
The calculus of variations and the forced
pendulum

Paul H. Rabinowitz1

Abstract Consider the equation of forced pendulum type:

u′′+Vu(t,u) = 0 (∗)

where ′ = d/dt and V is smooth and 1-periodic in its arguments. We will show how
to use elementary minimization arguments to find a variety of solutions of (∗). We
begin with periodic solutions of (∗) and then find heteroclinic solutions making one
transition between a pair of periodics. Then we construct heteroclinics and homo-
clinics making multiple (even infinitely many) transitions between periodics. If time
permits, we may also discuss the construction of related mountain pass orbits of (∗).

1 Introduction

The goal of these lectures is to show how elementary variational techniques, in
particular minimization arguments, can be used to extract a considerable amount
of information about dynamical behavior. We do this for the setting of a forced
pendulum model problem. This is a favorite proving ground for many techniques.
Among works that are related to ours, we mention in particular [Mor], [A], [Ma82],
[Ma93], [B88], [B89], and [Mos86].

The approach taken here uses essentially nothing from the theory of dynam-
ical systems other than the uniqueness of solutions of the initial value problem.
Therefore, these techniques can also be used for certain classes of problems for par-
tial differential equations. In part our arguments are simplifications of ones used
in [RS]. A disadvantage of our approach is that it does not capture finer dynamical
structure that can be obtained using stable and unstable manifolds or notions like
hyperbolicity.
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Fig. 1 Schematic of the physical pendulum.

Fig. 2 Schematic of an orbit asymptotic from v to w.

Fig. 3 Schematic of an orbit asymptotic from w to v.

The simple pendulum is modeled by u′′+sinu = 0, u representing the angle made
with the vertical direction. More generally we will consider a forced model

(DE) −u′′+Vu(t,u) = 0,

where V satisfies

(V1) V ∈C2(R2,R) and is 1-periodic in t and in u.
Equivalently V ∈C2(T2,R), where T

2 is the 2-torus.

A caveat is in order here: V is the negative of the usual potential energy.

The simplest solutions of (DE) are periodic ones, e.g. if Vu(t,z) = 0 for all t ∈ R

and z ∈ Z, each such z is an equilibrium, and therefore periodic solution of (DE).
By (V1), if v is a solution of (DE), so is v + k for all k ∈ Z. Therefore we can seek
solutions of (DE) that are asymptotic to a pair of periodics v and w.

We say such a solution is heteroclinic from v to w (Fig. 4). Such solutions un-
dergo one ‘transition’. Likewise we can try to find 2, k or infinite transition solutions.
Thus a 2-transition solution is homoclinic to v or w (see Figs. 2–4). It turns out there
are infinitely many solutions of each type, distinguished by the amount of time they
spend near v or w.
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Fig. 4 Graphs of 1-transition orbits between v and w.
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Fig. 5 Graphs of 2-transition orbits between v and w.
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Fig. 6 A monotonic orbit asymptotic to v in the past and to v+2 in the future.
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Fig. 7 An orbit which makes several transitions.

There is another kind of 2-transition solution which is monotone: u(t + 1) >
u(t) (Fig. 1). In the simplest case, such a solution is heteroclinic from v to v + 2.
Likewise, there are k and infinite-translation such solutions, and we can concatenate
these two types of solutions (Fig. 7).

Within each type of solution as well as for the mixed type, one can seek a so-
called symbolic dynamics of solutions that will be described later.

We will show how elementary minimization arguments can be used to find some
of these solutions. Unfortunately we will not have enough time to treat the monotone
and mixed cases. We begin with the simplest case of periodic solutions and then treat
progressively more complex cases.

2 Periodic solutions

Periodic solutions are the easiest to find. We assume V satisfies (V1). Set E =
W 1,2(T1), the class of 1-periodic functions having square integrable derivatives, i.e.

||u||2E = ||u||2W 1,2 =
∫ 1

0

(
(u′)2 +u2)dt.
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Note that u ∈ E implies u ∈C(T1), in fact u ∈C1/2(T1), i.e. u is Hölder continuous
of order 1/2. Let

L(u) =
1
2
|u′|2 +V (t,u),

be the Lagrangian associated with (DE) with the corresponding functional

I(u) =
∫ 1

0
L(u)dt.

Then I ∈ C(E,R) (even C2) and for u,φ ∈ E, the Frechet derivative, I′(u)φ is
given by

I′(u)φ = lim
h→0

1
h
(I(u+hφ)− I(u))

=
∫ 1

0

(
u′φ ′+Vu(t,u)φ

)
dt.

If I′(u) = 0, we say u is a critical point of I and c = I(u) is called a critical value
of I. Note also, if ∫ 1

0

(
u′φ ′+Vu(t,u)φ

)
dt = 0 (1)

for all φ ∈ E, u is called a weak solution of (DE). Then we have a “regularity”
theorem:

Theorem 2.1. u is a classical solution of (DE) if and only if u ∈ E and u is a weak
solution of (DE).

Theorem 2.1 reduces the existence of periodic solutions of (DE) to finding crit-
ical points of I in E. In the study of partial differential equations, such regularity
theorems are often rather delicate. For the above special case, the proof is quite di-
rect. Since the regularity question will also come up in more complicated settings
later, we treat it here for the simplest case.

Proof of Theorem 2.1. If u is a classical solution of (DE), multiplying (DE) by φ ∈ E
and integrating over [0,1] yields (1). Conversely suppose u is a weak solution of (1).
Taking φ = 1 shows ∫ 1

0
V (t,u)dt ≡ [V (t,u)] = 0,

i.e. the constant term in the Fourier expansion of V (t,u) vanishes. It is a calculus
exercise to show there is a unique q ∈C2(T1,R) solving

−q̈+Vu(t,u) = 0 , [q] = 0. (2)

Multiplying (2) by φ ∈ E and integrating over [0,1] shows

∫ 1

0

(
q′φ ′+Vq(t,u)φ

)
dt = 0. (3)
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Subtracting (3) from (1) gives

∫ 1

0

(
u′ −q′

)
φ ′dt = 0 (4)

for all φ ∈ E. Choosing φ = u− q, (4) implies u′ − q′ = 0 and therefore u = q +
const ∈C2(T1,R). 
�

How do we find critical points of I? The simplest possibilities are minima. Thus
set

c = inf
u∈E

I(u). (5)

Note that I is bounded from below by V0 = min
R2 V . Let (un) be a minimizing

sequence for (5), i.e. I(un)→ c as n→ ∞. Therefore there is an M > 0 such that

I(un) =
∫ 1

0

(
1
2
(u′n)

2 +V (t,un)
)

dt ≤M.

