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Abstract The transport phenomena in porous media have generated increasing
interest over the past several decades owing to the importance of porous media in
diverse fields such as biotechnology, living structures, chemical and environmental
engineering, etc. Particularly, significant advances have been achieved in applying
porous media theory in modeling biomedical applications. Examples include com-
putational biology, tissue replacement production, drug delivery, advanced medical
imaging, porous scaffolds for tissue engineering and effective tissue replacement
to alleviate organ shortages, and transport in biological tissues. Another important
application of porous media includes diffusion process in the extracellular space
(ECS) which is crucial for investigating central nervous system physiology. In this
chapter, three applications namely brain aneurysm, flow and heat transfer in biolog-
ical tissues, and porous scaffolds for tissue engineering are analyzed as related to
the advances in porous media theory in biological applications.

1 Brain Aneurysm

1.1 Introduction

A cerebral or brain aneurysm, which is a cerebrovascular disorder, is a balloon-like
bulging outward of the wall of an artery in the brain. A common location of cerebral
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aneurysms is on the arteries at the base of the brain, known as the Circle of Willis
(Hademenos, 1995). The bursting of an aneurysm in a brain artery or blood vessel
causes bleeding into the brain or the space closely surrounding the brain called sub-
arachnoid, which leads to a hemorrhagic stroke, brain damage and death. Recently,
embolization using coils has been used widely to treat intracranial aneurysms. This
endovascular coiling technique (or coil embolization), which involves the deploy-
ment of tiny platinum coils into the aneurysm through the catheter, is successfully
used in the treatment of brain aneurysms by blocking blood flow into the aneurysm
sac and consequently preventing rupture. Coil embolization has been found to have
several advantages compared to surgical clipping. It produces significantly better
patient results than surgery in terms of survival, free of disability, and a lower risk
of death than in surgically-treated patients.

However, coil embolization cannot be used in cases of wide-necked irregular
shaped aneurysm due to the difficulties associated with achieving complete filling of
the aneurysm sac as well as the risk of coil protrusion into the parent artery (Knuckey
etal.,1992).Therefore, intravascularstentshavebeenusedacross theaneurysmincon-
junction with coil embolization to successfully treat surgically challenging aneurysms
and to improve the density of coil packing. As such, several advantages of using stents
in conjunction with coils were reported in the literature. The placement of an endovas-
cular stent may promote intra-aneurysm stasis and thrombosis (Wakhloo et al., 1994a,
1995, 1998). Further, the stent acts as a rigid endoluminal scaffold that prevents coil
protrusion into the parent artery lumen (Wakhloo et al., 1998, Turjman et al., 1994)
a problem frequently encountered in wide-necked aneurysms. Thus, the combina-
tion stent–coil technique allows for the dense packing of complex large, wide-necked
aneurysms that are difficult to treat surgically Fig. 1.

1.2 Clinical and Experimental Studies Associated
with the Treatment of Aneurysms Using Stent
Implantation and Coil Placement

Experimental studies have been performed to analyze blood flow characteristics
of an aneurysm after endovascular treatment using coils and stents (Szikora et al.,
1994, Wakhloo et al., 1998, Turjman et al., 1994). Lieber et al. (2002) performed

Fig. 1 Schematic diagram of the stent placed across the aneurysm neck
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particle image velocimetry (PIV) measurements to study experimentally the in-
fluence of the stent filament size and stent porosity on the intra-aneurysmal flow
dynamics in a sidewall aneurysm model. Their results showed that stenting signif-
icantly reduces both the intra-aneurysmal vorticity and the mean circulation inside
the aneurysm. Liou et al. (2004) conducted an experimental study to investigate
pulsatile flow fields in a cerebrovascular side-wall aneurysm model using helix
and mesh stents. Their results showed that the hemodynamic features inside the
aneurysm changed substantially with the shape of the stent. Further, comparison
of the results between helix stent and mesh stent revealed that helix mesh is more
favorable for endovascular treatment. The influence of aneurysm geometry and stent
porosity on velocity and wall shear stress changes inside the aneurysm sac caused
by stenting under physiological flow was analyzed experimentally by Rhee et al.
(2002). Their results demonstrated that the intra-aneurysmal flow motion and the
magnitude and pulsatility of the wall shear rate were significantly reduced in the
stented aneurysm models. Canton et al. (2005) conducted an in vitro study to quan-
tify the effect of the stents by measuring the changes in the hemodynamic forces
acting on a bifurcating aneurysm model (basilar tip configuration) after the place-
ment of flexible Neuroform stents. A digital particle image velocimetry (DPIV)
system was used to measure the pulsatile velocity and shear stress fields within
the aneurysm. Their results showed that peak velocity and strength of vortices inside
the aneurysm sac were reduced after placing the stents. Gobin et al. (1994) observed
reduction of inflow and flow stagnation at the dome with coil insertion in their in
vitro model study.

