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Preface

This volume is a collection of lecture notes from the courses that were given during
the 2007 Séminaire de Mathématiques Supérieure in Montréal (SMS), which was
conceived and supported as a NATO Advanced Study Institute. The courses took
place during the two-week period from June 18 to June 29, 2007, at the Centre de
Recherches Mathématiques (CRM), and they were funded by a grant from NATO
and from the ISM, which is the combined graduate mathematics program of the
Montréal area. The organising committee for this event was D. Bambusi (Milan),
W. Craig (McMaster), S. Kuksin (Edinburgh and Paris), and A. Neishtadt (Moscow).
There were more than 80 participants, coming from around the world, and in partic-
ular there were a good number of students from France, from Italy, from Spain, from
the United States and from Canada. The program of lectures occupied two complete
weeks, with five or six one-hour lectures each day, so that in total 57 h of courses
were presented.

The topic of the 2007 NATO-ASI was Hamiltonian dynamical systems and their
applications, which concerns mathematical problems coming from physical and me-
chanical systems of evolution equations. Many aspects of the modern theory of
the subject were covered; topics of the principal lectures included low dimensional
problems as well as the theory of Hamiltonian systems in infinite dimensional phase
space, and and their applications to problems in classical mechanics, continuum
mechanics, and partial differential equations. Applications were also presented to
several important areas of research, including to celestial mechanics, control the-
ory, the partial differential equations of fluid dynamics, and the theory of adiabatic
invariants.

It is a good thing to do to articulate the relevance of the subject matter of these
SMS lectures to the physical sciences. Physical laws are for the most part expressed
in terms of differential equations, and the most natural classes of these are in the
form of conservation laws or of problems of the calculus of variations for an action
functional. These problems can often be posed as Hamiltonian systems, whether
dynamical systems on finite dimensional phase space as in classical mechanics, or
partial differential equations (PDE) which are naturally of infinitely many degrees
of freedom. For instance, the well known N-body problem of celestial mechanics is
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vi Preface

still of great relevance to modern mathematics and more broadly to science; indeed
in applications the mission design of interplanetary exploration regularly uses the
gravitational boost of close encounters to manoeuvre their spacecraft (first used in
the Mariner–10 mission, 1974). This is also true on the level of theoretical results,
which can be traced to the work of Laplace, Lagrange and Poincaré, but whose
modern successes date to the celebrated theory of Kolmogorov, Arnold and Moser
(KAM) (1954/1961/1963). Recent mathematical progress includes the discoveries
of new choreographies of many body orbits (Chenciner & Montgomery, 2000), and
the constructions of Poincaré’s second species orbits (Bolotin & MacKay, 2001).
Furthermore, the development of rigorous averaging methods (Nekhoroshev 1979)
gives hope for realistic long time stability results (Neishtadt 1981, Treschev 1996,
Pöschel 1999). Additionally, the last several years has seen major progress in the
long outstanding problem of Arnold diffusion, with the advent of Mather’s varia-
tional techniques (2003) related to a generalised Morse–Hedlund theory, including
Cheng’s subsequent work on variational methods, and the geometrical approach to
the ‘gap problem’ due to de la Llave, Delshams & Seara (2006).

Over the last decade the field of Hamiltonian systems has taken on completely
new directions in the extension of the analytical methods of Hamiltonian mechan-
ics to partial differential equations. The results of Kuksin, Wayne, Pöschel, Craig,
Bambusi and Bourgain have introduced a new paradigm to the study of partial differ-
ential equations of evolution, where research focuses on the fundamental structures
invariant under the dynamics of the PDE in an appropriate phase space of functions.
Two basic examples of this direction of enquiry include (i) the development of sev-
eral approaches to a KAM theory, with very recent contributions by Yuan (2006) and
Eliasson & Kuksin (2007), and (ii) Nekhoroshev stability results for systems with
infinitely many degrees of freedom (Bambusi 1999). These considerations show an
exciting and extremely promising connection between Hamiltonian dynamical sys-
tems and harmonic analysis techniques in PDE. A case in point is the relationship
between upper bounds on the growth of higher Sobolev norms of solutions of non-
linear evolution equations, and the bounds on orbits given by Nekhoroshev theory;
similarly there is a possibly surprising connection between lower bounds on such
growth and the existence of solution of PDE which exhibit phenomena related to
Arnold diffusion. This research area of evolution equations and Hamiltonian sys-
tems is one of the most active and exciting fields of PDE in the last several years.

The subjects in question involve by necessity some of the most technical aspects
of analysis coming from a number of diverse fields, and before our event there has
not been one venue nor one course of study in which advanced students or oth-
erwise interested researchers can obtain an overview and sufficient background to
enter the field. What we have done with the Montréal Advanced Studies Institute
2007 is to offer a series of lectures encompassing this wide spectrum of topics in
PDE and dynamical systems. Most of the major developers in this field were speak-
ers at this ASI, including the top international leaders in the subject. This has made
it a unique opportunity for junior mathematicians to hear a focused set of lectures
given by major researchers and contributors to the field. The organizers are grateful
for the time and energy that the speakers devoted to the thoughtful preparation of
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their lectures, and to the subsequent written and complete versions that appear in
this volume. And in addition the students at this ASI, who were for the most part
advanced graduate students and postdoctoral fellows, included many very promis-
ing and active young mathematicians in the field, with their own well-developed
research programs. The participants’ enthusiasm for the ASI, their help in writing
lecture notes for the courses, and their general cheerfulness and good attitude dur-
ing the course of the two weeks of lectures, made the event an experience not to be
forgotten.

Last but not least, the organizers of the SMS 2007 would like to acknowledge
the generous and timely support of the Public Diplomacy Division of NATO, with-
out which the two weeks of this Advanced Study Institute would not have taken
place, the additional financial support of the Montréal Centre de Recherches Math-
ématiques (CRM), the ISM and the Université de Montréal, and for the depend-
able guidance and initiative of Sakina Benhima, our Directrice de Programme at the
CRM in Montréal.

The series of lectures in this volume includes the following topics: Hamiltonian
systems and optimal control (A. Agrachev, SISSA, Trieste), Birkhoff normal form
for some semilinear PDEs (D. Bambusi, Universita degli Studi di Milano), Varia-
tional methods for Hamiltonian PDEs (M. Berti, Università degli Studi di Napoli),
The N-body problem (A. Chenciner, Observatoire de Paris), Variational methods
for the problem of Arnold diffusion (C.-Q. Cheng, Nanjing University), The trans-
formation theory of Hamiltonian PDE and the problem of water waves (W. Craig,
McMaster University), Geometric approaches to diffusion and instability (R. de la
Llave, University of Texas at Austin), KAM for the nonlinear Schrödinger equation
(H. Eliasson, Université de Paris 7), Groups and topology in Euler hydrodynamics
and the KdV (B. Khesin, University of Toronto), Three theorems on perturbed KdV
(S. Kuksin, Heriot-Watt University), Averaging methods and adiabatic invariants
(A. I. Neishtadt, Space Research Institute, Russian Academy of Science), Periodic
KdV equation in weighted Sobolev spaces (J. Pöschel, Universität Stuttgart), The
forced pendulum as a model for dynamical behavior (P. Rabinowitz, University
of Wisconsin), Normal forms of holomorphic dynamical systems (L. Stolovitch,
Université Paul Sabatier), Some aspects of finite dimensional Hamiltonian systems
(D. Treschev, Moscow State University), Infinite dimensional dynamical systems
and the Navier–Stokes equations (C. E. Wayne, Boston University), and KAM the-
ory with applications to nonlinear wave equations. (X. Yuan, Fudan University).

Hamilton and Montréal, Canada Walter Craig
July 2007
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Some aspects of finite-dimensional Hamiltonian
dynamics

D.V. Treschev∗

Abstract These lectures touch upon two aspects of Hamiltonian mechanics. The
first one (geometric) establishes fundamental role of symplectic geometry as the lan-
guage of Hamiltonian mechanics. The second aspect (dynamical) exhibits the main
problem in the domain, which is the interplay between regular and chaotic motion.

1 Symplectic structure. Invariant form of the Hamiltonian
equations

1.1 Hamiltonian equations

Hamiltonian system1 is an ODE-system which in certain coordinates q=(q1, . . . ,qn),
p = (p1, . . . , pn) can be presented in the form

q̇ =
∂H
∂ p

, ṗ =−∂H
∂q

, (1)

the function H(q, p) is called the Hamiltonian function. Frequently, non-
autonomous systems are considered, where H = H(q, p, t).

This definition looks very non-geometrical. Although all calculations are anyway
presented in coordinates (partially we will see this below), it would be good to
present an equivalent invariant (coordinate independent) definition.

Recall that a symplectic structure on a smooth manifold M is a closed non-
degenerate differential two-form ω . The pair (M,ω) is a symplectic manifold.

∗ Steklov Mathematical Institute
e-mail: treschev@mi.ras.ru.

1 We will consider only the case of Hamiltonian ODE’s.

W. Craig (ed.), Hamiltonian Dynamical Systems and Applications, 1–19. 1
c© 2008 Springer Science + Business Media B.V.



2 D.V. Treschev

Theorem 1 (Darboux) In a neighborhood of any point of M there are local coordi-
nates (q, p) = (q1, . . . ,qn, p1, . . . , pn), in which the symplectic structure has the form
ω = d p∧dq.

Corollary 1 Any symplectic manifold is even dimensional.

Such coordinates (q, p) are called symplectic, canonical, or Darboux coordinates.
Note that ω associates to any vector field v on M the differential 1-form f :

f (·) = ω(·,v),

where on the empty place · an arbitrary vector field can be posed. Let J be the
inverse operator. It exists because ω is non-degenerate, and the dimensions of the
vector spaces TxM and T ∗x M (x ∈M) coincide. Then

f (·) = ω(·,J f ).

Let H : M → R be a smooth function. It determines the 1-form dH.

Definition 1 The vector field vH = JdH on M is called the Hamiltonian vector field
with Hamiltonian H.

Hence dH(·) = ω(·,vH).

Problem 1 Check that in canonical coordinates the Hamiltonian vector field takes
the traditional form vH = (Hp,−Hq).

Any map T : M → M preserving the symplectic structure is called symplectic.
Symplectic maps can be regarded as discrete analogs of Hamiltonian systems.

Problem 2 Let (q, p) be canonical local coordinates on M and let T : M →M be
symplectic. Prove that the functions (P,Q) = (q◦T, p◦T ) are also canonical local
coordinates on M.

Problem 3 Let (q, p) and (P,Q) be local coordinates on M such that for some
smooth function W = W (q,P)

p =
∂W
∂q

, Q =
∂W
∂P

. (2)

Suppose also that the coordinates (q, p) are canonical. Prove that (P,Q) are also
canonical.

Hence in variables P,Q equations (1) remain the same:

Q̇ =
∂H

∂P
, Ṗ =−∂H

∂Q
,

where the Hamiltonian is the same: H (P,Q) = H(p,q).
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The function W can depend on t. It is called a generating function of the canonical
transformation (q, p) �→ (P,Q). In the non-autonomous case the new Hamiltonian
equals

H (P,Q, t) = ∂W (q,P, t)/∂ t +H(p,q, t).

1.2 The Poisson bracket

Let (M,ω) be a symplectic manifold. For any two functions H,F on M we define
the Poisson bracket

{H,F} := ∂vH F = dF(vH).

Here ∂vH is the operator of differentiation w.r.t. the vector field vH . The first equality
is a definition, while the second one is just an identity.

We have the following simple properties of the Poisson bracket.

1. A smooth function F is a first integral of the Hamiltonian equations with Ham-
iltonian H ⇐⇒ {H,F}= 0.

2. {H,F}= ω(vH ,vF).
3. The operation {·, ·} is bilinear and skew-symmetric.

According to 1 and 3 in any (autonomous) Hamiltonian system the Hamiltonian
is a first integral.

4. In canonical coordinates {H,F}= ∑n
j=1

(
∂H
∂ p j

∂F
∂q j
− ∂H

∂q j
∂F
∂ p j

)
.

A direct calculation in canonical coordinates gives
5. The Leibnitz identity:

{FG,H}= F{G,H}+{F,H}G.

6. The Jacobi identity:

{F,{G,H}}+{G,{H,F}}+{H,{F,G}}= 0

for any three functions F,G,H : M → R.
This Poisson bracket is non-degenerate, i.e., for any z ∈ M and any function F

such that dF 	= 0 at z there exists G such that {F,G} 	= 0. In some physical problems
degenerate Poisson brackets appear,2 but we will not deal with these cases below.

For any two vector fields u,v on M let [u,v] be their commutator:

∂[u,v] = ∂u∂v−∂v∂u.

Theorem 2 For any two functions F,G on M

[vF ,vG] = v{F,G}.

2 Such Poisson brackets are not generated by symplectic structures.
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Proof. For an arbitrary function ϕ on M we have:

∂v{F,G}ϕ = {{F,G},ϕ} = −{{G,ϕ},F}−{{ϕ,F},G}
= {F,{G,ϕ}}−{G{F,ϕ}} = (∂vF ∂vG −∂vG∂vF )ϕ. 
�

Proposition 1 (Poisson). Let F and G be first integrals of the Hamiltonian system
(M,ω,H). Then {F,G} is also a first integral.

Indeed, if {H,F}= {H,G}= 0 then by the Jacobi identity {H,{F,G}}= 0. 
�
Unfortunately, this statement is not of much use in the problem of the search for

new integrals of motion. Usually the Poisson bracket of two integrals is an already
known integral or zero.

We say that two functions F,G are in involution or commute if {F,G}= 0.

1.3 Liouville theorem on completely integrable systems

Suppose that the system (M,ω,H) (dimM = 2m) has m first integrals F1, . . . ,Fm in
involution: {Fj,Fk}= 0. Consider the joint integral level

Mf = {z ∈M : Fj(z) = f j = const, j = 1, . . . ,m}. (3)

Theorem 3 (Liouville–Arnold) Suppose that on Mf the functions Fj are indepen-
dent. Then

1. Mf is a smooth manifold, invariant with respect to the Hamiltonian system ż =
vH.

2. Each compact connected component of Mf is diffeomorphic to an m-
dimensional torus 3

T
m.

3. In some coordinates (ϕ1, . . . ,ϕm) mod 2π on T
m the Hamiltonian equations

have the form ϕ̇ = λ , where λ = λ ( f ) ∈ R
m is a constant vector.

Proof. Assertion (1) follows from the implicit function theorem. To check (2) and
(3), we note that the vector fields v j = vFj are tangent to Mf . (Indeed, ∂v j Fk =
{Fj,Fk} = 0.) Since the functions Fj are independent on Mf , the vector fields v j
are also independent on Mf . Moreover,

[v j,vk] = v{Fj ,Fk} = 0.

It remains to use the following geometric fact (see for example, [2]):

Lemma 2 Any compact connected m-dimensional manifold on which there are m
everywhere independent commuting vector fields is diffeomorphic to the torus T

m.
Moreover there are angular coordinates (ϕ1, . . . ,ϕm) mod 2π on it such that all the
m vector fields become constant (ν j = const ∈ R

m). 
�
3 In the non-compact case Mf turns out to be T

k×R
m−k, 0 � k < m (see [2]).
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Problem 4 Check that the tori T
m
f from Theorem 3 are Lagrangian, i.e., dimT

m
f = m

and restriction of the symplectic structure to T
m
f vanishes.

Hamiltonian systems having a complete set (i.e., m) of almost everywhere inde-
pendent first integrals in involution are said to be completely, or Liouville integrable.

In Liouville integrable systems there are convenient, so-called, action-angle co-
ordinates (ϕ, I) (I are the actions and ϕ are the angles) such that

• ω = dI∧dϕ (symplecticity),
• H = H(I) (i.e., I are first integrals),
• ϕ = ϕ mod 2π (i.e. ϕ are angular coordinates on the tori Mh).

2 A pendulum with rapidly oscillating suspention point

Mathematical pendulum is a (classical) mechanical system that consists of the rigid
weightless rod AB with fixed end A. A point with mass m is attached to the end B.
The motion is assumed to take place in a fixed vertical plane in the constant gravity
force field. This system is well-known and Liouville integrable.

Consider a more complicated problem. Let the point A vertically periodically
oscillate. Period and amplitude of the oscillations is assumed to be small (of order
ε). We are interested in the action of the oscillations of the suspension point on the
dynamics.

Consider in the plane of motion a fixed coordinate system such that the x-axis
is horizontal, the y-axis is vertical, and A lies on the y-axis. We assume that in this
coordinate system

A(t) =
(

0,aε cos
ωt
ε

)
, ω =

√
g
l
.

Here g is the gravity acceleration, l = |AB| is the length of the pendulum, and ε is
small. The frequency ω is introduced so that ε is dimensionless. The dimension of
a is length.

The system is non-autonomous and has one degree of freedom. It is convenient
to take the angle ϕ between the pendulum and the vertical, directed downward, as a
variable, that determines position of the system.

Problem 5 Obtain the Lagrangian of the system.

Hint. L = T (ϕ, ϕ̇, t)−V (ϕ, t), where T and V are kinetic and potential energy
of the pendulum.

Answer.

L =
m
2

(
l2ϕ̇2−2alωϕ̇ sinϕ sin

ωt
ε

+a2ω2 sin2 ωt
ε

)
−mg

(
aε cos

ωt
ε
− l cosϕ

)
.
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It is convenient to remove from L all terms which depend only on time and to
divide L by ml2. Let L̂ be the Lagrangian, obtained in this way:

L̂ =
ϕ̇2

2
− aω

l
ϕ̇ sinϕ sin

ωt
ε

+ω2 cosϕ.

Problem 6 Prove that Lagrangian systems with Lagrangians L and L̂ are the same.

Problem 7 Obtain the Hamiltonian of the system.

Hint. H and L̂ are related by the Legendre transform: H(ϕ, p, t) = pq̇ −
L̂(ϕ, ϕ̇, t), where ϕ̇ in the right-hand side should be expressed in terms of (ϕ, p, t)
from the equation p = ∂ L̂/∂ ϕ̇ .

Answer.

p = ϕ̇− aω
l

sinϕ sin
ωt
ε

,

H =
p2

2
+ p

aω
l

sinϕ sin
ωt
ε

+
a2ω2

2l2 sin2ϕ sin2 ωt
ε
−ω2 cosϕ.

We will construct a canonical change of variables which removes dependence of
H on t in the main (zero) approximation in ε . We look for a change (ϕ, p) �→ (Φ ,P)
in the form

p =
∂W
∂ϕ

, Φ =
∂W
∂P

, W = Pϕ + ε f
(
ϕ,P,

ωt
ε

)
,

where f is 2π-periodic in the last argument.4 We have:

p = P+ ε fϕ , Φ = ϕ + ε fP.

The new Hamiltonian reads

H
(
Φ ,P,

ωt
ε

)
= ε ft +H

(
ϕ, p,

ωt
ε

)
= ωD3 f +H

(
Φ− ε fP,P+ ε fϕ ,

ωt
ε

)
,

where D3 is the derivative in the third argument. We obtain:

H = ωD3 f (Φ ,P,τ)+H(Φ ,P,τ)+O(ε), τ =
ωt
ε

.

Therefore H does not depend on t in zero approximation in ε provided the function

F = ωD3 f (Φ ,P,τ)+P
aω
l

sinΦ sinτ +
a2ω2

2l2 sin2Φ sin2 τ

does not depend on τ . We choose

f (Φ ,P,τ) = P
a
l

sinΦ cosτ +
a2ω
8l2 sin2Φ sin2τ,

4 This periodicity condition is necessary to have a change uniformly close to the identity for all t.
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and get5: F = a2ω2

4l2 sin2Φ . Hence, in the new variables

H =
P2

2
−ω2 cosΦ +

a2ω2

4l2 sin2Φ +O(ε),

where the part of H , contained in O(ε), is 2π-periodic in τ .

Remark 1 In fact it is possible to move the dependence on time to order O(εN) for
an arbitrary N > 0, and even to O(e−c/|ε |) for some positive constant c. However
it is impossible to reach more: for any 2π-periodic in τ canonical near-identity
change of variables the dependence of H on t will be greater than of order e−C/|ε |

for a certain constant C > 0.

Now let us study the system we have just obtained, neglecting the terms O(ε).
The system can be interpreted as the one describing the motion of a particle on a
line (or on the circle Φ mod 2π) in the force field with potential

V = ω2
(
− cosΦ +

a2

4l2 sin2Φ
)
.

The phase portrait of the system is (by definition) the set of level lines of the energy
integral P2

2 +V (Φ) = const. As usual, it is convenient to draw it under the graph of
the potential energy. There are two cases, see Fig. 1.

The left-hand side of the figure contains the case of “small” amplitude a2 < 2l2.
In this situation there are no qualitative differences with the case of the ordinary
pendulum (a = 0).

Fig. 1 Phase portraits. Left: a2 < 2l2, and right: a2 > 2l2

5 Recall once more that f should be periodic in τ .
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The situation changes drastically, when a2 > 2l2 (the right-hand side of the fig-
ure). In this case a bifurcation occurs and the equilibrium Φ =±π becomes stable.
Moreover, the terms O(ε) in the Hamiltonian do not destroy this effect, but we will
not go into the detail.

Problem 8 Draw the phase portrait in the case a2 = 2l2.

3 Anti-integrable limit

3.1 The standard map

The standard map is, probably, the basic conceptual model for Hamiltonian dynam-
ics in two degrees of freedom. Consider the cylinder

Z = {(x,y) : x mod 2π}

and its self-map Tε : Z →Z , (x,y) �→ Tε(x,y) = (X ,Y ), where

X = x+ y+ ε sinx, Y = y+ ε sinx. (1)

Here ε is a real parameter which controls the type of the dynamics (regular or
chaotic). The cylinder Z is said to be the phase space of the system. The dynam-
ics should be understood as properties of the trajectories, i.e., sequences of points
(xk,yk) ∈Z such that for any integer k

(xk+1,yk+1) = Tε(xk,yk).

The cylinder Z is a two-dimensional symplectic manifold with symplectic struc-
ture ω = dy∧dx.

Problem 9 Check that the map Tε is symplectic, i.e., T ∗ε ω = ω .

Any of you can easily look at trajectories of Tε by using a computer. To this end
we remark that the variable y can be also regarded as angular. Indeed, Tε “respects”
not only the shift of x by 2π , but also the analogous shift of y in the sense that for
any integer k and n

Tε(x+2πk,y+2πn) = (X +2πk,Y +2πk +2πn)

(shifts of X and Y also have the form 2π· (integer number)). Hence we can ask the
computer to draw on the screen the square

S = {(x,y) : 0 � x � 2π, 0 � y � 2π},
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to take an initial point (x0,y0) ∈S and to put it on the screen, to compute the point
(x1,y1) = Tε(x0,y0) and to put it on the screen, etc. If a point (xn,yn) leaves the
square, it should be returned6 to S by the shift of x and/or y by 2πk with a proper
integer k. I recommend you to do this and to look at the trajectories for various
values of ε .

Consider the case ε = 0. The system becomes a discrete analog of a Liouville
integrable Hamiltonian system. The variables x,y play the role of action-angle vari-
ables. In particular, the action y is a first integral. Any trajectory lies on the curve
(on the one-dimensional torus)

lc = {(x,y) ∈Z : y = c = const}.

The curve lc rotates by the angle c. If c/π is rational, the trajectory is periodic. If c/π
is irrational, the trajectory fills lc densely. Such curves lc are said to be non-resonant.

In the case ε 	= 0 the situation gets much more complicated. One should not hope
that any regular first integral exists, because trajectories (at least, some of them)
stop to lie on smooth curves (like the circles lc) and begin to demonstrate a chaotic
behavior.

However, the chaos appears gradually. According to the KAM-theory for small
values of ε many of nonresonant curves lc, slightly deformed, exist as invariant
curves for Tε . These curves can be easily seen on pictures, produced by numerical
simulations. Trajectories, lying on these circles, are regarded as regular.

Chaotic trajectories are presented on a computer screen as clouds, more or less
densely filled with points. If ε is small and initial conditions are taken randomly,
regular trajectories are more probable. When ε increases, the curves lc,ε destroy
and chaos becomes more noticeable. For large ε numerical simulations show that a
"typical" trajectory fills S almost without holes.

3.2 Anti-integrable limit

Chaotic trajectories can be constructed analytically. We show how to do this in the
anti-integrable limit, i.e., for large ε .

First, we rewrite the dynamical equations (1) in the “Lagrangian form”. Let
(xk,yk), k ∈ Z be a trajectory of the standard map. Then for all integer k

xk+1 = xk + yk + ε sinxk, yk+1 = yk + ε sinxk. (2)

Eliminating the momenta yk, we get:

xk+1−2xk + xk−1 = ε sinxk. (3)

6 In fact, we have replaced the (non-compact) phase space Z by (compact) T
2, where T

2 =
{(x,y) mod 2π}.
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The map takes the form (xk−1,xk) �→ (xk,xk+1), and the phase cylinder becomes:
{(x−,x) ∈ R

2}/ ∼, where the equivalence relation ∼ identifies any two points
(x′−,x′) and (x′′−,x′′) such that

x′− − x′′− = x′ − x′′ = 2πl, l ∈ Z.

Now trajectories of the map are the sequences {xk}k∈Z, satisfying (3). In case of
necessity yk can be calculated by using the first equation (2).

Consider the case ε = ∞. Formally speaking, for ε = ∞ there is no dynamics:
xk+1 can not be expressed in terms of xk−1 and xk. However still there are some
“trajectories”. Indeed, dividing by ε , we obtain:

sinxk =
1
ε
(xk+1−2xk + xk−1) = 0.

Hence, for ε = ∞ trajectories are sequences of the form

xk = πlk, lk ∈ Z. (4)

It turns out that for large ε the standard map has many trajectories similar to (4).
Take a large positive number Λ and define the space of codes CΛ which consists

of sequences

a = {ak}k∈Z, ak = πlk, lk ∈ Z, |ak+1−ak|�Λ .

Hence CΛ is the space of sequences (4) such that the distances between the points
ak+1 and ak are bounded from above by Λ .

For any code a ∈CΛ we define the metric space of sequences Πa:

x = {xk}k∈Z, sup
k∈Z

|xk−ak|< ∞.

Metric on Πa has the form

ρ(x′,x′′) = sup
k∈Z

|x′k− x′′k |, x′,x′′ ∈Πa.

Theorem 4 Given Λ > 0 and σ > 0 there exists ε0 = ε0(Λ ,σ) > 0 such that for
any code a ∈ CΛ and any ε > ε0 the standard map has a trajectory x̂ ∈ Πa with
ρ(x̂,a) < σ .

The trajectory x from Theorem 4 follows the code a in the sense that any point xk
differs from ak not more than by σ . Hence, we have constructed a set of trajectories
of the standard map which are in one-to-one correspondence with CΛ .

Problem 10 What is the cardinality of CΛ?
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It is natural to regard the trajectories x̂ as chaotic because according to our order
they jump along σ -neighborhoods of the set πZ. In fact, there is a more serious
motivation to say about chaos in this situation.7

3.3 Proof of the Aubry theorem

The proof is based on the contraction principle in the metric space (Πa,ρ).
Equations (3) can be presented in the form

xk = arcsink

(xk+1−2xk + xk−1

ε

)
, (5)

where arcsink is the branch of arcsinus such that arcsink(0) = ak ∈ πZ. Hence
arcsink maps the interval (−1,1) onto the interval (ak − π

2 ,ak + π
2 ), and the tra-

jectory x = a satisfies (5) for ε = ∞.
For big ε it is natural to construct x̂, satisfying (5), as follows. Consider the map

x �→ x̃ = W (x) such that

x̃k = arcsink

(xk+1−2xk + xk−1

ε

)
.

Any fixed point of W is obviously a trajectory of the standard map.

Lemma 3 Let ε > ε0, where ε0 = ε0(Λ ,σ) is sufficiently large. Then

1. W is defined on the ball Ba,σ ⊂Πa with center a and radius σ ;
2. W (Ba,σ )⊂ Ba,σ ;
3. W is a contracting map on Ba,σ , i.e.,

ρ(W (x′),W (x′′)) <
1
2
ρ(x′,x′′) for any x′,x′′ ∈ Ba,σ . (6)

Theorem 4 follows from Lemma 3. Now we will prove the lemma. Below without
loss of generality we assume that σ < π/2.

(1)+(2). To check that W (Ba,σ )⊂Ba,σ it is sufficient to show that for any x∈Ba,σ

∣∣∣xk+1−2xk + xk−1

ε

∣∣∣ < sinσ . (7)

Since ρ(x,a) < σ and a ∈CΛ , we have:

|xk+1−2xk + xk−1|� |xk+1− xk|+ |xk− xk−1|� 2(Λ +2σ).

7 It is easy to show that the trajectories x̂ form a hyperbolic set in the standard map.
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Hence, inequality (7) holds if

ε0 >
2(Λ +2σ)

sinσ
.

(3). Note that for any pair of real numbers u′,u′′ ∈ (−sinσ ,sinσ)

|arcsink u′ − arcsink u′′|� 1
cosσ

|u′ −u′′|.

Here the multiplier 1
cosσ = sup

u∈(−sinσ ,sinσ)
| d

du arcsink u|.

We put x̃′ = W (x′), x̃′′ = W (x′′). Then for any k ∈ Z

|x̃′k− x̃′′k | =
∣∣∣∣arcsink

(x′k+1−2x′k + x′k−1

ε

)
− arcsink

(x′′k+1−2x′′k + x′′k−1

ε

)∣∣∣∣

� 1
cosσ

∣∣∣x′k+1−2x′k + x′k−1

ε
−

x′′k+1−2x′′k + x′′k−1

ε

∣∣∣

�
|x′k+1− x′′k+1|+2|x′k− x′′k |+ |x′k+1− x′′k+1|

ε cosσ

� 4
ε cosσ

ρ(x′,x′′).

Hence, inequality (6) holds if

ε0 >
8

cosσ
.


�

3.4 Some remarks

I would like to mention one unpleasant fact, which is that all methods that are known
to date give a metrically negligible chaotic set in Tε and analogous systems. I mean
the following. Given an arbitrary ε consider a set of chaotic trajectories that can be
constructed by all methods, known by now. This subset of the cylinder Z has zero
measure.

This contradicts to our physical intuition, for large ε chaos should dominate. The
results of computer simulations also show that this should be the case. But maybe
we should not believe these computer pictures, as the precision of computations is
necessarily finite. Nevertheless, most of specialists believe that the following con-
jecture is true.

Conjecture. For ε 	= 0 in the standard map, chaos lives on sets of positive
measure.
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4 Separatrix splitting

4.1 Poincaré’s observation

Consider a Hamiltonian system, obtained as a non-autonomous perturbation of a
system with one degree of freedom:

ẋ =
∂H
∂y

, ẏ =−∂H
∂x

, (x,y) ∈ D⊂ R
2. (1)

Here D is a domain and

H(x,y, t,ε) = H0(x,y)+ εH1(x,y, t)+O(ε2). (2)

We assume that H is 2π-periodic in t and ε is a small parameter.
Let z0 = (x0,y0) ∈ D be an equilibrium in the unperturbed (ε = 0) system:

gradH0(z0) = 0. In the extended phase space D×T instead of the equilibrium we
have the 2π-periodic solution z0×T.

Suppose that the equilibrium position (and therefore, the corresponding periodic
solution) is hyperbolic. This means the following. Let

A =

⎛
⎜⎜⎝

∂ 2H0

∂x∂y
∂ 2H0

∂y2

−∂ 2H0

∂x2 −∂ 2H0

∂y∂x

⎞
⎟⎟⎠(z0)

be the matrix determined by the linearization of (1)|ε=0 at z0. Then trA = 0. Hyper-
bolicity means that eigenvalues of A are outside the imaginary axis, i.e., detA < 0.
Hyperbolic equilibria of Hamiltonian systems are exponentially unstable.

On the critical energy level H0(x,y) = H0(z0) asymptotic curves (separatrices)
Λ s,u are situated.8 We assume that the separatrices are doubled: Λ s = Λ u = Λ . In
the extended phase space we have 2-dimensional asymptotic surfaces Λ s ×T =
Λ u×T =Λ ×T.

Problem 11 Prove that for small values of ε the perturbed system has a 2π-periodic
solution (σε(t), t), σε(t) = z0 +O(ε) ∈ D.

The periodic solution (σε(t), t) is hyperbolic. Hence by the Hadamard-Perron
theorem 9 there are surfaces W s,u

ε ⊂ D×T, asymptotic to (σε(t), t). They are small
deformations of the unperturbed surfaces W s,u

0 =Λ s,u×T.
Poincaré discovered that W s

ε and W u
ε are generically distinct for ε 	= 0. Let us

draw these surfaces. We will present a picture on the Poincaré section D×{0}.
Hence, the periodic solution (σε(t), t) is presented by the point zε = σε(0), and
instead of the surfaces W s,u

ε we have the curves Λ s,u
ε = W s,u

ε ∩{t = 0}.
8 s from “stable” and u from “unstable”: not very good, but traditional notation.
9 Poincaré could prove this theorem, for analytic systems.
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Fig. 2 A complicated behavior of the separatrices for ε 	= 0 (right) unlike the unperturbed case
(left) on the Poincaré section {(x,y, t) : t = 0 mod 2π}. The dashed domains are mapped by Tε to
each other. Hence, their areas are the same

To obtain the right-hand part of Fig. 2, one should keep in mind the following:

(a) For small ε the curves Λ u and Λ u
ε (and also Λ s and Λ s

ε ) differ just a little, at
least, till Λ s,u

ε are not far away from zε .
(b) Λ s,u

ε are invariant w.r.t. the Poincaré map Tε .
(c) Λ s,u

ε have no self-intersections, but can intersect each other.
(d) Any intersection point z∗ 	= zε of the curves Λ s

ε and Λ u
ε (a homoclinic point) is

mapped by Tε (and by T−1
ε ) to a homoclinic point.

(e) Near the fixed point zε Tε is approximately determined by its linear approxima-
tion: it extends along Λ u

ε and contracts along Λ s
ε .

(f) Tε and T−1
ε preserve area.

Now it remains to assume that the curves Λ s
ε and Λ u

ε intersect transversally at some
point z∗, and the right-hand side of Fig. 2 readily appears. The complicated entan-
gled net formed by the curves Λ s,u

ε is an evidence of the complicated dynamics in
the perturbed system.

4.2 The Poincaré integral

To measure the separatrix splitting, we calculate the area of a lobe, presented in
Fig. 2. The main tool for this and similar calculations is the Poincaré integral.

Let γ(t) be the natural parametrization of Λ , i.e.,

γ(t) = (x̂(t), ŷ(t)) (3)

is a solution of (1). Since addition to the Hamiltonian of a function, depending only
on t and ε , does not influence on the dynamics, we will assume that H1(z0, t) ≡ 0.
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Then the Poincaré integral

P(τ) =
∫ +∞

−∞
H1(γ(t + τ), t)dt

converges.

Problem 12 Prove that P(τ) is 2π-periodic.

Problem 13 Prove the identity

dP(τ)
dτ

=
∫ +∞

−∞
{H0,H1}(γ(t + τ), t)dt,

The function P contains all information on the separatrix splitting in the first
approximation in ε .

Theorem 5 Let τ1 and τ2 be two neighboring non-degenerate critical points of P .
Then there are two associated to them homoclinic points such that the area A (ε) of
the corresponding lobe equals

A (ε) = |εP(τ1)− εP(τ2)|+O(ε2). (4)

4.3 Proof of Theorem 5

4.3.1 Hamilton–Jacobi equation

Following Poincaré, consider the case when Λ projects one-to-one to the axis. In
the general case the proof is based on the same ideas.

The curve Λ (see Fig. 3) can be determined by the equation y = ∂ϕ
∂x (x) for some

function ϕ(x). We have an analogous equation in the extended phase space, i.e., the
surface W s

0 = W u
0 has the form

{
(x,y, t) : y =

∂ϕ
∂x

(x)
}

.

Fig. 3 The case, considered in the proof of Theorem 5, appears when x is an angular variable. For
example, for non-autonomous perturbation of a pendulum. The corresponding separatrices look as
in the figure
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The perturbed asymptotic surfaces are as follows:

{
(x,y, t) : y =

∂Ss,u

∂x
(x, t,ε)

}
, Ss,u(x, t,0) = ϕ(x).

Remark 2 The functions Ss,u are defined non-uniquely: up to an addition of arbi-
trary functions f s,u(t,ε).

Proposition 4 One can assume that Ss,u satisfy the Hamilton-Jacobi equation

∂Ss,u

∂ t
(x, t,ε)+H

(
x,
∂Ss,u

∂x
(x, t,ε), t,ε

)
= 0. (5)

Remark 3 Equation (5) for ε = 0 shows that if we want the equations Ss,u(x, t,0)=
ϕ(x) to hold exactly (not up to an addition of a function of t), we should put H0|Λ =0.

Proof of Proposition 4 is based on a direct calculation. Let (x,y, t) =
(x, ∂S

∂x (x, t,ε), t) be a point, lying on Wε (for brevity we do not write the indices
s,u), and ()· = d

dt , denotes the time derivative w.r.t. equations (1). Then

ẏ =
∂ 2S
∂x∂ t

(x, t,ε)+
∂ 2S
∂x2 (x, t,ε) ẋ

= −∂H
∂x

(x,y, t,ε)

= − ∂
∂x

H
(

x,
∂S
∂x

(x, t,ε), t,ε
)

+
∂H
∂y

(x,y, t,ε)
∂ 2S
∂x2 (x, t,ε).

Since ∂ 2S
∂x2 ẋ = ∂H

∂y
∂ 2S
∂x2 , we get:

∂
∂x

(
∂S
∂ t

(x, t,ε)+H
(

x,
∂S
∂x

(x, t,ε), t
))

= 0.

Hence for some function α(t,ε)

∂S
∂ t

(x, t,ε)+H
(

x,
∂S
∂x

(x, t,ε), t
)

= α(t,ε).

By Remark 2 α can be taken equal to zero. 
�

4.3.2 The function Ssss,,,uuu
1 and the Poincaré integral

Expand equations (5) in power series in ε . Let S = ϕ(x)+εS1(x, t)+O(ε2). In zero
approximation we have:

∂ϕ
∂ t

(x)+H0

(
x,
∂ϕ
∂x

)
= 0.

(compare with Remark 3).
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The first approximation is as follows:

∂Ss,u
1

∂ t
(x, t)+H1

(
x,
∂ϕ
∂x

, t
)

+
∂H0

∂y

(
x,
∂ϕ
∂x

) ∂ 2Ss,u
1

∂x∂ t
(x, t) = 0. (6)

Since ∂H0/∂y = ẋ, equation (6) can be rewritten in the form

d
dt

Ss,u
1 (x, t)+H1

(
x,
∂ϕ
∂x

, t
)

= 0. (7)

Plugging in (7) instead of x its parametrization x̂(t + τ) (see (3)), we get:

d
dt

Ss,u
1 (x̂(t + τ), t) = H1(γ(t + τ), t).