Hence
||u′n||2L2 ≤ 2(M−V0). (6)

Observe that un + jn is also a minimizing sequence for (5) for any choice of jn ∈
Z. Therefore un may not be bounded. But we can choose jn so that [un + jn] ∈ [0,1].
Thus without loss of generality, [un] ∈ [0,1). Since

un(t)−un(x) =
∫ t

x
u′n(s)ds,

one has

un(t) = [un]+
∫ 1

0

(∫ t

x
u′n(s)ds

)
dx,

and therefore

|un(t)| ≤ 1+
∫ 1

0
||u′n||L2 dx = 1+ ||u′n||L2 . (7)

Now (6) and (7) show un is bounded in the Hilbert space E. Therefore there is a
v ∈ E such that along a subsequence, un ⇀ v (i.e. weakly in E). The functional I is
weakly lower semicontinuous. Hence

c≤ I(v)≤ lim
n→∞

I(un) = inf
E

I = c. (8)

Thus (8) shows I(v) = c and v minimizes I over E. Moreover v is a critical point of
I on E. Indeed take φ ∈ E. Then ψ(h)≡ I(v+hφ) ∈C1(R,R) and has a minimum
at h = 0. Hence

ψ ′(0) = 0 = I′(v)φ (9)

for all φ ∈ E. Thus v is a weak and therefore by Theorem 2.1, a classical solution of
(DE).



372 P.H. Rabinowitz

As was noted above, the minimizing sequence {un} is bounded in E and there-
fore in C1/2(T1). Hence the subsequence {un} can be assumed to converge to v in
L∞(T1). Although it is not important here, for future reference, we have a stronger
form of convergence:

Proposition 2.1. un → v in E (i.e. in W 1,2(T1)).

Proof. If not there is a δ > 0 such that ||u′n− v′||L2 ≥ δ . Set φn = un− v. Then

I(un) = I(v+φn)

=
∫ 1

0

[
1
2
|v′|2 + v′φ ′n +

1
2
|φ ′n|2 +V (t,v+φn)−V (t,v)+V (t,v)

]
dt

≥ I(v)+
1
2
δ 2 +

∫ 1

0

[
v′φ ′n +V (t,v+φn)−V (t,v)

]
dt. (10)

As n→ ∞, I(un)→ I(v) while the term on the right in (10) approaches zero. Thus
0≥ 1/2δ 2, a contradiction. 
�

Set M0 = {u ∈ E : I(u) = c}. We have shown M0 	= /0.

Example 1: If V ≡ 0, then M0 = R.

Example 2: If V = a(t)(cos(2πu−1)), then M0 = Z.

Theorem 2.2. M0 is an ordered set, i.e. v,w ∈M0 implies v≡ w, v < w, or v > w.

Proof. If not, there are points ξ ,η ∈ [0,1] such that v(ξ ) = w(ξ ) and, e.g. v(η) <
w(η). Set φ = max(v,w) and ψ = min(v,w). Then φ ,ψ ∈ E and

2c≤ I(φ)+ I(ψ) = I(v)+ I(w) = 2c. (11)

Hence by (11), I(φ) = c = I(ψ) and φ ,ψ ∈M0. Consequently by Theorem 2.1, φ
and ψ are classical 1-periodic solutions of (DE). Set χ = φ −ψ so χ ≥ 0, χ(ξ ) = 0
and therefore χ ′(ξ ) = 0, and χ(η) > 0. (DE) implies

χ ′′+Vu(t,φ)−Vu(t,ψ) = 0 = χ ′′+ f (t)χ , (12)

where

f (t) =

{
Vu(t,φ(t))−Vu(t,ψ(t)

ψ(t)−φ(t) if φ(t) > ψ(t)
Vuu(t,φ(t)) if φ(t) = ψ(t)

and f ∈C(T1,R). Thus χ is a C2 solution of the linear equation (12) with χ(ξ ) =
0 = χ ′(ξ ). Therefore the uniqueness of solutions to the initial value problem for
(12) implies χ ≡ 0, contrary to χ(η) > 0. Hence M0 is ordered. 
�

Next let k ∈ Z. Note that V is k-periodic in t so we can seek k-periodic solutions
of (DE). Let u ∈W 1,2(kT

1)≡ Ek. Set

Ik(u) =
∫ k

0
L(u)dt,
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and
αk = inf

u∈Ek
Ik(u).

By our above arguments,

Mk ≡ {u ∈ Ek : Ik(u) = αk} 	= /0,

any u ∈Mk is a classical k-periodic solution of (DE), and Mk is an ordered set.
Surprisingly we gain nothing new by varying k as the next result shows:

Proposition 2.2. M0 = Mk and αk = kc.

Proof. Let v ∈ Mk. Then v(·+ 1) ∈ Mk. If v(t) = v(t + 1) for all v ∈ Mk, then
Mk = M0 and αk = kc. Otherwise for some v ∈Mk,

(a) v(t +1) < v(t),

or

(b) v(t +1) > v(t).

If (a) occurs, v(t) = v(t + k) < · · · < v(t + 1) < v(t), a contradiction, and similarly
for (b). 
�

Proposition 2.2 can be used to show that the members of M0 possess another mini-
mality property.

Proposition 2.3. Let v ∈M0 and a,b ∈ R with a < b. Set

A = {w ∈W 1,2[a,b] : w(a) = v(a),w(b) = v(b)}

and for w ∈ A, let I (w) =
∫ b

a L(w)dt. Then

I (v) = inf
w∈A

I (w)≡ cA. (13)

Proof. I is weakly lower semi-continuous so as earlier, there is a u ∈ A such that
I (u) = cA. Choose α < a, and β > b with α,β ∈ Z. Extend u to [α,β ] via u = v in
[α,a]

⋃
[b,β ] and further extend u to R as a β−α periodic function. Hence u∈Eβ−α

so by Proposition 2.2,
Iβ−α(v)≤ Iβ−α(u). (14)

But

Iβ−α(v) =
∫ a

α
L(v)dt +I (v)+

∫ β

b
L(v)dt

≥
∫ a

α
L(u)dt +I (u)+

∫ β

b
L(u)dt

= Iβ−α(u). (15)

Thus by (14)–(15), I (v) = I (u) = cA. 
�
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Remark: The minimization problem (13) is a special case of

inf
w∈B

I (w) (16)

where
B = {w ∈W 1,2[a,b] : w(a) = r,w(b) = s}.

By the argument of (5)–(9), problem (16) has a minimum which is a classical solu-
tion of (DE). In several future arguments we will use this observation to establish
that the minimizers of certain variational problems are in fact classical solutions of
(DE).