Clinical experiences with stent placement and coil for cerebral aneurysm have
also been reported in the literature (See for instance: Marks et al., 1994, Wakhloo
et al., 1994b). Lanzino et al. (1998) reported that stent placement within the parent
artery across the aneurysm reduced intra-aneurysm flow velocity which led to intra-
aneurysm stasis and thrombosis and consequently preventing rupture. Kwon et al.
(2006) used a new endovascular technique for treatment of cerebral aneurysms. Eight
patients with wide necked aneurysms were successfully treated without complications
with detachable coils using the multiple microcatheter technique as shown in Fig. 2.

1.3 Computational Studies Associated with Combined Use of Stents
and Coils for the Treatment of Cerebral Aneurysms

Better understanding of the behavior of the blood flow and hemodynamics changes in
various organs is a very challenging aspect in medical research. Therefore, computa-
tional fluid dynamics is considered an essential tool in the assessment and treatment of
cerebral aneurysms using stents and coils. For example, Aenis et al. (1997) used finite
element method, pulsatile, Newtonian flows to study the effect of stent placement
on a rigid side wall aneurysm. Their results illustrated a diminished flow activity
and pressure inside the stented aneurysm. Stuhne and Steinman (2004) conducted
a numerical study to analyze the wall shear stress distribution and flow streamlines
near the throat of a stented basilar side-wall aneurysm. The numerical simulations
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Fig. 2 (a) Aneurysmal Configuration visualized in 3D image, (b) Coil deployed to aneurismal sac
and (c) Final angiogram shows complete occlusion of the aneurysm. A total of 333 cm platinum
coil was inserted. (Reprinted from Kwon et al. (2006), with permission from Acta Neurochirurgica)

were performed assuming constant pressure at the outflow boundary of the model
and specifying either steady or pulsatile flow at the inlet. For pulsatile simulations,
wall shear stress (WSS) intensification was most prominent on the sides of the stent
wires facing the impinging flow, while WSS reduction was most prominent on the
patches of vessel lumen near wire–wire intersections. Ohta et al. (2005) analyzed
hemodynamic changes in intracranial aneurysms after stent placement using a finite
element modeling approach. Their work illustrated areas with stagnant flow and low
shear rates.

Computational modeling of coil embolization technique in the treatment of brain
aneurysms has received less attention in the literature due to the irregularly-shaped
geometry of the coil. Three-dimensional pulsatile flow simulation before and af-
ter endovascular coil embolization of a terminal cerebral aneurysm was investi-
gated by Groden et al. (2001) using in vivo data obtained by computer tomo-
graphic angiography. The filling of the aneurysm neck with platinum coils was
simulated by a distribution of blocked cells. In essence, the fluid was not al-
lowed to enter these cells. Their results showed that a complete cessation of the
inflow through the aneurysm neck was achieved with a 20% filling. It should
be pointed out, however, their model represents an approximate approach to de-
termine the effect of filling the aneurysm sac with a coil. Thus, an innovative
method for accurately modeling the influence of embedded coils on the flow and
pressure conditions in parent vessels and the aneurysm lumen was adopted in
this work utilizing a porous substrate approach. The coil embolization was mod-
eled as a porous substrate with direction-dependent permeabilities similar to the
study reported by Srinivasan et al. (1994). Srinivasan et al. (1994) developed a
model for predicting the friction and heat transfer in spirally fluted tubes using
porous media theory. The flute region was modeled as a porous substrate. Re-
cently, Khanafer et al. (2006) developed a mathematical model for determining
the flow field under physiological condition within a brain aneurysm filled with
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coils using volume-averaged porous media approach. Their results showed that
the presence of the coil significantly reduced the velocity and vorticity within the
aneurysm sac.