Now we integrate in t:

Ss
1(x̂(t + τ), t)−Ss

1(x̂(+∞), t) =
∫ +∞

t
H1(γ(s+ τ),s)ds,

Su
1(x̂(t + τ), t)−Su

1(x̂(−∞), t) = −
∫ t

−∞
H1(γ(s+ τ),s)ds.

(Recall that x̂(−∞) = x̂(+∞) = x0.) Hence

Ss
1(x̂(t + τ), t)−Su

1(x̂(t + τ), t) = P(τ)+β (t),

where β (t) = Ss
1(x0, t)−Su

1(x0, t). Differentiating in τ , we get:

˙̂x(t + τ)
∂
∂x

(
Ss

1(x̂(t + τ), t)−Su
1(x̂(t + τ), t)

)
= P ′(τ). (8)

4.3.3 Homoclinic points and lobes

Homoclinic points are determined by the equations (x, ∂Ss

∂x ) = (x, ∂Su

∂x ) i.e.,

∂ϕ
∂x

(x̂(t + τ))+ ε
∂Ss

1
∂x

(x̂(t + τ), t)− ∂ϕ
∂x

(x̂(t + τ))− ε
∂Su

1
∂x

(x̂(t + τ), t)+O(ε2) = 0,

where we take again x̂(t + τ) instead of x. According to (8) and the relation
˙̂x(t + τ) 	= 0 we get:

P ′(τ)+O(ε) = 0.

Hence non-degenerate critical points of P(τ) generate homoclinic points.
Question. Why we need non-degeneracy and in what sense we use the word

“generate”?
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Let τ1 and τ2 be two consecutive non-degenerate critical points of P(τ). The
corresponding homoclinic points z1 = (x1,y1), z2 = (x2,y2) on the Poincaré section
{t = 0 mod 2π} are “angles” of a lobe. Let A (ε) be its area. Then

A (ε) =
∣∣∣∣
∫ x2

x1

(∂Ss

∂x
(x,0,ε)− ∂Su

∂x
(x,0,ε)

)
dx

∣∣∣∣

=
∣∣∣∣
∫ x2

x1

(
ε
∂Ss

1
∂x

(x,0)− ε
∂Su

1
∂x

(x,0)
)

dx
∣∣∣∣+O(ε2).

We change variables x = x̂(τ) in the integral and use (8):

A (ε) =
∣∣∣∣
∫ τ2

τ1

ε
∂
∂x

(
Ss

1(x̂(τ),0)−Su
1(x̂(τ),0)

)
˙̂x(τ)dτ

∣∣∣∣+O(ε2)

=
∣∣∣
∫ τ2

τ1

εP ′(τ)dτ
∣∣∣+O(ε2).

This implies (4). 
�

4.4 Standard example

Consider a pendulum with a vertically oscillating suspension point, i.e., the system
with Hamiltonian

H(x,y, t,ε) =
1
2

y2 +Ω 2 cosx+ εθ(t)cosx. (9)

Performing in case of necessity the change t �→ λ t, we can assume that θ is 2π-
periodic.

A natural parametrization on the unperturbed separatrix γ(t) can be computed
explicitly.

Problem 14 Check that cos(x̂(t)) = 1−2cosh−2(2Ω t).

Hence P(τ) =
∫ +∞
−∞ θ(t)(cos(x̂(t + τ))−1)dt.

Problem 15 Check that for θ(t) = cos t

P(τ) =− π cosτ
2Ω 2 sinh( π

2Ω )
.

If θ(t) = cos t lobes have the areas

A (ε) =
επ

Ω 2 sinh( π
2Ω )

+O(ε2).
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Four lectures on the N-body problem

Alain Chenciner1

Abstract In the first two lectures, Hamiltonian techniques are applied to avatars
of the N-body problem of interest to astronomers: the first one introduces one of
the simplest non integrable equations, the planar circular restricted problem in the
lunar case, where most degeneracies of the general (non-restricted) problem are not
present; the second one is a quick introduction to Arnold’s theorem on the stabil-
ity of the planetary problem where degeneracies are dealt with thanks to Herman’s
normal form theorem. The last two lectures address the general (non-perturbative)
N-body problem: in the third one, a sketch of proof is given of Marchal’s theorem
on the absence of collisions in paths of N-body configurations with given endpoints
which are local action minimizers; in the last one, this theorem is used to prove
the existence of various families of periodic and quasi-periodic solutions with pre-
scribed symmetries and in particular to extend globally Lyapunov families bifurcat-
ing from polygonal relative equilibria. Celestial mechanics is famous for demanding
extensive computations which hardly appear here: these notes only describe the
skeleton on which these computations live.

1 The Poincaré–Birkhoff–Conley twist map of the annulus
for the planar circular restricted three-body problem

1.1 The Kepler problem as an oscillator

The (normalized) motions in a plane of a particle submitted to the Newtonian
attraction of a fixed center – the so-called Kepler problem – are the solutions of
the equation

ẍ =−x/|x|3,

1 University Paris 7 and IMCCE (Paris Observatory)
e-mail: chenciner@imcce.fr

W. Craig (ed.), Hamiltonian Dynamical Systems and Applications, 21–52. 21
c© 2008 Springer Science + Business Media B.V.
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where x ∈R
2 = C is identified with a complex number and the dot denotes the time

derivative. These equations are the Hamilton equations

ẋ =
∂H
∂ ȳ

, ẏ =−∂H
∂ x̄

associated to the Hamiltonian H : (C \ {0})×C→ R and the symplectic form ω
respectively defined by

H(x,y) = |y|2−2/|x|, ω = dx∧dȳ+dx̄∧dy.

The Levi-Civita mapping (z,w) �→ (x = 2z2, y = w/ε z̄) defines a two-fold covering

(L.C.) K−1(0)\{z = 0}→ Σε = H−1(−1/ε2)

from the complement of the plane z = 0 in the 0-energy three-sphere K−1(0) of the
harmonic oscillator

K(z,w) = |z|2 + |w|2− ε2 = ε2|z|2
[
H
(
2z2,w/ε z̄

)
+1/ε2] ,

to the energy hypersurface Σε = H−1(−1/ε2) of the Kepler problem (both diffeo-
morphic to S1×R

2). It is conformally symplectic and sends integral curves of the
harmonic oscillator with energy ε2 to those of the Kepler problem with energy
−1/ε2 after the change of time dt = 2ε|x|dt ′ which prevents the velocity to be-
come infinite at collision. In the coordinates u1 = w + iz, u2 = w̄ + iz̄ these integral
curves are u1(t) = c1eit , u2(t) = c2eit , |c1|2 + |c2|2 = 2ε2, that is the intersections
of the three-sphere with the complex lines u1/u2 = cste, or in other words the fibers
of the Hopf fibration (u1,u2) �→ u1/u2 : S3 → P1(C). The closest approximation to
a section of the Hopf map, the annulus

argu1 + argu2 = 0 (mod 2π)

is a global surface of section of the flow of the Harmonic oscillator in a sphere of
constant energy: with the exception of the two fibers which form its boundary, all
the fibers cut this annulus transversally in two points; hence, the second return map
is the identity. Thus perturbations of the Kepler problem with negative energy are
essentially perturbations of the identity map. This is one of the main sources of
degeneracies in celestial mechanics.

1.2 The restricted problem in the lunar case

The equations of the N-body problem

r̈i = g∑
j 	=i

m j(r j− ri)
||ri− r j||3
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make sense even if some of the masses vanish. Such masses are influenced by the
non-zero masses but do not influence them. We shall consider two primaries, say the
Sun (mass µ) and the Earth (mass ν) which have a uniform circular motion around
their center of mass and a zero-mass third body, say the Moon, which stays close
to the Earth. We shall use the normalization g = 1 and µ +ν = 1. We identify the
inertial plane with C (coordinate X = X1 + iX2 centered on the center of mass of
the couple Sun-Earth) and introduce a rotating complex coordinate x = x1 + ix2 =
Xe−iωt − µ centered on the Earth. Setting y = ẋ + iωx (up to a translation, this is
the velocity in the inertial frame), the equations of motion of the Moon take the
Hamiltonian form

ẋ =
∂H
∂ ȳ

, ẏ =−∂H
∂ x̄

,

where H is the Jacobi integral (the constant 2µ is added for convenience)

H(x,y) = |y|2 + iω(x̄y− xȳ)− 2ν
|x| −

2µ
|x+1| −µ(x+ x̄)+2µ .

More precisely, the vector field is the symplectic gradient of the symplectic form

ω = dx∧dȳ+dx̄∧dy = 2(dx1∧dy1 +dx2∧dy2).

As in the first section, we consider the energy hypersurface H−1(1/ε2), with ε a
small parameter. Its projection on the x plane is made of three connected compo-
nents: a neighborhood of the Sun, a neighborhood of the Earth and a neighborhood
of infinity (the so-called Hill’s regions, which imply Hill’s stability result, praised by
Poincaré). We shall be interested in the connected component of H−1(1/ε2) where
|x| stays small. Then

H(x,y) = |y|2 + iω(x̄y− xȳ)− 2ν
|x| −2y′µ

[
1
4
|x|2 +

3
8
(x2 + x̄2)+O3(x)

]
.

We see that the influence of the Sun on the Moon becomes negligible with respect to
the one of the Earth and that at the collision limit, it disappears and one is left with
a Kepler problem. To make this apparent, we again apply the Levi–Civita transfor-
mation. We get

K(z,w) = ε2|z|2
[

H
(

2z2,
w
ε z̄

)
+

1
ε2

]
= f 2(z,w)|z|2 + |w|2−νε2− ε2µ

1
2

g(z),

where

f (z,w) =
√

1+2iε(z̄w− zw̄), g(z) = 2|z|2
(

1
|2z2 +1| −1+ z2 + z̄2

)
.

As in the Kepler case, the direct image of the restriction to K−1(0)\{z = 0} of the
Hamiltonian flow ż = ∂K

∂ w̄ , ẇ =− ∂K
∂ z̄ becomes the flow of the restricted problem with

Jacobi constant −1/ε2 after the change of time dt = 2ε|x|dt ′.
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Each truncation of the Taylor expansion of K(z,w) at the origin,

K(z,w)=−νε2 +|z|2 +|w|2 +2iε|z|2(z̄w−w̄z)−ε2µ(2|z|6 +3|z|2(z4 + z̄4)+08(z)),

makes sense dynamically when restricted to K−1(0) : we get

At order 2, the harmonic oscillator, which regularizes the Kepler problem
At order 4, the regularization of the Kepler problem in a rotating frame
At order 6, Hill’s problem. This is the highest order of interest to us

1.3 Hill’s solutions

The truncation K̂(z,w) = −νε2 + f 2(z,w)|z|2 + w2 of K at fourth order is a com-
pletely integrable Hamiltonian, a first integral being the angular momentum or, what
is equivalent, the function f 2(z,w). This is not surprising as we already knew that
the restriction to K−1(0) corresponds to the completely integrable Kepler problem
in a rotating frame. The intersection of level hypersurfaces of K and f 2 defines in
general a two-dimensional torus, except when the two hypersurfaces are tangent,
that is when w =±i f (z,w)z. In this case the intersection degenerates to a circle; in
K−1(0), this defines two solutions which project (by a 2-1 map) onto the two cir-
cular solutions (one direct, one retrograde) of the rotating Kepler problem with the
given value −1/ε2 of the Jacobi constant.

From now on, two roads may be followed: one can, along with Kummer [Ku],
stick to symplectic coordinates or one can, as did Conley, use the simpler but not
symplectic coordinates

ξ1 = w+ i f (z,w)z, ξ2 = w̄+ i f (z,w)z̄.

We shall follow Conley. The equations ż = ∂K
∂ w̄ , ẇ =− ∂K

∂ z̄ take the form

ξ̇1 = iξ1

(
1− ε

2
|ξ1− ξ̄2|2

)
+ ε2O5(ξ1,ξ2),

ξ̇2 = iξ2

(
1+

ε
2
|ξ1− ξ̄2|2

)
+ ε2O5(ξ1,ξ2).

For this section, we do not need the exact expression of the terms of order 5.
We shall show that the energy hypersurface K−1(0) contains two periodic solu-

tions of minimal periods close to 2π , corresponding to the so-called Hill’s lunar or-
bits, direct and retrograde, which are almost circular periodic motions of the Moon
around the Earth in the rotating frame. The value 0 of the energy does not play
a special role and it is in fact possible to prove the existence of two “Lyapunov”
families of periodic solutions stemming from the origin and foliating two smooth
(even analytical) germs of invariant surfaces in the (z,w) four-dimensional phase
space. This is a degenerate version of Lyapunov’ theorem, the degeneracy being the
double eigenvalues ±i of the linearization ξ̇1 = iξ1, ξ̇2 = iξ2, of the vector-field at
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ξ1 = ξ2 = 0. Recall that this degeneracy comes from the fact that all solutions of the
Kepler problem with a given energy are periodic with the same period. Here are the
main steps of the proof of the existence of Hill’s orbits.

1. Putting the vector-field into normal form at order 3: the idea, which goes back
to Poincaré’s thesis and was much developed by Birkhoff, is to simplify as much
as possible a finite part of the vector-field’s Taylor expansion at the origin by
means of local change of variables tangent to Identity. It relies on the fact that
replacing X = (x1, · · · ,xn) by Y = X + h(X), where the components of h(X)
start with terms homogeneous in X of degree r, transforms the equation Ẋ =
AX + F(X) into the equation Ẏ = AY + [A,h](Y ) + Or+1, where [, ] is the Lie
bracket of the two vector-fields. If A = diag(λ1, · · · ,λn) and h = (h1, . . . ,hn)
with hs(Y ) = yi1

1 · · ·yin
n and h j = 0 if j 	= s, one checks that [A,h] = k with ks(Y ) =

(i1λ1 + · · ·+ inλn − λs)y
i1
1 · · ·yin

n and k j = 0 if j 	= s. It follows that one can
suppress only non-resonant terms, i.e. those for which no resonance relation
i1λ1 + · · ·+ inλn−λs = is satisfied.

In our case, this allows to replace the equations by the following (we kept the
same name for the variables):

ξ̇1 = iξ1
(
1+α|ξ1|2 +β |ξ2|2

)
+ ε2ϕ1(ξ1,ξ2),

ξ̇2 = iξ2
(
1+a|ξ1|2 +b|ξ2|2)

)
+ ε2ϕ2(ξ1,ξ2),

with α = β = − ε
2 , a = b = + ε

2 , ϕ1 and ϕ2 of order 5 in ξ1,ξ2, ξ̄1, ξ̄2. In the
neighborhood of the origin, the flow Φt(ξ1,ξ2) = (ξ1(t),ξ2(t)) can be written

ξ1(t) = eit [ξ1(1+ i(α|ξ1|2 +β |ξ2|2)t)+ ε2α1(ξ1,ξ2, t)
]
,

ξ2(t) = eit [ξ2(1+ i(a|ξ1|2 +b|ξ2|2)t)+ ε2α2(ξ1,ξ2, t)
]
,

with α1,α2 of order 5 in ξ1,ξ2, ξ̄1, ξ̄2 uniformly in t belonging to a compact.
2. Regularizing the equations for a periodic solution by means of a blow-up: We

look for a periodic solution whose period T is close to the period 2π of the
solution ξ2 = 0 of the rotating Kepler problem approximation (an analogous
reasoning can be made for a solution close to ξ1 = 0). Because of the existence
of the energy first integral, the equations which define a periodic solution of
period T , that is ξ1(T ) = ξ1, ξ2(T ) = ξ2, are consequence of the equations

Argξ1(T )−Argξ1 = 2π, ξ2(T )−ξ2 = 0.

Writing down directly these equations would lead to possibly non differentiable
terms like α1(ξ1,ξ2)/ξ1. Indeed, they read

2π = T + arg
[

1+ i(α|ξ1|2 +β |ξ2|2)T + ε2α1(ξ1,ξ2,T )
ξ1

]
,

[
eiT (

1+ i(a|ξ1|2 +b|ξ2|2)T
)
−1

]
ξ2 + ε2eiTα2(ξ1,ξ2,T ) = 0.
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We solve this problem by a further localization in a domain of the form |ξ2|�
|ξ1| by means of a complex blow-up

ξ1 = z1, ξ2 = z1z2

which replaces such a term by α1(z1,z1z2)/z1 which is now differentiable. The
first equation determines T as a C3 function of z1, z̄1,z2, z̄2,

T = 2π−2π|z1|2(α +β |z2|2)+o3,

where o3 vanishes at order 3 along z1 = 0. The second one becomes

2πi|z1|2(a−α +(b−β )|z2|2)z2 +o3 = 03.

As a−α = ε 	= 0, solving this equation leads to a C1 surface tangent to the
plane z2 = 0, that is in the (ξ1,ξ2) space to a C2 surface N1 tangent at order 2
to the plane ξ2 = 0. Intersecting with the energy hypersurface K = 0 gives the
seeked for periodic solution. In the same way, one proves the existence of N2
tangent to ξ1 = 0.

3. Proving the analyticity of N1 and N2: This is done in Conley’s thesis by closely
following the proof given in the non-resonant case by Siegel and Moser. To
understand the formulas, one suppresses the resonant terms of any order by
means of a formal (not convergent !) transformation. One gets new (formal
coordinates) ζ1,ζ2 such that ζ̇1 and ζ̇2 become formal series in the resonant
terms ζi|ζ j|2 and ζi(ζ jζ̄k). Rewriting the computation of periodic solutions as
above leads to formal surfaces N1 and N2 where, for example, N1 is defined by
a (formal) equation of the form ζ2 = γ(|ζ1|2)ζ1, the restriction of the vector-
field being of the form ζ̇1 = α(|ζ1|2)ζ1 where α has purely imaginary values
(this corresponds to the fact that N1 is foliated by periodic solutions surrounding
the origin). One proves the convergence of γ and α by writing down majorant
series.

1.4 The annulus twist map

Replacing the boundaries ξ1 = 0 and ξ2 = 0 of the Kepler annulus by the two Hill
orbits, one can now construct a global annulus of section of the flow in the three-
sphere K−1(0) and analyze the first return map. Such an annulus is of course not
unique and it will be convenient to chose it so as to contain the “collision circle” of
equation z = 0.

In order to get precise enough information on the first return map, one must
analyze the equations up to the 5th order where the influence of the Sun comes
into play. Writing down a normal form up to this order implies first computing the
effect on terms of order five of the change of variables leading to a normal form
at order 3. In fact, one can dispense with this: it is enough to suppress only the
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non resonant terms of order 5, keeping the terms of order 3 as they stood initially.
Moreover, the above analysis of the submanifolds N1 and N2 whose intersection with
K = 0 defines Hill’s orbits, shows that there exists an analytic change of variables
which transforms them into coordinate planes. A finer analysis shows that such a
straightening change of variables differs from Id only by terms εA + ε2B, where A
is resonant of order 5 and B is of order 7. One deduces that such a straightening of
N1 and N2 does not bring any new change to the differential equation up to order 5.
Finally, we get new coordinates (ζ1,ζ2) such that N1 and N2 are respectively defined
by ζ1 = 0 and ζ2 = 0, and the energy hypersurface K−1(0) and the collision circle
z = 0 by

1
2
(|ζ1|2 + |ζ2|2)−νε2 + εO6(ζ ) = 0, and ζ1− ζ̄2 + εO5(ζ ) = 0.

It follows that an annulus of section in K−1(0) containing the collision circle and
bounded by the Hill orbits can be defined by the equation

Argζ1 +Argζ2 + εO4(ζ ) = 0 (mod 2π).

Computing a little more, one can find coordinates (ϕ,ρ) on this annulus, such that
the two boundaries are close to ρ =±1 and the first return map takes the form

Pε(ϕ,ρ) =
(
ϕ +

1
2
− ν

2
ε3− 3ν2

2
(1− µ

4
)ε6ρ +0(ε7), ρ +O(ε7)

)
.

Coming back to the definition of this annulus, one checks that the return map corre-
sponds essentially to the passages of the orbit of the Moon through aphelium in the
rotating frame. Originating from a Hamiltonian system, this map necessarily pre-
serves a measure defined by a smooth density. Moreover, it is a O(ε7) perturbation
of an integrable twist map whose twist is of size ε6. This is a perfect ground for ap-
plying the main results of the general theory of conservative twist maps, a particular
case of the theory of Hamiltonian systems with two degrees of freedom:

1. Applied to the iterates of the return map, the Birkhoff fixed point theorem yields
an infinite number of periodic orbits of higher and higher periods to which cor-
respond periodic orbits of long period of the Moon around the Earth in the
rotating frame.

2. The Moser invariant curve theorem implies the existence of a positive measure
Cantor set of invariant curves on which the map is conjugated to a diophantine
irrational rotation and to which correspond quasi periodic orbits of the Moon.

3. To the Liouville rotation numbers, the Aubry–Mather theory associates invari-
ant Cantor sets to which correspond orbits of the Moon with a Cantor caustic.

4. Finally, it is possible to prove that the image of the collision circle intersects
itself transversally at eight points [CL]; in particular, it is not contained in an
invariant curve. Varying the value of ε moves the invariant curve of a given ro-
tation number across the annulus which forces intersection with the collision
curve. This proves the existence of invariant “punctured” tori which correspond



28 A. Chenciner

to orbits of the Moon which persistently change their direction of rotation
around the Earth in the rotating frame (generalization of the punctured tori to
the full planar three-body problem were given by Féjoz in his thesis [Fe1]).

Remark. For writing down formulas, working in the two-fold covering K−1(0)
of the energy hypersurface diffeomorphic to S3 is convenient but one can prefer to
state the results downstairs in the compactification (regularization), diffeomorphic
to SO(3) (that is to the real projective space of dimension 3), of the original energy
hypersurface H−1(− 1

ε2 ). The first return map then becomes a perturbation of the
Identity (the Kepler case) of the form

Pε(ϕ̃,ρ) =
(
ϕ̃−νε3−3ν2(1− µ

4
)ε6ρ +0(ε7), ρ +O(ε7)

)
.

and the collision curve intersects its image only four times.
A problem. When the collision curve intersects the set of invariant curves, the

closure of the union of its iterates, containing the set of intersected curves, is of
positive measure. What if the collision curve is contained in a Birkhoff region of
instability?

S

O

M

E

X

x

x

X

Hill’s region

Fig. 1 Hill’s regions
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Fig. 2 The annulus of section

2 The Arnold–Herman stability theorem for the spatial
(1 + n)-body problem

In the so-called planetary problem, one mass m0 is dominant (the Sun) and the
others, the planets are of the form εm1, . . . ,εmn, where ε is small (around 10−3 for
the “real” solar system). If x0 = (x1

0,x
2
0,x

3
0),x1, . . . ,xn ∈R

3 are the positions and ||.||
the euclidean norm, Newton’s equations read

ẍ j = m0
x0− x j

||x0− x j||3
+ ε ∑

k 	= j
mk

xk− x j

||xk− x j||3
, j = 1, . . . ,n.

The solutions are the projections on the configuration space of the integral curves
of the Hamiltonian vector field defined in the phase space, whose coordinates are
denoted by (x0, . . . ,xn,y0,εy1, . . . ,εyn) and symplectic form is ∑1�k�3 dxk

0 ∧ dyk
0 +

ε ∑1� j�n∑1�k�3 dxk
j ∧dyk

j, by the Hamiltonian

1
2
||y0||2

m0
+ ε

(
1
2 ∑

1� j�n

||y j||2
m j

− ∑
1� j�n

mom j

||x j− x0||

)
− ε2 ∑

1� j<k�n

m jmk

||x j− xk||
·
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One reduces the translation symmetry by restricting to the value Y0 = 0 the total
linear momentum and going to the quotient by translations in the so-called Poincaré
heliocentric canonical coordinates

X0 = x0,Y0 = y0 + εy1 + · · ·+ εyn, Xj = x j− x0, Yj = y j, j = 1, . . . ,n.

After dividing the new Hamiltonian and symplectic form by ε one obtains a Hamil-
tonian defined on T ∗R3n (coordinates (X1, . . . ,Xn,Y1, . . . ,Yn)) deprived of the colli-
sion set (Xj = 0 or Xj = Xk) with its canonical symplectic structure :

Fε = ∑
1� j�n

( ||Yj||2
2µ j

− µ jMj

||Xj||

)
+ ε ∑

1� j<k�n

(
− m jmk

||Xj−Xk||
+

Yj ·Yk

m0

)
.

It describes an ε perturbation of n uncoupled Kepler problems with fictitious masses
defined by Mj = m0 + εm j and µ jMj = m0m j. Whe shall be interested in solutions
which stay close to solutions of F0 where the planets describe circular coplanar
motions with the same orientation around the sun.

Theorem 2.1. Given m0, . . . ,mn,a1, . . . ,an, there exists ε0 > 0 with the following
property: if ε < ε0, in the phase space of the spatial (1+n)-body problem, in the
neighborhood of the circular coplanar positively oriented Keplerian motions with
semi major axes a1, . . . ,an, there exists a set of positive Lebesgue measure of initial
conditions which lead to quasi-periodic motions with 3n− 1 frequencies (resp. 2n
frequencies for the planar problem)

These solutions are slow (secular) modulations of the quasi-periodic motions
with n frequencies corresponding to n independent elliptic motions (case ε = 0),
the new secular frequencies being associated to a slow precession of the perihelia
and the nodes. A complete proof of this theorem for the (1+2)-planar problem was
given by Arnold in 1963. What follows s a guide to Herman’s proof of the general
case as written by Féjoz in [Fe2].

2.1 The secular Hamiltonian

We make again a symplectic change of coordinates, using the so-called Poincaré
coordinates (λ j,Λ j,ξ j,η j, p j,q j)i=1,...,n ∈ (T1 ×R+ ×R

2 ×R
2)n, analytic in the

neighborhood of the circular and horizontal Keplerian motions. These coordi-
nates are defined by the following formulas where the unnamed letters are de-
fined on the figure: λ j = l j + g j + θ j is the mean longitude, Λ j = µ j

√
Mja j is

its conjugate variable, while r j = ξ j + iη j =
√

2Λ j

(
1−

√
1− ε2

j

)
e−i(g j+θ j) and

z j = p j + iq j =
√

2Λ j

√
1− ε2

j (1− cos ι j)e−iθ j describe each a symplectic plane.

The modules |r j| =
√
Λ j/2ε j(1 + O(ε2

j )) and |z j| =
√
Λ j/2ι j(1 + O(ε2

j )+ O(ι2
j ))
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x1

x2

C

G
g

i

x3
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Fig. 3 Coordinates for Keplerian motion

describe respectively the eccentricity and inclination of a Keplerian ellipse; the hor-
izontal circular motions we are interested in correspond to |r j| = |z j| = 0 for all j.
We shall abbreviate the Poincaré coordinates by (λ ,Λ ,Z)∈T

n×(R+)n×C
2n , with

Z = (r1, . . . ,rn,z1, . . . ,zn).
In these coordinates, the Hamiltonian H becomes an ε-perturbation of a sum of

n uncoupled Keplerian Hamiltonians

H0(Λ) = ∑
1� j�n

−
µ3

j M2
j

2Λ 2
j
·

This is a very degenerate situation indeed, as H0 depends only on n action variables
instead of 3n. The averaging method tells us to write down H in the form

H(λ ,Λ ,Z) = H0(Λ)+ εH1
ε (Λ ,Z)+ εH2

ε (λ ,Λ ,Z),

where εH1
ε (Λ ,Z) is the average of the perturbation H−H0 over the so-called fast

angles λ = (λ1, . . . ,λn) ∈ T
n (the only ones which move if ε = 0) and H2

ε has zero
average over these angles. The hamiltonian H1

ε defines the first order secular system.
As it does not depend on the mean longitudes λ j, the conjugate variables Λ j remain
constant under its flow (they are supposed to be such that the (not too excentric)
ellipses remain far enough from each other so that the perturbation function deserves
its name). Hence, for given values of the Λ j, i.e. of the semi major axes a j, H1

ε
defines a flow

dZk

dt
= i

∂H1
ε

∂ Z̄k
, k = 1, . . . ,2n,

on an open set, diffeomorphic to R
4n = C

2n of the space of n-tuples of normalized
ellipses in R

3, which is diffeomorphic to (S2 × S2)n. The detailed study of the
secular hamiltonian is a sequence of long computations, started by Laplace and
Lagrange in the 18th century, of which we only summarize the results:
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1. Each of the terms Yj ·Yk is readily seen to have zero average, which implies

H1
ε (Λ ,Z) =− ∑

1� j<k�n

∫

Tn

m jmk

||Xj−Xk||
dλ1 . . . dλn.

This is the Newtonian potential of a set of elliptic rings whose mass repartition
would follow Kepler’s area law.

2. Being only interested in the neighborhood of the origin, one writes down the
expansion up to second order (actually third because of parity) of H1

ε . This de-
pends on computations, using the so-called Laplace coefficients, of the Fourier
expansion of the inverse distance function of two planets considered as a peri-
odic function of their mean longitudes.
One gets H1

ε (Λ ,Z) = h0(Λ)+QΛ (Z)+O(|Z|4), with

QΛ (Z) = Q′Λ (ξ1, . . . ,ξn)+Q′Λ (η1, . . . ,ηn)−Q′′Λ (p1, . . . , pn)−Q′′Λ (q1, . . . ,qn),

Q′Λ (ξ1, . . . ,ξn)= ∑
1� j<k�n

m jmk

(
C1(a j,ak)

(
ξ 2

j

Λ j
+
ξ 2

k
Λk

)
+2C2(a j,ak)

ξ jξk√
Λ jΛk

)
,

Q′′Λ (p1, . . . , pn) = ∑
1� j<k�n

m jmkC1(a j,ak)

(
p j√
Λ j
− pk√

Λk

)2

.

The value h0(Λ) of QΛ at Z = 0 (which is a critical point corresponding to
circular horizontal motions) depends on the masses and the semi-major axes
while the coefficients C1(a j,ak) and C2(a j,ak) are independent of the masses.
All of them have simple expressions in terms of Laplace coefficients. As a good
exercise, the reader will show for two planets that this form of the quadratic
terms is essentially dictated by the symmetries of the problem.

3. If ρ ′ ∈ SO(n) and ρ ′′ ∈ SO(n) respectively diagonalize Q′ and Q′′, the linear
transformation ρ = diag(ρ ′,ρ ′,ρ ′′,ρ ′′) ∈ SO(4n) is symplectic and transforms
QΛ into a hamiltonian of the form

QΛ ◦ρ(Λ ,Z) = h0(Λ)+ ∑
1� j<k�n

σ j(ξ j +η2
j )+ ∑

1� j<k�n
ζ j(p2

j +q2
j)+O(|Z|4).

Applying the above coordinate changes to the full Hamiltonian leads to a Hamil-
tonian which we shall still write H, defined in a neighborhood of T

n×R
n
+×{0} in

T
n×R

n
+×C

2n (symplectic form dλ ∧dΛ +∑1� j�2n
1
2i dZ̄ j ∧dZ j), of the form

Hε(λ ,Λ ,Z) = H0(Λ)+ ε

[
h0(Λ)+ ∑

1� j�2n
τ j(Λ)|Z j|2 +O(|Z|4)+H2

ε (λ ,Λ ,Z)

]
,

where τ j = σ j if 1 � j � n, τ j = ζ j if n + 1 � j � 2n, the term O(|Z|4) does not
depend of λ and H2

ε has zero average with respect to λ ∈ T
n.
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The degeneracy of the integrable approximation Hε − ε(O(|Z|4)+ H2
ε ) appears

clearly: for ε = 0 or for Z = 0, the dimension of the invariant tori drops down to n.
We shall later encounter other degeneracies which affect the spatial problem but we
first turn to Herman’s way of proving an appropriate KAM theorem.

2.2 Herman’s normal form theorem and how to use it

Herman’s powerful idea is to separate a normal form theorem for Hamiltonians
close to what could be called a Kolmogorov Hamiltonian – one such that T

m×{0}
is a diophantine invariant torus – from the actual verification of a non-degeneracy
hypothesis which allows a tuning of the available parameters turning such a normal
form into a conjugacy to some Kolmogorov Hamiltonian. For a hint of the compli-
cated history of KAM theorems with weak non degeneracy conditions, see [Se] and
the references therein.

The following theorem is a far reaching generalization of the Arnold-Moser the-
orem on vector fields on the torus which states that, among all C∞ vector-fields on
T

2 close enough to a constant vector-field (noted ω = (ω1,ω2)) whose frequen-
cies ω satisfy a diophantine condition HDγ ,τ (defined below), the ones which are
C∞-conjugated to it form a submanifold of codimension 2; more precisely, that the
mapping

Φω : Diff∞(T2,0)×R
2 →X ∞(T2)

defined by Φω(h,λ ) = h∗ω+λ (where h∗ω is the direct image by h of the constant
vector-field ω) is a C∞ (more precisely tame in the sense of Hamilton) diffeomor-
phism of a neighborhood of (Id,0) onto a neighborhood of ω in X ∞(T2).

We study hamiltonians H(r,θ) on T ∗Tm ≡ T
m×R

m (in our case, m = 3n,r =
(Λ −Λ0, |Z| − |Z|0),θ = (λ ,ArgZ)). The role of the constant vector field of fre-
quencies ω on the torus is now held by the set Nω of Kolmogorov Hamiltonians
N(r,θ) = Nω(r)+O(r2), where Nω(r) =ω ·r. This is the set of Hamiltonians whose
Hamiltonian vector-field leaves invariant the torus r = 0 and induces on it the con-
stant vector-field with frequency vector ω . Let also G be a space of Hamiltonian
diffeomorphisms close to Identity, defined on T

m×Bm, where Bm is the unit ball
in R

m as follows: the elements of G are defined as truncations (described in [Fe2])
of diffeomorphisms g of T

m×R
m of the form g(θ ,r) = (ϕ(θ),tdϕ(θ)−1(r +ρ)),

where ϕ is a diffeomorphism of T
m and ρ = d f : T

m → R
m∗ ≡ R

m is an exact one
form. Let C∞

+(Tm×R
m) be the quotient of the space of Hamiltonians by the real

constants. We denote

HDγ ,τ =
{
ω ∈ R

m, ∀k ∈ Z
m \0, |l ·ω|� γ||k||−τ

}
.

Theorem 2.2 (Herman’s normal form). For every ω ∈ HDγ ,τ and for every
No ∈Nω , the map
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Φω : Nω ×G ×R
m → C∞

+(Tm×R
m)

(N,G,∆ω) �→ H = N ◦G+N∆ω ,

is a local C∞-diffeomorphism in a neighborhood of (No, id,0). Moreover, the inverse
map Φ−1

ω depends smoothly in the sense of Whitney on ω ∈ HDγ ,τ .

As in the Arnold–Moser theorem, this theorem asserts that the set of Hamiltoni-
ans which are conjugated to a normal form with a diophantine frequency vector (i.e.
those of the form H = N ◦G with N = Nω +O(r2)) form a submanifold of codimen-
sion m of the set of Hamiltonians modulo constants. Herman’s theorem is in fact
more general (see [Fe2]) in that it works also with normal forms which leave invari-
ant tori of dimension lower than n. Following Herman, the proof given in [Fe2] uses
a “hard” implicit function theorem, that is one valid in a scale of Fréchet spaces.
The key feature of such theorems is the necessity of inverting (or inverting approxi-
mately) the differential of the mapping Φω on a whole neighborhood of (N0, Id,0)
(invertibility is not an open property in Fréchet spaces).

Of course, it is only when the frequency correction ∆ω vanishes that Her-
man’s normal form implies the existence of an invariant torus. The beautiful idea
of Herman was to use the Whitney extension theorem and the usual implicit func-
tion theorem to draw the following corollary (I use the name given by Féjoz): let
N = ∪ω∈RmNω = {ω · r +O(r2)}ω∈Rm be the set of all normal forms.

Corollary 2.1 (hypothetical conjugacy). For every N0 ∈ N , there is a (non
unique) germ of C∞-diffeomorphism

C∞
+(Tm×R

m) � H �→Θ(H) = (NH = ωH · r +O(r2),GH) ∈N ×G

at N0 �→ (N0, Id) such that H = NH ◦GH for each H verifying ωH ∈ HDγ ,τ .

The proof is in two steps: first, the Whitney extension theorem allows to extend (non
uniquely) from C∞

+(Tm×R
m)×HDγ ,τ to C∞

+(Tm×R
m)×R

m the map (H,ω) �→
Φ−1
ω (H) = (N,G,∆ω); then, from the identity N0 = (N0 + Nω−ω0) ◦ Id + Nω0−ω ,

one deduces that, at (N0, Id), one has ∂∆ω
∂ω = −Id. Hence, from the usual implicit

function theorem, it is possible to define a function ω �→ ωH by locally solving the
equation ∆ω(ω) = 0.

We are now left with a serious problem: how to check that ωH which we do not
know satisfies a diophantine condition? The magic word here is “parameters”.

If we were in the non-degenerate case of Kolmogorov where the frequency map
from the actions to the frequencies of the corresponding invariant torus is a local
diffeomorphism the existence of a positive measure set of “good” values of the
actions would follow immediately from the fact that HDγ ,τ has positive measure.
But in our case, the frequency map H �→ ωH is of the form

(Λ ,ρ) �→
[
ν(Λ)+O(ε),ε

(
τ(Λ)+O(ρ2)

)]
.

Going back to Arnold and later used by Parasyuk, Bakhtin and Rüssmann, the key
idea is that in the analytic case, the non-degeneracy hypothesis implying a positive
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measure set of good actions can be much weakened; thanks to the following result,
it is enough that the image of the mapping s �→ ω0

s lies in no proper vector subspace
of R

m :

Theorem 2.3 (Arnold, Margulis, Pyartli). If some real-analytic map s �→ ωo
s from

a domain of R
p to R

m is non-planar in the sense that its image is nowhere locally
contained in some proper vector space of R

m, the Lebesgue measure of {s, ωo
s ∈

HDγ ,τ} is positive provided that γ is small enough and τ large enough.

2.3 A stability theorem

We come back to Hamiltonians on T
n×(R+)n×R

2p of the form obtained at the end
of section 2.1 (for the spatial (resp. planar) secular system p = 2n (resp. p = n)).

Hε(λ ,Λ ,Z) = H0(Λ)+ εH1
ε (Λ ,Z)+ εH2

ε (λ ,Λ ,Z),

with H1
ε (Λ ,Z) = h0(Λ) +∑1� j�2n τ j(Λ)|Z j|2 + 0(|Z|4), and H2

ε has zero average

with respect to λ ∈ T
n. We denote as before νi = ∂H0

∂Λi
(Λ).

Theorem 2.4 (Herman’s stability theorem). If, for Λ near Λ0, the frequency map
α : Λ �→ (ν1, . . . ,νn,τ1, . . . ,τ2p) is non planar, there is a positive measure set of
Lagrangian invariant tori close to T

n×{Λ0}×{0} ∈ T
n× (R+)n×R

2p.