Returning to M0, since it is ordered, either {(t,u(t)) | t ∈ R,u ∈M0} = R
2, i.e.

M0 foliates R
2, or there are points (x,z) ∈ R

2 such that z 	= u(x) for any u ∈M0,
i.e. M0 merely laminates R

2. In this latter case there is a smallest w ∈ M0 and
largest v ∈M0 such that v(x) < z < w(x). Hence by Theorem 2.2, v(t) < w(t) for
all t ∈R. We then call v and w a gap pair. It is known that this latter case is generic;
indeed given any v∈M0, there is a W ∈C2(T1,R) such that the M0 associated with
V + εW is {v+ k |k ∈ Z} for all small ε > 0 [RS].

3 Heteroclinic solutions

Suppose v,w ∈M0 are a gap pair. We seek solutions of (DE) that are heteroclinic
from v to w (or from w to v). A natural approach is to try to find them as minimiz-
ers of

∫
R

L(u)dt over a class of functions having the desired asymptotic behavior.
However if

∫ 1
0 L(v)dt = c =

∫ 1
0 L(w)dt 	= 0, then for each admissible function u,∫

R
L(u)dt will be infinite. Thus this approach must be modified. The above func-

tional must be “renormalized” so that it is finite on the above class of functions.
This can be done merely assuming (V1), but it is technically simpler to assume V

is also time reversible. Hence suppose

(V2) V (−t,z) = V (t,z) for all t,z ∈ R

A key consequence of (V2) is:

Proposition 3.1. If V satisfies (V1) and (V2),

ĉ≡ inf
u∈W 1,2[0,1]

I(u) = c (1)

and if u ∈M0, then u(t) = u(−t).

Proof. Set M̂ = {u ∈W 1,2[0,1] : I(u) = ĉ}. The existence argument of the previous
section implies M̂ 	= /0. Clearly ĉ≤ c. To get equality, let u ∈W 1,2[0,1]. Then

I(u) =
∫ 1/2

0
L(u)dt +

∫ 1

1/2
L(u)dt ≡ α +β .
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Say α ≤ β . Define φ(t) = u(t) for 0≤ t ≤ 1/2, and φ(t) = u(1− t) for 1/2≤ t ≤ 1.
Then φ(0) = φ(1) so φ extends naturally to an element of E and by (V2), I(φ) =
2α ≤ I(u). Therefore

c = inf
E

I ≤ inf
W 1,2[0,1]

= ĉ

so c = ĉ and M0 ⊂ M̂. But if u ∈ M̂, then I(φ) = c so φ ∈ M0. Since φ ≡ u
on [0,1/2], uniqueness of solutions of the initial value problem for (DE) implies
u≡ φ on [0,1], i.e. u ∈M0. Moreover u(t) = u(1− t) = u(−t) via the 1-periodicity
of u. 
�

With the aid of Proposition 3.1, a renormalized functional can be introduced. For
p ∈ Z and u ∈W 1,2

loc (R,R), define

ap(u)≡
∫ p+1

p
L(u)dt− c.

By Proposition 3.1, ap(u)≥ 0 for all such p and u. Now we define the renormalized
functional:

J(u) = ∑
p∈Z

ap(u).

Thus J(u)≥ 0.
With v, w a gap pair, we define,

Γ−∞ ≡ Γ−∞(v,w)

≡ {u ∈W 1,2
loc (R,R) : ||u− v||L2[i,i+1] → 0, i→−∞}

Γ∞ ≡ Γ∞(v,w)

≡ {u ∈W 1,2
loc (R,R) : ||u−w||L2[i,i+1] → 0, i→ ∞}

and take as the associated class of admissible functions

Γ1 ≡ Γ1(v,w)≡ {u ∈W 1,2
loc (R,R) : v≤ u≤ w}∩Γ−∞∩Γ∞

Clearly Γ1 	= /0 and there are u’s in Γ1 such that J(u) < ∞. Define

c1 ≡ c1(v,w)≡ inf
u∈Γ1

J(u). (2)

Then we have
Theorem 3.1. If V satisfies (V1) - (V2), and v, w are a gap pair, then

1. M1 ≡M1(v,w)≡ {u ∈ Γ1 : J(u) = c1} 	= /0.
2. Any U ∈M1 is also a classical solution of (DE).
3. u < U < U(·+1) < w.
4. M1 is an ordered set.
5. Any U ∈M1 is minimal in the sense of Proposition 2.3.
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Proof. Let {uk} be a minimizing sequence for (2). Since we are dealing with an
unbounded domain, some extra care must be taken here to ensure that {uk} has a
nontrivial limit. E.g. if M1 	= /0 and U ∈M1, uk = U(·− k) ∈ Γ1 and uk converges
in C2

loc to v /∈ Γ1. To avoid such complications, {uk} will be normalized as follows.
If u ∈Γ1 so is u(·− l) for any l ∈ Z and J(u(·− l)) = J(u). As l→−∞, u|l+1

l → v in
L2 and as l →∞, u|l+1

l → w in L2. Therefore there is a unique l = l(u) ∈ Z such that

{∫ i+1
i (u(t− l)− v(t))dt < 1

2
∫ 1

0 (w− v)dt, i < 0, i ∈ Z∫ 1
0 (u(t− l)− v(t))dt ≥ 1

2
∫ 1

0 (w− v)dt.
(3)

Thus without loss of generality, {uk} can be chosen so that l(uk) = 0.
Since {uk} is a minimizing sequence, there is an M > 0 such that for all k ∈ N,

J(uk)≤M. (4)

Hence for all p ∈ N,

p

∑
−p

ai(uk) =
∫ p+1

−p
L(uk)dt− (2p+1)c≤M (5)

and (5) implies ∫ p+1

−p
|u′k|2 dt ≤M1, (6)

where M1 depends on p but not k. Since v≤ uk ≤w, {uk} is bounded in W 1,2
loc (R,R).

Consequently there is a U ∈W 1,2
loc such that along a subsequence uk →U weakly in

W 1,2
loc and in L∞

loc. (In fact in the spirit of Proposition 2.1, uk →U in W 1,2
loc along a

subsequence, but we do not need this additional information). Since
∫ p+1
−p L(u)dt is

weakly lower semi-continuous,

p

∑
i=−p

ai(U)≤M

for all p ∈ N and hence J(U)≤M. Moreover by (3),

{∫ i+1
i (U− v)dt ≤ 1

2
∫ 1

0 (w− v)dt, i < 0, i ∈ Z∫ 1
0 (U− v)dt ≥ 1

2
∫ 1

0 (w− v)dt.
(7)

We claim U ∈ Γ1. The L∞
loc convergence of {uk} implies v ≤ U ≤ w. Thus we

need only show U satisfies the asymptotic requirements of Γ1. To do so, note first
that since J(U) < ∞, ap(U)→ 0 as |p| → ∞, i.e.