1.4 Mathematical Formulation

The conservation equations for the coil region shown in Fig. 3 are based on the
generalized flow model in porous media, which includes the effects of inertia as
well as friction caused by the macroscopic shear. The generalized model, which
was obtained through local volume averaging and matched asymptotic expansions,
is also knows as the Brinkman-Forchheimer-Darcy model and described in rigorous
detail by Vafai and Tien (1980, 1981), Nakayama (1995), Vafai and Amiri (1998)
and Nield and Bejan (2006). These equations can be summarized as follows:
Continuity equation:

∇· < v >= 0 (1)

Momentum equation:

ρ f

ε

[
� < v >

�t
+ < (v · ∇)v >

]

= −∇ < P > f +μ f

ε
∇2 < v > −μ f

K
< v >

− ρ f Fε√
K

[< v > . < v >]J (2)

In the above equations � is the porosity, F is the geometric function, K is the
permeability, μ f is the fluid dynamic viscosity, J = vp

|vp| is the unit vector along

the pore velocity vector vp,< v > is the average velocity vector, and < P > f is
the average readoff pressure. The medium permeability K can be properly modeled
(Vafai, 1984, 1986, AlAmiri 2000, 2002, Khanafer et al., 2003a, b).

The porosity of the coil can be used as an index to determine the required density
of coil compaction for a patient and consequently reduces the occurrence of rupture
during the deployment of the coil. The porosity of the coil depends strongly on the

Fig. 3 A schematic diagram of an aneurysm filled with coil (Reprinted with permission from the
American Society of Interventional and Therapeutic Neuroradiology)
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volume of the aneurismal sac. More experimental studies are necessary to correlate
the porosity of the coil to the density of the coil and the volume of the aneurysm
sac. An analytical expression of the porosity ε can be easily derived for a helix stent,
which is a spring-like in shape for better control of porosity (Fig. 1), as follows.

ε = L − n × d

L
(3)

Where L is the length of the stent, n is the number of stent loops (or filaments), and
d is the diameter of the wire. The effect of the stent on the inflow into the aneurysm
can be characterized by the blocking ratio defined as:

C = n × d

L
= 1 − ε (4)

2 Flow and Heat Transfer in Biological Tissues

2.1 Introduction

The development of mathematical models for flow and heat transfer in living tissues
has been a topic of interest for various physicians and engineers. The accurate de-
scription of the thermal interaction between vasculature and tissues is essential for the
advancement of medical technology in treating fetal diseases such as tumor. Currently,
mathematical models have been used extensively in the analysis of hyperthermia in
treating tumors, cryosurgery, and many other applications. Hyperthermia treatment
has been demonstrated effective as cancer therapy in recent years. Its objective is to
raise the temperature of pathological tissues above cytotoxic temperatures (41–45 ◦C)
without overexposing healthy tissues (Overgaard et al., 1996, Oleson et al., 1984,
Dewhirst and Samulski, 1988, Field and Hand, 1990). The success of hyperther-
mia treatment strongly depends on the knowledge of the heat transfer processes in
blood perfused tissues. As such, accurate thermal modeling is essential for effective
treatment by hyperthermia. Khanafer et al. (2007) conducted a numerical study to
determine the influence of pulsatile laminar flow and heating protocol on temperature
distribution in a single blood vessel and tumor tissue receiving hyperthermia treatment
using physiological velocity waveforms. Their results showed that the presence of
large vessels has a significant effect on temperature distributions and must be ac-
counted for when planning hyperthermia treatment (Fig. 4). Further, uniform heating
scheme was found to exhibit larger temperature distribution than for pulsed heating
scheme which may induce areas of overheating (beyond the therapeutic regions) that
could damage normal tissues (Fig. 5).

Heat transport in biological tissues, which is usually expressed by the Bio-
heat Equation, is a complicated process since it involves thermal conduction in
tissues, convection and perfusion of blood, and metabolic heat generation.
Therefore, several authors have developed mathematical models of bioheat transfer
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Fig. 4 Temporal variation of the normalized heat flux for different Reynolds numbers

as an extended/modified version of the original work of Pennes (1948) as reported
by Charny (1992) and Arkin et al. (1994). Below is a comprehensive summary of
different thermal models and their limitations for blood perfused tissues.

