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Preface

This book is a synthesis of emerging topics in heat and mass transfer in porous
media. It brings together some of the world leaders in research on transport phe-
nomena in porous media to present the state of the art of its theory as well as the
application of the theory in emerging fields such as bioengineering, microelectronics
and nanotechnology. The well renowned scientists presenting their findings in the
review chapters presented are not only among the best world leaders in their field,
they also capture the research that is undertaken in all the parts of the globe, from the
Far East (Hong-Kong), the Southern Hemisphere (New Zealand and South Africa)
to Europe and America.

The book is separated into two parts. The first presents the state of the art of
the theory of heat and mass transfer in porous media and can be used in both the
traditional (underground flow, filtering and reservoir engineering) as well as in the
more recent emerging applications. The second part deals with emerging topics and
applications of the theory to bioengineering, microelectronics, and nanotechnology.

Traditionally, the topic of transport phenomena in porous media was almost exclu-
sively reserved to the field of underground flow (water, oil, gas, etc.) and filtering. With
some singular exceptions on applications to drying processes of fabric, the develop-
ment of the theory of transport phenomena in porous media was historically driven
by the needs of technologies linked to reservoir engineering or civil engineering. A
turning point in this development was reached in the early part of the second half in the
twenty century when special attention to heat transfer in porous media yielded an ex-
ceeding expansion of interest. This development continued in the twenty first century
and reached recently such an impressive use in a diverse collection of technological
applications that created the motivation behind the preparation of this book.

The book starts with introducing the theoretical aspects of heat transfer in porous
media by introducing the state of the art on the topic. It begins by introducing the
topic of conduction in porous media subject to Lack of Local Thermal Equilibrium –
LaLotheq (or Local Thermal Non-Equilibrium – LTNE) and its link to Dual-Phase-
Lagging (DuPhlag), the latter having a wider range of applications. It follows into
heat convection effects in porous media, extending the existing knowledge to gen-
eralized heterogeneity effects, instability of unsteady boundary layers, transition to
weak turbulence and chaos, gravity-modulated convection and thermal-vibrational
porous media convection.
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vi Preface

This state of the art theoretical background is followed by chapters dealing with
its application to emerging fields such as bioengineering, microelectronics, and
nanotechnology. Bio- convection effects in porous media are presented in detail
followed by the porous media application to macromolecular transport in arterial
walls in particular, and to flow and heat transfer in biological tissues in general. The
emerging application of metal foams as passive thermal control systems in cooling
of microelectronics introduces another interesting aspect of heat transfer in porous
media. The book concludes with the introduction of modeling of heat conduction in
nanofluid suspensions as a derivative of interface heat transfer modeling in porous
media.

The book should be of interest to scientists, researchers, engineers and graduate
students that intend pursuing an application of transport phenomena in porous me-
dia or intend working on one of the emerging technologies covered in the book. In
addition industry leaders that want to engage their teams in a deeper understanding
of the concepts underlying the new emerging technologies should also be interested
in the work reported in this book. Finally, since the topics covered are truly inter-
disciplinary and cross-disciplinary the disciplines that should find an interest are
quite diverse, all engineering fields, biological sciences and physical sciences are
just examples.

September 2007 Peter Vadász
Flagstaff, AZ, USA
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Dual-Phase-Lagging and Porous-Medium Heat
Conduction Processes

Liqiu Wang, Mingtian Xu, and Xiaohao Wei

Abstract We review some major progresses on dual-phase-lagging heat conduction
and its intrinsic application in porous-medium heat conduction. The topics include
well-posedness, solution structure, thermal wave and resonance, and intrinsic equiv-
alence between the dual-phase-lagging heat conduction and the Fourier heat conduc-
tion in porous media subject to lack of local thermal equilibrium.

1 Introduction

By lumping microstructural effects into delayed temporal responses in the macro-
scopic formulation, Tzou (1995a) proposed a dual-phase-lagging constitutive equa-
tion for heat conduction, relating the temperature gradient �T at a material point
→
x and time t + τT to the heat flux density vector q at

→
x and time t + τq through

material thermal conductivity k,

q(
→
x , t + τq ) = −k � T (

→
x , t + τT ). (1)

Two delay times τT and τq are regarded as intrinsic thermal or structural proper-
ties of the material. The former is due to the microstructural interactions such as
phonon–electron interaction or phonon scattering, and is termed as the phase-lag of
the temperature gradient. The latter is, on the other hand, interpreted as the relax-
ation time accounting for the fast-transient effects of thermal inertia, and is named
as the phase-lag of the heat flux.

Xu and Wang (2005) developed the relation between the constitutive model (1)
and the Boltzmann transport equation. With the constitutive model (1), the first law
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2 L. Wang et al.

of thermodynamics leads to delay/advanced dual-phase-lagging heat-conduction
equations (Xu and Wang 2005). Xu and Wang (2005) discussed proper initial and
boundary conditions and developed analytical solutions of such equations. Also
obtained by Xu and Wang (2005) were the conditions under which the thermal
oscillation occurs.

Expanding �T and q with respect to time t by Taylor series and retaining only

the first-order terms in τT and τq , we obtain a linear version of (1) at point
→
x and

time t (Tzou 1995a, 1997),

q + τq
�q
�t

= −k[�T + τT
�

�t
(�T )], (2)

which is known as the Jeffreys-type constitutive equation of heat flux (Joseph and
Preziosi 1989). Eliminating q from (2) and the classical energy equation leads to
the dual-phase-lagging heat conduction equation that reads, if all thermophysical
material properties are assumed to be constant,

1

α

�T

�t
+ τq

α

�2T

�t2
= �T + τT

�

�t
(�T ) + f (

→
x , t), (3)

where α is the thermal diffusivity of the material, � is the Laplacian, and f stands
for internal heat sources.

The dual-phase-lagging heat-conduction equation forms a generalized, unified
equation that reduces to the classical parabolic heat-conduction equation when
τT = τq , the hyperbolic heat-conduction equation when τT = 0 and τq = τ with τ

as the relaxation time defined by Chester (1963), the energy equation in the phonon
scattering model (Joseph and Preziosi 1989, Guyer and Krumhansi 1966) when
α = τRc2

3 , τT = 9
5τN and τq = τR , and the energy equation in the phonon–electron

interaction model (Kaganov et al. 1957, Anisimòv et al. 1974, Qiu and Tien 1993)
when α = k

ce+cl
, τT = cl

G and τq = 1
G [ 1

ce
+ 1

cl
]−1. In the phonon scattering model, c is

the average speed of phonons (sound speed), τR is the relaxation time for the umk-
lapp process in which momentum is lost from the phonon system, and τN is the re-
laxation time for normal processes in which momentum is conserved in the phonon
system. In the phonon–electron interaction model, k is the thermal conductivity of
the electron gas, G is the phonon–electron coupling factor, and ce and cl are the heat
capacity of the electron gas and the metal lattice, respectively. This, with its suc-
cess in describing and predicting phenomena such as ultrafast pulse-laser heating,
propagating of temperature pulses in superfluid liquid helium, nonhomogeneous
lagging response in porous media, thermal lagging in amorphous materials, and
effects of material defects and thermomechanical coupling (Tzou and Zhang 1995),
has given rise to the research effort on various aspects of dual-phase-lagging heat
conduction.

The dual-phase-lagging heat conduction was shown to be admissible by the
second law of the extended irreversible thermodynamics (Tzou 1997) and by the
Boltzmann transport equation (Xu and Wang 2005). It was also proven to be well-
posed in a finite region of n–dimensions (n ≥ 1) under any linear boundary
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conditions including Dirichlet, Neumann and Robin types (Wang and Xu 2002,
Wang et al. 2001). Solutions of one-dimensional (1D) heat conduction were ob-
tained for some specific initial and boundary conditions by Antaki (1998), Dai and
Nassar (1999), Lin et al. (1997), Tang and Araki (1999), Tzou (1995a, b, 1997),
Tzou and Zhang (1995). Wang and Zhou (2000, 2001) and Wang et al. (2008)
developed methods of measuring the phase-lags of the heat flux and the temper-
ature gradient and obtained analytical solutions for regular 1D, 2D and 3D heat-
conduction domains under essentially arbitrary initial and boundary conditions.
The solution structure theorems were also developed for both mixed and Cauchy
problems of dual-phase-lagging heat-conduction equations (Wang and Zhou 2000,
Wang et al. 2001, 2008) by extending those for the hyperbolic heat conduction
(Wang 2000a). These theorems build relationships among the contributions (to the
temperature field) by the initial temperature distribution, the source term and the
initial time-rate change of the temperature, uncover the structure of temperature
field and considerably simplify the development of solutions. Xu and Wang (2002)
addressed thermal features of the dual-phase-lagging heat-conduction, conditions
and features of thermal oscillation and resonance and their difference with those in
the classical and in particular. Tzou (1997) and Vadász (2005a, b, 2006a, b) devel-
oped an approximate equivalence between the heat conduction in porous media and
the dual-phase-lagging heat conduction, and applied the latter to examine features
of the former. An exact equivalence between these two processes has also recently
discovered by Wang and Wei (2008).

The present review focuses on four aspects of dual-phase-lagging heat con-
duction: the well-posedness, the solution structure, the thermal oscillation and
resonance, and the equivalence with the Fourier heat conduction in porous media.
The readers are refereed to Tzou (1997), Wang and Zhou (2000, 2001) and Wang
et al. (2008) for the other aspects of the dual-phase-lagging heat conduction.

2 Well-Posedness

Wang et al. (2001) and Wang and Xu (2002) examine the existence, uniqueness and
stability of the solution with respect to initial conditions for the following initial-
boundary value problem

⎧
⎪⎨

⎪⎩

1
α

Tt (
→
x , t) + τq

α
Ttt (

→
x , t) = �T (

→
x , t) + τT

�
�t � T (

→
x , t), Ω × (0,+∞),

k �T (
→
x ,t)

�n + hT (
→
x , t)|�Ω = 0, (0,+∞),

T (
→
x , 0) = φ(

→
x , t), Tt (

→
x , 0) = ψ(

→
x , t), Ω.

(4)

Here t is the time, T is the temperature, α is the thermal diffusivity, τT and τq are

the phase-lag of the temperature gradient and the heat flux, respectively,
→
x denotes

a point in the space domain Ω of n–dimensions with the boundary �Ω , � is the
Laplacian, φ and ψ are known functions, �T/�n is the normal derivative of T ,
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Tt = �T/�t , Ttt = �2T/�t2, k and h are nonnegative real constants and satisfy
k + h �= 0.

Note that (4) covers the Dirichlet, Neumann and Robin boundary conditions by
different combinations of k and h. Physical implications and limitations of these
three boundary conditions have been well discussed by Tzou (1997) and Fournier
and Boccara (1989). For the heat conduction involving heat flux-specified bound-
ary conditions, it is more convenient to use the dual-phase-lagging heat conduction
equation in terms of the heat flux q or the heat flux potential Φ defined by q = �Φ.
The Φ-version heat conduction equation has exactly the same structure as its
T -version. The 1D q-version heat conduction equation is also of the same structure
as its T -version. A mixed formulation for both q and T directly by two coupled
energy and constitutive equations is more general in view of applications of the
dual-phase-lagging model. The readers are referred to Tzou (1997) for the details.

2.1 Existence

Wang and Xu (2002) examine the existence of (4) by using the separation of the
variables to find its solution in the form

T (
→
x , t) = X (

→
x )Γ (t). (5)

This involves a prior assumption of existence. The existence can also be proven
without this prior assumption but with more mathematics involved (Wang and
Zhou, 2000, 2001, Wang et al. 2008). In the interest of clarity and briefness, we
fellow Wang and Xu (2002) here in proving the existence.

A substitution of (5) into (4) leads to

X (
→
x )[

1

α
Γt (t) + τq

α
Γt t (t)] = �X (

→
x )[Γ (t) + τT Γt (t)]

which becomes, after dividing by X (
→
x )[Γ (t) + τT Γt (t)],

1
α
Γt (t) + τq

α
Γt t (t)

Γ (t) + τT Γt (t)
= �X (

→
x )

X (
→
x )

. (6)

Therefore, Wang and Xu (2002) obtain the separation equation for the temporal
variable Γt (t)

τqΓt t (t) + (1 + ατT λ)Γt (t) + αλΓ (t) = 0, (7)

and the homogeneous system for the spatial variable X (
→
x )

�X (
→
x ) + λX (

→
x ) = 0,

→
x ∈ Ω, (8)
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k
�X

�n
+ h X = 0,

→
x ∈ �Ω, (9)

where λ is the separation constant.

Integrating (8) over Ω after multiplying X (
→
x ) yields

∫

Ω

X � XdΩ + λ

∫

Ω

X2dΩ = 0 (10)

which is, by applying the Green identity to
∫

Ω
X � XdΩ ,

∫

�Ω

X
�X

�n
d(�Ω) −

∫

Ω

�X · �XdΩ + λ

∫

Ω

X2dΩ = 0. (11)

By (9), if k �= 0, we obtain

�X

�n
|�Ω = −h

k
X |�Ω.

Therefore, (11) becomes

λ

∫

Ω

X2dΩ =
∫

Ω

�X · �XdΩ + h

k

∫

�Ω

X2d(�Ω) ≥ 0,

which implies

λ ≥ 0. (12)

For the case of k = 0, a similar analysis also leads to (12).
Using the solution of (7)–(9) available in Wang and Zhou (2000, 2001) and

Wang et al. (2001, 2008) for various Ω , we have a solution of (4)

⎧
⎪⎪⎨

⎪⎪⎩

T (
→
x , t) = ∑∞

m=1 eνm t [Amcosμmt + Bmsin(μmt)]Xm(
→
x ),

Am = 1
Mm

∫

Ω
φ(

→
x )Xm(

→
x )dΩ,

Bm = 1
Mmμm

∫

Ω
ψ(

→
x )X (

→
x )dΩ − νm

Mmμm

∫

Ω
φ(

→
x )Xm(

→
x )dΩ,

(13)

where,

νm = −1 + ατT λm

2τq
, (14)

μm =
√

4ατqλm − (1 + ατT λm)2

2τq
, (15)

μ
m

=
{

μm if μm �= 0
1 if μm = 0,

(16)
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sin(μmt) =
{

sin(μmt) if μm �= 0
t if μm = 0,

(17)

and

Mm =
∫

Ω

X2
m(

→
x )dΩ. (18)

Here, λm and Xm(
→
x ) are eigenvalues and eigenfunctions of (8) and (9), respectively.

They are Ω-dependent and available in Wang and Zhou (2000), (2001) and Wang
et al. (2008) for various Ω . Therefore, (4) has at least one solution.

2.2 Inequality

For the uniqueness and stability, Wang and Xu (2002) first develop an important
inequality for (4). Note that

�

�t
(T + τq Tt )

2 = 2(T + τq Tt )(Tt + τq Ttt ) = 2α(T + τq Tt )(�T + τT �Tt ), (19)

in which the heat-conduction equation in (4) has been used. Integrating (19) with

respect to
→
x over Ω yields

∫

Ω

�

�t
(T +τq Tt )

2dΩ = 2α

∫

Ω

(T �T +τT T �Tt +τq Tt �T +τqτT Tt �Tt )dΩ. (20)

By the Green identity,

∫

Ω

T � T dΩ =
∫

�Ω

T
�T

�n
d(�Ω) −

∫

Ω

�T · �T dΩ,

∫

Ω

T � Tt dΩ =
∫

�Ω

T
�Tt

�n
d(�Ω) −

∫

Ω

�T · �Tt dΩ,

∫

Ω

Tt � T dΩ =
∫

�Ω

Tt
�T

�n
d(�Ω) −

∫

Ω

�Tt · �T dΩ,

∫

Ω

Tt � Tt dΩ =
∫

�Ω

Tt
�Tt

�n
d(�Ω) −

∫

Ω

�Tt · �Tt dΩ.

Also note that,

∫

Ω

�T · �Tt dΩ =
∫

Ω

�Tt · �T dΩ = 1

2

∫

Ω

�

�t
(�T · �T )dΩ.
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Therefore, (20) can be re-written as

∫

Ω

�

�t
(T + τq Tt )

2dΩ + α(τT + τq )
∫

Ω

�

�t
(�T · �T )dΩ =

2α

∫

�Ω

T
�T

�n
d(�Ω) − 2α

∫

Ω

�T · �T dΩ + 2ατT

∫

�Ω

T
�Tt

�n
d(�Ω)

+2ατq

∫

�Ω

Tt
�T

�n
d(�Ω) + 2ατqτT

∫

�Ω

Tt
�Tt

�n
d(�Ω) − 2ατqτT

∫

Ω

�Tt · �Tt dΩ.

(21)
For the case of k �= 0, the boundary condition in (4) becomes

�T

�n
|�Ω = −h

k
T |�Ω. (22)

Substituting (22) into (21) and defining

g(t) = α(τT +τq )
∫

Ω

�T ·�T dΩ+ αh

k
(τT +τq )

∫

�Ω

T 2d(�Ω)+
∫

Ω

(T +τq Tt )
2dΩ,

(23)
yield

�g(t)

�t
= −2αh

k

∫

�Ω

T 2d(�Ω) − 2α

∫

Ω

�T · �T dΩ − 2ατqτT
h

k

∫

�Ω

T 2
t d(�Ω)

− 2ατqτT

∫

Ω

�Tt · �Tt dΩ (24)

which is negative semi-definite because α, τT , τq , h and k are not negative. Therefore,

g(t1) ≤ g(t0),∀t1 ≥ t0. (25)

The inequality for the case of k = 0 can also be written in the form of (25).
However, the definition of g(t) should be

g(t) = α(τT + τq )
∫

Ω

�T · �T dΩ +
∫

Ω

(T + τq Tt )
2dΩ. (26)

2.3 Uniqueness

Suppose that T1(
→
x , t) and T2(

→
x , t) are two solutions of (4). The difference between

them

w(
→
x , t) = T1(

→
x , t) − T2(

→
x , t),
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must satisfy the following initial-boundary value problem (Wang and Xu 2002)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

α
wt + τq

α
wt t = �w + τT

�

�t
�w, Ω × (0,∞),

k
�w

�n
+ hw|�Ω = 0,

w|t=0 = 0, wt |t=0 = 0.

(27)

For the case of k �= 0, an application of (25)–(27) yields, with t1 = t > 0 and
t0 = 0,

α(τT + τq )
∫

Ω

�w(
→
x , t) · �w(

→
x , t)dΩ + αh

k
(τT + τq )

∫

�Ω

w2(
→
x , t)d(�Ω)

+
∫

Ω

[w(
→
x , t) + τqwt (

→
x , t)]2dΩ ≤ α(τT + τq )

∫

Ω

�w(
→
x , 0) · �w(

→
x , 0)dΩ

+αh

k
(τT + τq )

∫

�Ω

w2(
→
x , 0)d(�Ω) +

∫

Ω

[w(
→
x , 0) + τqwt (

→
x , 0)]2dΩ = 0.

(28)
This requires,

�w(
→
x , t) = 0, (29)

and,

w(
→
x , t) + τqwt (

→
x , t) = 0. (30)

Therefore, w is independent of
→
x (29). The general solution of (30) is thus

w(
→
x , t) = ce− t

τq (31)

with c as a constant. Applying the initial condition w(
→
x , 0) = 0 yields

c = 0. (32)

Therefore

w(
→
x , t) = 0, (33)

i.e.,

T1(
→
x , t) = T2(

→
x , t). (34)

However, T1 and T2 are any two solutions of (4) so that the solution of (4) is unique.
Similarly, the uniqueness can also be established for the case of k = 0 (Wang and
Xu 2002).
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2.4 Stability

Wang and Xu (2002) establish the stability with respect to the initial conditions by
the following stability theorem.

Theorem 1. If

|φ(
→
x )| ≤ ε, (35)

|ψ(
→
x )| ≤ ε, (36)

and

| � φ(
→
x )| ≤ ε, (37)

the solution T (
→
x , t) of (4) satisfies

|T (
→
x , t)| ≤ cε. (38)

Here ε is a small positive constant, and c is a nonnegative constant.

Proof. For the case of k �= 0, (25) yields, for (4) when t > 0 and t0 = 0,

α(τT + τq )
∫

Ω

�T · �T dΩ + αh

k
(τT + τq )

∫

�Ω

T 2d(�Ω) +
∫

Ω

(T + τq Tt )
2dΩ

≤ α(τT + τq )
∫

Ω

| � φ|2dΩ + αh

k
(τT + τq )

∫

�Ω

φ2d(�Ω) +
∫

Ω

(φ + τqψ)2dΩ,

≤ α(τT + τq )ε2V + αh

k
(τT + τq )ε2S + (1 + τq )2ε2V

= [(αV + αh

k
S)(τT + τq ) + (1 + τq )2V ]ε2 = Mε2,

(39)
where (35)–(37) have been used,

M =
(

αV + 2αh

k
S

)
(
τT + τq

) + (1 + τq )2V, (40)

V is the volume of Ω , and S is the area of �Ω . Equation (39) implies

α(τT + τq )
∫

Ω

| � T |2dΩ ≤ Mε2, (41)

αh(τT + τq )

k

∫

�Ω

T 2d(�Ω) ≤ Mε2, (42)
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which are equivalent to,

∫

Ω

| � T |2dΩ ≤ M1ε
2, (43)

∫

�Ω

T 2d(�Ω) ≤ M2ε
2. (44)

Here

M1 = M

α(τT + τq )
, M2 = Mk

αh(τT + τq )
.

Since, for any two square-integrable functions f1 and f2,

∫

Ω

| f1|| f2|dΩ ≤
√∫

Ω

f 2
1 dΩ

√∫

Ω

f 2
2 dΩ,

∫

�Ω

| f1|| f2|d(�Ω) ≤
√∫

�Ω

f 2
1 d(�Ω)

√∫

�Ω

f 2
2 d(�Ω),

Wang and Xu (2002) obtain

∫

Ω

| � T |dΩ ≤
√∫

Ω

| � T |2dΩ

√∫

Ω

dΩ ≤
√

M1V ε, (45)

and

∫

�Ω

|T |d(�Ω) ≤
√∫

�Ω

T 2d(�Ω)

√∫

�Ω

d(�Ω) ≤
√

M2Sε, (46)

in which (43) and (44) have been used. Equations (45) and (46) can be rewritten into

∫

Ω

η1(
→
x , t)dΩ ≤ 0,∀Ω, (47)

and
∫

�Ω

η2(
→
x , t)d(�Ω) ≤ 0,∀�Ω, (48)

where

η1(
→
x , t) =| �T (

→
x , t) | −

√
M1

V
ε, η2(

→
x , t) =| T (

→
x , t) | −

√
M2

S
ε.
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To obtain a local form of (47) and (48), Wang and Xu (2002) consider a subregion
Ω�v of volume �v around point

→
x1 in Ω at arbitrary time instant τ , and a subsurface

�Ω�s of area �s around point
→
x2 on �Ω at arbitrary time instant τ . Let

I�v = | η1(
→
x1, t) − 1

�v

∫

Ω�v
η1(

→
x , t)dΩ�v |, (49)

I�s = | η2(
→
x2, t) − 1

�s

∫

�Ω�s
η2(

→
x , t)d�Ω�s | . (50)

Then,

I�v ≥ 0, (51)

I�s ≥ 0. (52)

Also,

I�v = | 1
�v

∫

Ω�v
[η1(

→
x1, t) − η1(

→
x , t)]dΩ�v |

≤ 1
�v

∫

Ω�v

max→
x ∈Ω�v

| [η1(
→
x1, t) − η1(

→
x , t)] | dΩ�v = max→

x ∈Ω�v
| [η1(

→
x1, t) − η1(

→
x , t)] |,

I�s = | 1
�s

∫

�Ω�s
[η2(

→
x2, t) − η2(

→
x , t)]d�Ω�s |

≤ 1
�s

∫

Ω�s

max→
x ∈�Ω�s

| [η2(
→
x2, t) − η2(

→
x , t)] | d�Ω�s = max→

x ∈�Ω�v
| [η2(

→
x2, t) − η2(

→
x , t)] |,

which tend to zero as �v → 0 or �s → 0. Hence Wang and Xu (2002) obtain

I�v ≤ 0, as � v → 0, (53)

I�s ≤ 0, as � s → 0. (54)

To satisfy (51)–(54), Wang and Xu (2002) conclude that

η1(
→
x1, τ ) = lim

�v → 0

1

�v

∫

Ω�v

η1(
→
x , t)dΩ�v, (55)

and

η2(
→
x2, τ ) = lim

�s → 0

1

�s

∫

�Ω�s

η2(
→
x , t)d�Ω�s, (56)

which yield, after using (47) and (48),

η1(
→
x1, τ ) ≤ 0, (57)

η2(
→
x2, τ ) ≤ 0. (58)
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Since
→
x1,

→
x2 and τ are arbitrary, Wang and Xu (2002) obtain

η1(
→
x , t) ≤ 0, (59)

η2(
→
x , t) ≤ 0, (60)

i.e.,

| �T (
→
x , t) |≤

√
M1

V
ε,

→
x ∈ Ω, (61)

| T (
→
x , t) |≤

√
M2

S
ε,

→
x ∈ �Ω. (62)

Therefore, as ε → 0,

| �T (
→
x , t) |→ 0,∀ →

x ∈ Ω, (63)

and

| T (
→
x , t) |→ 0,∀ →

x ∈ �Ω. (64)

Let
→
x be an arbitrary point in Ω ,

→
x0 be a point on �Ω . There exists a point

→
y in

Ω between
→
x and

→
x0, by the Lagrange mean-value theorem, such that

T (
→
x , t) = T (

→
x0, t) + �T (

→
y , t) · (

→
x − →

x0). (65)

Therefore

|T (
→
x , t)| ≤ |T (

→
x0, t)| + | � T (

→
y , t)|| →

x − →
x0 |, (66)

which, with (63) and (64), leads to

|T (
→
x , t)| → 0,∀ →

x ∈ Ω, as ε → 0. (67)

Equations (64) and (67) lead Wang and Xu (2006) to conclude that there exists a
positive constant c such that

|T (
→
x , t)| ≤ cε,∀ →

x ∈ Ω, and ∀ →
x ∈ �Ω. (68)

Therefore, the solution of (4) is stable with respect to the initial conditions.
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3 Solution Structure

The temperature field in dual-phase-lagging heat conduction comes from the com-
bined contribution of three sources: the initial time-rate change of the temperature,
the initial temperature distribution and the source term. Wang and Zhou (2000,
2001) and Wang et al. (2001, 2008) show that these three contributions are inter-
expressible. The relations among the three contributions are termed as the solution
structure theorems. These theorems uncover the solution structure, simplify the
development of solutions of dual-phase-lagging heat-conduction equations signif-
icantly, and are with various forms (Wang and Zhou 2000, 2001; Wang et al. 2001,
2008). Here we follow Wang et al. 2001 in developing two of them expressing
solutions of

⎧
⎪⎨

⎪⎩

1
α

Tt (
→
x , t) + τq

α
Ttt (

→
x , t) = �T (

→
x , t) + τT

�
�t � T (

→
x , t), Ω × (0,+∞)

L(T, Tn)|�Ω = 0,

T (M, 0) = φ(p), Tt (
→
x , 0) = 0,

(69)

and
⎧
⎪⎨

⎪⎩

1
α

Tt (
→
x , t) + τq

α
Ttt (

→
x , t) = �T (

→
x , t) + τT

�
�t � T (

→
x , t) + f (

→
x , t), Ω × (0,+∞)

L(T, Tn)|�Ω = 0,

T (
→
x , 0) = 0, Tt (

→
x , 0) = 0,

(70)
in terms of the solution of

⎧
⎪⎨

⎪⎩

1
α

Tt (
→
x , t) + τq

α
Ttt (

→
x , t) = �T (

→
x , t) + τT

�
�t � T (

→
x , t), Ω × (0,+∞)

L(T, Tn)|�Ω = 0,

T (
→
x , 0) = 0, Tt (

→
x , 0) = ψ(p).

(71)

Here
→
x denotes a point in the space domain Ω with the boundary �Ω , � is the

Laplacian, Tn is the normal derivative of T , L(T, Tn) represents linear functions of
T and Tn , and L(T, Tn)|�Ω = 0 denotes homogeneous boundary conditions. Note
that commonly-used Dirichlet, Neumann and Robin boundary conditions are the
special cases of the linear function L . Wang et al. (2001) limit the discussion to
the case that f, φ and ψ satisfy conditions for well-posedness and that the order of
differentiation is interchangeable for some high-order partial derivatives of T with
respect to the time and spatial coordinates.

Theorem 2. Let W (ψ,
→
x , t) denote the solution of (71). The solution of (69) can be

written as

T1(
→
x , t) = 1

τq

[

W (φ,
→
x , t) + τq

�W (φ,
→
x , t)

�t
+ W (φ1,

→
x , t)

]

, (72)
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where

φ1 ≡ −ατT � φ(p). (73)

Proof. As W (ψ,
→
x , t) is the solution of (71), we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
α

�
�t W (φ,

→
x , t) + τq

α
�2

�t2 W (φ,
→
x , t) Ω × (0,+∞)

− � W (φ,
→
x , t) − τT

�
�t � W (φ,

→
x , t) = 0,

L[W (φ,
→
x , t), �

�n W (φ,
→
x , t)] |�Ω= 0,

W (φ,
→
x , 0) = 0, �

�t W (φ,
→
x , 0) = φ(p),

(74)

and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
α

�
�t W (φ1,

→
x , t) + τq

α
�2

�t2 W (φ1,
→
x , t) Ω × (0,+∞)

− � W (φ1,
→
x , t) − τT

�
�t � W (φ1,

→
x , t) = 0,

L[W (φ1,
→
x , t), �

�n W (φ1,
→
x , t)] |�Ω= 0,

W (φ1,
→
x , 0) = 0, �

�t W (φ1,
→
x , 0) = φ1(p).

(75)

Hence

1

α

�

�t
T1 + τq

α

�2

�t2
T1 − �T1 − τT

�

�t
� T1

= 1

τq

[
1

α

�W (φ,
→
x , t)

�t
+ τT

α

�2W (φ,
→
x , t)

�t2
− �W (φ,

→
x , t) − τT

�

�t
� W (φ,

→
x , t)

]

+ �

�t

[
1

α

�W (φ,
→
x , t)

�t
+ τq

α

�2W (φ,
→
x , t)

�t2
− �W (φ,

→
x , t) − τT

�

�t
� W (φ,

→
x , t)

]

+ 1

τq

[
1

α

�W (φ1,
→
x , t)

�t
+ τq

α

�2W (φ1,
→
x , t)

�t2
− �W (φ1,

→
x , t) − τT

�

�t
� W (φ1,

→
x , t)

]

= 0

which indicates that the T1 in (72) satisfies the equation in (69).
Also,

L(T1,
�

�n
T1) = L

{
1

τq

[

W (φ,
→
x , t) + τq

�W (φ,
→
x , t)

�t
+ W (φ1,

→
x , t)

]

,

1

τq

�

�n

[

W (φ,
→
x , t) + τq

�W (φ,
→
x , t)

�t
+ W (φ1,

→
x , t)

]}

= 1

τq
L

[

W (φ,
→
x , t),

�

�n
W (φ,

→
x , t)

]
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+ �

�t
L

[

W (φ,
→
x , t),

�

�n
W (φ,

→
x , t)

]

+ 1

τq
L

[

W (φ1,
→
x , t),

�

�n
W (φ1,

→
x , t)

]

,

and

L(T1,
�

�n
T1) |�Ω = 1

τq
L

[

W (φ,
→
x , t),

�

�n
W (φ,

→
x , t)

]

|�Ω

+ �

�t
L

[

W (φ,
→
x , t),

�

�n
W (φ,

→
x , t)

]

|�Ω

+ 1

τq
L

[

W (φ1,
→
x , t),

�

�n
W (φ1,

→
x , t)

]

|�Ω= 0

in which boundary conditions in (74) and (75) have been used. This indicates that
the T1 in (72) satisfies the boundary condition in (69).

Finally, by (74) and (75),

T1(
→
x , 0) = 1

τq

[
W (φ,

→
x , t) + τq

�W (φ,
→
x ,t)

�t + W (φ1,
→
x , t)

]
|t=0

= 1
τq

[
W (φ,

→
x , 0) + τq

�W (φ,
→
x ,0)

�t + W (φ1,
→
x , 0)

]

= �W (φ,
→
x ,0)

�t = φ

and

�
�t T1(

→
x , t) |t=0 = 1

τq

�
�t

[
W (φ,

→
x , t) + τq

�W (φ,
→
x ,t)

�t + W (φ1,
→
x , t)

]
|t=0

= 1
τq

�
�t

[
W (φ,

→
x , t) + τq

�W (φ,
→
x ,t)

�t

]
|t=0 + φ1(p)

τq

= α
τq

[
�W (φ,

→
x , t) + τT

�
�t (�W (φ,

→
x , t))

]
|t=0 + φ1(p)

τq

= α τT
τq

� φ(p) + 1
τq

φ1(p) = 0.

Therefore, the T1 in (72) also satisfies initial conditions in (69).

Theorem 3. Let W (ψ,
→
x , t) denote the solution of (71). The solution of (70) can be

written as

T2(
→
x , t) =

∫ t

0
W ( fτ ,

→
x , t − τ )dτ, (76)

where

fτ = α

τq
f (

→
x , τ ). (77)

Proof. As W (ψ,
→
x , t) is the solution of (71), we have
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
α

�
�t W ( fτ ,

→
x , t − τ ) + τq

α
�2

�t2 W ( fτ ,
→
x , t − τ ) Ω × (0,+∞)

− �W ( fτ ,
→
x , t − τ ) − τT

�
�t �W ( fτ ,

→
x , t − τ ) = 0;

L
[
W ( fτ ,

→
x , t − τ ), �

�n W ( fτ ,
→
x , t − τ )

]
|�Ω= 0,

W ( fτ ,
→
x , t − τ ) |t=τ= 0, �

�t W ( fτ ,
→
x , t − τ ) |t=τ= α

τq
f (

→
x , τ ).

(78)
Therefore,

1

α

�

�t
T2 + τq

α

�2

�t2
T2 − �T2 − τT

�

�t
�T2

= 1

α

�

�t

∫ t

0
W ( fτ ,

→
x , t − τ )dτ + τq

α

�2

�t2

∫ t

0
W ( fτ ,

→
x , t − τ )dτ

− �
∫ t

0
W ( fτ ,

→
x , t − τ )dτ − τT

�

�t
�
∫ t

0
W ( fτ ,

→
x , t − τ )dτ

= 1

α

[∫ t

0

�W ( fτ ,
→
x , t − τ )

�t
dτ + W ( fτ ,

→
x , t − τ )|τ=t

]

+ τq

α

[∫ t

0

�2W ( fτ ,
→
x , t − τ )

�t2
+ �W ( fτ ,

→
x , t − τ )

�t
|τ=t

]

− �
∫ t

0
W ( fτ ,

→
x , t − τ )dτ − τT � �

�t

∫ t

0
W ( fτ ,

→
x , t − τ )dτ

=
∫ t

0

1

α

�W ( fτ ,
→
x , t − τ )

�t
dτ +

∫ t

0

τq

α

�2W ( fτ ,
→
x , t − τ )

�t2
dτ + f (

→
x , t)

−
∫ t

0
�W ( fτ ,

→
x , t − τ )dτ −

∫ t

0
τT � �W ( fτ ,

→
x , t − τ )

�t
dτ = f (

→
x , t)

which indicates that the T2 in (76) satisfies the equation in (70).
Also,

L(T2,
�

�n T2) |�Ω = L
[∫ t

0 W ( fτ ,
→
x , t − τ )dτ, �

�n

∫ t
0 W ( fτ ,

→
x , t − τ )dτ

]
|�Ω

= L
[∫ t

0 W ( fτ ,
→
x , t − τ )dτ,

∫ t
0

�
�n W ( fτ ,

→
x , t − τ )dτ

]
|�Ω

= ∫ t
0 L

[
W ( fτ ,

→
x , t − τ ), �

�n W ( fτ ,
→
x , t − τ )

]
|�Ω dτ = 0,

in which the boundary condition in (78) has been used. Therefore, the T2 in (76)
satisfies the boundary condition in (70).

Finally,

T2(
→
x , 0) =

∫ 0

0
W ( fτ ,

→
x , t − τ )dτ = 0,

and, by (78),
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�

�t
T2(

→
x , t) |t=0 =

[∫ t

0

�

�t
W ( fτ ,

→
x , t − τ )dτ + W ( fτ ,

→
x , t − τ ) |τ=t

]

|t=0 = 0.

Therefore, the T2 in (76) also satisfies initial conditions in (70).
By Theorems 2 and 3 and the principle of superposition, we can express the

solution T (
→
x , t) of

⎧
⎪⎨

⎪⎩

1
α

Tt (
→
x , t) + τq

α
Ttt (

→
x , t) = �T (

→
x , t) + τT

�
�t � T (

→
x , t) + f (

→
x , t), Ω × (0,+∞)

L(T, Tn)|�Ω = 0,

T (
→
x , 0) = φ(p), Tt (

→
x , 0) = ψ(p)

(79)
in term of W as

T (
→
x , t) = W (ψ,

→
x , t) + 1

τq

[

W (φ,
→
x , t) + τq

�W (φ,
→
x , t)

�t
+ W (φ1,

→
x , t)

]

+
∫ t

0
W ( fτ ,

→
x , t − τ )dτ (80)

with φ1 and fτ defined by (73) and (77). The details of W depend on Ω and
boundary conditions, and are available in Wang and Zhou (2000, 2001) and Wang
et al. (2008).

4 Thermal Oscillation and Resonance

Thermal features of the dual-phase-lagging heat conduction have been and still are
the object of intense investigations due to its intrinsic interest and its relevance to
the emerging technologies involving ultrafast pulse-laser heating, superfluid liquid
helium, porous media, bio-transport and amorphous materials. The readers are ref-
ereed to Wang et al. (2008) for a comprehensive list of the references. Here we
follow Xu and Wang (2002) in studying conditions and features of thermal oscilla-
tion and resonance and in comparing with those in the classical and hyperbolic heat
conduction.

4.1 Thermal Oscillation

Without losing the generality, Xu and Wang (2002) consider the one-dimensional
initial-boundary value problem of dual-phase-lagging heat conduction

⎧
⎨

⎩

1
α

( �T
�t + τq

�2T
�t2 ) = �2T

�x2 + τT
�3T

�t�x2 + 1
k (S + τq

�S
�t ), (0, l) × (0,+∞),

T (0, t) = T (l, t) = 0,

T (x, 0) = φ(x), Tt (x, 0) = ψ(x),
(81)
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whose solution represents the temperature distribution in an infinitely-wide slab of
thickness l. Here t is the time, T is the temperature, α is the thermal diffusivity of the
medium, S is the volumetric heat source, φ and ψ are two given functions, τT and
τq are the phase lags of the temperature gradient and heat flux vector, respectively.

For a free thermal oscillation, S = 0. By taking the boundary conditions into
account, let

T (x, t) =
∞∑

m=1

Γm(t)sinβm x, (82)

where

βm = mπ

l
.

Using the Fourier sine series to express φ and ψ as

φ(x) =
∞∑

m=1

φmsinβm x, (83)

and

ψ(x) =
∞∑

m=1

ψmsinβm x, (84)

where

φm = 2

l

∫ l

0
φ(ξ )sinβmξdξ,

and

ψm = 2

l

∫ l

0
ψ(ξ )sinβmξdξ.

A substitution of (82), (83) and (84) into (81) yields, by making use of the orthogo-
nality of sin(βm X )(m = 1, 2, · · · ),

τq
..

Γ m +(1 + ατT β2
m)

.

Γ m +β2
mαΓm = 0, (85)

Γm(0) = φm,
.

Γ m (0) = ψm . (86)

Introduce the damping coefficient fm by

fm = 1

τq
+ τT ω2

m
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and the natural frequency coefficient ωm by

ω2
m = αβ2

m

τq
.

Equation (85) reduces to

..

Γ m + fm
.

Γ m +ω2
mΓm = 0. (87)

The solution of (87) can be readily obtained by the method of undetermined coeffi-
cients as

Γm(t) = beλt (88)

with λ as a coefficient to be determined. Substituting (88) into (87) leads to

λ2 + fmλ + ω2
m = 0, (89)

which has solutions λ1, λ2

λ1,2 = − fm

2
±

√
Λ. (90)

Here Λ is the discriminate of (89) and is defined by

Λ =
(

fm

2

)2

− ω2
m .

Therefore, a positive, negative and vanished discriminate yields two distinct real
λ1, λ2, two complex conjugate λ1, λ2, and two equal real λ1, λ2, respectively. The
critical damping coefficient fmc is referred to the damping coefficient at a fixed ωm

and Λ = 0. Therefore,

fmc = 2ωm . (91)

The nondimensional damping ratio, ζm , is defined as the ratio of fm over fmc,

ζm = fm

fmc
= fm

2ωm
= 1

2τqωm
+ τT ωm

2
. (92)

The system is at underdamped oscillation, critically-damped oscillation or over-
damped oscillation, respectively when ζm < 1, ζm = 1 or ζm > 1. By (90) and (92),
Xu and Wang (2002) obtain an expression of λ1,2 in terms of ζm and ωm ,

λ1,2 = ωm

(

−ζm ±
√

ζ 2
m − 1

)

. (93)
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Underdamped Oscillation

For this case (ζm < 1), there are two complex conjugate λ1, λ2,

λ1,2 = ωm

(

−ζm ± i
√

1 − ζ 2
m

)

. (94)

Therefore

Γm(t) = e−ζmωm t

(

amcosωmt
√

1 − ζ 2
m + bmsinωmt

√

1 − ζ 2
m

)

. (95)

After the determination of integration constants am and bm by the initial conditions
(86), Xu and Wang (2002) obtain

Γm(t) = e−ζmωm t

(

φmcosωmt
√

1 − ζ 2
m + ψm + ζmωmφm

ωm

√
1 − ζ 2

m

sinωmt
√

1 − ζ 2
m

)

(96)

which may be rewritten as

Γm(t) = Ame−ζmωm t sin(ωdmt + ϕdm). (97)

Here,

Am =
√

φ2
m +

(
ψm + ζmωmφm

ωdm

)2

, (98)

ωdm = ωm

√

1 − ζ 2
m, (99)

ϕdm = tan−1

(
φmωdm

ψm + ζmωmφm

)

. (100)

Therefore, the system is oscillating with the frequency ωdm and an exponentially de-
caying amplitude Ame−ζmωm t . Figure 1 typifies the oscillatory pattern, for ζm = 0.1,
φm = 1.0, ψm = 0.0 and ωm = 1.0. The wave behavior is still observed in the

Fig. 1 Variation of Γm (t)
with the time t: ζm = 0.1,
φm = 1.0, ψm = 0.0,
ωm = 1.0 (after Xu and
Wang 2002)
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dual-phase-lagging heat conduction. However, the amplitude decays exponentially
due to the damping of thermal diffusion. This differs very much from the classical
heat conduction. ζm < 1 forms the condition for the thermal oscillation of this kind.

Figure 2 illustrates the variation of Γm(t) with the time t when ψm is changed to
1.0 from 0. Γm is observed to be able of surpassing φm at some instants. Such phe-
nomenon is caused by the no-vanishing initial time-rate change of the temperature
and cannot appear in the classical heat conduction. The classical maximum and min-
imum principle is, therefore, not valid in the dual-phase-lagging heat conduction.

While Γm(t) is oscillatory, it is not periodic because of the decaying amplitude.
Γm(t) oscillates in time with a fixed damped period Tdm given by

Tdm = 2π

ωdm
. (101)

4.1.1 Critically-Damped Oscillation

For this case, ζm = 1. This requires, by (92),

ωm =
1 ±

√
1 − τT

τq

τT
. (102)

Therefore, the critically damped oscillation appears only when τT ≤ τq . When the
system is in the critically damped oscillation, there are two equal λ1, λ2. Therefore,

Γm(t) = ame−ωm t + bmte−ωm t ,

which becomes after determining the integration constants am and bm by the initial
conditions (86),

Γm(t) = e−ωm t [φm + (ψm + ωmφm)t]. (103)

Fig. 2 Variation of Γm (t)
with the time t: ζm = 0.1,
φm = 1.0, ψm = 1.0,
ωm = 1.0 (after Xu and
Wang 2002)



22 L. Wang et al.

By letting d|Γm (t)|
dt = 0 and analyzing the sign of d2|Γm (t)|

dt2 , Xu and Wang (2002)
obtain the maximal value of | Γm(t) |

Max[| Γm(t) |] = e
−

ψm

ψm + ωmφm

∣
∣
∣
∣φm + ψm

ωm

∣
∣
∣
∣ (104)

at

tm = ψm

ωm(ψm + ωmφm)
, (105)

that is positive if

ψ2
m > −ωmφmψm .

This clearly requires that ψm �= 0. Therefore, | Γm(t) | decreases monotonically as
t increases from 0 when

ψ2
m ≤ −ωmφmψm .

This is very similar to that in the classical heat-conduction equation. When

ψ2
m > −ωmφmψm,

however, | Γm(t) | first increases from φm to Max[| Γm(t) |] as t increases from 0 to
tm and then decreases monotonically (Fig. 3). Therefore, although the temperature
field does not oscillate, its absolute value reaches the maximum value at t = tm > 0
rather than at the initial time instant t = 0.

Fig. 3 | Γm (t) | at the critically damped oscillation and ψ2
m > − ωmφmψm (after Xu and

Wang 2002)
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4.1.2 Overdamped Oscillation

For this case (ζm > 1),

λ1,2 = ωm

(

−ζm ±
√

ζ 2
m − 1

)

. (106)

The solution of (87) is, thus, subject to the condition (86),

Γm(t) = e−ζmωm t

2
√

ζ 2
m − 1

[(
ψm

ωm
+ φm

(

ζm +
√

ζ 2
m − 1

))

eωm t
√

ζ 2
m−1+

(

−ψm

ωm
+ φm

(

−ζm +
√

ζ 2
m − 1

))

e−ωm t
√

ζ 2
m−1

]

. (107)

Letting d|Γm (t)|
dt = 0 leads to two extreme points,

tm1 = 0 (108)

and

tm2 = − 1

2ωm

√
ζ 2

m − 1
ln

⎡

⎣
ζm − √

ζ 2
m − 1

ζm + √
ζ 2

m − 1

ψm

ωm
+ φm

(
ζm + √

ζ 2
m − 1

)

ψm

ωm
+ φm

(
ζm − √

ζ 2
m − 1

)

⎤

⎦ , (109)

with Max1[|Γm(t)|] = |φm | and Max2[|Γm(t)|]=|Γm(tm2)|, respectively. Therefore,
|Γm(t)| decreases monotonically from t = 0 when tm2 = 0 (very like that in classical
heat conduction). When tm2 > 0, however, |Γm(t)| first increases from |φm | to a
maximal value Max2[|Γm(t)|] as t increases from 0 to tm2 and then decreases for
t ≥ tm (Fig. 4). There is no oscillation if ζm > 1.

When τT > τq ,

1 + ατT
m2π2

l2
> 1 + ατq

m2π2

l2
≥ 2

√
ατq

mπ

l
.

This, with (92), yields

ζm = 1 + τT α m2π2

l2

2
√

ατq
mπ

l

> 1.

Therefore the system is always at the overdamped oscillation if τT > τq . Conse-
quently, there is no thermal oscillation.
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Fig. 4 | Γm (t) | at the overdamped oscillation and tm2 > 0 (after Xu and Wang 2002)

ζm = 1.0 separates the underdamped modes from the overdamped modes. Ap-
plying ζm < 1 in (92) yields the region of m where the underdamped modes can
occur:

l
πC1

< m < l
πC2

, if τq > τT > 0;
m > l

πC , if τq > τT = 0.
(110)

Here C1 and C2 are the relaxation distances defined by Tzou (1992)

C1 = √
ατT (

√
τq

τT
+
√

τq

τT
− 1),

C2 = √
ατT (

√
τq

τT
−
√

τq

τT
− 1),

C = 2
√

ατq .

Therefore, the thermal oscillation occurs only for the modes between l
πC1

and l
πC2

for the case of τq > τT > 0. This is different from the thermal wave in the hyper-
bolic heat conduction where the oscillation appears always for the high order modes
(Tzou 1992).

The behavior of an individual temperature mode discussed above also represents
the entire thermal response if φ(x) = Asin mπx

l and ψ(x) = Bsin mπx
l with A and B

as constants. For the general case, a change �Γm(t) in the m−th mode would lead
to a change �Γm(t)sin mπx

l in T (x, t) because

T (x, t) =
∞∑

m=1

Γm(t)sin
mπx

l
.
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4.2 Resonance

For the dual-phase-lagging heat conduction, the amplitude of the thermal wave may
become exaggerated if the oscillating frequency of an externally applied heat source
is at the resonance frequency.

Consider a heat source in the system (81) in the form of

S(x, t) = Qg(x)eiΩt .

Here Q, independent of x and t , is the strength, g(x) is the spanwise distribution,
and Ω is the oscillating frequency. Expand T (x, t) and g(x) by the Fourier sine
series,

T (x, t) =
∞∑

m=1

Γm(t)sin(βm x), (111)

g(x) =
∞∑

m=1

Dmsin(βm x), (112)

where Γm(t) and βm are defined in the last subsection, and

Dm = 2

l

∫ l

0
g(x)sin(βm x)dx . (113)

Such a T (x, t) in (111) automatically satisfies the boundary conditions in (81). Sub-
stituting (111) and (112) into the equation in (81) and making use of the orthogo-
nality of the set sin(βm x) yield

Γ̈m(t) + 2ζmωmΓ̇m(t) + ω2
mΓm(t) = Q Dmα

kτq
(1 + iΩτq )eiΩt , (114)

whose solution is readily obtained as

Γm(t) = Bme(Ωt+ϕm )i . (115)

Here,

Bm = Q Dmα

kωm
BΩ∗m, (116)

BΩ∗m = ηm + iΩ∗
m

√

(1 − Ω∗
m

2)2 + 4ζ 2
mΩ∗

m
2
, (117)

tan−1(ϕm) = − 2ζmΩ∗
m

1 − Ω∗2
m

, (118)
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ηm = 1√
ατqβm

, (119)

Ω∗
m = Ω

ωm
. (120)

For the resonance, |BΩ∗m |2 reaches its maximum value. Note that, by (117),

|BΩ∗
m |2 = η2

m + Ω∗2
m

(
1 − Ω∗2

m

)2 + 4ζ 2
mΩ∗2

m

. (121)

Therefore, the resonance requires

�|BΩ∗
m
|2

�Ω∗
m

2 = 0,

which yields, by noting also that Ω∗
m ≥ 0,

Ω∗
mr

2 = −η2
m +

√
(
1 + η2

m

)2 − 4ζ 2
mη2

m, (122)

where Ω∗
mr stands for the external source frequency at resonance. As Ω∗

mr must be
real, Xu and Wang (2002) obtain another condition for the resonance in addition to
(122),

(1 + η2
m)2 − 4ζ 2

mη2
m > η4

m . (123)

The variation of Ω∗
mr with the ζm and ηm is shown in Figs. 5 and 6. It is observed

that Ω∗
mr decreases as the damping parameter ζm and the phase lagging parameter

ηm increase. Figure 7 illustrates the variation of |BΩ∗
m
| with Ω∗

m and ζm at ηm = 1.
For ζm = 0.9, Eq. (123) cannot be satisfied. Therefore, there is no resonance when
ζm = 0.9 at ηm = 1 (Fig. 7).

Fig. 5 Variation of | Ω∗
mr |

with ζm at ηm = 1.0 (after Xu
and Wang 2002)
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Fig. 6 Variation of | Ω∗
mr |

with ηm at ζm = 0.5 (after Xu
and Wang 2002)

Fig. 7 Variation of |BΩ∗
m
|

with Ω∗
m and ζm at ηm = 1

(after Xu and Wang 2002)

5 Equivalence Between Dual-Phase-Lagging and Porous-Medium
Heat Conduction Processes

The microscale model for heat conduction in porous media is well-known. It con-
sists of field equation and constitutive equation. The field equation comes from the
conservation of energy (the first law of thermodynamics). The commonly-used con-
stitutive equation is the Fourier law of heat conduction for the relation between the
temperature gradient �T and the heat flux density vector q (Wang 1994).

For transport in porous media, the macroscale (so-called Darcy scale in the lit-
erature) is a phenomenological scale that is much larger than the microscale of
pores and grains and much smaller than the system length scale. The interest in
the macroscale rather than the microscale comes from the fact that a prediction at
the microscale is complicated because of complex microscale geometry of porous
media, and that we are usually more interested in large scales of transport for
practical applications. Existence of such a macroscale description equivalent to the
microscale behavior requires a good separation of length scale and has been well
discussed by Auriault (1991).

To develop a macroscale model of transport in porous media, the method of vol-
ume averaging starts with a microscale description (Whitaker 1999, Wang 2000b).
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Both conservation and constitutive equations are introduced at the microscale. Re-
sulting microscale field equations are then averaged over a representative elementary
volume (REV), the smallest differential volume resulting in statistically meaningful
local average properties, to obtain macroscale field equations. In the process of aver-
aging, averaging theorems are used to convert integrals of gradient, divergence, curl,
and partial time derivatives of a function to some combination of gradient, diver-
gence, curl, and partial time derivatives of integrals of the function and integrals over
the boundary of the REV (Whitaker 1999, Wang 2000b). The readers are referred to
Whitaker (1999) and Wang (2000b) for the details of the method of volume averag-
ing and to Wang (2000b) for the other methods of obtaining macroscale models.

Quintard and Whitaker (1993) use the method of volume averaging to develop
one- and two-equation macroscale models for heat conduction in porous media.
First, they define the microscale problem by the first law of thermodynamics and
the Fourier law of heat conduction (Fig. 8)

(ρc) f
�T f

�t
= � · (k f � T f ), in the fluid phase f (124)

(ρc)s
�Ts

�t
= � · (ks � Ts), in the solid phase s (125)

T f = Ts, at the fluid-solid interface A f s (126)

n f s · k f � T f = n f s · ks � Ts, at the fluid-solid interface A f s (127)

Here ρ, c and k are the density, specific heat and thermal conductivity, respectively,
subscripts f and s refer to the fluid and solid phases, respectively, A f s represents the
area of the fluid-solid interface contained in the REV; n f s is the outward-directed
surface normal from the fluid-phase toward the solid-phase, and n f s = −ns f

(Fig. 8). To be complete, Quintard and Whitaker (1993) have also specified the
initial conditions and the boundary conditions at the entrances and exits of the REV;
however, we need not do so for our discussion.

Next Quintard and Whitaker (1993) apply the superficial averaging process to
(124) and (125) to obtain,

Fig. 8 Rigid porous medium system
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1

VREV

∫

V f

(ρc) f
�T f

�t
dV = 1

VREV

∫

V f

� · (k f � T f )dV, (128)

and

1

VREV

∫

Vs

(ρc)s
�Ts

�t
dV = 1

VREV

∫

Vs

� · (ks � Ts)dV, (129)

where VREV, V f and Vs are the volumes of the REV, fluid phase in REV and
solid phase in REV, respectively. We should note that the superficial temperature
is evaluated at the centroid of the REV, whereas the phase temperature is evaluated
throughout the REV. Neglecting variations of (ρc) within the REV and considering
the system to be rigid so that V f and Vs are not functions of time, the volume-
averaged form of (124) and (125) are

(ρc) f
� < T f >

�t
=< � · (k f � T f ) >, (130)

and

(ρc)s
� < Ts >

�t
=< � · (ks � Ts) >, (131)

where angle brackets indicate superficial quantities such as

< T f >= 1

VREV

∫

V f

T f dV,

and

< Ts >= 1

VREV

∫

Vs

TsdV .

The superficial average is however an unsuitable variable because it can yield erro-
neous results. For example, if the fluid temperature were a constant, the superficial
average would differ from this constant (Quintard and Whitaker 1993). On the other
hand, intrinsic phase averages do not have this shortcoming. These averages are
defined by

< T f > f = 1

V f

∫

V f

T f dV, (132)

and

< Ts >s= 1

Vs

∫

Vs

TsdV . (133)
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Also, intrinsic averages are related to superficial averages by

< T f >= ε f < T f > f , (134)

and

< Ts >= εs < Ts >s, (135)

where ε f and εs are the volume fractions of the fluid and solid phases with ε f = ϕ,
εs = 1 − ϕ and a constant porosity ϕ for a rigid two-phase system.

Quintard and Whitaker (1993) substitute (134) and (135) into (130) and (131) to
obtain

ε f (ρc) f
� < T f > f

�t
=< � · (k f � T f ) >, (136)

and

εs(ρc)s
� < Ts >s

�t
=< � · (ks � Ts) > . (137)

Next Quintard and Whitaker (1993) apply the spatial averaging theorem to (136)
and (137) and neglect variations of physical properties within the REV. The result is

ε f (ρc) f
� < T f > f

�t
︸ ︷︷ ︸

accumulation

= � ·
{

k f

[

ε f � < T f > f + < T f > f �ε f + 1

VREV

∫

A f s

n f s T f d A

]}

︸ ︷︷ ︸

conduction

+ 1

VREV

∫

A f s

n f s · k f � T f d A

︸ ︷︷ ︸

interfacial flux

,

(138)
and

εs(ρc)s
� < Ts >s

�t︸ ︷︷ ︸

accumulation

= � ·
{

ks

[

εs� < Ts >s + < Ts >s �εs + 1

VREV

∫

A f s

n f s Tsd A

]}

︸ ︷︷ ︸

conduction

+ 1

VREV

∫

A f s

n f s · ks � Tsd A

︸ ︷︷ ︸

interfacial flux

.

(139)

By introducing the spatial decompositions T f =< T f > f +T̃ f and Ts =< Ts >s

+T̃s and by applying scaling arguments and the spatial averaging theorem, (138)
and (139) are simplified into
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ε f (ρc) f
� < T f > f

�t
= � · {k f [ε f � < T f > f + 1

VREV

∫

A f s
n f s T̃ f d A]}

+ 1
VREV

∫

A f s
n f s · k f � < T f > f d A

+ 1
VREV

∫

A f s
n f s · k f � T̃ f d A,

(140)

and

εs(ρc)s
� < Ts >s

�t
= � · {ks[εs� < Ts >s + 1

VREV

∫

A f s
ns f T̃sd A]}

+ 1
VREV

∫

A f s
ns f · ks� < Ts >s d A

+ 1
VREV

∫

A f s
ns f · ks � T̃sd A.

(141)

After developing the closure for T̃ f and T̃s , Quintard and Whitaker (1993) obtain a
two-equation model

ε f (ρc) f
� < T f > f

�t
= � · {K f f · � < T f > f +K f s · � < Ts >s}

+hav(< Ts >s − < T f > f ),
(142)

and

εs(ρc)s
� < Ts >s

�t
= � · {Kss · � < Ts >s +Ks f · � < T f > f }

−hav(< Ts >s − < T f > f ),
(143)

where h and av come from modeling of the interfacial flux and are the film heat
transfer coefficient and the interfacial area per unit volume, respectively, K f f , Kss ,
K f s and Ks f are the effective thermal conductivity tensors, and the coupled thermal
conductivity tensors are equal

K f s = Ks f .

When porous media are isotropic and physical properties of the two phases are con-
stant, (142) and (143) reduce to

γ f
� < T f > f

�t
= k f � < T f > f +k f s� < Ts >s +hav(< Ts >s − < T f > f ),

(144)
and

γs
� < Ts >s

�t
= ks� < Ts >s +ks f � < T f > f +hav(< Ts >s − < T f > f ),

(145)
where γ f = ϕ(ρc) f and γs = (1 − ϕ)(ρc)s are the fluid-phase and solid-phase
effective thermal capacities, respectively, ϕ is the porosity, k f and ks are the effective
thermal conductivities of the fluid and solid phases, respectively, k f s = ks f is the
cross effective thermal conductivity of the two phases.
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The one-equation model is valid whenever the two temperatures < T f > f and
< Ts >s are sufficiently close to each other so that

< T f > f =< Ts >s=< T > . (146)

This local thermal equilibrium is valid when any one of the following three condi-
tions occurs (Quintard and Whitaker 1993, Whitaker 1999): (1) either ε f or εs tends
to zero, (2) the difference in the liquid-phase and solid-phase physical properties
tends to zero, (3) the square of the ratio of length scales (l f s/L)2 tends to zero (e.g.
steady, one-dimensional heat conduction). Here l2

f s = [ε f εs(ε f ks + εsk f )]/(hav),
and L = LT LT 1 with LT and LT 1 as the characteristic lengths of � < T >

and �� < T >, respectively, such that � < T >= O(� < T > /LT ) and
�� < T >= O(� < T > /LT 1LT ).

When the local thermal equilibrium is valid, Quintard and Whitaker (1993) add
(142) and (143) to obtain a one-equation model

< ρ > C
� < T >

�t
= � · [Ke f f · � < T >]. (147)

Here < ρ > is the spatial average density defined by

< ρ >= ε f ρ f + εsρs, (148)

and C is the mass-fraction-weighted thermal capacity given by

C = ε f (ρc) f + εs(ρc)s

ε f ρ f + εsρs
. (149)

The effective thermal conductivity tenor is

Ke f f = K f f + 2K f s + Kss . (150)

The choice between the one-equation model and the two-equation model has
been well discussed by Quintard and Whitaker (1993) and Whitaker (1999). They
have also developed methods of determining the effective thermal conductivity ten-
sor Ke f f in the one-equation model and the four coefficients K f f , K f s = Ks f ,
Kss , and hav in the two-equation model. Their studies suggest that the coupling
coefficients are on the order of the smaller of K f f and Kss . Therefore, the coupled
conductive terms should not be omitted in any detailed two-equation model of heat
conduction processes. When the principle of is not valid, the commonly-used two-
equation model in the literature is the one without the coupled conductive terms
(Glatzmaier and Ramirez 1988)

ε f (ρc) f
� < T f > f

�t
= � · (K f f · � < T f > f

) + hav

(
< Ts >s − < T f > f

)
,

(151)
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and

εs(ρc)s
� < Ts >s

�t
= � · (Kss · � < Ts >s

)− hav

(
< Ts >s − < T f > f

)
. (152)

On the basis of the analysis by Quintard and Whitaker (1993), we now know that

the coupled conductive terms K f s · � < Ts >s and Ks f · � < T f > f cannot be
discarded in the exact representation of the two-equation model. However, we could
argue that (151) and (152) represent a reasonable approximation of (142) and (143)
for a heat conduction process in which � < T f > f and � < Ts >s are sufficiently
close to each other. Under these circumstances K f f in (151) would be given by
K f f + K f s while Kss in (152) should be interpreted as Ks f + Kss . This limitation
of (151) and (152) is believed to be the reason behind the paradox of heat conduc-
tion in porous media subject to lack of local thermal equilibrium well-analyzed by
Vadász (2005c, 2007). For isotropic porous media and constant physical properties
of the two phases, (151) and (152) reduce to the traditional formulation of heat
conduction in porous media (Bejan 2004, Bejan et al. 2004, Nield and Bejan 2006,
Vadász 2005c)

γ f
� < T f > f

�t
= kef � < T f > f +hav

(
< Ts >s − < T f > f

)
, (153)

and

γs
� < Ts >s

�t
= kes� < Ts > f −hav

(
< Ts >s − < T f > f

)
, (154)

where we introduce the equivalent effective thermal conductivities kef = k f +
k f s and kes = ks + ks f for the fluid and solid phases, respectively, to take the
above note into account. To describe the thermal energy exchange between solid
and gas phases in casting sand, Tzou (1997) has also directly postulated (153) and
(154) (using k f and ks rather than kef and kes) as a two-step model, parallel to the
two-step equations in the microscopic phonon-electron interaction model (Kaganov
et al. 1957, Anisimòv et al. 1974, Qiu and Tien 1993).

Stimulated by Tzou (1997), Vadász (2005a, b), (2006a, b), Vadász et al. (2005),
Wang et al. (2008) develop an equivalence between the dual-phase lagging and two-
phase porous-medium heat conduction processes based on (144) and (145). We first
rewrite (144) and (145) in their operator form

⎡

⎢
⎣

γ f
�

�t
− k f � +hav −k f s � −hav

−k f s � −hav γs
�

�t
− ks � +hav

⎤

⎥
⎦

[
< T f > f

< Ts >s

]

= 0. (155)

We then obtain a uncoupled form by evaluating the operator determinant such that
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[(

γ f
�

�t
− k f � +hav

)(

γs
�

�t
− ks � +hav

)

− (
k f s � −hav

)2
]

< Ti >i= 0,

(156)
where the index i can take f or s. Its explicit form reads, after dividing by
hav(γ f + γs)

�〈Ti 〉i

�t
+τq

�2〈Ti 〉i

�t2
= α�〈Ti 〉i +ατT

�

�t
(�〈Ti 〉i )+ α

k
[S(

→
x , t)+τq

�S(
→
x , t)

�t
], (157)

where

τq = γ f γs

hav(γ f + γs)
, τT = γ f ks + γsk f

hav(k f + ks + 2k f s)
,

k = k f + ks + 2k f s, α = k

ρc
= k f + ks + 2k f s

γ f + γs
,

S(
→
x , t) + τq

�S(
→
x , t)

�t
= k2

f s − k f ks

hav

�2 〈Ti 〉i .

(158)
Therefore, < T f > f and < Ts >s satisfy exactly the same dual-phase-lagging heat-
conduction equation [Eq. (157)]. Note that (144) and (145) are the mathematical
representation of the first law of thermodynamics and the Fourier law of heat con-
duction for heat conduction processes in porous media at macroscale. Therefore, we
have the exact equivalence between the dual-phase-lagging heat conduction and the
heat conduction in porous media. This is significant because all results in these two
fields become mutually applicable. In particular, all analytical methods and results
in Wang and Zhou (2000, 2001) and Wang et al. (2008) can be applied to study heat
conduction in porous media.

By (158), we can readily obtain that, in the porous-medium heat conduction

τT

τq
= 1 + γ 2

f ks + γ 2
s k f − 2γ f γsk f s

γ f γs(k f + ks + 2k f s)
. (159)

It can be large, equal or smaller than 1 depending on the sign of γ 2
f ks + γ 2

s k f −
2γ f γsk f s . Therefore, we may have thermal oscillation and resonance in general
for heat conduction in porous media subject to lack of local thermal equilibrium
(Xu and Wang 2002). This agrees with the experimental data of casting sand in
Tzou (1997). Discarding the coupled conductive terms in (144) and (145) assumes
k f s=0 so that τT /τq is always larger than 1, and exclude the possibility of ther-
mal oscillation and resonance (Vadász 2005a, b, 2006a, b, Vadász et al. 2005). The
coupled conductive terms in (144) and (145) are thus responsible for the thermal
oscillation and resonance in the porous-medium heat conduction subject to lack of
local thermal equilibrium.

Although each of τT and τq is hav-dependent, their ratio τT /τq is not. This makes
its evaluation much simpler as detailed by Vadász (2005a). The readers are also
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referred to Vadász (2005a) for the correlations between physical properties in (158)
and those in Hays-Stang (1999) and Minkowycz et al. (1999).

6 Concluding Remarks

The dual-phase-lagging heat conduction equation originates from the first law of
thermodynamics and the dual-phase-lagging constitutive relation of heat flux den-
sity. It is developed in examining energy transport involving the high-rate heating
in which the non-equilibrium thermodynamic transition and the microstructural ef-
fect become important associated with shortening of the response time. In addition
to its application in the ultrafast pulse-laser heating, the dual-phase-lagging heat
conduction equation also arises in describing and predicting phenomena such as
propagating of temperature pulses in superfluid liquid helium, nonhomogeneous
lagging response in porous media, thermal lagging in amorphous materials, and
effects of material defects and thermomechanical coupling. Furthermore, The dual-
phase-lagging heat conduction equation forms a generalized, unified equation with
the classical parabolic heat-conduction equation, the hyperbolic heat-conduction
equation, the energy equation in the phonon scattering model, and the energy equa-
tion in the phonon-electron interaction model as its special cases. This, with the
rapid growth of microscale heat conduction of high-rate heat flux, has attracted the
recent research effort on dual-phase-lagging heat conduction: its physical basis and
experimental verification, well-posedness, solution structure, analytical and numer-
ical solutions, methods of measuring thermal relaxation times, thermal oscillation
and resonance, and equivalence with and application in porous-medium heat con-
duction.

The dual-phase-lagging heat conduction has been shown to be admissible by
the second law of the extended irreversible thermodynamics and by the Boltzmann
transport equation. It is also proven to be well-posed in a finite region of n–
dimension (n ≥ 1) under any linear boundary conditions including Dirichlet, Neu-
mann and Robin types. The solution structure theorems are developed as well for
both mixed and Cauchy problems of dual-phase-lagging heat-conduction equations.
These theorems inter-relate contributions (to the temperature field) of the initial
temperature distribution, the source term and the initial time-rate change of the
temperature, uncover the structure of temperature field and considerably simplify
the development of solutions. The thermal oscillation and resonance in the dual-
phase-lagging heat conduction have been examined in details. Conditions and fea-
tures of underdamped, critically-damped and overdamped oscillations have been
obtained and compared with those in the classical parabolic heat conduction and
the hyperbolic heat conduction. The condition for the thermal resonance is also
available. Both the underdamped oscillation and the critically-damped oscillation
cannot appear if the phase lag of the temperature gradient τT is larger than that
of the heat flux τq . The modes of underdamped thermal oscillation are limited to

a region fixed by two relaxation distances defined by
√

ατT (
√

τq

τT
+
√

τq

τT
− 1) and
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√
ατT (

√
τq

τT
−

√
τq

τT
− 1) for the case of τT > 0, and by one relaxation distance

2
√

ατq for the case of τT = 0.
An exact equivalence exists between the dual-phase-lagging heat conduction

and the Fourier heat conduction in porous media subject to lack of local thermal
equilibrium. This has a profound impact on the further development of the two
fields. Applying the result regarding thermal waves in shows that the and can occur
in porous-medium heat conduction subject to lack of local thermal equilibrium, a
phenomenon observed experimentally. Such thermal waves and, possibly resonance
come actually from the coupled conductive terms in (144) and (145).
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Heat Transfer Analysis Under Local Thermal
Non-equilibrium Conditions

A. Haji-Sheikh and W.J. Minkowycz

1 Introduction

The Local Thermal Non-Equilibrium (LTNE) hypothesis emerges when studying a
rapid transport of heat in porous media. The non-equilibrium phenomenon is an in-
teresting issue during a rapid heating or a cooling process. This phenomenon occurs
in various engineering applications such as nuclear devices, Fichot et al. (2006),
fuel cells, Damm and Fedorov (2006), electronic systems, Lage et al. (1996), micro
devices, Jiang et al. (2001), and others. Generally, a classical approach is used to
determine the materials temperature in the presence of Local Thermal Equilibrium
(LTE). In the absence of LTE, the single energy equation needs to be replaced with
two energy equations, one for the solid and another for the fluid.

Earlier, Vick and Scott (1998) determined the heat transfer in a matrix with em-
bedded particles using a finite-difference approach. They reported a thermal lag
that depends on the property ratio and contact conductance while the temperature
response due to an applied heat flux differs from that predicted using the classical
heat conduction technique. Lee and Vafai (1999) used a two-equation model and
performed an analytical determination of the solid and fluid temperature differen-
tial in porous media within a forced convective flow. The studies in Minkowycz
et al. (1999) show that the thermal non-equilibrium condition in a fluidized porous
bed depends on the structure of solid materials, mean pore size, interstitial heat
transfer coefficient, and thermophysical properties. For a porous medium subject
to rapid transient heating or cooling, the studies in Minkowycz et al. (1999) es-
tablished conditions for departure from local thermal equilibrium. Therefore, the
occurrence of the LTNE in the presence of a rapidly changing heat source de-
pends on the magnitude of a dimensionless quantity called the Sparrow number in
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Minkowycz et al. (1999). Otherwise, the local thermal equilibrium condition exists
and it controls the transport of energy through the porous media.

Parametric studies, reported here, describe the role of a dimensionless quantity
that identifies the early departure from local thermal equilibrium in the presence of a
rapidly changing heat source. The numerically-obtained data reveal the implication
of non-equilibrium thermal phenomena in a fluid-saturated porous medium in the
presence of a heat source. This presentation describes early departure from the local
thermal equilibrium, as has been reported in various studies of laser heating, in
combustors, and in other similar applications.

2 Theoretical Model

The concept of local thermal non-equilibrium emerges in many heat transfer appli-
cations involving porous media. During rapid heating or cooling, it is appropriate to
use a simplified velocity field obtainable by a classical procedure. This presentation
emphasizes the study of energy equation during relatively rapid heating and cooling
processes.

