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Preface

This volume is a collection of lecture notes from the courses that were given during
the 2007 Séminaire de Mathématiques Supérieure in Montréal (SMS), which was
conceived and supported as a NATO Advanced Study Institute. The courses took
place during the two-week period from June 18 to June 29, 2007, at the Centre de
Recherches Mathématiques (CRM), and they were funded by a grant from NATO
and from the ISM, which is the combined graduate mathematics program of the
Montréal area. The organising committee for this event was D. Bambusi (Milan),
W. Craig (McMaster), S. Kuksin (Edinburgh and Paris), and A. Neishtadt (Moscow).
There were more than 80 participants, coming from around the world, and in partic-
ular there were a good number of students from France, from Italy, from Spain, from
the United States and from Canada. The program of lectures occupied two complete
weeks, with five or six one-hour lectures each day, so that in total 57 h of courses
were presented.

The topic of the 2007 NATO-ASI was Hamiltonian dynamical systems and their
applications, which concerns mathematical problems coming from physical and me-
chanical systems of evolution equations. Many aspects of the modern theory of
the subject were covered; topics of the principal lectures included low dimensional
problems as well as the theory of Hamiltonian systems in infinite dimensional phase
space, and and their applications to problems in classical mechanics, continuum
mechanics, and partial differential equations. Applications were also presented to
several important areas of research, including to celestial mechanics, control the-
ory, the partial differential equations of fluid dynamics, and the theory of adiabatic
invariants.

It is a good thing to do to articulate the relevance of the subject matter of these
SMS lectures to the physical sciences. Physical laws are for the most part expressed
in terms of differential equations, and the most natural classes of these are in the
form of conservation laws or of problems of the calculus of variations for an action
functional. These problems can often be posed as Hamiltonian systems, whether
dynamical systems on finite dimensional phase space as in classical mechanics, or
partial differential equations (PDE) which are naturally of infinitely many degrees
of freedom. For instance, the well known N-body problem of celestial mechanics is
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still of great relevance to modern mathematics and more broadly to science; indeed
in applications the mission design of interplanetary exploration regularly uses the
gravitational boost of close encounters to manoeuvre their spacecraft (first used in
the Mariner—10 mission, 1974). This is also true on the level of theoretical results,
which can be traced to the work of Laplace, Lagrange and Poincaré, but whose
modern successes date to the celebrated theory of Kolmogorov, Arnold and Moser
(KAM) (1954/1961/1963). Recent mathematical progress includes the discoveries
of new choreographies of many body orbits (Chenciner & Montgomery, 2000), and
the constructions of Poincaré’s second species orbits (Bolotin & MacKay, 2001).
Furthermore, the development of rigorous averaging methods (Nekhoroshev 1979)
gives hope for realistic long time stability results (Neishtadt 1981, Treschev 1996,
Poschel 1999). Additionally, the last several years has seen major progress in the
long outstanding problem of Arnold diffusion, with the advent of Mather’s varia-
tional techniques (2003) related to a generalised Morse—Hedlund theory, including
Cheng’s subsequent work on variational methods, and the geometrical approach to
the ‘gap problem’ due to de la Llave, Delshams & Seara (2006).

Over the last decade the field of Hamiltonian systems has taken on completely
new directions in the extension of the analytical methods of Hamiltonian mechan-
ics to partial differential equations. The results of Kuksin, Wayne, Poschel, Craig,
Bambusi and Bourgain have introduced a new paradigm to the study of partial differ-
ential equations of evolution, where research focuses on the fundamental structures
invariant under the dynamics of the PDE in an appropriate phase space of functions.
Two basic examples of this direction of enquiry include (i) the development of sev-
eral approaches to a KAM theory, with very recent contributions by Yuan (2006) and
Eliasson & Kuksin (2007), and (ii) Nekhoroshev stability results for systems with
infinitely many degrees of freedom (Bambusi 1999). These considerations show an
exciting and extremely promising connection between Hamiltonian dynamical sys-
tems and harmonic analysis techniques in PDE. A case in point is the relationship
between upper bounds on the growth of higher Sobolev norms of solutions of non-
linear evolution equations, and the bounds on orbits given by Nekhoroshev theory;
similarly there is a possibly surprising connection between lower bounds on such
growth and the existence of solution of PDE which exhibit phenomena related to
Arnold diffusion. This research area of evolution equations and Hamiltonian sys-
tems is one of the most active and exciting fields of PDE in the last several years.

The subjects in question involve by necessity some of the most technical aspects
of analysis coming from a number of diverse fields, and before our event there has
not been one venue nor one course of study in which advanced students or oth-
erwise interested researchers can obtain an overview and sufficient background to
enter the field. What we have done with the Montréal Advanced Studies Institute
2007 is to offer a series of lectures encompassing this wide spectrum of topics in
PDE and dynamical systems. Most of the major developers in this field were speak-
ers at this ASI, including the top international leaders in the subject. This has made
it a unique opportunity for junior mathematicians to hear a focused set of lectures
given by major researchers and contributors to the field. The organizers are grateful
for the time and energy that the speakers devoted to the thoughtful preparation of
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their lectures, and to the subsequent written and complete versions that appear in
this volume. And in addition the students at this ASI, who were for the most part
advanced graduate students and postdoctoral fellows, included many very promis-
ing and active young mathematicians in the field, with their own well-developed
research programs. The participants’ enthusiasm for the ASI, their help in writing
lecture notes for the courses, and their general cheerfulness and good attitude dur-
ing the course of the two weeks of lectures, made the event an experience not to be
forgotten.

Last but not least, the organizers of the SMS 2007 would like to acknowledge
the generous and timely support of the Public Diplomacy Division of NATO, with-
out which the two weeks of this Advanced Study Institute would not have taken
place, the additional financial support of the Montréal Centre de Recherches Math-
ématiques (CRM), the ISM and the Université de Montréal, and for the depend-
able guidance and initiative of Sakina Benhima, our Directrice de Programme at the
CRM in Montréal.

The series of lectures in this volume includes the following topics: Hamiltonian
systems and optimal control (A. Agrachev, SISSA, Trieste), Birkhoff normal form
for some semilinear PDEs (D. Bambusi, Universita degli Studi di Milano), Varia-
tional methods for Hamiltonian PDEs (M. Berti, Universita degli Studi di Napoli),
The N-body problem (A. Chenciner, Observatoire de Paris), Variational methods
for the problem of Arnold diffusion (C.-Q. Cheng, Nanjing University), The trans-
formation theory of Hamiltonian PDE and the problem of water waves (W. Craig,
McMaster University), Geometric approaches to diffusion and instability (R. de la
Llave, University of Texas at Austin), KAM for the nonlinear Schrédinger equation
(H. Eliasson, Université de Paris 7), Groups and topology in Euler hydrodynamics
and the KdV (B. Khesin, University of Toronto), Three theorems on perturbed KdV
(S. Kuksin, Heriot-Watt University), Averaging methods and adiabatic invariants
(A. I. Neishtadt, Space Research Institute, Russian Academy of Science), Periodic
KdV equation in weighted Sobolev spaces (J. Poschel, Universitit Stuttgart), The
forced pendulum as a model for dynamical behavior (P. Rabinowitz, University
of Wisconsin), Normal forms of holomorphic dynamical systems (L. Stolovitch,
Université Paul Sabatier), Some aspects of finite dimensional Hamiltonian systems
(D. Treschev, Moscow State University), Infinite dimensional dynamical systems
and the Navier—Stokes equations (C. E. Wayne, Boston University), and KAM the-
ory with applications to nonlinear wave equations. (X. Yuan, Fudan University).

Hamilton and Montréal, Canada Walter Craig
July 2007
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Some aspects of finite-dimensional Hamiltonian
dynamics

D.V. Treschev*

Abstract These lectures touch upon two aspects of Hamiltonian mechanics. The
first one (geometric) establishes fundamental role of symplectic geometry as the lan-
guage of Hamiltonian mechanics. The second aspect (dynamical) exhibits the main
problem in the domain, which is the interplay between regular and chaotic motion.

1 Symplectic structure. Invariant form of the Hamiltonian
equations

1.1 Hamiltonian equations

Hamiltonian system' is an ODE-system which in certain coordinates g=(q1,....,q»),
p=(pi1,-...,pn) can be presented in the form
JH JH
] = — ) — — —— 1
1=, P 97 (D

the function H(gq,p) is called the Hamiltonian function. Frequently, non-
autonomous systems are considered, where H = H(q, p,t).

This definition looks very non-geometrical. Although all calculations are anyway
presented in coordinates (partially we will see this below), it would be good to
present an equivalent invariant (coordinate independent) definition.

Recall that a symplectic structure on a smooth manifold M is a closed non-
degenerate differential two-form @. The pair (M, ) is a symplectic manifold.

* Steklov Mathematical Institute
e-mail: treschev@mi.ras.ru.
! We will consider only the case of Hamiltonian ODE’s.

W. Craig (ed.), Hamiltonian Dynamical Systems and Applications, 1-19. 1
(© 2008 Springer Science + Business Media B.V.



2 D.V. Treschev

Theorem 1 (Darboux) In a neighborhood of any point of M there are local coordi-
nates (q,p) = (q1,---,qn,P1,- -, Pn), in which the symplectic structure has the form
o =dpAdg.

Corollary 1 Any symplectic manifold is even dimensional.

Such coordinates (g, p) are called symplectic, canonical, or Darboux coordinates.
Note that m associates to any vector field v on M the differential 1-form f:

where on the empty place - an arbitrary vector field can be posed. Let J be the
inverse operator. It exists because @ is non-degenerate, and the dimensions of the
vector spaces T,M and T*M (x € M) coincide. Then

f()=0o(Jf).
Let H : M — R be a smooth function. It determines the 1-form dH.

Definition 1 The vector field vy = JdH on M is called the Hamiltonian vector field
with Hamiltonian H.

Hence dH(-) = o(-,vy).

Problem 1 Check that in canonical coordinates the Hamiltonian vector field takes
the traditional form vy = (H,, —H,).

Any map T : M — M preserving the symplectic structure is called symplectic.
Symplectic maps can be regarded as discrete analogs of Hamiltonian systems.

Problem 2 Let (g, p) be canonical local coordinates on M and let T : M — M be
symplectic. Prove that the functions (P,Q) = (qoT,poT) are also canonical local
coordinates on M.

Problem 3 Let (gq,p) and (P,Q) be local coordinates on M such that for some
smooth function W = W (g, P)

oW ow

p_Tqv Q_ﬁ' 2

Suppose also that the coordinates (q, p) are canonical. Prove that (P,Q) are also
canonical.

Hence in variables P, Q equations (1) remain the same:

L4
9P’ T 90’

where the Hamiltonian is the same: J7(P,Q) = H(p,q).
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The function W can depend on . It is called a generating function of the canonical
transformation (g, p) — (P, Q). In the non-autonomous case the new Hamiltonian
equals

H(P,Q,t) = 0W(q,P,t)/dt +H(p,q,1).

1.2 The Poisson bracket

Let (M, ®) be a symplectic manifold. For any two functions H,F on M we define
the Poisson bracket
{H,F}:=0,,F =dF(vy).

Here d,,, is the operator of differentiation w.r.t. the vector field vy. The first equality
is a definition, while the second one is just an identity.

We have the following simple properties of the Poisson bracket.

1. A smooth function F is a first integral of the Hamiltonian equations with Ham-
iltonian H <= {H,F} =0.

2. {H7F} = (J)(VH,VF).

3. The operation {-,-} is bilinear and skew-symmetric.
According to 1 and 3 in any (autonomous) Hamiltonian system the Hamiltonian
is a first integral.

4. In canonical coordinates {H,F} =}"_, ErIY Tk e v
? J J J J

A direct calculation in canonical coordinates gives
5. The Leibnitz identity:

n (aH OF _ 9H 8F)

{FG,H} =F{G,H} +{F,H}G.
6. The Jacobi identity:
{F,{G,H}}+{G,{H,F}}+{H,{F,G}} =0

for any three functions F,G,H : M — R.

This Poisson bracket is non-degenerate, i.e., for any z € M and any function F
such that dF # 0 at z there exists G such that {F, G} # 0. In some physical problems
degenerate Poisson brackets appear,” but we will not deal with these cases below.

For any two vector fields u,v on M let [u,v] be their commutator:

a[u,v] = 040y — 0,0y
Theorem 2 For any two functions F,G on M

Ve, vG] = VIF,G}-

2 Such Poisson brackets are not generated by symplectic structures.
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Proof. For an arbitrary function ¢ on M we have:

Oirey @ = {{F, G} 0} = —{{G, 9}, F} —{{o,F},G}
= {F{G,0}} —{G{F,0}} = (9 g — 950 ) @ O

Proposition 1 (Poisson). Let F and G be first integrals of the Hamiltonian system
(M, ®,H). Then {F, G} is also a first integral.

Indeed, if {H,F} = {H,G} = 0 then by the Jacobi identity {H,{F,G}} =0. O

Unfortunately, this statement is not of much use in the problem of the search for
new integrals of motion. Usually the Poisson bracket of two integrals is an already
known integral or zero.

We say that two functions F, G are in involution or commute if {F,G} = 0.

1.3 Liouville theorem on completely integrable systems

Suppose that the system (M, ®,H) (dimM = 2m) has m first integrals Fj,...,F, in
involution: {Fj, Fi.} = 0. Consider the joint integral level

My={zeM:Fj(z) = fj=CONST, j=1,...,m}. 3)

Theorem 3 (Liouville-Arnold) Suppose that on My the functions F; are indepen-
dent. Then

1. My is a smooth manifold, invariant with respect to the Hamiltonian system 7 =
VH.

2. Each compact connected component of My is diffeomorphic to an m-
dimensional torus > T"™.

3. In some coordinates (Qi,...,Qn) mod 21 on T™ the Hamiltonian equations
have the form ¢ = A, where A = A(f) € R™ is a constant vector.

Proof. Assertion (1) follows from the implicit function theorem. To check (2) and
(3), we note that the vector fields v; = vg; are tangent to M. (Indeed, o, Fri =
{F;,F} = 0.) Since the functions F; are 1r1depender1t on My, the vector fields v; |
are also independent on M. Moreover

vjsvil = vig Ry =0
It remains to use the following geometric fact (see for example, [2]):

Lemma 2 Any compact connected m-dimensional manifold on which there are m
everywhere independent commuting vector fields is diffeomorphic to the torus T™.
Moreover there are angular coordinates (@1, ..., Qy) mod 27 on it such that all the
m vector fields become constant (V; = const € R™). g

3 In the non-compact case My turns out to be TE x Rk 0 < k < m (see [2]).
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Problem 4 Check that the tori ']I‘}" from Theorem 3 are Lagrangian, i.e., dim ']T’}’ =m
and restriction of the symplectic structure to 'H‘? vanishes.

Hamiltonian systems having a complete set (i.e., m) of almost everywhere inde-
pendent first integrals in involution are said to be completely, or Liouville integrable.

In Liouville integrable systems there are convenient, so-called, action-angle co-
ordinates (¢,1) (I are the actions and ¢ are the angles) such that

o o = dI Nd ¢ (symplecticity),
e H=H(I) (i.e., I are first integrals),
e ¢ =@ mod 27 (i.e. ¢ are angular coordinates on the tori Mp,).

2 A pendulum with rapidly oscillating suspention point

Mathematical pendulum is a (classical) mechanical system that consists of the rigid
weightless rod AB with fixed end A. A point with mass m is attached to the end B.
The motion is assumed to take place in a fixed vertical plane in the constant gravity
force field. This system is well-known and Liouville integrable.

Consider a more complicated problem. Let the point A vertically periodically
oscillate. Period and amplitude of the oscillations is assumed to be small (of order
€). We are interested in the action of the oscillations of the suspension point on the
dynamics.

Consider in the plane of motion a fixed coordinate system such that the x-axis
is horizontal, the y-axis is vertical, and A lies on the y-axis. We assume that in this
coordinate system

t
A(r) = (O,ascos%), 0=4/=.

Here g is the gravity acceleration, [ = |AB)| is the length of the pendulum, and € is
small. The frequency  is introduced so that € is dimensionless. The dimension of
a is length.

The system is non-autonomous and has one degree of freedom. It is convenient
to take the angle ¢ between the pendulum and the vertical, directed downward, as a
variable, that determines position of the system.

Problem 5 Obtain the Lagrangian of the system.

Hint. L=T(¢p,®,t) —V(¢,t), where T and V are kinetic and potential energy
of the pendulum.
Answer.

m

L
2

ot ot wt
(12¢2 —2alo@singsin — + a*@*sin’ ?) —mg (as cos —~ — I cos go) :
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It is convenient to remove from L all terms which depend only on time and to
divide L by mi?. Let L be the Lagrangian, obtained in this way:
(PZ

ﬁ———@'sin singt—szcos
=5 ] ¢smo P ¢.

Problem 6 Prove that Lagrangian systems with Lagrangians L and L are the same.
Problem 7 Obtain the Hamiltonian of the system.

Hint. H and L are related by the Legendre transform: H(¢,p,t) = pg —
L(@,®,t), where ¢ in the right-hand side should be expressed in terms of (¢, p,?)
from the equation p = dL/d¢.

Answer.

o aw . . ot
= — —SIn @ Ssin —
p=90 ] ¢ P
2 ® ot do

212

H—p+asinsin+ ’
T g ThTsmesme

. . o 01
sin” @ sin’ - % cos @.

We will construct a canonical change of variables which removes dependence of
H on ¢ in the main (zero) approximation in €. We look for a change (¢, p) — (P, P)
in the form

aw ow

P=5e =95 Wereres(o.n 7).

where f is 27t-periodic in the last argument.* We have:
p=Ptefy, ®P=0+efp.

The new Hamiltonian reads
wt wt wt
H(0.PZ) =efi+H(0.p, ) = 0Dsf+H(®—efp.P+efp. o ),
where Dj3 is the derivative in the third argument. We obtain:

H = 0Dsf(DPT)+H(P,PT)+0e),  T= 2.

Therefore .77 does not depend on ¢ in zero approximation in € provided the function

;o

212

2

0]
F = oDsf(®,P, r)+P“T sin®sinT + sin? ®sin’ ¢

does not depend on 7. We choose

o

YE sin” @ sin 27,

f(D,P 1) :P? sind®cos T+

4 This periodicity condition is necessary to have a change uniformly close to the identity for all 7.
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and getS: F = "il“z’z sin? . Hence, in the new variables
P2 2o
H = 5~ ?cos P + iR sin> @ + 0(¢),

where the part of 77, contained in O(g), is 27-periodic in 7.

Remark 1 In fact it is possible to move the dependence on time to order O(e") for
an arbitrary N > 0, and even to O(e"'/ ‘5‘) for some positive constant c. However
it is impossible to reach more: for any 2m-periodic in T canonical near-identity
change of variables the dependence of 7 on t will be greater than of order e~ C/lel
for a certain constant C > 0.

Now let us study the system we have just obtained, neglecting the terms O(¢).
The system can be interpreted as the one describing the motion of a particle on a
line (or on the circle @ mod 27) in the force field with potential

P
V= w2<—cos¢+4—lzsin2¢>.

The phase portrait of the system is (by definition) the set of level lines of the energy
integral %2 +V(®) = const. As usual, it is convenient to draw it under the graph of
the potential energy. There are two cases, see Fig. 1.

The left-hand side of the figure contains the case of “small” amplitude a* < 2/°.
In this situation there are no qualitative differences with the case of the ordinary
pendulum (a = 0).

E e — \
/
.
7 NG

NS

Fig. 1 Phase portraits. Left: a®> < 2/, and right: a® > 217

EM|<:

)

4
)
5

A

-7 —7/2

\
)

\
g

\/
}
\

3 Recall once more that f should be periodic in .
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The situation changes drastically, when a® > 2/? (the right-hand side of the fig-
ure). In this case a bifurcation occurs and the equilibrium & = +7 becomes stable.
Moreover, the terms O(€) in the Hamiltonian do not destroy this effect, but we will
not go into the detail.

Problem 8 Draw the phase portrait in the case a> = 21°.

3 Anti-integrable limit

3.1 The standard map

The standard map is, probably, the basic conceptual model for Hamiltonian dynam-
ics in two degrees of freedom. Consider the cylinder

Z ={(x,y) : x mod 27}
and its self-map T : & — %, (x,y) — Te(x,y) = (X,Y), where
X =x+y+e€sinx, Y =y+€sinx. (1)

Here € is a real parameter which controls the type of the dynamics (regular or
chaotic). The cylinder 2 is said to be the phase space of the system. The dynam-
ics should be understood as properties of the trajectories, i.e., sequences of points
(%%, y) € & such that for any integer k

(-karl 7yk+l) = TS('xk7yk)'

The cylinder & is a two-dimensional symplectic manifold with symplectic struc-
ture @ = dy Adx.

Problem 9 Check that the map Tg is symplectic, i.e., Ty ® = ®.

Any of you can easily look at trajectories of 7 by using a computer. To this end
we remark that the variable y can be also regarded as angular. Indeed, 7; “respects”
not only the shift of x by 27, but also the analogous shift of y in the sense that for
any integer k and n

Ty (x+27k,y+27n) = (X + 27k, Y 4+ 2nk +27n)

(shifts of X and Y also have the form 27- (integer number)). Hence we can ask the
computer to draw on the screen the square

L ={(x,y):0<x<2n,0< y < 2n},
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to take an initial point (xp,yo) € - and to put it on the screen, to compute the point
(x1,1) = Te(x0,¥0) and to put it on the screen, etc. If a point (x,,y,) leaves the
square, it should be returned® to . by the shift of x and/or y by 27k with a proper
integer k. I recommend you to do this and to look at the trajectories for various
values of €.

Consider the case € = 0. The system becomes a discrete analog of a Liouville
integrable Hamiltonian system. The variables x, y play the role of action-angle vari-
ables. In particular, the action y is a first integral. Any trajectory lies on the curve
(on the one-dimensional torus)

le={(x,y) € Z:y=c=const}.

The curve [, rotates by the angle c. If ¢ /7 is rational, the trajectory is periodic. If ¢/
is irrational, the trajectory fills /. densely. Such curves /. are said to be non-resonant.

In the case € # 0 the situation gets much more complicated. One should not hope
that any regular first integral exists, because trajectories (at least, some of them)
stop to lie on smooth curves (like the circles /.) and begin to demonstrate a chaotic
behavior.

However, the chaos appears gradually. According to the KAM-theory for small
values of € many of nonresonant curves [, slightly deformed, exist as invariant
curves for T;. These curves can be easily seen on pictures, produced by numerical
simulations. Trajectories, lying on these circles, are regarded as regular.

Chaotic trajectories are presented on a computer screen as clouds, more or less
densely filled with points. If € is small and initial conditions are taken randomly,
regular trajectories are more probable. When € increases, the curves I . destroy
and chaos becomes more noticeable. For large € numerical simulations show that a
"typical" trajectory fills . almost without holes.

3.2 Antfi-integrable limit

Chaotic trajectories can be constructed analytically. We show how to do this in the
anti-integrable limit, i.e., for large €.

First, we rewrite the dynamical equations (1) in the “Lagrangian form”. Let
(%, ), k € Z be a trajectory of the standard map. Then for all integer k

Xjr1] = Xg + Yk +ESINXE, Yyt = Vi + ESinxg. 2
Eliminating the momenta y;, we get:

Xkl — 2Xk +Xp—] = Esinxg. 3)

6 In fact, we have replaced the (non-compact) phase space 2 by (compact) T2, where T? =
{(x,y) mod 27}.



10 D.V. Treschev

The map takes the form (xx_j,xx) — (xx,X+1), and the phase cylinder becomes:
{(x_,x) € R?}/ ~, where the equivalence relation ~ identifies any two points
(x"_,x) and (x” ,x"") such that

¥ = =x—x"=2nl, leZ.

Now trajectories of the map are the sequences {x; }rcz, satisfying (3). In case of
necessity y; can be calculated by using the first equation (2).

Consider the case € = co. Formally speaking, for € = oo there is no dynamics:
Xx+1 can not be expressed in terms of x;_; and x;. However still there are some
“trajectories”. Indeed, dividing by &, we obtain:

. 1
sinx; = E(Xk+1 —2x;+x3-1) =0.

Hence, for € = o trajectories are sequences of the form
X = T, ke . 4)

It turns out that for large € the standard map has many trajectories similar to (4).
Take a large positive number A and define the space of codes C4 which consists
of sequences

a=A{a}rez, ax="nl, L€, l|ay—a <A

Hence C, is the space of sequences (4) such that the distances between the points
a1 and a; are bounded from above by A.
For any code a € C4 we define the metric space of sequences I1,;:

x = {x¢ beez, sup |xx — ag| < o.
ke

Metric on I, has the form

p( X" =suplg —x(], XX eIl
keZ
Theorem 4 Given A > 0 and ¢ > 0 there exists &y = & (A, ) > 0 such that for
any code a € Cp and any € > & the standard map has a trajectory X € I1, with
p(%,a) < o.

The trajectory x from Theorem 4 follows the code a in the sense that any point x;
differs from a; not more than by 6. Hence, we have constructed a set of trajectories
of the standard map which are in one-to-one correspondence with Cy .

Problem 10 What is the cardinality of Cx ?
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It is natural to regard the trajectories X as chaotic because according to our order
they jump along o-neighborhoods of the set #Z. In fact, there is a more serious
motivation to say about chaos in this situation.’

3.3 Proof of the Aubry theorem

The proof is based on the contraction principle in the metric space (I1,,p).
Equations (3) can be presented in the form

Xk+1 —2xk+xk71) 5)

Xy, = arcsing (
£

where arcsin; is the branch of arcsinus such that arcsing(0) = a; € wZ. Hence
arcsin; maps the interval (—1,1) onto the interval (ax — 7,ar + 7), and the tra-
jectory x = a satisfies (5) for € = oo.

For big € it is natural to construct %, satisfying (5), as follows. Consider the map
x+— % =W(x) such that

e (xk+1 — 2 +Xk71)

X = arcsing ( ————— ).
€

Any fixed point of W is obviously a trajectory of the standard map.

Lemma 3 Let € > &), where &y = €0(A, 0) is sufficiently large. Then

1. W is defined on the ball B, s C I, with center a and radius o,
2. W(Bao) CBao;
3. W is a contracting map on B, s, i.e.,

1
p(W(X),W(x") < Ep(x',x") FOR ANY X, x" € By . (6)

Theorem 4 follows from Lemma 3. Now we will prove the lemma. Below without
loss of generality we assume that ¢ < /2.
(D)+(2). To check that W (B,,¢) C By ¢ it is sufficient to show that for any x € B, ¢

X1 — 2 + X1

<sino. 7
c sin (7

Since p(x,a) < o and a € Cy, we have:

k1 — 200 +xp—1| < Jxrar — xx] + ok —xi—1| < 2(A +20).

7 It is easy to show that the trajectories £ form a hyperbolic set in the standard map.
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Hence, inequality (7) holds if
2(A +20)
sinc
(3). Note that for any pair of real numbers «’,u” € (—sino,sin o)

|arcsing u’ — arcsing u” | < ——|u’ —u”"|.
0s G

. . 1 o d .
Here the multiplier - = sup | 4 arcsing u|.
ue(—sino,sinoc)

We put ¥ =W (x'), ¥/ = W(x”). Then for any k € Z

%) =

/ / / 1 /! /"
X, —2X, +x, ) X, —2x) +x
ket 1 kM 1)_arcsmk( k+1 k% 1)

arcsiny (
€ €

/ / / I /! /!
1 ‘xk+1 —20 RN N 2t ‘
= coso £ £

1 / ! / !l
< et = X |+ 2 — x4 e — X
~

£c0SC
4 /)
= ecosop(x )
Hence, inequality (6) holds if
8
coso’

3.4 Some remarks

I would like to mention one unpleasant fact, which is that all methods that are known
to date give a metrically negligible chaotic set in 7 and analogous systems. [ mean
the following. Given an arbitrary € consider a set of chaotic trajectories that can be
constructed by all methods, known by now. This subset of the cylinder Z has zero
measure.

This contradicts to our physical intuition, for large € chaos should dominate. The
results of computer simulations also show that this should be the case. But maybe
we should not believe these computer pictures, as the precision of computations is
necessarily finite. Nevertheless, most of specialists believe that the following con-
jecture is true.

Conjecture. For € # 0 in the standard map, chaos lives on sets of positive
measure.
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4 Separatrix splitting
4.1 Poincaré’s observation

Consider a Hamiltonian system, obtained as a non-autonomous perturbation of a
system with one degree of freedom:

__OH _ 0H )
X77y7 yffga ()C,y)EDC]R . (1)

Here D is a domain and
H(x,y,t,€) = Ho(x,y) + €H, (x,,1) + O(€?). 2

We assume that H is 27-periodic in ¢ and € is a small parameter.

Let zo = (x0,¥0) € D be an equilibrium in the unperturbed (¢ = 0) system:
grad Hy(zp) = 0. In the extended phase space D x T instead of the equilibrium we
have the 27-periodic solution zo x T.

Suppose that the equilibrium position (and therefore, the corresponding periodic
solution) is hyperbolic. This means the following. Let

0’Hy 9’Hy
2

A=l B P |@
ox2  odyodx

be the matrix determined by the linearization of (1)|¢—g at zg. Then trA = 0. Hyper-
bolicity means that eigenvalues of A are outside the imaginary axis, i.e., detA < 0.
Hyperbolic equilibria of Hamiltonian systems are exponentially unstable.

On the critical energy level Hy(x,y) = Hy(zo) asymptotic curves (separatrices)
A" are situated.® We assume that the separatrices are doubled: AS = A* = A. In
the extended phase space we have 2-dimensional asymptotic surfaces A* x T =
A*xT=AxT.

Problem 11 Prove that for small values of € the perturbed system has a 27t-periodic
solution (0¢(t),t), 0¢(t) =20+ O(€) € D.

The periodic solution (og(f),?) is hyperbolic. Hence by the Hadamard-Perron
theorem ? there are surfaces Wy C D x T, asymptotic to (0 (t),t). They are small
deformations of the unperturbed surfaces Wy = A** x T.

Poincaré discovered that Wy and W' are generically distinct for € # 0. Let us
draw these surfaces. We will present a picture on the Poincaré section D x {0}.
Hence, the periodic solution (0g(?),t) is presented by the point zz = 0¢(0), and
instead of the surfaces Wy we have the curves A;™" = W N {r = 0}.

8 s from “stable” and u from “unstable”: not very good, but traditional notation.
9 Poincaré could prove this theorem, for analytic systems.
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20

Fig. 2 A complicated behavior of the separatrices for € # 0 (right) unlike the unperturbed case
(left) on the Poincaré section {(x,y,?) : t = 0 mod 27}. The dashed domains are mapped by 7; to
each other. Hence, their areas are the same

To obtain the right-hand part of Fig. 2, one should keep in mind the following:

(a) For small € the curves A* and A/ (and also A* and A}) differ just a little, at
least, till A" are not far away from z.

(b) A" are invariant w.r.t. the Poincaré map T.

(c) A2 have no self-intersections, but can intersect each other.

(d) Any intersection point z, # z¢ of the curves A7 and A} (a homoclinic point) is
mapped by T¢ (and by T;!) to a homoclinic point.

(e) Near the fixed point z¢ T¢ is approximately determined by its linear approxima-
tion: it extends along A} and contracts along AjJ.

(f) T, and Tg’l preserve area.

Now it remains to assume that the curves AJ and A/ intersect transversally at some
point z,, and the right-hand side of Fig. 2 readily appears. The complicated entan-
gled net formed by the curves A;" is an evidence of the complicated dynamics in
the perturbed system.

4.2 The Poincaré integral

To measure the separatrix splitting, we calculate the area of a lobe, presented in
Fig. 2. The main tool for this and similar calculations is the Poincaré integral.
Let ¥(¢) be the natural parametrization of A, i.e.,

¥(t) = (£(1),9(t)) 3)

is a solution of (1). Since addition to the Hamiltonian of a function, depending only
on ¢ and €, does not influence on the dynamics, we will assume that H(z9,) = 0.
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Then the Poincaré integral
~+oo

P(1) = Hy(y(t+7),t)dt

converges.
Problem 12 Prove that () is 2m-periodic.
Problem 13 Prove the identity

di(r) - /_iw{Hﬂle}(Y(f+T),t)dt,

The function & contains all information on the separatrix splitting in the first
approximation in €.

Theorem 5 Let 7| and 1, be two neighboring non-degenerate critical points of &.
Then there are two associated to them homoclinic points such that the area &/ (€) of
the corresponding lobe equals

(€)= e P () —eP(12)| + O(€?). )

4.3 Proof of Theorem 5

4.3.1 Hamilton—Jacobi equation

Following Poincaré, consider the case when A projects one-to-one to the axis. In
the general case the proof is based on the same ideas.

The curve A (see Fig. 3) can be determined by the equation y = %—f (x) for some
function @(x). We have an analogous equation in the extended phase space, i.e., the
surface Wy = W' has the form

{wyn:y=22wm).

SR

0 .

Fig. 3 The case, considered in the proof of Theorem 5, appears when x is an angular variable. For
example, for non-autonomous perturbation of a pendulum. The corresponding separatrices look as
in the figure
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The perturbed asymptotic surfaces are as follows:

S, U

{(x,y,t) Ty = W(x,t,s)}, S5 (x,t,0) = @(x).

Remark 2 The functions S*" are defined non-uniquely: up to an addition of arbi-
trary functions f*"(t,€).

Proposition 4 One can assume that S** satisfy the Hamilton-Jacobi equation

9SSt S, U

T(X,t,s)+H<X7W(x,t78)7t,8) —0. (5)

Remark 3 Eguation (5) for € = 0 shows that if we want the equations S**(x,t,0) =
@(x) to hold exactly (not up to an addition of a function of t), we should put Hy|5 =0.

Proof of Proposition 4 is based on a direct calculation. Let (x,y,7) =
(x, %(x,t,s), ) be a point, lying on W, (for brevity we do not write the indices
s,u), and () = dt, denotes the time derivative w.r.t. equations (1). Then

. 0% (er.€) 4 9%
YT oxar Y T o
J0H
=—— t,€
ax (‘x7y7 3 )

d as oH 9%S
- —£H<X7$(XJ73)J73)+a7y(xay7f,8) a 2(x7t78)

(x,1,€)x

. 2
Since g—xsx %—H ﬁ , we get:

ax2
FVER ds
ax<at(x,t,£)+H( ax(x,t,s),t))zO.

Hence for some function o(z, €)

Js Js
E(x,t,s)—i—H(x,a(x,t,e),t) —alt,e).

By Remark 2 « can be taken equal to zero. 0O

4.3.2 The function S7"“ and the Poincaré¢ integral

Expand equations (5) in power series in €. Let S = ¢ (x) + &S (x,¢) + O(&?). In zero
approximation we have:

e+ 52) =0

(compare with Remark 3).
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The first approximation is as follows:

S, U

as] L) dHy ;1 d@y 928" _
Sy ot +H (65 )*Ty( ) Fnar =0, ©

Since dHy/dy = x, equation (6) can be rewritten in the form

d su do \
S )+H1(x,a—x,t)—0. 7

Plugging in (7) instead of x its parametrization £(¢ + ) (see (3)), we get:

%s“‘( (t+47),1) = Hy(y(2 + 7),1).

Now we integrate in ¢:

~+oo
S1(&(1 +17),1) = $1(&(400),1) = H(y(s+1),5)ds,
SUR(+7),1) — SHGR(— /Hl (s+7),5)ds.
(Recall that £(—e0) = £(+4o0) = x9.) Hence

S1(E(+7),1) =S+ 7),0) = P () + B0),

where B () = S} (x0,1) — S} (x0,?). Differentiating in 7, we get:

(t—i—’L')j (SS( (t+T),t)—S'f()€(t+T),t)> = P'(1). ®)

4.3.3 Homoclinic points and lobes

Homoclinic points are determined by the equations (x, %) = («x, %S; )ie.,

u

99 (ee+ 1)) — e 2 (3¢ 4 1).1) + 0(e?) =0,

2 () + €0 (5 1).0) — 5 e

ox ox

where we take again £(r 4+ 7) instead of x. According to (8) and the relation
£(t+1) # 0 we get:

Z'(1)+0(g) =0.
Hence non-degenerate critical points of &?(7) generate homoclinic points.

Question. Why we need non-degeneracy and in what sense we use the word
“generate”?
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Let 71 and 7 be two consecutive non-degenerate critical points of &?(7). The
corresponding homoclinic points z; = (x1,y1), z2 = (x2,y2) on the Poincaré section
{t =0 mod 27} are “angles” of a lobe. Let 27 (€) be its area. Then

2 79SS as"
/x‘] (E(X,O,S)—W(X,O,S)) dx

2 ds) ast
/x‘l (Eg(x,o) - Eg(.x,o)) dx

We change variables x = £(7) in the integral and use (8):

A (€) =

+0(e%).

+0(&%)

This implies (4). O

4.4 Standard example

Consider a pendulum with a vertically oscillating suspension point, i.e., the system
with Hamiltonian

1
H(x,y,t,€) = §y2+f22cosx+£9(t)cosx. 9)

Performing in case of necessity the change ¢ — Ar, we can assume that 0 is 27-
periodic.

A natural parametrization on the unperturbed separatrix y(z) can be computed
explicitly.

Problem 14 Check that cos(%(t)) = 1 —2cosh2(2Q1).
Hence 22(t) = [ 0(t)(cos(£(t + 1)) — 1)dt.
Problem 15 Check that for 6(t) = cost

TcosT
20 = s E)
If 6(r) = cost lobes have the areas
eT
() +0(e%).

~ Q%sinh(%)
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Four lectures on the N-body problem

Alain Chenciner!

Abstract In the first two lectures, Hamiltonian techniques are applied to avatars
of the N-body problem of interest to astronomers: the first one introduces one of
the simplest non integrable equations, the planar circular restricted problem in the
lunar case, where most degeneracies of the general (non-restricted) problem are not
present; the second one is a quick introduction to Arnold’s theorem on the stabil-
ity of the planetary problem where degeneracies are dealt with thanks to Herman’s
normal form theorem. The last two lectures address the general (non-perturbative)
N-body problem: in the third one, a sketch of proof is given of Marchal’s theorem
on the absence of collisions in paths of N-body configurations with given endpoints
which are local action minimizers; in the last one, this theorem is used to prove
the existence of various families of periodic and quasi-periodic solutions with pre-
scribed symmetries and in particular to extend globally Lyapunov families bifurcat-
ing from polygonal relative equilibria. Celestial mechanics is famous for demanding
extensive computations which hardly appear here: these notes only describe the
skeleton on which these computations live.

1 The Poincaré-Birkhoff-Conley twist map of the annulus
for the planar circular restricted three-body problem

1.1 The Kepler problem as an oscillator

The (normalized) motions in a plane of a particle submitted to the Newtonian
attraction of a fixed center — the so-called Kepler problem — are the solutions of
the equation

i =—x/|x?,

! University Paris 7 and IMCCE (Paris Observatory)
e-mail: chenciner @imcce.fr

W. Craig (ed.), Hamiltonian Dynamical Systems and Applications, 21-52. 21
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where x € R? = C is identified with a complex number and the dot denotes the time
derivative. These equations are the Hamilton equations

. OH | JH
X = — = ——
0y’ Y o0x
associated to the Hamiltonian H : (C\ {0}) x C — R and the symplectic form @
respectively defined by

H(x,y) = y>=2/]x|, ©=dxAdy+dzrdy.
The Levi-Civita mapping (z,w) — (x = 272, y = w/€Z) defines a two-fold covering
(L.C.) K0\ {z=0} = Z.=H ' (~1/€&%

from the complement of the plane z = 0 in the 0-energy three-sphere K~!(0) of the
harmonic oscillator

K(z,w) = |z2* 4+ |w|* — €2 = €2z [H (ZZZ,W/SZ) + 1/82] ;

to the energy hypersurface X, = H~!(—1/&?) of the Kepler problem (both diffeo-
morphic to §' x R?). It is conformally symplectic and sends integral curves of the
harmonic oscillator with energy € to those of the Kepler problem with energy
—1/€? after the change of time dt = 2¢|x|dt’ which prevents the velocity to be-
come infinite at collision. In the coordinates u; = w + iz, up = w + iZ these integral
curves are u; (t) = cre, uy(t) = cre™, |c1|*> + |c2|* = 2€2, that is the intersections
of the three-sphere with the complex lines u; /u; = cste, or in other words the fibers
of the Hopf fibration (uy,us) +— uy Jus : S — P;(C). The closest approximation to
a section of the Hopf map, the annulus

argu; +argup =0 (mod 27)

is a global surface of section of the flow of the Harmonic oscillator in a sphere of
constant energy: with the exception of the two fibers which form its boundary, all
the fibers cut this annulus transversally in two points; hence, the second return map
is the identity. Thus perturbations of the Kepler problem with negative energy are
essentially perturbations of the identity map. This is one of the main sources of
degeneracies in celestial mechanics.

1.2 The restricted problem in the lunar case

The equations of the N-body problem

m; I‘/ ,‘
) M ey

=z rjl?



Four lectures on the N-body problem 23

make sense even if some of the masses vanish. Such masses are influenced by the
non-zero masses but do not influence them. We shall consider two primaries, say the
Sun (mass ) and the Earth (mass v) which have a uniform circular motion around
their center of mass and a zero-mass third body, say the Moon, which stays close
to the Earth. We shall use the normalization g = 1 and u + v = 1. We identify the
inertial plane with C (coordinate X = X + iX, centered on the center of mass of
the couple Sun-Earth) and introduce a rotating complex coordinate x = x| 4 ix; =
Xe™i® — i centered on the Earth. Setting y = X + iwx (up to a translation, this is
the velocity in the inertial frame), the equations of motion of the Moon take the
Hamiltonian form

coH o
“ oY an
where H is the Jacobi integral (the constant 2 is added for convenience)
2v 2u
H(x,y) = |y]* +io(Fy —x3) — 1 — —— — L(x+%) +24.
(x,y) =yl (Xy —xy) FRTT px+x) +2u

More precisely, the vector field is the symplectic gradient of the symplectic form
0 =dxNdy+diNdy=2(dx; Ndy| +dxy ANdyr).

As in the first section, we consider the energy hypersurface H~'(1/€?), with € a
small parameter. Its projection on the x plane is made of three connected compo-
nents: a neighborhood of the Sun, a neighborhood of the Earth and a neighborhood
of infinity (the so-called Hill’s regions, which imply Hill’s stability result, praised by
Poincaré). We shall be interested in the connected component of H~!(1/&?) where
|x| stays small. Then

. o2V 1 3 ~
Hx3) =bf-+io(y —35) - 7 =20 | g+ S 0842) + 0300
We see that the influence of the Sun on the Moon becomes negligible with respect to
the one of the Earth and that at the collision limit, it disappears and one is left with
a Kepler problem. To make this apparent, we again apply the Levi—Civita transfor-
mation. We get

w 1 1
Kleow) =2 |1 (22,2 ) + L] = Pl + P - ve - e Ja),

where

flzow) =/1+2ie(zw—2w), g(z) =2Jz? (

1 2,2

As in the Kepler case, the direct image of the restriction to K~1(0) \ {z = 0} of the

Hamiltonian flow z = %, Ww=— %—IZ( becomes the flow of the restricted problem with

Jacobi constant —1/¢? after the change of time dt = 2¢&|x|dt’.
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Each truncation of the Taylor expansion of K(z,w) at the origin,

K(z,w) = —ve>+|z|> + |w|* +2ie|z|> Gw—wz) — €2 (2]z| + 3|22 (* +24) + 08 (2)),

makes sense dynamically when restricted to K~1(0) : we get

At order 2, the harmonic oscillator, which regularizes the Kepler problem
At order 4, the regularization of the Kepler problem in a rotating frame
At order 6, Hill’s problem. This is the highest order of interest to us

1.3 Hill’s solutions

The truncation K(z,w) = —ve? + f%(z,w)|z|> +w? of K at fourth order is a com-
pletely integrable Hamiltonian, a first integral being the angular momentum or, what
is equivalent, the function f(z,w). This is not surprising as we already knew that
the restriction to K~!(0) corresponds to the completely integrable Kepler problem
in a rotating frame. The intersection of level hypersurfaces of K and f2 defines in
general a two-dimensional torus, except when the two hypersurfaces are tangent,
that is when w = £if(z,w)z. In this case the intersection degenerates to a circle; in
K~1(0), this defines two solutions which project (by a 2-1 map) onto the two cir-
cular solutions (one direct, one retrograde) of the rotating Kepler problem with the
given value —1/&2 of the Jacobi constant.

From now on, two roads may be followed: one can, along with Kummer [Ku],
stick to symplectic coordinates or one can, as did Conley, use the simpler but not
symplectic coordinates

&l =wHif(z,w)z, & =w+if(z,w)zZ.

We shall follow Conley. The equations z = %, W= _%Iz( take the form

b=i&i (1- 218 - &) +€205(81,6),
& =i& (1 + §|51 *52\2> +805(61,8).

For this section, we do not need the exact expression of the terms of order 5.

We shall show that the energy hypersurface K~!(0) contains two periodic solu-
tions of minimal periods close to 27, corresponding to the so-called Hill’s lunar or-
bits, direct and retrograde, which are almost circular periodic motions of the Moon
around the Earth in the rotating frame. The value O of the energy does not play
a special role and it is in fact possible to prove the existence of two “Lyapunov”
families of periodic solutions stemming from the origin and foliating two smooth
(even analytical) germs of invariant surfaces in the (z,w) four-dimensional phase
space. This is a degenerate version of Lyapunov’ theorem, the degeneracy being the
double eigenvalues =i of the linearization 51 =&, 52 = i&,, of the vector-field at
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&1 = & =0. Recall that this degeneracy comes from the fact that all solutions of the
Kepler problem with a given energy are periodic with the same period. Here are the
main steps of the proof of the existence of Hill’s orbits.

1. Putting the vector-field into normal form at order 3: the idea, which goes back
to Poincaré’s thesis and was much developed by Birkhoff, is to simplify as much
as possible a finite part of the vector-field’s Taylor expansion at the origin by
means of local change of variables tangent to Identity. It relies on the fact that
replacing X = (x1,---,x,) by ¥ = X +h(X), where the components of /(X)
start with terms homogeneous in X of degree r, transforms the equation X =
AX + F(X) into the equation ¥ = AY + [A,h](Y) + O,+1, where [,] is the Lie
bracket of the two vector-fields. If A = diag(A1,---,A,) and h = (hy,...,hy)
with iy (Y) = y'lll ---yinand h;j = 0if j # s, one checks that [A, h] = k with k,(Y) =
(1A 4 -+ iy — A)y] ---yin and kj =0 if j # s. It follows that one can
suppress only non-resonant terms, i.e. those for which no resonance relation
i1AL 4+ i A, — Ag = is satisfied.

In our case, this allows to replace the equations by the following (we kept the
same name for the variables):

& =i& (1+al& P +Bl&1) + 1 (&1, &),

& =i& (1+al&[*+b&1Y) +2g(E1,&),

with o« = B = -5, a=b =45, ¢ and @, of order 5 in E1,6,E1,&. In the
neighborhood of the origin, the flow &, (&;,&) = (& (¢),&(¢)) can be written

Ei(r) =" [&i(1+i(al& |+ BI&I*)r) + €2 (81,62,1)]

&) = &' [&(1 +i(al&t]” +bI&)r) + e (81,62.1)]

with ay, 0 of order 5 in &;,&;, El , 52 uniformly in ¢ belonging to a compact.

2. Regularizing the equations for a periodic solution by means of a blow-up: We
look for a periodic solution whose period T is close to the period 27 of the
solution & = 0 of the rotating Kepler problem approximation (an analogous
reasoning can be made for a solution close to & = 0). Because of the existence
of the energy first integral, the equations which define a periodic solution of
period T, that is & (T) = &;, &(T) = &,, are consequence of the equations

Arg&i(T) —Argly =2m, &(T)—& =0.

Writing down directly these equations would lead to possibly non differentiable
terms like a; (&1,&,)/&;. Indeed, they read

201(81,6,T)
&1 ’

" (1+i(al&s* + b)) — 1] & + % a(£1,6,T) =0.

2m =T +arg |1+i(a|& |+ BI&)T +¢
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We solve this problem by a further localization in a domain of the form |&;| <
|€1| by means of a complex blow-up

Ei=z, &L=u2n

which replaces such a term by & (z1,z1z2)/z1 which is now differentiable. The
first equation determines 7" as a C3 function of 7 ,215,22,22,

T =21 — 27|z (a+ Blzaf*) + 03,
where o3 vanishes at order 3 along z; = 0. The second one becomes
2ilz1*(a— a+ (b= B)|zal*)z2 + 03 = 03.

As a — o = € # 0, solving this equation leads to a C' surface tangent to the
plane z; = 0, that is in the (&1, &) space to a C? surface N tangent at order 2
to the plane & = 0. Intersecting with the energy hypersurface K = 0 gives the
seeked for periodic solution. In the same way, one proves the existence of N,
tangent to & = 0.

3. Proving the analyticity of N1 and N,: This is done in Conley’s thesis by closely
following the proof given in the non-resonant case by Siegel and Moser. To
understand the formulas, one suppresses the resonant terms of any order by
means of a formal (not convergent !) transformation. One gets new (formal
coordinates) 1,8 such that Cl and Cz become formal series in the resonant
terms ;| ¢;|? and ;(;8k). Rewriting the computation of periodic solutions as
above leads to formal surfaces Ny and N, where, for example, N; is defined by
a (formal) equation of the form & = ¥(|¢{|?){;, the restriction of the vector-
field being of the form {; = a(|{1|?)¢; where o has purely imaginary values
(this corresponds to the fact that N is foliated by periodic solutions surrounding
the origin). One proves the convergence of ¥ and & by writing down majorant
series.

1.4 The annulus twist map

Replacing the boundaries & = 0 and &, = 0 of the Kepler annulus by the two Hill
orbits, one can now construct a global annulus of section of the flow in the three-
sphere K~!(0) and analyze the first return map. Such an annulus is of course not
unique and it will be convenient to chose it so as to contain the “collision circle” of
equation z = 0.

In order to get precise enough information on the first return map, one must
analyze the equations up to the 5th order where the influence of the Sun comes
into play. Writing down a normal form up to this order implies first computing the
effect on terms of order five of the change of variables leading to a normal form
at order 3. In fact, one can dispense with this: it is enough to suppress only the
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non resonant terms of order 5, keeping the terms of order 3 as they stood initially.
Moreover, the above analysis of the submanifolds N; and N, whose intersection with
K = 0 defines Hill’s orbits, shows that there exists an analytic change of variables
which transforms them into coordinate planes. A finer analysis shows that such a
straightening change of variables differs from Id only by terms €A + £2B, where A
is resonant of order 5 and B is of order 7. One deduces that such a straightening of
Np and NV, does not bring any new change to the differential equation up to order 5.
Finally, we get new coordinates (;, ;) such that N; and N, are respectively defined
by {; =0 and & = 0, and the energy hypersurface K~'(0) and the collision circle
z=0by

SUGP+1GP) - Vet +06(§) =0, and &1~ Ga+e05(8) =0,

It follows that an annulus of section in K~!(0) containing the collision circle and
bounded by the Hill orbits can be defined by the equation

Arg8i+Argl,+€04(8) =0 (mod 27).

Computing a little more, one can find coordinates (¢, p) on this annulus, such that
the two boundaries are close to p = =1 and the first return map takes the form

B I vy 3v  pog ; ;

Coming back to the definition of this annulus, one checks that the return map corre-
sponds essentially to the passages of the orbit of the Moon through aphelium in the
rotating frame. Originating from a Hamiltonian system, this map necessarily pre-
serves a measure defined by a smooth density. Moreover, it is a O(g”) perturbation
of an integrable twist map whose twist is of size €°. This is a perfect ground for ap-
plying the main results of the general theory of conservative twist maps, a particular
case of the theory of Hamiltonian systems with two degrees of freedom:

1. Applied to the iterates of the return map, the Birkhoff fixed point theorem yields
an infinite number of periodic orbits of higher and higher periods to which cor-
respond periodic orbits of long period of the Moon around the Earth in the
rotating frame.

2. The Moser invariant curve theorem implies the existence of a positive measure
Cantor set of invariant curves on which the map is conjugated to a diophantine
irrational rotation and to which correspond quasi periodic orbits of the Moon.

3. To the Liouville rotation numbers, the Aubry—Mather theory associates invari-
ant Cantor sets to which correspond orbits of the Moon with a Cantor caustic.

4. Finally, it is possible to prove that the image of the collision circle intersects
itself transversally at eight points [CL]; in particular, it is not contained in an
invariant curve. Varying the value of € moves the invariant curve of a given ro-
tation number across the annulus which forces intersection with the collision
curve. This proves the existence of invariant “punctured” tori which correspond
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to orbits of the Moon which persistently change their direction of rotation
around the Earth in the rotating frame (generalization of the punctured tori to
the full planar three-body problem were given by Féjoz in his thesis [Fel]).

Remark. For writing down formulas, working in the two-fold covering K~!(0)
of the energy hypersurface diffeomorphic to S° is convenient but one can prefer to
state the results downstairs in the compactification (regularization), diffeomorphic
to SO(3) (that is to the real projective space of dimension 3), of the original energy
hypersurface H ’1(—8%). The first return map then becomes a perturbation of the
Identity (the Kepler case) of the form

Pe(@.p) = ((TJ —ve’ —3v3(1 - %)sf’p +0(e"), p+ 0(87)) .

and the collision curve intersects its image only four times.

A problem. When the collision curve intersects the set of invariant curves, the
closure of the union of its iterates, containing the set of intersected curves, is of
positive measure. What if the collision curve is contained in a Birkhoff region of
instability?

>

Hill’s region

| \
v
-
'
>

S

Fig. 1 Hill’s regions
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Fig. 2 The annulus of section

2 The Arnold-Herman stability theorem for the spatial
(1+n)-body problem

In the so-called planetary problem, one mass mg is dominant (the Sun) and the

others, the planets are of the form emy, ..., €m,, where € is small (around 1073 for
the “real” solar system). If xo = (x3,%3,%3),x1,...,x, € R? are the positions and ||.||
the euclidean norm, Newton’s equations read
Xo—X X —X
Xj=mg / +82mk / 1,...,n

The solutions are the projections on the configuration space of the integral curves
of the Hamiltonian vector field defined in the phase space, whose coordinates are
denoted by (xo,...,X,Y0,€Y1,---,€y,) and symplectic form is }j ;<3 dx/(; /\dylé +
€Y 1< j<n LI<k<3 dx’; A dy’;, by the Hamiltonian

ol , (1 g Il mom; \ o mjm
—_— p— J— _— 78 PR S——
tels ) )} )}

2 mo 1<<n M 1<J<n|‘x/_x0” 1<j<k<n||xj—xk||
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One reduces the translation symmetry by restricting to the value ¥y = 0 the total
linear momentum and going to the quotient by translations in the so-called Poincaré
heliocentric canonical coordinates

Xo=x0,Yo=yo+€y1+---+&wu, Xj=xj—x0, Y;j=y;, j=1,...,n

After dividing the new Hamiltonian and symplectic form by € one obtains a Hamil-
tonian defined on 7*R%" (coordinates (Xi,...,X,,Y1,...,Y,)) deprived of the colli-
sion set (X; = 0 or X; = X;) with its canonical symplectic structure :

Y:||? M . Y. Y,
Fp= Z (|| ill Ky J>+8 Z (_ m;m 41 k).
1Sea\ 21 X |1Xj —Xell ~ mo

1< j<k<n

It describes an € perturbation of n uncoupled Kepler problems with fictitious masses
defined by M; = mo + &m; and u;M; = mom;. Whe shall be interested in solutions
which stay close to solutions of Fy where the planets describe circular coplanar
motions with the same orientation around the sun.

Theorem 2.1. Given my,...,my,ai,...,a,, there exists & > 0 with the following
property: if € < &, in the phase space of the spatial (1+n)-body problem, in the
neighborhood of the circular coplanar positively oriented Keplerian motions with
semi major axes aj, ... ,an, there exists a set of positive Lebesgue measure of initial
conditions which lead to quasi-periodic motions with 3n — 1 frequencies (resp. 2n
frequencies for the planar problem)

These solutions are slow (secular) modulations of the quasi-periodic motions
with n frequencies corresponding to n independent elliptic motions (case € = 0),
the new secular frequencies being associated to a slow precession of the perihelia
and the nodes. A complete proof of this theorem for the (1 4 2)-planar problem was
given by Arnold in 1963. What follows s a guide to Herman’s proof of the general
case as written by Féjoz in [Fe2].

2.1 The secular Hamiltonian

We make again a symplectic change of coordinates, using the so-called Poincaré
coordinates (Aj,Aj, &, Nj,pj,qj)i=1,..n € (T! x Ry x R? x R?)", analytic in the
neighborhood of the circular and horizontal Keplerian motions. These coordi-
nates are defined by the following formulas where the unnamed letters are de-
fined on the figure: A; = [; + g; + 6, is the mean longitude, A; = uj/M;ja; is

its conjugate variable, while r; = &; +in; = \/2/\.,- (1 —/1— ef)e_i(gﬁef) and

zj=pj+ig;= \/ZAj, /1—€}(1 —cost;)e "% describe each a symplectic plane.
The modules |r;| = \/A;/2¢;(1 —0—0(812)) and |z;| = \/A;/21;(1 —|—0(812) —|—O(ljz))
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Fig. 3 Coordinates for Keplerian motion

describe respectively the eccentricity and inclination of a Keplerian ellipse; the hor-
izontal circular motions we are interested in correspond to |r;| = |z;| = O for all j.
We shall abbreviate the Poincaré coordinates by (1,A,Z) € T" x (R, )" x C*", with
Z = (}”1,. s ny 20y .- ,Z,,).

In these coordinates, the Hamiltonian H becomes an g-perturbation of a sum of
n uncoupled Keplerian Hamiltonians

3272

w3

HO(A): Z _ 2JAZJ_
1<j<n j

This is a very degenerate situation indeed, as H depends only on n action variables
instead of 3n. The averaging method tells us to write down H in the form

H(/’LA,Z) :HO(A) +8H81 (Aﬂz) +8H82(A7sz)a

where €H] (A, Z) is the average of the perturbation H — HO over the so-called fast
angles A = (A1,...,4,) € T" (the only ones which move if &€ = 0) and H? has zero
average over these angles. The hamiltonian H, 81 defines the first order secular system.
As it does not depend on the mean longitudes A, the conjugate variables A; remain
constant under its flow (they are supposed to be such that the (not too excentric)
ellipses remain far enough from each other so that the perturbation function deserves
its name). Hence, for given values of the Aj, i.e. of the semi major axes a;, Hg
defines a flow

dZ;  .0H}

dt ! 8Zk ’

k=1,...,2n,

on an open set, diffeomorphic to R** = C?" of the space of n-tuples of normalized
ellipses in R3, which is diffeomorphic to (52 x $?)". The detailed study of the
secular hamiltonian is a sequence of long computations, started by Laplace and
Lagrange in the 18th century, of which we only summarize the results:
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1. Each of the terms Y; - Y; is readily seen to have zero average, which implies

ni;my
H\(A,Z) = — / I d .
‘ 1<,-);7<< T ||1X; — Xil|

This is the Newtonian potential of a set of elliptic rings whose mass repartition
would follow Kepler’s area law.

2. Being only interested in the neighborhood of the origin, one writes down the
expansion up to second order (actually third because of parity) of Hé. This de-
pends on computations, using the so-called Laplace coefficients, of the Fourier
expansion of the inverse distance function of two planets considered as a peri-
odic function of their mean longitudes.