Fig. 5 Influence of the heating protocol on the temperature distribution at various flow conditions
(Re = 300)
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2.2 Thermal Models for Blood Perfused Tissues

2.2.1 The Pennes Bioheat Equation

The Pennes (1948) model was originally designed for predicting heat transfer in
human forearm. Pennes modeled the net heat transfer (qp) from the blood to the
tissue to be proportional to the temperature difference between the arterial blood
entering the tissue and the venous blood leaving the tissue as follows:

qp = ωρbcb (Tb − T ) (5)

where ω is the blood volumetric perfusion rate, ρb is the blood density, and cb is the
blood specific heat. Because the perfusion rate (ω) could not be directly measured,
Pennes varied this parameter to fit his experimental data. Also, Pennes derivation
assumed that the arterial blood temperature Tb is uniform throughout the tissue while
he considered the venous temperature to be equal to the tissue temperature which is
denoted by T at the same point. The equation that Pennes developed is expressed in
its simplest form as:

ρ cp
�T

�t
= ∇ · (k∇T )) + ωρbcb (Tb − T ) + qm (6)

where ρ, cp, k, and qm are tissue density, tissue specific heat, tissue thermal con-
ductivity, and uniform rate of metabolic heat generation in the tissue layer per unit
volume, respectively. Due to the inherent simplicity of Pennes bio-heat transfer
model (assume uniform thermal conductivity, perfusion rate, and metabolic heat-
ing) Pennes model was implemented in various biological research works such as
therapeutic hyperthermia for the treatment of cancer (See for instance: Roemer and
Cetas, 1984, Charny and Levin, 1988, 1989).

2.2.2 Wulff Continuum Model

Several investigators have questioned the validity of the fundamental assumptions
of Pennes bio-heat equation. Wulff (1974) was one of the first studies that directly
criticized the assumptions of Pennes model. Since blood may convect heat in any
direction, Wulff (1974) assumed that the heat transfer between flowing blood and
tissue should be modeled to be proportional to the temperature difference between
these two media rather than between the two blood stream temperatures (tempera-
ture of the blood entering and leaving the tissue). Thus, the energy flux at any point
in the tissue is expressed by:

q = −k∇T + ρbhbvh (7)

where vh is the local mean blood velocity, and T is the tissue temperature. The
specific enthalpy of the blood hb is given by:
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hb =
Tb∫

To

cp(T ∗
b )dT ∗

b + P

ρb
+ �H f (1 − φ) (8)

Where P is the system pressure, �H f is the specific enthalpy of the metabolic reac-
tion, and φ is the extent of reaction, respectively. Thus, the energy balance equation
can be written as

ρ cp
�T

� t
= −∇ • q = −∇ • (−k∇T + ρbhbvh) = ∇ •

⎡

⎣k∇T − ρbvh

Tb∫

To

cp(T ∗
b )dT ∗

b

+ P

ρb
+ �H f (1 − φ)

]

(9)

The above equation can be simplified by neglecting the mechanical work term
(P/ρb), setting the divergence of the product (ρbvh) to zero, and assuming constant
physical properties as follows:

ρ cp
�T

� t
= k∇2T − ρbvh

(
cp∇Tb − �H f ∇ φ

)
(10)

Wulff (1974) assumed that Tb is equivalent to the tissue temperature T because
blood in the microcirculation is in thermal equilibrium with the surrounding tissue.
Therefore, the final form of bio-heat equation that was derived by Wulff (1974) is:

ρ cp
�T

� t
= k∇2T − ρbvhcp∇T + qm (11)

2.2.3 Klinger Continuum Model

Since the effects of non-unidirectional blood flow were neglected in Pennes model,
Klinger (1974) emphasized that the convection heat transfer caused by the blood
flow inside the tissue should be modeled to take into an account the spatial and tem-
poral variation of the velocity field and heat source. Thus, the general heat transport
equation can be written as:

ρ c
�T

� t
+ (ρ c) v ∇T = k∇2T + q (12)

This model assumed constant physical properties of tissue and incompressible blood
flow.