∫ p+1
p L(U)dt → c as |p| → ∞. Set

Up(t) = U(t + p) for t ∈ [0,1]. Then Up ∈W 1,2[0,1] and I(Up)→ c as |p| → ∞.
Hence as |p| → ∞, {Up} is a minimizing sequence for (1). Consequently along a
subsequence {Up} converges weakly in W 1,2 and strongly in L∞ to u± ∈M0. But
v≤Up ≤ w implies either u± = v or u± = w. By (7), as p→−∞,
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1
2

∫ 1

0
(w− v)dt ≥

∫ p+1

p
(U− v)dt =

∫ 1

0
(Up− v)dt →

∫ 1

0
(u−− v)dt.

Therefore u− = v and since v is the only possible limit of a subsequence of {Up} as
p→−∞, the full sequence Up → v as p→−∞.

It remains to prove that Up → w as p → ∞. For this, we no longer have (7)
to help as for p → −∞, so more work is required. Following the argument of
Proposition 2.1, we can assume Up → u+ in W 1,2[0,1] along our subsequence. In
fact, Up → u+ along the full sequence as p → ∞ for otherwise there are a pair of
subsequences such that Up → v in W 1,2 along the first, and Up → w in W 1,2 along
the second as p → ∞. But Up cannot only be close (in W 1,2[0,1] and therefore in
L∞[0,1]) to both v and w. Therefore there is an ε > 0 and a third subsequence such
that along it, ||Up−φ ||W 1,2[0,1] ≥ ε as p→ ∞ for φ = v and φ = w.

Now we have

Lemma 3.1. For any ε > 0, there is a γ(ε) > 0 such that ||Up − φ ||W 1,2[0,1] ≥ ε
implies I(Up)≥ c+ γ(ε)

Proof. Otherwise, there is a sequence of p’s going to infinity such that I(Up)→ c
while ||Up − φ ||W 1,2[0,1] ≥ ε . As above along a subsequence, Up → v or w in
W 1,2[0,1], a contradiction. 
�

Completion of the Proof of Theorem 3.1. Let S = {p∈N : ||Up−u+||W 1,2 [0,1]≥ ε}.
Then by Lemma 3.1,

J(U)≥ ∑
p∈S

ap(U)≥ ∑
p∈S

γ(ε) = ∞,

contrary to J(U)≤M. Thus Up → u+ in W 1,2[0,1] as p→ ∞.
Now finally to show that u+ = w, suppose u+ = v. By the reasoning just used and

(7), there is an i ∈ Z, i≤ 0, and ε > 0 such that ||Ui−φ ||W 1,2[0,1] ≥ ε with φ = v and
φ = w. Hence by Lemma 3.1

ai(U)≥ γ(ε).

Therefore for large k,

ai(uk)≥
1
2
γ(ε). (8)

Choose δ > 0 and free for the moment. Since u+ = v, there is a q > 0 such
that ||Uq − v||L∞[0,1] ≤ δ/2. Hence along our subsequence for all large k, ||uk −
U ||L∞[q,q+1] ≤ δ/2. Thus ||v− uk||L∞[q,q+1] ≤ δ for large k. Define u∗k to be equal
to v for t ≤ q, equal to φk for q≤ t ≤ q+1, and equal to uk for q+1≤ t, where φk
is a minimizer of the variational problem

inf
∫ q+1

q
L(u)dt
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over
K = {u ∈W 1,2[q,q+1] : u(q) = v(q),u(q+1) = uk(q+1)}.

The minimality properties of v and w imply v ≤ φk ≤ w and therefore u∗k ∈ Γ1. Set
u(t) = v(t)+(t−q)(uk(q+1)− v(q+1)) so u ∈ K.

Moreover
aq(φk)≤ aq(u)≤ β (δ ) (9)

where β (δ )→ 0 as δ → 0. Now by (8)–(9)

J(u∗k)− J(uk) =
∞

∑
−∞

[ap(u∗k)−ap(uk)]

= aq(u∗k)−
q

∑
−∞

ap(uk)

≤ β (δ )− γ(ε)
2

. (10)

Choosing δ so small that β (δ )≤ 1
4γ(ε), (10) contradicts that {uk} is a minimizing

sequence for (2). Thus U ∈ Γ1, and J(U)≥ c1. On the other hand,

p

∑
−p

ai(U)≤ liminf
k→∞

p

∑
−p

ai(uk)≤ liminf
k→∞

J(uk) = c1

so letting p→ ∞, we conclude J(U) = c1. This establishes statement 1 of Theorem
3.1.

To prove statement 2 of Theorem 3.1, first we will obtain the minimality property
5. If it is not true, there are numbers r < s and a function

φ ∈ {u ∈W 1,2[r,s] : u(r) = U(r) and u(s) = U(s)}

such that ∫ s

r
L(φ)dt <

∫ s

r
L(U)dt.

Since v and w satisfy the minimality property, we can assume v ≤ φ ≤ w. But then
replacing U |sr by φ |sr gives U∗ ∈ Γ1 with J(U∗) < J(U), contrary to Theorem 3.1,
part 1. Therefore U satisfies the minimality property and by the remark following
Proposition 2.3, U is a solution or (DE).

Next, statement 4 of Theorem 3.1 follows by a mild variant of the proof of The-
orem 2.2; Suppose U,W ∈M1. Thus φ = max(U,W ) and ψ = min(U,W ) ∈ Γ1 so
for all p ∈ N,

p

∑
−p

[ai(φ)+ai(ψ)] =
p

∑
−p

[ai(U)+ai(W )].

Letting p→ ∞, this shows

2c1 ≤ J(φ)+ J(ψ) = J(U)+ J(W ) = 2c1



The calculus of variations and the forced pendulum 379

Therefore φ ,ψ ∈M1, so by what has already been shown, φ and ψ are solutions of
(DE) with φ ≥ ψ . The proof then concludes as for Theorem 2.2.

Lastly to verify statement 3 of Theorem 3.1, note that v ≤U,U(·+ 1) ≤ w with
equality impossible by the argument of Theorem 2.2 again. Moreover since U,U(·+
1) ∈ M1, which is ordered, either; (i) U(t) ≡ U(t + 1), (ii) U(t) > U(t + 1), or
(iii) U(t) < U(t + 1). If alternative (i) holds, U is 1-periodic and therefore U /∈ Γ1
while (ii) implies U(t) > U(t +k)→ w(t) as k→∞. Thus U > w and again U /∈Γ1.
Thus (iii) holds. 
�

We conclude this section with a result that shows the gap condition is not only
sufficient for there to exist minimizing heteroclinics from v to w, but also is neces-
sary.