One starts by changing coordinates so that Hε appears as a close enough approxi-
mation of an integrable Hamiltonian in the neighborhood of a Lagrangian invariant
torus. There are standard ways of simplifying such a Hamiltonian by symplectic
transformations defined by polynomial generating functions; the non-planarity hy-
pothesis implies that the set A2 of Λ ’s on which this is possible has positive measure
and moreover that it intersects any neighborhood of Λ0. In the case of the (1 + n)-
body problem, the assertion on the bigger set A1 defined below is directly ensured
by the non degeneracy of the map Λ �→ ν(Λ) = (ν1(Λ), · · ·νn(Λ)).

1. Elimination “à la Lindstedt” of the dependence on the fast angles λ j at a suf-
ficiently high order N1. This is possible if Λ belongs to the set A1 on which
ν(Λ) ∈ HDγ ,τ . Moreover, Whitney regularity allows to extend this to a (non
unique) symplectic transformation L such that Hε ◦L keeps the same form with
H2
ε (λ ,Λ ,Z)) replaced by R1(ε,λ ,Λ ,Z)+O(εN1), where R1 vanishes at infinite

order along {(ε,λ ,Λ ,Z)|Λ ∈ A1}.
2. Transformation to Birkhoff normal form up to order N2. This is possible if Λ

belongs to the subset A2 of A1 defined by diophantine conditions on the set
(ν1, . . . ,νn,τ1, . . . ,τp) of all frequencies. As above, one can get a symplectic
transformation B such that

Hε ◦L◦B(λ ,Λ ,Z) = H0(Λ)+ εH̃1(ε,Λ ,Z)+ εR2(ε,λ ,Λ ,Z)+0(εN1),
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H̃1(ε,Λ ,Z) = h0(Λ)+ ∑
1� j�p

τ j(Λ)|Z j|2 +K(Λ , |Z2|)+O(|Z|2N2),

where K is a polynomial in the |Z j|2 with terms of degree between 2 and N2−111
and R2 vanishes at infinite order along {(ε,λ ,Λ ,Z)|Λ ∈ A2}. On this subset, Hε
appears now as a O(εN1 , |Z|N2)-perturbation of the completely integrable system
with Hamiltonian H0(Λ) + ε

[
h0(Λ)+∑1� j�p τ j(Λ)|Z j|2 +K(Λ , |Z1|2, . . . ,

|Zp|2)
]
. To focus the attention on the Lagrangian invariant tori Λ = Λ0, |Z| =

|Z|0 of this integrable approximation, one moves to symplectic polar coordi-
nates Zk =

√ρkeiθk , which leads to

Hε = H0(Λ)+ ε
[
h0(Λ)+K (Λ ,ρ)

]
+ εR3 +O(εN1

,ρN2),

where R3 vanishes at infinite order along {(ε,λ ,Λ ,Z)|Λ ∈A2}. In order to show
that enough of these tori do survive the perturbation, one considers the (m = n+
p)-parameter family H(Λ ,ρ) of Hamiltonians H obtained by translating the ori-
gin of the actions at (Λ ,ρ). IfΛ 0 ∈ A2, ρ0 > 0 and if (Λ ,ρ) is close to (Λ 0,ρ0),
the flow of H(Λ ,ρ) is close to the flow of H0(Λ)+ ε

[
h0(Λ)+K (Λ ,ρ)

]
in the

neighborhood of the Lagrangian torus T(Λ ,ρ) = T
n×{Λ}× {|Z|2 = ρ}. The

non-planarity being an open condition, it will be verified at Λ and the conclu-
sion follows from the hypothetical conjugacy theorem.

2.4 Herman’s degeneracy

For the planar 1+n-body problem, a thorough study of the Laplace coefficients after
complexification of the semi major axes, allows proving by induction on the number
of planets (letting one semi major axis go to zero) that the frequency map is non pla-
nar. For the spatial problem, this map presents an expected degeneracy, say ζn = 0,
due to the invariance under rotation of the problem, as well as an unexpected one: the
trace ∑1� j�nσ j +∑1� j�n ζ j of QΛ is always zero. In the study of the motion of the
Moon, this resonance is responsible for the well-known fact that “at the first order
of the theory of perturbations” the retrograde motion of the node is exactly opposite
to the mean motion of the apogee. Nevertheless, it is only Herman who noticed it
in its generality. An induction similar to the one done in the planar case shows that
these are the only degeneracies. The first resonance is well known to disappear when
the direction of the (non-zero) angular momentum is fixed (here, vertically), which
corresponds to restricting the system to a codimension-2 symplectic submanifold
V ; the second one disappears when completing the reduction by fixing the angular
momentum and quotienting by the rotations around its axis. This comes from the
fact that in the Poincaré coordinates, the vertical component of the angular momen-
tum becomes the quadratic form Cz = Σ1� j�n

(
Λ j− 1

2 (|r j|2 + |z j|2)
)

whose trace,
when restricted to T0V is different from zero. Hence, after reduction, the frequency
map becomes non planar and the stability theorem yields diophantine Lagrangian
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invariant tori of dimension 3n−2. To these tori correspond, for the non-reduced sys-
tem, invariant tori of dimension 3n−1 whose number of independent frequencies is
3n−2 or 3n−1.

3 Minimal action and Marchal’s theorem

3.1 Central configurations and their homographic motions

The equations of the n-body problem in an euclidean space E can be given the
particularly simple form

ẍ = ∇U(x), (∗)
where x = (r1, . . . ,rn) ∈ En and U(x) = ∑i< j mim j||ri− r j||−1 ∈ R are respectively
an n-body configuration and its potential function, and where the gradient is relative
to the mass scalar product (or kinetic energy scalar product), defined by

x′ · x′′ = (r′1, . . . ,r
′
n) · (r′′1 , . . . ,r′′n) =

n

∑
i=1

mi
〈
r′i− r′G,r′′i − r′′G

〉
E ·

The presence of the centers of mass rG = 1
∑mi

miri makes the formula translation
invariant; one may as well consider only configurations x such that rG = 0.

In addition to being invariant under translation, equation (∗) is invariant under
isometries of E and it inherits from the homogeneity of U the following scaling
property : if x(t) is a solution, so is λ−

2
3 x(λ t) for any positive real number λ . When

n = 2, any change in the configuration is necessarily a similarity (a segment has
no shape !); when n is at least 3, the simplest motions (called homographic) are
such that the similarity class of their configuration does not change. If dimE ≤ 3,
such motions are necessarily of Keplerian type: if for example, the total energy
1
2 ||ẋ||2−U(x) is negative, the solution is periodic, each body following an ellipse of
the same excentricity according to Kepler law. Such solutions were first discovered
for n = 3 by Euler and Lagrange at the end of 18th century. The configurations x
which admit homographic motions are called central configurations and their de-
termination for n � 4 is a very difficult problem. They are characterized by the
existence of a negative energy Keplerian motion with excentricity 1, which means
that they collapse on their center of mass when released with 0 initial velocity. In
other words, ∇U(x) is proportional to x. But x = 1

2∇I(x), where I(x) = ||x||2 is the
moment of inertia of the configuration with respect to its center of mass. Hence cen-
tral configurations are the critical points of the restrictions of the potential function
U to the spheres I = constant. As an exercise, the reader will use (squared) mu-
tual distances as coordinates on the space of “triangles mod isometries” and prove
Lagrange’s result that, whatever be the masses, the only non-colinear central con-
figuration of three masses is the equilateral triangle.
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Another important fact, already proved by Lagrange for n = 3, is that a homo-
graphic solution with excentricity e < 1 is necessarily planar. Note that only the case
of a relative equilibrium (that is e = 0) is “physically” obvious.

3.2 Variational characterizations of Lagrange’s equilateral
solutions

Equations of the type ẍ = ∇U(x) are known, since Lagrange, to be the so-called
Euler–Lagrange equations of an action functional, the Lagrangian action

∫
L(x(t), ẋ(t))dt, L(x, ẋ) =

1
2
||ẋ||2 +U(x),

where the Lagrangian L(x, ẋ) is the difference between the kinetic energy 1
2 ||ẋ||2 and

the potential energy −U(x). This means that the solutions of (∗) are exactly the set
of “extremal” curves of the action functional. It is the mathematical formulation of
the so-called principle of least action. Poincaré was the first to try to obtain new
solutions of an n-body problem using minimization. In a short note written in 1896,
he looked for quasi-periodic (periodic in a rotating frame) solutions of the three-
body problem in R

2 as functions x(t) defined on [0,T ] and with values in three-body
configurations, which minimize the Lagrangian action

∫ T
0 L(x(t), ẋ(t)) among those

with the following property: after the “period” T , the new triangle x(T ) is the image
of the initial one x(0) by a rigid rotation and the three sides have respectively turned
by the real (not mod 2π) angles α,α+k1,α+k2 where k1 and k2 are fixed integers.
This amounts to fixing a one-dimensional homology class in the space of triangles
up to rotation (this space has the topology of R

3 deprived of three half-lines from
the origin). Assuming existence (this is a consequence of Tonelli’s theorem, proved
around 1930, because k1 	= 0 and k2 	= 0 garantee coercivity, that is the impossibility
that a minimizer be at infinity), he was blocked by the collision problem caused by
the weakness of the Newtonian attraction. Indeed, around 1913 Sundman proved
that in any solution of the n-body problem which ends in a collision (partial or total)
at time t0, two bodies i, j involved in the collision satisfy the estimates

||ri(t)− r j(t)||= O(|t− t0|
2
3 ), ||ṙi(t)− ṙ j(t)||= O(|t− t0|−

1
3 ).

For the two-body problem, these estimates are an easy exercise which was enough
to convince Poincaré that the action of a solution ending in collision might (in fact
always does) converge, hence that a minimizer could a priori be the mere concate-
nation through collisions of segments of solutions. He eliminated the problem by
assuming a “strong force” potential (proportional to the inverse squared distance).

Poincaré’s retreat was in a sense wise because very often such homology con-
straints indeed lead to minimizers with collisions. The simplest example is given
by the Kepler problem of attraction by a fixed center in the plane (the two-body
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problem can be reduced to this). Let us look for periodic solutions of the equation
ẍ =− x

|x|3 in R
2 \0. The action is

∫ T
0 (|ẋ(t)|2− 1

|x(t)|)dt and one seeks for minimizers
in the space of loops x(t) of period T going k times around the origin (i.e. loops
belonging to a fixed homology class). Coercivity is insured as soon as the integer k
is different from 0. It was proved by Gordon that for k =±1, minimizers are exactly
the elliptic solutions of the given period T , with any excentricity (along a curve of
critical points, a function stays constant !) while, if k 	= 0,±1, minimizers are only
collision-ejection solutions (ellipses with excentricity 1). The main point was to no-
tice that, by convexity of the action, a sequence of ejection collisions in a given time
T has a higher action than a single ejection collision solution during the same time.

A partial generalization of this result exists for the three body problem
(Venturelli, Zhang-Zhou): action minimizers among loops of configurations x(t)
of a given period T such that, during time T the three sides of the triangle make
respectively k1,k2,k3 complete turns, where the ki are fixed integers, are the equi-
lateral elliptic homographic solutions of the given period and any excentricity if
(k1,k2,k3) =±(1,1,1), a collision ejection of the given period if this is not the case
and all ki are different from 0, unknown if one of the ki is 0. Let us give a sketch of
proof of the case (1,1,1). In a frame fixing the center of mass, a classical identity
going back to Leibniz allows to write the action as the sum of three Keplerian
actions:

∑
i< j

mim j

M

∫ T

0

[ ||ṙi j(t)||2
2

+
M

||ri j(t)||

]
dt,

where M =∑mi and ri j(t) = r j(t)−ri(t). By the result of Gordon, an a priori lower
bound of the action is obtained by replacing each term by its minimum, obtained if
each ri j(t) is a Kepler elliptic solution of period T . The end of the proof consists in
showing that the Lagrange equilateral solution is the only one which achieves this
lower bound: from ∑ri j(t)≡ 0 it follows that ∑ r̈i j(t)≡ 0 that is ∑ ri j(t)

||ri j(t)||3
≡ 0 from

which it follows that the ri j(t) cannot be colinear and the three mutual distances
|ri j(t)| must be equal at each instant of time.

Notice that in all the cases considered above, collision solutions exist among
minimizers. This will not be the case anymore if we minimize the action among
loops x(t) of configurations of period T satisfying the italian symmetry

x(t−T/2) =−x(t).

This symmetry selects the relative equilibria (excentricity 0) among all Keplerian
motions and indeed, minimizers for the two-body and three-body problem are ex-
actly the circular solutions (with equilateral configuration in the latter case). The
proof (Chenciner-Desolneux, Long-Zhang) is even simpler than above, the reason
for the selection of the equilateral triangle among central configurations being more
clearly seen to originate from the fact that it is the unique configuration which re-
alizes the minimum of the restriction of U to I = constant or, what amounts to
the same, the minimum U0 of the normalized potential function Ũ(x) = I

1
2 (x)U(x).
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On the other hand, the Fourier series of a symmetric loop has no constant term and
this implies the inequality

∫ T

0
||ẋ(t)||2dt � 4π2

T 2

∫ T

0
||x(t)||2dt.

Hence, the action A of a symmetric loop satisfies

A � A0 =
∫ T

0

[
2π2

T 2 I(x(t))+U0I−
1
2 (x(t))

]
dt � T inf

I

(
2π2

T 2 I +U0I−
1
2

)
,

with equality if and only if there exist two configurations α and β such that
x(t) = α cos 2π

T +β sin 2π
T (no harmonics of order higher than 1), and the function

2π2

T 2 I(x(t))+U0I−
1
2 (x(t)) is constant and equals its absolute minimum. Hence I(x(t)

is constant, from which it follows that the two configurations α and β are orthogo-
nal and have the same norm. Finally, x(t) is a rigid circle in the configuration space.
One concludes that the motion is a relative equilibrium by using the fact that the
similitude classes of 3-bodies central configurations are isolated.

The two proofs above are misleading. As soon as the constraints select more com-
plicated (non a priori known) solutions, one has to prove the existence of collision-
free minimizers. In the next paragraph, an idea is given of the proof of Marchal’s
theorem which is the basic tool explaining why action minimizers under symmetry
constraints are very often collision-free.

3.3 Marchal’s theorem

Theorem 3.1. Let x′ = (r′1,r
′
2, · · · ,r′n) and x′′ = (r′′1 ,r

′′
2 , · · · ,r′′n) be two arbitrary

configurations, possibly with collisions, of n material points with positive masses
m1,m2, · · · ,mn in the plane or in space. For any T > 0, any local minimizer of the
action among paths x(t) = (r1(t),r2(t), · · · ,rn(t)) in the configuration space which
start at x(0) = x′ and end at x(T ) = x′′ is collision-free, and hence a true solution
of Newton’s equations, in the open interval ]0,T [.

Already in the case of two bodies, this theorem is non-trivial. Translated in terms
of the Kepler problem, it asserts that given two points x′,x′′ ∈ R

2 \ 0 and T > 0, a
minimizing path x(t) ∈ R

2 \ 0 x(0) = x′, x(T ) = x′′, is a collision-free solution of
the equation ẍ(t) = −x/||x(t)||3. Many proofs can be given of this special case but
Marchal’s one is still among the simplest.

In what follows, I give the main idea of the proof of Marchal’s theorem (see
[Ma3, C3, FT]) . Suppose that the minimum of the action is attained by a path x(t)
which has a collision at time t0. In order to get a contradiction, we try to slightly
modifiy the path in such a way as to decrease the action. The problem which was
faced in the early attempts to prove that minimizers of some kind are collision-free
is that, except in the case of three bodies, not much is known about the configuration
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taken by the bodies entering the collision. There is Sundman’s theory, which says
that the normalized configuration tends to the set of central configurations, but the
latter ones are so poorly understood that it is of no use (for five bodies and more one
even does not know if the number of similitude classes is finite!). Marchal proposes
to chose any one of the bodies, say ri involved in the collision and to shift slightly
its position at time t0, replacing ri(t) by ri(t) + εϕ(t)vi, where vi is a unit vector
and ϕ(t) is a smooth function of time such that ϕ(t0) = 1, supported by a small
interval [t0−η , t0 +η ]. Controling the modification brought to the action by this
single modification is impossible but Marchal makes the striking observation that
replacing the original action by the average of the modified action when vi takes
every possible direction amounts to replacing the perturbed body i by a uniform
repartition of its mass over a sphere in the spatial case (resp. a circle in the planar
case). But, in the spatial case, the potential generated by a homogeneous sphere is
constant inside the ball bounded by the sphere and equal to the potential of a point
mass at the center with the same total mass outside. This is a strong hint that the
averaged action is strictly smaller than the original one.

Let us prove that it is indeed the case in the simplest possible situation, to which
it is indeed possible to reduce the general case. We suppose that the minimizer x(t)
is a parabolic homothetic collision-ejection solution of the n-body problem in R

3,
that is:

x(t) = |t| 2
3 x0, t ∈ [−T,T ]

where x0 is some central configuration (x0 could be different for t < 0 and t > 0).
Thanks to the linearity of the mean, we may treat separately ejection and collision,
hence we can restrict the attention to the time interval [0,T ]. We study deformations
of x(t) of the form

xk
s(t) = (r1(t), . . . ,rk(t)+R(t)s, . . . ,rn(t)),

where 1 ≤ k ≤ n and R(t) = (1− t
T )ρ with ρ a small positive real number and s

belongs to the unit sphere. Taking the mean of the actions over s and exchanging the
order of integration amounts to truncating the potential of the (k, j)-interactions to
mjmk/R(t) for t belonging to the interval [0, t j], where t j is the characteristic time
after which this potential is the same as the one for the original path, that is

R(t j) = r jk(t j) = r0
jkt

2
3
j ,

which implies

ρ = r0
jkt

2
3
j (1+O(t j)).

Hence

A k
m−A ≤ mk

2
ρ2

T
+∑

j 	=k
m jmk

∫ t j

0

[
1

R(t)
− 1

r jk(t)

]
dt,

(the inequality sign comes from the fact that the deformations do not keep the center
of mass fixed).
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In other words, the last term is the integral over the whole interval [0,T ] of the

function
[

1
R(t) −

1
r jk(t)

]−
, where for any f : [0,T ]→ R, we have denoted by f (t)−

the function which is equal to f (t) when f (t)≤ 0 and to 0 otherwise.
Hence

A k
m−A ≤ mk

2T
ρ2− ∑

j 	=k, j≤p
m jmk∆ j ,

where
∆ j =

T
ρ

log
(

1− t j

T

)
+

∫ t j

0

1
r jk(t)

dt.

Hence

A k
m−A ≤ mk

2T

(
r0

jk

)2
t

4
3
j +O

(
t

7
3
j

)
− ∑

j 	=k, j≤p
m jmk

(
1

r0
jk

t
1
3
j +o

(
t

1
3
j

))
,

and we conclude that A k
m−A < 0.

The proof that one can reduce the general problem to this special case is given
in [C3]. It uses the ideas of R. Montgomery, S. Terracini and A. Venturelli; the
two main steps in this proof are (1) the existence of an isolated collision in any local
minimizer x(t) and (2) the reduction, via blow-up, of the case of an arbitrary isolated
collision to the case of a parabolic homothetic collision-ejection solution. In [FT]
an important generalization is given,with detailed proofs, to some equivariant cases,
to other exponents of the potential and any space dimension greater than 1. The
main remark is that in many cases (the ones possessing the rotating circle property),
averaging over a well-chosen circle is sufficient.

3.4 Minimization under symmetry constraints

The simplest case where Marchal’s theorem applies directly is the already men-
tioned italian symmetry x(t − T/2) = −x(t), which corresponds to an action of
the group Z/2Z on the space of T -periodic loops in the configuration space of the
n-body problem in R

p. Indeed, let [t0, t0 +T/2]⊂ [0,T ] be a fundamental domain of
this action: the restriction of x to [t0, t1] must be an unrestricted local minimizer of
the action A among paths with the same endpoints, and as such collision-free in the
open interval ]t0, t1[. As the starting point t0 may be chosen arbitrarily, we deduce
that x cannot have a collision.

For the planar problem (p = 2), this result is somewhat disapointing as one can
prove that a relative equilibrium whose configuration minimizes the scaled potential
U0 = I

1
2 U is always an absolute minimizer and that these are the sole minimizers

provided certain technical conditions are satisfied (which are at least satisfied for
n = 3 and n = 4). Hence, in order to get interesting minimizers, one must either look
at the spatial problem (p = 3) or impose stronger symmetry constraints. These two
routes lead to interesting new families of periodic solutions of the n-body problem,
the Hip-Hops and the choreographies.
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1. The Hip-Hops (see [CV, C4]) Combined with known results on central con-
figurations [Mo3] and the above remark that a relative equilibrium solution
whose configuration minimizes U0 is a minimizer for the italian symmetry, a
simple analysis of Hessian of the action along such a relative equilibrium solu-
tion shows that a minimizer for the spatial problem cannot be a planar solution
as soon as the number n of bodies is at least 4. The simplest case is the one
of four equal masses for which a minimizer should be (this is not proved) the
original Hip-Hop with its D4×Z2 symmetry. In this solution, to the relative
equilibrium of the square is added a vertical oscillation of the two diagonals;
twice per period, the shape is the one of a regular tetrahedron. It is a remark-
able compromise between the relative equilibrium of the square and the relative
equilibrium of the regular tetrahedron which should have been the minimizer
if it existed (it does in R

4). More generally, whatever be the masses, the corre-
sponding minimizers are likely to be among the “simplest” non-planar solutions
of the corresponding n-body problem.

2. The choreographies (see [CM, Si, CGMS]) In this case, one imposes equal
masses and a symmetry constraint which implies that after time T/n, the bodies
occupy the same positions save for a circular permutation (i.e. the symmetry
group G contains as a subgroup a copy of Z/nZ which acts in the indicated
way). This implies the existence of a curve along which the bodies move, sepa-
rated by equal time lags. It is likely that the equality of the masses is a necessary
condition for such a solution to exist but up to now this is proved only when
n � 5 [C6]. The simplest choreographies are the relative equilibria of n equal
masses which are the vertices of a regular n-gon. Surprizingly we shall see in
the next section that they are related through families of relatively periodic solu-
tions to more complicated choreographies (in particular the figure eight solution
when n = 3) and to Hip-Hops. An extensive search for choreographies was done
by Carles Simó (see his website for animations).

4 Global continuation via minimization

We study the three-dimensional dynamics in the neighborhood of the equilateral
relative equilibrium of the regular n-gon with equal masses (∀i,mi = 1).

The fact that, when perturbed in an orthogonal direction, the length of a straight-
line segment stays constant at the first order of approximation, implies a splitting
of the variational equation of the n-body problem along any planar solution into a
part (HV E) describing the “horizontal variations” (along the plane of motion) and
one (VV E) describing the vertical ones (orthogonal to the plane of motion). When
the planar solution is a relative equilibrium, this last equation takes the particularly
simple form

z̈i =∑
j 	=i

m j

r3
i j

(z j− zi), (VV E)
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where the ri j are the (constant) mutual distances of the bodies in the relative equi-
librium and (z1,z2, · · · ,zn) ∈ R

n are supposed to be such that ∑n
i=1 zi = 0, which

amounts to fixing the center of mass at the origin. In what follows, we suppose that
all the mi are equal.

After reducing the rotation symmetry by fixing the angular momentum and quoti-
enting by the rotations around its axis, the relative equilibrium becomes an isolated
equilibrium. One reads directly from the variational equation the spectrum of the
linearized vector-field at this equilibrium: the corresponding 6n− 10 dimensional
matrix splits into a 4n−6 horizontal block and a 2n−4 vertical block whose eigen-
values are all purely imaginary because the Newton force is attractive.

In the next sections, we concentrate essentially on the case n = 3, giving only
hints at the end for the cases n = 4 (partially understood) and n > 4 more conjectural.

4.1 Bifurcations from the Lagrange equilateral relative
equilibrium

When n = 3, after reducing the rotation symmetry and restricting to a center man-
ifold one gets into a situation very similar to the one in the lunar problem, with a
1–1 resonant spectrum and energy surfaces diffeomorphic to the three-sphere. Here
also the local existence of two Lyapunov families of (relatively) periodic solutions
can be proved: one is already known, it is the homographic family; the other one,
when globally continued (see the next section) goes all the way to the reverse equi-
lateral relative equilibrium through the planar figure eight solution. In an energy sur-
face close to the relative equilibrium, the flow admits an annulus of section whose
Poincaré return map is a twist map which, because of a resonance which persists
all along the homographic family, is the identity on the corresponding boundary. I
shall not reproduce the computations of [CF2] but be content with explaining the
similarities and the differences with the first chapter.

For the relative equilibrium of an equilateral triangle whose edges have length
1 and vertices have masses mi, (VV E) reads z̈i = ∑ j 	=i m j(z j − zi), i = 0,1,2. As
∑2

i=0 mizi = 0, this becomes the following (with M = ∑2
i=0 mi):

z̈i =−Mzi, i = 0,1,2.

We shall choose the masses to be 1/3 so that the period of the relative equilibrium
solution is 2π and the 2n−4 = 2 “vertical” eigenvalues are ±i.

On the other hand, the 4n−6 = 6 “horizontal” eigenvalues are±i and a quadruple
± 1√

2
± i (see for instance [Mo2]), so that the spectrum is completely resonant. Using

Maple, an analogue of the normal form described in the first chapter can be com-
puted. This leads to complex coordinates (u,v,h,k) (I keep the notations of [CF2])
in the tangent space (identified to C

4) of the eight-dimensional reduced phase space
such that the linearized vector field becomes free of non-resonant terms up to order
three. The normal form, which is not unique at a general order, can be chosen so
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that the vector field is invariant under T (u,v,h,k) = (u,−v,h,k). This corresponds
to the symmetry with respect to the invariant horizontal plane, which is defined by
the equation v = 0.

The result is of the following form:

u̇ = iu[1+α|u|2 +β |v|2 + γhk + γ̄ h̄k̄]+O5

v̇ = iv[1+a|u|2 +b|v|2 + chk + c̄h̄k̄]+Av̄hk̄ +O5

ḣ = λh[1+ r|u|2 + s|v|2 + thk + t ′h̄k̄]+Rv2h̄+O5

k̇ = −λk[1+ r|u|2 + s|v|2 + thk + t ′h̄k̄]−Rv̄2k̄ +O5,

where the coefficients have the following non-zero values:

α = −1, β =−1,γ =
9
2

+6i
√

2,

a = −1, b =−21
19

, c =
186
19

+
126
√

2
19

i, A =−120
19

,

r = −11
12
−
√

2
12

i, s =−73
57

+
10
√

2
57

i, t =
275
57

+
334
√

2
57

i,

t ′ =
105
19

(1− i
√

2), R =
5
√

2
19

i,

and where O5 stands for real analytic functions of order 5 in u, ū,v, v̄,h, h̄,k, k̄.
Even if the situation looks more complicated than in the restricted problem, it is

not really so. This is because one can restrict the attention to a “center manifold”
tangent to the invariant space associated to the purely imaginary part of the spec-
trum, and containing all the local recurrence near the equilibrium. A simple analysis
shows that, when lifted up to the non-reduced phase space, such a four-dimensional
center manifold at the equilibrium becomes a six-dimensional manifold tangent to
the one obtained from the relative equilibrium solution by making the rotations act
independently on positions and momenta. From this description of the tangent space
one can deduce that the restriction of the reduced Hamiltonian to a center manifold
has the equilibrium as a non-degenerate minimum, which implies that its levels
close enough to the equilibrium are three spheres (and in fact, as noted by Moeckel,
that the center manifold is unique). In restriction to the center manifold (coordinates
u, ū,v, v̄), the normal form, still invariant under the mapping τ : (u,v) �→ (u,−v), is
of the form

u̇ = iu[1+α|u|2 +β |v|2]+O5

v̇ = iv[1+a|u|2 +b|v|2]+O5,

with v = 0 defining the Lyapunov family of equilateral homographic motions. More-
over, the energy becomes

H =−1
2

+
|u|2
36

+
|v|2
6

+O4.
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The problem is now similar to the planar circular restricted problem in the Lunar
case (see [Co, C0, 28] or [Du] in a more general situation), where the Lyapunov or-
bits are Hill’s direct and retrograde orbits. The proof of existence and local unique-
ness of the vertical Lyapunov family (the one tangent to u = 0) follows exactly as
in the first chapter because b 	= β ; moreover, if we knew that our center manifold
is analytic, we would get also analyticity of the family. On the contrary, the higher
order resonance a = α would prevent us from applying the same proof to the hor-
izontal homographic family tangent to v = 0 if we did not know that it exists. A
simple analysis of the vertical variational equation along the homographic family
shows that this resonance must persist in normal forms of any order: the coefficients
of the monomials u|u|2k in u̇ and v|u|2k in v̇ are necessarily equal. One can neverthe-
less prove that no other Lyapunov family bifurcates from the relative equilibrium by
showing that the Poincaré return map in an annulus of section, whose one bound-
ary belongs to the homographic family and the other one to the vertical family, is a
monotone twist map.

4.2 From the equilateral triangle to the Eight

The vertical Lyapunov family is highly symmetric. Indeed, after choosing appropri-
ately a phase, it is tangent to the “linear” family

r j(t) =
(

1√
3
ζ jei2πt ,ARe(ζ̄ jei2πt)

)
∈ R

2×R = R
3, j ∈ Z/3Z, (S1)

where ζ = e
2π
3 and the amplitude A is a real parameter. The discrete symmetry group

of (S1) is seeked as a subgroup of

G0 = O(R/Z)×Σ(3)×O(R3),

where g = (τ,σ ,ρ) ∈ G0 acts naturally on the space of 1-periodic loops:

x : R/Z × {1,2,3} → R
3

τ ↓ σ ↓ ρ ↓
gx : R/Z × {1,2,3} → R

3.

If x = (r1,r2,r3) is a loop in the configuration space, the transformed loop by the
(left) action of g = (τ,σ ,ρ) is

gr j(t) = ρrσ−1( j)(τ
−1(t)).

Lemma 4.1. The stabilizer G1 ⊂ G0 of (S1) is isomorphic to the dihedral group D6
with 12 elements.

The proof is an easy exercise. One finds that the elements (τ,σ ,ρ) of G1 act as
follows (vectors in R

3 are decomposed into a horizontal part h and a vertical part v):
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τ−1(t) = ξ (t−θ), σ−1( j) = ξ ( j +δ ), ρ(h,v) = (ei2πα h̄ξ , eiπβ v),

with ξ = ±1 (and h̄ξ = h or h̄ according to whether ξ = +1 or ξ = −1) and α ∈
R/Z, β ∈ Z/2Z, δ ∈ Z/3Z, θ ∈ R/Z satisfying

α = θ − δ
3

(mod 1), θ =
β
2
− δ

3
(mod 1).

The choices of (ξ = 1,β = 1,δ = 1) and (ξ =−1,β = 0,δ = 0) define generators
g1 and g2 of G1 which satisfy the relations g6

1 = g2
2 = 1,g1g2 = g2g−1

1 , which is a
presentation of D6.

In a frame which rotates uniformly in the opposite direction with the same fre-
quency as the relative equilibrium, (S1) becomes

r̂ j(t) =
(
ζ jei4πt ,Re(ζ̄ jei2πt) ∈ R

2×R = R
3, j ∈ Z/3Z, (S1).

The symmetry group does not change but its action does: the formula defining α
is changed to α = 2θ − δ

3 = β − δ (mod 1) = 0 (mod 1). The resulting curve in
rotating frame is now a choreography. Indeed, the group element defined by ξ =
1,β = 0,δ = 1, transforms (h j(t),v j(t)) into (h j+1(t− 1

3 ),v j+1(t− 1
3 )): all bodies

lie on one and the same spatial curve. Now, it follows from unicity that

Lemma 4.2. In a family of rotating frames parametrized by ϖ close to −2π , an ap-
propriate lift of the local vertical Lyapunov family becomes a family of D6 invariant
choreographies (called the P12 family).

Global continuation of the family is based on the following remark [Ma2, CF2]:
we consider the following family (parametrized by ϖ) of paths in the configuration
space:

rϖj (t) =

(
1√
3

(
4π +ϖ

2π

)− 2
3
ζ jei(4π+ϖ)t ,0

)
, j ∈ Z/3Z. (L)

In a frame which rotates uniformly with frequency ϖ , each member of the family
becomes a loop with the G1 symmetry, the equilateral triangle formed by the bodies
making two complete rotations during the period 1. Its action during the period

1 is readily computed to be proportional to
( 4π+ϖ

2π
) 2

3 . In particular, it tends to its
absolute minimum zero as ϖ tends to −4π , the limit situation corresponding in the
inertial frame to bodies at rest at infinity. When ϖ varies from −4π to 0, the action
increases. It can stop being a relative minimum among paths which, in the rotating
frame become loops with the G1 symmetry, only when appears a 1-periodic Jacobi
field, that is a solution of the variational equation which, in the rotating frame, is
1-periodic and possesses the required G1 symmetry. This is the case only when
ϖ = −2π . For values of ϖ closer to 0, the minimum is no more the (L) family
but an appropriate lift of the vertical Lyapunov family. The global continuation is
obtained by looking, for each value of ϖ between −2π and 0, to such a minimizer
among paths which are G1-symmetric in the rotating frame. The end of the family
is the figure Eight solution for which the D6 symmetry can be interpreted as the
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symmetry of the space of similarity classes of plane oriented triangles (the so-called
shape sphere (see [CM, Mo1]). It is the maximal discrete symmetry that a solution
of the three-body problem may possess in the case of equal masses (see [Ma1] 10-
8-2).

Technically, one is faced with the problem of showing that, for each value of ϖ ,
a (local) minimizer has no collision. This is not a direct consequence of Marchal’s
theorem because of the time reversal symmetry which implies that the boundaries
of a fundamental domain of the τ action on the time circle cannot be chosen ar-
bitrarily. Nevertheless, this can be proved by a direct estimation of a lower bound
of the action of paths with collision with the given symmetry: this lower bound
happens to be exactly the value of the action of the member of (L) corresponding to
ϖ = 0.

Remarks.

1. Using obvious symmetries, the P12 family can be continued into a loop of quasi-
periodic solutions containing the horizontal equilateral relative equilibria rotat-
ing in both directions (the first line of Fig. 4 shows half of it in the rotating
frame). Applying isometries and scaling, this defines in the 12-dimensional (af-
ter reduction of translations) phase space a compact invariant six-dimensional
submanifold entirely foliated by relatively periodic solutions. Topologically,
this manifold is a fibre space over the lens space L (4,1).

2. It is interesting to recall a remark made by C. Marchal at page 257 of his
book [Ma1]: after having determined the expansion ot the vertical Lyapunov
family up to order 6 in a small parameter c1 corresponding to the vertical ex-
tension of the solution (opening of the mouth of the oyster described in the
rotating frame), he asks for their continuation, mentioning as an example of
surprising continuation the family of retrograde Hill solutions up to the colinear
“Schubart” solution (see [He]).

4.3 From the square to the Hip-Hop

In the case of the square relative equilibrium of four equal masses, there are two
Lyapunov families in addition to the homographic family; one of these leads by con-
tinuation to the Hip-Hop, which is the simplest non-planar solution of the four-body
problem (line 2 of Fig. 4). The possibility of obtaining this family by minimization
of the action is related to the fact that, in R

3, a relative equilibrium must be planar
(I recalled in Sect. 3.1 that this is true of any homographic solution of the n-body
problem).

The case of the Hip-Hop corresponds to a frequency which is not in resonance
with the frequency of the relative equilibrium; the local study is done in [Ba]
(compare also with [MS] for the case of an additional central mass). The global
continuation of the Hip-Hop family is done in [TV]. Here also, the proof that there
are no collisions for minimizers in this family cannot appeal to Marchal’s theorem
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Fig. 4 Lyapunov families seen in the rotating frame (horizontal parameter ϖ)

or to its equivariant strengthening given in [FT]). The problem is the topological
constraint attached to the rotating frame: one has to minimize among paths such
that, in the inertial frame, the starting point and end point of each body make a
fixed real (not mod 2π) angle α =−ϖT between 0 and 2π , and this is a topological
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condition as soon as π < α < 2π (think of the same problem for the planar Kepler
problem). The proof that no collision occurs in a minimizer is by contradiction via
the introduction of an obstacle. The end of the family should be a simultaneous
double collision but this is not proved.

Remark. The fate of the first vertical Lyapunov family, associated to the fre-
quency of the relative equilibrium is complicated (line 3 of Fig. 4), probably lead-
ing through a secondary bifurcation to a planar solution proved to exist at first
numerically by J. Gerver and then with a computer assisted proof by Kapela and
Zglyczinski (this solution lies in the horizontal plane and not the vertical one be-
cause its angular momentum, in contrast with the figure eight solution, is not zero).

4.4 The avatars of the regular n-gon relative equilibrium:
eights, chains and generalized Hip-Hops

Symmetries of the solutions of VVE along the regular n-gon relative equilibrium
are easily analyzed [CF3] and may lead to Lyapunov families with interesting
continuation [CF1] (lines 4 and 5 of Fig. 4). Possible problems connected to min-
imization under the corresponding symmetry constraints could appear for n � 6
because of the appearance of new imaginary eigenvalues of the Horizontal Varia-
tional Equation [Mo2] which could lead to different types of bifurcations with the
given symmetries.

Remark. It is easy to prove that when, observed in the inertial frame, the mem-
bers of the vertical Lyapunov families attached to the regular n-gon relative equilib-
rium are choreographies for a dense set of values of the parameter ϖ .

Thanks to Jacques Féjoz, Laurent Niederman and David Sauzin for various
comments about these notes. Special thanks to Jacques Féjoz for his help with the
figures.
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Averaging method and adiabatic invariants

Anatoly Neishtadt1

Abstract There are many problems that lead to analysis of Hamiltonian dynamical
systems in which one can distinguish motions of two types: slow motions and fast
motions. Adiabatic perturbation theory is a mathematical tool for the asymptotic
description of dynamics in such systems. This theory allows to construct adiabatic
invariants, which are approximate first integrals of the systems. These quantities
change by small amounts on large time intervals, over which the variation of slow
variables is not small. Adiabatic invariants usually arise as first integrals of the sys-
tem after having been averaged over the fast dynamics. Adiabatic invariants are
important dynamical quantities. In particular, if a system has sufficiently many
adiabatic invariants, then the motion over long time intervals is close to regular. On
the other hand, the destruction of adiabatic invariance leads to chaotic dynamics.

1 Introduction

Adiabatic invariance is a remarkable phenomenon in dynamics of systems with
slowly varying parameters. It can be described as follows. Consider a system which
depends on a parameter. Suppose that the system has a first integral for every fixed
value of this parameter. If this parameter changes in time, the system in general does
not have any, even approximate, first integrals. However, if the parameter is chang-
ing slowly, such an approximate first integral exists. This approximate first integral
is called an adiabatic invariant. It is a function of phase variables and the parameter
such that its value along a trajectory remains approximately constant on long time
intervals on which the parameter changes considerably. Here are several classical
examples.
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Example 1 (Rayleigh, or Lorentz-Einstein, pendulum). Consider a mathematical
pendulum whose length l is varying slowly in time: l = l(εt), t is time and ε is a
small positive parameter. On a long time interval of length ∼1/ε , the energy E of
the pendulum will change considerably, by a value∼1. However, there is a function
I = I(E, l) of energy and length of pendulum which is an adiabatic invariant; its
value changes only by O(ε) during time 1/ε . This function I is the “action” of the
pendulum. If the amplitude of oscillations is small then I is approximately equal to
E/(g/l)1/2 , where g is the acceleration of gravity (we assume that E is normalized
so that it is zero when the amplitude of oscillations vanishes).