2.1 Energy Equation

When the thermophysical properties are independent of temperature, the continuity
and momentum equations yield the velocity distribution. The energy equation is
obtainable by applying the energy balance concept to a differential element in the
flow field that contains both solid and fluid phases. The applied energy balance
to a volume element in Figure 1, under locally thermal non-equilibrium condition,
leads to the following set of governing equations as recommended in Amiri and
Vafai (1994) and Lee and Vafai (1999),

εC f
�T f (r, t)

�t
+ C f V · ∇T f = −∇ · q f (r, t) + hap(Ts − T f ) (1a)

(1 − ε)Cs
�Ts(r, t)

�t
= −∇ · qs(r, t) − hap(Ts − T f ) (1b)

In this equation, � = V f /V is the porosity that stands for the fraction of volume a
fluid occupies, T f is the mean fluid temperature, and Ts is the mean temperature of
the solid materials, all within a differential element dV . Also, q f and qs are the heat
flux vectors in the fluid and solid materials, respectively. Other parameters are the
heat capacitances C f and Cs for fluid and solid materials, interstitial heat transfer
coefficient h, and the contact area parameter Ap between fluid and solid materials
within a differential element dV . Adding Eq. (1a)–(1b) and after replacing q f + qs
with q, the resulting relation is
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Fig. 1 Schematic of a differential element in a porous region

−∇ · q(r, t) = εC f
�T f (r, t)

�t
+ C f V · ∇T f + (1 − ε)Cs

�Ts(r, t)

�t
(2)

In phase change application, T f becomes the temperature of the phase change ma-
terials as the pores may contain vapor, liquid, solid, or a combination. For the sake
of generality, it is appropriate to add a volumetric heat source function S(r, t) to
Eq. (2) to become

−∇ · q(r, t) + S(r, t) = εC f
�T f (r, t)

�t
+ C f V · ∇T f + (1 − ε)Cs

�Ts(r, t)

�t
(3)

Under local thermal equilibrium condition, the solid and the adjacent fluid are at
the same temperature, Ts = T f . However, during a rapid heating or cooling, the
fluid and solid are not at the same temperature, locally. Therefore, before the onset
of equilibrium, there is an energy exchange between the solid phase and the fluid
phase within the pores, and temperature undergoes a transient process, as defined
by the equation

C f �Vp
�T f

�t
= h�Ap(Ts − T f ) (4)

where �Vp is the mean pore volume, �Ap is its contact surface area with the solid
phase, and h is the interstitial heat transfer coefficient. As a shorthand notation,
rh = �Vp/�Ap is considered to be a pore hydraulic radius in Eq. (4) and it becomes

Ts(r, t) = T f (r, t) + �t
�T f (r, t)

�t
(5)
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where �t = rhC f /h. In this formulation, the solid matrix plays the primary role of
energy transport and reversing it would changer this formulation.

Equation (3) contains the heat flux vector q that depends on temperature. Under
the local thermal equilibrium condition, when Ts = T f , the Fourier equation applies,

q(r, t) = −ke∇T f (r, t) (6)

where ke is the effective or equivalent thermal conductivity of the porous medium. It
is reported in Fournier and Boccara (1989) that Eq. (6) does not hold under a rapid
heating process. In the absence of local thermal equilibrium, when the departures of
q and ∇T from local equilibrium are relatively small, it is suggested in Tzou (1997)
that the Fourier equation, as given in Eq. (6), needs to be modified to become

q(r, t) + �q(r, t) = −ke{∇T f (r, t) + �[∇T f (r, t)]} (7)

as time changes. Accordingly, using a two-term Taylor series expansion for the time
dependent differential changes on each sides, Eq. (7) can be written as

q(r, t) + �q
� q(r, t)

�t
= −ke{∇T f (r, t) + �x

�

�t
[∇T f (r, t)]} (8)

The relaxation time �q describes the time delay as heat travels from pore to pore;
therefore, it depends on the direction of energy transport between solid and fluid.
When the solid structure has a higher local temperature than the materials in a pore,
as an approximation, �q ≈ Cs Rc�Vs

/
�As ; the parameter �Vs is the differential

volume within the solid structure while Rc and �As are the contact resistance and
contact area between individual solid structures, respectively. The relaxation time
�x describes the time delay as temperature changes in the fluid and solid material.
The physical descriptions of these parameters are presented in the net section.

Equations (3), (5), and (8) contain three unknowns, T f , Ts , and the heat flux
vector q. One can eliminate Ts and retain T f using Eq. (5) and eliminate q using
Eq. (8). Then, following some simplifications, Eq. (3) takes the form

L(T f ) + �q
�

�t
[L(T f )] + (�x − �q )

�[∇ · (ke∇T f )]

�t
+

(

S + �q
�S

�t

)

= C
�

�t

[

T f + (�e + �q )
�T f

�t
+ �e�q

�2T f

�t2

] (9)

where T f = T f (r, t), S = S(r, t), C = εC f + (1 − ε)Cs , �e = (1 − ε)CsC f rh
/

hC ,
and L(T f ) = ∇ · (ke∇T f ) − C f V · ∇T f . An alternative form of �e, that is, �e =
(1 − ε)(Cs/C)�t indicates that �e < �t . The terms within the square brackets on
the right side of Eq. (9) include the first two terms of the Taylor series expansion
and a third term. This third term is smaller than the third term of this Taylor series
(�e + �q )2

(
�2 T/�t2

)
/2! since �e�q < (�e + �q )2/2!. As stated earlier, the higher
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order terms of the Taylor series expansion in Eq. (8) are eliminated; therefore, for
consistency of these formulations, the third term within the square brackets on the
right-hand-side of Eq. (9) is small and should be neglected. Then, the reduced form of
Eq. (9) is

L(T f ) + �q
�

�t
[L(T f )] + (�x − �q )

�[∇ · (ke∇T f )]

� t

+
(

S + �q
�S

�t

)

= C

[
�T f

� t
+ (�e + �q )

�2T f

� t2

] (10)

For a few special cases, Eq. (10) has exact solutions; however, in general, the
solution of Eq. (10) requires a numerical procedure.

2.2 Physical Interpretation of Relaxation Times

The lag time �t is a parameter that influences the state of local thermal non-
equilibrium phenomena in porous media. The physical nature of the lag time
�t = rhC f /h, in Eq. (5), is well defined and its value is obtainable once h is known.
The other parameters, rh and C f in the definition of �t , are usually available for a
well-defined porous system. A relatively large value of �t indicates that there will be
detectable temperature variations in the presence of a rapidly changing energy input.
Large differences between T f and Ts can be realized when the condition of local
thermal equilibrium fails to exist depending on the values of the thermophysical
properties including the time delay parameters. For a system with a specified char-
acteristic length L , Minkowycz et al. (1999) introduced a dimensionless quantity
called the Sparrow number, where

Sp = hL2/kerh

= Nurh (k f
/

ke)(L
/

rh)2 (11)

indicates the presence of local thermal non-equilibrium condition. Alternatively,
the parameter �t controls the size of the Sparrow number, that can be written
as Sp = (C f /C)/(α�t/L2). For stationary materials in the pores, the interstitial
Nusselt number Nurh = hrp

/
k f has a value between 1 and 2 depending on the

geometry of the pores. Therefore, according to Eq. (11), in addition to the thermal
conductivity ratio, the ratio of a characteristic length L to the hydraulic radius rh

plays a significant role in the determination of Sp. For spherical bodies, cylindrical
prisms, and square prisms, the values of Nurh = 1.09, 1.45, and 1.23 are reported
in Minkowycz et al. (1999), respectively.

For a thermally fully developed laminar flow in circular passages, the value of
Nurh = hrh

/
k f is ≈ 0.92. When the mean cross section area Ac departs from a

circular profile, the empirical relation

Nurh = 0.92/[1 + (Ac − 4πr2
h )/Ac] (12)
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provides a reasonable estimation of the interstitial Nusselt number for a laminar and
thermally fully developed flow, Minkowycz et al. (1999). Also, the value of inter-
stitial heat transfer coefficient h is obtainable from the Wakao and Kaguei (1982);
e.g., a correlation for a packed bed of spherical particles is

h

k f d
= 2 + 1.1Re0.6 Pr1/3 (13)

where Re = εu pd
/
ν, and d is the diameter of the spheres. Equation (13) properly

considers the flow in the pores to be thermally fully developed.
Another parameter that enters the analysis is �q . Experimental studies are needed

to ascertain the proper value of �q in Eq. (10). Often, it is possible to provide an
estimate of �q values using existing information in the literature. According to the
Fourier equation, the heat flux across a control volume is related to ∇T . However,
prior to onset of LTE, the actual heat flux is larger because additional thermal energy
must be supplied to the individual structures across contact surfaces and through
constrictions within the differential element. To account for the change in heat flux,
one can set �As�q ≈ �VsCs�(�Ts)

/
� t , where �Ts is the temperature difference

across a constriction and/or a contact surface. Substituting for �Ts = q Rc results in
the relation

�q ≈ (�Vs
/

�As)Cs Rc(�q
/

� t) (14)

where Rc is the contact resistance. A comparison of Eq. (14) with Eqs. (7) and
(8) suggests that �q ≈ Cs Rc�Vs

/
�As . The value of Rc depends on various factors

including geometry, applied pressure, and the constriction effect; hence, it is difficult
to develop an accurate prediction in the absence of experimental data.

The study of physical parameters that control the value of �x is the next topic for
discussion. Although, the experimental determination of a reasonably accurate value
of �x is desirable, different theories are cited for its determination. They include
taking �x = �t which is a reasonable choice when �q is much smaller than �t .
Nnanna (2002) used a theoretical reasoning for determination of �x by viewing the
temperature of solid materials Ts and the temperature of pore materials Tp to be
different under LTNE condition. In Nnanna (2002) formulation, Tp ≡ T f , since the
materials in the pores can be in gaseous, in liquid, or in solid forms. By definition,
the heat flux can be viewed as

q + �q = −ke∇(Te + �Te) (15)

wherein Te is the mean temperature within a differential element defined by the
relation

Te = εC p

C
Tp + (1 − ε)Cs

C
Ts (16)
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Moreover, by placing Te from Eq. (16) in Eq. (15), it becomes

q + �q = −ke

[
εC p

C
∇Tp + (1 − ε)Cs

C
∇Ts

]

− ke

[
εC p

C
∇(�Tp) + (1 − ε) Cs

C
∇(�Ts)

]

·
(17a)

Since by definition, �Ts
∼= �q �Ts/� t and �Tp

∼= �t �Tp/� t , Eq. (17) takes the form

q + �q = −ke

[
ε C p

C
∇Tp + (1 − ε) Cs

C
∇Ts

]

− ke

[
ε C p

C
�t

� (∇Tp)

�t
+ (1 − ε) Cs

C
�q

�(∇Ts)

�t

]

·
(17b)

where �q = �q�q/�t . Next, one can use Eq. (5) to replace Ts with Ts = Tp +
�t �Tp/� t , use the definition C = ε C p + (1 − ε) Cs , and delete the higher order
terms to obtain the working relation

q + �q
�q
� t

= −ke

[

∇Tp + �x
� (∇Tp)

� t

]

(18a)

wherein

�x = �t + (1 − ε) Cs

C
�q . (18b)

In the presence of a moving fluid, the solution of Eq. (10) depends on the func-
tional form of the velocity vector V. Among various possible cases, two different
and simple functional forms are examined in the next two sections: one is for a
stationary fluid when V = 0, neglecting the C f V · ∇T f in Eq. (10) and the second
one is for a special case when the velocity field is known.

3 Temperature Field with Stationary Fluids

For a stationary fluid in the pores, V = 0 and Eq. (10) takes the form

∇ · (ke∇T f )+�x
�[∇ · (ke∇T f )]

�t
+

(

S + �q
�S

�t

)

= C

[
�T f

�t
+ (�e + �q )

�2T f

�t2

] (19)

This form of the energy equation for the temperature field is similar to that for the
thermal conduction in microscale systems. Therefore, the solution of Eq. (19) is
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similar to that for heat transfer in microscale devices, as given in Hays-Stang and
Haji-Sheikh (1999). This solution is applicable to various regular geometries having
homogeneous boundary conditions. However, a prescribed heat flux q at the walls
can be also accommodated using homogeneous boundary conditions of the second
kind while the product of q and a properly selected Dirac delta function serves a vol-
umetric heat source. As a standard procedure, in classical heat conduction, one can
introduce an auxiliary equation that satisfies the Laplace equation ∇ · (ke∇T ∗) = 0
with the specified non-homogeneous boundary conditions to determine T ∗(r, t).
This would lead to a transformation

T f (r, t) = θ f (r, t) + T ∗(r, t) (20)

Using this transformation, Eq. (19) becomes

∇ · (ke∇θ f ) + �x
�[∇ · (ke∇θ f )]

� t
+

(

S + �q
�S

� t

)

+ Sb

= C

[
�θ f

� t
+ (�e + �q )

�2θ f

� t2

] (21a)

where

Sb = −C

[
�T ∗

� t
+ (�e + �q )

�2T ∗

� t2

]

(21b)

is a known function. The auxiliary term Sb in Eq. (21a) vanishes when the non-
homogeneous boundary conditions are independent of time. Following this trans-
formation, the solution of Eq. (21a) for θ f (r, t) has two components, and it takes
the following form

θ f (r, t) = θI (r, t) + θS(r, t) (22)

The function θI (r, t) represents the contribution from the initial condition while
θS(r, t) represents the contribution of the volumetric heat source.

3.1 Temperature Solutions

For constant thermophysical properties, the analytical solution of Eq. (21a) is possi-
ble by applying the standard separation of variables technique; in the absence of the
volumetric hear source terms. This leads to the following series solution for regular
geometries,

θ f (r, t) =
∞∑

n=1

ψn(t)Fn(r)e−γn t (23)
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The function Fn(r) is the eigenfunction in the diffusion equation under local thermal
equilibrium condition; it satisfies the relation

∇ · [K∇Fn(r)] = −γnC Fn(r) (24)

Furthermore, in accordance with the Sturm-Liouville problem, the eigenfunctions
Fn(r) are orthogonal and the orthogonality condition is

∫

V

Fn(r) Fm(r) dV =
{

0 when n 	= m
Nn when n = m

(25)

for regular geometries. Placing θ f (r, t) from Eq. (23) in Eq. (21a), after using
this orthogonality condition, yields the ordinary differential equation for the time
parameter ψn(t),

d2ψn(t)

dt2
− 2βn

dψn(t)

dt
+ �2

nψn(t) = S∗
n (t) (26)

wherein S∗
n (t) is

S∗
n (t) = eγn t

NnC(�q + �e)

∫

V

Fn(r)

(

Sb(r, t) + S(r, t) + �q
�S(r, t)

�t

)

dV (27a)

The other parameters in Eq. (26) are

βn = γn

[

1 − 1

2

�x

�q + �e
− 1

2γn(�q + �e)

]

(27b)

�n = γn

[

1 − �x

�q + �e

]1/2
(27c)

Equation (26) is an ordinary differential equation whose solution is

ψn(t) = eβn t

{

D1nsinh
[√

(β2
n − �2

n)t
] + D2ncosh

[√

(β2
n − �2

n) t
]
}

+
∫ t

�=0

eβn (t−�)sinh
[√

(β2
n − �2

n)(t − �)
]

√
(β2

n − �2
n)

S∗
n (�)d�

(28)

Depending on the relative magnitude of βn and �n , the quantity
√

β2
n − �2

n can
be real or imaginary, while ψn(t) is always real. The constants D1n and D2n in
Eq. (28) depend on the initial temperature Ti (r) = T (r, 0) and its derivative
Tii (r) = [�T (r, t)/�t]t→0. Once the function ψn(t) is known, Eq. (23) provides the
function θ f (r, t) with homogeneous boundary conditions for insertion in Eq. (20).
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The contribution of the initial condition in Eq. (22) is

θI (r, t) =
∞∑

n=1

Fn(r)

Nn
e−(γn−βn )t

{
sinh

[√
(β2

n − �2
n)t

]

√
(β2

n − �2
n)

×
[

(γn − βn)
∫

V
Fn(r ′)Ti (r ′)dV ′ +

∫

V
Fn(r ′)Tii (r ′)dV ′

]

(29)

+ cosh
[√

(β2
n − �2

n)t
]
∫

V
Fn(r ′)Ti (r ′)dV ′

}

while the contribution of the volumetric heat source in Eq. (22) is

θS(r, t) =
∞∑

n=1

∫ t

�=0

∫

V

(
Fn(r)Fn(r ′)

C Nn

)

e−γn (t−�)

×
{

eβn (t−�)sinh
[√

(β2
n − �2

n)(t − �)
]

(�q + �e)
√

(β2
n − �2

n)

}

(30)

×
(

S(r ′, �) + �q
�S(r ′, �)

��

)

dV ′d�

Further details related to the method of determination of the alternative Green’s
function solution, as defined in Beck et al. (1992), are in Sect. 5. Extensive data
utilizing Eq. (30) are in Minkowycz et al. (1999)

The following two numerical examples are selected to show the solutions for the
temperature field under local thermal equilibrium and non-equilibrium conditions.
The first example is for a semi-infinite body with temperature jump at the wall. The
second example considers a porous plate with a finite thickness.

Example 1. For a one-dimensional porous system initially at a temperature Ti , the
surface temperature increases to temperature To when t > 0 during a rapid heating
process. As a shorthand notation, let �a = �e + �q , and then the dimensionless
parameters, using a new dimensionless temperature θ f , are

ξ = x/
√

α�a, η = t/�a, r = �x/�a, and θ f = (T f − Ti )/(To − Ti ). (31)

Equation (19), when S = 0, reduces and takes the form

�2θ f

�ξ 2
+ r

�3θ f

�η�ξ 2
= �θ f

�η
+ �2θ f

�η2
for 0 ≤ ξ < b (32)

wherein b is the medium thickness and it approaches infinity for a semi-infinite
body. Because of the definition of �, this equation is valid if, and only if, �a =
�q + �e > 0; that is, in the presence of the local thermal non-equilibrium condition.
Defining the Laplace transform of θ f (ξ, η) as θ̄ f (ξ, S), the Laplace transform of
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Eq. (32), when θ f (ξ, 0) = 0 and (�θ/�η|η=0 = 0), takes the form

(1 + rs)
d2θ̄ f

dξ 2
− (

s + s2
)
θ̄ f = 0 for 0 ≤ ξ < b (33)

as b → ∞ for a semi-infinite body.

Equation (33) is an ordinary differential equation whose solution that satisfies
the condition as b → ∞ is

θ̄ f = De−√
s(s+1)/(rs+1)ξ (34)

The constant D in Eq. (34) depends on the surface condition, when ξ = 0. For the
boundary condition of the first kind, consider the solid matrix having a temperature
Ts = To at ξ = 0. In one-dimensional space, Eq. (5) takes the form

Ts(x, t) = T f (x, t) + �t
�T f (x, t)

�t
(35a)

Using the parameters in Eq. (31) and rt = �t/�a , Eq. (35a) becomes dimensionless,

θs(ξ, η) = θ f (ξ, η) + rt
�θ f (ξ, η)

�η
(35b)

since θ f = (T f − Ti )/(To − Ti ) and θs = (Ts − Ti )/(To − Ti ). The Laplace transform
of Eq. (35b) yields a simple relation between relation θ̄ f and θ̄s ; that is

θ̄s(ξ, s) = θ̄ f (ξ, s) + rt sθ̄ f (ξ, s)

= (1 + rt s) θ̄ f (ξ, s)
(35c)

At the ξ = 0 surface, Eq. (35c) provides the surface condition,

(1 + rs)θ̄ f (0, s) = θ̄s(0, s)

= 1

s

(35d)

Using this surface condition in Eq. (34) makes D = θ̄ f (0, s) = 1/[s(1 + rt s)] and
then Eq. (34) takes the following form:

θ̄ f = e−√
s(s+1)/(rs+1)ξ

s(1 + rs)
(36a)

while Eq. (35c) provides the relation

θ̄s = 1

s
e−√

s(s+1)/(rs+1)ξ (36b)
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Fig. 2 The variation of
temperature with time at
selected locations within
solids and pores for a
semi-infinite body, when
r = �t/�a = 2

In general, the inverse Laplace transforms of Eqs. (36a,b) are obtainable numeri-
cally with ease, using the existing softwares, e.g., see Valkó and Vajda (2002) for
programming in Mathematica, Wolfram (1999).

As an illustration of the results, the inverse Laplace transform of θ̄ f (ξ, s) and
θ̄s(ξ, s) are obtained numerically at selected values of r and ξ . The data are ac-
quired for a single case when �x = �t , that makes rt = r . The acquired data,
plotted in Fig. 2, show the local thermal non-equilibrium condition when r = 2.
The data clearly show relatively large differences between the values of θ f (ξ, s)
and θs(ξ, s) indicating the existence of LTNE at relatively small times. Reducing
the value of �t causes r to reduce and; therefore, it reduces the difference between
θ f (ξ, s) and θs(ξ, s). The data in Fig. 3 are prepared for r = 0.5 and they clearly
show that the difference between θ f (ξ, s) and θs(ξ, s) has been reduced. Further-
more, during a rapid heating, the characteristic length L in a semi-infinite body is
the thermal penetration length, defined as L2/(αt) = t/(�e + �q ). This penetration

Fig. 3 The variation of
temperature with time at
selected locations within
solids and pores for a
semi-infinite body, when
r = �t/�a = 0.5



Heat Transfer Analysis Under Local Thermal Non-equilibrium Conditions 51

length makes the Sp for data in Fig. 2 and 3 to become Sp = (C f /C)η2/r . It is
reported in Minkowycz et al. (1999) that the LTE condition exists when Sp > 100
while the transition range toward LTNE being within 50 < Sp < 100. The data in
Fig. 3 clearly indicates LTE condition for Sp = 100 is located when η2 = (t/�a)2

exceeds 50, depending on the value of C f /C . A similar trend exists for the data
plotted in Fig. 2 and the value of r = 2 indicates the LTE condition when
η2 = (t/�a)2 exceeds 200.

The mathematical steps in Example 1 reveal a special case, when r = 1. This
condition reduces Eqs. (36a, b) to take the form

θ̄s = 1

s
e−√

sξ (37a)

and

θ̄ f = e−√
sξ

s(1 + s)
. (37b)

The inverse Laplace transform of Eq. (37a) is

θs = Ts − Ti

To − Ti
= erfc

(
ξ√
4η

)

= erfc

(
x√
4αt

)

.

(38a)

Utilizing the convolution theorem, Eq. (37b) leads to the functional form of θ f as

θ f = T f − Ti

To − Ti
=

∫ η

�=0
erfc

(
ξ√
4�

)

e−(η−�)/r d� (38b)

while � is a dummy variable. The solution forms in Eqs. (38a, b) are identical to
those obtainable using the classical diffusion equation in semi-infinite bodies. This
is expected since Eq. (32) when r = 1 can be written as

(

1 + �

�η

) (
�2θ f

�ξ 2
− �θ f

�η

)

= 0 for 0 ≤ ξ < ∞ (39)

and it is satisfied when the diffusion equation α�2T f /�x2 − �T f /�t = 0 is satisfied.
There is another case that emerges when �t and �x are negligibly small. In this

case, Eq. (19) becomes the classical wave equation. For a one-dimensional solution
in a semi-infinite solid, Eqs. (39a, b) lead to the relation, Harris et al. (2001),

θ̄ f = θ̄s = 1

S
e−√

s(s+1)ξ (40)

and the corresponding temperature solution is
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θ f (ξ, η) =
⎡

⎣e−ξ/2 + ξ

4

∫ η

η′=0

e−η′/2 I1

(
1
2

√
η′2 − ξ 2

)

√
η′2 − ξ 2

dη′

⎤

⎦ H (η − ξ ) (41)

wherein H (η − ξ ) = 0 when ξ > η, otherwise H (η − ξ ) = 1. The wave front ξo in
this limiting wave-like phenomenon is located at ξo = η. Therefore, the transport of
energy in a system with a high value of �q and a very small value of �t approaches
that for the thermal wave phenomenon. However, the parameters �t and �x can
produce a dumping effect in porous media that would often eliminate the occurrence
of a wave front. This consistent with the statement in Vadasz (2005) that the physical
conditions necessary for thermal waves to materialize in dual-phase-lagging porous
media conduction are not attainable in a porous slab subject to a combination of
constant heat flux and temperature boundary conditions. Also, the data reported in
Nnanna et al. (2005) confirm these observations.

Minkowycz et al. (1999) used Eq. (30) to determine the temperature field in the
presence of the boundary conditions of the second kind at x = 0 for bodies with
finite thickness. There is a certain singularity that can emerge in the presence of a
non-homogeneous boundary condition of the first kind at x = 0; it is discussed in
the next example.

Example 2. The computation of temperature for the materials in the pores requires
the solution of equation

�2θ f

�x2
+ �x

�3θ f

�t�x2
= 1

α

[
�θ f

�t
+ �a

�2θ f

�t2

]

(42a)

with θ f = (T f − Ti )/(To − Ti ). There is an interesting special case when �x = �a

while considering the earlier stated hypothesis that �x = �t . The solution of this
equation in a plate with a thickness of b and with the boundary conditions

⎧
⎨

⎩

θ f = θs = 0 when t = 0
θs = 1 at x = 0 and t > 0
�θ f /�x = 0 at x = b

(42b)

is of interest. The second condition and Eq. (35a) provide the surface temperature

for the pore materials; it is

θ f (0, t) = 1 − exp(−t/�t ) (43)

This suggests using a transformation

θ f (x, t) = ψ(x, t) + 1 − exp(−t/�t ) (44)

in order to have a homogeneous boundary condition at x = 0. Following the use of
this transformation, the boundary conditions for � are
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⎧
⎨

⎩

ψ = 0 when t = 0
ψ = 0 at x = 0
�ψ/�x = 0 at x = L

(45)

Note that all the boundary conditions in Eq. (45) are homogeneous. Moreover, in
one-dimensional space, the transformation in Eq. (44) makes Eq. (19) to take the
following form,

�2ψ

�x2
+ �x

�3ψ

�t�x2
= 1

α

[
�ψ

�t
− 1

�t
e−t/�t + �a

�2ψ

�t2
+ �a

(�t )2
e−t/�t

]

When �t = �a , the two exponential terms in this equation have the same magni-
tudes but with opposite signs; they would drop out and this equation also becomes
homogeneous. Therefore, the solution for this equation with the specified boundary
conditions for �, in Eq. (45), is a trivial one; that is ψ = 0. Certainly this is un-
acceptable because it makes θ f (x, t) = 1 − exp(−t/�t ), independent of the axial
coordinate x . It is possible to eliminate this phenomenon when �x = �t = �a . This
is expected when using the �x = �t model and the relation �q = �t (1 − ε)C f /C .
Under these conditions, Eq. (42a) takes the form as given by Eq. (39) whose solution
is satisfied if the equation

α
�2θ f

�x2
− �θ f

�t
= 0 (46a)

is satisfied; which is the classical diffusion equation. The above transformation,
Eq. (44), makes Eq. (46b) to become

α
�2ψ

�x2
− �ψ

�t
+ 1

�t
e−t/�t = 0 (46b)

subject to boundary conditions as given by Eq. (45).

In dimensionless space, when η = t/�t and ξ = x/
√

α�t , the solution of the
function ψ(ξ, η), as given in Beck et al. (1992), is

ψ(ξ, η) = 2

ξb

∞∑

m=1

sin
[

(n − 1/2) πξ/ξb
]e−η − e−[(m−1)π/ξb]2η

[
(m − 1)π/ξb

]2 − 1
(47)

where ξb = b/
√

α�t . Following the computation of ψ(ξ, η), Eq. (44) provides the
values of θ f (ξ, η), and the values of θs(ξ, η) are obtainable using Eq. (35b). These
quantities are computed and the data are plotted in Fig. 4 for x/b = ξ/ξb = 0.1,
0.2, 0.3, 0.5 and 1; the data plotted in Fig. 4 are for ξb = 1. The solid lines represent
the temperatures of the solid matrix and the dash lines are for the materials in pores.
It is essential to use an alternative method of analysis for the purpose of verifying
the accuracy of this solution. Accordingly, the solution of Eq. (33) with the Laplace
transform of boundary conditions, as given by Eqs. (42b), is
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Fig. 4 The variation of
temperature with time at
selected locations within
solid and pore materials in a
plate, when r = �t/�a = 1

θ̄ f (ξ, s) = 1

s(1 + rs)

cosh
[√

s(s + 1)/(1 + rs)(ξb − ξ )
]

cosh[
√

s(s + 1)/(1 + rs)ξb]
(48)

where θ̄ f (ξ, s) is the Laplace transform of θ f (ξ, η) in dimensionless space. The in-
verse Laplace transform of Eq. (48) is acquired numerically, using the methodology
as described earlier. The circular symbols in Fig. 4 depict these numerically com-
puted data. The data equally agree well with both the solid lines and dash lines in
Fig. 4. In fact, these numerical computed data from Eqs. (44) and (48) are nearly
identical to all six significant figures over the entire range of acquired data plotted
in Fig. 4.

It is hypothesized in the aforementioned Example 1 and 2 that �t and �q are
known. Generally, it is possible to determine a reasonably accurate estimate for
�t . However, it is difficult to develop accurate predictions for �q in the absence of
experimental data. Because, the value of Rc depends on various factors including
geometry, applied pressure, and the constriction effect, thermal conductivity of the
fluid, etc. Nnanna et al. (2005) used air as a fluid within packed bed of 3 mm
spherical glass beads. Based on Eq. (13) and the definition of �t , they reported
�t = 0.036s. As expected, this value of �t is relatively small since the pores are
filled air in Nnanna et al. (2005). Additionally, since the thermal conductivity of
air is small, Rc in �q = Cs Rc�Vs

/
�As increases and the value of �q is expected

to increase to a relatively large value, in the neighborhood of 500 seconds. The
data show a significant temperature delay due to a large value of �q . However, a
very small value of �t did not indicate a wave-like phenomenon because an in-
verse estimation procedure showed that �x to be of the order of �q , which is much
larger than �t . This is the primary motivation for the development of an alternative
functional form for �x , Eq. (18b), to be used for different combination values of �t

and �q .
Using 99 percent pure tetracosane within a packed bed of 3 mm glass spheres,

Nnanna and Haji-Sheikh (2005) studied the LTNE during a phase change
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phenomenon. Using conduction between adjacent spheres as the sole source of
thermal resistance, they reported a preliminary estimate of �q ≈ 50 s. The phase
change phenomenon in the pores required a modified procedure for estimation of
�t . The reported estimated lag time �t ≈ (ρLt )prh[h(Ts − Tm)] includes the con-
tribution of the latent heat Lt in the pores and interstitial heat transfer coefficient
using the relation hrh/ke = 2/3. For an estimated value of Ts − Tm ≈ 4 to 5◦C , this
procedure resulted in a reasonable initial value of �t ∼ 60 s for its inverse determi-
nation from a set of experimentally acquired temperature data during a phase change
phenomenon. There is a remarkably close agreement between these initial estimated
values and the computed values of �q = 47.3 s and �t = 60.1 s, as reported in
Nnanna et al. (2004) and in Nnanna and Haji-Sheikh (2005) following an inverse
estimation procedure.

4 Temperature Field with Moving Fluid

Various studies related to the effects of local thermal non-equilibrium in porous
media are in the archival literature. As an illustration, the studies related to the devel-
oping forced convection is reported by Khashan et al. (2005), Hao and Tao (2003a,
b Part I and II), Nield et al. (2002), and others. Certainly, in the presence of phase
change in the flow field, the condition of LTNE exists and this phenomenon is dis-
cussed in Duval et al. (2004) and in Cao et al. (2000).

For a fluid moving with a finite velocity, the computation of temperature, from
Eq. (10), is possible by numerical means. Also, analytical solutions are possible
for special cases, and these solutions can serve as valuable tools for verification
objectives. One special case is when the velocity vector in Eq. (10) has a constant
value. Further simplification can be realized when the two parameters �x and �q have
nearly the same value; this latter condition modifies Eq. (10) to become

L(T f ) + �q
�

�t
[L(T f )] +

(

S + �q
�S

�t

)

= C

[
�T f

�t
+ (�e + �q )

�2T f

�t2

]

(49a)

As before, using a function T ∗ that satisfies the non-homogeneous boundary condi-
tions and applying Eq. (20) leads to the equation

L(θ f ) + �q
�

�t
[L(θ f )] +

(

S + �q
�S

�t

)

+ Sb = C

[
�θ f

�t
+ (�e + �q )

�2θ f

�t2

]

(49b)

where Sb depends on the functional form of T ∗. For this specific case, when velocity

has a constant value, it is often possible to use Eq. (23) and obtain series solutions
for regular geometries. However, for this case, the function Fn(r) in Eq. (23) can be
the solution of equation

L[Fn(r)] = −γnC Fn(r) (50)
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Therefore, Eqs. (20) and (5) would provide the final temperature solution once the
function θ f (r, t), the solution for Eq. (49b), is known. It should be stated that it is
often possible to find a transformation that produces a partial differential equation
without the convection terms for all values of r .

Example 3. To demonstrate the behavior of this solution methodology, considera-
tion is given to a relatively thick porous plate initially at temperature Ti . A fluid is
entering or leaving this plate in x-direction and, in the absence of other walls, the
velocity u has a constant value. In the presence of heat flux at x = 0, this example
represents an interesting application of transpiration cooling for surface protection
in the presence a suddenly applied large heat flux. The case of a sudden temperature
change to To at x = 0 is included in this example, mainly for comparing the two
solutions. When θ = (T − Ti )/Tre f while there is no volumetric heat source, the
governing energy equation takes the form

ke

(
�2θ f

�x2
+ �x

�3θ f

�x2�t

)

− C f u

(
�θ f

�x
+ �q

�2θ f

�x�t

)

= C

[
�θ f

�t
+ �a

�2θ f

�t2

]

(51)

where �a , �q , and �x are as defined earlier. Using dimensionless variables ξ =
x/

√
α�a , η = t/�a , r = �x/�a , rq = �q/�a , rt = �t/�a , Eqs. (51) and (35a) become

�2θ f

� ξ 2
+ r

�3θ f

� ξ 2�η
− H

(
� θ f

� ξ
+ rq

�2θ f

� ξ�η

)

= �θ f

�η
+ �2θ f

�η2
(52a)

θs = θ f + rt
�θ f

�t
(52b)

wherein H = (u/ |u|)(C f /C)
√

C |u|2 �a/ke. The quantity (u/ |u|) = 1 when fluid

is moving in the positive x-direction and (u/ |u|) = −1 when fluid is moving in the
negative x-direction. Using the definition of 	, the initial conditions are θ f (ξ, 0) = 0
and �θ f (ξ, t)/ � t |t=0 = 0, while the boundary conditions are to be specified later.
Also, the reference temperature Tref depends on the specified boundary condition at
x = 0 and it will be determined later. By defining the interstitial Peclet number as
Pe = Curh/ke, it makes the controlling parameter H = ±(C f /C)3/2 Pe/

√
Nurh .

This shows that the value of H strongly depends on Pe, since C f /C < 1 and Nurh

is of the order of 1. It is known that the effect of axial conduction becomes negligible
when Pe is larger than 1. Therefore, in the presence of axial conduction in Eq. (52a),
the parameter H is generally smaller than 1.

A simple method of finding the solution of Eq. (52a) is by using the Laplace
transform method. When θ̄(ξ, s) is the Laplace transform of θ (ξ, η), the Laplace
transform of Eq. (52a) with the specified initial conditions takes the following form:

(1 + rs)
d2θ̄ f

d ξ 2
− H

(
1 + rqs

) d θ̄ f

d ξ
= (s + s2)θ̄ f (53)
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This is an ordinary second order differential equation with constant coefficients
whose solution is

θ̄ f (ξ, s) = eH(1+rq s)ξ
[

D1e−
√

H 2(1+rq s)2+4(1+rs)(s+s2)ξ

+ D2 e
√

H 2(1+rq s)2+4(1+rs)(s+s2)ξ
] (54)

When H is negative, the problem under consideration simulates flow leaving a
porous device with insulated sidewalls. Therefore, for a sufficiently thick device,
the condition of finite θ̄ f (ξ, s) as ξ → ∞ makes D2 = 0. The first set of data in
Fig. 5(a) is for suddenly applied heat flux qw at x = 0, see the inset of Fig. 5(a)
for qw direction. For the data in this figure, Tref = qw

√
α�a/ke, and this makes

θ f = ke(T f − Ti )/(qw

√
α�a ) and θs = ke(Ts − Ti )/(qw

√
α�a ). The application of

boundary condition of the second kind at x = 0 requires the use of Eq. (8) with a
constant qw, that is

qw = −ke{∇T f (0, t) + �x
�

�t
[∇T f (0, t)]} (55)

In dimensionless space, this equation provides the value of D1 in Eq. (54) and it
becomes

θ̄ f (ξ, s) =
exp

{[
H (1 + rqs) − √

H 2(1 + rqs)2 + 4(1 + rs)(s + s2)
]
ξ
}

s(1 + rs)
[

H (1 + rqs) − √
H 2(1 + rqs)2 + 4(1 + rs)(s + s2)

] (56)

The second set of data in Fig. 5(b) is for the boundary condition of the first kind at
x = 0. Assuming the reference temperature is Tre f = To − Ti , the porous materials
temperature θs(0, η) = 1 readily provides the value of D1 = 1/[s(1 + rt s)], using
Eq. (35d). This makes Eq. (54) to become

θ̄ f (ξ, s) = eH(1+rq s)ξ

s(1 + rt s)
e−

√
H 2(1+rq s)2+4(1+rs)(s+s2)ξ (57)

The inverse Laplace transforms for these two cases, Eqs. (56) and (57), are acquired
numerically, see a Mathematica package from Valkó and Vajda (2002). Figures 5
(a-b) are prepared to show this trend when H = −1/2 and �q/�t = (1 − ε)Cs/C =
1/2; therefore, the input parameters in Eq. (57) become r = 1.25, rq = 0.5, and
rt = 1. The data plotted in both figures show the condition of LTNE that becomes
LTE at larger times. Of course, as before, LTNE condition exists when r is relatively
large. The data in Fig. 5(a) show a gradual increase in the solid materials temperature
θs(0, η) at ξ = 0 location, while θs(0, η) undergoes is rapid jump in Fig. 5(b) due to
specified boundary condition. At larger values, e.g., ξ = 2, the functional variations
of temperature within the solid materials and the fluid in the pores become similar.
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Fig. 5 The variation of temperature with time at selected locations within solid and pore mate-
rials in the presence of a flow field, (a) boundary condition of the second kind and (b) boundary
condition of the first kind

5 Remarks and Discussions

The formulation of the governing energy equations under LTNE condition shows
that the exact temperature solutions in all regular geometries are obtainable when
there is no moving fluid. The methodology can be extended to regular geometries
with moving fluid for special cases. In general, the eigenfunctions, if available, are
those for classical solution under LTE condition while modifications are needed to
account for the time as a variable. For a generalized solution, it is appropriate to
present a Green’s function solution. The Green’s function represents the thermal
response of the system to a point source of unit strength at location r ′ occurring at
time �. The functional form of the source is S = Cδ(�−�∗)δ(r ′ − r∗). In the absence
of a moving fluid, by placing S(r ′, �) in Eq. (30), following some algebraic steps,
the result in terms of Green’s function is

G(r, t |r ′, �) = G1(r, t |r ′, �) + �q

�e + �q

[
G2(r, t |r ′, �) − G3(r, t |r ′, �)

]
(58)
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where

G1(r, t |r ′, �) =
∞∑

n=1

(
Fn(r)Fn(r ′)

Nn

)

e−γn (t−�)

×
{

eβn (t−�)sinh
[√

(β2
n − λ2

n)(t − �)
]

(�q + �e)
√

(β2
n − λ2

n)

}

, (59)

G2(r, t |r ′, �) =
∞∑

n=1

(
Fn(r)Fn(r ′)

Nn

)

e−γn (t−�)

×
{

eβn (t−�)cosh
[√

(β2
n − λ2

n) (t − �)
]
}

(60)

and

G3(r, t |r ′, �) =
∞∑

n=1

(
Fn(r)Fn(r ′)

Nn

)

e−γn (t−�)

×
{

(γn − βn)
eβn (t−�)sinh

[√
(β2

n − λ2
n)(t − �)

]

√
(β2

n − λ2
n)

}

(61)

The Green’s function solution that describes Eq. (29) is

TI (r, t) =
∫

V

G3(r, t |r ′, �)Ti (r ′)dV ′ + (�q + �e)
∫

V

G1(r, t |r ′, �)Tii (r ′)dV ′

+
∫

V

G2(r, t |r ′, �)Ti (r ′)dV ′
(62)

and Eq. (30) for the volumetric heat source effect is

TS(r, t) = 1

C

∫ t

�=0
d�

∫

V

G1(r, t |r ′, �)

(

S(r ′, �) + �q
�S(r ′, �)

��

)

dV ′ (63)

Therefore, the temperature solutions for variety of systems are readily available by
modifying the available Green’s functions and Green’s function solutions for clas-
sical Fourier type heat conduction. This methodology can be extended to systems
with moving fluids but with limitations as presented earlier, e.g., in Sect. 4.

This presentation confirms that in the presence of a rapidly changing local tem-
perature in a porous medium, the condition of LTNE is expected. The acquired data
for LTNE in porous media indicate that the assumption of LTE is valid when t/�t is
relatively large. However, it is not universally valid since the temperature informa-
tion under LTNE condition differs from those with LTE condition in a number of
applications depending on time, specified thermophysical properties, and imposed
heating conditions.
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Nomenclature

A area, m2

Ap pore area parameter �Ap/�V , m−1

b plate thichness, m
C �C f + (1 − �)Cs

C f , C p capacitance for pore materials, Jm−3 K −1

Cs capacitance for solid martix, Jm−3 K −1

Fn(r) eigenfunction, Eq. (23)
h interstitial heat transfer coefficient, W m−2 K −1

ke equivalent thermal conductivity, W m−2 K −1

L characteristic lenght, m
L(T f ) operator, ∇ · (ke∇T f ) − C f V · ∇T f

LTE local thermal equilibrium
LTNE local thermal non-equilibrium
m, n indices
Nn norms
Nurh hrh/ke

Pe Curh/ke

q heat flux, W
/

m2

r �x/�a

rh �Vp/�Ap, m
rq , rt �q/�a and �t/�a

Rc contact resistance, m2 K W −1

S volumetric heat source, W m−3

S∗
n see equation (27a)

Sp Sparrow number, hL2/kerp

T temperature, K
To Ts at x = 0, K
Tref qw

√
α�a/ke or To − Ti

t time, s
u x-component of velocity, m/s
V velocity vector
Vp pore volume, m3

x coordinate, m

Greek Symbols


 thermal diffusivity, m2s−1

βn parameter related to γn , equation (27b)
γn eigenvalue
� V f /V
� t/�a

	 transformed temperature, Eq. (20) or (T f − Ti )/Tre f
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λn parameter related to γn , equation (27c)
ν kinematic viscosity, m2/s
� x/

√
α�a

� dummy variable and Green’s function parameter
�a lag time �e + �q , s
�e (1 − ε)(Cs/C)�t , s
�q lag time in Eq. (8), s
�t lag time for pore temperature, s
�x in Eq. (8), s
� transformed dimensionless temperature, Eq. (44)
ψn time parameter, Eq. (23)

Subscripts

i initial
f fluid
p pore
s solid
w wall
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General Heterogeneity Effects on the Onset
of Convection in a Porous Medium

D.A. Nield

1 Introduction

The classical Horton–Rogers–Lapwood problem, for the onset of convection in
a horizontal layer of a saturated porous medium uniformly heated from below,
has been extensively studied. Studies of the effects of heterogeneity in this sit-
uation are surveyed in Nield and Bejan (2006). The pioneering study was that
of Gheorghitza (1961). Particularly notable are the studies of vertical heterogene-
ity (especially the case of horizontal layers) by McKibbin and O’Sullivan (1980,
1981), McKibbin and Tyvand (1982, 1983, 1984), Nield (1994) and Leong and
Lai (2001, 2004), and the studies of horizontal heterogeneity by McKibbin (1986),
Nield (1987) and Gounot and Caltagirone (1989). Some more general aspects of
conductivity heterogeneity have been discussed by Vadasz (1990), Braester and
Vadasz (1993) and Rees and Riley (1990). Until recently one set of questions has
been left unanswered: namely in what respects, if any, does the effect of vertical
heterogeneity (by this is meant variation in the vertical direction and this includes
horizontal layering) differ from the effect of horizontal heterogeneity for each of the
permeability (hydrodynamic) and conductivity (thermal) types, and how do these
two types interact with each other? This chapter surveys attempts to answer those
questions and related matters.

The topic of permeability heterogeneity is currently of interest for an additional
reason. Simmons et al. (2001) and Prasad and Simmons (2003) have pointed out that
in many heterogeneous geologic systems, hydraulic properties such as the hydraulic
conductivity of the system under consideration can vary by many orders of magni-
tude and sometimes rapidly over small spatial scales. They also pointed out that the
onset of instability in transient, sharp interface problems is controlled by very local
conditions in the vicinity of the evolving boundary layer and not by the global layer
properties or indeed some average property of that macroscopic layer. They also
pointed out that any averaging process would remove the very structural controls
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e-mail: d.nield@auckland.ac.nz

P. Vadász (ed.), Emerging Topics in Heat and Mass Transfer in Porous Media, 63
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and physics that are expected to be important in controlling the onset, growth, and/or
decay of instabilities in a highly heterogeneous system. In particular, in the case of
dense plume migration in highly heterogeneous environments the application of an
average global Rayleigh number based upon average hydraulic conductivity of the
medium is problematic. In these cases, an average Rayleigh number is unable to
predict the onset of instability accurately because the system is characterized by
unsteady flows and large amplitude perturbations.

Nield and Simmons (2007) have emphasized the need to distinguish between
weak heterogeneity and strong heterogeneity. For the case of weak heterogeneity
(properties varying by a factor not greater than 3 or so) the introduction of an equiv-
alent Rayleigh number is useful. The extent to which an equivalent Rayleigh num-
ber (based on averaged permeability and averaged conductivity) might work was
investigated by Nield (1994) for the case of vertical heterogeneity. He concluded
that provided the variation of each of the various parameters lies within one order of
magnitude, a rough and ready estimate of an effective Rayleigh number can be made
that is useful as a criterion for Rayleigh–Bénard convection. This effective Rayleigh
number is based on the arithmetic mean quantities (such as the permeability) that
appear in the numerator, and the harmonic mean of quantities (such as the viscos-
ity) that appear in the denominator of the defining expression. Similar conclusions
were drawn by Leong and Lai (2001, 2004). In the case of strong heterogeneity the
concept of an effective Rayleigh number loses validity as a criterion for the onset of
instability.

In this chapter we first look at the case of weak heterogeneity for the general
case involving both vertical heterogeneity and horizontal heterogeneity. For this
complicated situation no exact analytical solution can be expected to exist, but it is
reasonable to seek an approximate analytical solution, based on the expectation that
for weak heterogeneity the solution would not differ dramatically from the solution
for the homogeneous case. Following this approach, we utilize an extension of the
Galerkin approximate method that has been widely employed (see, for example,
Finlayson (1972)). In the context of the onset of convection, the Galerkin method
commonly used involves trial functions of the vertical coordinate only. The analysis
described below employs a Galerkin method involving trial functions of both the
vertical and horizontal coordinates and chosen to be the known exact solutions for
the homogeneous case.

The problem studied is two-dimensional convection in a rectangular box with im-
pervious thermally insulated side walls. In Section 2 an analysis is presented based
on the Brinkman model for the momentum equation and for the double-diffusive
situation. In Section 3 some illustrative results are presented. In Section 4 the dis-
cussion is extended to include the situation where the basic vertical gradient in non-
uniform. This situation is treated as a heterogeneity of that gradient. In Section 5
results are given for the case of a bidisperse porous medium. As a special case this
covers local thermal non-equilibrium in a regular porous medium. In Section 6 it is
shown how an enclosure of non-uniform width can be considered as case of hetero-
geneity of width. In Section 7 strong heterogeneity is discussed. Some concluding
remarks are made in Section 8.
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2 Analysis

Single-phase flow in a saturated porous medium is considered. Asterisks are used
to denote dimensional variables. We consider a rectangular box, 0 ≤ x∗ ≤ L , 0 ≤
y∗ ≤ H , where the y∗-axis is in the upward vertical direction. The side walls are
taken as insulated, and uniform temperatures Tu and Tl are imposed at the upper and
lower boundaries, respectively. Likewise the sidewalls are taken to be impermeable
to concentration flux and uniform concentrations Cu and Cl are imposed at the upper
and lower boundaries, respectively.

Within this box the permeability is K ∗(x∗, y∗) and the overall (effective) thermal
conductivity is k∗(x∗, y∗). The Darcy velocity is denoted by u∗ = (u∗, v∗). The
Oberbeck–Boussinesq approximation is invoked.

The equations of continuity (expressing conservation of mass) for the velocity
components are

�u∗

�x∗ + �v∗

�y∗ = 0. (1)

We write the momentum equations as

�P∗

�x∗ = − μ

K ∗ u∗ + μ̃∇2u∗, (2)

�P∗

�y∗ = − μ

K ∗ v∗ + μ̃∇2v∗ + ρ f g[βT (T ∗ − T0+) βC (C∗ − C0)] (3)

Here � f is the density of the fluid, βT and βC are the volumetric thermal and so-
lutal expansion coefficients of the fluid, and T0 and C0 are the reference temperature
and concentration, respectively.

The thermal energy and solutal equations are taken as

(ρc)m
�T ∗

�t∗ + (ρc) f v∗ · ∇T ∗ = k∗
f ∇2T ∗, (4)

φ
�C∗

�t∗ + v∗ · ∇C∗ = D∗
m∇2C∗. (5)

Here c denotes the specific heat at constant pressure, k denotes the thermal con-
ductivity, and D∗

m = φD∗ where D∗ is the diffusivity of the solute in a fluid clear
of solid material.

In order to simplify the following analysis, on the right-hand side of Eq. (4) the
terms involving the partial derivatives of k∗

f with respect to the spatial coordinates
have been dropped. In accordance with the assumption of weak heterogeneity, it is
assumed that the variation of k∗

f over the enclosure is small compared with the
mean value of k∗

f . It can be shown that this approximation has no effect on the
results presented below provided that k∗

f is a linear function of the spatial variables
considered separately. A similar approximation involving D∗

m has been made in
Eq. (5). A similar assumption about the variation of the permeability is made below.
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We define K0, ko and Dm0 as the mean values of K ∗, k∗ and D∗
m , respectively,

and write

K = K ∗/K0, k f = k∗
f /k f 0, Dm = D∗

m/Dm0. (6)

We introduce dimensionless variables as follows:

x∗ = Lx, y∗ = H y, t∗ = (ρc) f

k f 0
d2t, P∗ = k f 0μ

(ρc) f K0
P, (7)

u∗ = φk f 0

(ρc) f L
u, v∗ = φk f 0

(ρc) f H
v, (8)

T f
∗ = (Tl − Tu)θ + Tu, C∗ = (Cl − Cu)γ + Cu . (9)

We take the reference temperature T0 as Tl − Tu and the reference concentration
C0 as Cl − Cu .

We define a thermal Rayleigh number RaT , a solutal Rayleigh number RaC , a
Darcy number Da , and a heat capacity ratio σ , by

RaT = ρ f gβT (Tl − Tu)K0 H

μk f 0/(ρc) f
, RaC = ρ f gβC (Cl − Cu)K0 H

μDm0
,

Da = μ̃

μ

K0

H 2
, σ = (ρc)m

(ρc) f
. (10)

We also introduce the height-to-depth aspect ratio A defined by

A = H/L . (11)

The continuity equation becomes

A2 �u

�x
+ �v

�y
= 0. (12)

The streamfunction � is according defined by

u = 1

A2

�ψ

�y
, v = −�ψ

�x
. (13)

Elimination of the pressure from Eqs. (2) and (3), on the assumption that the
maximum variation of permeability in the box is a small fraction of the mean per-
meability so that derivatives of the permeability are small, gives

[

A2 �2

�x2
+ �2

�y2
− DaK (x, y)

(

A2 �2

�x2
+ �2

�y2

)2
]

ψ = −K (x, y)A2

×
(

RaT
�θ

�x
+ RaC

�γ

�x

)

, (14)
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Also, the thermal energy Eqs (4) and (5) become

�θ

�t
+

(
�ψ

�y

�θ

�x
− �ψ

�x

�θ

�y

)

= k(x, y)

(

A2 �2

�x2
+ �2

�y2

)

θ, (15)

φ
�γ

�t
+

(
�ψ

�y

�γ

�x
− �ψ

�x

�γ

�y

)

= D(x, y)

(

A2 �2

�x2
+ �2

�y2

)

γ. (16)

The conduction steady state solution is

ψ = 0, θ = γ = 1 − y. (17)

We now perturb this solution and write

ψ = �, θ = 1 − y + �, γ = 1 − y + �. (18)

Substitution in Eqs. (14)–(16) and linearization gives

[

−
(

A2 �2

�x2
+ �2

�y2

)

+ DaK (x, y)

(

A2 �2

�x2
+ �2

�y2

)2
]

�

−K (x, y)A2

(

RaT
��

�x
+ RaC

��

�x

)

= 0 (19)

��

�t
+ ��

�x
− k(x, y)

(

A2 �2

�x2
+ �2

�y2

)

� = 0, (20)

φ
��

�t
+ ��

�x
− D(x, y)

(

A2 �2

�x2
+ �2

�y2

)

� = 0. (21)

We consider just the case in which the thermal and solutal gradient are both
destabilizing (RaT and RaC both positive). We then invoke the principle of exchange
of stabilities. The differential equations take the matrix form

LY = 0, (22)

where

Y = (�, �, �)T , (23)

L11 = −
(

A2 �2

�x2
+ �2

�y2

)

+ DaK (x, y)

(

A2 �2

�x2
+ �2

�y2

)2

,

L12 = −K (x, y)A2 RaT
�

�x
,

L13 = −K (x, y)A2 RaC
�

�x
,
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L21 = �

�x
,

L22 = −k(x, y)

(

A2 �2

�x2
+ �2

�y2

)

, (24)

L23 = 0,

L31 = �

�x
,

L32 = 0,

L33 = −D(x, y)

(

A2 �2

�x2
+ �2

�y2

)

.

For conducting, isosolutal stress-free top and bottom boundaries and insulating,
impermeable, stress-free side walls, the boundary conditions are

� = �2�

�x2
= ��

�x
= ��

�x
= 0 at x = 0 and at x = 1,

� = �2�

�y2
= � = � = 0 at y = 0 and at y = 1.

(25)

This set of boundary conditions is satisfied by

�mn = sin mπx sin nπy, m, n = 1, 2, 3, . . . . (26)

�pq = �pq = cos pπx sin qπy, p, q = 1, 2, 3, . . . . (27)

We can take this set of functions (that are exact eigenfunctions for the homoge-
neous case) as trial functions for an approximate solution of the heterogeneous case.
For example, working at second order, we can try

� = A11�11 + A12�12 + A21�21 + A22�22, (28)

� = B11�11 + B12�12 + B21�21 + B22�22, (29)

� = C11�11 + C12�12 + C21�21 + C22�22. (30)

Let R1, R2, R3 be the residuals when the expressions (28)–(30) are substituted in
the left-hand sides of the 3 differential equations (22). In turn, R1 and R2 are made
orthogonal to �11, �12, �21, �22 andR3 is made orthogonal to �11, �12, �21, �22.

The result is 12 linear homogeneous equations in the 12 constants A11, . . . , C22

whose solution requires the vanishing of the determinant of coefficients, namely

det M = 0, (31)

where M is a 12 by 12 matrix.
The full algebraic details are omitted here but may be found in Kuznetsov and

Nield (2007).
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A typical element is M1,1 =< �11L11�11 >, where the angle brackets denote
an average over the square:

< f (x, y) >=
∫ 1

0

∫ 1

0
f (x, y) dxdy (32)

In a general case the integrals could be obtained by quadrature but in simple cases
they can be found analytically. The eigenvalue equation, Eq. (31) can then be solved
to give the critical Rayleigh number Ra.

For illustrative purposes we consider a quartered square in which each slowly
varying quantity is approximated by a piecewise-constant distribution. The mean
value of the quantity is approximated by its value at centre of the main square:
f̄ = f (0.5, 0.5). In each quarter, the function is approximated by its value at the
centre of that quarter, and a truncated Taylor series expansion is used to approximate
this quantity. For example, in the region 1/2 < x < 1, 1/2 < y < 1, f (x, y) is
approximated by f (0.75,0.75) and then by

f (0.5, 0.5) + 0.25 fx (0.5, 0.5) + 0.25 fy(0.5, 0.5).

Hence we consider the following case.

For 0 < x < 1/2, 0 < y < 1/2,

K (x, y) = 1 − δH − δV , k(x, y) = 1 − εT H − εT V , D(x, y) = 1 − εC H − εCV ;
for 1/2 < x < 1, 0 < y < 1/2,

K (x, y) = 1 + δH − δV , k(x, y) = 1 + εT H − εT V , D(x, y) = 1 + εC H − εCV ;
for 0 < x < 1/2, 1/2 < y < 1,

K (x, y) = 1 − δH + δV , k(x, y) = 1 − εT H + εT V , D(x, y) = 1 − εC H + εCV ;
for 1/2 < x < 1, 1/2 < y < 1,

K (x, y) = 1 + δH + δV , k(x, y) = 1 + εT H + εT V , D(x, y) = 1 + εC H + εCV .

,

(33)
Here, for example,

δH = 1

4

[
�K/�x

K

]

x=1/2,y=1/2

, δV = 1

4

[
�K/�y

K

]

x=1/2,y=1/2

. (34)

We have ensured that the requirements < K (x, y) >= 1, < k(x, y) >= 1, and
< D(x, y) >= 1 are satisfied.

The solution for the homogeneous case (which is also given by a single term
Galerkin approximation) is given by

RaT + RaC = Ra0, (35)

where

Ra0 = (A2 + 1)2π2[Da(A2 + 1)π2 + 1]

A2
. (36)
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One can now perturb this solution using the double term Galerkin approximation
and the assumption that the heterogeneity quantities δH , δV , εT H , εT V , εC H , εCV are
small compared with unity and are of the same order of smallness, ε. This assump-
tion allows the twelfth-order determinant to be expanded algebraically. (It is possible
to put use elementary row and column transformations to put the determinant in
quasi-diagonal form (where all the terms off the principle diagonal are of order ε)
and use a special algorithm for the expansion to order ε2.)

In the expression thus obtained, we set

RaT = Ra0(1 + S) − RaC , (37)

substitute in the eigenvalue equation, and solve for S to order ε2, in terms of the
parameter RaC and the other parameters, namely Da , A and the heterogeneity pa-
rameters. In this way we obtain an expression of the form

S = C11HδH
2 + C22HεT H

2 + C33HεC H
2 + C23HεT HεC H + C13HδHεC H

+ C12HδHεT H + C11V δV
2 + C22V εT V

2 + C33V εCV
2 + C23V εT V εCV

+ C13V δV εCV + C12V δV εT V ,

(38)

where each of the coefficients is a function Da, A, and RaC . For example, in the
purely thermal case where RaC = 0, and for a square enclosure (A = 1), one
finds that

Ra = 4π2

{

1 − 64

567π2

[
7(4δH − 2.5εT H )2 + 3(2δV − 5εT V )2

]
}

≈ 40{1 − 1.281(δH − 0.625εT H )2 − 0.137(δV − 2.5εT V )2}
. (39)

Thus here

S = −1.281(δH − 0.625εT H )2 − 0.137(δV − 2.5εT V )2

= −1.281δH
2 − 0.500εT H

2 + 1.601δH εT H . − 0.137δV
2 − 0.858εT V

2

+ 0.686δV εT V

(40)

3 Results and Discussion

3.1 Thermal Convection in a Square Enclosure

First, looking at the monodiffusive case for a square, Eq. (39), a number of con-
clusions can be drawn. The effects of weak horizontal heterogeneity and vertical
heterogeneity are each of second order in the property deviations. Their com-
bined contribution is of the order of the variances of the distributions for per-
meability and conductivity (which are here equal to �H

2 + �V
2 and 	H

2 + 	V
2,

respectively.)
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One should note that the effects of the horizontal and vertical contributions are
immediately comparable only if one uses the total amount of variation across the box
as the measure of heterogeneity. If one uses the rate of variation with distance as the
criterion, one has to take account of the fact that the x- and y-coordinates have been
differently scaled, by a factor A. For example, in terms of quantities evaluated at the
centre of the box,

δV

δH
= �K/�y

�K/�x
= H

L

�K ∗/�y∗

�K ∗/�x∗ = A
�K ∗/�y∗

�K ∗/�x∗ . (41)

Thus if A is large then the vertical heterogeneity has a greater impact than the hor-
izontal heterogeneity, other things being equal. Allowing for the aspect ratio effect,
we see that the effect of vertical heterogeneity is somewhat greater than that of
horizontal heterogeneity.

Further, the two effects act independently at this order of approximation. Product
terms like �H �V are absent in Eq. (39). Since the expression in square brackets in
Eq. (39) is positive definite, the heterogeneities lead to a reduction in the critical
value of Ra for all combinations of horizontal and vertical heterogeneities and all
combinations of permeability and conductivity heterogeneities. (The reduction is zero
for the very special case where �H = 0.625 	H and �V = 2.5 	V .) The effects of the
horizontal permeability heterogeneity and the horizontal conductivity heterogeneity
are subtractive at the first combination step (and similarly with horizontal replaced by
vertical), as one might expect since the permeability appears in the numerator in the
definition of Ra whereas the conductivity appears in the denominator.

3.2 Thermal Convection in a Tall Rectangular Enclosure

One finds that in the limit as the height-to-depth aspect ratio A becomes large,

Ra = 4π2 A2

{

1 + 16

135π2

[
5(4δH − εH )2 + 4(16δV − εV )(δV − εV )

]
}

≈ 40A2{1 + 0.060(4δH − εH )2 + 0.192(16δV − εV )(δV − εV )}.
(42)

Comparison with Eq. (39) shows that the homogeneous case value of Ra is in-
creased by the factor horizontal heterogeneity leads to an increase in Ra and the
vertical heterogeneity produces either an increase or decrease depending on the
value of δV /εV .

Further details may be found in Nield and Kuznetsov (2007a).

3.3 Double Diffusive Convection in a Square Enclosure

Returning to the more general double-diffusive case, one general result can be ob-
served at the outset. For the case εC H = εT H and εCV = εT V the large determinant
M factorizes, and the eigenvalue equation reduces to a form in which the Rayleigh
numbers RaT and RaC appear only in the combination (RaT + RaC ). This means
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that in this case the thermal and solutal effects are perfectly coupled, a result of the
fact that the separate thermal and solutal eigenvalue problems are identical so that
the streamline patterns for the two problems are identical. Thus in this special case
the double-diffusive problem reduces to the thermal problem. In the general case
this does not occur, and a detailed investigation is needed.

As examples we here consider two special cases, approximating a Darcy porous
medium and a fluid clear of solid material.

Table 1 presents the results for the low Darcy number limit. The value A = 1
is known to give the minimum Rayleigh number as A (which can be interpreted
as a horizontal wavenumber) varies. The general trends are clear. Each of the three
agencies (hydrodynamic, thermal, solutal) acting alone is destabilizing. The purely
hydrodynamic (permeability) effect is independent of the value of the thermal and
solutal Rayleigh numbers. The hydrodynamic–thermal and hydrodynamic–solutal
coupling leads to stabilization. As expected, the thermal effects decrease as the
solutal Rayleigh number increases, and the solutal effects increase as the solutal
Rayleigh number increases. There is a thermal–solutal symmetry and a symmetry
about the value RaC / Ra0 = 1/2 (i.e. about the RaT = RaC situation). The thermal–
solutal coupling has a maximum value when RaC /Ra0 = 1/2.

Table 2 presents results for a case involving a large Darcy number (approximating
a fluid clear of solid material). Here Ra0/Da represents the usual Rayleigh number

Table 1 Heterogeneity coefficients (see Eq. (38)) for the case Da = 0, A = 1 (Ra0 = 4π2 =
39.48)

RaC /Ra0 C11H C22H C33H C23H C13H C12H

0 −1.281 −0.500 0 0 0 1.601
0.1 −1.281 −0.422 −0.021 −0.058 0.160 1.441
0.2 −1.281 −0.349 −0.049 −0.102 0.320 1.281
0.3 −1.281 −0.283 −0.083 −0.134 0.480 1.121
0.4 −1.281 −0.223 −0.123 −0.154 0.640 0.960
0.5 −1.281 −0.170 −0.170 −0.160 0.800 0.800
0.6 −1.281 −0.123 −0.223 −0.154 0.960 0.640
0.7 −1.281 −0.083 −0.283 −0.134 1.121 0.480
0.8 −1.281 −0.049 −0.349 −0.102 1.281 0.320
0.9 −1.281 −0.021 −0.422 −0.058 1.441 0.160
1.0 −1.281 0 −0.500 0 1.601 0

RaC/Ra0 C11V C22V C33V C23V C13V C12V

0 −0.137 −0.858 0 0 0 0.686
0.1 −0.137 −0.760 −0.073 −0.025 0.068 0.618
0.2 −0.137 −0.664 −0.150 −0.044 0.137 0.549
0.3 −0.137 −0.571 −0.229 −0.058 0.206 0.480
0.4 −0.137 −0.482 −0.310 −0.066 0.274 0.441
0.5 −0.137 −0.395 −0.395 −0.069 0.343 0.343
0.6 −0.137 −0.310 −0.482 −0.066 0.412 0.274
0.7 −0.137 −0.228 −0.572 −0.057 0.480 0.206
0.8 −0.137 −0.150 −0.664 −0.044 0.549 0.137
0.9 −0.137 −0.073 −0.760 −0.025 0.618 0.068
1.0 −0.137 0 −0.858 0 0.686 0
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Table 2 Heterogeneity coefficients for the case Da = 100, A = 1/
√

2 (Ra0/Da = 27π4/4 =
657.51)

RaC/Ra0 C11H C22H C33H C23H C13H C12H

0 1.441 −0.360 0 0 0 0.0005
0.1 1.441 −0.308 −0.020 −0.032 0.0001 0.0005
0.2 1.441 −0.260 −0.043 −0.058 0.0001 0.0004
0.3 1.441 −0.214 −0.070 −0.076 0.0002 0.0004
0.4 1.441 −0.173 −0.101 −0.086 0.0002 0.0003
0.5 1.441 −0.135 −0.135 −0.090 0.0003 0.0003
0.6 1.441 −0.101 −0.173 −0.086 0.0003 0.0002
0.7 1.441 −0.070 −0.214 −0.076 0.0004 0.0002
0.8 1.441 −0.043 −0.260 −0.058 0.0004 0.0001
0.9 1.441 −0.020 −0.308 −0.032 0.0005 0.0001
1.0 1.441 0 −0.360 0 0.0005 0

RaC/Ra0 C11V C22V C33V C23V C13V C12V

0 0.748 −0.748 0 0 0 0.0001
0.1 0.748 −0.671 −0.072 −0.005 0.00001 0.0001
0.2 0.748 −0.594 −0.145 −0.009 0.00002 0.00009
0.3 0.748 −0.518 −0.219 −0.012 0.00003 0.00008
0.4 0.748 −0.442 −0.293 −0.013 0.00004 0.00007
0.5 0.748 −0.367 −0.367 −0.014 0.00006 0.00006
0.6 0.748 −0.293 −0.442 −0.013 0.00007 0.00004
0.7 0.748 −0.219 −0.518 −0.012 0.00008 0.00003
0.8 0.748 −0.145 −0.594 −0.009 0.00009 0.00002
0.9 0.748 −0.072 −0.671 −0.005 0.0001 0.00001
1.0 0.748 0 −0.748 0 0.0001 0

for a fluid, and it is known that this attains its minimum when A = 1/
√

2 in the
clear fluid limit. The trends shown in Table 2 are similar to those shown previously
in Table 1, with two notable exceptions. Now the purely hydrodynamic effect is
stabilizing, and the amount of hydrodynamic–thermal and hydrodynamic–solutal
coupling is very small. The latter effect is not unexpected, because for a clear fluid
a change in permeability is a nebulous concept.

4 Non-Uniform Basic Temperature Gradient

We suppose that the vertical temperature gradient in the basic state (quasi-static) is
a function of the vertical coordinate,

dT0
∗

dy∗ = T1 − T0

L
F(y∗/L), (43)

where F has unit mean,

∫ 1

0
F(y)dy = 1. (44)
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The conduction solution is given by

ψ = 0, θ = 1 −
∫ y

0
F(η)dη. (45a,b)

For the quartered square example one now has

K (x, y) = 1 − δH − δV , k(x, y) = 1 − εH − εV , F(y) = 1 − η,

for 0 < x < 1/2, 0 < y < 1/2;
K (x, y) = 1 + δH − δV , k(x, y) = 1 + εH − εV , F(y) = 1 − η,

for 1/2 < x < 1, 0 < y < 1/2;
K (x, y) = 1 − δH + δV , k(x, y) = 1 − εH + εV , F(y) = 1 + η,

for 0 < x < 1/2, 1/2 < y < 1;
K (x, y) = 1 + δH + δV , k(x, y) = 1 + εH + εV , F(y) = 1 + η,

for 1/2 < x < 1, 1/2 < y < 1.

(46)

δH = 1

4

[
1

K

�K

�x

]

(1/2,1/2)

, δV = 1

4

[
1

K

�K

�y

]

(1/2,1/2)

,

εH = 1

4

[
1

k

�k

�x

]

(1/2,1/2)

, εV = 1

4

[
1

k

�k

�y

]

(1/2,1/2)

,

η = 1

4

[
1

F

dF

dy

]

(1/2)

.

(47)

In terms of the shorthand notation


H = (8/3π )δH , 
V = (8/3π )δV , EH = (4/3π )εH , EV = (8/3π )εV ,

H = (8/3π )η (48)

this leads to the critical value

Ra = 4π2

{

1 − 64

567π2

[
7(4δH − 2.5εH )2 + 3(2δV − 5εV )2

+η(60δV − 87εV ) + 12η2
]}

≈ 40{1 − 1.281(δH − 1.25εH )2 − 0.137(δV − 1.25εV )2

− 0.686η(δV − 1.45εV ) − 0.137η2}

(49)

For the case of a tall box, in the limit as A → ∞, one finds that

R/A2 = 1 + S, (50)

where

S = 1

15

[
5(2
H − EH )2 + (16
V − EV )(
V − EV ) + 2H(
V − EV ) + H2

]
(51)
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This leads to

Ra = 4π2 A2

{

1 + 64

135π2

[
(16δH − εH )(δH − εH ) + 5(2δV − εV )2

+ 5η(4δV − εV ) + 20η2
]
}

≈ 40A2{1 + 0.048(16δH − εH )(δH − εH ) + 0.240(2δV − εV )2

+ 0.240η(4δV − εV ) + 1.201η2}.

(52)

Further details may be found in Nield and Kuznetsov (2007d).

5 Bidisperse Porous Medium

A bidisperse medium differs from a regular one in that the solid phase is replaced
by a porous medium. The equations of continuity (expressing conservation of mass)
for the velocity components in the two phases are

�u f
∗

�x∗ + �v f
∗

�y∗ = 0, (53)

�u p
∗

�x∗ + �vp
∗

�y∗ = 0. (54)

We note that in the traditional Darcy formulation the pressure is an intrinsic quan-
tity, i.e. it is the pressure in the fluid. We recognize that in a BDPM the fluid occupies
all of the f -phase (the macropore portion) and a fraction of the p-phase (the micro-
pore portion of the porous phase). We denote the volume fraction of the f -phase by
φ (something that in a regular porous medium would be called the porosity) and the
porosity in the p-phase by ε. Thus 1 − φ is the volume fraction of the p-phase, and
the volume fraction of the BDPM occupied by the fluid is φ + (1−φ)ε. The volume
average of the temperature over the fluid is

TF
∗ = φT f

∗ + (1 − φ)εTp
∗

φ + (1 − φ)ε
. (55)

The drag force (per unit volume) balances the gradient of the excess pressure over
hydrostatic. Our basic hypothesis is that in a BDPM the drag is increased by an amount
�(v f

∗ − vp
∗) for the f -phase and decreased by the same amount for the p-phase.

Within the enclosure the permeability is K ∗(x∗, y∗) and the overall (effective)
thermal conductivity is k∗(x∗, y∗). Accordingly, we write the momentum equa-
tions as

�p∗

�x∗ = − μ

K ∗
f

u f
∗ − ζ (u f

∗ − u p
∗) + μ̃∇2u f

∗, (56)
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�p∗

�x∗ = − μ

K ∗
p

u p
∗ − ζ (u p

∗ − u f
∗) + μ̃∇2u p

∗, (57)

�p∗

�y∗ = − μ

K ∗
f
v f

∗ − ζ (v f
∗ − vp

∗) + μ̃∇2v f
∗ + ρF gβ̂(TF

∗ − T0), (58)

�p∗

�y∗ = − μ

K ∗
p
vp

∗ − ζ (vp
∗ − v f

∗) + μ̃∇2vp
∗ + ρF gβ̂(TF

∗ − T0). (59)

We have simplified the equations by assuming that the effective viscosities in the
two phases are identical. Here ρF is the density of the fluid, β̂ is the volumetric
thermal expansion coefficient of the fluid, and T0 is a reference temperature.

The thermal energy equations are taken as

φ(ρc) f
�T f

∗

�t∗ + φ(ρc) f v f
∗ · ∇T f

∗ = φk∗
f ∇2T f

∗ + h(Tp
∗ − T f

∗), (60)

(1 − φ)(ρc)p
�Tp

∗

�t∗ + (1 − φ)(ρc)pvp
∗ · ∇Tp

∗ = (1 − φ)k∗
p∇2Tp

∗ + h(T f
∗ − Tp

∗). (61)

Here c denotes the specific heat at constant pressure, k∗ denotes the thermal con-
ductivity, and h is an inter-phase heat transfer coefficient (incorporating the specific
area).