One gets H) (A,Z) = i°(A) + QA (Z) +0(|Z]*), with

QA(Z) :Q;\(éh'"7§n)+QlA(n17”'7nn)_Ql/((plw"»pn)_Q//((Q17"'7qn)7

Q‘/A(éh.”’é Z m]mk<cl(a]7ak> (i f\kk>+2C2(aj7ak) éjék >7

1<j<k<n AjAk

2
17] Pk
0% (p1y.-.ypn) = mjmCi(aj,ay) N
’ 1<]§<<n \/

The value h°(A) of Q4 at Z = 0 (which is a critical point corresponding to
circular horizontal motions) depends on the masses and the semi-major axes
while the coefficients Ci(aj,a;) and C>(a;,ax) are independent of the masses.
All of them have simple expressions in terms of Laplace coefficients. As a good
exercise, the reader will show for two planets that this form of the quadratic
terms is essentially dictated by the symmetries of the problem.

3. If p’ € SO(n) and p” € SO(n) respectively diagonalize Q' and Q”, the linear
transformation p = diag(p’,p’,p”,p") € SO(4n) is symplectic and transforms
Q4 into a hamiltonian of the form

Qrop(AZ)=H(A)+ Y oi&+n)+ Y Gi+ag)+o(Z]).

1< j<k<n 1< j<k<n

Applying the above coordinate changes to the full Hamiltonian leads to a Hamil-
tonian which we shall still write H, defined in a neighborhood of T x R”, x {0} in
T" x R% x C?" (symplectic form dA A dA + Yi<ji<on %dzj NdZj), of the form

He(AAZ)=H'(A)+e 1)+ Y 5(A)ZP+0(2*) + HA(2,A,2)
1<j<2n

where 7; = 0;if 1 < j<n, 1j=§;ifn+ 1< j < 2n, the term O(|Z[*) does not
depend of A and H; 2y has zero average with respect toA € T".
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The degeneracy of the integrable approximation He — €(O(|Z|*) + H?) appears
clearly: for € = 0 or for Z = 0, the dimension of the invariant tori drops down to n.
We shall later encounter other degeneracies which affect the spatial problem but we
first turn to Herman’s way of proving an appropriate KAM theorem.

2.2 Herman’s normal form theorem and how to use it

Herman’s powerful idea is to separate a normal form theorem for Hamiltonians
close to what could be called a Kolmogorov Hamiltonian — one such that T x {0}
is a diophantine invariant torus — from the actual verification of a non-degeneracy
hypothesis which allows a tuning of the available parameters turning such a normal
form into a conjugacy to some Kolmogorov Hamiltonian. For a hint of the compli-
cated history of KAM theorems with weak non degeneracy conditions, see [Se] and
the references therein.

The following theorem is a far reaching generalization of the Arnold-Moser the-
orem on vector fields on the torus which states that, among all C* vector-fields on
T? close enough to a constant vector-field (noted ® = (w;,®,)) whose frequen-
cies o satisfy a diophantine condition HDy ; (defined below), the ones which are
C”-conjugated to it form a submanifold of codimension 2; more precisely, that the
mapping

@, : Diff*(T2,0) x R? — 2°=(T?)
defined by @y (h,A) = h,@+ A (where h, @ is the direct image by / of the constant
vector-field @) is a C™ (more precisely fame in the sense of Hamilton) diffeomor-
phism of a neighborhood of (Id,0) onto a neighborhood of @ in 2" (T?).

We study hamiltonians H(r,0) on T*T™ = T™ x R™ (in our case, m = 3n,r =
(A — Ao, |Z] = |Z]o),0 = (A,ArgZ)). The role of the constant vector field of fre-
quencies @ on the torus is now held by the set .4, of Kolmogorov Hamiltonians
N(r,0) = Ng(r)+0(r?), where Ny (r) = - r. This is the set of Hamiltonians whose
Hamiltonian vector-field leaves invariant the torus » = 0 and induces on it the con-
stant vector-field with frequency vector @. Let also ¢ be a space of Hamiltonian
diffeomorphisms close to Identity, defined on T x B™, where B™ is the unit ball
in R™ as follows: the elements of ¢ are defined as truncations (described in [Fe2])
of diffeomorphisms g of T™ x R™ of the form g(8,r) = (¢(8),/do(0)"'(r+p)),
where ¢ is a diffeomorphism of T and p = df : T™ — R™* = R™ is an exact one
form. Let C7(T™ x R™) be the quotient of the space of Hamiltonians by the real
constants. We denote

HDy: = {0 € R", Yk € Z"\0,|l-o| = 7|[k]| "}

Theorem 2.2 (Herman’s normal form). For every @ € HDy . and for every
N° € N, the map
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Dy Ny XY xR™ — CT(T" xR™)
(N,G,Aw) +— H=NoG+Nyq,

is a local C*-diffeomorphism in a neighborhood of (N°,id,0). Moreover, the inverse
map P, U depends smoothly in the sense of Whitney on @ € HDy ;.

As in the Arnold—Moser theorem, this theorem asserts that the set of Hamiltoni-
ans which are conjugated to a normal form with a diophantine frequency vector (i.e.
those of the form H = N o G with N = Ny, + O(r?)) form a submanifold of codimen-
sion m of the set of Hamiltonians modulo constants. Herman’s theorem is in fact
more general (see [Fe2]) in that it works also with normal forms which leave invari-
ant tori of dimension lower than n. Following Herman, the proof given in [Fe2] uses
a “hard” implicit function theorem, that is one valid in a scale of Fréchet spaces.
The key feature of such theorems is the necessity of inverting (or inverting approxi-
mately) the differential of the mapping @, on a whole neighborhood of (N?,1d,0)
(invertibility is not an open property in Fréchet spaces).

Of course, it is only when the frequency correction A vanishes that Her-
man’s normal form implies the existence of an invariant torus. The beautiful idea
of Herman was to use the Whitney extension theorem and the usual implicit func-
tion theorem to draw the following corollary (I use the name given by Féjoz): let
N =UgernNg = {® 7+ 0(r*) } germ be the set of all normal forms.

Corollary 2.1 (hypothetical conjugacy). For every N° € ¥, there is a (non
unique) germ of C*-diffeomorphism

CI(T"XxR™ S Hw— OH) = (Ny = 0y -r+0(?),Gy) € N x4
at N® — (N°,1d) such that H = Ny o Gy for each H verifying @y € HDy.

The proof is in two steps: first, the Whitney extension theorem allows to extend (non
uniquely) from C3(T™ x R™) x HDy ¢ to C3(T™ x R™) x R" the map (H,®) —
@, (H) = (N,G,Aw); then, from the identity N® = (N® +N,,_0)old +Nyo_,,
one deduces that, at (NO,Id), one has %A—w“’ = —Id. Hence, from the usual implicit
function theorem, it is possible to define a function @ — wg by locally solving the
equation Aw(®) = 0.

We are now left with a serious problem: how to check that wgy which we do not
know satisfies a diophantine condition? The magic word here is “parameters”.

If we were in the non-degenerate case of Kolmogorov where the frequency map
from the actions to the frequencies of the corresponding invariant torus is a local
diffeomorphism the existence of a positive measure set of “good” values of the
actions would follow immediately from the fact that HD, ; has positive measure.
But in our case, the frequency map H — @ is of the form

(A,p) = [V(A)+0(e),& (2(A) +0(p?))]

Going back to Arnold and later used by Parasyuk, Bakhtin and Riissmann, the key
idea is that in the analytic case, the non-degeneracy hypothesis implying a positive
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measure set of good actions can be much weakened; thanks to the following result,
it is enough that the image of the mapping s +— ®? lies in no proper vector subspace
of R™:

Theorem 2.3 (Arnold, Margulis, Pyartli). If some real-analytic map s — w; from
a domain of RP to R™ is non-planar in the sense that its image is nowhere locally
contained in some proper vector space of R™, the Lebesgue measure of {s, @0° €
HDy ;} is positive provided that y is small enough and T large enough.

2.3 A stability theorem

We come back to Hamiltonians on T” x (R )" x R?” of the form obtained at the end
of section 2.1 (for the spatial (resp. planar) secular system p = 2n (resp. p = n)).

He(A,A,Z) = H(A) + eH) (A, Z) + eHZ (A, A, Z),

with HY (A, Z) = (A) + Ky e 7 (A)1Z)2 4+ 0(1Z]*). and H2 has zero average

with respect to 4 € T”. We denote as before v; = %—I;{O A).

Theorem 2.4 (Herman'’s stability theorem). If, for A near Ay, the frequency map

oA (Vi,...,Vy,T1,...,Tap) is non planar, there is a positive measure set of
Lagrangian invariant tori close to T" x {Ag} x {0} € T" x (R;)" x R?P.

One starts by changing coordinates so that H; appears as a close enough approxi-
mation of an integrable Hamiltonian in the neighborhood of a Lagrangian invariant
torus. There are standard ways of simplifying such a Hamiltonian by symplectic
transformations defined by polynomial generating functions; the non-planarity hy-
pothesis implies that the set A, of A’s on which this is possible has positive measure
and moreover that it intersects any neighborhood of Ag. In the case of the (14 n)-
body problem, the assertion on the bigger set A; defined below is directly ensured
by the non degeneracy of the map A — V(A) = (vi(A), - v, (A)).

1. Elimination “a la Lindstedt” of the dependence on the fast angles A; at a suf-
ficiently high order Ni. This is possible if A belongs to the set A; on which
V(A) € HDy ;. Moreover, Whitney regularity allows to extend this to a (non
unique) symplectic transformation L such that He o L keeps the same form with
HZ2(A,A,Z)) replaced by R (€,A,A,Z) 4+ O(e"), where Ry vanishes at infinite
order along {(g,A,A,Z)|A € A }.

2. Transformation to Birkhoff normal form up to order N;. This is possible if A
belongs to the subset A, of A; defined by diophantine conditions on the set
(Vis- ey Vus Tt ., Tp) Of all frequencies. As above, one can get a symplectic
transformation B such that

HeoLoB(A,A,Z) =H"(A)+el'(e,A,Z) +eRy(e,1,A,Z) +0(eM),
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H'(e,A,Z) = )+ Y T(A)ZiP+K(A,|1Z2]) +0(|1Z]™),
1<j<p

where K is a polynomial in the |Z; |? with terms of degree between 2 and N, — 1
and R; vanishes at infinite order along {(g,A,A,Z)|A € A,}. On this subset, H;
appears now as a O(eM | |Z|N2)-perturbation of the completely integrable system
with Hamiltonian H%(A) + € [l%(A) + L1, T(A)|Z;* + K (A, |Z1 2.,
|Z,|?)]. To focus the attention on the Lagrangian invariant tori A = Ao, |Z| =
|Z|o of this integrable approximation, one moves to symplectic polar coordi-
nates Z; = \/;Tkeiek, which leads to

e =H(A)+¢ [h(A )+%(A,p)]+8R3+0(£Nl,pNZ),

where R3 vanishes at infinite order along {(€,A,A,Z)|A € A2 }. In order to show
that enough of these tori do survive the perturbation, one considers the (m =n+
p)-parameter family H(, p) of Hamiltonians H obtained by translating the ori-
gin of the actions at (A, p). If A? € A5, p® > 0 and if (A, p) is close to (A?, p?),
the flow of H(, p) is close to the flow of H(A)+€[°(A)+ ¢ (A,p)] in the
neighborhood of the Lagrangian torus 74 ) = T" x {A} x {|Z|*> = p}. The
non-planarity being an open condition, it will be verified at A and the conclu-
sion follows from the hypothetical conjugacy theorem.

2.4 Herman’s degeneracy

For the planar 1+ n-body problem, a thorough study of the Laplace coefficients after
complexification of the semi major axes, allows proving by induction on the number
of planets (letting one semi major axis go to zero) that the frequency map is non pla-
nar. For the spatial problem, this map presents an expected degeneracy, say §, = 0,
due to the invariance under rotation of the problem, as well as an unexpected one: the
trace Y < j<, 0+ Li<j<n §j of Q4 is always zero. In the study of the motion of the
Moon, this resonance is responsible for the well-known fact that “at the first order
of the theory of perturbations” the retrograde motion of the node is exactly opposite
to the mean motion of the apogee. Nevertheless, it is only Herman who noticed it
in its generality. An induction similar to the one done in the planar case shows that
these are the only degeneracies. The first resonance is well known to disappear when
the direction of the (non-zero) angular momentum is fixed (here, vertically), which
corresponds to restricting the system to a codimension-2 symplectic submanifold
¥'; the second one disappears when completing the reduction by fixing the angular
momentum and quotienting by the rotations around its axis. This comes from the
fact that in the Poincaré coordinates, the vertical component of the angular momen-
tum becomes the quadratic form % = X< <, (A; — 5 (|7;]> +|zj|?)) whose trace,
when restricted to 7o/ is different from zero. Hence, after reduction, the frequency
map becomes non planar and the stability theorem yields diophantine Lagrangian
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invariant tori of dimension 3n — 2. To these tori correspond, for the non-reduced sys-
tem, invariant tori of dimension 3n — 1 whose number of independent frequencies is
3n—2or3n—1.

3 Minimal action and Marchal’s theorem

3.1 Central configurations and their homographic motions

The equations of the n-body problem in an euclidean space E can be given the
particularly simple form
¥=VU(x), (%)

where x = (ry,...,r,) € E"and U(x) = ¥, ;m;ymj||r; — ;|| =" € R are respectively
an n-body configuration and its potential function, and where the gradient is relative
to the mass scalar product (or kinetic energy scalar product), defined by

n
/ /! / / Z Z / / /! /!
XX =(rl,.. ) (e, ) = Zmi<ri—rc,ri —rG)g

i=1

The presence of the centers of mass rg = ﬁmiri makes the formula translation

. . . 1 .

invariant; one may as well consider only configurations x such that rg = 0.

In addition to being invariant under translation, equation (%) is invariant under

isometries of E and it inherits from the homogeneity of U the following scaling

property : if x(¢) is a solution, so is l’%x(kt) for any positive real number A. When
n = 2, any change in the configuration is necessarily a similarity (a segment has
no shape !); when n is at least 3, the simplest motions (called homographic) are
such that the similarity class of their configuration does not change. If dimE < 3,
such motions are necessarily of Keplerian type: if for example, the total energy
111%[|? — U (x) is negative, the solution is periodic, each body following an ellipse of
the same excentricity according to Kepler law. Such solutions were first discovered
for n = 3 by Euler and Lagrange at the end of 18th century. The configurations x
which admit homographic motions are called central configurations and their de-
termination for n > 4 is a very difficult problem. They are characterized by the
existence of a negative energy Keplerian motion with excentricity 1, which means
that they collapse on their center of mass when released with 0 initial velocity. In
other words, VU (x) is proportional to x. But x = 1VI(x), where I(x) = ||x|? is the
moment of inertia of the configuration with respect to its center of mass. Hence cen-
tral configurations are the critical points of the restrictions of the potential function
U to the spheres I = constant. As an exercise, the reader will use (squared) mu-
tual distances as coordinates on the space of “triangles mod isometries” and prove
Lagrange’s result that, whatever be the masses, the only non-colinear central con-
figuration of three masses is the equilateral triangle.
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Another important fact, already proved by Lagrange for n = 3, is that a homo-
graphic solution with excentricity e < 1 is necessarily planar. Note that only the case
of a relative equilibrium (that is e = 0) is “physically” obvious.

3.2 Variational characterizations of Lagrange’s equilateral
solutions

Equations of the type ¥ = VU(x) are known, since Lagrange, to be the so-called
Euler-Lagrange equations of an action functional, the Lagrangian action

Lt s, L) = S|P+ U,

where the Lagrangian L(x, x) is the difference between the kinetic energy ||%||? and
the potential energy —U (x). This means that the solutions of (x) are exactly the set
of “extremal” curves of the action functional. It is the mathematical formulation of
the so-called principle of least action. Poincaré was the first to try to obtain new
solutions of an n-body problem using minimization. In a short note written in 1896,
he looked for quasi-periodic (periodic in a rotating frame) solutions of the three-
body problem in R? as functions x(¢) defined on [0, 7] and with values in three-body
configurations, which minimize the Lagrangian action f; L (x(t),%(r)) among those
with the following property: after the “period” T, the new triangle x(7) is the image
of the initial one x(0) by a rigid rotation and the three sides have respectively turned
by the real (not mod 27) angles o, & + k1, ¢ +k» where k| and k; are fixed integers.
This amounts to fixing a one-dimensional homology class in the space of triangles
up to rotation (this space has the topology of R? deprived of three half-lines from
the origin). Assuming existence (this is a consequence of Tonelli’s theorem, proved
around 1930, because k1 # 0 and k» # O garantee coercivity, that is the impossibility
that a minimizer be at infinity), he was blocked by the collision problem caused by
the weakness of the Newtonian attraction. Indeed, around 1913 Sundman proved
that in any solution of the n-body problem which ends in a collision (partial or total)
at time 7o, two bodies i, j involved in the collision satisfy the estimates

Ies(t) =501 = Ol —10]3),  [1¥s0) —5(0) ]| = Ot 0] 5).

For the two-body problem, these estimates are an easy exercise which was enough
to convince Poincaré that the action of a solution ending in collision might (in fact
always does) converge, hence that a minimizer could a priori be the mere concate-
nation through collisions of segments of solutions. He eliminated the problem by
assuming a “strong force” potential (proportional to the inverse squared distance).
Poincaré’s retreat was in a sense wise because very often such homology con-
straints indeed lead to minimizers with collisions. The simplest example is given
by the Kepler problem of attraction by a fixed center in the plane (the two-body
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problem can be reduced to this). Let us look for periodic solutions of the equation

= - in R2\ 0. The action is f (|x(r)|> — 77 )dt and one seeks for minimizers
in the space of loops x(¢) of period T going k times around the origin (i.e. loops
belonging to a fixed homology class). Coercivity is insured as soon as the integer k
is different from O. It was proved by Gordon that for k = £1, minimizers are exactly
the elliptic solutions of the given period T, with any excentricity (along a curve of
critical points, a function stays constant !) while, if £ % 0,41, minimizers are only
collision-ejection solutions (ellipses with excentricity 1). The main point was to no-
tice that, by convexity of the action, a sequence of ejection collisions in a given time
T has a higher action than a single ejection collision solution during the same time.

A partial generalization of this result exists for the three body problem
(Venturelli, Zhang-Zhou): action minimizers among loops of configurations x(r)
of a given period T such that, during time T the three sides of the triangle make
respectively k1,k»,k3 complete turns, where the k; are fixed integers, are the equi-
lateral elliptic homographic solutions of the given period and any excentricity if
(k1,k2,k3) = £(1,1,1), a collision ejection of the given period if this is not the case
and all k; are different from 0, unknown if one of the k; is 0. Let us give a sketch of
proof of the case (1,1,1). In a frame fixing the center of mass, a classical identity
going back to Leibniz allows to write the action as the sum of three Keplerian
actions:

i +

g i T{Ilréj(t)llz M1
o L2 M@l

i<j

where M =Y m; and r;;(t) =r;(t) —r;(t). By the result of Gordon, an a priori lower
bound of the action is obtained by replacing each term by its minimum, obtained if
each r;;(r) is a Kepler elliptic solution of period T'. The end of the proof consists in
showing that the Lagrange equilateral solution is the only one which achieves this

lower bound: from Y r;;(r) = 0 it follows that ¥ r;(t) = 0 that is ¥, —4

[l > —
which it follows that the r;;(¢) cannot be colinear and the three ijltual distances
|r;;(z)| must be equal at each instant of time.

Notice that in all the cases considered above, collision solutions exist among
minimizers. This will not be the case anymore if we minimize the action among
loops x(¢) of configurations of period 7T satisfying the italian symmetry

0 from

x(t—=T/2) = —x(1).

This symmetry selects the relative equilibria (excentricity 0) among all Keplerian
motions and indeed, minimizers for the two-body and three-body problem are ex-
actly the circular solutions (with equilateral configuration in the latter case). The
proof (Chenciner-Desolneux, Long-Zhang) is even simpler than above, the reason
for the selection of the equilateral triangle among central configurations being more
clearly seen to originate from the fact that it is the unique configuration which re-
alizes the minimum of the restriction of U to I = constant or, what amounts to
the same, the minimum U of the normalized potential function U (x) = I 2 (XU (x).
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On the other hand, the Fourier series of a symmetric loop has no constant term and
this implies the inequality

42

T T
. 2 2
P> 25 [ st P

Hence, the action A of a symmetric loop satisfies

T 272 2m?

A>Ag = / 1) + Ul () | de = Tinf ( 14 U1 4 ),
o | T? I

with equality if and only if there exist two configurations ¢ and f such that

x(t) = ocos 2 + Bsin 2 (no harmonics of order higher than 1), and the function

%21 (x(r)) +Uol -3 (x(r)) is constant and equals its absolute minimum. Hence /(x(r)

is constant, from which it follows that the two configurations & and 3 are orthogo-
nal and have the same norm. Finally, x(¢) is a rigid circle in the configuration space.
One concludes that the motion is a relative equilibrium by using the fact that the
similitude classes of 3-bodies central configurations are isolated.

The two proofs above are misleading. As soon as the constraints select more com-
plicated (non a priori known) solutions, one has to prove the existence of collision-
free minimizers. In the next paragraph, an idea is given of the proof of Marchal’s
theorem which is the basic tool explaining why action minimizers under symmetry
constraints are very often collision-free.

3.3 Marchal’s theorem

Theorem 3.1. Let X' = (v),r},---,x},) and X" = (x],x}),--- ,¥)}) be two arbitrary
configurations, possibly with collisions, of n material points with positive masses
my,my,--- ,my, in the plane or in space. For any T > 0, any local minimizer of the
action among paths x(t) = (r1(t),r2(t), - ,r,(¢)) in the configuration space which
start at x(0) = x' and end at x(T) = x" is collision-free, and hence a true solution

of Newton’s equations, in the open interval 10,T|.

Already in the case of two bodies, this theorem is non-trivial. Translated in terms
of the Kepler problem, it asserts that given two points x',x” € R?\ O and 7 > 0, a
minimizing path x(t) € R?\ 0 x(0) = x', x(T) = x”, is a collision-free solution of
the equation (t) = —x/||x(t)||>. Many proofs can be given of this special case but
Marchal’s one is still among the simplest.

In what follows, I give the main idea of the proof of Marchal’s theorem (see
[Ma3, C3,FT]) . Suppose that the minimum of the action is attained by a path x()
which has a collision at time #y. In order to get a contradiction, we try to slightly
modifiy the path in such a way as to decrease the action. The problem which was
faced in the early attempts to prove that minimizers of some kind are collision-free
is that, except in the case of three bodies, not much is known about the configuration
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taken by the bodies entering the collision. There is Sundman’s theory, which says
that the normalized configuration tends to the set of central configurations, but the
latter ones are so poorly understood that it is of no use (for five bodies and more one
even does not know if the number of similitude classes is finite!). Marchal proposes
to chose any one of the bodies, say r; involved in the collision and to shift slightly
its position at time #y, replacing r;(t) by r;(t) + €¢(t)v;, where v; is a unit vector
and @(¢) is a smooth function of time such that ¢(#) = 1, supported by a small
interval [to — 1,% + n]. Controling the modification brought to the action by this
single modification is impossible but Marchal makes the striking observation that
replacing the original action by the average of the modified action when v; takes
every possible direction amounts to replacing the perturbed body i by a uniform
repartition of its mass over a sphere in the spatial case (resp. a circle in the planar
case). But, in the spatial case, the potential generated by a homogeneous sphere is
constant inside the ball bounded by the sphere and equal to the potential of a point
mass at the center with the same total mass outside. This is a strong hint that the
averaged action is strictly smaller than the original one.

Let us prove that it is indeed the case in the simplest possible situation, to which
it is indeed possible to reduce the general case. We suppose that the minimizer x()
is a parabolic homothetic collision-ejection solution of the n-body problem in R3,
that is: ,

x(t) = t|3x0, t € [-T,T)

where xp is some central configuration (xo could be different for t < 0 and ¢ > 0).
Thanks to the linearity of the mean, we may treat separately ejection and collision,
hence we can restrict the attention to the time interval [0, 7']. We study deformations
of x(t) of the form

(1) = (e1(2),..., e (1) +R(D)s, ..., x,(2)),

where 1 <k <nand R() = (1 — +)p with p a small positive real number and s
belongs to the unit sphere. Taking the mean of the actions over s and exchanging the
order of integration amounts to truncating the potential of the (k, j)-interactions to
mjmy /R(t) for t belonging to the interval [0,7;], where ¢; is the characteristic time
after which this potential is the same as the one for the original path, that is

which implies

Hence

: Gl 1
Ak oy < TP~ , /’ _— d
o <k mm | RO )]

(the inequality sign comes from the fact that the deformations do not keep the center
of mass fixed).
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In other words, the last term is the integral over the whole interval [0, T] of the

function {ﬁ — ﬁ(t)] ~, where for any f:[0,T] — R, we have denoted by f(¢)~
"
the function which is equal to f(¢) when f(¢) <0 and to 0 otherwise.

Hence

qu 527 S 2T — Z mjmkAj,
J#k, j<p
where :
Ty (1- —) [ —
p g 0 r]k(t)
Hence
k niy 0 2 4 7 1 l
szfm—szfgﬁojk) t;—|—0<tj3 Y, mmy t +o )

J#k, j<p

and we conclude that .o7¥ — o7 < 0.

The proof that one can reduce the general problem to this special case is given
in [C3]. It uses the ideas of R. Montgomery, S. Terracini and A. Venturelli; the
two main steps in this proof are (1) the existence of an isolated collision in any local
minimizer x(¢) and (2) the reduction, via blow-up, of the case of an arbitrary isolated
collision to the case of a parabolic homothetic collision-ejection solution. In [FT]
an important generalization is given,with detailed proofs, to some equivariant cases,
to other exponents of the potential and any space dimension greater than 1. The
main remark is that in many cases (the ones possessing the rotating circle property),
averaging over a well-chosen circle is sufficient.

3.4 Minimization under symmetry constraints

The simplest case where Marchal’s theorem applies directly is the already men-
tioned iralian symmetry x(t — T /2) = —x(t), which corresponds to an action of
the group Z /27 on the space of T-periodic loops in the configuration space of the
n-body problem in R?. Indeed, let [to, 7+ T /2] C [0, T] be a fundamental domain of
this action: the restriction of x to [fy,#;] must be an unrestricted local minimizer of
the action .« among paths with the same endpoints, and as such collision-free in the
open interval ]to,#([. As the starting point o may be chosen arbitrarily, we deduce
that x cannot have a collision.

For the planar problem (p = 2), this result is somewhat disapointing as one can
prove that a relative equilibrium whose configuration minimizes the scaled potential
Up=1 U is always an absolute minimizer and that these are the sole minimizers
provided certain technical conditions are satisfied (which are at least satisfied for
n =3 and n = 4). Hence, in order to get interesting minimizers, one must either look
at the spatial problem (p = 3) or impose stronger symmetry constraints. These two
routes lead to interesting new families of periodic solutions of the n-body problem,
the Hip-Hops and the choreographies.



Four lectures on the N-body problem 43

1. The Hip-Hops (see [CV, C4]) Combined with known results on central con-
figurations [Mo3] and the above remark that a relative equilibrium solution
whose configuration minimizes Uy is a minimizer for the italian symmetry, a
simple analysis of Hessian of the action along such a relative equilibrium solu-
tion shows that a minimizer for the spatial problem cannot be a planar solution
as soon as the number n of bodies is at least 4. The simplest case is the one
of four equal masses for which a minimizer should be (this is not proved) the
original Hip-Hop with its D4 X Z; symmetry. In this solution, to the relative
equilibrium of the square is added a vertical oscillation of the two diagonals;
twice per period, the shape is the one of a regular tetrahedron. It is a remark-
able compromise between the relative equilibrium of the square and the relative
equilibrium of the regular tetrahedron which should have been the minimizer
if it existed (it does in R“). More generally, whatever be the masses, the corre-
sponding minimizers are likely to be among the “simplest” non-planar solutions
of the corresponding n-body problem.

2. The choreographies (see [CM, Si, CGMS]) In this case, one imposes equal
masses and a symmetry constraint which implies that after time 7' /n, the bodies
occupy the same positions save for a circular permutation (i.e. the symmetry
group G contains as a subgroup a copy of Z/nZ which acts in the indicated
way). This implies the existence of a curve along which the bodies move, sepa-
rated by equal time lags. It is likely that the equality of the masses is a necessary
condition for such a solution to exist but up to now this is proved only when
n < 5 [C6]. The simplest choreographies are the relative equilibria of n equal
masses which are the vertices of a regular n-gon. Surprizingly we shall see in
the next section that they are related through families of relatively periodic solu-
tions to more complicated choreographies (in particular the figure eight solution
when n = 3) and to Hip-Hops. An extensive search for choreographies was done
by Carles Simé (see his website for animations).

4 Global continuation via minimization

We study the three-dimensional dynamics in the neighborhood of the equilateral
relative equilibrium of the regular n-gon with equal masses (Vi,m; = 1).

The fact that, when perturbed in an orthogonal direction, the length of a straight-
line segment stays constant at the first order of approximation, implies a splitting
of the variational equation of the n-body problem along any planar solution into a
part (HVE) describing the “horizontal variations” (along the plane of motion) and
one (VVE) describing the vertical ones (orthogonal to the plane of motion). When
the planar solution is a relative equilibrium, this last equation takes the particularly
simple form

a=Y Z(-2), (VVE)
i#iTij
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where the 7;; are the (constant) mutual distances of the bodies in the relative equi-
librium and (zj,22,---,z,) € R" are supposed to be such that }! , z; = 0, which
amounts to fixing the center of mass at the origin. In what follows, we suppose that
all the m; are equal.

After reducing the rotation symmetry by fixing the angular momentum and quoti-
enting by the rotations around its axis, the relative equilibrium becomes an isolated
equilibrium. One reads directly from the variational equation the spectrum of the
linearized vector-field at this equilibrium: the corresponding 6n — 10 dimensional
matrix splits into a 4n — 6 horizontal block and a 2n — 4 vertical block whose eigen-
values are all purely imaginary because the Newton force is attractive.

In the next sections, we concentrate essentially on the case n = 3, giving only
hints at the end for the cases n = 4 (partially understood) and n > 4 more conjectural.

4.1 Bifurcations from the Lagrange equilateral relative
equilibrium

When n = 3, after reducing the rotation symmetry and restricting to a center man-
ifold one gets into a situation very similar to the one in the lunar problem, with a
1-1 resonant spectrum and energy surfaces diffeomorphic to the three-sphere. Here
also the local existence of two Lyapunov families of (relatively) periodic solutions
can be proved: one is already known, it is the homographic family; the other one,
when globally continued (see the next section) goes all the way to the reverse equi-
lateral relative equilibrium through the planar figure eight solution. In an energy sur-
face close to the relative equilibrium, the flow admits an annulus of section whose
Poincaré return map is a twist map which, because of a resonance which persists
all along the homographic family, is the identity on the corresponding boundary. I
shall not reproduce the computations of [CF2] but be content with explaining the
similarities and the differences with the first chapter.

For the relative equilibrium of an equilateral triangle whose edges have length
1 and vertices have masses m;, (VVE) reads %; = ¥ ;;mj(zj — z), i = 0,1,2. As
Ziz:o m;z; = 0, this becomes the following (with M = Ziz:o m;):

Zi=—-Mz,i=0,1,2.

We shall choose the masses to be 1/3 so that the period of the relative equilibrium
solution is 27 and the 2n —4 = 2 “vertical” eigenvalues are +i.

On the other hand, the 4n — 6 = 6 “horizontal” eigenvalues are +i and a quadruple
j:%ﬁ =+ (see for instance [Mo2]), so that the spectrum is completely resonant. Using
Maple, an analogue of the normal form described in the first chapter can be com-
puted. This leads to complex coordinates (u,v,h,k) (I keep the notations of [CF2])
in the tangent space (identified to C*) of the eight-dimensional reduced phase space
such that the linearized vector field becomes free of non-resonant terms up to order
three. The normal form, which is not unique at a general order, can be chosen so
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that the vector field is invariant under .7 (u,v, h,k) = (u,—v, h,k). This corresponds
to the symmetry with respect to the invariant horizontal plane, which is defined by
the equation v = 0.

The result is of the following form:

it = iu[l + alul® + B|v|* + yhk + 7hk] + Os

v = iv[l +alul* + b|v|* + chk + chk] + Avhk + Os
b= AR[1+ rlul® + s|v|> +thk + ' hk] + RV h 4 Os

ke = —AK[1 + r|u|® + s|v|> + thk + ' hk] — R’k + Os,

where the coefficients have the following non-zero values:

9
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and where Os stands for real analytic functions of order 5 in u, i, v, v, h, h,k, k.

Even if the situation looks more complicated than in the restricted problem, it is
not really so. This is because one can restrict the attention to a “center manifold”
tangent to the invariant space associated to the purely imaginary part of the spec-
trum, and containing all the local recurrence near the equilibrium. A simple analysis
shows that, when lifted up to the non-reduced phase space, such a four-dimensional
center manifold at the equilibrium becomes a six-dimensional manifold tangent to
the one obtained from the relative equilibrium solution by making the rotations act
independently on positions and momenta. From this description of the tangent space
one can deduce that the restriction of the reduced Hamiltonian to a center manifold
has the equilibrium as a non-degenerate minimum, which implies that its levels
close enough to the equilibrium are three spheres (and in fact, as noted by Moeckel,
that the center manifold is unique). In restriction to the center manifold (coordinates
u,i,v,v), the normal form, still invariant under the mapping 7 : (u,v) — (u,—v), is
of the form

it = iufl + alu)?® + B|v[*] + Os
v = iv[l +alul* +b|v|*] + Os,

with v = 0 defining the Lyapunov family of equilateral homographic motions. More-
over, the energy becomes

U e P

H==373 "%

+ Oy4.
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The problem is now similar to the planar circular restricted problem in the Lunar
case (see [Co, CO, 28] or [Du] in a more general situation), where the Lyapunov or-
bits are Hill’s direct and retrograde orbits. The proof of existence and local unique-
ness of the vertical Lyapunov family (the one tangent to u = 0) follows exactly as
in the first chapter because b # ; moreover, if we knew that our center manifold
is analytic, we would get also analyticity of the family. On the contrary, the higher
order resonance a = o would prevent us from applying the same proof to the hor-
izontal homographic family tangent to v = 0 if we did not know that it exists. A
simple analysis of the vertical variational equation along the homographic family
shows that this resonance must persist in normal forms of any order: the coefficients
of the monomials u|u|?* in 1 and v|u|?! in v are necessarily equal. One can neverthe-
less prove that no other Lyapunov family bifurcates from the relative equilibrium by
showing that the Poincaré return map in an annulus of section, whose one bound-
ary belongs to the homographic family and the other one to the vertical family, is a
monotone twist map.

4.2 From the equilateral triangle to the Eight

The vertical Lyapunov family is highly symmetric. Indeed, after choosing appropri-
ately a phase, it is tangent to the “linear” family

rj(t) = (\%CjeiZ”’,ARe(fjeiz’T’)> ER’xR=R? jcZ/3Z, (S1)

where { = ¢ and the amplitude A is a real parameter. The discrete symmetry group
of (81) is seeked as a subgroup of

Go=O(R/Z) x £(3) x O(R?),
where g = (7,0,p) € Gy acts naturally on the space of 1-periodic loops:

x: R/Z x {1,2,3} - R?
7] ol pl
gx:R/Z x {1,2,3} — R3.

If x = (ry,rp,r3) is a loop in the configuration space, the transformed loop by the
(left) action of g = (7, 0,p) is

grj(t) = pro1(;(t7 (7).

Lemma 4.1. The stabilizer G; C Gy of (S1) is isomorphic to the dihedral group Dg
with 12 elements.

The proof is an easy exercise. One finds that the elements (7,0, p) of G| act as
follows (vectors in R? are decomposed into a horizontal part /2 and a vertical part v):
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T () =&(1—0), o' (j) = E(j+8), p(hyv) = (€2, e ™Py),

with & = +1 (and A% = h or h according to whether & = +1 or £ = —1) and @ €
R/Z,B €Z/2Z,6 € Z/3Z, 0 € R/Z satisfying

w| o,

a:67§ (mod 1), G:Ef (mod 1).
3 2
The choices of (6 =1, =1,6 =1) and (§ = —1, = 0,6 = 0) define generators
g1 and g of Gy which satisfy the relations g? = g% =1l,81:2 = gzgfl, which is a
presentation of Dg.
In a frame which rotates uniformly in the opposite direction with the same fre-
quency as the relative equilibrium, (S}) becomes

£i(t) = (§/e*™ Re({/e™™) e R xR=R?, jeZ/3Z, (S1).

The symmetry group does not change but its action does: the formula defining
is changed to o =26 — % = — & (mod 1) =0 (mod 1). The resulting curve in
rotating frame is now a choreography. Indeed, the group element deﬁned by & =
1, =0,8 = 1, transforms (/;(t),v;(t)) into (k1 (t — 3),vj41(t — 1)): all bodies
lie on one and the same spatial curve. Now, it follows from unicity that

Lemma 4.2. In a family of rotating frames parametrized by @ close to —2x, an ap-
propriate lift of the local vertical Lyapunov family becomes a family of D¢ invariant
choreographies (called the Py family).

Global continuation of the family is based on the following remark [Ma2, CF2]:
we consider the following family (parametrized by @) of paths in the configuration

space: .
r?(f)=<\% (4”2;“’) glemion ) jezpr. W

In a frame which rotates uniformly with frequency @, each member of the family
becomes a loop with the G| symmetry, the equilateral triangle formed by the bodies
making two complete rotations during the period 1 Its action during the period

1 is readily computed to be proportional to (4”2“3) i In particular, it tends to its

absolute minimum zero as @ tends to —47, the limit situation corresponding in the
inertial frame to bodies at rest at infinity. When @ varies from —47 to 0, the action
increases. It can stop being a relative minimum among paths which, in the rotating
frame become loops with the G; symmetry, only when appears a 1-periodic Jacobi
field, that is a solution of the variational equation which, in the rotating frame, is
1-periodic and possesses the required G; symmetry. This is the case only when
@ = —2x. For values of @ closer to 0, the minimum is no more the (L) family
but an appropriate lift of the vertical Lyapunov family. The global continuation is
obtained by looking, for each value of @ between —27 and 0, to such a minimizer
among paths which are Gi-symmetric in the rotating frame. The end of the family
is the figure Eight solution for which the Dg symmetry can be interpreted as the
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symmetry of the space of similarity classes of plane oriented triangles (the so-called
shape sphere (see [CM, Mol]). It is the maximal discrete symmetry that a solution
of the three-body problem may possess in the case of equal masses (see [Mal] 10-
8-2).

Technically, one is faced with the problem of showing that, for each value of @,
a (local) minimizer has no collision. This is not a direct consequence of Marchal’s
theorem because of the time reversal symmetry which implies that the boundaries
of a fundamental domain of the 7 action on the time circle cannot be chosen ar-
bitrarily. Nevertheless, this can be proved by a direct estimation of a lower bound
of the action of paths with collision with the given symmetry: this lower bound
happens to be exactly the value of the action of the member of (L) corresponding to
o =0.

Remarks.

1. Using obvious symmetries, the Pj, family can be continued into a loop of quasi-
periodic solutions containing the horizontal equilateral relative equilibria rotat-
ing in both directions (the first line of Fig. 4 shows half of it in the rotating
frame). Applying isometries and scaling, this defines in the 12-dimensional (af-
ter reduction of translations) phase space a compact invariant six-dimensional
submanifold entirely foliated by relatively periodic solutions. Topologically,
this manifold is a fibre space over the lens space L (4,1).

2. It is interesting to recall a remark made by C. Marchal at page 257 of his
book [Mal]: after having determined the expansion ot the vertical Lyapunov
family up to order 6 in a small parameter c; corresponding to the vertical ex-
tension of the solution (opening of the mouth of the oyster described in the
rotating frame), he asks for their continuation, mentioning as an example of
surprising continuation the family of retrograde Hill solutions up to the colinear
“Schubart” solution (see [He]).

4.3 From the square to the Hip-Hop

In the case of the square relative equilibrium of four equal masses, there are two
Lyapunov families in addition to the homographic family; one of these leads by con-
tinuation to the Hip-Hop, which is the simplest non-planar solution of the four-body
problem (line 2 of Fig. 4). The possibility of obtaining this family by minimization
of the action is related to the fact that, in R3, a relative equilibrium must be planar
(I recalled in Sect. 3.1 that this is true of any homographic solution of the n-body
problem).

The case of the Hip-Hop corresponds to a frequency which is not in resonance
with the frequency of the relative equilibrium; the local study is done in [Ba]
(compare also with [MS] for the case of an additional central mass). The global
continuation of the Hip-Hop family is done in [TV]. Here also, the proof that there
are no collisions for minimizers in this family cannot appeal to Marchal’s theorem
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From Equilateral to Eight: The Pi2 Family

|
4

The Hip-Hop Family
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4 Bodies: The First Vertical Frequency
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Fig. 4 Lyapunov families seen in the rotating frame (horizontal parameter @)

or to its equivariant strengthening given in [FT]). The problem is the topological
constraint attached to the rotating frame: one has to minimize among paths such
that, in the inertial frame, the starting point and end point of each body make a
fixed real (not mod 27) angle o = —®T between 0 and 27, and this is a topological
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condition as soon as T < ¢ < 27 (think of the same problem for the planar Kepler
problem). The proof that no collision occurs in a minimizer is by contradiction via
the introduction of an obstacle. The end of the family should be a simultaneous
double collision but this is not proved.

Remark. The fate of the first vertical Lyapunov family, associated to the fre-
quency of the relative equilibrium is complicated (line 3 of Fig. 4), probably lead-
ing through a secondary bifurcation to a planar solution proved to exist at first
numerically by J. Gerver and then with a computer assisted proof by Kapela and
Zglyczinski (this solution lies in the horizontal plane and not the vertical one be-
cause its angular momentum, in contrast with the figure eight solution, is not zero).

4.4 The avatars of the regular n-gon relative equilibrium:
eights, chains and generalized Hip-Hops

Symmetries of the solutions of VVE along the regular n-gon relative equilibrium
are easily analyzed [CF3] and may lead to Lyapunov families with interesting
continuation [CF1] (lines 4 and 5 of Fig. 4). Possible problems connected to min-
imization under the corresponding symmetry constraints could appear for n > 6
because of the appearance of new imaginary eigenvalues of the Horizontal Varia-
tional Equation [Mo2] which could lead to different types of bifurcations with the
given symmetries.

Remark. It is easy to prove that when, observed in the inertial frame, the mem-
bers of the vertical Lyapunov families attached to the regular n-gon relative equilib-
rium are choreographies for a dense set of values of the parameter @.

Thanks to Jacques Féjoz, Laurent Niederman and David Sauzin for various
comments about these notes. Special thanks to Jacques Féjoz for his help with the
figures.
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Averaging method and adiabatic invariants

Anatoly Neishtadt!

Abstract There are many problems that lead to analysis of Hamiltonian dynamical
systems in which one can distinguish motions of two types: slow motions and fast
motions. Adiabatic perturbation theory is a mathematical tool for the asymptotic
description of dynamics in such systems. This theory allows to construct adiabatic
invariants, which are approximate first integrals of the systems. These quantities
change by small amounts on large time intervals, over which the variation of slow
variables is not small. Adiabatic invariants usually arise as first integrals of the sys-
tem after having been averaged over the fast dynamics. Adiabatic invariants are
important dynamical quantities. In particular, if a system has sufficiently many
adiabatic invariants, then the motion over long time intervals is close to regular. On
the other hand, the destruction of adiabatic invariance leads to chaotic dynamics.

1 Introduction

Adiabatic invariance is a remarkable phenomenon in dynamics of systems with
slowly varying parameters. It can be described as follows. Consider a system which
depends on a parameter. Suppose that the system has a first integral for every fixed
value of this parameter. If this parameter changes in time, the system in general does
not have any, even approximate, first integrals. However, if the parameter is chang-
ing slowly, such an approximate first integral exists. This approximate first integral
is called an adiabatic invariant. It is a function of phase variables and the parameter
such that its value along a trajectory remains approximately constant on long time
intervals on which the parameter changes considerably. Here are several classical
examples.
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Example 1 (Rayleigh, or Lorentz-Einstein, pendulum). Consider a mathematical
pendulum whose length [ is varying slowly in time: [ = [(&f), ¢ is time and € is a
small positive parameter. On a long time interval of length ~1/¢, the energy E of
the pendulum will change considerably, by a value ~1. However, there is a function
I =1I(E,l) of energy and length of pendulum which is an adiabatic invariant; its
value changes only by O(¢g) during time 1/€. This function I is the “action” of the
pendulum. If the amplitude of oscillations is small then / is approximately equal to
E/(g/1)'/? , where g is the acceleration of gravity (we assume that E is normalized
so that it is zero when the amplitude of oscillations vanishes).

Example 2 (Fermi—Ulam model). Consider the one-dimensional motion of a par-
ticle bouncing between slowly moving ideally reflecting walls, where the distance
between the walls is d = d(&t). Then the product vd of the particle’s velocity v and
the distance between the walls d is an adiabatic invariant: its value changes only by
O(¢€) during time 1/¢.

Adiabatic invariants became widely known and used only after the work of
P. Ehrenfest, who suggested the name ‘“‘adiabatic invariant”. He discovered the adi-
abatic invariance of the “action” variable in Hamiltonian systems with one degree
of freedom (see Sect. 2) as a particular case of some thermodynamical relations
that had been established by L. Boltzmann, R. Clausius and C. Szily [16]. Sub-
sequently, adiabatic invariance was a very important concept in the early stage of
development of quantum mechanics. Later, after the work of H. Alfvén, adiabatic
invariance becomes important in problems of plasma physics. But in this case one
should consider not systems with slowly varying in time parameters, but systems
with slow dependence on some of the phase variables.

Example 3 (Magnetic moment). In a constant magnetic field a charged particle
moves along a spiral around a force line of the field. This motion is a composition of
rotation around the field line (along a circle which is called the Larmor circle) and
a drift motion of this circle. In the case when there is a small relative change of the
field over a distance of order of the Larmor radius and when the pitch of the spiral
is small of order €, the magnetic moment of the particle is an adiabatic invariant;
its value changes only by O(¢€) during time 1/¢. The magnetic moment of the par-
ticle is defined to be the value E | /B, where E | is the energy of the Larmor motion,
E, = vzL /2, vy is the value of projection of velocity of the particle onto the plane
perpendicular to the magnetic field, and B is the strength of the magnetic field.

Adiabatic invariants have also applications in celestial mechanics, hydrodynamics,
optics, radio-physics, chemical kinetics, to name other areas in the physical sciences.
2 Adiabatic invariance in one-frequency systems

A somewhat general framework in which adiabatic invariants appear can be de-
scribed as follows. Consider a Hamiltonian system with one degree of freedom, and



Averaging method and adiabatic invariants 55

suppose that the Hamiltonian E of this system depends on a parameter A which is
slowly varying in time;

E=E(p,gA),A=A(1),T=¢r,0< e < 1. 1)

Here (p,q) are canonical conjugate variables, (p,q) € R>. All functions are as-
sumed to be smooth enough. Because the parameter A is changing slowly, it
is reasonable to first consider the problem at frozen values of A. For every
frozen value of A in the plane p,q let there be a domain filled by closed phase
curves of E (Fig.1). In this domain one can introduce “action-angle” variables
I=1(p,q,1),9 = ¢(p,q,A)mod2x [4]. The “action” I(p,q,A) is the area sur-
rounded by the phase curve passing through the point (p,q), divided by 27. The
“angle” @(p,q,A) is a uniformly varying angular variable on this phase curve tran-
scribed by the motion of the system with Hamiltonian E. Now let the parameter A
change in time. Denote by (p(7),q(z)) a solution of our Hamiltonian system.

Theorem 2.1. The action variable I(p,q, ) is an adiabatic invariant:
[I(p(t),q(t),A(et)) —Ih| < Ce for 0 <t < 1/e.

Here Iy = 1(p(0),4(0),4(0)), C = const > 0.

Proof. For fixed A the canonical transformation p,q +— I, ¢ is defined by means of
a generating function W = W(I,¢,A). The old and the new variables are related via
the expressions

p=0W/dq, ¢ =W /dI. (2)

Denote Hy = Hy(I,t) the old Hamiltonian expressed in the new variables. Let
us make a canonical transformation of variables by means of formulas (2) in the
case when the parameter A is changing in time. According to a standard recipe of

TN
==

Fig. 1 Domain in the phase plane filled by closed phase curves
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analytical dynamics, the behaviour of the variables I, ¢ is described by a Hamilton-
ian system with Hamiltonian H (I, ¢, t,€) = E+ W /dt = Hy(I,t) + eH (1,9, T),
where the function H; is 27 - periodic in ¢. The equations of motion have
the form

JH, . JH, JdH,

%,rze, O=——+€—— 3)

I=-e o1 for

This system contains slowly varying variables /,7 and angular variable (the
phase) @, which rotates with frequency approximately equal to @ = dHy/dI. Sys-
tems of such form are standard objects for application of the averaging method (see,
e.g. [4]). In order to describe approximately the behaviour of the slow variables,
the averaging method prescribes to average the r.h.s of equations for these variables
over the fast phase. The averaged equation for / has the form / = 0, which im-
plies that I = const along the trajectory. The theory about accuracy of the averaging
method (see, e.g. [4]) says that behavior of slow variables in the exact system is
described by solutions of the averaged system with the same initial conditions, with
accuracy O(¢€), over a time interval of length 1/¢e. This implies the assertion of the
theorem. g

Example 4 (Quadratic Hamiltonians). Consider the quadratic Hamiltonian

E= %(ap2 +2bpq +cq?),

and assume that @* = ac — b* > 0. For a, b, ¢ constant, the Hamiltonian E describes
linear oscillations with frequency @, and phase trajectories (level lines of E) are
ellipses. It is easy to check that the “action” is I = E /®. If a, b, ¢ are changing slowly
in time, then according to Theorem 1 the action [ is an adiabatic invariant. This
explains the result of Example 1 for the case of small oscillations of a pendulum.

For Example 2 we have I = vd /. However in this case adiabatic invariance of
I does not follow from Theorem 1 because of the lack of smoothness in the system.
“The proof of adiabatic invariance of vd in this system is an instructive elementary
problem” [4] (however, see [13] for general consideration of adiabatic invariance in
systems with impacts).

A more general framework for adiabatic invariance, which is needed for prob-
lems similar to that in Example 3, is a framework of slow-fast Hamiltonian systems.
Consider Hamiltonian system with Hamiltonian of the form

E=E(p,q,yx) )
and with the symplectic structure

dp Ndg+ € 'dy A dx.
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The equations of motion have the form

p_ aq’q_ap7y_ ax7x_ ay7

and the variables p, g are called fast while variables y, x are called slow. System (5) is
called a Hamiltonian system with fast and slow variables or a slow-fast Hamiltonian
system. (In particular when the Hamiltonian has the form E = y+ Ey(p,q,x), we
get a system depending on the slow time x = 7.)

Consider the case when the fast variables correspond to one degree of freedom
(i.e. p,q are scalar variables). The dimensions of y, x are not important for now. Be-
cause variables y,x are changing slowly, it is reasonable first to consider the prob-
lem at frozen values of y,x. For every frozen value of y,x in the plane p,q sup-
pose that there is a domain filled by closed phase curves of Hamiltonian E (Fig. 1).
In this domain one can introduce “action-angle” variables I = I(p,q,y,x), @ =
o(p,q,y,x) mod 2x. Denote by Hy(1,y,x) the Hamiltonian E expressed via vari-
ables 1,y,x. Denote as (p(t),q(t),y(t),x(z)) a solution of our Hamiltonian system

3.

Theorem 2.2. The action variable I(p,q,y,x) is an adiabatic invariant:
1(p(1),q(1),y(t),x(1)) — o] < Ce for 0< 1< 1/e.

Moreover
[y(r) =Y (#)|+ |x(r) =X (¢)] < Ce for 0 <t < 1/e.

Here (Y (t),X (t)) is the solution of Hamiltonian system with Hamiltonian Hy(Iy, Y, X)
and with initial data Y (0) = (0), X(0) = x(0), Ip = 1(p(0),¢(0),y(0),x(0)).

Proof. At frozen values of the slow variables y,x a canonical transformation of
variables (p,q) — (I,¢) is determined by a generating function W(q,1,y,x) con-
taining y,x as parameters. In the system with Hamiltonian (4) perform a canon-
ical transformation of variables (p,q,y,x) — (I,®,9,%) with generating function
£~ '9x+W(q,1,9,x). This transformation of variables takes the form

aw aw aw ow

Azi,\ = —_— A: — :A _ 6
) PR aqnc x+eayﬂy y+8ax (6)

In the new variables the Hamiltonian (4) has the form

JE OW  dHy oW
H :HO(Iay7x)+8H1(17(P7y7xag)7 Hl = 3. 3. — s +O(£)’

where the function H; is 27 - periodic in @. The equations of motion have the form

A 0H, A JH, , dH| A dH, , 0H|
I_—ﬁa(p,y——e())2 —& a)2,x—say +& 75 7
JH, oH,

¢

~

of "for
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This system contains slowly varying variables ., %, and an angular variable (the
phase) ¢ which rotates with frequency approximately equal to @ = dHo ([, $,%)/d1.
In order to describe the approximate behaviour of the slow variables, the averaging
method prescribes to average the r.h.s. of the equations for these variables over the
fast phase, and to neglect terms of O(g?). The averaged system is a Hamiltonian
system with Hamiltonian Hy(J,Y,X):

. . 0Hy JH,
J=0,Y=—¢"+F X=¢—r.
’ Y

12 ®

The theorem about the accuracy of the averaging method (see, e.g. [4]) says
that the behaviour of the slow variables in the exact system (7) is described by the
solution of the averaged system with the same initial conditions, up to accuracy
O(¢e) over the time interval 1/¢€. This, together with the fact that the variables with
“hat” differ from the variables without “hat” by O(g) as well, implies the assertion
of the theorem. a

In the problem under consideration, a description of the motion by means of
equations (8) is called the adiabatic approximation. Trajectories of system (8) are
called the adiabatic trajectories.

Example 5 (Magnetic traps). In Example 3, the dynamics of particles is described
by a slow-fast Hamiltonian system with three degrees of freedom; one degree of
freedom corresponds to fast variables, while two degrees of freedom correspond to
slow variables. The kinetic energy E of a particle is a first integral of the motion. For
E we have an expression E = mvﬁ /2 —|—mvzl /2, where v and v, are the values of
the projections of the velocity of a particle onto the direction of the magnetic field
and the plane perpendicular to the magnetic field respectively, and m is the particle’s
mass. Denote p the magnetic moment of the particle; yt = /(2B). Thus, along the
trajectory E = m(vﬁ /2+ WB) is constant. At frozen values of the slow variables, the
motion of the fast variables is Larmor motion. The frequency of this motion is pro-
portional to the strength of the magnetic field B. The Hamiltonian for this motion in
principal approximation is a quadratic function of the fast variables, and it coincides
with E| = mvi /2. So, the action of the fast motion, which is equal in the princi-
pal approximation to the ratio of E, to the Larmor frequency (see Example 3), is
an adiabatic invariant. Therefore, the magnetic moment u is an adiabatic invariant.
Consider the problem in the adiabatic approximation . = const, for which the mo-
tion takes place in the domain where B < E/(m). The surface where B = E /(m)
is called a “magnetic mirror”. This surface “reflects” particles with energy E and
magnetic moment u. If for a given particle, its magnetic line crosses two magnetic
mirrors, then the particle will bounce between these mirrors. The construction of
traps for a plasma which are called “adiabatic traps” or “traps with magnetic mir-
rors” is based on this phenomenon. A gigantic natural adiabatic trap is the Earth’s
magnetosphere. In plasma physics the adiabatic approximation is called “guiding
centre approximation”.
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Theorems 1 and 2 guarantee the conservation of adiabatic invariance on time
intervals of the length of order 1/e. For a magnetic trap in Example 5 this is just
the time for several oscillations between magnetic mirrors. In fact, if the system
is smooth enough, the time of conservation of adiabatic invariance is much longer.
We consider this matter for Hamiltonian systems with a parameter which is slowly
varying in time (a Hamiltonian of the form (1)). For slow-fast Hamiltonian systems
(a Hamiltonian of the form (4)) the results are similar (see [6]). Let I, ¢ be action-
angle variables for a system with Hamiltonian (1) with “frozen” values of A. If
the parameter A changes in time, then dynamics of variables I, ¢ is described by a
Hamiltonian system with Hamiltonian of the form

H(l,¢,7,€)=Hy(I,7)+€H(I,9,7) )

(see the proof of Theorem 1). The function H; is 27 - periodic in ¢, and both func-
tions Hy, H; are defined in the domain G = {I,¢,t: 1€ DCR', o €T', T € R'}.
Assume that these functions can be continued analytically into a complex &-
neighborhood G + & of the set G, and in this neighborhood the following estimates
are satisfied:

|Ho| <M, |Hi| <M, |dHy/d1| > ¢,

where &, M and ¢ are positive constants.

Theorem 2.3. [19] For 0 < € < & and (I, ¢,7) in a complex & /2-neighborhood of
the domain G, there exists a canonical transformation of variables I, @ — J, y such
that

=1 +]|o—y|<cie

and the Hamiltonian expressed in the new variables has the form

AUy, 1.€) =H5(J,7,€) +ea(J, ¥, T,€),
|75 — Ho| < i, |t < exp(—c, ' /€). (10)

Here €y,c1 and cy are positive constants.

Corollary 2.1. Along a trajectory the value of the variable I undergoes only os-
cillations of order € over time intervals of length exp(%c; Y/€). Thus, in analytic
one-frequency systems, adiabatic invariance is conserved over exponentially long
time intervals.

To prove this Corollary we note that the dynamics of the variable J as introduced
in the Theorem 3 is described by the equation

) d
J:—S£ = O(eexp(—c; ! /e)). (1)

Hence over exponentially long time exp(%cz_ ! /€) the change of J along trajectory
is exponentially small. On the other hand, the difference between I and J is O(g).
This completes the proof.
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The origin of the exponentially small term in (10) can be explained heuristically
as follows. Let us try by means of a canonical transformation which is close to
the identity 7, ¢ — J, ¥ to eliminate the dependence of the Hamiltonian on the fast
angular variable. Let us try to find a new Hamiltonian J#°(J, T,€) and a generating
function of this transformation J¢ + €S(J, @, T, €) in the form of a series

H(J,1,€) = Ho(J,7) + eH6(J,7) + €I, 7) + ..., (12)
S, 0,7,€) = S1(J,0,7)+&S2(J,9,7) +283(J,0,7) + ...

The functions S; are 27-periodic in ¢, and the new and old variables are related by
the expressions

I*JJr&‘E = +£§ (13)
The new and the old Hamiltonian are related via the formula
, 08
H(J,t,e)=H(l,0,7,6)+¢€ 5 (14)

Plugging (13) into (14), taking into account the expansions (12) and equating terms
of the same order in € we get a sequence of equations

 OHy 95,
_ 0Hy9dS, 10°Hy 9Si,, 95

=57 90 T2or Ge) T (16)
_ dHy dS; 0Si_1

%—W%‘ka(ﬁfpvf)*‘?,k?& 17

The function X, is well defined if functions 777, S;, [ =1,2,...,k— 1 are defined and
the expression for X; does not include dS;_; /dt. This sequence of equations allows
to define step by step all the functions %, Sy (one should remember that functions
Sk are 27-periodic in ¢). In particular, .77 is equal to the average of H; over ¢. After
defining 771 one can find S| via quadrature, and so on. However, the series (12) for
J, S as arule should diverge. Indeed, on the k-th step of our procedure one should
differentiate function S;_; with respect to 7. So, basically in order to define 7%, S
one should differentiate H; k — 1 times with respect to 7. The n-th derivative of an
analytic function can be estimated from above as a"n!, a = const, and this estimate
can not be improved. This informal reasoning indicates the divergence of the series
(12). It indicates also that these series should be of Gevrey type 1 [23]. If we truncate
the series for S at terms of order €3 and make transformation of variables (13)
with this truncated generating function S, then the new Hamiltonian will have form
(10) with |eo| < const€"a"n!. According to Stirling’s formula the right hand side of
this inequality for large n grows approximately as exp(n(log(ag) +logn —1)). This
function of n has a minimum at n = 1/(a€). Now choosing 7 to be the integer part
of 1/(ag) implies the estimate (10).
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The proof of Theorem 3 in [19] is based on a representation for the transforma-
tion I, @ — J, ¥ as a composition of many, ~1/¢, symplectic transformations which
eliminate the dependence of the Hamiltonian on fast variables in subsequent orders
in €. The proof, based on establishing a Gevrey 1 type of formal series JZ°, S, is
given in [23]. The method of continuous averaging [25] gives a sharp estimate of
the constant ¢, in Theorem 3.