Example 2 (Fermi–Ulam model). Consider the one-dimensional motion of a par-
ticle bouncing between slowly moving ideally reflecting walls, where the distance
between the walls is d = d(εt). Then the product vd of the particle’s velocity v and
the distance between the walls d is an adiabatic invariant: its value changes only by
O(ε) during time 1/ε .

Adiabatic invariants became widely known and used only after the work of
P. Ehrenfest, who suggested the name “adiabatic invariant”. He discovered the adi-
abatic invariance of the “action” variable in Hamiltonian systems with one degree
of freedom (see Sect. 2) as a particular case of some thermodynamical relations
that had been established by L. Boltzmann, R. Clausius and C. Szily [16]. Sub-
sequently, adiabatic invariance was a very important concept in the early stage of
development of quantum mechanics. Later, after the work of H. Alfvén, adiabatic
invariance becomes important in problems of plasma physics. But in this case one
should consider not systems with slowly varying in time parameters, but systems
with slow dependence on some of the phase variables.

Example 3 (Magnetic moment). In a constant magnetic field a charged particle
moves along a spiral around a force line of the field. This motion is a composition of
rotation around the field line (along a circle which is called the Larmor circle) and
a drift motion of this circle. In the case when there is a small relative change of the
field over a distance of order of the Larmor radius and when the pitch of the spiral
is small of order ε , the magnetic moment of the particle is an adiabatic invariant;
its value changes only by O(ε) during time 1/ε . The magnetic moment of the par-
ticle is defined to be the value E⊥/B, where E⊥ is the energy of the Larmor motion,
E⊥ = v2

⊥/2, v⊥ is the value of projection of velocity of the particle onto the plane
perpendicular to the magnetic field, and B is the strength of the magnetic field.

Adiabatic invariants have also applications in celestial mechanics, hydrodynamics,
optics, radio-physics, chemical kinetics, to name other areas in the physical sciences.

2 Adiabatic invariance in one-frequency systems

A somewhat general framework in which adiabatic invariants appear can be de-
scribed as follows. Consider a Hamiltonian system with one degree of freedom, and
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suppose that the Hamiltonian E of this system depends on a parameter λ which is
slowly varying in time;

E = E(p,q,λ ), λ = λ (τ), τ = εt, 0 < ε � 1... (1)

Here (p,q) are canonical conjugate variables, (p,q) ∈ R2. All functions are as-
sumed to be smooth enough. Because the parameter λ is changing slowly, it
is reasonable to first consider the problem at frozen values of λ . For every
frozen value of λ in the plane p,q let there be a domain filled by closed phase
curves of E (Fig. 1). In this domain one can introduce “action-angle” variables
I = I(p,q,λ ),ϕ = ϕ(p,q,λ )mod2π [4]. The “action” I(p,q,λ ) is the area sur-
rounded by the phase curve passing through the point (p,q), divided by 2π . The
“angle” ϕ(p,q,λ ) is a uniformly varying angular variable on this phase curve tran-
scribed by the motion of the system with Hamiltonian E. Now let the parameter λ
change in time. Denote by (p(t),q(t)) a solution of our Hamiltonian system.

Theorem 2.1. The action variable I(p,q,λ ) is an adiabatic invariant:

|I(p(t),q(t),λ (εt))− I0|< Cε for 0 � t � 1/ε.

Here I0 = I(p(0),q(0),λ (0)), C = const > 0.

Proof. For fixed λ the canonical transformation p,q �→ I,ϕ is defined by means of
a generating function W = W (I,q,λ ). The old and the new variables are related via
the expressions

p = ∂W/∂q, ϕ = ∂W/∂ I. (2)

Denote H0 = H0(I,τ) the old Hamiltonian expressed in the new variables. Let
us make a canonical transformation of variables by means of formulas (2) in the
case when the parameter λ is changing in time. According to a standard recipe of

p

q

Fig. 1 Domain in the phase plane filled by closed phase curves
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analytical dynamics, the behaviour of the variables I,ϕ is described by a Hamilton-
ian system with Hamiltonian H(I,ϕ,τ,ε) = E + ∂W/∂ t = H0(I,τ)+ εH1(I,ϕ,τ),
where the function H1 is 2π - periodic in ϕ . The equations of motion have
the form

İ =−ε ∂H1

∂ϕ
, τ̇ = ε, ϕ̇ =

∂H0

∂ I
+ ε

∂H1

∂ I
. (3)

This system contains slowly varying variables I,τ and angular variable (the
phase) ϕ , which rotates with frequency approximately equal to ω = ∂H0/∂ I. Sys-
tems of such form are standard objects for application of the averaging method (see,
e.g. [4]). In order to describe approximately the behaviour of the slow variables,
the averaging method prescribes to average the r.h.s of equations for these variables
over the fast phase. The averaged equation for I has the form İ = 0, which im-
plies that I = const along the trajectory. The theory about accuracy of the averaging
method (see, e.g. [4]) says that behavior of slow variables in the exact system is
described by solutions of the averaged system with the same initial conditions, with
accuracy O(ε), over a time interval of length 1/ε . This implies the assertion of the
theorem. 
�

Example 4 (Quadratic Hamiltonians). Consider the quadratic Hamiltonian

E =
1
2
(ap2 +2bpq+ cq2),,,

and assume that ω2 = ac−b2 > 0. For a,b,c constant, the Hamiltonian E describes
linear oscillations with frequency ω , and phase trajectories (level lines of E) are
ellipses. It is easy to check that the “action” is I = E/ω . If a,b,c are changing slowly
in time, then according to Theorem 1 the action I is an adiabatic invariant. This
explains the result of Example 1 for the case of small oscillations of a pendulum.

For Example 2 we have I = vd/π . However in this case adiabatic invariance of
I does not follow from Theorem 1 because of the lack of smoothness in the system.
“The proof of adiabatic invariance of vd in this system is an instructive elementary
problem” [4] (however, see [13] for general consideration of adiabatic invariance in
systems with impacts).

A more general framework for adiabatic invariance, which is needed for prob-
lems similar to that in Example 3, is a framework of slow-fast Hamiltonian systems.
Consider Hamiltonian system with Hamiltonian of the form

E = E(p,q,y,x) (4)

and with the symplectic structure

d p∧dq+ ε−1dy∧dx...
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The equations of motion have the form

ṗ =−∂E
∂q

, q̇ =
∂E
∂ p

, ẏ =−ε ∂E
∂x

, ẋ = ε
∂E
∂y

, (5)

and the variables p,q are called fast while variables y,x are called slow. System (5) is
called a Hamiltonian system with fast and slow variables or a slow-fast Hamiltonian
system. (In particular when the Hamiltonian has the form E = y + E0(p,q,x), we
get a system depending on the slow time x = τ .)

Consider the case when the fast variables correspond to one degree of freedom
(i.e. p,q are scalar variables). The dimensions of y,x are not important for now. Be-
cause variables y,x are changing slowly, it is reasonable first to consider the prob-
lem at frozen values of y,x. For every frozen value of y,x in the plane p,q sup-
pose that there is a domain filled by closed phase curves of Hamiltonian E (Fig. 1).
In this domain one can introduce “action-angle” variables I = I(p,q,y,x), ϕ =
ϕ(p,q,y,x) mod 2π . Denote by H0(I,y,x) the Hamiltonian E expressed via vari-
ables I,y,x. Denote as (p(t),q(t),y(t),x(t)) a solution of our Hamiltonian system
(5).

Theorem 2.2. The action variable I(p,q,y,x) is an adiabatic invariant:

|I(p(t),q(t),y(t),x(t))− I0|< Cε for 0 � t � 1/ε.

Moreover
|y(t)−Y (t)|+ |x(t)−X(t)|< Cε for 0 � t � 1/ε...

Here (Y (t),X(t)) is the solution of Hamiltonian system with Hamiltonian H0(I0,Y,X)
and with initial data Y (0) = y(0), X(0) = x(0), I0 = I(p(0),q(0),y(0),x(0)).

Proof. At frozen values of the slow variables y,x a canonical transformation of
variables (p,q) �→ (I,ϕ) is determined by a generating function W (q, I,y,x) con-
taining y,x as parameters. In the system with Hamiltonian (4) perform a canon-
ical transformation of variables (p,q,y,x) �→ (Î, ϕ̂, ŷ, x̂) with generating function
ε−1ŷx+W (q, Î, ŷ,x). This transformation of variables takes the form

ϕ̂ =
∂W
∂ Î

, p =
∂W
∂q

, x̂ = x+ ε
∂W
∂ ŷ

, y = ŷ+ ε
∂W
∂x

. (6)

In the new variables the Hamiltonian (4) has the form

H = H0(I,y,x)+ εH1(I,ϕ,y,x,ε), H1 =
∂E
∂y

∂W
∂x
− ∂H0

∂x
∂W
∂y

+O(ε),,,

where the function H1 is 2π - periodic in ϕ . The equations of motion have the form

˙̂I = −ε ∂H1

∂ ϕ̂
, ˙̂y =−ε ∂H0

∂ x̂
− ε2 ∂H1

∂ x̂
, ˙̂x = ε

∂H0

∂ ŷ
+ ε2 ∂H1

∂ ŷ
, (7)

˙̂ϕ =
∂H0

∂ Î
+ ε

∂H1

∂ Î
.
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This system contains slowly varying variables Î, ŷ, x̂, and an angular variable (the
phase) ϕ̂ which rotates with frequency approximately equal to ω = ∂H0(Î, ŷ, x̂)/∂ Î.
In order to describe the approximate behaviour of the slow variables, the averaging
method prescribes to average the r.h.s. of the equations for these variables over the
fast phase, and to neglect terms of O(ε2). The averaged system is a Hamiltonian
system with Hamiltonian H0(J,Y,X):

J̇ = 0 , Ẏ =−ε ∂H0

∂X
, Ẋ = ε

∂H0

∂Y
. (8)

The theorem about the accuracy of the averaging method (see, e.g. [4]) says
that the behaviour of the slow variables in the exact system (7) is described by the
solution of the averaged system with the same initial conditions, up to accuracy
O(ε) over the time interval 1/ε . This, together with the fact that the variables with
“hat” differ from the variables without “hat” by O(ε) as well, implies the assertion
of the theorem. 
�

In the problem under consideration, a description of the motion by means of
equations (8) is called the adiabatic approximation. Trajectories of system (8) are
called the adiabatic trajectories.

Example 5 (Magnetic traps). In Example 3, the dynamics of particles is described
by a slow-fast Hamiltonian system with three degrees of freedom; one degree of
freedom corresponds to fast variables, while two degrees of freedom correspond to
slow variables. The kinetic energy E of a particle is a first integral of the motion. For
E we have an expression E = mv2

‖/2 + mv2
⊥/2, where v‖ and v⊥ are the values of

the projections of the velocity of a particle onto the direction of the magnetic field
and the plane perpendicular to the magnetic field respectively, and m is the particle’s
mass. Denote µ the magnetic moment of the particle; µ = v2

⊥/(2B). Thus, along the
trajectory E = m(v2

‖/2+µB) is constant. At frozen values of the slow variables, the
motion of the fast variables is Larmor motion. The frequency of this motion is pro-
portional to the strength of the magnetic field B. The Hamiltonian for this motion in
principal approximation is a quadratic function of the fast variables, and it coincides
with E⊥ = mv2

⊥/2. So, the action of the fast motion, which is equal in the princi-
pal approximation to the ratio of E⊥ to the Larmor frequency (see Example 3), is
an adiabatic invariant. Therefore, the magnetic moment µ is an adiabatic invariant.
Consider the problem in the adiabatic approximation µ = const, for which the mo-
tion takes place in the domain where B � E/(mµ). The surface where B = E/(mµ)
is called a “magnetic mirror”. This surface “reflects” particles with energy E and
magnetic moment µ . If for a given particle, its magnetic line crosses two magnetic
mirrors, then the particle will bounce between these mirrors. The construction of
traps for a plasma which are called “adiabatic traps” or “traps with magnetic mir-
rors” is based on this phenomenon. A gigantic natural adiabatic trap is the Earth’s
magnetosphere. In plasma physics the adiabatic approximation is called “guiding
centre approximation”.
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Theorems 1 and 2 guarantee the conservation of adiabatic invariance on time
intervals of the length of order 1/ε . For a magnetic trap in Example 5 this is just
the time for several oscillations between magnetic mirrors. In fact, if the system
is smooth enough, the time of conservation of adiabatic invariance is much longer.
We consider this matter for Hamiltonian systems with a parameter which is slowly
varying in time (a Hamiltonian of the form (1)). For slow-fast Hamiltonian systems
(a Hamiltonian of the form (4)) the results are similar (see [6]). Let I,ϕ be action-
angle variables for a system with Hamiltonian (1) with “frozen” values of λ . If
the parameter λ changes in time, then dynamics of variables I,ϕ is described by a
Hamiltonian system with Hamiltonian of the form

H(I,ϕ,τ,ε) = H0(I,τ)+ εH1(I,ϕ,τ) (9)

(see the proof of Theorem 1). The function H1 is 2π - periodic in ϕ , and both func-
tions H0,H1 are defined in the domain G = {I,ϕ,τ : I ∈ D⊂ R1, ϕ ∈ T 1, τ ∈ R1}.
Assume that these functions can be continued analytically into a complex δ -
neighborhood G+δ of the set G, and in this neighborhood the following estimates
are satisfied:

|H0|< M, |H1|< M, |∂H0/∂ I|> c−1,,,

where δ , M and c are positive constants.

Theorem 2.3. [19] For 0 < ε < ε0 and (I,φ ,τ) in a complex δ/2-neighborhood of
the domain G, there exists a canonical transformation of variables I,ϕ �→ J,ψ such
that

|J− I|+ |ϕ−ψ|< c1ε

and the Hamiltonian expressed in the new variables has the form

H (J,ψ,τ,ε) = HΣ (J,τ,ε)+ εα(J,ψ,τ,ε),
|HΣ −H0|< c1ε, |α|< exp(−c−1

2 /ε). (10)

Here ε0,c1 and c2 are positive constants.

Corollary 2.1. Along a trajectory the value of the variable I undergoes only os-
cillations of order ε over time intervals of length exp( 1

2 c−1
2 /ε). Thus, in analytic

one-frequency systems, adiabatic invariance is conserved over exponentially long
time intervals.

To prove this Corollary we note that the dynamics of the variable J as introduced
in the Theorem 3 is described by the equation

J̇ =−ε ∂α
∂ψ

= O(ε exp(−c−1
2 /ε))... (11)

Hence over exponentially long time exp( 1
2 c−1

2 /ε) the change of J along trajectory
is exponentially small. On the other hand, the difference between I and J is O(ε).
This completes the proof.
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The origin of the exponentially small term in (10) can be explained heuristically
as follows. Let us try by means of a canonical transformation which is close to
the identity I,ϕ �→ J,ψ to eliminate the dependence of the Hamiltonian on the fast
angular variable. Let us try to find a new Hamiltonian H (J,τ,ε) and a generating
function of this transformation Jϕ + εS(J,ϕ,τ,ε) in the form of a series

H (J,τ,ε) = H0(J,τ)+ εH1(J,τ)+ ε2H2(J,τ)+ . . . , (12)
S(J,ϕ,τ,ε) = S1(J,ϕ,τ)+ εS2(J,ϕ,τ)+ ε2S3(J,ϕ,τ)+ . . . .

The functions Sl are 2π-periodic in ϕ , and the new and old variables are related by
the expressions

I = J + ε
∂S
∂ϕ

, ψ = ϕ + ε
∂S
∂J

. (13)

The new and the old Hamiltonian are related via the formula

H (J,τ,ε) = H(I,ϕ,τ,ε)+ ε2 ∂S
∂τ

. (14)

Plugging (13) into (14), taking into account the expansions (12) and equating terms
of the same order in ε we get a sequence of equations

H1 =
∂H0

∂J
∂S1

∂ϕ
+H1, (15)

H2 =
∂H0

∂J
∂S2

∂ϕ
+

1
2
∂ 2H0

∂J2 (
∂S1

∂ϕ
)2 +

∂S1

∂τ
, (16)

Hk =
∂H0

∂J
∂Sk

∂ϕ
+Xk(J,ϕ,τ)+

∂Sk−1

∂τ
, k � 3. (17)

The function Xk is well defined if functions Hl , Sl , l = 1,2, . . . ,k−1 are defined and
the expression for Xk does not include ∂Sk−1/∂τ . This sequence of equations allows
to define step by step all the functions Hk, Sk (one should remember that functions
Sk are 2π-periodic in ϕ). In particular, H1 is equal to the average of H1 over ϕ . After
defining H1 one can find S1 via quadrature, and so on. However, the series (12) for
H , S as a rule should diverge. Indeed, on the k-th step of our procedure one should
differentiate function Sk−1 with respect to τ . So, basically in order to define Hk, Sk
one should differentiate H1 k− 1 times with respect to τ . The n-th derivative of an
analytic function can be estimated from above as ann!, a = const, and this estimate
can not be improved. This informal reasoning indicates the divergence of the series
(12). It indicates also that these series should be of Gevrey type 1 [23]. If we truncate
the series for S at terms of order εn−3 and make transformation of variables (13)
with this truncated generating function S, then the new Hamiltonian will have form
(10) with |εα|< constεnann!. According to Stirling’s formula the right hand side of
this inequality for large n grows approximately as exp(n(log(aε)+ logn−1)). This
function of n has a minimum at n = 1/(aε). Now choosing n to be the integer part
of 1/(aε) implies the estimate (10).
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The proof of Theorem 3 in [19] is based on a representation for the transforma-
tion I,ϕ �→ J,ψ as a composition of many,∼1/ε , symplectic transformations which
eliminate the dependence of the Hamiltonian on fast variables in subsequent orders
in ε . The proof, based on establishing a Gevrey 1 type of formal series H , S, is
given in [23]. The method of continuous averaging [25] gives a sharp estimate of
the constant c2 in Theorem 3.

A certain modification of Theorem 3 explains a remarkable property known as
the exponential accuracy of the conservation of adiabatic invariants [15]. Assume
that value λ (τ) tends sufficiently fast to definite the limits λ± as τ→±∞. Then the
value of the action I along a trajectory also tends to some limits I± as t →±∞. The
difference

∆ I = I+− I−

is called the accuracy of conservation of this adiabatic invariant [15]. Although for
finite t the quantity I undergoes oscillations of order ε , the value ∆ I is much smaller
then ε . In particular, if the system is analytic, then ∆ I is exponentially small; ∆ I =
O(exp(−c−1

2 /ε)). With the help of Theorem 3 this can be explained as follows.
The function H1 in (9) is proportional to dλ/dτ and so it tends to 0 fast enough
as τ →±∞. This implies that function α in Theorem 3 tends to 0 fast enough as
τ →±∞ . Together with estimate (10) this implies that

∫ +∞

−∞
|εα|dt = O(exp(−c−1

2 /ε)).

Together with (11) this implies that the values of J along the trajectory tend to
certain limits J± as t → ±∞, and J+− J− = O(exp(−c−1

2 /ε)). But J− I tends to
0 as τ → ±∞ (this is again because H1 tends to 0 as τ → ±∞). Therefore, I± =
J±. This implies our assertion about the exponential accuracy of conservation of
adiabatic invariant in analytic systems. An analysis of the analytic continuation in
the plane of complex time of solutions with complex data at infinity allows one to get
sharp estimates for the constant c2 [21,24] and, in some cases, to obtain asymptotic
expressions for ∆ I [12, 24].

Now consider the case where the parameter λ varies periodically in time; λ is
a 2π-periodic function of τ . Over infinite time the adiabatic invariants can undergo
considerable evolution due to the accumulation of small perturbations.

Example 6 (Parametric resonance). Consider the linear oscillator

ẍ =−ω2(1+κ cosεt)x, κ = const < 1.

The equilibrium x = 0 can be unstable for arbitrarily small ε (the phenomenon of
parametric resonance [4]). The adiabatic invariant changes unboundedly.

However, it turns out that for a periodic variation of the parameter, such
non-conservation of the adiabatic invariant is due to the linearity of the system
(more precisely, to the fact that the frequency of oscillations is independent of
the amplitude). In a nonlinear system, as the amplitude increases, the frequency
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changes, and the oscillations do not have enough time to accrue before the reso-
nance condition is violated.

Denote

ω̄(I) =
1

2π

∫ 2π

0

∂H0(I,τ)
∂ I

dτ

Theorem 2.4. [2] If the Hamiltonian function of a nonlinear oscillatory system with
one degree of freedom depends on time slowly and periodically, the action variable
I of the system is a perpetual adiabatic invariant:

|I(p(t),q(t),λ (εt))− I0|< Cε for −∞ < t < +∞.

The required nonlinearity condition is ∂ω̄(I)/∂ I 	= 0.

The proof is based on a construction of invariant surfaces (tori), which fill the
phase space p,q,τ mod2π of the problem, up to a residue of exponentially small,
O(exp(−const/ε)), measure, and are O(ε)-deformations of tori I = const. The
phase space is three-dimensional, and invariant tori are two-dimensional. There-
fore, a phase point that started to move in a gap between the tori remains confined in
this gap forever. For this phase point, the value of I remains O(ε)-close to its initial
value. Evidently, the same estimate is valid if the phase point started to move on an
invariant torus.

A perpetual adiabatic invariant also exists (under certain conditions) in slow-fast
Hamiltonian systems with two degrees of freedom and with a Hamiltonian function
of the form (4) [2]. According to Theorem 2, the motion in such a problem is ap-
proximately described by the Hamiltonian H0(I,y,x). Suppose that the phase curves
of this Hamiltonian for fixed I are closed. Then in the approximation under consider-
ation the motion in the phase space takes place on the two-dimensional tori defined
by the conditions I = const, H0 = const. This motion has two frequencies, and one
of the frequencies is 1/ε times smaller than the other. If for a given H0 = const the
frequency ratio changes as I varies, then in the exact system on each hyper-surface
of constant Hamiltonian there are many invariant tori close to the invariant tori of the
approximate system. This implies that the action variable I is perpetually close to its
initial value. From this conclusion it follows, in particular, that if the magnetic trap
of Example 5 is axially symmetric then it confines charged particles perpetually [2].

Previous analysis was based on the assumption that at frozen values of parameter
λ for Hamiltonian (1) (or at frozen values of slow variables y,x for Hamiltonian
(5)) the domain under consideration in the plane of fast variables p,q is filled with
closed phase curves. However, it often happens that in this domain there is a saddle
point with separatrices passing through it, as in Fig. 2.

As a result of the slow variation of the parameter (or of the slow variables) the
phase points may cross this separatrix. This leads to an interesting phenomenon
associated with jumps of adiabatic invariant at separatrices and destruction of adia-
batic invariance; see details in [6] and in the references therein.
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Fig. 2 Separatrices in the phase plane of fast variables

3 On adiabatic invariance in multi-frequency systems

Now consider the case when a Hamiltonian system with Hamiltonian (1) pos-
sesses n � 2 degrees of freedom; (p,q) ∈ R2n. First, consider the Hamiltonian
at frozen λ , and suppose the system with this Hamiltonian is completely inte-
grable. This means that in the phase space of the Hamiltonian there exists a domain
filled up by n-dimensional invariant tori and the “action-angle” variables (I,ϕ), I ∈
Rn, ϕ ∈ T n mod 2π are defined [4]; I = (I1, I2, . . . , In), ϕ = (ϕ1,ϕ2, . . . ,ϕn). (The
“angle” variables ϕ are called phases as well.) The transformation of the vari-
ables (p,q) �→ (I,ϕ) is canonical (symplectic). This transformation can be defined
with a generating function W (I,q,λ ). The old and the new variables are related
via formulas (2). In terms of the new variables, the Hamiltonian has the form
E = H0(I,τ). The motion is a multidimensional rotation with a vector of frequencies
ω(I,τ) = (ω1(I,τ),ω2(I,τ), . . . ,ωn(I,τ)).

Now let λ change slowly in time: λ = λ (τ), τ = εt. Here on the level of for-
mal computations everything is completely analogous to the one-frequency case. In
the system with Hamiltonian (1) let us make the canonical transformation (p,q) �→
(I,ϕ) by means of formulas (2). As in Section 2, the Hamiltonian for the new vari-
ables has the form H(I,ϕ,τ,ε) = H0(I,τ)+εH1(I,ϕ,τ), where H1 = ∂W/∂τ . The
differential equations of the motion have the form (3). The Hamiltonian and the
equations of the motion are in the standard form to which averaging method can
be applied. In order to describe the approximately behaviour of the variables I, the
averaging method prescribes to average the rate of changing of this variables over
the fast phases ϕ . Averaging a certain function f (·) means calculating the following
value;

〈 f 〉= 1
(2π)n

∫ 2π

0

∫ 2π

0
. . .

∫ 2π

0
f (ϕ)dϕ1dϕ2 . . .dϕn . (1)
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The averaged equation for I has the form İ = 0, implying that I = const along the
trajectory in approximation of the averaging method. Thus, “actions” I are natural
candidates to be adiabatic invariants. They would be adiabatic invariants provided
the averaging method describes the dynamics on the time interval 1/ε with accuracy
which goes to zero as ε → 0. These calculations and reasoning are due to J.M.
Burgers [8]. (He was a PhD student of P. Ehrenfest and his adviser assigned to him
the problem of adiabatic invariance in multi-frequency systems [16].)

The justification of the averaging method in multi-frequency systems encounters
problems with resonances. The resonance condition is a relation of the form

k1ω1(I,τ)+ k2ω2(I,τ)+ . . .+ knωn(I,τ) = 0, (2)

where k = (k1,k2, . . . ,kn) is an integer non-zero vector. If for some I,τ a resonance
condition (2) is satisfied, then for this (I,τ) the unperturbed (τ = const) motion
takes place on an (n− 1)-dimensional torus. So independent averaging over all
phases, like in (1), which is actually averaging over an n-dimensional torus, may
not be a correct tool for approximate description of the direction of the evolution.
In the process of the motion, even if I would be approximately constant, the value
τ changes, and resonance conditions (2) with different vectors k are satisfied on a
dense set of points in time. This problem was first addressed by P.A.M. Dirac [9] for
two-frequency case (n = 2, ω = (ω1,ω2)). In [9] the problem was considered under
the following condition

ω2
∂ω1

∂τ
−ω1

∂ω2

∂τ
− (ω2

∂ω1

∂ I
−ω1

∂ω2

∂ I
)
∂H1

∂ϕ
> c−1, c = const > 0. (3)

In the two-frequency case, the resonance condition means that the ratio of the fre-
quencies is a rational number. Condition (3) means that the ratio of the frequencies
changes at a non-zero rate along trajectories of the system. So, the phase point can-
not stay for a long time near any given resonance. If this condition is satisfied, then
the “action” I is an adiabatic invariant; its variation along a trajectory on time inter-
val of the length 1/ε tends to zero as ε → 0 [9]. It follows from the general result
of V.I. Arnold [3] about averaging in two-frequency systems, that this variation is
O(
√
ε).

If the condition (3) is not satisfied, then along some trajectories the value of I
during time 1/ε may change considerably, by a value of order 1, due to the phe-
nomenon of capture into resonance, see example in [20]. However, results of D.V.
Anosov [1] and T. Kasuga [14] imply that under very general conditions the mea-
sure of the initial data for such trajectories tends to zero as ε → 0. The value I can
be called an almost adiabatic invariant [5]. Some estimates of this measure are con-
tained in [7, 10, 17, 18]. For a description of dynamics with capture into resonance
on time intervals of the length of order 1/ε see, e.g., review [22]. On time intervals
of the length 1/ε3/2 the adiabatic invariance of I may be completely destroyed; the
value of I along a trajectory may change by a value which is bounded from below
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by a constant for a set of initial data of measure which is bounded from below by
another constant. The corresponding example is constructed in [20], and general
approach is developed in [11], see also discussion in [22].
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Transformation theory of Hamiltonian PDE
and the problem of water waves

Walter Craig1

Abstract This set of lecture notes gives (i) a formal theory of Hamiltonian systems
posed in infinite dimensions, (ii) a perturbation theory in the presence of a small
parameter, adapted to reproduce some of the well-known formal computations of
fluid mechanics, and (iii) a transformation theory of Hamiltonian systems and their
symplectic structures. A series of examples is given, starting with a rather complete
description of the problem of water waves, and, following a series of scaling and
other simple transformations placed in the above context, a derivation of the well
known equations of Boussinesq and Korteweg deVries.

1 Hamiltonian systems

A Hamiltonian system is given in terms of a Hamiltonian function H : M → R,
where M is the phase space. We will restrict ourselves to phase spaces which are
Hilbert spaces, denoting the inner product between two vectors V1,V2 ∈ T (M) by
〈V1|V2〉. The symplectic structure is as usual given by a two-form ω on (M), which
can be represented by the inner product, namely ω(V1,V2) = 〈V1|J−1V2〉, where,
because of the antisymmetry of two-forms, the operator J satisfies J−T = −J−1.
The Hamiltonian vector field XH is defined through the relation dH(V ) = ω(V,XH)
which is asked to hold for all V ∈ T (M). The system of equations that we study,
known as Hamilton’s canonical equations, is given by

v̇ = XH(v),,, v(0) = v0... (1)

The inner product enters into the definition of the gradient of functions on M, which
is in particular that for all V ∈ T (M), dH(V ) = 〈grad vH|V 〉, therefore Hamiltonian
vector fields are expressed by
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XH = Jgrad vH(v)... (2)

We will denote the solution map, or the flow, for the initial value problem for system
(1) by v(t) = ϕt(v0). From the usual theory of ordinary differential equations, when-
ever the Hamiltonian vector field XH(v) is C1(M,T (M)) (usually meaning when the
Hamiltonian H(v) itself is C2(M,R)) then the flow is defined and unique, at least
locally in time. The disclaimer is that this regularity property holds very rarely the
case when equation (1) describes a partial differential equation (the BBM equa-
tion is a notable exception), and much effort has gone into the study of the well
posedness of the initial value problem and the properties of the solution map for nu-
merous important examples of evolution equations. Furthermore, in this effort it is
not clear that the property of being a Hamiltonian system is of particular importance
in general. Nonetheless, because of its interest in various special cases, and because
Hamiltonian partial differential equations (PDE) appear naturally in many areas of
physics, it seems reasonable to take seriously the analogy between Hamiltonian dy-
namical systems and PDEs. This is one purpose of the presentation in this note.

2 Partial differential equations as Hamiltonian systems

It seems most useful to discuss Hamiltonian PDEs with a good set of examples.
These are supplied by problems in physics, and in particular the ones I bear in mind
most often come from the problems in wave propagation in fluid mechanics.

(i) The wave equation

Consider a scalar field u(x, t) defined for x ∈Ω ⊆ R
d which satisfies the equation

∂ 2
t u = ∆xu−g(u,x),,, u(x, t) = 0 when x ∈ ∂Ω ... (1)

This can be written in the form of equation (1); indeed define

H(u, p) :=
∫

Ω
1
2 p2 + 1

2 |∇u|2 +G(u,x)dx,,, (2)

where ∂uG = g. Then the second order equation (1) can be equivalently written as a
first order system of PDEs

u̇ = p = grad pH (3)

ṗ = ∆u−∂uG =−grad uH...

The gradient is taken with respect to the L2(Ω) inner product, which dictates as
well which Hilbert space we should propose for M. Actually, as operators such
as ∆ are unbounded, the initial value problem should normally be posed only on
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an appropriate subdomain of M. In any case, this problem is in the form of a
Hamiltonian system with v = (u, p)T and

v̇ = JgradvH,,, J :=
(

0 I
−I 0

)
... (4)

We will say that a Hamiltonian system with J of this form is in Darboux coordinates.

(ii) Burger’s equation

A famous example in the theory of shoch waves is Burger’s equation, which can be
written in Hamiltonian form as well.

∂tw = w∂xw x ∈ R
1... (5)

Define the Hamiltonian as
H :=

∫

R

1
6 w3 dx,,, (6)

from which we compute the form of Hamiltonian’s canonical equations

ẇ = ∂x( 1
2 w2) = Jgrad wH,,, J := ∂x... (7)

Notice that the symplectic structure is given by an operator with no direct finite
dimensional analog; it furthermore is not invertible, meaning that our formal dis-
cussion of the representation of the symplectic form in Section 1 has to be taken
with a grain of salt. It is well known that every nonconstant solution of Burger’s
equation develops discontinities, or shocks. The standard law of conservation of
the Hamiltonian function, H(ϕt(w)) = H(w) holds for smooth solutions, however it
does not hold in most cases for time t after the time T of formation of a shock.

(iii) The Korteweg deVries equation

The classical Korteweg deVries (KdV) equation was derived as a model equation
for the propagation of waves in the surface of a fluid. The beautiful fact about the
KdV is that it is an example of an infinite dimensional completely integrable sys-
tem, with algebraic integrals viewed in the proper coordinates. This integrability is
not the topic of the present discussion. Rather, we show that it can be posed as a
Hamiltonian PDE, and furthermore we discuss its relationship to fluid dynamics.
The KdV equation for a function r(X , t)is normally written as

∂t r =− 1
6∂

3
X r +3r∂X r... (8)

This takes the form of a Hamiltonian system with Hamiltonian

H :=
∫

R

1
12 (∂X r)2 + 1

2 r3 dX ,,, J = ∂X ... (9)
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One easily checks that this is in the form (1), which in this context is

ṙ = ∂X grad rH... (10)

The nonlinearity g(X ,r) = ∂X (3r2/2) is not the only one of interest. In particular the
case ∂X r3 is a Hamiltonian PDE which is also a completely integrable system. Re-
placing either of the above two equations with a general nonlinear term g(X ,r) also
results in a Hamiltonian PDE, which is sometimes considered as a model dispersive
evolution equation which is not completely integrable.

(iv) The Boussinesq system

Another well known PDE which was originally derived in the study of water waves
is the Boussinesq system,

∂t

(
p
q

)
=

(
0 ∂X
∂X 0

)(
p+ 1

2 q2

qq+∂ 2
X q+ pq

)
... (11)

This system of equations is a variant of a common one studied by Zakharov [13],
and it has been shown to be another example of a completely integrable Hamiltonian
PDE in Kaup [10] and Sachs [11]. The Hamiltonian for the system (11) is given by

H := 1
2

∫

R
p2 +q2− (∂X q)2 + pq2 dX ,,, (12)

with a symplectic structure given by the matrix operator

J :=
(

0 ∂X
∂X 0

)
(13)

which is already in appearance in the above system of equations (11).

We now have a number of examples in hand, many of which stem originally from
the study of water waves, that is the fluid dynamical problem of wave propagation
in the surface of a body of fluid. A natural question is as to how these systems are
related to each other. In particular we note that among these systems the number of
dependent variables are different, the number of independent variables is different,
and the symplectic structures are also changed from one system to another. In order
to address this question, even on the formal level that is given in these lectures,
we will undertake a detailed description of the problem of water waves itself from
the point of view of the equation as an infinite dimensional Hamiltonian dynamical
system.
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3 The problem of water waves

The equations of evolution for the free surface of a body of water in the influence of
gravity as a restoring force are a classical example of a system of Hamiltonian PDEs
for which the structure of the equations as such has led to important developments
in fluid dynamics. I will first describe the system of equations in standard Eulerian
coordinates, after which the formulation of the problem as a Hamiltonian PDE
can be derived. The fluid domain is given by S(η) := {x ∈ R

d−1, y ∈ (−h,η(x))},
where we are assuming that the free surface is given as the graph of the function η ;
Γ (η) := {(x,y) : y = η(x)}. Normally the dimension is taken to be either d = 2,3,
although mathematically it makes sense for it to be any integer d ≥ 2. The force
of gravity is take to act vertically, given by F = −g(0,1). One of the unknowns of
the problem is the time dependent fluid domain S(η) defined in terms of the func-
tion η(·, t). The other unknowns are the components of the fluid velocity u(x,y, t) at
every point in space and time in the fluid domain.

In S(η) the fluid velocity vector field is taken to satisfy the conditions of incom-
pressibility and irrotationality, respectively

∇ ·u = 0,,, ∇∧u = 0...

The latter is the condition that the vector field u is given in the form of a potential
flow; u = ∇ϕ at each instant of time, while the former states that the potential ϕ is
harmonic in S(η);

∆ϕ = 0...

Furthermore, on the solid bottom boundary of S(η) the fluid velocity is taken to have
no normal component; N ·u = 0, hence the potential satisfies Neumann boundary
conditions on this component of the domain boundary;

N ·∇ϕ = 0...

All of the time dependent and nonlinear content of the problem is thus expressed in
the boundary conditions posed on the free surface Γ (η), namely

∂tη = ∂yϕ−∂xη ·∂xϕ (1)

∂tϕ = −gη− 1
2 |∇ϕ|

2,,,

known respectively as the kinematic and the Bernoulli conditions. The first bound-
ery condition follows from the fact that a fluid particle which originates on the free
surface will remain on the free surface under time evolution, so that a tangent vec-
tor T to its trajectory in space–time must always be orthogonal to the space–time
normal vector N to the free surface; N ·T = 0. The Bernoulli condition simply rep-
resents an expression of the Euler equations for an inviscid fluid, in integrated form
and evaluated on the free surface which itself is a surface of constant pressure.
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The energy H of the system of equations for fluid motion with a free surface
is straightforward to express, indeed it is the sum of kinetic and potential energy
contributions;

H = K +P :=
∫

R
d−1

∫ η(x)

h
|u|2 dydx+

∫

R
d−1

∫ η(x)

h
gydydx (2)

=
∫

R
d−1

∫ η(x)

h

1
2 |∇ϕ|

2 dydx+
∫

R
d−1

g
2η

2 dx−C,,, (3)

where the constant C is irrelevant to the dynamics and can be neglected. It is useful
to rewrite the kinetic energy by integrating by parts.

K =
∫

R
d−1

∫ η(x)

h

1
2 |∇ϕ|

2 dydx =−
∫

R
d−1

∫ η(x)

h

1
2ϕ∆ϕ dydx

+
∫

R
d−1

1
2ϕN ·∇ϕ dSbottom +

∫

R
d−1

1
2ϕN ·∇ϕ dSfreesurface...

Because the velocity potential is harmonic and satisfies Neumann bottom boundary
conditions, the first two terms of the right hand side vanish. Denoting the boundary
values on the free surface Γ (η) by ξ (x) = ϕ(x,η(x)), we have then

K =
∫

R
d−1

1
2ξN ·∇ϕ dSfreesurface...

We are taking care to distinguish between ϕ the potential function itself, and ξ its
values on the free surface Γ (η). The elements of Laplace’s equation that remain in
this expression are the normal derivative of the potential ϕ on the free surface. It is
useful to describe this quantity in terms of the boundary values ξ (x) and an integral
operator on the free surface itself.