We define K f 0, K p0, k f 0 and kp0 as the mean values of K ∗
f , K ∗

p, k∗
f and k∗

p,
respectively, and write

K̂ f = K ∗
f /K f 0, K̂ p = K ∗

p/K p0, k̂ f = k∗
f /k f 0, k̂ p = k∗

p/kp0. (62)

Then Eqs. (56)–(59) lead to

[(
1 + σ f K̂ f

)∇2 − Da f K̂ f ∇4
]
ψ f − βσ f K̂ f ∇2ψp = Ra f K̂ f

�θF

�x
, (63)

− σ f K̂ p∇2ψ f + β

[(
1

Kr
+ σ f K̂ p

)

∇2 − Da f K̂ p∇4

]

ψp = Ra f K̂ p
�θF

�x
, (64)

where

�θF

�x
=

φ
�θ f

�y + (1 − φ)ε �θp

�x

φ + (1 − φ)ε
. (65)

Here we have introduced the dimensionless parameters

σ f = ζ K f 0

μ
, β = (1 − φ)kp0(ρc) f

φk f 0(ρc)p
, Kr = K p0

K f 0
(66)

Thus σ f is an inter-phase momentum transfer parameter, while β is a modified
thermal diffusivity ratio.
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Also, the thermal energy equations (60) and (61) become

�θ f

�t
− �ψ f

�y

�θ f

�x
+ �ψ f

�x

�θ f

�y
= k̂ f ∇2θ f + H (θp − θ f ), (67)

α
�θp

�t
− �ψp

�y

�θp

�x
+ �ψp

�x

�θp

�y
= k̂ p∇2θp + γ H (θ f − θp), (68)

where

α = k f 0

kp0

(ρc)p

(ρc) f
, γ = φk f 0

(1 − φ)kp0
, H = hd2

φk f 0
. (69)

Thus α is a thermal diffusivity ratio, γ is a modified thermal conductivity ratio,
and H is an inter-phase heat transfer parameter. The procedure in Section 2 now
leads to

Ra = Ra0(1 + C11Hδ f H
2 + C22HδpH

2 + C33Hε f H
2 + C44HεpH

2 + C12Hδ f HδpH

+C34Hε f HεpH + C13Hδ f Hε f H + C24HδpHεpH + C14Hδ f HεpH

+C23HδpH ε f H + C11V δ f V
2 + C22V δpV

2 + C33V ε f V
2 + C44V εpV

2

+C12V δ f V δpV + C34V ε f V εpV + C13V δ f V ε f V + C24V δpV εpV + C14V δ f V εpV

+C23V δpV ε f V ).
(70)

For example, for the case φ = 0.4, ε = 0.4, A = 1, Da f = 1, Kr = 1, σ f = 1,
β = 10, γ = 1, H = 1, one finds that Ra0 = 1255.46, and C11H = 0.031,
C22H = 0.003, C33H = −0.180, C44H = −0.024, C12H = 0.000, C34H = 0.002,
C13H = 0.110, C24H = 0.001, C14H = 0.006, C23H = 0.010; C11V = 0.031,
C22V = 0.003, C33V = −0.660, C44V = −0.093, C12V = 0.000, C34V = 0.019,
C13V = 0.108, C24V = 0.001, C14H = 0.006 and C23V = 0.009. The results for this
and other cases show that certain coefficients are generally small, and for practical
purposes may be set equal to zero. These are c22H , c12H , c24H , c22V , c12V , c24V and
c14. Also c23H , and c23V , are relatively small. The conclusion is that the effect of the
hydrodynamic heterogeneity of the p-phase is generally small. This result could be
expected. On the other hand, the thermal heterogeneity of the p-phase can be quite
significant when the thermal diffusivity of the p-phase is relatively large.

Further details can be found in Nield and Kuznetsov (2007f).

6 Enclosure of Variable Width

We consider an almost rectangular box, 0 ≤ x∗ ≤ L + δ∗(y∗), 0 ≤ y∗ ≤ H ,
where the y∗ axis is in the upward vertical direction and |δ∗(y∗)/L| << 1, and
it is assumed that δ∗(y∗) has zero mean. We now introduce a transformation of
coordinates,

ξ = x/g(y), η = y, (71)
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where

g(y) = 1 + δ∗(y∗)

L
. (72)

Thus the mean value of g(y) is 1.
It is now assumed that

dδ∗

dy∗ <<
L

H
(73)

so that

∣
∣
∣
∣

1

g(η)

dg(η)

dη

∣
∣
∣
∣ << 1. (74)

The equations analogous to Eqs. (19) and (20) are

A2 �2ψ

�ξ 2
+ [g(η)]2 �2ψ

�η2
+ g(η)A

�θ

�ξ
= 0, (75)

Rag(η)A
�ψ

�ξ
−

[

A2 �2θ

�ξ 2
+ [g(η)]2 �2θ

�η2

]

= 0. (76)

The boundary conditions are taken to be

ψ = 0 and θ = 0 on η = 0, (77a,b)

ψ = 0 and θ = 0 on η = 1, (78a,b)

ψ = 0 and �θ/�ξ = 0 on ξ = 0, (79a,b)

ψ = 0 and �θ/�ξ = 0 on ξ = 1. (80a,b)

We have used the assumption in Eq. (74) to approximate the normal derivative
on the boundary by the horizontal derivative.

In terms of the notation

Imn = 2 < g(η) sin mπη sin nπη >, (81)

Jmn = 2 < [g(η)]2 sin mπη sin nπη >, (82)

one finds that now

M =

⎡

⎢
⎢
⎣

π2(A2 + J11) 4π2 J12 π I11 π I12

π2 J12 π2(A2 + 4J22) π I12 π I22

Raπ I11 Raπ I12 π2(A2 + J11) 4π2 J12

Raπ I12 Raπ I22 π2 J12 π2(A2 + 4J22)

⎤

⎥
⎥
⎦ (83)
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for the case of general A and defining S by

Ra = Ra0(1 + S), (84)

one finds that to first order in small quantities,

S = 2

[
J11 − 1

A2 + 1
− (I11 − 1)

]

. (85)

We now consider some special cases.
Case 1. For a linear variation in the enclosure width, necessarily antisymmetric

about the horizontal midline, modeled by g = g1 where

g1(η) = 1 + α(2η − 1), (86)

one finds that

I11 = 1 and J11 = 1 + α2

(
1

3
− 2

π2

)

≈ 1 + 0.131α2, (87a,b)

S = α2

A2 + 1

(
2

3
− 4

π2

)

≈ 0.261
α2

A2 + 1
. (88)

This implies that Ra > Ra0 when α is non-zero, for all values of A, i.e. a small
departure from the exact rectangular shape is stabilizing.

Case 2. For a quadratic variation of enclosure width, symmetric about the hori-
zontal midline, modeled by g = g2 where

g2(η) = 1 + β(6η2 − 6η + 1), (89)

one finds that

I11 = 1 − 3β

π2
≈ 1 − 0.304β

J11 = 1 − 6β

π2
+ β2

(
1

5
− 6

π2
+ 54

π4

)

≈ 1 − 0.608β + 0.146β2.

(90a,b)

S = 1

A2 + 1

[

−12β

π2
+ β2

(
2

5
− 12

π2
+ 108

π4

)]

+ 6β

π2

≈ −1.216β + 0.293β2

A2 + 1
+ 0.608β. (91)

One finds that the departure from a rectangular shape is stabilizing for all values
of � under the assumption that A ≥ 1.
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Case 3. For a sinusoidal variation of enclosure width, symmetric about the hori-
zontal midline, modeled by g = g3 where

g3(η) = 1 + σ sin πη, (92)

one finds that

I11 = 1 + 2σ

3π
≈ 1 + 0.212σ,

J11 = 1 + 4σ

3π
+ σ 2

(
3

4
− 20

3π2

)

≈ 1 + 0.424σ + 0.074σ 2.

(93a,b)

S = 1

A2 + 1

[
8σ

3π
+ σ 2

(
3

2
− 10

3π2

)]

− 4β

3π
≈ 0.849σ + 0.149σ 2

A2 + 1
−0.424σ. (94)

Thus the departure from a rectangular shape is stabilizing for all values of σ

when A ≥ 1.
In cases 2 and 3 the profiles have a similar shape, so the similarity in the results

is as expected.
Case 4. For a sinusoidal variation of enclosure width, antisymmetric about the

horizontal midline, modeled by g = g4 where

g4(η) = 1 + τ sin 2πη, (95)

one finds that I11 = 1,

J11 = 1 + τ 2

2
.

(96a,b)

S = τ 2

A2 + 1
. (97)

Thus for this case the departure from a rectangular shape is stabilizing for all
values of  and for all values of A. This case is similar to case 1.

We also have a general result: for a square enclosure A = 1, Ra ≥ Ra0 for any
function g(η) with unit mean. This follows quickly from the identity

1 + J11 ± 2I11 = 2
∫ 1

0
(g ± 1)2 sin2 πη dη ≥ 0 (98)

which implies that

Ra − Ra0 = π2

I11
2

[
(1 + J11)2 − 4I11

2
] ≥ 0. (99)

Further details can be found in Nield and Kuznetsov (2007e).
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7 Strong Heterogeneity

The topic of strong heterogeneity remains open for future research, but some
suggestions have been made.

Nield and Simmons (2007) observed that the reciprocal of the permeability is
a measure to the resistance to motion, and they invoked an analogy with electrical
resistance. In the case of convection induced by buoyancy the primary flow is ver-
tical and the net heat flow is vertical, and for horizontal layering the contributions
of the individual layers are in series for the flow of mass and heat. In particular, the
resultant of two resistances of magnitudes 1 and ε is 1 + ε, and if ε is small then
the resultant differs little from unity. In contrast, for the case of vertical layering the
resistances are in parallel. Then the resultant of two resistances of magnitudes 1 and
ε is ε/(1 + ε), a quantity that differs greatly from unity when ε is small.

Further, Nield and Simmons (2007) have proposed a rough-and-ready criterion
for the onset of convection in this situation. This criterion is not restricted to the two-
dimensional situation. It is based on the famous Figs. 2 and 3 of Beck (1972) that
have been reproduced many times, for example as Figs. 6.22 and 6.23 in Nield and
Bejan (2006). These show the variation of the critical Rayleigh number, and the pre-
ferred cellular mode, as functions of the aspect ratios Ax = H/Lx and Ay = H/L y

for a three-dimensional box with height H and horizontal dimensions Lx and L y .
(Actually Beck worked with the reciprocals of those aspect ratios.) The figures

apply to a box with impermeable conducting top and bottom and impermeable in-
sulating sidewalls, and occupied by a porous medium for which the Darcy model
is applicable. Beck showed that the critical Rayleigh number for a homogeneous
medium is given by

Ra = π2 min

(

b + 1

b

)2

(100)

where

b = [
(p Ax )2 + (q Ay)2

]1/2
(101)

and the minimum is take over the set of nonnegative integers p and q. Beck’s figures
show that in the region Ax < 1, Ay < 1, the value of Ra does not exceed 40.7. Also,
in the region Ax > Ay > 1, the critical mode is p = 1, q = 0, so that

Ra = π2
(

Ax + Ax
−1

)2
. (102)

Furthermore, when Ax > 1 and Ay < 1 the value of Ra does not exceed the
value given by the expression in Eq. (102).

Similarly, in the region Ay > Ax > 1, the critical mode is p = 0, q = 1, so that

Ra = π2
(

Ay + Ay
−1

)2
, (103)
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and when Ay > 1 and Ax < 1 the value of Ra does not exceed the value given by
the expression in Eq. (103).

One can now construct a generalized Rayleigh number for a heterogeneous box
in the following way. The basic idea is that if at any stage one finds instability in
any part of the enclosure at any time, then the whole system can be considered to be
unstable. One starts with a domain consisting of the box and considers subdomains.
Each subdomain is taken to be a rectangular box, of arbitrary size and with arbitrary
aspect ratios, bounded by planes x = x1, x = x2, y = y1, y = y2, z = z1, z = z2.
Nield and Simmons call these things sub-boxes. Then for each sub-box one can
calculate the aspect ratios and a local Rayleigh number Ral based on the height of
the sub-box and with other properties given the mean value over the sub-box. In
particular, the sub-box mean of the basic temperature gradient at a particular time is
employed here. One can then define a geometrically adjusted Rayleigh number Rag

defined by

Rag =

⎧
⎪⎪⎨

⎪⎪⎩

Ral if Ax < 1 and Ay < 1,
4Ral

(Ax +Ax
−1)2 if Ax > 1 and Ax > Ay,

4Ral

(Ay+Ay
−1)2 if Ay > 1 and Ay > Ax .

(104)

Finally, one can define an overall Rayleigh number RaO by

RaO = max Rag (105)

where the maximum is taken over all the subdomains and all times.
One then expects that if RaO > 41 then instability will occur. The criterion for

instability will be met in at least one sub-box, and hence the whole system will be
unstable. If RaO << 41 then it is unlikely that instability will occur. If RaO is only
slightly less than 41 then a closer examination of the particular situation is needed
to determine whether or not instability will occur.

The expectation that RaO > 41 is a sufficient condition for instability is based on
the fact that the impermeable conducting boundaries are the most restrictive bound-
aries pertaining to the Darcy model. The boundary conditions on the top and bottom
of the sub-boxes are undetermined, but one can be sure that the present criterion is
conservative.

(Specifying the value of a variable on the boundary is more restrictive than, for
example, specifying the value of the derivative of that variable. In an eigenvalue
problem with a given differential equation, the more restrictive the boundary condi-
tions then the greater the eigenvalue. In Table 6.1 of Nield and Bejan (2006), which
gives the values of the critical Rayleigh number for various boundary conditions,
the largest entry for Rac corresponds to the impermeable conducting boundaries.)

One can also incorporate the effect of anisotropy, at the sub-box level, by defining
a local Rayleigh number with K/αm replaced by the square of the harmonic mean
of the square root of KV /αmV and K H/αm H , where the subscripts V and H refer to
the vertical and horizontal values. (Here αm = km/(ρc) f , where km is the effective
thermal conductivity of the medium.)
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8 Concluding Remarks

The analysis presented in this chapter shows that in the case of weak heterogeneity
the Rayleigh number based on mean properties is correct, as a criterion for the onset
of convection, to first order in the small heterogeneities. The second order correc-
tions have been made for heterogeneity of permeability, thermal diffusivity, solutal
diffusivity, basic vertical temperature gradient, and enclosure width, and extensions
to two-temperature and two-velocity models have been presented. Two further ex-
tensions of the analysis are now mentioned.

The above results are all for the case of conducting thermal boundary conditions
on the top and bottom walls. The case of insulating conditions (constant heat flux)
was considered by Nield and Kuznetsov (2007b). This is of interest because in an
infinite layer the critical wave number is zero (corresponding to A → ∞). It was
found that the dramatic change of convection pattern does not greatly change the
effect of the heterogeneity, once account has been made of the change in aspect ratio.
Some minor differences showed up. For the case of conducting boundaries, it was
found that the heterogeneities lead to a reduction in the critical value of Ra for all
combinations of horizontal and vertical heterogeneities and all combinations of per-
meability and conductivity heterogeneities. For the case of constant flux boundaries,
the situation is more complicated. Now the combination of vertical heterogeneity
and horizontal heterogeneity can be either stabilizing or destabilizing, and there
are differences between the effects of permeability heterogeneity and conductivity
heterogeneity. A further extension has been made by Nield and Kuznetsov (2007c)
to include the effect of anisotropy, both of permeability and conductivity. One finds
that there is now an interaction between the horizontal heterogeneities of horizontal
permeability and vertical permeability, for example, but again horizontal and verti-
cal heterogeneities of each property remain independent, to second order. It is found
that when the aspect ratio and the permeability and conductivity anisotropy ratios
are optimized to produce the minimum Rayleigh number, all the heterogeneity terms
lead to a reduction in the Rayleigh number.
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The Instability of Unsteady Boundary Layers
in Porous Media

D.A.S. Rees, A. Selim, and J.P. Ennis-King

1 Introduction

The aim of this Chapter is to summarise the state-of-the-art in the study of the
instability of unsteady diffusive boundary layers in porous media. We shall focus on
the boundary layer which is formed when the temperature or solute concentration
at a plane boundary is changed instantaneously to a new level. Such an idealised
system may be applied in a variety of contexts, such as in the subsurface storage
of carbon dioxide which is expanded upon below, and it shall be regarded as the
standard problem in this Chapter. The thermal/solutal field which then forms is un-
steady and it spreads outwards uniformly by diffusion. When the evolving system is
unstably stratified, i.e. less dense fluid lies below more dense fluid, it is stable at first
but eventually becomes unstable. It is therefore necessary to determine the critical
time after which the system is deemed unstable. Many methods have been used to
do this and much of the attention here will be focused on describing and compar-
ing these methods. It is hoped that such a discussion will inform and guide future
work on the stability of unsteady basic states. We also summarise modifications to
this standard problem: isolated disturbances, anisotropy, ramped heating, internal
heat sources and local thermal nonequilibrium. Thereafter, we discuss the present
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knowledge on how the growing disturbances are modified when they become large
and enter the nonlinear regime. The Chapter ends with a checklist of topics which
could usefully be pursued.

2 Background

Although the thermal version of the problem has often been the focus of application
e.g. to porous insulation or geothermal systems, there is increasing interest in the
unsteady boundary layer due to solute diffusion in the subsurface. For example a
fertilizer or a pollutant can dissolve in the water near the ground surface and increase
its density. When convection begins, the dissolved substance is carried downwards.
A similar phenomenon can occur in the groundwater beneath saline lakes, where
evaporation at the surface increases brine density. The migration of brine due to
convection has implications for the possible use of salt lakes as disposal sites for
pumped saline groundwater (Wooding et al. 1997).

A more recent area of application has arisen from proposals for the large scale
subsurface storage of carbon dioxide in order to reduce atmospheric emissions and
so limit the effects of hydrocarbon usage on global climate. Typical storage locations
would be deeper than 800–1000 m, and at these subsurface conditions the carbon
dioxide-rich phase is about half to two-thirds the density of the formation water.
After injection into permeable rock beneath a suitable low permeability sealing rock,
some of the carbon dioxide will rise due to buoyancy and accumulate beneath the
seal. At the same time carbon dioxide dissolves in the formation water (typical sol-
ubility is 2–5% by weight depending on salinity). Unusually for a gas, the dissolved
carbon dioxide increases the fluid density, and thus the system becomes unstably
stratified (Ennis-King and Paterson 2005). The onset of convection significantly
accelerates the further dissolution of carbon dioxide, and is important for assessing
the security of storage over hundreds or thousands of years.

In these examples of solutal convection, the mapping onto the simplified prob-
lem of an instantaneous rise in concentration at a sharp boundary assumes that the
initial transport process (e.g. the migration of the gas-phase carbon dioxide) is fast
compared with the evolution of the boundary layer. In the carbon dioxide example,
there is the additional complication of a two-phase region at the top boundary, which
is simplified into a boundary condition of constant solute concentration for a single
phase system. The transport properties of typical rocks are neither homogeneous nor
isotropic, and indeed the inhomogeneity ispresentacrossawide rangeof lengthscales.
Thus the standard problem, based on an homogeneous and isotropic porous medium,
is only the first step to a theory that can make useful predictions in real contexts.

As a further complication, in many cases the solute can react with the minerals in
the rock, altering both permeability and fluid density. This is true of carbon dioxide,
which forms a weak acid when dissolved. These alterations can act to either oppose
or strengthen convection, depending on whether the geochemical reactions lead to
net precipitation or net dissolution. Such coupling goes well beyond the standard
problem, but again needs to be assessed in practical applications (Ennis-King and
Paterson 2007).
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3 Governing Equations

Darcy’s law and the Boussinesq approximation are assumed to be valid, the porous
medium is taken to be isotropic and rigid, and the fluid and solid phases are taken to
be in local thermal equilibrium. Subject to these constraints, the dimensional equa-
tions governing flow and the transport of one diffusing species (taken as temperature
here) are

�u

�x
+ �v

�y
= 0, (1a)

u = − K

μ

�P

�x
, (1b)

v = − K

μ

�P

�y
+ ρgβK

μ
(T − T∞), (1c)

�T

�t
+ u

�T

�x
+ v

�T

�y
= α

(�2T

�x2 + �2T

�y2

)
. (1d)

In these equations x is the coordinate in the horizontal direction while y is vertically
upward. The corresponding velocities are u and v, respectively. All the other terms
have their usual meaning for porous medium convection: K is the permeability, μ

is the dynamic viscosity, ρ is the density of the fluid at the ambient temperature,
T∞. The heated horizontal surface is held at the temperature Tw, where Tw > T∞.
Finally, the quantities g, β and α are gravity, the coefficient of cubical expansion
and the thermal diffusivity of the saturated medium, respectively.

Two possible nondimensionalisations may be made depending on whether con-
vection is to take place in a deep-pool system (i.e. a semi-infinite domain) or in a
layer of uniform thickness. The former has no natural physical lengthscale while the
latter does. In the former case nondimensionalisation takes place using

L = μα

ρgβK (Tw − T∞)
(2)

as a natural lengthscale based on the properties of the porous medium and the satu-
rating fluid, while, in the latter case, the depth of the layer is taken. Thus there is no
Darcy–Rayleigh number for deep pool systems, but there is for the finite thickness
layer. Indeed, (2) is equivalent to setting Ra = 1, where Ra = ρgβK (Tw−T∞)L/μα

is the Darcy–Rayleigh number, and rearranging for L . In this Chapter we consider
the deep-pool system as representing our standard system.

On using the scalings,

t = L2

α
t, (x, y) = L(x, y), (u, v) = α

L
(u, v),

P = αμ

K
p, T = T∞ + (Tw − T∞) θ, (3)
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Equations (1a, b, c, d) become,

�u

�x
+ �v

�y
= 0, (4a)

u = −�p

�x
, (4b)

v = −�p

�y
+ θ, (4c)

�θ

�t
+ u

�θ

�x
+ v

�θ

�y
= �2θ

�x2
+ �2θ

�y2
. (4d)

The boundary conditions corresponding to a sudden change in the boundary tem-
perature are:

y = 0 : v = 0, θ = 1 and y → ∞ : v, θ → 0, (4e)

while θ = 0 everywhere for t < 0.
For simplicity we shall treat the problem as two dimensional and adopt the

streamfunction in place of the velocities and pressure; we set

u = −�ψ

�y
and v = �ψ

�x
, (5)

and eliminate pressure by cross-differentiation. Equations (4) reduce to

�2ψ

�x2
+ �2ψ

�y2
= �θ

�x
, (6a)

�θ

�t
+ �ψ

�x

�θ

�y
− �ψ

�y

�θ

�x
= �2θ

�x2
+ �2θ

�y2
, (6b)

which are to be solved subject to the boundary conditions,

y = 0 : ψ = 0, θ = 1 and y → ∞ : ψ, θ → 0, (6c)

and the initial condition that

ψ = θ = 0 at t = 0. (6d)

The basic state which we analyse for stability is given by ψ = 0, i.e. no flow, and

θ = erfc (η) = 2√
π

∫ ∞

η

e−ξ 2
dξ, (7)

where
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η = y

2
√

t
. (8)

Thus the basic state is one where the temperature field expands with time, but
otherwise keeps the same shape, i.e. it is self-similar.

4 Linearised Stability Equations

Given that the basic thermal profile has uniform thickness in terms of η, it is very
reasonable to make a coordinate transformation to take advantage of that fact, and
it means that computational grids may then be used efficiently. It is also convenient
to modify the time coordinate. Therefore we shall change from an (x, y, t) system
to an (x, η, τ ) system where

τ = t1/2. (9)

In addition, we shall introduce perturbations with amplitude, ε, according to

ψ = εψ̂, θ = erfc η + εθ̂ , (10)

where linearised theory is obtained when ε � 1, while the fully nonlinear perturba-
tion equations are obtained when ε = 1. The perturbation equations are, therefore,

4τ
�2ψ̂

�x2
+ 1

τ

�2ψ̂

�η2
= 4τ

�θ̂

�x
, (11a)

2τ
�θ̂

�τ
+ 2ετ

(�ψ̂

�x

�θ̂

�η
− �ψ̂

�η

�θ̂

�x

)
= 4τ 2 �2θ̂

�x2
+ �2θ̂

�η2
+ 2η

�θ̂

�η
+ 4√

π
τe−η2 �ψ̂

�x
.

(11b)

Small-amplitude roll cell perturbations may be analysed by setting ε = 0 in (11)
and by substituting,

ψ̂(η, x, τ ) =
[
iΨ (η, τ )eikx − c.c.

]
, (12a)

θ̂(η, x, τ ) =
[
Θ(η, τ )eikx + c.c.

]
, (12b)

where c.c. denotes complex conjugate. The wavenumber of the rolls is k, and there-
fore their wavelength is 2π/k. The resulting equations for Ψ and Θ are,

Ψ ′′ − 4τ 2k2Ψ = 4τ 2kΘ, (13a)

2τΘτ = Θ ′′ + 2ηΘ ′ − 4τ 2k2Θ − 4√
π

τke−η2
Ψ, (13b)
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where primes denote derivatives with respect to η. The boundary conditions to be
satisfied by these disturbances are that

η = 0 : Ψ = Θ = 0 and η → ∞ : Ψ,Θ → 0. (13c)

5 Comparison of the Methods Used

The overall system given by (13) is parabolic in time which implies that the most
natural method of solution is to follow the evolution of disturbances. The other
commonly used ways of assessing the stability characteristics are (i) by reducing
(13) to an ordinary differential eigenvalue problem for the critical time, (ii) using a
local Rayleigh number method which compares the system with the Darcy–Bénard
problem and (iii) using an energy method to find the earliest time for which a fully
nonlinear disturbance suffers no growth. In this section we shall discuss the merits
and demerits of each approach.

5.1 Quasi-Static Analyses

Generally, within the context of boundary layer stability theory, the earliest works
reduce the linearised stability equations to ordinary differential form in some way,
and then the critical parameter (e.g. Rayleigh number, Reynolds number, time)
is obtained as an eigenvalue. More specifically, in the present context, such ordi-
nary differential eigenvalue problems arise by assuming that all time-derivatives are
zero—this may be called a quasi-static assumption. Whilst this assumption seems
reasonable, it is essential to note that the critical time depends on whether the quasi-
static assumption is made before the coordinate transformation (8,9) or afterwards.
When it is made beforehand, (13) yield,

Ψ ′′ − 4τ 2k2Ψ = 4τ 2kΘ, (14a)

Θ ′′ + 2ηΘ ′ − 4τ 2k2Θ − 4√
π

τke−η2
Ψ = 0. (14b)

When it is made afterwards, (14a) remains the same, but (14b) is modified by the
removal of the 2ηΘ ′ term to give,

Θ ′′ − 4τ 2k2Θ − 4√
π

τke−η2
Ψ = 0. (14c)

We name these quasi-static cases QS1 and QS2 respectively, and they are known as
propagation theory and the frozen time method. Our computed critical values of τ

and k are shown in Table 1; these values correspond to the minimum value on the
neutral curve.
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Table 1 Critical times and wavenumbers for the different methods. QS quasi-static; LR local
Rayleigh number; ES energy stability; AT amplitude theory. Results marked with an asterisk are
extrapolated from finite thickness calculations

Case τc tc kc Reference

QS1 12.9439 167.544 0.06963 Selim and Rees (2007a)
QS2 7.4559 55.590 0.05834 Present chapter
QS3 12.43 154.5 0.0736 Yoon and Choi (1989)
QS4 7.27 52.85 0.07428 Kim et al. (2003)
LR1 46.5520 2261.2 0.06607 Tan et al. (2003)
LR2 9.8696 97.409 0.07958 Present chapter
ES1 * ∼ 9.6 ∼ 93 Caltagirone (1980)
ES2 * ∼ 5.5 ∼ 30 Ennis-King et al. (2005)
AT1 8.9018 79.242 0.07807 Selim and Rees (2007a)
AT2 * ∼ 8.9 ∼ 80 Caltagirone (1980)
AT3a * 8.7 75 0.066 Ennis-King et al. (2005)
AT3b 10.56 111.5 0.0752 Ennis-King et al. (2005)
AT4 12.1 147 0.07 Riaz et al. (2006)
AT5 * 8.671 75.19 0.06529 Xu et al. (2006)
AT6 * 7.75 60 0.05 Hassanzadeh et al. (2006)

It is clear from Table 1 that there is a very substantial difference between the
critical times and wavenumbers for cases QS1 and QS2. We believe that it is not at
all useful to discuss which case is the correct one, for both are the result of making
strong assumptions which are essentially arbitrary. There is no reason to believe
that the setting of the time derivative to zero corresponds to the behaviour of a real
disturbance. Indeed, it could be argued quite strongly that a zero time derivative is a
very strong constraint. The work of Selim and Rees (2007a) shows that disturbances
which evolve in time have profiles which vary in shape, and, in particular, they
become thinner in terms of η (but thicker, in terms of y) with time. Therefore the
magnitude of Θ at any chosen value of η (or y) evolves at a different rate from the
value of Θ at any other chosen value of the coordinate. Thus the quasi-static method
puts a strong constraint on which disturbances are allowable.

In addition to the critical values differing greatly, the onset profiles (not shown
due to the need for brevity) are also very different. The presence of the 2ηΘ ′ term for
the QS1 case causes a superexponential decay in the temperature field, as opposed
to an exponential one for the QS2 case. The QS1 disturbance is much narrower than
the QS2 disturbance.

Two other papers offer quasi-static results for the identical problem. Yoon and
Choi (1989) consider a finite layer, and when the Rayleigh number is large, the
deep-pool results are obtained. They approximated the complementary error func-
tion solution given in (7) by a fourth order polynomial in η, and employ propagation
theory. Their critical data are labelled as QS3 in Table 1 and they are close to those
of QS1, which is also a propagation theory analysis, but one which is based on
the precise basic temperature profile. The second paper is by Kim et al. (2003);
these authors employ a propagation theory using v and θ as the dependent variables.
However, they apply the boundary condition, �v/�y = 0, on the lower surface and it
is termed a stress-free condition. Given the equation of continuity, (4a), this implies
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that �u/�x = 0 on x = 0, and hence that u is a constant. It is not clear how such a
condition may be interpreted, but certainly their critical data, labelled QS4, are very
different from those of cases QS1 and QS3 as the boundary condition used is quite
different.

Finally, we mention the use of a subtle technical detail in the papers by Yoon
and Choi (1989) and Kim et al. (2002, 2003). In these papers the disturbances are
assigned particular forms of variation with time prior to the setting of all time deriva-
tives to zero. All three of these papers develop their linearised stability equations
using the vertical velocity instead of the streamfunction. On scaling grounds they
set the vertical velocity to be proportional to t , but the equation for the vertical
velocity has a similar form to (13a) above by having no time derivative. Therefore
such a rescaling has no effect on the computed critical values, and their propagation
theory stability criteria are identical to that which would be obtained without using
the scaling. But we note that, should an analogous clear fluid problem be considered,
or even a porous medium system where the velocity time derivative is not negligible,
then such scalings will alter the stability criteria.

5.2 Local Rayleigh Number Analysis

This is a ‘quick and easy’ approach to finding the rough values of the critical
parameters. Therefore it may be used to provide a rapid estimate prior to using
more sophisticated techniques. In essence the method derives an expression for
a time-dependent Rayleigh number and compares this with the classical value of
4π2, which corresponds to Darcy–Bénard convection in a horizontal layer of uni-
form thickness (see Lapwood 1948, Horton and Rogers 1945). In addition, the
nondimensional wavenumber is set equal to π , which is the critical Darcy–Bénard
wavenumber.

The thickness of the thermal layer we are considering grows in time, and there-
fore a Rayleigh number which is based upon that thickness will also increase. The
chief issue, then, is how to define the thickness of the thermal layer. Tan et al. (2003)
used the following as the local Rayleigh number,

RaTan = −ρgβK

μα

(
ŷ2 �T

�ŷ

)
, (15)

so that this function depends on both ŷ and t̂ , which, we note, are dimensional quan-
tities. After the expression for the dimensional basic temperature field is substituted
into (15), RaTan is maximised over ŷ to find its largest value at any point in time.
The maximising value of ŷ is then taken as the thickness of the layer: ŷc = 2

√
αt̂ .

In terms of the present nondimensionalisation, we obtain

RaTan,max = ρgβK (Tw − T∞)

μα

4
√

αt̂

e
√

π
=

( 4

e
√

π

)
τ. (16)
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On setting this equal to 4π2 we obtain the critical time,

τc = π5/2e, (17)

which is given numerically in Table 1 as case LR1. This value is very different from
the quasi-static values, being roughly a factor of 4 times as large as for the other
methods. On the other hand, the dimensional wavelength of the cells may be taken
as being 2ŷc, since Darcy–Bénard convection has cells of square cross-section as its
most unstable mode, and this translates into

kc = 2π L

2ŷc
= 1

π3/2e
, (18)

which is also given in Table 1. This value is quite close to those obtained by other
methods.

An alternative and less complicated approach would be to say that the boundary
layer thickness in terms of η is 2, and that a local Rayleigh number could be defined
according to

Ralocal = ρgβK (Tw − T∞)ŷbl

μα
, (19)

which varies only in time. The boundary layer thickness in terms of ŷ is given by

ηbl = ŷbl

2
√

αt̂
= 2, (20)

and therefore ŷbl = 4
√

αt̂ . The setting of the Rayleigh number given in (19) to 4π2

for this value of ybl yields,

τc = π2. (21)

The corresponding wavenumber becomes,

kc = 1

4π
. (22)

These values are also placed in Table 1 for comparison, and are denoted as
case LR2.

Admittedly, these are only two possible choices, but they seem to indicate that
the critical wavenumber is not so highly affected by different ways of defining the
boundary layer thickness or the way in which a local Rayleigh number number
is chosen. However, the critical time is affected strongly. Given that there is no
definitive way of choosing an expression for the local Rayleigh number, we would
conclude that this method is only capable of providing a very rough ball-park esti-
mate of the critical time and wavenumber prior to the use of more accurate methods.
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5.3 Energy Stability Analysis

The idea behind this method is to find a time before which no disturbances grow.
An energy functional is defined:

Θ̄ = 〈Θ2〉1/2 =
[∫ ∞

0
Θ2 dy

]1/2
, (23)

and variational methods are used to determine the earliest time for which

dΘ̄

dt
= 0. (24)

Caltagirone (1980) applied this technique to the finite layer. His result for the deep-
pool system, which may be extrapolated from his large-Rayleigh number result,
is given in Table 1 and labelled as case ES1. A second analysis of this type, ex-
tending Caltagirone’s work to anisotropic media, was undertaken by Ennis-King
et al. (2005), but their isotropic results (labelled ES2 in Table 1) are somewhat
at variance with those of Caltagirone by suggesting a much earlier critical time.
An independent third study by Xu et al. (2006) undertakes an identical anisotropic
analysis to that of Ennis-King et al. (2005) and they present a graph for the critical
Rayleigh number against time. However, there is insufficent information within that
paper to allow us to determine which, if either, of the energy stability analyses of
Caltagirone (1980) and Ennis-King et al. (2005) is correct.

There is a widely held belief that energy methods always yield the definitive
smallest parameter. In the present context Caltagirone’s critical time is much closer
to those using an accurate amplitude theory (described in the next subsection), but
his computed critical time using amplitude theory is lower than that for energy sta-
bility theory. The critical times obtained by Ennis-King et al. (2005) are such that
the energy stability analysis yields a earlier critical time than their amplitude theory.
Therefore it is clear that the energy stability analysis must be revisited in order to
clarify the situation. Some further comments are made on this towards the end of
the next subsection.

5.4 Amplitude Theory

This method utilises solutions of the full parabolic disturbance equations, such as
those given by (13). As the temperature equation has a single time derivative, it
is necessary to provide an initial condition, which is the initial perturbation whose
evolution will then be determined. Generally this has been undertaken using ei-
ther Galerkin methods for a finite thickness layer (Caltagirone 1980, Ennis-King
et al. 2005, Xu et al. 2006), or in the deep-pool system by Galerkin methods (Ennis-
King et al. 2005) or by finite difference methods (Selim and Rees 2007a). A means
of determining the amplitude of the evolving perturbation also has to be defined, and
this is not easy to resolve a priori. The options which have been used in the literature
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are the following: (i) the maximum value of Θ , (ii) the rate of heat transfer at the
surface, (iii) a thermal energy content integral, 〈Θ〉, and (iv) an ‘energy’ integral
similar to that given in (23). In all cases the chosen measure is evaluated at each
timestep and the times at which time-derivative is zero are noted together with the
wavenumber, k.

The evolution of E = 〈Θ〉 (measure (iii)) for a set of wavenumbers, k, is shown
in Fig. 1. These curves are typical of the other measures of the amplitude of the
disturbance, which show only quantitative differences. The initial disturbance pro-
file is Θ = ηe−3η and it was introduced at τ = 1, which is well before the critical
time. It is clear that the disturbance decays substantially at first, followed by growth.
At later times, the disturbance eventually decays once more, indicating that there is
only a finite interval during which growth may take place.

After a suitable number of simulations, a neutral curve may be constructed show-
ing how the onset time varies with wavenumber. This is illustrated in Fig. 2, which
displays the neutral curves obtained by Selim and Rees (2007a) corresponding to
the first three of the above measures, and to the quasi-static theory. Of the various
measures displayed there, the one with the lowest critical time is the thermal energy
content measure, which, given that it is an integral, is a global quantity, rather than a
local one as represented by the surface rate of heat transfer. This minimum is given
in Table 1 and is denoted as case AT1.

The aforementioned paper by Caltagirone (1980) also presents the results of a full
unsteady simulation, the critical values for which are given in Table 1 and denoted
by AT2. Apart from the numerical method used, the only difference between his
simulation and that of Selim and Rees (2007a) is that his critical values are based on
the evolution of Θ̄ = 〈Θ2〉1/2. Despite this difference, the agreement is very good
indeed.

Ennis-King et al. (2005) apply Caltagirone’s method to both the finite thickness
and deep-pool systems, using different sets of basis functions in each case. These
result are respectively denoted as case AT3a and AT3b in Table 1 (the AT3b results
were not explicitly given in the paper, but are provided here for comparison). Again
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Fig. 2 Neutral curves: The continuous curve represents quasi-static theory. The symbol � repre-
sents the thermal energy content. The symbols • and + represent the surface heat flux criterion in
terms of η and y respectively. The symbol � represents the maximum temperature criterion

for AT3a there is an extrapolation of the finite depth results to the deep-pool limit,
which causes some loss of precision. The AT3b deep-pool results are only weakly
dependent on the initial conditions as long as the starting disturbance is within the
diffusion layer. The difference between the results in AT3a and AT3b appears to
originate from the choice of basis functions and the form of the initial disturbance in
each case.

On the other hand, Riaz et al. (2006) used a different set of Galerkin expansion
functions in η to obtain a critical time and wavenumber (case AT4) which are quite
close to the QS1 case of Selim and Rees (2007a). The analysis of Xu et al. (2006),
denoted as case AT5, follows the methodology of Ennis-King et al. (2005) and is an
extrapolation of finite thickness results. Thus AT3a and AT5 agree, and give results
that are very similar to case AT1 of Selim and Rees (2007a).

The work of Hassanzadeh et al. (2006) (case AT6) uses the same methodology
as Ennis-King et al. (2005) and Xu et al. (2006) for the finite thickness case, but
varies the type of initial conditions (white noise, or one of two Fourier modes)
and the boundary conditions. The lower bound given for the instability corresponds
to the zero time derivative condition. The value for tc is somewhat lower than the
corresponding AT3a and AT5 results using a similar approach—the difference may
relate to the variation of initial conditions.

5.4.1 Comment on Stability Criteria

Caltagirone (1980), together with many later authors including Kim and Kim (2005)
and Kim et al. (2002) who look at slightly different impulsive problems, presents
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two different stability criteria using amplification theory. One of these is the zero
time derivative criterion, dΘ̄/dt = 0, while the other is the time taken for the
disturbance to achieve its original value of Θ̄ . Kim et al. (2003) go further and
say that experimental considerations should be heeded to determine the level of
amplification required for marginal stability to be declared. Although Fig. 1 shows
the variation of 〈Θ〉, it is clear that the latter criterion will yield greatly different
critical times depending on when the disturbance is seeded into the boundary layer.
Therefore we regard the former criterion as being more intuitive.

5.4.2 Comment on the Choice of Initial Disturbance Profile

The manner in which the initial perturbation profile for the numerical simulations
is chosen has been questioned by Kim et al. (2002) who state, quite reasonably,
that it is arbitrary. Indeed, it was this fact that motivated the general analysis of
Green (1990) who developed a method involving a series expansion about the crit-
ical time, where the mode calculated was the result of minimising the critical time
over mode shapes (using a Fourier expansion) and the wavenumber, and is such
that the growth rate is zero. His method was applied to a problem of ramp heat-
ing, and to date it is unknown how good it is for the problem being discussed in
this section. However, one of the important conclusions of the work of Selim and
Rees (2007a) is that the profile of the initial disturbance generally has very little
effect on the critical time whenever the time at which it is introduced into the system
is sufficiently early. In other words, all disturbances appear to be attracted towards
a common evolutionary path, as shown in Fig. 3, and if the introduction time is
sufficiently early, then this process is essentially complete by the time marginal
instability occurs.
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5.5 Discussion

What is to be made of the widely differing values of the critical times quoted in
Table 1? Energy methods are generally held in high esteem, especially for problems
where the basic state whose stability characteristics are being sought is steady. Here
we have two sets of results which are very different from one another, and without
considering the results obtained by other methods, we are not in a position to decide
between them. Both the local Rayleigh number and the quasi-static theories are very
definitely approximate, the former more so than the latter. It is certainly possible to
calibrate the local Rayleigh number method a posteriori to get an exact match with
almost any result we wish, but ideally we need to obtain good results independently
of such calibration. The amplitude theory results should be excellent in the sense
that the exact linearised equations are being solved. But one also has to consider
which is the best way to measure the amplitude of the evolving disturbance—Fig. 2
depicts the different neutral curves corresponding to four such measures, and no
doubt the use of Θ̄ , defined in (23), would provide a fifth. The numerical results of
Ennis-King et al. (2005) for amplitude theory and finite thickness use between 8 and
16 terms in the Galerkin expansion to the full profile of the evolving disturbances,
and the comparable results of Xu et al. (2006) have similar accuracy; both are close
to those of Caltagirone (1980) and Selim and Rees (2007a). The amplitude results
of Ennis-King et al. (2005) for the semi-infinite case, using at least 10 terms in a
Galerkin expansion, are close to Selim and Rees (2007a) for kc but give a larger
value for tc, while the one-term approximation of Riaz et al. (2006) gives a still
higher value of tc.

We would tentatively suggest, therefore, that Caltagirone (1980) and Selim and
Rees (2007a) presently give the benchmark critical values for situations where the
evolution of disturbances is undertaken. We await confirmation of a further study
using energy methods in order to decide between the quoted results of Caltagirone
(1980) and Ennis-King et al. (2005). Although we think it likely that such an analy-
sis will provide an earlier critical time than does amplitude theory, it is our belief that
the critical profile will not be one that is on the attracting solution path mentioned
earlier.

Finally, if we consider the shape of the various neutral curves in Fig. 2, it is
worthy of note that each one is quite flat near its minimum, and therefore it is
perhaps not surprising that the various methods have yielded quite different critical
wavenumbers.

6 Isolated Small-Amplitude Disturbances

In all of the above considerations it has been assumed that the disturbances have
been characterised by a single wavenumber in the x-direction and are therefore
monochromatic. Should a spatially non-periodic initial disturbance need to be
considered, then it is possible to Fourier-transform the disturbance, compute as
many single-wavenumber solutions as is required, then apply the inverse Fourier
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Transform formula to obtain the resulting evolution of the time-dependent system.
Thus it would appear that little else needs to be said about the linear stability
problem.

However, there is much interest in the published literature on how localised dis-
turbances evolve. Despite the above statement that a sufficiently early introduction
of a disturbance causes the stability criterion to be independent of the disturbance
profile, this is true only in terms of its profile in the η-direction. When the distur-
bance is localised in the x-direction, then it takes time for the disturbance to diffuse
horizontally and generate new cells either side of itself.

This process is illustrated in Fig. 4. A full two-dimensional finite difference
scheme was used to investigate the evolution of a narrow isolated disturbance placed
at x = 0. Suitable symmetry conditions were applied at x = 0 to mimic correctly the
solution in x < 0. The Figure shows the boundaries between the thermal cells, i.e. it
indicates where there is zero rate of heat transfer. As each boundary is crossed, the
sign of the rate of heat transfer changes. The Figure does not indicate the variation
of the amplitude of the disturbance, but successive maxima and minima reduce in
size as x increases for any chosen τ .

The chief interest here lies in the fact that the wavelength of cells is not uniform.
Each new cell that is generated tends to have a larger width than the cell immedi-
ately next to it, and each cell tends to grow in width as τ increases. This behaviour
is different from that obtained in the analogous situation in Darcy-Bénard convec-
tion where unpublished computations undertaken by one of the authors show that
cells remain of constant wavelength as they spread into the external undisturbed
regions. In the present case, the fastest growing disturbance at any point in time

Fig. 4 Depicting the evolution and spread of thermal cell boundaries as τ increases
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has a wavenumber which decreases as time progresses. Therefore we think that
the increase in the wavelength is very likely to be related to the fact that smaller
wavenumbers grow faster.

7 Other Linear Systems

We now give a quick overview of similar systems considered by various authors. In
all cases they will have used one or more of the methods discussed above.

7.1 Anisotropy

Ennis-King et al. (2005) have extended the standard case to include anisotropy in
the permeability. The permeability tensor remains diagonal, and so the principle
axes remain in the coordinate directions. These authors consider both finite layers
and semi-infinite deep-pool systems, employing different nondimensionalisations
for the two cases. For the finite layer two different boundary conditions are con-
sidered on the unsalted boundary. Energy stability theory and amplitude theory are
presented. The change in the isotropic results which are obtained when anisotropy is
introduced are much as expected, and are qualitatively identical to the isotropic case.
Of most interest is the fact that their results are substantially different from those of
Caltagirone (1980) when the porous medium is isotropic, as discussed above.

7.2 Ramped Heating

Kim and Kim (2005) considered a finite layer which is at a uniform temperature
initially, but where the temperature of the lower boundary increases linearly with
time. They use a Galerkin-based amplitude theory, monitoring the rate of growth of
disturbances using Θ̄ . Neutral curves are presented which correspond to the criteria
Θ̄t = 0 and Θ = 1 (where Θ = 1 is set at the time the disturbance is introduced).
The former they call the ‘intrinsic’ stability criterion, while the latter is termed the
‘marginal’ stability criterion. The general tenor of other papers, and the view of the
present authors, is that the former should be called the marginal stability criterion,
while the latter is irrelevant, as discussed earlier. The authors state that disturbances
grow superexponentially after the ‘marginal’ stability time; Fig. 1 shows that this is
not true for the present standard problem and quite obviously so for values of k close
to 0.1 where there is only a small interval of growth before decay is re-established.

Hassanzadeh et al. (2006) also consider a case in which the solute concentration
at the boundary decreases linearly with time. This is relevant to underground storage
of carbon dioxide, where the pressure in the gas phase may decline and thus reduce
the concentration of dissolved carbon dioxide in the two-phase region (although in
practice this reduction would not be linear in the pressure at typical conditions of
interest). It is shown that for layers of finite thickness and small Rayleigh numbers,
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a fast enough decrease at the boundary may prevent a perturbation from growing
and eliminate convection, whereas in the deep pool limit (large Rayleigh numbers)
the instability criterion is unaffected.

7.3 Internal Heat Sources

Kim et al. (2002) also considered a finite layer at a uniform temperature initially. At
t = 0 a uniform internal heat generation is turned on, which forms an unstably strat-
ified boundary layer at the cold upper surface. This configuration eventually tends
to a steady state. Therefore all interest is focussed on the onset times for those cases
where the Rayleigh number is above the critical value for the steady state situation.
The authors use a propagation/quasi-static theory to determine the onset times—this
is performed in terms of the η-variable—and use a quasi-static theory in the Carte-
sian variables (termed a frozen-time theory). The results obtained by means of these
theories differ from one another, but are much closer to one another than are those
given by QS1 and QS2 in Table 1.

7.4 Local Thermal Nonequilibrium

Nouri-Borujerdi et al. (2007) modified the standard problem by dropping the as-
sumption that the fluid and solid phases are in local thermal equilibrium. The great
majority of papers reporting convection in porous media assume that the tempera-
tures of the phases are identical locally, that is, they assume that the heat transfer
which takes place between the phases either happens so quickly, or else, the flow
rate is sufficiently slow, that, to a good approximation, the two-phase system may
be described by a single energy equation. But there are situations when such an
assumption is not accurate, and then the temperature fields of the two phases have
to be modelled by separate, but coupled, equations. The coupling takes the form
of source/sink terms that are proportional to the local difference in temperature
between the phases, and which allow the flow of heat between the phases.

These authors followed the methodology of Selim and Rees (2007a) by applying
a quasi-static theory and an amplitude theory based on E = 〈Θ〉. Generally it was
found that the critical time decreases as the degree of local thermal nonequilibrium
increases. This may be attributed to the fact that the convecting fluid does not have
to impart heat to the solid phase, and therefore it experiences less of what might be
termed a thermal drag.

8 Nonlinear Studies

Once an evolving disturbance becomes sufficiently strong, it will interact with itself
via the nonlinear terms in the governing equations. This will serve to modify the
further development of the disturbance in a wide variety of ways. Moreover, the
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effect of having multiple disturbances (which are distinguished by having different
wavenumbers) complicates the situation substantially in terms of their nonlinear
interaction.

The earliest nonlinear simulations were undertaken by Elder (1967, 1968). He
employed a two-dimensional fully numerical scheme to determine the convection in
a finite thickness layer subjected to an instantaneous rise in the temperature of the
lower surface. In these simulations, the nondimensional lower boundary temperature
was set to θ = 1 + ε′(x), where ε′ is a random variable with zero mean. This
type of boundary condition provides an alternative means of disturbing the evolving
thermal boundary layer. His simulations showed the formation of a highly irregular
series of cells within the boundary layer. These interact in a complex manner with
cell-merging taking place. Eventually the evolving basic state tends towards a steady
linear profile, and there follows a long period of adjustment of the cells. He also
considered convection in a fully infinite domain where the initial condition for the
basic state is that θ = 0 in y > 0 and θ = 1 in y < 0.

Caltagirone (1980) also employed a nonlinear finite difference model, but this
was used to provide confirmation of his energy theory results.

Selim and Rees (2007b) solved the full two-dimensional equations for the distur-
bances, but used a horizontal Fourier decomposition together with a vertical finite
difference method. Thus the following substitutions were made in (11) where ε = 1
was chosen:

ψ(x, η, τ ) =
N∑

n=1

ψn(η, τ ) sin nkx, (25a)

θ (x, η, τ ) = 1
2θ0(η, τ ) +

N∑

n=1

θn(η, τ ) cos nkx, (25b)

where N = 5 was generally found to provide excellent accuracy. The resulting
unsteady equations were solved using a variant of the Keller box method, and the
initial disturbance took the form,

θ1 = A1ηe−3η, (26)

with all other terms in (25) set to zero. The chief qualitative result of this paper is
that strongly nonlinear disturbances suffer from premature stabilisation. The linear
stability curves displayed in Fig. 2 indicate that small-amplitude disturbances have
only a finite interval of time over which they can grow. The computations of Selim
and Rees (2007b) show that restabilisation often takes place earlier than would be
expected from the data represented in Fig. 2. Figure 5 shows the evolution of the
surface rate of heat transfer of the primary mode,

q1 = �θ1

�η

∣
∣
∣
η=0

, (27)
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Fig. 5 The variation with τ of q1 for k = 0.04, the disturbance initiation time, τ = 8, and for the
amplitudes A1 = 10−1, 10−2, . . . , 10−20. The curve on the extreme left corresponds to A1 = 10−1

(Selim and Rees 2007b)

for k = 0.04 and for a variety of initial amplitudes, A1. Various features stand out
from this Figure. The first is that the time at which restabilisation occurs (defined
now as being when q1 begins to decrease) depends very strongly on the value of A1.
For very small amplitudes the restabilisation time is consistent with linear theory
based on a heat transfer criterion. For large amplitudes restabilisation occurs very
early indeed. The second feature is that the maximum response does not correspond
to the largest initial disturbance amplitude. For this wavenumber, the maximum re-
sponse occurs when A1 � 10−12.

A third feature is that all disturbances, even in the nonlinear regime, eventually
decay towards zero. This is surprising from the point of view that the Rayleigh num-
ber based upon the basic boundary layer thickness continues to increase, thereby
rendering the boundary layer increasingly unstable. Therefore the solutions shown
in Fig. 5 must become unstable to other disturbances. Given that the boundary layer
thickens with time, and that convection cells usually tend to a roughly square cross-
section, it seems reasonable to attempt to destabilise solutions such as those shown
in Fig. 5 using longer wavelength/smaller wavenumber perturbations.

It is this observation which motivated the work contained in Selim and Rees
(2008), who consider subharmonic destabilisations. These authors also used (25),
but, for a 2:1 subharmonic case, the primary mode is now taken to correspond to
n = 2, while the subharmonic corresponds to n = 1. In addition, a much larger
value of N is taken than for the simulations reported in Selim and Rees (2007b).
Typically the magnitude of A1 is much less than that of A2, so that the primary
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Fig. 6 Variation with τ of the surface rates of heat transfer, qn , corresponding to the modes, n =
0, 1, 2, · · · . These simulations correspond to k = 0.035 and A2 = 10−1. The disturbance was
introduced at τ = 8 (from Selim and Rees 2008)

mode may evolve in almost exactly the same way as before, but, soon after the
primary begins to decay, the subharmonic begins to grow and eventually takes over
as the dominant pattern.

Figure 6 shows the manner in which the surface rates of heat transfer of each
mode vary in time where the primary mode has wavenumber 0.07 and A2 = 0.1.
The datum case with no subharmonic disturbance corresponds to A1 = 0, and this
exhibits a moderate amount of growth prior to eventual decay. Of particular interest
in the other subfigures are the times at which the subharmonic, shown by the q1

curves, takes over as the dominant pattern. As might be expected, the larger the
initial value of A1, the earlier this happens. Once more, it is interesting to note that
the largest magnitude in the mean rate of heat transfer, q0, for the cases we present,
is obtained for the smallest value of A1, rather than for the largest.

Contours of the temperature disturbance field at various times are shown in Fig. 7
to illustrate the manner in which the subharmonic destabilisation takes place. At
τ = 10 an apparently uniform set of cells is present. For convenience we shall label
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η = 5

τ = 100τ = 70τ = 60τ = 55

Fig. 7 Contours of the perturbation temperature field at chosen times for the subharmonic
instability corresponding to k = 0.035, A1 = 10−2 and A2 = 10−1, where the disturbance was
introduced at τ = 8 (from Selim and Rees 2008)

these cells 0 through to 4 from left to right, noting that cells 0 and 4 are identi-
cal. The subharmonic instability now manifests itself by causing (i) even numbered
cells to become stronger and occupy more space in the η-direction than do the odd
numbered cells, and (ii) cells 0 and 4 become stronger than cell 2. Once τ = 55
is reached, cells 0 and 4 are now dominant, with the remains of cells 1, 2 and 3
occupying a triangular-shaped region corresponding to the contour Θ = 0. After
this point, cells 1 and 3 merge, destroying cell 2 in the process. Thereafter the fully
developed nonlinear subharmonic convection is fully established. We note that the
final subfigure, which corresponds to τ = 100, has the following features: (i) the
middle cell is pushed close to the heated surface due to a strong inflow towards
the surface and (ii) the outer cells have expanded substantially due to the fact that
the flow is away from the surface.

A full categorisation of the roles played by the sizes of A1 and A2 is quite a
large task, especially as such a systematic set of computations would need to take
place over a set of wavenumbers. Moreover, other subharmonic disturbances may
also be considered, such as 1:3, 2:3 and 3:4, where cases of the form M :M + 1 may
be regarded as being very much like the well-known Eckhaus instability.
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Fig. 8 Contours of concentration showing the change in the wavelength of plumes with time. For
unit vertical depth and Ra = 4000 : (a) t = 1, (b) t = 1.8, (c) t = 2.3 and (d) t = 3.8 (Riaz
et al. 2006)

Given that Fig. 6 also shows that the subharmonic itself decays after a certain
time, it suggests the possibility of a further subharmonic destabilisation. However,
it is important to realise that the use of a horizontal Fourier expansion by Selim
and Rees (2007b, 2008) is a very strong constraint on the overall behaviour of the
system. Various papers have appeared which use finite difference methods to solve
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systems such as the present one, but with large horizontal physical domains, and
whilst the fact that a finite domain is also a constraint, it is nevertheless a very much
weaker one. These papers suggest that the true physical behaviour is one where the
flow becomes chaotic. The first hint of this is in the FLUENT computations of Tan
et al. (2003) who solve the full two-dimensional equations of motion in Cartesian
coordinates in a fairly small region. No mention is made of how disturbances are
introduced into the system, but waves of uniform wavelength appear. However, one
of these is stronger than the others and begins to grow preferentially, which bypasses
the subharmonic cascade of Selim and Rees (2008). A similar scenario was found
by Riaz et al. (2006) who considered a system with a very much larger aspect ratio.

The work of Riaz et al. (2006) concentrates to a large extent on the postcritical
dynamics when the instabilities have become strongly nonlinear. There is too much
detailed information in their paper for it to be summarised briefly here, and we
restrict attention to the flow shown in Fig. 8. These authors consider convection due
to the sudden introduction of a solute at the upper surface of a layer of finite depth.
The simulation shown used Ra = 4000 and the snapshots shown are at times which
are sufficiently early that the lower surface has not affected the development of the
instability. Figure 8 shows an essentially chaotic system where the observed wave-
length clearly increases with time. Presumably this is not a continuous increase, but
rather it comes about by the nonlinear interactions of embryonic plumes especially
the merging of neighbouring plumes. In this regard, the subharmonic cascade of
Selim and Rees (2008) could be regarded as providing part of the explanation of
this. But equally well, the merging of two plumes could also be regarded as a form
of Coandă effect (where a jet of fluid is deflected towards a neighbouring surface).
Here, by analogy, the lack of availability of fluid to entrain from one side of a plume
causes the deflection of the plume in that direction, and therefore it is natural for
two plumes to move toward one another and to coalesce.

Other features arise if the suddenly heated/salted surface is semi-infinite, as
the leading edge of the surface then plays a strong role, at least initially. Although
the primary aim of the paper by Rees and Bassom (1993) is the description of the
instability of a steady thermal boundary layer generated by a semi-infinite heated
surface, these authors also presented a computation of the immediate aftermath of
the sudden rise of the surface temperature. One snapshot of this process is shown in
Fig. 9 where multiple cells have been generated, but which have also been ejected
from the developing boundary layer. Therefore a plume is caused which eventually
rises away from the boundary layer and, in this case, is advected to the right by the
overall flow field generated by the hot surface. A very similar situation is shown
in Fig. 10 where a snapshot of a simulation by Wooding et al. (1997) is given.
Their situation is a model of an evaporating solar pond where there is a high solute
concentration on the left hand two-thirds of the upper surface, and where evapora-
tion causes fluid to leave the system to form a suction surface. The systems studied
by Rees and Bassom (1993) and Wooding et al. (1997) would have been mathe-
matically identical without the suction surface. Wooding et al. (1997) attribute this
starting plume to a strong perturbation caused by high horizontal density gradients
near the leading edge.
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Fig. 9 Depicting the complex plume generated near the leading edge of a suddenly heated
semi-infinite surface (Rees and Bassom 1993)

Fig. 10 Depicting the complex plume generated near the leading edge of a suddenly salted
semi-infinite surface with suction (Wooding et al. 1997)

9 Conclusion

The study of the instability of unsteady boundary layers is an active topic. Much
is known about the behaviour of the small-amplitude disturbances and the results
obtained by Caltagirone (1980) and Selim and Rees (2007a) should be regarded as
being the definitive instability criterion, at least for amplitude theory. There remain
issues to resolve for the application of energy stability theory. No doubt it is possible
to extend the linearised theory presented here to more complicated situations, such
as systems with (i) discrete horizontal layers, (ii) non-Newtonian fluids and (iii) both
heat and salt as diffusing species. It is likely that there could be some qualitative
differences as compared with our standard problem. We think that it is possible
to contrive layered situations where the neutral stability curve takes more exotic
shapes, such as having two turning points—in such situations some disturbances
could have two intervals of growth and three intervals of decay. Double diffusive
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convection offers parameter ranges where the primary mode at onset for the Darcy–
Bénard problem is unsteady; similar ranges might make the development of an onset
criterion for unsteady boundary layers somewhat problematical. Likewise viscoelas-
tic fluids can admit highly oscillatory flows.

Of course many of these situations could be extended to the nonlinear domain,
but we feel it would also be of some considerable interest to determine the nonlinear
development of isolated disturbances.

However, of perhaps more importance is the fact that the basic state that we
have studied does not have a linear profile because, in the Darcy–Bénard con-
text, it is well-known that three dimensional convection often ensues in these sit-
uations. Therefore we think it highly likely that the preferred nonlinear flow will
be three dimensional and possibly chaotic. The next step should therefore be the
development of codes which are capable of producing computations such as those
of Riaz et al. (2006) in three dimensions.

Finally, there already exist many studies where unsteady boundary layers are
formed by boundary conditions which oscillate in time. Space has proved insuffi-
cient to give a review of this highly interesting topic.
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Analytical Transition to Weak Turbulence
and Chaotic Natural Convection
in Porous Media

Peter Vadász

Abstract A review on the transition to weak turbulence and chaotic natural convec-
tion in porous media is presented in this chapter. In particular, the question on how
can one obtain the transition point analytically is emphasized and topics such as the
hysteresis phenomenon linked to this transition is discussed. Fractal types of results
obtained by comparing solutions at different accuracy levels are finally presented to
conclude the chapter.

1 Introduction

The wide variety of traditional applications of heat transfer in porous media such as
those listed in Nield and Bejan (2006) and Bejan (1995) are insulation of buildings
and equipment, energy storage and recovery, geothermal reservoirs, nuclear waste
disposal, chemical reactor engineering, and the storage of heat generating materials
such as grain and coal. Also, geophysical applications, such as ground water flow
(where the heat transfer analogy may apply to the mass transfer equations when
considering underground water contamination) and the flow of magma in the earth
mantle close to the earth crust serve as additional traditional examples. With the
particular development of emerging applications of the theory of heat transfer in
porous media, the importance of this topic of research is substantially enhanced.
In particular, the problem of estimating the heat flux in convective flows in porous
media places a special theoretical challenge, as the raw experimental results are very
much dispersed over a wide range, beyond the experimental error (see Fig. 9 in Nield
and Bejan, 2006). The reason for this dispersion is associated with a wide variety
of possible heat transfer regimes, namely: motionless-conduction, laminar-Darcy,
laminar-Forchheimer, weak-turbulent-Darcy (or “temporal chaotic”) and strong-
turbulent (“spatio-temporal-chaotic”). These regimes can occur depending on the
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combination of appropriate values of Rayleigh, Darcy and Prandtl numbers. The
present chapter reviews the transitions from a motionless-conduction regime to
steady laminar-Darcy convection and further to weak-turbulent-Darcy convection.
The accurate definitions of each of these regimes can be introduced by consider-
ing a fluid saturated porous layer heated from below and following a procedure of
increasing the temperature difference between the bottom and top boundaries. The
transition from a motionless-conduction to a steady-convection regime is indepen-
dent of whether a Darcy or a Forchheimer model is used since this transition is
obtained from a linear stability analysis around a motionless solution, hence non-
linear effects (such as the Forchheimer terms) vanish. If the porous matrix consists
of material that is associated with a very small value of Darcy number (Da < 10−3)
and the fluid’s Prandtl number is of an order of magnitude around Pr ∼ 10, then the
transition from steady to non-steady convection leads to a weak-turbulent regime.
This transition is associated with the loss of stability of the steady convection due
to the non-linear interactions in the energy equation, while the resulting filtration
velocity values are still within the Darcy regime.

Vadasz and Olek (1999a, b, 2000a, b) and Vadasz (1999b, 2001a, d) demon-
strated that the transition from steady to chaotic (weak-turbulent) convection in
porous media could be recovered from a truncated Galerkin approximation, which
yields a system that is equivalent to the familiar Lorenz equations (Lorenz, 1963;
Sparrow, 1982) similarly as in a pure fluid (non-porous domain) which was pre-
sented by Vadasz (1999a, 2000, 2006). In particular it was noticed that the transition
to chaos when the initial conditions are not too far away from any one of the con-
vective steady state solutions passes through a limit cycle at a particular sub-critical
value of Rayleigh number. Here the term “sub-critical” is used in the context of the
transition from steady convection to a non-periodic state, typically referred to as
chaotic. The critical value of the Rayleigh number is the value at which this tran-
sition to chaos is predicted by the linear stability analysis of the convective steady
state solutions. Vadasz (1999b) used a weak non-linear method of solution to this
problem, which revealed a mechanism for the Hysteresis phenomenon.

Nield and Bejan (2006) provide an excellent summary of the analytical as well as
the experimental work available so far on the estimation of Nusselt number in porous
media convection. For example, for values of Rayleigh number slightly beyond the
convection threshold a linear relationship between the Nusselt and Rayleigh num-
bers is suggested in Nield and Bejan (2006) based on Elder (1967), which fits well
with experimental data. Such a linear relationship can be derived analytically via a
weak non-linear analysis of the problem using an expansion around the convection
threshold (see Braester and Vadasz, 1993; Vadasz and Braester, 1992) and can be
expressed in the form Nu = 1 + 2 (R − 1) where R = Ra

/
Racr is the scaled

Rayleigh number and Racr = 4π2 is the critical value of the Rayleigh number
associated with the loss of linear stability of the motionless solution, i.e. on the
convection threshold. Vadasz (2001a) has shown that this linear equation represents
the first two terms in a Taylor expansion of a more general relationship, that was
derived and presented here, and applies to a much wider range of Rayleigh number
values.
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Bau (1994) indicates that “One of the hallmarks of chaotic systems is their sensi-
tivity to initial conditions and small perturbations (noise). . . . Of course, when one
is modelling real systems, the initial conditions are not precisely known and all real
systems are subject to perturbations and noise. Hence, . . . , no long term predic-
tion of the detailed behavior of a chaotic system is possible. The lack of long-term
predictability is a fundamental property of chaotic systems just like the uncertainty
principle is a corner stone of quantum mechanics. . . .” This conclusion is some-
what disappointing as it implies that it is hopeless to attempt modelling real systems
within the chaotic regime due to lack of long-term predictability. It is shown in this
paper that despite the sensitivity of the post-transient chaotic solution, in terms of
its dependent variables, to variations in initial conditions, the dissipative nature of
the convective system reduces substantially this sensitivity, when these dependent
variables are being averaged over a sufficiently large time range. In this context,
Sparrow (1982) indicates that in attempting to provide an explanation about the
irregularity of the trajectory in the chaotic regime “we know we are seeing a portion
of a very high period orbit”. If chaotic solutions are a result of a very large period, it
implies that by averaging the results over a period smaller than the largest period of
the solution, it might compromise the accuracy of the averaging process. This loss
of accuracy may be significant, in which case the high sensitivity of the solution
to initial conditions applies to the averaged values as well, or this loss of accuracy
may be minor, the latter being expected in dissipative systems. Then, despite the
sensitivity of the post-transient solution to variations in initial conditions, the corre-
sponding averaged values over a sufficiently large time interval lack this substantial
sensitivity. This paper shows that the mean Nusselt number is just an example of
such a case. Its affinity to different initial conditions is very weak, and subject to
a minor loss of accuracy, one can predict its value even within the weak-turbulent
regime, except for some transition regions where the hysteresis phenomenon may
substantially affect it. Actually, it will be shown that the only impact that the transi-
tion to chaos causes on the predicted results in terms of the averaged heat flux is a
minor loss of accuracy. Since chaos is a result of limited and finite accuracy of the
solution, one can not expect to obtain results that within the chaotic regime can be
reached up to any desired accuracy. This accuracy is limited also by the fact that we
have no way to anticipate a finite number of frequencies (and their corresponding
periods) over which to integrate the heat flux in order to yield an accurate average
Nusselt number. It will be shown that these effects introduce only a minor error in
the estimation of the Nusselt number.

2 Problem Formulation and Reduced Set of Equations

A narrow (W = W∗
/

H∗ << 1) fluid saturated porous layer subject to gravity and
heated from below, as presented in Fig. 1, is considered. A Cartesian co-ordinate
system is used such that the vertical axis z is collinear with gravity, i.e. êg = −êz .
The time derivative term is not neglected in Darcy’s equation, a condition that
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Fig. 1 A fluid saturated
porous layer heated from
below

was well discussed and substantiated by Vadasz and Olek (1999a, 2000a) and
Vadasz (1998, 1999b). Other than that Darcy’s law is assumed to govern the fluid
flow, while the Boussinesq approximation is applied for the effects of density
variations.
Subject to these conditions the following dimensionless set of governing equations
is obtained

∇ · V = 0 (1)
[

1

V a

�

� t̂
+ 1

]

V = −∇ p + RaT êz (2)

� T

� t̂
+ V · ∇T = ∇2T (3)

The values αe∗
/

H∗M f , μ∗αe∗
/

k∗M f , and �Tc = (TH −TC ) are used to scale the fil-
tration velocity components ( u∗, v∗, w∗ ) , pressure (p∗), and temperature variations
(T∗ − TC ), respectively, where αe∗ is the effective thermal diffusivity, μ∗ is fluid’s
viscosity, k∗ is the permeability of the porous matrix and M f is the ratio between
the heat capacity of the fluid and the effective heat capacity of the porous domain.
The height of the layer H∗ was used for scaling the variables x∗, y∗, z∗ and H 2

∗
/
αe∗

for scaling the time t∗. Accordingly, x = x∗
/

H∗, y = y∗
/

H∗ and z = z∗
/

H∗ and
t̂ = t∗αe∗

/
H 2

∗ . In equation (3) Ra is the gravity related Rayleigh number in porous
media defined in the form Ra = β∗�Tcg∗ H∗k∗M f

/
αe∗ν∗. The time derivative term

was included in Darcy’s equation (3), where V a is a dimensionless group which
includes the Prandtl and Darcy numbers as well as the porosity of the porous do-
main and is defined by V a = φ Pr

/
Da. Straughan (2001) suggested to name this

dimensionless group the “Vadasz number” and to use the symbol V a. Subsequently,
this suggestion was adopted by Lombardo and Mulone (2002), Govender (2003,
2006a,b), Straughan (2004), Mulone, and Straughan (2006), Sheu (2006), Bhadauria
(2007) and others. Vadasz and Olek (1999a, 2000a) have shown that when investi-
gating wave phenomena, such as the present case, the time derivative in equation (3)
needs to be included irrespective of how large the value of V a is. Without including
this term the possibility of oscillatory convection is wiped out, and subsequently the
transition to turbulence by using the present model becomes impossible. Including
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the time derivative term in equation (2) is equivalent to maintaining the highest
derivative in an equation in order to satisfy all boundary (or initial) conditions, as it
is typically applied for investigating boundary layers.

As all the boundaries are rigid the solution must follow the impermeability con-
ditions there, i.e. V • ên = 0 on the boundaries, where ên is a unit vector normal to
the boundary. The temperature boundary conditions are: T = 1 at z = 0, T = 0 at
z = 1 and ∇T • ên = 0 on all other walls representing the insulation condition on
these walls.

For convective rolls having axes parallel to the shorter dimension (i.e. y) v = 0,
and the governing equations can be presented in terms of a stream function defined
by u = �ψ

/
� z and w = −�ψ

/
� x , which upon applying the curl (∇×) operator

on equation (2) yields the following system of partial differential equations from
equations (1), (2) and (3)

[
1

V a

�

� t̂
+ 1

] [
�2ψ

� x2
+ �2ψ

� z2

]

= −Ra
�T

� x
(4)

� T

� t̂
+ �ψ

� z

�T

� x
− �ψ

� x

�T

� z
= �2T

� x2
+ �2T

� z2
(5)

where the boundary conditions for the stream function are ψ = 0 on all solid
boundaries.

The set of partial differential equations (4) and (5) form a non-linear coupled
system, which together with the corresponding boundary conditions accepts a basic
motionless conduction solution. To obtain the complete solution to the non-linear
coupled system of partial differential equations (4) and (5) we represent the stream
function and temperature in the form

ψ = − 4 X̃ sin
(π x

L

)
sin (π z) (6)

T = 1 − z + 2 Ỹ

π
cos

(π x

L

)
sin (π z) − Z̃

π
sin (2π z) (7)

This representation is equivalent to a Galerkin expansion of the solution in both x
and z directions, truncated when i + j = 2, where i is the Galerkin summation
index in the x direction and j is the Galerkin summation index in the z direction.
Substituting equations (6) and (7) into the equations (4) and (5), multiplying the
equations by the orthogonal eigenfunctions corresponding to equations (6) and (7)
and integrating them over the domain, i.e.

∫ L
0 dx

∫ 1
0 dz(•), yields a set of three ordi-

nary differential equations for the time evolution of the amplitudes (see Vadasz and
Olek, 1999a, 2000a).

By using the wave number corresponding to the convection threshold, rescaling
the time t̂ , and introducing the following notation

R = Ra

4π2
, α = V a

2π2
, t = 2π2 t̂ (8)



116 P. Vadász

yields the following set of equations

˙̃X = α
(
R Ỹ − X̃

)
(9)

˙̃Y = X̃ − Ỹ − X̃ Z̃ (10)

˙̃Z = 2
(
X̃ Ỹ − Z̃

)
(11)

The fixed points of the system (9)–(11) are obtained by setting the time deriva-

tive to be zero, in the form X̃ S = ± (R − 1)1/2, ỸS = ±(R − 1)1/2
/

R and

Z̃ S = (R − 1)
/

R. They represent steady state solutions consisting of convection
cells moving clockwise or counter-clockwise. These fixed points lose stability in the
linear sense at a value of R = Ro = 25 (for α = 5 pertaining to the present inves-
tigation), at which point a sub-critical Hopf bifurcation occurs (see Vadasz, 1999b
for details). The bifurcation diagram representing the convective fixed points and
the unstable bifurcating oscillatory solutions is presented in Fig. 2.

