq. (15).
In the case of liquid metals, as found during the solidification of binary alloys, see
Pillay & Govender (2005), we may propose for a Lead-Antimony (Pb-Sn) system,
�∗ = 1.08 × 10−5 m2/s, �∗ = 2.47 × 10−7 m2/s, and Pr = 2.3 × 10−2. For a
characteristic height H∗ = 0.1 m, we find that the corresponding value for the Froude
number, Fr , is Fr = 1.1 × 10−3. If the vibration amplitude to characteristic height
ratio 	 is 	 = 10−2, then the parameter (κ Fr ) = O

(
10−5

)
. As a result we note

that q assumes very small values for the above property values. For the low Prandtl
number liquid melt, we follow Vadasz (1998) and propose that V a = O(1), thereby
allowing for the retention of the time derivative in the Darcy equation. In the current
study we propose the following definition for the modified characteristic exponent:
ξ = σ/

√−a. A chart of 1/2q versus 2/
√−a, for various values of ξ , is shown in

Fig. 3 for small values of q, see McLachlan (1964). In Fig. 3, ξ = 0 refers to the
Mathieu function solution depicted by the curves for d0, c1 and d1 in Fig. 3. We may
now present a relation for the characteristic Rayleigh number in terms of the newly
defined parameter ξ , by substituting ξ = σ/

√−a in Eq. (15), and rearranging yields,

R̃ = η +
(
R̃o − η

)

ξ 2
. (19)
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Fig. 3 Mathieu chart for the
synchronous and
sub-harmonic zones
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Figure 3 together with Eqs. (15)–(19) may be used to evaluate the critical Rayleigh
number and wavenumber (αcr = (

αx + αy
)

cr ) in terms of the frequency �, the
parameters (κ Fr) and γ .

We proceed by first evaluating the characteristic Rayleigh number versus the fre-
quency for γ ≈ O (3) and (κ Fr) = O

(
10−5

)
and selected values of the wavenum-

ber according to the following method: (a) select a value of ξ , (b) evaluate R̃ using

Eq. (19), (c) compute the value for 1
/

2q using Eq. (16), (d) read 2
/

(−a)1/2 from

Fig. 2, and (e) evaluate the frequency from Eq. (15). A series of curves of the critical
Rayleigh number versus the frequency may be plotted for various wavenumbers and
an example of such a curve is shown in Fig. 4 for α = 0.3. Using Fig. 4 we evaluate
the critical wavenumber and Rayleigh number corresponding to each wavenumber
across the frequency range. The critical Rayleigh number and wavenumber as a
function of the frequency is shown in Fig. 5, and shows that gravity modulation sta-
bilizes the convection for the region of synchronous response but slowly destabilizes
convection for the region of subharmonic response.
The stabilizing effect of vibration is small at low frequencies, but becomes sig-
nificant for larger frequencies. Figure 5 also shows that close to �t

∼= 1225, the
Rayleigh number curve changes from a rapidly increasing trend to a slowly de-
creasing trend. The critical wavenumber is also seen to decrease with increasing
frequencies, for both the regions of synchronous and subharmonic response. It is
notable that upon transition from synchronous to subharmonic solutions there is a
rapid increase in the critical wavenumber.
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Fig. 4 Characteristic
Rayleigh and wave number
versus frequency
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Fig. 5 Critical Rayleigh and
wave number versus
frequency
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4 Weak Non-linear Anlaysis

Govender (2005b) provides a weak non-linear analysis in order to determine quan-
titatively the amplitude of convection. It is convenient to use the definition of the
stream function in the form u = �ψ

/
�z; w = −�ψ

/
�x , and Govender (2005b)

presents Eqs. (1–3) in terms of the stream function and temperature as follows for
slow time scale variations,

(
1

V a

�

�t
+ 1

)

∇2ψ + Ra (1 + δ sin (�t))
�T

�x
= 0, (20)
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�T

�t
+ �ψ

�z

�T

�x
− �ψ

�x

�T

�z
= ∇2T, (21)

where the definition of the Laplacian operator is given as ∇2 = �2
/

�x2 + �2
/

�z2.
The stream function, temperature and amplitude δ may be expanded in terms of a

small parameter ε, defined as ε = [
Ra

/
Racr − 1

]1/2, as follows:

[ψ, T ] = [ψB, TB] + ε [ψ1, T1] + ε2 [ψ2, T2] + ε3 [ψ3, T3] + O(ε4), (22)

δ = δ0 + εδ1 + ε2δ2 + . (23)

The expansion (23) is consistent with the basic solution (TB = 1 − z and VB = 0)
provided that δ0 vanishes at the lowest order. In addition, unless δ1 vanishes, the equa-
tions obtained at orderε andε2 present a singularity in the solution. These observations
indicate that the effects of vibration should be introduced at the lowest possible order
i.e., δ ≈ ε2δ1, thereby enabling consistency. By using the definition for ε given above,
the Rayleigh number may be expanded as Ra = Racr (1 + ε2), where Racr = 4π2

is the critical Rayleigh number for a porous layer heated from below and subjected to
gravity only. In addition we allow time variations only at the slow time scale � = ε2t
in order to prevent exponential growth and reaching finite values for the amplitude at
the steady state. Substituting the expansion (22), as well as the slow time scale, just
defined, into the system (20), (21) and equating like powers of ε produces a hierarchy
of linear partial differential equations to each order.

(
ε2

V a

�

��
+ 1

)

∇2ψm + Racr (1 + δ sin (�0�))
�Tm

�x
= Hm, (24)

ε2 �Tm

��
+ �ψm

�z

�Tm

�x
− �ψm

�x

�Tm

�z
− ∇2Tm = Jm, (25)

where �0 = �
/
ε2 represents the large frequency scaling. To order, ε, H1 = J1 = 0

and the solution at order ε is given by

ψ1 = A1 sin(sx) sin(π z), T1 = B1 cos(sx) sin(π z). (26)

The relationship between the amplitudes is obtained by substituting Eq. (26) in the
system (24), (25) and is found to be

A1 = −π
(α + 1)√

α
B1. (27)

The amplitude A1 remains undetermined at this stage, and will be determined from
a solvability condition of the order O(ε3) equations at order ε3. The critical Rayleigh
number and wavenumber to the leading order are found to be Rcr = 4 and αcr = 1.
The equations to orderε3 yields a solvability condition which constrains the amplitude
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of the solution at order ε and enables its determination. The solvability condition
is obtained by decoupling the governing equation at order ε3 to yield a single non-
homogenous partial differential equation for T3 with corresponding forcing functions
which include the O (ε), and O

(
ε2

)
solutions (Govender 2005b) as follows,

∇4T3 + Racr
�2T3

�x2
= �H3

�x
+ ∇2 J3, (28)

where H3 = −
(

Racr (t)
�T1

�x
+ 1

V a

�∇2ψ1

�τ

)

, (29)

and, J3 = �T1

�τ
+ �ψ1

�z

�T2

�x
+ �ψ2

�z

�T1

�x
− �ψ1

�x

�T2

�z
− �ψ2

�x

�T1

�z
. (30)

Setting the coefficients of the secular terms in Eq. (28) to zero, yields the following
Ginzburg–Landau equation for the leading order O(ε) amplitude,

d B

dt
= μ0 (1 + δ1 sin (�t)) B − χ B3, (31)

where B = εB1. The following notation is used in Eq. (31),

μ0 = χξ, χ = π4γ (α + 1)2

4 (α + 1 + γ )
, ξ = 4Rcrα

π2 (α + 1)3 ε2. (32)

Equation (31) is in the form of Bernoulli’s differential equation and the solution to
this type of equation is of the form,

B = eμ0(t−δ1/� cos(�t))
[
2χ

∫
eμ0(t−δ1/� cos(�t))dt + C1

] , (33)

where B (0) = b0 and C1 is an integration constant. When δ2 → 0, the analytical
solution to Eq. (33) is given as ,

B = b0ξ
1/2eμ0t

[
ξ − b2

0

(
1 − e2μ0t

)]1/2
. (34)