Definition 3.1. (Dirichlet–Neumann operator) For the fluid domain S(η) defined
by the function η ∈ C1, give boundary values ξ (x) on the free surface Γ (η), and
consider their harmonic extension ϕ(x,y) to the fluid domain satisfying Neumann
bottom boundary conditions. The Dirichlet–Neumann operator is defined by the
normal derivative of ϕ on the free surface, namely

G(η)ξ (x) = (∂y−∂xη(x) ·∂x)ϕ(x,η(x)) = R(N ·∇ϕ)(x,η(x)),,, (4)

where R =
√

1+ |∂xη |2 is a normalization factor so that G(η) is self-adjoint on
L2(dx).

The Hamiltonian (2) can be conveniently written in terms of G(η), indeed following
[7] we write

H =
∫

R
d−1

1
2ξG(η)ξ + g

2η
2 dx... (5)

Theorem 3.1. (Zakharov [12]) There exist canonical variables for the water waves
problem (1), in which it can be written in the form (1) in Darboux coordinates, with
Hamiltonian (5).
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Proof. Our derivation of the canonical conjugate variables is based on first prin-
ciples of mechanics. Given the kinetic energy K and the potential energy P, the
Lagrangian for the water waves problem is clearly

L = K−P... (6)

We should express this in terms of the quantities (η , η̇) (i.e. tangent space variables),
for which we use the kinematic condition (1),

η̇ = ∂yϕ−∂xη ·∂xϕ = G(η)ξ ...

The Lagrangian is thus

L(η , η̇) = 1
2

∫

R
d−1 η̇Gη)η̇− g

2η
2 dx... (7)

From this expression the Legendre transform dictates that the canonical conjugate
variables are (η ,∂η̇L) = (η ,G−1(η)η̇) = (η ,ξ ). These are precisely the variables
presented by Zakharov in [12], in terms of which one may give the water waves
Hamiltonian (5). 
�

Therefore the equations for water waves can be rewritten as a Hamiltonian system
in Darboux coordinates;

η̇ = grad ξH = G(η)ξ (8)

ξ̇ = −grad ηH =−gη−grad ηK...

It is interesting to remark that the expressions for K and grad ηK involve deriva-
tives of the Dirichlet–Neumann operator with respect to perturbations of the domain
S(η). This idea was already discussed by Hadamard [8, 9] in his Collège de France
lectures in 1910 and 1916, in the context of the Green’s function for Laplace’s equa-
tion on a domain in R

d . In these lectures he explicitly mentions the possibility of
hydrodynamical applications.

4 The Dirichlet–Neumann operator

Any analysis of the water wave in the above formulation depends upon a de-
tailed knowledge of the Dirichlet–Neumann operator. The fluid domain S(η) is
given by η(x) defining the free surface. Given ξ (x) the boundary values for the
velocity potential, then ϕ(x,y) is its harmonic extension to S(η) which satisfies
the appropriate Neumann bottom boundary conditions. The principal facts about
G(η)ξ (x) = ∂yϕ(x,η(x))− ∂xη · ∂xϕ(x,η(x)) that we use are contained in the
lemma.
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Proposition 4.1. Suppose that η ∈C1. Then G(η) satisfies the following properties:

1. G(η) is positive semidefinite.
2. It is self-adjoint (on an appropriatly chosen domain).
3. G(η) maps H1(Γ ) to L2(Γ ) continuously.
4. As an operator G(η) : H1(Γ ) → L2(Γ ) it depends analytically upon η ∈

BR(0)⊆C1(Γ ), for a nonzero value of R.

The latter item entails questions of the bounded of singular integrals on hyper-
surfaces, and was proved in the case d = 2 by Coifman & Meyer [2], and in the case
d ≥ 2 in [6] using the fundamental results of Christ & Journé [1]. In particular it
implies the existence of a convergent Taylor expansion for the operator.

Lemma 4.1. The Taylor expansion of the Dirichlet–Neumann operator is given by
the expression

G(η)ξ = ∑
j≥0

G( j)(η)ξ (1)

where each G( j)(η) is homogeneous of degree j in η . Explicitely,

G(0)ξ (x) = |Dx| tanh(h|Dx|)ξ (x) (2)

G(1)(η)ξ (x) = Dx ·ηDx−G(0)ηG(0)ξ (x) (3)

G(2)(η)ξ (x) = 1
2 (G(0)η2D2

x +D2
xη2G(0)−2G(0)ηG(0)ηG(0))ξ (x)... (4)

The terms G( j)(η) in the Taylor expansion are polynomial expressions in the quan-
tities Dx and G(0) of order j + 1, however for η ∈ C1 these terms are nevertheless
bounded from H1 → L2. I is because of the form of the operator which is related
to a multiple commutator; [η , . . . j× . . . [η ,D j

x]] = (−1) j j!(∂xη) j. With regard to
this series for the Dirichlet – Neumann operator, the water waves Hamiltonian it-
self is analytic on an appropriately chosen subset of, and possesses a Taylor series
expansion about the equilibrium solution (η ,ξ ) = 0, namely

H(η ,ξ ) =
∫

R
d−1

1
2ξG(0)ξ + g

2η
2 dx+∑

j≥3

1
2

∫

R
d−1 ξG( j−2)(η)ξ dx

= ∑
j≥2

H( j)(η ,ξ ),,, (5)

where H( j)(η ,ξ ) is homogeneous of degree j with respect to the variables (η ,ξ ).

5 Perturbation theory

Suppose that the Hamiltonian function H depends upon an additional parameter ε;
H(v;ε) = H(0) +εH(1) + . . .εmH(m) +εm+1R(v;ε), for ε ∈ E a space of parameters.
It is natural to approximate orbits v(t;ε) by those of the truncated problem
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v̇ = Jgrad v(H
(0) + εH(1) + . . . εmH(m)) (1)

v(0) = v0,,, v(t) = v(t;ε,m)

The solution v(t) = v(t;ε,m) clearly depends upon both ε and the degree m of the
Taylor series approximation, and there is the natural expectation that, at least for
finite time intervals, the solutions v(t;ε,m) of (1) approximate the solutions of the
full problem (1), with a better approximation given with larger m. Indeed, for C2

Hamiltonians this is the case.

Proposition 5.1. Suppose that the Hamiltonian H ∈C2,m+1(M×E ). Then, at least
for bounded time intervals |t| ≤ T0, approximate orbits v(t;ε,m) of (1) are εm close
to orbits of the full Hamiltonian system (1).

Our intentions are to discuss Hamiltonian systems in infinite dimensional Hilbert
spaces, and in particular Hamiltonian partial differential equations, which we have
already pointed out are rarely given by smooth Hamiltonian vector fields. Therefore
the above proposition is not applicable. Nonetheless it serves as a basic guiding
principle to the problems we are aiming to discuss. It is also true that one can often
do better than Proposition 5.1, and in some cases the length of the time interval of
validity of this approximation may be longer, or indeed very much longer. However
the only improvement on this statement that can be made at this level of generality
is that, if the Lyapunov exponents of both section 1 (1) and (1) are bounded, then for
any m′ < m, approximating orbits remain εm′ close to true orbits for times |t| ≤ Tε ,
with Tε ∼ log(1/ε).

6 The calculus of transformations

Given a Hamiltonian system
v̇ = Jgrad vH (1)

posed on a phase space M, we will subject it to transformations of variables of M.
Consider two phase spaces M1 and M2 with a symplectic form on M1 given in terms
of J1. Let H1 : M1 → R be a Hamiltonian. A transformation

τ : M1 →M2,,, v �→ w = τ(v) (2)

gives rise to a Hamiltonian defined on M2, namely H2(w) = H2(τ(v)) = H1(v). The
Hamiltonian vector field XH1 = J1grad vH1 is transformed as follows

ẇ = ∂vτ(v)v̇ = ∂vτ(v)J1grad vH1(v),,,

while on the other hand

grad vH1(v) = (∂vτ)T grad wH2(τ(v))...
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Equating the expressions, one observes the following:

Proposition 6.1. The vector field XH1 = J1grad vH1 is transformed to

ẇ = ∂vτ(v)J1(∂vτ)T grad wH2(τ(v))... (3)

We denote J = ∂vτ(v)J1(∂vτ)T which can be used to define a symplectic structure
on M2. When M2 already has a symplectic structuree represented by J2, and the
transformation w = τ(v) is such that J2 = ∂vτ(v)J1(∂vτ)T , then τ is called canonical.
In particular when M1 = M2 and J1 = J2 is given in Darboux coordinates, these
are the usual canonical transformations which play a special rôle in the subject of
Hamiltonian mechanics.

Examples of transformations. While the subject of canonical transformations and
their generating functions is basic knowledge in finite dimensional Hamiltonian sys-
tems, it is less developed in the study of PDE and other infinite dimensional cases.
In the following paragraphs we will work through some of the more elementary
transformations that occur in Hamiltonian PDE, putting them into context. Further-
more we will make use of particular parameter families of such transformations in
order to introduce a small parameter into the Hamiltonian. In this way the principle
outlined in Section 5 can be invoked, with the result that we have a natural approx-
imation procedure for solutions through a (albeit formal) series expansion of the
Hamiltonian. This procedure and its general context has been worked out in a num-
ber of papers that have appeared over the span of several years, by the author along
with M. Groves [3], P. Guyenne & H. Kalisch [4] and P. Guyenne, et al. [5].

Initially, the setting is that M = L2(Rd−1)2 will be considered the phase space,
with

v =
(
η
ξ

)
∈M,,, 〈v1|v2〉=

∫

R
d−1 η1η1 +ξ1ξ2 dx (4)

J =
(

0 I
−I 0

)
(5)

which is the case of Darboux coordinates.

(i) Amplitude scaling

Consider the elementary transformations τ : v �→ w, where

w =
(
η ′
ξ ′

)
=

(
αη
βξ

)
= τ(v),,, (6)

for α,β ∈ R
+. The Jacobian of the transformation τ is given by

∂vτ =
(
αI 0
0 β I

)
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therefore the symplectic form induced by the transformation is

J1 = ∂vτJ∂vτT = αβJ,,, (7)

with the Darboux operator J given in (5). The effects of such transformations
are easily restored to the usual Darboux coordinates through a time change t ′ =
α−1β−1.

The small amplitude regime of the water wave problem is introduced by an am-
plitude scaling which is a transformation of this form. Namely one sets

(
ε2η ′
εξ ′

)
=

(
η
ξ

)
,,, ε << 1,,, (8)

which is to say that we are seeking solutions for which the amplitude η of a solution
is small, and represented in its asymptotic regime by an order one quantity η ′ times
ε2, and similarly for ξ = εξ ′. The resulting change of symplectic form is that

J1 = ε−3J,,,

which is equivalent to a rescaling to a slow time variable. The effect on the water
waves Hamiltonian Section 3 (5) and its Taylor expansion Section 4 (5) is that

H1 =
∫

R
d−1

1
2ε

2ξ ′G(0)ξ ′+ g
2ε

4η ′2 dx+∑
j≥3

1
2

∫

R
d−1 ε

2+2 jξ ′G( j−2)(η ′)ξ ′ dx...

In particular a small parameter has been introduced into the Hamiltonian H1 =
H1(η ′,ξ ′;ε), for which one may consider approximations by its Taylor series. For
instance, up to order O(ε4)

ε2H(2)
1 + ε4H(4)

1 = ε2
(∫

1
2ξ
′G(0)ξ ′ dx

)
+ ε4

(∫
g
2η

′2 + 1
2ξ
′G(1)(η ′)ξ ′ dx

)
,,,

where we recall that G(1)(η ′) = Dxη ′Dx−G(0)η ′G(0).

(ii) Spatial scaling

The long wave regime of the water waves problem highlights solutions whose typ-
ical wavelength is asymptotically long; it is represented through a small parameter
introduced into the problem by the spational scaling

x �→ X := εx... (9)

The resulting transformation of phase space M is thus

τ : v(x) �→ w(X) = v(X/ε) = τ(v)(X)... (10)
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The Jacobian of the transformation on a vector field V (x) ∈ Tv(M) is

∂vτ(v)V (X) =
d
ds
|s=0

(
v(X/ε)+ sV (X/ε)

)
= V (X/ε)...

The transpose is slightly less obvious, we compute it using the identity;

〈V1|∂vτV2〉 =
∫

R
d−1 V1(X)V2(X/ε),dX (11)

=
∫

R
d−1 V1(εx)V2(x)εd−1dx = 〈(∂vτ)TV1|V2〉... (12)

Therefore (∂vτ)TV (x) = εd−1V (εx), and the induced symplectic form is

J2 = ∂vτJ(∂vτ)T = εJ,,, (13)

at least if we are working with the Darboux symplectic structure. Thus, modulo a
rescaling of time, this recovers the original symplectic form.

It is necessary to study the effect that this transformation has on the Hamiltonian.

Lemma 6.1. Let τ(v)(X) = v(X/ε) = w(X) be be the transformation in question,
and let m(Dx) be a Fourier multiplier oprerator

(m(Dx)v)(x) =
1

(2π)d−1

∫ ∫

R
2(d−1) eik·(x−x′)m(k)v(x′)dx′dk... (14)

Under τ , the operator is transformed to

τ(m(Dx)v)(X) = (m(εDX )τ(v))(X)... (15)

Proof. This is the fact that that cotangent variables (x,k) of pseudo-differential
operators are transformed symplectically under changes of variables. Indeed one
calculates

τ(m(Dx)v)(X) =
1

(2π)d−1

∫ ∫

R
2(d−1) eik·(X/ε−x′)m(k)v(x′)dx′dk

=
1

(2π)d−1

∫ ∫

R
2(d−1) eik·(X/ε−X ′/ε)m(k)v(X ′/ε)

dX ′dk
εd−1

=
1

(2π)d−1

∫ ∫

R
2(d−1) eiK·(X−X ′)m(εK)v(X ′/ε)dX ′dK

= m(εDX )τ(v)(X)... 
�

Considering the water wave Hamiltonian, the Dirichlet–Neumann operator

G(0)(Dx) = |Dx| tanh(h|Dx|)
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is transformed to

G(0)(εDX ) = ε|Dx| tanh(εh|Dx|)∼ ε2h|DX |2−
ε4h3

3
|DX |4 + . . . (16)

Using this expression, the Hamiltonian (5) becomes

H2 = ε4
∫

R
d−1

(
1
2ξ (h|DX |2ξ + g

2η
2
)

+
ε2

2

(
ξ (−h3

3
|DX |4ξ )+ξDX ·ηDXξ

) dX
εd−1

+ε7R(2)
2 ... (17)

(iii) Surface elevation–velocity coordinates

It is often convenient to write the Euler equations in terms of the variables w =
(η ,u), u = ∂xξ instead of v = (η ,ξ ). That is, the second variable represents a ve-
locity instead of a potential; in this case it essentially represents the horizontal veloc-
ity of the fluid at the free surface Γ (η). We restrict our discussion of these surface
elevation–velocity coordinates to the case of two dimensions, for simplicity. That is,

w = (η ,u) = τ(v) = (η ,∂xξ )... (18)

The Jacobian of the transformation is

∂vτ(v) =
(

I 0
0 ∂x

)

and the induced symplectic form is represented by the operator

J2 =
(

0 −∂x
−∂x 0

)
= ∂vτJ(∂vτ)T ,,, (19)

where J is in Darboux coordinates. One recognizes this as the operator representing
the Boussinesq symplectic form (13), up to a trivial change of sign.

Returning to the Hamiltonian (17), and phrasing it in surface elevation–velocity
coordinates, we have

H2 = ε3
∫

R

(
h
2 u2 + g

2η
2
)

+ ε2

2

(
−h3

3 (∂X u)2 +ηu2
)

dX +O(ε7),,, (20)

while using the operator J2 of (19) when expressing Hamilton’s equations (1).
The truncated system (20) up to order O(ε5) is precisely the Boussinesq sys-
tem (11) (modulo adjusting the value of several constants and the sign change
(p,q)T = (η ,−u)T ).
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(iv) Moving reference frame

It is part of the theory of nonlinear waves towork in coordinate systems which move
with the characteristic speed of solutions, namely

v′(x, t) := v(x− tc, t),,, (21)

for appropriate choices for the velocity c. However this transformation does not at
first glance fit into the setting of the transformation theory described above, as the
time variable is distinguished, and (21) mixes the rôles of the spatial and temporal
variables. We observe however that in the problems under discussion the momentum

I(η ,ξ ) :=
∫

R
η(x)∂xξ (x)dx (22)

is a conserved quantity, as can be seen from its Poisson bracket with the Hamiltonian

{I,H} := 〈grad vI|J grad vH〉= 0... (23)

Therefore their respective flows commute; ϕH
t ◦ ϕ I

s (v) = ϕ I
s ◦ ϕH

t (v). The
Hamiltonian flow of the momentum

∂s

(
0 I
−I 0

)
grad vI =

(
−∂xη
−∂xξ

)
(24)

is simply constant unit speed translation

ϕ I
s (v)(x) = v(x− s)...

Thus the flow along the diagonal is clearly ϕH
t ◦ ϕ I

tc(v) = ϕH+cI
t . Therefore the

Hamiltonian flow of H(v) + cI(v) is the Hamiltonian flow of H(v) observed in a
coordinate frame translating with velocity c.

In the context of the water wave problem the characteristic velocity is c0 :=
√

gh;
to study the problem of water waves in our present point of view, we are to look at
the flow of the system whose Hamiltonian is H2 +

√
ghI.

Writing the momentum in surface elevation–velocity coordinates and scaling the
coordinates appropriately, we find that

I = ε3
∫

R
uη dX ,,, (25)

and therefore

H2 +
√

ghI = ε3
∫

R

1
2

(
hu2 +2

√
ghuη +gη2

)
+ ε2

2

(
−h3

3 (∂X u)2 +ηu2
)

dX

= ε3
∫

R

1
2 (
√

hu+
√

gη)2 + ε2

2

(
−h3

3 (∂X u)2 +ηu2
)

dX ... (26)
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(v) Characteristic coordinates

Focusing on the first term H2 of the Hamiltonian, it is a common situation to have it
in the quadratic form

H(2)
2 = 1

2

∫

R
Au2 +Bη2 dX ,,,

with A,B > 0. Hamilton’s equations (1) for H(2)
2 alone are the wave equation

∂t

(
η
u

)
=

(
0 −∂X
−∂X 0

)
grad vH(2)

2 =
(

0 −A
−B 0

)(
∂Xη
∂X u

)
... (27)

We seek a transformation of coordinates (r,s)T = τ(η ,u)T which will accomplish
three things.

1. It should diagonalize the symplectic form J2;

J3 := ∂vτ
(

0 −∂X
−∂X 0

)
(∂vτ)T =

(
∂X 0
0 −∂X

)
... (28)

2. It should transform the Hamiltonian to normal form

H(2)
3 = 1

2

∫

R

√
AB(r2 + s2)dX ... (29)

3. And it should transform the wave equation (27) to characteristic form

∂t

(
r
s

)
=

(
C 0
0 −C

)(
∂X r
∂X s

)
... (30)

The transformation w = τ(v) = T v, where T is the matrix

T =

⎛
⎝

4
√

B
4A −

4
√

A
4B

4
√

B
4A

4
√

A
4B

⎞
⎠

accomplishes all three of these goals, with the result that C =
√

AB.
In the case of the water wave Hamiltonian H3, we have A = h and B = g, so that

(
r
s

)
=

⎛
⎝

4
√

g
4h − 4

√
h

4g

4
√

g
4h

4
√

h
4g

⎞
⎠

(
η
u

)
,,, (31)

and in these terms, the relevant Hamiltonian approximation which is to be valid up
to O(ε5) is given by

H2 +
√

ghI = ε3
∫

R

√
ghs2 dX (32)

+ε5
∫

R
− h3

6

(√
g

4h

)
(∂X r−∂xs)2 + 1

4
√

2
4
√

g
h (r3− r2s− rs2 + s3)dX ...
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Now restrict this Hamiltonian to the hypersurface M1 := {s = 0} ⊆M, denoting it
by H4;

H4 = ε5
∫

R
− h3

6

(√
g
4h

)
(∂X r)2 + 1

4
√

2
4
√

g
h r3 dX ... (33)

The subspace M1 is a symplectic subspace of M, possessing the symplectic form
J4 = ∂X , it being the restriction of the symplectic form J3 of (28). This is unlike
the situation in Darboux coordinates, in which M1 would be a Lagrangian subspace.
The equations of motion (1) for r on M1, or at least in an o(ε2) neighborhood of it,
are thus

∂t r = ∂X grad rH4

= ε2∂X (c1∂ 2
X r + c2r2),,, (34)

with c1 = h3

3

√
g

4h and c2 = 3
4
√

2
4
√

g
h . This is precisely the KdV equation given in

(8), modulo a simple change of time scale ∂t = ε2∂τ (τ = ε2t), and with a few extra
but unimportant constants that could have been normalized in the above calculation
with some forethought.

We have seen that a formal calculation, using basic transformations and a small
parameter have given us the KdV equation as an approximation of the equations of
water waves. It has been a research program to understand the rigorous aspects of
this correspondence between solutions of the full Euler’s equations and solutions of
the KdV or of other model long wave equations. However at this point none of the
rigorous results follow along the lines of the above concatenation of transformations.
We believe that such an approach would be a rewarding line of work.
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Three theorems on perturbed KdV

Sergei B. Kuksin1

Abstract This short paper is based on a lecture, given at the NATO Advanced Study
Institute on Hamiltonian dynamical systems (Montréal, 2007). Its goal is to discuss
three theorems on the long-time behaviour of solutions of a perturbed KdV equa-
tion under periodic boundary conditions. These theorems are infinite-dimensional
analogies of three classical results on small perturbations of an integrable finite-
dimensional system:

• The KAM theorem
• The first-order averaging theory for Hamiltonian perturbations
• The Khasminskii averaging theory for random perturbations

The three theorems raise many new questions, some of which are mentioned below.
We stress that the three theorems are infinite-dimensional analogies of some

finite-dimensional statements. That is, for nearly integrable nonlinear PDEs (un-
der periodic boundary conditions) we do not know any result which is essentially
infinite-dimensional. There are no doubts that such results exist. To find them is a
big challenge.

1 KdV equation

Consider the KdV equation under zero-mean value periodic boundary conditions:

u̇+uxxx−6uux = 0, x ∈ T
1 = R/2π,

∫
udx≡ 0... (KdV)

It can be written in the form

u̇ =
∂
∂x

δ
δu(x)

HKdV , HKdV =
∫

(
1
2

u2
x +u3)dx,,, (1)
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and hence (KdV) is a Hamiltonian PDE. Due to Novikov and Lax [8, 11] and
McKean-Trubowitz [9] it is integrable.

The KdV equation
u̇+uxxx−6uux = 0 (2)

may be considered under other boundary conditions; e.g., under the L2-boundary
conditions

x ∈ R , u(t, ·) ∈ L2(R) ∀ t, (L2)

or under quasi-periodic boundary conditions

x ∈ R , u(t,x) is quasiperiodic in x. (QP)

Equation (2) + (L2) is integrable. This is a simpler dynamical system than (KdV)
due to the phenomenon of radiation. There is a number of results on this equation
and its perturbations. Equation (2) + (QP) also is an integrable system, but nothing
is known about its perturbations.

1.1 Integrability of (KdV)

Now we discuss what does it exactly mean that the equation (KdV) is integrable.
Denote

Z = {u(x) ∈ L2 |
∫

udx = 0}, ‖ · ‖ – the L2-norm in Z.

(KdV) defines in the space Z a dynamical system with infinitely-many analytic
integrals of motion I1, I2, . . . . The functions I j may be choosen to be non-negative
and such that:

• For a vector I = (I1, I2, . . .), where the numbers I j � 0 decay with j sufficiently
fast, denote

TI = {u ∈ Z | I j(u) = I j ∀ j}.
Then TI is an analytic torus in Z and

dimTI = �{ j | I j > 0}.

The r.h.s. is called the number of open gaps.
• The set T 2n = ∪{TI | I1 � 0, . . . , In � 0,0 = In+1 = . . .}

is a smooth 2n-manifold, called “the n-gap manifold”. Obviously it is (KdV)-
invariant.

• Each torus TI carries a cyclic coordinate q such that in the (I,q)-variables the
equation (KdV) becomes

İ = 0, q̇ = W (I). (3)
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The frequency map W : R
∞
+ → R

∞ is analytic.
• (KdV), restricted to any manifold T 2n, is Liouville–Arnold integrable.
• The variables (I,q) form action-angles for (KdV) in Z. That is, ω2 = dI ∧ dq,

HKdV = hKdV (I1, I2, . . .) and W (I) = ∇hKdV (I). Here ω2 is the symplectic form
corresponding to the Hamiltonian form (1) of (KdV).

The coordinates (I,q) are singular when some of the I j = 0. This is a serious
disadvantage if we try to use them for analytical studies of (KdV).

Below in this paper we discuss the following

PROBLEM: What happens to the tori TI , the manifolds T 2n and solutions (2)
under small perturbations of the equation?

A crucial step in the study of this problem is to introduce in the vicinity of a
torus TI a new coordinate system, free from the disadvantages of the action-angle
coordinates (I,q), and such that the Hamiltonian HKdV , written in these variables, is
a “nice” function. Such coordinate systems exist and are given by normal forms.

1.2 Normal forms for (KdV)

NF1 (SK, [6]). In the vicinity of any n-gap torus TI in Z there exist analytic coordi-
nates

(ϕ, p,y),ϕ ∈ T
n,,, p ∈ R

n,,, y = (y+,y−) = (y+
1 ,y−1 ;y+

2 ,y−2 ; . . .) ∈ Y = Z�R2n

such that

• The symplectic form is ω2 = d p∧dϕ +dy+∧dy−;
• T 2n = {y = 0};
• In these coordinates the equation (KdV) reads as follows;

ϕ̇ = ∇pH, ṗ =−∇ϕH, ẏ = J∇yH,

H = h(p)+ 1
2 〈A(p)y,y〉+h3(ϕ, p,y),

where J(y+,y−) = (−y−,y+), h3 = O(‖y‖3), A is an analytic operator-valued
function of p and h,h3 are analytic scalar functions of (ϕ, p,y).

This normal form exists for “all” other integrable PDE (see [7]). It is sufficient
for KAM-purposes.

NF2 (“Birkhoff coordinates”, Thomas Kappeler 1991–2001, see in [4]). In Z
there exist analytic coordinates y = (y+,y−) , y = (y+

1 ,y−1 ;y+
2 ,y−2 ; . . .), such that

• ω2 = dy+∧dy−;
• I j = 1

2 ((y−j )2 +(y+
j )2) and q j =Arctan(y−j /y+

j ) for j = 1,2, . . . ;
• The Hamiltonian HKdV , written in the y-variables, is hKdV (I1, I2, . . .).
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This normal form is more powerful, but less general. It is needed for averaging
theorems for perturbed KdV.

2 KAM-theory

Consider a perturbed KdV Hamiltonian Hε(u) = HKdV (u) + ε
∫

f (u(x),x)dx. The
corresponding Hamiltonian equation is

u̇+uxxx−6uux− ε ∂
∂x f ′u(u(x),x) = 0. (1)

Question: In what sense do the tori TI and solutions (2) persist in (1)?
The answer is known only for finite-gap tori; i.e., when I = (Î,0, . . .), Î ∈ R

n
+.

We will write TI = TÎ . This is an n-dimensional torus.

Theorem 1 (SK, see [6]). For most of Î ∈ R
n
+ eq. (1) has an analytic invariant

n-torus T ε
Î
⊂ Z which is C

√
ε-close to TÎ . It is filled in with time-quasiperiodic

solutions
ϕ̇ = Ŵ ε(Î); |Ŵ ε −Ŵ |� Cε, Ŵ = (W1, . . . ,Wn).

The corresponding linearised equations are reducible to constant coefficients and
are linearly stable.

Here “for most of Î ∈ R
n
+” means the following. Any compact set K ⊂ R

n
+ con-

tains a Borel subset Kε such that meas(K \Kε)→ 0 when ε → 0 and for any Î ∈ Kε
the theorem’s assertions hold.

“Proof”. In the variables (ϕ, p,y) from the normal form NF1, the Hamiltonian of
the perturbed equation is

Hε = (h(p)+ 1
2 〈A(p)y,y〉+h3(ϕ, p,y))+ εHperturb(ϕ, p,y) ,

and the torus TÎ is formed by the points {(ϕ, Î,0), ϕ ∈T
n}. Scale variables (ϕ, p,y)

near this torus by ε:

ϕ = ϕ, p = Î + ε2/3 p, y = ε1/3y.

In the scaled variables Hε becomes

Hε = const+ω · p+ 1
2 〈A(Î)y,y〉+ ε1/3h̃(ϕ, p,y; Î,ε),

where h̃ is an analytic function and

ω = ω(Î) = ∇Ĩh(Î,0, . . .).

When Î varies in R
n
+, ω varies in the domain Ω =∇h(Rn

+). So Hε may be regarded
as a function Hε(ϕ, p,y;ω,ε), depending on the n-dimensional parameter ω ∈Ω .
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If Hε(ϕ, p,y;ω,ε) as a function of ω satisfies suitable nondegeneracy conditions,
then the infinite-dimensional KAM-theory for systems with parameters applies to
Hε and implies the assertions. The nondegeneracy condition was checked in [1]. So
the theorem holds. �

For a real proof see [6] and the books [4, 7].
Now some remarks:

� Theorem 1 is a general result which also holds for perturbations of other inte-
grable Hamiltonian PDE, see [7].

� The time-quasiperiodic solutions of the perturbed (KdV) (1) that are con-
structed, with n = 1,2, . . . correspond to “few” initial data, occupying a “small”
subset of Z which cannot be explicitly described.

� Still these solutions become dense in the phase-space Z as ε → 0.1

3 Averaging: Hamiltonian perturbations

Consider again the perturbed (KdV) (1). This is a Hamiltonian perturbation of an
integrable Hamiltonian system. For perturbations of finite-dimensional Hamiltonian
systems the actions I(u(t)) of any solution u remain almost constant over a time
interval of duration eε

−κ
, κ > 0, under the Nekhoroshev’s steepness condition, see

[10]. For the KAM-solutions of equation (1) of Section 2, constructed in Theorem 1,
the change of actions is �Cε for all t. But these solutions correspond to very special
initial data. How do the actions of a general solution of equation (1) of Section 2
behave?
Statement. Let uε(t) be a solutions of (1) such that uε(0) = u0 ∈T 2n. Then

|I(uε(t))− I(u0)|� θn(ε) ∀ t � Tε = ε−1, (S)

where θn → 0 as ε → 0.

Theorem 2 (T. Kappeler and SK, see [3]). There exist positive constants δ1,δ2, . . .
such that (S) holds if u0 ∈T 2n and

‖u0‖� δn. (1)

Most likely the result is true without the smallness assumption (1). Much more
difficult (and more important) related questions are the following:

• Is the result true with θn(ε) = θ(ε,‖u0‖)? (where ‖u0‖ is arbitrary).
• Does (S) hold with Tε = ε−a, a � 2?

(We can prove (S) for some a > 1, but not for a = 2.)

1 This means that for any open set Q⊂ Z there exists ε0 > 0 such that for each ε < ε0 the perturbed
equation has a time-quasiperiodic solution which passes through Q.
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4 Averaging: case of non-Hamiltonian perturbations

4.1 Deterministic perturbations

Consider a non-Hamiltonian perturbation of (KdV). Say, the following equation,
often considered in the literature:

u̇+uxxx−6uux = εuxx, u(0) = u0

(the boundary conditions as in (KdV) are assumed). Write it in the (I,q)-variables:2

İ = εF(I,q), q̇ = W (I)+ εG(I,q). (1)

Consider the averaged equation for I(t):

İ = ε〈F〉(I), 〈F〉(I) =
∫

TI

F(I,q)dq; I(0) = I(u0), (2)

where dq is the Haar measure on TI .
Averaging Principle: If (I(t),q(t)) is a solution of (1) and J(t) is a solution of (2),
then

|I(t)− J(t)|� θ(ε) ∀0 � t � ε−1,

where θ → 0 with ε .
To prove the Averaging Principle is a big open problem due to the following two

difficulties:

(i) KdV-dynamics on some tori TI is resonant
(ii) the averaged equation (2) is not well-posed

To avoid the first difficulty it is natural to introduce randomness.

4.2 Random perturbations

Now consider a randomly perturbed KdV:

u̇+uxxx−6uux = εuxx +
√
ε η(t,x),

η(t,x) =
∂
∂ t ∑

j∈Z0

b jβ j(t)e j(x).
(3)

Here Z0 is the set of all non-zero integers and

• All b j > 0 and decay fast when j→ ∞

2 Concerning properties of the functions F,G and their smoothness see [5].
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• {β j(t)} are independent standard Wiener processes
• {e j(x)} is the standard trigonometric basis for the space of periodic functions

The scaling factor
√
ε in the r.h.s. is natural since only with this scaling do solutions

of equation (3) remain of order one when t → ∞ and ε → 0.
Using Ito’s formula we write the corresponding equation for the vector I(u(t)) =

Iω(t):

İ = εF(I,q)+
√
ε ∑

j
G j(I,q)

∂
∂ t

β j(t).

Average it:

İ = ε〈F〉(I)+
√
ε ∑〈G j〉(I)

∂
∂ t

β j(t).

Here 〈F〉 is the same as in (2) and 〈G j〉(I), j ∈ Z0, are the column-vectors, forming
the infinite matrix 〈G〉(I). The latter is defined as a symmetric square root of the
matrix ∫

TI

G(I,q)Gt(I,q)dx,

where the matrix G(I,q) is formed by the columns G j(I,q).

Theorem 3 (SK and A. Piatnitski, see [5]). Let J(t) be a solution of the averaged
equation such that J(0) = I(u0). Then

dist{D(I(u(t))),D(J(t))}� θ(ε) ∀0 � t � ε−1,

where θ→ 0 with ε . Here D(I(u(t))) is the law of the random variable I(u(t))∈R
∞
+,

i.e. a Borel measure in R
∞
+ (this space is given a weighted l1-distance, see [5]), and

dist is the Lipschitz-dual distance in the space of Borel measures.

This result is an infinite-dimensional analogy of finite-dimensional averaging
theorems due to Khasminskii and Freidlin–Wentzell (see [2]).

Theorem 3 illustrates well.
Principle: Introducing randomness to a nonlinear PDE we simplify the equation.
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Groups and topology in the Euler
hydrodynamics and KdV

Boris Khesin1

Abstract We survey applications of group theory and topology in fluid mechanics
and integrable systems. The main reference for most facts in this paper is [1], see
also details in [4].

1 Euler equations and geodesics

1.1 The Euler hydrodynamics equation

Consider an incompressible fluid occupying a domain M in R
n. The fluid motion

is described by a velocity field v(t,x) and a pressure field p(t,x) which satisfy the
classical Euler equation:

∂t v+(v ·∇)v =−∇p, (1)

where divvvv = 0 and the field v is tangent to the boundary of M. The function p
is defined uniquely modulo an additive constant by the condition that v has zero
divergence at any moment t.

The flow (t,x) �→ g(t,x) describing the motion of fluid particles is defined by its
velocity field v(t,x):

∂tg(t,x) = v(t,g(t,x)), g(0,x) = x.

The acceleration of particles is given by ∂ 2
t g(t,x) = (∂t v + (v · ∇)v)(t,g(t,x)),

according to the chain rule, and hence the Euler equation (1) is equivalent to

∂ 2
t g(t,x) =−(∇p)(t,g(t,x)).
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The latter form of the Euler equation (for a smooth flow g(t,x)) says that the ac-
celeration of the flow is given by a gradient and hence it is L2-orthogonal to the set
of volume-preserving diffeomorphisms, which satisfy the incompressibility condi-
tion det(∂xg(t,x)) = 1. More precisely, it is L2-orthogonal to the tangent to this set,
the space of divergence-free fields. In other words, the fluid motion g(t,x) is a geo-
desic line on the set of such diffeomorphisms of the domain M with respect to the
induced L2-metric. Note that this metric is invariant with respect to reparametrizing
the fluid particles, i.e. it is right-invariant on the set of volume-preserving diffeo-
morphisms (a reparametrization of the independent variable is the right action of a
diffeomorphism).

More generally, the Euler equation describes an ideal incompressible fluid fill-
ing an arbitrary Riemannian manifold M, see [1, 5]. It defines the geodesic flow on
the group of volume-preserving diffeomorphisms of M. It turns out that the group-
geodesic point of view, developed in [1] is quite fruitful for topological and qualita-
tive understanding of the fluid motion, as well as for obtaining various quantitative
results related to stability and first integrals of the Euler equation.

1.2 Geodesics on Lie groups

In [1] V. Arnold suggested a general framework for the Euler equations on an arbi-
trary group, which we recall below. In this framework the Euler equation describes
a geodesic flow with respect to a suitable one-sided invariant Riemannian metric on
the given group.

More precisely, consider a (possibly infinite-dimensional) Lie group G, which
can be thought of as the configuration space of some physical system. (Examples
from [1]: the group SO(3) for a rigid body and the group SDiff(M) of volume-
preserving diffeomorphisms for an ideal fluid filling a domain M.) The tangent space
at the identity of the Lie group G is the corresponding Lie algebra g. Fix some
(positive definite) quadratic form, the energy, on g. We consider right translations of
this quadratic form to the tangent space at any point of the group (the “translational
symmetry” of the energy). This way the energy defines a right-invariant Riemannian
metric on the group G. The geodesic flow on G with respect to this energy metric
represents the extremals of the least action principle, i.e., the actual motions of our
physical system. (For a rigid body one has to consider left translations.)

To describe a geodesic on the Lie group with an initial velocity v(0) = ξ , we
transport its velocity vector at any moment t to the identity of the group (by using
a right translation). This way we obtain the evolution law for v(t), given by a (non-
linear) dynamical system dv/dt = F(v) on the Lie algebra g (Fig. 1).

Theorem 1.1 The system on the Lie algebra g, describing the evolution of the ve-
locity vector along a geodesic in a right-invariant metric on the Lie group G, is
called the Euler equation corresponding to this metric on G.
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e
G

g(t)

x

Fig. 1 The vector ξ in the Lie algebra g is the velocity at the identity e of a geodesic g(t) on the
Lie group G

1.3 Geodesic description for various equations

A similar Arnold-type description via the geodesic flow on a Lie group can be given
to a variety of conservative dynamical systems in mathematical physics. Below we
list several examples of such systems to emphasize the range of applications of this
approach. The choice of a group G (column 1) and an energy metric E (column 2)
defines the corresponding Euler equations (column 3).

Group Metric Equation

SO(3) < ω,Aω > Euler top
SO(3)+̇R

3 quadratic forms Kirchhoff equations for a body in a fluid
SO(n) Manakov’s metrics n−dimensional top

Diff(S1) L2 Hopf (or, inviscid Burgers) equation
Virasoro L2 KdV equation
Virasoro H1 Camassa−Holmequation
Virasoro Ḣ1 Hunter−Saxton (or Dym) equation

SDiff(M) L2 Euler ideal fluid
SDiff(M)+̇SVect(M) L2 +L2 Magnetohydrodynamics

Maps(S1,SO(3)) H−1 Landau−Lifschits equation

In some cases these systems turn out to be not only Hamiltonian, but also bi-
hamiltonian. More detailed descriptions and references can be found in the book [4].