A certain modification of Theorem 3 explains a remarkable property known as
the exponential accuracy of the conservation of adiabatic invariants [15]. Assume
that value A(7) tends sufficiently fast to definite the limits AL as T — +oo. Then the
value of the action I along a trajectory also tends to some limits /. as t — *oo. The
difference

Al=1;—1_

is called the accuracy of conservation of this adiabatic invariant [15]. Although for
finite ¢ the quantity 7 undergoes oscillations of order €, the value Al is much smaller
then €. In particular, if the system is analytic, then Al is exponentially small; Al =
O(exp(—c, ' /€)). With the help of Theorem 3 this can be explained as follows.
The function H; in (9) is proportional to dA/dt and so it tends to O fast enough
as T — =oo. This implies that function & in Theorem 3 tends to O fast enough as
T — #oo . Together with estimate (10) this implies that

~+oo
[ lealds = Ofexp(~c; ' e)).
Together with (11) this implies that the values of J along the trajectory tend to
certain limits J1 as # — oo, and J4 —J_ = O(exp(—c; ' /€)). But J —I tends to
0 as T — Zoo (this is again because H; tends to 0 as T — Zoo). Therefore, 1. =
J+. This implies our assertion about the exponential accuracy of conservation of
adiabatic invariant in analytic systems. An analysis of the analytic continuation in
the plane of complex time of solutions with complex data at infinity allows one to get
sharp estimates for the constant ¢, [21,24] and, in some cases, to obtain asymptotic
expressions for A7 [12,24].

Now consider the case where the parameter A varies periodically in time; A is
a 2m-periodic function of 7. Over infinite time the adiabatic invariants can undergo
considerable evolution due to the accumulation of small perturbations.

Example 6 (Parametric resonance). Consider the linear oscillator
¥ = —w*(1+ Kcoser)x, kK = const < 1.

The equilibrium x = 0 can be unstable for arbitrarily small € (the phenomenon of
parametric resonance [4]). The adiabatic invariant changes unboundedly.

However, it turns out that for a periodic variation of the parameter, such
non-conservation of the adiabatic invariant is due to the linearity of the system
(more precisely, to the fact that the frequency of oscillations is independent of
the amplitude). In a nonlinear system, as the amplitude increases, the frequency
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changes, and the oscillations do not have enough time to accrue before the reso-
nance condition is violated.

Denote . 2 (I )
_ o, T
)= — _
(1) 27r/0 ol dr

Theorem 2.4. [2] If the Hamiltonian function of a nonlinear oscillatory system with
one degree of freedom depends on time slowly and periodically, the action variable
I of the system is a perpetual adiabatic invariant:

H(p(t),q(t),A(et)) —Ih] <Ce for —eo <t < oo,
The required nonlinearity condition is d@(I)/dI # 0.

The proof is based on a construction of invariant surfaces (tori), which fill the
phase space p,q,T mod27x of the problem, up to a residue of exponentially small,
O(exp(—const/¢€)), measure, and are O(g)-deformations of tori I = const. The
phase space is three-dimensional, and invariant tori are two-dimensional. There-
fore, a phase point that started to move in a gap between the tori remains confined in
this gap forever. For this phase point, the value of I remains O(g)-close to its initial
value. Evidently, the same estimate is valid if the phase point started to move on an
invariant torus.

A perpetual adiabatic invariant also exists (under certain conditions) in slow-fast
Hamiltonian systems with two degrees of freedom and with a Hamiltonian function
of the form (4) [2]. According to Theorem 2, the motion in such a problem is ap-
proximately described by the Hamiltonian Hy(I,y,x). Suppose that the phase curves
of this Hamiltonian for fixed / are closed. Then in the approximation under consider-
ation the motion in the phase space takes place on the two-dimensional tori defined
by the conditions / = const, Hy = const. This motion has two frequencies, and one
of the frequencies is 1/€ times smaller than the other. If for a given Hy = const the
frequency ratio changes as I varies, then in the exact system on each hyper-surface
of constant Hamiltonian there are many invariant tori close to the invariant tori of the
approximate system. This implies that the action variable / is perpetually close to its
initial value. From this conclusion it follows, in particular, that if the magnetic trap
of Example 5 is axially symmetric then it confines charged particles perpetually [2].

Previous analysis was based on the assumption that at frozen values of parameter
A for Hamiltonian (1) (or at frozen values of slow variables y,x for Hamiltonian
(5)) the domain under consideration in the plane of fast variables p, g is filled with
closed phase curves. However, it often happens that in this domain there is a saddle
point with separatrices passing through it, as in Fig. 2.

As a result of the slow variation of the parameter (or of the slow variables) the
phase points may cross this separatrix. This leads to an interesting phenomenon
associated with jumps of adiabatic invariant at separatrices and destruction of adia-
batic invariance; see details in [6] and in the references therein.
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/&

11 12

Fig. 2 Separatrices in the phase plane of fast variables

3 On adiabatic invariance in multi-frequency systems

Now consider the case when a Hamiltonian system with Hamiltonian (1) pos-
sesses n > 2 degrees of freedom; (p,q) € R?"_ First, consider the Hamiltonian
at frozen A, and suppose the system with this Hamiltonian is completely inte-
grable. This means that in the phase space of the Hamiltonian there exists a domain
filled up by n-dimensional invariant tori and the “action-angle” variables (I,9),I €
R, @ € T"mod 27 are defined [4]; I = (I1,b,...,I,), ® = (¢1,¢2,...,0,). (The
“angle” variables ¢ are called phases as well.) The transformation of the vari-
ables (p,q) — (I, @) is canonical (symplectic). This transformation can be defined
with a generating function W(I,¢,A). The old and the new variables are related
via formulas (2). In terms of the new variables, the Hamiltonian has the form
E = Hy(I, ). The motion is a multidimensional rotation with a vector of frequencies
o(l,7)=(o1(I,7),mn(,1),...,0,(,7)).

Now let A change slowly in time: A = A(7), T = &r. Here on the level of for-
mal computations everything is completely analogous to the one-frequency case. In
the system with Hamiltonian (1) let us make the canonical transformation (p,q) —
(I, ¢) by means of formulas (2). As in Section 2, the Hamiltonian for the new vari-
ables has the form H(I,¢,t,€) = Ho(I,T) + €H (I, ¢, T), where H; = W /dT. The
differential equations of the motion have the form (3). The Hamiltonian and the
equations of the motion are in the standard form to which averaging method can
be applied. In order to describe the approximately behaviour of the variables I, the
averaging method prescribes to average the rate of changing of this variables over
the fast phases ¢. Averaging a certain function f(-) means calculating the following
value;

1 2n  r2; 2n
<f>:W/o | [ r0)apiden...ap,. (1)
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The averaged equation for I has the form / = 0, implying that I = const along the
trajectory in approximation of the averaging method. Thus, “actions” I are natural
candidates to be adiabatic invariants. They would be adiabatic invariants provided
the averaging method describes the dynamics on the time interval 1/€ with accuracy
which goes to zero as € — 0. These calculations and reasoning are due to J.M.
Burgers [8]. (He was a PhD student of P. Ehrenfest and his adviser assigned to him
the problem of adiabatic invariance in multi-frequency systems [16].)

The justification of the averaging method in multi-frequency systems encounters
problems with resonances. The resonance condition is a relation of the form

kla)l(Lr)+k2a)2(1,7)+...+k,,a),,(1,7):O, 2)

where k = (ky,ka,...,k,) is an integer non-zero vector. If for some 7, T a resonance
condition (2) is satisfied, then for this (/,7) the unperturbed (T = const) motion
takes place on an (n — 1)-dimensional torus. So independent averaging over all
phases, like in (1), which is actually averaging over an n-dimensional torus, may
not be a correct tool for approximate description of the direction of the evolution.
In the process of the motion, even if I would be approximately constant, the value
T changes, and resonance conditions (2) with different vectors k are satisfied on a
dense set of points in time. This problem was first addressed by P.A.M. Dirac [9] for
two-frequency case (n =2, @ = (®;,®,)). In [9] the problem was considered under
the following condition

a)za;:a)l?;z(wz%al)l—a)la;])z)% > ¢!, ¢ =const > 0. 3)
In the two-frequency case, the resonance condition means that the ratio of the fre-
quencies is a rational number. Condition (3) means that the ratio of the frequencies
changes at a non-zero rate along trajectories of the system. So, the phase point can-
not stay for a long time near any given resonance. If this condition is satisfied, then
the “action” / is an adiabatic invariant; its variation along a trajectory on time inter-
val of the length 1/¢€ tends to zero as € — 0 [9]. It follows from the general result
of V.I. Arnold [3] about averaging in two-frequency systems, that this variation is
O(Ve).

If the condition (3) is not satisfied, then along some trajectories the value of /
during time 1/& may change considerably, by a value of order 1, due to the phe-
nomenon of capture into resonance, see example in [20]. However, results of D.V.
Anosov [1] and T. Kasuga [14] imply that under very general conditions the mea-
sure of the initial data for such trajectories tends to zero as € — 0. The value I can
be called an almost adiabatic invariant [5]. Some estimates of this measure are con-
tained in [7, 10, 17, 18]. For a description of dynamics with capture into resonance
on time intervals of the length of order 1/€ see, e.g., review [22]. On time intervals
of the length 1/ €3/2 the adiabatic invariance of I may be completely destroyed; the
value of [ along a trajectory may change by a value which is bounded from below



Averaging method and adiabatic invariants 65

by a constant for a set of initial data of measure which is bounded from below by
another constant. The corresponding example is constructed in [20], and general
approach is developed in [11], see also discussion in [22].
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Transformation theory of Hamiltonian PDE
and the problem of water waves

Walter Craig!

Abstract This set of lecture notes gives (i) a formal theory of Hamiltonian systems
posed in infinite dimensions, (ii) a perturbation theory in the presence of a small
parameter, adapted to reproduce some of the well-known formal computations of
fluid mechanics, and (iii) a transformation theory of Hamiltonian systems and their
symplectic structures. A series of examples is given, starting with a rather complete
description of the problem of water waves, and, following a series of scaling and
other simple transformations placed in the above context, a derivation of the well
known equations of Boussinesq and Korteweg deVries.

1 Hamiltonian systems

A Hamiltonian system is given in terms of a Hamiltonian function H : M — R,
where M is the phase space. We will restrict ourselves to phase spaces which are
Hilbert spaces, denoting the inner product between two vectors Vi,V € T(M) by
(V1|V»). The symplectic structure is as usual given by a two-form @ on (M), which
can be represented by the inner product, namely @ (Vi,V2) = (V|J~1V,), where,
because of the antisymmetry of two-forms, the operator J satisfies /=7 = —J !,
The Hamiltonian vector field Xp is defined through the relation dH (V) = o(V,Xy)
which is asked to hold for all V € T(M). The system of equations that we study,
known as Hamilton’s canonical equations, is given by

v=Xy(v), v(0) = vp. (D

The inner product enters into the definition of the gradient of functions on M, which
is in particular that for all V € T(M), dH (V) = (grad ,H|V ), therefore Hamiltonian
vector fields are expressed by
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Xy =Jgrad H(v). 2)

We will denote the solution map, or the flow, for the initial value problem for system
(1) by v(t) = ¢ (vp). From the usual theory of ordinary differential equations, when-
ever the Hamiltonian vector field Xy (v) is C' (M, T (M)) (usually meaning when the
Hamiltonian H(v) itself is C>(M,R)) then the flow is defined and unique, at least
locally in time. The disclaimer is that this regularity property holds very rarely the
case when equation (1) describes a partial differential equation (the BBM equa-
tion is a notable exception), and much effort has gone into the study of the well
posedness of the initial value problem and the properties of the solution map for nu-
merous important examples of evolution equations. Furthermore, in this effort it is
not clear that the property of being a Hamiltonian system is of particular importance
in general. Nonetheless, because of its interest in various special cases, and because
Hamiltonian partial differential equations (PDE) appear naturally in many areas of
physics, it seems reasonable to take seriously the analogy between Hamiltonian dy-
namical systems and PDEs. This is one purpose of the presentation in this note.

2 Partial differential equations as Hamiltonian systems

It seems most useful to discuss Hamiltonian PDEs with a good set of examples.
These are supplied by problems in physics, and in particular the ones I bear in mind
most often come from the problems in wave propagation in fluid mechanics.

(i) The wave equation

Consider a scalar field u(x,t) defined for x € Q C R? which satisfies the equation
OFu = A —g(u,x), u(x,t) =0 when x € dQ. (1)
This can be written in the form of equation (1); indeed define
H(u,p) := /_(2%p2+%|Vu|2+G(u,x)dx, )
where d,G = g. Then the second order equation (1) can be equivalently written as a
first order system of PDEs
= p=grad ,H 3)
p=Au—9,G=—grad ,H.

The gradient is taken with respect to the L?(£2) inner product, which dictates as
well which Hilbert space we should propose for M. Actually, as operators such
as A are unbounded, the initial value problem should normally be posed only on
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an appropriate subdomain of M. In any case, this problem is in the form of a
Hamiltonian system with v = (u, p)” and

. 017
v=Jgrad,H, J = (10>. “4)

‘We will say that a Hamiltonian system with J of this form is in Darboux coordinates.

(i) Burger’s equation

A famous example in the theory of shoch waves is Burger’s equation, which can be
written in Hamiltonian form as well.

ow = wow xeRL 5)

Define the Hamiltonian as .
H::/R L3 dy, ©)

from which we compute the form of Hamiltonian’s canonical equations
W= 0i(iw?) = Jgrad ,H, J = 0. (7

Notice that the symplectic structure is given by an operator with no direct finite
dimensional analog; it furthermore is not invertible, meaning that our formal dis-
cussion of the representation of the symplectic form in Section 1 has to be taken
with a grain of salt. It is well known that every nonconstant solution of Burger’s
equation develops discontinities, or shocks. The standard law of conservation of
the Hamiltonian function, H(¢;(w)) = H(w) holds for smooth solutions, however it
does not hold in most cases for time ¢ after the time 7" of formation of a shock.

(iii) The Korteweg deVries equation

The classical Korteweg deVries (KdV) equation was derived as a model equation
for the propagation of waves in the surface of a fluid. The beautiful fact about the
KdV is that it is an example of an infinite dimensional completely integrable sys-
tem, with algebraic integrals viewed in the proper coordinates. This integrability is
not the topic of the present discussion. Rather, we show that it can be posed as a
Hamiltonian PDE, and furthermore we discuss its relationship to fluid dynamics.
The KdV equation for a function r(X,#)is normally written as

Or = —L03r+3roxr. (8)

This takes the form of a Hamiltonian system with Hamiltonian

H: = /R%(ﬁxr)z—i-%ﬁdX, J= ax. 9
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One easily checks that this is in the form (1), which in this context is
i = dxgrad H. (10)

The nonlinearity g(X, ) = dx (372 /2) is not the only one of interest. In particular the
case dyr> is a Hamiltonian PDE which is also a completely integrable system. Re-
placing either of the above two equations with a general nonlinear term g(X,r) also
results in a Hamiltonian PDE, which is sometimes considered as a model dispersive
evolution equation which is not completely integrable.

(iv) The Boussinesq system

Another well known PDE which was originally derived in the study of water waves
is the Boussinesq system,

AN AR p+ 5 )
a’<q> B <9X 0) (qq+9§q+pq : (in

This system of equations is a variant of a common one studied by Zakharov [13],
and it has been shown to be another example of a completely integrable Hamiltonian
PDE in Kaup [10] and Sachs [11]. The Hamiltonian for the system (11) is given by

H:=1 /Rp2+q2— (9xq)* + pq* dxX, (12)

with a symplectic structure given by the matrix operator

(09
e (ax O> (13)

which is already in appearance in the above system of equations (11).

We now have a number of examples in hand, many of which stem originally from
the study of water waves, that is the fluid dynamical problem of wave propagation
in the surface of a body of fluid. A natural question is as to how these systems are
related to each other. In particular we note that among these systems the number of
dependent variables are different, the number of independent variables is different,
and the symplectic structures are also changed from one system to another. In order
to address this question, even on the formal level that is given in these lectures,
we will undertake a detailed description of the problem of water waves itself from
the point of view of the equation as an infinite dimensional Hamiltonian dynamical
system.
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3 The problem of water waves

The equations of evolution for the free surface of a body of water in the influence of
gravity as a restoring force are a classical example of a system of Hamiltonian PDEs
for which the structure of the equations as such has led to important developments
in fluid dynamics. I will first describe the system of equations in standard Eulerian
coordinates, after which the formulation of the problem as a Hamiltonian PDE
can be derived. The fluid domain is given by S(1) := {x e R¥"! y € (=h,n(x))},
where we are assuming that the free surface is given as the graph of the function 1;
I'(n) :={(x,y) : y=n(x)}. Normally the dimension is taken to be either d = 2,3,
although mathematically it makes sense for it to be any integer d > 2. The force
of gravity is take to act vertically, given by F = —g(0,1). One of the unknowns of
the problem is the time dependent fluid domain S(n) defined in terms of the func-
tion 1 (-, 7). The other unknowns are the components of the fluid velocity u(x,y,#) at
every point in space and time in the fluid domain.

In S(n) the fluid velocity vector field is taken to satisfy the conditions of incom-
pressibility and irrotationality, respectively

V-u=0, VAu=0.

The latter is the condition that the vector field u is given in the form of a potential
flow; u = V¢ at each instant of time, while the former states that the potential ¢ is
harmonic in S(7);

Ap =0.

Furthermore, on the solid bottom boundary of S(7) the fluid velocity is taken to have
no normal component; N -u = 0, hence the potential satisfies Neumann boundary
conditions on this component of the domain boundary;

N-Vo=0.

All of the time dependent and nonlinear content of the problem is thus expressed in
the boundary conditions posed on the free surface I"(n), namely

N = dyQ —on -0 (1)
dhp = —gn— %|V(P|2a

known respectively as the kinematic and the Bernoulli conditions. The first bound-
ery condition follows from the fact that a fluid particle which originates on the free
surface will remain on the free surface under time evolution, so that a tangent vec-
tor T to its trajectory in space—time must always be orthogonal to the space—time
normal vector N to the free surface; N - T = 0. The Bernoulli condition simply rep-
resents an expression of the Euler equations for an inviscid fluid, in integrated form
and evaluated on the free surface which itself is a surface of constant pressure.
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The energy H of the system of equations for fluid motion with a free surface
is straightforward to express, indeed it is the sum of kinetic and potential energy
contributions;

H= K+P::/ /U(X) |u\2dydx+/ /n(X)gydydx 2)
R Jn R Jn
n(x)
:/RH/;, %|V(p\2dydx+/Rd71§nzdx—C, 3)

where the constant C is irrelevant to the dynamics and can be neglected. It is useful
to rewrite the kinetic energy by integrating by parts.

nw ) g n)
K = ./]Rd’l /h 3IVo|~dydx = _./R’H/h >QAQdydx
Jr/Rd—l %(pN V(PdsbottomJF/Rd,l %‘pN V(Pdereesurface-

Because the velocity potential is harmonic and satisfies Neumann bottom boundary
conditions, the first two terms of the right hand side vanish. Denoting the boundary
values on the free surface I'(1) by & (x) = @(x,n(x)), we have then

K= /qu %éN'V(pdereesurface-

We are taking care to distinguish between @ the potential function itself, and & its
values on the free surface I' (). The elements of Laplace’s equation that remain in
this expression are the normal derivative of the potential ¢ on the free surface. It is
useful to describe this quantity in terms of the boundary values £ (x) and an integral
operator on the free surface itself.

Definition 3.1. (Dirichlet—Neumann operator) For the fluid domain S(n) defined
by the function € C!, give boundary values &(x) on the free surface I'(n), and
consider their harmonic extension ¢(x,y) to the fluid domain satisfying Neumann
bottom boundary conditions. The Dirichlet-Neumann operator is defined by the
normal derivative of ¢ on the free surface, namely

G(M)s(x) = (dy— AN (x) - ) 9(x,n(x)) = R(N-V@)(x,1(x)), )
where R = y/1+|d:n|? is a normalization factor so that G(1) is self-adjoint on
L?(dx).

The Hamiltonian (2) can be conveniently written in terms of G(7), indeed following
[7] we write

H:/R‘H LEG(N)E +§n2dx. 5)

Theorem 3.1. (Zakharov [12]) There exist canonical variables for the water waves
problem (1), in which it can be written in the form (1) in Darboux coordinates, with
Hamiltonian (5).
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Proof. Our derivation of the canonical conjugate variables is based on first prin-
ciples of mechanics. Given the kinetic energy K and the potential energy P, the
Lagrangian for the water waves problem is clearly

L=K—P. (6)

We should express this in terms of the quantities (17,7 ) (i.e. tangent space variables),
for which we use the kinematic condition (1),

77 = ay(P*axn 'ax(P = G(Tl)&

The Lagrangian is thus

LWW):%/RdflflGn)ﬁ—%nde- )

From this expression the Legendre transform dictates that the canonical conjugate
variables are (1,9;L) = (1,G~' (1)) = (n,£). These are precisely the variables
presented by Zakharov in [12], in terms of which one may give the water waves
Hamiltonian (5). O

Therefore the equations for water waves can be rewritten as a Hamiltonian system
in Darboux coordinates;

M =grad :H = G(n)§ ®)
é = —grad ,H = —gn — grad K.

It is interesting to remark that the expressions for K and grad , K involve deriva-
tives of the Dirichlet-Neumann operator with respect to perturbations of the domain
S(n). This idea was already discussed by Hadamard [8, 9] in his Collége de France
lectures in 1910 and 1916, in the context of the Green’s function for Laplace’s equa-
tion on a domain in RY. In these lectures he explicitly mentions the possibility of
hydrodynamical applications.

4 The Dirichlet-Neumann operator

Any analysis of the water wave in the above formulation depends upon a de-
tailed knowledge of the Dirichlet-Neumann operator. The fluid domain S(7) is
given by 1(x) defining the free surface. Given & (x) the boundary values for the
velocity potential, then ¢(x,y) is its harmonic extension to S(n) which satisfies
the appropriate Neumann bottom boundary conditions. The principal facts about
G(n)é(x) = dp(x,n(x)) — dn - d:@(x,n(x)) that we use are contained in the
lemma.
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Proposition 4.1. Suppose that 1 € C'. Then G(n) satisfies the following properties:

1. G(n) is positive semidefinite.

2. It is self-adjoint (on an appropriatly chosen domain).

3. G(n) maps H'(I") to L*(T") continuously.

4. As an operator G(n) : H'(I') — L*(I") it depends analytically upon 1 €
Br(0) C C'(I"), for a nonzero value of R.

The latter item entails questions of the bounded of singular integrals on hyper-
surfaces, and was proved in the case d = 2 by Coifman & Meyer [2], and in the case
d > 2 in [6] using the fundamental results of Christ & Journé [1]. In particular it
implies the existence of a convergent Taylor expansion for the operator.

Lemma 4.1. The Taylor expansion of the Dirichlet—-Neumann operator is given by

the expression ‘
GméE =Y GV(n)e (1)
j=0

where each GU) (n) is homogeneous of degree j in 1. Explicitely,

GY¢ (x) = |D|tanh(h|Dy|)E (x) (2)
GV (M)E(x) = Dy-nD, — GONGVE (x) 3)
GP(n)éE(x) = 3(GO?D2 + DG - 269G G E (). @)

The terms G/) (1) in the Taylor expansion are polynomial expressions in the quan-
tities D, and G(©) of order j+ 1, however for ) € C! these terms are nevertheless
bounded from H' — L?. I is because of the form of the operator which is related
to a multiple commutator; [1,...jx ... [n,D{]] = (=1)7!(d,n)/. With regard to
this series for the Dirichlet — Neumann operator, the water waves Hamiltonian it-
self is analytic on an appropriately chosen subset of, and possesses a Taylor series
expansion about the equilibrium solution (17, £) = 0, namely

1.8 = [, 3E6VE+imtax+ Y 1 [, 66U 2 m)gax

Jj=3

=Y HU(n,8), (5)

jz2

where H/)(1, €) is homogeneous of degree j with respect to the variables (1, &).

5 Perturbation theory

Suppose that the Hamiltonian function H depends upon an additional parameter &;
H(vie)=HO 4 eqM) 4 gmHM 4 gmtIR(v;g), for € € & a space of parameters.
It is natural to approximate orbits v(z; €) by those of the truncated problem
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v =Jgrad ,(H” +eH") + ... e"H™) (1)

v(0) = vo, v(t) =v(t;e,m)

The solution v(t) = v(t; €,m) clearly depends upon both € and the degree m of the
Taylor series approximation, and there is the natural expectation that, at least for
finite time intervals, the solutions v(z;€,m) of (1) approximate the solutions of the
full problem (1), with a better approximation given with larger m. Indeed, for C2
Hamiltonians this is the case.

Proposition 5.1. Suppose that the Hamiltonian H € C>" (M x &). Then, at least
Sfor bounded time intervals |t| < Ty, approximate orbits v(t;€,m) of (1) are €" close
to orbits of the full Hamiltonian system (1).

Our intentions are to discuss Hamiltonian systems in infinite dimensional Hilbert
spaces, and in particular Hamiltonian partial differential equations, which we have
already pointed out are rarely given by smooth Hamiltonian vector fields. Therefore
the above proposition is not applicable. Nonetheless it serves as a basic guiding
principle to the problems we are aiming to discuss. It is also true that one can often
do better than Proposition 5.1, and in some cases the length of the time interval of
validity of this approximation may be longer, or indeed very much longer. However
the only improvement on this statement that can be made at this level of generality
is that, if the Lyapunov exponents of both section 1 (1) and (1) are bounded, then for
any m’ < m, approximating orbits remain " close to true orbits for times |t| < Te,
with T ~ log(1/¢€).

6 The calculus of transformations
Given a Hamiltonian system
v=Jgrad H (1)

posed on a phase space M, we will subject it to transformations of variables of M.
Consider two phase spaces M| and M, with a symplectic form on M; given in terms
of J1. Let Hy : M — R be a Hamiltonian. A transformation

T: M| — M, view=1(v) 2)

gives rise to a Hamiltonian defined on M, namely H,(w) = Hp(t(v)) = H;(v). The
Hamiltonian vector field Xy, = Jigrad ,H is transformed as follows

w=d,t(v)v = d,T(v)Jigrad ,H,(v),
while on the other hand

grad H(v) = (8VT)Tgrad LHa(T(V)).
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Equating the expressions, one observes the following:

Proposition 6.1. The vector field Xy, = Jigrad H, is transformed to
W=, t(v)J1(0,7)  grad , Hy(t(v)). 3)

We denote J = 9,7(v)J1(9,7)" which can be used to define a symplectic structure
on M. When M, already has a symplectic structuree represented by J», and the
transformation w = 7(v) is such that J, = 9,7(v)J; (3,7)7, then 7 is called canonical.
In particular when M| = M, and J; = J, is given in Darboux coordinates, these
are the usual canonical transformations which play a special rdle in the subject of
Hamiltonian mechanics.

Examples of transformations. While the subject of canonical transformations and
their generating functions is basic knowledge in finite dimensional Hamiltonian sys-
tems, it is less developed in the study of PDE and other infinite dimensional cases.
In the following paragraphs we will work through some of the more elementary
transformations that occur in Hamiltonian PDE, putting them into context. Further-
more we will make use of particular parameter families of such transformations in
order to introduce a small parameter into the Hamiltonian. In this way the principle
outlined in Section 5 can be invoked, with the result that we have a natural approx-
imation procedure for solutions through a (albeit formal) series expansion of the
Hamiltonian. This procedure and its general context has been worked out in a num-
ber of papers that have appeared over the span of several years, by the author along
with M. Groves [3], P. Guyenne & H. Kalisch [4] and P. Guyenne, et al. [5].

Initially, the setting is that M = L2 (Rd*] )2 will be considered the phase space,
with

V= <2) eEM, <V1|V2>:\/1Rd71n1n1+(§1§2dx 4)

01
J— (10) )

which is the case of Darboux coordinates.

(i) Amplitude scaling

Consider the elementary transformations 7 : v — w, where

(1))

for o, B € R™. The Jacobian of the transformation 7 is given by

0T = (%I [;)I)
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therefore the symplectic form induced by the transformation is
Ji = oytJo,t! = apJ, (7)

with the Darboux operator J given in (5). The effects of such transformations
are easily restored to the usual Darboux coordinates through a time change ¢ =
a gL

The small amplitude regime of the water wave problem is introduced by an am-
plitude scaling which is a transformation of this form. Namely one sets

<‘il7,/) - (2) e<<1, ®)

which is to say that we are seeking solutions for which the amplitude 7 of a solution
is small, and represented in its asymptotic regime by an order one quantity 7}’ times
€2, and similarly for & = £&’. The resulting change of symplectic form is that

Ji =g,

which is equivalent to a rescaling to a slow time variable. The effect on the water
waves Hamiltonian Section 3 (5) and its Taylor expansion Section 4 (5) is that

Hl:/R‘H 1e28/GOE + se'ndx+ ¥ 4 /d  EXTHEGUT ()€ da.

Jj>3

In particular a small parameter has been introduced into the Hamiltonian H; =
H,(n',&’;¢), for which one may consider approximations by its Taylor series. For
instance, up to order (%)

enl +etn) = ([ 16008 ax) +e( [ g0+ 4g'6Vm)E ax),

where we recall that G!") (n') = D,n’D, — GOn'G©).

(ii) Spatial scaling

The long wave regime of the water waves problem highlights solutions whose typ-
ical wavelength is asymptotically long; it is represented through a small parameter
introduced into the problem by the spational scaling

x— X = ¢€x. )
The resulting transformation of phase space M is thus

T:v(x) —wX)=v(X/e) =1(v)(X). (10)
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The Jacobian of the transformation on a vector field V (x) € T,,(M) is

W) = Lo (v(X /) 45V (x/0)) = V(X fe).

The transpose is slightly less obvious, we compute it using the identity;

(V1]9yTVs) = /Rd*' Vi(X)Va(X €),dX (an

- /R"*' Vi(ex)Va(x) €4\ dx = ((9,7) Vi |Va). (12)

Therefore (d,7)7V (x) = €4~V (ex), and the induced symplectic form is
Jr = 0,7J(d,7)T =eJ, (13)

at least if we are working with the Darboux symplectic structure. Thus, modulo a
rescaling of time, this recovers the original symplectic form.
It is necessary to study the effect that this transformation has on the Hamiltonian.

Lemma 6.1. Let T(v)(X) = v(X/€) = w(X) be be the transformation in question,
and let m(Dy) be a Fourier multiplier oprerator

1 ' i / / /
(D)) = (et / ./Rzu,l) M mky () dddk.  (14)
Under 7, the operator is transformed to
T(m(Dy)v)(X) = (m(eDx)t(v))(X). (15)

Proof. This is the fact that that cotangent variables (x,k) of pseudo-differential
operators are transformed symplectically under changes of variables. Indeed one
calculates

(m(Dy)v)(X) zﬂ;d //}Rz(" n kX/E) (k) (x)dx'dk
zn;d //RW | e OSEX e (X )dX dk
27:10’ l//sz D Im(eK)v(X'/e)dX'dK

= m(eDx)t(v)(X). O
Considering the water wave Hamiltonian, the Dirichlet-Neumann operator

G(O) (Dx) = ‘Dx| tanh(h|Dx ‘ )
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is transformed to
(0) 2 ) &’ 4
G (eDx) = €|D,|tanh(eh|Dy|) ~ €°h|Dx|” — T|DX| +... (16)

Using this expression, the Hamiltonian (5) becomes

2 3
o= e o (B0DPE+817) + 5 (6= 10x0*8) + D 1Dt )

TR, (17)

(iii) Surface elevation—velocity coordinates

It is often convenient to write the Euler equations in terms of the variables w =
(n,u), u = dy& instead of v = (1, ). That is, the second variable represents a ve-
locity instead of a potential; in this case it essentially represents the horizontal veloc-
ity of the fluid at the free surface I"(1). We restrict our discussion of these surface
elevation—velocity coordinates to the case of two dimensions, for simplicity. That is,

w= (1) = 7(v) = (1,0:E). (18)

The Jacobian of the transformation is

t(v) = <(I) (gl)

and the induced symplectic form is represented by the operator

J = (_Oa —08x> =odtJ(a,7)7, (19)

where J is in Darboux coordinates. One recognizes this as the operator representing
the Boussinesq symplectic form (13), up to a trivial change of sign.

Returning to the Hamiltonian (17), and phrasing it in surface elevation—velocity
coordinates, we have

H=¢ /R g’n e (-;13 (Axu)? + nu2)dx L0, (0

while using the operator J, of (19) when expressing Hamilton’s equations (1).
The truncated system (20) up to order ¢(g°) is precisely the Boussinesq sys-
tem (11) (modulo adjusting the value of several constants and the sign change

(p7LI)T = (777 _“)T)-
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(iv) Moving reference frame

It is part of the theory of nonlinear waves towork in coordinate systems which move
with the characteristic speed of solutions, namely

V(x,t) :=v(x—tc,t), (21)

for appropriate choices for the velocity c. However this transformation does not at
first glance fit into the setting of the transformation theory described above, as the
time variable is distinguished, and (21) mixes the roles of the spatial and temporal
variables. We observe however that in the problems under discussion the momentum

10.8):= [ nx)aE W dx )
is a conserved quantity, as can be seen from its Poisson bracket with the Hamiltonian
{I,H} :={grad JI|J grad ,H) = 0. (23)

Therefore their respective flows commute; @7 o ¢!/(v) = ¢! o ¢/'(v). The
Hamiltonian flow of the momentum

01 _a,
5 (_IO> orad [ = (_ g) (24)

is simply constant unit speed translation

oi(v)(x) = v(x—s).

Thus the flow along the diagonal is clearly ¢ o ¢.(v) = ¢! /. Therefore the
Hamiltonian flow of H(v) + cI(v) is the Hamiltonian flow of H(v) observed in a
coordinate frame translating with velocity c.

In the context of the water wave problem the characteristic velocity is cg := /gh;
to study the problem of water waves in our present point of view, we are to look at
the flow of the system whose Hamiltonian is H, + +/ghl.

Writing the momentum in surface elevation—velocity coordinates and scaling the
coordinates appropriately, we find that

[=¢ /Rm‘] dx, (25)
and therefore
Hy +/ghl = 83/R ! (mﬂ +2/ghun +gn2) +& (%”3(3)(14)2 + nu2)dx

- 33/R%(\/Eu+\/§n)2+%(‘T”}(axu)”nuz)dx- (26)
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(v) Characteristic coordinates

Focusing on the first term H, of the Hamiltonian, it is a common situation to have it
in the quadratic form

HP = %/ A+ B dX,
R
with A, B > 0. Hamilton’s equations (1) for H2(2) alone are the wave equation

ny [ 0 —odx @ (0 -A dxn
a’(u>_<8x 0 )graa’vH2 =\_5 o i ) 27

We seek a transformation of coordinates (r,s)” = t(n,u)? which will accomplish
three things.

1. It should diagonalize the symplectic form J;;

o 0 —odx r_(Jx O
J; .—8VT<_8X 0 )(8vr) —(0 —3)()' (28)

2. It should transform the Hamiltonian to normal form
HY = /R VAB(? + 5%) dX. (29)
3. And it should transform the wave equation (27) to characteristic form

ry CcC 0 axr
(1) = (0%) (&)

The transformation w = 7(v) = T'v, where T is the matrix

4/B _4f/A
A 4B
T =
4/ B 4] A
A 4B

accomplishes all three of these goals, with the result that C = v/AB.
In the case of the water wave Hamiltonian H3, we have A = h and B = g, so that

4/ h

4/
(EEG e
<s 4 & C/% u

and in these terms, the relevant Hamiltonian approximation which is to be valid up
to 0(&3) is given by

Hy+\/ghl = € /R Jahs?dX (32)

+85/R7%(,/f4h)(8xr78x5)2+ﬁ4 (P —rs—rs? +5°)dX.
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Now restrict this Hamiltonian to the hypersurface M; := {s = 0} C M, denoting it

by H4;
Hy = [ =8 (/&) e+ 31y i ax. e

The subspace M, is a symplectic subspace of M, possessing the symplectic form
Jy = dy, it being the restriction of the symplectic form J3 of (28). This is unlike
the situation in Darboux coordinates, in which M| would be a Lagrangian subspace.
The equations of motion (1) for r on M, or at least in an 0(62) neighborhood of it,
are thus

oy = dxgrad Hy
= ezax(cla,%r+czr2), (34)

with ¢; = %, / féh and ¢ = 4% Y %. This is precisely the KdV equation given in

(8), modulo a simple change of time scale 0, = €20, (t = €%r), and with a few extra
but unimportant constants that could have been normalized in the above calculation
with some forethought.

We have seen that a formal calculation, using basic transformations and a small
parameter have given us the KdV equation as an approximation of the equations of
water waves. It has been a research program to understand the rigorous aspects of
this correspondence between solutions of the full Euler’s equations and solutions of
the KdV or of other model long wave equations. However at this point none of the
rigorous results follow along the lines of the above concatenation of transformations.
We believe that such an approach would be a rewarding line of work.
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Three theorems on perturbed KdV

Sergei B. Kuksin'

Abstract This short paper is based on a lecture, given at the NATO Advanced Study
Institute on Hamiltonian dynamical systems (Montréal, 2007). Its goal is to discuss
three theorems on the long-time behaviour of solutions of a perturbed KdV equa-
tion under periodic boundary conditions. These theorems are infinite-dimensional
analogies of three classical results on small perturbations of an integrable finite-
dimensional system:

e The KAM theorem
e The first-order averaging theory for Hamiltonian perturbations
e The Khasminskii averaging theory for random perturbations

The three theorems raise many new questions, some of which are mentioned below.

We stress that the three theorems are infinite-dimensional analogies of some
finite-dimensional statements. That is, for nearly integrable nonlinear PDEs (un-
der periodic boundary conditions) we do not know any result which is essentially
infinite-dimensional. There are no doubts that such results exist. To find them is a
big challenge.

1 KdV equation

Consider the KdV equation under zero-mean value periodic boundary conditions:
U+ Uy — 6un, = 0, xeT! =R/2m, /udeO. (KdV)

It can be written in the form

d o

_d (s s
= 3 Ty v Hm—./( W2+ i) dx, (1)

2
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and hence (KdV) is a Hamiltonian PDE. Due to Novikov and Lax [8, 11] and
McKean-Trubowitz [9] it is integrable.
The KdV equation
U+ Uy — 6uu, =0 )

may be considered under other boundary conditions; e.g., under the L>-boundary
conditions
xeR, u(t,-) € L*(R) Ve, (L?)

or under quasi-periodic boundary conditions
xeER, u(t,x) is quasiperiodic in x. (OP)

Equation (2) + (L?) is integrable. This is a simpler dynamical system than (KdV)
due to the phenomenon of radiation. There is a number of results on this equation
and its perturbations. Equation (2) + (QP) also is an integrable system, but nothing
is known about its perturbations.

1.1 Integrability of (KdV)

Now we discuss what does it exactly mean that the equation (KdV) is integrable.
Denote

Z = {u(x) € 2| /udx: 0}, ||| - the L*-norm in Z.

(KdV) defines in the space Z a dynamical system with infinitely-many analytic
integrals of motion /1,/>,.... The functions /; may be choosen to be non-negative
and such that:

e Fora vector I = (I}, I, ...), where the numbers /; > 0 decay with j sufficiently
fast, denote
Ti={ucZ|lu=1; ¥j}.

Then 7; is an analytic torus in Z and
dim7; =4{j | I; > 0}.

The r.h.s. is called the number of open gaps.

e Theset 72" =U{T; |, 20,...,1, >20,0=1,, =...}
is a smooth 2n-manifold, called “the n-gap manifold”. Obviously it is (KdV)-
invariant.

e Each torus 7; carries a cyclic coordinate g such that in the (I, q)-variables the
equation (KdV) becomes

i=0, g=w). 3)



Three theorems on perturbed KdV 87

The frequency map W : R — R™ is analytic.

e (KdV), restricted to any manifold .7 21 is Liouville—~Arnold integrable.

e The variables (I,q) form action-angles for (KdV) in Z. That is, @, = dI Adgq,
Hgav = hgav (I, b, ...) and W(I) = Vhg,ay (I). Here @, is the symplectic form
corresponding to the Hamiltonian form (1) of (KdV).

The coordinates (/,g) are singular when some of the I; = 0. This is a serious
disadvantage if we try to use them for analytical studies of (KdV).
Below in this paper we discuss the following

PROBLEM: What happens to the tori 77, the manifolds .7>" and solutions (2)
under small perturbations of the equation?

A crucial step in the study of this problem is to introduce in the vicinity of a
torus 77 a new coordinate system, free from the disadvantages of the action-angle
coordinates (7, q), and such that the Hamiltonian Hg 4y, written in these variables, is
a “nice” function. Such coordinate systems exist and are given by normal forms.

1.2 Normal forms for (KdV)

NF; (SK, [6]). In the vicinity of any n-gap torus 7 in Z there exist analytic coordi-
nates

(@,p.y), 0T, peR", y=("y") =07,y :3.)5:...) EY =ZSR™
such that

e The symplectic form is @, =dp Ado +dy*t Ndy™;
o T ={y=0}

e In these coordinates the equation (KdV) reads as follows;
¢=V,H, p=-Vo,H, y=JV,H,
H =h(p)+3(A(p)y,y) +h3(9,p.y),

where J(y*,y7) = (—y~,y"), h3 = O(||y||*), A is an analytic operator-valued
function of p and h, h3 are analytic scalar functions of (¢, p,y).

This normal form exists for “all” other integrable PDE (see [7]). It is sufficient
for KAM-purposes.

NF, (“Birkhoff coordinates”, Thomas Kappeler 1991-2001, see in [4]). In Z
there exist analytic coordinates y = (y*,y™) , y = (y{,¥7 )5 ,¥5 ;-- - ). such that

o wy=dy" Ndy™;
o /= %((y;)z—&- (y;r)z) and g; = Arctan (y; /y}) for j=1,2,...;
e The Hamiltonian Hggy, written in the y-variables, is hgqy (I1, I, - . . ).
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This normal form is more powerful, but less general. It is needed for averaging
theorems for perturbed KdV.

2 KAM-theory

Consider a perturbed KdV Hamiltonian He (#) = Hgay (1) + € [ f(u(x),x)dx. The
corresponding Hamiltonian equation is

u+uﬂx—6uux—£%f;(u(x),x) =0. (1)

Question: In what sense do the tori 7; and solutions (2) persist in (1)?
The answer is known only for finite-gap tori; i.e., when I = (i,O, R ie R%.
We will write 7; = T;. This is an n-dimensional torus.

Theorem 1 (SK, see [6]). For most of I € R’ eq. (1) has an analytic invariant
n-torus TIf C Z which is C\/e-close to Tj. It is filled in with time-quasiperiodic
solutions

g=WEi(I); |WE—W|<Ce, W=(W,...,W,).

The corresponding linearised equations are reducible to constant coefficients and
are linearly stable.

Here “for most of [ € R’ ” means the following. Any compact set K C R} . con-
tains a Borel subset K such that meas(K \ K¢) — 0 when & — 0 and for any I € K,
the theorem’s assertions hold.

“Proof”. In the variables (¢, p,y) from the normal form NF;, the Hamiltonian of
the perturbed equation is

He = (h(p) + S(A(P)y,y) +13(9, p,¥)) + EHperturs (@, ) »

and the torus T} is formed by the points {(¢,7,0), ¢ € T"}. Scale variables (¢, p,y)
near this torus by &:

o=0, p=I+&p y=¢'3

y.
In the scaled variables H, becomes

HS:const+a)~p+ (A(Dy,y) +£1/3h (o,p,y:1,¢€),
where / is an analytic function and

=o(l)=V;h(,0,...).

When [ varies in R’ , o varies in the domain = VA(R’, ). So H; may be regarded
as a function H¢ (@, p,y; ®, €), depending on the n-dimensional parameter @ € Q.
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If He (@, p,y; @, €) as a function of w satisfies suitable nondegeneracy conditions,
then the infinite-dimensional KAM-theory for systems with parameters applies to
H, and implies the assertions. The nondegeneracy condition was checked in [1]. So
the theorem holds. U

For a real proof see [6] and the books [4,7].

Now some remarks:

¢ Theorem 1 is a general result which also holds for perturbations of other inte-
grable Hamiltonian PDE, see [7].

o The time-quasiperiodic solutions of the perturbed (KdV) (1) that are con-
structed, withn = 1,2,... correspond to “few” initial data, occupying a “small”
subset of Z which cannot be explicitly described.

o Still these solutions become dense in the phase-space Z as € — 0.!

3 Averaging: Hamiltonian perturbations

Consider again the perturbed (KdV) (1). This is a Hamiltonian perturbation of an
integrable Hamiltonian system. For perturbations of finite-dimensional Hamiltonian
systems the actions I(u(r)) of any solution u remain almost constant over a time
interval of duration esfx, Kk > 0, under the Nekhoroshev’s steepness condition, see
[10]. For the KAM-solutions of equation (1) of Section 2, constructed in Theorem 1,
the change of actions is < Ce for all z. But these solutions correspond to very special

initial data. How do the actions of a general solution of equation (1) of Section 2
behave?

Statement. Let u,(¢) be a solutions of (1) such that ue(0) = uy € .72". Then
[(ue(0) —I(uo)| < 6a(e)  Vi<Te=e"',  (S)
where 6, — 0 as € — 0.

Theorem 2 (T. Kappeler and SK, see [3]). There exist positive constants &y, 8, ...
such that (S) holds if ug € 7" and

[[uo|| < 8. (1)
Most likely the result is true without the smallness assumption (1). Much more
difficult (and more important) related questions are the following:

e Is the result true with 6,(€) = 0(g,||up||)? (where ||ug|| is arbitrary).
e Does (S) hold with T = €74, a > 2?
(We can prove (S) for some a > 1, but not for a = 2.)

! This means that for any open set Q C Z there exists & > 0 such that for each & < & the perturbed
equation has a time-quasiperiodic solution which passes through Q.
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4 Averaging: case of non-Hamiltonian perturbations

4.1 Deterministic perturbations

Consider a non-Hamiltonian perturbation of (KdV). Say, the following equation,
often considered in the literature:

U+ Uyey — Ouity = Eutyy, u(0) =up
(the boundary conditions as in (KdV) are assumed). Write it in the (I, q)-variables:2
I=¢eF(l,q), ¢=W(I)+eG(lq). (1)

Consider the averaged equation for /(r):
I=eR)(D). (F)0)= [ Fl.aydg  10)=1w), @
AT

where dgq is the Haar measure on T7;.

Averaging Principle: If (1(¢),¢(z)) is a solution of (1) and J(¢) is a solution of (2),
then
(1) —J()| < 6(e) YO<r<e !,

where 6 — 0 with €.
To prove the Averaging Principle is a big open problem due to the following two
difficulties:

(1) KdV-dynamics on some tori 77 is resonant
(ii) the averaged equation (2) is not well-posed

To avoid the first difficulty it is natural to introduce randomness.

4.2 Random perturbations

Now consider a randomly perturbed KdV:
U+ Uy — OULLy = Ety + /€N (1),
0
T](t,x) = E Z bjﬁj(t)ej(x).

J€Zy

3)

Here Zy is the set of all non-zero integers and

e All b; > 0 and decay fast when j — oo

2 Concerning properties of the functions F, G and their smoothness see [5].
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e {B;(t)} are independent standard Wiener processes
e {e;(x)} is the standard trigonometric basis for the space of periodic functions

The scaling factor /€ in the r.h.s. is natural since only with this scaling do solutions
of equation (3) remain of order one when t — o and € — 0.

Using Ito’s formula we write the corresponding equation for the vector I(u(t)) =
19(¢):

i= 8F(17q)+\/EZGj(L61) %ﬁj(ﬁ
j

Average it: 5
I=e(F)(1)+VE L(G)) (1) 5 Bi(r).

Here (F) is the same as in (2) and (G;)(I), j € Zy, are the column-vectors, forming
the infinite matrix (G)(7). The latter is defined as a symmetric square root of the
matrix

/ G(1,9)G'(1,q)dx,
T
where the matrix G(I, g) is formed by the columns G;(I,q).

Theorem 3 (SK and A. Piatnitski, see [5]). Let J(¢) be a solution of the averaged
equation such that J(0) = I(ug). Then

dist{Z(I(u(1))),2(J(t))} < 0(e) YO<r<e

where 0 — 0 with €. Here Z(I(u(t))) is the law of the random variable I(u(r)) € R%,
i.e. a Borel measure in RY (this space is given a weighted /;-distance, see [5]), and
dist is the Lipschitz-dual distance in the space of Borel measures.

This result is an infinite-dimensional analogy of finite-dimensional averaging
theorems due to Khasminskii and Freidlin—Wentzell (see [2]).
Theorem 3 illustrates well.

Principle: Introducing randomness to a nonlinear PDE we simplify the equation.
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Groups and topology in the Euler
hydrodynamics and KdV

Boris Khesin!

Abstract We survey applications of group theory and topology in fluid mechanics
and integrable systems. The main reference for most facts in this paper is [1], see
also details in [4].

1 Euler equations and geodesics

1.1 The Euler hydrodynamics equation

Consider an incompressible fluid occupying a domain M in R". The fluid motion
is described by a velocity field v(¢,x) and a pressure field p(z,x) which satisfy the
classical Euler equation:

dv+(v-V)v=—Vp, (1)

where divv = 0 and the field v is tangent to the boundary of M. The function p
is defined uniquely modulo an additive constant by the condition that v has zero
divergence at any moment ¢.

The flow (#,x) — g(¢,x) describing the motion of fluid particles is defined by its
velocity field v(¢,x):

dg(t,x) = v(1,8(t,x)), 8(0,x) = x.

The acceleration of particles is given by d2g(t,x) = (v + (v- V)v)(t,g(t,x)),
according to the chain rule, and hence the Euler equation (1) is equivalent to

97 g(t,x) = —(Vp)(t,g(t,x)).
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The latter form of the Euler equation (for a smooth flow g(#,x)) says that the ac-
celeration of the flow is given by a gradient and hence it is L?-orthogonal to the set
of volume-preserving diffeomorphisms, which satisfy the incompressibility condi-
tion det(dyg(t,x)) = 1. More precisely, it is L>-orthogonal to the tangent to this set,
the space of divergence-free fields. In other words, the fluid motion g(z,x) is a geo-
desic line on the set of such diffeomorphisms of the domain M with respect to the
induced L?-metric. Note that this metric is invariant with respect to reparametrizing
the fluid particles, i.e. it is right-invariant on the set of volume-preserving diffeo-
morphisms (a reparametrization of the independent variable is the right action of a
diffeomorphism).

More generally, the Euler equation describes an ideal incompressible fluid fill-
ing an arbitrary Riemannian manifold M, see [1,5]. It defines the geodesic flow on
the group of volume-preserving diffeomorphisms of M. It turns out that the group-
geodesic point of view, developed in [1] is quite fruitful for topological and qualita-
tive understanding of the fluid motion, as well as for obtaining various quantitative
results related to stability and first integrals of the Euler equation.

1.2 Geodesics on Lie groups

In [1] V. Arnold suggested a general framework for the Euler equations on an arbi-
trary group, which we recall below. In this framework the Euler equation describes
a geodesic flow with respect to a suitable one-sided invariant Riemannian metric on
the given group.

More precisely, consider a (possibly infinite-dimensional) Lie group G, which
can be thought of as the configuration space of some physical system. (Examples
from [1]: the group SO(3) for a rigid body and the group SDiff(M) of volume-
preserving diffeomorphisms for an ideal fluid filling a domain M.) The tangent space
at the identity of the Lie group G is the corresponding Lie algebra g. Fix some
(positive definite) quadratic form, the energy, on g. We consider right translations of
this quadratic form to the tangent space at any point of the group (the “translational
symmetry” of the energy). This way the energy defines a right-invariant Riemannian
metric on the group G. The geodesic flow on G with respect to this energy metric
represents the extremals of the least action principle, i.e., the actual motions of our
physical system. (For a rigid body one has to consider left translations.)

To describe a geodesic on the Lie group with an initial velocity v(0) = &, we
transport its velocity vector at any moment ¢ to the identity of the group (by using
a right translation). This way we obtain the evolution law for v(¢), given by a (non-
linear) dynamical system dv/dt = F(v) on the Lie algebra g (Fig. 1).

Theorem 1.1 The system on the Lie algebra g, describing the evolution of the ve-
locity vector along a geodesic in a right-invariant metric on the Lie group G, is
called the Euler equation corresponding to this metric on G.
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™~ G
/50

Fig. 1 The vector £ in the Lie algebra g is the velocity at the identity e of a geodesic g(¢) on the
Lie group G

1.3 Geodesic description for various equations

A similar Arnold-type description via the geodesic flow on a Lie group can be given
to a variety of conservative dynamical systems in mathematical physics. Below we
list several examples of such systems to emphasize the range of applications of this
approach. The choice of a group G (column 1) and an energy metric £ (column 2)
defines the corresponding Euler equations (column 3).

Group Metric Equation

S0(3) <w,A® >  Euler top
SO(3)+R? quadratic forms Kirchhoff equations for a body in a fluid
SO(n) Manakov’s metrics n—dimensional top

Diff(S!) L? Hopf (or, inviscid Burgers) equation
Virasoro L? KdV equation
Virasoro H' Camassa — Holmequation
Virasoro H' Hunter — Saxton (or Dym) equation
SDiff(M) L? Euler ideal fluid
SDiff(M)+SVect(M) L>+1? Magnetohydrodynamics
Maps(S',50(3)) H! Landau — Lifschits equation

In some cases these systems turn out to be not only Hamiltonian, but also bi-
hamiltonian. More detailed descriptions and references can be found in the book [4].

2 Topology of steady flows

2.1 Arnold’s classification of steady fluid flows
The stationary Euler equation in the domain M has the form

(v-V)yv=-Vp
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on a divergence-free vector field v. In 3D this equation can be rewritten as follows:
vXxcurly=—-Va,

i.e. the cross-product of the fields v and curlv is a potential vector field. Here @ =
p+|v|>/2 is called the Bernoulli function. (Another way to express this is to say
that the field v commutes with its vorticity curlv. The latter commutativity condition
is valid in any dimension.)

Theorem 2.1 [2,3] Let M be a three-dimensional manifold without boundary. Then
all non-critical level sets of o are 2-tori. Furthermore, both fields v and curly are
tangent to these levels and define there the R>-action.

On a manifold M with boundary, the a.-level sets are either 2-tori or annuli. On
tori the flow lines are either all closed or all dense, and on annuli all flow lines are
closed.

The proof of the theorem is based on the observation that v is always tangent to
the level sets of «, i.e. the function « is a first integral of the equation. On non-
critical sets one has Va # 0, which implies that v # 0. Thus the a-level sets are
two-dimensional orientable surfaces which admit a non-vanishing tangent vector
field. Thus these surfaces must be tori, since their Euler characteristic is 0. For M
with boundary, the a-level sets could intersect the boundary, in which case they are
annuli, see Fig. 2.

Remark 2.1. [2,3] (i) Analyticity assumptions on M and v imply that there is a finite
number of cells between the critical levels of ¢, which are foliated by tori or annuli.

(ii) The R?-action on tori is given by two commuting vector fields v and curlv. In
particular, locally around a non-critical level of « there are coordinates {¢;, ¢,z}
such that the a-levels are given by {z = const} and

V=W (Z)a(pl +V2(Z)8¢2,

curlv = wy (2)dp, +w2(2) 0, -

(a) (b)

Fig. 2 The flow lines of steady flows typically lie on tori or annuli: see the cases of M without
boundary (a) and with boundary (b)
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This way a steady 3D flow looks like a completely integrable Hamiltonian system
with two degrees of freedom.
(iii) It could happen that Vo = 0 everywhere, i.e. o = const. Then

v x curly =0,

and hence v is collinear with curlv at every point. Such fields are called force-free.
If v # 0 everywhere, we can express curlv as curlv = x(x)v for a smooth function
K(x) on M. Then «x is a first integral of our dynamical system given by the field v.
Indeed,
0 =div(curlv) = div(kv) = Vi -v.

Again, the vector field v is tangent to the level sets of k. On these sets there is only
the R-action.
(iv) Another interesting case is when k(x) = const. Then

curly = Av,

i.e. v is an eigen field for the curl operator: curlé = A&. Such fields are called
Beltrami fields (or flows). One famious example is given by the so called ABC
flows on a 3D-torus, which exhibit chaotic behavior and draw special attention in
fast dynamo constructions:

vy =Asinz+Ccosy

vy = Bsinx+Acosz
v, =Csiny+ Bcosx

(v) There is a two-dimensional version of the above Arnold’s theorem. Any area-
preserving field in dimension 2 is a Hamiltonian field (with possibly a multival-
ued Hamiltonian function): v = sgrady. This Hamiltonian function y is called the
stream function for the field v. The condition that v is a steady flow, i.e. that it com-
mutes with its vorticity curly, amounts in 2D to the fact that the stream function y
and its Laplacian Ay have the same level curves. In other words, locally there is a
function F : R — R such that Ay = F ().

2.2 Variational principles for steady flows

The stationary solutions of the Euler equation come by as extremals from two dif-
ferent variational principles [3, 8].

i) The magneto-hydrodynamic (“MHD”) variational principle: consider the
energy functional

E(v):/M|v|2d3x
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on divergence-free vector fields v on a 3D manifold M. Then extremals of the energy
functional among the fields diffeomorphic to a given one are singled out by the same
condition as the steady Euler flows: such fields must commute with their vorticities.
(This problem on conditional extremum corresponds to the restriction of the energy
E to the adjoint orbits of the diffeomorphism group.)

ii) The ideal hydrodynamic (“IHD”) principle: steady fields are extremal fields
for the energy functional among the fields with diffeomorphic vorticities, i.e. among
isovorticed fields. (The latter corresponds to the energy restriction to the coadjoint
orbits of the same group.) In this sense these principles are dual to each other, but
give the same sets of extremal fields.

3 Euler equations and integrable systems

3.1 Hamiltonian reformulation of the Euler equations

The differential-geometric description of the Euler equation as a geodesic flow on a
Lie group has a Hamiltonian reformulation. Fix the notation E(v) = %(v7 Av) for the
energy quadratic form on g which we used to define the Riemannian metric. Identify
the Lie algebra and its dual with the help of this quadratic form. This identification
A : g — g* (called the inertia operator) allows one to rewrite the Euler equation on
the dual space g*.

It turns out that the Euler equation on g* is Hamiltonian with respect to the
natural Lie-Poisson structure on the dual space [1]. Moreover, the corresponding
Hamiltonian function is minus the energy quadratic form lifted from the Lie al-
gebra to its dual space by the same identification: —E (m) = — (A~ 'm,m), where
m = Av. Here we are going to take it as the definition of the Euler equation on the
dual space g*. (The minus is related to the consideration of a right-invariant metric
on the group. It changes to plus for left-invariant metrics.)

Definition 3.1 (see, e.g., [4]) The Euler equation on g*, corresponding to the right-
invariant metric E(m) = %(Av, v) on the group, is given by the following explicit
formula: 4
m *
dr = —adA—lm”h (D
as an evolution of a point m € g*. Here ad* is the coadjoint operator, dual to the

operator defining the structure of the Lie algebra g.