Theorem 3.2. Let V satisfy (V1) - (V2), and further let v,w∈M0 with v < w. Suppose
there is a U ∈ Γ1(v,w) such that

J(U) = inf
u∈Γ1(v,w)

J(u).

Then v and w are a gap pair.

Proof. Otherwise there is a φ ∈M0 such that v < φ < w. There is a smallest α ∈R

such φ(α) =U(α). Define W (t) =U(t), for t ≤α , W (t) = φ(t) when α ≤ t ≤α+1,
and W (t) = U(t−1) when α +1≤ t. Then W ∈ Γ1(v,w) and J(W ) = J(U). Set

S = {u ∈W 1,2[α−1/2,α +1/2] : u(α±1/2) = W (α±1/2)}.

The remark following Proposition 2.3 shows there is a ψ ∈ S such that ψ is a solution
of (DE) and ∫ α+1/2

α−1/2
L(ψ)dt = inf

u∈S

∫ α+1/2

α−1/2
L(u)dt.

We claim

A≡
∫ α+1/2

α−1/2
L(ψ)dt <

∫ α+1/2

α−1/2
L(W )dt ≡ B.

Indeed if A = B, W is a solution of (DE) in (α−1/2,α+1/2). But W = φ in [α,α+
1/2]. Since φ is a solution of (DE) for all t, uniqueness for solutions of the initial
value problem for (DE) imply W = φ in (α − 1/2,α + 1/2). Since U minimizes
J in Γ1(v,w), as in Theorem 3.1, U is a solution of (DE) on R. But U = W = φ
in (α − 1/2,α). Therefore U ≡ φ , contrary to ||U − v||L2[i,i+1] → 0 as i → −∞.

Thus A < B. But then gluing W |α−1/2
−∞ to ψ to W |∞α+1/2 produces Φ ∈ Γ1(v,w) with

J(Φ) < J(W ) contrary to the minimality of W . 
�

Remark: Theorem 3.2 does not exclude the possibility of there being a heteroclinic
solution of (DE) in Γ1(v,w). If there is one, it cannot be a minimizer. In fact if v, f ,
and g, w are gap pairs with f ≤ g, there is a monotone heteroclinic U from v to w.
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Fig. 8 An admissible u.

4 Multitransition solutions: the simplest case

Suppose v, w are a gap pair for (DE). In Section 3 we showed there are heteroclinic
solutions of (DE) in M1(v,w). The same argument gives heteroclinic solutions in
M1(w,v). The goal of this section is to find solutions of (DE) which lie between v
and w, undergo two transitions, and are homoclinic to v or to w.

We will show there are infinitely many such solutions provided that M1(v,w) and
M1(w,v)have gaps. The solutions are obtained as local minima of J on appropriate
classes of functions. To introduce a suitable class of admissible functions, let m =
(m1, . . . ,m4) ∈ Z

4 and ρ = (ρ1, . . . ,ρ4) ∈ R
4 with mi < mi+1 and 0 < ρi << 1.

Define

Y1,2 ≡ Y1,2,m,ρ ≡ {u : u(m1)− v(m1)≤ ρ1, w(m2)−u(m2)≤ ρ2}

Y3,4 ≡ Y3,4,m,ρ ≡ {u : w(m3)−u(m3)≤ ρ3, u(m4)− v(m4)≤ ρ4}

Y ≡ Ym,ρ ≡ {u ∈W 1,2
loc (R,R) : v≤ u≤ w}∩Y1,2∩Y3,4.

The numbers ρi have to be chosen in a special way which we postpone until needed.
Set

b≡ bm,ρ ≡ inf
u∈Y

J(u) (1)

Proposition 4.1. For all (m,ρ), there is a U = Um,ρ ∈ Y such that J(U) = b.

Proof. It is straightforward to show there is a ū ∈ Y such that J(ū) < ∞. Let {un}
be a minimizing sequence for (1). We can assume J(un) ≤ J(ū). As for Theorem
3.1, this implies {un} is bounded in W 1,2

loc and there is a U ∈W 1,2
loc such that along a

subsequence, un →U weakly in both W 1,2
loc and L∞

loc. This latter convergence implies
U satisfies the pointwise constraints of Y , so U ∈ Y . As in Section 3, J(U) = b. 
�

Proposition 4.2. U satisfies (DE) except possibly at t = mi, 1≤ i≤ 4 (independently
of ρ and m).

Proof. This follows since U possesses a minimality property for each interval in the
complement of the mi. Eg. For r ≤ s≤ m1, U minimizes

∫ s
r L(u)dt over
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{u ∈W 1,2[r,s] : u(r) = U(r), u(s) = U(s)}

Hence by the remark following Proposition 2.3, U satisfies (DE) in (r,s). 
�
Next we will show that U is asymptotic to v as |t| → ∞. For this we require that

ρ1 and ρ4 be small.

Proposition 4.3. For ρ1 (resp. ρ4) sufficently small, ||U − v||W 1,2[i,i+1] → 0 as i →
−∞ (resp. i→ ∞).

Proof. We treat the ρ1 case. Since J(U) = b <∞, ||U−φ ||W 1,2[i,i+1]→ 0 as i→−∞,
where φ ∈ [v,w] via the proof of Theorem 3.1. If φ = w, for any δ > 0, there is an
l ∈ Z,l < m1 such that ||U−w||W 1,2[l,l+1] ≤ δ .

Let ψl be a minimizer of the problem:

inf
∫ l

l−1
L(u)dt

over
{u ∈W 1,2[l−1, l] : u(l−1) = w(l−1), u(l) = U(l)}.