2 Topology of steady flows

2.1 Arnold’s classification of steady fluid flows

The stationary Euler equation in the domain M has the form

(v ·∇)v =−∇p
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on a divergence-free vector field v. In 3D this equation can be rewritten as follows:

v× curlvvv =−∇α,

i.e. the cross-product of the fields v and curlvvv is a potential vector field. Here α =
p + |v|2/2 is called the Bernoulli function. (Another way to express this is to say
that the field v commutes with its vorticity curlvvv. The latter commutativity condition
is valid in any dimension.)

Theorem 2.1 [2,3] Let M be a three-dimensional manifold without boundary. Then
all non-critical level sets of α are 2-tori. Furthermore, both fields v and curlvvv are
tangent to these levels and define there the R

2-action.
On a manifold M with boundary, the α-level sets are either 2-tori or annuli. On

tori the flow lines are either all closed or all dense, and on annuli all flow lines are
closed.

The proof of the theorem is based on the observation that v is always tangent to
the level sets of α , i.e. the function α is a first integral of the equation. On non-
critical sets one has ∇α 	= 0, which implies that v 	= 0. Thus the α-level sets are
two-dimensional orientable surfaces which admit a non-vanishing tangent vector
field. Thus these surfaces must be tori, since their Euler characteristic is 0. For M
with boundary, the α-level sets could intersect the boundary, in which case they are
annuli, see Fig. 2.

Remark 2.1. [2,3] (i) Analyticity assumptions on M and v imply that there is a finite
number of cells between the critical levels of α , which are foliated by tori or annuli.

(ii) The R
2-action on tori is given by two commuting vector fields v and curlvvv. In

particular, locally around a non-critical level of α there are coordinates {φ1,φ2,z}
such that the α-levels are given by {z = const} and

v = v1(z)∂φ1 + v2(z)∂φ2 ,

curlvvv = w1(z)∂φ1 +w2(z)∂φ2 .

(b)(a)

Fig. 2 The flow lines of steady flows typically lie on tori or annuli: see the cases of M without
boundary (a) and with boundary (b)
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This way a steady 3D flow looks like a completely integrable Hamiltonian system
with two degrees of freedom.

(iii) It could happen that ∇α = 0 everywhere, i.e. α = const. Then

v× curlvvv = 0,

and hence v is collinear with curlvvv at every point. Such fields are called force-free.
If v 	= 0 everywhere, we can express curlvvv as curlvvv = κ(x)v for a smooth function

κ(x) on M. Then κ is a first integral of our dynamical system given by the field v.
Indeed,

0 = div(curlvvv) = div(κv) = ∇κ · v .

Again, the vector field v is tangent to the level sets of κ . On these sets there is only
the R-action.

(iv) Another interesting case is when κ(x) = const. Then

curlvvv = λv,

i.e. v is an eigen field for the curl operator: curlξξξ = λξ . Such fields are called
Beltrami fields (or flows). One famious example is given by the so called ABC
flows on a 3D-torus, which exhibit chaotic behavior and draw special attention in
fast dynamo constructions:

vx = Asinz+C cosy

vy = Bsinx+Acosz

vz = C siny+Bcosx

(v) There is a two-dimensional version of the above Arnold’s theorem. Any area-
preserving field in dimension 2 is a Hamiltonian field (with possibly a multival-
ued Hamiltonian function): v = sgradψψψ . This Hamiltonian function ψ is called the
stream function for the field v. The condition that v is a steady flow, i.e. that it com-
mutes with its vorticity curlvvv, amounts in 2D to the fact that the stream function ψ
and its Laplacian ∆ψ have the same level curves. In other words, locally there is a
function F : R→ R such that ∆ψ = F(ψ).

2.2 Variational principles for steady flows

The stationary solutions of the Euler equation come by as extremals from two dif-
ferent variational principles [3, 8].

i) The magneto-hydrodynamic (“MHD”) variational principle: consider the
energy functional

E(v) =
∫

M
|v|2ddd3x
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on divergence-free vector fields v on a 3D manifold M. Then extremals of the energy
functional among the fields diffeomorphic to a given one are singled out by the same
condition as the steady Euler flows: such fields must commute with their vorticities.
(This problem on conditional extremum corresponds to the restriction of the energy
E to the adjoint orbits of the diffeomorphism group.)

ii) The ideal hydrodynamic (“IHD”) principle: steady fields are extremal fields
for the energy functional among the fields with diffeomorphic vorticities, i.e. among
isovorticed fields. (The latter corresponds to the energy restriction to the coadjoint
orbits of the same group.) In this sense these principles are dual to each other, but
give the same sets of extremal fields.

3 Euler equations and integrable systems

3.1 Hamiltonian reformulation of the Euler equations

The differential-geometric description of the Euler equation as a geodesic flow on a
Lie group has a Hamiltonian reformulation. Fix the notation E(v) = 1

2 〈v,Av〉 for the
energy quadratic form on g which we used to define the Riemannian metric. Identify
the Lie algebra and its dual with the help of this quadratic form. This identification
A : g→ g∗ (called the inertia operator) allows one to rewrite the Euler equation on
the dual space g∗.

It turns out that the Euler equation on g∗ is Hamiltonian with respect to the
natural Lie–Poisson structure on the dual space [1]. Moreover, the corresponding
Hamiltonian function is minus the energy quadratic form lifted from the Lie al-
gebra to its dual space by the same identification: −E(m) = − 1

2 〈A−1m,m〉, where
m = Av. Here we are going to take it as the definition of the Euler equation on the
dual space g∗. (The minus is related to the consideration of a right-invariant metric
on the group. It changes to plus for left-invariant metrics.)

Definition 3.1 (see, e.g., [4]) The Euler equation on g∗, corresponding to the right-
invariant metric E(m) = 1

2 〈Av,v〉 on the group, is given by the following explicit
formula:

dm
dt

=−ad∗A−1mm, (1)

as an evolution of a point m ∈ g∗. Here ad∗ is the coadjoint operator, dual to the
operator defining the structure of the Lie algebra g.

Below we explain the meaning of this operator in the case of the Virasoro algebra,
“responsible” for several equations of mathematical physics.
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3.2 The Virasoro algebra and the KdV equation

Definition 3.2. The Virasoro algebra vir = Vect(S1)⊕R is the vector space of pairs
which consist of a smooth vector field on the circle and a number. This space is
equipped with the following commutation operation:

[( f (x)
∂
∂x

,aaa),(((g(x)
∂
∂x

,bbb)] =
(

( f ′(x)g(x)− f (x)g′(x))
∂
∂x

,
∫∫∫

S1
f ′(x)g′′(x)dx

)
,

for any two elements ( f (x)∂/∂x,aaa) and (g(x)∂/∂x,bbb) in vir.
The bilinear skew-symmetric expression c( f ,g) :=

∫
S1 f ′(x)g′′(x)dx is called the

Gelfand–Fuchs 2-cocycle.

There exists a Virasoro group, an extension of the group of smooth diffeomor-
phisms of the circle, whose Lie algebra is the Virasoro algebra vir. Fix the L2-energy
quadratic form in the Virasoro Lie algebra:

E( f (x)
∂
∂x

,aaa) =
1
2

(∫

S1
f 2(x)dddx+a2

)
.

Applying the construction of Section 1 to the Virasoro group, one can equip this
group with a (right-invariant) Riemannian metric and consider the corresponding
Euler equation, i.e., the equation of the geodesic flow generated by this metric on
the Virasoro group.

Theorem 3.1 [9] The Euler equation corresponding to the geodesic flow (for the
above right-invariant metric) on the Virasoro group is a one-parameter family of
the Korteweg–de Vries (KdV) equations:

∂tu+u∂xu+ c∂ 3
x u = 0;∂∂∂ t c = 0

on a time-dependent function u on S1. Here c is a (constant) parameter, the “depth”
of the fluid.

Proof. The space vir∗ can be identified with the set of pairs
{
(u(x)(dx)2,c)|uuu(x) is a smooth function onSSS1,ccc ∈ R

}
.

Indeed, it is natural to contract the quadratic differentials u(x)(dx)2 with vector
fields on the circle, while the constants are to be paired between themselves:

〈(v(x) ∂
∂x

,aaa),(u(x)(dx)2,c)〉=
∫

S1
v(x) ·u(x)dddx+a · c.

The coadjoint action of a Lie algebra element ( f ∂/∂x,a) ∈ vir on an element
(u(x)(dx)2,c) of the dual space vir∗ is

ad∗( f ∂/∂x,a)(u(dx)2,c) = (2(∂x f )u+ f∂xu+ c∂ 3
x f ,000).
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It is obtained from the identity

〈[( f
∂
∂x

,aaa),(((g
∂
∂x

,bbb)],(u(dx)2,c)〉= 〈(g ∂
∂x

,bbb),ad∗
( f ∂

∂x ,aaa)
(u(dx)2,c)〉,

which holds for every pair (g ∂
∂x ,bbb) ∈ vir.

The quadratic energy functional E on the Virasoro algebra vir determines the
“tautological” inertia operator A : vir→ vir∗, which sends a pair (u(x)∂/∂x,c)∈ vir
to (u(x)(dx)2,c) ∈ vir∗.

In particular, it defines the quadratic Hamiltonian on the dual space vir∗,

E(u(dx)2,c) =
1
2
(
∫

u2dddx+ c2)

=
1
2
〈(u ∂

∂x
,c),(((u(dx)2,c)〉=

1
2
〈(u ∂

∂x
,c),AAA(u

∂
∂x

,c)〉.

The corresponding Euler equation for the right-invariant metric defined by E on the
group (according to the general formula (1) above) is given by

∂
∂ t

(u(dx)2,c) =−ad∗A−1(u(dx)2,c)(u(dx)2,c).

Making use of the explicit formula for the Virasoro coadjoint action ad∗ for

( f ∂/∂x,a) = A−1(u(dx)2,c) = (u∂/∂x,c),

we obtain the required Euler equation:

∂tu =−2(∂xu)u−u∂xu− c∂ 3
x u =−3u∂xu− c∂ 3

x u,∂∂∂ t c = 0.

The coefficient c is preserved in time, and the function u satisfies the KdV equation.
QED.

3.3 Equations–relatives and conservation laws

For different metrics on the Virasoro group, other interesting equations can appear
from the same scheme. The Euler equation on the Virasoro group with respect to
the right-invariant H1-metric gives the Camassa–Holm equation:

∂tu−∂xxtu =−3u∂xu+2(∂xu)∂xxu+u∂xxxu+ c∂ 3
x u,

see [7]. Similarly, the homogeneous Ḣ1–metric gives the Hunter–Saxton equation
(an equation in the Dym hierarchy):

∂xxtu =−2(∂xu)∂xxu−u∂xxxu,

see [6].
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Remark 3.1. It turns out that all these three equations (KdV, CH, and HS) are
bihamiltonian systems, and hence admit an infinite family of conservation laws.
The corresponding Hamiltonian (or Poisson) structures are naturally related to the
Virasoro algebra.

For instance, for the KdV equation these conserved quantities can be expressed
in the following way. Consider the KdV equation on (u(x)(dx)2,ccc) as an evolution
of Hill’s operator c d2

dx2 + u(x). The monodromy M(u) of this operator is a 2× 2-
matrix with the unit determinant. Look at the following function of the monodromy
for a family of Hill’s operators:

hλ (u) := log(traceM(u−λ 2)),

where M(u−λ 2) is the monodromy of the Hill operator d2

dx2 +u(x)−λ 2.
Now, the expansion of the function hλ in λ produces the first integrals of the

KdV equation:

hλ (u) ≈ 2πλ −
∞

∑
n=1

cnh2n−1(u)λ 1−2n,

where

h1 =
∫

S1
u(x)dx, h3 =

∫

S1
u2(x)dx, h5 =

∫

S1

(
u3(x)− 1

2
(ux(x))2

)
dx, . . .

and c1 = 1/2,cccn = (2n− 3)!!/(2nn!) for n > 1. One can recognize here the famil-
iar form of higher KdV integrals. Their appearance in this expansion is due to the
fact that the trace of the monodromy M(u) is a Casimir function for the Virasoro
algebra, while the coefficients in a Casimir expansion provide a hierarchy of con-
served charges for any bihamiltonian systems, see [6] for more details on the KdV
and other related equations.
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Infinite dimensional dynamical systems
and the Navier–Stokes equation

C. Eugene Wayne1

Abstract In this set of lectures I will describe how one can use ideas of dynamical
systems theory to give a quite complete picture of the long time asymptotics of so-
lutions of the two-dimensional Navier–Stokes equation. I will discuss the existence
and properties of invariant manifolds for dynamical systems defined on Banach
spaces and review the theory of Lyapunov functions, again concentrating on the
aspects of the theory most relevant to infinite dimensional dynamics. I will then
explain how one can apply both of these techniques to the two-dimensional Navier–
Stokes equation to prove that any solution with integrable initial vorticity will will
be asymptotic to a single, explicitly computable solution known as an Oseen vortex
equations.

1 First lecture: infinite dimensional dynamical systems

In this first lecture I recall some common techniques used in finite dimensional dy-
namical systems and discuss their generalization to the infinite dimensional context
needed for applications to partial differential equations. The two main tools we will
use in these lectures will by invariant manifolds and Lyapunov functions. We will
use the former to analyze the behavior of systems near stationary solutions and the
latter to obtain more global information about solutions. Good general references
for this material are [11] and [12].

We begin by recalling a very simple situation. Suppose that one has a system of
n ordinary differential equations

dx
dt

= f̃ (x) , x ∈ R
n . (1)

Suppose further that the origin is a fixed point of this this system of equations. If
we want to analyze the behavior of solutions near zero an obvious approach is to
linearize the equation, i.e. we write

1 Department of Mathematics and Statistics, Boston University
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f̃ (x) = f̃ (0)+
(
D0 f̃

)
x+O(|x|2)≡ Lx+ f (x) . (2)

In this last equality we have used the fact that f̃ (0) = 0 (since the origin is a fixed
point) and defined the n×n matrix L = D0 f̃ , i.e. the Jacobian matrix of f̃ at the fixed
point. The function f (x) collects the nonlinear terms in the equation – in particular,
f (x) = O(|x|2) for x near zero. If x is very small then the terms O(|x|2) should be
much smaller than the linear terms in x suggesting that a good approximation to the
solutions of (1) should be given by

dx
dt

= Lx . (3)

This equation is easily solved – if L has n linearly independent eigenvectors {v j}n
j=1,

with eigenvalues {λ j}n
j=1, then any solution of (3) can be written as

x(t) = c1eλ1tv1 + · · ·+ cneλntvn , (4)

for some choice of constants c j.

Remark 1.1. The constants c j are determined by the initial conditions. If {w j}n
j=1

are the adjoint-eigenvectors of L, normalized so that 〈w j,vk〉= δ j,k then we have

c j = 〈w j,x(0)〉 .

(Here 〈·, ·〉 is the inner product on R
n.) Hence for later use we note that we will

want to know not only eigenvectors for the linear part of equations we study but
also adjoint eigenvectors.

From (4) we see that we can split R
n into a direct sum of three subspaces – the

stable subspace, E
s, the center subspace E

c and the unstable subspace, E
u, which are

respectively the spectral subspaces associated with the eigenvalues whose real parts
have negative, zero, or positive real parts. Note that any solution with initial condi-
tion in E

s approaches the origin as t → ∞ while any solution with initial condition
in E

u approaches the origin as t →−∞.
An obvious question is to what extent this structure survives when we include the

nonlinear terms that were omitted in (3). We certainly don’t have explicit solutions
like those in (4) any longer but geometrical structures analogous to the stable, center
and unstable subspaces do persist, at least in a neighborhood of the fixed point – this
is the content of the invariant manifold theorems. We state these informally for
the moment, reserving a more formal treatment until we discuss the corresponding
results for infinite dimensional systems below. Suppose f̃ ∈ C1(Rn). Then there
exists a neighborhood of the origin Br ⊂ R

n and functions hs defined on Br such
that

hs : Br ∩E
s → E

c⊕E
u

The function hs is C1, and its graph, known as the local stable manifold W s
loc is

locally invariant (i.e. for any initial condition in W s
loc the corresponding solution of

(1) remains in W s
loc for as long as it remains in the domain of definition of hs.).
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Furthermore, any solution which remains in W s for all t � 0 approaches the origin
as t →∞. In addition the local stable manifold is locally unique – no other manifold
in a neighborhood of the origin shares all these properties.

Analogous results hold for the local unstable manifold. However, things are
slightly more delicate for the center-manifold. In particular, one no longer has
uniqueness. There are simple examples of systems of ordinary differential equations
with infinitely many local center manifolds.

One property that makes center manifolds particularly important and interesting
is that one can show that there exists a neighborhood of the origin (which we can
assume to be Br, without loss of generality) such that any solution which remains in
this neighborhood for all t ∈ R must lie in the local center manifold. This implies
that any periodic orbits or additional fixed points in a neighborhood of the origin
must lie in the center-manifold. If one is looking specifically for periodic orbits, say,
this can lead to a very big simplification since it permits one to reduce the search
from the original system of n equations to a system whose dimension equals that of
the center manifold which is often much less than n. Such a reduction is even more
important in the context of partial differential equations where it frequently results
in reduction from an infinite dimensional set of equations to one whose dimension
is small and finite.

We next turn to a discussion of the appropriate generalization of these invari-
ant manifold theorems to partial differential equations. Suppose that we consider a
(system) of partial differential equations

∂u
∂ t

= L u+ f (u,∇u) , (5)

where u = u(x, t) ∈ R
n, x ∈ D ⊂ R

d and t � 0, L is a linear, differential operator
and f is a nonlinear term depending on u and its (first order) partial derivatives. One
could also consider quasilinear partial differential equations but in these lectures we
restrict attention to this semilinear case.

Following the intuition gained from the finite dimensional case above we would
like to compare solutions of this equation to those of the linear equation

∂u
∂ t

= L u (6)

There are many additional difficulties that are encountered in treating this infinite
dimensional case in comparison with the finite dimensional case discussed above.
Some of these difficulties are only technical and reflect the more complicated analy-
sis necessary in an infinite dimensional setting. However, other problems represent
qualitative differences in the behavior of the partial differential equations vis-a-vis
ordinary differential equations. Among the problems that must be overcome are:

1. The spectrum of L may no longer consist only of eigenvalues as in (3) but may
now contain continuous spectrum.

2. Since the operator L will in general be unbounded it may not be possible to
define solutions for t < 0 for general initial conditions – in this case discussing
the behavior of solutions as t →−∞ is clearly problematic!
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3. If the continuous spectrum approaches the imaginary axis there may be not clear
splitting between the center subspace and the stable and unstable subspaces.
This problem, often called the lack of a spectral gap, is particularly common
when studying problems defined on unbounded spatial domains.

4. One cannot in general hope that the nonlinearity f in (5) will be C1 - indeed
due to the presence of derivatives of u in the nonlinear term it often even fails
to map the Banach space in which solutions lie back into itself. This will be the
case, for example in the Navier–Stokes equations which are the subject of the
third and fourth lectures in this series.

Many authors have addressed the question of the existence and properties of in-
variant manifolds for partial differential equations. In contrast to the case of ordinary
differential equations where it is more or less clear what the “right” assumptions
on the vectorfield are and what the “correct” conclusion ought to be, this is by no
means so clear in the case of partial differential equations. In particular, depending
on the context one may wish to make either stronger or weaker assumptions about
the linear part of the equation (which affect, for instance, the smoothing proper-
ties of the semi-group associated with (6), or even whether the linear part defines
a semi-group). These assumptions then entail making either different assumptions
on the nonlinear term, or changing (typically, weakening) the results one hopes to
obtain. For examples of typical results in this context see [1], [13] or [16]. One
general principle which emerges from this collection of results is that if (5) and (6)
define semi-flows then it is often easier to work with the semi-flow than with the
differential equation itself. This is because the semi-flow already incorporates any
smoothing properties that the equation may possess. By working with the semi-flow,
Chen, Hale and Tan (CHT) [4] have given a very general form of the invariant man-
ifold theorem, applicable to many partial differential equations. It is their result that
I will use in subsequent lectures and which I now state.

From now on, we assume that the partial differential equation (5) defines a semi-
flow Φ t on some Banach space X . Then (CHT) make the following assumptions:

(H.1) Φ t(u) is continuous for (t,u) in R
+×X and there exist positive constants q

and D such that
sup

0�t�q
Lip(Φ t) = D < ∞

where

Lip(Φ t)≡ sup
u,v∈X

‖Φ t(u)−Φ t(v)‖
‖u− v‖ .

(H.2) For some τ ∈ (0,q], one can decompose Φτ as

Φτ = S +R

where S is a bounded linear operator from X to itself and R is globally Lipshitz.
(H.3) There exist subspaces X1 and X2 such that X = X1⊕X2, and continuous pro-

jections Pi : Xi → Xi, i = 1,2 which are invariant with respect to S. Also S com-
mutes with Pi. If Si = S|Xi , then Si has bounded inverse and there exist constants
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Ci and αi such that α1 > α2 � 0 and

‖S−k
1 P1‖ � C1α−k

1

‖Sk
2P2‖ � C2αk

(H.4) The constant Ci and αi from (H.3) are related to the nonlinearity in such a
way that (

(
√

C1 +
√

C2)2

α1−α2

)
Lip(R) < 1 .

Remark 1.2. For later use we fix two additional constants γ1 and γ2 with α2 < γ2 <
γ1 < α1 such that

Lip(R)
(

C1

α1− γ1
+

C2

γ2−α2

)
= 1 .

Note that by making Lip(R) sufficiently small we can make γ1 arbitrarily close to
α1 and γ2 arbitrarily close to α2.

Remark 1.3. Before stating the conclusions of the (CHT) theorem we comment
briefly on the meaning of these hypotheses. The hypothesis (H.1) implies that (5)
defines a well-behaved semi-flow. This hypothesis typically rules out applying these
results to elliptic equations, for example. Hypothesis (H.2) is just an assumption that
the semi-group splits nicely into its linear and nonlinear parts. Hypothesis (H.3) im-
plies a “spectral gap” for the linear part of the semigroup. The spectrum of S2 must
lie inside a circle of radius α2 and the spectrum of S1 must lie outside a circle of
radius α2. Note however, that there is no assumption that S2 is invertible – we do
not assume that the original partial differential equation is solvable “backwards” in
time for general initial data. Finally, hypothesis (H.4) requires that the nonlinear
term must be small, in the appropriate sense, with respect to the spectral gap.

We now state the theorem of (CHT) which we will use later:

Theorem 1.1. Suppose that (H.1)-(H.4) hold. Then there exists a globally Lipshitz
map g : X1 → X2 such that the graph of g

G = {u1 +g(u1)|||uuu1 ∈ X1}

satisfies:

(i) (Invariant Manifold) The restriction of Φ t to G can be extended to a Lipshitz
flow on G.

(ii) (Lyapunov exponents) Any negative semi-orbit ‖u(t)‖t�0 ⊂ X that satisfies

lim
t→∞

1
|t| log‖u(t)‖<−1

τ
logγ2 (7)

must be contained in G. In particular, if γ2 < 1, any fixed point of Φ t must lie
in G.
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(iii) (Invariant Foliation) There exists a continuous map h : X ×X2 → X1 such that
if v ∈ G, then h(v,P2v) = P1v and the set

Mv = {h(v,w)+w|||www ∈ X2}

passing through v satisfies Φ t(Mv)⊂MΦt (v) and

Mv = {w ∈ X ||| limsup
t→∞

1
t

log |Φ t(w)−Φ t(v)|� 1
τ

logγ2} .

Remark 1.4. We did not discuss the finite dimensional analogue of point (iii) but
roughly speaking the fibers Mv of this foliation contain all points whose asymptotic
behavior it the same as that v – i.e. we can characterize the asymptotics of all points
(sufficiently close to the fixed point) by those of points on the invariant manifold.
Note that the estimate on the rate of convergence of points in the fiber toward the
invariant manifold also implies as a corollary that all solutions near the invariant
manifold approach (assuming that γ2 < 1.)

Remark 1.5. Note that in Hypothesis (H.1) we assume that there is a global bound
on the Lipshitz constant of the semi-flow. (Here, I mean global in X , not in time.)
This is rarely true in practice but this hypothesis is why the manifold constructed
here is not constrained to a neighborhood of the fixed point but rather is defined for
all u1 ∈ X1. In practice we “cut off” the nonlinear terms in the equation outside a
small neighborhood of the fixed point in order to allow this hypothesis to be verified
and this will make the applications of this theorem “local” in character.

Remark 1.6. If the term R in the decomposition of the semiflow is nonlinear in the
sense that R(0) = 0 and DR(0) = 0 then the function g whose graph defines the
invariant manifold has the same property – namely g(0) = 0 and Dg(0) = 0.

This invariant manifold theorem will be our main tool to investigate the local
behavior of solutions of partial differential equations in the later lectures. However
we will also want to consider more global questions. For those, we will make use
of Lyapunov functions. Here, the transition from the finite dimensional to infinite
dimensional setting involves fewer changes than in the case of the invariant mani-
fold theorems so we work directly with the infinite dimensional case without first
reviewing the finite dimensional results. The presentation here largely follows that
of D. Henry in [11] – see that work, or [12] for more details.

Let Φ t be a semi-flow on a Banach space X . We want to characterize the long-
time behavior of solutions of the differential equation defining Φ t and with that in
mind make the following two definitions:

Definition 1.1. Given u0 ∈ X , we define the forward orbit of u0 as:

O+(u0) = {Φ t(u0)|||ttt � 0} .

Definition 1.2. The omega limit set of a point u0 is the set of all points which the for-
ward orbit of u0 approaches arbitrarily closely as t tends to infinity. More precisely,
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ω(u0) = {u ∈ X |||there exists {tn} ⊂ Rsuch that lim
n→∞

tn = ∞

and lim
n→∞

‖Φ tn(u0)−u‖= 0} .

Exercise 1.1. Suppose that ũ ∈ O+(u0). Show that ω(u0) = ω(ũ). Thus we can
refer without ambiguity not just to ω(u0) but also ω(O+(u0)).

Exercise 1.2. Show that if u∗ is an element of the ω-limit set of u0 and if O+(u0)⊂
KKK, a compact subset of X , then the orbit of u∗ is defined for all t ∈ R and the entire
orbit of u∗ is contained in ω(u0).

One might worry that the omega-limit set was empty, but this turns out not to be
the case, at least not if the forward orbit remains in a compact set:

Proposition 1.1. If O+(u0) ⊂ K, a compact subset of X. then ω(u0) is non-empty
and invariant (i.e. if u∗ ∈ ω(u0), then Φ t(u∗) ∈ ω(u0) for all t ∈ R.)

The proof of this proposition is not difficult – see [11] for details. The only
slightly surprising point is that the omega-limit set is invariant in both forward and
backward time, even though we do not know (or expect) that the semi-group itself
is defined for t � 0 for general initial conditions.

A key tool for investigating omega-limit sets are Lyapunov functions.

Definition 1.3. If X is a Banach space, a Lyapunov function for the semi-flow Φ t is
a continuous, real-valued functionΨ such that

limsup
t→0+

Ψ(Ψ t(u))−Ψ(u)
t

< 0for allu ∈ X .

This means thatΨ is non-increasing along orbits of Φ t .

Remark 1.7. Note that if the limit in Definition 1.3 exists it is just the derivative of
Ψ along the trajectory with initial condition u so a common way of verifying that a
given function is a Lyapunov function is to show that its derivative is non-positive
along solutions.

A key tool we will use in Lecture 4 is the LaSalle Invariance Principle:

Proposition 1.2. Let Ψ be a Lyapunov function for the semi-flow Φ t . Define
E={u∈X |||dΨ

dt◦Φt (u)|t=0=0} If O+(u0) is contained in a compact subset of X then ω(u0)⊂ E.

Because of the importance of this result for our applications we sketch its proof:

Proof. By the compactness of the forward orbit and continuity of Ψ we know that
there exists some finite M such that

V (Φ t(u0)) � M

for all t � 0. SinceΨ is monotonic along the orbit of u0 we therefore conclude that
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lim
t→∞

Ψ(Φ t(u0)) =Ψ∞

for someΨ∞. If w ∈ ω(u0) the definition of the omega-limit set, plus the continuity
ofΨ imply that there exists a sequence of times {tn} approaching infinity such that
limn→∞Ψ(Φ tn(u0)) = Φ(w), from which we conclude that Φ(w) =Ψ∞. But then,
by the invariance of the omega-limit set we have

Ψ(Φ t(w)) =Ψ∞for allttt ∈ R ,

which implies that w ∈ E. 
�

Example 1.1. We finish this lecture with an example of a somewhat unusual
Lyapunov function which will play a role later in this series of talks. Consider
the dynamical system defined by the partial differential equation

∂w
∂τ

= L w , w = w(ξ ,τ) ; ξ ∈ R
d , τ � 0 (8)

w(ξ ,0) = w0(ξ )

where L w = ∆ξw + 1
2∇ · (ξw). The reason for considering this unusual equation

will be explained in Lecture 2 but for the moment assume two facts about the evo-
lution:

1. The solutions of (8) obey the maximum principle. In particular, if w0(ξ ) � 0
then w(ξ ,τ) > 0 for all ξ for any τ > 0.

2. If w(ξ ,0) ∈ L1(Rd) the ω-limit set of the corresponding trajectory exists.

The reason that equation (8) obeys the maximum principle will be explained in
Lecture 2.

We next show that the L1 norm is a Lyapunov function in this case.

Lemma 1.1. Let w0 ∈ L1(Rd) and let w(ξ ,τ) be the solution of (8) with this initial
condition. Then the function

Φ(w)(τ) =
∫

Rd
|w(ξ ,τ)|dξ

is non-increasing along trajectories. More precisely, Φ(w)(τ) � Φ(w0) for every
τ > 0 and equality holds if and only if w0 does not change sign.

Proof. Define w+
0 (ξ ) = max(w0(ξ ),0), w−0 (ξ ) = −min(w0(ξ ),0) Let w±(ξ ,τ) be

the solutions of (8) with initial conditions w±0 respectively. Note that from the form
of the equation we see immediately that the equation conserves the integral of the
solution. Thus ∫

Rd
w(ξ ,τ)dξ =

∫

Rd
w0(ξ )dξ

and ∫

Rd
w±(ξ ,τ)dξ =

∫

Rd
w±0 (ξ )dξ .
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Now note that if w0 does change sign, w±0 are both non-trivial. Furthermore they
have disjoint support. However, by the maximum principle, w±(ξ ,τ) will both be
positive for all ξ whenever τ > 0. Thus,
∫

Rd
|w(ξ ,τ)|dξ =

∫

Rd
|w+(ξ ,τ)−w−(ξ ,τ)|dξ

<
∫

Rd

(
w+(ξ ,τ)+w−(ξ ,τ)

)
dξ =

∫

Rd

(
w+

0 (ξ )+w−0 (ξ )
)

dξ =
∫

Rd
|w0(ξ )|dξ ,

which shows that Φ decreases along orbits if w0 changes sign. The fact that Φ is
constant when w0 is everywhere non-negative or non-positive is easier and left as an
exercise.

Note that if we combine this Lemma with the LaSalle Invariance Principle we
immediately have

Corollary 1.1. Any point in the ω-limit set of a solution of (8) must be either every-
where positive, everywhere negative, or identically zero.

This Corollary may not seem very strong at first glance since one might think that
all solutions just tend toward zero. However, this can be ruled out by the fact that
solutions conserve the integral of the initial condition and conditions on the decay
of solutions at infinity – thus, if the integral of the initial data is non-zero, we can
conclude that the ω-limit set is either everywhere positive or everywhere negative,
a fact which will be important in the last lecture in this series.

2 Second lecture: invariant manifolds for partial differential
equations on unbounded domains

In this lecture we examine the application of invariant manifold theorems to some
partial differential equations on unbounded spatial domains. For concreteness we
focus primarily on the family of semi-linear heat equations:

∂u
∂ t

= ∆u−u|u|p−1 , p > 1 (1)

u = u(x, t), t � 0, x ∈ R
d .

The long-time behavior of solutions of this equation have been intensively studied
and not surprisingly the value of the exponent p in the nonlinear term plays an
essential role in this behavior. The dynamical systems approach described below
gives a very simple explanation of this p-dependence.

Remark 2.1. There are a host of other applications of invariant manifold theorems
to partial differential equations – see the references [1], [13] or [16] for a small
sampling. We focus on this particular family of equations both because it will serve
as a good “warm up” for treating the Navier–Stokes equations later and also because
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it illustrates one way of dealing with lack of a spectral gap which often arises in
treating problems on unbounded spatial domains.

If one uses the Duhamel formula to convert (1) to an integral equation it is not
difficult to show that this equation defines a smooth semigroup, at least for small
initial data. However, if one tries to apply the invariant manifold theorem of Chen,
Hale and Tan (CHT) described in the previous lecture one immediately runs into the
problem that one cannot split the Banach space in the way described in hypotheses
(H.3) and (H.4). The reason for this is a lack of a spectral gap and the origin of this
problem is seen immediately even for the case of the linear heat equation

∂u
∂ t

= ∆u , u = u(x, t), t � 0, x ∈ R
d . (2)

For this equation we can immediately write down a representation of the semi-
group. It is particularly easy to analyze in terms of the Fourier transform

û(k, t) =
1

(2π)d/2

∫

Rd
u(x, t)e−ix·kdx (3)

If we are given initial conditions u(x,0) = u0 ∈ L2(Rd) then the solution of (2) can
be written as:

û(k, t) = e−|k|
2t û0(k) (4)

Since the semigroup in this case is just a multiplication operator we see that its
spectrum equals the closed interval [0,1]. Since there is no gap in the spectrum there
is no way to split the space of initial conditions in the way required by the (CHT)
theorem. Thus, there is no easy way to identify subspaces of our Banach space which
correspond to solutions with particular decay properties. A way to circumvent this
problem emerges if one recalls the form of the fundamental solution of the heat
equations:

G(x, t) =
1

(4πt)d/2 e−|x|
2/(4t) . (5)

Examining this solution we see that x appears in a special way – namely as the
combination x/

√
t and this suggests that it might be more natural to study (2) not

in terms of the independent variables (x, t) but rather in terms of the new variable
ξ = x/

√
t. With this in mind we introduce new dependent and independent variables

through the definition:

u(x, t) =
1

(1+ t)α/2 w(
x√

1+ t
, log(1+ t)) (6)

ξ =
x√

1+ t
, τ = log(1+ t)

Note that in defining the new variables (often called “scaling” or “similarity” vari-
ables) we have defined ξ = x/

√
1+ t rather than x/

√
t simply to avoid the singu-

larity at t = 0. This can be thought of as simply changing the origin of the time
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axis and since our equation is autonomous it has no effect on the problem. Also, the
exponent α which occurs in the definition of w will be chosen in a way convenient
to each of the problems considered. For the moment, in our discussion of the linear
heat equation we will take α = d.

If we rewrite (2) in terms of these new variables we find that

∂w
∂τ

= L w, w = w(ξ ,τ), ξ ∈ R
d (7)

L w = ∆ξw+
1
2
∇ · (ξw) .

At first sight, this may not seem like an improvement as we have traded the heat
equation for an apparently more complicated equation. However, as we will see this
form of the equation has the advantage that a gap in the spectrum appears which sep-
arates the slowly decaying modes from the more rapidly decaying ones and allows
us to apply the invariant manifold theorem of the preceeding lecture.

Remark 2.2. Note that (7) is precisely the equation considered in Example 1.1 at the
end of the previous lecture. Since this equation is just the heat equation rewritten
in new variables it is clear that solutions of this equation will inherit a maximum
principle from the maximum principle satisfied by the heat equation.

To see why and how this spectral gap forms, consider the eigenvalue problem for
L – for simplicity, we consider the case of d = 1 though the following results are
true in any dimension:

L φ = λφ (8)

If we take the Fourier transform of this equation we find

−|k|2φ̂(k)− 1
2

k
dφ̂
dk

(k) = λφ(k) (9)

This first order equation can be solved with the aid of integrating factors and we find
that for any λ one has a solution

φ̂ λ (k) = A+|k|−2λ e−|k|
2
Θ(k)+A−|k|−2λ e−|k|

2
Θ(−k) , (10)

where Θ(k) is the Heaviside function. (Note that the singularity at the origin means
we can have different constants A+ and A− depending on whether k is positive or
negative.) Thus, we have a solution of the eigenvalue equation for any value of λ so
one might at first think that the spectrum of L is the whole complex plane. However,
note that if λ is real and positive, φ̂ λ is singular at the origin and thus whether or
not φ̂ λ is an eigenfunction depends on what function space we are working on. This
observation reminds us that in general the spectrum of an operator depends on its
domain of definition and as we will see that is very true of the operator L .

It has long been known that the time decay properties of parabolic equations are
often connected with the spatial decay properties of their solutions. With this in
mind we define the family of weighted Sobolev spaces:
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L2(m) = { f ∈ L2(Rd)|||‖ f‖m < ∞} (11)

‖ f‖m =
(∫

Rd
(1+ |ξ |2)m| f (ξ )|2dξ

)1/2

(12)

Hs(m) = {∂α f ∈ L2(m)|||foraaallααα = (α1, . . . ,αd)with|||α|� s} (13)

One standard property of these spaces which is very convenient for our subsequent
use is that Fourier transformation is an isomorphism from Hs(m) to Hm(s). Thus,
if we consider the spectrum of the operator L on the space L2(m), the point λ
will be in the spectrum if the function φ̂ λ ∈ Hm(0) – i.e. if the function φ̂ λ is in
the “ordinary” Sobolev space Hm. Clearly φ̂ λ is sufficiently smooth and rapidly
decaying to be in Hm for any m, provided we stay away from the origin. Thus, φλ

will be in Hm provided it, and all of its derivatives of order m or less are square
integrable in some small neighborhood of the origin.

From the form of φ̂ λ we see that the cases with λ = −n/2 a non-positive half
integer are “special”. In this case, if we choose A+ and A− appropriately we find
that φλ (k) = kne−|k|

2
is a solution of the eigenvalue equation. Since this function

is entire and rapidly decaying φ̂ λ is any Sobolev space Hm and thus the points
{− n

2 |||nnn = 0,1,2 . . .} are in the spectrum of L when considered on any of the
spaces L2(m). Furthermore, the corresponding eigenfunctions are given by the in-
verse Fourier transform of kne−|k|

2
which implies φ n/2(ξ ) = Cn

d
dξ n e−ξ

2/4. Of par-
ticular importance in our subsequent discussions will be the Gaussian eigenfunction
of λ = 0, φ 0(ξ ) = 1√

4π e−ξ
2/4, with the prefactor chosen so that φ 0 has integral one.