2.2.4 Continuum Model of Chen and Holmes (CH)

In the Chen and Holmes (CH) model (1980), the control volume occupied by the
tissue and blood vessels was divided into two separate volumes: one for solid tissue
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and the other consisted only of blood in the vascular space within the blood vessels.
Using volume-averaged technique, the energy balance equations for both the solid
tissue space and vascular spaces can be written as:

Solid Phase:

dVs(ρ c)s
�Ts

� t
= d Qks + d Qbs + d Qm (13)

Fluid Phase:

dVb(ρ c)b
�Tb

� t
= d Qkb − d Qbs +

∫

S

(ρ c)bT vds (14)

Where dVs is the differential volume of the solid phase, dVb is the differential
volume of the blood in the vascular space, d Qks is the energy transferred by con-
duction, d Qbs is the energy transferred gain in the control volume from the blood
space, d Qm is the metabolic heating energy, d Qkb is the energy gain in the vas-
cular space by conduction, and the integral term in Eq. (14) denotes the energy
transfer by convection as the blood flows across the surface area S at velocity v.
Therefore, the energy balance for the tissue space is derived by the addition of
Eqs. (13–14) and division of the result by the total control volume dV yields the
following:

(ρ c)
�Tt

�t
= qk + qm + qp (15)

Where qk is the heat transfer by conduction per unit volume, qm is the metabolic
heat per unit volume, and qp is the perfusion energy per unit volume. Here ρ, c and
Tt denote the local mean density, specific heat, and temperature of the tissue based
on the volume average as follows:

Tt = 1

ρ c

[(

1 − dVb

dV

)

(ρ c)s Ts + dVb

dV
(ρ c)bTb

]

(16)

ρ =
(

1 − dVb

dV

)

ρs + dVb

dV
ρb & c = 1

ρ

[(

1 − dVb

dV

)

(ρ c)s + dVb

dV
(ρ c)b

]

(17)

The total heat transfer by conduction per unit volume (qk) in the tissue control vol-
ume is expressed by:

qk = Qks + Qkb

dV
= ∇ • (

kef f ∇Tt
)

(18)

where kef f is the effective thermal conductivity of the combined tissue and vascular
spaces. The effective thermal conductivity is written as:
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kef f = ε kb + (1 − ε)ks (19)

Since ε = dVb
dV ∼ dVb

dVs
<< 1 it follows that kef f

∼= ks . Therefore, the effective
thermal conductivity is equal to the thermal conductivity of the solid tissue medium,
ks .

Chen and Holmes (1980) expressed the perfusion term (or the bulk flow term) qp

as follows:

qp = qp(1) +qp(2) +qp(3) = (ρ c)bω
∗ (

T ∗
a − Ts

)− (ρ c)bvp •∇Ts −∇ •kp∇Ts (20)

where qp(1) represents the effect of blood flow on tissue temperature around large
vessels, Ts is the temperature of the solid tissue component of the tissue-blood
model, ω∗ is the total perfusion associated with the blood flow to the tissue only
from the vessels, and T ∗

a is the temperature of the blood within the largest vessels.
qp(2) corresponds to the heat transfer that takes place as a result of the flowing
blood, and ρbvb is the mass flux of the blood through the tissue. Because of the
thermal equilibrium, the blood temperature is equal to the solid tissue temperature
everywhere in the control volume. qp(3) characterizes the heat transfer due to the
small temperature changes and is proportional to the tissue temperature gradient. kp

is the perfusion thermal conductivity. Therefore, the new bio-heat equation for Chen
and Holmes (1980) is written as

ρ c
�Tt

�t
= ∇•kef f ∇Tt +(ρ c)bω

∗ (
T ∗

a − Tt
)−(ρ c)bvp •∇Tt +∇•kp∇Tt +qm (21)

where Ts is replaced by the volume-weighted continuum temperature (Tt ). This is
reasonable as long as ε << 1.

2.2.5 The Weinbaum, Jiji, and Lemons (WJL) Bio-Heat Equation Model

Weinbaum and colleagues (1979, 1984a, b) derived the bio-heat equation based on a
hypothesis that small arteries and veins are parallel and the flow direction is counter-
current resulting in counterbalanced heating and cooling effects. Accordingly, they
modified the thermal conductivity in the Pennes equation by means of an ‘effective
conductivity’ which is a function exclusively of the blood flow rate and vascular
geometry. They also showed that isotropic blood perfusion between the countercur-
rent vessels can have a significant influence on heat transfer in regions where the
countercurrent vessels are under 70 �m diameter. Neglecting axial conduction, the
artery and vein energy balances are written as:

(ρ c)b
d

ds

(
nπ a2ūTa

) = −nqa − (ρ c)b(2π a n g)Ta (22)

(ρ c)b
d

ds

(
nπ a2ūTv

) = −nqv − (ρ c)b(2π a n g)Tv (23)
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where qa denotes the heat loss from the artery by conduction through its wall per
unit length and qv is the heat gain by conduction per unit length through the vein wall
into the vein. Ta , and Tv are the bulk mean temperatures inside the blood vessel, and
g is the perfusion bleed-off per unit vessel surface area. For an equal-size artery-vein
pair, subtracting Eq. (23) from Eq. (22) yields:

(ρ c)b

[
d

ds

(
nπ a2ūTa

) − d

ds

(
nπ a2ūTv

)
]

= −n(qa−qv)−(ρ c)b(2π a n g)(Ta−Tv)

(24)
where the term on the left-hand side represents the total heat exchange blood in
the countercurrent vessels and the surrounding tissue. This term can be balanced by
conduction and metabolic heating as follows:

(ρ c)b

[
d

ds

(
nπ a2ūTa

) − d

ds

(
nπ a2ūTv

)
]

= ∇ • (kt∇Tt ) + qm (25)

The rate of the energy entering and leaving the tissue control volume can be ex-
pressed as:

qa − qv = (ρ c)b(π a2ū)
d

ds
[Tv − Ta] (26)

where,

qa = −(ρ c)b(π a2 ū)
dTa

ds
& qv = −(ρ c)b(π a2 ū)

dTv

ds
(27)

Thus, Eq. (25) can be written in the final form as:

(ρ c)b(nπ a2ū)
d

ds
[Ta − Tv] − (ρ c)b(n 2π a g)(Ta − Tv) = ∇ • (kt∇Tt ) + qm (28)

2.2.6 The Weinbaum and Jiji Bio-Heat Equation Model

Weinbaum and Jiji (1985) derived a simplified, single equation model to study the
effect of blood flow on the tissue temperature variations. This is because Eq. (26)
cannot be solved for Tt since both Ta and Tv are unknowns. Therefore, the mean
tissue temperature can be approximated as:

Tt
∼= Ta + Tv

2
(29)

Thus, the magnitude of the difference (qa − qv) is much smaller than the magnitude
of either qa or qv. Moreover, Weinbaum and Jiji (1985) assumed that the tissue
around the vessel pair is a pure conduction region such that:

qa
∼= qv = σ kt (Ta − Tv) (30)
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where σ is a geometrical factor given by:

σ = π

cosh−1(Ls/a)
(31)

The ratio Ls/a denotes the ratio of the vessel spacing to vessel diameter. Equa-
tions (27), (29), and (30) are solved to obtain an equation for the artery-vein tem-
perature difference and the tissue temperature gradient:

Ta − Tv = −π a2 ū (ρ c)b

σ kt

dTt

ds
(32)

Substituting Eq. (32) in the original model of WJL; Eq. (24), yields a new bioheat

equation proposed by Weinbaum and Jiji (1985) as follows:

nπ2 akb

4kt
Pe

(
d

ds

[
a Pe

σ

dTt

ds

]

− 2g Pe

σ ū

dTt

ds

)

= −∇ • kt∇Tt − qm (33)

Where Pe is the Peclet number; which is defined as Pe = 2a(ρ c)bū

kb
.

2.2.7 Other Models

Baish (1994) developed a new bioheat transfer model for a perfused tissue based
on solving conjugate convection of the blood coupled to the three-dimensional con-
duction in the extravascular tissue while accounting for a statistical interpretation of
the calculated temperature field. He illustrated that Pennes model of bioheat trans-
fer equation accurately determines the mean tissue temperature except when the
arteries and veins are in closely spaced pairs. Moreover, Baish (1994) demonstrated
the dependence of the temperature distribution on the flow rate and the vascular
geometry. Wissler (1987) vigorously criticized the assumptions that used in deriv-
ing Weinbaum and Jiji (1985) model. In particular, Wissler (1987) indicated that
Weinbaum and Jiji (1985) assumed that the mean temperature in the neighborhood
of an artery–vein pair is the arithmetic mean of the arterial and venous blood at the
point of entry. Moreover, Wissler (1987) questioned the basis that the temperature
gradient is proportional to the temperature difference between the artery–vein pair
which was used in the derivation of Weinbaum and Jiji model.