As in (9)
al−1(ψl)≤ β (δ ) (2)

with β (δ )→ 0 as δ → 0. Similarly let f be a minimizer of the problem

inf
∫ m1+1

m1

L(u)dt

over

{u ∈W 1,2[m1,m1 +1] : u(m1) = U(m1),u(m1 +1) = v(m1 +1)}

and again as in (9),
am1( f )≤ β (ρ1). (3)

Set Ū be equal to w for t ≤ l− 1, equal to ψl for l− 1 ≤ t ≤ l, equal to U for
l ≤ t ≤ m1, equal to f for m1 ≤ t ≤ m1 +1, and equal to v for m1 +1≤ t.
Then Ū ∈ Γ1(w,v) and

m1−1

∑
i=l

ai(U) =
m1

∑
i=l−1

ai(Ū)−al−1(Ū)−am1(Ū)

= J(Ū)−al−1(ψl)−am1( f )
≥ c1(w,v)−β (δ )−β (ρ1) (4)

via (2)–(3).
On the other hand, let g be a minimizer of

inf
∫ m1

m1−1
L(u)dt
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over

{u ∈W 1,2[m1−1,m1] : u(m1−1) = v(m1−1), u(m1) = U(m1)}

Then as for (2)–(3),
am1−1(g)≤ β (ρ1). (5)

Set U∗ equal to v for t ≤ m1− 1, and equal to g for m1− 1 ≤ t ≤ m1. By the
minimality property of U in (−∞,m1], and (5)

m1−1

∑
−∞

ai(U)≤
m1−1

∑
−∞

ai(U∗)≤ β (ρ1). (6)

Since
m1−1

∑
l

ai(U)≤
m1−1

∑
−∞

ai(U),

(4)–(6) imply
c1(w,v)≤ β (δ )+2β (ρ1) (7)

which is impossible for δ and ρ1 small. Thus U is asymptotic to v as t →−∞ and
similarly as t → ∞. 
�

Next we will obtain an upper bound for b = bm,ρ .

Proposition 4.4. Let ε > 0. Then there is an m0(ε) such that if m2−m1,m4−m3 ≥
m0(ε),

bm,ρ ≤ c1(v,w)+ c1(w,v)+ ε

Proof. Let Ū ∈M1(v,w). Then there are α,β ∈ Z with α ≤ β such that if f̄ , ḡ are
respectively minimizers of

∫ α

α−1
L(u)dt,

∫ β+1

β
L(u)dt

over
{u ∈W 1,2[α−1,α] : u(α−1) = v(α−1), u(α) = Ū(α)},
{u ∈W 1,2[β ,β +1] : u(β ) = Ū(β ), u(β +1) = w(β +1)}.

Then
aα−1( f̄ ), aβ (ḡ)≤ ε

4
. (8)

Gluing v|α−1
−∞ to f̄ to Ū |βα to ḡ to w|∞β+1 defines U∗ ∈ Γ1(v,w) (Fig. 9). Since J(Ū) =

c1(v,w) by (8),

J(U∗) = aα−1( f̄ )+
β−1

∑
α

ai(Ū)+aβ (ḡ) (9)

≤ c1(v,w)+
ε
2
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Fig. 9 The construction of U∗ in Proposition 8.

Similarly let U ∈M1(w,v). As above there are r,s ∈ Z with r < s such that if f ,
respectively g are the minimizers of

∫ r

r−1
L(u)dt,

∫ s+1

s
L(u)dt

over
{u ∈W 1,2[r−1,r] : u(r−1) = w(r−1), u(r) = U(r)},

{u ∈W 1,2[s,s+1] : u(s) = U(s), u(s+1) = v(s+1)}.
then

ar−1( f ), as(g)≤ ε
4
. (10)

and gluing w|r−1
−∞ to f to U |sr to g to v|∞s+1 produces U∗ ∈ Γ1(w,v) with

J(U∗)≤ c1(w,v)+
ε
2
. (11)

Finally set U∗∗(t) equal to U∗(t−m2 +β + 1) for t ≤ m2, and equal to U∗(t−
m3 +r−1) for m2 ≤ t. By construction U∗∗ satisfies the constraints of Ym,ρ at t = m2
and m3. For m2−m1 ≥ β −α + 2, U∗∗(m1) = U∗(m1−m2 + β + 1) = v(α − 1)
= v(m1) so U∗∗ satisfies the constraint at t = m1. Similarly the constraint at t = m4
holds if m4−m3 ≥ s− r +2. Therefore U∗∗ ∈ Ym,ρ and by (9) and (11),

bm,ρ ≤ J(U∗∗)≤ c1(v,w)+ c1(w,v)+ ε 
�

Next we will refine our choice of ρ . Recall M1(v,w) and M1(w,v) have gaps.
Define ρ− : M1(v,w)→ (0,w(0)−v(0)) via ρ−(u) = u(0)−v(0). Therefore ρ− is a
monotone function of u and ρ−(M1(v,w)) has gaps. Choose ρ1 to lie in such a gap,
i.e.

ρ1 ∈ (0,w(0)− v(0))\ρ−(M1(v,w)).

Note that ρ1 can be chosen as small as desired since f ∈ M1 implies f (· − l) ∈
M1(v,w) for any l ∈ Z so for large l, ρ−( f (·− l)) is near 0.

Similarly define ρ+ : M1(v,w)→ (0,w(0)− v(0)) via ρ+(u) = w(0)− u(0) so
ρ+ is also monotone and ρ+(M1(v,w)) has gaps. Choose ρ2 in such a gap. Likewise
ρ−,ρ+ : M1(w,v)→ (0,w(0)−v(0)) as above. Choose ρ3 and ρ4 in associated gaps.
An important consequence of this choice of the ρi is:
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Proposition 4.5. Let

Λ1(v,w) = {u ∈ Γ1 : u(0)− v(0) = ρ1 or w(0)−u(0) = ρ2}.

Set
d1(v,w) = inf

u∈Λ1(v,w)
J(u) (12)

Then for |ρ| small, d1(v,w) > c1(v,w).

Remark Defining Λ1(w,v) and d1(w,v) in the obvious way, we also have d1(w,v) >
c1(w,v).

Proof of Proposition 4.5. Let {un} be a minimizing sequence for (12). As in the
proof of Theorem 3.1, there is a P ∈W 1,2

loc such that along a subsequence un → P
weakly in W 1,2

loc and also in L∞
loc. This latter convergence implies v ≤ P ≤ w and P

satisfies one of the constraints at t = 0.
Also, as earlier J(P) < ∞ and therefore P asymptotes to v or w as t →−∞ and

as t →∞. If (a) P(0) = v(0)+ρ1, since ρ1 is small, the argument of Proposition 4.3
shows ||P− v||W 1,2[i,i+1] → 0 as i →−∞, while if (b) w(0) = P(0)+ρ2, similarly
||P−w||W 1,2[i,i+1] → 0 as i→ ∞.

Suppose (a) holds. Then either (c) ||P− v||W 1,2[ j, j+1] → 0 as j → ∞ or (d) ||P−
w||W 1,2[ j, j+1]→ 0 as j→∞. If (c) occurs, un(0) is near v(0)+ρ1 along a subsequence
as n→∞. Hence as in the proof of Lemma 3.1, there is a γ(ρ1) > 0 (independent of
n) such that

a0(un)≥ γ(ρ1) (13)

for large n. Moreover for any δ > 0, there is an l = l(δ ) ∈ N such that ||un −
v||L∞[l,l+1] ≤ δ for large n along the subsequence.