For other values of λ , the most singular behavior of φ̂ λ and its derivatives will
occur for the derivative of highest order and we see that near k = 0 one has

dmφ̂ λ

dkm (k)∼ |k|−2λ−m . (14)

This expression will be square integrable provided 2(2Re(λ )+m) < 1, i.e. if

Re(λ ) <
1
4
− m

2
(15)

Thus we have shown

Proposition 2.1. Fix m > 1 and d = 1 and let L be the operator in (7) acting on its
maximal domain in L2(m). Then

σ(L )⊃
{
λ ∈ C|||Re(λ ) � 1

4
− m

2

}
∪
{
−n

2
|||nnn = 0,1,2, . . .

}
.

In fact, as mentioned above, this result also holds for dimensions greater than 1. Fur-
thermore, in addition to the eigenvalues computed above one might have additional
parts to the spectrum but it turns out that this is all of the spectrum in this case and
one can prove that in dimension d one has:
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Theorem 2.1. ([7], Theorem A.1) Fix m > 1 and let L be the operator in (7) acting
on its maximal domain in L2(m). Then

σ(L ) =
{
λ ∈ C|||Re(λ ) <

d
4
− m

2

}
∪
{
−n

2
|||nnn = 0,1,2, . . .

}
.

Although the spectral picture above gives valuable intuition about the behavior of
the semigroup eτL , for later applications we will need more precise estimates on
its properties. In particular, recall that the heat equation has strong smoothing prop-
erties (i.e. solutions of the heat equation with “rough” initial data are infinitely dif-
ferentiable for all t > 0) and we will need to know to what extent these smoothing
properties survive when we introduce scaling variables.

Remark 2.3. Note that it is not automatic that the semigroup eτL will be smoothing.
From the spectral picture in Theorem 2.1 we see that the operator L is not sectorial
in any of the L2(m) spaces. Thus in contrast to the heat equation semigroup, eτL is
not an analytic semigroup.

In addition to the smoothing properties of the semigroup for our later applications
we will need to know what the spectral projection operators onto the various spectral
subspaces of L are. From the discussion in Lecture 1 we expect these to be given
by eigenfuctions of the adjoint operator L †. Formally the adjoint operator has the
form

L †ψ = ∆ξψ−
1
2
ξ ·∇ξψ (16)

If we specialize to one dimension again for simplicity the eigenvalue equation for
L † is

L †ψ = ψ ′′ − 1
2
ξψ ′ = λψ . (17)

This is Hermite’s equation and thus, we find that the spectral projections are defined
in terms of the Hermite polynomials. If α = (α1, . . . ,αd) ∈ N

d we define

Hα(ξ ) =
2|α|

α!
e|ξ |

2/4∂α
ξ

(
e−|ξ |

2/4
)

(18)

and then the projection Pn onto the eigenspace corresponding to the eigenvalues
λk =− k

2 , k = 0,1, . . . ,n is defined by

(Pn f )(ξ ) = ∑
|α|�n

(∫

Rd
Hα(ξ ′) f (ξ ′)dξ ′

)1/2

φα(ξ ) (19)

(Qn f )(ξ ) = ((1−Pn) f )(ξ ) (20)

We make two remarks about these projection operators that will be useful later.

Remark 2.4. The projection P0 onto the zero eigenspace is simply

(P0 f )(ξ ) =
(∫

Rd
f (z)dz

)
φ 0(ξ ) , (21)
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i.e. the projection of a function f onto the zero eigenspace is just given by the
product of the Gaussian, φ 0, with the integral of f . In particular, any function of
mean zero lies in the complementary subspace.

Remark 2.5. Following up on the preceding remark we see that a function f lies in
the range of Qn if and only if

∫

Rd
ξα f (ξ )dξ = 0 , (22)

for all α = (α1, . . . ,αd) ∈ N
d with |α|� n.

We now state our main technical estimate on the semigroup eτL .

Proposition 2.2. Fix n∈N∪{−1} and fix m > n+1+ d
2 For all α ∈N

d, there exists
C > 0 such that

‖∂α(eτL Qn f )‖m � C
(1− e−τ)|α|/2 e−( n+1

2 )τ‖ f‖m , (23)

for all f ∈ L2(m) and all τ > 0.

Proof. For the details of the proof we refer to [7], Appendix A. However, we note
that the decay rate is exactly what we expect from the spectral picture in Theo-
rem 2.1. The more delicate smoothing properties (quantified by the estimates of the
derivatives of the semigroup) are obtained from the explicit integral representation
of the semigroup which we easily obtain by noting that eτL w0 is the solution of (7)
with the initial condition w0 which when combined with (6) gives

(eτL w0)(ξ ) = w(ξ ,τ) = e
d
2 τu(ξeτ/2,eτ −1) (24)

and we then use the integral representation of u in terms of w0 which follows from
the fact that u solves the heat equation with initial condition w0. 
�

We now consider the implications of this result for the invariant manifold theo-
rem. Recall that the problem with applying the invariant manifold theorem directly
to the heat equation was that the semi-group had no spectral gap. If we now consider
the semigroup defined by (7) then we see that the modes corresponding to the eigen-
values λ =− n

2 will decay like e−
n
2 τ while modes lying in the half plane of essential

spectra will all decay at least with a rate e( d
4−

m
2 )τ and by choosing m appropriately

we can separate the decay rate of these modes from the most slowly decaying ones.
In particular, if we choose m > d/2 we expect that as t tends toward infinity solu-
tions of (7) will approach a point on the eigenspace corresponding to the eigenvalue
zero. Thus, we expect solutions of (7) to behave as

w(ξ , t)∼ C0

(4π)d/2 e−|ξ |
2/4

as t tends toward infinity, which just reflects, in these new variables, the fact that so-
lutions of the heat equation tend toward a Gaussian profile as t tends toward infinity.
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(Note that this is consistent with the conclusion of Example 1.1 where we showed
that the ω-limit set of non-zero solutions of (7) should be either everywhere positive
or everywhere negative.)

We now turn to the nonlinear equation (1). We want to apply the results of (CHT)
from the first lecture and to do that we need to study the semi-flow defined by this
equation. We begin by rewriting the equation in terms of the scaling variables, (6).
It is convenient if the resulting equation is autonomous and in order to insure that
this is the case we pick the exponent α in the prefactor of w to be α = 2

p−1 . For
what comes later it will be convenient to consider the exponent p itself to be one of
the dependent variables with a trivial time evolution. With this choice of exponent,
and introducing an equation for p, (1) is transformed into

∂w
∂τ

= L w+
(

1
p−1

− d
2

)
w−|w|p−1w , (25)

d p
dτ

= 0 .

Here, L is exactly the same operator studied in connection with the heat equation
and the change in the exponent α simply introduces the additional constant term(

1
p−1 −

d
2

)
w which just shifts the entire spectrum of L by that constant amount.

Indeed, for simplicity in what follows we will focus particularly on the behavior
of p close to the value d+2

d – i.e. close to the value for which this additional term
vanishes. With this in mind, we exchange the variable p for the variable η defined
by p = 1 + 2

d+2η so that
(

1
p−1 −

d
2

)
w = ηw, and recalling that η (as was p) is

considered to be one of the dependent variables this term can be considered a part
of the nonlinearity! Thus, after these changes, we finally rewrite (1) in the form

∂w
∂τ

= L w+ηw−|w|
2

d+2η w , (26)

dη
dτ

= 0 .

Now, to verify the hypotheses of the invariant manifold theorem of (CHT) we study
the semiflow defined by this system of equations. The evolution of η is trivial so
we focus on the first component of the semiflow which we can write with the aid of
Duhamel’s formula as

Φτ(w0) = w(t) = eτL w0 +
∫ τ

0
e(τ−s)L

(
ηw(s)−|w(s)|

2
d+2η w(s)

)
ds , (27)

where we have suppressed the dependence of w on ξ to avoid overburdening the
notation.

We now discuss the various hypotheses in the (CHT) theorem. The first is that
Φτ should be globally Lipshitz. This is not true of (27) due to the growth of the non-
linear term when w becomes large. This is a standard problem with the application
of invariant manifold theorems even in the context of ordinary differential equations
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and we handle it here in the same way it is usually handled in that setting, namely
by “cutting off” the nonlinear term. Let χ(x) be a smooth, positive function on R

satisfying

χ(x) =

{
1, |x|< 1
0, |x|> 2 .

(28)

Then define

Φτ
r (w0) = w(t) = eτL w0 +

∫ τ

0
e(τ−s)L

×
(
χ
(
‖w(x)‖m

r

)(
ηw(s)−|w(s)|

2
d+2η w(s)

))
ds , (29)

With this definition the nonlinear term vanishes if ‖w(s)‖m is larger than 2r but
Φτ

r (w0) is equal to Φτ(w0) for all solutions that remain within a ball of radius r in
L2(m).

Remark 2.6. Note that the cutoff function χ
(
‖w(x)‖m

r

)
is a smooth function on

L2(m). It is always possible to find such a smooth cutoff function on a Hilbert space,
but there are natural Banach spaces on which no such smooth cutoff function exists.
This can cause problems for certain applications of invariant manifold theorems in
infinite dimensional settings.

It is now a standard exercise to verify that:

(N.1) Φτ
r (w0) is well defined for w0 ∈ L2(m).

(N.2) The nonlinear term

Rτ
r (η ,w0) =

∫ τ

0
e(τ−s)L

(
χ
(
‖w(x)‖m

r

)(
ηw(s)−|w(s)|

2
d+2η w(s)

))
ds

is globally Lipshitz with Lipshitz constant bounded by CR(η+r
2

d+2η ) for some
constant CR . Thus, the Lipshitz constant can be made arbitrarily small for η
and r sufficiently small.

These two observations are sufficient to verify hypotheses (H.1) and (H.2) of the
of the (CHT) theorem. (We can choose the constants q = τ = 1 and set Λ = eτL

and R = R1
r .

We next verify hypothesis (H.3). Here we must make a choice. Given any
n = 0,1,2, . . . we could, by choosing m appropriately set X1 = PnL2(m) and X2 =
QnL2(m). We would then obtain an invariant manifold tangent at the origin to the
eigenspace corresponding to the eigenvalues {− k

2 |||kkk = 0,1, . . . ,n}. The long-time
behavior of solutions close to the origin could then be determined up to corrections
which go to zero at least as fast as e−γτ with γ > n/2 just by studying the asymptot-
ics of solutions of the finite dimensional system of ordinary differential equations
which results from restricting (26) to this invariant manifold.
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For now we focus on the simplest possible case, namely we will assume that
m > max(1,d/2) and take X1 = P0L2(m). In this case X1 is the one-dimensional
subspace spanned by φ 0(ξ ) = 1

(4π)d/2 e−|ξ |
2/4. Next we find

Λ1 = P0eτL P0 = 1 , (30)

the identity operator and we can take the constants C1 = α1 = 1 in hypothesis (H.3).
Then

Λ2 = Q0eτL Q0 (31)

and from Proposition 2.2 we see that (H.3) holds for α2 = e−( m
2 −

d
2 ) < 1 and for

some C2 > 0.
Finally, condition (H.4) is satisfied since by remark (N.2) the Lipshitz constant

of R can be made arbitrarily small for η and r sufficiently small.
Since we are considering η to be one of the dependent variables we should also

consider the evolution of η – however, this evolution is trivial and hence we can
just apply the (CHT) theorem to Φτ=1 for each value of η small, treating η as a
parameter.

Applying the (CHT) theorem we conclude

Proposition 2.3. Fix m > max(1,d/2). There exists r0 > 0 and η0 > 1 such that if
|η |< η0 and 0 < r < r0 there exists a globally Lipshitz map g : P0L2(m)→Q0L2(m)
with g(0) = Dg(0) = 0 such that the submanifold

Wc = {αφ 0 +g(αφ 0)|||ααα ∈ R}

has the following properties:

(i) (Invariance) Φτ leaves Wc invariant.
(ii) (Fixed Points) If {w(t)}τ�0 is a negative semi-orbit with ‖w(τ)‖m � r0 for all

τ � 0, then w(τ) ∈Wc for all τ .
(iii) (Attractivity) Fix µ such that 0 < µ < ( d

4 −
m
2 ). There exists C and r2, positive

constants, such that for w̃0 ∈ L2(m) with ‖w̃0‖m < r2, there exists a unique
w0 ∈Wc such that

‖Φτ(w̃0)−Φτ(w0)‖m � Ce−µτ .

Remark 2.7. The “Fixed Points” and “Attractivity” parts of the conclusions of this
theorem follow respectively from the “Lyapunov Exponents” and “Invariant Foli-
ation” parts of the (CHT) theorem if we use the fact that in this problem we can
choose γ2 < 1. In particular, µ =− logγ2.

Note that since, for ‖w(τ)‖m < r the semiflow Φτ
r coincides with Φτ , the semi-

flow for (26) the rescaled heat equation will also have a local invariant manifold
which attracts all solutions in some sufficiently small neighborhood of the origin.

We conclude this lecture by considering the implications of this manifold for the
long-time behavior of solutions of (26). From the “Attractivity” part of Proposition
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2.3, the long-time behavior of small solutions of (26) will (up to higher order correc-
tions) be the same as those of solutions lying on the manifold Wc, and the long-time
behavior of solutions lying on this manifold can be determined by solving the sin-
gle ordinary differential equation that results from restricting the original partial
differential equation to this manifold. If w(ξ ,τ) lies on Wc we can write

w(ξ ,τ) = α(τ)φ 0(ξ )+g(α(τ)φ 0(ξ )) . (32)

Inserting this representation of w into (26) gives

α̇(τ)φ 0(ξ )+α(τ)Dg(α(τ)φ 0(ξ ))φ 0(ξ ) = α(τ)(L φ 0)(ξ )−|α(τ)φ 0(ξ ) (33)

+g(α(τ)φ 0(ξ ))|
2

d+2η (α(τ)φ 0(ξ )+g(α(τ)φ 0(ξ )))

We now reduce this to an ordinary differential equation for α(τ) by noting that
L φ 0 = 0 and then applying the projection operator P0 to both sides of the equation.
This yields:

α̇(τ) = ηα(τ) −
∫

R

|α(τ)φ 0(ξ )+g(α(τ)φ 0(ξ ))|
2

d+2η

×(α(τ)φ 0(ξ )+g(α(τ)φ 0(ξ )))dξ (34)

For the moment the only thing we need to know about the complicated nonlin-
ear term is that since g(0) = 0, and Dg(0) = 0 (by explicit computation of the
equation satisfied by the invariant manifold), for for α and η small it behaves like

CL|α|
2

d+2η α , where CL =
∫
R
(φ 0(ξ ))pdξ .

From this equation is clear that varying η (or equivalently p) leads to a bifur-
cation at η = 0. From now on, for simplicity we assume that d = 1, though the
computations can be carried through in a similar way for higher dimensions. Note
that in d = 1, η = 0 corresponds to the exponent p = 3. To better understand the
bifurcation that results when we vary η we first consider solutions of (34) when
η < 0 which corresponds to p > 3. In this case the origin is an attractive fixed point
for (34) and for any solutions with α(0) sufficiently small we have

α(τ)∼C0e−ητ ,

for some C0 > 0. From this we immediately conclude that solutions on the invariant
manifold Wc behave for large times like

w(ξ ,τ) = C0e−ητφ 0(ξ )+g(C0e−ητφ 0(ξ )) (35)
= C0e−ητφ 0(ξ )+O(e−2ητ) ,

where the last equality reflects the fact that since g(0) = Dg(0) = 0, the terms
g(C0e−ητφ 0(ξ )) will decay faster than e−ητ . Furthermore by the “Attractivity” part
of Proposition 2.3 all small solutions will behave like (35) to leading order. Thus we
have:
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Corollary 2.1. All sufficiently small solutions of (26), behave asymptotically like

w(ξ ,τ) = C0e−ητφ 0(ξ )+O(e−2ητ) .

for some constant C0.

Note that from this corollary it appears that the decay rate of these solutions
depends on p through the exponent η . However, if we revert to our original variables
we see that solutions of the original equation (1) behave as

u(x, t) =
1

(1+ t)α/2 w(
x√

1+ t
, log(1+ t))=

1

(1+ t)
1

(p−1)
w(

x√
1+ t

, log(1+ t)) (36)

=
1

(1+ t)
1

(p−1)

(
C0(1+ t)−ηφ 0(

x√
1+ t

)+O((1+ t)−2η
)

=
C0√
1+ t

φ 0(
x√

1+ t
)+ . . .

Note that the leading order behavior here is the same as the leading order asymptotic
behavior of solutions of the linear heat equation. Thus, for p > 3, all small solutions
of (1) behave as if the nonlinear term was absent - such nonlinear terms are often
referred to as “irrelevant”.

Let’s now consider what happens if p < 3 (or η > 0). In this case the origin is
unstable and the fixed point at the origin undergoes a pitchfork bifurcation and a pair
of new fixed points appears at ±α∗ ≈ ±(η/CL)

1
p−1 . These fixed points are stable

(at least for η sufficiently small) at hence all non-zero solutions in Wc will approach
one of them. Define

w∗(ξ ; p) = α∗φ 0(ξ )+g(α∗φ 0(ξ )) .

Then, small solutions of (1) will behave like

w(ξ ,τ)≈ w∗(ξ ) (37)

for τ large.

Remark 2.8. In fact, there are some solutions which will approach the origin even
when η < 0. Those are the solutions that lie in the stable manifold of the origin.
However, these solutions for a manifold of codimension-one and hence “most” so-
lutions will behave as in (37).
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If we again revert to the original variables we find

Corollary 2.2. For p < 3, all sufficiently small solutions of (1) except for those lying
in the codimension one stable manifold of the origin, behave like

u(x, t) =
1

(1+ t)
1

p−1
w∗(

x√
1+ t

)+ . . . .

Thus, we see that for p < 3 the situation is quite different from that for p > 3
since both the rate of decay of the long-time asymptotics and the functional form of
the limiting solution depend on the nonlinear term.

Exercise 2.1. Determine the behavior of the long-time asymptotics of solutions
when p = 3 – the “critical” value of the nonlinear term.

Remark 2.9. By considering the manifolds tangent to the spectral subspaces corre-
sponding to more than just the zero eigenvalue – say to the eigenvalues {0,− 1

2} or
{0,− 1

2 ,−1}, etc. one can derive more refined estimates of the long-time behavior
of the solutions.

Summing up this lecture, we have found a way, at least in some parabolic partial
differential equations, to create a spectral gap which allows us to apply invariant
manifold theorems to problems on unbounded spatial domains. These theorems can
then give detailed information about the long-time asymptotics of solutions. The
drawback is that these results are local in nature – in the present examples they
apply only to “small” solutions. As we will see in the fourth lecture in this series
that restriction can sometimes be lifted by combining these results with Lyapunov
functionals which give more global control over the solutions.

3 Third lecture: an introduction to the Navier–Stokes equations

In this section we will discuss the Navier–Stokes equations which describe the ve-
locity of a viscous, incompressible fluid. The focus of this lecture will be the origin
of the equations, their representation in terms of both the velocity and vorticity of
the fluid and the existence of solutions in the two-dimensional case. In the final lec-
ture in this series we will look in greater detail at the long-time behavior of solutions
of two-dimensional Navier–Stokes equations. A more detailed look at the Navier–
Stokes equation, but with a similar point of view can be found in the lecture notes
of Gallagher and Gallay [6]. For more discussion of the physical origin of these
equations one can consult [5].

The Navier–Stokes equations arise from applying Newton’s law to determine the
motion of a small “blob” of fluid. Assume that the “blob” is a cube of side length
∆x, centered at the point x ∈ R

d , where for physical relevance we restrict to the
cases d = 2 or 3. If u(x, t) is the fluid’s velocity measured in the laboratory frame of
reference, then Newton’s Law implies
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d
dt

(momentum) = applied forces .

If the density of the fluid is ρ , then the momentum will be π(x, t) = ρ(x, t)u(x, t)∆V ,
where ∆V is the volume of the little cube of fluid. To simplify the discussion we will
assume that the density ρ is constant and check a posteriori that this is consistent
with the equations of motion. We’ll also ignore the factor of ∆V since it will occur
in each term and can be cancelled out.

To compute the change in moment of our fluid blob we need to take account of
the fact that the fluid is being advected along by its own velocity. Thus,

dπ
dt

(x, t) = lim
∆ t→0

π(x+u(x, t)∆ t, t +∆ t)−π(x, t)
∆ t

= u(x, t) ·∇π(x, t)+
∂π
∂ t

(x, t) .

This expression is known as the convective derivative of the momentum. Thus, re-
turning to Newton’s law, we have

∂π
∂ t

(x, t)+u(x, t) ·∇π(x, t) = applied forces .

What are the forces that act on the fluid element?

• Forces due to pressure: fpressure =−∇p(x, t), where p is the pressure in the fluid.
• External forces: we will ignore these.
• Viscous forces: These involve modeling internal properties of the fluid. We will

take a standard model which says fvisc = α∆u, for some constant α .

Inserting these forces into Newton’s law we arrive at the system of partial differ-
ential equations:

∂π
∂ t

(x, t)+u(x, t) ·∇π(x, t) = α∆u(x, t)−∇p(x, t) (1)

Assuming that the density is constant, this is a system of d equations, but it contains
d +1 unknowns – the d components of the velocity, plus the pressure. We need one
further equation linking the pressure and momentum in order to close the system.
This remaining equation is derived from the property of conservation of mass. If
we look at the equation for the change in the amount of mass in a region V , then
we see that by conservation of mass, any change in the mass in the region (given
by

∫
V (∂tρ)dV ) must be counterbalanced by a flux of mass through the boundary

(given by −
∫
∂V ρu · n̂dS). Equating these two expressions, applying the divergence

theorem and using the fact that the region V was arbitrary leads to the conservation
equation

∂ρ
∂ t

(x, t)+∇ · (u(x, t)ρ(x, t)) = 0
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If we now impose the incompressibility condition ∇ ·(u(x, t)ρ(x, t)) = 0 we see that
ρ(x, t) = ρ(x,0). In particular, if the density is initially constant it will remain so for
all time and the incompressibility condition simplifies to ∇ · (u(x, t)) = 0. Then we
have a system of d +1 nonlinear partial differential equations:

ρ
∂u
∂ t

(x, t)+ρu(x, t) ·∇u(x, t) = α∆u(x, t)−∇p(x, t) (2)

∇ ·u(x, t) = 0 .

Remark 3.1. Note that given a solution u of (2) one can recover the pressure by
taking the divergence of the momentum equation and using the incompressibility
equation from which one finds:

∆ p =−ρ∇ · (u ·∇u) ,

so the pressure is obtained as a solution of Poisson’s equation.

Remark 3.2. The coefficients in (2) can be simplified somewhat. Suppose that we
introduce some fixed length scale L, velocity scale V and reference density ρ . If we
define new, dimensionless variables via x̃ = x/L, ũ = u/V , t̃ = (tV )/L, and ρ̃ = ρ/ρ ,
then a simple exercise shows that in terms of the new variables (2) is replaced by:

∂ ũ
∂ t̃

+ ũ ·∇ũ = α̃∆ ũ(x, t)− 1
ρ̃
∇p̃(x, t)

where α̃ = α
ρV 2L , p̃ = p/(ρL), and all derivatives are computed with respect to the

new variables. These changes of variables are particularly convenient if we study
this equation on the domain R

d since in this case the rescaling has no effect on
the domain and if we choose the length scale L = α/(ρV 2), all coefficients in the
equation become equal to one. From now on we will assume that we have made
these changes of variables and drop the tildes to avoid burdening the notation.

Remark 3.3. A related quantity is the dimensionless ratio of the inertial forces to the
viscous forces given by

Re =
(ρV 2/L)
(αV/L2)

=
ρV L
α

known as the Reynolds number.

The remainder of this lecture will be devoted to studying the initial value problem
for (2) – namely given some initial velocity distribution u(x,0) = u0(x), show that
the equation (2) has a unique solution and describe the properties of this solution.
Proving that (2) has a unique, smooth solution for all initial data is a very famous
problem. Basically, two alternatives have developed so far:

• Give up smoothness and uniqueness and simply try to show that there is some
(weak) solution to the problem. This approach dates back to the work of Leray.
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• Attempt to show that the initial value problem is well posed, at the expense of
specializing the problem somehow - perhaps considering “small” initial data, or
restricting the domain on which the problem is posed.

I will adopt the second approach in these lectures by focusing on the two-
dimensional problem. When studying the two-dimensional Navier–Stokes equation
defined in the entire plane it turns out to be simpler to work not directly with the
velocity field but rather with the vorticity of the fluid. The vorticity is defined by the
curl of the velocity field – i.e. ω(x, t) =∇×u(x, t) and in general it is a vector field,
just like the velocity. However, in two dimensions

ω(x, t) = ∇× (u1(x1,x2,0, t),u2(x1,x2,0, t),0) = (0,0,ω(x1,x2, t))

so we see that only one component of the vorticity is non-zero and thus we may
treat it as a scalar. If we take the curl of the Navier–Stokes equation we find that (in
general dimension d)

∂ω
∂ t
−ω ·∇u+u ·∇ω = ∆ω . (3)

Note that one advantage of the vorticity formulation of the problem is that the pres-
sure term drops out entirely.

Remark 3.4. The term ω ·∇u is known as the “vorticity stretching term”. It allows
for a certain “self amplification” of the vorticity. Note that in two dimensions this
term is zero since ω ·∇u =ω∂x3 u(x1,x2,0) = 0. The absence of this term is another
reason why the two-dimensional Navier–Stokes (or vorticity) equation is easier to
treat than the three dimensional one.

From now on we will restrict our attention to the two-dimensional vorticity equa-
tion and consider the initial value problem

∂ω
∂ t

+u ·∇ω = ∆ω, t > 0,x ∈ R
2 (4)

ω(x,0) = ω0(x) .

The principle difficulty in studying (4) is the presence of the velocity, u in this
equation. We must reconstruct the velocity from the vorticity – however, this leads
to a somewhat complicated, nonlocal nonlinearity. Recalling that the vorticity is the
curl of the velocity and that the velocity is incompressible, we can reconstruct the
velocity using the Biot–Savart law

u(x) =
1

2π

∫

R2

(x− y)⊥

|x− y|2 ω(y, t)dy . (5)

Here, for any two-dimensional vector x = (x1,x2) we define x⊥ = (−x2,x1).

Exercise 3.1. Verify that the Biot–Savart law does give an incompressible velocity
field whose curl is the vorticity.
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In order to control the solutions of (4) (and to verify the hypotheses of the (CHT)
theorem) we need estimates which relate the norm of the velocity to the vorticity. A
collection of such estimates is derived in [7], Appendix B, but as an example of the
sort of estimates one needs we prove:

Lemma 3.1. Let u be the velocity field associated to the vorticity ω by the Biot–
Savart law. Fix 1 < q < 2. Then if

1
q
− 1

p
=

1
2

there exists C = C(p,q) such that

‖u‖Lp(R2) � C‖ω‖Lq(R2)

Remark 3.5. Define the Lp norm of a vector valued function as the sum of the Lp

norms of the components.

Proof. Recall the Hardy–Little–Sobolev Inequality

∫

Rd
f (x)

(∫

Rd

1
|x− y|λ

g(y)dy
)

dx � N(p,q,λ ,d)‖ f‖Ls(Rd)‖g‖Lq(Rd) ,

provided 1
s + 1

q + λ
d = 2. Note that

|u j(x, t)|�
1

2π

∫

R2

1
|x− y| |ω(y, t)|dy≡ h(x) ,

so that ‖u j(x, t)‖Lp(R2) � ‖h‖Lp(R2). Let f = hp−1. Then applying the HLS inequality
we find

‖h‖Lp(R2) � N‖hp−1‖Ls(R2)‖ω‖Lq(R2) ,

Take s = p
p−1 . Then ‖hp−1‖Ls(R2) = ‖h‖p−1

Lp(R2) and hence

‖h‖Lp(R2) � N‖ω‖Lq(R2) ,

with 1
q −

1
p = 1

2 . 
�

Exercise 3.2. Use the Biot–Savart law to prove that

‖u‖L∞(R2) � C(‖ω‖L1(R2) +‖ω‖L∞(R2)) .

We now have the tools we need to prove the existence and uniqueness of solutions
of the two-dimensional vorticity equation. This is a story with a long history but the
approach I describe below was first developed by Ben–Artzi, [2]. My presentation
of this approach is close to that of [6]. The first question that arises it what space we
should work in. Noting that (4) conserves the total vorticity suggests that the space
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L1(R2) is appropriate and it turns out that in this space all initial conditions lead to
unique global solutions. More precisely one has

Theorem 3.1. There exists C > 0 such that for any ω0 ∈ L1(R2), the initial value
problem (4) has a unique solution u ∈C(R+;L1(R2)).

Proof. The proof basically consists of two steps:

1. Show that given ω0 ∈ L1(R2), the initial value problem has a unique solution
for some interval of time T0. Furthermore, for any positive time this solution is
in Lp(R2) for all 1 � p � ∞.

2. Show that if the initial condition ω0 ∈ L1(R2)∩L∞(R2) then one has a unique
solution for all time.

Note that these to points taken together suffice to prove the theorem since given
an initial condition ω0 ∈ L1(R2) we first solve the initial value problem for some
short time. We then take this solution at some positive time t0 as our new initial
condition and the resulting solution exists for all time.

I’ll look in detail at the second part of the proof – details of the first part can be
found in [2] and [6]. As a first step we rewrite (4) as an integral equation, just as we
did with the semi-linear heat equation in Lecture 2.

ω(t) = Φ t(ω0) = et∆ω0 +
∫ t

0
e(t−s)∆u(s) ·∇ω(s)ds , (6)

where et∆ denotes the semigroup defined by the heat equation. The proof of the
theorem now follows by showing that (6) has a fixed point in an appropriate Banach
space.

Remark 3.6. Before beginning the fixed point argument, however, we note that if (4)
has a solution, the solution has the following important property. In two dimensions,
since the vorticity is a scalar, it satisfies the maximum principle. As a consequence
not only is the L1(R2) norm a non-increasing function of time (remember Example
1.1) but in fact by a similar argument one finds that ‖ω(t)‖Lp(R2) � ‖ω0‖Lp(R2) for
all 1 � p � ∞.

Returning to (6) we write this equation as

ω(t) = F (ω)(t) = et∆w0 +N (w,w)(t) (7)

where
N (ω̃,ω)(t) =

∫ t

0
e(t−s)∆ ũ(s) ·∇ω(s)ds , (8)

and ũ is the velocity field associated to the vorticity ω̃ by the Biot–Savart law. Note
that ũ is a linear function of ω̃ so N is a bilinear operator. We’ll study the fixed
point problem for F on the Banach space

X∗T = { f ∈C([0,T ] : L1(R2)∩L∞(R2))}

with norm ‖ f‖∗ = sup0�t�T (‖ f (t)‖L1(R2) +‖ f (t)‖L∞(R2)).
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We first note that ifω0 ∈ L1(R2)∩L∞(R2) then the linear term in (7) is an element
of X∗T . This follows immediately from the estimates:

Lemma 3.2. For any α = (α1,α2) ∈ N
2 and 1 � p � q � ∞ there exists C =

C(p,q,α) such that

‖∂α(et∆ f )‖Lp(R2) � C

t
|α|
2 +

(
1
q−

1
p

) ‖ f‖Lq(R2) .

Proof. The proof of this lemma follows easily by applying Young’s inequality to
the explicit integral representation for the heat semigroup. 
�
The key estimate is the following bound on the nonlinear term:

Lemma 3.3. There exists C > 0 such that for any ω̃ and ω in X∗T ,

‖N (ω̃,ω)‖∗ � C
√

T‖ω̃‖∗‖ω‖∗ .

Assuming for the moment that the lemma holds we proceed as follows. Given the
estimates of the two preceeding lemmas a standard application of the contraction
mapping theorem shows that (7) has a unique fixed point in X∗T provided

4C
√

T‖ω‖∗ � 1 . (9)

However, this estimate is problematic since it involves the fixed point itself and
hence makes it difficult to get a good estimate of the time of existence of the solution
(which we want ultimately to show is infinity.) We now make use of Remark 3.6.
from which we conclude that ‖ω‖∗ � (‖ω0‖L1(R2) +‖ω0‖L∞(R2)). But if we couple
this observation with (9) we see that we obtain a unique solution of (4) for all times
0 � t � T such that

T =

(
1

4C(‖ω0‖L1(R2) +‖ω0‖L∞(R2))

)2

. (10)

In order to show that this solution actually exists for all time we now repeat this
procedure, taking as our new initial condition ω̃0 =ω(T ). This new solution (which
is the continuation of our original solution) exists for at least a time

T̃ =

(
1

4C(‖ω̃0‖L1(R2) +‖ω̃0‖L∞(R2))

)2

. (11)

However, since

(‖ω̃0‖L1(R2) +‖ω̃0‖L∞(R2)) = (‖ω(T )‖L1(R2) +‖ω(T )‖L∞(R2))

� (‖ω0‖L1(R2) +‖ω0‖L∞(R2))
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we see that T̃ � T and hence we can repeat this argument indefinitely, extending our
solution for arbitrarily long times.

Thus, the only remaining step in the proof that we have unique global solutions
for initial conditions in X∗T is to prove Lemma 3.3. We begin by showing that the
L1(R2) norm of N is uniformly bounded.

‖N (ω̃,ω)(t)‖L1(R2) = ‖
∫ t

0
e(t−s)∆∇ · (ũ(s)ω(s))ds‖L1(R2) (12)

� C
∫ t

0

1√
t− s

‖ũ(s)ω(s)‖L1(R2)ds ,

where the last inequality used Lemma 3.2 to bound the linear semigroup. By
Hölder’s inequality

‖(ũ(s)ω(s))‖L1(R2) � ‖ũ(s)‖L4(R2)‖ω(s)‖L4/3(R2) ,

while Lemma 3.1 implies that ‖ũ(s)‖L4(R2) � C‖ω̃(s))‖L4/3(R2). Combining these
estimates we find

‖N (ω̃,ω)(t)‖L1(R2) � C
∫ t

0

1√
t− s

‖ω̃(s)‖L4/3(R2)‖ω(s)‖L4/3(R2)ds

� C
√

T‖ω̃‖∗‖ω‖∗ . (13)

A similar bound on the L∞(R2) norm of N completes the proof. We again begin by
using the bound in Lemma 3.2:

‖N (ω̃,ω)(t)‖L∞(R2) = ‖
∫ t

0
e(t−s)∆∇ · (ũ(s)ω(s))ds‖L1(R2) (14)

� C
∫ t

0

1√
t− s

‖ũ(s)ω(s)‖L∞(R2)ds ,

ButbyExercise3.2wehave‖ũ(s)‖L∞(R2) � ‖ω̃‖∗ andbyinterpolation‖ω(s)‖L2(R2) �
‖ω̃‖∗, hence

‖N (ω̃,ω)(t)‖L∞(R2) � C
∫ t

0

1√
t− s

ds‖ω̃‖∗‖ω‖∗ .

which completes the proof of Lemma 3.3 and concludes this section.

4 Fourth lecture: the long-time asymptotics of solutions
of the two-dimensional Navier–Stokes equation

In this section we combine the methods developed in the first two lectures to de-
scribe the long-time behavior of solutions of the two-dimensional Navier–Stokes
equation. We prove that any solution whose initial vorticity distribution is integrable
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will tend, as time goes to infinity, toward an Oseen vortex, a simple, explicitly com-
putable solution of the Navier–Stokes equations in two-dimensions. We also give a
detailed discussion of the long-time behavior of solutions whose total vorticity is
small. The material in this lecture is largely joint work of Th. Gallay and myself and
for more details the reader can consult the original papers [7] and [8].

Throughout this lecture we will consider the Navier–Stokes equation in the vor-
ticity representation

∂ω
∂ t

= ∆xω−u · ·ω, (1)

ω = ω(x, t) ∈ R, x ∈ R
2, t � 0.

where u is the velocity field associated with the vorticity ω via the Biot–Savart
law. As discussed in the preceding lecture the vorticity formulation is particularly
convenient in two-dimensions where the vorticity is a scalar function. Furthermore
as in Lecture 2 we will study solutions of (1) in the weighted Hilbert spaces L2(m)
and the vorticity has the advantage that if the initial vorticity distribution lies in one
of these spaces the solution of (1) will remain in this space for all time, whereas that
is not in general true of the velocity field. (This fact is not immediately apparent but
is discussed and proven in [7].)

We begin, as we did in Lecture 2 by considering solutions of (1) in a neighbor-
hood of the origin. Given the similarity between the vorticity equation and (1) we
introduce scaling variables as we did in that case, namely we set:

ω(x, t) =
1

(1+ t)
w(

x√
1+ t

, log(1+ t)) (2)

ξ =
x√

1+ t
, τ = log(1+ t)

Note that this corresponds to taking the exponent α in (6) equal to α = d = 2. We
still need to decide how to rescale the velocity field. Since the vorticity is a derivative
of the velocity with respect to x, and since each x derivative results in an extra factor
of 1√

1+t
, this suggests that the velocity should scale as

u(x, t) =
1√

1+ t
v(

x√
1+ t

, log(1+ t)) . (3)

Strong evidence that this is the “correct” scaling can be seen from the fact that with
the rescaled velocity and vorticity fields defined by (2) and (3) v and w are still
related via the Biot–Savart law, namely:

v(ξ ,τ) =
1

2π

∫

R2

x− y)⊥

|x− y|2 w(η ,τ)dη , (4)

which we leave as an exercise for the reader to check.
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Inserting (2) and (3) into (1) we find that

∂w
∂τ

= L w−v ·∇w . (5)

Here, L is the same operator that we studied in Lecture 2 – namely

L w = ∆ξw+
1
2
∇ξ · (ξw) .

Recall that the spectrum of L when acting on functions in L2(m) consists of the
non-positive half integers, plus a half-plane of spectrum {λ ∈ C|||Re(λ ) � 1

2 −
m
2 }.

Thus, for m > 1 we expect that there will be a one-dimensional invariant manifold
Wc, tangent at the origin to the eigenspace of the (simple) eigenvalue λ = 0.

Remark 4.1. Verifying the hypotheses (H.1)–(H.4) of the (CHT) invariant manifold
theorem requires combining the ideas of Lectures 2 and 3. Since the linear part of
(2) is is the same as that of (26) verifying (H.1) and (H.2) is exactly the same as
in Lecture 2. Verifying the hypotheses (H.3) and (H.4) on the nonlinearity follows
from estimates very similar to those in Lecture 3 where we estimated the semi-group
for (1) since the form of the nonlinear terms in (1) are the same as those in (5). In
this case one must cut-off the nonlinear term outside a neighborhood of the origin in
order to obtain the global estimates required in the (CHT) theorem, but that is again
done in a fashion very similar to that in Lecture 2.

Let’s next examine the motion on the manifold Wc. As in the case of the nonlinear
heat equation in Lecture 2 a point on Wc can be represented as

wc(ξ ,τ) = α(τ)φ 0(ξ )+g(α(τ)φ 0(ξ )) (6)

for some function g : P0L2(m) → Q0L2(m), where P0 is the projection onto the
eigenspace of λ = 0 and Q0 is its complement. If we insert this form into (5) and
apply the projection operator P0 to both sides of the equation we find that

α̇(τ)φ 0(ξ ) =−P0 (vc(ξ ,τ) ·w(ξ ,τ)) , (7)

where vc is the velocity field associated to wc via the Biot–Savart Law. We now note
two things:

1. (P0 f )(ξ ) = (
∫
R2 f (ξ )dξ )φ 0(ξ ) .