A rescaling of the variables with respect to these fixed points in the form

X = X̃√
(R − 1)

, Y = R Ỹ√
(R − 1)

, Z = R Z̃

(R − 1)
(12)

(a) (b)

(c)

Fig. 2 The bifurcation diagram obtained analytically from equations (9) to (11). (a) X̃ versus R,
(b) Ỹ versus R, (c) Z̃ versus R
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provides the following set of scaled equations

Ẋ = α (Y − X ) (13)

Ẏ = R X − Y − (R − 1) X Z (14)

Ż = 2 (X Y − Z ) (15)

where the dots (̇) denote time derivatives d()
/

dt . Equations (13), (14) and (15) are
equivalent to Lorenz equations (Lorenz, 1963; Sparrow, 1982) although with differ-
ent coefficients. The demonstration of this equivalence is provided by Vadasz and
Olek (1999a). Their convective fixed points are X S = YS = ±1, ZS = 1 for R > 1.

The model is expected to represent qualitatively well the effects related to the
overall dynamics of the system. Some wide thermal boundary layers near the top and
bottom of the layer can be recovered. However this model excludes the possibility of
formation of narrow thermal boundary layers, or of hydrodynamic boundary layers,
next to these walls. Note that the formation of hydrodynamic boundary layers near
solid walls is not typical for flows in porous media since the non-slip conditions do not
apply for the filtration velocity next to these walls. Assumption (iv) in Vadasz (2001a)
can be tested aposteriori by using a relationship obtained via a scale analysis, between
the pore scale Reynolds number and the scaled Rayleigh number in the present model.

This relationship yields Re� = Re Da1/2 = 4π (R − 1)1/2 Da1/2 X
/(

M f Pr
) =

4π (R − 1)1/2 X φ
/(

M f V a Da1/2
)
. Then by using typical porous media parame-

ter values and typical values of X from the solutions presented by Vadasz (1999b)
and Vadasz and Olek (1999a) we obtain Re� max = 61.56 Da1/2

/
Pr = 61.56 φ

/

(
V a Da1/2

)
for R ∼ 25. The transition from Darcy to a non-linear Forchheimer

regime in porous media occurs at a pore scale Reynolds number of an order of mag-
nitude of 1. Therefore, for fluid Prandtl numbers around 10 the condition for validity
of the Darcy regime is Da1/2 << 1, which is clearly valid. As the value of the fluid
Prandtl number decreases the Darcy regime validity condition may be violated by
some combinations of solid-fluid materials forming the porous matrix. In such cases
the Darcy regime can not be recovered.

3 Analytical Solution

The analytical solution to the problem is evaluated via a weak non-linear analysis by
using an expansion around the point where the non-trivial stationary solutions lose
stability in the linear sense, i.e. around R = Ro = 25. The stationary (fixed) points
of the system (13)–(15) are the convection (non-trivial) solutions X S = YS = ±1,
ZS = 1 and the trivial solution X S = YS = ZS = 0. The expansion around the
trivial stationary solution yields the familiar results of a pitchfork bifurcation from
a motionless state to convection at R = 1. We expand now the dependent variables
around the non-trivial stationary points in the form
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[X, Y, Z ] = [X S, YS, ZS]+ε [X1, Y1, Z1]+ε2 [X2, Y2, Z2]+ε3 [X3, Y3, Z3]+ . . . .

(16)

We also expand R in a finite series of the form R = Ro
(
1 + ε2

)
which now defines

the small expansion parameter as ε2 = (R − Ro)
/

Ro, where Ro is the value of
R where the stationary non-trivial solutions lose their stability in the linear sense
(see Vadasz and Olek 1999a, 2000a, Vadasz 1999b). Therefore the present weak
non-linear analysis is expected to be restricted to initial conditions sufficiently close
to any one but only one of the non-trivial fixed points. Introducing a long time scale
� = ε2t and replacing the time derivatives in equations (13)–(15) with d

/
d t →

d
/

d t + ε2d
/

d � yields a hierarchy of ordinary differential equations at the different
orders. The solutions to order O (ε) are:

X1 = a1eσr +iσot + a∗
1 eσr −iσot + a13eσ3t , Y1 = b1eσr +iσot + b∗

1eσr −iσot + b13eσ3t

Z1 = c1eσr +iσot + c∗
1eσr −iσot + c13eσ3t (17)

where σ1 = σr + iσo, σ2 = σr − iσo and σ3 are the three eigenvalues of the sys-
tem (13)–(15) linearized around Ro. It turns out that the first two, σ1 and σ2 are a
pair of complex conjugate eigenvalues, while the third one is real and negative, i.e.
σ3 < 0 and real. At marginal stability, i.e. at R = Ro, the real part of the complex
eigenvalues is zero. Therefore, at order O (ε) one can set the argument of the expo-
nents in equations (17) to σ1 = iσo and σ2 = −iσo, by substituting σr = 0. What
typically follows when using the weak non-linear method of solution is the neglect
of the decaying term a13eσ3t from the solution. Clearly this term does not bring any
contribution to the post-transient solution. However, while indeed this term vanishes
at the post-transient state, its inclusion in the solution becomes essential in order to
provide a relationship between the initial conditions in the present analytical solu-
tion and the computational one. The coefficients a1(�), a∗

1 (�), b1(�), b∗
1(�), c1(�) and

c∗
1(�) are allowed to vary over the long time scale �. By substituting the solutions

(17) into the linearized form of equations (13)–(15), that apply at order O (ε) (see
Vadasz 1999b, 2001d for details), one obtains the following relationships between
these coefficients

b1 = (α + iσo)

α
a1; b∗

1 = (α − iσo)

α
a∗

1 ; b13 = (σ3 + α)

α
a13 (18)

c1 = σo [σo − i (α + 1)]

α (Ro − 1)
a1;

c∗
1 = σo [σo + i (α + 1)]

α (Ro − 1)
a∗

1 ; c13 = −σ3 [σ3 + α + 1]

α (Ro − 1)
a13 (19)

The values of σo, Ro and σ3 corresponding to σr = 0 are also obtained as

Ro = α (α + 4 γ + 3)

(α − 4 γ − 1)
; σ 2

o = 8 α γ (α + 1)

(α − 4 γ − 1)
; σ3 = − (α + 4γ + 1) (20)
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The linear stability analysis produces results that are identical to the O (ε) solutions
presented above. Therefore, based on the linear stability analysis the loss of stability
of the non-trivial stationary points occurs at a value of R = Ro. For R < Ro linear
stability predicts a solution that converges to one of the stationary points, while for
R > Ro a post-transient chaotic solution is anticipated. In reality, computational,
numerical and experimental results show that the transition from the steady solution
to chaos occurs at a value of R = Rt ≤ Ro.

Solving the resulting non-homogeneous equations at order O
(
ε2

)
by using the

O (ε) solutions provides the required solution to be used in the equations at order
O

(
ε3

)
. A solvability condition is obtained at order O

(
ε3

)
in order to prevent terms

of the form eiσot and e−iσot on the right hand side of the O
(
ε3

)
equations to resonate

the homogeneous operator, hence forcing secular solutions of the form teiσot and
te−iσot that are not bounded as t → ∞. Hence, the coefficients of these secular
terms must vanish, a requirement which provides a constraint on the amplitudes at
order O (ε) in the form of an amplitude equation

dr

dt
= χ

[
ξ − r2

]
r,

dθ

dt
= m1 ε2 − m2 r2 (21)

with a a∗ = r2, and m1 , m2 are parameters that depend on α and γ , where the
O (ε) complex amplitude was presented in the form

a = εa1 = reiθ , a∗ = εa∗
1 = re−iθ (22)

with dθ
/

dt = θ̇ representing the frequency correction to σo (θ being the phase of
the amplitude on the complex plane), χ = ϕ

/
β and

ξ = ε2

ϕ
= (R − Ro)

Roϕ
(23)

where ϕ and β are parameters that depend on the value of α. For α = 5, correspond-
ing to a V a ∼= 98.7, and consistent with the present study ϕ = −2.4, β = 0.403226,
and the following critical values apply Ro = 25 and σo = √

60. Clearly χ < 0 over
all the cases considered, while ξ > 0 for R < Ro (sub-critical conditions), ξ < 0
for R > Ro (supercritical conditions), and ξ = 0 for R = Ro (critical conditions).
The post-transient solution to equation (21) yields r = ±√

ξ which produces a
real value of r only for R < Ro (because ϕ < 0 as indicated above). The Hopf
bifurcation at R = Ro = 25 is therefore sub-critical and in order to investigate the
breakdown of the periodic solution at R = Ro = 25 the derivation of the transient
solution to equation (21) is undertaken. This transient solution is obtained by direct
integration in the form

r2 = ξ
[
1 −

(
1 − ξ

r2
o

)
exp (−2ξ χ t)

] for ξ 
= 0 (R 
= Ro) (24)
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r2 = r2
o[

1 + 2r2
o χ t

] for ξ = 0 (R = Ro) (25)

where the following initial conditions were introduced: r = ro at t = 0.
Both solutions (24) and (25) are valid at t = 0 leading to r2 = r2

o , which can be
recovered by substituting t = 0 in equations (24) and (25). The question of what
happens at a later time t > 0 that causes these solutions to disappear when R > Ro,
(i.e. when ξ < 0) is the focus of this analysis. Vadasz (1999b) has shown that both
solutions (24) and (25) become singular, i.e. their denominator vanishes at a value
of t , identified as the critical time, expressed by the equation

tcr = 1

2χξ
ln

[

1 − ξ

r2
o

]

(26)

The existence of this critical time is linked to a condition that the argument of the
ln (•) function in equation (26) is positive and greater or smaller than 1, depending
on whether ξ is negative or positive, respectively. The latter requirement comes to
impose a positive value of tcr , otherwise no physical significance can be associated
with this critical time. This condition exists only for sub-critical values of R, i.e. for
ξ > 0 (R < Ro), and is presented in the form ξ

/
r2

o < 1, while for supercritical
values of R, i.e. for ξ < 0 (R > Ro) the critical time exists unconditionally. The
physical interpretation of the existence of a critical time when the limit cy-
cle solution diverges is explained as being the analytical representation of the
homoclinic explosion leading to a chaotic solution. Transforming the condition
for this transition to occur, from r2

o > ξ , to the original physical parameters of
the system by substituting the definition of ξ = ε2

/
ϕ = (R − Ro)

/
Roϕ, leads

to a value of R ≤ Ro, say Rt , beyond which the transition occurs, which can be
expressed in the form

Rt = Ro
(
1 − |ϕ| r2

o

)
(27)

where the minus sign and the absolute value of ϕ appear in order to show explicitly
that ϕ < 0. If R < Rt the solution decays, spiraling towards the corresponding
fixed point, and at R = Rt we expect the limit cycle solution. Beyond this tran-
sitional value of R, i.e. R > Rt , the solution moves away from this fixed point
either (a) towards the other fixed point, or (b) wanders around both fixed points be-
fore it stabilizes towards one of them, or (c) yields a chaotic behavior. The present
expansion can not provide an answer to select between these three possibilities.
However, it is important to stress that for any consistent initial condition r2

o , which
we choose, we can find a value of R ≤ Ro which satisfies equation (27). At that
value of R we expect to obtain a limit cycle solution and beyond it a possible chaotic
solution.

The horizontally average Nusselt number is evaluated based on the technique
presented by Vadasz (2001a) resulting in the following relationship
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Nu
h (

t̂, z
) = 1 + 2 (R − 1)

R
Z + 2 (R − 1)

R
(X Y − Z ) [1 − cos (2π z)] (28)

Clearly when the post-transient solution is not time dependent and a steady state is
reached, Ż = 0 and Z = ZS = 1, therefore equation (28) yields

Nu
h
steady state = 3 − 2

R
(29)

where (•)
h =

(∫ W
0 dy

∫ L
0 dx (•)

)
/(W L) stands for the horizontal averaging op-

erator. A Taylor expansion of equation (29) around R = 1, corresponding to the
neighbourhood of the convection threshold, produces

Nu
h
steady state = 3 − 2

R
= 1 + 2 (R − 1) − 2 (R − 1)2 + . . . (30)

The first two terms in expansion (30) represent the first order approximation as
obtained by Braester and Vadasz (1993) via a weak non-linear solution by using an
expansion around R = 1. Nield and Bejan (2006) (based on Elder, 1967) suggested
a linear approximation as a good curve fitting of the experimental data in the neigh-
bourhood of the convection threshold. The present model, equation (30), recovers a
linear first order approximation as a particular case of the more general expression
for the Nusselt number at steady state, as presented by equation (29).

4 Computational and Numerical Solutions

One computational and one numerical method of solution is being used to solve
the system (13)–(15). The first, the computational one, is Adomian’s decomposition
method (Adomian, 1988, 1994; Olek, 1994; Vadasz, 1999a, b, 2000, 2001a, b, c, d;
Vadasz and Olek 1998, 1999a, b, 2000a, b). The method provides in principle an an-
alytical solution in the form of an infinite power series for each dependent variable.
However, the practical need to evaluate numerical values from the infinite power
series, the consequent series truncation, and the practical procedure to accomplish
this task transform the otherwise analytical results into a computational solution
achieved up to a finite accuracy. The second, referred here as the numerical method,
is used to solve the system (13)–(15) numerically to double precision by using the
fifth and sixth order Runge-Kutta-Verner method from the IMSL Library (DIVPRK)
(IMSL, 1991) up to a desired tolerance for error control specified by the parameter
tol. We then compared the Adomian decomposition results (referred thereafter as
“the computational results”) with the numerical solution (referred thereafter as
“the numerical results”) by evaluating the difference between the two at all values
of t up to tmax = 210 and plotting this difference in the results as projections of
the trajectory of differences on the planes �Z = 0 (�Y − �X plane), �Y = 0



122 P. Vadász

(�Z − �X plane) and �X = 0 (�Z − �Y plane), where �X = Xcomp. − Xnum.,
�Y = Ycomp. − Ynum. and �Z = Zcomp. − Znum.. The indices “comp.” and “num.”
stand for representing the computational (Adomian decomposition) and numerical
(Runge-Kutta) results, respectively.

5 Compatible Initial Conditions

In order to compare the computational results to the analytical ones obtained via
the weak non-linear theory one needs to ensure that the initial conditions for the
computations are consistent with the initial conditions corresponding to the weak
non-linear solution. The present weak non-linear solution provides the following
conditions, which are necessary and sufficient to ensure the consistency of the initial
conditions between the weak non-linear and computational solutions. The latter was
obtained by Vadasz (2001d) in the form

Xo = 1 + 2 ro cos (θo) + a30 + O
(
ε2

)
(31)

Yo = 1 + 2 ro

α
[α cos (θo) − σo sin (θo)] + (σ3 + α)

α
a30 + O

(
ε2

)
(32)

Zo = 1 + 2 ro

α (Ro − 1)

[
σ 2

o cos (θo) − σo (α + 1) sin (θo)
] −

σ3 (σ3 + α + 1)

α (Ro − 1)
a30 + O

(
ε2

)
(33)

While equations (31)–(33) provide the equivalence relationships for the initial con-
ditions in terms of [Xo, Yo, Zo] as a function of [ro, θo, a3o], it is convenient to obtain
a similar inverse relationship explicitly for [ro, θo, a3o] as a function of [Xo, Yo, Zo],
in the form

tan (θo) =
[
σ 2

o + σ3 (σ3 + α + 1)
]

[(σ3 + α) xo − α yo] − σ3 [σ3 (σ3 + α + 1) xo + α (Ro − 1) zo]

σo {[σ3 (σ3 + α + 1) xo + α (Ro − 1) zo] − (α + 1) [(σ3 + α) xo − αyo]}
(34)

where xo = Xo − 1, yo = Yo − 1 and zo = Zo − 1. Once the value of θo is
established from equation (34) one can evaluate the value of ro by substitution, in
the form

ro = (σ3 + α) Xo − α Yo

2 [σ3 cos (θo) + σo sin (θo)]
(35)

Substituting equation (34) and the expression for ro from equation (35) into equa-
tion (31) allows expressing a30 in the form

a30 = xo − [σ3xo + α (xo − yo)]

[σ3 + σo tan (θo)]
(36)
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Equations (34), (35) and (36) represent the inverse compatibility relationships be-
tween the analytical weak non-linear solution and any computational solutions, the
latter being naturally expressed in terms of [Xo, Yo, Zo], while the former is ex-
pressed in terms of [ro, θo, a30]. One can observe from equation (34) that for any
given set of initial conditions in the form of [Xo, Yo, Zo] the value of θo has a
multiplicity greater than 1. Actually the solution for θo can be expressed in the
form θo = θo1 + nπ . Values of θo greater than 2π are not relevant as then, the
sine and cosine functions in equation (35) yield the same results. However, values
of θo = θo1 + π are of relevance as they change the sign in front of the expression
for ro in equation (35). Therefore, since values of θo ∈ (π, 2π ) have no other impact
but to reverse the sign in front of ro we can use this property to extend the definition
of r and allow it to include negative values, while on the other hand we limit the
variation of θ to be between 0 and π . The same applies therefore, in particular, to ro

and θo.
Two particular cases of interest are worth mentioning.

i. a30 = 0 and θo = 0
The first particular case is related to the conditions a30 = 0 and θo = 0 that
upon substitution into equations (34), (35) and (36) yield

Xo = Yo = 1 + 2 ro ; Zo = 1 + σ 2
o

α (Ro − 1)
(Xo − 1) = 1 + 2 σ 2

o

α (Ro − 1)
ro

for a30 = 0 and θo = 0 (37)

This particular case represents the results presented by Vadasz (1999b) and it
can be observed that it limits the possible set of initial conditions only to par-
ticular values of Xo, Yo and Zo because the inverse transformation does not
exist but only for a particular combination of Xo, Yo and Zo that satisfies equa-
tion (37).

ii. Xo = Yo = Zo

This particular case yields upon substitution into equations (34), (35) and (36)
the following relationships

tan (θo) = σ3
[
σ 2

o − α (Ro − 1)
]

σo
[
σ 2

3 + α (Ro − 1)
] for Xo = Yo = Zo (38)

ro = σ3 (Xo − 1)

2 [σ3 cos (θo) + σo sin (θo)]
for Xo = Yo = Zo (39)

a30 = σo tan (θo) (Xo − 1)

2 [σ3 + σo tan (θo)]
for Xo = Yo = Zo (40)

Clearly, from equation (38) one notices that for this particular case the possible val-
ues of θo are independent of the choice of Xo, Yo and Zo (as long as Xo = Yo = Zo),
they will be therefore restricted and dependent only on the problem’s parameters
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R, α and γ . Furthermore, from equations (39) and (40) one can derive a relationship
between a30 and ro, therefore providing an additional constraint on the possible set
of initial conditions.

Nevertheless, the compatibility relationships presented in equations (34)–(36)
are general and do not restrict or constrain in any way the possible set of initial con-
ditions. Despite this generality one should however realize that these relationships
were derived by using the O (ε) solution of the asymptotic expansion (16), and its
corresponding amplitude solution obtained at order O

(
ε3

)
. When the asymptotic

expansion breaks down, or looses accuracy, naturally these relationships break down
or loose accuracy as well. Then, including higher order corrections may restore
accuracy.

6 Results and Discussion

Before presenting the comparison between the computational and weak non-linear
analytical results, a brief sequence of computational results are presented in Fig. 3 to
demonstrate the subcritical transition from steady convection to chaos. The results
corresponding to initial conditions consistent with ro = 0.15 (Xo = Yo = 1.3
and Zo = 1.15) are presented in Fig. 3, at two values of R, the first (Fig. 3a,b) at
R = 23.632 just before the transition to chaos occurs, and the second (Fig. 3c,d)
just after the transition at R = 23.633 < Ro ( note that Ro = 25 for α = 5
and γ = 0.5, which are the parameter values considered in this presentation). The
decay of the solution corresponding to R = 23.632 towards the stationary point
X = 1 is clearly identified in Fig. 3(a), while Fig. 3b shows the inset of Fig. 3a
zooming into the time domain 0 < t < 5 clearly highlighting the oscillatory nature
of the solution. On the other hand, for R = 23.633, Fig. 3(c,d) show a typical
chaotic result. It is worth emphasizing the fact that the computational results show
a transition to chaos at a sub-critical value of R (the critical value is Ro = 25). A
comparison between Fig. 3(a) and 3(c) shows that the envelope of the function X (t)
converges for R = 23.632 (Figure 3a) and diverges for R = 23.633 (Figure 3c).
This suggests that somewhere in-between R = 23.632 and R = 23.633 the en-
velope of the function X (t) will neither converge nor diverge, producing a typical
limit cycle. Looking for this limit cycle provides the result presented in Fig. 3(e),
where it is evident that the envelope of the function X (t) does not converge nor
diverge, and the inset presented in Fig. 3(f) demonstrates the periodic behavior of the
solution.

The objective in the presentation of the following results is in identifying the
transition point, i.e. the value of Rt where the homoclinic explosion occurs and
compare the computational and analytical values of Rt , the latter corresponding
to equation (27), for different initial conditions that are consistent with the weak
non-linear solution.

A sequence of numerous computations was performed in order to evaluate these
transitional R values. In all computations the values of γ = 0.5 and α = 5 were
used. They yield the following corresponding parameter values ϕ = −2.4, Ro = 25,



Analytical Transition to Weak Turbulence and Chaotic Natural Convection 125

Fig. 3 The computational results for the evolution of X (t) in the time domain for three values of
Rayleigh number, in terms of R (data points are not connected). The initial conditions are Xo =
Yo = 1.3 and Zo = 1.15 (ro = 0.15). (a) X as a function of time for R = 23.632; the solution
stabilizes to the fixed point. (b) the inset of Fig. 3(a) detailing the oscillatory decay of the solution.
(c) X as a function of time for R = 23.633; the solution exhibits chaotic behaviour. (d) the inset of
Fig. 3(c) detailing the chaotic solution. (e) X as a function of time for R = 23.63236; the solution
is periodic. (f) the inset of Fig. 3(e) detailing the periodic solution

σo = √
60 and σ3 = −8. The computations were divided in three computational sets

of results. Computational set “A” corresponds to the particular case when a30 = 0
and θo = 0 (presented by Vadasz 1999b), computational set “B” corresponds to
the particular case when Xo = Yo = Zo, associated with equations (34)–(36),
while computational set “C” corresponds to arbitrary initial conditions that do not
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belong to any particular case and are therefore general. The results are presented in
Fig. 4 where the continuous curve represents the analytical solution expressed by
equation (27) while the different markers represent the computational results corre-
sponding to the different computational sets. The very good agreement between the
analytical and computational solutions in the neighborhood of the non-trivial fixed
point (i.e. | ro| << 1) is evident from Fig. 4. Actually for |ro| < 0.2 the computa-
tional and analytical solutions overlap. As the initial conditions move away from the
non-trivial fixed point and the value of |ro| increases the analytical solution departs
from the computational results, which reconfirms the validity of the weak non-linear
solution in the neighborhood of a non-trivial fixed point and its breakdown far away
from this point. In addition, the computational results move apart from each other
as well, when |ro| increases. The reason for this latter departure is the fact that
the compatibility of the initial conditions in terms of ro was also derived based on
the weak non-linear solution at order O (ε). Therefore, as the latter solution looses
accuracy when |ro| increases the compatibility conditions loose accuracy as well.
The departure between the computational results and the analytical ones is clearly
not symmetrical with respect to ro = 0. While the O (ε) weak non-linear solution
is symmetrical with respect to ro = 0, due to its elliptical shape, there is no reason
to expect this symmetry from a computational solution as one moves away from the
fixed point (the symmetry is kept for |ro| << 1). Actually in the neighborhood
of |ro| = 0.5 one may expect to find the homoclinic orbit. Its shape is by far
different than the one of an ellipse (see Vadasz 1999a, Vadasz and Olek 1999b).
Both improvement of accuracy and loss of symmetry are expected if higher order

Fig. 4 Transitional
sub-critical values of
Rayleigh number in terms of
Rt /Ro as a function of the
initial conditions ro. A
comparison between the
weak non-linear solution
( — analytical) and the
computational results (•
computational set “A”, ◦
computational set “B”, �
computational set “C”)
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corrections are considered. The relatively easy computational recovery of the limit
cycle does not imply that this limit cycle is stable. On the contrary, a slight variation
of the initial conditions causes a change in the value of Rt and consequently the limit
cycle disappears. It can be recovered again by a further adjustment of the value of R
(see equation (27)). From the figure it is evident that as long as the initial conditions
are not too far away from the non-trivial fixed point, i.e. |ro| << 1, the computa-
tional and analytical solutions are identical. For values of ro close to the non-trivial
fixed point, i.e. in the neighborhood of ro ∼ 0, both solutions overlap. However, as
ro moves away from this neighborhood the weak non-linear solution loses accuracy
and the analytical results for Rt depart from the accurate computational ones. Higher
order corrections of this analytical transition value could improve the accuracy of
the analytical results. Nevertheless, it can be anticipated that the actual transition
point, Rt , depends not only on ro as equation (27) suggests, but also on θo and a30.

The results of the evaluation of the mean Nusselt number over a wide range of
values of R are presented graphically in Fig. 5 based on Vadasz (2001a). The evalua-
tion of this mean Nusselt number was performed for three different cases, as relevant
to the impact of the initial conditions on the results. The first case corresponds to
fixed initial conditions for all values of R considered (the values used correspond
to X (o) = Y (o) = Z (o) = 0.9), the second case uses the final values of X, Y and
Z obtained at the previous, slightly smaller, value of R as initial conditions for the
current value of R. This case is referred to as the “forward moving” case. The third
case is similar to the latter however it moves in the opposite R direction, i.e. the
initial conditions for the solution at the current value of R are taken from the final
values of X, Y and Z obtained at the previous, slightly larger, value of R. This
case is referred to as the “backward moving” case. This procedure was followed
for values of R ranging between 1 ≤ R ≤ 150, with a step of �R = 0.1. It is
evident from Fig. 5 that the transition from steady convection to chaos is associated
with a sharp decline in heat flux. This can be linked to the solitary limit cycle that
appears at this transition, hence the retarding effect that this transition has on the

Fig. 5 The variation of the
mean Nusselt number as a
function of R as obtained
computationally, via forward
and backward variation of R,
and compared with the
analytical relationship,
equation (29), for
sub-transitional values of R,
highlighting the transition
from steady convection to
chaos, and the corresponding
Hysteresis effect
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heat flux is due to the oscillatory nature of the transition point, rather than the chaotic
(weak-turbulent) nature of the solution beyond this transition point. Furthermore, it
is evident that the weak-turbulent regime following the transition point contributes
to a recovery from this sharp reduction in heat flux. An additional impressive result
evident from Fig. 5 is the effect of Hysteresis linked to the transition from steady
to weak-turbulent convection. While the solution corresponding to constant initial
conditions experiences the transition (observed by the jump in the value of the mean
Nusselt number) at a value of R close to R = Ro = 25 (actually slightly below
it) the transition for the “backward moving” case occurs at a value of R substan-
tially below Ro = 25, as indeed anticipated from the analytical results and the
discussion on Hysteresis presented in Sec. 3 and equation (27). The computa-
tional results confirm the analytical upper bound for the average Nusselt number

Fig. 6 Trajectory of differences between the computational (Adomian decomposition) and nu-
merical (Runge-Kutta) solutions corresponding to � t = 10−4 in the computational solution,
tol = 10−12 in the numerical solution, and R = 75. (a) projection of trajectory’s data points
on the plane � Z = 0, (b) projection of trajectory’s data points on the plane �Y = 0, (c) projection
of trajectory’s data points on the plane �X = 0, (d) inset of the projection of trajectory’s data
points on the plane �X = 0. (Data points are not connected)
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Fig. 7 Trajectory of differences between the computational (Adomian decomposition) results cor-
responding to � t = 10−3 and � t = 10−4 for R = 75 (a) projection of trajectory’s data points on
the plane �Z = 0, (b) projection of trajectory’s data points on the plane �Y = 0, (c) projection
of trajectory’s data points on the plane �X = 0. Trajectory of differences between the numerical
(Runge-Kutta) results corresponding to tol = 10−10 and tol = 10−12 for R = 75 (d) projection
of trajectory’s data points on the plane �Z = 0, (e) projection of trajectory’s data points on the
plane �Y = 0, (f) projection of trajectory’s data points on the plane �X = 0. (Data points are not
connected)
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represented by equation (30) and in particular the value of Nu
h∞
o,∞ = 3 for the limit

as R → ∞.
To investigate the accuracy of the results we evaluated the differences between

the computational and numerical solutions, �X, �Y and �Z at R = 75 as pre-
sented in Fig. 6(a,b,c) in terms of projections of trajectories data points on the
planes �Z = 0, �Y = 0 and �X = 0. It can be observed from the figures that
the maximum difference between the two solutions is of the order of magnitude of
10−7. In addition the detail of the trajectory of differences projected on the plane
�X = 0 is presented as the inset of Fig. 6(c) in Fig. 6(d) where a better description
of the shape of the trajectory can be observed.

An additional interesting result was obtained by evaluating the differences be-
tween two consecutive computational solutions corresponding to � t = 10−3 and
� t = 10−4, respectively, and two consecutive numerical solutions corresponding
to tol = 10−10 and tol = 10−12, respectively. The differences between the two
computational solutions are presented in Fig. 7(a,b,c) and the differences between
the numerical solutions are presented in Fig. 7(d,e,f). As the maximum difference in
the computational solution is of the order of magnitude O

(
10−9

)
while the maximum

difference in the numerical solution is of the order of magnitude O
(
10−5

)
, it is evident

from Fig. 7 that the shape of the trajectory of differences is kept similar under the scale
reduction and magnification suggesting that the results represent a fractal shape.

7 Conclusions

The analytical derivation of the transition point from steady to chaotic solutions in
Lorenz equations was presented by using the weak non-linear theory. The analytical
results are accurate within the validity domain of the weak non-linear method of
solution. A comparison between the analytical prediction and computational results
show an excellent fit as long as the analytical solution is within the validity domain.
Gradual loss of accuracy of the analytical solution produces gradual loss of accuracy
of the analytical prediction for the transition point. Both the analytical and compu-
tational results confirmed the transition from steady convection to chaos via a limit
cycle at a sub-critical value of the Rayleigh number.
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Natural Convection in Gravity-Modulated
Porous Layers

Saneshan Govender

Abstract We analyze natural convection in porous layers subjected to gravity
modulation. In particular a linear stability analysis and weak non-linear analysis
is presented for both synchronous and subharmonic solutions and the exact point
for the transition from synchronous to subharmonic solutions is computed. It is
demonstrated that increasing the excitation frequency rapidly stabilizes the convec-
tion up to the transition point from synchronous to subharmonic convection. Beyond
the transition point, the effect of increasing the frequency is to slowly destabilize
the convection.The weak-non-linear results show that increasing the excitation fre-
quency rapidly decays the convection amplitude. An analogy between the inverted
pendulum with an oscillating pivot point and the gravity modulated porous layer is
developed and it is shown that the convection cell wavelength is related to the length
of the pendulum.

1 Introduction

The classical Rayleigh–Benard problem has been extensively studied for both pure
fluids and porous domains, with and without rotation. In both pure fluids and porous
media, the density gradient becomes unstable and fluid motion results when a criti-
cal temperature difference, measured by means of the Rayleigh number, is exceeded.
Comprehensive reviews are provided by Chandrasekar (1961) for pure fluids whilst
Bejan (1995) provides a review of the fundamentals of heat convection in porous
media.

The classical stability analysis no longer applies if the Rayleigh number (or the
temperature difference) is time dependant. Time dependant body forces may oc-
cur in systems, with density gradients, subjected to vibrations. The influence of
vibrations on thermal convection depends on the orientation of the time depen-
dant acceleration with respect to the thermal stratification. Much work has been
done for pure fluids for a vertically modulated fluid layer with constant vertical
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stratification, i.e. modulated Rayleigh–Benard convection. Comprehensive analyses
by Gresho & Sani (1970), Wadih & Roux (1988), Christov & Homsy (2001) and
Hirata et al. (2001) are available for flow and heat transfer in a pure fluid layer sub-
jected to gravity modulation. Alex & Patil (2002a, b), Bardan and Mojtabi (2000)
and Bardan et al. (2004) provide the good references of work dealing with the effects
ofvibrationonflowandheat transfer inporousmedia. In the latter twostudieshowever,
an averaging technique is used whereby the vibration body force is split into a steady
and time dependant portion. It is also mentioned that with this method of solution,
the subharmonic modes are never captured. Govender (2004, 2005a) utilises a direct
method of solution and the resulting governing equation is cast into the canonical form
of the much publicized Mathieu equation. The author then analyses the problem and
recovers both the synchronous and subharmonic solutions in the parameter domain.
In addition Govender (2005b) provides a comprehensive weak-nonlinear analysis for
high frequency vibration. Also, Govender (2005c) provides an analysis for stability
analyses for gravity modulation with heating from below whilst Govender (2005d)
provides a stability analysis of low frequency vibration.

2 Problem Formulation

A shallow horizontal fluid saturated porous layer subject to vibration is presented in
Fig. 1. The porous medium is constrained by rigid horizontal plates, spaced a
distance H∗ apart, and oscillates parallel to the gravitational field in the vertical
direction. In addition the Darcy law is extended to include the time derivative while
the Boussinesq approximation is applied to account for the effects of the density
variations.

Subject to these conditions, the following dimensional set of governing equations
for continuity, Darcy and energy, is proposed:

∇∗ · V ∗ = 0, (1)

V ∗ = k∗
μ∗

[

−∇∗ p∗ − (ρ∗ − ρc∗ ) (g∗ + b∗ω∗ sin (ω∗t∗)) êz − ρc∗

φ

�V ∗
�t∗

]

, (2)

�T∗
�t∗

+ V ∗ · ∇∗T∗ = �∗∇2
∗ T∗. (3)

Fig. 1 Differentially heated
porous layer subjected to
vibration x*

z*

TH

∂T = 0
∂x

TC

H*

b*sin(ω*t*)
g*

0∂T =∂x
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It should be borne in mind that if the temperature effects are removed from Eq. (2),
we obtain in the frequency domain a frequency dependant and complex valued
permeability whose real and imaginary parts show a behaviour that resembles the
Biot seepage law. The values �∗

/
H∗ , μ∗�∗

/
kc∗ and �Tc = (TH − TC ) are used

to scale the filtration velocity components (u∗, v∗, w∗), reduced pressure (p∗), and
temperature variations (T∗ − TC ), respectively, where �∗ is the effective thermal
diffusivity including the effect of the ratio between the heat capacity of the fluid and
the effective heat capacity of the porous domain, μ∗ is the fluid’s viscosity and kc∗

is a characteristic permeability associated with the porous matrix. The height of the
layer H∗ is used for scaling the variables x∗, y∗, and z∗. Accordingly, x = x∗

/
H∗,

y = y∗
/

H∗ , and z = z∗
/

H∗. The time variable is scaled using H 2
∗
/
λ∗ , hence

t = t∗�∗
/

H 2
∗ . In the current study a linear approximation was assumed for the re-

lationship between the density and temperature, in the form ρ∗ = ρc∗ (1 − β∗�TcT )
where β∗ is the thermal expansion coefficient. Subject to the dimensional analysis,
the following system of dimensionless equations result:

∇ · V = 0, (4)
(

1

V a

�

�t
+ 1

)

V = −∇ p − R
[
1 + δ sin (�t)

]
T êz, (5)

�T

�t
+ V · ∇T = ∇2T . (6)

The symbols V , T and p represent the dimensionless filtration velocity vector,
temperature and reduced pressure, respectively, and êz is a unit vector in the z-
direction. In Eq. (5), � is the scaled frequency, defined as � = ω∗ H 2

∗
/
λ∗ , whilst

the non-dimensional amplitude δ is defined as δ = κ Fr�2, where κ = b∗
/

H∗ and
Fr is the modified Froude number defined as Fr = �2

∗
/(

g∗ H 3
∗
)
. The parameter

V a is the Vadasz number, as pointed out by Straughan (2000), and includes the
Prandtl and Darcy numbers as well as the porosity of the porous domain and is
defined as

V a = φ Pr

Da
. (7)

In Eq. (7) Pr = ν∗
/
λ∗ is the Prandtl number, Da = kc∗

/
H 2

∗ is the Darcy number,
φ is the porosity and ν∗ stands for the kinematic viscosity of the fluid. It is only
through this combined dimensionless group that the Prandtl number affects the flow
in the porous media, see Vadasz (1998) for a full discussion on the numerical values
that Pr can assume in a typical porous medium. In Eq. (5) one also observes the
Rayleigh number, R; defined as R = β∗�TC g∗kc∗ H∗

/
ν∗�∗ . As all boundaries are

rigid, the solution must follow the impermeability conditions there, i.e. V ·ên = 0 on
the boundaries, where ên is a unit vector normal to the boundary. The temperature
boundary conditions are: T = 1 at z = 0, T = 0 at z = 1 and ∇T · ên = 0
on all other walls representing the insulation condition on these walls. The partial
differential equations (4–6) forms a non-linear coupled system which together with
the corresponding boundary conditions accepts a basic motionless solution with a
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parabolic pressure distribution. The solutions for the basic temperature and flow
field is given as, TB = 1 − z and VB = 0. To provide a non-trivial solution to the
system it is convenient to apply the curl operator (∇×) twice on Eq. (5) and consider
the z-component, to obtain,

(
1

V a

�

�t
+ 1

)

∇2V + R
[
1 + δ sin (�t)

]∇2
H T êz = 0, (8)

for a solenoidal velocity field, Eq. (4). The Laplacian operator in Eq. (8) is defined
as ∇2

H ≡ �2
/

�x2 + �2
/

�y2 for cartesian co-ordinates.

3 Linear Stability Analysis

The basic motionless solution is VB = 0 and TB = 1 − z. Assuming small pertur-
bations around the basic solution in the form V = V B + V ′ and T = TB + T ′, and
linearising equations (6) and (8) yields the following linear system,

(
1

V a

�

�t
+ 1

)

∇2V ′ + R
[
1 + δ sin (�t)

]
[

�2T ′

�x�z
êx + �2T ′

�y�z
êy − ∇2

H T ′êz

]

= 0,

(9)
[

�

�t
− ∇2

]

T ′ − w′ = 0, (10)

where w′ is the perturbation to the vertical component of the filtration velocity. The
boundary conditions in the z−direction required for solving Eqs. (9) and (10) are
w′ = T ′ = 0 at z = 0 and z = 1. In the x-direction �T

/
�x = 0 at x = 0 and

x = L . The coupling between Eqs. (9) and (10) can be removed by considering the
vertical component of Eq. (9) and eliminating w′ to provide one equation for the
temperature perturbation in the form

(
1

V a

�

�t
+ 1

)

∇2

[
�

�t
− ∇2

]

T ′ − R
[
1 + δ sin (�t)

]∇2
H T ′ = 0. (11)

Assuming an expansion into normal modes in the x- and y-directions, and a time-
dependant amplitude θ (t) of the form,

T ′ = θ (t) exp
[
i
(
sx y + syz

)]
sin (π z) + c.c, (12)

where c.c. stands for the complex conjugate terms and s2 = s2
x + s2

y . Substituting
Eq. (12) into the Eq. (11) provides an ordinary differential equation for the ampli-
tude θ (t),

d2θ

dt2
+ 2p

dθ

dt
− F (α) γ

[(
R̃ − R̃o

) + R̃δ sin (�t)
]
θ = 0, (13)
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where α = s2
/
π2, γ = V a

/
π2 and R̃ = R

/
π2. In Eq. (13), 2p = π2 (α + 1 +

V a), F (α) = π4α
/

(α + 1) and R̃o is the un-modulated Rayleigh number defined as
R̃o = (α + 1)2

/
α. Using the transformation t = (

π
/

2 + 2τ
)/

�, equation (13) may
be cast into the canonical form of the Mathieu equation, as outlined by McLachlan
(1964), and is given as

d2 X

d�2
+ [a + 2q cos (2�)] X = 0. (14)

The solution to Eq. (14) follows the form X = G (�) eστ where G (�) is a periodic
function with a period ofπ or 2π andσ is a characteristic exponent which is a complex
number and is a function of a and q respectively. In this chapter the definitions for a, q
and σ are obtained upon transforming Eq. (13) to the canonical form and is defined as,

2√−a
= �

[
F (α) γ

(
R̃ − η

)]1/2
, (15)

1

2
q = F (α) γ R̃δ

�2
= F (α) γ R̃κ Fr, (16)

σ = −2p
/

�, (17)

where η is a parameter defined as,

η = −R̃o
(α + 1 − γ )2

4γ (α + 1)
. (18)

When σ = σr = 0, the solution to Eq. (14) is defined in terms of Mathieu functions,
cn and dm , such that for each Mathieu function, cn and dm , there exists a relation
between a and q. This relationship is shown in Fig. 2 for the Mathieu functions d0,
c1 and d1 for small values of q.

It is observed from Fig. 2 that d0, c1 and d1 separates the stable and unstable so-
lutions. If the other Mathieu functions (viz. cn and dm where n = 2, 3, 4..N and
m = 2, 3, 4, ..M) are superimposed on Fig. 2 one would observe that the regions
separated by the Mathieu functions in the a–q plane are alternately stable and un-
stable. For our analysis we consider only small values of q, so the analysis around
the Mathieu functions d0, c1 and d1 is sufficient. Upon examining Fig. 2, one is able
to note that the region below curve d0, and the region enclosed between curves c1

and d1 correspond to the unstable zones. The narrow region between curves d0 and
c1 represent the stable zones. In principle the regions enclosed by even indices of dm

(i.e. m = 0, 2, 4, 6..) yields synchronous solutions whilst those regions enclosed by
odd indices of dm (i.e. m = 1, 3, 5, 7..) yields subharmonic solutions thus implying
that the a–q plane consists of alternating regions of synchronous and subharmonic
solutions. In the stable regions of Mathieu’s equation, � is complex with a negative
real part. Since � is a function of a and q, which are dependant on γ, R̃, α, δ and �,
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Fig. 2 Mathieu chart clearly
demarcating the stable and
unstable zones
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the stability porous layer is also seen to depend on these variables as well. In addition
there are solutions to Eq. (14) for a > 0 and a < 0 ; also, q may be replaced by
−q with no effect on the solution. In this study for a porous medium heated from
below the numerical values for a are less than zero and are defined by Eq. (15).
In the case of liquid metals, as found during the solidification of binary alloys, see
Pillay & Govender (2005), we may propose for a Lead-Antimony (Pb-Sn) system,
�∗ = 1.08 × 10−5 m2/s, �∗ = 2.47 × 10−7 m2/s, and Pr = 2.3 × 10−2. For a
characteristic height H∗ = 0.1 m, we find that the corresponding value for the Froude
number, Fr , is Fr = 1.1 × 10−3. If the vibration amplitude to characteristic height
ratio 	 is 	 = 10−2, then the parameter (κ Fr ) = O

(
10−5

)
. As a result we note

that q assumes very small values for the above property values. For the low Prandtl
number liquid melt, we follow Vadasz (1998) and propose that V a = O(1), thereby
allowing for the retention of the time derivative in the Darcy equation. In the current
study we propose the following definition for the modified characteristic exponent:
ξ = σ/

√−a. A chart of 1/2q versus 2/
√−a, for various values of ξ , is shown in

Fig. 3 for small values of q, see McLachlan (1964). In Fig. 3, ξ = 0 refers to the
Mathieu function solution depicted by the curves for d0, c1 and d1 in Fig. 3. We may
now present a relation for the characteristic Rayleigh number in terms of the newly
defined parameter ξ , by substituting ξ = σ/

√−a in Eq. (15), and rearranging yields,

R̃ = η +
(
R̃o − η

)

ξ 2
. (19)
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Fig. 3 Mathieu chart for the
synchronous and
sub-harmonic zones
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Figure 3 together with Eqs. (15)–(19) may be used to evaluate the critical Rayleigh
number and wavenumber (αcr = (

αx + αy
)

cr ) in terms of the frequency �, the
parameters (κ Fr) and γ .

We proceed by first evaluating the characteristic Rayleigh number versus the fre-
quency for γ ≈ O (3) and (κ Fr) = O

(
10−5

)
and selected values of the wavenum-

ber according to the following method: (a) select a value of ξ , (b) evaluate R̃ using

Eq. (19), (c) compute the value for 1
/

2q using Eq. (16), (d) read 2
/

(−a)1/2 from

Fig. 2, and (e) evaluate the frequency from Eq. (15). A series of curves of the critical
Rayleigh number versus the frequency may be plotted for various wavenumbers and
an example of such a curve is shown in Fig. 4 for α = 0.3. Using Fig. 4 we evaluate
the critical wavenumber and Rayleigh number corresponding to each wavenumber
across the frequency range. The critical Rayleigh number and wavenumber as a
function of the frequency is shown in Fig. 5, and shows that gravity modulation sta-
bilizes the convection for the region of synchronous response but slowly destabilizes
convection for the region of subharmonic response.
The stabilizing effect of vibration is small at low frequencies, but becomes sig-
nificant for larger frequencies. Figure 5 also shows that close to �t

∼= 1225, the
Rayleigh number curve changes from a rapidly increasing trend to a slowly de-
creasing trend. The critical wavenumber is also seen to decrease with increasing
frequencies, for both the regions of synchronous and subharmonic response. It is
notable that upon transition from synchronous to subharmonic solutions there is a
rapid increase in the critical wavenumber.
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Fig. 4 Characteristic
Rayleigh and wave number
versus frequency
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Fig. 5 Critical Rayleigh and
wave number versus
frequency

0

5

10

15

20

25

30

35

0

10

20

30

40

50

60

70

0 500 1000 1500 2000 2500 3000

Ω

Rcr
~

~

Synchronous solutions Subharmonic solutions

αcr = 1

STABLE

UNSTABLE

UNSTABLE

Rcr = 4

Ωt = 1225

αcr

Rcr

~ Rcr

~

αcr

αcr

4 Weak Non-linear Anlaysis

Govender (2005b) provides a weak non-linear analysis in order to determine quan-
titatively the amplitude of convection. It is convenient to use the definition of the
stream function in the form u = �ψ

/
�z; w = −�ψ

/
�x , and Govender (2005b)

presents Eqs. (1–3) in terms of the stream function and temperature as follows for
slow time scale variations,

(
1

V a

�

�t
+ 1

)

∇2ψ + Ra (1 + δ sin (�t))
�T

�x
= 0, (20)
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�T

�t
+ �ψ

�z

�T

�x
− �ψ

�x

�T

�z
= ∇2T, (21)

where the definition of the Laplacian operator is given as ∇2 = �2
/

�x2 + �2
/

�z2.
The stream function, temperature and amplitude δ may be expanded in terms of a

small parameter ε, defined as ε = [
Ra

/
Racr − 1

]1/2, as follows:

[ψ, T ] = [ψB, TB] + ε [ψ1, T1] + ε2 [ψ2, T2] + ε3 [ψ3, T3] + O(ε4), (22)

δ = δ0 + εδ1 + ε2δ2 + . (23)

The expansion (23) is consistent with the basic solution (TB = 1 − z and VB = 0)
provided that δ0 vanishes at the lowest order. In addition, unless δ1 vanishes, the equa-
tions obtained at orderε andε2 present a singularity in the solution. These observations
indicate that the effects of vibration should be introduced at the lowest possible order
i.e., δ ≈ ε2δ1, thereby enabling consistency. By using the definition for ε given above,
the Rayleigh number may be expanded as Ra = Racr (1 + ε2), where Racr = 4π2

is the critical Rayleigh number for a porous layer heated from below and subjected to
gravity only. In addition we allow time variations only at the slow time scale � = ε2t
in order to prevent exponential growth and reaching finite values for the amplitude at
the steady state. Substituting the expansion (22), as well as the slow time scale, just
defined, into the system (20), (21) and equating like powers of ε produces a hierarchy
of linear partial differential equations to each order.

(
ε2

V a

�

��
+ 1

)

∇2ψm + Racr (1 + δ sin (�0�))
�Tm

�x
= Hm, (24)

ε2 �Tm

��
+ �ψm

�z

�Tm

�x
− �ψm

�x

�Tm

�z
− ∇2Tm = Jm, (25)

where �0 = �
/
ε2 represents the large frequency scaling. To order, ε, H1 = J1 = 0

and the solution at order ε is given by

ψ1 = A1 sin(sx) sin(π z), T1 = B1 cos(sx) sin(π z). (26)

The relationship between the amplitudes is obtained by substituting Eq. (26) in the
system (24), (25) and is found to be

A1 = −π
(α + 1)√

α
B1. (27)

The amplitude A1 remains undetermined at this stage, and will be determined from
a solvability condition of the order O(ε3) equations at order ε3. The critical Rayleigh
number and wavenumber to the leading order are found to be Rcr = 4 and αcr = 1.
The equations to orderε3 yields a solvability condition which constrains the amplitude
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of the solution at order ε and enables its determination. The solvability condition
is obtained by decoupling the governing equation at order ε3 to yield a single non-
homogenous partial differential equation for T3 with corresponding forcing functions
which include the O (ε), and O

(
ε2

)
solutions (Govender 2005b) as follows,

∇4T3 + Racr
�2T3

�x2
= �H3

�x
+ ∇2 J3, (28)

where H3 = −
(

Racr (t)
�T1

�x
+ 1

V a

�∇2ψ1

�τ

)

, (29)

and, J3 = �T1

�τ
+ �ψ1

�z

�T2

�x
+ �ψ2

�z

�T1

�x
− �ψ1

�x

�T2

�z
− �ψ2

�x

�T1

�z
. (30)

Setting the coefficients of the secular terms in Eq. (28) to zero, yields the following
Ginzburg–Landau equation for the leading order O(ε) amplitude,

d B

dt
= μ0 (1 + δ1 sin (�t)) B − χ B3, (31)

where B = εB1. The following notation is used in Eq. (31),

μ0 = χξ, χ = π4γ (α + 1)2

4 (α + 1 + γ )
, ξ = 4Rcrα

π2 (α + 1)3 ε2. (32)

Equation (31) is in the form of Bernoulli’s differential equation and the solution to
this type of equation is of the form,

B = eμ0(t−δ1/� cos(�t))
[
2χ

∫
eμ0(t−δ1/� cos(�t))dt + C1

] , (33)

where B (0) = b0 and C1 is an integration constant. When δ2 → 0, the analytical
solution to Eq. (33) is given as ,

B = b0ξ
1/2eμ0t

[
ξ − b2

0

(
1 − e2μ0t

)]1/2
. (34)

When t → ∞, the classic steady state solution is found to be B = 0 or B =
b0

/|b0|ξ 1/2 . If δ2 �= 0, we observe that the integral in Eq. (34) cannot be evaluated
to obtain a closed form solution, and it is for this reason that we resort to a numerical
solution of Eq. (34) by adopting the Runge–Kutte method. For a time step of 0.079
it was shown by Govender (2005b) that the analytical and numerical solutions were
in perfect agreement for the case of no vibration (δ2 = 0). A time step of 0.079, will
be retained for simulations corresponding to δ2 �= 0. Figure 6 shows the amplitude
B versus time for � = 0, � = 100 and � = 250.
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It can be clearly seen that increasing the frequency from � = 0 to � = 100
reduces the convection amplitude B. For � = 250, it can be observed that for
t >≈ 7.5, the conduction solution (B = 0) is stable. Figure 7 shows the amplitude
B versus time for � = 0, � = 300 and � = 350.

It can be seen for � = 300 that beyond t ≈ 20 the conduction solution is stable,
whilst for � = 350, the conduction solution sets in as the stable mode as early
as t ≈ 2.5. Figure 8 shows the amplitude B versus time for � = 0, � = 370
and � = 450. Figure 8 shows that the conduction solution is stable beyond t ≈ 5
for � = 370 and � = 450. Further simulations were performed for � = 500,
� = 750, � = 1500 and � = 3000, and it was discovered that the basic solution

Fig. 6 Convection amplitude
B versus time t for
� = 0, 100, 250
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Fig. 7 Convection amplitude
B versus time t for
� = 0, 300, 350
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Fig. 8 Convection amplitude
B versus time t for
� = 0, 370, 450
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(B = 0) is the only possible solution. The results depicted in Figs. 6–8 clearly
indicate that increasing the vibration frequency stabilizes the convection by causing
the convection amplitude to approach zero.

5 Pendulum Analogy

Govender (2006) demonstrated that the temperature in a porous layer heated from
below may be likened to the motion of an inverted pendulum with an oscillating
pivot point. Figure 9 below shows the inverted pendulum that will be considered.
With reference to Fig. 9, one may write the net velocity as,

ϑ2 = (Lϕ̇)2 + ẏ2 − 2Lϕ̇ ẏ sin ϕ. (35)

Using the above definition we may write the equations for the kinetic, damping and
potential energies respectively:

Kinetic energy : K E = 1

2
m

(
(Lϕ̇)2 + ẏ2 − 2Lϕ̇ ẏ sin ϕ

)
, (36)

Damping energy : DE = 1

2
c
(
(Lϕ̇)2 + ẏ2 − 2Lϕ̇ ẏ sin ϕ

)
, (37)

Potential energy : P E = − (mgL (1 − cos ϕ) + mgy) . (38)

Substituting in Lagranges equation,

d

dt

(
�K E

�ϕ̇

)

− �K E

�ϕ
+ �P E

�ϕ
+ �DE

�ϕ
= 0, (39)
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Fig. 9 The inverted
pendulum with an oscillating
pivot point
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Fig. 10 Mathieu chart
showing the stability of an
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and simplifying the result yields,

d2ϕ

dt2
+ 2λ�n

dϕ

dt
−

[
�2

n + 2λ�n�
κ

L
cos (�t) − �2 κ

L
sin (�t)

]
ϕ = 0, (40)

which represents the equation for the motion of the inverted pendulum of length L with
an oscillating pivot point, where the vertical motion of the pivot is given as κ sin (�t).
The above equation for the pendulum motion is valid for planar motion at small angles
ϕ from the vertical. Also the un-damped natural frequency is given as �n = √

g∗/L ,
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and the damping ratio is defined as ξ0 = c
/

2m�n . Both Eqs. (13) and (40) may be cast
into the canonical form of the Mathieu equation, as outlined by McLachlan (1964),
and is given as

d2 X

dτ 2
+ [a + 2q cos (2τ )] X = 0. (41)

The solution to Eq. (41) follows the form X = θ (τ ) eστ where θ (τ ) is a periodic
function with a period ofπ or 2π andσ is a characteristic exponent which is a complex
number and is a function of a and q respectively. Incidentally the damping terms
in Eqs. (13) and (40) has a stabilizing effect on the solutions and the exponential
behavior is no longer of the form eσ t . Following McLachlan (1964): for the pendulum,
the argument of the exponential factor is

(
1
/

2 · σ · �
/

�n − ξ0
)

�0t , whilst for the
gravity modulated porous layer heated from below, the argument of the exponential
factor is

(
1
/

2 · σ� − p
)

t . The stability criterion for the inverted pendulum is of
the form ξ0 ≥ 1

/
2 · σ · �

/
�n whilst for the gravity modulated porous layer p ≥

1
/

2 · σ� . For the inverted pendulum with an oscillating pivot point:

2√−a
= 1

(
�n

�

)
(
1 + ξ 2

0

)1/2
,

1

2
q = δ

L
, σ = 2�n

/
�. (42)

Equating the relations for 1/2q for both the oscillating porous layer and the pendu-
lum, and noting that �TC = �ρ

/
ρ << 1 yields, 1

/
2 q = κ

/
L = F (α) γ R̃κ Fr =

F (α)·κ ·φ∗
/
π4·β∗�TC , which implies that the roll cell behaves like a very long pen-

dulum with an effective dimensionless length of L = 1
/(

F (α) · κ · φ∗
/
π4 · β∗�TC

)
.

Rewriting Eq. (11) as, a = −4
(
�n

/
�

) (
1 + ξ 2

0

)1/2, one clearly observes that as �
is increased, the absolute value for a gets smaller and smaller, up to a point when a is
identically zero, at which point the frequency � → ∞. Choosing some exploratory
value for δ

/
L (or 1/2q) in Fig. 10, we may observe, by means of reference plane

A − A′ which straddles the unstable and stable zones, the effects of frequency of
oscillation �. Point A is incidentally in the unstable zone whilst point A′ is in the
stable zone. Increasing the frequency from some small/moderate value at point A
in the unstable zone allows a shift towards point A′ in the stable zone. This clearly
shows that a, statically unstable, inverted pendulum may be stabilized by oscillating
the pivot point in the vertical plane at some frequency �. However if some larger
value of δ

/
L (or 1/2q) is selected, say δ

/
L = 1, we observe by means of reference

plane B − B ′ − B ′′ ,which straddles the unstable; stable; and unstable zones respec-
tively, that although increasing the frequency stabilizes the inverted pendulum up
to point B ′, very large pivot frequencies tends to destabilize the inverted pendulum.
In essence we have observed via the second case that for larger values of 1/2q a
transition from synchronous to subharmonic solutions may occur as observed by
Govender (2005a, b) for the gravity modulated porous layer heated from below.
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The following analogy is thus evident: The temperature in a gravity modulated
porous layer heated from below (R > 0, “top heavy”-unstable) is similar to the
motion of a simple pendulum with an oscillating pivot point (inverted – unstable).

6 Conclusion

The author presents results dealing with the investigation of the effect of gravity
modulation on the stability of convection in a differentially heated porous layer with
particular focus on the transition from synchronous to subharmonic solutions. In ad-
dition a weak non linear analysis is also presented together with the development of
an analogy between the oscillating porous layer and a pendulum. The linear stability
analysis is performed with the aid of the Mathieu stability charts and it is discovered
that gravity modulation stabilizes the convection for the region of synchronous solu-
tions but slowly destabilizes convection for the region of subharmonic solutions. The
transition point from synchronous to subharmonic solutions is found to be �t

∼= 1225.
It is proposed that the results of the current work may be extended for use in the investi-
gation of the stability of solutal convection in solidifying mushy layers, with a view to
preventing the onset of freckle formation in binary alloys, Pillay & Govender (2005)

Analytical results are also presented for the weak non-linear analysis which in-
cluded an extended Darcy equation formulation. The numerical results revealed that
increasing the frequency of vibration causes the amplitude of convection to approach
zero, i.e. vibration stabilizes the convection.
Finally the author also showed that an analogy exits between the gravity modulated
porous layer heated from below and the inverted pendulum with an oscillating pivot
point. It is shown that the temperature in a gravity modulated porous layer subjected
to vibration (R > 0 -“top heavy” unstable) may be likened to the motion of a pendu-
lum (inverted-unstable). In addition it was also pointed out that the roll cell behaves
similar to a very long pendulum.
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Thermal Vibrational Convection in a Porous
Medium Saturated by a Pure or Binary Fluid

Yazdan Pedramrazi, Marie-Catherine Charrier-Mojtabi
and Abdelkader Mojtabi

1 Introduction

1.1 What is Thermal Vibration?

The importance of mechanical vibration, as a source of pattern generating mech-
anism on the surface of a container filled with liquid, was recognized as early as
the beginning of the 19th century by Faraday (1831). However, its importance as a
mechanism controlling the convective motion has only been recognized during the
20th century.

Originally, mechanical vibration was used in mathematical modeling aimed at in-
creasing the stability threshold of thermo-fluid system (Gershuni et al. 1970, Gresho
and Sani 1970). The space exploration and especially the benefits expected from
material production in space stations accelerated its development (Alexander 1994).

Formally, the thermo-vibrational convection studies concern the form of a mean
flow in a confined cavity filled with a fluid presenting temperature non-homogeneities.
Compared to the gravity-induced convection, this type of convection presents the
advantage that it may exist under weightlessness condition.

Under micro-gravity conditions, the gravitational force is reduced drastically.
However this situation may cause other forces, which under earth conditions are
of minor importance, to be more significant.
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1.2 A Brief History of Thermal Vibration in Porous Media:
Suppression of Motion and Generation of Motion

The theory of thermo-vibrational convection in the fluid medium is summarized by
Gershuni and Lyubimov (1998) which mainly covers Russian studies in this field.
Contrary to the thermo-vibrational problems in fluid media, studies of the vibra-
tional counterpart in porous media are quite recent.

Most of the studies concerning thermo-vibrational convection in porous media
are theoretical and are focused on the linear stability analysis. The preferred method
is the time-averaged method (see Simonenko and Zenkovskaya (1966) for details).
In this method the time dependent acceleration does not appear explicitly in the
governing equations. Furthermore, this method provides us with closed form so-
lution by which it is possible to obtain the stability threshold. Given the fact that
thermal vibration problems generally depend on many parameters, the existence
of some closed form relation are quite beneficial in understanding these problems.
For porous media saturated by pure fluid, Zenkovskaya (1992) studies the effect
of vertical vibration (parallel to the temperature gradient) on the thermal stability
of the conductive solution. The geometry considered is an infinite horizontal porous
layer. Zenkovskaya and Rogovenko (1999) consider the same problem with variable
direction of vibration. The results of their linear stability analysis show that only the
vertical vibration always has a stabilizing effect. These authors find that, for other
directions of vibration, depending on the vibrational parameter and the angle of
vibration, stabilizing and destabilizing effects are possible.

Malashetty and Padmavathi (1997) consider the same geometry with finite fre-
quency. They use the Brinkman–Forcheimer model in their momentum equation. It
has been found that the low frequency g-jitter has a significant effect on the stability
of the system and that the effect of gravity modulation can be used to stabilize the
conductive solution.

In a confined porous cavity heated from below, Bardan and Mojtabi (2000)
consider the effect of vertical vibration. The vibration is in the limiting range of
high frequency and small amplitude, which justifies their use of the time averaged
method. The transient Darcy model is used in their momentum equation. It is shown
that vibration reduces the number of convective rolls. Their results show that, in
order to apply the time-averaged formulation effectively, the transient Darcy model
should be kept. Further, they find that vibration increases the stability threshold.
They also perform a weakly nonlinear stability analysis which indicates that primary
bifurcations are of a special type of symmetry-breaking pitch fork bifurcation.

Pedramrazi et al. (2002) and Charrier-Mojtabi et al. (2003) discuss the validity
of the time-averaged formulation in the Horton–Rogers–Lapwood problem using
two different approaches; the time-averaged and the direct method. They also ex-
plain, from a physical point of view, the necessary assumptions for performing the
time-averaged method. They further study the stability of the conductive solution
via the Mathieu equation. Charrier-Mojtabi et al. (2006) revisited the horizontal
layer and confined cavity and found a relation between stability analysis of these
two problems via Mathieu equation. Bardan et al. (2004) revisited the effect of
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vertical vibration on confined cavity and they argued to obtain well-interpreted phys-
ical results, vibrational Rayleigh number should be redefined. Pedramrazi (2004)
emphasized the restrictions of time-averaged method and showed the importance
of sub-harmonic solutions. Govender studied the effect of vertical vibration on
a horizontal porous layer (Pedramrazi 2004, Govender 2004, 2005a,b, 2006a,b,
Pedramrazi et al. 2005). His results are in agreement with Palm et al. (1972).

2 The Effect of Vibration in Horizontal Porous Layer Saturated
by a Pure Fluid

2.1 Infinite Horizontal Porous Layer

2.1.1 Mathematical Formulation

The problem of the onset of thermal instability in an infinite horizontal porous layer
heated from below is well suited to illustrate mathematical and physical nature of
thermo-vibrational problem.

The geometry of the problem consists of two horizontal parallel plates having
lateral infinite extension (Fig. 1). The two rigid and impermeable plates are kept
at two constant but different temperatures T1 and T2. The two plates are placed in a
distant H apart. The porosity and permeability of the porous mesh forming the layer
are ε and K respectively.

The porous medium is considered homogenous and isotropic. The porous layer
and its boundaries are subjected to a harmonic vibration. As the objective is to study
the onset of convection, the Darcy model can be used in the momentum equation.
The fluid saturating porous media is assumed to be Newtonian and to satisfy the
Oberbeck–Boussinesq approximation. The thermophysical properties are consid-
ered constant except for the density of fluid in the buoyancy term which depends
linearly on the local temperature:

ρ(T ) = ρ0 [1 − βT (T − T2)] . (1)

where T2 is taken as the reference state, and the coefficient of volumetric expansion
βT is assumed constant (βT > 0). In a coordinate system linked to the layer, the grav-
itational field is replaced by the sum of the gravitational and vibrational accelerations

Fig. 1 Problem definition
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g → −gk +bω2 sin(ωt)n. In this transformation n is the unit vector along the axis of
vibration, b is the displacement amplitude and ω is the angular frequency of vibration.
After making standard assumptions (local thermal equilibrium, negligible viscous
heating dissipations. . .), the governing equations may be written as:

∇ · V = 0,

ρ0

ε

�V
�t

= −∇ P + ρ0 [βT (T − T2)] (−g k + bω2 sin ω t n) − μ f

K
V, (2)

(ρc)∗
�T

�t
+ (ρc) f V · ∇T = λ∗∇2T .

The boundary conditions corresponding to this system are written as:

Vz(x, z = 0) = 0, T (x, z = 0) = T1,

Vz(x, z = H ) = 0, T (x, z = H ) = T2.
(3)

In (2), μ f is the dynamic viscosity of fluid, (ρc)∗ represents the effective volumic
heat capacity, (ρc) f is the volumic heat capacity of fluid and �∗ is the effective
thermal conductivity of saturated porous media.

2.1.2 Time-Averaged Formulation

In order to study the mean behavior of mathematical system (1–2), the time-
averaged method is used. This method is adopted under the condition of high-
frequency and small-amplitude of vibration. Under these conditions, it is shown that
two different time scales exist, which make it possible to subdivide the fields into
two different parts. The first part varies slowly with time (i.e. the characteristic time
is large with respect to vibration period) while the second part varies rapidly with
time and is periodic with period τ = 2π/ω. Simonenko and Zenkovskaya (1966)
used this procedure in thermo-vibrational problem in a horizontal fluid layer under
the action of vertical vibration. So we may write:

V(M, t) = V̄(M, t) + V′(M, ω t),

T (M, t) = T̄ (M, t) + T ′(M, ω t), (4)

P(M, t) = P̄(M, t) + P ′(M, ω t).

In the above transformations (V̄, T̄ , P̄) represent the averaged fields (for a given

function f(M, t), the average is defined as f̄ (M, t) = 1
τ

t+τ /2∫

t−τ /2
f (M, s) ds).

On replacing (4) in (2), we obtain two coupled systems of equations, one for the
mean flow and the other for oscillatory one.

By making some assumption, we may express the oscillating fields in terms of
the averaged ones. This procedure is detailed elsewhere (Mc Lachlan 1964).
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Governing Time-Averaged Equations

Byintroducing the referenceparameter, T1−T2 for temperature, H forheight,σ H 2/a∗
for time, (a∗ = �∗/(ρc) f is theeffective thermaldiffusivity),a∗/H forvelocity,βT �T
for W and μa∗/K for pressure, we obtain dimensionless governing equation :

∇ · V̄∗ = 0,

B
�V̄∗

�t
= −∇ P̄∗ + RaT T̄ ∗k + Rav(W · ∇)T̄ ∗n − V̄∗,

�T̄ ∗

�t
+ V̄∗ · ∇ T̄ ∗ = ∇2T̄ ∗, (5)

∇ · W∗ = 0,

∇ × W∗ = ∇ T̄ ∗ × n

The corresponding boundary conditions for the mathematical problem can be
written as:

∀x∗, for z∗ = 0, V̄∗
z = 0, T̄ ∗ = 1, W∗

z = 0,

∀x∗, for z∗ = 1, V̄∗
z = 0, T̄ ∗ = 0, W∗

z = 0.
(6)

where:

RaT = KgβT �T H

νa∗
, Rav = (δ∗FrF RaT ω∗)2

2B
,

(

δ∗ = b

H
, FrF = a2

∗
gH 3�2

, ω∗ = ω
�H 2

a∗
, B = a∗K

εν�H 2
= τhyd

τther

)

In the above relations RaT is the thermal Rayleigh number, Rav is the vibrational
Rayleigh number ω∗ is the dimensionless pulsation, B is the transient coefficient,
Fr F is the filtration Froude number and δ∗ is the dimensionless amplitude. It should
be added that these parameters (Fr, δ∗) are originally used in a horizontal fluid layer
under vertical vibration in the pioneering work of Gresho and Sani (1970).

It should be noted that W is solenoidal field resulting from the Helmholtz decom-
position ((T̄ − T2)n = W + ∇ϕ., W and ∇φ are soloneidal and irrotational parts).

Linear Stability Analysis of the Time-Averaged System of Equations
(Case of Vertical Vibration)

In the presence of vertical vibration (n = k), mechanical equilibrium is possible.
In order to find the necessary condition for thermal stability of the problem, we set
the velocity field equal to zero in (4). Then the steady-state distribution of fields are
sought.

The equilibrium state corresponds to:

T̄ ∗
0 = 1 − z∗, W∗

0 = 0. (7)
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For stability analysis, the fields are perturbed around the equilibrium state (for sim-
plicity bars are omitted):

V∗ = 0 + v′, T ∗ = T ∗
0 + T ′, P∗ = P∗

0 + p′, W∗ = W∗
0 + w′.

Replacing the above equations in system (4) and (5), and after eliminating the non-
linear terms we obtain:

∇ · v′ = 0,

B
�v′

�t∗ = − ∇ p′ + RaT T ′k + Rav(w′ · ∇T ∗
0 + W∗

0 · ∇T ′)k − v′,

�T ′

�t∗ + v′ · ∇T ∗
0 =∇2T ′, (8)

∇ · w′ = 0,

∇ × w′ = ∇T ′ × k.

with corresponding boundary conditions:

v′
z(x∗, z∗ = 0) = 0, T ′(x∗, z∗ = 0) = 0, w′

z(x∗, z∗ = 0) = 0,

v′
z(x∗, z∗ = 1) = 0, T ′(x∗, z∗ = 1) = 0, w′

z(x∗, z∗ = 1) = 0.
(9)

Introducing the stream functions Ψ , F , one can write:

v′
x = �ψ

�z∗ , v′
z = − �ψ

�x∗ , w′
x = �F

�z∗ , w′
z = − �F

�x∗ . (10)

On considering the 2D disturbances which are developed in normal modes:

(ψ, T ′, F) = (φ(z∗), θ (z∗), f (z∗)) exp(−λt∗ + ikx∗) (11)

in which k is the wave number in the horizontal direction 0x. Replacing (10) in (8)
and (9), and eliminating pressure leads one to:

(−λB + 1)

(
d2φ(z∗)

dz∗2
− k2φ(z∗)

)

= −ik RaT θ (z∗) + k2 Rav f (z∗),

− λθ (z∗) + ikφ(z∗) = d2θ (z∗)

dz∗2
− k2θ (z∗), (12)

− k2 f (z∗) + d2 f (z∗)

dz∗2
= −ikθ (z∗).

System (12) is a spectral amplitude problem where λ is the eigenvalue of the system,
which depends on:

λ = λ(RaT , Rav, k, B)
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Generally, λ is a complex number (λ = λr + iλi ).
The mathematical system (21), admits exact solutions of the form:

(φ(z∗), θ (z∗), f (z∗)) = (φ, θ, f ) sin nπ z∗ (13)

By substituting (13) in (12), the necessary condition for obtaining marginal stability
(λ = 0):

RaT = (π2 + k2)2

k2
+ Rav

k2

π2 + k2
. (n = 1) (14)

One can understand from the above equation that, under micro-gravity (RaT = 0),
the system is always stable.

Under the condition of vibration in presence of gravity, we can replace Rav with
(δ∗Fr Fω∗ RaT )2/2B. From (13), we get:

RaT = B

δ∗2 Fr2
Fω∗2

k2

k2 + π2

⎡

⎣1 −
√

1 − 2
δ∗2 Fr2

Fω∗2

B
(k2 + π2)

⎤

⎦ . (15)

Another interesting feature of this equation is that it gives additional information:

ω∗
max =

√
B/2

δ∗FrFπ
. (k → 0) (16)

Relation (16) gives a possible maximum frequency for achieving absolute stabi-
lization for high-frequency and small-amplitude vibration.

Weakly Non-linear Stability Analysis of the Time-Averaged System of Equations

In order to determine the characteristics of the solutions near the bifurcation point,
the normal form of amplitude equation is sought.

The weakly nonlinear stability analysis of the time-averaged equations is ex-
pressed in terms of (ψ, θ, F) as follows:

�

�t

⎡

⎣
B∇2ψ

θ

0

⎤

⎦ =
⎡

⎣
−∇2 −RaT

�
�x∗ −Rav

�2

�x∗2

− �
�x∗ ∇2 0
0 �

�x∗ ∇2

⎤

⎦

︸ ︷︷ ︸
L

⎡

⎣
ψ

θ

F

⎤

⎦ +
⎡

⎣
N1

N2

0

⎤

⎦ (17)

in which L represents a linear operator whereas N1 and N2 are nonlinear operators:

N1 = −Rav

[
�2θ

�x∗2

�F

�z∗ + �θ

�x∗
�2 F

�x∗�z∗ − �2 F

�x∗2

�θ

�z∗ − �F

�x∗
�2θ

�x∗�z∗

]

,

N2 = �ψ

�x∗
�θ

�z∗ − �ψ

�z∗
�θ

�x∗ .

(18)
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In order to study the onset of thermo-vibrational convection near the critical thermal
Rayleigh number, the linear operator and the solution are expanded into power series
of the positive small parameter η, defined by:

RaT = RaT c + η RaT 1 + η2 RaT 2 + · · · (19)

Thus:

[ψ, θ, F] = η [ψ1, θ1, F1] + η2 [ ψ2, θ2, F2] + · · ·
L = L0 + ηL1 + η2L2 + · · · (20)

(L0 is the operator which governs the linear stability). It should be noted that, in the
operators, Rav is also expanded:

Rav = (δ∗FrFω∗)2

2B

[
Ra2

T c + 2ηRaT 1 RaT c + η2(2RaT c RaT 2 + Ra2
T 1) + · · ·]

(21)

By replacing (19–21) in (17), and after introducing time transformation:

�

�t∗ = η
�

�t∗
1

+ η2 �

�t∗
2

+ · · ·

By equating the same power of η we obtain a sequential system of equations.
At each order of η, a linear eigenvalue problem is found. At the first order (η) the

perturbation is written in the following form:

⎡

⎣
ψ1

θ1

F1

⎤

⎦ = A(t∗
1 , t∗

2 , ...)