When t → ∞, the classic steady state solution is found to be B = 0 or B =
b0

/|b0|ξ 1/2 . If δ2 �= 0, we observe that the integral in Eq. (34) cannot be evaluated
to obtain a closed form solution, and it is for this reason that we resort to a numerical
solution of Eq. (34) by adopting the Runge–Kutte method. For a time step of 0.079
it was shown by Govender (2005b) that the analytical and numerical solutions were
in perfect agreement for the case of no vibration (δ2 = 0). A time step of 0.079, will
be retained for simulations corresponding to δ2 �= 0. Figure 6 shows the amplitude
B versus time for � = 0, � = 100 and � = 250.
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It can be clearly seen that increasing the frequency from � = 0 to � = 100
reduces the convection amplitude B. For � = 250, it can be observed that for
t >≈ 7.5, the conduction solution (B = 0) is stable. Figure 7 shows the amplitude
B versus time for � = 0, � = 300 and � = 350.

It can be seen for � = 300 that beyond t ≈ 20 the conduction solution is stable,
whilst for � = 350, the conduction solution sets in as the stable mode as early
as t ≈ 2.5. Figure 8 shows the amplitude B versus time for � = 0, � = 370
and � = 450. Figure 8 shows that the conduction solution is stable beyond t ≈ 5
for � = 370 and � = 450. Further simulations were performed for � = 500,
� = 750, � = 1500 and � = 3000, and it was discovered that the basic solution

Fig. 6 Convection amplitude
B versus time t for
� = 0, 100, 250
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Fig. 7 Convection amplitude
B versus time t for
� = 0, 300, 350
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Fig. 8 Convection amplitude
B versus time t for
� = 0, 370, 450
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(B = 0) is the only possible solution. The results depicted in Figs. 6–8 clearly
indicate that increasing the vibration frequency stabilizes the convection by causing
the convection amplitude to approach zero.

5 Pendulum Analogy

Govender (2006) demonstrated that the temperature in a porous layer heated from
below may be likened to the motion of an inverted pendulum with an oscillating
pivot point. Figure 9 below shows the inverted pendulum that will be considered.
With reference to Fig. 9, one may write the net velocity as,

ϑ2 = (Lϕ̇)2 + ẏ2 − 2Lϕ̇ ẏ sin ϕ. (35)

Using the above definition we may write the equations for the kinetic, damping and
potential energies respectively:

Kinetic energy : K E = 1

2
m

(
(Lϕ̇)2 + ẏ2 − 2Lϕ̇ ẏ sin ϕ

)
, (36)

Damping energy : DE = 1

2
c
(
(Lϕ̇)2 + ẏ2 − 2Lϕ̇ ẏ sin ϕ

)
, (37)

Potential energy : P E = − (mgL (1 − cos ϕ) + mgy) . (38)

Substituting in Lagranges equation,

d

dt

(
�K E

�ϕ̇

)

− �K E

�ϕ
+ �P E

�ϕ
+ �DE

�ϕ
= 0, (39)
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Fig. 9 The inverted
pendulum with an oscillating
pivot point
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and simplifying the result yields,

d2ϕ

dt2
+ 2λ�n

dϕ

dt
−

[
�2

n + 2λ�n�
κ

L
cos (�t) − �2 κ

L
sin (�t)

]
ϕ = 0, (40)

which represents the equation for the motion of the inverted pendulum of length L with
an oscillating pivot point, where the vertical motion of the pivot is given as κ sin (�t).
The above equation for the pendulum motion is valid for planar motion at small angles
ϕ from the vertical. Also the un-damped natural frequency is given as �n = √

g∗/L ,
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and the damping ratio is defined as ξ0 = c
/

2m�n . Both Eqs. (13) and (40) may be cast
into the canonical form of the Mathieu equation, as outlined by McLachlan (1964),
and is given as

d2 X

dτ 2
+ [a + 2q cos (2τ )] X = 0. (41)

The solution to Eq. (41) follows the form X = θ (τ ) eστ where θ (τ ) is a periodic
function with a period ofπ or 2π andσ is a characteristic exponent which is a complex
number and is a function of a and q respectively. Incidentally the damping terms
in Eqs. (13) and (40) has a stabilizing effect on the solutions and the exponential
behavior is no longer of the form eσ t . Following McLachlan (1964): for the pendulum,
the argument of the exponential factor is