Below we explain the meaning of this operator in the case of the Virasoro algebra,
“responsible” for several equations of mathematical physics.
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3.2 The Virasoro algebra and the KdV equation

Definition 3.2. The Virasoro algebra vir = Vect(S') @R is the vector space of pairs
which consist of a smooth vector field on the circle and a number. This space is
equipped with the following commutation operation:

(70) 500 (600 528 = (70000~ 10 O 3. [ 080

for any two elements (f(x)d/dx,a) and (g(x)d/dx,b) in vir.
The bilinear skew-symmetric expression c(f,g) := [ f'(x)g" (x)dx is called the
Gelfand—Fuchs 2-cocycle.

There exists a Virasoro group, an extension of the group of smooth diffeomor-
phisms of the circle, whose Lie algebra is the Virasoro algebra vir. Fix the L>-energy
quadratic form in the Virasoro Lie algebra:

E(f(x)%a) = % (/SI f2(x)dx+a2).

Applying the construction of Section 1 to the Virasoro group, one can equip this
group with a (right-invariant) Riemannian metric and consider the corresponding
Euler equation, i.e., the equation of the geodesic flow generated by this metric on
the Virasoro group.

Theorem 3.1 [9] The Euler equation corresponding to the geodesic flow (for the
above right-invariant metric) on the Virasoro group is a one-parameter family of
the Korteweg—de Vries (KdV) equations:

8,u+u8xu+c8x3u =0;0;c=0

on a time-dependent function u on S'. Here c is a (constant) parameter, the “depth”
of the fluid.

Proof. The space vir* can be identified with the set of pairs
{(u(x)(dx)?,c)|u(x) is a smooth function onS',c € R}.

Indeed, it is natural to contract the quadratic differentials u(x)(dx)> with vector
fields on the circle, while the constants are to be paired between themselves:

(0(3) 2 ), (u() . ) = [ v uwdr+a-c.

The coadjoint action of a Lie algebra element (fd/dx,a) € vir on an element
(u(x)(dx)?,c) of the dual space vir* is

ad{;/ax.q) ((dX)*,¢) = (2(0uf)u+ fIu+c; f,0).
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It is obtained from the identity

(07 510, (8 3 b)) (2.} = (g o b 5, (u(dn).),

which holds for every pair (g%,b) € vir.

The quadratic energy functional £ on the Virasoro algebra vir determines the
“tautological” inertia operator A : vir — vir*, which sends a pair (#(x)d/dx,c) € vir
to (u(x)(dx)?,c) € vir*.

In particular, it defines the quadratic Hamiltonian on the dual space vir*,

E(u(dx)?,c) = %(/uzdx—i—cz)

1 d 5 1, 0 d
= —((u= = —((u=,c),A(u=—,c)).

((05.0), (u(dx,)) = 5 ((5-.0). A3 0))
The corresponding Euler equation for the right-invariant metric defined by E on the
group (according to the general formula (1) above) is given by

J .
E(u(dx)z,c) = —adA,](u(dx)zvc) (u(dx)z,c).

Making use of the explicit formula for the Virasoro coadjoint action ad* for
(f/dx,a) = A~ (u(dx)?,c) = (ud/dx,c),
we obtain the required Euler equation:
du = —2(Ju)u — udwu — cﬁgu = —3udcu — cafu, d;c=0.

The coefficient c is preserved in time, and the function u satisfies the KdV equation.
QED.

3.3 Equations-relatives and conservation laws

For different metrics on the Virasoro group, other interesting equations can appear
from the same scheme. The Euler equation on the Virasoro group with respect to
the right-invariant H'-metric gives the Camassa—Holm equation:

Optt — Oxytt = —3udyu +2(0xut) Oyt + UGyt + cc?fu,

see [7]. Similarly, the homogeneous H'-metric gives the Hunter-Saxton equation
(an equation in the Dym hierarchy):

Oxxrtt = —2(0yut) Oyt — Uy,

see [6].
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Remark 3.1. Tt turns out that all these three equations (KdV, CH, and HS) are
bihamiltonian systems, and hence admit an infinite family of conservation laws.
The corresponding Hamiltonian (or Poisson) structures are naturally related to the
Virasoro algebra.

For instance, for the KdV equation these conserved quantities can be expressed
in the following way. Consider the KdV equation on (u(x)(dx)?,c) as an evolution

of Hill’s operator c% + u(x). The monodromy M (u) of this operator is a 2 x 2-
matrix with the unit determinant. Look at the following function of the monodromy
for a family of Hill’s operators:

hy, (1) == log(trace M (u — A?)),

where M (u— A?) is the monodromy of the Hill operator % +u(x) — A%
Now, the expansion of the function %, in A produces the first integrals of the
KdV equation:

hy (u) ~ 27w — Z Cnhon—1 (u)llfzn,
n=1

where

h = /sl u(x)dx, hz= /Sl u(x)dx, hs= /Sl <u3(x) - ;(ux(x))2> dx, ...

and ¢; = 1/2,¢, = (2n—3)!1/(2"n!) for n > 1. One can recognize here the famil-
iar form of higher KdV integrals. Their appearance in this expansion is due to the
fact that the trace of the monodromy M (u) is a Casimir function for the Virasoro
algebra, while the coefficients in a Casimir expansion provide a hierarchy of con-
served charges for any bihamiltonian systems, see [6] for more details on the KdV
and other related equations.
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Infinite dimensional dynamical systems
and the Navier-Stokes equation

C. Eugene Wayne'

Abstract In this set of lectures I will describe how one can use ideas of dynamical
systems theory to give a quite complete picture of the long time asymptotics of so-
lutions of the two-dimensional Navier—Stokes equation. I will discuss the existence
and properties of invariant manifolds for dynamical systems defined on Banach
spaces and review the theory of Lyapunov functions, again concentrating on the
aspects of the theory most relevant to infinite dimensional dynamics. I will then
explain how one can apply both of these techniques to the two-dimensional Navier—
Stokes equation to prove that any solution with integrable initial vorticity will will
be asymptotic to a single, explicitly computable solution known as an Oseen vortex
equations.

1 First lecture: infinite dimensional dynamical systems

In this first lecture I recall some common techniques used in finite dimensional dy-
namical systems and discuss their generalization to the infinite dimensional context
needed for applications to partial differential equations. The two main tools we will
use in these lectures will by invariant manifolds and Lyapunov functions. We will
use the former to analyze the behavior of systems near stationary solutions and the
latter to obtain more global information about solutions. Good general references
for this material are [11] and [12].

We begin by recalling a very simple situation. Suppose that one has a system of
n ordinary differential equations

dx

— = , XeR". 1
=T x 1)
Suppose further that the origin is a fixed point of this this system of equations. If
we want to analyze the behavior of solutions near zero an obvious approach is to

linearize the equation, i.e. we write
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F(x) = F(0)+ (Dof) x+ O(Ix) = Lx + f(x) . 2)

In this last equality we have used the fact that £(0) = O (since the origin is a fixed
point) and defined the 7 x n matrix L = Dy f, i.e. the Jacobian matrix of f at the fixed
point. The function f(x) collects the nonlinear terms in the equation — in particular,
f(x) = O(|x|?) for x near zero. If x is very small then the terms ¢(|x|*) should be
much smaller than the linear terms in X suggesting that a good approximation to the
solutions of (1) should be given by

dx
—=Ix. 3
7 3)
This equation is easily solved — if L has n linearly independent eigenvectors {v j}7: 1>
with eigenvalues {4;}"}_;, then any solution of (3) can be written as

x(t) = 1MV + -+ cpelv, 4)

for some choice of constants c;.

Remark 1.1. The constants c¢; are determined by the initial conditions. If {w j}'}':l
are the adjoint-eigenvectors of L, normalized so that (w;,v;) = ;« then we have

cj=(w;,x(0)) .

(Here (-,-) is the inner product on R".) Hence for later use we note that we will
want to know not only eigenvectors for the linear part of equations we study but
also adjoint eigenvectors.

From (4) we see that we can split R” into a direct sum of three subspaces — the
stable subspace, [E*, the center subspace E¢ and the unstable subspace, E¥, which are
respectively the spectral subspaces associated with the eigenvalues whose real parts
have negative, zero, or positive real parts. Note that any solution with initial condi-
tion in E® approaches the origin as  — oo while any solution with initial condition
in [E* approaches the origin as t — —oo.

An obvious question is to what extent this structure survives when we include the
nonlinear terms that were omitted in (3). We certainly don’t have explicit solutions
like those in (4) any longer but geometrical structures analogous to the stable, center
and unstable subspaces do persist, at least in a neighborhood of the fixed point — this
is the content of the invariant manifold theorems. We state these informally for
the moment, reserving a more formal treatment until we discuss the corresponding
results for infinite dimensional systems below. Suppose f € C!(R"). Then there
exists a neighborhood of the origin B, C R" and functions /* defined on B, such
that

n:B,NE — E‘ ok

The function #* is C!, and its graph, known as the local stable manifold Wlfw is
locally invariant (i.e. for any initial condition in %) the corresponding solution of

(1) remains in %} . for as long as it remains in the domain of definition of /°.).
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Furthermore, any solution which remains in % for all ¢ > 0 approaches the origin
as t — oo, In addition the local stable manifold is locally unique — no other manifold
in a neighborhood of the origin shares all these properties.

Analogous results hold for the local unstable manifold. However, things are
slightly more delicate for the center-manifold. In particular, one no longer has
uniqueness. There are simple examples of systems of ordinary differential equations
with infinitely many local center manifolds.

One property that makes center manifolds particularly important and interesting
is that one can show that there exists a neighborhood of the origin (which we can
assume to be B,, without loss of generality) such that any solution which remains in
this neighborhood for all # € R must lie in the local center manifold. This implies
that any periodic orbits or additional fixed points in a neighborhood of the origin
must lie in the center-manifold. If one is looking specifically for periodic orbits, say,
this can lead to a very big simplification since it permits one to reduce the search
from the original system of n equations to a system whose dimension equals that of
the center manifold which is often much less than #. Such a reduction is even more
important in the context of partial differential equations where it frequently results
in reduction from an infinite dimensional set of equations to one whose dimension
is small and finite.

We next turn to a discussion of the appropriate generalization of these invari-
ant manifold theorems to partial differential equations. Suppose that we consider a
(system) of partial differential equations

% =Zu+ f(u,Vu) , )
where u = u(x,t) e R", x€ 9 C R and ¢ > 0, % is a linear, differential operator
and f is a nonlinear term depending on u and its (first order) partial derivatives. One
could also consider quasilinear partial differential equations but in these lectures we
restrict attention to this semilinear case.

Following the intuition gained from the finite dimensional case above we would
like to compare solutions of this equation to those of the linear equation

du
5 = Zu (6)

There are many additional difficulties that are encountered in treating this infinite
dimensional case in comparison with the finite dimensional case discussed above.
Some of these difficulties are only technical and reflect the more complicated analy-
sis necessary in an infinite dimensional setting. However, other problems represent
qualitative differences in the behavior of the partial differential equations vis-a-vis
ordinary differential equations. Among the problems that must be overcome are:

1. The spectrum of . may no longer consist only of eigenvalues as in (3) but may
now contain continuous spectrum.

2. Since the operator .Z will in general be unbounded it may not be possible to
define solutions for # < 0 for general initial conditions — in this case discussing
the behavior of solutions as t — —oo is clearly problematic!
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3. If the continuous spectrum approaches the imaginary axis there may be not clear
splitting between the center subspace and the stable and unstable subspaces.
This problem, often called the lack of a spectral gap, is particularly common
when studying problems defined on unbounded spatial domains.

4. One cannot in general hope that the nonlinearity f in (5) will be C' - indeed
due to the presence of derivatives of u in the nonlinear term it often even fails
to map the Banach space in which solutions lie back into itself. This will be the
case, for example in the Navier—Stokes equations which are the subject of the
third and fourth lectures in this series.

Many authors have addressed the question of the existence and properties of in-
variant manifolds for partial differential equations. In contrast to the case of ordinary
differential equations where it is more or less clear what the “right” assumptions
on the vectorfield are and what the “correct” conclusion ought to be, this is by no
means so clear in the case of partial differential equations. In particular, depending
on the context one may wish to make either stronger or weaker assumptions about
the linear part of the equation (which affect, for instance, the smoothing proper-
ties of the semi-group associated with (6), or even whether the linear part defines
a semi-group). These assumptions then entail making either different assumptions
on the nonlinear term, or changing (typically, weakening) the results one hopes to
obtain. For examples of typical results in this context see [1], [13] or [16]. One
general principle which emerges from this collection of results is that if (5) and (6)
define semi-flows then it is often easier to work with the semi-flow than with the
differential equation itself. This is because the semi-flow already incorporates any
smoothing properties that the equation may possess. By working with the semi-flow,
Chen, Hale and Tan (CHT) [4] have given a very general form of the invariant man-
ifold theorem, applicable to many partial differential equations. It is their result that
I will use in subsequent lectures and which I now state.

From now on, we assume that the partial differential equation (5) defines a semi-
flow @' on some Banach space X. Then (CHT) make the following assumptions:

(H.1) @'(u) is continuous for (¢#,u) in R* x X and there exist positive constants g
and D such that
sup Lip(®') =D <o
0<r<q
where & &
(@) = sup 1200 =)
u,vex H” - VH

(H.2) For some 7 € (0,g], one can decompose P* as
@' =S+R

where S is a bounded linear operator from X to itself and R is globally Lipshitz.
(H.3) There exist subspaces X; and X, such that X = X € X5, and continuous pro-
jections P, : X; — X;, i = 1,2 which are invariant with respect to S. Also S com-
mutes with P,. If §; = S| x;» then S; has bounded inverse and there exist constants
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C; and ¢; such that o¢; > o > 0 and

ISPl < Croy
IS5P2| < Crot
(H.4) The constant C; and ¢; from (H.3) are related to the nonlinearity in such a
way that
VG +G)?
(( 1+ VG) )Lip(R)<1.
o — 0

Remark 1.2. For later use we fix two additional constants y; and ¥, with o < 72 <

N < o such that
Lip(R) < G, @ ) -1
Ga—"N -0

Note that by making Lip(R) sufficiently small we can make 7; arbitrarily close to
oy and 7, arbitrarily close to 0.

Remark 1.3. Before stating the conclusions of the (CHT) theorem we comment
briefly on the meaning of these hypotheses. The hypothesis (H.1) implies that (5)
defines a well-behaved semi-flow. This hypothesis typically rules out applying these
results to elliptic equations, for example. Hypothesis (H.2) is just an assumption that
the semi-group splits nicely into its linear and nonlinear parts. Hypothesis (H.3) im-
plies a “spectral gap” for the linear part of the semigroup. The spectrum of S, must
lie inside a circle of radius oy and the spectrum of S| must lie outside a circle of
radius . Note however, that there is no assumption that S, is invertible — we do
not assume that the original partial differential equation is solvable “backwards” in
time for general initial data. Finally, hypothesis (H.4) requires that the nonlinear
term must be small, in the appropriate sense, with respect to the spectral gap.

We now state the theorem of (CHT) which we will use later:
Theorem 1.1. Suppose that (H.1)-(H.4) hold. Then there exists a globally Lipshitz
map g : X1 — X such that the graph of g
G ={u +g(u1)|u1 €X}

satisfies:

(i) (Invariant Manifold) The restriction of @' to G can be extended to a Lipshitz
flow on G.
(ii) (Lyapunov exponents) Any negative semi-orbit ||u(t)||;<o C X that satisfies

o1 1
lim — log ||u()|| < —Elogyz @)

T

must be contained in G. In particular, if > < 1, any fixed point of @' must lie
in G.
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(iii) (Invariant Foliation) There exists a continuous map h : X X X, — X1 such that
ifv € G, then h(v,P,v) = Piv and the set

M, = {h(v,w) +w|w € Xo}

passing through v satisfies @' (M,) C Mg (,) and

M,={we X|limsup%log|(15t(w) —d'(v)| < %logyz} :
{—ro0
Remark 1.4. We did not discuss the finite dimensional analogue of point (iii) but
roughly speaking the fibers M, of this foliation contain all points whose asymptotic
behavior it the same as that v —i.e. we can characterize the asymptotics of all points
(sufficiently close to the fixed point) by those of points on the invariant manifold.
Note that the estimate on the rate of convergence of points in the fiber toward the
invariant manifold also implies as a corollary that all solutions near the invariant
manifold approach (assuming that p» < 1.)

Remark 1.5. Note that in Hypothesis (H.1) we assume that there is a global bound
on the Lipshitz constant of the semi-flow. (Here, I mean global in X, not in time.)
This is rarely true in practice but this hypothesis is why the manifold constructed
here is not constrained to a neighborhood of the fixed point but rather is defined for
all u; € X;. In practice we “cut off” the nonlinear terms in the equation outside a
small neighborhood of the fixed point in order to allow this hypothesis to be verified
and this will make the applications of this theorem “local” in character.

Remark 1.6. If the term R in the decomposition of the semiflow is nonlinear in the
sense that R(0) = 0 and DR(0) = O then the function g whose graph defines the
invariant manifold has the same property — namely g(0) = 0 and Dg(0) = 0.

This invariant manifold theorem will be our main tool to investigate the local
behavior of solutions of partial differential equations in the later lectures. However
we will also want to consider more global questions. For those, we will make use
of Lyapunov functions. Here, the transition from the finite dimensional to infinite
dimensional setting involves fewer changes than in the case of the invariant mani-
fold theorems so we work directly with the infinite dimensional case without first
reviewing the finite dimensional results. The presentation here largely follows that
of D. Henry in [11] — see that work, or [12] for more details.

Let @' be a semi-flow on a Banach space X. We want to characterize the long-
time behavior of solutions of the differential equation defining @' and with that in
mind make the following two definitions:

Definition 1.1. Given uy € X, we define the forward orbit of uy as:
0" (wg) = { @' (up)|t >0} .

Definition 1.2. The omega limit set of a point uy is the set of all points which the for-
ward orbit of ug approaches arbitrarily closely as ¢ tends to infinity. More precisely,
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o(up) = {u € X|there exists {f,} C Rsuch that lim #, = oo
Nn—oc0

and lim || ®" (up) —u|| =0} .
n—s00

Exercise 1.1. Suppose that @ € 07 (up). Show that o(ug) = @(@t). Thus we can
refer without ambiguity not just to @(ug) but also ©(& " (uy)).

Exercise 1.2. Show that if u* is an element of the ®-limit set of uy and if 0" (up) C
K, a compact subset of X, then the orbit of u* is defined for all € R and the entire
orbit of u* is contained in ®(up).

One might worry that the omega-limit set was empty, but this turns out not to be
the case, at least not if the forward orbit remains in a compact set:

Proposition 1.1. If 0" (ug) C K, a compact subset of X. then ®(ug) is non-empty
and invariant (i.e. if u* € @(ug), then P'(u*) € w(ug) forallr € R.)

The proof of this proposition is not difficult — see [11] for details. The only
slightly surprising point is that the omega-limit set is invariant in both forward and
backward time, even though we do not know (or expect) that the semi-group itself
is defined for ¢ < O for general initial conditions.

A key tool for investigating omega-limit sets are Lyapunov functions.

Definition 1.3. If X is a Banach space, a Lyapunov function for the semi-flow @' is
a continuous, real-valued function ¥ such that

¥ (u) —¥(u)
t

limsup < Oforallue X .

t—0T
This means that ¥ is non-increasing along orbits of @’.

Remark 1.7. Note that if the limit in Definition 1.3 exists it is just the derivative of
Y along the trajectory with initial condition u so a common way of verifying that a
given function is a Lyapunov function is to show that its derivative is non-positive
along solutions.

A key tool we will use in Lecture 4 is the LaSalle Invariance Principle:
Proposition 1.2. Let ¥ be a Lyapunov function for the semi-flow ®'. Define
% If 0" (wy) is contained in a compact subset of X then ®(ug) C E.

Because of the importance of this result for our applications we sketch its proof:

Proof. By the compactness of the forward orbit and continuity of ¥ we know that
there exists some finite M such that

V(q)t(llo)) >M

for all # > 0. Since ¥ is monotonic along the orbit of uy we therefore conclude that
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tlim Y (D' (ug)) =¥~
for some ¥=. If w € ®(uy) the definition of the omega-limit set, plus the continuity
of ¥ imply that there exists a sequence of times {#,} approaching infinity such that
limy, 0o P (@™ (ug)) = P(w), from which we conclude that @ (w) = ¥*. But then,
by the invariance of the omega-limit set we have

Y (D' (w)) =P forallt R,
which implies thatw e E. O

Example 1.1. We finish this lecture with an example of a somewhat unusual
Lyapunov function which will play a role later in this series of talks. Consider
the dynamical system defined by the partial differential equation

a—wzzw,w:w(g,r);éeRd,r>o (8)

ot
w(&,0) =wo(§)

where Zw = Agw + %V - (Ew). The reason for considering this unusual equation
will be explained in Lecture 2 but for the moment assume two facts about the evo-
lution:

1. The solutions of (8) obey the maximum principle. In particular, if wo(§) > 0
then w(&, 1) > 0 for all & for any 7 > 0.
2. If w(&,0) € L' (RY) the @-limit set of the corresponding trajectory exists.

The reason that equation (8) obeys the maximum principle will be explained in
Lecture 2.
We next show that the L! norm is a Lyapunov function in this case.

Lemma 1.1. Let wy € L' (R?) and let w(&, ) be the solution of (8) with this initial
condition. Then the function

Pw)() = [ Iw(E.)ldE

is non-increasing along trajectories. More precisely, ®(w)(t) < ®(wo) for every
T > 0 and equality holds if and only if wy does not change sign.

Proof. Define w§ (&) = max(wy(&),0), wy (&) = —min(wo(&),0) Let w*(&,7) be
the solutions of (8) with initial conditions w(j)E respectively. Note that from the form
of the equation we see immediately that the equation conserves the integral of the
solution. Thus

[ nde = [ wo(&)ag

and

/Rd W (&, 7)dE :/Rd Wi (E)dE .
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Now note that if wy does change sign, w§ are both non-trivial. Furthermore they
have disjoint support. However, by the maximum principle, w* (&, 7) will both be
positive for all £ whenever T > 0. Thus,

[ wEoE = [t (E,e) - w (&, 7)la
R R
< [0 Enrw @ o)as = [ (i (@) (©)dE= [ wo(@)ldE.

which shows that @ decreases along orbits if wy changes sign. The fact that & is
constant when wy is everywhere non-negative or non-positive is easier and left as an
exercise.

Note that if we combine this Lemma with the LaSalle Invariance Principle we
immediately have

Corollary 1.1. Any point in the ®-limit set of a solution of (8) must be either every-
where positive, everywhere negative, or identically zero.

This Corollary may not seem very strong at first glance since one might think that
all solutions just tend toward zero. However, this can be ruled out by the fact that
solutions conserve the integral of the initial condition and conditions on the decay
of solutions at infinity — thus, if the integral of the initial data is non-zero, we can
conclude that the w-limit set is either everywhere positive or everywhere negative,
a fact which will be important in the last lecture in this series.

2 Second lecture: invariant manifolds for partial differential
equations on unbounded domains

In this lecture we examine the application of invariant manifold theorems to some
partial differential equations on unbounded spatial domains. For concreteness we
focus primarily on the family of semi-linear heat equations:

du
ot
u = u(x,t), >0, xeRY.

= Au—ululP™', p>1 )

The long-time behavior of solutions of this equation have been intensively studied
and not surprisingly the value of the exponent p in the nonlinear term plays an
essential role in this behavior. The dynamical systems approach described below
gives a very simple explanation of this p-dependence.

Remark 2.1. There are a host of other applications of invariant manifold theorems
to partial differential equations — see the references [1], [13] or [16] for a small
sampling. We focus on this particular family of equations both because it will serve
as a good “warm up” for treating the Navier—Stokes equations later and also because
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it illustrates one way of dealing with lack of a spectral gap which often arises in
treating problems on unbounded spatial domains.

If one uses the Duhamel formula to convert (1) to an integral equation it is not
difficult to show that this equation defines a smooth semigroup, at least for small
initial data. However, if one tries to apply the invariant manifold theorem of Chen,
Hale and Tan (CHT) described in the previous lecture one immediately runs into the
problem that one cannot split the Banach space in the way described in hypotheses
(H.3) and (H.4). The reason for this is a lack of a spectral gap and the origin of this
problem is seen immediately even for the case of the linear heat equation

u

EZAM’ u=u(x,t),1>0,xecR?. 2)

For this equation we can immediately write down a representation of the semi-
group. It is particularly easy to analyze in terms of the Fourier transform

1 .
ﬁ(k7t) = W /Rd M(x,t)eflx'kdx (3)

If we are given initial conditions u(x,0) = ug € L>(R?) then the solution of (2) can
be written as: ,
a(k,t) = e~ " a0 (k) 4)

Since the semigroup in this case is just a multiplication operator we see that its
spectrum equals the closed interval [0, 1]. Since there is no gap in the spectrum there
is no way to split the space of initial conditions in the way required by the (CHT)
theorem. Thus, there is no easy way to identify subspaces of our Banach space which
correspond to solutions with particular decay properties. A way to circumvent this
problem emerges if one recalls the form of the fundamental solution of the heat
equations:
1 —|x|?/ (4t

G(x,t)—We "/ (40) (5)
Examining this solution we see that x appears in a special way — namely as the
combination x/+/¢ and this suggests that it might be more natural to study (2) not
in terms of the independent variables (x,) but rather in terms of the new variable
& = x/+/t. With this in mind we introduce new dependent and independent variables
through the definition:

1

u(x,r>=(1+t)a/2 Wl Tog(141) ©)
ézm 7 =log(1+71)

Note that in defining the new variables (often called “scaling” or “similarity” vari-
ables) we have defined & = x/+/1+1 rather than x/+/¢ simply to avoid the singu-
larity at t = 0. This can be thought of as simply changing the origin of the time
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axis and since our equation is autonomous it has no effect on the problem. Also, the
exponent & which occurs in the definition of w will be chosen in a way convenient
to each of the problems considered. For the moment, in our discussion of the linear
heat equation we will take ot =d.

If we rewrite (2) in terms of these new variables we find that

aW_ _ d
W_zwa W—W(é,f),éER (7)

1
Lw = Agw+ V- (Ew).

At first sight, this may not seem like an improvement as we have traded the heat
equation for an apparently more complicated equation. However, as we will see this
form of the equation has the advantage that a gap in the spectrum appears which sep-
arates the slowly decaying modes from the more rapidly decaying ones and allows
us to apply the invariant manifold theorem of the preceeding lecture.

Remark 2.2. Note that (7) is precisely the equation considered in Example 1.1 at the
end of the previous lecture. Since this equation is just the heat equation rewritten
in new variables it is clear that solutions of this equation will inherit a maximum
principle from the maximum principle satisfied by the heat equation.

To see why and how this spectral gap forms, consider the eigenvalue problem for
% — for simplicity, we consider the case of d = 1 though the following results are
true in any dimension:

Lo=21¢ ®)
If we take the Fourier transform of this equation we find
. 1 do
j— 2 _—— — =
KPG8 — S+ () = 29 (k) ©

This first order equation can be solved with the aid of integrating factors and we find
that for any A one has a solution

r (k) = AT k| e MO (k) + A~ k| e MO (—k) (10)

where © (k) is the Heaviside function. (Note that the singularity at the origin means
we can have different constants AT and A~ depending on whether k is positive or
negative.) Thus, we have a solution of the eigenvalue equation for any value of A so
one might at first think that the spectrum of . is the whole complex plane. However,
note that if A is real and positive, (]3’l is singular at the origin and thus whether or
not (ﬁl is an eigenfunction depends on what function space we are working on. This
observation reminds us that in general the spectrum of an operator depends on its
domain of definition and as we will see that is very true of the operator .%Z.

It has long been known that the time decay properties of parabolic equations are
often connected with the spatial decay properties of their solutions. With this in
mind we define the family of weighted Sobolev spaces:
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L2(m) = {f € 2RI fllm < =} (11)
1/2

Il = [, -+ IEPIARaz (12

H*(m) = {9%f € L*(m)|foralla = (a, ..., 0)with|ot| < s} (13)

One standard property of these spaces which is very convenient for our subsequent
use is that Fourier transformation is an isomorphism from H*(m) to H™(s). Thus,
if we consider the spectrum of the operator . on the space L?(m), the point A
will be in the spectrum if the function $* € H™(0) — i.e. if the function ¢* is in
the “ordinary” Sobolev space H™. Clearly qul is sufficiently smooth and rapidly
decaying to be in H™ for any m, provided we stay away from the origin. Thus, d)}”
will be in H™ provided it, and all of its derivatives of order m or less are square
integrable in some small neighborhood of the origin.

From the form of ¢* we see that the cases with A = —n/2 a non-positive half
integer are “special”. In this case, if we choose A" and A~ appropriately we find
that q)’l(k) = k"¢ ¥ is a solution of the eigenvalue equation. Since this function
is entire and rapidly decaying (13}” is any Sobolev space H™ and thus the points

—%|n=0,1,2...} are in the spectrum of .# when considered on any of the
spaces L*(m). Furthermore, the corresponding eigenfunctions are given by the in-

verse Fourier transform of k"¢~ which implies ¢"/2(€) = C, d(é” eS/4, of par-
ticular importance in our subsequent discussions will be the Gaussian eigenfunction
of A =0, ¢°(&) = \/#4?8752/4, with the prefactor chosen so that ¢° has integral one.

For other values of 4, the most singular behavior of qul and its derivatives will
occur for the derivative of highest order and we see that near k£ = 0 one has

dm(ﬁl
dkm

(k) ~ [k 7247 (14)
This expression will be square integrable provided 2(2Re(4) +m) < 1, i.e. if

1 m
el (15)

Re(l) < Z -

Thus we have shown

Proposition 2.1. Fixm > 1 and d = 1 and let £ be the operator in (7) acting on its
maximal domain in L*(m). Then

1 m n
o(Z) D {l € C|Re(A) < 4—2}U{—2|n:071,2,...} .
In fact, as mentioned above, this result also holds for dimensions greater than 1. Fur-
thermore, in addition to the eigenvalues computed above one might have additional
parts to the spectrum but it turns out that this is all of the spectrum in this case and
one can prove that in dimension d one has:
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Theorem 2.1. ([7], Theorem A.1) Fix m > 1 and let £ be the operator in (7) acting
on its maximal domain in L>(m). Then

o(Z) = {l € C[Re() < Z—’;}U{—;M:O,LZ,...} .

Although the spectral picture above gives valuable intuition about the behavior of
the semigroup ¢*, for later applications we will need more precise estimates on
its properties. In particular, recall that the heat equation has strong smoothing prop-
erties (i.e. solutions of the heat equation with “rough” initial data are infinitely dif-
ferentiable for all # > 0) and we will need to know to what extent these smoothing
properties survive when we introduce scaling variables.

Remark 2.3. Note that it is not automatic that the semigroup ¢™Z will be smoothing.
From the spectral picture in Theorem 2.1 we see that the operator . is not sectorial
in any of the L*(m) spaces. Thus in contrast to the heat equation semigroup, ™ is
not an analytic semigroup.

In addition to the smoothing properties of the semigroup for our later applications
we will need to know what the spectral projection operators onto the various spectral
subspaces of .Z are. From the discussion in Lecture 1 we expect these to be given
by eigenfuctions of the adjoint operator .#*. Formally the adjoint operator has the
form

1
Ly =28y -8 Vey (16)

If we specialize to one dimension again for simplicity the eigenvalue equation for
LTis

, 1
Ly=y' -8V =2y. (17)
This is Hermite’s equation and thus, we find that the spectral projections are defined
in terms of the Hermite polynomials. If & = (e, ..., ay) € N¢ we define
ey = 20 Higg (e 1684) (18)
(X

and then the projection P, onto the eigenspace corresponding to the eigenvalues
Ae=—%, k=0,1,...,nis defined by

12
(Puf)(& H*(E')f(&"d¢E Pa (&) (19)
\05|<n (/ )
(@nf)(&) = (A=P)f)(E) (20)

We make two remarks about these projection operators that will be useful later.

Remark 2.4. The projection Py onto the zero eigenspace is simply

@@ = ([, 1) 0. @
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i.e. the projection of a function f onto the zero eigenspace is just given by the
product of the Gaussian, ¢°, with the integral of f. In particular, any function of
mean zero lies in the complementary subspace.

Remark 2.5. Following up on the preceding remark we see that a function f lies in
the range of Q,, if and only if

[ &%r(&)dg =0, @)

forall o = (o, ..., 05) € N with |a| < n.

We now state our main technical estimate on the semigroup e*< .
Proposition 2.2. Fixn € NU{—1} and fixm > n+ 1+ 4 For all o € N, there exists
C > 0 such that

C —(ngl
e W 23)

o, 7L
[0%(e an)”mgm

forall f € L*(m) and all T > 0.

Proof. For the details of the proof we refer to [7], Appendix A. However, we note
that the decay rate is exactly what we expect from the spectral picture in Theo-
rem 2.1. The more delicate smoothing properties (quantified by the estimates of the
derivatives of the semigroup) are obtained from the explicit integral representation
of the semigroup which we easily obtain by noting that e*< wy is the solution of (7)
with the initial condition wy which when combined with (6) gives

(€ wo) (&) = w(&,7) = e Tu(Ee™? e" — 1) (24)

and we then use the integral representation of u in terms of wy which follows from
the fact that u solves the heat equation with initial condition wg. O

We now consider the implications of this result for the invariant manifold theo-
rem. Recall that the problem with applying the invariant manifold theorem directly
to the heat equation was that the semi-group had no spectral gap. If we now consider
the semigroup defined by (7) then we see that the modes corresponding to the eigen-
values 4 = —3 will decay like ¢~ 37 while modes lying in the half plane of essential

spectra will all decay at least with a rate e4=%)% and by choosing m appropriately
we can separate the decay rate of these modes from the most slowly decaying ones.
In particular, if we choose m > d/2 we expect that as ¢ tends toward infinity solu-
tions of (7) will approach a point on the eigenspace corresponding to the eigenvalue
zero. Thus, we expect solutions of (7) to behave as

Co _IER/a
W)~ T

as t tends toward infinity, which just reflects, in these new variables, the fact that so-
lutions of the heat equation tend toward a Gaussian profile as ¢ tends toward infinity.
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(Note that this is consistent with the conclusion of Example 1.1 where we showed
that the @-limit set of non-zero solutions of (7) should be either everywhere positive
or everywhere negative.)

We now turn to the nonlinear equation (1). We want to apply the results of (CHT)
from the first lecture and to do that we need to study the semi-flow defined by this
equation. We begin by rewriting the equation in terms of the scaling variables, (6).
It is convenient if the resulting equation is autonomous and in order to insure that
this is the case we pick the exponent & in the prefactor of w to be o = %1 For
what comes later it will be convenient to consider the exponent p itself to be one of
the dependent variables with a trivial time evolution. With this choice of exponent,

and introducing an equation for p, (1) is transformed into

ow 1 d

v - = _ |yw|P—L 2
32 .i”w-i—(p_l 2>w (WP w, (25)
dp

L -o.

dt

Here, £ is exactly the same operator studied in connection with the heat equation

and the change in the exponent o simply introduces the additional constant term

ﬁ — %) w which just shifts the entire spectrum of .Z by that constant amount.
Indeed, for simplicity in what follows we will focus particularly on the behavior
of p close to the value 422 — i.e. close to the value for which this additional term
vanishes. With this in mind, we exchange the variable p for the variable 1 defined

by p=1+ ﬁ so that (p%] — %) w = nw, and recalling that 17 (as was p) is
considered to be one of the dependent variables this term can be considered a part
of the nonlinearity! Thus, after these changes, we finally rewrite (1) in the form

3—:_} =$w+nw—|w\ﬁw, (26)
dn
“T=o0.

Now, to verify the hypotheses of the invariant manifold theorem of (CHT) we study
the semiflow defined by this system of equations. The evolution of 1 is trivial so
we focus on the first component of the semiflow which we can write with the aid of
Duhamel’s formula as

@ (wo) = w(t) = e L wo + /0 Tt 2 (nw(s)—|w(s)|ﬁw(s))ds, 27)

where we have suppressed the dependence of w on & to avoid overburdening the
notation.

We now discuss the various hypotheses in the (CHT) theorem. The first is that
@7 should be globally Lipshitz. This is not true of (27) due to the growth of the non-
linear term when w becomes large. This is a standard problem with the application
of invariant manifold theorems even in the context of ordinary differential equations
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and we handle it here in the same way it is usually handled in that setting, namely
by “cutting off” the nonlinear term. Let ) (x) be a smooth, positive function on R
satisfying

)L X<l
%(X)—{07 > 2. (28)

Then define

@T(Wo)_w( _ TfW()—l—/ (t—s)

(o (Ll Q”'")(nw<s>—|w<s>|dfznw<s>))ds, @)

With this definition the nonlinear term vanishes if ||w(s)]|, is larger than 2r but
@7 (wp) is equal to P (wy) for all solutions that remain within a ball of radius r in
L?(m).

Remark 2.6. Note that the cutoff function y (M) is a smooth function on

L?(m). Tt is always possible to find such a smooth cutoff function on a Hilbert space,
but there are natural Banach spaces on which no such smooth cutoff function exists.
This can cause problems for certain applications of invariant manifold theorems in
infinite dimensional settings.

It is now a standard exercise to verify that:

(N.1) ®F(wy) is well defined for wy € L?(m).
(N.2) The nonlinear term

RF (0, wo) = /0 T2 (x (”W(f)”) (nw(s) - |w(s)|d+22’7w(s))) ds

2
is globally Lipshitz with Lipshitz constant bounded by Cs (1 + r@21 ) for some
constant Cg. Thus, the Lipshitz constant can be made arbitrarily small for n
and r sufficiently small.

These two observations are sufficient to verify hypotheses (H.1) and (H.2) of the
of the (CHT) theorem. (We can choose the constants g = 7 =1 and set A = ez
and Z = %

We next verify hypothesis (H.3). Here we must make a choice. Given any
n=0,1,2,... we could, by choosing m appropriately set X; = F,L*(m) and X, =
Q,L?(m). We would then obtain an invariant manifold tangent at the origin to the
eigenspace corresponding to the eigenvalues {f§|k =0,1,...,n}. The long-time
behavior of solutions close to the origin could then be determined up to corrections
which go to zero at least as fast as e~ 7" with ¥ > n/2 just by studying the asymptot-
ics of solutions of the finite dimensional system of ordinary differential equations
which results from restricting (26) to this invariant manifold.
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For now we focus on the simplest possible case, namely we will assume that
m > max(1,d/2) and take X; = PyL*(m). In this case X; is the one-dimensional

subspace spanned by ¢°(&) = (47:1)11/2 e~18P/4 Next we find

Al =Pe“Py=1, (30)

the identity operator and we can take the constants C; = @; = 1 in hypothesis (H.3).
Then
A2 = Qoe™ Qg 31

and from Proposition 2.2 we see that (H.3) holds for o, = e (5-9) < 1 and for
some C, > 0.

Finally, condition (H.4) is satisfied since by remark (N.2) the Lipshitz constant
of #% can be made arbitrarily small for 1 and r sufficiently small.

Since we are considering 1 to be one of the dependent variables we should also
consider the evolution of 11 — however, this evolution is trivial and hence we can
just apply the (CHT) theorem to ®*=! for each value of 1 small, treating 1) as a
parameter.

Applying the (CHT) theorem we conclude

Proposition 2.3. Fix m > max(1,d/2). There exists ro > 0 and Mg > 1 such that if
In| < Mo and 0 < r < rq there exists a globally Lipshitz map g : PoL*(m) — QoL?(m)
with g(0) = Dg(0) = 0 such that the submanifold

W, = {a¢’ +g(a¢®)|@ € R}

has the following properties:

(i) (Invariance) ®° leaves W, invariant.
(ii) (Fixed Points) If {w(t)}r<o is a negative semi-orbit with |w(7)||m < ro for all
7 <0, then w(t) € W, for all 7.
(iii) (Attractivity) Fix | such that 0 < u < (% — %) There exists C and r», positive
constants, such that for wo € L*(m) with ||Wol|m < ra, there exists a unique
wo € W, such that

1@ (o) — @ (wo)[lm < Ce 7.

Remark 2.7. The “Fixed Points” and “Attractivity” parts of the conclusions of this
theorem follow respectively from the “Lyapunov Exponents” and “Invariant Foli-
ation” parts of the (CHT) theorem if we use the fact that in this problem we can
choose 9» < 1. In particular, 4 = —log .

Note that since, for ||w(7)||,» < r the semiflow @ coincides with D7, the semi-
flow for (26) the rescaled heat equation will also have a local invariant manifold
which attracts all solutions in some sufficiently small neighborhood of the origin.

We conclude this lecture by considering the implications of this manifold for the
long-time behavior of solutions of (26). From the “Attractivity” part of Proposition
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2.3, the long-time behavior of small solutions of (26) will (up to higher order correc-
tions) be the same as those of solutions lying on the manifold W,, and the long-time
behavior of solutions lying on this manifold can be determined by solving the sin-
gle ordinary differential equation that results from restricting the original partial
differential equation to this manifold. If w(&, 7) lies on W, we can write

w(&.7) = a(1)9°(£) +g(a(7)9°(5)) - (32)

Inserting this representation of w into (26) gives

a(7)9°(E) + (1) Dg(a()9°(€))6°(€) = a(T)(L9°)(E) — |a(2)9°(€) (33)
+2(a(7)9°(€)) |77 ((2)9°(E) + g (ex(1)9(£)))

We now reduce this to an ordinary differential equation for a(7) by noting that
Z¢° = 0 and then applying the projection operator Py to both sides of the equation.
This yields:

a(®) =na(e) - [ la(e)9"(&)+g(a(®)e(E)] ™
% (a()9°(8) +g(a(1)9"(&)))dE (34)

For the moment the only thing we need to know about the complicated nonlin-
ear term is that since g(0) = 0, and Dg(0) = 0 (by explicit computation of the
equation satisfied by the invariant manifold), for for & and 1 small it behaves like
Crle| 777 at, where Cp = [ (9°())PdE.

From this equation is clear that varying 1 (or equivalently p) leads to a bifur-
cation at 1 = 0. From now on, for simplicity we assume that d = 1, though the
computations can be carried through in a similar way for higher dimensions. Note
that in d = 1, 1 = 0 corresponds to the exponent p = 3. To better understand the
bifurcation that results when we vary 1 we first consider solutions of (34) when
1 < 0 which corresponds to p > 3. In this case the origin is an attractive fixed point
for (34) and for any solutions with o(0) sufficiently small we have

a(t) ~ Coe * |

for some Cp > 0. From this we immediately conclude that solutions on the invariant
manifold W, behave for large times like

w(&€,7) = Coe 1"¢°(&) +g(Coe " 9°(£)) (35)
= Coe 1°9°(E) + O(e 17)

where the last equality reflects the fact that since g(0) = Dg(0) = 0, the terms
g(Coe 79" (&)) will decay faster than e~"%. Furthermore by the “Attractivity” part
of Proposition 2.3 all small solutions will behave like (35) to leading order. Thus we
have:
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Corollary 2.1. All sufficiently small solutions of (26), behave asymptotically like
w(§,7) = Coe "9(E) + (7M7) .

for some constant Cy.

Note that from this corollary it appears that the decay rate of these solutions
depends on p through the exponent 1. However, if we revert to our original variables
we see that solutions of the original equation (1) behave as

1 X 1
) = m,logum):(l“) W og(141) (36)
-t n a((
(14077 (CO( 07 e )
G X
=~

Note that the leading order behavior here is the same as the leading order asymptotic
behavior of solutions of the linear heat equation. Thus, for p > 3, all small solutions
of (1) behave as if the nonlinear term was absent - such nonlinear terms are often
referred to as “irrelevant”.

Let’s now consider what happens if p < 3 (or n > 0). In this case the origin is
unstable and the fixed point at the origin undergoes a pitchfork bifurcation and a pair

1
of new fixed points appears at +a* ~ (1 /Cr)7-T. These fixed points are stable
(at least for n sufficiently small) at hence all non-zero solutions in W, will approach
one of them. Define

w*(&p) = o 9%(&) + (" ¢°(8)) -
Then, small solutions of (1) will behave like

w(&,7) = w'(S) 37
for 7 large.

Remark 2.8. In fact, there are some solutions which will approach the origin even
when 1) < 0. Those are the solutions that lie in the stable manifold of the origin.
However, these solutions for a manifold of codimension-one and hence “most” so-
lutions will behave as in (37).
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If we again revert to the original variables we find

Corollary 2.2. For p < 3, all sufficiently small solutions of (1) except for those lying
in the codimension one stable manifold of the origin, behave like

1
u(x,t) = 1 * al

(1+t)zf1w(v1+f

Thus, we see that for p < 3 the situation is quite different from that for p > 3
since both the rate of decay of the long-time asymptotics and the functional form of
the limiting solution depend on the nonlinear term.

)t

Exercise 2.1. Determine the behavior of the long-time asymptotics of solutions
when p = 3 — the “critical” value of the nonlinear term.

Remark 2.9. By considering the manifolds tangent to the spectral subspaces corre-
sponding to more than just the zero eigenvalue — say to the eigenvalues {0, —%} or
{0, —%7 —1}, etc. one can derive more refined estimates of the long-time behavior
of the solutions.

Summing up this lecture, we have found a way, at least in some parabolic partial
differential equations, to create a spectral gap which allows us to apply invariant
manifold theorems to problems on unbounded spatial domains. These theorems can
then give detailed information about the long-time asymptotics of solutions. The
drawback is that these results are local in nature — in the present examples they
apply only to “small” solutions. As we will see in the fourth lecture in this series
that restriction can sometimes be lifted by combining these results with Lyapunov
functionals which give more global control over the solutions.

3 Third lecture: an introduction to the Navier-Stokes equations

In this section we will discuss the Navier—Stokes equations which describe the ve-
locity of a viscous, incompressible fluid. The focus of this lecture will be the origin
of the equations, their representation in terms of both the velocity and vorticity of
the fluid and the existence of solutions in the two-dimensional case. In the final lec-
ture in this series we will look in greater detail at the long-time behavior of solutions
of two-dimensional Navier—Stokes equations. A more detailed look at the Navier—
Stokes equation, but with a similar point of view can be found in the lecture notes
of Gallagher and Gallay [6]. For more discussion of the physical origin of these
equations one can consult [5].

The Navier—Stokes equations arise from applying Newton’s law to determine the
motion of a small “blob” of fluid. Assume that the “blob” is a cube of side length
Ax, centered at the point x € R?, where for physical relevance we restrict to the
cases d =2 or 3. If u(x,?) is the fluid’s velocity measured in the laboratory frame of
reference, then Newton’s Law implies
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7 (momentum) = applied forces .

If the density of the fluid is p, then the momentum will be 7w(x,#) = p(x,¢)u(x,)AV,
where AV is the volume of the little cube of fluid. To simplify the discussion we will
assume that the density p is constant and check a posteriori that this is consistent
with the equations of motion. We’ll also ignore the factor of AV since it will occur
in each term and can be cancelled out.

To compute the change in moment of our fluid blob we need to take account of
the fact that the fluid is being advected along by its own velocity. Thus,

1ALt + At) — t
l(.x,t) — llm n(x+u(x7 ) ) + ) ﬂ:(x, )
dt At—0 At

=u(x,t)-Vr(x,t)+ %(x,t) .

This expression is known as the convective derivative of the momentum. Thus, re-
turning to Newton’s law, we have

orn
;(x,t) +u(x,t) - Vr(x,t) = applied forces .

‘What are the forces that act on the fluid element?

e Forces due to pressure: fyressure = —Vp(x,1), where p is the pressure in the fluid.

e External forces: we will ignore these.

e Viscous forces: These involve modeling internal properties of the fluid. We will
take a standard model which says fisc = aAu, for some constant .

Inserting these forces into Newton’s law we arrive at the system of partial differ-
ential equations:

%—f(x,t)—ﬁ—u(x,t)-Vﬂ(x,t) = aAu(x,t) — Vp(x,t) (1)
Assuming that the density is constant, this is a system of d equations, but it contains
d + 1 unknowns — the d components of the velocity, plus the pressure. We need one
further equation linking the pressure and momentum in order to close the system.
This remaining equation is derived from the property of conservation of mass. If
we look at the equation for the change in the amount of mass in a region V, then
we see that by conservation of mass, any change in the mass in the region (given
by [, (d;p)dV) must be counterbalanced by a flux of mass through the boundary
(given by — 5, pu-0dS). Equating these two expressions, applying the divergence
theorem and using the fact that the region V was arbitrary leads to the conservation
equation
ap

W(th) +V. (u(x,t)p(x7;)) =0
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If we now impose the incompressibility condition V - (u(x,#)p(x,#)) = 0 we see that
p(x,t) = p(x,0). In particular, if the density is initially constant it will remain so for
all time and the incompressibility condition simplifies to V - (u(x,#)) = 0. Then we
have a system of d + 1 nonlinear partial differential equations:

P%(X,t)-kpu(x,t)'Vu(x,t) = adu(x,t) — Vp(x,t) @
V-u(x,t)=0.

Remark 3.1. Note that given a solution u of (2) one can recover the pressure by
taking the divergence of the momentum equation and using the incompressibility
equation from which one finds:

Ap: _pv (u~Vu) ’
so the pressure is obtained as a solution of Poisson’s equation.

Remark 3.2. The coefficients in (2) can be simplified somewhat. Suppose that we
introduce some fixed length scale L, velocity scale V and reference density p. If we
define new, dimensionless variables viaX =x/L,a=u/V,i=(tV)/L,and p =p/p,
then a simple exercise shows that in terms of the new variables (2) is replaced by:

% +a-Vi=aAi(x,t) — %Vﬁ(x,t)

where & = ﬁ, p=p/(pL), and all derivatives are computed with respect to the
new variables. These changes of variables are particularly convenient if we study
this equation on the domain R since in this case the rescaling has no effect on
the domain and if we choose the length scale L = a/(pV?), all coefficients in the
equation become equal to one. From now on we will assume that we have made
these changes of variables and drop the tildes to avoid burdening the notation.

Remark 3.3. A related quantity is the dimensionless ratio of the inertial forces to the
viscous forces given by
(pV?/L) _ pVL

Re= i)~ a

known as the Reynolds number.

The remainder of this lecture will be devoted to studying the initial value problem
for (2) — namely given some initial velocity distribution u(x,0) = ug(x), show that
the equation (2) has a unique solution and describe the properties of this solution.
Proving that (2) has a unique, smooth solution for all initial data is a very famous
problem. Basically, two alternatives have developed so far:

e Give up smoothness and uniqueness and simply try to show that there is some
(weak) solution to the problem. This approach dates back to the work of Leray.
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e Attempt to show that the initial value problem is well posed, at the expense of
specializing the problem somehow - perhaps considering “small” initial data, or
restricting the domain on which the problem is posed.

I will adopt the second approach in these lectures by focusing on the two-
dimensional problem. When studying the two-dimensional Navier—Stokes equation
defined in the entire plane it turns out to be simpler to work not directly with the
velocity field but rather with the vorticity of the fluid. The vorticity is defined by the
curl of the velocity field —i.e. ®(x,t) = V x u(x,¢) and in general it is a vector field,
just like the velocity. However, in two dimensions

o(x,1) =V x (u (x1,x2,0,1),u2(x1,%2,0,),0) = (0,0, @(x1,x2,1))

so we see that only one component of the vorticity is non-zero and thus we may
treat it as a scalar. If we take the curl of the Navier—Stokes equation we find that (in
general dimension d)
Jo
ot
Note that one advantage of the vorticity formulation of the problem is that the pres-
sure term drops out entirely.

—o-Vu+u-Vo=Aw. 3)

Remark 3.4. The term @ - Vu is known as the “vorticity stretching term”. It allows
for a certain “self amplification” of the vorticity. Note that in two dimensions this
term is zero since @ - Vu = @wd,u(x1,x2,0) = 0. The absence of this term is another
reason why the two-dimensional Navier—Stokes (or vorticity) equation is easier to
treat than the three dimensional one.

From now on we will restrict our attention to the two-dimensional vorticity equa-
tion and consider the initial value problem

88—6;)+u~Vw:Aa),t>O,x€R2 4)
(D(x,()) = w()(x) :

The principle difficulty in studying (4) is the presence of the velocity, u in this
equation. We must reconstruct the velocity from the vorticity — however, this leads
to a somewhat complicated, nonlocal nonlinearity. Recalling that the vorticity is the
curl of the velocity and that the velocity is incompressible, we can reconstruct the
velocity using the Biot—Savart law

L =yt
u(x) = E/RZ Wa)(xt)dy. &)

Here, for any two-dimensional vector x = (x1,x,) we define x* = (—x2,x1).

Exercise 3.1. Verify that the Biot—Savart law does give an incompressible velocity
field whose curl is the vorticity.
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In order to control the solutions of (4) (and to verify the hypotheses of the (CHT)
theorem) we need estimates which relate the norm of the velocity to the vorticity. A
collection of such estimates is derived in [7], Appendix B, but as an example of the
sort of estimates one needs we prove:

Lemma 3.1. Let u be the velocity field associated to the vorticity @ by the Biot—
Savart law. Fix 1 < g < 2. Then if

there exists C = C(p,q) such that

[ull 12y < Cll@| 192

Remark 3.5. Define the L? norm of a vector valued function as the sum of the L”
norms of the components.

Proof. Recall the Hardy—Little-Sobolev Inequality

' 1
L7000y ) < Vo 2o e

pr0V1ded + + 2 % = 2. Note that

1

1
i < — S— =
01 < g [ g0y = A,

so that [[u;(x, 1) | p(m2) < [12]| o (m2)- Let f = hP~!. Then applying the HLS inequality
we find
12ll o 2y < NIEPHIps @) @l a2 »

Take s = p%]. Then ||h”’1||Ls(Rz ||h||LP B2) and hence
121l (r2) < N0l (r2) »

11 _ 1

E\—‘

Exercise 3.2. Use the Biot—Savart law to prove that

[ullz=(r2) < CUll@ 1 (r2) + | @l (m2)) -

We now have the tools we need to prove the existence and uniqueness of solutions
of the two-dimensional vorticity equation. This is a story with a long history but the
approach I describe below was first developed by Ben—Artzi, [2]. My presentation
of this approach is close to that of [6]. The first question that arises it what space we
should work in. Noting that (4) conserves the total vorticity suggests that the space
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L' (R?) is appropriate and it turns out that in this space all initial conditions lead to
unique global solutions. More precisely one has

Theorem 3.1. There exists C > 0 such that for any ax € L'(R?), the initial value
problem (4) has a unique solution u € C(RT; L' (R?)).

Proof. The proof basically consists of two steps:

1. Show that given @y € L' (R?), the initial value problem has a unique solution
for some interval of time 7. Furthermore, for any positive time this solution is
in L”(Rz) forall 1 < p < oo,

2. Show that if the initial condition @y € L!(R?) N L™(R?) then one has a unique
solution for all time.

Note that these to points taken together suffice to prove the theorem since given
an initial condition @y € L'(R?) we first solve the initial value problem for some
short time. We then take this solution at some positive time fy as our new initial
condition and the resulting solution exists for all time.

I'll look in detail at the second part of the proof — details of the first part can be
found in [2] and [6]. As a first step we rewrite (4) as an integral equation, just as we
did with the semi-linear heat equation in Lecture 2.

o(t) = D' () = ey + / t e u(s) - Vo(s)ds (6)
0

where ¢'4 denotes the semigroup defined by the heat equation. The proof of the
theorem now follows by showing that (6) has a fixed point in an appropriate Banach
space.

Remark 3.6. Before beginning the fixed point argument, however, we note that if (4)
has a solution, the solution has the following important property. In two dimensions,
since the vorticity is a scalar, it satisfies the maximum principle. As a consequence
not only is the L' (]Rz) norm a non-increasing function of time (remember Example
1.1) but in fact by a similar argument one finds that [|@(7)||1» g2) < ||| 1p g2) for
all 1 < p Koo

Returning to (6) we write this equation as
o(t) = F(0)(t) = wo+ A (w,w)(r) @)
where

N (@, 0)(t) = /0 t e"4i(s) - Vao(s)ds (8)

and 1 is the velocity field associated to the vorticity @ by the Biot—Savart law. Note
that i is a linear function of @ so .4 is a bilinear operator. We’ll study the fixed
point problem for .# on the Banach space

X; ={f €C(0,7]: L'(R*)NL"(R?))}

with norm [| £ = supo<; <7 (17 (1) |1 m2) + 1 () | = (e2))-
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We first note that if @ € L' (R?) L™ (R?) then the linear term in (7) is an element
of X7. This follows immediately from the estimates:

Lemma 3.2. For any o = (o,00) € N?> and 1 < p < g < o there exists C =
C(p,q, ) such that

C
||aa(€lAf)HLP(R2) < ﬁ”f”m(ﬂkz) :
TG

t?2 q p

Proof. The proof of this lemma follows easily by applying Young’s inequality to
the explicit integral representation for the heat semigroup. a

The key estimate is the following bound on the nonlinear term:

Lemma 3.3. There exists C > 0 such that for any @ and o in Xy,
1/ (&, @) <CVT||®] |||, -

Assuming for the moment that the lemma holds we proceed as follows. Given the
estimates of the two preceeding lemmas a standard application of the contraction
mapping theorem shows that (7) has a unique fixed point in X provided

4CVT o), < 1. )

However, this estimate is problematic since it involves the fixed point itself and
hence makes it difficult to get a good estimate of the time of existence of the solution
(which we want ultimately to show is infinity.) We now make use of Remark 3.6.
from which we conclude that [|@||. < (|||l 1 (r2) + || @0 = (&2))- But if we couple
this observation with (9) we see that we obtain a unique solution of (4) for all times
0 <t < T such that

2
1
T = . (10)
<4C(|w0||L1(]R2) + ||w0|L°°(R2))>

In order to show that this solution actually exists for all time we now repeat this
procedure, taking as our new initial condition @y = @(T'). This new solution (which
is the continuation of our original solution) exists for at least a time

2
- 1
T = _ - . (11)
<4C(||w0||L1(R2) + ||w0||Lw(R2))>
Howeyver, since

([[@oll 1 m2) + [ @0l = (m2)) = ([[@(T) |1 2y + [ @(T) || o (m2))
< (llool[ 1 2y + @0l = (m2))
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we see that 7 > T and hence we can repeat this argument indefinitely, extending our
solution for arbitrarily long times.

Thus, the only remaining step in the proof that we have unique global solutions
for initial conditions in X7 is to prove Lemma 3.3. We begin by showing that the
L'(R?) norm of .#" is uniformly bounded.

!
[A(@, @) ()| (r2) = ||/0 VAV - (@(s)o(s))ds ) (12)

t 1 _
<c| S 18001 e2yds

where the last inequality used Lemma 3.2 to bound the linear semigroup. By
Holder’s inequality

[[(@(s) @)1 w2y < N008) ]2 2) | ()] 23 2 5
(

while Lemma 3.1 implies that [[i(s)]| 4 (g2) < C[|®(s))||14/3g2)- Combining these
estimates we find

i S T
A (8,0)0) sy <€ || =10 a0 |z ds
<CVT||@]| ] . (13)

A similar bound on the L*(R?) norm of .#” completes the proof. We again begin by
using the bound in Lemma 3.2:

!
[A(@, @)() | = (r2) = H/O AV - ((s) oo (s))ds g2 (14)

t 1 ~
<C | 18000 - rayds

Butby Exercise3.2wehave [|@i(s) || .= (g2) < || @||.andby interpolation || @(s) || ;2 (r2) <
|| @||+, hence

t
4@, @) (1)]| = (r2) < € ds| @] || @]l -
0

1
Vi—s

which completes the proof of Lemma 3.3 and concludes this section.

4 Fourth lecture: the long-time asymptotics of solutions
of the two-dimensional Navier-Stokes equation

In this section we combine the methods developed in the first two lectures to de-
scribe the long-time behavior of solutions of the two-dimensional Navier—Stokes
equation. We prove that any solution whose initial vorticity distribution is integrable
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will tend, as time goes to infinity, toward an Oseen vortex, a simple, explicitly com-
putable solution of the Navier—Stokes equations in two-dimensions. We also give a
detailed discussion of the long-time behavior of solutions whose total vorticity is
small. The material in this lecture is largely joint work of Th. Gallay and myself and
for more details the reader can consult the original papers [7] and [8].