⎡

⎣
(π2 + k2)/k2 sin π z∗ sin kx∗

−(π2 + k2)/k sin π z∗ cos kx∗

sin π z∗ sin kx∗

⎤

⎦ . (22)

The amplitude A depends on slow time evolutions (t∗
1 , t∗

2 , . . .).
At the second order η2, the existence of a convective solution requires that the

solvability lemma be satisfied, in other words there must be a non-zero solution for
the adjoint of L0 associated with identical boundary conditions. From the adjoint
operator, we obtain:

Ra∗
T c = RaT c.

Also, we find RaT 1 = 0 and amplitude A does not depend on time scale t1∗.
At the third order η3 by invoking the solvability condition and the Fredholm

alternative we obtain the amplitude equation:

d A

dt∗
2

= α(A − β A3).
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in which α and β are defined as:

α = k2

(k2 + π2)2

[

(k2 + π2) − (δ∗FrFω∗)2

B
k2 RaT c

]

RaT 2,

β =
(π2 + k2)2

[

1 − k4(δ∗FrFω∗)2

B(π2 + k2)3
Ra2

T c

]

8RaT 2

[

(π2 + k2) − (δ∗FrFω∗)2

B
k2 RaT c

] .

(23)

In α and β, RaT 2 is defined as RaT 2 = (RaT − RaT c)/η2 which is the control
parameter.

When there is no vibrational effect, we find that the amplitude of thermo-
convective flow near the bifurcation point is proportional to:

A ≈
√

RaT − RaT c

which is in agreement with Palm et al. (1972). Under the effect of vibration α and
β are both positive, which results in a supercritical pitchfork bifurcation.

2.1.3 Linear Stability Analysis from Direct Formulation

In this section, we study the stability of the solution corresponding to governing
equations where the time dependent buoyancy term appears explicitly. As was stated
before, when the direction of vibration is parallel to gravitational acceleration, me-
chanical stability is possible. This equilibrium is characterized by a linear temper-
ature and parabolic pressure distribution. In order to study linear stability, the field
variables are infinitesimally perturbed around the motionless equilibrium state. The
perturbed system of equation becomes:

∇ · ṽ = 0,

ρ0

ε

�ṽ
�t

= −∇ p̃ + ρ0βT θ̃ (g + bω2 sin ωt) k − μ

K ṽ,

σ
�θ̃

�t
+ ṽ · ∇T0 = a∗∇2θ̃ .

(24)

By eliminating the pressure in the momentum equation and by substituting the
normal modes as:

ṽz = X (t) eik x
H sin

z

H
π, θ̃ = h(t)eik x

H sin
z

H
π. (25)

in the resulting equations, we get:

d2h

dt2
+

[ a∗
σ H 2

(k2 + π2) + εν

K

] dh

dt
+

[
ενa∗

K H 2σ
(k2 + π2) − εβT �T

σ H

k2

k2 + π2
(g + bω2 sin ωt)

]

h = 0.

(26)
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The above equation is similar to a mechanical pendulum with oscillating support:

••
Y +2ξωn

•
Y ±(ωn

2 − ω2 δ

�
sin ωt) Y = 0. (27)

in which ωn represents the natural frequency, ξ damping ratio, ω vibrational fre-
quency, � pendulum length and finally δ the amplitude of vibration. The plus sign in
(27) corresponds to a normal hanging pendulum while the negative sign corresponds
to an inverted pendulum. Equalizing the vibrational effect in the two systems gives:

�e f f ≈ H
ε
σ
βT �T

. (28)

which is the effective length of the equivalent system. In addition it is clear that this
effective length is quite long (βT ΔT << 1).

Equation (26) can be written in dimensionless form:

B
d2h∗

dt ∗2
+ [

B(k2 + π 2) + 1
] dh∗

dt∗ +
[

(k2 + π 2) − RaT
k2

k2 + π 2
(1 + R sin ω∗t∗)

]

h∗ = 0.

(29)

where B, RaT , ω∗ are defined as in the previous section. Also we can define R as
δ∗FrFω

∗2. For the above equation two different cases are distinguished:

(i) Bω∗ << 1
In this case, the governing equation is written as:

dh∗

dt∗ +
[

(π2 + k2) − RaT
k2

k2 + π2
( 1 + δ∗FrFω

∗2 sin ω∗t∗)

]

h∗ = 0. (30)

The solution of this first order differential equation with periodic coefficient is:

h∗ = h∗
0 exp −

[

(π2 + k2) − k2

k2 + π2
RaT

]

t∗ · exp

(

2δ∗ FrFω∗ k2

k2 + π2
RaT sin2 ω∗t∗

)

,

h∗ (0) = h∗
0.

(31)
When there is no vibration (δ∗FrFω∗ = 0), from (30) the classical result of

RaT c = 4π2 for marginal stability may be deduced. In the presence of vibration,
if the layer is heated from above the solution is always stable. This is true because,
in this situation, the arguments in exponential functions (31) are always positive.
When the layer is heated from below, the solution is composed of two parts, see
(30) the second part of which can be considered as a positive bounded periodic
function. Therefore, for marginal stability, the first part is important and gives RaT =
4π2. In other words, vibration has no effect on stability threshold. Physically from
the mechanical analogy, this case corresponds to a pendulum in which the viscous
damping is much larger than angular acceleration. Strong damping is able to destroy
the oscillatory movements.
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(ii) Bω∗ >> 1
Using transformation h∗(t∗) = e−mt∗

M(t∗) equation (29) is cast into Mathieu’s
equation (m being (π2 + k2 + 1/B)/2):

d2 M(τ )

dτ 2
+ (A − 2Q cos 2τ )M(τ ) = 0,

(
ω∗t∗ = 2τ − π

2

)
(32)

in which A and Q are:

A = π2 + k2

B
− m2 − k2

B(π2 + k2)
RaT , Q = 2k2

B(π2 + k2)
δ∗FrF RaT . (33)

Detailed analysis of the stable regions for this equation can be found elsewhere
(Mc Lachlan 1964, Cunningham 1958, Jordan and Smith 1987). They divide the
domain into alternate stable and unstable regions. In order to solve (32), the Floquet
theory is used, which considers the solution as:

M = R(τ )eμτ .

in which R(τ ) is a periodic function having period π or 2π , the parameter μ is the
Floquet exponent and the marginal stability condition is m = μω∗/2. The details of
this method can be found elsewhere Aniss et al. (2000).

To obtain the critical thermal Rayleigh and wave numbers for marginal stability,
all the working parameters (B, ω∗, δ∗, FrF ) are fixed except RaT and k. Then we
search for the minimum RaT vs k. It can be concluded that, for given dimensionless
amplitude δ∗ and dimensionless frequency of vibration ω∗, there are two modes
of convection onset, namely harmonic (with dimensionless frequency ω∗) and sub-
harmonic (with dimensionless frequency: ω∗/2) (Fig. 2)

For heating from below (RaT > 0, which corresponds to A < 0), two different
behaviors for harmonic and sub-harmonic modes are distinguished: for harmonic
mode with increasing ω∗, thermal Rayleigh number RaT increases. This means that
vibration has a stabilizing effect which depends significantly on dimensionless am-
plitude δ∗. On decreasing δ∗, the stable region with harmonic response widens. If
the frequency is increased, the critical wave number for this mode decreases. For
the sub-harmonic mode we have a different scenario, the vibration has a destabiliz-
ing effect, in other words RaT c decreases and ultimately reaches a limiting value.
The critical wave number in this mode increases with increasing dimensionless
frequency. It should be noted that the intersection of harmonic and sub-harmonic
modes corresponds to different values of wave number. For other heating condition,
one may consult Cunningham (1958).

2.1.4 Comparison of the Two Methods

The objective of this section is to compare the two approaches of stability analysis in
the thermo-vibrational problem, namely the time-averaged and the so-called direct
methods. The time-averaged method under high frequency and small amplitude
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Fig. 2 The effect of vibrational frequency on the critical Rayleigh Number RaTc, for different
values of b/H: harmonic response (syn) and sub-harmonic response (sub)

vibration is considered in the previous section. As has been stated before, this lim-
iting case permits us to subdivide the fields (temperature, velocity and pressure)
into two parts. The question is under which condition we can find this characteristic
of solution (subdivision of fields) if we adopt the direct method. Let us examine
what will happen if we apply the assumptions needed for finding the criteria of high
frequency and small amplitude to the coefficients of Mathieu’s equation. We write
Mathieu’s equation and its coefficients A and Q as:

d2 M(τ )

dτ 2
+ (A − 2Q cos 2τ )M(τ ) = 0, (34)

A = −
[ a∗
σ H 2ω

(
k2 + π2

) + εν

Kω

]2
+ 4

( εν

Kω

) ( a∗
ωσ H 2

) (
k2 + π2

)

− 4

(
εβT �T g

σ H ω2

)
k2

k2 + π2
,

Q = 2

(
ε

σ
βT �T

b

H

)
k2

k2 + π2
.

Let us examine A and Q closely:
The first and second terms in A involve the ratios of vibrational time scale to con-

ductive and viscous time scales. The third term in A involves the ratio of vibrational
time scale to pseudo buoyancy time scale.
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Q involves a kind of amplitude ratio. Based on hypothesis of high-frequency and
small amplitude all these terms are very small (vibration time scale is the smallest
time scale and amplitude of temperature oscillation should be also small) so A and
Q tend to zero. A regular perturbation method in which Q is considered as a small
parameter may be used:

M(τ ) = M0(τ ) + QM1(τ ) + Q2 M2(τ ) + · · ·
A = A0 + Q A1 + Q2 A2 + · · · (35)

Replacing the above expansions in Mathieu’s equation and invoking solvability con-
dition results:

A = − Q2

2
, (36)

M = a0 − a0

2
cos 2τ. (37)

(a0 is an arbitrary constant)
On replacing A and Q in the (36) and using the fact that μ = [a∗(k2 +

π2)/σ H 2ω + εν/Kω)] = 0, we find:

RaT c = (π2 + k2)2

k2
+ Rav

k2

k2 + π2
. (Rav = (δ∗FrFω∗ RaT )2

2B
) (38)

Which means that imposing the assumptions needed for the averaging method on
Mathieu’s equation gives identical results to the time-averaged formulation. The
most interesting thing about this fact is that the time-averaged method gives only
harmonic (with dimensionless frequency ω∗) mode and is not able to give sub-
harmonic mode.

2.1.5 Effect of the Direction of Vibration

Zenkovskaya and Rogovenko (1999) study the effect of the direction of vibra-
tion on the onset of convection. They use the time-averaged formulation and dis-
cuss several physical situations. When the direction of vibration is not parallel
to the temperature gradient, there exists a quasi-equilibrium; i.e. the mean ve-
locity is zero but the oscillating velocity is not zero. The equilibrium solution is
characterized by:

V0 = 0, T0 = 1 − z and W0x = (
1

2
− z) cos (α) (39)

where α is the angle between the vibration direction and the horizontal direction.
We study different physical situations:
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Fig. 3 Influence of the direction of the vibration on the values of the vibrational critical Rayleih
number Ravc (left) and the critical wave number kc (right)

The Onset of Convection Under Micro-gravity (RaT = 0)

One of the most interesting results reported in Zenkovskaya and Rogovenko (1999)
is that, if the direction of vibration is not parallel to the temperature gradient, there is
a possibility of convective motion under micro-gravity conditions. In this situation,
only vibrational controlling force is operational. Figure 3 shows the critical values
of the vibrational Rayleigh number (RaV ) and the critical values of wave number
(kc) as a function of α (the direction of vibration with respect to the heated plate). It
can be observed that, with increasing direction of vibration α, the domain of stability
increases. At the same time, the wave number decreases with increasing direction
of vibration. It should be emphasized that for α = π/2, i.e. the vertical vibration,
the equilibrium solution is infinitely linearly stable.

The Onset of Thermo-Vibrational Convection in the Presence of Gravity
(RaT 
= 0 and R 
= 0)

In this case, the two controlling mechanisms, namely the vibrational and gravita-
tional, are present. For the direction of vibrations 5π/16 < α < π/2, there are
some values of R for which maximum stability may be obtained. Another interest-
ing feature of the effect of direction of vibration is that for the layer heated from
above, we may obtain convective motions. This is in severe contrast to the classical
Horton–Rogers–Lapwood problem in which, for the case of the layer heated from
above, the layer is infinitely stable. A detailed summary of the effect of direction of
vibration can be found elsewhere (Cunningham 1958).



Thermal Vibrational Convection in a Porous Medium Saturated 163

2.2 Confined Cavity

2.2.1 Introduction

From few studies devoted to confined geometries under the effect of vibration, we
may mention Bardan and Mojtabi (2000). A numerical and an analytical study of
convective motion in a rectangular porous cavity saturated by a pure fluid and sub-
jected to a high-frequency and small-amplitude vibration is presented in Bardan
and Mojtabi (2000). The transient Darcy formulation is adopted in the momentum
equation. As vibration has high frequency and small amplitude, the relevant equa-
tions are solved by the time-averaged method. The same problem under arbitrary
frequency of vibration has been studied recently by Charrier-Mojtabi et al. (2006).
They conclude that the results found from stability analysis of infinite porous layer
can be used to calculate the onset of convection in a confined cavity.

2.2.2 Stability Analysis

Linear Stability Analysis

In the study (Bardan and Mojtabi 2000), the case of vertical vibration, i.e. α = π/2
has been considered. For this situation mechanical equilibrium is possible. To per-
form linear stability analysis, the field variables are infinitesimally perturbed around
the motionless equilibrium state. By eliminating the pressure in the momentum
equation and introducing the perturbed field as:

ṽz =
p∑

n=1

q∑

m=1

Xnm(t) sin nπ z sin
mπx

AL
, θ̃ =

p∑

n=1

q∑

m=1

hnm(t) sin nπ z sin
mπx

AL
. (40)

m and n are integer numbers and represent number of rolls in the x and z directions
respectively.

By defining Y = (Xmn(t), hmn(t)) with components as explained in (40), we
obtain the following equation:

dY

dt
= M0Y + N0Y sin ωt (41)

with M0 and N0 defined as:

M0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 1

B

RaT

B

(
mπ

AL

)2

(
mπ

AL

)2

+ (nπ )2

1 −
((

mπ

AL

)2

+ (nπ )2

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, N0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 − RaT

B
δFrω2

(
mπ

AL

)2

(
mπ

AL

)2

+ (nπ )2

0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(42a)
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Elimination of Xmn(t) in (40) and setting hmn = h, leads us to a damped Mathieu
equation:

B
d2h

dt2
+

[

B

((
mπ

AL

)2

+ (nπ )2

)

+ 1

]
dh

dt

+

⎡

⎢
⎢
⎢
⎣

((
mπ

AL

)2

+ (nπ2)

)

− RaT

(
mπ

AL

)2

(
mπ

AL

)2

+ (nπ )2

(1 − δFrFω
2 sin ωt)

⎤

⎥
⎥
⎥
⎦

h = 0.

(42b)

Dividing by B and using the transformation h(t) = e−λt M(t), the above equation is
cast into Mathieu’s equation (λ being [(mπ/AL )2 + (nπ )2 + 1/B]/2:

d2 M

dτ 2
+ (A − 2Q cos 2τ )M = 0 (ωt = 2τ − π/2) (43)

in which A and Q are defined as:

A = 4

Bω2

[(
mπ

AL

)2

+ (nπ )2

]

−
(

mπ
AL

)2

(
mπ
AL

)2
+ (nπ )2

RaT

Bω2
,

Q =
2
(

mπ
AL

)2

(
mπ
AL

)2
+ (nπ )2

RaT R̃

Bω2

(44)

If we compare (43) and (44) with the coefficients of the Mathieu equation obtained
from the linear stability analysis of an infinite horizontal layer of previous section,
we observe an interesting analogy between these two equations. It means that one
should set: mπ/AL = k (k being the wave number in the infinite direction (Ox) of
the layer). Thus we obtain:

RaT =

[(
mπ
AL

)2
+ (nπ )2

]2

(
mπ
AL

)2 +
(

mπ
AL

)2

[(
mπ
AL

)2
+ (nπ )2

] RaV (45)

with Rav = Ra2
T R2 and R2

v = (δ FrF w)2

2 B
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The critical values of RaT c and mπ/AL = kc are given as:

RaT c =
(
2 π2 − k2

c

) (
π2 + k2

c

)2

π2k2
c

(a)

R2
v = π2

(
π2 − k2

c

)

(
2 π2 − k2

c

)2 (
π2 + k2

c

) (b)
(46)

In order to find the critical value of the thermal Rayleigh number, we should simul-
taneously solve (46a) and (46b) for given values of AL and m.

Weakly Non-linear Stability Analysis

In order to obtain the normal form of the amplitude equation and to determine the
characteristics of solutions (stream function and temperature) near the bifurcation
point, a weakly non-linear analysis is carried out in Bardan and Mojtabi (2000).
This analysis is based on the multi-scale approach. The procedure is the same as in
previous section and will not be repeated. The amplitude equation can be written as:

a
�K

� t
= bK (μ + cK 2) (47)

where μ = (Ra − Rac)/η2 is the bifurcation parameter.
The sign of these coefficients (a, b, and c) are functions of Rav and AL. We

distinguish two different cases:

C > 0 and − bμ/a < 0 ⇒ bifurcation is stable supercritical pitch-fork

C < 0 and − bμ/a > 0 ⇒ bifurcation is unstable sub-critical pitch-fork

2.2.3 2D Numerical Simulations

The time-averaged equations are solved using a collocation spectral method.
The time discretization is a second order Adams–Bashforth–Euler backward

scheme (Sovran et al. 2002). The influence of the vibrational Rayleigh number
Rav (B is fixed to 10−5), is investigated for a cavity of aspect ratio AL = 3. The
spatial resolution is 63×27 collocation points along the horizontal and vertical axes
respectively.

For AL = 3, we deduce from the results of the stability analysis (46) that for
RaT c = 4π2 and Rav = 0, m = 3 and n = 1, the onset of the convection
corresponds to a three rolls motion in the horizontal direction. We also obtain,
for RaT c = 72.09 and Rav = 82.94, the transition from the convective motion
characterized by three rolls to the two rolls motion (m = 2, n = 1).It should be
observed that, as the problem depends on two control parameters , RaT and Rav, the
results are expressed as function of the couple (RaT , Rav).



166 Y. Pedramrazi et al.

Fig. 4 Streamlines and isotherms for: (a) AL = 3., RaT cnum = 41 and Ravnum = 0, (b) AL = 3,
RaT cnum = 73 and Ravnum = 84

For the onset of stationary convection, the numerical results are presented as the
streamlines and the isotherms associated to the mean field for RaT cnum = 41 and
Ravnum = 0 (Fig. 4a).We can observe three rolls as predicted by the linear stability
theory. For the set of parameters: RaT cnum = 73 and Ravnum = 84, the streamlines
and isotherms are shown in Fig. 4b. We can observe the existence of two rolls which
is in good agreement with our theoretical results.

For the aspect ratio AL = 4, the stability analysis indicates that the onset of
convection for m = 4 and n = 1 corresponding to four rolls is obtained for RaT c =
4π2 and Rav = 0 .We also obtain for RaT c = 61.58 and Rav = 52.06, the transition
from the convective motion characterized by four rolls to the three rolls motion. The
numerical results obtained for the onset of convection for the solution with four rolls
are RaT cnum = 39.6 and Ravnum = 0 (global Nusselt number, Nu = 1.0061). For
the onset of the solution with three rolls, we obtain: RaT cnum = 62.5 and Ravnum =
54 (global Nusselt number, Nu = 1.0187).

For all the numerical cases studied, the global Nusselt number, Nu, is close to
one which indicates that we are close to the threshold of convection. In conclusion
for these two aspect ratios the numerical results corroborate the theoretical ones.

2.3 Some Key Results

The stability analysis of a porous layer under the effect of mechanical vibration is
presented. The layer can be heated uniformly from below or from above. It is shown
that vibration can change the onset of convective motion in porous media. The
change of threshold depends on direction, amplitude and frequency of vibration.
For the case of mechanical vibration parallel to the temperature gradient (vertical
vibration), mechanical equilibrium is possible. For this case, under different heat-
ing conditions (heating from above or below), there is a possibility of convective
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motion that largely depends on the chosen values of amplitude and frequency of
vibration. The response of the system shows harmonic or sub-harmonic behavior.
For heating from below, the harmonic mode exhibits a stabilizing behavior whereas
the sub-harmonic mode exhibits a destabilizing one. For heating from below the
results indicate that, under the condition of high-frequency and small amplitude of
vibration, the harmonic part shows a strong stabilizing effect. Under this limiting
situation, the time-averaged formulation can be adopted. A weakly nonlinear sta-
bility analysis is performed for this averaged system revealing that bifurcation is of
supercritical pitch-fork type. For the case of other directions of vibration (α 
= π/2)
under high-frequency and small amplitude, it is shown that, in the presence of grav-
itational acceleration for the layer heated from below, vibration may produce sta-
bilizing or destabilizing effects. These depend largely on the choice of vibrational
parameter and the direction of vibration. For the layer heated from above, decreasing
the direction of vibration from α = π/2 to α = 0 reduces the stability domain
(RaT c decreases). For the case of convection under micro-gravity conditions, it is
shown that there is a possibility of thermo-vibrational convection for all directions
of vibration except vertical vibration (α 
= π/2).

A simple procedure for obtaining the critical Rayleigh number in a confined cav-
ity is proposed through an analogy with the linear stability analysis results in an
infinite porous layer.

3 Influence of Mechanical Vibration on a Porous Media
Saturated by a Binary Mixture

In this section, we study the effect of vibrational mechanism on coupled dissipa-
tive phenomena, namely, the Soret driven convective motion in a porous medium
saturated by a binary mixture. Under the Soret effect, a concentration gradient is
established as a result of the temperature gradient (De Groot and Mazur 1984).
This problem in the context of vibration in fluid media was studied in an infinite
horizontal layer (Gershuni et al. 1997, 1999). The limiting case of high-frequency
and small amplitude vibration was studied which enabled the time-averaged method
to be used. It is found that vibration could drastically change the stable zones in the
stability diagram. Generally, vertical vibration (parallel to the temperature gradient)
increases the stability of the conductive mode. Smorodin et al. (2002) studied the
same problem under finite frequency. They also showed that, in synchronous mode,
vibration has a stabilizing effect.

On existing vibrational thermosolutal convection, we may mention Jounet and
Bardan (2001) and Charrier-Mojtabi et al. (2004). In Jounet and Bardan (2001) the
solutal and temperature differences are imposed while in Sovran et al. (2002) and
Charrier-Mojtabi et al. (2004) the temperature gradient generates mass flux (Soret
effect).

It should be noted that the study of thermosolutal problem provides us with more
interesting instability mechanisms and pattern generating phenomena, which are
normally absent in single component fluid.
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3.1 Problem Description

The geometry consists of a rectangular cavity filled with a porous medium saturated
by a binary mixture. The aspect ratio is defined as A = L/H where H is the height
and L is the length of the cavity. The boundaries of the cavity are rigid and imperme-
able; the horizontal ones can be heated from below or above. The lateral boundaries
are thermally insulated and impermeable (Fig. 5). The governing equations are writ-
ten in a reference frame linked to the cavity. The case with high frequency and small
amplitude vibration is considered.

The direction of vibrations is defined in this Section 3 by:

e = cos(α)i + sin(α)j with g = −gj

Under the Boussinesq approximation the dimensionless governing equations for
the mean flow averaged over the vibration period can be written as:

∇ · V = 0

B �V
�t + V = −∇ P + Ra(T + ψC)j + Rv(WT + ψWc)·

∇(T + ψ

ε∗ C)(cos α i + sin α j)
�T

�t
+ �V · ∇T = ΔT,

ε∗ �C

�t
+ �V · ∇C = 1

Le (�C − �T )

∇ · WT = 0, ∇ · Wc = 0

T e = WT + ∇ξT , Ce = Wc + ∇ξc

(48)

Where V, T , C are velocity, temperature and mass fraction fields and WT and Wc

are solenoidal vectors corresponding to the temperature and concentration fields
respectively.

The corresponding boundary conditions are:

WT · n = Wc · n = 0
y = 0 : T = T1, Jm·n= 0
y = 1 : T = T2, Jm·n= 0

x = 0, A :
�T

�x
= �C

�x
= 0

(49)

Mathematical system (48) depends on eight parameters; the thermal Ray-
leigh number Ra = K gβ�T H/νa∗, the vibrational Rayleigh number

xe

gT = T2

T = T1

Porous medium saturated by  
a binary fluid α

L

H

y

Jm
⋅n = 0

Jm
⋅n = 0

V⋅n = 0

V⋅n = 0

∂x

∂C= 0
∂x

∂T=
∂x

∂C= 0
∂x

∂T=

Fig. 5 Geometry and boundary conditions: case of a porous medium saturated by a binary fluid
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Rv = (R̃2 Ra2 B)/2(B2ω2 + 1) = R2 Ra2(R̃ = b� 2/g), the separation factor
ψ = −Ci (1 − Ci )(βc/βT )DT /D∗, the normalized porosity ε∗ (ε∗ = ε/σ , ), the
Lewis number Le (Le = a∗/D∗ in which a∗ is the effective thermal diffusivity and
D∗ is the effective mass difusivity), the coefficient of the unsteady Darcy term in
the momentum equation B = Da/(σεPr∗) (in porous media B ≈ 10−5 and Da
represents the Darcy number Da = K/H 2), and finally α the direction of vibration
with respect to the heated boundary.

3.2 Linear Stability Analysis

For the direction of vibration parallel to the temperature gradient (α = π/2), there
exists a mechanical equilibrium (for both an infinite horizontal layer and a confined
cavity), which is characterized by:

V0 = 0, T0 = 1 − y, C0 = cst − y, WT 0 = 0, WC0 = 0 (50)

However, for other directions of vibration, we may obtain quasi-equilibrium solu-
tion only for the infinite horizontal layer. This is characterized by:

V0 = 0, T0 = 1 − y, C0 = c1 − y, WT 0x = c2 − y cos α; WT 0y = 0,

WC0x = c3 − y cos α, WC0y = 0
(51)

It should be noted that, for a confined cavity, there is no equilibrium solution under
the horizontal vibration (α = 0).

3.2.1 Infinite Horizontal Porous Layer

In order to investigate the stability of the conductive solution, the fields are perturbed
around the equilibrium state. Then after linearization, the disturbances are devel-
oped in the form of normal modes. We introduce the stream function perturbation φ,
the temperature perturbation θ and the mass fraction perturbation c. Also we desig-
nate the stream function perturbations φθ and φc for corresponding solenoidal fields
WT and Wc. In order to facilitate our study, we use the transformations η = c − θ

and ϕη = ϕc − ϕθ . We may write:

ϕ =
N∑

i=1

ai sin(iπy) exp(σ t + I kx); θ =
N∑

i=1

bi sin(iπy) exp(σ t + I kx);

η =
N−1∑

i=0

ci cos(iπy) exp(σ t + I kx) (52)

ϕθ =
N∑

i=1

di sin(iπy) exp(σ t + I kx); ϕη =
N∑

i=1

gi sin(iπy) exp(σ t + I kx)
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in which k is the wave number in the infinite horizontal direction Ox and I 2 = −1.
The corresponding linear stability problem is solved using the Galerkin method.

Vertical Vibration (α = π/2)

For different sets of parameters 0 < Rv < 100, 2 < Le < 100 and ε∗ = 0.5, 0.7,
the numerical simulations are carried out. The results of linear stability analysis for
Le = 2, ψ = −0.2 and ε∗ = 0.5 are presented in Table 1. It should be noted that,
in the range of Lewis numbers studied, the results are qualitatively the same. As can
be observed from Table 1, we may distinguish two types of bifurcations; namely
stationary and Hopf bifurcations. For the stationary bifurcation, we assume that the
principle of the exchange of stability is valid (i.e. σ ∈ �). From this the marginal
state is determined (σ = 0). For the Hopf bifurcation (σ = σr + Iω0); the marginal
state corresponds to σr = 0. It should be added that the Hopf bifurcation is present
only for negative separation factors and, for the layer heated from below, it can be
formed before the stationary bifurcation (Raco < Racs). The effects of vibration
on the Hopf bifurcation for ψ = −0.2, ε∗ = 0.5 and Le = 2 are represented in
Table 1. We conclude from Table 1 that vibration has a stabilizing effect; it increases
the critical value of thermal Rayleigh number for the onset of convection. This is
true for both the stationary and the Hopf bifurcation. It should be mentioned that
vibration reduces the critical wave number (kcs , kco) and the Hopf frequency (ωo).

Here after, we present the evolution of the critical Rayleigh number (Racs)
(Fig. 6a) and the critical wave-number (kcs) (Fig. 6b) versus the separation factor
Ψ for different values of the vibrational Rayleigh number Rv in the case Le = 10
and ε∗ = 0.5 and for stationary bifurcations.

One can observe that for Ψ > 0, when Rv increases, the value Ψ1 of the separa-
tion ratio beyond which the critical wave number vanishes (i.e kcs = 0) decreases.
We show that for Ψ > Ψ1 and for vertical vibrations:

Racs = 12

Leψ
; ∀Rv (53)

Horizontal Vibration (α = 0)

The stability domain for different vibrational parameters in the (Ra, Ψ ) stabil-
ity diagram has been determined.This diagram is characterized by stationary and

Table 1 Effect of vertical vibrations on stationary and Hopf bifurcations (Le = 2, Ψ = −0.2 and
ε∗ = 0.5)

Rv Racs kcs Raco kco ωo

0 153.19 4.75 95.43 2.59 10.78
10 157.53 4.73 97.78 2.56 10.75
50 173.63 4.65 107.1 2.41 10.50

100 193.60 4.54 117.8 2.26 10.26
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Fig. 6 (a) Racs = f (Ψ ),
Le = 10, ε∗ = 0.5 (stationary
bifurcations) and (α = π/2),
(b) kcs = f (Ψ ), Le = 10,
ε∗ = 0.5 (stationary
bifurcations) and (α = π/2)
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oscillatory bifurcations. For Ψ > 0 the bifurcation is always of the stationary type
while for Ψ < 0, we may obtain oscillatory or stationary bifurcations. The compu-
tations are performed for ε∗ = 0.3, B = 10−6 (usual values used in porous media)
and Le = 2, 10, 100. The results show that horizontal vibrations have a destabiliz-
ing effect on both stationary and Hopf bifurcations while vertical vibrations have
stabilizing effect.

As for the case of vertical vibrations, we note the existence of long-wave-mode
instability (i.e. kcs = 0) for Ψ > 0. A regular perturbation method with the wave
number as small parameter has been performed and the following relation:

Racs + Rv (1 + ψ)
ψ

ε∗ = 12

Leψ
(α = 0) (54)

has been obtained. From (54), for fixed values of Rv, Le, Ψ and ε∗, we can calcu-
late the value of the critical Rayleigh number Racs, corresponding to the onset of a
monocellular flow, for α = 0.
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3.3 Numerical Simulations in a Confined Cavity
(A = 1 and A = 10)

The numerical simulations for a confined cavity are performed for vertical and hor-
izontal vibrations. The calculations are made for different aspect ratios A = 1 and
A = 10. The 27∗27 collocation points are used for A = 1 while 63∗27 collocation
points are used for A = 10.

3.3.1 Vertical Vibration (α = π/2)

In this section we provide a qualitative representation of the flow and thermal fields
to complete the results of our stability analysis. In order to study the effect of vibra-
tions on the convective pattern, we set Le = 2, ψ = 0.4, A = 1 and Ra = 30 and
we changed the value of the vibrational Rayleigh number Rv . To study the impor-
tance of the normalized porosity, computations have been performed, for ε∗ = 0.5
and 0.7, with an increasing Rv, in order to determine the value of Rv, note Rvc,
below which the conductive state appears (the global Nusselt number, defined as

follows, Nu = 1
A

A∫

0

�T
�y

)

y=1
dx , is equal to one). The results are presented in Table 2

and Figs. 7a and 7b.
Thus these results illustrate clearly the stabilizing effect of vertical vibrations

and the importance of the normalized porosity. When ε∗ increases, for a fixed value
of the thermal Rayleigh number, the value of Rv for which the conductive regime
appears increases. In addition, for the combination of Rv, ψ and ε∗, there exists
an interesting relation Rvc(1 + ψ/ε∗) = cst . In our case this constant is equal
to 31.5.

On Fig. 8a and b, we illustrate the modification of the convective structure due to
vibrations for A = 10, Le = 10, ε∗ = 0.5, Ψ = 0.1 and Ra = 12.5.

For this set of parameters and Rv = 0 (Fig. 8a), we obtain five cells and the
iso-concentrations are deformed. For Rv = 10 (Fig. 8b), a monocellular motion
takes place and induces a separation of the binary fluid components.

Table 2 Evolution of the
global Nusselt number, Nu,
versus Rv for ε∗ = 0.5 and
0.7. (α = π/2)

ε∗ = 0.5 ε∗ = 0.5 ε∗ = 0.7 ε∗ = 0.7
Rv Nu Rv Nu

5 1.2047 5 1.2057
10 1.1483 10 1.1528
15 1.0789 15 1.0942
16 1.0604 17 1.0669
17 1.0358 18 1.0514
17.5 1.0124 19 1.0329
17.53 1.0084 19.5 1.0208

19.7 1.0156
20.02 1.0036
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Fig. 7a Effect of mechanical
vibration on the global
Nusselt number for A = 1,
α = π/2, Le = 2, ε∗ = 0.5,
ψ = 0.4 and Ra = 30
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Fig. 7b Effect of mechanical
vibration on the global
Nusselt number for A = 1,
α = π/2, Le = 2, ε∗ = 0.7,
ψ = 0.4 and Ra = 30
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Fig. 8 Streamlines and
iso-concentrations for: (a)
Le = 10, ε∗ = 0.5, Ψ = 0.1
and Ra = 12.5 for
Rv = 0(α = π/2), (b):
Le = 10, ε∗ = 0.5, Ψ = 0.1
and Ra = 12.5 for
Rv = 10(α = π/2)

3.3.2 Horizontal Vibrations (α = 0)

To illustrate the influence of horizontal vibrations, we consider the case A = 1,
Le = 2, ε∗ = 0.5, ψ = 0.2, R = 0.3. For a confined cavity, there is no equilibrium
solution under horizontal vibrations. However, we study the different convective
structures obtained when the thermal Rayleigh number increases for a fixed value
of R. Note that for Le = 2, ε∗ = 0.5, ψ = 0.2, R = 0.3 and for an infinite layer,
the critical value of the Rayleigh number corresponding to the onset of convection
is Racs = 14.06.

Firstly we set the value of Ra to the previous value so that only the vibrational
mechanism is in action. For Ra = 6, Figs. 9 and 10 show the corresponding fluid
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Fig. 9 Stream functions for
A = 1, Le = 2, ε∗ = 0.5,
ψ = 0.2, Ra = 6, R = 0.3
and α = 0

Fig. 10 Isotherms for A = 1,
Le = 2, ε∗ = 0.5, ψ = 0.2,
Ra = 6, R = 0.3 and α = 0

flow structure and temperature distribution; the stream functions are characterized
by symmetrical four-vortex rolls. This structure is a typical example of an imperfect
bifurcation. The sum of stream functions is zero in this case.

Secondly the thermal Rayleigh number is increased further to Ra = 13.15, the
gravitational acceleration will be in action. The intensity of convective motion will
be accordingly increased. The sum of stream functions at all points in the domain
is a good criterion for the intensity of convective motion. This case is shown in
Figs. 11 and 12 . As can be seen from the figures, we obtain a symmetry breaking
structure. This is explained by coalescence of the two rolls with the same sign in the
diagonal direction and the existence of two separate off-diagonal rolls with weaker
intensity.
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Fig. 11 Stream functions for
A = 1, Le = 2, ε∗ = 0.5,
ψ = 0.2, Ra = 13.15,
R = 0.3 and α = 0

Fig. 12 Isotherms for A = 1,
Le = 2, ε∗ = 0.5, ψ = 0.2,
Ra = 13.15, R = 0.3 and
α = 0

Then we increase further the thermal Rayleigh number to Ra = 15, we find a
single convective roll, which means that the gravitational effect is more important
than the vibrational effect, Figs. 13 and 14.
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Fig. 13 Stream functions for
A = 1, Le = 2, ε∗ = 0.5,
ψ = 0.2, Ra = 15, R = 0.3
and α = 0

Fig. 14 Isotherms for A = 1,
Le = 2, ε∗ = 0.5, ψ = 0.2,
Ra = 15, R = 0.3 and α = 0

3.4 Conclusions

In this section, we studied two-dimensional thermo-solutal convection under me-
chanical vibration analytically and numerically. The vibration is in the limiting
range of high frequency and small amplitude. Linear stability analyses of equilibrium
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and quasi-equilibrium states are performed for infinite horizontal layer. It is found
that when the direction of vibration is parallel to the temperature gradient, vibration
has a stabilizing effect for both the stationary and the Hopf bifurcation. The action
of vibration reduces the number of convective rolls and the Hopf frequency. How-
ever, when the direction of vibration is perpendicular to the temperature gradient,
vibration has a destabilizing effect. The numerical simulation shows that the vertical
vibration can reduce the number of convective rolls. The effect of vibration on re-
ducing the Nusselt number is presented. In this respect, the importance of the group
(Rvc(1 + ψ/ε∗)) is emphasized. For the cases in which mechanical equilibrium
is impossible the fluid flow structures are sought. For a fixed value of vibrational
Rayleigh number, we increase the Rayleigh number from a value much less than the
critical value corresponding to the onset of convection in an infinite layer. We ob-
serve first a symmetrical four-vortex structure, then a diagonal dominant symmetry
breaking structure and finally a mono-cellular structure. These results are similar to
the results obtained in a cavity filled with pure fluid under the action of vibration
in weightlessness (Bardan et al. 2000). The interesting result of this study is that,
by appropriate use of residual acceleration in micro-gravity environment, we may
obtain significant enhancement in heat and mass transfer rates.

NOMENCLATURE

Roman Letters

a effective thermal diffusivity, m2.s−1

b vibration amplitude, m
Ci initial mass fraction
C′ dimensional mass fraction
C perturbation of concentration
D∗ mass diffusion coefficient
DT thermodiffusion coefficient
Da Darcy number
e direction of vibration
g gravitational acceleration, m.s−2

H height, m
j unit vector in y direction
k wave number
K permeability, m2

Le Lewis number (a/D∗)
P pressure, N.m−2

Pr Prandtl number (ν/a)
R acceleration ratio
Rv vibrational parameter
Ra Rayleigh number
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Rav vibrational Rayleigh number
T temperature, K
T ′ dimensional temperature
t ′ dimensional time
V velocity, m.s−1

W solenoidal vector

Greek Letters

βC coefficient of mass expansion
βT coefficient of thermal expansion
ε porosity

ε∗ normalized porosity
θ perturbation of temperature
�∗ effective thermal conductivity
ν kinematic viscosity, m2.s−1

ρ density, kg.m−3

(ρc)∗ volumic heat capacity of medium
τ vibration period
ψ separation ratio
ϕ steam function perturbation
� pulsation
ω dimensionless pulsation
α angle of vibration
�∗ dimensionless volumic heat capacity ratio
�T = T1 − T2
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écoulements thermoconvectifs par vibration. Journal de Mécanique et Industrie, vol. 4, No. 5,
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New Developments in Bioconvection
in Porous Media: Bioconvection Plumes,
Bio-Thermal Convection, and Effects
of Vertical Vibration

A.V. Kuznetsov

Abstract This chapter reviews new developments in bioconvection in a fluid sat-
urated porous medium caused by either gyrotactic or oxytactic microorganisms.
Bioconvection arises as a result of an unstable density stratification caused by up-
swimming microorganisms. This unstable density stratification occurs when the mi-
croorganisms, heavier than water, accumulate in the upper regions of the fluid. This
hydrodynamic instability may lead to the development of bioconvection plumes,
which in case of oxytactic microorganisms transport cells and oxygen from the up-
per fluid region to the lower fluid regions. The presented modeling is limited to the
situation when the average pore size is much larger than the size of a microorganism;
therefore, local vorticity generated by flow through the pores does not affect the
ability of microorganisms to reorient.

The chapter introduces bio-thermal convection, which, contrary to traditional
bioconvection, has two destabilizing mechanisms that contribute to creating the
unstable density stratification. The utilization of the Galerkin method to solve a
linear stability problem leads to a correlation between the critical value of the bio-
convection Rayleigh number and the traditional “thermal” Rayleigh number. The
chapter also investigates the potential of utilizing the vertical vibration for control-
ling bioconvection. The linear stability analysis indicates that vertical vibration has
a stabilizing effect on the suspension.

1 Introduction

Bioconvection is an area of fluid mechanics that considers suspensions of self-
propelled microorganisms. This is different from traditional multiphase flows, where
particles are not self-propelled; they are just carried by the flow. Bioconvection
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occurs because of unstable density stratification that arises when upswimming mi-
crobiological organisms that are denser than their surrounding fluid gather at regions
near the upper surface. The accumulation of these organisms causes the upper layer
to be denser than the region below and instability is introduced, which in turn leads
to the development of various flow patterns (Harashima et al., 1988; Kessler, 1985;
Kessler et al., 1997, 2000; Bees and Hill, 1997; Ghorai and Hill, 1999, 2000).

Bioconvection is a phenomenon in which physical laws that govern smaller
scales lead to a phenomenon visible on a larger scale. While superfluidity and su-
perconductivity are quantum phenomena visible at the macroscale, bioconvection is
a mesoscale phenomenon, in which the motion of motile microorganisms induces a
macroscopic motion in the fluid.

When it is considered helpful to dampen the convective effects brought on by
bioconvection, a porous medium (such as gauze) may be introduced as shown in
Kessler (1986). Such a medium should be sufficiently porous to allow the swimming
and falling cells to penetrate through it. The stability analysis reported in Kuznetsov
and Avramenko (2003) and Kuznetsov (2005c) suggests that if the permeability of
a porous medium is larger than critical, bioconvection instability will develop in a
porous medium as well.

One potential application of bioconvection is to enhance mass transfer. Bio-
convection provides a method for manipulating mass transfer and inducing mix-
ing in fluid microvolumes. This has potential pharmaceutical and bio-technological
applications (the importance of mixing in microfluidics is reviewed in Burghelea
et al., 2004). A possible biomedical link is using bioconvection for faster dissolv-
ing of solid particles. Effects of bioconvection on sedimentation of large solid
particles (bioconvective sedimentation) are investigated in Geng and Kuznetsov
(2006, 2007).

The effect of small solid particles on the stability of bioconvection is investigated
in Kuznetsov and Avramenko (2004), Kuznetsov and Geng (2005), and Geng and
Kuznetsov (2005). It is shown that the presence of small solid particles increases the
critical Rayleigh number (makes the suspension more stable). Since both microor-
ganisms and particles are heavier than water, the upswimming of microorganisms
leads to an increase of bulk density in the upper part of the fluid layer (causes an
unstable density stratification), but the settling of small particles partly compensates
for this unstable density stratification caused by microorganisms and leads to an
increase of bulk density at the bottom of the layer. According to Einstein’s relation
that determines the diffusivity of small particles due to the Brownian motion, the
diffusivity is inversely proportional to the particles’ radius, which means that larger
particles have smaller diffusivity. This means that larger particles will stabilize the
suspension better than very small particles (nanoparticles). This is because nanopar-
ticles with large diffusivity have almost uniform distribution across the layer, but
larger particles will concentrate near the bottom of the layer creating a more stable
density stratification. All this is applicable only to the case when particles are small,
so that gravitational settling and diffusion compete.

Another possible application of bioconvection theory is microbial-enhanced oil
recovery, when microorganisms and nutrients are injected in oil-bearing layers to
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correct permeability variation (Stewart and Fogler, 2001; Kim and Fogler, 2000).
Swimming microbial species have the advantage of having favorable transport prop-
erties through porous formations.

All models presented in this chapter assume a dilute suspension. It is assumed
that the porous matrix does not absorb microorganisms. The presented modeling is
limited to the situation when the average pore size is much larger than the size of a
microorganism; therefore, local vorticity generated by flow through the pores does
not affect the ability of microorganisms to reorient; thus, oxytactic or gyrotactic
behaviors of microorganisms are not affected by the presence of the porous matrix.
If porosity is small (or pore sizes are small), the suspension would not reach suffi-
ciently high concentrations for bioconvection to occur (Hill and Pedley, 2005). This
conclusion is supported by the stability analysis presented in Kuznetsov and Avra-
menko (2003) who concluded that bioconvection can occur only in a porous media
with a high porosity (however, there is sufficient number of examples of such highly
permeable media). Similar to bioconvection in clear (of porous obstacles) fluids, a
carefully designed lab experiment would be required to observe bioconvection in
porous media.

2 Numerical Modeling of a Falling Plume in a Suspension
of Oxytactic Microorganisms

2.1 Problem Description

Here the microorganisms are assumed to be the oxytactic bacteria Bacillus sub-
tilis, as in Kessler (1989), Hillesdon et al. (1995), Hillesdon and Pedley (1996), and
Metcalfe and Pedley (1998, 2001). These bacteria are oxygen consumers and thus
they tend to swim from lower to higher oxygen concentrations. Oxygen diffuses
from the free surface into the regions below, therefore the bacteria tend to migrate
to regions just below the free surface where the oxygen concentration is the highest.
As these plumes begin to form, cells are drawn from the cell-rich upper fluid layer.
Although the cell-rich upper layer would eventually be depleted of cells, plume
formation and development occurs in a much shorter time so the falling plumes
may be assumed to be steady or at least quasi-steady. The plumes are also assumed
to be axisymmetric. A schematic of a bioconvection plume is provided in Fig. 1.

As the cells are transported away from the surface, they continue to consume
oxygen, and try to migrate towards higher oxygen concentrations. Although at re-
gions far below the surface oxygen consumption by the cells depletes the fluid of
oxygen to such an extent that the cells become inactive, this research focuses on the
regions where all the bacteria are still active.

Metcalfe and Pedley (2001) describes the falling plumes using a similarity so-
lution. Kuznetsov et al. (2004) and Becker et al. (2004) expand on Metcalfe and
Pedley’s work by finding a similarity solution of the plumes in a porous medium.
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Fig. 1 Schematic diagram of the bioconvection plume

2.2 Governing Equations

A numerical solution for a steady-state axisymmetric falling bioconvection plume
is obtained in Becker et al. (2004) by solving the following governing equations,
expressing oxygen conservation, microorganisms conservation, momentum conser-
vation, and mass conservation, respectively:

−∇ · (CU − Dc∇C) − γ0n = 0 (1)

∇ · (nU + nV − Dn∇n) = 0 (2)

−∇ p − μ

K
V + nθ�ρg = 0 (3)

∇ · U = 0 (4)

where U is the bulk fluid filtration velocity, DC refers to the effective diffusivity
of oxygen in the porous medium, n represents the concentration of cells, −γ0n
describes the consumption of oxygen by the cells, the parameter γ0 is an effective
constant characterizing the oxygen consumption rate in the porous medium, p is
the excess pressure (above hydrostatic), μ is the fluid dynamic viscosity (assumed
to be the same as that of water), K is the permeability of the porous medium, and
the term Dn∇n in equation (2) accounts for random non-directional cell swimming.
The last term in equation (3), nθ�ρg, is a buoyancy term and while the suspension
is unstable, it acts as a driving force for the falling motion caused by the density
gradient; θ is the cell volume; �ρ is the difference between cell density and the
fluid (assumed to be water); and g is the gravity vector. The dimensionless oxygen
concentration in equation (1) is defined as:

C = C̃ − C̃min

C̃0 − C̃min
(5)
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where C̃0 is the concentration of oxygen at the free surface (assumed to be the same
as the initial oxygen concentration), and C̃min is a minimum concentration of oxygen
required for the bacteria to be active. This model assumes that the cells always have
enough oxygen to remain active, i.e. C > 0.

The term ∇ ·(nV) in equation (2) describes the contribution of the cell swimming
along the oxygen gradient. The cell swimming velocity V is represented as:

V = bWc∇C (6)

where bWc is a constant that refers to the directional aspect of cell swimming along
the oxygen gradient.

Equations (1)–(4) are simplified in Becker et al. (2004) by using the boundary
layer approximation and solved subject to the following boundary conditions. Uti-
lizing symmetry about r = 0, the following boundary conditions are imposed in the
center of the plume, at r = 0:

�n

�r
= 0,

�C

�r
= 0, u = 0,

�v

�r
= 0 (7)

where r is the radial coordinate, u is the radial filtration velocity, and v is the stream-
wise filtration velocity (see Fig. 1).

At r → ∞ the following boundary conditions are imposed:

n → 0,
�C

�r
→ 0, v → 0 (8)

In addition, the following inlet conditions are imposed. Axial velocity and cell con-
centration are uniform inside the plume and zero outside the plume:

z = 0, r ≤ R0 : v = v0 n = n0 (9)

z = 0, r ≥ R0 : v = 0 n = 0 (10)

where z is the streamwise coordinate (see Fig. 1).
The radial velocity at z = 0 is zero:

z = 0 : u = 0 (11)

The terms R0, n0, and v0 represent inlet values of plume radius, cell concentration,
and axial velocity, respectively.

2.3 Numerical Results

In Becker et al. (2004) the governing equations are discretized by using a conserva-
tive finite-difference scheme. The following dimensionless variables are utilized:
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ū = u

v0
, v̄ = v

v0
, r̄ = r

R0
, z̄ = z

R0
, n̄ = n

n0

Pe = Wcb

Dn
, Pe0 = v0 R0

Dc
, Pen = v0 R0

Dn
, α = θ �ρ gn0 K

μ v0
, γ̄ = γ0 R2

0

Dc

n0

�C

(12)

A fully implicit scheme is used to obtain the steady state solutions of cell and
oxygen concentrations and of the axial velocity profile. An iterative line-by-line
tridiagonal matrix algorithm is used to solve the nonlinear discretized equations.

Figure 2a shows the dimensionless cell concentrations and axial velocity pro-
files at different depths. Cell concentrations are highest at the center. The velocities
and cell concentrations at the center of the plume decrease with depth. Conversely
the plume width increases with depth. Figure 2b shows the oxygen concentrations
at various depths. Due to oxygen consumption, the oxygen concentrations inside
the plume decrease with depth. The location of lowest oxygen concentration cor-
responds with the location of the highest cell concentration, which occurs at the
center of the plume. Figure 2c shows the dimensionless radial velocity at various
depths. The magnitudes of the radial velocity are much smaller than corresponding
axial velocities inside the plume. Radial velocities are positive inside the plume (the
plume spreads and axial velocities are decreasing with depth) and negative outside
the plume (the fluid outside the plume is drawn into the plume).

The oxygen consumption term, γ̄ , represents the strength of oxygen consumption
by the cells. Obviously as this term is increased, the oxygen concentration should
decrease. The computational results of the effect of changing γ̄ on oxygen con-
centration are depicted in Fig. 3b. As expected, higher values of γ̄ result in lower
oxygen concentrations throughout the plume. Figure 3a shows the effect of this term
on the plume profile at z̄ = 12. For small magnitudes of the cell consumption term,
the effect on the plume profile is negligible. The wider profile for large γ̄ reflects
cell swimming along the radial oxygen gradient that results from very strong oxygen
consumption by the cells. In Fig. 3c the radial cell swimming is reflected in an
outward shift of the dimensionless radial velocity curve for large γ̄ .

3 The Onset of Bio-thermal Convection in a Porous Medium

This section investigates the interaction between bioconvection caused by motile
microorganisms and natural convection caused by heating from below in a hor-
izontal layer occupied by a fluid saturated porous medium. This problem may
be relevant to a number of geophysical and engineering applications. One exam-
ple is modeling the behavior of motile thermophilic microorganisms that live in
hot springs. The stability of bio-thermal convection in a suspension of gyrotac-
tic microorganisms in a clear fluid layer (with no porous obstacles) is investi-
gated in Kuznetsov (2005a) while a stability problem in a suspension of oxytac-
tic bacteria is solved in Kuznetsov (2005b). Corresponding stability problems in a
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Fig. 2 Depth effects: (a) Dimensionless cell concentration, n̄, dimensionless axial velocity, v̄; (b)
Dimensionless oxygen concentration, C ; (c) Dimensionless radial velocity, ū; Pe = 10, Pen =
Pe0 = 57.5, γ̄ = 0.04
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porous layer are investigated in Kuznetsov (2006a) for gyrotactic microorganisms
and in Kuznetsov (2006b) for oxytactic microorganisms. Oscillatory bio-thermal
convection in a fluid layer with cooling from below is investigated in Nield and
Kuznetsov (2006).

3.1 The Onset of Bio-thermal Convection in a Suspension
of Gyrotactic Microorganisms

Gyrotactic microorganisms, such as Dunaliella, Chlamydomonas, Volvox, and Peri-
dinium (Pedley et al., 1988), swim in a particular direction due to the balance of
gravitational and viscous torques. It is assumed that heating from below is suf-
ficiently weak, so that it does not kill microorganisms and does not affect their
gyrotactic behavior.

3.1.1 Governing Equations

The model presented here is based on a continuum model of a suspension of gy-
rotactic microorganisms developed in Pedley et al. (1988), which is supplemented
by an energy equation and a buoyancy term in the momentum equation that results
from the temperature variation across the layer. Governing equations for a porous
medium are obtained by volume averaging these equations. The volume averaging
procedure is described in detail in Whitaker (1999). This procedure results in the
replacement of the Laplacian viscous terms with the Darcian terms that describe
viscous resistance in a porous medium (Nield and Bejan, 2006). Also, the Boussi-
nesq approximation is utilized. The resulting governing equations are:

caρw

�U
�t

= −∇ p − μ

K
U + nθ�ρg − ρwβ (T − T0) g (13)

∇ · U = 0 (14)

ϕ
�n

�t
= −div( j ) (15)

cpρw

(
�T

�t
+ U · ∇T

)

= k∇2T (16)

where

j = nU + nWc p̂ − D∇n (17)

where ca is the acceleration coefficient introduced by Nield and Bejan (2006), it
depends on the geometry of the porous medium and is determined mainly by the
nature of the pore channels of the largest cross sections (in narrow pore channels
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the transients decay more rapidly); cp is the specific heat of water, D is the effective
diffusivity of microorganisms in the porous medium (this assumes that all random
motions of microorganisms can be approximated by a diffusive process); j is the flux
of microorganisms; k is the effective thermal conductivity of the porous medium;
n the number density of motile microorganisms; p̂ is the unit vector indicating the
direction of swimming of microorganisms; t is the time; T is the temperature; U is
the fluid filtration velocity vector, (u, v, w); Wc p̂ is the vector of average swimming
velocity relative to the fluid in the porous medium (Wc is assumed to be constant); x ,
y, and z are the Cartesian coordinates (z is the vertical coordinate); β is the volume
expansion coefficient of water at constant pressure; ρw is the density of water; and
ϕ is the porosity.

Porosity ϕ is involved in the first term on the left-hand side of equation (15)
because in the porous medium, the concentration of cells (unlike the heat) is ad-
vected/convected with the intrinsic velocity (not the Darcy filtration velocity) since
the cells cannot pass through the solid phase. An extra factor ϕ has been incorpo-
rated into the effective transport coefficients for the porous medium, D and Wc, in
equation (17).

3.1.2 Boundary Conditions

A horizontal porous medium of depth H is considered (Fig. 4). Cartesian axes with
the z-axis vertical are utilized, so that the layer is confined between z = 0 and
z = H . It is assumed that the layer is unbounded in the x and y directions.

At the bottom of the layer (assumed to be rigid) the following conditions are
satisfied:

At z = 0 : w = 0, T = T0 + �T, j · k̂ = 0 (18)

where k̂ is the vertically-upward unit vector.
At the upper surface of the layer (assumed to be rigid as well) the following

conditions are satisfied:

At z = H : w = 0, T = T0, j · k̂ = 0 (19)

Fig. 4 Schematic diagram for
the onset of bio-thermal
convection in a porous layer
saturated by a dilute
suspension of gyrotactic
microorganisms
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3.1.3 Basic State

The equation of continuity admits a steady-state solution where the fluid is motion-
less and nb, the number density of the microorganisms in the basic state, pb, the
pressure in the basic state, and Tb, the temperature in the basic state, are functions
of z only.

In this case equations (15) and (17) reduce to

nbWc = D
�nb

�z
. (20)

The solution of this equation is

nb (z) = ν exp

(
Wcz

D

)

. (21)

The integration constant �, which represents the value of the basic number density
at the bottom of the layer, is related to the average concentration n̄ by

n̄ = 1

H

H∫

0

nb (z) dz = ν

H

H∫

0

exp

(
Wcz

D

)

dz, (22)

and so is given by

ν = n̄Q

exp(Q) − 1
, (23)

where the bioconvection Péclet number Q is defined by

Q = Wc H

D
. (24)

From equations (16), (18), and (19) the temperature distribution in the basic state is

Tb = T0 + �T
(

1 − z

H

)
(25)

Finally, from equation (13), assuming that p = p0 at z = H , the pressure distribu-
tion in the basic state is found to be

pb = p0 + νθ�ρg
D

Wc

[

exp (Q) − exp

(
Wcz

D

)]

− ρwgβ�T

(

H − z − 1

2H

(
H 2 − z2

)
)

(26)



192 A.V. Kuznetsov

3.1.4 Linear Stability Analysis

The perturbations for n, U, p, T , and p̂ are introduced as (for example):

n(t, x, y, z) = nb(z) + εn∗(t, x, y, z) (27)

where asterisk denotes a perturbation quantity and ε is the small perturbation ampli-
tude. Substituting equation (27) and analogous equations for U, p, T , and p̂ into
equations (13)–(16), linearizing, and eliminating u∗, v∗, and p∗ (for details see
Kuznetsov, 2006a) results in the following equations for perturbations:

cpρw

(
�T ∗

�t
− w∗ �T

H

)

= k

(
�2T ∗

�x2
+ �2T ∗

�y2
+ �2T ∗

�z2

)

(28)

caρw

�

�t

(
�2w∗

�x2
+ �2w∗

�y2
+ �2w∗

�z2

)

= −θ�ρg

(
�2n∗

�x2
+ �2n∗

�y2

)

+ ρwgβ

(
�2T ∗

�x2
+ �2T ∗

�y2

)

− μ

K

(
�2w∗

�x2
+ �2w∗

�y2
+ �2w∗

�z2

)

(29)

ϕ
�n∗

�t
= −w∗ �nb

�z
− Wc

�n∗

�z

+ Wc Bnb

(

(1 − α0)

(
�2w∗

�x2
+ �2w∗

�y2

)

+ (1 + α0)
�2w∗

�z2

)

+ D∇2n∗

(30)

where

α0 = a2 − b2

a2 + b2
(31)

B = α⊥μ

2hρ0g
, (32)

a and b being the semi-major and -minor axes of the spheroidal cell, so α0 is related
to cell eccentricity; B is the “gyrotactic orientation parameter” which was intro-
duced by Pedley and Kessler (1987) and which has dimensions of time; α⊥ being a
dimensionless constant relating viscous torque to the relative angular velocity of the
cell; while h is the displacement of the center of mass of the cell from the center of
buoyancy.

A normal mode expansion is introduced in the following form:

[w∗, n∗, T ∗] = [W (z), N (z), � (z)] f (x, y) exp(σ t) (33)
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Function f (x, y) satisfies the following equation:

�2 f

�x2
+ �2 f

�y2
= −m2 f, (34)

where m is the horizontal wavenumber (used as a separation constant).
Substituting equation (33) into equations (28)–(30), and accounting for equa-

tion (34), the following equations for the amplitudes W, �, and N are obtained:

θ�ρgm2 N +
( μ

K
− caρ σ

)
m2W − ρwgβm2� −

( μ

K
− caρ σ

)
W ′′ = 0, (35)

− cp�TρwW + H
[(

km2 + cpρwσ
)

� − k�′′] = 0, (36)

D
(
Dm2 + σϕ

)
N + D(Wc N ′ − DN ′′)

− exp

(
Wcz

D

)

Wcν
[− (

1 + B Dm2 (1 − α0)
)

W + B D (1 + α0) W ′′] = 0. (37)

It is now convenient to put equations (35)–(37) in non-dimensional form. The fol-
lowing scalings are introduced:

z̄ = z

H
, m̄ = m H, W̄ =

(
νθ H

a

)

W, N̄ = Nθ, �̄ =
(

νθ

�T

)

� (38)

The dimensionless parameters are defined by

Ra = gβ�T H 3ρ2
wcp

μk
, Rb = �ρgνθ H 3

μD
, Da = K

H 2
, G = DB

H 2
, Le = a

D
(39)

where Ra is the Rayleigh number, Rb is the bioconvection Rayleigh number, Da is
the Darcy number, G is the gyrotaxis number, and Le is the Lewis number.

The utilization of the principal of exchange of stabilities (Chandrasekhar, 1961)
is warranted for a porous layer heated from below. Although there are two agencies
affecting the density in this case (gyrotactic upswimming of microorganisms and
heating from below), both of these agencies are destabilizing; therefore, overstabil-
ity in this system is not possible unless there is cooling of the fluid layer from below
(this situation is investigated in Nield and Kuznetsov, 2006). Therefore, σ is set
to zero in equations (35)–(37). Transforming everything to dimensionless variables
and also setting σ to zero, equations (35)–(37) are recast as:

R̂b m̄2 N̄ + m̄2Ŵ − R̂a m̄2�̂ − Ŵ ′′ = 0 (40)

− Ŵ + m̄2�̂ − �̂′′ = 0 (41)

Q−1m̄2 N̄ + N̄ ′ − Q−1 N̄ ′′ − exp (Q z̄)
[− (

1 + G m̄2 (1 − α0)
)

Ŵ + G (1 + α0) Ŵ ′′] = 0
(42)
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where Ŵ = Le W̄ , �̂ = Le �̄, and the Raleigh–Darcy numbers (traditional and
bioconvection) are defined as:

R̂a = Da Ra and R̂b = Da Rb (43)

Since both the lower and upper boundaries are assumed rigid, equations (40)–(42)
are solved subject to the following boundary conditions:

At z̄ = 0 : Ŵ = 0, �̂ = 0, QN̄ = d N̄

dz̄
(44)

At z̄ = 1 : Ŵ = 0, �̂ = 0, QN̄ = d N̄

dz̄
(45)

For the solution of this system, a simple Galerkin method is employed. Suitable trial
functions, satisfying the boundary conditions given by equations (44) and (45), are:

W1 = z̄ − z̄2, �1 = z̄ − z̄2, N1 = 2 − Q(1 − 2z̄) − Q2
(
z̄ − z̄2

)
(46)

The utilization of a standard Galerkin procedure (Finlayson, 1972), which involves
substituting the trial functions given by equation (46) into equations (40)–(42),
calculating the residuals, and making the residuals orthogonal to the relevant trial
functions, results in the following equation for the critical Rayleigh number:

R̂bcr = min
m̄

−
{

Q2
(
10Q4 + m̄2

(
120 − 10Q2 + Q4

) ) ( (
10 + m̄2

)2 − m̄2 R̂a
) }/

[
30m̄2

(
10 + m̄2

) (−10 + Q2
) {

(4 + Q)2 − G
(
m̄2 (4 + Q)2 (−1 + α0) + 4Q2 (1 + α0)

)

+eQ
(− (−4 + Q)2 + G

(
m̄2 (−4 + Q)2 (−1 + α0) + 4Q2 (1 + α0)

) )}]
(47)

3.1.5 Validation

As Q tends to zero, for the case of R̂a = 0 and G = 0 from equation (47) follows
that Q R̂bcr → 12 and the corresponding critical wavenumber tends to zero. This
coincides exactly with the value given in Table 6.1 of Nield and Bejan (2006) which
lists values of critical Rayleigh numbers for various cases. Another test is the case
of R̂b = 0 (the microorganisms are buoyancy-neutral). In this case equation (47)
predicts that R̂acr = 40 at m̄cr = 3.16. This is within 1.27% of the exact re-
sult of R̂acr = 39.49 and m̄cr = 3.14 that follows from Table 6.1 of Nield and
Bejan (2006).

3.1.6 Numerical Results

Numerical results are presented for the following representative parameter values.
α0 = 0.2, G = 1, and Q = 1 are adopted for the basic case, and then values of Q
and G are varied around unity in Figs. 5 and 6.
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Figures 5 and 6 display the effect of the Rayleigh number, R̂a, on the critical
value of the bioconvection Rayleigh number, R̂bcr , and on the critical wavenum-
ber, m̄cr . Figure 5 is computed for various fixed values of the bioconvection Péclet
number, Q, and Fig. 6 is computed for various fixed values of the gyrotaxis number,
G. The decrease of R̂bcr with increase of R̂a means that increasing the temperature
variation across the porous layer destabilizes the suspension and helps the develop-
ment of bioconvection.

As expected, the curves in Figs. 5a and 6a intersect at the point
(
R̂a, R̂b

) =
(40, 0). The curves in Figs. 5b and 6b intersect at the point

(
R̂a, m̄

) = (40, 3.16).
When R̂a exceeds 40, convection develops even in a suspension of buoyancy-neutral
microorganisms because of the unstable density stratification caused by heating the
porous layer from below. Since physically R̂b < 0 is not possible, the region 40 <

R̂a ≤ 50 in Figs. 5 and 6 should be considered as that displaying mathematical
features of the solution given by equation (47) only.

Fig. 5 Effect of the Rayleigh number, R̂a, on the critical value of the bioconvection Rayleigh
number, R̂bcr (a) and on the critical wavenumber, m̄cr (b). Different curves correspond to different
fixed values of the bioconvection Péclet number, Q
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Fig. 6 Effect of the Rayleigh number, R̂a, on the critical value of the bioconvection Rayleigh
number, R̂bcr (a) and on the critical wavenumber, m̄cr (b). Different curves correspond to different
fixed values of the gyrotaxis number, G

The bioconvection Péclet number, Q, defined by equation (24), characterizes
the ratio of the cell swimming speed to the speed of bulk fluid motions. Figure 5a
shows that as long as R̂b > 0 (which means that microorganisms are heavier than
water), and, therefore, their upswimming contributes to creating an unstable density
stratification, the increase of Q decreases R̂bcr , which means it makes the system
less stable. Since larger Q corresponds to faster species of microorganisms, this
means that a suspension containing faster swimmers is less stable than a suspension
containing slower swimmers.

The gyrotaxis number, G, characterizes the deviation of the cell swimming di-
rection from strictly vertical. If G = 0, there is no gyrotaxis and the microorgan-
isms swim vertically upwards (exhibit negative geotaxis). Childress et al. (1975)
established that an infinite uniform suspension of negatively geotactic microorgan-
isms (G = 0) is stable in the absence of cell concentration stratification. Pedley
et al. (1988) have shown that under the same conditions a suspension of gyrotactic
microorganisms (G > 0) is unstable. Hence, gyrotaxis helps the development of
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convection instability. Figure 6a shows that as long as R̂b > 0 (microorganisms
are heavier than water), the increase of G (the utilization of “more gyrotactic”
species of microorganisms) decreases R̂bcr , which means it makes the system more
unstable.

3.2 The Onset of Bio-thermal Convection in a Suspension
of Oxytactic Microorganisms

3.2.1 Governing Equations

The governing equations describing the onset of bio-thermal convection in a suspen-
sion of oxytactic bacteria, such as Bacillus subtilis, in a porous medium layer are
based on a continuum model of a suspension of oxytactic microorganisms developed
in Hillesdon and Pedley (1996). This model is supplemented by an energy equation
and a buoyancy term in the momentum equation that results from the temperature
variation across the layer. The Boussinesq approximation is utilized and the suspen-
sion is assumed dilute.

Figure 7 displays a schematic diagram of the problem. A horizontal fluid sat-
urated porous layer of depth H confined between z̃ = 0 (the top surface) and
z̃ = H (the bottom surface) and unbounded in the x̃ and ỹ directions is consid-
ered, where z̃ is positively oriented downward. The layer is heated from below and
both top and bottom surfaces are assumed to be at uniform temperatures, T̃0 and
T̃0 + �T , respectively. Heating from below is expected to enhance instability by
adding a second destabilizing mechanism to that already existing in a suspension
of oxytactic bacteria: bacteria, which are heavier than water, tend to migrate to the
regions just below the top surface where the oxygen concentration is the highest,
thus creating an unstable density stratification with the maximum density at the top
surface. The resulting momentum, continuity, cell conservation, thermal energy, and
oxygen conservation equations are:

Fig. 7 Schematic diagram for
the onset of bio-thermal
convection in a porous layer
saturated by a dilute
suspension of oxytactic
microorganisms
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caρw

�Ũ
�t̃

= −∇̃ p̃ − μ

K
Ũ + ñθ�ρg − ρwβ̂

(
T̃ − T̃0

)
g (48)

∇̃ · Ũ = 0 (49)

ϕ
�ñ

�t̃
= −div( j̃ ) (50)

cpρw

(
�T̃

�t̃
+ Ũ · ∇̃ T̃

)

= k ∇̃2T̃ (51)

ϕ
�C

�t̃
+ Ũ · ∇̃C = DC ∇̃2C − γ ñ

�C̃
(52)

where

j̃ = ñŨ + ñṼ − Dn∇̃ñ (53)

is the flux of microorganisms. Dn in equation (53) is the diffusivity of the microor-
ganisms, ñ is the number density of motile microorganisms, p̃ is the excess pressure
(above hydrostatic); t̃ is the time, Ũ = (ũ, ṽ, w̃) is the fluid filtration velocity, β̂ is
the volume expansion coefficient of water at constant pressure, T̃ is the temperature,
∇̃2 is the Laplacian operator, −γ ñ/�C̃ describes the consumption of oxygen by the
microorganisms in the fluid, �C̃ equals C̃0 − C̃min, C̃0 is the free-surface oxygen
concentration, and C̃min is the minimum oxygen concentration that microorganisms
need in order to be active; tildes denote dimensional variables.

The average directional swimming velocity of a microorganism is approximated
as (Hillesdon and Pedley, 1996):

Ṽ = bWc Ĥ (C) ∇̃C (54)

where b is the chemotaxis constant [m] and Wc is the maximum cell swimming
speed [m/s] (the product bWc is assumed to be constant). The dimensionless oxygen
concentration, C , in equation (52) is defined as:

C = C̃ − C̃min

�C̃
(55)

where C̃ is the dimensional oxygen concentration. Since for the shallow layer C is
greater than zero throughout the layer thickness, the Heaviside step function, Ĥ (C),
in equation (54) is equal to unity.
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3.2.2 Boundary Conditions

In accordance with Fig. 7, the following boundary conditions are imposed at the top
surface:

At z̃ = 0 : w̃ = 0, C = 1, T̃ = T̃0, j̃ · k̂ = 0 (56)

where k̂ is the vertically-downward unit vector.
At the bottom of the layer (assumed to be rigid) the following conditions are

satisfied:

At z̃ = H : w̃ = 0,
�C

�z̃
= 0, T̃ = T̃0 + �T, j̃ · k̂ = 0 (57)

where �T is positive when heating from below is considered.

3.2.3 Basic State

Dimensionless variables and operators are introduced as follows:

n = ñ/ñ0,
[
x, y, z

] = [
x̃, ỹ, z̃

]
/H, t =

(
Dn

H 2

)

t̃, U =
(

H

Dn

)

Ũ, p =
(

H 2

μDn

)

p̃,

T = T̃ − T̃0

�T
, ∇2 = H 2∇̃2, ∇ = H 2∇̃ (58)

where ñ0 is the average number density of the microorganisms (number density of
the microorganisms in a well-stirred suspension) and U = (u, v, w) is the dimen-
sionless fluid filtration velocity.

Dimensionless constants are defined as

δ = DC/Dn, Pe = bWc/Dn, β = (
γ ñ0 H 2) /

(
DC �C̃

)
, Le = DC cpρw

k
,

Sc = μ/ (ρw Dn) , Ra = gβ̂�T H 3ρ2
wcp

μ k
, Rb = �ρθ ñ0g

μDn
H 3, Da = K

H 2

(59)

where Da is the Darcy number, Le is the Lewis number, Ra is the traditional
Rayleigh number, Rb is the bioconvection Rayleigh number, and Sc is the Schmidt
number. β characterizes the ratio of the rate of oxygen consumption to the rate of
oxygen diffusion, it can be regarded as a depth parameter. Pe can be regarded as a
ratio of two characteristic velocities; one due to oxytactic swimming and the other
due to random, diffusive swimming (Hillesdon and Pedley, 1996).

In the basic state the fluid is motionless and cell and oxygen concentrations
change in the z-direction only. The solutions for Cb (z) and nb (z) follow from



200 A.V. Kuznetsov

Hillesdon and Pedley (1996) and the solution for Tb (z) and pb (z) are obtained by
integrating equations (51) and (48), respectively, with boundary conditions (56) and
(57):

Cb (z) = 1 − 2

Pe
ln

(
cos {A1 (1 − z) /2}

cos {A1/2}
)

, (60)

nb (z) = A2
1

2Peβ
sec2

(
A1

2
(1 − z)

)

, (61)

Tb (z) = z (62)

pb (z) = p0 + Rb
A1

Peβ

[

tan

(
A1

2

)

− tan

(
A1

2
(1 − z)

)]

− Ra
δ

Le

z2

2
(63)

where p0 = H 2 p̃0/ (μDn) is the dimensionless pressure at the top surface, p̃0 is
the pressure at the top surface, and the constant A1 is found from the transcendental
equation

tan (A1/2) = Peβ/A1 (64)

The solution for the basic state given by equations (60)–(63) is valid as long as the
dimensionless oxygen concentration is positive throughout the chamber. In Hilles-
don and Pedley (1996) it is shown that this condition holds as long as

β ≤ 2φ

Pe
tan−1 φ (65)

where

φ2 = exp (Pe) − 1 (66)

Since β is proportional to H 2, equation (65) determines the largest layer depth for
which the layer can be treated as shallow.