(
1
/

2 · σ · �
/

�n − ξ0
)

�0t , whilst for the
gravity modulated porous layer heated from below, the argument of the exponential
factor is

(
1
/

2 · σ� − p
)

t . The stability criterion for the inverted pendulum is of
the form ξ0 ≥ 1

/
2 · σ · �

/
�n whilst for the gravity modulated porous layer p ≥

1
/

2 · σ� . For the inverted pendulum with an oscillating pivot point:

2√−a
= 1

(
�n

�

)
(
1 + ξ 2

0

)1/2
,

1

2
q = δ

L
, σ = 2�n

/
�. (42)

Equating the relations for 1/2q for both the oscillating porous layer and the pendu-
lum, and noting that �TC = �ρ

/
ρ << 1 yields, 1

/
2 q = κ

/
L = F (α) γ R̃κ Fr =

F (α)·κ ·φ∗
/
π4·β∗�TC , which implies that the roll cell behaves like a very long pen-

dulum with an effective dimensionless length of L = 1
/(

F (α) · κ · φ∗
/
π4 · β∗�TC

)
.

Rewriting Eq. (11) as, a = −4
(
�n

/
�

) (
1 + ξ 2

0

)1/2, one clearly observes that as �
is increased, the absolute value for a gets smaller and smaller, up to a point when a is
identically zero, at which point the frequency � → ∞. Choosing some exploratory
value for δ

/
L (or 1/2q) in Fig. 10, we may observe, by means of reference plane

A − A′ which straddles the unstable and stable zones, the effects of frequency of
oscillation �. Point A is incidentally in the unstable zone whilst point A′ is in the
stable zone. Increasing the frequency from some small/moderate value at point A
in the unstable zone allows a shift towards point A′ in the stable zone. This clearly
shows that a, statically unstable, inverted pendulum may be stabilized by oscillating
the pivot point in the vertical plane at some frequency �. However if some larger
value of δ

/
L (or 1/2q) is selected, say δ

/
L = 1, we observe by means of reference

plane B − B ′ − B ′′ ,which straddles the unstable; stable; and unstable zones respec-
tively, that although increasing the frequency stabilizes the inverted pendulum up
to point B ′, very large pivot frequencies tends to destabilize the inverted pendulum.
In essence we have observed via the second case that for larger values of 1/2q a
transition from synchronous to subharmonic solutions may occur as observed by
Govender (2005a, b) for the gravity modulated porous layer heated from below.
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The following analogy is thus evident: The temperature in a gravity modulated
porous layer heated from below (R > 0, “top heavy”-unstable) is similar to the
motion of a simple pendulum with an oscillating pivot point (inverted – unstable).

6 Conclusion

The author presents results dealing with the investigation of the effect of gravity
modulation on the stability of convection in a differentially heated porous layer with
particular focus on the transition from synchronous to subharmonic solutions. In ad-
dition a weak non linear analysis is also presented together with the development of
an analogy between the oscillating porous layer and a pendulum. The linear stability
analysis is performed with the aid of the Mathieu stability charts and it is discovered
that gravity modulation stabilizes the convection for the region of synchronous solu-
tions but slowly destabilizes convection for the region of subharmonic solutions. The
transition point from synchronous to subharmonic solutions is found to be �t

∼= 1225.
It is proposed that the results of the current work may be extended for use in the investi-
gation of the stability of solutal convection in solidifying mushy layers, with a view to
preventing the onset of freckle formation in binary alloys, Pillay & Govender (2005)

Analytical results are also presented for the weak non-linear analysis which in-
cluded an extended Darcy equation formulation. The numerical results revealed that
increasing the frequency of vibration causes the amplitude of convection to approach
zero, i.e. vibration stabilizes the convection.
Finally the author also showed that an analogy exits between the gravity modulated
porous layer heated from below and the inverted pendulum with an oscillating pivot
point. It is shown that the temperature in a gravity modulated porous layer subjected
to vibration (R > 0 -“top heavy” unstable) may be likened to the motion of a pendu-
lum (inverted-unstable). In addition it was also pointed out that the roll cell behaves
similar to a very long pendulum.
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