Throughout this lecture we will consider the Navier—Stokes equation in the vor-
ticity representation

90
ot
o =01 eR, xeR*r>0.

=A®—u--0, (1

where u is the velocity field associated with the vorticity @ via the Biot—Savart
law. As discussed in the preceding lecture the vorticity formulation is particularly
convenient in two-dimensions where the vorticity is a scalar function. Furthermore
as in Lecture 2 we will study solutions of (1) in the weighted Hilbert spaces L?(m)
and the vorticity has the advantage that if the initial vorticity distribution lies in one
of these spaces the solution of (1) will remain in this space for all time, whereas that
is not in general true of the velocity field. (This fact is not immediately apparent but
is discussed and proven in [7].)

We begin, as we did in Lecture 2 by considering solutions of (1) in a neighbor-
hood of the origin. Given the similarity between the vorticity equation and (1) we
introduce scaling variables as we did in that case, namely we set:

0x1) = (s a1 1) @
&= \/IXT =log(1+1)

Note that this corresponds to taking the exponent o in (6) equal to o =d = 2. We
still need to decide how to rescale the velocity field. Since the vorticity is a derivative
of the velocity with respect to x, and since each x derivative results in an extra factor
of \/7 this suggests that the velocity should scale as

1
VIitt \/1+

Strong evidence that this is the “correct” scaling can be seen from the fact that with
the rescaled velocity and vorticity fields defined by (2) and (3) v and w are still
related via the Biot—Savart law, namely:

u(x, 1) = V(—==log(1+1)) . 3)

V&R =5 [ Dwin 2y, @

21 Jr2 |x—y)?

which we leave as an exercise for the reader to check.
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Inserting (2) and (3) into (1) we find that

a—wz,fw—v-Vw. 5)
ot

Here, . is the same operator that we studied in Lecture 2 — namely
Asw+ 1V (Ew)
Lw=Asw+ =V - (Ew) .
¢ RS

Recall that the spectrum of .# when acting on functions in L?(m) consists of the
non-positive half integers, plus a half-plane of spectrum {1 € C|Re(1) < % -3}
Thus, for m > 1 we expect that there will be a one-dimensional invariant manifold

W,, tangent at the origin to the eigenspace of the (simple) eigenvalue A = 0.

Remark 4.1. Verifying the hypotheses (H.1)—(H.4) of the (CHT) invariant manifold
theorem requires combining the ideas of Lectures 2 and 3. Since the linear part of
(2) is is the same as that of (26) verifying (H.1) and (H.2) is exactly the same as
in Lecture 2. Verifying the hypotheses (H.3) and (H.4) on the nonlinearity follows
from estimates very similar to those in Lecture 3 where we estimated the semi-group
for (1) since the form of the nonlinear terms in (1) are the same as those in (5). In
this case one must cut-off the nonlinear term outside a neighborhood of the origin in
order to obtain the global estimates required in the (CHT) theorem, but that is again
done in a fashion very similar to that in Lecture 2.

Let’s next examine the motion on the manifold W,.. As in the case of the nonlinear
heat equation in Lecture 2 a point on W, can be represented as

wi(€,7) = a(1)9°(§) +g(ax(T)9°(8)) (6)

for some function g : PyL?(m) — QoL?*(m), where PY is the projection onto the
eigenspace of A = 0 and Qy is its complement. If we insert this form into (5) and
apply the projection operator P to both sides of the equation we find that

a(1)¢°(§) = —P° (v'(§,7)-w(, 7)) | ©)

where v¢ is the velocity field associated to w* via the Biot—Savart Law. We now note
two things:

L (Pf) () = (Je2 £(£)dE)9°(E) -

2. The velocity field v¢ is compressible (i.e. V- v¢ = 0) and thus we can write

Vc(évf) ) W(57T) =V (Vc(gv T)W(57r))'
But these two facts imply that

PO (VC(‘;:’T) 'W(§7T))

V- (v(& 1w, 1))dE ) 9°(8) =0.
JR2
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and hence that
a(1)=0.

This implies that the center manifold consists entirely of fixed points! In fact, we
can identify these fixed points more precisely. If one checks the velocity field corre-
sponding (via the Biot—Savart) law to the vorticity field ¢° one finds that the velocity

field is N
1 x 2
Oy = — 2 (1= e /4)
vi(x) = 1—e . 8

(x) 27 |x|? ( ®)
For the moment, the most important thing to note about this expression is that it is
a purely tangential velocity field. As a consequence, since the vorticity ¢° depends
only on |x|, the radial coordinate of x, we see that the nonlinear term in the vorticity
equation:

V(@) (Vo) (x) =0.

Thus, since .Z¢° = 0 we see that the Gaussian vorticity distribution ¢ is a sta-
tionary solution of the rescaled vorticity equation (5). This family of solutions is
known as the family of Oseen vortices.

Remark 4.2. Note that in the original, unrescaled variables, the Oseen vortices are
not stationary solutions but rather spread and decay in the same way as does the
fundamental solution of the heat equation.

Returning now to our discussion of the center manifold we know first of all,
from the general theory of invariant manifolds discussed in Lecture 1 that all fixed
points near the origin must lie in the center-manifold. Thus, for small & the family
of Oseen vortices must be contained in the center-manifold. However, this is a one-
dimensional family of solutions and the center-manifold itself is one-dimensional
so in fact, the center-manifold in this case consists exactly of the family of Oseen
vortices!

Again, appealing to the general theory of invariant manifolds we know that solu-
tions near the origin will be attracted to one of the solutions on the center-manifold.
In fact, we can determine which of the Oseen vortices is the limit by noting that the
rescaled vorticity equation preserves the total vorticity —i.e. if w(&, T) is the solution
with initial condition wy(&) then

LwEnde = [ wo(&)ag ©

for all 7. Thus, as T goes to infinity, w(, 7) approaches the vortex a¢” whose total
vorticity is & = 2 wo(§)d§. More precisely we find

Proposition 4.1. Fix 0 < u < % There exist positive constants r, and C such that
Sor any initial data with ||wo||2 < ry the solution w(-,T) with initial conditions wy
satisfies

Iw(-,7) — ()2 < Ce

where & = [g2wo(E)dE.
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By considering the invariant manifolds corresponding to other of the spectral
subspaces, one can make other, more detailed statements about the asymptotics of
small solutions. For instance, one thing that had been discovered about solutions of
the Navier—Stokes equations was that certain relationships were required to hold be-
tween the moments of solutions decaying with particular temporal rates [14]. How-
ever, the proofs of these moment conditions provided little insight into the meaning
or origin of these relationships. In [7] Gallay and I showed that these moment con-
ditions were the consequence of the requirement that the solution lie on certain
invariant manifolds in the phase space and as a consequence were able to give a
simple geometrical interpretation of the results on optimal decay rates. Additional
uses and consequences of these sorts of invariant manifold theorems are contained
in [7].

We turn now from the consideration of small solutions to a study of more general
sorts of solutions of the two-dimensional Navier—Stokes equation. The first thing we
note is that the Oseen vortices are not limited in size. The family of solutions

0%(&) = a9’ (&)

is an exact, stationary solution of (5) for all values of ¢. Thus, we can extend the
local center-manifold to a global manifold in this case. However, we cannot assume
that the global center-manifold is locally attractive as is the case for the local center-
manifold, so our next task is to analyze the local stability of Oseen vortices of large
magnitude.

Begin, by linearizing (5) about the vortex &'*. This leads to the linearized equa-
tion

ow

— =Zw—aAw (10)
ot

where the linear operator . is the one we studied in Lecture 2 and the operator A
is defined by:
Aw=v"-Vw4+v". Ve (11)

with v¥ the velocity field associated to the vorticity ¢° and v" the velocity field
associated with the vorticity w.

We now consider the spectrum of the operator .2 — aA. The first observation
is a bit of basic functional analysis. Note that operator A is localized — i.e. the
coefficient in each term of Aw decays as || — co. Furthermore it is a first order
differential operator while .Z is second order. These two facts taken together are
sufficient to show that A is a relatively compact perturbation of . and hence the
essential spectrum of . and . — @A must coincide. Thus we have

Lemma 4.1. Fix m > 1 and consider the operator £ — oA acting on its maximal
domain in L*(m). Then

Guss (L) = Guss (£ — ) = {A € C|Re(A) < I‘T’”} .
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Remark 4.3. More details on the proof of this lemma and succeeding results in this
lecture can be found in [8].

As a consequence of Lemma 4.1 the stability or instability of the Oseen vortices
of large norm will be determined by whether or not the isolated eigenvalues of . —
aA lie in the left or right half plane. One of these eigenvalues can be immediately
and explicitly computed and we find:

Lemma 4.2. The operator £ — oA has an eigenvalue A = 0 with eigenfunction ¢°
for all values of a..

Since the projection of a function f onto this eigenspace is just given by the prod-
uct of ¢ with the integral of f, the complementary subspace to the zero eigenspace
consists of the functions of zero mean. Thus, we can restrict our attention of the
space of functions L3(m) = {f| [ g2 f()d& = 0}. When restricted to this space we
have the following result:

Proposition 4.2. Fix m > 1 and a € R. Then any eigenvalue A of £ — aA with
eigenfunction in L3 (m) satisfies

1 1-m
Re(A) < max (—2,2> .

Remark 4.4. Note that this proposition, in combination with the above remark about
the zero eigenvalue and the essential spectrum implies that the Oseen vortices are
spectrally stable for all values of ¢. Given this spectral information it follows in a
fairly straighforward fashion that the Oseen vortices are locally stable for all values
of a — namely given an initial condition of (5) sufficiently close to an Oseen vortex
the resulting solution of the vorticity equation will converge to an Oseen vortex as
time tends toward infinity.

Remark 4.5. Because we have scaled all other physical parameters to have value
one, & can be thought of as the Reynolds number for the problem. Thus, in contrast
to many other fluid mechanical situations increasing the Reynolds number in this
problem does not lead to instability. In fact, numerical computations [15] indicate
that the real parts of most eigenvalues of £ — oA actually become more negative as
« increases so that the increasing Reynolds number actually has a sort of stabilizing
effect.

The proof of Proposition 4.2 consists of three steps:

1. By writing out the eigenvalue equation in polar coordinates a straightforward but
complicated analysis shows that regardless of the value of & any eigenfunction
in L3(m) whose real part is larger than 15" must have Gaussian decay as |§| —
oo, Thus the eigenfunctions are very strongly localized in space, regardless of
the value of a. Given these results we define a new Hilbert space X = {w €
L*(R?)|w//99 € L*(R?)}, equipped with the innerproduct
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oy = [, PCae

We know that the eigenfunctions of . — aA lie in X and (since we can continue
to ignore the eigenvalue zero) we will study the spectrum on the space Xy =
X NL3(m).
2. We next compute the representation of . in the Hilbert space X which is given
by
X (¢0)(71/2)g(¢0)(1/2) — A — @ +l
B T e T2
This operator is the well-known quantum mechanical oscillator and as is well
known in quantum mechanics:

(a) ZX is self-adjoint
(b) The spectrum of .#X consists only of the eigenvalues —n/2,n=0,1,2,....

The second of these points is not surprising but the fact that . is self-adjoint in
the Hilbert space X will be critical in what follows.

3. The final point is the computation of the representation of A in Xy. Writing out
the expression for A in the X-inner product one finds:

1 1
(W,Aw)x—/ <¢va V= (v eg)) dE, (12)
where we used the fact that V¢© = —%q)o. Two easy calculations show that
L, (¢O )v VwdE = — ¢O WV Vindé. (13)
and
W(v-&) +w(¥-8) = (§1d1 — &) (viva +v2i1) + (8102 + &01) (vala —viTh).
(14)

Integrating both sides of the second equation in (13) we see that

/Rzmv-g)w(v.g)dcﬁ —0
which when combined with (12) and (13) imply that
(W, Aw)x = —(AWw,w)x ,
or

Lemma 4.3. The linear operator A is skew-symmetric on X.

Proposition 4.2 now follows from the following property from linear algebra.
Namely, suppose that . is a self-adjoint operator on a Hilbert space Xy whose
spectrum lies in the half line A < —p < 0. Then if A is skew-adjoint on Xy any
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eigenvalue of .2 — oA has real part less than equal or equal to p. To see why this is
S0, suppose that
(Z—aA)p=A¢.

Then
A9,0)x, = (0,L9)x, — a(9,A9)x,, while (15)

2(0.0)x, = (0. 29)x, — a(9,Ad)x, = (L,9)x, — A(A9,9)x,
= (¢’$¢>Xo + a(¢7A¢)X0

Adding these two expressions together yields

Re(A) = (0.29)x, < —p. O

Reviewing the picture we have of solutions of the two-dimensional Navier—
Stokes equation so far we see that we have a global center manifold, consisting
of the family of Oseen vortices which are locally stable for all values of ¢. The
final question that we consider is the behavior of solutions of (5) for arbitrary initial
data (i.e. for initial vorticity distributions which are not close to one of the Oseen
vortices.)

Given the results of Lecture 3 it is natural to require that the initial vorticity
distribution be in L' (R?). We know that the solution with this initial condition exists
for all time and thus we can ask what its @-limit set is. From the first lecture we
know that in order to be sure that the @-limit set exists we need to check whether the
trajectory remains in a compact subset of L' (R?). The details needed to establish this
fact are presented in [8] but we note two main ideas are that by Rellich’s criterion
subspaces of L' (R?) that have some smoothness and decay at infinity are compact.
In our problem:

e Smoothness comes from the smoothing properties of the semigroup which are
preserved by the nonlinearity

e Decay at infinity comes from estimates of the solution of the vorticity equation
due to Carlen and Loss [3]

Given that the ®-limit set exists how can we calculate it? We determine the ®-
limit set with the aid of two Lypunov functions:

1. The first tells us that the @-limit set consists of functions that do not change
sign — i.e. an element of the w-limit set of a solution with initial value wy is
either everywhere non-positive or everywhere non-negative.

2. The second will identify those positive (or negative) functions that can be part
of the w-limit set.

Lyapunov Function No. 1: This Lyapunov function is closely related to Example
1.1 from Lecture 1. Define

Sw(e)) = [, (& 7)laé
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One then has:

Lemma 4.4. Let wy € L' (R?) and let w be the solution of the rescaled vorticity
equation with this initial condition. Then ®(w(7)) < @ (wo) for all T > 0. Moreover,
equality holds if and only if wo € X where

= {wer@ [ el =1 [ weael}

Proof. This lemma follows from the maximum principle very much along the lines
of Example 1.1. Indeed that example established this result for the linear terms in
(5). Including the nonlinear terms in the equation causes no essential difficulty and
we leave the details of this argument as an exercise for the reader. O

Note that as a corollary of this lemma and the LaSalle Invariance Principle we
have

Corollary 4.1. Let wy € L' (R?) The o-limit set of the solution with this initial con-
dition must lie in X.

Lyapunov Function No. 2: Since from the preceeding corollary the @-limit set is
contained in set of positive (or negative) functions our second Lyapunov function
will be defined only on such functions. This second Lyapunov function is motivated
by Lyapunov functions used in kinetic theory where one also wants to prove the
convergence of solutions toward Gaussian profiles and is known in that field as the
relative entropy function. Define X, = {w € X|w(&) > Oalmosteverywhere} and
define H : £, NL*(m) — R by

HOwte) = [ e oyioe (S5 ) oz

If m > 3 the functions w decay fast enough at infinity that one can show:

1. H is defined and continuous on X, NL?(m)
2. H is bounded below by —1/e

Even more importantly for our purposes, H is decreasing along trajectories and
hence a Lyapunov function. Assume for the moment that w is smooth enough that
we can differentiate H(w(7)) by pulling the derivative through the integral sign.
(The general case can be handled by approximation by smooth functions.) Then

d w w

= H(w(r)) = /Rz (1 —|—log¢0> dewdE — /Rz (1 +10g¢0> (Lw—v-Vw)dE .
(16)

We break this last integral into two pieces and consider each piece separately. First

note that thanks to the special properties of the Gaussian

Zw = div <¢OV(;VO)>
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so that

/RZ (1 +log(;vo> (Lw)ds = 7/RZ ¢° (V(log (;VO)) .V(%)

2
= _/sz’V(log;:))

d§
To treat the second term in (16) we first integrate by parts to obtain

’/Rz (lJrlog;:)) (v.vw):f/R2 <l+1og;:)> (V-(vw)dE (17

:/Rngov-V(%)dé:/sz~de§—%/Rz(§~v)wd§.

We claim finally that each of these two last integrals vanish. For the first, this is
obvious since v- Vw = V- (vw). For the second note that w = dg, v2 — dg,v1 (Where
v = (v1,12)) and hence

/Rz(é .V)W dé = /Rz(élvl +§2V2)(851VZ —8§2v1)d£

:/RZ élvlaélvzdf +/]R2 égvy?gygdé 7/1%2 §1v18§2v1d§ 7,/]R2 52V28§2v1d§ .

Note that the second and third of these integrals vanish since the second can be
rewritten, for example as 3 [p2 9z, (£2(v2)*)d& = 0 and analogously for the third. In
the first and fourth integrals we integrate by parts to obtain

_./]RZ vivad& —/R2 §1(351v1)vzd§+./]%2 V1V2d§+/Rz 2(0g,v2)v1dé

_ /R E(9gv2)vad /R B9 vi)vidE =0

where the next to last equality used the fact that v is incompressible and the final
equality noted that the first integral could be written as § [ e, (&i(v2)?)dE =0
and similarly for the second.

Remark 4.6. In fact, one needs to take a little more care with this calculation
since for general velocity fields v, integrals like g2 ézvﬁgl v2d& may fail to con-
verge. Nonetheless, the entire expression [p2(§ - v)w d& is convergent because of
cancellations between various terms. The easiest way to take advantage of these
cancellations is to rewrite the velocity in terms of the vorticity via the Biot—Savart
law and then argue that the integral must vanish by symmetry. (See [8] for details.)
However, I think that the present argument with works entirely with the velocity
field gives somewhat more intuition into why these terms vanish.
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Putting these computations together we see that we have shown:

Lemma 4.5. 5

d
SHW() = = [ w dé

This lemma implies that the Lyapunov function H is strictly decreasing unless w
is a multiple of the Gaussian ¢° and implies, as a immediate corollary:

Corollary 4.2. Assume that wy € L*(m) N X with m > 3. The H(w(t) < H(wy) for
all points w(t) in the forward orbit of wo and H(w(t) = H(wy) for all T > 0 if and
only if wg = aG for some o > 0.

V(log

%)

We can now put together the various pieces of this argument to derive a quite
complete picture of the long-time asymptotic behavior of solutions of the two-
dimensional Navier—Stokes equations. Suppose we consider any solution of (5)
whose initial vorticity wy € L?(m) with m > 3. By Lemma 4.4 we know that any
point w* in the omega limit set of wy must lie in the set X of functions which do not
change sign. Assume, without loss of generality, that w*(&) > 0.

From the general theory of Lyapunov functionals we know that the solution of
the vorticity equation with initial conditions w* exists for all time ¢ € R. Combining
this observation with Corollary 4.2 implies that the orbit of w* consists of the single
point apG where g = [wo(&)d& and hence that the omega-limit set of any point
wo € L2(m) with m > 3 consists of the Oseen vortex with the same total vorticity.

In fact, using results of Carlen and Loss [3] on the spatial decay rate of solutions
of the two-dimensional vorticity equation one can prove that any point in the omega-
limit set of a solution whose initial vorticity is in L' (R?) must lie in L?(m) for all
m > 1 —in particular it must lie in L*(m) for some m > 3. Then, proceeding as above,
we find that the omega-limit set must again consist just of an Oseen vortex. If we
now undo the change of variables (2) and (3) we see that solutions ®(x,¢) satisfy:
Theorem 4.1. If & € L' (R?), the solution (x,t) of (1) satisfies
1

lime! 7

t—o0

w(-,t)—%G(?)‘p:O,forl <p<oo, (18)

where @ = [p2 0p(x)dx. If u(x,t) is the solution of the two-dimensional Navier—
Stokes equation obtained from ®(x,t) via the Biot-Savart law, then
& G

u(or) = v (?)‘qzo,for2<q<w. (19)

where v° is the velocity field (8) associated to the Oseen vortex.

. 1.1
lims2 ¢

t—o0

5 Conclusions

Summing up, we see that the dynamical systems method provides a quite com-
plete view of the long-time asymptotics of general solutions of the two-dimensional
Navier—Stokes or vorticity equations.
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While one cannot hope to obtain comparably complete information about solu-
tions of the three-dimensional Navier—Stokes equation where even the existence of
solutions with general initial data is unproven it turns out that one can use the ideas
developed above to understand the existence and stability of some classes of vor-
tex solutions related to the Burgers vortices, an explicit family of solutions of the
three-dimensional Navier—Stokes equations believed to be important for turbulent
flows [9, 10].

Another interesting an open question is to understand the intermediate time be-
havior of solutions of the two-dimensional Navier—Stokes equation. While the re-
sults proven above imply that eventually one converges to a single vortex solution,
numerical simulations imply that the evolution at intermediate time scales is dom-
inated by the interaction and merger of pairs of vortices. A better understanding of
this merger process would be very intereresting and also have important applica-
tions.

Acknowledgements The work of the author is supported in part by the NSF under grant number
DMS-0405724.
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Hamiltonian systems and optimal control

Andrei Agrachev!

Abstract Solutions of any optimal control problem are described by trajectories
of a Hamiltonian system. The system is intrinsically associated to the problem by
a procedure that is a geometric elaboration of the Lagrange multipliers rule. The
intimate relation of the optimal control and Hamiltonian dynamics is fruitful for both
domains; among other things, it leads to a clarification and a far going generalization
of important classical results about Riemannian geodesic flows.

1 Introduction

These are notes of the lectures given in June 25-28, 2007 for the school
“Hamiltonian Dynamical Systems and Applications” in Montreal which were
written up by Natalia Shcherbakova.

Hamiltonian systems play a very important role in the theory of optimal control
since the foundation of the this subject in the middle of the twentieth century.
Indeed, the first fundamental result of the theory, the Pontryagin maximum princi-
ple, is formulated in Hamiltonian form. As I learned from Ponryagin’s collaborators,
it was the central role played by the Hamiltonian system that convinced Pontryagin
of the importance and universality of his optimality condition; see the pioneering
book [5] for the original approach and the books [2, 3, 4] for some of the further
developments.

The Pontryagin maximum principle is a natural Hamiltonian form for the first
order optimality conditions. In these lectures, we explain the Hamiltonian nature of
the second order information on the local structure of the optimal control problem
which leads, among other things, to curvature-type invariants of Hamiltonian sys-
tems on cotangent bundles. These invariants control Hamiltonian dynamics in a way
analogous to the way Riemannian sectional curvature enters into geodesic flows.

1 SISSA, Trieste and MIAN, Moscow
e-mail: agrachev @sissa.it

W. Craig (ed.), Hamiltonian Dynamical Systems and Applications, 143—156. 143
(© 2008 Springer Science + Business Media B.V.
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A more detailed and formal exposition of the constructions and facts presented
here can be found in [1].

2 First lecture

Consider two smooth! manifolds: M, dimM =n, a state space and U, dimU =m <n,
a space of control parameters.
A control system is a family of ordinary differential equations on M:

G=f(qu), geM, ucU. (1)

The vector field f is assumed to be smooth with respect to both variables. For ¢ € M
fixed, the set f(q,U) is called the set of admissible velocities.

Any Le-curve t — u(t), t € [0,#1], u(t) € U is called a control function. Here
f1 is fixed. Substituting the control function u(¢) into (1) we get a non-autonomous
differential equation

q=f(q,u()).

A solution ¢ — ¢(r) € M of this equation is called a trajectory of (1) associated to
the control function u(r).
Consider

W ={(u(-),q() :u(-) € Lo([0,11],U), 4(t) = f(q(t),u(t))},
the space of admissible pairs.

Remark. % is a Banach manifold modelled on R" x L”([0,#,]). This fact is a
direct consequence of the standard theorem on the existence, uniqueness and smooth
dependence of the data for solutions to the Cauchy problem of systems of ordinary
differential equations.

Define

13|

I (w().q()) = [ olql0).ut))r

0
where @ is a smooth scalar function. J'! is called the cost functional.
Optimal control problem: Given go,q1 € M minimize J'! over admissible pairs
(u(-),q(-)) such that (0) = qo, q(t1) = q1.

This problem generalizes the standard problem of the Calculus of Variations,
namely minimize a functional

[ otat0).a(0))dt — min
0

! In these lecture notes smooth objects are C* unless otherwise stated.
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over all curves such that ¢(0) = qo, g(f1) = g1. This problem can be stated as an
optimal control problem by setting ¢ =u, u € T;M.
Geometrically speaking, we state the problem as follows; consider a locally triv-

ial bundle V. — M over M whose typical fiber is U: V = | V,, V, = U. Then
qeEM

f:V — TM such that f(V,) C T,M. An admissible pair is a curve  — v(f) in V
such that v(r) € V) and () = f(v(t)).

Given an admissible pair, we can trivialize V along the trajectory.

In order to describe extremals of an optimal control problem we will use the
geometrically elaborated Lagrange multipliers method. This method provides first
order optimality conditions. In forthcoming lectures we will also discuss second
order conditions and related invariants.

2.1 First order conditions

Optimal control problem is a kind of a constrained optimization problem, where
constrains are given by the boundary point conditions. We set F; : /" — M such
that F;(u(-0,4(-)) = ¢(¢). The map F; has the same smoothness as the field f. Our
minimization problem is

minJ"! . (2)
Fo=qo,Fi;=q1
We are looking for solutions of the problem among solutions of the equation
dJn =
kerDFOI’WkerDF,1
which is equivalent to the equation
dJ" = A, DF,, — A DK, (3)

where Ao : TyyM — R is a linear form on T,)M and A, is a linear form on 7, M,
ie. Ay € M, A € T M. Covectors Ao, A;, are nothing else but the Lagrange
multipliers. The sign “—" in front of Ay is chosen for convenience at a later step in
the development.
We have DF; : Ty, \# — Ty M and
ADF; : T # 25 Ty M 2 R,

Proposition 1 Equation (3) implies that there exists a unique Lipschitz curve A, €
Tq*(t)M7 0 <t <1y such that

MDF, — \\DFy =dJ',

where J' = ({t(p(q(r),u(r))dr.
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Proof. The uniqueness follows from the fact that F; is a submersion. Let us prove
the existence. Denote by (#(-),q(-)) the reference pair. By (3),

dJit, = My DFy, = ZoDFo.
Let us fix some ¢ € [0,#;]. We restrict ourselves to the admissible pairs of the form
Y ={(u(-),q()) ru(t) =i(r) for T >1}.

Then F,(u,q) = &' o F;, where &' is a fixed diffeomorphism. The family 7 +— &
satisfies @/ (q) = g,

d _
207 (q) = (@7 (q). (7).
i.e. @ : q(t) — q(7). Restricting to ¥; we obtain at v € ¥

A, Dy(D}' 0 F) = 2Dy Fy = dyJ' +dy(a; o ),
1
where a; = [ @ (P} (q(t)),ii(s)) ds. Hence
t

2'tDth - 2-ODVFO = dv]t7
where A, = MDv‘P;] —dy()ar-

3 Second lecture

Let us consider the Lipschitz curve A, € Tq*(z)M whose existence was proved in
Lecture 1. This curve satisfies the following relation;

)LID(LNMI)E - %D(ﬁ,q)FO = d(,;!q).]t. (1)

Now we are going to derive a differential equation for A,. First of all, we can intro-
duce local coordinates in the neighborhood of given ¢(¢) € M; then A = (p,q), p €
R™, g € R" for any ¢ from the coordinate neighborhood and any A from the cotan-
gent bundle to this neighborhood. In particular, A, = (p;,¢(¢)). Then (1) becomes

d(aq)(PtF) = 20D Fo = d(ag)T', (2)

where d(; 4) is the differential in the Banach space of admissible pairs. After taking
derivatives with respect to ¢ we get

0= ( 35 (0~ olat0).10)

—dza) (a0 + pf 0010 ) = 0lale) 1)
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Let us denote
h(p,q,u) = pf(q,u) — ¢(q,u).

The function # is called the Hamiltonian of the optimal control problem. We have

d(aq) (Prg(t) +h(py,q(1),i(t))) = 0.

Hence we obtain

. oh dh

u

Recall now that our original dynamics is given by ¢ = f(q,u) = % So, we obtain
a Hamiltonian system

~ oh
pP= *a*q(l?;q,”)

 oh
q= aip(pacbu)

(HS)u

plus one extra equation

oh
E(p,q, u) =0.

In a regular situation, one can find u = u(p,q) from the last equation, with which
we denote;

H(p,q) = h(p,q,u(p,q)) ,

and for remaining variables we obtain a standard Hamiltonian system

) oH
P=—— (p,q)
1 (HS)
. aH( )
9=, Pa)

From now on, we will always assume that u can be eliminated from the equation
(HS),.

3.1 Second variation

Lett € [0,7], we are going to study the second derivative of J* under the constraints

q=f(q,u), q(0)=qo, q(t) = g:.

The correctness of the Cauchy problem for ordinary differential equations allows us
to immediately resolve one of the boundary constraints. From now on, we restrict
ourselves to F, ! (q¢) and slightly change notation. In our new notation,

I= gy For=Folgg,:
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Since the trajectory g(+) is uniquely defined by the corresponding control u(-), the
space of admissible pairs is now reduced to the space of control functions {u(-)}.
Equation (1) now reads
A{)D,;Fo#—d,;.ﬂ =0. (1)/

The Hessian of J'| i (qo) 1
0

Hessg (]’ o (qo)) = (D' + 20DFo) lwer sy

The Hessian is a quadratic form; we are interested in the Morse index of this form
that is the supremum of the dimensions of subspaces where the form is negative def-
inite. In particular, the Morse index equals O if and only if the form is nonnegative.
We use notation indQ for the Morse index of a quadratic form Q; the value of this
index is a nonnegative integer or +oo.

Let us express everything in terms of the Lagrange multipliers. After the elimi-
nation of one of the boundary constraints, equation (2) reads:

o o _
Pou T ou T
q=Fo(u).

Linearizing this equation we obtain

Ry *Fy AT\ _ dFR

0

7o
Here (&,n,v) = (6p,8q,0u). Denote

A ={(&,n) : v satisfying (LS)} ,

the projection of the space of solutions of (LS) into the (p,q)-space.

We made the above computations in coordinates, but the construction of A,
(linearization and projection) is intrinsic, and A; is actually a well-defined subspace
of T),(T*M). Recall that 7*M is a symplectic manifold endowed with the standard
symplectic structure dp A dq. Hence T, (T*M) is a symplectic space. It is not hard
to check that A, is a Lagrangian subspace of T (T*M).

The family t — Ay, t € [0,11] is called the Jacobi curve.

We will use A; to calculate the Morse index of the second variation of J* under
constraints. Indeed, system (LS) is of the type

EA+Bv=0, 1N = Ay, (3)
where ) -
0°Fy 04J
A V—-R' B=p—>-+—
— R Poe T o
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so that B:V — V* and B* = B. Then

Hess (Jt|FO*](qo)> :v— (Bv,v), v E kerA. 4)

Exercise. Assume that the linear mapping A is surjective and B is non-degenerate.
Then the quadratic form (4) is non-degenerate if and only if

AN{E0):EeR™) =0,

where A = {(&,n) : Jv satisfying(3)}.

Let us follow the evolution of the Morse index of the quadratic form
Hess (J’ | Bl qo))’ when 7 runs from O to ¢;. The Morse index changes for those ¢
for which A; has a nonzero intersection with Ag = {(£,0) : & € R™}. Moreover,
the Morse index of Hess (J’ | Fi\(q0) ) BTOWS monotonically with # simply due to the
fact that the past does not depend on the future for our control system.

Definition 3.1. We say that ¢ is conjugate to 0 if A, N Ag # 0.

Theorem 3.1. If conjugate times are isolated, then

indHess (/1)) — Hess (1100 ) = L dim(A:NAg)

to<t<t]

Sforanyty € (0,17).

4 Third lecture

Let us consider the trajectories of the Hamiltonian system corresponding to the
Hamiltonian
H:T"M —R.

We denote by H the associated Hamiltonian vector field and by ¢'H its flow on
T*M. Recall that the trajectories of H describe the extremals of our optimal control
problem together with the associated Lagrange multipliers.

In Lecture 2, we saw that second variation of the cost functional J! under con-
straints is related to a family of the Lagrangian subspaces A;, 7 € [0,#,], where A; is
the tangent space at Ay of the submanifold of 7*M formed by the values at time 0
of the solutions to the Hamiltonian system A = H(A) whose values at time 7 belong
to Tq*(t)M .

In other words, we consider the Jacobi curve

A=T, (e”H(Tq*mM)) .
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Our aim is to obtain some information on the conjugate points and on the long-time
behavior of the flow without solving differential equations. To do that, we introduce
a kind of curvature-type invariants associated to the problem.

4.1 Curves in the Lagrange Grassmannians

Consider a 2n-dimensional symplectic space X. Denote by ¢ the symplectic form.
To any pair of transversal Lagrangian subspaces Ay, A, we can associate coordinates
on X such that

n

ZZAO@A:{(p7q)pvq€Rn}v O-:dei/\dqi
i=1

and
Ag={(p,0):peR"}, A={(0,9):q€R"}.

Any transversal to A n-dimensional subspace A has a form

A ={(p,Sap):pER"},

for some n x n-matrix S4. The subspace A is Lagrangian (i.e. 6|4 = 0) if and only
if SA = S}, in other words, if S5 belongs to the space Sym(n) of symmetric n x n-
matrices. In particular, it follows that the map A — S4 gives local coordinates on
the Lagrange Grassmannian L(X) of all Lagrangian subspaces of X.

Now consider a curve 7 — A, in L(Z) and the corresponding curve 7 — S; = Sy,
in Sym(n).

Lemma 4.1. The quadratic form p — (S;p, p) is an intrinsically defined quadratic
form on the subspace A;.

Proof. Pick A, € A, and insert it in some curve T+ A; € A;. Then A; = (pr,Scpe)
and we have:

0'(/'14724) =0 ((Pt,Sth)a (Pr,Stpr) + (Ovstpl)) = (Spi, pi)-

We see that (4, )l,) depengis only on A, and A, and not on the choice of the curve
T+— Ar. Hence 4, — (A, 4) is a well-defined quadratic form on A, presented by
the matrix §;. O

Corollary 4.1. The tangent space Ty L(X) to the Lagrange Grassmannian is intrin-
sically identified with the space of quadratic forms on A.

Definition 4.1. We say that the curve ¢ — A; is monotone if the quadratic forms
p — S; are sign-definite.
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4.2 Curvature-type invariants

Let us come back to the Jacobi curves in 7;(T*M), z € T*M. Recall that T,(T*M) =
X, is a symplectic space, so we are in the situation described above.

We want to consider the curves 7 — A, (t) such that A;(0) = T;(T;M), where g =
7(z) and m : T*M — M is the standard projection. As before, choosing appropriate
Darboux coordinates in 7,(T*M) we have:

At:{(p7Stp):p€Rn}a SOZO
By a direct computation one verifies that

2
i
ap? Iz
From now on, we will deal with Hamiltonians that are convex on fibers, i.e. we will
assume that
9*H(p,q)
ap?

In what follows we identify A 22 Sp.
Let us show that the convexity assumption on H implies the monotonicity of the
Jacobi curves. In other words,

>0, (p,q) €T™M.

A0)<0Vz = Ar) <OVr.

Indeed, A,(r) C T.(T*M) and

Aclt) = e (T (T M)

then
d —tH d —¢&h *
0= e e (Tavsomy (T M)
pgd
=M Ao @) <0.

Here we use the fact that the quadratic form A, is defined intrinsically and its sign
does not change under a symplectic transformation of the curve A;.

To any pair of transversal Lagrangian subspaces A,Ap: ANAy=0, A,Ag C X,
we can associate the projector

TA Ay X — Ay

such that
Tagla =0,  Tan,la, =1d.
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Lemma 4.2. The space {mtap, : AN Ao} for a fixed Ag is an affine subspace of the
space of linear operators on X.

In local coordinates such that

Ag = {([7,0) ‘pe Rn}7 A= {(Aq’q) H/AS Rn}’

Id —A
TANy = 0 0 .
Assume that the curve ¢ — A, is such that A, NA; =0 if t # 7 and |t — 7] is suffi-

ciently small. Pick 7 and take coordinates such that the germ of the curve at 7 has
the form

we have:

A ={(p,Sip): peR}, S:=0.

Id —S;!
A A, = 0 0 .

If detS; has a finite order root at 7, then 7s, 4, admits the Laurent expansion

Then we obtain:

m
Taa, = Y, (t—7)7+o(t—1)" .
i=—k

The free term of the Laurent expansion 70 belongs to the described in the Lemma
affine space of the projectors (where Ay is substituted by Az). In other words, 71:2 =
T2, for some intrinsically defined Lagrangian subspace A7, and A7 N A; = 0 by
the construction.

In particular, in the simplest case k = 1 the coordinate expression of A; has the
form:

| R
A7 = {(—2SrleSflq7q) 1q € R”} :
Now recall that we identify A, with a quadratic form on A,, i.e.
A[ : Al — AT*7

a self-adjoint linear mapping. Moreover, the symplectic form o gives a non-
degenerate pairing of the Lagrangian subspaces A; and A7, so that A = A and
(AP)* =2 A;. In particular, A; and A can be treated as the mappings

At:A[—)AtO7 Ato:AtO—>At.
Definition 4.2. The operator R (¢) : A; — A, defined by the formula
RA (t) = AIO OA[

is called the curvature operator of the curve A at point ¢.
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The curvature is a kind of “relative velocity” of the curves A, and A;. In the reg-
ular case of a non-degenerate A;, the coordinate form of the curvature is as follows:

1 3

RA(t) = Est_l St *Z(Sz_lst)z-

This is nothing else but the matrix version of the Schwartzian derivative of ;.

5 Fourth lecture

In this lecture, we consider the curves A; in the Lagrange Grassmannian that is
defined for all € R.

Theorem 5.1. If A(t) > 0 (non-negative quadratic form) and A°(t) < 0 (non-
positive quadratic form), then no conjugate points occur and
3 liril A(t) = A(zoo).
— oo

Remark. The same statement is true also in the case A (1) <0, A°(t) > 0. What is
important is that A (¢) and A°(¢) have opposite signs.

Let us explain this result in the simplest case n = 1. Then X is the plane equipped
with the area form o, and the Lagrange Grassmanninan is the oriented real pro-
jective line that is actually the oriented circle. A monotone curve A (¢) is simply a
monotone curve on the circle. A conjugate point occurs when A () makes a com-
plete revolution. On the other hand, A (¢) never coincides with A°(z), hence there
are no conjugate points and EI,EIEOOA (1).

If n > 1, then the proof remains essentially the same. Indeed, all pairs of transver-
sal Lagrangian subspaces are equivalent by the action of the symplectic group. We
may take coordinates in such a way that

A@)={(p,S:p):peR"}, A°()={(p,S;p): pER"}

for ¢ close to 0 and Sy < Sj. The relation A(r) NA°(¢t) = 0 is equivalent to the
inequality det(S; — S7) # 0. By the monotonicity assumption,

<p7Slp>>07 <p7Stop><07 Vpe]Rn
Hence the inequality

(p,Sip) <(p.S;p), VpeR"

remains true for all positive ¢ and each of two sides of the last inequality monoton-
ically tends to a limit as t — +oo. The case of + — —oo is handled by the same
argument, but reversing time.
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Let us come back to the Hamiltonian setting. We have H : T*"M — R, z € T*M,
and A,(r) C T,(T*M) such that

Az(l‘) = e;lH (Te’H(z)(T;(t)M)) ,

where ¢(t) = 7 (¢™(z)). The limits A, (+eo) are invariant for the flow ¢’ Indeed,

eMA() = eMA0) lim e (Tono (T, M )

. s—t)H *
= lim " (T(,,”H(Z)(Tq(,,x)M)

So we have a pair of invariant Lagrangian distributions A, (+eo), z € T*M. Recall
that the curvature R4 (1) = A° o A, is in a certain sense the relative velocity of A (¢)
and A°(t). If we assume strong monotonicity, A () > 0 or A(t) < 0, then |A(¢)|
defines a Euclidean structure on A (¢) and R, (¢) is a self-adjoint operator for this
Euclidean structure. In particular, the operator R4 (7) is diagonalizable and all its
eigenvalues are real. We say that the curvature is positive or negative e.t.s. if all
eigenvalues are like that.

Set v = sign(A(t)). The matrix of the operator R4 (¢) is equal to the matrix of
the quadratic form VA (¢) in the coordinates where the Euclidean structure |A (¢)] is
presented by the unit matrix. In particular, assumptions of Theorem 2 are satisfied
if the quadratic form A (¢) is sign-definite and R4 (¢) < 0.

It is important that the construction of the curvature is intrinsic and thus survives
under symplectic transformations. In other words, if A is a linear symplectic trans-
formation of X and AA : ¢ +— A(A(t)), then the operator R (¢) is similar to the
operator R, (7) and has the same eigenvalues.

Definition 5.1. Let A;A(+), z € T %M, be the Jacobi curves of the Hamiltonian field
H; then R;_(0) wf R is called the curvature operator of H at z.

Recall that A;(0) = —‘32713(@, z=(p,q). If H is strongly convex with respect to
p, then A,(0) < 0, Vz. It was proved in Lecture 3 that the inequality A,(0) <0, Vz
implies A;(t) < 0, Vt. We can repeat that proof and see that the result remains valid
if one substitute the non-strong inequality by the strong one. In fact, we can see
much more if we analyze the proof. Indeed, the germ at 7 of the curve A,(-) is the

image of the germ at 0 of the curve Agny (+) under the fixed symplectic transforma-

tion e;"H. Hence all invariant quantities of these germs are equal. In particular, the
operator Ry_(t) has the same eigenvalues as the curvature operator of H at the point
¢'M(z). This fact is very advantageous because the curvature of H is just a (rather
complicated but quite explicit) differential operator of H, in particular we do not
need to solve differential equations in order to compute this curvature.
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Combining all together, we obtain

Theorem 5.2. If the restrictions of H to the fibers Tq*, q € M, are strongly convex

functions and Rf <0, Vz € M, then the trajectories of the flow ¢™ do not have
conjugate points and, moreover, this flow possesses two invariant Lagrangian dis-
tributions A;(£e), z € T*M.

Let us discuss what happens when R4 > 0. First of all, let us see how changes
the curvature if we re-parameterize the curve A(r).

Remark. Clearly, the presence of conjugate point does not depend on the paramete-
rization.

Let ¢ : R" — R” be a change of parameter; we assume that ¢(¢) # 0. Denote

1 .71

Rolt) =307 (0) 8 (1)~ (97'6(0))"

the Schwartzian derivative of @(¢). Let

Ag i1 —A(o(1))
be the re-parameterized curve.
Proposition 5 Ry, (t) = ¢(1)*Ra (9(t)) + Ry (t)1d.

This formula (the chain rule) can be checked by direct calculation, which we omit
here.

Example. Take ¢(7) = \% arctan(+/ct). Then:

—c . 1
R(D(t):mv (P(t):ﬁa
B (1) = (o (Ra(00) —cld).

Theorem 5.3 (Comparison theorem). Let t — A (t) be a smooth strongly monotone

curve in the Lagrange Grassmannian and ¢ be a nonnegative constant.

1. If RA(t) < cld, Vt, then any pair of conjugate points t| and ty satisfies the in-
equality |t; —ty| > %

2. If %traceRA (t) = ¢, then any segment [t,tJr %] contains a point conjugate to
zero.

Remark. If ¢ — 0 in statement 1, then |f; — 2| — e which correlates with our
previous result.

Proof. Statement 1. Re-parameterization and the chain rule reduces everything to
the case of non-positive curvature (see above Example).
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Statement 2. Assume that A (¢) is transversal to some fixed Lagrangian subspace
(for instance, to A(0)) for any ¢ € [t1,2]. Then the segment A(z), ¢ € [t1,1] of the
curve is contained in the fixed coordinate chart of the Lagrange Grassmannian and
can be presented in the matrix form:

A(t)={(p,Sp): peR"}, €],

Hence | 3
Ra(1) = ESTI St —Z(Sflst)z-

Now set W, = 1$,7'5,; we have, Ry (t) = W(r) — W(¢)2. What remain is to find
the lower bound for the blow-up time of the solutions to the differential inequality
traceW > trace(W?) + nc. This is an easy task due to the fact that (traceW)? <
ntrace(W?).

In order to conclude we recall that in the Riemannian case the Hamiltonian flow
is the geodesic flow. Actually, the Riemannian structure identifies 7M and T*M.
So, in this case %2713 is the Riemannian metric. The curvature Rf , where z € T q*,
is essentially the sectional curvature at ¢ in the two-dimensional directions which
include z € TyM = TyM.
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KAM theory with applications to Hamiltonian
partial differential equations

Xiaoping Yuan!

Abstract In these notes I present a KAM theorem on the existence of lower dimen-
sional invariant tori for a class of nearly integrable Hamiltonian systems of infinite
dimensions, where the second Melnikov’s conditions are completely eliminated and
the algebraic structure of the normal frequencies is not required. This theorem can
be used to construct invariant tori and quasi-periodic solutions for nonlinear wave
equations, Schrodinger equations and other equations of any spatial dimensions.

1 Brief history and basic ideas of KAM theory

These lecture notes present a KAM theorem with applications to some nonlinear
partial differential equations, such as nonlinear wave equations and Schrédinger
equations of higher spatial dimensions. Although it is a powerful tool in dynami-
cal systems, the KAM technique is usually thought to be very complicated, even
tedious. I will omit some unimportant details so that the basic idea of the KAM
theory can be clearly understood.

Before stating the KAM theorem, let us recall some of the background, taking
the nonlinear wave (NLW) equation as an example. One wants to find a periodic
solution of NLW equation

Uy — Uy + V (x)u+ g(x,u) =0, (1)

subject to Dirichlet boundary condition u(#,0) = u(z, ®) = 0, where g is a nonlinear
term. In the 1970s using variational methods, Rabinowitz [19] showed that there is
a non-constant 7'-periodic solution u(¢,x) € L?(R x [0,7]) if T /& € Q, where p > 2
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depends on g. The condition 7' /7 € Q guarantees some kind of compactness which
is usually required in variational methods. A natural question is

» What happens when T /1w € R\ Q?

From a geometric viewpoint, a periodic solution can be regarded as an invariant
torus of 1 dimension, i.e., an invariant closed curve, in some phase space. Thus,
another natural question should be

» Are there invariant tori of N-dimension with N > 1?

If there are such tori, and any motion on the tori is quasi-periodic, it follows that
there are time quasi-periodic solutions of (1).

The previous questions can not be answered at the present time entirely by vari-
ational methods, since the compactness conditions can not be fulfilled. Fortunately,
KAM theory can answer these questions. In order to see how the KAM theory
adresses them, we write the equation (1) in a discrete form. To this end, we let
),]2 and ¢;(x) be the eigenvalues and eigenfunctions, respectively, of the Sturm—

Liouville problem!
d2
2 +V( )y =24y, y(0)=y(n) .

Note that {¢;(x) : j = 1,2,...} is a complete orthogonal system of L?([0, x]). For
simplicity we assume the nonlinearity g(x,u) = u? without loss of generality. Since
we will search for solutions of small amplitude, we can assume

g=¢eu’

where € is a small parameter. This can be fulfilled by substituting +/€u for u in (1).
Let v =u,. Then (1) reads

U=V, Vy =ty = —[—Uee+V(x)u+gxu)]

Substituting for # and v the expressions

= il %(Pj(ﬂ, v= ,i \/;jpj‘f’j(x)

we get a Hamiltonian system

. oH . 0H . 12
Pi==w > 4;=—=5,J=L4..
/ 8qj I 19qj
where the Hamiltonian is
=
EZ (P} +47) +£G(g) @)

! We assume for simplicity that all eigenvalues are positive.
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and the nonlinear term is expressed in terms of the eigenfunction expansion by

1 /1
G(q) =€ Y. Gijuqiqgjarq, Gij =7/ 0190y dx .
)=¢ ), Gimaidjandr, Gijn Aiddid Jo T

i,j,k,l

Given a positive integer N and a vector & = (&i,...,Ey) € RY. Let

qj = ,/Z(Ij—i—éj)cosej’ pj= \/Z(Ij—i—éN)sinGj, j=1.,N

o= (lla""a’N)?qA = (qla"'an)a q: (CIN+17‘]N+27---)~
Then the Hamiltonian (2) reads

H=(wI)+ Z Ai (P5+4;) +€R(1,0,4) 3)

Jj=N+1

m\~

with R(1,0,4) = G(G,q). Here R is independent of p = (pn+1, pn+2,...). More gen-
erally, we can assume that R depends on p, thatis, R=R(0,1,4,p). Letz; = (g}, p;)
and |z;|> = |q;]* +|p,|> Then (3) reads

Y Az +eR(1,6,2) @

j=N+1

H=(wI)+ =
(@.1)+ 3

Write A =diag(Ajny:j=1,2,...),J =diag(J;: j=1,2,...) with

01
JjJ(—l())'

The Hamiltonian vector field is

y _ OH __
wa a)+£al
= = ek ®

_ jJO9H __ JR
—JTZ —JAZ+£7Z
We see that when € = 0, the manifold
To:={0 =0t} x{I =0} x{z=0}

is an invariant N-torus. KAM theory states that for “most” @ the invariant torus
can be preserved if € is sufficiently small. The basic idea is to seek a symplectic
transformation (which is the composition of a series of transformations) with which
to kill or to eliminate the perturbation R. However, up to present one has not found
a symplectic transformation whish will kill the whole term R. A revised idea is to
kill all lower order (< 2) terms (l.o.t.) of R, that is, the linear part of vector field Xg.
More precisely, expanding R in a Fourier-Taylor series



160 X. Yuan
R =R%(0)+RI(6) -1+ (R(),2) + (RF(0)z,z) (lLo.t)
+O(IP+|1)|z] +|z)  (hot)
If we can find a symplectic transform ¥ such that

3 | N
H=Ho¥=(d,I)+Y Ajlz;|*+R
2757

where
R=0(11>+1|]z| + Iz*),

then (5) reads
0= =p+ek =a+e0(1))
1 a d
[=-9 =—e3® = —e0(|I?+ 1|z + |z]*) (6)
=T =JAz+€%8 = JAz+€0(|I] + |2?).
We see that T is still an invariant torus of (6). Thus, ¥~ (Tp) is an invariant torus

of the original hamiltonian H. In searching for the symplectic transformation ¥, one
will encounter the following small divisors problems:

A In order to eliminate the terms R%(8) and (R!(6),1), one needs conditions:
(k,) #0, forall 0+#keZN

A In order to eliminate the term (R*(0),z), the following Melnikov’s first conditions
are required:
(k,@)+24;#0, forallke ZV, j=1,2,...

A In order to eliminate the term (R%(0)z,z), the following Melnikov’s second con-
ditions are required:

(k,®)+2;+21;#0, forallke ZV,j=1,2,...,

where k # 0 if i = j and “+” takes “—”

These conditions are usually not fulfilled for all @. For example, if @ € QV, then
there exists k € ZV such that (k, @) = 0. The method of addressing this problem is
to regard @ as a parameter vector (or, equivalently, assume ® = (&) depends on
a parameter vector & and det(d@/d&) # 0). Eliminating those @ which violate the
previous conditions, one can prove that the set of remaining parameters has positive
measure (in a certain sense). Therefore, one has the following KAM theorem.

Theorem 1 Assume A; # A; for i # j and R is analytic in some neighborhood of the
origin. Then for “most” parameters @, there exists a symplectic transformation
such that H is changed into H, therefore, H possesses an invariant torus ¥~ (To).
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The finite dimensional version of this theorem is due to Melnikov [13, 14],
Eliasson [8] and Poschel [16]. The infinite dimensional version is due to Kuksin
[10, 11], Wayne [20] and Poschel [17]. Applying Theorem 1 to the nonlinear wave
equation (1) we get

Theorem 2 (Kuksin [11]) Assume the potential V =V (x,&) of (1) depends on a
parameter vector & € O C RN a compact set, with Lebesgue measure 1 such that

the Jacobian matrix g—‘g = a(}LITM) is non-degenerate, then for “most” parameters

& (ie., there is a subset Oy C O with Measure(O) tending to zero as € — 0 such
that for & € O\ Oy) there is an invariant torus for (1). The motion on the torus is
quasi-periodic with frequency @ with |0 — ®| < €.

Wayne [20] also obtains the existence of the quasi-periodic solutions of (1) when
the potential V does not belong to some set of “bad” potentials. In [20], the set of
all potentials is given a Gaussian measure and the set of “bad” potentials is proved
to be of small measure.

Because parameters are needed in Theorem 1, the potential V is assumed to de-
pend on parameters & in [11] or the V itself is regarded as parameters in [20]. An
important question is what happens when V does not contains any parameters. In
this direction, early approaches are due to Bobenko—Kuksin [1] and Pdschel [18].
They assume V = m where the constant m # 0. In [1], the term mu + > is regarded
as a perturbation of sinu. Thus, (1) is a perturbation of sine-Gordon equation. The
latter are known to be integrable, exhibiting many quasi-periodic solutions. They
serves as the starting point of KAM theory in (1). An alternative method is using
Birkhoff normal. Observe that for m > 0

m

c NPT
‘ljiljikkikl‘>ﬁyn:mln{|l|’|]|a|k|a|l|} (7
n2+m

where ¢ is some absolute constant. This inequality allows Poschel [18] to extract
some parameters from the nonlinear term u> through Birkhoff normal form. Once
the parameters are obtained, one can apply Theorem 1 to (1).

Theorem 3 ([1,18]) For V. =m > 0, (1) possesses many invariant elliptic tori, and
thus quasi-periodic solutions.

According to Remark 7 of [18], when m € (0, 1) the theorem still holds. In [21] it
is shown that (1) possesses many invariant hyperbolic-elliptic tori and quasi-periodic
solutions, when m € (—oo, —1)\ Z. In the case V = m = 0, the equation (1) is called
completely resonant in [18]. In this case, One can see that the inequality (7) is use-
less. Whether there exists invariant torus is a challenging question, which is pro-
posed or concerned by many authors. See references [7, 12, 15, 18]. Observe that
ordinary differential j+y® = 0 is integrable and all non-zero solutions are periodic
and their periods depend on amplitudes or initial values. Those solutions are also
the solutions of (1), and they are uniform in the space x. Partial resonances can be
overcome if we restrict ourselves to look for invariant tori at the neighborhood of
those periodic solutions. Consequently, we have
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Theorem 4 (/23]) In the neighborhood of the small solutions of ¥+ y> = 0, the
equation (1) subject to periodic boundary conditions has many invariant tori of any
dimension and thus quasi-periodic solutions.”

Another question is what happens when V is given but not constant, such as
V = sinx, cosx. Observe that for a given potential V sufficiently smooth,

V]

Aj=j+ =+ 0(1/7)
where [V] = [ V(x) dx. Whereas
lj:\/j2+m:j+%+0(l/j2)

when V =m # 0. By comparing these two asymptotic formulae and carefully check-
ing the inequality (7), we have

Theorem 5 ([24]) For any given potential V sufficiently smooth and [V]| # 0, the
equation (1) subject to Dirichlet boundary conditions has many invariant tori of
any dimension and thus quasi-periodic solutions.

So far, we have a clear comprehension of the invariant tori and quasi-periodic
solutions of (1). When Hamiltonian partial differential equations with spatial di-
mension greater than 1 are considered, a significant new problem arises due to the
presence of clusters of normal frequencies of the Hamiltonian systems defined by
these PDEs. For example, let us consider the higher dimensional nonlinear wave

Uy — Du+mu+g(x,u) =0, (3)

subject to Dirichlet b. c. or periodic b. c., where A is the Laplacian in d-dimensions
with d > 1. In this case, the eigenvalues ljz (j € Z4) of the eigenvalues of the oper-
ator —/\ + m have formula

A2 =i +m, jezt.

It follows that
lim (jezZ': dj=n*+m} = too )
where § denotes the cardinality of the set. Recall the Melnikov’s second conditions

(k,a))+7L,-—?Lj7é0, i£]j.

By letting k = 0, it follows that A; is simple, i.e., A; # A; if i # j. Therefore, the
formula (9) violates seriously Melnikov’s second conditions. In 2002, by observ-
ing some symmetries in (8), the present author [22] showed that there are many

2 There are many authors who investigate periodic solutions and 2-D quasi-periodic solutions of
travelling wave type. These excellent works are less related to KAM theory. I do not present them
here, because of limit of space in this talk.
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quasi-periodic solutions of traveling wave type for any spatial dimension d. Here
the difficulty of small divisors was avoided owing to the symmetries. However, one
can not avoid this difficulty in the search for more general solutions. In a series
of papers [2] through [6], Bourgain developed another profound approach which
was originally proposed by Craig—Wayne in [7], in order to overcome the difficulty
that the second Melnikov’s conditions can not be imposed. Now this approach is
called the C-W-B method. Instead of KAM theory, C-W-B method is based on a
generalization of Lyapunov—Schmidt procedure and a technique by Frohlich and
Spencer [9]. The quasi-periodic solutions are constructed directly by Newton itera-
tion. In that direction, one will has to investigate the inverse of a “big” matrix where
the small divisors problem arises. The Frohlich and Spencer technique is used to
analyze the inverse. Usually the C-W-B method is very complicated and hard to ac-
cess. Recently the present author [25] modified the classic KAM technique to avoid
the second Melnikov’s conditions and succeeded to derive a new KAM theorem
which can be applied to many kinds of PDEs including (8). Since the Frohlich and
Spencer technique is not needed there, the new KAM theorem is relatively easy to
access. The whole of my lectures are devoted to the following KAM theorem, which
appears in [25]:

Theorem 6 Assume A; > c|i|*t and {j: A; = lm}ﬁ < Ky where ¢, K, K2 are absolute
positive constants. Assume R is analytic in some neighborhood of the origin. Then
for “most” parameters ®, there exists a symplectic transformation ¥ such that H is
changed into H, therefore, H possesses an invariant torus ¥~ (Tp).

2 Derivation of the linearized equations

As stated in §1, the key point of KAM theory is to eliminate the (lower order)
perturbation by a series of symplectic transformations which are generated by sys-
tems of linearized equations. In this section, we will derive the linearized equations.
Before doing so, we introduce some notation. Let .77, be the space of sequences
2= (z21,22) = ((z21j,22) € C? : j € Z9) satisfying
2l =Y (lzniP + 1z )PP < oo
jezd

where d is the dimension of the Laplacian and p > d/2 is given. It is easy to see
that 7 is a Hilbert space with an inner product corresponding to the norm || - ||,.
(In fact, 7#P corresponds to the so-called Sobolev space H” by means of Fourier
transform.) Denote by L(.77,,.7,) all bounded linear operators from ¢, to Jz;,.
Introduce the phase space:

P = (C"27Z") x C" x HP,
where n is a given positive integer. We endow & with a symplectic structure

dOANdy++v—1dzy Ndzp =dxNdy+ v —1 Z dzijNdzj, (0,1,21,22) € .

jEZA



164 X. Yuan
Given r,s > 0. Define a domain in & by
D(s,r)={(6,1,z) € 2 : |Im6| <5, 1| <, |[zll, <1}

and
D(s)={6 €C"/2xZ": |Im6O| < s} .

For z,Z € J¢,, define
(2.2) ==Y (21j81 +225%2))-

J

For a sequence of real numbers {A; : j € Z4}, let

A—diag(lj((])?) :jeZd).