3.2.4 Linear Stability Analysis

The perturbations for n, U, p, T , and C are introduced similar to equation (27)
(for details see Kuznetsov, 2006b). Substituting these equations into equations
(48)–(52), linearizing, and eliminating u∗, v∗, and p∗ results in the following equa-
tions for perturbations:

ϕ
�n∗

�t
+ w∗ �nb (z)

�z
+ Pe

�C∗

�z

�nb (z)

�z
+ Pe

�Cb (z)

�z

�n∗

�z

+ Pe n∗ (z)
�2Cb (z)

�z2
+ Pe nb (z) ∇2C∗ = ∇2n∗ (67)
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�T ∗

�t
+ w∗ = δ

Le
∇2T ∗ (68)

ϕ
�C∗

�t
+ w∗ �Cb (z)

�z
= δ∇2C∗ − βδn∗ (69)

ca

Sc

�

�t

(
�2w∗

�x2
+ �2w∗

�y2
+ �2w∗

�z2

)

= Rb

(
�2n∗

�x2
+ �2n∗

�y2

)

− Ra
δ

Le

(
�2T ∗

�x2
+ �2T ∗

�y2

)

− 1

Da

(
�2w∗

�x2
+ �2w∗

�y2
+ �2w∗

�z2

)

(70)

A normal mode expansion is introduced in the form:

[w∗, n∗, T ∗, C∗] = [W (z), N (z), � (z) , Ξ (z)] f (x, y) exp(σ t) (71)

The function f (x, y) satisfies the following equation:

�2 f

�x2
+ �2 f

�y2
= −m2 f (72)

where m is the horizontal wavenumber.
Substituting equation (71) into equations (67)–(70), and accounting for equa-

tion (72), the following equations for the amplitudes W, �, N , and � are obtained:

m2 Da Le Rb Sc N − m2 Le (Sc + ca Da σ ) W − m2 Da Ra Scδ� + Le (Sc + ca Da σ ) W ′′ = 0

(73)

Le W + (
m2δ + Leσ

)
� − δ �′′ = 0 (74)

2A1 Pe β tan

[
1

2
A1 (z − 1)

]

N ′ (z) + A3
1 sec2

[
1

2
A1 (z − 1)

]

tan

[
1

2
A1 (z − 1)

]
(
W + Pe �′)

+ 2Peβ
((

m2 + σϕ
)

N − N ′′) + A2
1 Pe sec2

[
1

2
A1 (z − 1)

]
(
β N − m2� + �′′) = 0 (75)

Pe β δ N − A1 tan

[
1

2
A1 (1 − z)

]

W + Pe
(
m2δ + σϕ

)
� − Peδ �′′ = 0 (76)

The utilization of the principal of exchange of stabilities (Chandrasekhar, 1961)
is again warranted for a fluid layer heated from below. Although there are two
agencies affecting the density in this case (oxytactic upswimming of microorgan-
isms and heating from below), both of these agencies are destabilizing; therefore,
overstability in this system is not possible unless there is cooling of the fluid layer
from below. Therefore, σ is set to zero in equations (73)–(76). This makes these
equations independent of the Schmidt number, Sc. Also, by letting � → β�̄, the
system (76)–(79) depends on the product � = Peβ rather than Pe and β indi-
vidually. Finally, by letting � → Le�̄, the system (73)–(76) becomes indepen-
dent of Le. Also, new Rayleigh–Darcy numbers (traditional and bioconvection) are
introduced as:
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R̂a = Da Ra and R̂b = Da Rb (77)

Rescaling � and �, equations (73)–(76) are recast as:

m2 R̂b N − m2W − m2 R̂a δ�̄ + W ′′ = 0 (78)

W + m2δ�̄ − δ�̄′′ = 0 (79)

2A1� tan

[
1

2
A1 (z − 1)

]

N ′ (z) + A3
1 sec2

[
1

2
A1 (z − 1)

]

tan

[
1

2
A1 (z − 1)

] (
W + � �̄′

)

+ 2�
(
m2 N − N ′′) + A2

1� sec2

[
1

2
A1 (z − 1)

]
(
N − m2� + �′′) = 0 (80)

�δN − A1 tan

[
1

2
A1 (1 − z)

]

W + � m2δ�̄ − �δ�̄′′ = 0 (81)

Equations (78)–(81) are solved subject to the following boundary conditions:

At z = 0 : W = 0, �̄ = 0, �̄ = 0,�

(

nb|z=0
d�̄

dz
+ 1

β

dCb

dz

∣
∣
∣
∣
z=0

N

)

− �N

�z
= 0

(82)

At z = 1 : W = 0,
d�̄

dz
= 0, �̄ = 0,

d N

dz
= 0 (83)

It should be noted that the term β−1dCb/dz in the last equation of (82) depends on
� , but does not depend on Pe and β individually.

For the solution of this system, a single term Galerkin method is employed. Suit-
able trial functions, which satisfy the boundary conditions given by equations (82)
and (83), are:

W1 = z − z2, �̄1 = z − z2, N1 = 1 + α

(

z − 1

2
z2

)

, �̄1 = z − 1

2
z2 (84)

where

α = A1 (A1 − sin A1)

(1 + cos A1)
(85)

The utilization of a standard Galerkin procedure (Finlayson, 1972), results in the
following equation for the critical bioconvection Rayleigh number:

R̂bcr = min
m

{
16�δ

[(
10 + m2

)2 − m2 R̂a
]

×
{

−
(
2I3 + m2 A2

1 I4�
) (

5 + 2A2
1 + 5 cos (A1) − 2A1 sin (A1)

)

1 + cos (A1)
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+ 2
(
5 + 2m2

)
[

I2 + 1

60
m2� sec4

(
A1

2

)
(
45 + 22A2

1 + 4A4
1 + 20

(
3 + A2

1

)
cos (A1)

+ (
15 − 2A2

1

)
cos (2A1) − 4A1

(
5 + 2A2

1 + 5 cos (A1)
)

sin (A1)
]}}

/
{
m2 (

10 + m2) [
15I1

(
2I3 + m2 A2

1 I4�
) − 4

(
5 + 2m2) I5�δ

]

×
(

40 + 7A1 sec2

(
A1

2

)

(A1 − sin (A1))

)}

(86)

where the integrals I1–I5 (all of which are functions of � only) are given by the
following equations:

I1 (� ) = A1

1∫

0

(2 − z) (−1 + z) z2 tan

(
1

2
A1 (1 − z)

)

dz (87)

I2 (� ) = 1

4
A1�

1∫

0

F (z,� )

×
[

A1 sec2

(
A1

2

)

sec2

(
1

2
A1 (−1 + z)

)
(
2 − A2

1 (−2 + z) z + 2 cos (A1) + A1 (−2 + z) z sin (A1)
)

+ 8 (A1 − sin (A1))
(
1 − A1 (−1 + z) tan

(
1
2 A1 (−1 + z)

))

1 + cos (A1)

]

dz (88)

I3 (� ) = A2
1�

1∫

0

sec2

(
1

2
A1 (−1 + z)

)

F (z,� )

(

−1 − A1 (−1 + z) tan

(
1

2
A1 (−1 + z)

))

dz

(89)

I4 (� ) =
1∫

0

(−2 + z) z sec2

(
1

2
A1 (−1 + z)

)

F (z,� ) dz (90)

I5 (� ) = −A3
1

1∫

0

(−1 + z) z sec2

(
1

2
A1 (−1 + z)

) (

1 + A1
(
z − 0.5z2

)
(A1 − sin (A1))

1 + cos (A1)

)

× tan

(
1

2
A1 (−1 + z)

)

dz (91)

where

F (z,� ) = 1 + 1

4
A1 (−2 + z) z sec2

(
A1

2

)

(−A1 + sin (A1)) (92)

3.2.5 Validation

For the case of R̂b = 0 (the microorganisms are buoyancy-neutral), equation (86)
predicts that R̂acr = 40 at mcr = 3.16. This is within 1.27% of the exact result
of R̂acr = 39.48 and mcr = 3.14 that follows from Table 6.1 of Nield and Bejan
(2006).
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3.2.6 Numerical Results

For computations, � = Peβ = 1 and δ = 1 are adopted for the basic case, and
then values of � and δ are varied around unity in Figs. 8 and 9.

Figure 8 displays the effect of the Rayleigh number, R̂a, on the critical value
of the bioconvection Rayleigh number, R̂bcr , and on the critical wavenumber, mcr .
Figure 8 is computed for three fixed values of � : 0.1, 1, and 10. The decrease of
R̂bcr with increase of R̂a means that increasing the temperature variation across the
porous layer destabilizes the suspension and helps the development of bioconvec-
tion. As expected, the curves in Fig. 8a intersect at the point

(
R̂a, R̂b

) = (40, 0).
The curves in Fig. 8b intersect at the point

(
R̂a, m

) = (40, 3.16). When R̂a exceeds
40, convection develops even in a suspension of buoyancy-neutral microorganisms
because of the unstable density stratification caused by heating the porous layer
from below.

Hillesdon and Pedley (1996) interpreted � as a depth parameter; larger values
of � correspond to a steeper free-surface density gradient in the basic state. It is

Fig. 8 Effect of the traditional “thermal” Rayleigh number, R̂a, on the critical value of the biocon-
vection Rayleigh number, R̂bcr (a) and on the critical horizontal wavenumber, mcr (b). Different
curves correspond to different fixed values of �
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expected that a steeper free-surface density gradient leads to a more unstable sys-
tem, which explains the decrease of R̂bcr with the increase of � , as observed in
Fig. 8a.

Figures 9 displays the effect of δ on R̂bcr and mcr . This figure is computed for
five fixed values of R̂a: 0, 10, 20, 30, and 40. δ characterizes the ratio of oxygen
diffusivity to that of microorganisms (the diffusivity of microorganisms is mostly
due to the random component in their swimming). From Fig. 9a it is clear that R̂bcr

first increases rapidly as δ increases, but then approaches an asymptotic limit. It
should be noted that in a shallow chamber (considered here) the oxygen and cell
concentrations in the basic state (given by equations (60) and (61) respectively)
depend on � but do not depend on δ. The increase of R̂bcr when increasing δ is
consistent with the findings of Hillesdon and Pedley (1996) for small values of δ

(see Fig. 7(a) in Hillesdon and Pedley, (1996)); however, the maximum that the
dependence R̂bcr (δ) takes on at a certain value of δ is not observed in Fig. 9a; this
may be due to what the porous medium brings to the problem.

Fig. 9 Effect of δ on the critical value of the bioconvection Rayleigh number, R̂bcr (a) and on the
critical wavenumber, mcr (b). Different curves correspond to different fixed values of R̂a
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4 Effect of Vertical Vibration on the Onset of Bioconvection
in a Horizontal Porous Layer of Finite Depth

4.1 Problem Description

A capability to control bioconvection may be important in certain bioengineering
and pharmaceutical applications as well as in lab experiments. Recent investigations
(Cisse et al., 2004; Bardan and Mojtabi, 2000; Bardan et al., 2001, 2004; Mojtabi
et al., 2004) indicate that vibration is an effective way of controlling the stability of
thermal and thermo-solutal convection. This section analyses the potential of using
vibration for controlling the stability of bioconvection. Since there is no experimen-
tal research on the effect of vibration on oxytactic behavior of microorganisms, it is
assumed that vertical vibration imposed on the system changes neither the oxytactic
behavior of microorganisms nor their average swimming speed. This assumption
is reasonable because the vibration considered in this research is assumed to be
high-frequency and low-amplitude.

Effects of high-frequency vibration on the stability of suspensions of negatively
geotacticandoxytacticmicroorganisms inafluid layeroffinaldepthare investigated in
Kuznetsov (2005d, 2006c), respectively. Kuznetsov (2006d) investigated the effect of
vibration on stability of a fluid saturated porous layer that contains oxytactic bacteria.

4.2 Governing Equations

Governing equations for this problem are obtained by volume averaging equations
developed in Hillesdon and Pedley (1996) and extending the resulting governing
equations to account for gravity modulation. The momentum, continuity, cell con-
servation, and oxygen conservation equations are

caρw

�Ũ
�t̃

= −∇̃ p̃ − μ

K
Ũ + g′ñθ�ρ (93)

∇̃ · Ũ = 0 (94)

ϕ
�ñ

�t̃
= −div( j̃ ) (95)

ϕ
�C

�t̃
+ Ũ · ∇̃C = DC ∇̃2C − γ ñ

�C̃
(96)

where

g′ = g + (
b̂�2 cos �t̃

)
k (97)

b̂ is the vibration amplitude, K is the vertically-downward unit vector in the z̃-
direction, Ũ is the fluid convection velocity vector (induced by bioconvection
and vibration), and � is the angular frequency of vibration. Tildes on variables
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indicate dimensional quantities. j̃ and Ṽ are defined by equations (53) and (54),
respectively.

For the case of high-frequency vibration the governing equations can be dra-
matically simplified by utilizing the averaging method described in Gershuni and
Lyubimov (1998). This method allows obtaining the equations for the mean flow;
it is valid if the following assumptions are satisfied (Bardan et al., 2001): (i) the
frequency is sufficiently high (but not acoustic), so that the vibration period is small
compared to all the characteristic hydrodynamic times; (ii) the vibration amplitude
is small so that the inertial terms involving the rapidly varying velocity component
can be neglected. Mathematical justification of the averaging method is given in
Simonenko (1972).

Utilizing the averaging method, solutions of equations (93)–(96) are decomposed
into two components (the first component varies slowly with time and the second
component varies rapidly with time), as follows:

Ũ = Ū
(
t̃
) + U ′ (�t̃

)
, p̃ = p̄

(
t̃
)

+p′ (�t̃
)
, ñ = n̄

(
t̃
) + n′ (�t̃

)
, C = C̄

(
t̃
) + C ′ (�t̃

)
(98)

where overbar denotes the mean, or average, component and prime denotes the pul-
sating component.

Utilizing the procedure described in Gershuni and Lyubimov (1998), the follow-
ing dimensionless averaged equations for the mean components are obtained:

ca

Sc

�U
�t

= −∇ p − 1

Da
U + kRbn + Rv (w · ∇) (nk − w) (99)

∇ · U = 0 (100)

ϕ
�n

�t
= −div(nU + n Pe∇C̄ − ∇n) (101)

ϕ
�C̄

�t
+ U · ∇C̄ = 	∇2C̄ − β	n (102)

div w = 0 (103)

curl w = ∇n × k (104)

where dimensionless variables and operators are introduced as follows:

n = n̄/ñ0, [x, y, z] = [x̃, ỹ, z̃] /H, t =
(

Dn

H 2

)

t̃, U =
(

H

Dn

)

Ū,

p =
(

H 2

μDn

)

p̄,

w = w̄/ñ0, ∇2 = H 2 ∇̃2, ∇ = H ∇̃ (105)
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and dimensionless constants are defined as

	 = DC/Dn, Pe = bWc/Dn, β = (
γ ñ0 H 2

)
/ (DC �C) , Rv = ρw H 2n2

0

μDn
δ̂,

Sc = μ/ (ρw Dn) , Rb = �ρθ ñ0g

μDn
H 3, Da = K/H 2 (106)

where Da is the Darcy number, Rv is the vibration Rayleigh number, Rb is the
bioconvection Rayleigh number, and Sc is the Schmidt number. β characterizes the
ratio of the rate of oxygen consumption to the rate of oxygen diffusion, it can be
regarded as a depth parameter. Pe can be regarded as a ratio of two characteristic
velocities; one due to oxytactic swimming and the other due to random, diffusive
swimming (Hillesdon and Pedley (1996).

4.3 Boundary Conditions

A horizontal fluid layer of depth H is considered. Cartesian axes with the z̃-axis
directed vertically downward are utilized (see Fig. 10), so that the layer is confined
between z̃ = 0 (top of the layer) and z̃ = H (bottom of the layer). It is assumed that
the layer is unbounded in the x̃ and ỹ directions.

At the bottom of the layer the following conditions are satisfied:

At z̃ = H : Ū · k = 0, j · k = 0,
�C̄

�z̃
= 0, w̄ · k = 0 (107)

At the top of the layer the following conditions are satisfied:

At z̃ = 0 : Ū · k = 0, j · k = 0,
�C̄

�z̃
= 0, w̄ · k = 0 (108)

The last equation in (107) and (108) follows from the requirement that the solenoidal
part of the contribution of the cell concentration to the gravity force, w̄, must sat-
isfy the impermeable boundary condition at the upper and lower surfaces of the
domain.

Fig. 10 Schematic diagram
for the onset of bioconvection
in a porous layer saturated by
a suspension of oxytactic
microorganisms subjected to
low-amplitude
high-frequency vertical
vibration
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4.4 Basic State

The governing equations admit the following steady-state solution where the fluid
is motionless, wb = 0, and nb, C̄b and pb are functions of z only. The solutions for
C̄b and nb follow from Hillesdon and Pedley (1996) and are given by equations (60)
and (61), respectively.

The pressure distribution is given by:

pb(z) = p0 + Rb
A1

Peβ

[

tan

(
A1

2

)

− tan

(
A1

2
(1 − z)

)]

(109)

4.5 Linear Stability Analysis

The perturbations for C̄ , n, U, w, and p are introduced similar to equation (27) (for
details see Kuznetsov, 2006d). Substituting these equations into equations (99)–
(104), linearizing, and eliminating p∗, u∗

x , u∗
y , w∗

x , and w∗
y results in the following

equations for perturbations:

Rb

(
�2n∗

�x2
+ �2n∗

�y2

)

− 1

Da
∇2u∗

z

+ Rv
�nb

�z

(
�2w∗

z

�x2
+ �2w∗

z

�y2

)

= ca

Sc

�

�t
∇2u∗

z (110)

∇2w∗
z = �2n∗

�x2
+ �2n∗

�y2
(111)

ϕ
�C̄∗

�t
+ u∗

z

�C̄b(z)

�z
= 	∇2C∗ − β	n∗ (112)

ϕ
�n∗

�t
+ u∗

z

�nb(z)

�z
+ Pe

�C̄∗

�z

�nb(z)

�z
+ Pe

�C̄b(z)

�z

�n∗

�z

+ Pen∗(z)
�2C̄b(z)

�z2
+ Penb(z)∇2C̄∗ = ∇2n∗

(113)

The following normal mode expansion is used in equations (110)–(113):

[u∗
z , n∗, w∗

z , C̄∗] = [U (z), N (z), W (z), �(z)] f (x, y) exp(σ t) (114)

The function f (x, y) satisfies equation (72) where the symbol for the horizontal
wavenumber, m, is now replaced by a.
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This results in the following equations for amplitudes:

a2 A3
1 Da RvSc sec2

(
1

2
A1(z − 1)

)

tan

(
1

2
A1(z − 1)

)

W

− 2Peβ
(−a2 RbDaScN + (Sc + ca Daσ )(a2U − U ′′)

) = 0 (115)

a2 (N − W ) + W ′′ = 0 (116)

2A1 Pe β tan

[
1

2
A1(z − 1)

]

N ′(z) + A3
1 sec2

[
1

2
A1(z − 1)

]

tan

[
1

2
A1(z − 1)

]
(
U + Pe�′)

+ 2Peβ
((

a2 + σϕ
)

N − N ′′) + A2
1 Pe sec2

[
1

2
A1 (z − 1)

]
(
βN − a2� + �′′) = 0 (117)

Pe β 	N − A1 tan

[
1

2
A1 (1 − z)

]

U + Pe
(
a2	 + ϕσ

)
� − Pe	�′′ = 0 (118)

If the principal of exchange of stabilities (Chandrasekhar, 1961) is assumed valid
(this hypothesis is supported by computational results presented in Bardan and
Mojtabi (2000) and Gershuni and Lyubimov (1998)), equations (115)–(118) can be
simplified by setting σ to zero. In this case, equations (115)–(118) can be addition-
ally simplified by setting � → β�̄; after this transformation the resulting equations
depend on the product � = Pe β rather than Pe and β individually:

a2 A3
1 R̂v sec2

(
1

2
A1 (z − 1)

)

tan

(
1

2
A1 (z − 1)

)

W + 2a2 R̂bN − 2a2U + 2U ′′ = 0 (119)

a2 (N − W ) + W ′′ = 0 (120)

2A1� tan

[
1

2
A1 (z − 1)

]

N ′ (z) + A3
1 sec2

[
1

2
A1 (z − 1)

]

tan

[
1

2
A1 (z − 1)

] (
U + � �̄′

)

+ 2�
(
a2 N − N ′′) + A2

1� sec2

[
1

2
A1 (z − 1)

] (
N − a2�̄ + �̄′′

)
= 0 (121)

�	N − A1 tan

[
1

2
A1 (1 − z)

]

U + �a2	�̄ − �	�̄′′ = 0 (122)

where

R̂v = RvDa

Peβ
and R̂b = Rb Da (123)

are the modified vibration and bioconvection Rayleigh numbers, respectively.
Equations (119)–(122) are solved subject to the following boundary conditions:
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At z = 0 : U = 0, �̄ = 0, W = 0,�

(

nb|z=0
d�̄

dz
+ 1

β

dCb

dz

∣
∣
∣
∣
z=0

N

)

− �N

�z
= 0

(124)

At z = 1 : U = 0,
d�̄

dz
= 0, W = 0,

d N

dz
= 0 (125)

For the solution of this system, a single term Galerkin method is employed. Suitable
trial functions, which satisfy the boundary conditions given by equations (124) and
(125), are:

U1 = z − z2, W1 = z − z2, N1 = 1 + α

(

z − 1

2
z2

)

, �1 = z − 1

2
z2 (126)

where

α = A1 (A1 − sin A1)

(1 + cos A1)
(127)

The utilization of a standard Galerkin procedure (Finlayson, 1972) results in the
following equation for the critical bioconvection Rayleigh number:

Rbcr = min
a

{[

cos2

(
A1

2

) {
−16

(
10 + a2

)2 (
5 + 2a2

) (
I3 + 2a2 I4

)
	�

− 450a4 A4
1 I1

(
2I5 + a2 A2

1 I6

)
I7 R̂v

(
20 + 7A2

1 + 20 cos (A1) − 7A1 sin (A1)
)

1 + cos (A1)

− 60a4
(
5 + 2a2

)
A6

1 I1 I2 R̂v	
(
20 + 7A2

1 + 20 cos (A1) − 7A1 sin (A1)
)

1 + cos (A1)

+ 4
(
10 + a2

)2 (
2I5 + a2 A2

1 I6

)
	� sec2

(
A1

2

)
(
5 + 2A2

1 + 5 cos (A1) − 2A1 sin (A1)
)
}]/

{
a2

(
10 + a2

)
A1

(
30I5 I7 + A2

1

(
10I2	 + a2 (15I6 I7 + 4I2	)

))

× (−20 − 7A2
1 − 20 cos (A1) + 7A1 sin (A1)

)}
(128)

where the integrals I1–I7 (all of which are functions of � only) are

I1 (� ) =
1∫

0

(−1 + z)z
(
z − z2

)
sec2

(
1

2
A1 (−1 + z)

)

tan

(
1

2
A1 (−1 + z)

)

dz (129)

I2 (� ) =
1∫

0

(−1 + z) z sec2

(
1

2
A1 (−1 + z)

)

tan

(
1

2
A1 (−1 + z)

) (

1 + α

(

z − z2

2

))

dz

(130)
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I3 (� ) =
1∫

0

[

A2
1 sec2

(
1

2
A1 (−1 + z)

)

+ 2A1 (A1 − sin (A1))

1 + cos (A1)

+ 1

4
A3

1 (−2 + z) z sec2

(
A1

2

)

sec2

(
1

2
A1 (−1 + z)

)

(−A1 + sin (A1))

+ A2
1 (−1 + z) sec2

(
A1

2

)

(−A1 + sin (A1)) tan

(
1

2
A1 (−1 + z)

)]

×
(

1 + α

(

z − z2

2

))

dz (131)

I4 (� ) =
1∫

0

[

1 + 1

4
A1 (−2 + z) z sec2

(
A1

2

)

(−A1 + sin (A1))

] (

1 + α

(

z − z2

2

))

dz

(132)

I5 (� ) =
1∫

0

[− A2
1 sec2

(
1

2
A1 (−1 + z)

)

−A3
1 (−1 + z) sec2

(
1

2
A1 (−1 + z)

)

tan

(
1

2
A1 (−1 + z)

)]

×
(

1 + α

(

z − z2

2

))

dz (133)

I6 (� ) =
1∫

0

(−2 + z) z sec2

(
1

2
A1 (−1 + z)

) (

1 + α

(

z − z2

2

))

dz (134)

I7 (� ) =
1∫

0

(−1 + z)z

(

z − z2

2

)

tan

(
1

2
A1 (1 − z)

)

dz (135)

4.6 Numerical Results

Typical values of the dimensionless parameters for the soil bacterium Bacillus sub-
tilis are estimated in Hillesdon and Pedley (1996) as follows: Pe = 15H , β = 7H 2,
and 	 = 16, where the layer depth, H , must be given in mm. A typical depth of
a shallow layer in experiments described in Hillesdon et al. (1995) was 2.5 mm;
this gives a value of � = 1640. Using parameter values given in Hillesdon and
Pedley (1996), for � = 1000 Hz, b̂ = 10 
m, ñ0 = 1015 cell/m3, and Da = 0.01,
R̂b is estimated as 1.2 × 103; also, R̂v is estimated as 8.9 × 10−11. Since R̂v is
proportional to �2 and b̂2, its value can be controlled by varying the frequency and
the amplitude of vibration.

Figures 11a and 11b are computed for 	 = 16 for three fixed values of R̂v:
8.9 × 10−11, 5, and 10. Figure 11a displays the effect of � = Peβ on the critical
value of the bioconvection Rayleigh number, R̂bcr , while Fig. 11b displays the effect
of � on the corresponding critical horizontal wavenumber, acr . Figure 11a shows
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that when � is small, R̂bcr decreases as � increases; this trend is consistent with
findings of Hillesdon and Pedley (1996) for small values of the product Peβ (see
Fig. 6a in Hillesdon and Pedley, 1996).

Hillesdon and Pedley (1996) interpreted � as a depth parameter; larger values
of � correspond to a steeper free-surface density gradient in the basic state. It is
expected that a steeper free-surface density gradient leads to a more unstable system,
which explains the decrease of R̂bcr with the increase of � . When � exceeds the
value of approximately two, the trend of the dependence of R̂bcr on � reverses and
R̂bcr increases as � increases. The trend in Fig. 11a agrees well with the trend ob-
served in Fig. 6a of Hillesdon and Pedley (1996) for � >10. Hillesdon and Pedley
(1996) explained this trend by noting that R̂b may not be the most appropriate mea-
sure of the ratio between the buoyancy forces that drive bioconvection and viscous
forces which slow it down. The difference between the value of � at which the
minimum of R̂bcr occurs (approximately two in this chapter and approximately ten
in Hillesdon and Pedley, 1996) can be explained by the effect of the porous medium,

Fig. 11 Effect of � on the critical value of the bioconvection Rayleigh number, R̂bcr (a) and on
the critical horizontal wavenumber, acr (b). Different curves correspond to different fixed values
of R̂v
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since the chapter of Hillesdon and Pedley (1996) addresses bioconvection in a clear
(of porous material) fluid.

The dependence of acr on � , displayed in Fig. 11b, is quite complex: acr first
increases, takes on a maximum value, and then decreases. The value of � at which
the maximum value of acr occurs increases as R̂v decreases; for R̂v = 10 the
maximum of acr occurs at approximately � = 2. This trend is also in agreement
with results displayed in Fig. 6b of Hillesdon and Pedley (1996).

Figures 12a and 12b display the dependence of R̂bcr and acr on R̂v for three
fixed values of � : 500, 1640, 3000. Figure 12a shows that R̂bcr increases as
R̂v increases. This means that high-frequency low-amplitude vibration makes the
system more stable. This conclusion is in agreement with the results obtained in
Mojtabi et al. (2004), who considered two-dimensional thermosolutal natural con-
vection and discovered that vertical vibration has a stabilizing effect on the sys-
tem. The stabilizing effect of vertical vibration can be explained by considering
the direction of the effective vibration force represented by the last term on the

Fig. 12 Effect of the vibration Rayleigh number, R̂v, on the critical value of the bioconvection
Rayleigh number, R̂bcr (a) and on the critical wavenumber, acr (b). Different curves correspond to
different fixed values of �
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right-hand side of the averaged momentum equation (99). As shown in Gershuni and
Lyubimov (1998), this force, with represents the average effect of vertical vibrations
on the fluid, causes the fluid to flow along gradients of density inhomogeneities.
Bardan et al. (2001) analyzed the direction of this effective vibration force and have
shown that, in the case of vertical vibration, the vibration-induced flow (caused by
the effective vibration force) is opposite to the flow induced by buoyancy forces (in
this case, to the flow induced by bioconvection). Therefore, increasing R̂v reduces
the overall circulation and stabilizes the system. A full numerical solution, which
would include the investigation of possible overstability regimes, is needed to fur-
ther understand the effect of vertical vibration. Figure 12b shows that acr decreases
as R̂v increases, which means that stronger vibrations correspond to smaller critical
wavenumbers.
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Macromolecular Transport in Arterial Walls:
Current and Future Directions

K. Khanafer and K. Vafai

Abstract Relevant mathematical models associated with the transport of macro-
molecules in the blood stream and in the arterial walls are reviewed in this work.
A robust four-layer model (endothelium, intima, internal elastic lamina and me-
dia) based on porous media concept and accounting for selective permeability of
each porous layer to certain solutes is presented to describe the transport of macro-
molecules in the arterial wall coupled with the transport in the lumen. The variances
in the current models are analyzed and discussed. Future direction in developing
a rigorous mathematical model for transport in arterial walls using porous media
theory and fluid-structure interaction approach is outlined in this study.

1 Introduction

Atherosclerosis, which comes from the Greek words athero (meaning gruel or paste)
and sclerosis (hardness), is a form of vascular disease that is commonly located in
the large- and medium-size arteries. Atherosclerosis is a slow, progressive disease
that may start in childhood. It can affect the arteries of the brain, heart, kidneys, and
the arms and legs. It is caused by the slow buildup of fatty substances, cholesterol,
cellular waste products, calcium and other substances found in the blood within the
arterial walls. This buildup is called plaque. It has been suggested that the transport
of the low-density lipoprotein (LDL) from the blood into the arterial wall and its
accumulation within the wall play an important role in the process of atherogenesis
(Ross 1993, Hoff et al. 1975, Schwenke et al. 1993, Newby and Zaltsman 2000).
This transport process is termed “arterial mass transport” and is influenced by blood
flow in the lumen and transmural flow in the arterial wall.

Severalmathematicalmodelshavebeendeveloped tomodel the transportofmacro-
molecules, such as low density lipoproteins (LDLs), from the arterial lumen to the

K. Khanafer
University of Michigan, Ann Arbor, MI, USA

K. Vafai
University of California, Riverside, CA, USA
e-mail: vafai@engr.ucr.edu

P. Vadász (ed.), Emerging Topics in Heat and Mass Transfer in Porous Media, 219
C© Springer Science+Business Media B.V. 2008



220 K. Khanafer, K. Vafai

arterial walls and their accumulation in the wall (Fry 1985, Huang and Tarbell 1997,
Stangeby and Ethier 2002a,b, Karner et al. 2001, Karner and Perktold 2000, Ai and
Vafai 2006, Yang and Vafai 2006). Prosi et al. (2005) have classified these models in
three major categories. The simplest model is referred to as wall-free model in which
the arterial wall is described by simplified boundary conditions (Back et al. 1977,
Ehrlich and Friedman 1977, Rappitsch and Perktold 1996, Ethier 2002, Wada and
Karino 1999, 2000, 2002, Qui and Tarbell 2000). This model has been used to inves-
tigate oxygen and LDL transport in idealized and physiological arterial models. This
model has the advantage of being computationally expedient and provides qualitative
information on mass transfer in the blood lumen. However, the main drawback of this
model is its limitation in computing concentration profiles within the arterial wall. A
more realistic approach is named lumen-wall models which approximate the complex
structure of the arterial wall by a simple homogeneous layer. Such models, originally
proposed by Moore and Ethier (1997), have been used to study the mass transport of
LDL within the arterial wall by Stangeby and Ethier (2002a,b). They used a model
that coupled transmural fluid flow to the motion of the flowing blood in the arterial
lumen. The most realistic models are multilayer models, which break the arterial wall
down into several layers, precisely the endothelium, intima, internal elastic lamina
and media, and model the transport within the wall, either at the microscopic (Yuan
et al. 1991, Huang et al. 1994, Huang and Tarbell 1997, Tada and Tarbell 2004) or
macroscopic (Fry 1985, 1987, Karner et al. 2001, Prosi et al. 2005, Ai and Vafai 2006,
Yang and Vafai 2006) levels. The multilayer model was found to provide the most re-
alistic information on the dynamics of chemicals (especially macromolecules) within
the wall.

2 Mathematical Models

2.1 Wall-Free Model

Rappitsch and Perktold (1996) and Rappitsch et al. (1997) presented a numerical
study for the simulation of blood flow and transport processes in large arteries.
Blood flow in the arterial lumen was described by incompressible Navier-Stokes
equations for Newtonian fluids, while the solute transport was modeled by the
diffusion-advection equation. The resistance of the arterial wall to transmural trans-
port is described by a shear-dependent wall permeability model. At the wall-lumen
interface, two different transport models for the diffusive flux qw were assumed. The
first model assumed constant wall permeability as follows:

qw = −D
�c

�n

∣
∣
∣
∣
wall

= α cw (1)

where α is a constant wall permeability (Rappitsch and Perktold 1996) and cw is the
wall concentration. In the second model, the permeability of the arterial wall was
assumed to be linearly dependent on the local wall-shear stress magnitude|τw|:
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qw = −D
�c

�n

∣
∣
∣
∣
wall

= α cw = f (|τw|) cw = β |τw| cw (2)

where β is constant.
A more physical boundary condition, which is a function of blood-side solute

concentration at the wall and an endothelial permeability parameter, was used by
Wada and Karino (1999, 2002) and Ethier (2002) at the blood-wall interface which
states that the amount of LDL passing into the vessel wall is determined as the
difference between the amount carried to the arterial wall by a filtration flow and the
amount which diffuses back to the mainstream. Mathematically, this takes the form:

cwuw − D
�c

�n

∣
∣
∣
∣
wall

= κ cw (3)

where uw is the filtration velocity at the vessel wall (transmural velocity) which
was assumed to be 4 × 10−5 mm/s for a natural artery (Tedgui and Lever 1984,
Wilens and McCluskey 1952). The permeability coefficient of LDL (�) at the arte-
rial wall was about 2 × 10−7 mm/s as reported by Truskey et al. (1992). Qui and
Tarbell (2000) analyzed numerically oxygen mass transfer in a compliant curved
tube model of a coronary artery using a finite element method. They showed that
oxygen can be transported from the lumen to the vessel wall by convective-diffusive
mechanism which depends on the fluid phase mass transfer coefficient (hm) as
follows:

−D
�c

�n

∣
∣
∣
∣
wall

= hm (cb − cw) ⇒ hm = −D �c
�n

∣
∣
wall

(cb − cw)
(4)

where cb and cw are bulk concentration of oxygen in lumen and the wall concentra-
tion, respectively.

2.2 Fluid-Wall Model

Fluid-wall model is a single-layer formulation which models the arterial wall as one
single layer of porous medium with homogeneous transport properties. As such,
it takes into account transport processes within the arterial wall without excessive
computational expense (Moore and Ethier 1997, Stangeby and Ethier 2002a,b, Sun
et al. 2006). Either (2002), Stangeby and Ethier (2002a,b) developed a mathematical
model to study the transport of macromolecules, such as low density lipoproteins
(LDLs), across the artery wall and their accumulation in the wall as related to
atherosclerosis. Coupled analysis of lumenal blood flow and transmural fluid flow
was achieved through the solution of Brinkman’s model. The authors assumed that
the concentration field of LDL species does not affect the velocity field in the artery
and therefore, the Navier–Stokes and continuity equations for the lumen can be
written for an incompressible flow of a Newtonian fluid as follows:
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∇ · �V = 0 (5)

� �V
�t

+ �V · ∇ �V = − 1

ρ
∇ P + ν∇2 �V (6)

The velocity field in the porous wall region is computed using Brinkman’s model
which is a limiting case of the generalized equation in porous media (Vafai and
Tien 1980, 1981, Khanafer et al. 2003, Khanafer and Vafai 2006, Khaled and
Vafai 2003) and can be expressed as:

� �V
�t

+ �V · ∇ �V = − 1

ρ
∇ P + ν∇2 �V − ν �V

K
(7)

where K is the Darcian permeability of the porous medium. Assuming constant
diffusivity, the concentration field is computed via the solution of the mass transport
equations as:

�c

�t
+ �V · ∇c = D∇2c + r (8)

Where D is the diffusivity of the species of interest in blood, c is the concentration
of the species, and r is the reaction term. A suitable boundary condition must be
applied at the blood-wall interface. Ethier (2002) assumed that the amount of the
species passing into the wall was determined as the difference between the amount
carried to the wall by transmural filtration and the amount that diffuses back to the
mainstream:

cwuw − D
�c

�n
= κ cw (3)

Sun et al. (2006) utilized the fluid-wall model to treat the arterial wall as a single-
layer of porous medium assuming shear-dependent endothelial transport properties
to study the effects of wall shear stress on the transport of LDL and oxygen from
blood to and within the wall in an idealized model of a stenosed artery. The trans-
mural flow in the arterial wall was modeled by Darcy’s Law:

uw − ∇ ·
(

K

μp
pw

)

= 0 (9)

Where uw is the velocity of transmural flow, pw is the pressure in the arterial wall
and μp is the viscosity of the blood plasma. Mass transfer in the arterial wall is
coupled with the transmural flow and modeled by the convection-diffusion reaction
equation as follows:

∇ · (−Dw∇cw + Kslcwuw) = kwcw (10)
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Where Dw is the solute diffusivity in the arterial wall, Ksl is the solute lag coeffi-
cient, and kw is the consumption rate constant. Transport processes in the arterial
wall were coupled with the blood flow in the lumen by Kedem and Katchalsky
(1958) equations:

Jv = L p (�p − σd�π ) (11)

Js = P�c + (1 − σ f )Jv c̄ (12)

Where Jv is the transmural velocity, Js is the solute flux, L p is the hydraulic con-
ductivity of the endothelium, �c is the solute concentration difference across the
endothelium, �p is the pressure across the endothelium, �π is the osmotic pressure
differential, �d and � f are the Staverman filtration and osmotic reflection (which
accounts for the selective permeability of the biological membranes to certain so-
lutes) coefficients respectively, and c̄ is the mean endothelial concentration. Shear-
dependent hydraulic conductivity was assumed by Sun et al. (2006) for LDL and
oxygen transport, respectively, as follows:

L p (|τw|) = 0.392 × 10−12 ln (|τw| + 0.015) + 2.7931 × 10−12 (13)

From the above, it is noted that the fluid–wall model approximates the wall struc-
ture by a simple homogeneous layer. It is better than the wall-free model. However,
it is still quite inaccurate as it ignores the major wall components which are crucial
to atherosclerosis (Stangeby and Ethier 2002a,b).

2.3 Multi-Layers Model

Karner and Perktold (2000) and Karner et al. (2001) developed a mathematical
model for the description of the mass transport process in the arterial wall cou-
pled with the mass transport in the arterial lumen. Volume-averaged stationary
convection-diffusion equation with a reaction term describing metabolic process
was used for the description of the mass transport processes in the intima and media.
The filtration velocity in the intima and media was calculated using Darcy’s law.
Kedem—Katchalsky equations, which describe the convective and diffusive flux
across the endothelium and internal elastic lamina (IEL) were utilized to couple the
transport equations in the lumen, intima, and media. The physical parameters of
the intima and media were obtained from fiber matrix models (Curry 1984, Huang
et al. 1992, Huang and Tarbell 1997). Pore theory equations (Curry 1984, Crone and
Levitt 1984) were utilized to determine the transport parameters of the endothelium
and IEL. The filtration velocity in the wall layer was determined using Darcy’s law.
The description of the mass transport processes in the intima and media uses the
volume-averaged stationary convection-diffusion-reaction equation:

∇ · (−Dw∇cw + Kslcwuw) = kwcw (10)
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The transport parameters in the above equation (Dw, Ksl , kw) were calculated using
an appropriate fiber matrix model (Curry 1984, Huang and Tarbell 1997, Huang
et al. 1992). The transport processes in the lumen, intima and media were coupled by
the flux across the endothelium and IEL which was mathematically modeled using
the Kedem—Katchalsky equations. The continuity of convective-diffusive flux at
the interfaces between lumen, endothelium, intima, IEL, and media was assumed as
follows:

−D
�c

�n
+ vc = Js = −Dw

�cw

�n
+ uwcw (14)

2.4 Other Models

Several analytical and numerical works have explored the mechanism of transport
of macromolecules within the artery wall. Huang and Tarbell (1997) studied the
transport and reaction processes for ATP (Adenosine triphasphate) and LDL in the
media, which they modeled as a heterogeneous material consisting of a continuous
interstitial porous media phase and an array of cylindrical SMCs embedded in the
interstitial phase. They did not consider the entrance effects associated with the dis-
tribution of material in the media through fenestral pores in the internal elastic lam-
ina (IEL). Tada and Tarbell (2004) developed a two-dimensional numerical model to
analyze the effect of the IEL on convective-diffusive transport of macromolecules
in the media. The IEL was modeled as an impermeable barrier to both water and
solute except for the fenestral pores that were assumed to be uniformly distributed
over the IEL. The media was modeled as a heterogeneous medium composed of an
array of smooth muscle cells (SMCs) embedded in a continuous porous medium
representing the interstitial proteoglycan and collagen fiber matrix (Fig. 1).

The governing equation for the fluid flow in the media is the Brinkman’s equation:

∇ P = μ∇2u − μu
K p

(15)

and the continuity equation

∇ · u = 0 (16)

where K is the Darcian permeability of the extracellular matrix. Solute transport
through the extracellular matrix is described by a convective-diffusion equation

Kcf u · ∇c = D f ∇2c (17)

where Kcf is the lag coefficient for convective transport in the fiber matrix, c is the
interstitial macromolecule concentration, and D f is the effective diffusivity of so-
lutes in the fiber matrix. The boundary condition on the surface of a smooth muscle
cell (SMC) is
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Fig. 1 Schematic illustration of the arterial media underneath the subendothelial layer. Internal
elastic lamina (IEL) has a single fenestral pore (Tada and Tarbell 2004)

kr c = D f ∇c (18)

where kr is the rate constant associated with the rate of disappearance of solute by
surface reaction or cell permeation. In modeling solute uptake by SMCs, Adenosine
triphosphate (ATP) and LDL were chosen as substances representing a broad range
of molecular size. The degradation of ATP (hydrolysis of ATP to ADP: adenosine
diphosphate) on the surface of SMC can be modeled using Michaelis-Menten kinetics
with a rate

V = VmaxCs

km + Cs
(19)

where Vmax is the maximum rate, cs is the surface concentration, and km is the
Michaelis constant.Forpseudo-firstorder reaction rate (cs <<km), theaboveequation
reduces to

V = VmaxCs

km + Cs

∼= Vmax

km
Cs = kr Cs (20)

The effective reaction rate coefficient for ATP was taken as kr = 1.25 × 10−4 cm/s
based on experimental data for Vmax and km (Gordon et al. 1989) and the effective
diffusivity (D f ) was set at D f = 2.36 × 10−6 cm2/s (Gordon et al. 1989).

3 Physiological Parameters

The physiological parameters of the various wall layers used in the transport equations
were calculated using pore and fiber matrix models, in vivo and in vitro experiments.
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3.1 Endothelium and Internal Elastic Lamina

Traditionally, transport characterization across the endothelium and IEL is repre-
sented by the Staverman-Kedem–Katchalsky membrane transport equations given as

Jv = K ′

μ
(�p − σd�π ) = L p (�p − σd�π ) (21)

Js = D′
e�c + (1 − σ f )Jv c̄ = P�c + (1 − σ f )Jv c̄ (22)

where D′
e is the effective diffusivity per unit length and K ′ is the permeability

per unit length. Using pore theory, some researchers (Prosi et al. 2005, Karner
et al. 2001) have derived L p,endothelium = 3 × 10−9 mm2 s/g, L p,I E L = 3.05 ×
10−7 mm2 s/g, D′

e,endothelium = 3 × 10−10 mm/s, and D′
I E L = 1.59 × 10−6 mm/s

for LDL.

3.2 Intima and Media

The subendothelial intima was modeled as an extracellular matrix of randomly dis-
tributed fibers (proteoglycan and collagen). Curry (1984) demonstrated that the par-
tition coefficient φ f (space available to the solute relative to the space available to
water) was given by:

φ f = exp

[

−(1 − ε)

(
2 rsol

r f
+ r2

sol

r2
f

)]

(23)

Where ε is the porosity defined as:

ε = 1 − πr2
f lt (24)

Where r f , rsol are the radii of fiber and solute respectively, and lt is the total length
of fibers per unit volume. The Staverman reflection coefficients σ f and σd for the
convective transport in the fiber matrix can be expressed as (Curry 1984):

σ f = σd = (
1 − φ f

)2
(25)

The diffusivity coefficient in the intimal extracellular fiber matrix was calculated as
follows (Ogston et al. 1973):

D f = D exp

[

− (1 − ε)0.5

(

1 + rsol

r f

)]

(26)

The Darcy permeability K was given as (Vafai and Tien 1980, 1981, Vafai 1984,
Huang et al. 1992):
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K = r2
f ε

3

4G (1 − ε)2 (27)

Where G is the Kozeny constant. Similar to the intima, media was modeled as a
medium composed of smooth muscle cells (porosity = εSMC ) and an extracellu-
lar fluid phase with fibers (porosity = ε). Therefore, the porosity of the media is
given by

εm = ε (1 − εSMC ) (28)

4 Mathematical Model of Macromolecule Transport
within the Arterial Wall

Multilayer model is the most complex model which takes into account the het-
erogeneous properties of the layers constituting the wall. Due to its complexity,
a larger number of parameters are required to characterize the physical properties of
each layer (Fry 1985, Karner et al. 2001). Most of the previous multilayer models
were based on the assumption that the physical properties of the porous wall can be
identified by the pore theory. However, this approach does not provide logical esti-
mations. Prosi et al. (2005) proposed a new methodology which starts from a set of
data that can be more easily determined by experimental measurements. However,
some of the assumptions made in this model give substantial errors. For example,
the Kedem–Katchalsky equations used for endothelium and IEL do not take into
account the boundary effects associated with the flow across these two layers. In
fact, these effects are large due to the thinness of these two layers. Also, they take
into account the effects of the reaction inside the media layer by approximating the
loss of mass flux upstream of the layer. This simplification can lead to an over or
underestimation of the influence of the chemical reaction

Yang and Vafai (2006, 2008), Ai and Vafai (2006), and Khakpour and Vafai (2008a,
b) developed a new fundamental four-layer model for the description of the mass
transport in the arterial wall coupled with the mass transport in the arterial lumen. The
endothelium, intima, internal elastic lamina (IEL) and media layers were all treated
as macroscopically homogeneous porous media and mathematically modeled using
proper types of the volume averaged porous media equations with the Staverman
filtration and osmotic reflection coefficients employed to account for selective perme-
ability of each porous layer to certain solutes. The typical anatomical structure of an
arterial wall is shown schematically in Fig. 2.

4.1 Lumen

Blood flow in the arterial lumen was described by the Navier–Stokes and continuity
equations assuming incompressible Newtonian fluid as follows:
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Fig. 2 Schematic illustration of the geometric artery wall

∇ · �V = 0 (5)

� �V
�t

+ �V · ∇ �V = − 1

ρ
∇ P + ν∇2 �V (6)

The concentration field in the arterial lumen is computed using the mass transport
equation:

�c

�t
+ �V · ∇c = D∇2c (29)

4.2 Endothelium and Internal Elastic Lamina

The endothelium and internal elastic lamina (IEL) were modeled as biological
porous membranes (Ai and Vafai 2006, Yang and Vafai 2006). The Staverman fil-



Macromolecular Transport in Arterial Walls 229

tration and osmotic reflection coefficients were employed to account for selective
rejection of species by the membranes and for the effects of osmotic pressure. The
volume averaged governing equations were given by:

∇· < �V > = 0 (30)

ρ

ε

� < �V >

�t
= −∇ < p > f +μ

ε
∇2 < �V > −μ < �V >

K
+ Ru T σd∇ < c > (31)

� < c >

�t
+ (1 − σ f ) < �V > ·∇ < c >= De∇2 < c > (32)

where K is the permeability, and De is the effective LDL diffusivity in the medium.
The parameters σ f and σd are the Staverman filtration and osmotic reflection co-
efficients (to account for selective permeability of biological membrane to certain
solutes), respectively, T is the absolute temperature of the medium, and Ru is the
universal gas constant. The symbol < > denotes the local volume average of a quan-
tity (Vafai and Tien 1980, 1981), and the superscript f refers to the local volume
average inside the fluid.

4.3 Intima and Media

The intima and media were also modeled as macroscopically homogeneous porous
media. Since the porous media are selectively permeable to certain species such
as LDL, the Staverman filtration reflection coefficient has to be introduced to ac-
count for this effect. The osmotic effect in the transport modeling is not included
in this part since the maximum osmotic pressure gradient in the medial layer is
far below the hydraulic pressure gradient (Huang and Tarbell 1997). Therefore, the
volume averaged governing equations of the intima and media layers are (Alazmi
and Vafai 2000, 2001)

∇· < �V > = 0 (30)

ρ

ε

� < �V >

�t
= −∇ < p > f +μ

ε
∇2 < �V > −μ < �V >

K
(31)

� < c >

�t
+ (1 − σ f ) < �V > ·∇ < c >= De∇2 < c > +k(c) (32)

where k is the effective volumetric first-order reaction rate coefficient. To verify
the results obtained using this model, a comparison between the numerical result
for species profiles in the media and an exact solution was carried out by Yang and
Vafai (2006). This comparison is displayed in Fig. 3. The exact solution was derived
based on an assumption that the LDL transport in the media is one-dimensional,
with constant filtration velocity. It can be seen from Fig. 3 that the results of porous
model results are in excellent agreement with the exact solutions.
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Fig. 3 Comparison between the numerical dimensionless LDL profiles in the media for three dif-
ferent types of concentration boundary conditions at the media adventitia interface and the exact
solutions

An additional check on the accuracy of their model, Table 1 illustrates a com-
parison between the values of the filtration velocity and species concentration taken
from literature and the results obtained using porous medium approach. The numer-
ical species concentrations at each interface were found close to the experimental
data by Meyer et al. (1996) and numerical results by Prosi et al. (2005).

Tables 2 and 3 show a summary of different boundary conditions used at the
interface between the lumen and the arterial wall as well as various momentum
equations used in modeling the flow in the arterial wall.

Table 1 Comparison between the values of the filtration velocity and species concentration taken
from literature and the porous model (Nang and Vafai , 2006)

Meyer et al.
(1996)

Prosi et al. (2005)
C = 0

Porous Model
C = 0

Filtration velocity (mm/s) 1.78 × 10−5 1.76 × 10−5 2.31 × 10−2

Species Concentration

Lumen-endothelium interface 1.026 1.0262 1.0246

Intima-IEL interface N/A 2.716 × 10−2 3.983 × 10−2

IEL-media interface 1.00 × 10−2 8.58 × 10−3 1.033 × 10−2

Media ( r = 3.214 mm) 2.5 × 10−3 2.23 × 10−3 2.687 × 10−5

Media-adventitia interface 1.00 × 10−2 0.00 0.00
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Table 2 Summary of the mass interface boundary conditions between lumen and arterial wall

Model Remarks

−D �c
�n

∣
∣
wall

= α cw -wall free model
-constant wall permeability

−D �c
�n

∣
∣
wall

= α cw = f (|τw|) cw = β |τw| cw -wall free model
-permeability is linearly dependent on the

local shear stress magnitude

cwuw − D �c
�n

∣
∣
wall

= κ cw -wall free model and fluid-wall model
-more realistic
-depends on the blood-side solute

concentration at the wall, endothelial
permeability parameter, and the filtration
velocity

−D �c
�n

∣
∣
wall

= hm (cb − cw) -wall free model
-depends on the bulk concentration in the

lumen and the arterial wall concentration
∗w: interface between the lumen and the arterial wall

Table 3 Summary of the momentum equation used in the arterial wall

Model Remarks

uw − ∇ ·
(

K
μp

pw

)
= 0 -fluid-wall model

-arterial wall modeled as single-layer porous
medium

-Darcy model
-constant permeability

� �V
�t + �V · ∇ �V = − 1

ρ
∇ P + ν ∇2 �V − ν �V

K -fluid-wall model
-arterial wall modeled as single-layer porous

medium
-Brinkman’s model
-constant permeability

ρ

ε
�< �V >

�t = −∇ < p > f +μ

ε
∇2 < �V >

−μ< �V >

K + Ru T σd∇ < c >

-endothelium and internal elastic lamina
-more realistic

-The Staverman filtration and osmotic
reflection coefficients were employed to
account for selective rejection of species
by the membranes and for the effects of
osmotic pressure

ρ

ε
�< �V >

�t = −∇ < p > f +μ

ε
∇2 < �V >

−μ< �V >

K

-intima and media
-more realistic
-accounts for Staverman filtration

reflection coefficient
-neglects the osmotic effect in the transport

modeling
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5 Future Directions

In the cardiovascular system, blood flow is under constant interaction with arterial
walls. The interactions between blood flow and wall deformation can involve a wide
range of fluid- mechanical phenomena. When blood flows through the lumen, the
forces associated with the flow may deform the arterial walls and consequently alter
the properties of the wall which in turn affect the flow structure in the lumen as well
as the transport process of macromolecules from the lumen to the arterial walls. This
will have an impact on the development of many diseases such as atherosclerosis.
Most previous studies have been carried out under different simplifying assumptions
such as steady flow, rigid boundary, Newtonian fluid, etc. The comparison between
the simulations considering rigid arteries and deformable arteries have shown a sub-
stantial increase in the wall shear stresses for a rigid artery. This indicates that as the
artery becomes more rigid, its wall shear stress increases leading to atherosclerosis.
Hence, simultaneous fluid-structure interactions (FSIs) should be considered when
studying the hemodynamics, flow structure, and the transport of macromolecules
from the lumen to the arterial walls. Transient FSI simulations may provide physi-
cal insight to the mechanisms of the atherosclerosis. The solution of fluid-structure
interaction problems, coupling computational fluid dynamics analysis with finite
element stress analysis, is now becoming tractable through the accessibility of high
performance computing.

There is a need for an FSI approach in studying the transport of macromolecules
in the arterial walls under pulsatile flow condition and utilizing a porous media
approach to analyze the arterial walls. Since the wall of the artery is deformable,
a complex coupling exists between the flow in the lumen and the arterial wall.
Thus, the variations in the porosity and permeability of the deformable arterial wall
should be considered in such analysis. In addition, the variations in the physical
properties of the arterial walls such as Young modulus and Poisson’s ratio should
be considered in any future studies since the materials of the walls are nonlinear,
non-homogeneous, and anisotropic.

Nomenclature

D diffusion coefficient
D′

e effective diffusivity per unit length
c concentration
cb bulk concentration
cs surface concentration
cw wall concentration (at the interface between

lumen and the arterial wall)
c̄ mean endothelial concentration
hm fluid phase mass transfer coefficient
Js solute flux
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km Michaelis constant
kw consumption rate constant
K Darcian permeability
Ksl solute lag coefficient
L p hydraulic conductivity of the endothelium
pw pressure in the arterial wall
qw diffusive wall flux
r reaction term
uw transmural velocity
Vmax maximum rate

Greek Symbols

α constant wall permeability
β proportionality factor (shear-dependent wall

permeability model)
�π osmotic pressure differential
� The permeability coefficient at the arterial

wall
μp viscosity of the blood plasma
� porosity
σd Staverman filtration
σ f osmotic reflection
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Flow and Heat Transfer in Biological
Tissues: Application of Porous
Media Theory

Khalil Khanafer, Abdalla AlAmiri, Ioan Pop, and Joseph L. Bull

Abstract The transport phenomena in porous media have generated increasing
interest over the past several decades owing to the importance of porous media in
diverse fields such as biotechnology, living structures, chemical and environmental
engineering, etc. Particularly, significant advances have been achieved in applying
porous media theory in modeling biomedical applications. Examples include com-
putational biology, tissue replacement production, drug delivery, advanced medical
imaging, porous scaffolds for tissue engineering and effective tissue replacement
to alleviate organ shortages, and transport in biological tissues. Another important
application of porous media includes diffusion process in the extracellular space
(ECS) which is crucial for investigating central nervous system physiology. In this
chapter, three applications namely brain aneurysm, flow and heat transfer in biolog-
ical tissues, and porous scaffolds for tissue engineering are analyzed as related to
the advances in porous media theory in biological applications.

1 Brain Aneurysm

1.1 Introduction

A cerebral or brain aneurysm, which is a cerebrovascular disorder, is a balloon-like
bulging outward of the wall of an artery in the brain. A common location of cerebral
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aneurysms is on the arteries at the base of the brain, known as the Circle of Willis
(Hademenos, 1995). The bursting of an aneurysm in a brain artery or blood vessel
causes bleeding into the brain or the space closely surrounding the brain called sub-
arachnoid, which leads to a hemorrhagic stroke, brain damage and death. Recently,
embolization using coils has been used widely to treat intracranial aneurysms. This
endovascular coiling technique (or coil embolization), which involves the deploy-
ment of tiny platinum coils into the aneurysm through the catheter, is successfully
used in the treatment of brain aneurysms by blocking blood flow into the aneurysm
sac and consequently preventing rupture. Coil embolization has been found to have
several advantages compared to surgical clipping. It produces significantly better
patient results than surgery in terms of survival, free of disability, and a lower risk
of death than in surgically-treated patients.

However, coil embolization cannot be used in cases of wide-necked irregular
shaped aneurysm due to the difficulties associated with achieving complete filling of
the aneurysm sac as well as the risk of coil protrusion into the parent artery (Knuckey
etal.,1992).Therefore, intravascularstentshavebeenusedacross theaneurysmincon-
junction with coil embolization to successfully treat surgically challenging aneurysms
and to improve the density of coil packing. As such, several advantages of using stents
in conjunction with coils were reported in the literature. The placement of an endovas-
cular stent may promote intra-aneurysm stasis and thrombosis (Wakhloo et al., 1994a,
1995, 1998). Further, the stent acts as a rigid endoluminal scaffold that prevents coil
protrusion into the parent artery lumen (Wakhloo et al., 1998, Turjman et al., 1994)
a problem frequently encountered in wide-necked aneurysms. Thus, the combina-
tion stent–coil technique allows for the dense packing of complex large, wide-necked
aneurysms that are difficult to treat surgically Fig. 1.

1.2 Clinical and Experimental Studies Associated
with the Treatment of Aneurysms Using Stent
Implantation and Coil Placement

Experimental studies have been performed to analyze blood flow characteristics
of an aneurysm after endovascular treatment using coils and stents (Szikora et al.,
1994, Wakhloo et al., 1998, Turjman et al., 1994). Lieber et al. (2002) performed

Fig. 1 Schematic diagram of the stent placed across the aneurysm neck
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particle image velocimetry (PIV) measurements to study experimentally the in-
fluence of the stent filament size and stent porosity on the intra-aneurysmal flow
dynamics in a sidewall aneurysm model. Their results showed that stenting signif-
icantly reduces both the intra-aneurysmal vorticity and the mean circulation inside
the aneurysm. Liou et al. (2004) conducted an experimental study to investigate
pulsatile flow fields in a cerebrovascular side-wall aneurysm model using helix
and mesh stents. Their results showed that the hemodynamic features inside the
aneurysm changed substantially with the shape of the stent. Further, comparison
of the results between helix stent and mesh stent revealed that helix mesh is more
favorable for endovascular treatment. The influence of aneurysm geometry and stent
porosity on velocity and wall shear stress changes inside the aneurysm sac caused
by stenting under physiological flow was analyzed experimentally by Rhee et al.
(2002). Their results demonstrated that the intra-aneurysmal flow motion and the
magnitude and pulsatility of the wall shear rate were significantly reduced in the
stented aneurysm models. Canton et al. (2005) conducted an in vitro study to quan-
tify the effect of the stents by measuring the changes in the hemodynamic forces
acting on a bifurcating aneurysm model (basilar tip configuration) after the place-
ment of flexible Neuroform stents. A digital particle image velocimetry (DPIV)
system was used to measure the pulsatile velocity and shear stress fields within
the aneurysm. Their results showed that peak velocity and strength of vortices inside
the aneurysm sac were reduced after placing the stents. Gobin et al. (1994) observed
reduction of inflow and flow stagnation at the dome with coil insertion in their in
vitro model study.

Clinical experiences with stent placement and coil for cerebral aneurysm have
also been reported in the literature (See for instance: Marks et al., 1994, Wakhloo
et al., 1994b). Lanzino et al. (1998) reported that stent placement within the parent
artery across the aneurysm reduced intra-aneurysm flow velocity which led to intra-
aneurysm stasis and thrombosis and consequently preventing rupture. Kwon et al.
(2006) used a new endovascular technique for treatment of cerebral aneurysms. Eight
patients with wide necked aneurysms were successfully treated without complications
with detachable coils using the multiple microcatheter technique as shown in Fig. 2.

1.3 Computational Studies Associated with Combined Use of Stents
and Coils for the Treatment of Cerebral Aneurysms

Better understanding of the behavior of the blood flow and hemodynamics changes in
various organs is a very challenging aspect in medical research. Therefore, computa-
tional fluid dynamics is considered an essential tool in the assessment and treatment of
cerebral aneurysms using stents and coils. For example, Aenis et al. (1997) used finite
element method, pulsatile, Newtonian flows to study the effect of stent placement
on a rigid side wall aneurysm. Their results illustrated a diminished flow activity
and pressure inside the stented aneurysm. Stuhne and Steinman (2004) conducted
a numerical study to analyze the wall shear stress distribution and flow streamlines
near the throat of a stented basilar side-wall aneurysm. The numerical simulations
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Fig. 2 (a) Aneurysmal Configuration visualized in 3D image, (b) Coil deployed to aneurismal sac
and (c) Final angiogram shows complete occlusion of the aneurysm. A total of 333 cm platinum
coil was inserted. (Reprinted from Kwon et al. (2006), with permission from Acta Neurochirurgica)

were performed assuming constant pressure at the outflow boundary of the model
and specifying either steady or pulsatile flow at the inlet. For pulsatile simulations,
wall shear stress (WSS) intensification was most prominent on the sides of the stent
wires facing the impinging flow, while WSS reduction was most prominent on the
patches of vessel lumen near wire–wire intersections. Ohta et al. (2005) analyzed
hemodynamic changes in intracranial aneurysms after stent placement using a finite
element modeling approach. Their work illustrated areas with stagnant flow and low
shear rates.

Computational modeling of coil embolization technique in the treatment of brain
aneurysms has received less attention in the literature due to the irregularly-shaped
geometry of the coil. Three-dimensional pulsatile flow simulation before and af-
ter endovascular coil embolization of a terminal cerebral aneurysm was investi-
gated by Groden et al. (2001) using in vivo data obtained by computer tomo-
graphic angiography. The filling of the aneurysm neck with platinum coils was
simulated by a distribution of blocked cells. In essence, the fluid was not al-
lowed to enter these cells. Their results showed that a complete cessation of the
inflow through the aneurysm neck was achieved with a 20% filling. It should
be pointed out, however, their model represents an approximate approach to de-
termine the effect of filling the aneurysm sac with a coil. Thus, an innovative
method for accurately modeling the influence of embedded coils on the flow and
pressure conditions in parent vessels and the aneurysm lumen was adopted in
this work utilizing a porous substrate approach. The coil embolization was mod-
eled as a porous substrate with direction-dependent permeabilities similar to the
study reported by Srinivasan et al. (1994). Srinivasan et al. (1994) developed a
model for predicting the friction and heat transfer in spirally fluted tubes using
porous media theory. The flute region was modeled as a porous substrate. Re-
cently, Khanafer et al. (2006) developed a mathematical model for determining
the flow field under physiological condition within a brain aneurysm filled with
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coils using volume-averaged porous media approach. Their results showed that
the presence of the coil significantly reduced the velocity and vorticity within the
aneurysm sac.

1.4 Mathematical Formulation

The conservation equations for the coil region shown in Fig. 3 are based on the
generalized flow model in porous media, which includes the effects of inertia as
well as friction caused by the macroscopic shear. The generalized model, which
was obtained through local volume averaging and matched asymptotic expansions,
is also knows as the Brinkman-Forchheimer-Darcy model and described in rigorous
detail by Vafai and Tien (1980, 1981), Nakayama (1995), Vafai and Amiri (1998)
and Nield and Bejan (2006). These equations can be summarized as follows:
Continuity equation:

∇· < v >= 0 (1)

Momentum equation:

ρ f

ε

[
� < v >

�t
+ < (v · ∇)v >

]

= −∇ < P > f +μ f

ε
∇2 < v > −μ f

K
< v >

− ρ f Fε√
K

[< v > . < v >]J (2)

In the above equations � is the porosity, F is the geometric function, K is the
permeability, μ f is the fluid dynamic viscosity, J = vp

|vp| is the unit vector along

the pore velocity vector vp,< v > is the average velocity vector, and < P > f is
the average readoff pressure. The medium permeability K can be properly modeled
(Vafai, 1984, 1986, AlAmiri 2000, 2002, Khanafer et al., 2003a, b).

The porosity of the coil can be used as an index to determine the required density
of coil compaction for a patient and consequently reduces the occurrence of rupture
during the deployment of the coil. The porosity of the coil depends strongly on the

Fig. 3 A schematic diagram of an aneurysm filled with coil (Reprinted with permission from the
American Society of Interventional and Therapeutic Neuroradiology)
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volume of the aneurismal sac. More experimental studies are necessary to correlate
the porosity of the coil to the density of the coil and the volume of the aneurysm
sac. An analytical expression of the porosity ε can be easily derived for a helix stent,
which is a spring-like in shape for better control of porosity (Fig. 1), as follows.

ε = L − n × d

L
(3)

Where L is the length of the stent, n is the number of stent loops (or filaments), and
d is the diameter of the wire. The effect of the stent on the inflow into the aneurysm
can be characterized by the blocking ratio defined as:

C = n × d

L
= 1 − ε (4)

2 Flow and Heat Transfer in Biological Tissues

2.1 Introduction

The development of mathematical models for flow and heat transfer in living tissues
has been a topic of interest for various physicians and engineers. The accurate de-
scription of the thermal interaction between vasculature and tissues is essential for the
advancement of medical technology in treating fetal diseases such as tumor. Currently,
mathematical models have been used extensively in the analysis of hyperthermia in
treating tumors, cryosurgery, and many other applications. Hyperthermia treatment
has been demonstrated effective as cancer therapy in recent years. Its objective is to
raise the temperature of pathological tissues above cytotoxic temperatures (41–45 ◦C)
without overexposing healthy tissues (Overgaard et al., 1996, Oleson et al., 1984,
Dewhirst and Samulski, 1988, Field and Hand, 1990). The success of hyperther-
mia treatment strongly depends on the knowledge of the heat transfer processes in
blood perfused tissues. As such, accurate thermal modeling is essential for effective
treatment by hyperthermia. Khanafer et al. (2007) conducted a numerical study to
determine the influence of pulsatile laminar flow and heating protocol on temperature
distribution in a single blood vessel and tumor tissue receiving hyperthermia treatment
using physiological velocity waveforms. Their results showed that the presence of
large vessels has a significant effect on temperature distributions and must be ac-
counted for when planning hyperthermia treatment (Fig. 4). Further, uniform heating
scheme was found to exhibit larger temperature distribution than for pulsed heating
scheme which may induce areas of overheating (beyond the therapeutic regions) that
could damage normal tissues (Fig. 5).

Heat transport in biological tissues, which is usually expressed by the Bio-
heat Equation, is a complicated process since it involves thermal conduction in
tissues, convection and perfusion of blood, and metabolic heat generation.
Therefore, several authors have developed mathematical models of bioheat transfer
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Fig. 4 Temporal variation of the normalized heat flux for different Reynolds numbers

as an extended/modified version of the original work of Pennes (1948) as reported
by Charny (1992) and Arkin et al. (1994). Below is a comprehensive summary of
different thermal models and their limitations for blood perfused tissues.

Fig. 5 Influence of the heating protocol on the temperature distribution at various flow conditions
(Re = 300)
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2.2 Thermal Models for Blood Perfused Tissues

2.2.1 The Pennes Bioheat Equation

The Pennes (1948) model was originally designed for predicting heat transfer in
human forearm. Pennes modeled the net heat transfer (qp) from the blood to the
tissue to be proportional to the temperature difference between the arterial blood
entering the tissue and the venous blood leaving the tissue as follows:

qp = ωρbcb (Tb − T ) (5)

where ω is the blood volumetric perfusion rate, ρb is the blood density, and cb is the
blood specific heat. Because the perfusion rate (ω) could not be directly measured,
Pennes varied this parameter to fit his experimental data. Also, Pennes derivation
assumed that the arterial blood temperature Tb is uniform throughout the tissue while
he considered the venous temperature to be equal to the tissue temperature which is
denoted by T at the same point. The equation that Pennes developed is expressed in
its simplest form as:

ρ cp
�T

�t
= ∇ · (k∇T )) + ωρbcb (Tb − T ) + qm (6)

where ρ, cp, k, and qm are tissue density, tissue specific heat, tissue thermal con-
ductivity, and uniform rate of metabolic heat generation in the tissue layer per unit
volume, respectively. Due to the inherent simplicity of Pennes bio-heat transfer
model (assume uniform thermal conductivity, perfusion rate, and metabolic heat-
ing) Pennes model was implemented in various biological research works such as
therapeutic hyperthermia for the treatment of cancer (See for instance: Roemer and
Cetas, 1984, Charny and Levin, 1988, 1989).

2.2.2 Wulff Continuum Model

Several investigators have questioned the validity of the fundamental assumptions
of Pennes bio-heat equation. Wulff (1974) was one of the first studies that directly
criticized the assumptions of Pennes model. Since blood may convect heat in any
direction, Wulff (1974) assumed that the heat transfer between flowing blood and
tissue should be modeled to be proportional to the temperature difference between
these two media rather than between the two blood stream temperatures (tempera-
ture of the blood entering and leaving the tissue). Thus, the energy flux at any point
in the tissue is expressed by:

q = −k∇T + ρbhbvh (7)

where vh is the local mean blood velocity, and T is the tissue temperature. The
specific enthalpy of the blood hb is given by:
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hb =
Tb∫

To

cp(T ∗
b )dT ∗

b + P

ρb
+ �H f (1 − φ) (8)

Where P is the system pressure, �H f is the specific enthalpy of the metabolic reac-
tion, and φ is the extent of reaction, respectively. Thus, the energy balance equation
can be written as

ρ cp
�T

� t
= −∇ • q = −∇ • (−k∇T + ρbhbvh) = ∇ •

⎡

⎣k∇T − ρbvh

Tb∫

To

cp(T ∗
b )dT ∗

b

+ P

ρb
+ �H f (1 − φ)

]

(9)

The above equation can be simplified by neglecting the mechanical work term
(P/ρb), setting the divergence of the product (ρbvh) to zero, and assuming constant
physical properties as follows:

ρ cp
�T

� t
= k∇2T − ρbvh

(
cp∇Tb − �H f ∇ φ

)
(10)

Wulff (1974) assumed that Tb is equivalent to the tissue temperature T because
blood in the microcirculation is in thermal equilibrium with the surrounding tissue.
Therefore, the final form of bio-heat equation that was derived by Wulff (1974) is:

ρ cp
�T

� t
= k∇2T − ρbvhcp∇T + qm (11)

2.2.3 Klinger Continuum Model

Since the effects of non-unidirectional blood flow were neglected in Pennes model,
Klinger (1974) emphasized that the convection heat transfer caused by the blood
flow inside the tissue should be modeled to take into an account the spatial and tem-
poral variation of the velocity field and heat source. Thus, the general heat transport
equation can be written as:

ρ c
�T

� t
+ (ρ c) v ∇T = k∇2T + q (12)

This model assumed constant physical properties of tissue and incompressible blood
flow.

2.2.4 Continuum Model of Chen and Holmes (CH)

In the Chen and Holmes (CH) model (1980), the control volume occupied by the
tissue and blood vessels was divided into two separate volumes: one for solid tissue
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and the other consisted only of blood in the vascular space within the blood vessels.
Using volume-averaged technique, the energy balance equations for both the solid
tissue space and vascular spaces can be written as:

Solid Phase:

dVs(ρ c)s
�Ts

� t
= d Qks + d Qbs + d Qm (13)

Fluid Phase:

dVb(ρ c)b
�Tb

� t
= d Qkb − d Qbs +

∫

S

(ρ c)bT vds (14)

Where dVs is the differential volume of the solid phase, dVb is the differential
volume of the blood in the vascular space, d Qks is the energy transferred by con-
duction, d Qbs is the energy transferred gain in the control volume from the blood
space, d Qm is the metabolic heating energy, d Qkb is the energy gain in the vas-
cular space by conduction, and the integral term in Eq. (14) denotes the energy
transfer by convection as the blood flows across the surface area S at velocity v.
Therefore, the energy balance for the tissue space is derived by the addition of
Eqs. (13–14) and division of the result by the total control volume dV yields the
following:

(ρ c)
�Tt

�t
= qk + qm + qp (15)

Where qk is the heat transfer by conduction per unit volume, qm is the metabolic
heat per unit volume, and qp is the perfusion energy per unit volume. Here ρ, c and
Tt denote the local mean density, specific heat, and temperature of the tissue based
on the volume average as follows:

Tt = 1

ρ c

[(

1 − dVb

dV

)

(ρ c)s Ts + dVb

dV
(ρ c)bTb

]

(16)

ρ =
(

1 − dVb

dV

)

ρs + dVb

dV
ρb & c = 1

ρ

[(

1 − dVb

dV

)

(ρ c)s + dVb

dV
(ρ c)b

]

(17)

The total heat transfer by conduction per unit volume (qk) in the tissue control vol-
ume is expressed by:

qk = Qks + Qkb

dV
= ∇ • (

kef f ∇Tt
)

(18)

where kef f is the effective thermal conductivity of the combined tissue and vascular
spaces. The effective thermal conductivity is written as:
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kef f = ε kb + (1 − ε)ks (19)

Since ε = dVb
dV ∼ dVb

dVs
<< 1 it follows that kef f

∼= ks . Therefore, the effective
thermal conductivity is equal to the thermal conductivity of the solid tissue medium,
ks .