2.3 Mathematical Modeling of Bioheat Equation Using Porous
Media Theory

Transport phenomena in porous media have received continuing interest in the past
five decades. This interest stems from its importance in many industrial and clinical
applications (Bejan et al., 2004, Ingham and Pop, 2002, 2005, Ingham et al., 2004,
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Pop and Ingham, 2001, Vafai, 2000, 2005, Khanafer et al., 2003a, b). Moreover,
complicated and interesting phenomena can be modeled using porous media con-
cept. Recently, Xuan and Roetzel (1997, 1998) employed porous media concept
to model tissue-blood system composed mainly of tissue cells and interconnected
voids that contain either arterial or venous blood. The thermal energy exchange
between the tissue and blood was modeled using the principle of local thermal non-
equilibrium as described in the works of Amiri and Vafai (1994, 1998), Alazmi and
Vafai (2002), Khashan et al. (2005, 2006), and Lee and Vafai (1999). Thus, two
energy equations were derived for the blood and tissue, respectively:

ε(ρ c)b

(
� < T >b

�t
+ < u >b ·∇ < T >b

)

= ∇ · (
ka

b · ∇ < T >b
)

+ hbs
[
< T >s − < T >b

]
(34)

(1 − ε)(ρ c)s
� < T >s

�t
= ∇ · (

ka
s · ∇ < T >s

) − hbs
[
< T >s − < T >b

]

+ (1 − ε)qm (35)

where < T >b, < T >s, ka
b, ka

s , < u >b and hbs , and � are the local volume-
averaged arterial blood temperature, local volume-averaged solid tissue temper-
ature, blood effective thermal conductivity tensor, solid tissue effective thermal
conductivity tensor, blood velocity vector, and interstitial convective heat transfer
coefficient, respectively. For isotropic conduction, the effective thermal conductivity
ka

b of blood and solid tissue ka
s can be expressed as:

ka
b = ε kb and ka

s = (1 − ε)ks (36)

The heat exchange between the blood and the tissue is expressed as: hbs[
< T >s − < T >b

]
. Further, Xuan and Roetzel (1997, 1998) considered an effec-

tive thermal conductivity for the blood to account for blood dispersion. The concept
of thermal dispersion is well established in the theory of porous media as presented
in the works of Amiri and Vafai (1994, 1998). Due to insufficient knowledge about
the thermal and anatomic properties of the tissue, velocity field of the blood, and
interstitial convective heat transfer coefficients, the local thermal equilibrium model
represents a good approximation for determining the temperature field in applica-
tions involving small size blood vessels (ε << 1). This implies that blood flowing
in these small vessels will be completely equilibrated with the surrounding tissue.
Therefore, Eqs. (34) and (35) reduce to the following equation (Khanafer and Vafai,
2001, Marafie and Vafai, 2001):

[(ρ c)bε + (1 − ε)(ρ c)s]
� < T >

� t
+ ε(ρ c)b < u >b ·∇ < T >

= ∇ [(
ka

s + ka
b

) · ∇ < T >
] + qm(1 − ε) (37)

The second term on the left hand side of the above equation represents the
heat transfer due to the blood perfusion. The perfusion source term in Pennes
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model was derived based on a uniform blood perfusion assumption and is equal
to (ρ c)bω(Tb − T ). In hyperthermia applications, tissue may absorbs energy from
external source such as electromagnetic or ultrasonic radiation and therefore another
heat source term should be added to the right side of Eq. (37) as follows:

[(ρ c)bε + (1 − ε)(ρ c)s]
� < T >

� t
+ ε(ρ c)b < u >b ·∇ < T >

= ∇ [(
ka

s + ka
b

) · ∇ < T >
] + qm(1 − ε) + qh(1 − ε) (38)

From above, one can note that the theory of porous media can be used to develop
a more robust bioheat model since it allows including the effect of blood thermal dis-
persion, porosity variation, effective tissue conductivity, and effective tissue capaci-
tance, and the exact heat transfer exchange between the blood and tissue. However,
Pennes equation ignores all these effects. Tables 1 and 2 summarize the previously
discussed bioheat transfer models in this work.