Now in the spirit of the proof of Proposition 4.3, set u∗n equal to v, on t ≤ l, equal
to gn on l ≤ t ≤ l +1, and equal to un on t ≥ l +1 where gn minimizes

∫ l+1

l
L(u)dt

over
{u ∈W 1,2[l, l +1] : u(l) = v(l), u(l +1) = un(l +1)}.

Thus as in (9) again,
al(un)≤ β (δ ). (14)

Now by (13)–(14),

J(un) ≥ a0(un)+
∞

∑
l+1

ai(un) (15)

≥ γ(ρ1)+
∞

∑
l

ai(u∗n)−al(gn)

≥ γ(ρ1)+ J(u∗n)−β (δ ).
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Choosing δ so that β (δ )≤ 1/2γ(ρ1) and noting that u∗n ∈ Γ1(v,w), (15) yields

J(un)≥ c1(v,w)+
1
2
γ(ρ1). (16)

Thus d1(v,w)≥ c1(v,w)+ 1
2γ(ρ1) for this case.

On the other hand, if (a) and (d) occur, P ∈ Λ1(v,w) and by earlier argu-
ments J(P) = d1(v,w). Since Λ1(v,w) ⊂ Γ1(v,w), d1(v,w) ≥ c1(v,w). If d1 = c1,
then P ∈ M1(v,w) and by Theorem 3.1, P is a solution of (DE). Consequently
P(0)− v(0) = ρ1 = ρ−(P) ∈ ρ−(M1(v,w)) contrary to the choice of ρ1. Thus
d1 > c1. The remaining cases are treated in the same fashion as above. 
�

With the aid of Proposition 4.5, we have:

Proposition 4.6. Set

µ =
1
2

min(d1(v,w)− c1(v,w),d1(w,v)− c1(w,v)).

If |ρ| is small and U satisfies an mi constraint with equality, then for m3−m2 >> 1,

bm,ρ ≥ c1(v,w)+ c1(w,v)+µ . (17)

Assuming Proposition 4.6 for the moment, combining Proposition 4.5 and Propo-
sition 4.6 we have

µ ≤ bm,ρ − c1(v,w)− c1(w,v)≤ ε (18)

provided that an mi constraint holds with equality. Here µ depends only on ρ and
m3 −m2 while m2 −m1, m4 −m3 ≥ m0(ε). Thus choosing ε < µ , (18) yields a
contradiction. Therefore U satisfies (DE) for all t and we have

Theorem 4.1. If (V1)–(V2) hold, v and w are a gap pair, and in addition M1(v,w)
and M1(w,v) have gaps, then for |ρ| small and mi+1−mi large, there is a U =
Um,ρ ∈ Ym,ρ which is a solution of (DE) with J(U) = bm,ρ .

Remark: That U satisfies the constraints with strict inequality implies U has a local
minimization property.

Corollary 4.1. There are infinitely many distinct 2-transition solutions of (DE).

Proof. Simply take different sets of (mi)’s with mi+1−mi larger and larger. 
�

To complete the proof of Theorem 4.1, we give the

Proof of Proposition 4.6. By the minimality property of U |m3
m2 ,

∫ m3

m2

L(U)dt = inf
u∈A

∫ m3

m2

L(u)dt (19)

where
A = {u ∈W 1,2[m2,m3] : u(m2) = U(m2), u(m3) = U(m3)}.



386 P.H. Rabinowitz

Since ρ2,ρ3 are small and w(m2)−U(m2) ≤ ρ2, w(m3)−U(m3) ≤ ρ3, as in (9),
(19) implies

m3−1

∑
i=m2

ai(U)≤ β (ρ2)+β (ρ3). (20)

We claim that given any σ > 0, there is an α(σ) > 0 such that for m3−m2 ≥
α(σ), ||U−w||W 1,2[i,i+1] ≤ σ for some q ∈ [m2,m3−1]. Otherwise by Lemma 3.1,

m3−1

∑
j=m2

a j(U)≥ (m3−m2−1)γ(σ) (21)

which goes to infinity as m3−m2 →∞. But this is contrary to (20) which shows that
the left hand side of (21) is small.

Now suppose for convenience that we have equality at an m1 or m2 constraint
point. Set Φ(t) equal to U(t) for t ≤ q, equal to f (t) for q≤ t ≤ q+1, equal to w(t)
for t ≥ q+1, where f minimizes

∫ q+1

q
L(u)dt

over
{u ∈W 1,2[q,q+1] : u(q) = U(q), u(q+1) = w(q+1)}.

Therefore Φ ∈ Γ1(v,w).
Similarly set Ψ(t) equal to w(t) for t ≤ q, equal to g(t) for q ≤ t ≤ q + 1, and

equal to U(t) for t ≥ q+1, where g minimizes

∫ q+1

q
L(u)dt

over
{u ∈W 1,2[q,q+1] : u(q) = w(q), u(q+1) = U(q+1)}.

Therefore Φ ∈ Γ1(w,v) and

d1(v,w)+ c1(w,v)≤ J(Φ)+ J(Ψ)≤ J(U)−aq(U)+aq( f )+aq(g) (22)

Since ||U − w||W 1,2[q,q+1] ≤ σ it follows as in (9) again that aq( f ) + aq(g) ≤
2β (σ)→ 0 as σ → 0. Then for σ so small that

2β (σ)≤ µ , (23)

J(U) = b and (22)–(23) imply (17). 
�
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5 Multitransition solutions: general case

The ideas used in proving Theorem 4.1 work equally well to get k transition solu-
tions of (DE) and then even infinite transition solutions via a limit argument, pro-
vided that the construction does not depend on k. However, given Theorem 4.1, there
is a simpler geometrical argument giving the k and infinite transition cases, as well
as an associated symbolic dynamics of solutions. We will illustrate with the case of
k = 3 and then discuss the general case.

Choose ρ,r ∈ R
4 and m,n ∈ Z

4 such that there are associated solutions U and
W of (DE) with U ∈ Ym,ρ(v,w), and W ∈ Yn,r(w,v). We seek a 3-transition solution
heteroclinic from v to w. For j ∈Z, set τ ju(t) = u(t− j). Because of their asymptotic
properties for j1 >> 1, τ j1U(t) < W (t) for all t ∈ R.