Chen and Holmes (1980) expressed the perfusion term (or the bulk flow term) qp

as follows:

qp = qp(1) +qp(2) +qp(3) = (ρ c)bω
∗ (

T ∗
a − Ts

)− (ρ c)bvp •∇Ts −∇ •kp∇Ts (20)

where qp(1) represents the effect of blood flow on tissue temperature around large
vessels, Ts is the temperature of the solid tissue component of the tissue-blood
model, ω∗ is the total perfusion associated with the blood flow to the tissue only
from the vessels, and T ∗

a is the temperature of the blood within the largest vessels.
qp(2) corresponds to the heat transfer that takes place as a result of the flowing
blood, and ρbvb is the mass flux of the blood through the tissue. Because of the
thermal equilibrium, the blood temperature is equal to the solid tissue temperature
everywhere in the control volume. qp(3) characterizes the heat transfer due to the
small temperature changes and is proportional to the tissue temperature gradient. kp

is the perfusion thermal conductivity. Therefore, the new bio-heat equation for Chen
and Holmes (1980) is written as

ρ c
�Tt

�t
= ∇•kef f ∇Tt +(ρ c)bω

∗ (
T ∗

a − Tt
)−(ρ c)bvp •∇Tt +∇•kp∇Tt +qm (21)

where Ts is replaced by the volume-weighted continuum temperature (Tt ). This is
reasonable as long as ε << 1.

2.2.5 The Weinbaum, Jiji, and Lemons (WJL) Bio-Heat Equation Model

Weinbaum and colleagues (1979, 1984a, b) derived the bio-heat equation based on a
hypothesis that small arteries and veins are parallel and the flow direction is counter-
current resulting in counterbalanced heating and cooling effects. Accordingly, they
modified the thermal conductivity in the Pennes equation by means of an ‘effective
conductivity’ which is a function exclusively of the blood flow rate and vascular
geometry. They also showed that isotropic blood perfusion between the countercur-
rent vessels can have a significant influence on heat transfer in regions where the
countercurrent vessels are under 70 �m diameter. Neglecting axial conduction, the
artery and vein energy balances are written as:

(ρ c)b
d

ds

(
nπ a2ūTa

) = −nqa − (ρ c)b(2π a n g)Ta (22)

(ρ c)b
d

ds

(
nπ a2ūTv

) = −nqv − (ρ c)b(2π a n g)Tv (23)
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where qa denotes the heat loss from the artery by conduction through its wall per
unit length and qv is the heat gain by conduction per unit length through the vein wall
into the vein. Ta , and Tv are the bulk mean temperatures inside the blood vessel, and
g is the perfusion bleed-off per unit vessel surface area. For an equal-size artery-vein
pair, subtracting Eq. (23) from Eq. (22) yields:

(ρ c)b

[
d

ds

(
nπ a2ūTa

) − d

ds

(
nπ a2ūTv

)
]

= −n(qa−qv)−(ρ c)b(2π a n g)(Ta−Tv)

(24)
where the term on the left-hand side represents the total heat exchange blood in
the countercurrent vessels and the surrounding tissue. This term can be balanced by
conduction and metabolic heating as follows:

(ρ c)b

[
d

ds

(
nπ a2ūTa

) − d

ds

(
nπ a2ūTv

)
]

= ∇ • (kt∇Tt ) + qm (25)

The rate of the energy entering and leaving the tissue control volume can be ex-
pressed as:

qa − qv = (ρ c)b(π a2ū)
d

ds
[Tv − Ta] (26)

where,

qa = −(ρ c)b(π a2 ū)
dTa

ds
& qv = −(ρ c)b(π a2 ū)

dTv

ds
(27)

Thus, Eq. (25) can be written in the final form as:

(ρ c)b(nπ a2ū)
d

ds
[Ta − Tv] − (ρ c)b(n 2π a g)(Ta − Tv) = ∇ • (kt∇Tt ) + qm (28)

2.2.6 The Weinbaum and Jiji Bio-Heat Equation Model

Weinbaum and Jiji (1985) derived a simplified, single equation model to study the
effect of blood flow on the tissue temperature variations. This is because Eq. (26)
cannot be solved for Tt since both Ta and Tv are unknowns. Therefore, the mean
tissue temperature can be approximated as:

Tt
∼= Ta + Tv

2
(29)

Thus, the magnitude of the difference (qa − qv) is much smaller than the magnitude
of either qa or qv. Moreover, Weinbaum and Jiji (1985) assumed that the tissue
around the vessel pair is a pure conduction region such that:

qa
∼= qv = σ kt (Ta − Tv) (30)
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where σ is a geometrical factor given by:

σ = π

cosh−1(Ls/a)
(31)

The ratio Ls/a denotes the ratio of the vessel spacing to vessel diameter. Equa-
tions (27), (29), and (30) are solved to obtain an equation for the artery-vein tem-
perature difference and the tissue temperature gradient:

Ta − Tv = −π a2 ū (ρ c)b

σ kt

dTt

ds
(32)

Substituting Eq. (32) in the original model of WJL; Eq. (24), yields a new bioheat

equation proposed by Weinbaum and Jiji (1985) as follows:

nπ2 akb

4kt
Pe

(
d

ds

[
a Pe

σ

dTt

ds

]

− 2g Pe

σ ū

dTt

ds

)

= −∇ • kt∇Tt − qm (33)

Where Pe is the Peclet number; which is defined as Pe = 2a(ρ c)bū

kb
.

2.2.7 Other Models

Baish (1994) developed a new bioheat transfer model for a perfused tissue based
on solving conjugate convection of the blood coupled to the three-dimensional con-
duction in the extravascular tissue while accounting for a statistical interpretation of
the calculated temperature field. He illustrated that Pennes model of bioheat trans-
fer equation accurately determines the mean tissue temperature except when the
arteries and veins are in closely spaced pairs. Moreover, Baish (1994) demonstrated
the dependence of the temperature distribution on the flow rate and the vascular
geometry. Wissler (1987) vigorously criticized the assumptions that used in deriv-
ing Weinbaum and Jiji (1985) model. In particular, Wissler (1987) indicated that
Weinbaum and Jiji (1985) assumed that the mean temperature in the neighborhood
of an artery–vein pair is the arithmetic mean of the arterial and venous blood at the
point of entry. Moreover, Wissler (1987) questioned the basis that the temperature
gradient is proportional to the temperature difference between the artery–vein pair
which was used in the derivation of Weinbaum and Jiji model.

2.3 Mathematical Modeling of Bioheat Equation Using Porous
Media Theory

Transport phenomena in porous media have received continuing interest in the past
five decades. This interest stems from its importance in many industrial and clinical
applications (Bejan et al., 2004, Ingham and Pop, 2002, 2005, Ingham et al., 2004,
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Pop and Ingham, 2001, Vafai, 2000, 2005, Khanafer et al., 2003a, b). Moreover,
complicated and interesting phenomena can be modeled using porous media con-
cept. Recently, Xuan and Roetzel (1997, 1998) employed porous media concept
to model tissue-blood system composed mainly of tissue cells and interconnected
voids that contain either arterial or venous blood. The thermal energy exchange
between the tissue and blood was modeled using the principle of local thermal non-
equilibrium as described in the works of Amiri and Vafai (1994, 1998), Alazmi and
Vafai (2002), Khashan et al. (2005, 2006), and Lee and Vafai (1999). Thus, two
energy equations were derived for the blood and tissue, respectively:

ε(ρ c)b

(
� < T >b

�t
+ < u >b ·∇ < T >b

)

= ∇ · (
ka

b · ∇ < T >b
)

+ hbs
[
< T >s − < T >b

]
(34)

(1 − ε)(ρ c)s
� < T >s

�t
= ∇ · (

ka
s · ∇ < T >s

) − hbs
[
< T >s − < T >b

]

+ (1 − ε)qm (35)

where < T >b, < T >s, ka
b, ka

s , < u >b and hbs , and � are the local volume-
averaged arterial blood temperature, local volume-averaged solid tissue temper-
ature, blood effective thermal conductivity tensor, solid tissue effective thermal
conductivity tensor, blood velocity vector, and interstitial convective heat transfer
coefficient, respectively. For isotropic conduction, the effective thermal conductivity
ka

b of blood and solid tissue ka
s can be expressed as:

ka
b = ε kb and ka

s = (1 − ε)ks (36)

The heat exchange between the blood and the tissue is expressed as: hbs[
< T >s − < T >b

]
. Further, Xuan and Roetzel (1997, 1998) considered an effec-

tive thermal conductivity for the blood to account for blood dispersion. The concept
of thermal dispersion is well established in the theory of porous media as presented
in the works of Amiri and Vafai (1994, 1998). Due to insufficient knowledge about
the thermal and anatomic properties of the tissue, velocity field of the blood, and
interstitial convective heat transfer coefficients, the local thermal equilibrium model
represents a good approximation for determining the temperature field in applica-
tions involving small size blood vessels (ε << 1). This implies that blood flowing
in these small vessels will be completely equilibrated with the surrounding tissue.
Therefore, Eqs. (34) and (35) reduce to the following equation (Khanafer and Vafai,
2001, Marafie and Vafai, 2001):

[(ρ c)bε + (1 − ε)(ρ c)s]
� < T >

� t
+ ε(ρ c)b < u >b ·∇ < T >

= ∇ [(
ka

s + ka
b

) · ∇ < T >
] + qm(1 − ε) (37)

The second term on the left hand side of the above equation represents the
heat transfer due to the blood perfusion. The perfusion source term in Pennes
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model was derived based on a uniform blood perfusion assumption and is equal
to (ρ c)bω(Tb − T ). In hyperthermia applications, tissue may absorbs energy from
external source such as electromagnetic or ultrasonic radiation and therefore another
heat source term should be added to the right side of Eq. (37) as follows:

[(ρ c)bε + (1 − ε)(ρ c)s]
� < T >

� t
+ ε(ρ c)b < u >b ·∇ < T >

= ∇ [(
ka

s + ka
b

) · ∇ < T >
] + qm(1 − ε) + qh(1 − ε) (38)

From above, one can note that the theory of porous media can be used to develop
a more robust bioheat model since it allows including the effect of blood thermal dis-
persion, porosity variation, effective tissue conductivity, and effective tissue capaci-
tance, and the exact heat transfer exchange between the blood and tissue. However,
Pennes equation ignores all these effects. Tables 1 and 2 summarize the previously
discussed bioheat transfer models in this work.

3 Tissue Engineering

3.1 Introduction

Tissue engineering is an interdisciplinary field that involves chemical and material
engineering, biology, reactor engineering, and medicine to develop viable biological
substitutes for the repair or regeneration of human tissue or organ function (Lavik
and Langer, 2004, Lanza et al., 2000). Examples of tissue-engineered substitutes
that are currently being investigated include skin, cartilage, bone, vascular, heart,
breast and liver (Masood et al., 2005). A large number of Americans suffer organ
and tissue loss every year from accidents, birth defects, diseases, hereditary disor-
ders, etc. Approximately 72,000 American people were on the waiting list for an
organ transplant in 2000. Only 23,000 transplant were performed (Port, 2002).

In order to achieve significant tissue structures, there must be appropriate trans-
port of nutrients to and waste from the cells as they begin to form a tissue or organ
(Lavik and Langer, (2004). Various types of bioreactors have been used to culture
cells for tissue regeneration or repair such as spinner flask (Sikavitsas et al., (2002),
rotating wall vessels (Carrier et al., (1999), and perfusion bioreactors (Bancroft
et al., (2002). The aim of the bioreactor is to provide suitable nutrients and oxygen
flow and many of the biophysical and biochemical conditions necessary to produce
a functional artificial tissue. Thus, bioreactor design is critical for the development
of certain tissues (Bancroft et al., 2002).

3.2 Porous Scaffolds for Tissue Engineering

The efficient design and manufacture of a complex scaffold with optimum porosity
and interconnectivity is significant for tissue engineering applications. The essen-
tial principle of tissue engineering is to combine a scaffold with cells for tissue
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replacement or repair. The scaffold provides a temporary biomechanical profile until
the cells produce their own matrix proteins and a full tissue (Masood et al., (2005).
Masood et al. (2005) addressed the issue of developing an efficient methodology to
design and manufacture a scaffold structure using a novel approach based on fused
deposition modeling (FDM) rapid prototyping (RP) technology. They derived a the-
oretical expression for the porosity of one horizontal layer of a cylindrical model
created on the FDM process as follows:

εtheortical = Vpore,layer

Vpart,layer
= 1 − (1 − εini tial )

{

RW

[
n=Nr∑

n=0

Wn

]

Nr + (Nr − 1)RG × π D/Nr

}

/t

εini tial = 1 − W mod el/

{

ρmaterial × NL × t × RW

[
n=Nr∑

n=0

Wn

]

Nr

}

(39)

where D is the diameter, H is the height of the cylindrical model, Wmodel is the
average weight of the model when an RG setting is taken as zero, RG is the raster
gap, RW is road width, t is the layer thickness, ρmaterial is the density of the material,
Wn is the width of nth road from the center of the cylindrical layer, Nr and NL are
the number of raster lines and the number of layers, respectively, defined as follows:

Nr = (D + RG)/(RW + RG) & NL = H/t (40)

Porter et al. (2005) used the Lattice–Boltzmann method to simulate the flow con-
ditions within perfused cell-seeded cylindrical scaffolds. Microcomputed tomog-
raphy imaging was used to define the scaffold micro-architecture for the simula-
tions, which produced a 3-D fluid velocity field throughout the scaffold porosity.
Sucosky et al. (2004) used particle image velocity to determine fluid mechanics of a
spinner-flask bioreactor. Coletti et al. (2006) developed a comprehensive mathemat-
ical model of convection and diffusion in a perfusion bioreactor, combined with cell
growth kinetics. Time-dependent porosity and permeability changes due to the cell
density were included in their model. The fluid dynamics of the medium flow inside
the bioreactor was described through the Navier–Stokes equations for incompress-
ible fluids while convection through the scaffold was modeled using Brinkman’s
extension of Darcy’s law for porous media. The scaffold porosity �(xi, t), which
decreases from its initial value �0(xi, 0) as the cell density increases, was expressed
as follows:

ε(xi , t) = ε(xi , 0) − Vcellρcell (xi , t) (41)

Where Vcell is the single cell volume. Tortuosity was modeled as a function of poros-
ity ε as (Perry and Green (1997):

τ =
(

2 − ε

ε

)2

(42)

The functional form of Koponen et al. (1996) was used for permeability K :
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K = ε3

qτ 2s2
(43)

Where s is the pore surface area per unit volume of porous material and q is a
structural scaffold parameter.
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Metal Foams as Passive Thermal
Control Systems

Shankar Krishnan, Jayathi Y. Murthy, and Suresh V. Garimella

1 Introduction

Solid–liquid phase change in porous media occurs in many practical applications
such as thermal energy storage, freezing of moist soils, and manufacture of metal-
matrix composites. Of particular interest in this chapter are thermal energy storage
units with thermal conductivity enhancers (e.g., metal foams) for transient thermal
control of electronics. Here, the phase change material (PCM) impregnates a metal
foam. The latent heat of the PCM serves to absorb the heat generated by the elec-
tronics, while the metal foam helps transport heat from the heat source into the
volume of the PCM and helps utilize the PCM more effectively. It is important to
understand the flow, heat transfer and phase change in these systems to better design
phase change energy storage systems for electronics cooling.

Melting and solidification of pure materials coupled with natural convection in
the liquid melt has been studied extensively over the years (Sparrow et al., 1977,
Gau and Viskanta, 1986, Jany and Bejan, 1988a). A detailed review of the litera-
ture on solid–liquid phase change heat transfer is given in Yao and Prusa (1989).
Solid/liquid phase change processes in porous media have also received wide at-
tention as they have many practical applications. Beckermann and Viskanta (1988)
performed a combined experimental and numerical investigation of phase change
occurring in a porous medium. Experiments were performed in a square enclosure
with glass beads saturated with gallium. In their mathematical model, they assumed
local thermal equilibrium between the glass beads and gallium. Their numerical
results, which showed reasonable agreement with experiments, revealed that the
solid–liquid interface shape was profoundly influenced by natural convection in the
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melt and heat conduction in the solid. Jany and Bejan (1988b) reported a scaling
analysis of melting in porous media with local thermal equilibrium between the
porous matrix and the PCM; melt convection was also incorporated. They found
that the general behavior of the phase change process with a porous medium was
similar to that of phase change without the porous medium. The melting phe-
nomenon in porous media was shown to pass through four distinct regimes, each
regime being characterized by distinct Nusselt numbers. Bejan (1989) reported an
analytical study of melting in a confined porous medium saturated with a PCM.
Non-Darcian effects were ignored as was the initial sub-cooling. The local thermal
equilibrium assumption was also invoked between the solid and PCM. The liquid
Stefan number was found to have a profound effect on the heat transfer and melting
rates. Chellaiah and Viskanta (1990a, b) studied numerically and experimentally the
melting of ice in a bed of glass and aluminum beads. They assumed local thermal
equilibrium for the numerical model and found reasonable agreement with their ex-
perimental results. With the aluminum beads, the agreement between the numerical
results and experiments was poor at high Rayleigh numbers, and deviation from
local thermal equilibrium was suggested as the cause. A review of the literature
on phase change heat transfer in porous media is available in Viskanta (1991).

Ellinger and Beckermann (1991) experimentally investigated the heat transfer
enhancement in a rectangular domain partially occupied by a porous layer of alu-
minum beads. They found that the introduction of a porous layer caused the solid–
liquid interface to move faster initially during the conduction-dominated regime.
However, the overall melting and heat transfer rates were found to be lower with
the porous layer present due to low porosity and permeability. They recommended
the use of porous media of higher porosity and permeability with higher Rayleigh
numbers for enhancement of melting and heat transfer rates. Tong et al. (1996)
performed a numerical analysis of the enhancement of melting and heat transfer
rates obtained upon incorporating a metal matrix into water, under the assumption
of local thermal equilibrium. An order-of-magnitude increase was observed in the
heat transfer rate with the metal matrix present. Vesligaj and Amon (1999) investi-
gated the passive thermal control of portable electronics using PCMs with thermal
conductivity enhancers under unsteady thermal workloads. An epoxy polymer was
used as the PCM. The operational performance of portable electronics was found
to improve when such a passive thermal storage device was used. Alawadhi and
Amon (2003) reported numerical and experimental studies on the effectiveness of a
thermal control unit composed of an organic PCM and a metal matrix. Modeling the
metal matrix using modified effective thermophysical properties was found to yield
good agreement with the experiments. Harris et al. (2001) presented an approxi-
mate theoretical model to analyze the phase change process in a porous medium.
Assuming equilibrium melting at the pore scale, a parametric study based on a
semi-heuristic conduction model was formulated. The conditions for the existence
of local thermal equilibrium were explored. A number of studies have discussed the
validity of assuming local thermal equilibrium in porous media saturated by a fluid
(egs., Krishnan et al. (2004a), Minkowycz et al. (1999), Nield and Bejan (1992),
Vafai and Sozen (1990), and Kaviany (1995)).
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The work described in this chapter investigates non-equilibrium thermal transport
associated with phase change in metal foams impregnated with organic PCMS for
applications in the thermal management of electronics. These materials have also
been used in heat exchanger units (Boomsma et al., 2003), thermal storage units
(Price, 2003), and others (Ashby et al., 2000). Since the thermal conductivity of the
phase change material considered in the present work is two orders of magnitude
lower than that of the metal foam, non-equilibrium thermal effects may play a signif-
icant role. Flow and heat transfer in the PCM and foam are modeled using a volume-
averaged approach. A two-temperature model is developed, with separate energy
equations for the metal foam and the PCM, including phase change in the PCM. The
interface heat exchange between the PCM and the metal foam and the pressure drop
due to the foam are specified through the use of empirical correlations. An alterna-
tive approach to modeling these materials is to account for the intricate geometry of
the porous structures and to compute the detailed transport through these structures.
This approach is computationally expensive if the entire physical domain were to be
simulated. Instead, this approach may be used to replace the empiricism in specify-
ing the PCM-foam interaction by considering the detailed flow and heat transfer
in a single periodic unit cell. Detailed modeling of pore-scale heat transfer has
been used to yield the effective thermal conductivity, permeability, friction factor
and local heat transfer coefficient for open-cellular foams Krishnan et al. (2006a, b).

In this chapter, a rectangular enclosure containing a metal foam impregnated with
PCM is considered. This work builds on a previous analysis of natural convection in
a PCM-foam domain, but in which change of phase was not considered (Krishnan
et al., 2004a). Issues investigated and discussed in this work include natural convec-
tion in the melt, the effects of Rayleigh, Stefan and interstitial Nusselt numbers on
the temporal evolution of the melt front location, heat transfer rate, the temperature
differentials between the solid and fluid, and the melting rate under local thermal
non-equilibrium. The results are compared with local thermal equilibrium models
and the validity of the local thermal equilibrium assumption is discussed.

2 Mathematical Formulation and Numerical Modeling

A schematic of the problem under investigation is shown in Fig. 1. A square do-
main of height H encloses the porous metal foam which is filled with solid phase
change material (PCM). The melting point of the PCM is Tmelt, and the right wall
is maintained at TC (< Tmelt). The top and bottom walls are adiabatic. Initially, the
solid metal foam and the PCM are at equilibrium at temperature TC. At time � = 0,
the left wall temperature is raised to TH (> Tmelt) and the PCM is allowed to melt.
The thermophysical properties of the solid metal foam and the PCM are assumed
to be constant over the range of temperatures considered. In the liquid state, the
PCM is assumed to be incompressible, Newtonian, and subject to the Boussinesq
approximation. The densities of the solid and liquid PCM are assumed to be equal,
i.e., the volume change upon phase change is ignored. Thermal dispersion effects
may be important for very high Rayleigh numbers (Amiri and Vafai, 1994), but are
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Fig. 1 Schematic illustration
of the problem under
investigation
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neglected in the present work due to the lack of available models for metal foams.
The volume-averaged governing mass and momentum equations in dimensionless
terms, subject to the above assumptions, are:

∇.U = 0 (1)

1

Pr

(
1

ϕ

�U
�τ

+ 1

ϕ2
(U.∇) U

)

= − ∇P + 1

ϕ
∇2U −

(
1

Da2
+ F

Pr .Da
|U|

)

U

+ Ra T ∗
f

g
|g| (2)

In the above equation, F is the inertial coefficient and � (= Vl/V) is the fraction of
liquid PCM in the given volume.

The governing energy equations are written for the metal foam and PCM sep-
arately and are closed using an interstitial Nusselt number. Assuming equilibrium
melting at the pore scale, i.e. ignoring kinetics effects, the dimensionless energy
equations are:

(1 − ε) �
�T ∗

m

�τ
= (1 − ε) λ∇2T ∗

m − Nui
(
T ∗

m − T ∗
f

)
(3)

ε
�T ∗

f

�τ
+ (U.∇) T ∗

f = ε∇2T ∗
f − ε

Ste

�γ

�τ
− Nui

(
T ∗

f − T ∗
m

)
(4)

In equation (4), � (= Vl/Vf) is the fraction of liquid in the PCM. As an alternative,
if local thermal equilibrium can be assumed, the energy equations (3) and (4) may
be replaced by a single energy equation given by

(ε + (1 − ε) �)
�T ∗

�τ
+ (U.∇) T ∗ = (ε + (1 − ε) λ) ∇2T ∗ − ε

Ste

�γ

�τ
(5)

Equation (5) can be obtained from equation (3) and (4) by setting Tm
∗ = Tf

∗ = T∗

and adding equation (3) and (4). If no porous medium were present, the governing
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mass, momentum and energy equations would be obtained by setting � = 1 and
Da = ∞ in equations (1), (2) and (5). The following dimensionless variables are
used in deriving equations (1)–(5):

ξ = x

H
; η = y

H
; τ = tα f

H 2
; U = u H

α f
; P = pH 2

ρ f υ f α f

T ∗
s = (Tm − TC )

(TH − TC )
; T ∗

f =
(
T f − TC

)

(TH − TC )
; T ∗ = (T − TC )

(TH − TC )

The relationship between �, � and � in the above equations can be expressed as
follows

ϕ =

⎧
⎪⎪⎨

⎪⎪⎩

ε f or T ∗
f ≥ T ∗

melt + �T ∗

ε

(
T ∗

f − T ∗
melt + �T ∗

2�T ∗

)

f or T ∗
melt − �T ∗ < T ∗

f < T ∗
melt + �T ∗

0 f or T ∗
f ≤ T ∗

melt − �T ∗

⎫
⎪⎪⎬

⎪⎪⎭

Here, phase change is assumed to occur over a small but finite temperature range
�T∗ for numerical stability. For all computations performed in this study a �T∗ of
0.04 or less was used. In order to model solid–liquid phase change phenomena in the
same grid, the third term in equation (2) was used to immobilize the material in the
fully solid regime by imposing a small value of permeability K (= 1 × 10−10 m2).

The dimensionless parameters describing the heat and fluid flow processes
are

Pr = υ f

α f
; Ra = gβ f H 3 (TH − TC )

α f υ f
; Da =

√
K

H

Nui = hv H 2

k f
; Ste =

(
C p

)

f (TH − TC )

�H

λ = km

k f
; λe = keq

k f
= ε + (1 − ε) λ; � =

(
ρC p

)

m(
ρC p

)

f

; F ; ε

The quantity hv is the volumetric interstitial heat transfer coefficient governing the
heat exchange between the PCM and the metal and is specified through the use of
empirical correlations. The inertial coefficient, F, for metal foams, is taken to be
0.068 (Hwang et al., 2002). For metal foams, a constant porosity of 0.8 is used for
all the computations. The effective conductivity is given by keq = εk f + (1 − ε) km .

The computational domain is discretized into finite volumes using a rectangu-
lar mesh. All the variables are stored at the cell centroids. A central-differencing
scheme with a deferred correction is used for convective fluxes as discussed in
Ferziger and Peric (1995). A central-differencing scheme is used for discretiz-
ing diffusive fluxes as well. The transient terms are discretized using a second-
order-accurate three-time-level scheme (Ferziger and Peric, 1995). The SIMPLE
algorithm is used for obtaining the velocity fields, and the linearized systems of
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equations are solved using a strongly implicit procedure (SIP). The calculations are
terminated when the dimensionless residual (Ferziger and Peric, 1995) has dropped
at least below 10−4 for all governing equations. Details of the code validation, grid-
and time-independence exercises are available in Krishnan et al.(2004a, 2005).

3 Results and Discussion

The porosity of the metal foam considered is held constant at 0.8 and the pore size
(d/H) is 0.0135. The typical ratio of the average ligament diameter (dm) of the foam
to the mean cell size (d) is 0.1875, with the average ligament diameter of 0.36 mm
(Hwang et al., 2002). The ratio of the metal foam-to-PCM thermal conductivity (	)
is 1000. The Prandtl number of the PCM is fixed at 50, and is typical of the value
for many organic PCMs.

A heat transfer correlation, Nui,d = 6 (1 − ε)

[

2 + 1.1 (Re)0.6 (Pr)
1/3

]

, is avail-

able for spherical beads (Wakao and Kaguei, 1982), and covers a wide range of
Reynolds number, but a correlation applicable to metal foams is not available. For
high Prandtl number fluids undergoing phase change in porous enclosures, the ve-
locities encountered are small (for example, the vertical velocity v (m/s) is O(10−3)
or less for RaDa2 ≤ 104). Also, the heat transfer between the metal foam and the
solid PCM is only by conduction during the initial transient. As the system is largely
conduction-dominated, it is critical to establish the diffusion limit for the interstitial
heat transfer coefficients. Table 1 lists the various models used in the present study for
closing the energy equations (3) and (4). Though some of the correlations in Table 1
are for forced convection, they are assumed to be approximately valid for natural
convection in the melt as well. The Reynolds number in the equations is interpreted
as the local Reynolds number based on the local mean velocity, i.e., umeand/
. As
Re → 0, some of the equations yield Nui,d = 0, which does not correctly represent
the conduction limit. In the equations listed in Table 1, asf is the specific surface area
of the metal foams and is given by the relation (Calmidi and Mahajan, 2000)

as f = 3πdm

(0.59d)2

[

1 − exp

(

−
(

1 − ε

0.04

))]

In the discussion that follows, the “fluid” phase refers to the PCM, whether solid
or melted, while the “solid” phase refers to the metal foam. In order to understand
the effect of inter-phase heat transfer on the melting of PCM, the case of zero inter-
phase heat transfer (Nui = 0) is first considered. Under this condition, there is no
thermal interaction between the metal foam and the PCM, and the melt experiences
only the flow resistance offered by the porous foam. Figure 2a shows the temporal
evolution of the dimensionless solid-to-fluid temperature difference along � = 0.5
for Ra = 106, Pr = 50, Da = 10−2, 	 = 103, � = 1 and Tmelt

∗ = 0.3. The Stefan
number for this case is 0.1. Figure 2b shows the PCM and metal foam temperature
distributions at the mid-height of the domain. In Fig. 2b and in other similar figures that



Metal Foams as Passive Thermal Control Systems 267

Ta
bl

e
1

In
te

rs
tit

ia
ln

us
se

lt
nu

m
be

r

In
te

rs
tit

ia
ln

us
se

lt
nu

m
be

r,
N

u i
,d

=
h

v
d

2

k
f

A
na

ly
si

s
ty

pe
R

em
ar

ks

W
ak

ao
an

d
K

ag
ue

i
(1

98
2)

6
(1

−
ε
)[

2
+

1.
1

(R
e )

0.
6

(P
r )

1 / 3
]

E
xp

er
im

en
ta

l,
A

na
ly

tic
al

Fo
r

fo
rc

ed
co

nv
ec

tiv
e

flo
w

ov
er

sp
he

re
s

(0
<

R
e

<
85

00
,

�
∼

0.
4)

H
w

an
g

et
al

.(
20

02
)

0.
37

6
(R

e )
0.

64
4

(P
r )

0.
37

E
xp

er
im

en
ta

l
Fo

r
fo

rc
ed

flo
w

ac
ro

ss
m

et
al

fo
am

s
(4

0
<

R
e

<
20

0)
C

al
m

id
ia

nd
M

ah
aj

an
(2

00
0)

( a s
f
d
)

C
R

e0.
5
Pr

0.
37

E
xp

er
im

en
ta

l
C

or
re

la
tio

n
fo

r
fo

rc
ed

flo
w

ac
ro

ss
m

et
al

fo
am

s
(C

=
0.

52
,

40
<

R
e

<
10

00
).

O
ri

gi
na

lly
pr

op
os

ed
fo

r
fo

rc
ed

flo
w

ac
ro

ss
cy

lin
de

r.
Ph

an
ik

um
ar

an
d

M
ah

aj
an

(2
00

2)

( a s
f
d
)

C
R

e0.
5
Pr

0.
37

E
xp

er
im

en
ta

l
C

or
re

la
tio

n
fo

r
fo

rc
ed

flo
w

ac
ro

ss
m

et
al

fo
am

s
(C

=
0.

52
,

10
5

<
R

a
<

5
×

10
5
).

O
ri

gi
na

lly
pr

op
os

ed
fo

r
fo

rc
ed

flo
w

ac
ro

ss
cy

lin
de

r.

K
uw

ah
ar

a
et

al
.(

20
01

)
4

(1
−

ε
)⎡ ⎢ ⎣

(

1
+

4
(1

−
ε
)

ε

)

+
1 2

(1
−

ε
)1 / 2

R
e0.

6
Pr

1 / 3

⎤ ⎥ ⎦
N

um
er

ic
al

Fo
rc

ed
flo

w
ac

ro
ss

ar
bi

tr
ar

y
ge

om
et

ry
(0

<
R

e
<

80
00

,
0.

2
<

�
<

0.
9)

M
or

ga
n

(1
97

5)
2

ln

(
d ∞ d m

)
A

na
ly

tic
al

Fo
r

an
in

fin
ite

ly
lo

ng
cy

lin
de

r
in

an
in

fin
ite

sp
ac

e.

Fr
an

ke
la

nd
A

cr
iv

os
(1

96
8)

2a
sf

d

(1
.3

72
+

0.
5

ln
2

−
0.

5
ln

(R
e

·P
r )

)
A

na
ly

tic
al

Fo
r

sh
ea

r
flo

w
ac

ro
ss

fr
ee

ly
su

sp
en

de
d

cy
lin

de
rs

.
T

he
de

ri
ve

d
so

lu
tio

n
is

fo
r

R
e.

Pr
→

0.

Fr
an

ke
la

nd
A

cr
iv

os
(1

96
8)

2

ln
(R

e
·P

r )
A

na
ly

tic
al

Fo
r

lo
w

R
ey

no
ld

s
nu

m
be

r
flo

w
s

ov
er

cy
lin

de
rs

un
de

r
R

e.
Pr

→
0.

R
es

is
ta

nc
e

an
al

ys
is

a s
f

[
d 2k

f
+

d m 2k
m

]
A

na
ly

tic
al

R
es

is
ta

nc
es

in
se

ri
es



268 S. Krishnan et al.

Fig. 2 Predicted temporal
evolution of the thermal field
for Ra = 106, Nui,d = 0,

Ste = 0.1, Pr = 50,

Da = 10−2 at the mid-height
of the domain (� = 0.5): (a)
Solid-to-fluid temperature
difference, and (b) Solid and
fluid temperature
distributions. Also plotted in
the figure is the
nondimensional melting
temperature (horizontal
dashed line)
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follow, the dimensionless metal foam temperature distribution is represented using
dot-dashed lines while the PCM is represented using solid lines with open symbols.

Also, the dimensionless melting point is shown as a horizontal dashed line. In the
limit of zero inter-phase heat exchange, the metal foam and PCM develop indepen-
dently and the temperature difference between them is determined by the relative
response of the two phases. The metal foam reaches a steady state in a time scale
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of order (H2/�m), or a dimensionless time scale of �m ∼ �/	. For low Rayleigh
numbers and Ste < 1, the time for the PCM to reach a steady state is governed
by the effective inertia associated with phase change. It scales as H2/�ef where
αe f = k f

/(
ρ f C pef

)
and (Cp)ef = (�H�)/�T. The corresponding dimensionless

time scale is �f ∼ �/Ste. The metal foam is seen to have reached a steady state well
before the temperature field in the fluid has started to develop. Thus at early times,
the temperature differential in the domain is very large, of O(1). The temperature
difference progressively decreases with time, reaching a steady-state value over the
PCM time scale. Furthermore, the maximum temperature difference between the
metal foam and PCM occurs near the solid/liquid interface. This is expected because
the phase-change process constrains the PCM temperature to T∗

melt at the interface.
The thickness of the warm boundary layer (∼ [RaDa2]−0.25) near the heated wall

ceases to grow at a time of order
(

ε

Ste
√

RaDa2

)
(Jany and Bejan, 1988a). This is

the time at which a convective regime in the melt (Jany and Bejan, 1988a) sets in.
The time predicted for the onset of the convective regime by Benard et al. (1985) is(

4.59ε

Ste
√

RaDa2

)
.

Figure 3 shows the temporal evolution of melt front location for Nui = 0,

Ra = 106, Ste = 0.1, Da = 10−2, Pr = 50, 	 = 103, � = 1 and Tmelt
∗ = 0.3.

Initially, the process is conduction-dominated and the melt front is planar. The
horizontal intrusion layer appears in the top half of the domain at a dimension-
less time of 0.2, due to the development of natural convection. This denotes the
beginning of the convection-plus-conduction regime (Jany and Bejan, 1988a). The
vertical height (see Fig. 1) of the upper portion of the domain, z, where convection
dominates conduction scales as (RaDa2[�f Ste/�]2) (Jany and Bejan, 1988a). At a

Fig. 3 Predicted temporal
evolution of the melt front
location for Ra = 106,

Nui,d = 0, Ste = 0.1,

Pr = 50 and Da = 10−2 ξ
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nondimensional time of approximately
(

ε

Ste
√

RaDa2

)
, the thermal boundary layer

ceases to grow and the quasi-steady regime commences. This can also be seen from
Figs. 2a and 2b where the boundary layer thickness is approximately the same after
a nondimensional time of 1.2. In this quasi-steady regime, the movement of the
melt front is slow enough that the convective process reaches a steady state before
the melt front moves to any significant extent.

For all other parameters remaining the same as above, an increase in Stefan num-
ber from 0.1 in Fig. 2 to 1.0 expedites the melt front propagation, as expected. As
noted previously, the metal foam reaches a steady state over a dimensionless time
of �/	 and the PCM reaches a steady state over a dimensionless time of �/Ste. The
temporal evolution of the solid and fluid temperature distributions along � = 0.5
reveal that the temperature distributions are identical for the two different Stefan
numbers except for the time to reach steady state (Krishnan et al., 2005). The melt
front location for Ste = 1.0 is similar to that in Fig. 3 except for the faster evolution
of the melt interface, and hence is not shown for brevity. For cases of practical
interest, the Stefan number is not large enough to compete with the time scale for
the evolution of the solid temperature profile, and the overall behavior described in
Figs. 2 and 3 is expected to be typical for Nui = 0.

The next case considered is one for which the metal foam and PCM exchange
energy through inter-phase transfer (Nui �= 0). Figure 4a shows the dimension-
less solid-to-fluid temperature difference at various times along � = 0.5, for
Ra = 106, Ste = 1.0, Da = 10−2, d/H = 0.0135, Pr = 50, 	 = 103, � = 1
and Tm

∗ = 0.3. The interstitial Nusselt number (Nui,d) based on the pore diameter
used for the calculations is 5.9. This Nusselt number was obtained from the expres-
sion by Morgan (1975) in Table 1 using a d∞/dm ratio of 104. Figure 4b shows
the dimensionless metal foam and PCM temperature distributions along � = 0.5
for the same set of parameters. The metal foam-to-PCM temperature difference
is determined by the heat exchange between the metal foam and PCM. If the re-
sponse time for the heat exchange between the PCM and metal foam (�i ∼ (1−ε)�

Nui
)

is long compared to the response times of the two phases, the two phases evolve
separately, large solid-to-fluid temperature differences exist, and the time to steady
state is determined by the slower phase. On the other hand, if the response time
for heat exchange is short compared to the response times of the two phases, then
the two phases develop together in a coupled manner. For Nui > ((1 − �)	), the
inter-phase exchange time is shorter than the diffusion time for metal foam. For
the case in Fig. 4, the inter-phase exchange time is shorter than both the diffusion
time for metal foam as well as that for the PCM (i.e. �i < �m, �f) and hence the
metal foam and the PCM develop together in a coupled manner. Initially, the metal
foam-to-PCM temperature difference is very high, but it progressively decreases
with time and is driven to a value of zero at steady state. It may be noted that a
steady state is reached on a time scale of O(�/	). In the earlier case of Nui = 0,
the fluid phase was seen to respond on a time scale of � ∼ O(1). Here, however, the
fluid is seen to evolve faster, on a scale closer to that of the metal foam, as a result
of interface exchange. Initially, the metal foam responds faster than the PCM at the
hot wall boundary. But since the heat exchange time is shorter than the diffusion
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Fig. 4 Predicted temporal
evolution of thermal field for
Ra = 106, Nui,d = 5.9,

Ste = 1.0, Pr = 50,

Da = 10−2 at the mid-height
of the domain (� = 0.5): (a)
Solid-to-fluid temperature
difference, and (b) Solid and
fluid temperature
distributions. Also plotted in
the figure is the
nondimensional melting
temperature (horizontal
dashed line)
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scale (�f) for the PCM, heat from the hot boundary travels through the metal and the
metal temperature imprints itself on the fluid. Also, as seen in the previous case of
Nui = 0, the maximum solid-to-fluid temperature difference occurs at the interface,
which is held at Tmelt

∗ because of phase change. It may also be noted that the di-
mensionless solid-to-fluid temperature difference for the uncoupled (Fig. 2) case is
not zero at steady state, whereas in the present case, a zero temperature difference is
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obtained at steady state. Since the fluid temperature distribution is linear across the
domain, the amount of melted PCM is less for Nui �= 0 than that of Nui = 0; this
aspect will be discussed in detail later in this Chapter, as will the effect of variations
in the interstitial Nusselt number and Stefan number. The temporal evolution of the
front location for Ra = 106, Nui,d = 5.9, Ste = 1.0, Pr = 50, Da = 10−2

was found to be lines parallel (planar) to the two end walls along the -axis due
to conduction dominated nature of the flow. Detailed discussion on the melt front
propagation can be obtained from Krishnan et al. (2005).

The effect of increasing Rayleigh number on the dimensionless solid-to-fluid
temperature difference is discussed next. Figure 5a shows the dimensionless solid-
to-fluid temperature difference along � = 0.5 for Ra = 108, Da = 10−2, Ste =
1, Pr = 50 and Nui,d = 5.9. Figure 5b shows the dimensionless temperature distri-
butions in the metal foam and PCM along � = 0.5 for these parameters. The overall
behavior is similar to the Ra = 106 case, albeit with greater convective effects. The
solid and fluid temperature profiles are seen to be nearly identical at steady state,
and exhibit curvature due to convection. The system is driven to steady state on a
time scale O(�/	). The temporal evolution of melt front location for Ra = 108 is
discussed in Krishnan et al. (2005).

A detailed discussion of temperature profiles and melt front shapes for a different
Nui correlation is outlined in Krishnan et al. (2004b). It is not included here for brevity.

3.1 Melt Volume Fraction

From an engineering standpoint, the melt volume fraction and time-dependent av-
erage melt front location are of interest in foam-enhanced PCM units. The effect of
interstitial heat transfer coefficient on the melted volume is first discussed.

Figure 6 shows the melt volume fraction (= ∑
cells ��x�y) as a function of �

for Ra = 106, Ste = 1, Da = 10−2, Pr = 50 and for different interstitial Nusselt
numbers (obtained from various Nui relations listed in Table 1 for � = 0.8). Also
plotted in the figure for comparison is the nondimensional time �eq based on the
effective conductivity of the system (foam + PCM). As expected, the higher the
interstitial Nusselt number, the faster is the rate at which a steady state is achieved.
The time to steady state is dictated by the metal foam response time, as discussed
previously. For the parameters considered here, the final steady-state profile for both
solid and fluid is a straight line for all Nui,d, and the melt volume fraction is thus
the region T∗ > T∗

melt. Consequently, the melt volume fraction is the same for
all the different Nui,d values, with the asymptote being (1 − T∗

melt). For values of
Nui,d ≥ 1, little difference in the time to steady state is seen as Nui,d is increased.
For Nui,d > 5.9, the transient response is not distinguishable from that of the equi-
librium model (Nui,d → ∞).

Though not shown here, the melt volume fraction at steady state for Nui = 0
is 0.8 for the parameter set in this study. For the case when there is no foam, the
melt volume fraction is 0.92 at steady state. In the presence of the foam, convective
flow in the melt is retarded due to low values of the parameter RaDa2 (= 100)
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Fig. 5 Predicted temporal
evolution of thermal field for
Ra = 108, Nui,d = 5.9,

Ste = 1.0, Pr = 50,

Da = 10−2 at the mid-height
of the domain (� = 0.5): (a)
Solid-to-fluid temperature
difference, and (b) Solid and
fluid temperature
distributions. Also plotted in
the figure is the
non-dimensional melting
temperature (horizontal
dashed line)
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and conduction-dominated profiles result, limiting the melt volume fraction to
(1 − T∗

melt). But for the uncoupled (Nui = 0) and the no-foam cases, the fluid
temperature distribution is not linear at steady state, and convection in the fluid
increases the overall melted volume. However, the response time of the system is
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Fig. 6 Predicted melt volume fractions as a function of � for Ra = 106, Da = 10−2, Ste = 1.0
and Pr = 50 for various interstitial Nusselt numbers (Nui,d). Also shown are the �eq(= �eqt/H2)
values for comparison

substantially slower than for the Nui,d > 0 cases. In practical terms, this means less
effective cooling during the transient.

In Fig. 7a, the effect of varying the Rayleigh number on the evolution of the melt
volume fraction is shown. Also plotted in Fig. 7 is �eq as in Fig. 6. As the Rayleigh
number increases, the convection contribution increases and the melting rate and the
melt volume fraction of the PCM also increase somewhat. In Fig. 7b, the effect of
decreasing the Stefan number is examined. A decrease in Stefan number from 1.0 to
0.1 with Ra = 108 decreases the rate of melting due to the thermal inertia associated
with phase change and the concomitant increase in the latent heat of fusion. Both
cases are computed up to a melt volume fraction of 0.74.

3.2 Wall Nusselt Number

In order to compare the performance of the PCM with and without the metal foam,
the average Nusselt number at the hot wall for the case without the metal foam case
is discussed. The average Nusselt number at the wall is defined as

Nu = h H

k f
= (−1)

1∫

0

[
�T ∗

�ξ

]

ξ=0

dη
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Fig. 7 Predicted melt volume
fractions as a function of � for
different Rayleigh, Stefan and
interstitial Nusselt numbers.
Also shown are the �eq values
for comparison
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In the above equation, T∗ is the nondimensional PCM temperature. Figure 8
shows the average Nusselt number at the hot wall for two different Rayleigh num-
bers (106 and 108) and Ste = 1.0 as a function of dimensionless time. Also plotted in
Fig. 8 are the melt front locations for Ra = 108 for different flow regimes. Initially,
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Fig. 8 Predicted hot wall Nusselt number for the no-foam case as a function of � for Ste = 1 and
two different Rayleigh numbers. Also shown are the melt fronts at several critical time instants
during flow evolution

at � = 0, when the left wall temperature is raised to TH, the heat transfer from the
wall to the PCM is large, but the Nusselt number falls rapidly as the PCM heats up.
Over a time scale � ∼ (1 − Tmelt

∗)5/4 Ra−1/2 (Jany and Bejan, 1988a), the Nusselt
number reaches a low value corresponding to the pure conduction limit and starts to
increase as convection sets in (referred to as conduction-plus-convection regime in
Jany and Bejan (1988a)). The increase in Nu (∼ �−0.5 + Ra (�)3/2 Jany and Bejan
(1988a)) in the convection-plus-conduction regime is very small for Ra = 106.
The “quasi-steady” regime or the convection-dominated regime sets in over a time
scale � ∼ (Ra)−1/2 (Jany and Bejan, 1988a). The Nusselt number is constant in
this regime and is computed to be approximately 22 and 7 for Ra = 108 and 106,
respectively. The Nusselt number starts to increase again as the melt front nears the
cold wall and peaks when the melt front touches the cold wall on a time scale � of
O(Ra−0.25) (Jany and Bejan, 1988a). The Nusselt number drops again when the melt
front traverses along the right wall.

The behavior in the presence of the metal foam is markedly different. Figure 9
shows the Nusselt number at the hot wall in this case. The Nusselt number cor-
responding to the metal foam, Num, and that corresponding to the PCM, Nuf, are
shown. Figure 10 shows the total heat transfer from the hot wall to the system. This
Nusselt number is defined as
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Fig. 9 Predicted hot wall
Nusselt number for (a) metal
foam, and (b) PCM for
various Rayleigh, Stefan and
interstitial Nusselt numbers
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The case of Ra = 106, Da = 10−2 and Ste = 1 is considered first. Initially, at � = 0,
the heat transfer from the wall is large, but drops rapidly as both the metal and PCM
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Fig. 10 Predicted total hot
wall Nusselt number for
various Rayleigh, Stefan and
interstitial Nusselt numbers
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heat up. In the presence of the foam, heat transfer is conduction- dominated and at
steady state, the dimensionless temperature gradient at the wall for both metal foam
and PCM is unity. Hence, Nutotal ∼ � + (1−�)	. This is true for both the Nui,d

values plotted in Fig. 9. As the Rayleigh number is increased, the Nusselt number at
the wall increases due to increased natural convection. The increase in the Nusselt
number for metal foam is manifested as a distortion in the metal foam isotherms
due to coupling with the PCM (see Fig. 5b). The greatest contribution to sensible
heat transfer from the hot wall is due to the metal. The fluid primarily contributes
to the phase change heat transfer and heat from the hot wall is conveyed to it by
the metal.

4 Summary

A parametric study of the transient melting of PCMs integrated into metal foams for
enhanced effective thermal conductivity is presented for the case of a step change
in boundary temperature. A number of important results are discussed. For the
range of parameters considered, for metal foams with interstitial Nusselt numbers
Nui,d > 5.9, a single-temperature model is sufficient for analysis. But for smaller
Nui,d values, the metal foam and the PCM are sufficiently out of equilibrium that
a two-temperature model is necessary. The metal foam is seen to act in two ways.
First, it substantially dampens convective flow because of frictional resistance. Sec-
ond, since the metal responds far faster than the fluid, the linear temperature profile
in the metal tends to imprint itself on the fluid, leading to conduction-like tempera-
ture profiles for Ra ≤ 106. Even at Ra = 108, only a mild departure from the con-
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duction temperature profile is seen. As a result, the melt volume fraction at steady
state, which is a measure of the total heat that can be absorbed, is approximately
(1 − T∗

melt). This value may be less than that obtained without the metal foam
because of the damping of convective flow. The metal foam acts to substantially
decrease the response time of the system, and may thus lead to far less overheating
during the transient, despite the smaller melt volume fraction at steady state.

Transients due to a step change in boundary temperature are also explored. In
many applications, periodic pulsed heating may be used. The difference in response
time between systems with and without metal foam enhancers has important im-
plications for the management of transient energy pulses. If the time scale of the
energy pulse is short compared to the response time of the system, local overheating
is possible. Since the metal foam response time is typically far faster than typical
energy pulse time scales, it would tend to perform far better than systems without
metal foams. These aspects are investigated further to gain a clearer understanding
of pulsed heating in Krishnan et al. (2007).
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Nomenclature

asf Specific surface area, m−1

Cp Isobaric specific heat, Jkg−1K−1

Da Darcy number
d Particle diameter or mean pore diameter, m
F Inertial coefficient
g Gravity vector, ms−2

H Height of the enclosure, m
hv Volumetric heat transfer coefficient, Wm−3K−1

K Permeability, m2

k Thermal conductivity, Wm−1K−1

ke Equivalent thermal conductivity, Wm−1K−1

Nu Nusselt number based on the porous foam height
Nui Interstitial Nusselt number (hvH2/kf)
Nui,d Interstitial Nusselt number based on pore diameter (hvd2/kf)
P Pressure, Nm−2

Pr Prandtl number
Ra Rayleigh number
Re Reynolds number
Ste Stefan number
T Temperature, K
t Time, s
U Velocity vector, ms−1
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V Total Volume (metal foam and PCM), m3

Vf Total PCM volume, m3

Vl Volume occupied by liquid PCM, m3

u,v Velocity in x and y directions, ms−1

x,y Cartesian coordinates

Greek Symbols

� Thermal diffusivity, m2s
−1

� Coefficient of thermal expansion, K−1

�H Enthalpy of freezing/melting, Jkg−1

�T Mushy zone thickness, K−1

� Porosity
� Fraction of liquid melt in the PCM
� Dimensionless y-coordinate
� Fraction of liquid PCM (= ��)
	 Ratio of thermal conductivities of metal foam and fluid
	e Ratio of equivalent thermal conductivity to fluid thermal conductivity
� Dynamic viscosity, Nsm−2


 Kinematic viscosity, m2s
−1

� Density, kgm−3

� Dimensionless time
 Dimensionless x-coordinate
� Ratio of volumetric heat capacities of metal foam and fluid

Subscripts

C Cold
d Diameter
ef Effective fluid property
eq Equivalent
f Fluid (PCM)
H Hot/Height of enclosure
l Liquid
p Pore or particle
m Metal foam
s Solid (PCM)

Superscripts

∗ Dimensionless quantity
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Nanofluid Suspensions and Bi-composite Media
as Derivatives of Interface Heat Transfer
Modeling in Porous Media

Peter Vadász

Abstract Spectacular heat transfer enhancement has been measured in nanofluid
suspensions. Attempts in explaining these experimental results did not yield yet a
definite answer. Modelling the heat conduction process in nanofluid suspensions is
being shown to be a special case of heat conduction in porous media subject to Lack
of Local thermal equilibrium (LaLotheq). Similarly, the modelling of heat conduc-
tion in bi-composite systems is also equivalent to the applicable process in porous
media. The chapter reviews the topic of heat conduction in porous media subject to
Lack of Local thermal equilibrium (LaLotheq), introduces one of the most accurate
methods of measuring the thermal conductivity, the transient hot wire method, and
discusses its possible application to dual-phase systems. Maxwell’s concept of ef-
fective thermal conductivity is then introduced and theoretical results applicable for
nanofluid suspensions are compared with published experimental data.

1 Introduction

The reported breakthrough in substantially increasing the thermal conductivity
of fluids by adding very small amounts of suspended metallic or metallic oxide
nanoparticles (Cu, CuO, Al2O3) to the fluid (Eastman et al. 2001, Lee et al. 1999),
or alternatively using nanotube suspensions (Choi et al. 2001, Xuan and Li 2000)
conflicts with the classical theories (Maxwell 1891, Batchelor 1972, Batchelor and
Green 1972, Hamilton and Crosser 1962, Jeffrey 1973, Davis 1986, Lu and Lin
1996, Bonnecaze and Brady 1990, 1991) of estimating the effective thermal con-
ductivity of suspensions. A very small amount (less than 1% in terms of volume
fraction) of copper nanoparticles was reported to improve the measured thermal
conductivity of the suspension by 40% (Eastman et al. 2001, Lee et al. 1999), while
over a 150% improvement of the effective thermal conductivity at a volume frac-
tion of 1% was reported by Choi et al. (2001) for multiwalled carbon nanotubes
suspended in oil.

P. Vadász
Northern Arizona University, Flagstaff, AZ, USA
e-mail: peter.vadasz@nau.edu

P. Vadász (ed.), Emerging Topics in Heat and Mass Transfer in Porous Media, 283
C© Springer Science+Business Media B.V. 2008



284 P. Vadász

The objective of this chapter is to introduce the topic of nanofluids heat conduction,
showing that it is essentially a particular case of heat conduction in porous media sub-
ject to Lack of Local thermal equilibrium (LaLotheq), accounting for the inter-phase
(or interface) heat transfer and presenting results as well as challenges arising from
such modelling. The topic of heat conduction modelling in porous media subject to
a Lack of Local thermal equilibrium (LaLotheq) is introduced first while presenting
also the resolution of a paradox (introduced by Vadasz 2005a) arising from the attempt
at solving such a model via the elimination method (Vadasz 2007a). The said paradox
arises for a combination of Dirichlet and insulation boundary conditions. Previous
work on porous media heat transfer subject to Lack of Local Thermal Equilibrium
(LaLotheq) was undertaken among others by Nield (1998, 2002), Minkowycz et al.
(1999), Banu and Rees (2002), Baytas and Pop (2002), Kim and Jang (2002), Rees
(2002), Alazmi and Vafai (2002), Lage (1999), Nield et al. (2002), and Vadasz and
Nield (2007). In particular Nield (1998) shows that for uniform thermal conductivi-
ties the steady state conduction leads to Local Thermal Equilibrium (Lotheq) if the
temperature or its normal derivative on the boundary are identical for both phases.

Tzou (1995, 1997) refers to experimental results in porous media heat conduction
identifying thermal oscillations and overshooting, and explains them by applying
the Dual-Phase-Lagging (DuPhlag) model. In particular Minkowycz et al. (1999)
link the La Lotheq model with the DuPhlag model in a similar manner to Tzou
(1995, 1997) however they do not claim the possibility of oscillations. Vadasz (2004,
2005b, 2006a) proved that such oscillations are not possible.

Vadasz (2005a) showed that, for a fluid saturated porous layer subject to heat
conduction (transient as well as steady state) and any combination of imposed tem-
peratures and insulation on the boundary, the dual-phase thermal conduction leads
apparently back to Lotheq conditions and to a very particular case of identical ef-
fective thermal diffusivities for both phases. This paradox was resolved by Vadasz
(2007a). While Vadasz (2005a) introduced the apparent paradox in terms of a three-
dimensional general domain the present chapter uses Vadasz (2007a) results and
deals with a two-dimensional rectangular domain and the generalization to any three-
dimensional domain is discussed. While this first part of the chapter is particularly
aimed at the conditions applicable to a porous medium Vadasz (2006a, b) showed
that similar results and conclusions are applicable to suspensions of solid particles
in fluids, or to bi-composite media (a combination of two different solid phases).

This theoretical background is followed by a brief review of the concepts and
methods applicable to the experimental measurement of thermal conductivity and
its application to dual-phase systems, such as porous media, nanofluids suspensions,
bi-composite media, via the introduction of Maxwell’s (1891) effective thermal
conductivity.

The application of the latter concepts and methods to heat conduction in nanofluid
suspensions in an attempt to explain the spectacular heat transfer enhancement ob-
tained experimentally finalizes the presentation.

In the present chapter a contextual notation is introduced to distinguish between
dimensional and dimensionless variables and parameters. The contextual notation im-
plies that an asterisk subscript is used to identify dimensional variables and parameters
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only when ambiguity may arise when the asterisk subscript is not used. For example x∗
is the dimensional horizontal coordinate, while x is its corresponding dimensionless
counterpart. However ks is the effective solid phase thermal conductivity, a dimen-
sional parameter that appears without an asterisk subscript without causing ambiguity.

2 Problem Formulation and the Apparent Paradox

Let us consider the heat conduction in a rectangular two-dimensional fluid saturated
porous domain that is exposed to different constant temperatures on the vertical
walls and to insulation conditions on the horizontal walls as presented in Fig. 1.
Heat conduction in porous media subject to Lack of Local Thermal Equilibrium
(LaLotheq) is governed at the macro-level by the following equations that represent
averages over each phase within an REV (Representative Elementary Volume)

γs
�Ts

�t∗
= ks∇2

∗ Ts − h
(
Ts − T f

)
(1)

γ f
�T f

�t∗
= k f ∇2

∗ T f + h
(
Ts − T f

)
(2)

where Qs f = h
(
Ts − T f

)
represents the rate of heat generation in the fluid phase

within the REV due to the heat transferred over the fluid–solid interface, and where
γs = (1 − ϕ) ρscs and γ f = ϕ ρ f cp, f are the solid phase and fluid phase effective
heat capacities, respectively, ϕ is the porosity, ks = (1 − ϕ) k̃s and k f = ϕ k̃ f are
the effective thermal conductivities of the solid and fluid phases, respectively. The

Fig. 1 Problem formulation –
heat conduction in a two
dimensional rectangular
domain subject to Lack of
Local thermal equilibrium
(LaLotheq)
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coefficient h > 0, carrying units of W m−3 K−1, is a macro-level integral heat
transfer coefficient for the heat conduction at the fluid–solid interface (averaged over
the REV) that is assumed independent of the phases’ temperatures and independent
of time. Note that this coefficient is conceptually distinct from the convection heat
transfer coefficient and is anticipated to depend on the thermal conductivities of both
phases as well as on the surface area to volume ratio (specific area) of the medium
(Vadasz 2006b).

Equations (1)–(2) are linearly coupled and represent the traditional form of ex-
pressing the process of heat conduction in porous media subject to LaLotheq (Nield
and Bejan 2006, Nield 1998). When the value of the interface heat transfer coefficient
vanishes, h = 0 (physically representing an interface that is an ideal insulator, e.g. the
solid–fluid interface is coated with a highly insulating material), eqs. (1) and (2) un-
couple and the solution for the temperature of each phase is independent of the other
phase, the phase having the highest thermal diffusivity producing a temperature that
equilibrates faster to its steady state value. Very large values of h on the other hand
lead to Local Thermal Equilibrium (Lotheq) as observed by dividing eqs. (1) and (2)
by h and looking for the limit as h → ∞ that produces (at least at the leading order)
Ts = T f . The latter occurs because despite the fact that one phase (the slow one)
diffuses heat at a slower pace a perfect compensation occurs due to the interface heat
transfer, i.e. the change in temperature in the faster phase is instantly converted into
an identical temperature change in the slower phase via the heat transferred through
the interface without any resistance because h → ∞. Similar results may be ob-
tained with a finite interface heat transfer coefficient, h, if the thermal diffusivities of
both phases are identical, i.e. αs = (

ks
/
γs

) = (
k f

/
γ f

) = α f . Then, both phases
will diffuse heat at the same pace leading naturally to Ts = T f and a vanishing
heat transfer over the interface h

(
Ts − T f

) = 0 irrespective of the value of h.
For the two-dimensional system considered here (see Fig. 1) the Laplacian oper-

ator ∇2
∗ is defined in the form ∇2

∗ = �2
/

�x2
∗ + �2

/
�y2

∗ .
The boundary conditions applicable to the problem at hand are constant temper-

ature at the vertical walls and insulation at the top and bottom horizontal walls

x∗ = 0 : Ts = T f = TC (3)

x∗ = L : Ts = T f = TH (4)

y∗ = 0 & y∗ = H∗ :

(
�Ts

�y∗

)

y∗=0,H∗
=

(
�T f

�y∗

)

y∗=0,H∗
= 0 (5)

The initial conditions are related to the initial physical conditions of having the
porous medium in thermal equilibrium with its surroundings leading to the same
uniform constant temperature for both phases, i.e.

t∗ = 0 : (Ts)t∗=0 = (
T f

)

t∗=0 = To = constant (6)

Two methods are in principle available to solving the problem (1)–(2) analytically
subject to the boundary conditions (3)–(5) and initial conditions (6). The first method
(“the eigenvectors method”) is linked to evaluating the eigenvalues and eigenvectors
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directly from system (1)–(2). The second method (“the elimination method”) is related
to deriving an equivalent equation that is second order in time and fourth order in space
via elimination of the dependent variables Ts and T f . The first step in this chapter is
to present the paradox that was introduced by Vadasz (2005a), then the solution is
presented via both methods listed above and their results compared.

The stated paradox appears when attempting to solve the problem via “the elimi-
nation method”. The elimination of the dependent variables Ts and T f (one at a time
or simultaneously) is accomplished via one of the two methods presented by Vadasz
(2004, 2005a, b, 2006a, b) leading to two independent equations for each phase in
the form

τq
�2Ti

�t2∗
+ �Ti

�t∗
= αe

[

∇2
∗ Ti + τT ∇2

∗

(
�Ti

�t∗

)

− βe∇4
∗ Ti

]

∀i = s, f (7)

where the index i can take the values s representing the solid phase or f standing
for the fluid phase and where the following notation was used

τq = γsγ f

h
(
γs + γ f

) ; αe =
(
ks + k f

)

(
γs + γ f

) ; τT =
(
γsk f + γ f ks

)

h
(
ks + k f

) ; βe = ksk f

h
(
ks + k f

) (8)

(Note: the present definition of βe is different than in Vadasz 2005a). Equation (7) is
a linear equation that applies to each phase, while its parameters are effective coeffi-
cients common to both phases. By imposing the combination of Dirichlet (constant
temperatures) and insulation boundary conditions expressed by eqs. (3)–(5) and as-
suming uniform and identical initial conditions for both phases expressed by eq. (6)
provides two boundary conditions in each direction and one initial condition for
each phase. However, eq. (7) is fourth order in space and second order in time,
requiring therefore two additional boundary conditions in each direction and one
additional initial condition. The latter conditions can be derived from the original
ones (3)–(5) and (6) by using the original equations (1) and (2), which govern the
heat conduction at all times (including t∗ = 0) and over the whole physical domain
including the boundaries. The derived boundary and initial conditions to be used in
connection with the solution to eq. (7) are

x∗ = 0 : Ti = TC ;
(

�2Ti

/
�x2

∗
)

x∗=0
= 0∀ i = s, f (a)

x∗ = L : Ti = TH ;
(

�2Ti

/
�x2

∗
)

x∗=L
= 0∀ i = s, f (b)

y∗ = 0, H∗ :
(
�Ti

/
�y∗

)

y∗=0,H∗ = 0;
(

�3Ti

/
�y3

∗
)

y∗=0,H∗
= 0 ∀ i = s, f (c) (9)

t∗ = 0 : (Ti )t∗=0 = To = constant ;
(
�Ti

/
�t∗

)

t∗=0 = 0 ∀ i = s, f (10)

Equation (7) that is identical for both phases, shares common effective parameters
for both phases, solved subject to identical boundary and initial conditions for each
phase, eqs. (9) and (10) produces therefore a solution that is expected to be identical
for both phases, i.e.

Ts (t∗, x∗) = T f (t∗, x∗) ∀ (t∗ ≥ 0, x∗ ∈ [0, L] , y∗ ∈ [0, H∗]) (11)
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where x∗ = (x∗, y∗) represents the spatial variables. Equation (11) is identified as
the requirement for Local thermal equilibrium (Lotheq) in porous media conduc-
tion causing the heat generation due to the heat transfer at the fluid–solid interface
Qs f = h

(
Ts − T f

)
to vanish. It was obtained accurately from the original system of

eqs. (1)–(2) subject to the specified boundary and initial conditions and other than
that no other imposed restrictions. This result is quite astonishing and intriguing
because it suggests that Local thermal equilibrium (Lotheq) exists naturally in any
porous domain subject to heat conduction and a combination of constant temper-
ature and insulation boundary conditions. However, this conclusion needs further
investigation. Substituting eq. (11) into eqs. (1) and (2) yields

�Ts

�t∗
= αs∇2

∗ Ts (12)

�T f

�t∗
= α f ∇2

∗ T f (13)

where αs = ks
/
γs and α f = k f

/
γ f . The solution to eqs. (12) and (13) subject

to the same boundary and initial conditions as indicated in eqs. (3)–(5) and (6)
has to be identical to the corresponding solutions of eq. (7) subject to the equiv-
alent boundary and initial conditions (9) and (10) respectively. This means that
eqs. (12) and (13) are expected to produce an identical solution Ts (t∗, x∗) =
T f (t∗, x∗) ∀ (t∗ ≥ 0, x∗ ∈ [0, L] , y∗ ∈ [0, H∗]) despite the fact that in general their
respective thermal diffusivities may vary substantially. The latter cannot be accom-
plished unless αs = α f , leading to the inevitable conclusion that consistency re-
quires the effective thermal diffusivities of both phases to be identical. The latter
condition was not explicitly imposed a priori, nor implied in any of the subsequent
derivations. Nevertheless, it was obtained as a result that is linked to the conse-
quences of eq. (11). However, the effective thermal diffusivities of both phases
are based on material properties and therefore this limitation cannot generally be
applicable. We must therefore insist that αs 
= α f in which case eqs. (12) and (13)
subject to the boundary and initial conditions (3)–(5) and (6) will produce distinct
solutions Ts (t∗, x∗) 
= T f (t∗, x∗) leading back to eqs. (1) and (2) with non-vanishing
inter-phase heat transfer Qs f = h

(
Ts − T f

) 
= 0 and the whole process cycles
indefinitely introducing the paradox.

3 Solution by the Eigenvectors Method

The system of eqs. (1) and (2) with its corresponding boundary and initial conditions
are rendered dimensionless by using L to scale the space variables x∗ and y∗, in
the form x = x∗

/
L , y = y∗

/
L , L2

/
αe to scale time, that is, t = t∗αe

/
L2 and

introducing the dimensionless temperature θi = (Ti − TC )
/

(TH − TC ), ∀ i = s, f ,
leading to the following dimensionless form of eqs. (1) and (2)

Fhs
�θs

�t
= 1

Nis
∇2θs − (

θs − θ f
)

(14)
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Fh f
�θ f

�t
= 1

Ni f
∇2θ f + (

θs − θ f
)

(15)

where the following dimensionless groups listing the solid phase and fluid phase
Nield numbers Nis Ni f , respectively, and additional dimensionless groups that
emerged (some of them will be used later)

Bh = βe

L2
; Ni f = hL2

k f
; Nis = hL2

ks
; Fh f =

(
γs + γ f

)

γs
Foq = αeγ f

hL2
;

Fhs =
(
γs + γ f

)

γ f
Foq = αeγs

hL2
; Foq = αeτq

L2
; FoT = αeτT

L2
; (16)

The dimensionless form of the boundary and initial conditions (3), (4), (5) and
(6) are

x = 0 : θi = 0 ∀ i = s, f (a)

x = 1 : θi = 1 ∀ i = s, f (b)

y = 0, H :
(
�θi

/
�y

)

y=0,H = 0 ∀ i = s, f (c) (17)

t = 0 : (θi )t=0 = θo = constant ∀ i = s, f (18)

The solution to eqs. (14) and (15) is separated into steady state θi,sts and transient
θi,tr parts in the form θi = θi,sts + θi,tr . The steady state for both phases i = s, f
is satisfied by the linear solution θi,sts = x , which satisfies the boundary conditions
(17). It is sensible to assume for θi,tr to be independent of the y coordinate and this
assumption satisfies the boundary conditions (17c) at y = 0, H . As a result, the
equations governing the transient have the form

Fhs
�θs,tr

�t
= 1

Nis

�2θs,tr

�x2
− (

θs,tr − θ f,tr
)

(19)

Fh f
�θ f,tr

�t
= 1

Ni f

�2θ f,tr

�x2
+ (

θs,tr − θ f,tr
)

(20)

subject to boundary and initial conditions that are obtained following the substitution
of θi = x + θi,tr into eqs. (17) and (18) leading to

x = 0, 1 : θi,tr = 0 ∀ i = s, f (21)

t = 0 :
(
θi,tr

)

t=0 = θo − x ∀ i = s, f (22)

The solutions to eqs. (19) and (20) subject to the boundary and initial conditions (21)
and (22) are obtained via separation of variables in the form of two equations for each
phase in the form θi,tr = φin (t) un (x) where the functions un (x) are identical for both
phases because they satisfy the same equations and the same boundary conditions. The
latter statement about the fact that both phases share the same eigenfunctions un (x)
can be proven in detail, a step that is skipped here for brevity of the presentation. The
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resulting equation is d2un
/

d x2 + κ2
n un = 0. The solution to this equation subject

to the homogeneous boundary conditions derived from eq. (21) (un)x=0,1 = 0 and(
d2 un

/
dx2

)

x=0,1 = 0 at x = 0, 1, is un = sin (κn x), and the resulting eigenvalues
are κn = nπ ∀ n = 1, 2, 3, . . .. Substituting this eigenfunction solution into eqs. (19)
and (20) yields the following set of ordinary differential equations for the eigenfunc-
tions in the time domain φsn (t) and φ f n (t)

⎧
⎪⎨

⎪⎩

dφsn

dt
= anφsn + bφ f n

dφ f n

dt
= cφsn + dnφ f n

(a)

(b)
(23)

where the definition of the coefficients that emerged from the substitution is

an = −
(
n2π2 + Nis

)

Nis Fhs
; dn = −

(
n2π2 + Ni f

)

Ni f Fh f
; b = Fh−1

s ; c = Fh−1
f (24)

The general solution has therefore the form

θi = x +
∞∑

n=1

φin (t) sin (nπx) ∀ i = s, f (25)

where φin (t) are the solutions to the system of eq. (23). However the system (23)
needs initial conditions in terms of φsn (0) and φ f n (0). The latter may be obtained
from the initial conditions of θs and θ f , eq. (18), applied to eq. (25) in the form

(θi )t=0 ≡ x +
∞∑

n=1

φin (0) sin (nπx) = θo ∀ i = s, f (26)

Multiplying eq. (26) by sin ( jπx), integrating the result over the whole domain,
i.e.

∫ 1
0 (·)dx , and using the orthogonality conditions yields an identical initial condi-

tion for both phases, φin (0), in the form

φsn (0) = φ f n (0) = φno = 2
{
(−1)n + [

1 − (−1)n
]
θo

}

nπ
(27)

The eigenvalues and eigenvectors are obtained from eq. (23) to yield

λ1,2n = 1

2

[

(an + dn) ±
√

(an + dn)2 − 4 (andn − bc)

]

(28)

V1n = [
1, (λ1n − an)

/
b
]T = [

1, c
/

(λ1n − dn)
]T

(29)

V2n = [
1, (λ2n − an)

/
b
]T = [

1, c
/

(λ2n − dn)
]T

(30)

and the solution in terms of these eigenvectors has the form
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φn = C1V1neλ1n t + C2V2neλ2n t (31)

where φn = [
φsn, φ f n

]T
.