3 Tissue Engineering

3.1 Introduction

Tissue engineering is an interdisciplinary field that involves chemical and material
engineering, biology, reactor engineering, and medicine to develop viable biological
substitutes for the repair or regeneration of human tissue or organ function (Lavik
and Langer, 2004, Lanza et al., 2000). Examples of tissue-engineered substitutes
that are currently being investigated include skin, cartilage, bone, vascular, heart,
breast and liver (Masood et al., 2005). A large number of Americans suffer organ
and tissue loss every year from accidents, birth defects, diseases, hereditary disor-
ders, etc. Approximately 72,000 American people were on the waiting list for an
organ transplant in 2000. Only 23,000 transplant were performed (Port, 2002).

In order to achieve significant tissue structures, there must be appropriate trans-
port of nutrients to and waste from the cells as they begin to form a tissue or organ
(Lavik and Langer, (2004). Various types of bioreactors have been used to culture
cells for tissue regeneration or repair such as spinner flask (Sikavitsas et al., (2002),
rotating wall vessels (Carrier et al., (1999), and perfusion bioreactors (Bancroft
et al., (2002). The aim of the bioreactor is to provide suitable nutrients and oxygen
flow and many of the biophysical and biochemical conditions necessary to produce
a functional artificial tissue. Thus, bioreactor design is critical for the development
of certain tissues (Bancroft et al., 2002).

3.2 Porous Scaffolds for Tissue Engineering

The efficient design and manufacture of a complex scaffold with optimum porosity
and interconnectivity is significant for tissue engineering applications. The essen-
tial principle of tissue engineering is to combine a scaffold with cells for tissue
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replacement or repair. The scaffold provides a temporary biomechanical profile until
the cells produce their own matrix proteins and a full tissue (Masood et al., (2005).
Masood et al. (2005) addressed the issue of developing an efficient methodology to
design and manufacture a scaffold structure using a novel approach based on fused
deposition modeling (FDM) rapid prototyping (RP) technology. They derived a the-
oretical expression for the porosity of one horizontal layer of a cylindrical model
created on the FDM process as follows:

εtheortical = Vpore,layer

Vpart,layer
= 1 − (1 − εini tial )

{

RW

[
n=Nr∑

n=0

Wn

]

Nr + (Nr − 1)RG × π D/Nr

}

/t

εini tial = 1 − W mod el/

{

ρmaterial × NL × t × RW

[
n=Nr∑

n=0

Wn

]

Nr

}

(39)

where D is the diameter, H is the height of the cylindrical model, Wmodel is the
average weight of the model when an RG setting is taken as zero, RG is the raster
gap, RW is road width, t is the layer thickness, ρmaterial is the density of the material,
Wn is the width of nth road from the center of the cylindrical layer, Nr and NL are
the number of raster lines and the number of layers, respectively, defined as follows:

Nr = (D + RG)/(RW + RG) & NL = H/t (40)

Porter et al. (2005) used the Lattice–Boltzmann method to simulate the flow con-
ditions within perfused cell-seeded cylindrical scaffolds. Microcomputed tomog-
raphy imaging was used to define the scaffold micro-architecture for the simula-
tions, which produced a 3-D fluid velocity field throughout the scaffold porosity.
Sucosky et al. (2004) used particle image velocity to determine fluid mechanics of a
spinner-flask bioreactor. Coletti et al. (2006) developed a comprehensive mathemat-
ical model of convection and diffusion in a perfusion bioreactor, combined with cell
growth kinetics. Time-dependent porosity and permeability changes due to the cell
density were included in their model. The fluid dynamics of the medium flow inside
the bioreactor was described through the Navier–Stokes equations for incompress-
ible fluids while convection through the scaffold was modeled using Brinkman’s
extension of Darcy’s law for porous media. The scaffold porosity �(xi, t), which
decreases from its initial value �0(xi, 0) as the cell density increases, was expressed
as follows:

ε(xi , t) = ε(xi , 0) − Vcellρcell (xi , t) (41)

Where Vcell is the single cell volume. Tortuosity was modeled as a function of poros-
ity ε as (Perry and Green (1997):

τ =
(

2 − ε

ε

)2

(42)

The functional form of Koponen et al. (1996) was used for permeability K :
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K = ε3

qτ 2s2
(43)

Where s is the pore surface area per unit volume of porous material and q is a
structural scaffold parameter.
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