Take j2 >> j1. Then τ j1U < τ j2W . Finally take j3 >> j2. Then τ j3U < τ j2W .
For simplicity, we will take j1 = j, j2 = 2 j, j3 = 3 j for sufficiently large j. Consider
{τ−l jW : l ∈ N} and {τ(3+i) jU : i ∈ N}.

Delete from the region between the graphs of v and w the set of points above
all of the shifted W ’s we have mentioned and below the shifted U’s. Denote the
remaining region by R and set

Y (R)≡ {u ∈W 1,2
loc : (t,u(t)) ∈ R̄}.

(See Fig. 10). Define
c(R) = inf

u∈Y (R)
J(u).

Then we have:

Theorem 5.1. Under the hypothesis of Theorem 4.1

1. M(R) = {u ∈ Y (R) : J(u) = c(R)} 	= /0.
2. Any U ∈M(R) is a classical solution of (DE) and is interior to R.
3. ||U− v||L2[i,i+1] → 0, i→−∞, and ||U−w||L2[i,i+1] → 0, i→ ∞.
4. U has a local minimization property: for any r < s, U minimizes

∫ s
r L(u)dt over

the class of W 1,2[r,s] functions with u(r) = U(r), and u(s) = U(s) provided that
s− r sufficiently small.

Proof. We will sketch the proof. A minimizing sequence converges as earlier to
U lying in R̄ with J(U) = c(R). Since J(Ū) < ∞, (3) of the theorem holds due

w

vU

Fig. 10 A U in Y (R).
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to the form of R. The boundary of R consists of curves possessing local or global
minimization properties and this readily implies (4), which in turn gives the first part
of (2). Lastly the basic existence and uniqueness theorem for ordinary differential
equations implies U cannot touch ∂R as in the proof of Theorem 2.2. 
�

Next we will show how to generalize Theorem 5.1 and at the same time get
a symbolic dynamics of solutions (Fig. 10). Choose U , W , and j as above so in
particular the graphs of τ± jU and W do not intersect. This implies the same is true
of the graphs of τi jU and τl jW for all i, l ∈ Z. Define

Σ ≡ {σ = {σi}i∈Z : σi ∈ {+,−}}.

For each σ ∈ Σ , we define a region R(σ) lying between the graphs of v and w as
follows. Set

S = {(t,z) : t ∈ R,v(t)≤ z≤ w(t)}.
If σi = +, remove the region below τ jiU from S; if σi =−, remove the region above
τ jiW from S. R(σ) is what remains after carrying out this excision process for all
i ∈ Z. Then we have;

Theorem 5.2. For each σ ∈ Σ , there is a solution UR(σ) of (DE) with the graph of
UR(σ) lying in R(σ). Moreover UR(σ) has the local minimization property of Theo-
rem 5.2.

Remark: If σi =−, UR(σ) will be L∞ close to v on a large interval while if σi = +,
UR(σ) will be L∞ close to w on a large interval. In particular if σi = − for all i
near −∞, UR(σ) asymptotes to v as t →−∞, while if σi = + for all i near ∞, UR(σ)
asymptotes to w as t → ∞. The dynamics of the symbol σ reflect the dynamics of
the solution UR(σ).

Proof of Theorem 5.2. We will sketch the proof. First we introduce four subsets of
Σ :

Σ++ ≡ {σ ∈ Σ : σi = + for all large |i|}
Σ−− ≡ {σ ∈ Σ : σi =− for all large |i|}

Σ+− ≡ {σ ∈ Σ : σi = + for all large negative i, and σi =− for all large positive i}

Σ−+ ≡{σ ∈ Σ : σi =− for all large negative i, and σi = + for all large positive i}

Let Σ ∗ be the union of these four sets. Any σ ∈ Σ ∗ has a finite number of changes
of σi as i increases. For σ ∈ Σ ∗, set

Y (σ) = {u ∈W 1,2
loc : (t,u(t)) ∈ R̄(σ) for all t ∈ R},

and define
c(σ) = inf

u∈Y (σ)
J(u).
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Then c(σ) < ∞ and the proof of Theorem 5.1 shows there is a UR(σ) ∈ Y (σ) such
that UR(σ) satisfies (2) and (4) of Theorem 5.1 and also possess the asymptotics
associated with σ .

Next suppose σ = {σi}∈Z ∈ Σ\Σ ∗. For each n ∈N, define fn(σ) ∈ Σ ∗ via fn(σ)
equal to σi, |i| ≤ n, equal to σn, i > n, and equal to σ−n when i <−n. Therefore by
what was previously shown, there is a Un ∈ Y ( fn(σ)) such that J(Un) = c( fn(σ)).

Since v≤Un≤w, the functions Un are uniformly bounded. By (DE), they are also
bounded in C2. Therefore using (DE), as n→ ∞, Un converges along a subsequence
in C2 to U(σ), a solution of (DE). Moreover for any l ∈ N, if n ≥ l, for |t| ≤ l, the
graph of Un lies in

R( fn(σ))∩{(t,z) : |t| ≤ l,v(t) < z < w(t)}

= R(σ)∩{(t,z) : |t| ≤ l,v(t) < z < w(t)}
from which it follows that the graph of U lies in R(σ). Finally the local minimality
property is preserved by the L∞

loc convergence of the Un. 
�
We conclude this section with some open questions. First, is it possible to give

a variational characterization of U(σ) for σ ∈ Σ\Σ ∗? The difficulty is that for
such σ , J(U(σ)) = ∞. We suspect that a second renormalization of J can be made
which allows for a direct variational characterization of U(σ). A second question is
whether it is possible to classify these multi-transition solutions. How many para-
meters do they really depend on?

6 The tip of the iceberg

In a sense the class of solutions of (DE) we have studied in these lectures merely
represent the tip of the iceberg. All of these solutions lie between a gap pair. Even
if we had had time to study the monotone solutions of (DE) mentioned in the intro-
duction that cross a finite number of gaps, we are still only dealing with bounded
solutions which therefore have rotation number 0.

For p ∈ Z and q ∈ N it is straightforward to find minimal solutions of (DE)
satisfying u(t + q) = u(t) + p. In terms of the pendulum, they make p rotations
in time q and have rotation number p/q. Thus replacing M0 by such a class of
minimizers, there are analogues of the results of the previous sections. There are
also minimal solutions with an irrational rotation number which can be obtained as
limits of the rational ones.

In addition to these minimal solutions there are nonminimal solutions that can be
obtained variationally. E.g. there are mountain pass solutions lying between a gap
pair v,w. In fact there is a sequence {un} of such solutions with periods which go
to infinity as n→ ∞. Likewise there are mountain pass heteroclinics between a gap
pair in M1(v,w). These facts can be proven using versions of the mountain pass
theorem.
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