The following relationships obtained from eqs. (28), (29) and (30) are useful in
the following analysis. From eq. (28) one may obtain (see Vadasz 2007a for details)

(λ1n − dn) = − (λ2n − an) or (λ1n − an) = − (λ2n − dn) (32)

From eqs. (30) and (31) one gets

(λ1n − an) (λ1n − dn) = b c, and (λ2n − an) (λ2n − dn) = b c (33)

respectively. The following identities that are obtained from eqs. (14) and (6) are
useful to demonstrate the next point

(
Nis Ni f Fhs Fh f

)−1 = Bh
/

Foq = B f ;
(
Nis + Ni f

) (
Nis Ni f Fhs Fh f

)−1 = Fo−1
q

(34)
By substituting eq. (24) and the definitions (16) and (8) yields (introducing the no-
tation of νn and ω2

n)

νn = − (an + dn) =
[

n2π2

(
αs + α f

)

αe
+ 1

Foq

]

(35)

and using also eq. (34) leads to

ω2
n = (andn − bc) = n4π4

Nis Ni f Fhs Fh f
+

(
Nis + Ni f

)

Nis Ni f Fhs Fh f
n2π2

=
(

Bh

Foq

)

n4π4 + n2π2

Foq
(36)

By using the initial conditions (25) into eq. (29) and evaluating the coefficients
C1 and C2 produces the solutions in the time domain φin (t) needed in the general
solution (23), in the form

φsn = [λ2n − (an + b)] φno

(λ2n − λ1n)
eλ1n t − [λ1n − (an + b)] φno

(λ2n − λ1n)
eλ2n t (37)

φ f n = (λ1n − an) [λ2n − (an + b)] φno

b (λ2n − λ1n)
eλ1n t − (λ2n − an) [λ1n − (an + b)] φno

b (λ2n − λ1n)
eλ2n t

By using now eq. (30) followed by using eq. (31) yields

φ f n = [λ2n − (dn + c)] φno

(λ2n − λ1n)
eλ1n t − [λ1n − (dn + c)] φno

(λ2n − λ1n)
eλ2n t (38)
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where φno is defined in eq. (27), λ1n and λ2n are defined in eq. (28), and an, b, c, dn

are defined in eq. (24). Substituting eqs. (37) and (38) into (25) produces the general
solution obtained via the eigenvectors method in the form

θs = x +
∞∑

n=1

{
[λ2n − (an + b)] φno

(λ2n − λ1n)
eλ1n t − [λ1n − (an + b)] φno

(λ2n − λ1n)
eλ2n t

}

sin (nπx)

(39)

θ f = x +
∞∑

n=1

{
[λ2n − (dn + c)] φno

(λ2n − λ1n)
eλ1n t − [λ1n − (dn + c)] φno

(λ2n − λ1n)
eλ2n t

}

sin (nπx)

(40)

4 Solution by the Elimination Method

Equation (7) and its corresponding boundary and initial conditions are converted
into a dimensionless form by using the same scales introduced in the previous sec-
tion, leading to the following dimensionless form of eq. (7)

Foq
�2θi

�t2
+ �θi

�t
= ∇2θi + FoT ∇2

(
�θi

�t

)

− Bh∇4θi ∀ i = s, f (41)

where the two Fourier numbers, Foq , FoT , and one additional dimensionless group
(the Bi-harmonic number, Bh) that were defined in eq. (16) emerged. The dimen-
sionless form of the boundary and initial conditions (9) and (10) that are required
for the solution of eq. (41) are

x = 0 : θi = 0 ;
(
�2θi

/
�x2

)

x=0 = 0 ∀ i = s, f (a)

x = 1 : θi = 1 ;
(
�2θi

/
�x2

)

x=1 = 0 ∀ i = s, f (b)

y = 0, H :
(
�θi

/
�y

)

y=0,H
= 0;

(
�3θi

/
�y3)

y=0,H
= 0 ∀ i = s, f (c) (42)

t = 0 : (θi )t=0 = θo = constant ;
(
�θi

/
�t

)

t=0 = 0 ∀ i = s, f (43)

The solution to eq. (41) is separated into steady state θi,sts and transient θi,tr parts in
the form θi = θi,sts+θi,tr . The steady state for both phases i = s, f is satisfied by the
linear solution θi,sts = x , which satisfies the boundary conditions (42). In addition,
it is a sensible assumption for the transient part θi,tr to be considered independent
of the y coordinate and this assumption satisfies the boundary conditions (42c) at
y = 0, H . As a result, the equation governing the transient has the form

Foq
�2θi,tr

�t2
+ �θi,tr

�t
= �2θi,tr

�x2
+ FoT

�3θi,tr

�t�x2
− Bh

�4θi,tr

�x4
∀ i = s, f (44)
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subject to boundary and initial conditions that are obtained following the substitu-
tion of θi = x + θi,tr ∀i = s, f into eqs. (42) and (43) leading to

x = 0 : θi,tr = 0 ;
(
�2θi,tr

/
�x2)

x=0 = 0 ∀ i = s, f (a)

x = 1 : θi,tr = 0 ;
(
�2θi,tr

/
�x2

)

x=1 = 0 ∀ i = s, f (b) (45)

t = 0 :
(
θi,tr

)

t=0 = θo − x ;
(
�θi,tr

/
�t

)

t=0 = 0 ∀ i = s, f (46)

The solution to eq (44) subject to the boundary and initial conditions (45) and (46)
is obtained via separation of variables in the form of two equations for each phase as
θi,tr = φin (t) un (x) where the function un (x) is identical for both phases because it
satisfies the same equations and the same boundary conditions. The equation for the
common eigenfunction un (x) is identical to the one obtained in the previous section
and is subject to the same homogeneous boundary conditions (un)x=0,1 = 0 leading
inevitably to the same eigenfunction solution un (x) = sin (nπx). The equations for
the eigenfunctions in the time domain is

Foq
d2φin

dt2
+ (

1 + FoT κ2
n

) dφin

dt
+ κ2

n

(
1 + κ2

n Bh
)
φin = 0 ∀i = s, f (47)

Equation (47) is identical to a linear damped oscillator (mechanical mass-spring-
damper m − K − c, or electrical L-R-C circuit). A more convenient form of eq. (47)
is obtained after dividing it by Foq to yield

d2φin

dt2
+ νn

dφin

dt
+ ω2

nφin = 0 ∀i = s, f (48)

where the specific damping coefficient νn and natural frequency ωn are the parame-
ters defined in eqs. (35) and (36), respectively.

The dimensionless group that emerged from the definition of ω2
n in eq. (36) as

a combination of the bi-harmonic number Bh and the heat flux Fourier number
Foq is B f = Bh

/
Foq = αsα f

/
α2

e , where αs = ks
/
γs and α f = k f

/
γ f . In

addition, the dimensionless group that emerged from the definition of νn in eq. (35)
as a combination of the heat flux and temperature gradient related Fourier num-
bers Foq and FoT , respectively, is ψ = FoT

/
Foq = τT

/
τq = 1 + B f +

(
ηγ − ηk

)2
/[

ηγ ηk (1 + ηk)
(
1 + η−1

k

)] ≥ 1 + B f > 1, where ηγ = γ f
/
γs and

ηk = k f
/

ks . Despite the similarity of eq. (48) to a linear damped oscillator, physical
constraints allow only over-damped solutions to exist in this particular application
as demonstrated by Vadasz (2004, 2005b, 2006a).

From eq. (48), the equation for the eigenvalues has the form λ2
n +νnλn +ω2

n = 0,
leading to the eigenvalues solutions

λ1n = −νn

2

[

1 +
√

1 − 4
ω2

n

ν2
n

]

& λ2n = − νn

2

[

1 −
√

1 − 4
ω2

n

ν2
n

]

(49)
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and the eigenfunctions φin are the superposition of exp [λ1nt] and exp [λ2nt]

φin (t) = Aineλ1n t + Bineλ2n t ∀ i = s, f (50)

leading to the solution for θi,tr expressed in the form

θi,tr =
∞∑

n=1

φin (t) sin (nπx) ∀ i = s, f (51)

The solution (51) includes two sequences of coefficients presented in eq. (50) that
need to be established from the two initial conditions (46) at t = 0. The first initial
condition produces

(
θi,tr

)

t=0 ≡
∞∑

n=1

φin (0) sin (nπx) = θo − x ∀ i = s, f (52)

A relationship between Ain and Bin in eq. (50) is obtained by multiplying eq. (52)
by sin ( jπx), integrating the results over the whole domain, i.e.

∫ 1
0 (·)dx and using

orthogonality conditions to yield

Ain + Bin = φno ∀ i = s, f (53)

where

φsn (0) = φ f n (0) = φno = 2
[
θo + (1 − θo) (−1)n

]

nπ
(54)

and from eq. (53) the relationship between the coefficients Ain and Bin is

Bin = φno − Ain ∀ i = s, f (55)

which upon substitution into eq. (50) and then into eq. (51) yields

θi,tr =
∞∑

n=1

[
Aineλ1n t + (φno − Ain) eλ2n t

]
sin (nπx) ∀ i = s, f (56)

Using now the second initial condition from eq. (44) into eq. (54) produces the
equation

(
�θi

�t

)

t=0

≡
∞∑

n=1

[Ainλ1n + (φno − Ain) λ2n] sin (nπx) = 0 ∀ i = s, f (57)

The values of the coefficients Ain are finally obtained from eq. (57) to yield
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Ain = λ2nφno

(λ2n − λ1n)
∀ i = s, f (58)

Equation (58) indicates that the coefficients for both phases are identical, i.e. Asn =
A f n , a fact that causes the solutions for both phases to be identical too. The complete
solution is obtained from eq. (56) by substituting eq. (58) and the steady state solu-
tion leading to

θi = x +
∞∑

n=1

[
λ2nφno

(λ2n − λ1n)
eλ1n t − λ1nφno

(λ2n − λ1n)
eλ2n t

]

sin (nπx) ∀ i = s, f (59)

and is perfectly consistent with the conclusion reached in Section 2, eq. (11), in-
dicating that the temperature of both phases are identical leading to Lotheq and
consequently to the stated paradox.

5 Resolution of the Paradox

While the eigenvalues obtained via both the elimination and the eigenvectors meth-
ods are identical leading to identical final forms of the solution let us compare the
final coefficients in these solutions obtained via the two different methods. Compar-
ing the coefficients of the eλ1n t term in eqs. (39) and (40) with the corresponding
coefficients to the same term in eq. (59) shows that the first part of the coefficients
is identical but the second part is missing in eq. (59). Similarly for the coefficients
to the eλ2n t term, their second part is missing in eq. (59).

What is therefore the reason that the elimination method produces an incorrect
result? The first part of the answer to this question can be obtained by observing that
both methods produce identical solutions up to the point where we imposed the second
initial condition on the elimination method solution, eq. (56). Only after imposing the
initial condition (57) specifying a vanishing initial temperature derivative in time,
i.e.

(
�θi

/
�t

)

t=0 = 0 ∀ i = s, f the two solutions obtained via the two different
methods diverged producing the apparent paradox. Then, the second part of the answer
should be related to the question of why a perfectly correct initial condition obtained
correctly from the analysis preceding eqs. (9) and (10) produces an incorrect solution.
The answer to this second part of the question is related to the way the coefficients were
evaluated from the Fourier series in eq. (57) by using this derivative initial condition.
The implied assumption when doing so is that any constant (including the 0) can be
expanded into a Fourier series. It is however naı̈ve to expect the existence of a Fourier
expansion to the 0 constant as eq. (57) implies. The coefficients obtained this way
are therefore incorrect, although the initial condition

(
�θi

/
�t

)

t=0 = 0 ∀i = s, f is
indeed correct. In order to correct this evaluation of the coefficients via the elimination
method let us check what do we need to do instead of using the initial condition(
�θi

/
�t

)

t=0 = 0 ∀i = s, f . We still need derivative initial conditions for φin (t),
i.e.

(
dφin

/
dt

)

t=0 ∀i = s, f in order to establish the value of the coefficients Ain ∀i =
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s, f . However, as distinct from
(
�θi

/
�t

)

t=0 which needs the full system of partial
differential equations (14) and (15) to extract its value, the values of

(
dφin

/
dt

)

t=0
can be obtained from the system of ordinary differential equations (23a,b) by using
the known values of φsn (0) = φ f n (0) = φno that were evaluated and presented in
eq. (54). Substituting these values for t = 0 in eq. (23) yields

(
dφsn

dt

)

t=0

= anφsn (0) + bφ f n (0) = (an + b) φno (a)

(
dφ f n

dt

)

t=0

= cφsn (0) + dnφ f n (0) = (c + dn) φno (b)

(60)

Now, from eq. (56) we evaluated φin (t) up to the yet unknown value of the constants
Ain , in the form

φin (t) = Aineλ1n t + (φno − Ain) eλ2n t ∀i = s, f (61)

From eq. (61) one can take the time derivative to yield

dφin

dt
= λ1n Aineλ1n t + λ2n (φno − Ain) eλ2n t ∀i = s, f (62)

and evaluating eq. (62) at t = 0 produces

(
dφin

dt

)

t=0

= λ1n Ain + λ2n (φno − Ain) (63)

Substituting now the initial conditions (60) into (63) leads to the result

λ1n Asn + λ2n (φno − Asn) = (an + b) φno (64)

λ1n A f n + λ2n
(
φno − A f n

) = (c + dn) φno (65)

The values of the coefficients Asn and A f n can now be evaluated from eqs. (64)
and (65) in the form

Asn = [λ2n − (an + b)] φno

(λ2n − λ1n)
(66)

A f n = [λ2n − (dn + c)] φno

(λ2n − λ1n)
(67)

Substituting eqs. (66), (67) into (56) and adding the steady part yields



Nanofluid Suspensions and Bi-composite Media 297

θs = x +
∞∑

n=1

[
[λ2n − (an + b)] φno

(λ2n − λ1n)
eλ1n t − [λ1n − (an + b)] φno

(λ2n − λ1n)
eλ2n t

]

sin (nπx)

(68)

θ f = x +
∞∑

n=1

[
[λ2n − (dn + c)] φno

(λ2n − λ1n)
eλ1n t − [λ1n − (dn + c)] φno

(λ2n − λ1n)
eλ2n t

]

sin (nπx)

(69)

The first observation from the solutions (68) and (69) is that these solutions are
not anymore identical, i.e. now we obtained LaLotheq conditions i.e. θs 
= θ f as
we did via the eigenvector method. Comparing now these solutions obtained via
the elimination method (68) and (69) with the solutions (39) and (40), respectively,
obtained via the eigenvectors method by looking at the coefficients of the terms eλ1n t

and eλ2n t , brings us to the conclusion that both methods yield identical solutions,
i.e. eq. (39) is identical to eqs. (68) and (40) is identical to eq. (69). The latter
conclusion resolves therefore the paradox.

However, now that we have obtained identical solutions via both methods and re-
solved the paradox, it is interesting to observe how the initial temperature derivative
with respect to time

(
�θi

/
�t

)

t=0 as evaluated from these solutions looks like, and
whether it indeed vanishes as expected. Taking the time derivative of the solutions
(39) and (40), or (68) and (69), and evaluating it at t = 0 leads to

(
�θs

�t

)

t=0

=
∞∑

n=1

φno (an + b) sin (nπx) (70)

(
�θ f

�t

)

t=0

=
∞∑

n=1

φno (dn + c) sin (nπx) (71)

Substituting the definitions of an, b, dn andc from eq. (24) and by using eq. (16) yields

an + b = − n2π2

Nis Fhs
= −αs

αe
n2π2 (72)

dn + c = − n2π2

Ni f Fh f
= −α f

αe
n2π2 (73)

where αs = ks
/
γs, α f = k f

/
γ f and αe is defined in eq. (8). Substituting eqs. (72)

and (73) as well as the value of φno from eq. (54) into (70) and (71) yields

(
�θs

�t

)

t=0

= −2αsπ

αe

∞∑

n=1

n
[
θo + (1 − θo) (−1)n

]
sin (nπx) (74)

(
�θ f

�t

)

t=0

= −2α f π

αe

∞∑

n=1

n
[
θo + (1 − θo) (−1)n

]
sin (nπx) (75)
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The simplest case is obtained for θo = 0 when eqs. (74) and (75) become

(
�θs

�t

)

t=0

= −2αsπ

αe

∞∑

n=1

(−1)n n sin (nπx) (76)

(
�θ f

�t

)

t=0

= −2α f π

αe

∞∑

n=1

(−1)n n sin (nπx) (77)

For a value of x = 0.5 these alternating series have the form
∑∞

n=1 (−1)n n =
−1 + 2 − 3 + 4 − 5 + 6 − . . . . . The sum of any two consecutive terms is either 1 or
−1, depending on the choice of grouping the terms. In both cases the sum becomes∑∞

n=1 (−1)n n = ∑∞
n=1 ±1 → ±∞, hence we conclude that the series in eqs. (76)

and (77) diverge and we cannot estimate
(
�θi

/
�t

)

t=0 analytically from the solutions.
Actually the funny part of this result is that according to eqs. (76) and (77) the initial
temperature derivatives

(
�θi

/
�t

)

t=0 are identically zero on the boundaries, at x =
0, 1, where we could have anticipated the singularity because of the temperature
step change there. Yet the results show that

(
�θi

/
�t

)

t=0 is identically zero on the
boundaries and diverges elsewhere. This particular anomaly should be the subject
of further investigation.

The analytical series solution obtained via both methods was evaluated and plot-
ted in order to visualize the behaviour of the solutions for both phases during the
transient, evaluate the temperature differences between the phases and verify the
analytical conclusions drawn.

The initial temperature value was taken as θo = 0.5, implying To = (TH + TC )
/

2.
The values of the parameters used were Ni f = 1, Nis = 0.5 and Fh f = Fhs = 1.5.
The results are presented graphically in Fig. 2 in terms of θs and θ f as a function of
time at constant values of x . Figure 2a presents the results for x = 0.1, 0.2, 0.3, and
0.4, while Fig. 2b presents the results for x = 0.6, 0.7, 0.8, and 0.9. It is obvious from
these results that the temperatures of the phases are distinct, they start initially at t = 0
being identical, i.e. (θs)t=0 = (

θ f
)

t=0 = θo = 0.5 and they end-up being identical at
steady state, i.e. (θs)t→∞ = (

θ f
)

t→∞ = x , but during the transient θs 
= θ f .
These results were plotted again in Fig. 3 in more detail while zooming into

the initial time domain t ∈ [0, 0.002] in order to check the initial time derivative
of temperature

(
�θs

/
�t

)

t=0 and
(
�θ f

/
�t

)

t=0. It is observed as anticipated that the
temperature values overlap showing no variation in time except for the neighbour-
hood of the boundaries, i.e. for x = 0.1 and x = 0.9. Even for this neighbourhood it
may be observed that there is an initial time domain t ∈ [0, 0.0005] where temper-
ature variations in time seem nonexistent reinforcing the analytical conclusion that(
�θs

/
�t

)

t=0 = (
�θ f

/
�t

)

t=0 = 0. The numerical values (not shown here) confirm
this result to machine precision.

The temperature difference between the phases in terms of �θ = (
θs − θ f

)
as

a function of time at selected constant values of x is presented in Fig. 4 clearly
identifying the variation of the temperature difference between the phases with time,
starting from and ending with identical values.
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Fig. 2 Results of the analytical solution for the temperature of both phases as a function of time at
selected locations. (a) at values of x = 0.1, 0.2, 0.3, and 0.4; (b) at values of x = 0.6, 0.7, 0.8,
and 0.9
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Fig. 3 Results of (a) the temperature solutions for short times by zooming into the initial time
domain t ∈ [0, 0.002] in order to check the initial time derivative of the temperature

(
� θs

/
� t

)

t=0

and
(
� θ f

/
�t

)

t=0

Fig. 4 Results of the temperature difference between the phases in terms of �θ = (
θs − θ f

)
as a

function of time at selected constant values of x
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6 Experimental Measurement of the Effective Thermal
Conductivity of a Porous Medium via the Transient
Hot Wire (THW) Method

6.1 Background

The application of the Transient Hot Wire (THW) experimental method for the mea-
surement of thermal conductivity of materials is presently limited to homogeneous
and single phase materials because its simple and elegant theoretical expression
on which it is based cannot be extended without associated corrections to porous
media systems. Corrections to the THW method in the form presented by Vadasz
(2006b) are not sufficiently simple because they are expressed in terms of a ratio of
infinite power series rather than a simple expression as in the single-phase case. The
Dual-Phase systems that benefit from these results are nanofluid suspensions, metal
foams (porous media), insulating foams (porous media), two immiscible liquids,
bi-composite solids (not a two-phase system but the method will nevertheless be
applicable to such systems too).

6.2 Concepts and Methods

Inherent assumptions for the existence of an effective thermal conductivity for dual-
phase systems such as porous insulating foams (Coquard and Bailis 2006, Coquard
et al. 2006) having properties that are similar to homogeneous materials are being
made even without mentioning them. The practice of using the terminology “effective
thermal conductivity” over the years yielded a “tradition” of not even challenging its
existence – a natural internalization but rather incorrect. A direct result of this practice
is the obvious application of single-phase measurements methods to porous media.

6.2.1 Measuring Temperature in a Dual-Phase System via the Transient
Hot Wire Method

Homogeneous Fluids and Solids

The THW method is well established as the most accurate, reliable and robust tech-
nique (Hammerschmidt and Sabuga 2000) for evaluating the thermal conductivity
of fluids (De Groot et al. 1974, Healy et al. 1976, Kestin and Wakeham 1978) and
solids (Assael et al. 2002). It replaced the steady state methods primarily because of
the difficulty to determine that steady state conditions haven indeed been established
and for fluids the difficulty in preventing the occurrence of natural convection and
consequently the difficulty in eliminating the effects of natural convection on the heat
flux. The THW method consists in principle of determining the thermal conductivity
of a selected material/fluid by observing the rate at which the temperature of a very
thin platinum (or alternatively tantalum) wire (5–80 �m in diameter) increases with
time after a step change in voltage has been applied to it. The platinum (tantalum)
wire is embedded vertically in the selected material/fluid (see Fig. 5) and serves as
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a heat source as well as a thermometer. The temperature of the wire is established
by measuring its electrical resistance, the latter being related to the temperature via a
relationship of the form (Bentley 1984)

Rw = Ro [1 + β (T − To)] (78)

A quadratic term is usually included too in eq. (78) but the linear part is already
very accurate and the quadratic term ads only 0.4% to the resistance value over
a wide temperature change of 100 ◦C and 0.004% over a temperature change of
10 ◦C (Bentley 1984). The requirement for a very thin (5–80 �m in diameter) plat-
inum/tantalum wire is due to the need to obtain a uniform temperature across the
cross section of the wire in a time scale that is substantially shorter than the time
scale of thermal diffusion to the neighboring fluid. For platinum having a thermal
diffusivity of αPt = 2.6 × 10−5m2

/
s (Martinsons et al. 2001) and a micrometer

size wire radius (4.81 × 10−5 m) the transient within the wire will disappear within
∼ 0.1 ms, and therefore the readings that are being taken at times that are much
longer than 0.1 ms (t >> 0.1 ms) correspond to a uniform temperature over the
wire’s cross section.

A Wheatstone bridge is used to measure the electrical resistance Rw of the wire (see
Fig. 5). The electrical resistance of a potentiometer R3 is adjusted until the reading of
the galvanometer G shows zero current. When the bridge is balanced as indicated by a
zero current reading on the galvanometer G, the value of Rw can be established from

Fig. 5 Typical schematic
setup for a Transient Hot
Wire experiment in a
pure fluid
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the known electrical resistances R1, R2 and R3 by using the balanced Wheatstone
bridge relationship Rw = R1 R2

/
R3.

While the application of the method to solids and gases is straightforward its
corresponding application to electrically conducting liquids needs further attention.
The experiments conducted in nano-fluid suspensions for example (Eastman et al.
2001, Lee et al. 1999, Choi et al. 2001, Xuan and Li 2000) used a thin electrical
insulation coating layer to cover the platinum wire instead of using the bare metallic
wire, a technique developed by Nagasaka and Nagashima (1981). The latter is aimed
at preventing problems such as electrical current flow through the liquid causing
ambiguity of the heat generation in the wire. Alternatively, Assael et al. (2004) used
tantalum wires, which were anodized in situ to form a coating layer of tantalum pen-
toxide (Ta2O5), which is an electrical insulator. Because of the very small diameter
(micrometer size) and high thermal conductivity of the platinum wire the latter can
be regarded as a line source in an otherwise infinite cylindrical medium (Fig. 6).

The rate of heat generated per unit length (l) of platinum wire is therefore q̇l =
iV

/
l W · m−1, where i is the electric current flowing through the wire and V is

the voltage drop across the wire. In this sub-section the contextual notation refers to
r, rw, t and to as dimensional quantities, as we do not introduce yet dimensionless
ones. Solving for the radial heat conduction due to this line heat source leads to a
temperature solution in the following closed form that can be expanded in an infinite
series as follows

T = q̇l

4πk
Ei

(
r2

4αt

)

= q̇l

4πk

[

−γEu + ln

(
4αt

r2

)

+ r2

4αt
− r4

64α2t2
+ r6

1152α3t3
− . . . .

]

(79)

Fig. 6 The line heat source
analytical problem
underlying the Transient Hot
Wire method
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where Ei (•) represents the exponential integral function, and γEu = ln (σEu) =
0.5772156649 is Euler’s constant. For a line heat source embedded in a cylindrical
cell of infinite radial extent and filled with the test fluid one can use the approxima-
tion r2

/
4αt << 1 in eq. (79) to truncate the infinite series and yield

T ≈ q̇l

4πk

[

−γEu + ln

(
4αt

r2

)

+ O

(
r2

4αt

)]

(80)

Equation (80) reveals a linear relationship, on a logarithmic time scale, between the
temperature and time. Therefore, one way of evaluating the thermal conductivity
is from the slope of this relationship evaluated at r = rw, for example, rw being
the radius of the platinum wire. However the latter needs the knowledge of the
thermal diffusivity, α, of the fluid. Alternatively one may evaluate k by using any
two readings of temperature T1 and T2 recorded at times t1 and t2 respectively. The
temperature difference (T2 − T1) can then be approximated by using eq. (80), in
the form

(T2 − T1) ≈ iV

4πkl

[

ln

(
t2
t1

)]

(81)

where we replaced the heat source with its explicit dependence on i, V and l,
i.e. q̇l = iV

/
l. From eq. (81) one can express the thermal conductivity k explicitly

in the form

k ≈ iV

4π (T2 − T1) l

[

ln

(
t2
t1

)]

(82)

For r = rw the condition for the series truncation r2
w

/
4αt << 1 can be expressed

in the following equivalent form that provides the validity condition of the approxi-
mation in the form

t >> to = r2
w

4α
(83)

The value of to = r2
w

/
4α provides a validity condition of the experimental readings,

i.e. t >> to.
Equation (82) is a very accurate way of estimating the thermal conductivity as long

as thevalidityconditions forappropriatenessof theproblemderivationsusedaboveare
fulfilled.Afinite lengthof theplatinum(tantalum)wire, thefinite sizeof thecylindrical
container, the heat capacity of the platinum (tantalum) wire, and possibly natural
convection effects are examples of possible deviations of any realistic system from the
oneused inderivingeq. (82).DeGroot etal. (1974),Healyetal. (1976), andKestinand
Wakeham (1978) introduce an assessment of these deviations and possible corrections
to theTHWreadings to improve theaccuracyof the results. Ingeneral all thedeviations
indicated above could be eliminated via the proposed corrections provided the validity
condition listed in eq. (83) is enforced as well as an additional condition that ensures
that natural convection is absent. The validity condition (83) implies the application of
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eq. (82) for long times only. Nevertheless, when evaluating this condition (83) to data
used in the nano-fluid suspensions experiments one obtains explicitly the following
values. For a 76.2 μm diameter of platinum wire used by Eastman et al. (2001), Lee
et al. (1999), and Choi et al. (2001) and an electrical insulation coating thickness of
10 �m, the wire radius is rw = 4.81 × 10−5 m leading to to = r2

w

/
4α = 13.7 ms for

ethylene glycol and to = r2
w

/
4α = 7.2 ms for oil, leading to the validity condition

t >> 13.7 ms for ethylene glycol and t >> 7.2 ms for oil. The long times beyond
which the solution (82) can be used reliably are therefore of the order of hundreds of
milliseconds, not so long in the actual practical sense. These values also correspond to
theonesneededfor theassumptionofawire temperature that isuniformover thewire’s
cross section a condition that developed following eq. (78) above. On the other hand
the experimental time range is limited from above as well in order to ensure the lack
of natural convection that develops at longer time scales. Xuan and Li (2000) estimate
this upper limit for the time that an experiment may last before natural convection
develops as about 5 s. They indicate that “An experiment lasts about 5 s. If the time is
longer, the temperature difference between the hot-wire and the sample fluid increases
and free convection takes place, which may result in errors”. Lee et al. (1999) while
using the THW method and providing experimental data in the time range of 1–10 s,
indicate in their Fig. 3 the “valid range of data reduction” to be between 3 and 6 s. Our
estimations evaluated above confirm these lower limits as a very safe constraint and
we assume that the upper limits listed by Xuan and Li (2000) and Lee et al. (1999) are
also good estimates. Within this time range the experimental results should produce a
linear relationship, on a logarithmic time scale, between the temperature and time.

Fluid-Saturated Porous Media

The first major problem when attempting to apply the THW method to porous media
is focused in the question “What temperature precisely is the wire exposed to?”.
Obviously, the wire is exposed partly to the solid-phase and partly to the fluid phase
that constitutes the porous medium. There is no justification to assume that local
thermal equilibrium between the solid and fluid phases occurs generally (especially
when a heat flux boundary condition is applied, as in the THW case). On the con-
trary, it is sensible to assume that the average temperature of the fluid differs from
that of the solid. Then the wire being in contact with both phases will “feel” the
fluid temperature on parts of its surface and the solid temperature on other parts of
its surface. How to integrate these two effects in terms of its overall lumped effect on
the total electrical resistance of the wire is not a simple averaging procedure. It forms
one of the objectives of continued research. The following derivations demonstrate
the direction one intends adopting in resolving this problem. Obviously we need to
separate between two extreme cases. One is related to the one extreme possibility
when the pores near the wire form complete rings around the wire, i.e. at any point
along the wire’s length, the complete circumference of the wire is exposed either
completely to the fluid or completely to the solid. In such a case one may look to this
configuration as small electrical resistors connected in series along the wire’s length.
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A macroscopic experimental testing of this concept is presented in Fig. 7 where a
two-phase system consisting of two different immiscible liquids is being used with
the Transient Hot Wire system to check the following derivations. Consider the two
immiscible stationary liquids, a lighter one on top of a heavier one as presented in
Fig. 7. The total height of the container H is occupied partly, Hd , by the heavy
liquid on the down-section and partly, Hu , by the lighter liquid on the upper section.
We define the relative height of the interface between the two fluids as ϕ = Hd

/
H ,

which is identical to the ratio between the volume of the heavier liquid and the
total volume occupied by both liquids. This is equivalent to the porosity in porous
media. Obviously, the following relationship holds (1 − ϕ) = 1− Hd

/
H = Hu

/
H .

Neglecting the tiny region in the neighborhood of the interface where sharp temper-
ature gradients are being expected we can assume far away from the interface radial
temperatures of the form that were presented for a single fluid in eq. (79)

Td ≈ q̇l

4πkd

[

−γEu + ln

(
4αd t

r2
w

)]

, Tu ≈ q̇l

4πku

[

−γEu + ln

(
4αut

r2
w

)]

(84)

leading to relationships of the form presented in eq. (82), i.e. the thermal conductiv-
ities of each liquid is approximately given by

kd ≈ iV

4π (Td2 − Td1) H

[

ln

(
t2
t1

)]

, ku ≈ iV

4π (Tu2 − Tu1) H

[

ln

(
t2
t1

)]

(85)

Fig. 7 Schematic setup for a Transient Hot Wire experiment in two immiscible fluids
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However, we do not measure separately the temperatures Td and Tu but rather the
wire’s electrical resistance due to the lumped effect of both Td and Tu . The resistance
of the wire is directly proportional to the wire’s length and therefore the contribution
of the lower and upper sections can be expressed in the form

Rw = ϕRwd + (1 − ϕ) Rwu (86)

where

Rwd = Ro [1 + β (Td − To)] and Rwu = Ro [1 + β (Tu − To)] (87)

Combining eq. (87) with eq. (86) yields

Rw = Ro {1 + β [ϕTd + (1 − ϕ) Tu − To]} = Ro
[
1 + β

(
Tef f − To

)]
(88)

where an effective temperature in the form

Tef f = ϕTd + (1 − ϕ) Tu (89)

appears and represents the average temperature “felt” by the wire in the sense of
its impact on the wire’s electrical resistance. We can now express this effective
temperature by using the individual temperatures eq. (84) into (89) leading to

Tef f ≈ q̇l

4π

[

−γEu

(
ϕ

kd
+ (1 − ϕ)

ku

)

+ ϕ

kd
ln

(
4αd t

r2
w

)

+ (1 − ϕ)

ku
ln

(
4αut

r2
w

)]

(90)
Evaluating eq. (90) at two instances of time t1 and t2 and evaluating the difference
yields

(
Tef f,2 − Tef f,1

) ≈ q̇l

4π

[
ϕ

kd
+ (1 − ϕ)

ku

]

ln

(
t2
t1

)

(91)

where an effective thermal conductivity emerged (not necessarily the typical “ef-
fective” value), in the form of thermal resistances (1

/
ki ∀ i = d, u) connected in

series

1

kef f
= ϕ

kd
+ (1 − ϕ)

ku
(92)

This result is still not satisfactory because our aim is to measure ku and kd separately
and not their lumped effect on the wire. To overcome this problem we need to run
the experiment twice, with different values of the interface location, i.e. ϕ1 and ϕ2.
Then, from the known effective values of kef f,1 and kef f,2 obtained by the method
presented above one may solve the system of two equations

ϕ1 Rd + (1 − ϕ1) Ru = Ref f,1 ; ϕ2 Rd + (1 − ϕ2) Ru = Ref f,2 (93)
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where Rd = 1
/

kd , Ru = 1
/

ku and Ref f,i = 1
/

kef f, j ∀ j = 1, 2 leading to

kd = (ϕ1 − ϕ2)
[
(1 − ϕ1) Ref f,1 − (1 − ϕ2) Ref f,2

] ; ku = (ϕ1 − ϕ2)
[
ϕ1 Ref f,2 − ϕ2 Ref f,1

] (94)

Alternatively, one may use a second wire located far away (in the sense of the thermal
impact of the heating from the wire, approximately >> 100 �m apart) from the first
oneandembeddedonly in theupper liquid,henceevaluatingku independentlyandthen
substituting it into eq. (92) to obtain the value of kd . More difficult is the other extreme
when we assume that the wire is exposed partly to the fluid and partly to the solid but
this separation is along the wire, i.e. part of circumference of any cross section, say 0 <

θ < θ1, is exposed to one fluid and the other part, θ1 < θ < 2π , is exposed to the other
fluid, where two partitions located at θ = 0 and θ = θ1 separate the two fluids. (Here
given thecontextualnotationθ represents theangularcoordinate.) In thiscase thecross
section will not have a uniform temperature and while this configuration represents
electrical resistances connected in parallel the very dependence of the temperature
solution within the wire on r and θ makes the application of the electrical resistance –
temperature relationship questionable. It may very well be that there is a need to solve
a simplified version of the electromagnetic Maxwell’s equations to find an answer
to the latter question and be certain of the applicability of the electrical resistance –
temperature relationship for this case. The realistic porous media outcome is expected
to be in between these two limits and will depend on the areal-porosity of the porous
medium and its distribution around and along the wire. More work will be needed to
find precisely how to characterize a porous medium in a way that these parameters
will be established independently and could then be used with confidence with the
Transient Hot Wire method.

6.2.2 Maxwell’s “Effective” Thermal Conductivity

Maxwell (1891) showed that an “effective” thermal conductivity of a bi-composite
system(dual-phase,or single-phaseheterogeneous)exists in thesenseofanequivalent
single-phase homogeneous system transferring and identical heat flux. He considered
a configuration similar to that presented in Fig. 8 below, where spherical materials
“b” are distributed uniformly within a different material “a”. These may be spherical
solid particles of material “b” suspended in a fluid “a”, or spherical inserts of solid
particles “b” within another solid “a”, an example of an unusual composite solid. The
spherical particles are assumed to be distributed uniformly but far away from each
other such that the temperatureandheatfluxes in theneighborhoodofonesolidparticle
is not affected by the presence of other solid particles. Therefore the applicability of
Maxwell’s model for the evaluation of the effective thermal conductivity of a porous
medium is questionable, because not only that the solid particles are not far away from
each other in a porous medium but they rather touch each other, violating the basic
assumption made in the derivation. Nevertheless, the concept of Maxwell’s effective
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Fig. 8 Maxwell’s effective thermal conductivity; problem formulation

thermal conductivity is introduced here for two reasons. The first is that in terms of
heat conduction Vadasz (2006b) showed that solid suspensions in a fluid follow the
same conceptual governing equations as the porous media equations with vanishing
effective thermal conductivity over the solid phase. Second, it might be possible to use
the conceptual thinking of Maxwell in attempting to derive an equivalent expression
for a porous medium. Therefore, we continue by considering the Maxwell derivation
for far away particles of one material embedded in a second material. A uniform heat
flux qo = const. is applied across material “a” leading to a linear undisturbed temper-
ature profile far away from the spherical particle “b”, in the form T = (

qo
/

ka
)

x . The
objective is to find first the temperature distribution considering the presence of the
spherical particle “b”, and then attempt to find an effective thermal conductivity for the
composite medium that transfers an identical heat flux qo, and express this effective
thermal conductivity in terms of the thermal conductivities of materials “a” and “b”.
Towards this end one needs first to convert the problem and the heat flux which is
uniform in the x direction into the spherical coordinates r, θ, φ, given the shape of the
particle.

This transformation yields at steady state, after separation of variables, T =
Rn (r ) Mn (μ) with μ = cos (θ ), two equations for the temperature components in
the r and θ directions in the form

d2 Rn

dr2
+ 2

r

d Rn

dr
− n (n + 1)

r2
Rn = 0; (95)
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d

dμ

[
(
1 − μ2

) d Mn

dμ

]

+ n (n + 1) Mn = 0 (96)

Equation (95) is the Euler–Cauchy differential equation and eq. (96) is Legendre’s
differential equation producing solutions of the form

Rn (r ) = a1nrn + a2nr−(n+1); Mn (μ) = c1n Pn (μ) + c2n Qn (μ) (97)

where Pn (μ) and Qn (μ) are Legendre functions of degree n, of the first and second
kind, respectively. After imposing the boundary condition of the applied heat flux
in the form lim

r→∞ qr = −k
(
�T

/
�r

)

r→∞ = qo cos θ = qoμ yields the temperature

solution in the form

T =
(

a21r−2 − qo

k
r
)

cos (θ ) (98)

The additional undefined integration constant a21 will be established by using the
interface boundary condition at r = ro, where ro is the particle’s radius. By using the
solution (98) and introducing the existence of a number of j uniformly distributed
identical spherical particles far away from each other defining the solid fraction (or
phase b fraction) in the form ε = Vb

/
Vtot , where Vtot = Va + Vb, we obtain a

temperature solution (eq. (99) below) that may be shown to be identical to the one
that is obtained by using an “effective thermal conductivity” for the whole medium.
As a result it is simple to demonstrate that an “effective” thermal conductivity, ke,
exists and is found to have the form as follows

T = qo

ka

[
jr3

o (kb − ka)

(kb + 2ka)
r−2 − r

]

cos (θ ) (99)

ke = [kb + 2ka + 2ε (kb − ka)]

[kb + 2ka − ε (kb − ka)]
ka (100)

Equation (100) is the familiar Maxwell’s expression for the “effective” thermal con-
ductivity (Maxwell 1891). The derivations above demonstrate that it was obtained at
steady state. The existence of such an effective thermal conductivity at transients is
by no means obvious. Therefore, since this equivalence applies to steady state only
and Maxwell (1891) did not show that the same result applies for transients too,
it appeals indeed to extend these derivations as well as their extensions (Batchelor
1972, Batchelor and Green 1972, Hamilton and Crosser 1962, Jeffrey 1973, Davis
1986, Lu and Lin 1996, Bonnecaze and Brady 1990, 1991) for the transient. Why
shouldn’t the “effective thermal conductivity” apply to transients? The answer to
this question is the fact that the “effective thermal conductivity” of a dual-phase
system is not a property of a new material. If it happens that an accurate represen-
tation of its “effective” impact in terms of an identical heat flux exists, one needs
reassurance that this effective behavior applies to transients too.
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6.2.3 Interface Heat Transfer Coefficient in Porous Media
and Fluid Suspensions

In addition to the important question raised above, and to compensate for the possi-
bility that such an accurate representation of the “effective thermal conductivity” has
its limitations, the averaging concept can be applied by defining a Representative
Elementary Volume (REV) and averaging the dependent variables over this REV.
The resulting effect in addition to the heat transferred within each phase is the heat
conduction over the interface separating the two phases (inter-phase heat transfer).
Evaluating this heat transfer is possible for regular geometries, like the spherical
one used by Maxwell (1891), however it becomes increasingly more difficult as
the geometry becomes more complicated. Heat conduction in porous media subject
to Lack of Local Thermal Equilibrium (LaLotheq) is governed at the macro-level
by the following equations that represent averages over each phase within an REV
(Representative Elementary Volume)

γs
�Ts

�t∗
= ks∇2

∗ Ts − Qs f (101)

γ f
�T f

�t∗
= k f ∇2

∗ T f + Qs f (102)

where Qs f represents the rate of heat generation in the fluid phase within the REV
due to the heat transferred over the fluid-solid interface, and where the other pa-
rameters were defined in Section 2. The traditional formulation of the rate of heat
generation in the fluid phase within the REV due to the heat transferred over the
fluid-solid interface uses a linear relationship between Qs f and the average tem-
perature difference between the phases in the form Qs f = h(Ts − T f ). In this
discussion one assumed that h is an independent property while in reality h depends
on the thermal conductivities and heat capacities of both phases, on the interface
heat transfer area As f , and on other factors. Then, a change in h will occur due to
changes in As f , k f , ks, γ f and γs .

The lack of macroscopic level conduction mechanism in fluid suspensions (with
ε = (1 − ϕ)) i.e. the heat transfer within the solid phase which is expressed by the
fact that the solid particles represent the dispersed phase in the fluid suspension and
therefore the solid particles can conduct heat between themselves only via the neigh-
boring fluid, leads to setting ks = 0 in eq. (101). The latter yields from eqs. (101)
and (102) the averaged equations applicable to fluid suspensions. When steady state
is accomplished in fluid suspensions �Ts

/
� t∗ = �T f

/
� t∗ = 0 leading to local

thermal equilibrium between the solid and fluid phases, i.e. Ts (r) = T f (r), a condi-
tion that does not necessarily apply in porous media. By using eqs. (101) and (102)
for a line heat source as needed for the application of the THW method and intro-
ducing the following dimensionless variables t = t∗h

/
γ f , r2 = r2

∗ h
/

k f , θs =
(Ts − To)

/(
q̇l

/
2πk f

)
, θ f = (

T f − To
)/(

q̇l
/

2πk f
)

renders these equations into
their corresponding dimensionless form
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1

χ

�θs

�t
= 1

σr

�

�r

(

r
�θs

�r

)

− (
θs − θ f

)
(103)

�θ f

�t
= 1

r

�

�r

(

r
�θ f

�r

)

+ (
θs − θ f

)
(104)

where χ = γ f
/
γs, σ = k f

/
ks , and κ = α f

/
αs = σ

/
χ represent the heat

capacities, thermal conductivities and thermal diffusivities ratios, respectively. In-
troducing a Boltzmann transformation in the form

η = r2

4t
= r2

∗
4α f t∗

(105)

transforms eqs. (103) and (104) into the following equivalent, but not self-similar,
form

t
�θs

�t
= κ−1 �

�η

(

η
�θs

�η

)

+ η
�θs

�η
− χ t

(
θs − θ f

)
(106)

t
�θ f

�t
= �

�η

(

η
�θs

�η

)

+ η
�θs

�η
+ t

(
θs − θ f

)
(107)

The corresponding single-phase equation is self-similar, a result of utmost impor-
tance because it is this self-similarity that produces the simple solution expressed
by eq. (79) and makes the application of the THW method possible. Neverthe-
less, eqs. (106) and (107) produce interesting self-similar solutions for short times
t << 1 (and we will see that these are precisely the times that the THW method is
focused on), by using the following short times expansion

θi = θ
(0)
i + tθ (1)

i + t2θ
(2)
i + O

(
t3

)∀i = s, f (108)

Then the equations at leading order decouple and take the form

κ−1 d

dη

(

η
�θ (0)

s

�η

)

+ η
dθ (0)

s

dη
= 0 (109)

d

dη

(

η
�θ

(0)
f

�η

)

+ η
dθ

(0)
f

dη
= 0 (110)

hence restoring at leading order the single-phase self-similarity at short times de-
spite the dual-phase nature of the problem. The solution to eqs. (109) and (110)
subject to the hot wire boundary conditions is presented below after converting it
back to dimensional form
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(
T (0)

s − To
) = q̇l∗

4πks
Ei

(
r2
∗

4αs t∗

)

= q̇l∗
4πks

[

−γEu + ln

(
4αs t∗

r2∗

)

+ O

(
r2
∗

4αs t∗

)]

(111)

(
T (0)

f − To

)
= q̇l∗

4πk f
Ei

(
r2
∗

4α f t∗

)

= q̇l∗
4πk f

[

−γEu + ln

(
4α f t∗

r2∗

)

+ O

(
r2
∗

4α f t∗

)]

(112)

These solutions can be used to evaluate the effective thermal conductivity of
the solid and fluid phases respectively for any pairs of two temperature readings(

T (0)
f 1 , T (0)

s1

)
and

(
T (0)

f 2 , T (0)
s2

)
taken at subsequent times t1∗ and t2∗, respectively, in

the form

ks ≈ q̇l∗

4π
(

T (0)
s2 − T (0)

s1

)

[

ln

(
t2∗
t1∗

)]

; k f ≈ q̇l∗

4π
(

T (0)
f 2 − T (0)

f 1

)

[

ln

(
t2∗
t1∗

)]

(113)

These results are quite promising because they indicate that the THW method may
be applied with some higher order corrections in porous media too, however we need
to check the conditions under which the latter applies. Clearly a condition similar
to eq. (83), which is applicable to single-phase, applies here too as the truncation
of eqs. (111) and (112) requires t∗ >> to, where the value of the minimum time
is to = max

[(
r2
w∗

/
4α f

)
,
(
r2
w∗

/
4αs

)]
. In addition, the leading order solutions (111)

and (112) apply for dimensionless short times only, i.e. for t = t∗h
/
γ f << 1. Note

also that an inherent, but reasonable, assumption was included in the derivation of
the leading order eqs. (109) and (110), implying that ηγ = γ f

/
γs = O (1), i.e. γ f ∼

γs at least in their order of magnitude. Therefore the condition t = t∗h
/
γ f << 1

implies t∗ << γ f
/

h or similarly t∗ << γs
/

h. These conditions specify the range of
short times that are needed for the approximated solutions (111) and (112) leading
to eq. (113) to be valid. Combining the two conditions above produces

to << t∗ << tm (114)

where
to = max

[(
r2
w∗

/
4α f

)
,
(
r2
w∗

/
4αs

)]
; tm = min

[(
γ f

/
h
)
,
(
γs

/
h
)]

. The requirement
that tm >> to, is necessary and sufficient for such a time interval to exist and makes
the THW experimental method applicable to dual-phase systems. This requirement
implies γ f

/
h >> r2

w∗
/

4α f (assuming ηγ = γ f
/
γs = O (1)), leading to

h <<
4k f

r2
w∗

(115)
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This condition is the requirement for the existence of a time interval (method validity
window) over which the THW method may produce reliable results in Dual-Phase
applications. It reveals the significant impact that the interface heat transfer coeffi-
cient h has on the applicability of the THW method to dual-phase systems.

In fluid suspensions like in porous media, the parameter h, carrying units of
W ·m−3 ·K−1, represents an integral heat transfer coefficient for the heat conduction at
the solid-fluid interface within an REV. Its general relationship to the surface-area-to-
volume ratio (specific area) was derived by Vadasz (2006b) by using relationships that
are available for the respective coefficient in fluid saturated porous media (Quintard
and Whitaker 1995, Alazmi and Vafai 2002, Amiri and Vafai 1994, Wakao et al.
1979, Wakao and Kaguei 1982, Kuwahara, Shirota and Nakayama 2001). Most of the
reported evaluations of h in porous media listed above were derived with a particular
focus on convection rather than conduction heat transfer. Their applicability and accu-
racy forconductionare thereforequestionable.The implicationof thederivedrelation-
ship presented by Vadasz (2006b) is that the heat transfer coefficient is related to the
particle size by the inversely quadratic relationship h = [k f

/
d2

p]s
(
ε, k f

/
ks

)
. While

the particular form of the function s
(
ε, k f

/
ks

)
and its possible further dependence

on the particle size dp as well, especially if the particle size is reduced to nano-scale
levels, is not established for the case of suspensions, the general dependence of the heat
transfer coefficient on the particle size is evident. This dependence of the heat transfer
coefficient on the particle size introduces the effect of the surface-area-to-volume ratio
(specific area) that was claimed by Eastman et al. (2001) to be missing in the classical
models of evaluating the effective thermal conductivity of the suspension. One should
however bear in mind that further dependence on particle size is anticipated as the
particle size is reduced to the nano-scale level predominantly when the ballistic rather
than diffusive nature of heat transfer becomes dominant (Chen 1996, 2000, 2001)
and hence reducing the rate of heat transfer, implying a consequential reduction of
the value of h to somewhat compensate for the otherwise substantial increase of h
as the particle size is reduced. In addition one may anticipate an increase of h due to
Brownian motion induced nanoconvection Jang and Choi (2004), Prasher et al. (2005)
or a decrease due to the exceptionally small interface thermal conductance Huxtable
et al. (2003).

Summarizing the topic of experimental methods one may state that an attempt has
been made to render the Transient Hot Wire Experimental method to porous media
applications. However, substantial more work is however necessary to complete this
process and produce clear validity criteria for such applications. The latter criteria can
then be used to develop reliable experimental procedures within these validity limits.

7 Application of the Heat Conduction in Porous Media
to Nanofluid Suspensions

The impressive heat transfer enhancement revealed experimentally in nanofluid sus-
pensions by Eastman et al. (2001), Lee et al. (1999) as presented in Fig. 9a below, and
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byChoietal. (2001)aspresented inFig.9bbelow,conflictsapparentlywithMaxwell’s
(1891) classical theory of estimating the effective thermal conductivity of suspen-
sions discussed in the previous section, including higher order corrections and other
than spherical particle geometries developed by Hamilton and Crosser (1962), Jeffrey
(1973), Davis (1986), Lu and Lin (1996), and Bonnecaze and Brady (1990, 1991).

Vadasz (2006b) derived theoretically a model for the heat conduction mechanisms
of nanofluid suspensions including the effect of the surface area-to-volume ratio of
the suspended nanoparticles/nanotubes on the heat transfer. The theoretical model is
based on the concept of inter-phase heat transfer that is widely used in porous media.
It is essentially a special case of the porous media heat conduction equations subject
to Lack of Local thermal equilibrium (LaLotheq). This model was shown to provide
apparently a viable explanation for the excessive values of the effective thermal con-
ductivity obtained experimentally by Eastman et al. (2001), Lee et al. (1999), and
Choi et al. (2001). The explanation is based on the fact that the Transient Hot Wire
(THW) experimental method used in all nanofluid suspensions experiments listed
above needs a major correction factor when applied to non-homogeneous systems.
This time dependent correction factor is of the same order of magnitude as the claimed
enhancement of the effective thermal conductivity. However no direct comparison to
experiments was possible because the authors (Eastman et al. 2001, Lee et al. 1999,
Choi et al. 2001) did not report so far their temperature readings as a function of time,
which is the base upon which the effective thermal conductivity is being evaluated.
Nevertheless, in a recent chapter Liu et al. (2006) reveal three important new results
that allow the comparison of the theoretical model with experiments. The first impor-
tant new result presented by Liu et al. (2006) is reflected in the fact that the value of
“effective thermal conductivity” revealed experimentally by using the THW method is
timedependent.Thesecondnewresult is that theauthorspresentgraphically their time
dependent “effective thermal conductivity” for three specimen and therefore allow the
comparison of their results with our theoretical predictions showing a very good fit
as presented in the present section. The third new result is that their time dependent

Fig. 9 Thermal conductivity enhancement in systems consisting of (a) nanoparticles suspended in
ethylene glycol as reported by Eastman et al. 2001; (b) multiwalled carbon nanotubes suspended
in oil, as reported by Choi et al. 2001 (here redrawn from published data)
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“effective thermal conductivity” converges at steady state to values that according
to our calculations confirm the validity of the classical Maxwell’s theory (Maxwell
1891) and its extensions Hamilton and Crosser (1962), Jeffrey (1973), Davis (1986),
Lu and Lin (1996), and Bonnecaze and Brady (1990, 1991).

A variety of possible reasons for the excessive values of the effective thermal con-
ductivity have been investigated but only few succeeded to show a viable explanation.
Prasher et al. (2005) show that convection due to Brownian motion may explain the
enhancement of the effective thermal conductivity. Alternatively, Vadasz et al. (2005)
showed that hyperbolic heat conduction also provides a viable explanation for the
latter, although more recent results exclude this possibility. While recent experimental
results of Li and Peterson (2006) confirm the substantial enhancement of the effec-
tive thermal conductivity in nanofluid suspensions, other experiments conducted via
a different experimental method (an optical beam deflection technique) by Putnam
et al. (2006) show that the results do not produce the “anomalous enhancements of
the thermal conductivity that have been reported in previous studies in nanofluids”.

7.1 Problem Formulation

The theoretical model derived by Vadasz (2006b) to investigate the transient heat
conduction in a fluid containing suspended solid particles by considering phase-
averaged equations will be presented only briefly without including the details. The
phased-averaged equations are

γs
�Ts

�t∗
= h

(
T f − Ts

)
(116)

γ f
�T f

�t∗
= ke∇2

∗ T f − h
(
T f − Ts

)
(117)

where t∗ is time, T f (r∗, t∗) , Ts (r∗, t∗) are temperature values for the fluid and solid
phases respectively, averaged over a Representative Elementary Volume (REV) that is
large enough to be statistically valid but sufficiently small compared to the size of the
domain, and where r∗ are the coordinates of the centroid of the REV. In eqs. (1) and (2)
γs = ε ρscs and γ f = (1 − ε) ρ f cp represent the effective heat capacity of the solid
and fluid phases, respectively, with ρs and ρ f being the density of the solid and fluid
phases, respectively, cs and cp being the specific heat of the solid and fluid phases,
respectively, and ε being the volumetric solid fraction of the suspension. Similarly,
ke is the effective thermal conductivity of the fluid. The parameter h, carrying units
of W · m−3 · K−1, represents an integral heat transfer coefficient for the contribution
of the heat conduction at the solid-fluid interface as a volumetric heat source/sink
within an REV. It is assumed to be independent of time and its general relationship to
the surface-area-to-volume ratio (specific area) was derived in Vadasz (2006b). The
lack of macroscopic level conduction mechanism in fluid suspensions i.e. the heat
transfer within the solid phase which is expressed by the fact that the solid particles
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represent the dispersed phase in the fluid suspension and therefore the solid particles
can conduct heat between themselves only via the neighboring fluid, leads to setting
ks = 0 in the governing equations.

For the case of a thin hot wire embedded in a cylindrical container insulated on
its top and bottom one can assume that the heat is transferred in the radial direc-
tion only, r∗, and eventually rendering the two equations (116) and (117) that each
depends on both Ts and T f into separate equations for Ts and T f , respectively, in
the form

τq
�2Ti

�t2∗
+ �Ti

�t∗
= αe

[
1

r∗

�

�r∗

(

r∗
�Ti

�r∗

)

+ τT

r∗

�

�r∗

(

r∗
�2Ti

�r∗�t∗

)]

∀ i = s, f

(118)
where the following notation was used

τq = γsγ f

h
(
γs + γ f

) ; αe = ke
(
γs + γ f

) ; τT = γske

h
(
γs + γ f

)
αe

= γs

h
(119)

In eq. (119) τq and τT are the heat flux and temperature related time lags linked
to Dual-Phase-Lagging (DuPhlag), while αe is the effective thermal diffusivity of
the suspension. The boundary and initial conditions applicable to eq. (118) are
an initial ambient constant temperature, TC , within the whole domain, an ambi-
ent constant temperature, TC , at the outer radius of the container and a constant
heat flux, qo∗ , over the fluid–platinum–wire interface that is related to the Joule
heating of the platinum wire in the form qo∗ = i V

/
(2πrw∗l), where rw∗ and l

are the diameter and the length of the platinum wire respectively, i is the electric
current and V is the voltage drop across the wire. Vadasz (2006b) assumed that
eq. (118) applies for an effective temperature of the medium rather than the average
temperatures of the phases. The impact of this assumption on the results will be
discussed later.

An essential component in the application of the Transient Hot Wire (THW)
method for estimating experimentally the effective thermal conductivity of the
nanofluid suspension is the assumption that the nanofluid suspension behaves ba-
sically like an homogeneous material following Fourier law for the bulk. According
to the Transient Hot Wire method the effective thermal conductivity, when applied
directly to the two-phase system without the corrections suggested in Section 4 pro-
duces the following equation that was discussed in Section 4.2.1 above

k ≈ iV

4π (T2 − T1) l

[

ln

(
t2
t1

)]

(120)

Equation (120) is a very accurate way of estimating the thermal conductivity as long
as the validity condition is fulfilled. The validity condition implies the application of
eq. (120) for long times only, t >> to = r2

w

/
4α. However, when evaluating this

condition to data used in the nanofluid suspensions experiments one obtains that to ∼
7–14 ms and the time beyond which the solution (120) can be used reliably is therefore
of the order of hundreds of milliseconds, not so long in the actual practical sense.
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7.2 Solution and Correction of the THW Results

The analytical solution to the problem is obtained following the transformation of
the equations into a dimensionless form by introducing the following dimension-
less variables q = q∗

/
qo∗ , θ = (T − TC ) ke

/
qo∗ro∗ , r = r∗

/
ro∗ , t = αet∗

/
r2

o∗ ,
where the following two dimensionless groups representing a heat flux Fourier
number, Foq = αeτq

/
r2

o∗ , and a temperature Fourier number, FoT = αeτT
/

r2
o∗ ,

emerged, and the ratio between them is identical to the ratio between the time lags,
i.e. FoT

/
Foq = τT

/
τq .

When evaluating the thermal conductivity by applying the Transient-Hot-Wire
method and using Fourier Law one obtains for the effective thermal conductivity
the following relationship (Vadasz 2006b)

kapp = qo∗ro∗

[Tw (t) − TC ]
[−rw ln (rw) + f (t)] (121)

where the temperature difference [Tw (t) − TC ] is represented by the recorded ex-
perimental data and the value of the heat flux at the fluid–platinum–wire inter-
face qo∗ is evaluated from the Joule heating of the hot wire. In eq. (7) f (t) =∑∞

n=1 Cn exp
(−κ2

n t
)
, where the coefficient Cn and the eigenvalues κn are defined in

Vadasz (2006b) (see also Özisik 1993). The results obtained from the application of
eq. (121) to homogeneous materials fit extremely well the approximation used by the
THW method via eq. (120) within the validity limits of the approximation eq. (120).
Therefore, the THW method is extremely accurate for homogeneous materials.

On the other hand, for non-homogeneous materials, by using the solution to the
dimensionless version of eq. (118) applicable to fluid suspensions one obtains for
the effective thermal conductivity (Vadasz 2006b)

kact = qo∗ro∗

[Tw∗ − TC∗ ]
[−rw ln (rw) + g (t)] (122)

where kact is the actual effective thermal conductivity and the function g (t) in
equation (122) obtained from the solution is defined in the form g(t) = ∑∞

n=1
Bn

[
λn2 exp (λn1t) − λn1 exp (λn2t)

]
. The coefficient Bn is related to Cn by the fol-

lowing relationship Bn = Cn
/

(λn2 − λn1) where λn1 and λn2 are the eignevalues for
the solution in the time domain and are defined in Vadasz (2006b).

When using the Fourier solution (121) or (120) for homogeneous materials
to evaluate the effective thermal conductivity of non-homogeneous materials like
nanofluid suspensions instead of using eq. (122) one obtains a value that differs
from the actual one by a factor of

σ = kapp

kact
= [−rw ln (rw) + f (t)]

[−rw ln (rw) + g (t)]
(123)

where kapp is the apparent effective thermal conductivity obtained from the Fourier
conduction solution while kact is the actual effective thermal conductivity that
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corresponds to data that follow a Dual-Phase-Lagging conduction following the
derivations presented here as well as in Vadasz (2006b). The ratio between the
two provides a correction factor for the deviation of the apparent effective ther-
mal conductivity from the actual one. This correction factor when multiplied by
the ratio kact

/
k f produces the results for σ

(
kact

/
k f

) = kapp
/

k f , where k f is the
thermal conductivity of the base fluid without the suspended particles and kact is the
effective thermal conductivity evaluated by using Maxwell’s (1891) theory. Then,
these results of kapp

/
k f can be compared with the experimental results presented

by Liu et al. (2006).

7.3 Results, Discussion and Conclusions

Liu et al. (2006) used a very similar THW experimental method as the one used
by Eastman et al. (2001), Lee et al. (1999), and Choi et al. (2001) with the major
distinction being in the method of producing the nanoparticles and a cylindrical
container of different dimensions. They used water as the base fluid and Cu nanopar-
ticles as the suspended elements at volumetric solid fractions of 0.1% and 0.2%.
Their data that are relevant to our present discussion were digitized from their Fig. 3
and used in the following presentation to compare our theoretical results. Three
specimen data are presented in Fig. 3 (Liu et al. 2006) resulting in extensive overlap
of the various curves and therefore in some digitizing error which is difficult to
estimate when using only this figure to capture the data.

The comparison between the theoretical results presented here and in Vadasz
(2006b) with the experimental data (Liu et al. 2006) is presented in Figs. 10–12.

Fig. 10 Comparison of the present theory with experimental data of Liu et al. (2006) (here redrawn
from published data) of the effective thermal conductivity ratio for conditions compatible with
specimen No. 4, leading to a Fourier number of Foq = 7 × 10−2
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Fig. 11 Comparison of the present theory with experimental data of Liu et al. (2006) (here redrawn
from published data) of the effective thermal conductivity ratio for conditions compatible with
specimen No. 5, leading to a Fourier number of Foq = 6 × 10−2

The separation of these results into three different figures aims to better distinguish
between the different curves and avoid overlapping as well as presenting the re-
sults on their appropriate scales. Figure 10 presents the results that are applicable to
specimen No. 4 in Liu et al. (2006) and corresponding to a value of Foq = 7 · 10−2

in the theoretical model. Maxwell’s (1891) effective thermal conductivity can be
summarized in the form

Fig. 12 Comparison of the present theory with experimental data of Liu et al. (2006) (here redrawn
from published data) of the effective thermal conductivity ratio for conditions compatible with
specimen No. 9, leading to a Fourier number of Foq = 2.5 × 10−2
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ke

k f
= 1 + 3ε (κ − 1)

(κ + 2) − ε (κ − 1)
(124)

where ke is Maxwell’s effective thermal conductivity, κ = ks
/

k f is the ratio be-
tween the thermal conductivity of the solid phase and the thermal conductivity of
the base fluid, and ε is the volumetric solid fraction of the suspension. Evaluat-
ing Maxwell’s (1891) effective thermal conductivity for specimen No. 4 leads to a
value of 0.6018 W/m K, which is by 0.3% higher than that of the base fluid (water),
i.e. ke

/
k f = 1.003. From the figure it is evident that the theoretical results match

very well the digitized experimental data. Furthermore, the steady state result for
the ratio between the effective thermal conductivity and that of the base fluid was
estimated from the digitized data to be kact

/
k f = 1.003 ± 0.001 clearly validating

Maxwell’s (1891) predicted value. The results applicable to specimen No. 5 in Liu
et al. (2006) and corresponding to a value of Foq = 6 ·10−2 in the theoretical model
are presented in Fig. 11. The very good match between the theory and the digitized
experimental data is again evident. In addition, the ratio between the effective ther-
mal conductivity and that of the base fluid was estimated from the digitized data to
be kact

/
k f = 1.004 ± 0.001 again validating Maxwell’s (1891) predicted value of

ke
/

k f = 1.003. The last result is presented in Fig. 12, which corresponds to speci-
men No. 9 in Liu et al. (2006) and to a value of Foq = 2.5 · 10−2 in the theoretical
model. The results are presented on an appropriately scaled vertical axis and show
again a very good match between the theory presented here and in Vadasz (2006b),
and the experimental data as digitized from Liu et al. (2006). Since the volumet-
ric solid fraction for this specimen was 0.2% its corresponding Maxwell’s (1891)
effective thermal conductivity for this specimen leads to a value of 0.6036 W/m K,
which is by 0.6% higher than that of the base fluid (water), i.e. ke

/
k f = 1.006. The

steady state result for the ratio between the effective thermal conductivity and that of
the base fluid was estimated from the digitized data to be kact

/
k f = 1.0059±0.002

validating again Maxwell’s (1891) predicted value.
It should be mentioned that Liu et al. (2006) explain their time dependent effective

thermal conductivity by claiming that it was caused by nanoparticle agglomeration.
While the present results reinforce the explanation provided by Vadasz (2006b)

for the excessively high effective thermal conductivity in nanofluids suspensions
they are ignoring a subtle but essential point (Vadasz 2007b). The evaluated tem-
perature based on which the two-phase correction eq. (122) was introduced was
assumed to be an effective temperature of the two-phase medium, where in real-
ity eq. (118) and its equivalent dimensionless version represent equations for each
phase temperature Ts and T f .

The solution that was used in deriving eq. (122) was obtained via the elimination
method and suffers from similar “paradoxical” problems as presented in Section 2
for a general two-phase system. As distinct from Section 2, where the elimination
method yielded originally incorrect results, in the present case it may be shown that
the results are correct, but apply to only one of the phases, while the other phase
follows a different solution. By applying the paradox resolution method described in
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Section 5 to the present problem it is concluded that the results presented here apply
to the solid phase, while the fluid phase behaves approximately as the Fourier solu-
tion. Therefore, one may conclude that unless the hot wire was excessively exposed
to the solid nanoparticles/nanotubes the results presented above cannot explain the
enhanced thermal conductivity captured experimentally, nor indicate an apparent
rather than a real measurement. However, if substantial agglomeration occurred at
the hot wire surface (about 50% in volume) then the presented explanation reverts
back to become relevant. Agglomeration at the wire’s surface may occur as a result
of electrophoresis. Although, the results at this stage are still not conclusive and
substantial more work is required in order to understand how to render the Transient
Hot Wire experimental method to dual-phase applications, the present review shows
quite an extensive volume of theoretical as well as experimental consideration that
need to be accounted for in future research.

The presentation of the spectacular heat transfer enhancement that was measured
in nanofluid suspensions has been introduced. Modelling the heat conduction pro-
cess in nanofluid suspensions was shown to be a special case of heat conduction in
porous media subject to Lack of Local thermal equilibrium (LaLotheq). Reviewing
the topic of heat conduction in porous media subject to Lack of Local thermal equi-
librium (LaLotheq) introduced one of the most accurate methods of measuring the
thermal conductivity, the transient hot wire method, and its rendering to possible
application to dual-phase systems was discussed.

Nomenclature

Latin Symbols

Fhs = dimensionless group defined in eq. (16).
Fh f = dimensionless group defined in eq. (16).
Foq = heat flux related Fourier number, equals αeτq

/
L2.

FoT = temperature gradient related, Fourier number, equals αeτT
/

L2.
Bh = bi-harmonic dimensionless group, equals βe

/
L2

B f = dimensionless group, equals Bh
/

Foq = αsα f
/
α2

e
h = integral heat transfer coefficient for the heat conduction at the solid-fluid
interface (dimensional).
i = electric current (dimensional).
ks = effective thermal conductivity of the solid phase, equals (1 − ϕ) k̃s

(dimensional).
k̃s = thermal conductivity of the solid phase, (dimensional).
k f = effective thermal conductivity of the fluid phase, equals ϕk̃ f (dimensional).
k̃ f = thermal conductivity of the fluid phase, (dimensional).
L = the length of the porous slab (dimensional).
Nis = solid phase Nield number, eq. (16).
Ni f = fluid phase Nield number, eq. (16).
qqq∗ = heat flux vector (dimensional).
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r∗ = radial co-ordinate (dimensional).
R = electrical resistance (dimensional). t∗ = time (dimensional).
T = temperature, (dimensional).
TC = coldest wall temperature (dimensional).
TH = hottest wall temperature (dimensional).
V = electric voltage (dimensional).
x∗ = horizontal co-ordinate (dimensional).
xxx ∗ = spatial variables vector, (dimensional), equals (x∗, y∗, z∗).

Greek Symbols

αe = effective thermal diffusivity, defined in eq. (8), (dimensional).
αs = solid phase effective thermal diffusivity, equals ks

/
γs (dimensional).

α f = fluid phase effective thermal diffusivity, equals k f
/
γ f (dimensional).

βe = bi-harmonic coefficient, defined in eq. (8), (dimensional).
γs = solid phase effective heat capacity, equals (1 − ϕ) ρscs (dimensional).
γ f = fluid phase effective heat capacity, equals ϕ ρ f cp, f (dimensional).
ε = volumetric solid fraction of the suspension (dimensional).
ηγ = heat capacities ratio, equals γ f

/
γs .

ηk = thermal conductivity ratio, equals k f
/

ks .
θi = dimensionless temperature, equals (Ti − TC )/(TH − TC ) for i = s, f .
θ = angular co-ordinate.
ρs = solid phase density.
ρ f = fluid phase density.
τq = time lag associated with the heat flux, defined in eq. (8), (dimensional).
τT = time lag associated with the temperature gradient, defined in eq. (8),
(dimensional).
ϕ = porosity.
ψ = dimensionless group, equals FoT

/
Foq = τT

/
τq

Subscripts

∗ = corresponding to dimensional values (in the context, see contextual notation).
s = related to the solid phase.
f = related to the fluid phase.
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Dual-phase-lagging, 1, 3, 4, 5, 7, 9, 11, 13, 15,

17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37
heat conduction, 1–4, 13, 17, 21, 25, 34–36
porous media, 52

E
Effective thermal capacities, 31
Effective thermal conductivities, 31, 32, 33, 65
Electron gas, 2
Electronic systems, 39
Emerging technologies, 17
Energy equation, 2, 35, 40, 45, 58

F
First law of thermodynamics, 1, 27, 28, 35
Fluidized porous bed, 39
Fluid-saturated porous medium, 40
Fluid-solid interface, 28
Forced convection, 55
Fourier, 18, 25, 42, 59
Fourier heat conduction, 1, 3, 36
Fourier law, 27, 28, 34

H
Heat conduction, 1, 3, 4, 6, 21, 22, 23, 27, 28,

32–35, 39, 46, 59
Heat flux, 1–4, 18, 27, 35, 42, 44, 46, 56,

57, 83
potential, 4

Heterogeneities, 63, 65, 67, 69, 71, 73, 75, 77,
79, 81, 83

Heterogeneous, 64, 68, 82, 328
Homogeneous, 64, 68, 71
Hydraulic conductivity, 63, 64
Hydraulic properties, 63
Hydrodynamic heterogeneity, 77
Hyperbolic heat conduction, 2, 3, 17, 24, 35

I
Instability, 63, 64, 82
Interface problems, 63
Inter-phase heat transfer, 77

coefficient, 76
Isotropic porous media, 33

L
Lack of local thermal equilibrium, 1, 33,

34, 36
Lagging response in porous media, 35
Lag time, 43, 55, 61
Laser heating, 40
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328 Index

Local thermal equilibrium, 32, 34, 39–43, 47,
48, 60

Local thermal non-equilibrium, 39, 40, 43, 48,
55, 60

M
Material defects and thermomechanical

coupling, 35
Metal lattice, 2
Micro devices, 39
Microscale devices, 46

N
Natural frequency, 19
Neumann, 3, 4, 13, 35
Nusselt number, 43, 44

O
Oberbeck–Boussinesq approximation, 65
Oscillating frequency, 25
Oscillation, 24

critically-damped oscillation, 19
Overdamped, 35

modes, 24
oscillation, 19, 23, 24

P
Parabolic heat-conduction, 2, 35
Paradox of heat conduction in porous

media, 33
Peclet number, 56
Permeability, 70, 71, 81, 83

heterogeneity, 71, 83
Phase change, 55
Phase lags, 1, 3, 18, 26, 35
Phonon–electron, 2

interaction, 1, 2, 33, 35
Phonon scattering, 1, 2, 35
Porosity, 31
Porous-Medium, 1, 3, 27, 28, 33, 34, 36, 39,

40, 42, 43, 55, 63, 65, 67, 69, 71, 73,
75, 77, 79, 81, 83

heat conduction, 1, 3, 5, 7, 9, 11, 13, 15,
17, 19, 21, 23, 25, 27, 29, 31, 33, 34–36

Principle of exchange of stabilities, 67

R
Rapid heating, 40, 41, 48, 50

process, 42
Rapidly changing heat source, 39, 40
Rayleigh–Benard convection, 64
Rayleigh number, 64, 66, 71, 72, 82, 83

Relaxation time, 1, 2, 42
Representative elementary volume (REV), 28
Resonance, 1, 3, 17, 25, 26, 34–36
Resonance frequency, 25
REV, 28–30
Robin, 3, 4, 13, 35

S
Sparrow number, 39, 43, 60
Superfluid liquid helium, 2

T
Temperature pulses in superfluid liquid

helium, 35
Thermal conduction, 45
Thermal conductivity, 1, 2, 28, 42, 60, 65
Thermal convection, 70, 71
Thermal diffusion, 21
Thermal diffusivity, 2, 18, 60, 77, 83
Thermal energy, 67, 77
Thermal heterogeneity, 77
Thermal inertia, 1
Thermal lag, 39
Thermal non-equilibrium, 40, 64
Thermal oscillation, 2, 3, 17, 18, 21, 23, 24,

34–36
Thermal penetration length, 50
Thermal relaxation times, thermal

oscillation, 35
Thermal resonance, 35
Thermal wave, 1, 24, 25, 36, 52
Transpiration cooling, 56
Two-phase porous-medium heat

conduction, 33

U
Ultrafast pulse-laser heating, 2, 35

superfluid liquid helium, porous media,
bio-transport, 17

Underdamped
critically-damped, 35
modes, 24
oscillation, 20, 35
thermal oscillation, 35

V
Volume averaging, 28

W
Wave equation, 51
Wave front, 52
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