Note (-,-) is not an inner product. Consider a Hamiltonian H defined on D(s,r):

H=N-+R
where

N = (@1)+5(A23) + 5 (BO)2.2) 0

andR=R(0,1,z): D(s,r) —» Cand B=B(0) : D(s) — L(,, 7,) are analytic. As
in §1, write

R=R%(6) +R'(6)-1+(R(6),2) + %(RZZ(G)Z,@ (Lo.t.)
)
+O(IP+1lIzllp+11zl[)  (ho.t)

The basic idea is to kill the lower terms (1.0.t.). As stated in §1, in order to eliminate
the term (R%(0)z,z) we need to assume the second Melnikov conditions, which pre-
vents the KAM theorem from being applied to higher dimensional PDEs. Hence we
should modify the basic idea. Following Bourgain [6], we put the term (R%(0)z,z)
into the “integrable” part N rather than to eliminate it. However, doing so will make
the problem too complicated. We just want to put a part of (R%(0)z,z) into N. To
this end, we introduce a cut-off operator I" as follows. Given a positive number K
large enough. For any an operator or (vector) function f defined on the domain D(s),

write R
f= Y flkye/ 10,
kezn

Define the cut-off operator:

(CF)(6) = (Tx)(6):= Y FlkyeV 1*O)

|k|<K
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The modified KAM procedure consists of the following steps.
Step 1. Averaging and cut-off. Recall (1) and (2).

H=N+R
= (@1)+5(Az2) +(B(0)2.2)

+H%m+R%eyﬂ+mqmgy+%mﬂwp¢>@Qm
+O(1 +1[[z]] +1213)
= (@ +RI(0).1)+ 5(Az2) +((B(O) + TRE(0))2.3) (=)
+TR® + (TR —RI(0))- I+ (T'R,z) (:(=R))
+U—Fm9+u—rmﬁhwa—rmi@+l«Lme%@czRg

2
+O(IP+ |||zl +11z|]3) (:=Rs)
=N+Ri+Ry+R3 3

Assume I'B(6) = B(0). Let = Q+1€1(0) and B(0) = B(6) +I'R¥(0). Then

N = (@.0)+ 5 (Az3) + 5 (B(O)z.2)

Notice that I'B = B,I'R| = R). By the way, we can assume R?(0) = 0, since any
constant added to the Hamiltonian function does not affect the dynamics.

Step 2. Seek a symplectic transformation to eliminate the term Ri. Assume we have
a Hamiltonian function of the same form as R;:

F=F%0)+F'(8) 1+ (F(8),2)

where F0 (0)=0, ;7\’(0) =0and I'F = F. Denote by X the flow of the vector field
XF corresponding to the Hamiltonian function F. Let ¥ = X}, it is a symplectic
transformation. Let (0(¢),1(¢),z(¢)) be a solution of the vector field X, that is,

. OF . OF
Q—ﬁ, I——%7 Z—JaZF.

(Referring to (5).) Then we have

d o d
JHOXi =~ H(6(1).1(1).2(1))
_3H9+§§j+§§-
“96 o Tt @)

JdHOJF O0HJF JH O0F
_ (aea[ B MN&J&Z) (6(0).1(1).2(1))
:={H,F}oX}
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By abuse of notation, we still denote by (6,7,7) the new variables X/}(0,1,z). By
Taylor’s formula and (4), we get

2

d 1/t d
Ho‘P:HoX}:HngJrEHoXH,:oJrE/O (lft)ﬁHoX} dt

:H—&-{H,F}—i—%/o](l —t){{H,F},F}oXk
=N-+R +{N,F}+R

=(w,1)+ %(Az,z) + %<B(9)z,z> + TR+ (IR —RI(0)) -1+ (I'R,2)

+{0-0F® + (0-0pF") -1+ (- dgF*+ AJF*+ T (BJF),z)
+{((1—=I)(BJF?),z)+ ((0¢B,F")z,2)} + R

where
- 1/l
R=Ro+Rs+{Ri+Ro+Rs,F} + E/0 (1—1){{H,F},F}oXk.

If we can find F solving the following linear equations:

®- 0gF® =TRY, (5)
w-dgF' =T'R' —RI(0), (6)
®-gF*+AJF*+T (BJF?) =TR*, (7)
and write
B, =B+ (dyB,F"),
Ny = (o,I)+ %<Az,z> + %<B+(9)Z,Z>,
R, =R+ {((1-T)(BJF%),z),
then we get

H+:HO‘II:N++R+. (8)

In §3, we will show that if R = O(€) in some domain, then F = O(¢'~) in a smaller
sub-domain which is the result of excision of some parameters @ of small total
measure. Therefore, Ry = 0(84/ 3). Repeating the procedure above m-times, then
R, = 0(e*3™). Let m — 4oo. Then we get a Hamiltonian

Hoo =N = (0,1 3 (A4 B(0))2,2).

This completes the proof of Theorem 6.
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3 Solutions of the linearized equations

We are now in position to solve the homological equations (5, 6, 7). Solving (5, 6)
is easy. We focus our attention on the solution of (7). Observe that

(ﬂé) J@(lo)Qon ¢<}3§4>

where * is the conjugate transpose of the matrix. It is easy to see that Q5 = O ' Let

. . . 10 .
Q:d1ag(Q0:j€Zd), Eidlag<(0_1) :]GZd) .

Then J = +/—1Q*ELQ and QAQ* = A. Notice that Eg is the identity operator of
2(74) @ ¢*(Z4). Left-multiplying (7) by Q we get

WE+0p(E+QF) +V—1QAQ"(E+QF°) +V/—1I'(QBQ*(E+QF%)) = ' OR".
Let F, = ELQF* R, = OR* and B = QBQ*. Note 'Q = QI". Then

®E+0gF, +\/—1AF,++/—1I'(BFE,) =TR.. (1)
Write R R
FE=Y Fke/"1®0 5= Y Bk)e/ ko),
|k|<K k<K
=V=1 Y R(k)eV- 1k
k<K
Let

T = diag(£(k, )+ A; : k| <K,j € Z k€ Z")
B=(Bk—1):k|,]l| <K,k,1€Z")
F=(F(k): |k, <K,k€Z"), R=(R(k): |k|,< K.k Z").
Then (7) can be written as L
(T+B)F =R. 2)
Our goal is to prove that the operator 7 + B is invertible and to find its inverse.
To this end, we need some assumptions.

Al Assume ® = 0(E), B=B(0,&) depend smoothly (in the sense of Whitney?) on
a parameter vector & € O a compact set with Meas(0) > 0, and

det(dw/IE)| >C >0, 3)
sup 1B(6,&)ll, < 1, sup |9:B(8.8)]|, < 1. (4)
0eD(s),£€0 0eD(s),E€0

3 We will not mention this further.
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We denote by C a universal positive constant whose value may be different in differ-
ent places. Let K* = Cardinality of {keZ": k| <K} and P = H#P® CK* with
norm

[l = Z il ¥ u= (ur,..ougs) € A7

It follows from (8) that B is bounded linear operator in 27, and
1Bll, < 1, |9 Bll, < 1, ¥ €O 5)

where |- ||, is the operator norm of 277
A2. Assume the original Hamiltonian H = N + R is real for real arguments.

It follows that for (6,&) € D(s) x O with s = 0, the operator B(0, &) is self-adjoint
in the space (%(Z) x ¢>(Z?) (note 2(Z4) x £>(Z4) = P with p = 0). If we regard

B as a matrix of infinite dimension, then B(6,& )T = B(6,£) where the bar means
conjugate and T means transpose. Recall that B = QBQ”. We have

B(0,8) =B(6,E), ¥ (6,E) e D(0) x 0.

It follows from this that

@(k—l)T B(l—k), Vk,1€Z" (6)

Then it follows from (6) that B is self-adjoint in the space (% := (2(Z4) x (2(Z4) x
CK*. Note the matrix T + B is of infinite dimension. We will reduce the inverse of
it to one of a matrix of finite dimension. To this end, we need a third assumption.

A3. Assume the normal frequencies A;’s satisfy the following growth conditions:

A =Clj5, 3xk>0,Vjez.

Let

1/x
(0]

We see that when |k| < K, |j| > M,
|+ (k, @)+ A >1. 7

Write
Ti = diag(+(k,0) + A;: |fl < K.|j| < M),

T, = diag(£(k,0)+A;: k| <K,|[j| > M) .



KAM theory with applications to Hamiltonian partial differential equations 169
Then T =T, ®T,. And by (7) we get
—1
1Tl < 1.

While regarding B as a matrix of infinite dimension, we denote by @i j(k—1) the

~

elements of matrix where i, j € Z4 k,1 € 7", ||, || < K. We decompose B into four
blocks as follows:

Biy = (Bij(k—1) : |k|, |I| < K, |i], |j] < M)

By = (Bij(k—1): |k|,|I| < K,|i| <M,|j| > M)

Boy = (Byj(k—1): KL, 1] < K. |il > M, |j| < M)

Bao = (Byj(k—1): KL, 1| <K, |il > M, |j| > M).
Then o

B (?11 ?12) .
Ba1 B
According to (5),
1Bijll, < 1, [|0:Byjll, < 1, YE €0, i,je{1,2}. (8)

By ||T2’1\|p < Cand ||@22\|p < 1, we get
(Ta+Ba2) I, <1 Y 1Ty Boa) 1,175 1], < C.
j=0

Set
_ E 0
Bj.r:= ~ ~
fef (—(Tz +B2) 'By; Ez)

B Ei —Bi2(Ty +By) ™!
rig - — 0 E, P

where E; (E,, respectively) is a unit matrix of the same order as that of 77 (7,
respectively). From ||(T +B22) ||, < C, it s easy to verify that

m—1 n—1
HBZefHPv |||$rig

p<C

Let R R R N R
P11 =B — BT+ Byn) ' By

Then the inverse of T + B exists;

~ ~ T +e%/>11)_1 0 S
Tid) =g (D e BL
T+3) ”g< 0 (Ta+B)~" )
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and R R
(T +B)l, <CI(T +%0) "l

provided that the inverse of 71 + %’Aﬁ] exists.

We are now in position to investigate the inverse of 77 + @11. First of all, we
would like to point out that the matrix @11 is of finite order, and the order is bounded
by

K* = K M? < KO
Secondly, it follows from the self-adjointness of B that the matrix @11 is also self-
adjoint. Thirdly, by (8) we have

|\9§11\|p <1, qquad||&§@11\|p <1.

Fourthly, since each element of Bis continuously differentiable in £ € O, the matrix
@11 is also continuously differentiable in & € O. In view of (3), we can regard ®
itself as a parameter vector instead of &, or we can assume @ = &. Without loss of
generality, we assume the first entry ; of @ is in the interval [1,2]. Then the matrix
T + 9? 11 1s non-singular if and only if

Al = a)l_lTlJr(D]_lL@?l]

is non-singular, and
(T +211) " I, < ClAT 1.

Let
E o g=1l/o, og=w/0,..., o= 0,/0 .

Then it is easy to get

det

a(Gh 7gn) ’ —(n+1)
—— =0 >C>0.
d(wi,...,w,) !

Therefore, we can regard ¢ as a parameter vector. It is easy to see that
Meas O < CMeas Z(0) < CMeas O

and

IZnE@I <1, [BnE@)<1. ©)

After introducing the parameter ¢, we can write

n
Ay =diag (£(ki+ Y kig) +61Q) k= (ki,....kn) € Z", |k| < K,|j| < M)
=2

+§1<@11(5(€))~
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Since 4 is self-adjoint, so is A} = A, (g) for any ¢ € E(O). Therefore, there are
continuously differentiable functions u;(¢),-- -, Ug+(S) representing the eigenval-
ues of Aj for ¢ € £(0).

Lemma 2 There exists a subset O C O with Meas(E04) > (MeasZ(0))(1 —
CK~! such that for any ¢ € Z(0),

wi(s) > (KK*) ™' > 0.

We postpone the proof to the end of this section. Since A; is self-adjoint, there
exists a matrix-valued function U (¢) of order K* which depends on ¢, such that for
every ¢ € £(0, ) the following equalities hold:

Ai(g) = U(g)diag(pi(g), - uk+(6))U™(5),

and
U(e)(U(g)) =(U(g)'U(g) =E

where E is the unit matrix of order K* and U* is the conjugate transpose of U. It
follows that for ¢ € Z(04),

1A1(g)]] < max{y;:j=1,...,K*} <KK*
where || - || is the £, norm of matrix. Since A; is of order K*,
1A1(5)||, < KK*(K*)P := K©.
Thus,
T +B) I, < (T +21) I, < A (g)ll, <KC, E€0y .
Assume that

sup ||9zR%(6,8))ll, <&, 1=0,1.
D(s)x O

It follows that

IF|, <K|IR||, <K sup [[R(6.8))ll, <K e.

D(s)x0O
Note |||dg (T1 +§]1)|\|p < K. We have that for any £ € O,

1102 (Ti+%10) ||, =1|(Ti+B11) " (0 (Ty + Z11)(Ty + B11) ||, <K€ :=KC.

It follows that R
195 (T +B) '], <KC, Ee0..

Moreover, R
|10z F ||, < KCe.
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Note
||F||p Z ||F= (k) ||p+ Z HFz ||p
Ikl<K k<K
Then
sup HFM(X,";)H?,: sup || ZFu kx||2
D(0)x0+ D(0)x0+  [k|<K
2 ~ 2
< Y F R < (K%)
|k|<K
that is,
sup HFu(xaé)Hp < KCE . (10)
D(0)xO 1
Similarly,

sup [0 F"(x,8)]|, < K¢
D(0)x O 4

Lemma 3 We can extend the domain D(0) to D(s) such the above inequalities still
hold;

sup ||[F"(x,)ll, <K&, sup |9 F"(x,&)ll, <K e.
D(S)Xo+ D(S)Xo+

Proof. Rewrite F* = (F? F%)) and
B¥# BZ
B= ( BZ Bzz) :
Then the homological equation (7) can be rewritten as

V1w 9gF*+ Q°F* + I ((I'B¥)F* — (TB¥)F7) = —/—1TR*(x, &) ,

V=10 3gF 4+ Q F* + I (FB¥)F* — (TB¥)F?) = /—1T'R*(x,£) .

The following equalities can be fulfilled by the assumption that H is real for real
argument:

R: =FR°, BZ =B% BZ=B™ =BZ =B"", § € D(0).

See [25] for the details. It follows that FZ(0) = F*(0) for 6 € D(0). Note F* is
analytic in D(s). Thus, F<(8) = F*(8) for 8 € D(s). Let i* = — 1. In the proof of this
lemma, we can assume ® = (1,..., 1) without loss of generality. An important fact
is that A;’s are positive. When the dimension 7 = 1 of the angle variable 6, the proof
shows more clearly our basic idea. Firstly, assume n = 1. Let 8 = it + r. Arbitrarily
fix r € R/2xZ. Write F(t) = F*(it + r). By the second homological equation and
using the method of variation of constants,
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F(t) =F(r) —/Ote*A(’*T)(BFJrRZ(it)))dr, teo,s . (11)

Let ||| p,s = supp(y) || - || where we write formally
BF =T'[[B%(it))F(it) + (T B¥)F (it)].

Note ||B|[,s < 6 < 1,||R¢||,s < €. And note ||F?||, = ||F||,. By (10) we have
[|FZ(r)||, = ||F*(r)||, < KCe. Therefore, by (11) we get

IF(0)]lp < K &+ 8]|F¥|lp.s, 1 €10,5].
By the first homological equation, we get

IF(in)llp < K€+ 8||F?||p.s, 1€ [5,0].

Thus,
IF(it)||p < K&+ 6[|F||ps, 1 €[—s,s].
That means
||Fz(it+r)||p < KC£+6HFZ||N, t € [—s,s],r e R/27Z.
This leads to
||F¥||,s < 2K € := K e.
That is

sup || (x, )], < KCe .
D(S)Xﬁ+

Now let us consider the dimension n = 2. Fix an arbitrary r € R/2nZ. Let 0 =it +r
with? € [0,s], let F(r) := F*(it +r,¢), and restrict ¢ € R. By the second homological
equation, we have

F(t)=Fi(r¢) - /Ote’“””e*"’*”% (BF +R), 1€0,5] (12)

For any analytic 2x-periodic function f: {x:|Imx| < s} — HP, using Cauchy’s
theorem, we have

sup [le D% ()|, < el T £ s
xeR/27Z

By (12) we have

- - t -
1E=(it +1,9)|], < IIFZ(r,d))Iler/0 TS| F?|ps + | [R|ps)d T

<KCe+6[|F|,s, t€[0,5],0 R
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Again by the first homological equation and noting F? = FZ, we have

1F(it +1,0)llp <K e+ 8||F||ps, 1€ [-5,5),9 €R (13)
For any constant ¢, the line L = L(c) : x—y = c is a characteristic line of d, + d,. Let

F(y):=F(i(y+c)+r,iy+r), y€l0,s],r,r fixed.
By the second homological equation, we have

n Y
F(y) = F(ic+r1,r2) —/ e *OTI(BF + RY)dt, y€[0,s]. (14)
0

It follows that

IFE(i(y+c)+ri,iy+m)llp < |F(ic+rir)llp + 8| |F[|ps + & y €[0,s].

Moreover, by the first homological equation, we have
|F2(i(y+c) +ri,iy+r2)|lp < |[F(ic+r1.r2)|]p+8[[F|ps+€, y+e,y € [=s,s].
By (13),

IF(i(y+c) +riiy+r)|lp < Ke+28[|F|ps &, y+ey €[],
Let the line L(c) run over the square [—s, s]%, we have
1FZ]]p,s < KC£+26HFZHPJ+8-

It follows )
HFZHp.,S < 4KC8 = Kce,

We will omit the proof of ||dg F|| s < KCe. This proof is finished by mathematical
induction on n.

Proof of Lemma 2. Let
E(0) ={c € &(0) : |m| <1/(KK*)}, I=1,...K

Take an arbitrary u = p(g) € {i1(¢), ..., ug=(g)}. Let ¢ be the normalized eigen-
vector corresponding . It is easy to prove that d; . = ((d;A1)¢,¢). By computing
8gA1 and using (9) and Lemma 4, we get

dgit = ((diag(4; : [k < K, [j| < M))9,9)+o(1)
>m1n{lj:]€Zd}+o( )=C>0.

It follows that Meas E(Q;) < 1/(KK*). Thus,

Meas U ) < 1/K.
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Let
K)F
2(0)==2(0)\|JE(W).
=1
Therefore,
1
Meas £(Q) > Meas £(0)(1 — O(E))

and for any ¢ € E(Q),
[w(g)| = 1/KK™.

This completes the proof of Lemma 2.

4 Applications to partial differential equations in higher
dimensions

We will just give the application of Theorem 6 to a nonlinear wave equation
in higher dimension. See [25] for other applications such as to the nonlinear
Schrodinger equation.

Consider the nonlinear wave equation

uy —Au+Mgu+eu® =0, 6T d>1 (1)

where u = u(t,0) and A = Z?:l 8§j and M is a real Fourier multiplier

Mgscos(j,0) =0ojcos(j,0), Mssin(j,0) = ojsin(j,0), o;€R, je 7.

Pick a set @ = {@,...,®,} C Z¢. Let Z¢ = 74\ {®y, ..., ®, }. Following Bourgain
[4], we assume
{ og =01, (I=1,...,n)

CTJ':O7 ]G@d

Theorem 7 (/25]) Let & = \/Ag, = \/|®[*+0;, (I =1,...n) and 6 =
(61,...,0,) and @° = (0),...,0°). Then there is a subset O, C [1,2)? with
Meas 0y > (1 —Ce) such that for any 6 € O, the nonlinear wave equation with
small € has a rotational invariant torus of frequency vector ® with |® — @°| = O(&).
The motion on the torus can be expressed by u(t,0) which is quasi-periodic (in time)
with frequency @ and u(-,0) : R — HP(T") is an analytic map, and thus the solution
u(t,0) is, at least, a sufficiently smooth function of (t,0) if p is taken large enough.

Acknowledgements The author is very grateful to Prof. W. Craig for his help.
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Appendix

Lemma 4 Assume the matrix A = A(g) is self-adjoint and smooth in G. Let i =
u(g) be any eigenvalue of A and ¢ be the eigenfunction corresponding to |. Then
we have

Ieit = ((9cA)9,9).

Proof. Note ¢ is not necessarily smooth in ¢. Consider the difference operator:

b =bges=TEIZNE)

Apply Ato A¢ = 9,
(DAY +A(A) = (Au)¢ +1(A9).

Taking inner product with ¢,

((DA)9,0) +(A(L9),0) = (A)D,9) + 1(L9, ).

Since A is self-adjoint,

(A(L9),0) = (A9),A9) = u(L9,9).

Thus
((AA)9,9) = ((An)o,¢) = (Ap)(9,9) = Ap.

Letting ¢; — ¢; := ¢, we have d.iu = ((d;A)9,9).
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Four lectures on KAM for the non-linear
Schrodinger equation

L.H. Eliasson! and S.B. Kuksin?

Abstract We discuss the KAM-theory for lower-dimensional tori for the non-linear
Schrodinger equation with periodic boundary conditions and a convolution potential
in dimension d. Central in this theory is the homological equation and a condition
on the small divisors often known as the second Melnikov condition. The difficulties
related to this condition are substantial when d > 2.

We discuss this difficulty, and we show that a block decomposition and a Toplitz-
Lipschitz-property, present for non-linear Schrodinger equation, permit to overcome
this difficuly. A detailed proof is given in [EKO06].

1 The non-linear Schrodinger equation

We formulate the equation as an co-dimensional Hamiltonian system and as a prob-
lem of persistency of lower-dimensional invariant tori.

1.1 The non-linear Schrodinger equation

We consider the A-dimensional nonlinear Schrodinger equation

JdF
—in=—Au+V(x) *u—l—ey()@uﬁ) ,
i

for u = u(t,x) under the periodic boundary condition x € T¢. The convolution
potential V : T¢ — C have real Fourier coefficients V(a), a € Z¢, and we shall
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suppose it is analytic. (This equation is a popular model for the ‘real’ NLS equation,
where instead of the convolution term V x u we have the potential term Vu.) F is
an analytic function in Reu,Imu and x. When F (x,u, i) = (uii)? this is the cubic
Schrddinger equation.

For £ = 0 the equation is linear and has time—quasi-periodic solutions

u(t,x) = Z ﬁ(a)ei<\“\2+‘7(a))tei<a,x>’
acd

where o7 is any finite subset of Z¢ and |ii(a)| > 0. We shall treat , = |a|*> +
V(a), a € o as free parameters in some domain U C R

For € # 0 we have under general conditions:

If |€| is sufficiently small, then there is a large subset U' of U such that for
all ® € U’ the solution u persists as a time—quasi-periodic solution which has all
Lyapounov exponents equal to zero and whose linearized equation is reducible to
constant coefficients.

In these lectures we shall describe the basic difficulty related to this result —
often known as the second Melnikov condition — and the ideas behind its solution.
A detailed proof is given in [EK06].

1.2 An co-dimensional Hamiltonian system

We write

u(x) — Zaezd uaei<a,x>
u(x) =Y ezd Ve ST (v, =iy

In the symplectic space {(uy,v,):a € Z} = CZ' x ¢,

iy dugNdv,,

acZ4

the equation becomes a Hamiltonian system

iy = if-(h+ef)
Vo= —ize-(h+ef)
with an integrable part

h(u,v) =Y (la* +V(a))uava

acZ4

plus a perturbation

ef(u,v) zsﬁ/wF(x,u(x),@)dx.
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The second derivatives of f have a Toplitz invariance:

Q2f 22 f

Ot cOVpre  ugdvy

and
9% f 9% f

dugcup_ - Jdu,duy

(and similar for the second derivatives with respect to v, ), for any ¢ € Z¢. This is
easy to see for the cubic Schrodinger where

Sflu,v) = Z UgUpVeVy. (D
a+b—c—d=0
For example
I f
=2 Z VeVg
au“&ub ct+d=a+b

which clearly have this invariance.
The non-linear Schrodinger is a real Hamiltonian system. Indeed if we let

a=(m)=c (i)

1 11
=2 (Li) @
then, in the symplectic space {(&;,Mq) =: a € Z¢} = RZ' x RZ’,

Y dé.ndng,

acZ4

with

the equation becomes

ae?7?,

éa = 7(9(9%(}14’8]0)
M= FE(h+ef)
also written {, = J % (h+ €f), with the integrable part

MEm =5 ¥ (la +9(@)(E +n2)

ac74

plus the perturbation € f(&, 1) which is real, because F is a real function of Reu and
Imu.

The Toplitz-invariance of the second derivatives can of course be formulated in
these coordinates but the description is more complicated (see Sect. 5.2).
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1.3 The topology

Let .Z be an infinite subset of Z¢. The space
L(Z.R), y>0,

is the set of sequences of real numbers & = {&, : a € £}, such that

1€l = [ X |&al?(a)>m el <i  (a) = max(|al,1).

ac

There is a natural identification of l)z,(.,iﬂ ,R) x l%(.i” ,R), whose elements are (£, 1),
with l%(f,Rz), whose elements are {§, = (£,,7,) : a € £}, and we will not dis-
tinguish between them.

We shall assume that m, > %. Then, in the phase space l(%(Zd,]Rz), our
Hamiltonian 4 + €f is analytic (in some domain & in lg(Zd ,R)). To see that f
is analytic, consider for example the cubic Schrodinger in the complex variables

(1). Using the estimate
Y lual < /) (@) =2 Jlully,
a a

2 2
() < lullo lIvIlo

and it follows easily that f is analytic.
Let <, > denote the “pairing”

<0.¢>=Y (& +n.m)).

acZ4

we have

Since the phase space is a Hilbert space, its first differential
I6(Z R 3§ <80, £(6)>

defines a vector d; f(§), its “gradient”, (with respect to the pairing), and its second
differential

PO A .
(LR 3§ S<C02 (08>
defines a matrix 3C2f(§) 1 L XYL — gl(2,R), its “Hessian”, (with respect to the
pairing), which is symmetric, i.e.
*f ~J*f
aCua Cb agbaga
For { € 6 NI;(Z4,R?), y > 0, the gradient and the Hessian verifies certain prop-

erties of exponential decay. These properties are most easily seen in the complex
variables u, v. For example for the cubic Schrodinger (1) the gradient of f verifies

( (€) (&)
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2 _
< cte. [l [v]2e 7.

121
uy,
(and similar for the derivative with respect to v,). The Hessian of f verifies

521
du,dv,

| < cte.Jully [[v] e 7,

and
’f
Ic?ua8ub
(and similar for the second derivative with respect to v¢,vy).
The exponential decay of the second derivatives can of course be formulated
in the real coordinates (£,7) but the description is again more complicated (see
Sect. 5.2).

| < cte. ||v[|7e Tt

1.4 Action-angle variables

Let f be a finite subset of Z¢ and fix
0<py, acd.
The (#47)-dimensional torus

%(éaz‘Fﬂaz):Pa,aEﬂ
&a=1Ma=0, ac L =7\do,

is invariant for the Hamiltonian flow when & = 0. In the symplectic subspace R x
R we introduce, in a neighborhood of this torus, action-angle variables (74, @),

ac o,
&a= V 2(pa+71a)cos(Qa)
Na = 2(pa+ra)5in(q)a>'

These coordinates are analytic near r = 0 because the p,’s are all positive.
In these coordinates the Hamiltonian equations becomes
L= (h+ef) acZ
; d
Fq=—2>(h+e€f)
.a 3;’“ acd
(e Irq (h + Ef)

with the integrable part

h(&,m,r) = ZwuraJr Z-Q §2+na)

acd aei”



184 L.H. Eliasson and S.B. Kuksin
(modulo a constant), where

w, = la* +V(a), ac,
are the basic frequencies, and

Q,=a*+V(a), ac¥,

are the normal frequencies (of the invariant torus). The perturbation £f(&,n,r, @)
will be a function of all variables (under the assumption, of course, that the torus
lies in the domain of F).

Since h+ €f is analytic in (some domain in) the phase space lé(f ,R?) x R x
T, it extends to a holomorphic function on a complex domain

1Slo =/ IEIG+InIE <o

O0.1.p) =14 |r| <
[Ime| <p.

1.5 Statement of the result

The Hamiltonian . + £f is a standard form for the perturbation theory of lower-
dimensional (isotropic) tori with one exception: it is strongly degenerate. We there-
fore need external parameters to control the basic frequencies and the simplest
choice is to let the basic frequencies (i.e. the potential itself) be our free parame-
ters. The parameters will belong to a set

Uc{weR?:|o|<Ci}. (3)
The potential V will be analytic and
V(a)] < Cre &V, €350, Vae 2. )
The normal frequencies will be assumed to verify

‘.Qu‘ >C4 >0
Q0+ Q| > C Va,be L. )
|Qq — 4| > Cy |al| # |b]

This is fulfilled, for example, if V is small and </ 3 0, or if V is arbitrary and < is
sufficiently large.

Theorem 1.1. Under the above assumptions, for € sufficiently small there exist a
subset U' C U, which is large in the sense that

Leb(U\U') < cte.€P,
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and for each @ € U', a real analytic symplectic diffeomorphism ®

0O H Py . 50
<2>2a2) ﬁ (Gvuap)

and a vector ®' = &' (®) such that (hgy + €f) o ® equals (modulo a constant)

1
<0,r> +§<C7A(w)§> +E€g,

where ) 5
ge o(Ir”,|rllIE o, 1S15)

and the symmetric matrix A(®) has the form

( .Q] ((1)) .QZ(CO))
'QH(o) Q) ()

with 1 + i, Hermitian and block-diagonal, with finite-dimensional blocks.
Moreover, @ = (P, D, D) verifies, for all (§,¢,r) € ﬁo(%, %, %),

[ =Ll +19r = pl+[ P — o] < Be,
and the mapping @ — @' (®) verifies
|w/_id|Lip(U’) < Be.

The exponent exp only depends on the dimensions d,#<f ,m,, the constant cte.
depends on the dimensions and on Cy,...,Cy4, and the constant  also depends on
V and F.

It follows from this theorem that ®({0} x {0} x T) is a KAM-torus for the
Hamiltonian system of 4+ €f, and it implies the result mentioned in Sect. 1.1. We
discuss this notion and its consequences in the next section.

Theorem 1.1, as well as a more generalized version, is proven in [EK06].

1.6 KAM-tori

A KAM-torus of a Hamiltonian system in R>Z x R? x T is a finite-dimensional
torus satisfying

(i) Invariance — it is invariant under the Hamiltonian flow

(ii) Linearity — the flow on the torus is conjugate to a linear flow ¢ — ¢ +r®
A torus with the two properties (i) + (ii) is nothing more and nothing less than
a quasi-periodic solution when translated into cartesian coordinates. Often, as
we shall do in this paper, one also requires
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(iii) Reducibility — the linearized equations (the “variational equations”) on the
torus are conjugate to a constant coefficient system of the form

A

a§ _
€ —Jak
di _
E—O
d¢ .
ar = B7

and JA has a pure point spectrum

If the quasi-periodic solution has property (iii), then questions related to linear
stability and Lyapunov exponents “reduce” to a study of a linear system of constant
coefficients, which permits (at least for finite-dimensional systems) to answer such
questions and to construct higher order normal forms near the torus.

Reducibility is automatic in two cases: if the torus is one-dimensional (and phase-
space is finite-dimensional) it is just a periodic solution, and (iii) is a general fact
called Floquet theory; if the torus is Lagrangian (i.e. there is not {-part), then (iii)
follows from (i) + (ii) by a simple integration [dILO1]. In general, however, it is a
delicate property which is far from being completely understood.

KAM is a perturbation theory of KAM-tori. Not only is reducibility an important
outcome but also an essential ingredient in the proof. It simplifies the iteration since
it reduces all approximate linear equations to constant coefficients. But it does not
come for free. It requires a lower bound on small divisors of the form

(x%)  |<k,0> +Q,(0)+Q(0)|, keZ” abe Z,

where Q,(®), a € £ are the imaginary parts of the eigenvalues of JA(®) The basic
frequencies @ will be fixed during the iteration — that is what parameters are there
for — but the normal frequencies will vary. Indeed the 2,(®) are perturbations of
|a|*> + V (a) which are not known a priori but are determined by the approximation
process.!

The difficulty associated with the small divisors (%) may be very large. There is
a perturbation theory which avoids this difficulty, but to a high cost: the approximate
linear equations are no longer of constant coefficients. Moreover it gives persistence

of the invariant tori but no reducibility.

1.7 Consequences of Theorem 1

The consequences of the theorem is that @({0,0} x T is a KAM-torus for /gy +
ef. In order to see this it suffices to show that {{ = r = 0} is a KAM-torus for
k+¢€g,

! A lower bound on (*) is strictly speaking not necessary for reducibility. It is necessary, however,
in order to have reducibility with a reducing transformation close to the identity.
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1
k=<w,r> +§<§,A(w)(§> :

Since
dg dg dg
ot d¢o Ir
for { = r =0, it follows that {{ = r = 0} is invariant with a flow ¢ — ¢ +t®. The
linearized equations on this torus become

= — JA(0)¢ +eJa(g+10,0)F

=& <a(@p+10,0),> +eb(@+10,0)F

2 2
where? a(@) = 5257£(0,0,9) and b(¢) = $:£(0,0,9).
These equations can be conjugated to constant coefficients if the imaginary part
of the the eigenvalues of JA(®),

+iQ,(w), ac,

are non-resonant with respect to @. In order to see this we consider the equations

1)
<0pZi (@), 0>=JAZ (@) +eJa(@),
which has a unique smooth solution if @ and 2,(®), a € £, verify an appro-
priate Diophantine condition
(i1)
<0pZr (@), 0>= —Z(@)JA+ €'a( @)

which has a unique smooth solution under the same condition on ®
(iii)
<0pZ3(¢), 0>=¢'a(9)Z(p) +&b(p) — &
which has a smooth solution if @ is Diophantine and if we chose B such that
the meanvalue of the right hand side is = 0.

If we now take

I Zi(9) 0
Z(p) = I 0/,
Z(0) Z3(p) 1

2 t is used both as the independent time-variable and to denote transposition, without confusion
we hope.
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then <3—$((p), 0>
JA eJa(e) 0 JA
=| 0 0 0])Z(e)-Z(@)| 0
0

la(p) eb(g) 0

so Z conjugates the linearized equations to

00
00
ep o

)

A

at
%JA((D)Q
=0

¢ N
E - €ﬁr

which is constant coefficients.
The conditions on @ will hold if we restrict the set U’ arbitrarily little.

If
C\z(—lilill)’ ©
then
ClA()C =i (’Qéw) QO(@)) :

since Q(w) = Q) (w) + i, () is Hermitian. Moreover, there is a unitary matrix
D = D(w) such that
'DQD = diag(£,)

is a real diagonal matrix, and therefore

(55) (8 %) (05) ("% _sugiar)

So the linearized equations on the torus have only quasi-periodic solutions and,
hence, the torus is linearly stable.

1.8 References

For finite dimensional Hamiltonian systems the first proof of persistence of stable
(i.e. vanishing of all Lyapunov exponents) lower dimensional invariant tori was ob-
tained in [Eli85, Eli88] and there are now many works on this subjects. There are
also many works on reducibility (see for example [Kri99, Eli01]) and the situation
in finite dimension is now pretty well understood in the perturbative setting. Not so,
however, in infinite dimension.
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If d = 1 and the space-variable x belongs to a finite segment supplemented by
Dirichlet or Neumann boundary conditions, this result was obtained in [Kuk88]
(also see [Kuk93, P6s96]). The case of periodic boundary conditions was treated
in [Bou96], using another multi-scale scheme, suggested by Frohlich—Spencer in
their work on the Anderson localization [FS83]. This approach, often referred to
as the Craig—Wayne scheme, is different from the KAM-scheme described here. It
avoids the cumbersome condition (*#) but to a high cost: the approximate linear
equations are not of constant coefficients. Moreover, it gives persistence of the in-
variant tori but no reducibility and no information on the linear stability. A KAM-
theorem for periodic boundary conditions has recently been proved in [GY05] (with
a perturbation F independent of x) and the perturbation theory for quasi-periodic
solutions of one-dimensional Hamiltonian PDE is now sufficiently well developed
(see for example [Kuk93, Cra00, Kuk00]).

The study of the corresponding problems for d > 2 is at its early stage. Devel-
oping further the scheme, suggested by Frohlich—Spencer, Bourgain proved persis-
tence for the case d = 2 [Bou98]. More recently, the new techniques developped by
him and collaborators in their work on the linear problem has allowed him to prove
persistence in any dimension d [Bou04]. (In this work he also treats the non-linear
wave equation.) For another, and simplified, proof of this result see [ YuaO7].

1.9 Notation

<, > is the standard scalar product in R?. || || is an operator-norm or />-norm. | | will
in general denote a supremum norm, with a notable exception: for a lattice vector
a € 7¢ we use |a| for the [>-norm.

<7 is a finite subset of Z¢, and . is its complement. A matrix on .Z is just a
mapping A : £ x.¥ — C or gl(2,C). Its components will be denoted A. If
A1,Ay,A3,Ay are scalar-valued matrices on .Z, then we identify

(A A
a=(a%)

with a g/(2,C)-valued matrix through

The dimension d will be fixed and m, will be a fixed constant >%.

< means < modulo a multiplicative constant that only, unless otherwise speci-
fied, depends on d,m, and #.47.

The points in the lattice Z¢ will be denoted a, b, c,. ... Also d will sometimes be
used, without confusion we hope.
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For two subsets X and Y of a metric space,

dist(X,Y) = xe)i(r.l}feyd(x,y).

(This is not a metric.) X¢ is the e-neighborhood of X, i.e.
{y : dist(y,X) < €}.

Let B¢ (x) be the ball {y : d(x,y) < €}. Then X is the union, over x € X, of all B¢ (x).
If X and Y are subsets of R or Z¢ we let

X-Y={x—y:xeX,yeY}

- not to be confused with the set theoretical difference X \ Y.

2 The homological equation

Here we shall describe shortly the quadratic iteration and derive the homological
equation which is central in KAM.

2.1 Normal form Hamiltonians

This is a real Hamiltonian of the form

1
h=<w,r> +§<C,A(a))c>, (modulo a constant)

(2 2
A= (’ Q, Ql>
is block-diagonal matrix with finite-dimensional blocks (we shall say more about

these blocks in Sect. 3) and Q (@) = Q;(w) + i€, (w) is Hermitian. Since 2 () is
Hermitian the eigenvalues of JA(®) are

where

+iQ,(w) ae,

where the Q,(w) are the (necessarly real) eigenvalues of Q (o). (See the discussion
in Sect. 2.2.)
We also suppose A(®) to be close to

(diag(|a2+\7(a) 0 )
0 diag(|a]* +V(a))
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and

100 (@) <

A=

This implies that Q,(w) is
~lal’ +7V(a)

and C' (or Lipschitz) -small in @.

2.2 The KAM-iteration

Given a normal form Hamiltonian
1
h=<w,r> +§<C7A(w)§>
and a perturbation f. Let T f be the Taylor polynomial

af af
£(0,0,9)+ <a—(0 0,0),r>+ <3C

of f — it may also depend on @.
If T f was = 0 then {{ = r =0} would be a KAM-torus for 2+ f. But in general

we only have

1 °f
<0a07‘P)»C> +§ <Ca 87412(070’(p)g>

TfeO(e).

Suppose now there exist a Taylor polynomial s of the same form, i.e. s = T's, and
a normal form Hamiltonian

k=clo)+ <x(w),r> +%<C,B(w)§>
verifying
{h,s} =-Tf+k, 6]

where { , } is the Poisson bracket associated to the symplectic form Y d&, Adn, +
Y dr, Ndg,. This equation is known as the homological equation.
Let @ be the flow of )
C = Jg% (Cv o, I")

f:*&(c (pvr)
¢=53(.0.1).
If s,k € O(¢), then (P’ —id) € O(¢g) and

(h+f)o®@' =h+k+ [y L(h+1f+(1—1)k)od'dt
=htk+ Jy({h+tf+ (1 —t)k,s}+ f —k)oD'dt
—htk+ [J({tf+ (1 =0)k,s}+f—Tf) o P'dt
=h+k+[(f=Tf)+ Al
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So @' transforms & + f to a new normal form 4 = h + k plus a new perturbation f".
Since
T(f)eo(&),
also
freo)

when the domain is sufficiently restricted.

If we can solve the homological equation (1), not only for the normal form
Hamiltonian £ but also for all normal form Hamiltonians #’, close to A, then we will
be able to make an iteration which will converge to a solution as in Theorem 1.1 if
the estimates a good enough. So the basic thing in KAM is to solve and estimate the
solution of the homological equation.

It is clear from the discussion above that it is enough to solve a slightly weaker
version of the homological equation, namely

{h,s} = —Tf+k+0O(e). (2)

2.3 The components of the homological equation

We write s as

$01(9) + <S02(9), 7> + <51(9), £> 5 <E.52(9)¢>

and k as 1
c+ <y, r> +§<C,BC> .

The homological equation (2) now decomposes into four linear equations. The
first two are

{ <0pSo1(9), 0> = —£(0,0,0) + ¢+ O(?)
(3)
<0pS0a(9), 0> = —5£(0,0,0) + x + O(2).
In these equations, we are forced to take
0
c=<f(0,0,-)> and Y% :<8—]:(0,0,-)>,
where <g> is the mean value
1
) /ng(q))wp-
The other two are
0
<0pS1(9), 0> +IAS1(9) = — 2L (0,0,0) + 0(¢?) @)

¢
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and
2
<09S2(9), 0> +AJS2(9) ~ S2(9)JA = —54(0,0,9) + B+ O(e?).  (5)

The most delicate of these equations is the last one which is related to reducibility.
Let .

Q Q

B={, 2), Q' =0 +iQ;,

and

2
F((P) = 3;;(0’0790)

If we write F (@) ='CF(¢)C and S>(¢) = 'CS>(¢)C, then (5) becomes
& 0 Q) 4 & 0 Q
<dpS2(P), 0> —i (’_Q 0 >J52((P) +iS2(p)J (l_Q 0 )

— _Fle)+ (,g, ‘é) 1+ 0(?).

This equation decouples into four equations for scalar-valued matrices. These are of
the form
<0pR(9), > +i(QR(9) +R(9)'2) = G(9) + O (e?), (©)

for the diagonal terms, and of the form
<0pR(9), 0> +i(QR(9) —R(9)Q2) = G(¢) — Q'+ O(?) (7)

for the off-diagonal terms.

The last equation is underdetermined and there are several possible choices of
£Q'. One such choice would be <G> which would give an Hermitian matrix, but in
general not a block diagonal matrix. So the Hamiltonian 4’ = 1+ k would not be on
normal form. Instead we shall make a “smaller” choice.

Due to the exponential decay of the second order derivatives of the Hamiltonian
(discussed in Sect. 1.3) the matrix G verifies

G(p)s| See " abe2,
and we can truncate the matrices away from the diagonal at distance

1)'

A ~log(—
Og(g

We then take

®)

ny | <Gb>if|a| = |b|, |a—b| <A
(€2 )“_{O if not

Since the left hand side of the equations (3—7) are linear operators with constant
coefficients, equations (3-7) + (8) can be solved in Fourier series, and to get a
solution we must prove the convergence of these Fourier series and estimate the
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solution. This requires good estimates on the small divisors, i.e. the eigenvalues of
the linear operators in the left hand side.

2.4 Small divisors and the second Melnikov condition

Since the equations are to be solved only modulo ¢(£?) and since all functions are
analytic in @, we can truncate all Fourier series at order

1
AN ~1 —.
()

We want to bound the eigenvalues (in absolute value) in the left hand side from

below by some quantity k¥ which should be small but much larger than &, say
K = %P

for some small exponent.
For (3), the eigenvalues of the left hand side operator are

i<k,w> keZ 0<|kl<A.

These are all larger (in absolute value) than x for @ € U except on a small set of
Lebesgue measure
<)

The eigenvalues in (4) are
i<ko>+iQi0) keZ”, k| <A, ac¥,
where the iQ,(®):s are the eigenvalues of A(®). By the assumption on A(®),
Qu(w) ~ |a* +V(a)

and is C'-small in . Therefore there are only finitely many eigenvalues which are
not large, and these can be controlled by an appropriate choice of ®.

Equation (6) is treated in the same way.

It is (7) which gives rise to serious problems. If we define £’ by (8) and take into
account the exponential decay of the matrices, then the eigenvalues of (7) are

i(Qa(@) — (@) k=0, |a—b| <A, |a| # |b],
(which are all 2 1 by assumption (5) of Section 1) and

{i<k,(o> +Q4(0) — 2(0)) 9)

0< k| <A, Ja—b| <A.

In one space dimension d = 1 we have
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1Q24(0) = ()| — o

when |a| — oo, |a —b| < A, except for a = b. Therefore there are only finitely
many eigenvalues which are not large, and these can be controlled by an appropriate
choice of w.

But in dimension d > 2 there are infinitey many eigenvalues which are not large.
How to control (9) — known as the second Melnikov condition — is the main diffi-
culty in the proof. But before we turn to this question we shall discuss more closely
the normal form.

3 Normal form Hamiltonians

We shall discuss the block-diagonal property and the Toplitz—Lipschitz-property of
the normal form Hamiltonians.

3.1 Blocks

In this section d > 2. For a non-negative integer A we define an equivalence relation
on .Z generated by the pre-equivalence relation

amb s {laF = 6F

la—b| <A.
Let [a] denote the equivalence class (block) of a, and let 5 be the set of equivalence
classes. It is trivial that each block [a] is finite with cardinality

< la !
that depends on a. But there is also a uniform A-dependent bound.

Lemmal Ler
da = sup(diam[a]a).
a

Then
(d+1)!

da S AT

~

Proof. We give the proof in dimension d = 2, the general case being treated
in Sect. 4 of [EK06].

It suffices to consider the case when there are a,b,c € [a]a such that a — b and
a — c are linearly independent and

l|a—bl,|la—c| <A.
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(If not, then [a]s = {a,b} and the result is obvious.)
Since |a|? = |b|> = |c|? it follows that

<a,a—b>—%|a b[?
<a,a—c>= zla—cf?

Since a — b and a — c are integer-valued independent vectors it follow from this that
la| < A3, O
The blocks [a]s have a rigid structure when |a| is large. For a vector ¢ € Z¢\ 0 let
€ (a+Re)NZ?

be the lattice point b on the line a + Rc¢ with smallest norm — if there are two such
b’s we choose the one with <b, c>> 0.

Lemma 2 Given a and ¢ # 0 in ZA. For all t, such that
la+te| > di(|ac| + [c]) el
the set [a+tc|p — (a+tc) is independent of t and | to c.

Proof. 1t suffices to prove this for a = a,.
Let b € [a+1tc]a — (a+1tc) for some fixed ¢ as in the lemma. This implies that
|b| < da and that |b+a+tc|? = |a+tc|?. This last equality can be written

2t <b,c> +2 <b,a> +|b|* =
If <b,c>+# 0, then

< lal + |t <b.c> |l
= |al+| <b,a> [|c| + 5|b]||c]
< (1+dyp)lallc| + 3d3|c|?)

—~

but this is impossible under the assumption on a + tc.
Therefore <b,c>= 0 and hence [a+tc|y — (a+tc) L c. Moreover [b+a+sc|> =
la+ sc|? for all s, so if |b| < A, then

[b+a-+scla=[a+scla Vs.

To conclude, let by = a, b, ...,b, be the elements of [a]s ordered in such a way
that |bj1 —b;| < Afor all j. Then the preceding argument shows that

[b4+a+sc]a=[a+sc]a Vs, Vj. O

Description of blocks when d = 2,3. For d = 2, we have outside {|a| :< dy =~ A’}

* Rank[a|p = 1 if, and only if, a € %—I—bL for some 0 < |b| < A — then [a]p =
{a,a—b}
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* Rank[a]s = 0 otherwise — then [a]s = {a}
For d = 3, we have outside {|a| :< d ~ A'?}

* Rank[a]s = 2 if, and only if, a € 2 + 5L N5 + ¢ for some 0 < |b],|c| < 24
linearly independent — then [a]x D {a,a —b,a — ¢}

* Rank[a]p = 1 if, and only if, a € %—l—bj‘ for some 0 < |b| < A — then [a]p =
{a,a—b}

* Rank[a]a = 0 otherwise — then [a]s = {a}

3.2 Lipschitz domains

For a non-negative constant A and for any ¢ € Z¢ \ 0, let the Lipschitz domain
Dy (C) cCY¥x%

be the set of all (a,b) such that there exist @', b’ € Z¢ and ¢ > 0 such that

la = +1c| > A(la| +[e]) |
| >

b="0b"+1tc| = A(|b'| +]c|) ]|
and
@, 12l > 2A2.
le[” el

The Lipschitz domains are not so easy to grasp, but it is easy to verify
Lemma 3 Let A > 3.
() If |a=d +1toc| = A(ld'|+|c])|cl, £ =0, then

la| _ <a,e> i
ERREE ~t 2 Alcl.

(i) If |a=d +1oc| = A(ld'|+|c])|c|, 1o = 0, then
| +tc|* = | +toc]* + (t —10)*|c]* Vit = 1.
In particular, if (a,b) € Dx(c), then
(a+te,b+1tc) € Da(c) Vit =0.
Proof. (i) The inequality |a’ +7c| < |d'| +t|c| < (|| +1)|c| gives immediately that
t = Alcl.

It also gives
A(ld'[+el) < ld'] +1,
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which implies that

< AT
Since
\M—ﬂ ‘<a,c> 1< |d'|
e[ 7 e Jel
we are done.

(i1) Let s =t — fg. Then

la+sc|* = |a)® +5%|c|* + 25 <a,c>

and /
26 <a,5= 2unlel? +25 <d >3 2 jef? ~ 1]

)

whichis > 0. O
A bit more complicated is

Lemma 4 For any |a| > A*~, there exist c € 79,
0< || <A,

such that
la| = Al|ac| +¢]) |c|, <a,e>> 0.

Proof. For all K > 1 there is a ¢ € Z¢ N {|x| < K} such that

1
d = dist(c,Ra) < Cy (g)ﬁ
where C; only depends on d.
To see this we consider the segment I" = [0, ﬁa] in RY and a tubular neighbor-
hood I; of radius &:
vol(I3) ~ Ke? ™!,

The projection of R? onto T¢ is locally injective and locally volume-preserving. If

£z ( )d T, then the projection of Iz cannot be injective (for volume reasons), so
there are two different points x,x’ € I such that

x—x =cez\o.

Then

< g

‘ac‘ ~ |C|

Now
Allae] +e]) |e] < 2AK2+C2

lal -
Kd—]

If we choose K = (2C2A)?~!, then this is < |a|. O
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The most important property is that finitely many Lipschitz domains cover a
“neighborhood of e in the following sense.

Corollary 3.1 For any A,N > 1, the subset
{lal +|b| 2 A"} n{la—b| <N} C 29 x 24

is contained in

U Dy(c)
0<|c|<Ad-1
for any
A
Q< ——-—1.
N+1

Proof. Let |a| > A*?~!. Then there exists 0 < |c| < A?~! such that |a| > A(|a.| +
lc]) |¢]. Clearly (because d > 2)

||a|| >2A% > 202,
C

If we write a = a. +tc then b =a.+ b —a+tc. Then
Q(lac+b—al+|cl)|c] < 2(Jac| + |c])|c| + 2(]b —allc|
< Allac| + e])|e| = [b—allc]
<lal=|b—al <|[b],

if and only if
(A= Q)(lac| +e]) = (2 +1)[b—ad],

which holds by the assumption on £2. Moreover

ol lal

> >2A%—N >20°. o
le] el

3.3 Toplitz at co(d = 2)

We say that a matrix
X:x¥—-C

has a Toplitz-limit at oo in the direction c if, for all a,b
lim X211¢ 3 = X2(c).
t—o0

X (c) is a new matrix which is Téplitz in the direction ¢, i.e.

Xeté(e) = Xg(c).
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We say that X is Toplitz at oo if it has a Toplitz-limit in any direction c.

Example 1 Consider the equation (7) of Section 2 for the unperturbed Hamilton-
ian, i.e.

Q = diag(|a]* +V(a)).

Then N

¢ oo(<k, 0> +|al2 — |b|2+V(a) -V (b))
and if the small divisors are all # 0 then R(k) is a well-defined matrix & x £ — C.
Replacing a,b by a+tc,b+tc and letting t — oo we see two different cases. If
<a—b,c># 0 then the limit exist and is = 0 as long as |G(k)211C| is bounded. If

<a—b,c>=0 then the limit exist as long as G(k)2T'¢ has a limit:

5 _ G(k)5(c)
R(ka(c) = i(<k, 0> +|a> = [b2)"

Hence the matrix R(k) is Toplitz at o if G(k) is Toplitz at .

If X : .2 x.% — Cis a Toplitz matrix, let us consider the block decomposition
of X into finite-dimensional submatrices

XS = (X2 a € a]a,b € [Bla}-

b]

The dimension of X[[a A varies with a and b, but if (a,b) € Ax(c), A > d3, then (by

L 2 la
emma
X[b]A (IC) = X[b+tC]A

lala [attc]a

is a well-defined matrix which depends on the parameter 7 > and has a limit as  — oo.

3.4 Toplitz—Lipschitz matrices (d = 2)

We define the supremum-norm

x|, = sup |x[se7le"!
a,be ¥

and, if X is Toplitz at i, the Lipschitz-constant
lal o]

Lipy ,X = sup sup \Xah—Xah(c)|max( '] )ey““h‘

|
c€74\0 (a,b)ED (c) le| " |c|
and the Lipschitz-norm
<X >py=Lips X +|X|,.
We say that the matrix X is Toplitz—Lipschitz if
<X >py< oo

for some A, y.
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Example 2 Consider R(k) from the example above. If
(a,b) € DA(c), AZ=3,
then
la=d +1c| <A(ld'|+le])e| and [b=0b"+1c| <AV +][c])]e].
By Lemma 3 we have

lal 1ol
e[ el

> A

If <a—b,c># 0 then
la| [b]

I?(k)b _0‘ max(+—, )ey\afb\
‘ le| " [el
~ Olbe |t
<a—b.c> +1(<k. 0> +dP ~ PP +V(a) =V (b))
which is -
~ % e']/|u7b| < |G|
<a—b,c> ~ My
if A, hence t, is sufficiently large.
If <a—b,c>=0 then
p p b
R(k), — R(k)(c), max(||a||’ ||)e?’ab
c|’ e
: ] Lipy/(G(k)) + ‘ 160w
i
S\ <k o> Had P P2 A <k, 0> HdE— b2 ’

if A, hence t, is sufficiently large. Here we have used the decay of V to bound
V(d +tc) =V +tc)|t < 1.

In particular, the matrix R(k) is Toplitz—Lipschitz if G(k) is Toplitz—Lipschitz.

3.5 Normal form Hamiltonians

Consider the class of Hamiltonians

1
h=<w,r> +§<C,A(a))(’;> ,  (modulo a constant)
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from Sect. 2.1. We say that h is N\ F, if moreover Q is block-diagonal over
gA, ie.
Q=0 if [a]a#[bla

Clearly if h is N'F for some A < A’, then, by the choice of ', in (8) of Section 2
W =h+kis NF, where

1
k=c+<y,r> +§<C,BC>
is determined in Sect. 3.2.

Let
H(o) = Q(w) —diag(|a)* +V(a) :a € 2).

We shall also require that H(®) and d,H(w) are Toplitz at i for all ® € U and
uniformly Toplitz—Lipschitz, i.e. there is a A such that

<H>{A = sup(<H(® >, <dpH(®>4) < ).
U
)

Then, clearly, the convergence to the Tplitz-limits is uniform in @ both for (H(®)
and dpH (o).

4 Estimates of small divisors

Here we verify the second Melnikov condition for the normal form Hamiltonians
described in Sect. 3.5.

4.1 A basic estimate

Lemma 5 Let f:1=]—1,1[— R be of class C" and
'f(")(t)‘ >1 Vel
Then, Ve > 0, the Lebesgue measure of {t €1: |f(t)| < €} is
< cte.&‘fl’l,

where the constant only depends on n.

Proof. We have

f(")(t)’ > en forall t € I. Since

@ =0 w) = [ s)as
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we get that ’ =) (t)’ > en for all £ outside an interval of length < 2en. By induc-
tion we get that ‘ f (n=J) )] = 8% for all ¢ outside 2/~ ! intervals of length < Qe

j =n gives the result. O

Remark 1 The same is true if

max f(j)(t))>1 viel

0<j<n
and f € C"1. In this case the constant will depend on |f|ons1.

Let A(r) be areal diagonal N x N-matrix with diagonal components a; which are
Clonl=]—1,1[and

di(t) =1 j=1,...,N,Vtel.

Let B(t) be a Hermitian N x N-matrix of class C' on I =] — 1, 1[ with

|B@l<s ver

Lemma 6 The Lebesgue measure of the set
tel: min Al)| <€
{ A(t)ec(A(t)+B(t))| ( )| }
< cte.Ng,

where the constant is independent of N.

Proof. Assume first that A(r) + B(t) is analytic in ¢. Then each eigenvalue A () and
its (normalized) eigenvector v(¢) are analytic in ¢, and

A(t) =< v(t),(A'(t)+B'(t))v(t)

(scalar product in CN ). Under the assumptions on A and B, thisis > 1 — % Lemma 5
applied to each eigenvalue A () gives the result.
If B is non-analytic we get the same result by analytic approximation. O

We now turn to the main problem.

4.2 The second Melnikov condition (d = 2)

Proposition 7 Let A’ > 1 and 0 < k < 1. Assume that U verifies (3) of Section 1,
that
Q =diag(|a]*+V(a):a € L)
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verifies (4) of Section 1 and that H : £ x £ — C verifies

lduH (@) < ; @cU. (1)

FNp-

(Il || is the operator norm.) Assume also that H(®) and dp,H(®) are Toplitz at o
and N'F forall o € U.
Then there exists a subset U' C U,

Leb(U\U') <
cte. max (A, d3, A)*PHY (€ + <H>{ A })ngc?,oil’
U

such that, for all ® € U’, 0 < |k| < A’ and all
dist([a]a, [b]a) < A’ )

we have

a(0) € 6((Q+H)(®)q,)

B(o)eo((@+H) @)y,

|<k, 0> +o(w)—B(o)] >« V{

Moreover the K-neighborhood of U\ U’ satisfies the same estimate.
The exponent exp is a numerical constant. The constant cte. depends on #.</ and
on CQ,C3.

Proof. The proof goes in the following way: first we prove an estimate in a large
finite part of . (this requires parameter restriction); then we assume an estimate “at
oo” of . and we prove, using the Lipschitz-property, that this estimate propagate
from “eo” down to the finite part (this requires no parameter restriction); in a third
step we have to prove the assumption at oo.

Let us notice that it is enough to prove the statement for A’ > max(A, d3 ). We let

[] denote [ ]a.
For each k, [a]a, [b] it follows by Lemma 6 the set of @ such that
|<k,0>+o(w)—p(0)] <k
has Lebesgue measure

Skt

1. Finite part. For the finite part, let us suppose a belongs to

1
fac 2ol < | i+ —dd<H> | (&), )
R 1)
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where3 ki = k3. These are finitely many possibilities and (3) is fulfilled, for all [q]
satisfying (4), all [b] with |[a —b| < A" and all 0 < |k| < A/, outside a set of Lebesgue
measure
_ K _
g (Cl +d§ <H> A )Z(A/)IZ(A/)ZJr#JJ ldi?lzcil#cz{ l' (5)
U
Let us now get rid of the diagonal terms V (a, ®) = Q,(®) — |a|* which, by (4), are

< Cze—lalcs.

We include them into H. Since they are diagonal, H will remain on normal form.
Due to the exponential decay of V, H and d,H will remain T&plitz at co. The Lip-
schitz norm gets worse but this is innocent in view of the estimates. Also the estimate
of dpH (®) gets worse, but if a is outside (4) then condition (1) remains true with a
slightly worse bound, say

100H (@)|| <

oo W

, weU.

So from now on, a is outside (4) and
Q, = |al?.
2. Condition at . For each vector ¢ € Z¢ such that 0 < |c| < (A’)2, we suppose that
the Toplitz limit H(c, @) verifies (3), for (2) and for
(la] = [p]) L. (6)

It will become clear in the next part why we only need (3)x, and (2) under the
supplementary restriction (6).

3. Propagation of the condition at e. We must now prove that for |b—a| < A’ and
an a € .Z outside (4), (3) is fulfilled.
By the Corollary 3.1 we get

(a,b) S U D2A/(C‘).

0<lel<(a)?
Fix now 0 < |c| < (A)? and (a,b) € Dyy(c). By Lemma 2 — notice that 2A” > d3 —
[a+tc] =[a]+tc and [b+rtc]=[b]+1c

fort > 0 and
[a] —a, b]—b L c.

3 In this proof < depends on #47 and on C,C3.
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It follows that

lim H(®) (44, = H(c,®)) and  lim H(@)p, = H(c, @)

t—o0 t—o0

The matrices €2, and £, do not have limits as # — co. However, for any
(#[a] x #[D])-matrix X,

Q[a+tc]X _X'Q[b+tc] = .Q[a]X —X.Q[b] +2t<a—b,c>X

for t > 0, and we must discuss two different cases according to if < ¢,b—a >=0
or not.
Consider for ¢ > 0 a pair of continuous eigenvalues

{ o €0((2+H(®))ati)
B € o((Q+H(®))pssc])

Case I: <c,b—a>=0. Here
(R +H(0)) 410X =X (2 +H(0))p 1]

equals
(lal + H(@)) 1cX =X (1B]” +H(0))pp ]

— the linear and quadratic terms in ¢ cancel!
By continuity of eigenvalues,

lim (07 — ) = (0o — B,

f—o0

where
0. € 6((la]* + H(c, 0)) )
B € o ((|bI* +H(c,®)) )

Since [a] and [b] verify (6), our assumption on H(c, @) implies that (0t — Bw) veri-
fies (3)x, -
For any two a,d’ € [a] we have

la

el el

/‘_M

Hence d
a

||H((u)[a]*H(c,w)[a]HH < dd <H>{A},

U

because A’ > max (A, dy), and the same for [b]. Recalling that a and, hence, b violate

(4) this implies
K
HH(G))[d]—H(C,w)[d]H < Z]’ d=a,b.



Four lectures on KAM for the non-linear Schrodinger equation 207

By Lipschitz-dependence of eigenvalues (of Hermitian operators) on parameters,

this implies that

(@0~ Bo) — (o= B)| < 5

and we are done.

Case II: <c¢,b—a># 0. We write a = a. + Tc, where a, is the lattice point on
the line a + Rc with smallest norm — if there are two such points we choose the one
with <a.,c>> 0.

Since

lal = 2A'(Jac| + ) |e]

it follows that
1 |al

< ——.
lael < S 1

Now, o — By differs from |a|* — |b|* by at most

2||H ()| < di <H>{A ;
)

and
la]* = |b]* = =27 <¢,b—a> —2 <ac,b—a> — |b—al*.
Since | <¢,b—a> | > 1 it follows that
T < oo — ol + |ac|A + (A)? +di <H>{A .
o}

If now |0ty — Bo| < C1A then |a] < |ac| + 7T ¢| is

< ae| (A +1) |e| + C1 (A)? |c| +di <H>{A ||
)

1
< §|a| +C; (A')2 |c] eri <H>{A |c].
o)

Since a violates (4) this is impossible. Therefore |0 — fo| = C1A’ and (3)« holds.
Hence, we have proved that (3) holds for any

{ (61719) S UO<|C\§(A’)2 DZA’(C)
(a,0) € (2)

under the condition at eo. Therefore (3), holds for any (a,b) € (2).

4. Proof of condition at . Let ¢| be a primitive vector in 0 < |c;| < (A')?, and let
G be the Toplitz limit H(c;). Then G verifies (1), G(®) and d, G(®) are Toplitz at
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oo and

U U

Clearly G(®) is Hermitian and, by Lemma 2, G(®) and d,, G(®) are block diagonal
over &, i.e. G(®) and 0, G(®) are N Fa. Moreover G is Toplitz in the direction ¢y,

<G>{A}<<H>{A}.

GZi;;} =G>, Va,b,tc.
We want to prove that G verifies (3)y, for all (a,b) € (2) + (6),, i.e. for all
la—b| <A and ([a] —[b]) L.

Since G is Toplitz in the direction ¢ it is enough to show this for
a >‘ . ™

But then all divisors are large except finitely many which we can treat as above. O

5 Functions with the Toplitz—Lipshitz property (d = 2)

We discuss here shortly some other aspects related to the proof of Theorem 1.1.

5.1 Toplitz structure of the Hessian

The quadratic differential

82
<Ca ngf(qu)vr)c>

has the form

<CAL>= Y <GAl>,

a,bed

where A : ¥ x £ — gl(2,R) is a gl(2,R)-valued matrix. It is uniquely determined

by the symmetry condition
b= A
a b

Its properties are best seen in the complex variables
Pb Qb
t b _ a ¥a
('cAC), = <QZ Pf) .

Consider for example the Schrédinger equation with a cubic potential. Then
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P = )y 2\/(1?/71 +7p,) (sz + rbzei("’b1+9°”2)>
bi1,by € o
bi+by=a+a

and

o= )Y 8\/(pa1 +7ay) (Poy + 1, )€ P10,
al,bl €
ai—br=a—by
In particular
P is symmetric
{ Q is Hermitian.

Moreover Q is Toplitz,
b b
Qaii = Qa vaa b7 c,

and (since <7 is finite) its elements are zero at finite distance from the diagonal.
In particular, this matrix is Toplitz—Lipschitz and has exponential decay off the di-
agonal a = b. P is also Toplitz—Lipschitz with exponential decay but in a different

sense:
Poe =P Va,b,c,

and has exponential decay off the “anti-diagonal” {a = —b}.

5.2 Toplitz—Lipschitz matrices ¥ x ¥ — gl(2,R)

We consider the space g/(2,C) of all complex 2 x 2-matrices provided with the
scalar product
Tr("AB).

()

and consider the orthogonal projection 7 of g/(2,C) onto the subspace

Let

M=CI+CJ.

For a matrix

A: L xZL —gl2,C)
we define A through

(mA)2 = AL, Va,b.

We define the supremum-norms

Al; = sup |Ab|e?l T
(ap)eL xS
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and
|A],, = max(|7Al; ,|A — 7Al).

A is said to have a Toplitz-limit at oo in the direction c if, for all a, b the two limits

11m Ala’ﬂ; 3 =Ab(+,0).

A(+,¢) are new matrices which are Toplitz/“anti-Toplitz” in the direction c, i.e.
At e) =Ag(+e) and A=) =Ag(—c).
If |A|y < oo, 7> 0, then
TA(—,c) = (A—mA)(+,¢) =0.

We say that A is Toplitz at oo if all Toplitz-limits A(+,¢) exist.
We define the Lipschitz-constants

Lipf, A=sup  sup [(A—A(d )= max(12], 2Ly e
c#£0 (ab)eDy (c) | |7 el

and the Lipschitz-norm
<A>p y=max(Lips ,®A +|7Al, ,Lip, , (I - m)A+ |(I - m)A, ).

We say that A Toplitz—Lipschitz if <A >4 ,< oo for some A, Y.
In Sect. 2 of [EK06] we prove the following multiplicative property.

Proposition 8 Let Ay,... A, : ¥ x ¥ — C be Toplitz—Lipschitz matrices with ex-
ponential decay off-diagonal, i.e.

|mb<w j=1,...,n, y>0.
Then A --- A, is Toplitz—Lipschitz and

<Ap-Apn>patey S
(cte.)" A2 (325) " DT e TT 4 <j<n |Aj|7j <Ae>ayls

J#k
where all 11, ..., %, are =y except one which is = y'.

Notice that this estimate is not an iteration of the estimate for n = 2.
Linear differential equation. Consider the linear system

{iX—A@X
X(0)=1.
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where A(t) is Toplitz—Lipschitz with exponential decay. The solution verifies

1ot e
X(19) —I+Z/O/1 1A (1)A(2) ... A(ty)dt, ...dndt.

Using Proposition 8 we get for ¥ < y

o (1 —I>p 6y S
N2 (555 ) explete. ()l a(r)) sup . <A(5) >y

where
a(t)= sup |A(s)]

”
o<ls|<lr]

Remark 2 A more general version of Toplitz—Lipschitz matrices is treated in
[EKO7]

5.3 Functions with the Toplitz—Lipschitz property

Let 07 (o) be the set of vectors in the complex space l)z, (Z,C) of normless than o, i.e.

0"(0)={f eC¥ xC” ||, <o}

Our functions f : 0Y(c) — C will be defined and real analytic on the domain
%)t
We say that f is Toplitz at o if the vector d¢ f (&) lies in 13(#,C?) and the matrix

i (£) is Toplitz at oo for all { € ¢°(c). We define the norm

e
[f ]A,y,c
to be the smallest C such that

If(Q)l<c v{ e 6°(o)
logF@)l], < Lc vcwﬂoxvm v
<R(Q)>ay< HCVE € 67 (0), VY <y

5.4 A short remark on the proof of Theorem 1.1

Our Hamiltonians are functions of §{ = (£,7),r, ¢ and ®. We measure these func-
tions in a norm given by

e The [ |Ay,6-norm for {

4 The space lqz,(f’ ,C) is the complexification of the space I%(rf ,R) of real sequences. “real
analytic” means that it is a holomorphic function which is real on &°(5) N l%(o? ,R).
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e The sup-norm over a complex domain |r| < g and |Im@| < p
e The C'-norm in .

In this norm we estimate the solution s,k of the homological equation (2) (de-
scribed in Sect. 3.2) and the transformed Hamiltonian

W f =(h+[)o®,

where @! is the time-one-map of the Hamiltonian vector field of s.
In order to carry this out we study the behavior of this norm under truncations,
Poisson brackets, flows and compositions.
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A Birkhoff normal form theorem
for some semilinear PDEs

D. Bambusi!

Abstract In these lectures we present an extension of Birkhoff normal form theorem
to some Hamiltonian PDEs. The theorem applies to semilinear equations with non-
linearity of a suitable class. We present an application to the nonlinear wave equation
on a segment or on a sphere. We also give a complete proof of all the results.

1 Introduction

These lectures concern some qualitative features of the dynamics of semilinear
Hamiltonian PDEs. More precisely we will present a normal form theorem for such
equations and deduce some dynamical consequences. In particular we will deduce
almost global existence of smooth solutions (in the sense of Klainerman [Kla83])
and a result bounding the exchange of energy among degrees of freedom with dif-
ferent frequency. In the case of nonresonant systems we will show that any so-
lution is close to an infinite dimensional torus for times longer than any inverse
power of the size of the initial datum. The theory presented here was developed
in [Bam03, BG06, DS06, BDGS07, Gré06].
In order to illustrate the theory we will use as a model problem the nonlinear
wave equation
wp—Au+Pu=f(u), weR, (1)

on a d dimensional sphere or on [0, 7] with Neumann boundary conditions. In (1),
f is a smooth function having a zero of order 2 at the origin and A is the Laplace
Beltrami operator.

The theory of Birkhoff normal form is a particular case of the theory of close to
integrable Hamiltonian systems. Concerning the extension to PDEs of Hamiltonian
perturbation theory, the most celebrated results are the KAM type theorems due

1 Dipartimento di Matematica dell’ Universita, Via Saldini 50, 20133 Milano, Italy
e-mail: dario.bambusi@unimi.it

W. Craig (ed.), Hamiltonian Dynamical Systems and Applications, 213-247. 213
(© 2008 Springer Science + Business Media B.V.
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to Kuksin [Kuk87], Wayne [Way90], Craig—Wayne [CW93], Bourgain [Bou98,
Bou05], Kuksin—Poschel [KP96], Eliasson—Kuksin [EK06], Yuan [Yua06]. All
these results ensure the existence of families of quasiperiodic solutions, so they only
describe solutions lying on finite dimensional manifolds in an infinite dimensional
phase space. On the contrary the result on which we concentrate here allows one to
describe all small amplitude solutions of the considered systems. The price we pay
is that the description turns out to be valid only over long but finite times.

A related research stream is the one carried on by Bourgain [Bou96a, Bou96b,
Bou97,Bou00] who studied intensively the behavior of high Sobolev norms in close
to integrable Hamiltonian PDEs. In particular he gave some lower estimates show-
ing that in some cases high Sobolev norm can grow in an unbound way, and also
some upper estimate showing that the nonlinearity can stabilize resonant systems,
somehow in the spirit of Nekhoroshev’s theorem.

The paper is organized as follows. First we present the classical Birkhoff normal
form theorem for finite dimensional systems and we recall its proof (see Sect. 2).
Then we pass to PDEs. Precisely, in Sect. 3 we first show that the nonlinear wave
equation is an infinite dimensional Hamiltonian system (Sect. 3.1) and then we
present the problem met in trying to extend the normal form theorem to PDEs.
Subsequently we give a heuristic discussion on how to solve such difficulties (see
Sect. 3.2). Then we give a precise formulation of our Birkhoff normal form theorem
(Sect. 4). This part contains only the statements of the results and is split into three
subsection, in the first (Sect. 4.1) we introduce the class of functions to which the
theory applies and we study its properties. In the second subsection (Sect. 4.2) we
give the statement of the normal form theorem and deduce the main dynamical con-
sequences. In the third Sect. 4.3 we give the application to the considered model.
Then, in Sect. 5 we give a short discussion presenting the main open problems of
the domain.

Finally Sect. 6 contains the proofs of all the results. The subsections of this sec-
tion are independent each other. We made an effort to give a paper which is essen-
tially self contained. We also mention that the method introduced here in order to
prove the property of localization of coefficients (the property defining our class of
functions) is original.

2 Birkhoff’s theorem in finite dimensions

2.1 Statement

On the phase space R*" consider a smooth Hamiltonian system H having an equi-
librium point at zero.

Definition 2.1. The equilibrium point is said to be elliptic if there exists a canonical
system of coordinates (p,q) (possibly defined only in a neighborhood of the origin)
in which the Hamiltonian takes the form
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H(p,q) := Ho(p,q)+Hp(p,q) , (1)
where
Loopitq
Ho(p,q) =) o 5> weR 2
=1

and Hp is a smooth function having a zero of order 3 at the origin.
Remark 2.1. The equations of motion of (1) have the form

JdHp

pr=—wq;— T 3)
qi
JH

G =opr+ - P (4)
Pi

Since Hp has a zero of order three, its gradient starts with quadratic terms. Thus, in
the linear approximation the equations (3), (4) take the form

D= —oq;
q; = Wy p;

— i+ 0 q =0 &)
namely the system consists of n independent harmonic oscillators.
Definition 2.2. The vector field

d
H 8H> ©)

XH(pvq) = <_8q ) %

is called the Hamiltonian vector field of H.

Theorem 2.1. (Birkhoff) For any positive integer r > 0, there exist a neighborhood
U ") of the origin and a canonical transformation F, : R** > % ") — R** which
puts the system (1) in Birkhoff Normal Form up to order r, namely

H" = Ho . = Hy+2") + 2" 7

where ZU") is a polynomial of degree r+2 which Poisson commutes with Ho, namely
{HO;Z(’)} =0and Z") is small, i.e.

1% (2)] <Cpllel ™, vzew (8)
moreover, one has
lz= Z@I<Cellzl>, Veez. )

An inequality identical to (9) is fulfilled by the inverse transformation 7, ".
If the frequencies are nonresonant at order r + 2, namely if

0 k#0, VkeZ', 0<|k|<r+2 (10)
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the function Z\") depends on the actions

_P+a
li==%5~

only.

Remark 2.2. The remainder Z") is very small in a small neighborhood of the origin.
In particular, it is of order €13 in a ball of radius €. It will be shown in Sect. 4.2

that in typical cases Z") might have a relevant effect only after a time of order £ 7.

2.2 Proof

The idea of the proof is to construct a canonical transformation putting the system
in a form which is as simple as possible. More precisely one constructs a canonical
transformation pushing the non normalized part of the Hamiltonian to order four
followed by a transformation pushing it to order five and so on. Each of the trans-
formations is constructed as the time one flow of a suitable auxiliary Hamiltonian
function (Lie transform method). We are now going to describe more precisely this
method.

Definition 2.3. We will denote by .7 the set of the real valued homogeneous poly-
nomials of degree j + 2.

Remark 2.3. Let g € 7, be a homogeneous polynomial, then there exists a constant
C such that ‘
lg(2)] < Clll”™2 . (1)

The Hamiltonian vector field X, of g is a homogeneous polynomial of degree j+ 1
and therefore one has .
1Xe ()| < C'llz] (12)

with a suitable constant C’. The best constant such that (12) holds is usually called
the norm of X, and is denoted by ||Xg|| Similarly one can define the norm of the
polynomial g.

Remark 2.4. If the phase space is infinite dimensional then (11) and (12) are not
automatic. They hold if and only if the considered polynomial are smooth.

Remark 2.5. Let f € JZ and g € 7] then, by the very definition of Poisson Brackets
one has {f,g} € Hi,;.
2.2.1 Lie transform

Let x € J; be a polynomial function, consider the corresponding Hamilton equa-
tions, namely
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= X)C (Z) )
and denote by ¢’ the corresponding flow.

Definition 2.4. The time one map ¢ := ¢’|,—; is called the Lie transform generated
by x. It is well known that ¢ is a canonical transformation.

We are now going to study the way a polynomial transforms when the coordinates
are subjected to a Lie transformation.

Lemma 2.1. Let g € 57 be a polynomial and let ¢ be the Lie transform generated
by a polynomial y € J¢; with j > 1. Define

1
go:=g, & =ylwg-1t, 121, (13)
then the Taylor expansion of g o ¢ is given by

20()=Y a2, (14)

>0
for all z small enough.

Proof. Compute the Taylor expansion of go ¢’ with respect to time. Iterating the
relation

d
Egoqﬁ’ ={x,g}00' (15)
one has
dl t t
t ——
[ times
which gives
god' =Y i'g . (17)

>0
Evaluating at # = 1 one gets (14). Since Remark 2.5 implies g; € S, (14) is
the Taylor expansion of go @ as a function of the phase space variables z. O

Remark 2.6. Corollary 6.1 below shows that the series (14) is convergent in a neigh-
borhood of the origin small enough.

2.2.2 The homological equation

We are now ready to construct a canonical transformation normalizing the system
up to terms of fourth order. Thus let y; € 7] be the generating function of the
Lie transform ¢, and consider H o ¢;, with H given by (1). Using (14) and (13) to
compute the first terms of the Taylor expansion of H o ¢ one gets

Ho¢ =Hy+{x1,Ho} +H +ho.t
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where H; is the Taylor polynomial of degree three of Hp and h.o.t. denotes higher
order terms.
We want to construct ; in such a way that

Z = {Xl,Ho}-l-Hl (18)

turns out to be as simple as possible. Obviously the simplest possible form would
be Z; = 0. Thus we begin by studying the equation

{x1,Ho} +H; =0 (19)

for the unknown polynomial x;. To study this equation define the homological
operator

£0 : % — % (20)
X+ Lox = {Ho, X} (21)

and rewrite (19) as £o); = H|, which is a linear equation in the finite dimensional
linear space of polynomials of degree 3. Thus, if one is able to diagonalize the
operator £0; it is immediate to understand whether the equation (19) is solvable
or not.

Remark 2.7. The operator £( can be defined also on any one of the spaces .75,
j > 1, it turns out that £ maps polynomials of a given degree into polynomials
of the same degree. This is important for the iteration of the construction. For this
reason we will study £ in ¢ with an arbitrary j.

It turns out that it is quite easy to diagonalize the homological operator in anyone
of the spaces .7¢;. To this end consider the complex variables

1 1
&= \72(P1+iqz) ;M= \72(171 —ig) 1=1. (22)

in which the symplectic form takes the form ¥, i d&; Adn;,!

Remark 2.8. In these complex variables the actions are given by

L=&mn .

! This means that the transformation is not canonical, however, in these variables all the theory
remains unchanged except for the fact that the equations of motions have to be substituted by

JH ) .0H

61:18717,’ 711:—187&7

and therefore the Poisson Brackets take the form

iy (22 o)
{.ﬂﬁ-—‘?(ag,am on d& )
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and

Hy(&,n) = zn: a&m
i=1

Remark 2.9. Consider a homogeneous polynomial f of the variables (p,q), then it
is a homogeneous polynomial of the same degree also when expressed in terms of
the variables (&, 7).

Remark 2.10. The monomials £/n’ defined by

éJTIL - 111 212 annlLl nLn
: .Gy My
form a basis of the space of the polynomials.

Lemma 2.2. Each element of the basis E/N" is an eigenvector of the operator £,
the corresponding eigenvalue is i(@-(L—J)).

Proof. Just remark that in terms of the variables &, 7, the action of £ is given by

df 0Hy . df IHy
Lof = TLGE on,  om 98,
of = {Ho, f} ;135, on o 9&

= (izl:wl (m;m —51&2)) I

9 el
nzamin =Lé&'n

Then

and thus
£o§'n" =i (L-1)EM’

which is the thesis. O

Thus we have that for each j the space ¢; decomposes into the direct sum of the
kernel K of £¢ and its range R. In particular the Kernel is generated by the resonant
monomials, namely

K = Span(&/nt € 4 < (J,L) €RS) (23)

and
RS:={(J,L) : o-(L—J)=0} (24)

is the set of the resonant indexes. Obviously the range is generated by the space
monomials £/n% with J, L varying in the complement of the resonant set.
Thus it is easy to obtain the following important lemma.

Lemma 2.3. Let f € JZ; be a polynomial, write

FEm =Y fu&'n* (25)
J,L
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and define
fJL J.L
Z(&n) = f&lnt . x(Em) = ————E&'n (26)
(J-,IgéRS " (J,I%RSI(D'(L_J)
then one has
Z={x,Ho}+f. 27)
and
{Z,Hy} =0. (28)

Motivated by the above lemma we give the following definition.

Definition 2.5. A function Z will be said to be in normal form if, when written in
terms of the variables &, 1, it contains only resonant monomials, i.e. if writing

Z(Em) =Y Zu&'n*, (29)
(,L)

one has
Zi 0= w-(L-J)=0. (30)

Remark 2.11. A property which is equivalent to (30) is {Z, Hyp} = 0, which has the
advantage of being coordinate independent.

Remark 2.12. If the frequencies are nonresonant, namely if eq. (10) holds, then the
set of the indexes (J,L) such that @ - (L —J) = 0 reduces to the set J = L. Thus the
resonant monomials are only the monomials of the form

éjnj = (§1n1)1'~-~(5n77n)J” = ljl "'Ir{n . (31)

It follows that in the nonresonant case a function Z is in normal form if and only if
it is a function of the actions only.

2.2.3 Proof of Birkhoff’s theorem

We proceed by induction. The theorem is trivially true for » = 0. Supposing it is
true for r we prove it for 4 1. First consider the Taylor polynomial of degree r + 3
of Z") and denote it by Hr(fl € 1. Let x4 € 541 be the solution of the
homological equation

(i1 Ho} +H), =7, (32)
with Z,; 1 in normal form. By Lemma 2.3 such a y,.;; exists. By corollary 6.1 be-

low, 11 generates an analytic flow. Use it to generate the Lie transform ¢, and
consider H 1D := () o ¢r+1 and write it as follows
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H" 0,1 = Ho+2"
+Zr+1
HZ 00,11~ 2)
+Ho o ¢ry1 — (Ho+{Xr+1:Ho})
+(<%7(r> _Hr@l) O Pri1

+Hr(21 0 Pri1— H:Ql :

221
(33)
(34)
(35)
(36)
(37
(38)

define Z(t1) .= z(") +Z,41. To prove that the terms (35-38) have a vector field
with a zero of order at least »+ 3 use Lemma 2.1 which ensures that each line is the
remainder of a Taylor expansion (in the space variables) truncated at order r + 3.

It remains to show that the estimate (9) of the deformation holds. Denote by R,

a positive number such that Bog | C %(r), and remark that, by Lemma 6.2, possibly

reducing R, 1, one has

Or+1:Bp = Bop, Vp <Ry
and
suplz—r41(2)]| <Cp™*2.
Bp
Define 7,1 := ;0 @1 then one has
ld— 1 =1d— 0911 =1d— T+ Ty — Fp0 Py

and thus, for any z € B, with p small enough, we have

2= Zr1 @ < llz= @ +[7:(2) = Zo(9r11 (D))
< Gop*+ sup [dZ(2)]| sup [lz— 9r41(2)l]

Z€Byp ZE€Bp

<GP +CpTE < Criip?

from which the thesis follows.

3 The case of PDEs

3.1 Hamiltonian formulation of the wave equation

Consider the nonlinear wave equation (1).

(39)

It is well known that the energy is a conserved quantity for (1). It is given by

2 LA 2.2
H(u,v) :z/ (\12_1421/l+‘112u )ddx+/F(u)ddx
D D

(D
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where v := u; and F is such that —F’ = f, and D is either S¢ (d-dimensional sphere)
or [0, 7r]. The function H is also the Hamiltonian of the system and the corresponding
Hamilton equations are given by

w=V,H, v=-V,H 2)
where V,H is the L? gradient of H with respect to u, defined by
(VuH;h);2» =d,Hh YheC”(D) 3)

where d,, is the differential with respect to the u variables. V,, is defined similarly.
To write (1) in the form (1) we have to introduce the basis of the eigenfunctions
of the Laplacian.
In the case of [0, 7] the eigenfunctions are given by

1
e 1=—, e =

1
VT /2
and the corresponding eigenvalues of —A are 4; = (j —1)2.
In the case of the d dimensional sphere the eigenvalues A; of —A are given by

Ai=0G-1)(+d-2); (5)

cos((j—1)x), j=2 )

moreover the j eigenvalue has multiplicity

ri= ().

We will denote by ej; a basis of eigenfunctions of the Laplacian, which is orthonor-
mal in L? and such that

—Aeﬂ:ljeﬂ, ]21, lzl,,l*(]) (6)
For example they can be chosen to be the spherical harmonics.
In both cases define ;, p;; and gj; by
Aj+ 12 (7)

QJZ .
€,
jl Vv J

with the convention that / takes only the value 1 in the case of [0, 7] (and that, in
such a case it will not be written).
Then the Hamiltonian (1) takes the form (1) with

“ Yo

v= ZW pjieji (8)

le'f'qjl ©)

and Hp is given by the second integral in (1) considered as a function of ¢ ;.
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3.2 Extension of Birkhoff’s theorem to PDEs: heuristic ideas

In this section we will concentrate on the case of the nonlinear wave equation on
[0, 7].

The main difficulty one meets in order to extend the theory of Birkhoff normal
form to infinite dimensional systems rests in the denominators one meets in solving
the homological equation, namely in the second of equations (26). Indeed, while in
the finite dimensional case one has that the set of vectors with integer components
having modulus smaller than a given r is finite, this is no longer true in infinite
dimensions.

It turns out that typically the denominators in (26) accumulate to zero al-
ready at order 4. An example of such a behavior is the following one. Consider
;41 :=+/j>+ > For [ > 1 consider the integer vector K () whose only compo-
nents different from zero are given by K; = —2, K;_; = 1 K;| = 1; such a vector
has modulus 4, and one has

KD .= W+ o1 — 20

2
P JU-2 42 =2 01242~ be

Thus Birkhoff theorem does not trivially extend to infinite dimensional systems.

However it turns out that in the case of PDEs the nonlinearity has a particular
structure. As a consequence it turns out that most of the monomials appearing in the
nonlinearity are small and do not need to be eliminated through the normalization
procedure. To illustrate this behavior consider the map

H([0,7]) > u— u* € H*([0, 7)) (10)
which is the first term of the nonlinearity of the nonlinear wave equation (1). The
use of Leibniz formula together with interpolation inequality allows one to prove
the so called Tame inequality, namely

][, < Cs llul e - an

The key point is that, if « has only high frequency modes then its H' norm is much
smaller than the H* norm. Indeed, assume that, for some large M one has

u=Y e (12)
k>M
then one has
5 2v 1 )
ullf =Y, K lil* = Z e i * < < s s - (13)

k>M
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Collecting (13) and (11) one gets
1
2 2
]l < Com i llully (14)

which is very small if M and s are large. In order to exploit such a condition one
can proceed as follows: given u € H*® split it into high frequency and low frequency
terms, namely write

ud = Z arer, ub:= Z ey (15)
k| <M [k|=M
then one has
u = (us)2+2uSuL+(uL)2 , (16)

the norms of these terms are bounded respectively by

1
Ms—1

[T Jull?

from which one sees that the last term can be considered small and is not relevant
to the dynamics. Thus one could avoid to eliminate such a term from the nonlin-
earity. Correspondingly one will not have to consider small denominators involving
frequencies with many small indexes.

To be able to exploit the tame property one has to ensure that it persists under the
operations involved in the construction of the normal form, namely the computation
of Poisson Brackets and the solution of the Homological equation. Now the stability
of the tame property under Poisson Brackets is easy to check, while the verification
of the stability under solution of the Homological equation is difficult and at present
not known. For this reason one has to perform a more careful analysis. It turns out
that it is convenient to understand the structure of the coefficients of the nonlinearity
that ensure the Tame property, and to show that such a structure is invariant under
the construction. The theory we develop is a variant of that developed by Delort and
Szeftel in [DS06].

4 A Birkhoff normal form theorem for semilinear PDEs

4.1 Maps with localized coefficients and their properties

Having in mind the case of the nonlinear wave equation in S¢, consider the space é?
1<I<I*(j)

of the sequences ¢ = {q;1} ;= , such that
) 2'1*(1‘) )
lglls == Y11 X lanl* <o (1)
i<j =1

with a suitable I*( ).
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Then define the projectors IT; by

Hjé]iz Zqﬂeﬂ (2)
I

(sum only over /), and the spaces E; := I1 ,zg, which are independent of s.

The spaces & := {2 x £2 > (p,q) will be used as phase spaces. We will also use
the spaces P := N;Ps and P := U g Ps. It is useful to treat the p’s and the
q’s exactly on an equal footing so we will use the notation

Zi=9qj, Z-jg=pj, j=1,

correspondingly we will denote by z the set of all the variables and we will use the
projector

I jz:= ijlejl , Jj=1. 3
7

Given an element z € 22, one can write it as

=) Iz, “4)
J#0
so that one has »
I2ll; = ¥ i1 || Iz )
J#0
where we defined
5 *(j) )
1T2][" = ) 2 - ©
=1

Let f: . — R be a smooth polynomial functions homogeneous of degree r.
We can associate to f a symmetric multilinear map f, defined by the property

f2)=f(z,....,2) @)
S,—/
r—times
then we can write _
f@= Y fz,..I0z) . ()
J1seeesr

We will assume suitable localization properties of the norm of f(I1},z,...,IT},z)
as a function of the indexes j,..., ji.

Definition 4.1. Given a multi-index j = (ji,..., jr), let (ji,, jiys Ji---» Ji,) be a re-
ordering of j such that

‘jl'1| Z |jl'2‘ Z |ji3| Z Z ‘jir| .
We define u(j) := |ji;| and

§() = w() + [l = liall - ©)
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Definition 4.2. Let f : #.. — R be a homogeneous polynomial of degree r. Let f
be the associated multilinear form. We will say that f has localized coefficients if
there exists v € [0,+o0) such that VN > 1 there exists Cy such that Vz € Z., and
any choice of the indexes jy, ..., j the following inequality holds

1@

Fmyz, 09| < onFgpg

||H/.Z|| |2

(10)

Definition 4.3. A function f € C*(% ,R) with % C . will be said to have local-
ized coefficients if

(i) All the terms of its Taylor expansion have localized coefficients.
(i) For any s large enough there exists a neighborhood % (¥) of the origin in 2,
such that X; € C=(% ), ;).

Remark 4.1. In the case of [0, 7| the property (4.2) turns out to really be a property
of the coefficients of the expansion of the nonlinearity on the basis in which the
quadratic part is diagonal. To understand this point consider the case of a homoge-
neous polynomial dependent on g only. Write ¢ =}’ g;€;, then one has

Zf €11 eees € )y 0y = St Dt (11)
J
then (10) is equivalent to
u()v
Sivyriel SON—cy— s VN =1 (12)
’ FARRIRY) S(])N

It is useful to extend the definition to polynomial maps taking value in Z.

Definition 4.4. Let F : ., — &_.. be a polynomial map of degree » and let F be
the associated multilinear form. We will say that F has localized coefficients if there
exists v € [0, +o0) such that

#(7

IIF (2, 109 < O

1Tj2]] - |2

; 13)

Vi€ Pw, VYN2>1 (14
Here we denoted by (i, j) the multi-index (i, ji, ..., jr).

Remark 4.2. It is easy to see that if a polynomial function has localized coefficients,
then its Hamiltonian vector field has localized coefficients.

Remark 4.3. By the very definition of the property of localization of coefficients
it is clear that any (finite) linear combination of functions or maps with localized
coefficients has localized coefficients.

Remark 4.4. As it will be clear from the theory of Sects. 4.3, and 6.3 it is quite easy
to verify the property of localization of the coefficients.
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The main properties of polynomials with localized coefficients are their smooth-
ness, their stability under composition, linear combination and solution of the ho-
mological equation. In this subsection we will just state the corresponding results
that will be proved in the appendix.

First one has that the vector field of a polynomial with localized coefficients has
the tame property.

Theorem 4.1. Let F : P, — P_., be a polynomial of degree r with localized coef-
ficients, then there exists so such that for any s > s it extends to a smooth map from
Dy to itself, moreover the following estimate holds

IF @I, < Cllall N1zl - (15)

Corollary 4.1. Let f be a function with localized coefficients, then the result of the-
orem 4.1 holds for its vector field.

The composition of maps with localized coefficients has localized coefficients.
Precisely

Theorem 4.2. Let f : 2., — R be a polynomial of degree r| with localized coeffi-
cients, and let G : P — P_o be a polynomial of degree ry with localized coeffi-
cients, then the polynomial

df(2)G(z) (16)

has localized coefficients.

Thus the strategy in order to verify the property of localization of the coefficients
is to verify it for a few simple maps and then to use the composition (16) to show
that it holds for more general maps. The precise example we have in mind is that
where f(u) = [u* and G(u) = u?, in which df ()G (u) = 3 [ u*. Hence by iteration
one gets that all polynomials in u have localized coefficients if [ u> has.

Moreover the following corollary holds.

Corollary 4.2. The Poisson Bracket of two functions with localized coefficients has
localized coefficients.

In order to develop perturbation theory we need a suitable nonresonance condi-
tion. This is given by the following definition.

Definition 4.5. Fix a positive integer r. The frequency vector  is said to fulfill the
property (r—NR) if there exist ¥ > 0, and ¢ € R such that for any N large enough
one has

Y 0K,

Y
> — (17)
=1 N

for any K € Z7, fulfilling 0 # |K| := Y [K;| < r+2, ¥ ;o n |Kj| < 2.
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It is easy to see that under this condition one can solve the Homological equation.
The precise statement is given by the following lemma.

Lemma 4.1. Let f be a homogeneous polynomial of degree less or equal than r
having localized coefficients. Let Hy be given by (9) and assume that the frequency
vector fulfills the condition r-NR. Consider the Homological equation

{Ho.x}+f=2. (18)

Its solution y,Z defined by (26) has localized coefficients. In particular ) has local-
ized coefficients.

4.2 Statement of the normal form theorem and its consequences

Using the above results it is very easy to prove a version of the Birkhoff normal
form theorem for PDEs.

Definition 4.6. With reference to a system of the form (1) with Hy given by (9), the
quantity
Py +a;
Ji=Y L L 19
=L (19)
is called the total action of the modes with frequency ;.

Theorem 4.3. Fix r > 1, assume that the nonlinearity Hp has localized coefficients
and that the frequencies fulfill the nonresonance condition (r-NR), then there exists

a finite s, a neighborhood 62/55’) of the origin in &, and a canonical transformation

T %gr) — P, which puts the system in normal form up to order r + 3, namely
HY :=HoZ =Hy+2") +2%") (20)

where Z") and #") have localized coefficients and
(i) Z" isa polynomial of degree r +2 which Poisson commutes with J; for all j’s,
namely {Jj;Z<’)} =0;
(ii) #'") has a small vector field, i.e.

X0 @, <Cllali? . Veen: @1)

(iii) One has
li= Z@, <Clzl? . Yzen! . (22)
An inequality identical to (9) is fulfilled by the inverse transformation 7.~ ".

(iv) For any s > s, there exists a subset ?/s(r) - %Er) open in P such that the

restriction of the canonical transformation to %(r) is analytic also as a map
from Py — P and the inequalities (21) and (22) hold with s in place of s,.

The proof is deferred to Sect. 6.2.
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In order to deduce dynamical consequences we fix the number » of normalization
steps; moreover, it is useful to distinguish between the original variables and the
variables introduced by the normalizing transformation. So, we will denote by z =
(p,q) the original variables and by 7/ = (p,¢’) the normalized variables, i.e. z =
(7). More generally we will denote with a prime the quantities expressed in the
normalized variables.

Proposition 4.1. Under the same assumptions of Theorem 4.3, ¥s > s, there exists
€5 such that, if the initial datum fulfills

€:= |20l < &us

then one has

() 1
z()lly <de for |t| < o (23)
(ii)
Zﬂ* [5(6) = T5(0)] < CeMH3 - for || < oo M<ro 4
and :
Zfs [;(t) = J;(0)| <Ce® for |t < o (25)

(iii) If for each j the space E; is one dimensional, then there exists a smooth torus
To such that, VM < r

dy(z(1),To) < Ce™I2 1 for |1 < e 1

= (26)

where di(.,.) is the distance in 2.

4.3 Application to the nonlinear wave equation

The aim of this section is to verify the assumptions of Theorem 4.3 in the model
problems we are considering.

We start by the property of localization of the coefficients. The main step consists
in verifying the property for the Hamiltonian function

Sl = [ @ @7)

the corresponding multilinear form is given by

Sflur,up,uz) == /Dul(x)uz(x)u3(x)dx, (28)
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so we have to estimate such a quantity when u; € E,;, namely the eigenspace of —A
corresponding to the eigenvalue 4,;. We have the following theorem.

Proposition 4.2. Let E,, be the eigenspace of —A associated to the eigenvalue A,
then for any N > 1 there exists Cy such that one has

u(n)N+v
] )t (0t ()| < OGS 2Vt 2 g [+ 29)

for all Up; € Enj.

A simple strategy to obtain the proof consists in considering the quantity (28) as
the matrix elements of index n1,n, (on the basis of the eigenvectors of the Laplacian)
of the operator of multiplication by u,,. The actual proof is deferred to Sect. 6.3.

Corollary 4.3. The nonlinearity given by the second integral in (1) has localized
coefficient.

Proof. This is a consequence of Proposition 4.2 and of Theorem 4.2. Indeed a term
in the Taylor expansion of [, F (u)dx is a multiple of

fe(u) == /S ) uF(x)dx (30)

and one has #;(u) = Cdty (u)Tj—; (u), where Ti_;(u) = u*~!. Then such a quantity
has localized coefficients by Theorem 4.2. 0O

In order to apply Theorem 4.3 to the nonlinear wave equation (1) there remains
to verify the nonresonance condition (r — NR). To this end consider the frequencies

0j+1=1/j(j+d—1)+p? (€20)
then we have the following

Theorem 4.4. There exists a zero measure set S C R such that, if L € R — S, then
the frequencies (31) fulfill the condition (r — NR) for any r.

The proof was given in [BamO03] (see also [BG06]), and for the sake of complete-
ness it is repeated in Appendix 8.

Thus the main theorem and its corollaries apply to the nonlinear wave equation
both in the case of [0,7] and in the case of the d dimensional sphere.

Remark 4.5. A particular consequence of this theory is that it allows one to ensure
existence of smooth solutions of the nonlinear wave equation on the sphere for times
of order €. It has to be emphasized that when d > 1 local existence is ensured only
in H*, with s > 1, so that the energy norm is useless in order to deduce estimate of
the existence times of solutions. At present the method of Birkhoff normal form is
the only one allowing one to improve the times given by the local existence theory.
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5 Discussion

First I would like to mention that, as shown in [BG06], Theorem 4.3 is a theorem that
allows one to deal with quite general semilinear equations in one space dimension.

The limitation to semilinear equation is evident in Theorem 4.3. Thus in partic-
ular all the equations with nonlinearity involving derivatives are excluded from the
present theory. It would be of major interest to have a theory valid also for some qua-
silinear equations, since most physical models have nonlinearities involving deriva-
tives. Very little is known on quasilinear problems. At present the only known result
is that of [DS04] (and a recent extension by Delort), where only one step of normal
form was performed for the quasilinear wave equation. It would be very interesting
to understand how to iterate the procedure developed in such papers.

The limitation to one-space dimension is more hidden. Actually it is hidden in
the nonresonance condition. Indeed its verification is based on the asymptotic be-
havior of the frequencies: the nonresonance condition is typically satisfied only if
the frequencies grow at infinity at least as @; ~ j. As it was shown in the example of
the nonlinear wave equation on the sphere, the possible multiplicity of the frequen-
cies is not a problem. The theory easily extends to the case where the differences
between couples of frequencies accumulate only at a discrete subset of R. The un-
derstanding of the structure of the frequencies in higher dimension is surely a key
point for the extension of the theory to higher dimensions.

Finally I would like to mention the fact that all known applications of the theory
we are considering pertain to equations on compact manifolds, however in princi-
ple the theory applies to smooth perturbations of linear system with discrete spec-
trum. A nice example of such a kind of systems is the Gross Pitaevskii equation. It
would be interesting to show that such an equation fulfills the assumption of Theo-
rem 4.3. This could be interesting also in connection with the study of the blow up
phenomenon.

6 Proofs

6.1 Proof of the properties of functions with localized coefficients

Lemma 6.1. Let z € &, with s > v + 1/2 then there exists a constant Cy such that

Y Y[z < Gzl (1)
70

Proof. One has

II; 1
N L/ MR = ) SR Sy ey e
J#0 j 1] 7 1l j

which is the thesis. O
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Proof of Theorem 4.1. Write explicitly the norm of F(z). One has

2
2 -
s ? l Ji%o e By
IF@Is=Y 11> Y mMFITz....10;2) )
[ Jloeerir
In what follows, to simplify the notation we will write
aj = HHJZH .
One has
” !’L(jal)v+N
jI;,jr|l|5mF(Hj|Z,...,erZ) SCjI;jr“PWajl...ajr 3)

Since this expression is symmetric in ji,...J, the r.h.s. of (3) is estimated by a
constant times the sum restricted to ordered multi-indexes, namely indexes such that
l/1] < |j2] < ... <j|. Moreover, in order to simplify the notations we will restrict
to the case of positive indexes. To estimate (3) remark that for ordered multi-indexes
one has

nG.h _ .
l <2j,. 4
Sy = @

Indeed, if [ < 2j, this is obvious (1/S < 1 by the very definition), while, if > 2,
one has S(j,/) > |l — j,| > 1/2, and therefore

u(i,0) , .
l < D <2j.
Remark now that, by the definition of S one has
; L+ jr =1 ifl>j,y
S(j,0) > . o o :
(J ) o {nu(]?l)"_]r_h—l >4 jr—jro ifl < jr—q

Thus define 8(j,1) := min{1+|j, —|,l+ j, — j-_1 } and remark that S(j,1) > 8(j,1).
Remark also that p(j,7) < j._;. So it follows that (3) is smaller than (a constant
times)

. ! N4y
. #(]3Z)N+v .5 -]rfl
Z T —aj,...aj, < Z Jra oo Ay -e-Qj, 4)
e SG.oN 8GN
jN,+V
<l Y A @ (©)
" /Efjr S,y

where we denoted N’ := N — s and we used Lemma 6.1; we denoted by s a number
such that s; > 1/2. Inserting in (2) one gets
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N'+v 2
2 2(r—2 s Jr—1
nn@m$umﬁ>z<2:ﬁﬂmw@”@)

l jr—] 7jr

2
_ 2(r=2) N4 Cl]y 1
- HZHS] ; (/Zl-]r /r IZ-]i’ Nl/2 S( )N’/Z)

1
BV

2—2
< Jl2lI?" Z Y i,

Jr-1

Ly

Now the last sum in j, is finite provided N’ > 1. Remark now that $(j,1) > S(j,,1) :=
min{1+ |l — j,|,I} (independent of j,_;), and therefore the above quantity is esti-
mated by a constant times

2
IR | B e B g ™
2
= [zl 2~ Z; 2 (Z;N*V ) (8)
< Cllz ||z 202 IIZIIS0 ®)

where s is such that so > N’ + v +1/2. Choosing s; < sp and estimating ||z|, with
2], one gets the thesis. O

Proof of Theorem 4.2. First remark that the multilinear form associated to the poly-
nomial df(z)G(z) is given by the symmetrization of

V]f(z<1>,.-.,Z(rl_l),é(z<rl>,.--,Z(r1+r2_1))) ) (10)

We will estimate the coefficients of this multilinear function. This will give the
result. Forgetting the irrelevant constant ry, the quantity to be estimated is

f(Iz, ... A1, 2, G(IT; z, ..., IT,, 2)) (11)

- Zf Jr 71Z7HZG<IL1Z I]’rz )) (12)
uV1+N( oy

<G L5 S(llN’ 2l -] (13

Thus it is enough to estimate

p N (7,0 et (i1
= SGON SV

This is the heart of the proof.

(14)
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In order to simplify the notation we will restrict to the case r; — 1 = rp = r. Due
to the symmetry of this estimate we will restrict the case of ordered indexes, that
can also be assumed to be positive, so that one has j, > j,—1 > ... > j; and similarly
for i.

All along this proof we will use the notation

S() = jr = Jr—1 = 8(j) — 1(j)
We have to distinguish two cases.

First case j, > i, > jr—1.
The proof of this first case is (up to minor changes) equal to that given in [Gré06].
Take N' = N, then before estimating (14), we need to estimate the general term
of the sum. So we collect a few facts on it.
The main relation we need is

S@i,j) < 86,1 +S3j,1) . (15)

This will be established by writing explicitly all the involved quantities as / varies.
So, first remark that S(i, j) = j — i,. Then one has

aon fir—ipg if <y sy ir—Jr i<y
S(”l)—{ iy —1] ifl>iy S(JJ)—{ Lr =] 31> oy

which gives

br— b1t Jr—Jr1 2 Jjr—Jjr—1 = Jr—ir ifl <ip
l_ir+jr_jr71 > Jjr—Jr-12 jr_irifirfl <I< Jr—1

SED+SGD =18 lir=U+1jr =1 2> =1 > jx—ix i iy <1<y
liy — 1|+ |jr—1| = jr—1+1—i, ifi, <1< j,
|ir_l‘+|jr_l|21—ir2jr_ir lergl

from this (15) follows.
One also has

u(j,0) <p(i,j), w0 <u(,j) - (16)
Thus
SG,J) ,  SG.J) S@i,0)+S8(j,1) SG,0) | Sj) _SG1 S,
wG) " Tueny ST Gy S G Tueg) S eh e

From this one has

.. | . .
u(f,{) > L nin .U(f,l)7.“(laJ.) . (17
S@,j) — 2 NUHENGY)

Separate the sum over those / such that ‘S‘((l'll; > ’;((lljj)) and that over its complement.

Let L; be the first set. Then one has
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VI+N(; VN (; ¢ \N—1-¢ i 1)\ 1+e+v.
IJ' ! . (]]\7,[)“ 2 - (;’]l) § ZzN_l_glJr(j,l)vlIJ’(%’],)N7178 u(l"l) g 2
el S(]vl) S(lvl) >1 S(la]) S(lvl>
,Ll(l J)N+v1+v2
- S( ])N 1-¢ -~

Acting in the same way for the case of L{ one concludes the proof in the first case.

Second case j. > j,_| > i,. Here it is easy to see that (15) still holds. However, in
some cases it happens that the equation

w(j,0) < ui,j) (18)

is violated. When (18) holds the proof of the first case extends also to the present
case. So let us consider only the case where (18) is violated. We claim that in this
case one has

(J,)

S < 2w (19)

=

To prove (19) we distinguish two cases

(1) jr—2 S ir S jr—l S jr'
Then (18) is violated when i, <[ < j,_;. In this case one has

S@i, 1) =1—i, (20)

It follows that
pu,) v L1

which is easily seen to be smaller than 2 (for example write / = i, + 0, then the
relation becomes evident).

1) iy < jr—2 < jr—1 < jr. Here (18) is violated when j,_» <[/ < j,_;. Itis easy to
see that also in this case (20) holds. Then

pOH T 1]
g(ivl) :u(iaj) B liir jr o l*ir Iy

from which (19) still follows.

It is now easy to conclude the proof. Take N’ = 2N + v,, then, using (19) one has

© 7\VI+2N+Vv, - \N+v, VI+2N+v, . N+v, 1
u(i 0 pODT™ (D) 1(j,1)
S@ 0Nt SN T S@E DN S(i1) S, DN
(l7l)v1+2N+v2 ‘u( )N+v2
S@, Y SG,ON
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From this, following the proof given in the first case it is easy to prove that

SGi.J) _ S SG)

p(i,j) =m0 u(,j)

and to conclude the proof in the same way as in the first case. O

Proof of Lemma 4.1. Consider the polynomial f and expand it in Taylor series.
Introduce now the complex variables (22). Remark that this is a linear change of
variable so it does not change the degree of a polynomial. Remark that the change
of variables does not mix the different spaces E; x E;. It follows that if a polynomial
has localized coefficients in terms of the real variables p,q it has also localized
coefficients when written in terms of the complex variables, i.e. it fulfills (10) with
z;j which is either §; or n;. Remark that the converse is also true. Now, Z is the sum
of some of the coefficients of f so it is clear that its coefficients are still localized.
In order to estimate ), remark first that, in the particular case where

@) = FUTE oo T, €Ty, o TT, )

(no summation over j,/) one has
{H(),f}:i((l)jl +~-~+(9jr1 — —...—a),rz)f 2n

It follows that in the case of general f the function ¥ solving the homological equa-
tion can be rewritten as

f(Hjlga“ﬂerl€7H1|n7-~-anlr2n)
i((x)jl —|—...+a)j,1 -y —...— a)[rz)

x(&m) =Y

Jjl

(22)

where the sum runs over the indexes such that the denominators do not vanish. Now,
it is easy to verify that by condition (r-NR) the denominators are bounded from
below by y/u(j,1)*. So x fulfills the estimate (10) with v substituted by v + o, if
f does withv. O

6.2 Proof of the Birkhoff normal form Theorem 4.3
and of its dynamical consequences

In this section we will fix s large enough and work in &2;. Here By C & will
denote the open ball of radius R with center at the origin in &;. Moreover all along
this section .5¢; will denote the set of homogeneous polynomials of degree j+ 2
having a Hamiltonian vector field which is smooth as map from & to itself.
Finally, along this section we will omit the index s from the norm, thus we will
simply denote ||.|| :=||.||,-
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First we estimate the domain where the Lie transform generated by a polynomial
X € 7, (j > 1) is well defined.

Lemma 6.2. Let y € S, (j > 1) be a polynomial. Denote by ¢' the flow of the
corresponding vector field. Denote also

f=1(R,0):= inf sup {r>0:9'(z) € Bgis and ¢ '(z) € By s}
2€B
(minimum escape time of ¢’ () from Bg_s). Then one has

_ 1)

> ————— (23)
2| [ R+

where HXX || is the norm defined in remark 2.3. Moreover for any t, such that |t| <7

and any 7 € Bg one has

10" (2) — 2| < |R7H||Xy | (24)

Proof. First remark that, by the definition of 7 one has that there exists Z € Bg such

that H 0+ (2) H = R+ §. Assume by contradiction 7 < W, then, since for any

¢ with |t| < 7 one has ¢'(Z) € Bg,s. It follows that

0| < e+ '@ =1l + | [ o @as

T .
< R+/O 1, (6°(2))ds|| < R+ [[IRI*1 ||, ||

from which R+ 6 < R+ 0/2 which is absurd. O

Since y is analytic together with its vector field (it is a smooth polynomial), then
one has the following corollary.

Corollary 6.1. Fix arbitrary R and 8, then the map

. Py— 5
¢.B(5XBR—>BR+5, G—W

(t.2) = 9'(2)

is analytic. Here, by abuse of notation, we denoted by Bs also the ball of radius ©
contained in C.

Proof of Theorem 4.3. The proof proceeds as in the finite dimensional case. The
only fact that has to be ensured is that at any step the functions involved in the
construction have localized coefficients. By Lemma 4.1 the solution J,;; of the ho-
mological equation (32) has localized coefficients. Thus, by Theorem 4.1 its vector
field is smooth on a space Z . This determines the index s, of the space with
minimal smoothness in which the transformation .7, is defined. By corollary 6.1
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Xr+1 generates an analytic flow. As in the finite dimensional case we use it to gener-
ate the Lie transform. Then H Y is still given by (35-38). Remark now that given
a Hamiltonian function f, the Hamiltonian vector field of f o ¢, is given by

Xfop,, (2) = 0 (9r+1(2) X (9r41(2)) (25)

so that the Hamiltonian vector fields of the terms (34), (35), (37), (38) are smooth.
To ensure the smoothness of the vector field of (36) write

£(z) :=Hoo ¢ —Ho—{Xr+1,Ho}

and remark that

1 1
Ho(0r1(2)) — Ho(2) = [ - Ho(0t1 @)t = [ (e, o} (01 ()i
1
= [ DG @) = 2o 91

where we used the homological equation to calculate {11, Hp}. Denote again G :=
Hr(ﬁl —Z,+1, then one has

1
() = | (G(0},1() -~ G

from which the smoothness of the vector field of (36) immediately follows. Since
the Taylor expansion of the terms (35-38) can be computed using (13), by corollary
14 one has that all these functions have localized coefficients. Then, as in the finite
dimensional case the terms (35-38) have a vector field with a zero of order at least
r—+ 3 which ensures the estimate of the remainder.

We show now that the normal form Z() commutes with all the J ;. To this end
remark that, by construction, the normal form contains only resonant monomials,
i.e. monomials L’ with

0=Y 0j(Jji—Lj)=) (Z(Jﬂ - Lﬂ>> . (26)
Jl J i

Now the nonresonance condition implies

(Z(ljl _Lj1)> =0 Vvj.
1
It follows

{1;,6n} =i [Z(JﬂLﬂ)] g’ =0 27)
1

which is the desired property.
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Finally the estimate (22) of the deformation can be obtained exactly as in the
finite dimensional case. O

Proof of Proposition 4.1. We start by (i). Assume that € is so small that B3¢ C %(r);
perform the normalizing transformation. Remark that, by (22), one has z(’) € By C

@/S(r). Define F(z) ;==Y 1j12J; = Iz
t
P -F&)| = | [ {H.F}E5)as
!
< / [#0.F}Ee)|ds <picer <ce® @8
0
where the last inequality holds for the times (23). To conclude the proof of (23) it is

enough to show that, for the considered times one actually has 7'(f) € Bse. To this
end we follow the scheme of the proof of Lyapunov’s theorem: define

2
., then, as far as ||2/(¢)||, < 3¢ one has

fr=sup{r>0: ||Z(1)|, <3eand ||/(—1)||, < 3¢}

To fix ideas assume that the equality is realized for t = Assume by contradiction
that 7 < €77, then one can use (28) which gives

12 ()| =9€> = F(7) < F(zh) +|F(Z (1) — F(eh)| < 48> +Ce>,  (29)

which is impossible for € small enough.
We come to (ii). First remark that

G agg(ﬂ)

r/
J Z( Jl 8q’ﬂ Jjl

7 Py
so that
WIS Wl S
7 7 i Pi
2 220 o\
< <§j2s(p}lz+q9]2)> ;l-zs ‘ o, o, (31)
< 2] X0 O, <2 G2

which implies (24).
To prove (25) write

[75(6) = J;(0)| < [ J(2(6)) = J;(2 ()| + |7/ (¢) =T (0)| + | (z0) = Jj(z0)| - (33)
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The contribution of the middle term is estimated by (24). To estimate the contribu-
tion of the first and the last term write

2S|¢Iﬂ 4112|<J2S(2\q11||qjl il +lgji — C],l|) (34)

adding the corresponding estimate for the p variables and summing over j/ one gets
the thesis.

We come to (iii). In the considered case J; reduces to /;, so the actions are in-
dividually conserved. In this proof we omit the index / which would take only the

0)+¢"2(0
value 1. Denote I = W and define the torus

To={ €2 : ;({)=1;}

o

One has
)7 1/2
] (35)

‘|

Notice that for a,b > 0 one has,

’\/5— \f‘ V]a—b].
Thus, using (32), one has that

[d < ijs|1/ < CceMt3

Define now Ty := ,(Tj) then, since 7} is Lipschitz one has

d(2(t), To) = d( T, (1)), F(T)) < Cd(Z (1), Tg) <Ce™F . O

6.3 Proof of Proposition 4.2 on the verification of the property
of localization of coefficients

In this subsection we will prove the property of localization of coefficients for the
function u — [ u® in the case where the basis used for the definition (10) is the
basis of the eigenfunction of general second order elliptic operator. Thus the present
theory directly applies also to the case of the equation

Uy — Uy +Vu = f(xau)

with Neumann boundary conditions on [0, ]. The case of Dirichlet boundary con-
ditions can also be covered by a minor variant (indeed in such a case the function
u— [u® has to be substituted by the function u — [ u*.
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Thus consider a second order elliptic operator P, which is L? self adjoint. This
means that we assume that in any coordinate system there exist smooth functions
Ve (x), o € N? such that P = Yaj<2 Vad®, where we used a vector notation for the
derivative. Moreover we will assume that

[ullyo < (1Pl -
Then, by L?> symmetry, one gets

Jul < |

PS/ZMHO , (36)

(where P*/2 is defined spectrally). We will denote by D(P¥) the domain of P
Finally, denote by 4, the sequence of the eigenvalues of P counted without mul-
tiplicity (i.e. in such a way that A,; > A,). We will assume that the eigenvalues of
P behave as A, ~ n>. We will denote by E, the eigenspace of P relative to A,,.

Let A be a linear operator which maps D(P) into itself for all k > 0, and define
the sequence of operators

AN = [RAN—l] 5 AO =A. (37)

Lemma 6.3. Let P be as above and let u; € E,,j. Then, for any N > 0 one has

1
[(Aur;uz)| < m [(Anui;ua)| (38)
| ny

Proof. One has

<A|u1;u2> = <[A,P]u1;u2> = <APM];142> — <PAM];M2>
= )“nl <Au1;u2) — <Au1;Pu2> = (),nl — 2,,,2)<Au1;u2>

Equation (38) follows applying the above equality to the operator Ay := [P,Ay_1]
and using an induction argument. [

To conclude the proof we have to estimate the matrix elements of Ay, i.e. the
r.h.s. of (38). To this end we need a few remarks and lemma.

Remark 6.1. Consider two d-dimensional multi-indexes o and 8 and define

(5) = pap

with the convention that it is 0 if B; > a; for some j. One has

% (uv) = % (g) Pud®Py | (39)
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Remark 6.2. Let A := a(x)d® and B := b(x)d? with a and b smooth functions. Then

one has
AB= Y [a ([;) 3b—b (i) 87’4 getBT (40)

Vi< 0 +B;

Lemma 6.4. Choose a coordinate system, let A = ay(x) be a multiplication opera-
tor, then one has

Ay=Y oe (A1)
loe|<N
with cﬁfﬁ of the form
W = Z VO%) (x)9Pag 42)
IBI<2N-|a|
and Vg;;) which are C* functions depending only on the functions Vy defining the
operator P.

Proof. First remark that by (40), the operator Ay is a differential operator of order N.
By induction, using (40) one easily sees that the coefficients of such an operator are
linear combinations of the derivatives of ag. To show (42) we proceed by induction.
The result is true for N = 0. Then use equation (40) to compute

a. (N) Bl _ B y.N) (N [A) ay a+f—y
[Va8 10 ]_Yj<azj,+ﬁj {Va (y)a A <y>a va] P) (43)

Consider the first term in the square bracket which is the one involving more deriv-
atives of cgw. Since cgv) depends on 9%aq with |§| < 2N — |B|, one has that 87cgN)
depends only on the derivatives d%ag with | 8| < 2N — |B|+ |y]; in order to conclude
the proof we have to show that this is smaller than 2(N+1) — (Ja| + |B] — |7]), a
fact which is true since |a| <2. O

Remark 6.3. Let u,, € E, then by (36) one has
[lunlly < Cr® [lunl

Remark 6.4. Let u, € E, with |ju,||o = 1, and bg be a smooth function (& € N%),
then one has for any vy > d/2 one has

160 unll < Cuy b, '™ (“44)
Remark 6.5. Let u,, € E, with ||u,||, =1, and let

by == VO(CN)(x)Gﬁu,, 45)
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(with some f3) then one has

belly, < CnYo*1P! (46)

with a C that depends on V(%).

End of the proof of Proposition 4.2. Assume that n3 < np, < n; so that u(n) =n3
and S(n) = n3 +n; — ny. Write the Lh.s. of (29) as

[(Autpy s un, )| 47
with A the multiplication operator by u,,. Using (38) this is smaller than

1

e ANty Nl 2 [ty Nl 2 - (48)

To estimate ||Ayuy,||,» we use (41) and estimate each term separately. By Sobolev
embedding theorem, one term is estimated by

e 9%, | <€ ||| 9%, |
0
Vo > d/2. Using (42), (44), (46) one gets
(N) 2N+vo—|af
e, < €l < €3 a2

where we used the ellipticity of P. We thus get that the 1.h.s. of (29) is estimated by

2N+vy— 1
cy nm' v |oz\n\20c|m||un]||L2Hunanz||un3|]L2
|ot|<N 17

A part from a constant, the sum of the coefficients in front of the norms is estimated
by

N 1 N Vo+N Vo+N
et (”2) - ( n > e < B (49)
’ ns) ni—mlV Nmitn) =l T -l

To conclude the proof just remark that n3 = 1, S = 4 + (n; —ny) and that if n3 >
ny — ny then the inequality (29) is trivially true. On the contrary, if n3 < (n; —n)
the r.h.s. of (49) is smaller than

nV()-HV 2
3 (n3+|ny —na|)V

which concludes the proof. 0O
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6.4 Proof of Theorem 4.4 on the nonresonance condition

The proof follows the proof of Theorem 6.5 of [Bam03] (see also [BG06]). We
repeat the main steps for completeness. Fix r once for all and denote by C any
constant depending only on r. The value of C can change from line to line. Finally
we will denote m := 2.

Lemma 6.5. For any K < N, consider K indexes j1 < ... < jg < N; consider the
determinant

), @, ... Wjy
dcojl da)jz dij
dm dm e dm
K—1 K—1 K—1
d (Djl d wjz d ij
dmK—1 dmK=1" " gmK-1

One has

C
D:C<H%2K+1> ( M & —a,k)> > 51)

1 1<I<k<K

Proof. One has ' _
dmi 207V =1)120 (4 4m)i=3

Substitute (52) in the r.h.s. of (6.5), factorize from the / — th column the term (7le +

(2j-3)!

m) 1/ 2 and from the Jj —th row the term The determinant becomes

20722y
1 1 1 ... 1
X Xjpo Xjzo--- Xjg
32X X X3

J1 J2 3o Tk

K 3
C le,,} S (53)
=1 . . e

.71 K;l .71 K.fl
xfl X xll(z C Yk

where we denoted by x; := (;+m)~ ! = a)j_z. The last determinant is a Vander-
mond determinant given by

ey K

M Gi-x)= TI 2= I Q-4 [1e;* . 64
1<i<k<K 1<i<k<k @j 05, 1<i<k<K =1

Using the asymptotic of the frequencies one gets also the second of (51). O

Next we need the lemma from appendix B of [BGG85], namely
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Lemma 6.6. Let u') ... u'K) be K independent vectors with ||u?)

’ <1 Letwe
al

RX be an arbitrary vector; then there exist i € [1,...,K], such that

- [wll, det(u), ... ulK) .

- w| rE

Combining Lemmas 6.5 and 6.6 we deduce

Corollary 6.2. Let w € R™ be a vector with K components different from zero,
namely those with index iy, ...,ig; assume K < N, and i} < ... < ig < N. Then, for
any m € [my,A] there exists an index i € [0,...,K — 1] such that

’w dl“’(m)‘ > c vl (55)

dmi N2KZ+2
where  is the frequency vector.
From [XYQ97] we have.
Lemma 6.7. (Lemma 2.1 of [XYQ97]) Suppose that g(t) is m times differentiable on
aninterval J CR. Let Jy:={t€J : |g(t)| <h}, h>0.IfonJ, ‘g(’”)(l’)’ >d>0,
then || < Mh'/™ where
M:=2243+..+m+d").

For any k € Z" with |k| < r and for any n € Z, define

Y
< N“} (56)

Applying Lemma 6.7 to the function ij:l k;j@;+n and using Corollary 6.2 we
get as in [Bam99] Lemma 8.4

Corollary 6.3. Assume |k| + |n| # O, then

N
%’kn(y,a) = {m S [Wlo,A] : ijijrn
=1

,},l/r
N¢S

|Zen (7, 00)| < C(A —mo) (57)

with g =% —2r% —2.
Lemma 6.8. Fix o > 2> + r> + 5r. For any positive 'y small enough there exists a
set Sy C [mo,A] such that Ym € 9y one has that for any N > 1

Y
2 Na (58)

N
ijijrn
=1

for all k € ZV with 0 # |k| < r and for all n € Z. Moreover,

|[mo,A] — 7| <CYVr. (59)
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Proof. Define .7y := U Zu (7, o). Remark that, from the asymptotic of the fre-
quencies, the argument of the modulus in (58) can be small only if |n| < CrN, By
(57) one has

N"(A— mo)}/l/r
L]{J'%nk(% a) < ;L@k(’y’ (X)| < CT )
summing over n one gets an extra factor »N. Provided « is chosen according to the

statement, one has that the union over N is also bounded and therefore the thesis
holds. O

Lemma 6.9. For any Y positive and small enough, there exist a set 7, satisfying,
|[mo,A] — _#y| — 0 when Yy — 0, and a real number o' such that for any m € 7y

one has for N > 1
N

. Oa)jkj+810)j+82(x)[ > N’)’;/ (60)
j=
forany k€ 7V, & =0,+1, j > 1> N, and |k| + |&1| + |&2] # O, |k| < r+2.
Proof. We consider only the case now the case €& = —1 which is the most com-
plicate. One has
C
wj — @ = j—I+aj with |aﬂ|g7 (61)

So the quantity to be estimated reduces to

N
Za)jkjiniaﬂ , ni=j—1I
Jj=0

If I > 2CN% /v then the aj; term represents an irrelevant correction and therefore the
lemma follows from Lemma 6.8. In the case [ < 2CN%/y one reapplies the same
lemma with N’ := 2CN®/y in place of N and v := r+2 inplace of r. O

To obtain theorem 4.4 just define ¢ :=(,> Uy~ #y and remark that its com-
plement is the union of a numerable infinity of sets of zero measure.
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Normal form of holomorphic dynamical systems

Laurent Stolovitch!

Abstract This article represents the expanded notes of my lectures at the ASI “Ham-
iltonian Dynamical Systems and applications”. We shall present various recent re-
sults about normal forms of germs of holomorphic vector fields at a fixed point in
C". We shall explain how relevant it is for geometric as well as for dynamical pur-
pose. We shall first give some examples and counter-examples about holomorphic
conjugacy. Then, we shall state and prove a main result concerning the holomor-
phic conjugacy of a commutative family of germs of holomorphic vector fields. For
this, we shall explain the role of diophantine condition and the notion of singular
complete integrability.

1 Definitions and examples

Let us consider the pendulum with normalized constants :
0 +sin6 =0 (1)

We would like to understand the behavior of the motion for the small oscillations
of the pendulum, that is to say when 0 is small. We are tempted to say that sin 6
is well approximated by 6 and then we would like to consider the much simpler
equation () 6+ 6 = 0 instead of (1). If we set §; = 0 and 6, = 6, equation (x) can

be written as )
0 =6,
b=-6

ICNRS UMR 5580, Laboratoire Emile Picard, Université Paul Sabatier, 118 route de Narbonne,
31062 Toulouse cedex 9, France
e-mail: stolo@picard.ups-tlse.fr

W. Craig (ed.), Hamiltonian Dynamical Systems and Applications, 249-284. 249
(© 2008 Springer Science + Business Media B.V.



250 L. Stolovitch

The dynamic is completely understood. Its trajectories are circles 612 + 622 =
constant. Are these information relevant for the understanding of the dynamic
of the original problem (1)? Does the closeness of equation (*) to equation (1)
imply that they have the same dynamical properties?

In general, both answer are ‘No!’. In these lectures, we shall explain these phe-
nomena and how to define a reasonable simplified problem to study : a normal form.

Let us start with a very elementary example of a similar problem. In order to
study the iterates of a square complex matrix A of C”, that is the orbits {Afx};cy
for x € C" near the “fixed point” 0, it is very convenient to transform, with the help
of a linear change of coordinates P, the matrix A into a Jordan matrix J = S+ N,
with S a diagonal matrix, N an upper triangular nilpotent matrix commuting with
S : PAP~! = S+ N. Using the (block diagonal) structure of S+ N, it is easy to study
its iterates. Since A¥ = P~1J*P, we have A"x = P~!(J"y) where x = P~'y. We thus
obtain all informations needed for the study of the iterates of A.

One of the great ideas of Poincaré was to try to proceed in the same way for
vector fields. Is it possible to transform a given vector field X, vanishing at the origin
of R” (resp. C"), into a “simpler” one with the help of a local diffeomorphism &
near the origin and which maps the origin to itself? The group of germs of C* (resp.
holomorphic, formal) diffeomorphisms at 0 € C" and tangent to Idc» at the origin,
acts on the space of germs of holomorphic (resp. formal) vector fields at 0 € C”
by conjugacy : if X is any representative of a germ of vector field X, and ¢ is any
representative of a germ of diffeomorphism @, then @, X is the germ of vector field
defined by

¢-X(9(x)) := Do (x)X (x)

where D¢ (x) denotes the derivative of ¢ at the point x. One may first attempt to
linearize formally X, that is to find a formal change of coordinates @, such that
®.X(y) = DX(0)y. Assume it is so then, one could expect to understand all about
the dynamics of X since the flow of the linear vector field DX (0)y is easy to study.
Nevertheless, this cannot be the case unless we are able to pull-back these informa-
tions by @, and this requires some “regularity” conditions on . Is there a C¥ (resp.
smooth) linearizing diffeomorphism? When we are working in the analytic category,
this regularity condition should be that & is holomorphic in a neighborhood of the
origin. What happens in this situation?

These ideas have been widely developed by V.I. Arnol’d and his school. Our main
reference for this topic is the great book by V.I. Arnol’d [Arn88a]. We refer also
to [AA88] which contain a lot of references on this topic. Singularities of mappings
are also studied in the same spirit [AGZV 85, AGZV88].

1.1 Vector fields and differential equations

Let us consider a germ of vector field X at a point p : in a coordinate chart at p,
it can be written X(z) = Z;’:lXi(z)a%_. It is equivalent to consider the system of
autonomous differential equations :
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21 =Xi(z)

2 = Xn(2)

The Lie derivative of a germ of function f along the vector field X is the germ of
function

It will also be denoted by X (f).
We will denote by [X,Y] the Lie bracket of the vector fields X =Y, X,~ai and

zi
Y=y, Y;a%_. It is defined to be

m]:i(

It is skew-symmetric and satisfies the Jacobi identity :

noY ax,-> P

Xj=— Y= | =—.
9z, dz; ) 9z

X, Y, Z| +[Y,[Z,X]] + [Z,[X, Y]] = 0.
Moreover, if X,Y are vector fields and f a function
(X, fY] = fIX, Y]+ Zx (f)Y. 2)

Two vector fields X,Y are said to be commuting pairwise whenever [X,Y] = 0.
From the dynamical point of view, let us start at a point p, then let us follow the
flow of X during a time ¢ then follow the flow of Y during a time s. Let g be this end
point. Let us start at p again but now follow the flow of ¥ during a time s first then
follow the flow of X during a time ¢. Let ¢’ be this end point. The fact that X and Y
commute pairwise means that ¢ = ¢'.

1.1.1 Notations

Let us set some notations which will be used all along this article : let k > 1 be an
integer,

e 2% denotes the C-space of homogeneous polynomial vector fields on C" and
of degree k

o 2™ denotes the C-space of polynomial vector fields on C", of order > m and
of degree < k (m <k)

o« 7 k denotes the C-space of formal vector fields on C" and of order > k at 0

e 2k denotes the C-space of germs of holomorphic vector fields on (C",0) and
of order > k at 0

e pk denotes the C-space of homogeneous polynomial on C" and of degree k
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. //7} denotes the C-space of formal power series on C" and of order > k at 0

° ///,ﬁ‘ denotes the C-space of germs of holomorphic functions on (C",0) and of
olgder >kat0

e 0, denotes the ring of formal power series in C"

e 0, denotes the ring of germs at 0 of holomorphic functions in C"

1.1.2 Norms

Let f € C[[x1,...,x,]] be a formal power series : f = ¥ genn fox?. We define f as
the formal power series f = Yoen | fQ|xQ. We will say that a formal power series
g dominates a formal power series f, if VO € N, | fp| < |gpl. In that case, we will
write f < g. More generally, let ¢ > 1 be an integer and let F = (fi,...,f,) and
G =(g1,...,84) be elements of (C[[x,...,x,]])?; we shall say that G dominates F,
and we shall write F < G, if f; < g; forall 1 <i < g. We shall write £ = (f,..., fy).
We shall say that F is of order > m (resp. polynomial of degree < m), if each of his
components is of order > m (resp. polynomial of degree < m)
Let 7 be an positive number and (f,F,G) € 6, x O x O}, we define

Iflr= Y Ifol® = f(r....r)

QeNn

and |G|, = max; |g;|,; these may not be finite. We have the following properties

fG < fG

if F < G then |F|, < |G|,
OF oF
I I

Let us define 547 (r) = {F € O} | |[F|, < +o0}; |.| is norm on this space. Together
with the norm |.|,, this space is a Banach space (see [GR71]).

Lemma 1.1.1 Let F = ¥ penn Fox© an element of 7 (r), then we have the follow-
ing inequalities :

IFN- < |Fl, 3)
R m
|Flr < (r) |F|, if ord(F)>mR<r 4)
d
|DF|, < - |F|, if F is a polynomial of degree < d (5)

Here ||F ||, denotes the supremum of |F(z)| on the polydisc |z;| <r, 1 <i <.

Proof. The first inequality comes from the fact that for all x in the polydisc of radius
r, we have
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Y Foxl| < ¥ |Foll@ < |Fl,.
QeN? QeN?
For the second, we have
0l RO o - R" 0
Y RIR®< ) glRlr®<-m ), [l
QeN* |Q|>m QeN |Q|>m QeN™ |Q|>m

For the last one, we have F' = Y g, |g|<d FQxQ. Hence, we have

Y FogplH
QcN", |Q|<d

= Y [|Rlgy!
QeN", [0|<d

r =

12,
8xj

r

d
< 7‘F|r-
r

We shall often use the estimate |(DG).F|, < n|DG|/|F|, whenever (F,G) €
N (r).

Lemma 1.1.2 [Sto00][Prop. 3.1.1] Let r > 0, a € C* and g € £, (r). We assume
that |g|, < |a|. Then
1

a+g

1
<
r |Cl| - |g|r

1.2 Normal forms of vector fields

In the sequel, we will assume that the linear part of X at the origin is not nilpotent
(see [CS86] normal form with nilpotent linear part) and for the sake of simplicity
we even assume that is it semi-simple :
S:=DX(0)x = Zn: l-x-i
o B i=1 " ox;

is a nonzero diagonal vector field. If 0 = (g1, . ..,q,) € N, we will write (Q,1) :=
Y qidis |0l :=q1+ -+ +qnand x€ :=x1 - X

Proposition 1.2.1 (Poincaré—Dulac normal form) Let X = S+ R, be a nonlinear
perturbation of the linear vector field S. Then there exits a formal change of coordi-
nates D tangent to the identity such that

b X =S+N,

where the nonlinear formal vector field N commutes with S : [S,N] = 0.
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By formal change of coordinates & tangent to the identity, we mean that there
exists formal power series @;(x) = Y oenn|o)>2 9i.0x2 € C[[x1, ... x,]] of order > 2,
such that &;(x) = x; + ¢;(x), the ith-component of &.

Let us describe a normal form in local coordinates. First of all, we notice that

50 = (0n)- M

Therefore, such an elementary vector field commute with S if and only if

(Q,4) =4

This is called a resonance relation and xQ ‘9 the associated resonant vector field.
Therefore, the formal normal form proposmon can be rephrased as : there exists
a formal diffeomorphism & (which is not unique in general) such that

X = le, Z( Z a,7QxQ>aax_
( 1

0.A)=2

where the sum is over the multiintegers Q € N”, |Q| > 2 and the index i which satisfy
to (Q,A) = A; and where the g; ¢’s are complex numbers.

Example 1.2.2 Ler { be a positive irrational number. Let us consider the vector

field X
{X =x+f(x,y)
y=—Cy+g(xy)

where f,g are smooth functions vanishing at the origin as well as their first
derivatives. It is formally linearizable since the only integer solution (q1,q2) of
—&8go =01s (0,0). Hence, there are no resonance relation satisfied.

Example 1.2.3 Let us consider the vector field X

{x2x+y2+f(x,y) ©
y=y+eglxy)

where the smooth functions f,g vanish at order 3 at the origin. There is one and
only one resonance relation satisfied : OA + 2y = Ay. Therefore, X is formally
conjugate to the normal form

i=2x+y?
_ . @)
y=y

Example 1.2.4 Let us consider the analytic vector field X

{x:x—i—f(x,y)

()
y=—y+gx,y)
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for some holomorphic functions f,g vanishing at first order at the origin. It is clear
that the only solutions of the resonance relation qiA + q2Ay = Ay (resp. g1 A +
g Ay = Ay) are of the form q1 = g, + 1 (resp. g2 = q1 + 1). Thus, the resonant vector
fields are generated by (xy)[x% and (xy)! ya% where | is a positive integer. Applying
Poincaré-Dulac theorem to equation (8) leads to a formal normal form

{x = xF (xy)

N )
y=—yG(xy)

where F G are formal power series which values at 0 is 1.

Example 1.2.5 Let us extend example 1.2.4 by Example 1.2.3 in a four-dimensional
system :

W= w+e(w,x,y,7)
x=—x+f(w,x,y,2)
y = 2iy+g(w,x,,2)
z=1iz+h(w,x,y,2)

Its formal normal form is of the form

w = wF(wx)

X = —xG(wx)

y = 2ifli (wz)y + Ha(wz2)Z*
;= if3(wz)z

Example 1.2.6 Let us consider the five-dimensional system

X1 =x1+ fi(x)

Xy = —x2+ fa(x)
X3 = —Cx3 + f3(x)
X4 = ixa+ fa(x)
X5 = ixs + f5(x)

where § is a positive irrational number. Its normal form is of the form

X ZX1f1(AX1x2)

Xy = —xzfz(xlxz)

X3 = —Cf3(x1x02)x3 (10)
Xy = ixg +x481,1(x1%2) +x5812(x1x2)

X5 = ixs5 +x482,1 (x1x2) +x582,2(x1x2)

where the f;’s (resp. 8i,j’s) are formal power series of one variable (resp. vanishing
at the origin).
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1.2.1 Hamiltonian vector fields

We refer the Arnold book [Arn97] for this section.

To a germ of function H : (R*",0) — (IR,0) vanishing at first order at 0, we can
associate a germ of vector field Xy of (R?*,0) vanishing at the origin. If (x,y) are
local coordinates, it is defined to be

. oH .
.Xj: Tyj, ]:1,...,}’1

. oH . _ |
y] axj7 .] 9 )

It is called the Hamiltonian vector field associated to H. The function H is called
the Hamiltonian of Xy.

Definition 1.2.7 A change of coordinate X; = ¢;(x,y), Y; = y;(x,y) is called
canonical if it preserve the symplectic form ® = Z'}:l dxjN\dy;. In other words,

n n
dej‘/\dyj = Zde/\de.
j=1 j=1
If we conjugate an Hamiltonian vector field Xy by a canonical diffeomorphism @,
we obtain again an Hamiltonian vector field, namely Xy.4. We shall say that the
Hamiltonian A is a Birkhoff normal form whenever its associated Hamiltonian
vector field Xy is a normal form.

Definition 1.2.8 In symplectic coordinates (x,y), we define the Poisson bracket of
the germ of functions to be

{f’g} ::Z 8xj 8yj 8xj 8yj

. <9f dg  dg 3f>
j=1

It satisfies the following properties :

e {.,.} is bilinear and skew-symmetric
o {f{g,h}} +{8.{h,/}} +{h,{f,g}} = 0 Jacobi identity)
o {f,gh} ={f,g}h+{f, h}g (Leibniz identity)

It is easy to show that
(X1, X6] = X(n 6}-

1.3 Examples about linearization

Example 1.3.1 The normal form (7) is topologically conjugate to the linear part

Xx=2x
y=y
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By this, we mean there exists an homeomorphism H fixing the origin which maps
the trajectories of the normal form to the trajectories of its linearized : H(¢;(x)) =
linearized (H (x)) where ¢; denotes the flow at time t starting at x. This is a con-
sequence of Hartman—Grobmann theorem. Nevertheless, it can be shown that the
normal form is not C*-conjugate to its linearized at the origin.

Theorem 1.3.2 [Ste58, Bru95] Assume the linear part S is non-resonant, i.e. there
is no resonance relation satisfied. Then any smooth nonlinear perturbation X =
S+ R of S is smoothly conjugate to its linear part S.

What happens in the analytic context?

Example 1.3.3 We borrow this example to J.-P. Frangoise [Fra95]. Let us consider
a special case of Example 1.2.2. Let us assume that the irrational number  is
Liouvillian. By this, we mean that there exists two sequences of positive integers
(pn),(qn) both tending to infinity with n such that

1

= qn(qn!)”

X
qn

The number { is too well approximated by rational numbers. Given such a pair of
sequence, let us consider the function

1
1— Z_xpny% ’

It is holomorphic in a neighborhood of the origin and f(0) = 1. Let us set S :=
x% - ya% and let us consider the germ of holomorphic vector field defined to be

f(xvy) =

X = f(x,y)S. Its linear part at the origin is S. Let us find the formal change of
coordinate that linearizes it (in this case, it’s unique) : ¥ = xexp(—V (x,y)), ¥ =
yvexp(—W(x,y)). Then,
xexp(=V(x,y)) = ¥ = Zx (%) = xZx (=V (x,y)) exp(=V (x,y))
exp(—V (x,9) % (x).
Here, the first equality comes from the definition, the second comes from that fact

that X is linearized in the new coordinates. Therefore, we have that %x (V) = f — 1
which is equivalent to

L(V) = % = pr"yq".

This equation has the unique solution

1
V = xPnyin
Z Pn— CQn Y

which is divergent at the origin since ; ng >qnl
n n
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This example shows that one need an “arithmetical” condition on the small divisors
(Q,4) — A; # 0. The major step in the understanding of the phenomenon is due to
C.L Siegel.

Definition 1.3.4 We shall say that A = (A1,...,A,) is diophantine of type v > 0 if
there exists C > 0 such that, for all multiindexes Q €

A)—A
(@A)~ \>|Q|u

We shall say that there no small divisor if there exists a constant ¢ > such that
‘(Q7)L) _)‘l| >c.

Theorem 1.3.5 [Sie42] If the linear vector field S =Y lx, o is diophantine,
then any holomorphic non-linear perturbation of S is holomorphlcally linearizable.

This arithmetical condition has been weakened by A.D. Brjuno as we shall see below.

1.4 Examples about nonlinearizable vector fields

Let’s go back to Example 1.2.3 where we saw that any holomorphic perturbation of
order > 3 of the normal form is formally conjugate to it. What about the holomorphy
of such a conjugacy?

Theorem 1.4.1 (Poincaré-Picard) If the linear part S has non-polynomial first in-
tegral but the constants and if there are no small divisors then any nonlinear per-
turbation X = S+ R is holomorphically conjugate to a polynomial normal form in
a neighborhood of the origin.

Remark 1.4.2 Usually in the literature, the previous theorem is applied for linear
part which spectrum is said to lie in the “Poincaré domain”. By this, we mean that
there exists a line (D) in the complex plane which separate the eigenvalues of S from
the origin (i.e. the eigenvalues are on one and the same side of the line while 0 is in
the other side). Thus, if S belongs to the Poincaré domain, then it has only constant
polynomial first integral. In fact, if Zx (x2) = 0 then (Q, A) = 0. This means that the
origin is a linear combination of the A;’s with non negative coefficients. Since the
spectrum lies on the same and opposite side from the origin of a line, then Q = 0.
Furthermore, there are no small divisors since the projection of the eigenvalues onto
the orthogonal line to (D) passing through the origin is bounded from below. So do
the small divisors.

Example 1.4.3 Let us show that Example 1.2.3 falls into the application scope of
the theorem. In fact, a monomial (p,q are non-negative) x’y4 is a first integral of S
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if and only if S(xPy?) = (2p+ q)xPy4 = 0. This implies that p = q = 0. Thus, poly-
nomial first integrals of S are just constants. Moreover, there are no small divisors.
In fact, both |2p+q —2| and |2p + g — 1| are integers so they don’t accumulate the
origin. Therefore, any holomorphic system (6) is holomorphically conjugate to its
normal form (7).

2 Holomorphic normalization

The main progress are due to Brjuno who gave sufficient conditions that ensure that
there is a convergent normalizing transformation to a normal form. These conditions
are of two different type. The first one is a condition about the rate of accumulation
to zero of the small divisors of the linear part. It is weaker that Siegel condition
and is called condition (®). The second one is linked to the nonlinearity of the
perturbation we are considering. It is a condition about a formal normal form of the
perturbation.

2.1 Theorem of A.D. Brjuno

Let X = S+ R be an holomorphic vector field in a neighborhood of its singular point
0eC"withS=Y", l,-xl-% and R a nonlinear vector field. We assume that the
following diophantine condition like is satisfied:

In @y,
(CO) — Z 7 < 4o
k>0

where @y = inf{|(Q,1) —A;| #0, 1 <i<n, Q€ N" 2 <|Q| <2F}.

Theorem 2.1.1 [Bru72] Let X = S+ R be an holomorphic vector field as above. We
assume that S satisfies the Bruno condition (®). If X has formal normal form of the
type 4.8 for some formal power series d (with 4(0) = 1), then X is holomorphically
normalizable.

In the case of Hamiltonian vector field and under Siegel diophantine condition, this
result is due to H. Riissmann :

Theorem 2.1.2 [Riis67] Let H =Y | Aix;jy; + - -- be an analytic third order per-
turbation of the quadratic hamiltonian h = Y.}_| Aix;y;. Assume that h satisfies the
Siegel condition:

c

()

n
Y ajA
=1
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for integer vectors (qi,...,qn) € Z" such that Y5_, |q;| > 0. Assume that H has a
formal Birkhoff normal form of the form F (h) = F(¥7_, Aix;y;) then H is analyti-
cally conjugate to a Birkhoff normal form F (h) for some analytic function F.

We refer to J. Martinet’s Bourbaki seminar for a survey on this topic [Mar80].

Example 2.1.3 Ler us apply the previous result to example (8). If it has a formal
normal form (9) with G = F then it is holomorphically normalizable.

Example 2.1.4 Let us consider the two-dimensional system

X = x>

There is a unique formal diffeomorphism x =X, y =Y + W(X) that transforms the
previous systems into its normal form

x=x2
2
{Y—y @

In fact, the conjugacy equation leads to

y=x+y=X+Y+¥(X)
=Y+ (X)X =Y + ¥ (X)X%

So  has to solve the Euler equation
X9 (X) — 9(x) =X
which formal solution is

(X)=-Y (k—1)x*.
k>1

This does not converge in a neighborhood of the origin ! The normal form (2) does
not satisfies Brjuno condition: it is not proportional to the linear part x =0,y = y.
Nevertheless, we can show that there exists sectorial normalizations. This means
that there exists germs of holomorphic diffeomorphisms defined only in the prod-
uct of sector with an edge at the origin (in the x plane) and a disc around
0 (in y) which conjugate equation (1) into its normal form. This the starting
point of a long story that have been developed by J. Martinet and J.-P. Ramis
[MR82, MR83] for two-dimensional vector fields and by J. Ecalle, S. Voronin and
B. Malgrange for germs of local diffeomorphisms near a fixed point in the complex
plane [Eca, Vor81, Mal82, I'93]. In higher dimension, the theory has been devel-
oped by J. Ecalle and L. Stolovitch [Eca92, Sto96]. Recently, the interplay beetwen
these “Stokes phenomena” and small divisors phenomena have been investigated
by B. Braaksma and L. Stolovitch [BSO7]. We refer to [Bal0O, Ram93, RS93] for
summability theory and Stokes phenomenon.
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2.2 Theorems of J. Vey

On the other hand, Vey proved two theorems about the normalization of family of
commuting vector fields satisfying some geometric properties.

Theorem 2.2.1 [Vey79] Let X1,...,X,—1 be n— 1 holomorphic vector fields in a
neighborhood of 0 € C", vanishing at this point. We assume that :

e Each X; is a volume preserving vector field (L, = 0 with @ an holomorphic
n-differential form)

e The l-jetJ'(X),...,J (X,_1) are diagonal and independent over C (this means
that if there are complex constants ¢; such that Z;:ll cJ'(X;) =0, then ¢; =0
foralli.)

e [X;,X;] =0 for all indices i, j

Then, X1,...,X,—1 are holomorphically and simultaneously normalizable.

Theorem 2.2.2 [Vey78] Let X1, ...,X, be n holomorphic vector fields in a neigh-
borhood of 0 € C*", vanishing at this point. We assume that :

e FEach X; is an Hamiltonian vector field
o The 1-jet J'(X,),...,J" (X,) are diagonal and independent
e [X;,X;] =0 for all indices i, j

Then, X1,...,X, are holomorphically and simultaneously normalizable.

2.3 Singular complete integrability—Main result

We shall present a general result about normalization of commutative family of
holomorphic vector fields vanishing at the same point that unifies both Vey’s and
Brjuno’s theorems. At first glance, such unification could seem a little bit weird. In
fact, in Vey’s theorems, there no assumption about small divisors while in Brjuno’s
theorem there is one. In Vey’s theorem, vector fields satisfy a geometric assump-
tions (volume preserving or symplectic) whereas in Brjuno’s theorem there is an
assumption about the formal normal form.

Let us consider the family S = {Si,...,S;}, I < n, of linearly independent linear
diagonal vector fields

2 d
Si= Y A jxj—.
=L

This means that if Y!_; ¢;S; = 0 for some complex numbers c;, then all the ¢;’s are
zero. Let us define the sequence of positive numbers

(8) = int{ x| (Q.4) | £0.1 <5 <0, QN2 < [0] <2, .

<

where A" = (Ai1,..., Ain).
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Definition 2.3.1 We shall say that S is diophantine if

In (S)
2k

< oo

(o(s)) - )

k>0

Remark 2.3.2 The family S can be diophantine while none of the S;’s satisfies
Brjuno condition (®). For instance, consider in (C3,0) with complex coordinates
(x,3,2) the vector fields S| = E| — CE, and Sy = —CE| + E» where § is positive
irrational number, E; = x% —ya% and E) = ya% —za%. Since 1 — CZ #0,Sand S
are linearly independent. The small divisors relative to Sy or S look like q—Cq
for some relative integers qy,qz. Thus, if { is a Liouvillian number then neither S,
nor Sy will satisfy Brjuno condition. On the other hand, let A; (resp. Ll;) be the vector
of eigenvalues of S; (resp. E;). We have

A ((Q,ll)—lm) _ < 1 —C) ((Qv.ul)_ul,j) _.p
C\(QA) Ay -¢ 1 (O, ) —2j)
Hence, if we denote the matrix by C, we have then ||B|| < ||C~!||||A|. Therefore, the

sequence of the ||Al|’s when Q and j vary do not accumulate the origin since the
sequence of the ||B||’s does not. So, the family S is diophantine.

~\S ~\S
Let (5&” ,ll) (resp. (ﬁn) > be the formal centralizer of S (resp. the ring of formal

first integrals), that is the set of formal vector fields X (resp. formal power series f)
such that [S;, X] = 0 (resp. Zs,(f) =0) forall 1 <i <.

Let X = {Xy,...,X;} be a family of germs of commuting vector fields at the
origin such that the linear part of X; is §;; that is [X;,X;] = 0 for all 7, j. We shall call
X a nonlinear deformation of S.

Definition 2.3.3 We shall say that a nonlinear deformation X of S is a normal form
(with respect to S) if
[Si.Xj] =0, 1<ij<lL

Definition 2.3.4 We shall say that X, a nonlinear deformation of S, is formally
completely integrable if there exists a formal diffeomorphism @ fixing the origin
and tangent to the identity at that point which conjugate the family X to normal form

of the type
l
DX =Y a;S;, i=1,...1 (3)
j=1
where the d; ;’s belongs to 5’\,‘5

Proposition 2.3.5 If X has a formally completely integrable normal form then all
its normal form are also formally completely integrable.

Theorem 2.3.6 Under the assumptions above, if S is diophantine, then any formally
completely integrable nonlinear deformation X = S+ € of S is holomorphically nor-
malizable.
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This means that there exists a genuine germ of biholomorphism @ : (C",0) —
(C",0) tangent to the identity at 0 which conjugate the family X to normal form of
the type

]
DX =Y a;S;, i=1,..1 4)
j=1

where the a; ;’s are germ of holomorphic invariant functions, i.e. they belong to 03,

Remark 2.3.7 The theorem doesn’t says that neither & nor the a; j converge but
rather that there is another normalizing diffeomorphism that converges.

Remark 2.3.8 One way to use this theorem is to have ‘“‘a magic word in hand”
(like Hamiltonian, volume preserving, reversible ....) that will implies that the formal
normal form is of the good type. This comes from the data of the problem that one
wants to solve.

Corollary 2.3.9 If S is diophantine and if the holomorphic nonlinear deformation
X is formally linearizable then it is holomorphically linearizable, i.e. there exists a
holomorphic change of coordinates in which all the X;’s are linear.

Of course, if one of the S;’s satisfies Brjuno condition (®) and if the family X is
formally linearizable, then it is also holomorphically linearizable. The point of the
previous corollary is that none of the S;’s is required to satisfies (@) in order that S to
be diophantine. A result similar to our corollary was obtained by T. Gramchev and
M. Yoshino for germs of commuting diffeomorphisms near a fixed point [GY99] un-
der a slightly coarser diophantine condition. The article of J. Moser [Mo0s90] was the
starting point since he was dealing with germ of one-dimensional diffeomorphisms.

2.3.1 Fundamental structures

Proposition 2.3.10 [St000][prop. 5.3.2] With the notation above, @f is a formal
C-algebra of finite type; 32”;5 is a O3-module of finite type.

This means the following : if the ring of invariants is nor reduced to the con-
stants, then there exists a finite number of monomials x*! yeen , xR such that ﬁA,f =
CI[xR1,...,xR]]. Moreover, there exists a finite number of polynomial vector fields
Yi,...,Y, such that if X belongs to é”;s (i.e. [S;,X] = 0, for all i) then there ex-
ists dy,...a, € ﬁ’/\;f such that X = a;Y; + - - - + d,, Y. The proof is based on Hilbert
theorem : in a Noetherian ring, ideals are generated by a finite number of elements.

Let 2 < k be an integer and let 2 be the space of homogeneous vector fields of
C" of degree k. Let us consider the map p : C! — Homc (22X, 22) defined by

p(g)(X)=

]
Y &S X
i=1
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6 CCP

Fig. 1 Singular complete integrability: in the new holomorphic coordinate system, all the fibers
(intersected with a fixed polydisc) are left invariant by the vector fields and their motion on it is a
linear one

where g = (g1,...,8) and X € ZX([.,.] denotes the Lie bracket of vector fields of
C™). It is a representation of the commutative Lie algebra C’ in ,@,’f To such a
representation p of the abelian Lie algebra C' into a finite dimensional vector space
M, one can associate the Chevalley—Koszul complex
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dr_
0—M & Hom¢ ((CI,M) LN Hom¢ (/\Z(CI,M) & ... 5 Hom¢ (/\ICZ,M) — 0,
&)
where the differentials d; are defined in the following way : if ® € Homg¢ (/\” chm )
and (g1,...,8p+1) € (C)P*1, then

1

dp(®)(81,---.8p+1) = Y, (1) p(gi) (0(g1,- -, 8ir- 1 8p+1)  (6)
1

S ]
+

Here (g1,...,8i,---,&p+1) € (C)P stands for (g1,...,8i—1,8i+1,---,&p+1)- The dif-
ferentials dy and d; will be particuliary useful:

doU(g) =p(g)U, diF(g1,82) = p(81)F(82) — p(g2)F(g1)-
The cohomology spaces H'(C', M) are defined to be
H(C',M)=XKerd;/Imd; |, i=0,...[—1.

Let & = (0q,...,04) € C!. It defines the complex linear form on C/, a(z) =
25:1 @;z;. To such a linear form, we associate the “generalized eigenspace”

Pha={X € PLVgeC, [8(s).X] = a(e)X |

In other words, X € 2% , if and only if [S;,X] = X forall | <i<LIf 2k #0
then ¢ is called a weight of S and @,’fﬂ is called the associated weightspace. There
is a decomposition of the space into “generalized eigenspaces”, namely the Fitting
decomposition:

Py =P ® Py
where ¥

n,*x

weights of S.

is the (finite) direct sum of the weightspaces associated to nonzero

2.3.2 Geometric interpretation

In order to illustrate our result, let us first recall the Liouville theorem [Arn97]. Let
Hj,...,H, be smooth functions on a smooth symplectic manifold M>"; let 7t : M>" —
R” denotes the map 7(x) = (H;(x),...,H,(x)). We assume that, for all 1 <i,j <n,
the Poisson bracket {H;,H;} = 0 vanishes. Let ¢ € R" be a regular value of 7; we
assume that 7! (c) is compact and connected. Then there exists a neighborhood U
of 771(¢) and a symplectomorphism @ from U to £(U) x T" such that, in this new
coordinate system, each symplectic vector field Xp, associated to H; is tangent to
the fiber {d} x T". It is constant on it and the constant depends only on the fiber.
Let us turn back to our problem and let S be a diophantine family of linearly in-
dependent diagonal vector fields of C". Let é’\f be its ring of formal first integrals. It
is a C-algebra of finite type and there are homogeneous polynomials u,...,u, such
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that &5 = C[[uy, .. ., upl]. Let w: C" — CP defined by m(x) = (u1(x),...,up(x)). Let
s be the degree of transcendence of the field of fractions of Cluy,...,up]; it is the
maximal number of algebraically independent polynomials among u,...,u,. The
algebraic relations among uy,...,u, define an s-dimensional algebraic variety €y in
CP. Hence, 7 defines a singular fibration over %s. The linear vector fields Sy, ...,S;
are tangent and independent on each fiber 7! (b) of 7; the latter are called toric va-
riety because they admit an action of the algebraic torus C*. Note that we must have
[ < n—s. Now, we come to the nonlinear deformation. Let X = S+ € be a nonlinear
deformation of S. Let us assume that it is formally completely integrable. Then, ac-
cording to our result, there exists a neighborhood U of 0 in C" and an holomorphic
diffeomorphism @ on U such that, in the new coordinate system, the vector fields
D.Xq,...,D,X; are commuting linear diagonal vector fields on each fiber restricted
to U and their eigenvalues depend only on the fiber. Indeed, in this new coordinates,
we have . X; = Z’j: 1aijSj where a; j € ﬁ,f . By definition, these vector fields are
all tangent to the fibers of 7 (therefore, we must have [ < n —s). As consequence
@.X;’s are all tangent to the fibers of 7. On each fiber, the functions a; ; are constant
so that each @, X; reads as a linear diagonal vector field, that is a linear motion of
a toric variety.

2.3.3 Proper Poincaré extension

The next question that can be asked is the following : under what assumptions can a
formally completely integrable nonlinear deformation X = S+ € of S be extended in
an higher dimensional space into another formally completely integrable nonlinear
deformation § + & of § , with the same number of commuting vector fields?

First of all, we shall define a good extension of S in C**" to be S; := S; ®S/,
i=1,...,1, where S is a diagonal linear vector field of Z2}. Of course, we want the
properties of S to be derived from those of S; that is, we want S to be diophantine as
soon as S is and we want that 05, ,, = €5. One way to achieve this is to assume that
S" is Poincaré family relatively to S : we require that the weights of S all belong
to a real linear hyperplane of R* whereas the weights of S” all, but a finite number
of them, belong to one and the same side of the hyperplane. Such an extension will
be called proper if the only weight of S” which belong to the hyperplane is the zero
weight. If (x1,...x,1,) denotes coordinates of C"*™ and if X is a vector field of
(C™tm.0), then X" denotes its projection onto ﬁ“

,...,axn+m.

Definition 2.3.11 We shall say that a proper Poincaré extension of S in C"™" is
completely integrable if there exists a formal diffeomorphism @ fixing the origin
and tangent to the identity at that point which conjugate the family X to normal

form of the type

™=~

a; ;8" + D} +Nil! +Res|!, i=1,...,1 (1)

]
NF:=®.X =Y a;;S;+
j=1 j=1
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where the &; j € 0. Here, D! (resp. Nil!, Res!') denotes a linear diagonal (resp.
nilpotent, nonlinear) vector field of C™ with coefficient in O such that the family
D" has the same centralizer as S" (resp. commuting with the S!’s).

In other words, the projection NF” of the normal form is a polynomial Poincaré
normal form of C™ with coefficients in &75.
Then we have the

Theorem 2.3.12 [Sto00] Let S be a diophantine family of diagonal linear vector
field of C". We assume that S = S® " is a proper Poincaré extension of S in C"*™
by S". Then, any nonlinear deformation of S which is formally completely integrable
is holomorphically normalizable.

For one vector field, theses results are due to Brjuno. Let us illustrate this result on
Example 1.2.6. Let us define § = x; % fo% — Cn%. Assume that S satisfies

Brjuno condition (). Let us define S = ixy ax + ixs a‘i It is proper Poincaré vec-
tor field with respect to S. In fact, all the weights of S are real while those of S”
are purely imaginary. Then nonlinear centralizer of S” is reduced to zero. First of
all assume that in the normal form (10), we have f| = /> = f3. So that the projec-
tion on ai yeens i is a formally completely integrable system which nonlinearities
are parametnzed by C™. Assume that the formal power series 1,1 and > can be
decomposed as §;; = f,J + h,7, such that

1.

q1(i+ fii(xx) + @i+ fo(x1x2)) Z i+ fi1(x1x2)
qi(i+ fri(ax) + @i+ fz(xix2)) # i+ fra(xix2)

for all (q1,492) € N? such that g1 +¢g> > 2. This precisely means that the formal
vector field (i + 11 1 (xlxz)x4aa74 + (i+ f22(x122)x5 3%5, thought as a vector field
of C2, has the same nonlinear centralizer as S”, that is 0.

2. The vector field

N 0 N d
(hi,1 (x12)x4 + &1 2(x12)x5) E + (82,1 (x12)x4 + Mo 2 (x12)x5) o

is nilpotent and commutes with S”.

Let us a give a geometric interpretation of this last result. Let us consider again
the map 7 : C**" — CP with m(x) = (x®1,...,xRr). Since, the invariants of $ are
the same as those of S, we have #~!(b) = 7~ !(b) x C™. Let us apply our result. In
a new holomorphic coordinate system at the origin, the projection X/ on C" of the
vector field X; is a completely integrable in the previous sense : it is tangent to any
the toric variety 7~ !(b) and its restriction to it is a linear diagonal motion. On the
other hand, the projection X" on C" is a polynomial normal form (of C™) which
coefficients depend only holomorphically on b.
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2.4 How to recover Brjuno’s and Vey’s theorems
Jrom Theorem 2.3.6

Brjuno’s theorem correspond precisely to our result for / = 1.

Let us prove the volume preserving case of Vey’s theorem. Let E be the family of
the n — 1 linear semi-simple vector fields of C" defined to be E; = x,-aixi —Xi+1 %‘H,
1 <i<n—1.The weights associated to Q = (¢1,...,q,) €N, |Q| >2,1< j<nare
0i.0.j =qi—qi+1+ 5,<7j5,-+1“,-(71)5i=-/' (the last expression in the sumis O if j £ i i+1,
1if j =i+ 1 and —1 if j = i). First of all, the values of the nonzero weights of
E are integers; thus, they cannot accumulate the origin, so that E is diophantine.

. __\E
Moreover, if we set u = x; - - - x,, then OF = C[[u]] and (3&”,‘,) is the C[[u]]-module

- \E
generated by xi%, 1 <i<n. An easy computation shows that X € (5&” ,11) satisfies
to Zx(u) = 0if and only if X belongs to the C[[u]]-module generated by the E;’s.

Let us write J! (X;) = Y ul-7jx,»%. Let us set ' := (Ui 1,...,Mip). Since X; is

y :
volume preserving then, ;1 + -+ + ;i , = 0; it follows that J' (X;) = 7;% a; jE;. By
the independence of the 1-jets, the (n— 1) x (n— 1) matrix A9 = (a; ;) is invertible.
Let us compute the weights of the family of the J'(X;)’s with respect of those of E.
We have |
(Q,u") — 01.0,j
: =Ao|

(Q,u") = j 0.0.j
Therefore, we have
Q") =i | |oug,
(el : =]
Q') —m ;| |oug;
This means that the family of the J!(X;)’s is also diophantine.
Since the family can be transformed into a normal form, there exists a formal
diffeomorphism @ such that @*X; = Z?:l 15", j(u)xi% for some F; j € Cl[u]]. We

can assume that @ is volume preserving; thus the normal forms are also volume
preserving. Hence div (@*X;) = 0, that is

L dxh i (u) d (Z?*I Fij )

7 =0= <J:Z’115,J(u)> Jru#(u).

An easy computation shows that };_, £, j = 0. Thus,

=1

n—1 n—1
&Xi=Y fiiwE; =Y & jwJ (X;),
=1 =1
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that is X is formally completely integrable. According to our main result, there is an
holomorphic diffeomorphism ¥ normalizing X in a neighborhood of the origin. By
a classical argument of Vey [Vey79], we can modify holomorphically ¥ so that it
becomes volume preserving and still normalizing X.

2.5 Sketch of the proof

Let us give a sketch of the proof of our results. In order to normalize the nonlinear
deformation X = S+ € of S, we shall proceed through a classical Newton method,
that is a Nash—Moser induction type.

Let us assume that the nonlinear deformation X = S+ € is normalized up to order
m; we will build a diffeomorphism &, which normalize the deformation up to order
2m; it is tangent to Id up to order k. Let us show how this works. First of all, we can
write the deformation X; = NF/" 4 B; +R;, 1 <i <[ where NF/" is a normal form of
degree m, B; is polynomial of degree < 2m and of order > m+ 1 and R; is of order
> 2m+1. Let us denote by B, , (resp. B;) the projection of B; onto the sum of the
weightspaces associated to a nonzero weight (resp. zero weight) of S in 22, +l2m,
The compatibility condition (i.e [X;,X;] = 0 for all 1 < i, j <) shows that, for all
1<i,j<lI

7" (INE™ B;..)] ~ [NEJ".B;,]) = 0. ®)

On the other hand, if we conjugate X; by a diffeomorphism of the form exp(U) for
some polynomial vector field U € 22" and writing exp(U).X; = NF/" + B, + R}
as above, we find out that

J?" (B;— B+ [NF",U]) =0
The algebraic properties of the weightspaces of S show that, in fact, we have
" (Bj..—Bix +[NF",U.]) =0.

If we assume that the diffeomorphism exp(U) normalizes simultaneously the X;’s
up to order 2m then we must have B}, = 0 for all i. Hence, we have

I (=B, +[NF"U]) =0 i=1,...,L ©)

gzmwtl 2m

Let us denote by the direct sum of weightspaces associated to a nonzero

weight of p in & +1 2™ 1 et us define the linear map

pm (C N HOITI(C (@m+l 2m @)n+1 2m)
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by pn(g)(X) = J*" ([2:1 ngFj’”,X]) if g = (g1,...41)- It is well defined and it

is a representation of the abelian Lie algebra C! into Py 12 To this representa-
tion is associated a complex of finite dimensional complex vector spaces; it is the
Chevalley-Kozsul complex of this representation. Let us write d’, its ith-differential.
Therefore, equation (8) reads d; (B*) = 0, that is B, is a 1-cocycle for this complex.
Moreover, equation (9) reads d’,(U) = B, that is B, is the O-coboundary of U’ it is
a cohomological equation.

Hence, the Chevalley—Koszul complex of the representation p,, plays an impor-
tant role in our problem. We shall call it the Newton complex of order m. According
to the discussion above, the first important problem to study is its cohomology. We
can show that its Oth-cohomology as well as the 1st-cohomology spaces are zero:

Proposition 2.5.1 [St000][Prop. 7.1.1] We have

where H!, denotes the ith-cohomology space of the Chevalley—Koszul complex as-
sociated to P.

It is not very difficult but rather technical. It leads to the imlportant consequence
that, B, being given as above, there exists a unique U € 22" 2™ such that, for all
1 <i<1,J2"([NF™ U]) = B;.; hence, conjugating X; by exp(U) normalizes X; up
to order 2m.

We find out that the formal diffeomorphism defined by b .= limg_, oo @Ppr0---0
&, normalizes simultaneously the X;’s where the &,,’s are built as above. In order to
prove that @ is holomorphic in a neighborhood of 0 € C”, one has to estimate Dy
Here comes the analysis and the major difficulty. To get an estimate of &, = exp(U)
with m = 2%, we have to estimate U. Hence, we are led naturally to give bounds for
the cohomology of the Newton complex : Let r > 1/2, the spaces of the Newton
complex are provided with norms (depending on a real positive number r) which
turn it into a topological complex of vector spaces. By the above algebraic proper-
ties, the O-differential, %, has a right inverse s on the space of 1-cocycle : if Z is
a l-cocycle of the Newton complex, then s(Z) is the unique element of 22, n 1,2m
such that d° (s(Z)) = Z. Here comes the main assumptions : if the family X is com-
pletely integrable then there exists constants d, 11, c(1;), such that if m = 2F and if
the r-norms of NF™ — S and D(NF™ — S) are sufficiently small, say < 1; (for some
1/2 <r<1)then

c(1m)
ol (S)

the constant d doesn’t depend on 1; (we recall that @ (S) is the smallest norms of

|S(Z>|r < ‘Z|r; (10)

k
the nonzero weights of S in 3”,% 2 ).
Let us describe the way we obtain this estimate. In order to solve the cohomolog-
ical equation associated the 1-cocycle Z, it is necessary and sufficient to solve the
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system of / equations J2" ([NF",U]) = Zi,i=1,...,l. We can decompose this equa-
tion along the weightspaces of S. In fact, let & be a weight of S and let V belongs to
the associated weightspace. Then, by Jacobi identity, we have

[S), INF" V]| = [=NE", [V, S]] = [V, S, NE"]].
By assumptions, NF/" = lj:l aff’j_lS i where the a;-f’jfl’s are polynomials invariants
for S of degree < m — 1. Therefore, according to formula (2), [S;, NF/"] = 0. Hence,

we have [S;,[NF/",V]] = [-NF",[V,S;]] = «;[NF/",V]. It is sufficient to consider
for any nonzero weight o of S, the equation with both Z;’s and U in the associated
weightspace.

This set of equations can be written in the following matrix form

U D1 (U) 71+ 31
N R B B S R
oyU D, (U) Z+ 31
where A = (a;fljfl) is a square [ x [ matrix with coefficients in the C-algebra &% of
holomorphic first integrals of the linear part S; A(0) = Id; the operators Dy, ...,D;
are ﬁ,‘f-linear; 31,...,3; have order > 2m + 1. After inverting the matrix A, we
obtain / equations (o;Id +D;)(U) = Z;+ 3;,i = 1,...,1. The D;’s (resp. Z;,3;) are
still &5-linear operators and they are linear combination of the D;’s (resp. Z;, 3;)
with coefficients in 5. Let us set ||a| = max;<;<; || and let i be such that |o;] =
|||l # 0 it is the “worst small divisor” of the family.
Let us look through the ith equation; we find out that, at least formally, its solution
U is given by
v- Ly (2 przes)
= al. kZO ai i 1 i)
This expression does not fancy us since it involves a priori infinitely large powers
of o; which can be very small. Thus, instead of using this expression, we shall split
the ith equation in an appropriate way. First of all, we shall split the linear diagonal
family S in two parts S’ and S” corresponding to the splitting of C" as C" x C"™";
thatis, forall 1 <i </,

! ] 4 d
Si_kgllﬁk)%aixk—i_ Z A’i’kaTxk.

k=n"+1

s, s/

The integer n’ is such that the linear forms {25:1 Aikzib1<k<y all belong to a real
hyperplane H of Homc(C!,C) whereas all the linear forms {¥'!_; A; x2i} w1 1<k<n
all belong (strictly) to one and the same side of H. The integer n’ is taken to be
the lowest as possible; it may be equal to 0 as well as equal to n. We shall call
this splitting, the analytic splitting of S. It has been chosen in such a way that the
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small divisors as well as the first integrals are only due to S’. We show that there
is a separating constant Sep(S) > 0 such that if a is a weight of S which norm
is < Sep(S) then it must belong to H (if n’ = n we shall set Sep(S) = +oo in order
to have one proof for the theorems). Let X be a vector field of C", we shall denote
by X’ (resp. X") its projection onto aixl, . %,,/ (resp. #,H, ey aix,, ). This being

said, let us go back to the study of our equation (o;/d 4 D;)(U) = Z; + 3;. Using the
analytic splitting of S as well as the structure of the operator D;, we show that this
equation can be written under the following form :

! 1 X "Ny __ i 1 57 . N/
U _Ei(P’(U)) = al_(Zi+3,»+(Ql(U))) a1
1 1 .
U"— E(Qi(U”))” = E(Z§’+5§’+ (PUN)"+(QiU"))"): (12)

both P; and Q; are &5-linear operators. Let us assume that the weight « is of small
norm, that is < Sep(S). Then, we show that (Q;(U’))’ = 0 and that, according to
the complete integrability assumption, P/ o P/ = 0. Therefore the solution of (11) is

given by
P 7'+ 3
o= (1) (23
o; o;

Since U’ is a polynomial of order < 2m, then in fact, we have

P\ (7
oz (4+) (3)
o; o

An estimate of the operator P/ will provide the desired estimate of U’. Now, let us
study equation (12). Let us denote by a%m ; the left handside of this equation. Then,

at least formally, we have
1\* /1
-z la) ¢ (@)
kg{) Q; "\

By assumption, NF™ is the m-jet of completely integrable normal form. There-
fore, its projection (NF™)” is the m-jet of a good deformation of S”. The point
is that there exists an integer k), which do not depend on m and such that
J2m(Qk (%’)) =0 for all k > ky. The important consequence for the estimates is
that the sum above which give U” is finite. Using the estimate of U’ which were
found above, we can give estimate for tv;; then using estimate of Q;, we conclude
with estimate of U”. The last case deals with weight ¢ such that ||a|| > Sep(S); it
it the easiest case.

Now let us give an idea of the induction argument. Let 1/2 < r < 1 and let as-
sume the family of the X; = NF;" +R; ;,+1’s is normalized up to order m = 2k Letus
assume that the norms [NF™ — S|, and |[D(NF™ — §)|, are small enough, say < 1y,
and that |R;|, < 1. The solution of the cohomological equation allows us to normal-

r
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ize the family up to order 2m : (®p,). X; =N Fizm +R; 2m+1. Using the estimate of this
solution, we show that [NF?" — S|z and |D(NF?" — )| are still less than 17; where

—1/m
R= (;(;71)) m~2"r < r and that |Ri2m+1|r < 1. After a preliminary renor-
k+1

malization, we show that, at each stage, our new objects still satisfy the required
assumptions in order to have again the estimate for the solution of the new cohomo-
logical equation. Thus, we may proceed again ... Now, because of the diophantine
condition, these R are bounded from below by some positive constant Rad. There-
fore, at the limit, we have found an holomorphic diffeomorphism in the polydisc of
radius Rad centered at 0 € C" which normalizes our nonlinear deformation X.

3 Proof of main Theorem 2.3.6
3.1 Bounds for the cohomological equations

Let o be a nonzero weight of S in 25" and let Pl 1M be the associated
weight space. As we have seen in proposition 2.5.1, for all Z € Z}, ,(C!, 2,5, Lamy

there exists a unique U € 2, o L2m such that, for all integer 1 < i < |,
P (NE"U) = Z;

The remaining of this subsection is devoted to the determination of a bound of
the norm of this solution under some assumptions. Moreover, we assume that NF"
is the m-jet of the normal form of a completely integrable deformation of S.
More precisely, we shall prove the

Theorem 3.1.1 Under the assumptions above, there exists constants 1M1 > 0 and
c1(m) > O such that, if 1/2 < r < 1, m = 2¥ and max([NF" — S|, |D(NF™ —§)|,) <
N1, then for any nonzero weight o of S in 25", for any Z € Z! (C!, @,’Hmm),
the unique U € ﬁ:{,’;l’zm such that dl%‘mU = Z satisfies the following inequality:

1(ﬂ1)2|Z

C
v, < ———
Ul O 11(S)

r (D

and d depends only on S.
Proof. The cohomological equation can be written:
INF"U|=Zi+3:;, i=1,...,L

where we have set, for all integers 1 <i <1, 3; := [NF/",U] —J*"([NF/",U]). By
assumptions, we have forall 1 <i <[, NF" = le:l a;”j_lSj where a; ; € ﬁ,f are

polynomials of degree < m — 1 and al’f‘i’l (0) = 6; j. Therefore, we have
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!
INE".U Z('"ISU Ula :njl)Sj):Zi+3i, i=1,...1 (@

where U (a};” 1) denotes the Lie derivative of a’; Ialong U. Let us choose an index

1 <i<lIsuchthat|o(g;)|= | et|| # 0. We recall that U belongs to the a-weightspace
of S in MM that is, for all 1 <i <1, [S;,U] = ouU. Therefore, equations (2)
can be written into the following matricial form

[S1,U] Dy (U) Z1+ 31
A(x) : + : = :
1S1,U] Dy(U) Zi+3

where A = (a;f’,;l)lsp’qg and D; is the 5n-1inear map defined by D; : U €
3?,% — tZIJ»ZIU(aZ’JTI)Sj € é”\% Since A(0) = Id, A(x) is formally invert-
ible : if A" := (c;j)1<ij<; denotes the transpose of the cofactors matrix of A,
then A~ = A i= (bi,j)1<i,j<i is a matrix which coefficient belong to 0% and
satisfy to A~!A = AA~! = Id. Tt follows that

aU D(U) Z1+31 .
: + : =A"! : where D;(U) = ijﬁka(U
oy, U Dy(U) Z1+3 =
Here is a key point : equation (2) is overdetermined. To estimate its solution,
we select the equation that give the smallest norm a priori. It is the one that

correspond to the “biggest” small divisor among the family, that is ¢;.
Thus, the ith equation of the cohomological equation can be written

U-PBU)=27+3 3

Here, we have written

/ /
oZi = Y bixZ, 3= Z bi 3k,

We claim that the operator P, satisfies to P, o P, = 0. This is due to the fact that
Sqlay, 1 = 0 since the a, 15 are invariants of S. Hence, we have (Id — P,) o (I