2. The velocity field vc is compressible (i.e. ∇ · vc = 0) and thus we can write
vc(ξ ,τ) ·w(ξ ,τ) = ∇ · (vc(ξ ,τ)w(ξ ,τ)).

But these two facts imply that

P0 (vc(ξ ,τ) ·w(ξ ,τ)) =
(∫

R2
∇ · (vc(ξ ,τ)w(ξ ,τ))dξ

)
φ 0(ξ ) = 0 .
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and hence that
α̇(τ) = 0 .

This implies that the center manifold consists entirely of fixed points! In fact, we
can identify these fixed points more precisely. If one checks the velocity field corre-
sponding (via the Biot–Savart) law to the vorticity field φ 0 one finds that the velocity
field is

v0(x) =
1

2π
x⊥

|x|2
(

1− e−|x|
2/4

)
. (8)

For the moment, the most important thing to note about this expression is that it is
a purely tangential velocity field. As a consequence, since the vorticity φ 0 depends
only on |x|, the radial coordinate of x, we see that the nonlinear term in the vorticity
equation:

v0(x) · (∇φ 0)(x) = 0 .

Thus, since L φ 0 = 0 we see that the Gaussian vorticity distribution αφ 0 is a sta-
tionary solution of the rescaled vorticity equation (5). This family of solutions is
known as the family of Oseen vortices.

Remark 4.2. Note that in the original, unrescaled variables, the Oseen vortices are
not stationary solutions but rather spread and decay in the same way as does the
fundamental solution of the heat equation.

Returning now to our discussion of the center manifold we know first of all,
from the general theory of invariant manifolds discussed in Lecture 1 that all fixed
points near the origin must lie in the center-manifold. Thus, for small α the family
of Oseen vortices must be contained in the center-manifold. However, this is a one-
dimensional family of solutions and the center-manifold itself is one-dimensional
so in fact, the center-manifold in this case consists exactly of the family of Oseen
vortices!

Again, appealing to the general theory of invariant manifolds we know that solu-
tions near the origin will be attracted to one of the solutions on the center-manifold.
In fact, we can determine which of the Oseen vortices is the limit by noting that the
rescaled vorticity equation preserves the total vorticity – i.e. if w(ξ ,τ) is the solution
with initial condition w0(ξ ) then

∫

R2
w(ξ ,τ)dξ =

∫

R2
w0(ξ )dξ (9)

for all τ . Thus, as τ goes to infinity, w(ξ ,τ) approaches the vortex αφ 0 whose total
vorticity is α =

∫
R2 w0(ξ )dξ . More precisely we find

Proposition 4.1. Fix 0 < µ < 1
2 . There exist positive constants r2 and C such that

for any initial data with ‖w0‖2 < r2 the solution w(·,τ) with initial conditions w0
satisfies

‖w(·,τ)−αφ 0(·)‖2 � Ce−µτ

where α =
∫
R2 w0(ξ )dξ .
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By considering the invariant manifolds corresponding to other of the spectral
subspaces, one can make other, more detailed statements about the asymptotics of
small solutions. For instance, one thing that had been discovered about solutions of
the Navier–Stokes equations was that certain relationships were required to hold be-
tween the moments of solutions decaying with particular temporal rates [14]. How-
ever, the proofs of these moment conditions provided little insight into the meaning
or origin of these relationships. In [7] Gallay and I showed that these moment con-
ditions were the consequence of the requirement that the solution lie on certain
invariant manifolds in the phase space and as a consequence were able to give a
simple geometrical interpretation of the results on optimal decay rates. Additional
uses and consequences of these sorts of invariant manifold theorems are contained
in [7].

We turn now from the consideration of small solutions to a study of more general
sorts of solutions of the two-dimensional Navier–Stokes equation. The first thing we
note is that the Oseen vortices are not limited in size. The family of solutions

Oα(ξ ) = αφ 0(ξ )

is an exact, stationary solution of (5) for all values of α . Thus, we can extend the
local center-manifold to a global manifold in this case. However, we cannot assume
that the global center-manifold is locally attractive as is the case for the local center-
manifold, so our next task is to analyze the local stability of Oseen vortices of large
magnitude.

Begin, by linearizing (5) about the vortex Oα . This leads to the linearized equa-
tion

∂w
∂τ

= L w−αΛw (10)

where the linear operator L is the one we studied in Lecture 2 and the operator Λ
is defined by:

Λw = v0 ·∇w+vw ·∇φ 0 (11)

with v0 the velocity field associated to the vorticity φ 0 and vw the velocity field
associated with the vorticity w.

We now consider the spectrum of the operator L −αΛ . The first observation
is a bit of basic functional analysis. Note that operator Λ is localized – i.e. the
coefficient in each term of Λw decays as |ξ | → ∞. Furthermore it is a first order
differential operator while L is second order. These two facts taken together are
sufficient to show that Λ is a relatively compact perturbation of L and hence the
essential spectrum of L and L −αΛ must coincide. Thus we have

Lemma 4.1. Fix m > 1 and consider the operator L −αΛ acting on its maximal
domain in L2(m). Then

σess(L ) = σess(L −αΛ) = {λ ∈ C|||Re(λ ) � 1−m
2
} .
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Remark 4.3. More details on the proof of this lemma and succeeding results in this
lecture can be found in [8].

As a consequence of Lemma 4.1 the stability or instability of the Oseen vortices
of large norm will be determined by whether or not the isolated eigenvalues of L −
αΛ lie in the left or right half plane. One of these eigenvalues can be immediately
and explicitly computed and we find:

Lemma 4.2. The operator L −αΛ has an eigenvalue λ = 0 with eigenfunction φ 0

for all values of α .

Since the projection of a function f onto this eigenspace is just given by the prod-
uct of φ 0 with the integral of f , the complementary subspace to the zero eigenspace
consists of the functions of zero mean. Thus, we can restrict our attention of the
space of functions L2

0(m) = { f |||
∫∫∫

R2 f (ξ )dξ = 0}. When restricted to this space we
have the following result:

Proposition 4.2. Fix m > 1 and α ∈ R. Then any eigenvalue λ of L −αΛ with
eigenfunction in L2

0(m) satisfies

Re(λ ) � max
(
−1

2
,

1−m
2

)
.

Remark 4.4. Note that this proposition, in combination with the above remark about
the zero eigenvalue and the essential spectrum implies that the Oseen vortices are
spectrally stable for all values of α . Given this spectral information it follows in a
fairly straighforward fashion that the Oseen vortices are locally stable for all values
of α – namely given an initial condition of (5) sufficiently close to an Oseen vortex
the resulting solution of the vorticity equation will converge to an Oseen vortex as
time tends toward infinity.

Remark 4.5. Because we have scaled all other physical parameters to have value
one, α can be thought of as the Reynolds number for the problem. Thus, in contrast
to many other fluid mechanical situations increasing the Reynolds number in this
problem does not lead to instability. In fact, numerical computations [15] indicate
that the real parts of most eigenvalues of L −αΛ actually become more negative as
α increases so that the increasing Reynolds number actually has a sort of stabilizing
effect.

The proof of Proposition 4.2 consists of three steps:

1. By writing out the eigenvalue equation in polar coordinates a straightforward but
complicated analysis shows that regardless of the value of α any eigenfunction
in L2

0(m) whose real part is larger than 1−m
2 must have Gaussian decay as |ξ | →

∞. Thus the eigenfunctions are very strongly localized in space, regardless of
the value of α . Given these results we define a new Hilbert space X = {w ∈
L2(R2)|||www/

√
φ 0 ∈ L2(R2)}, equipped with the innerproduct
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(w1,w2)X =
∫

R2

w̄1(ξ )w2(ξ )
φ 0(ξ )

dξ .

We know that the eigenfunctions of L −αΛ lie in X and (since we can continue
to ignore the eigenvalue zero) we will study the spectrum on the space X0 =
X ∩L2

0(m).
2. We next compute the representation of L in the Hilbert space X which is given

by

L X = (φ 0)(−1/2)L (φ 0)(1/2) = ∆ξ −
|ξ |2
16

+
1
2

.

This operator is the well-known quantum mechanical oscillator and as is well
known in quantum mechanics:

(a) L X is self-adjoint
(b) The spectrum of L X consists only of the eigenvalues −n/2,n = 0,1,2, . . . .

The second of these points is not surprising but the fact that L is self-adjoint in
the Hilbert space X will be critical in what follows.

3. The final point is the computation of the representation of Λ in X0. Writing out
the expression for Λ in the X-inner product one finds:

(w̃,Λw)X =
∫

R2

(
1
φ 0 w̃v0 ·∇w− 1

2
w̃(v ·ξ )

)
dξ ,,, (12)

where we used the fact that ∇φ 0 =− ξ
2 φ

0. Two easy calculations show that

∫

R2

(
1
φ 0 w̃

)
v0 ·∇wdξ =−

∫

R2

1
φ 0 wv0 ·∇w̃dξ ... (13)

and

w̃(v ·ξ )+w(ṽ ·ξ ) = (ξ1∂1−ξ2∂2)(v1ṽ2 + v2ṽ1)+(ξ1∂2 +ξ2∂1)(v2ṽ2− v1ṽ1)...
(14)

Integrating both sides of the second equation in (13) we see that
∫

R2
w̃(v ·ξ )+w(ṽ ·ξ )dξ = 0

which when combined with (12) and (13) imply that

(w̃,Λw)X =−(Λ w̃,w)X ,

or

Lemma 4.3. The linear operator Λ is skew-symmetric on X0.

Proposition 4.2 now follows from the following property from linear algebra.
Namely, suppose that L is a self-adjoint operator on a Hilbert space X0 whose
spectrum lies in the half line λ � −µ < 0. Then if Λ is skew-adjoint on X0 any



136 C.E. Wayne

eigenvalue of L −αΛ has real part less than equal or equal to µ . To see why this is
so, suppose that

(L −αΛ)φ = λφ .

Then

λ (φ ,φ)X0 = (φ ,L φ)X0 −α(φ ,Λφ)X0 ,while (15)

λ̄ (φ ,φ)X0 = (φ ,L φ)X0 −α(φ ,Λφ)X0 = (L φ ,φ)X0 −α(Λφ ,φ)X0

= (φ ,L φ)X0 +α(φ ,Λφ)X0

Adding these two expressions together yields

Re(λ ) = (φ ,L φ)X0 �−µ . 
�

Reviewing the picture we have of solutions of the two-dimensional Navier–
Stokes equation so far we see that we have a global center manifold, consisting
of the family of Oseen vortices which are locally stable for all values of α . The
final question that we consider is the behavior of solutions of (5) for arbitrary initial
data (i.e. for initial vorticity distributions which are not close to one of the Oseen
vortices.)

Given the results of Lecture 3 it is natural to require that the initial vorticity
distribution be in L1(R2). We know that the solution with this initial condition exists
for all time and thus we can ask what its ω-limit set is. From the first lecture we
know that in order to be sure that the ω-limit set exists we need to check whether the
trajectory remains in a compact subset of L1(R2). The details needed to establish this
fact are presented in [8] but we note two main ideas are that by Rellich’s criterion
subspaces of L1(R2) that have some smoothness and decay at infinity are compact.
In our problem:

• Smoothness comes from the smoothing properties of the semigroup which are
preserved by the nonlinearity

• Decay at infinity comes from estimates of the solution of the vorticity equation
due to Carlen and Loss [3]

Given that the ω-limit set exists how can we calculate it? We determine the ω-
limit set with the aid of two Lypunov functions:

1. The first tells us that the ω-limit set consists of functions that do not change
sign – i.e. an element of the ω-limit set of a solution with initial value w0 is
either everywhere non-positive or everywhere non-negative.

2. The second will identify those positive (or negative) functions that can be part
of the ω-limit set.

Lyapunov Function No. 1: This Lyapunov function is closely related to Example
1.1 from Lecture 1. Define

Φ(w(τ)) =
∫

R2
|w(ξ ,τ)|dξ .
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One then has:

Lemma 4.4. Let w0 ∈ L1(R2) and let w be the solution of the rescaled vorticity
equation with this initial condition. Then Φ(w(τ)) �Φ(w0) for all τ � 0. Moreover,
equality holds if and only if w0 ∈ Σ where

Σ =
{

w ∈ L1(R2)|||
∫∫∫

R2
|w(ξ )|dξ = |

∫

R2
w(ξ )dξ |

}
.

Proof. This lemma follows from the maximum principle very much along the lines
of Example 1.1. Indeed that example established this result for the linear terms in
(5). Including the nonlinear terms in the equation causes no essential difficulty and
we leave the details of this argument as an exercise for the reader. 
�

Note that as a corollary of this lemma and the LaSalle Invariance Principle we
have

Corollary 4.1. Let w0 ∈ L1(R2) The ω-limit set of the solution with this initial con-
dition must lie in Σ .

Lyapunov Function No. 2: Since from the preceeding corollary the ω-limit set is
contained in set of positive (or negative) functions our second Lyapunov function
will be defined only on such functions. This second Lyapunov function is motivated
by Lyapunov functions used in kinetic theory where one also wants to prove the
convergence of solutions toward Gaussian profiles and is known in that field as the
relative entropy function. Define Σ+ = {w ∈ Σ |||www(ξ ) � 0almosteeeverywhere} and
define H : Σ+∩L2(m)→ R by

H(w(τ)) =
∫

R2
w(ξ ,τ) log

(
w(ξ ,τ)
φ 0(ξ )

)
dξ .

If m > 3 the functions w decay fast enough at infinity that one can show:

1. H is defined and continuous on Σ+∩L2(m)
2. H is bounded below by −1/e

Even more importantly for our purposes, H is decreasing along trajectories and
hence a Lyapunov function. Assume for the moment that w is smooth enough that
we can differentiate H(w(τ)) by pulling the derivative through the integral sign.
(The general case can be handled by approximation by smooth functions.) Then

d
dτ

H(w(τ)) =
∫

R2

(
1+ log

w
φ 0

)
∂τwdξ =

∫

R2

(
1+ log

w
φ 0

)
(L w−v ·∇w)dξ .

(16)

We break this last integral into two pieces and consider each piece separately. First
note that thanks to the special properties of the Gaussian

L w = div
(
φ 0∇(

w
φ 0 )

)
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so that
∫

R2

(
1+ log

w
φ 0

)
(L w)dξ =−

∫

R2
φ 0

(
∇(log

w
φ 0 )

)
·∇(

w
φ 0 )

=−
∫

R2
w
∣∣∣∣∇(log

w
φ 0 )

∣∣∣∣
2

dξ

To treat the second term in (16) we first integrate by parts to obtain

−
∫

R2

(
1+ log

w
φ 0

)
(v ·∇w) =−

∫

R2

(
1+ log

w
φ 0

)
(∇ · (vw))dξ (17)

=
∫

R2
φ 0v ·∇(

w
φ 0 )dξ =

∫

R2
v ·∇w dξ − 1

2

∫

R2
(ξ ·v)w dξ .

We claim finally that each of these two last integrals vanish. For the first, this is
obvious since v ·∇w = ∇ · (vw). For the second note that w = ∂ξ1

v2−∂ξ2
v1 (where

v = (v1,v2)) and hence
∫

R2
(ξ ·v)w dξ =

∫

R2
(ξ1v1 +ξ2v2)(∂ξ1

v2−∂ξ2
v1)dξ

=
∫

R2
ξ1v1∂ξ1

v2dξ +
∫

R2
ξ2v2∂ξ1

v2dξ −
∫

R2
ξ1v1∂ξ2

v1dξ −
∫

R2
ξ2v2∂ξ2

v1dξ .

Note that the second and third of these integrals vanish since the second can be
rewritten, for example as 1

2
∫
R2 ∂ξ1

(ξ2(v2)2)dξ = 0 and analogously for the third. In
the first and fourth integrals we integrate by parts to obtain

−
∫

R2
v1v2dξ −

∫

R2
ξ1(∂ξ1

v1)v2dξ +
∫

R2
v1v2dξ +

∫

R2
ξ2(∂ξ2

v2)v1dξ

=
∫

R2
ξ1(∂ξ2

v2)v2dξ −
∫

R2
ξ2(∂ξ1

v1)v1dξ = 0

where the next to last equality used the fact that v is incompressible and the final
equality noted that the first integral could be written as 1

2
∫
R2 ∂ξ2

(
ξ1(v2)2

)
dξ = 0

and similarly for the second.

Remark 4.6. In fact, one needs to take a little more care with this calculation
since for general velocity fields v, integrals like

∫
R2 ξ2v2∂ξ1

v2dξ may fail to con-
verge. Nonetheless, the entire expression

∫
R2(ξ · v)w dξ is convergent because of

cancellations between various terms. The easiest way to take advantage of these
cancellations is to rewrite the velocity in terms of the vorticity via the Biot–Savart
law and then argue that the integral must vanish by symmetry. (See [8] for details.)
However, I think that the present argument with works entirely with the velocity
field gives somewhat more intuition into why these terms vanish.
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Putting these computations together we see that we have shown:
Lemma 4.5.

d
dτ

H(w(τ)) = −
∫

R2
w
∣∣∣∣∇(log

w
φ 0 )

∣∣∣∣
2

dξ

This lemma implies that the Lyapunov function H is strictly decreasing unless w
is a multiple of the Gaussian φ 0 and implies, as a immediate corollary:

Corollary 4.2. Assume that w0 ∈ L2(m)∩Σ with m > 3. The H(w(τ) � H(w0) for
all points w(τ) in the forward orbit of w0 and H(w(τ) = H(w0) for all τ � 0 if and
only if w0 = αG for some α � 0.

We can now put together the various pieces of this argument to derive a quite
complete picture of the long-time asymptotic behavior of solutions of the two-
dimensional Navier–Stokes equations. Suppose we consider any solution of (5)
whose initial vorticity w0 ∈ L2(m) with m > 3. By Lemma 4.4 we know that any
point w∗ in the omega limit set of w0 must lie in the set Σ of functions which do not
change sign. Assume, without loss of generality, that w∗(ξ ) > 0.

From the general theory of Lyapunov functionals we know that the solution of
the vorticity equation with initial conditions w∗ exists for all time t ∈R. Combining
this observation with Corollary 4.2 implies that the orbit of w∗ consists of the single
point α0G where α0 =

∫
w0(ξ )dξ and hence that the omega-limit set of any point

w0 ∈ L2(m) with m > 3 consists of the Oseen vortex with the same total vorticity.
In fact, using results of Carlen and Loss [3] on the spatial decay rate of solutions

of the two-dimensional vorticity equation one can prove that any point in the omega-
limit set of a solution whose initial vorticity is in L1(R2) must lie in L2(m) for all
m > 1 – in particular it must lie in L2(m) for some m > 3. Then, proceeding as above,
we find that the omega-limit set must again consist just of an Oseen vortex. If we
now undo the change of variables (2) and (3) we see that solutions ω(x, t) satisfy:

Theorem 4.1. If ω0 ∈ L1(R2), the solution ω(x, t) of (1) satisfies

lim
t→∞

t1− 1
p

∣∣∣ω(·, t)− α
t

G(
·√
t
)
∣∣∣

p
= 0,,, for111 � p � ∞ , (18)

where α =
∫
R2 ω0(x)dx. If u(x, t) is the solution of the two-dimensional Navier–

Stokes equation obtained from ω(x, t) via the Biot–Savart law, then

lim
t→∞

t
1
2−

1
q

∣∣∣u(·, t)− α√
t
vG(

·√
t
)
∣∣∣
q
= 0 , for222 < q � ∞ . (19)

where vG is the velocity field (8) associated to the Oseen vortex.

5 Conclusions

Summing up, we see that the dynamical systems method provides a quite com-
plete view of the long-time asymptotics of general solutions of the two-dimensional
Navier–Stokes or vorticity equations.
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While one cannot hope to obtain comparably complete information about solu-
tions of the three-dimensional Navier–Stokes equation where even the existence of
solutions with general initial data is unproven it turns out that one can use the ideas
developed above to understand the existence and stability of some classes of vor-
tex solutions related to the Burgers vortices, an explicit family of solutions of the
three-dimensional Navier–Stokes equations believed to be important for turbulent
flows [9, 10].

Another interesting an open question is to understand the intermediate time be-
havior of solutions of the two-dimensional Navier–Stokes equation. While the re-
sults proven above imply that eventually one converges to a single vortex solution,
numerical simulations imply that the evolution at intermediate time scales is dom-
inated by the interaction and merger of pairs of vortices. A better understanding of
this merger process would be very intereresting and also have important applica-
tions.

Acknowledgements The work of the author is supported in part by the NSF under grant number
DMS-0405724.
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Hamiltonian systems and optimal control

Andrei Agrachev1

Abstract Solutions of any optimal control problem are described by trajectories
of a Hamiltonian system. The system is intrinsically associated to the problem by
a procedure that is a geometric elaboration of the Lagrange multipliers rule. The
intimate relation of the optimal control and Hamiltonian dynamics is fruitful for both
domains; among other things, it leads to a clarification and a far going generalization
of important classical results about Riemannian geodesic flows.

1 Introduction

These are notes of the lectures given in June 25–28, 2007 for the school
“Hamiltonian Dynamical Systems and Applications” in Montreal which were
written up by Natalia Shcherbakova.

Hamiltonian systems play a very important role in the theory of optimal control
since the foundation of the this subject in the middle of the twentieth century.
Indeed, the first fundamental result of the theory, the Pontryagin maximum princi-
ple, is formulated in Hamiltonian form. As I learned from Ponryagin’s collaborators,
it was the central role played by the Hamiltonian system that convinced Pontryagin
of the importance and universality of his optimality condition; see the pioneering
book [5] for the original approach and the books [2, 3, 4] for some of the further
developments.

The Pontryagin maximum principle is a natural Hamiltonian form for the first
order optimality conditions. In these lectures, we explain the Hamiltonian nature of
the second order information on the local structure of the optimal control problem
which leads, among other things, to curvature-type invariants of Hamiltonian sys-
tems on cotangent bundles. These invariants control Hamiltonian dynamics in a way
analogous to the way Riemannian sectional curvature enters into geodesic flows.

1 SISSA, Trieste and MIAN, Moscow
e-mail: agrachev@sissa.it

W. Craig (ed.), Hamiltonian Dynamical Systems and Applications, 143–156. 143
c© 2008 Springer Science + Business Media B.V.
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A more detailed and formal exposition of the constructions and facts presented
here can be found in [1].

2 First lecture

Consider two smooth1 manifolds: M, dimM=n, a state space and U, dimU =m�n,
a space of control parameters.

A control system is a family of ordinary differential equations on M:

q̇ = f (q,u), q ∈M, u ∈U . (1)

The vector field f is assumed to be smooth with respect to both variables. For q∈M
fixed, the set f (q,U) is called the set of admissible velocities.

Any L∞-curve t �→ u(t), t ∈ [0, t1], u(t) ∈ U is called a control function. Here
t1 is fixed. Substituting the control function u(t) into (1) we get a non-autonomous
differential equation

q̇ = f (q,u(t)).

A solution t �→ q(t) ∈ M of this equation is called a trajectory of (1) associated to
the control function u(t).

Consider

W = {(u(·),q(·)) : u(·) ∈ L∞([0, t1],U), q̇(t) = f (q(t),u(t))},

the space of admissible pairs.

Remark. W is a Banach manifold modelled on R
n × Lm

∞([0, t1]). This fact is a
direct consequence of the standard theorem on the existence, uniqueness and smooth
dependence of the data for solutions to the Cauchy problem of systems of ordinary
differential equations.

Define

Jt1(u(·),q(·)) =
t1∫

0

ϕ(q(t),u(t))dt,

where ϕ is a smooth scalar function. Jt1 is called the cost functional.

Optimal control problem: Given q0,q1 ∈ M minimize Jt1 over admissible pairs
(u(·),q(·)) such that q(0) = q0, q(t1) = q1.

This problem generalizes the standard problem of the Calculus of Variations,
namely minimize a functional

t1∫

0

ϕ(q(t), q̇(t))dt −→min

1 In these lecture notes smooth objects are C∞ unless otherwise stated.
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over all curves such that q(0) = q0, q(t1) = q1. This problem can be stated as an
optimal control problem by setting q̇ = u, u ∈ TqM.

Geometrically speaking, we state the problem as follows; consider a locally triv-
ial bundle V → M over M whose typical fiber is U : V =

⋃
q∈M

Vq, Vq ∼= U . Then

f : V → T M such that f (Vq) ⊂ TqM. An admissible pair is a curve t → v(t) in V
such that v(t) ∈Vq(t) and q̇(t) = f (v(t)).

Given an admissible pair, we can trivialize V along the trajectory.
In order to describe extremals of an optimal control problem we will use the

geometrically elaborated Lagrange multipliers method. This method provides first
order optimality conditions. In forthcoming lectures we will also discuss second
order conditions and related invariants.

2.1 First order conditions

Optimal control problem is a kind of a constrained optimization problem, where
constrains are given by the boundary point conditions. We set Ft : W → M such
that Ft(u(·0,q(·)) = q(t). The map Ft has the same smoothness as the field f . Our
minimization problem is

minJt1
∣∣∣
F0=q0,Ft1 =q1

. (2)

We are looking for solutions of the problem among solutions of the equation

dJt1
∣∣∣
kerDF0∩kerDFt1

= 0

which is equivalent to the equation

dJt1 = λt1DFt1 −λ0DF0, (3)

where λ0 : Tq0M → R is a linear form on Tq0 M and λt1 is a linear form on Tq1M,
i.e. λ0 ∈ T ∗q0

M, λt1 ∈ T ∗q1
M. Covectors λ0,λt1 are nothing else but the Lagrange

multipliers. The sign “−" in front of λ0 is chosen for convenience at a later step in
the development.

We have DFt : T(u,q)W → Tq(t)M and

λtDFt : T(u,q)W
DFt−→ Tq(t)M

λt−→ R.

Proposition 1 Equation (3) implies that there exists a unique Lipschitz curve λt ∈
T ∗q(t)M, 0 � t � t1 such that

λtDFt −λ0DF0 = dJt ,

where Jt =
t∫

0
ϕ(q(τ),u(τ))dτ.
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Proof. The uniqueness follows from the fact that Ft is a submersion. Let us prove
the existence. Denote by (ũ(·),q(·)) the reference pair. By (3),

dJt1
(ũ,q) = λt1DFt1 −λ0DF0.

Let us fix some t ∈ [0, t1]. We restrict ourselves to the admissible pairs of the form

Vt = {(u(·),q(·)) : u(τ) = ũ(τ) for τ � t}.

Then Ft(u,q) = Φ t1
t ◦Ft , where Φ t1

t is a fixed diffeomorphism. The family τ �→ Φτ
t

satisfies Φ t
t (q) = q,

∂
∂τ

Φτ
t (q) = f (Φτ

t (q), ũ(τ)) ,

i. e. Φτ
t : q(t) �→ q(τ). Restricting to Vt we obtain at v ∈ Vt

λt1Dv(Φ t1
t ◦Ft)−λ0DvF0 = dvJt +dv(at ◦Ft),

where at =
t1∫
t
ϕ (Φ s

t (q(t)), ũ(s)) ds. Hence

λtDvFt −λ0DvF0 = dvJt ,

where λt = λt1DvΦ t1
t −dq(t)at .

3 Second lecture

Let us consider the Lipschitz curve λt ∈ T ∗q(t)M whose existence was proved in
Lecture 1. This curve satisfies the following relation;

λtD(ũ,q)Ft −λ0D(ũ,q)F0 = d(ũ,q)J
t . (1)

Now we are going to derive a differential equation for λt . First of all, we can intro-
duce local coordinates in the neighborhood of given q(t) ∈M; then λ = (p,q), p ∈
R

n∗, q ∈R
n for any q from the coordinate neighborhood and any λ from the cotan-

gent bundle to this neighborhood. In particular, λt = (pt ,q(t)). Then (1) becomes

d(ũ,q)(ptFt)−λ0D(ũ,q)F0 = d(ũ,q)J
t , (2)

where d(ũ,q) is the differential in the Banach space of admissible pairs. After taking
derivatives with respect to t we get

0 = d(ũ,q)

(
∂
∂ t

(ptFt)−ϕ(q(t), ũ(t))
)

= d(ũ,q)

(
d p
dt

q(t)+ pt f (q(t), ũ(t))
)
−ϕ(q(t), ũ(t)).
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Let us denote
h(p,q,u) = p f (q,u)−ϕ(q,u).

The function h is called the Hamiltonian of the optimal control problem. We have

d(ũ,q) (ṗtq(t)+h(pt ,q(t), ũ(t))) = 0.

Hence we obtain

ṗt +
∂h
∂q

= 0
∂h
∂u

= 0.

Recall now that our original dynamics is given by q̇ = f (q,u) = ∂h
∂ p . So, we obtain

a Hamiltonian system ⎧
⎪⎪⎨
⎪⎪⎩

ṗ =−∂h
∂q

(p,q,u)

q̇ =
∂h
∂ p

(p,q,u)
(HS)u

plus one extra equation
∂h
∂u

(p,q,u) = 0.

In a regular situation, one can find u = u(p,q) from the last equation, with which
we denote;

H(p,q) = h(p,q,u(p,q)) ,

and for remaining variables we obtain a standard Hamiltonian system
⎧
⎪⎪⎨
⎪⎪⎩

ṗ =−∂H
∂q

(p,q)

q̇ =
∂H
∂ p

(p,q).
(HS)

From now on, we will always assume that u can be eliminated from the equation
(HS)u.

3.1 Second variation

Let t ∈ [0, t1], we are going to study the second derivative of Jt under the constraints

q̇ = f (q,u), q(0) = q0, q(t) = qt .

The correctness of the Cauchy problem for ordinary differential equations allows us
to immediately resolve one of the boundary constraints. From now on, we restrict
ourselves to F−1

t (qt) and slightly change notation. In our new notation,

Jt := Jt |F−1
t (q(t)),,, F0 := F0|F−1

t (qt )
.
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Since the trajectory q(·) is uniquely defined by the corresponding control u(·), the
space of admissible pairs is now reduced to the space of control functions {u(·)}.

Equation (1) now reads
λ0DũF0 +dũJt = 0. (1)′

The Hessian of Jt |F−1
0 (q0) is

Hessũ

(
Jt |F−1

0 (q0)

)
=

(
D2

ũJt +λ0D2F0
)
|kerDũF0 .

The Hessian is a quadratic form; we are interested in the Morse index of this form
that is the supremum of the dimensions of subspaces where the form is negative def-
inite. In particular, the Morse index equals 0 if and only if the form is nonnegative.
We use notation indQ for the Morse index of a quadratic form Q; the value of this
index is a nonnegative integer or +∞.

Let us express everything in terms of the Lagrange multipliers. After the elimi-
nation of one of the boundary constraints, equation (2) reads:

⎧
⎨
⎩

p
∂F0

∂u
+
∂Jt

∂u
= 0

q = F0(u).

Linearizing this equation we obtain

ξ
∂F0

∂u
+
(

p
∂ 2F0

∂u2 +
∂ 2Jt

∂u2

)
v = 0 η =

∂F0

∂u
v. (LS)

Here (ξ ,η ,v) = (δ p,δq,δu). Denote

Λt = {(ξ ,η) : ∃v satisfying (LS)} ,

the projection of the space of solutions of (LS) into the (p,q)-space.
We made the above computations in coordinates, but the construction of Λt

(linearization and projection) is intrinsic, and Λt is actually a well-defined subspace
of Tλ0(T

∗M). Recall that T ∗M is a symplectic manifold endowed with the standard
symplectic structure d p∧dq. Hence Tλ0(T

∗M) is a symplectic space. It is not hard
to check that Λt is a Lagrangian subspace of Tλ0(T

∗M).

The family t �→Λt , t ∈ [0, t1] is called the Jacobi curve.

We will use Λt to calculate the Morse index of the second variation of Jt under
constraints. Indeed, system (LS) is of the type

ξA+Bv = 0 , η = Av, (3)

where

A : V → R
n, B = p

∂ 2F0

∂u2 +
∂ 2Jt

∂u2 ,
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so that B : V →V ∗ and B∗ = B. Then

Hess
(

Jt |F−1
0 (q0)

)
: v �→ 〈Bv,v〉, v ∈ kerA. (4)

Exercise. Assume that the linear mapping A is surjective and B is non-degenerate.
Then the quadratic form (4) is non-degenerate if and only if

Λ
⋂
{(ξ ,0) : ξ ∈ R

n∗}= 0 ,

where Λ = {(ξ ,η) : ∃v satisfying(3)}.
Let us follow the evolution of the Morse index of the quadratic form

Hess
(

Jt |F−1
0 (q0)

)
, when t runs from 0 to t1. The Morse index changes for those t

for which Λt has a nonzero intersection with Λ0 = {(ξ ,0) : ξ ∈ R
n∗}. Moreover,

the Morse index of Hess
(

Jt |F−1
0 (q0)

)
grows monotonically with t simply due to the

fact that the past does not depend on the future for our control system.

Definition 3.1. We say that t is conjugate to 0 if Λt ∩Λ0 	= 0.

Theorem 3.1. If conjugate times are isolated, then

indHess
(

Jt |F−1
0 (q0)

)
−Hess

(
Jt0 |F−1

0 (q0)

)
= ∑

t0�t<t1

dim(Λt ∩Λ0)

for any t0 ∈ (0, t1).

4 Third lecture

Let us consider the trajectories of the Hamiltonian system corresponding to the
Hamiltonian

H : T ∗M → R.

We denote by H the associated Hamiltonian vector field and by etH its flow on
T ∗M. Recall that the trajectories of H describe the extremals of our optimal control
problem together with the associated Lagrange multipliers.

In Lecture 2, we saw that second variation of the cost functional Jt under con-
straints is related to a family of the Lagrangian subspaces Λt , t ∈ [0, t1], where Λt is
the tangent space at λ0 of the submanifold of T ∗M formed by the values at time 0
of the solutions to the Hamiltonian system λ̇ = H(λ ) whose values at time t belong
to T ∗q(t)M.

In other words, we consider the Jacobi curve

Λt = Tλ0

(
e−tH(T ∗q(t)M)

)
.
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Our aim is to obtain some information on the conjugate points and on the long-time
behavior of the flow without solving differential equations. To do that, we introduce
a kind of curvature-type invariants associated to the problem.

4.1 Curves in the Lagrange Grassmannians

Consider a 2n-dimensional symplectic space Σ . Denote by σ the symplectic form.
To any pair of transversal Lagrangian subspacesΛ0,∆ , we can associate coordinates
on Σ such that

Σ =Λ0⊕∆ = {(p,q) : p,q ∈ R
n}, σ =

n

∑
i=1

d pi∧dqi

and
Λ0 = {(p,0) : p ∈ R

n}, ∆ = {(0,q) : q ∈ R
n}.

Any transversal to ∆ n-dimensional subspace Λ has a form

Λ = {(p,SΛ p) : p ∈ R
n} ,

for some n×n-matrix SΛ . The subspace Λ is Lagrangian (i. e. σ |Λ = 0) if and only
if SΛ = S∗Λ , in other words, if SΛ belongs to the space Sym(n) of symmetric n×n-
matrices. In particular, it follows that the map Λ �→ SΛ gives local coordinates on
the Lagrange Grassmannian L(Σ) of all Lagrangian subspaces of Σ .

Now consider a curve t �→Λt in L(Σ) and the corresponding curve t �→ St = SΛt

in Sym(n).

Lemma 4.1. The quadratic form p �→ 〈Ṡt p, p〉 is an intrinsically defined quadratic
form on the subspace Λt .

Proof. Pick λt ∈Λt and insert it in some curve τ �→ λτ ∈Λτ . Then λτ = (pτ ,Sτ pτ)
and we have:

σ(λt , λ̇t) = σ
(
(pt ,St pt),(ṗt ,St ṗt)+(0, Ṡt pt)

)
= 〈Ṡpt , pt〉.

We see that σ(λt , λ̇t) depends only on λt and Λ̇t and not on the choice of the curve
τ �→ λτ . Hence λt �→ σ(λt , λ̇t) is a well-defined quadratic form on Λt presented by
the matrix Ṡt . �

Corollary 4.1. The tangent space TΛL(Σ) to the Lagrange Grassmannian is intrin-
sically identified with the space of quadratic forms on Λ .

Definition 4.1. We say that the curve t �→ Λt is monotone if the quadratic forms
p �→ Ṡt are sign-definite.
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4.2 Curvature-type invariants

Let us come back to the Jacobi curves in Tz(T ∗M), z∈ T ∗M. Recall that Tz(T ∗M) =
Σz is a symplectic space, so we are in the situation described above.

We want to consider the curves t �→Λz(t) such that Λz(0) = Tz(T ∗q M), where q =
π(z) and π : T ∗M →M is the standard projection. As before, choosing appropriate
Darboux coordinates in Tz(T ∗M) we have:

Λt = {(p,St p) : p ∈ R
n}, S0 = 0.

By a direct computation one verifies that

Ṡ0 =−∂ 2H
∂ p2

∣∣∣
z
.

From now on, we will deal with Hamiltonians that are convex on fibers, i.e. we will
assume that

∂ 2H(p,q)
∂ p2 � 0, (p,q) ∈ T ∗M.

In what follows we identify Λ̇ ∼= Ṡ0.
Let us show that the convexity assumption on H implies the monotonicity of the

Jacobi curves. In other words,

Λ̇z(0) � 0 ∀z ⇒ Λ̇z(t) � 0 ∀t.

Indeed, Λz(t)⊂ Tz(T ∗M) and

Λz(t) = e−th
∗

(
Teth(z)(T

∗
q(t)M)

)
;

then

d
dt
Λz(t) = e−tH

∗
d

dε

∣∣∣
ε=0

e−εh
∗

(
Te(t+ε)h(z)(T

∗
q(t+ε)M)

)

= e−tH
∗

d
dε

∣∣∣
ε=0

ΛetH(z)(ε) � 0.

Here we use the fact that the quadratic form Λ̇t is defined intrinsically and its sign
does not change under a symplectic transformation of the curve Λt .

To any pair of transversal Lagrangian subspaces Λ ,Λ0 : Λ ∩Λ0 = 0, Λ ,Λ0 ⊂ Σ ,
we can associate the projector

πΛΛ0 : Σ →Λ0

such that
πΛΛ0 |Λ = 0, πΛΛ0 |Λ0 = Id.
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Lemma 4.2. The space {πΛΛ0 : Λ ∩Λ0} for a fixed Λ0 is an affine subspace of the
space of linear operators on Σ .

In local coordinates such that

Λ0 = {(p,0) : p ∈ R
n}, Λ = {(Aq,q) : q ∈ R

n},

we have:

πΛΛ0 =
(

Id −A
0 0

)
.

Assume that the curve t �→ Λt is such that Λt ∩Λτ = 0 if t 	= τ and |t− τ| is suffi-
ciently small. Pick τ and take coordinates such that the germ of the curve at τ has
the form

Λt = {(p,St p) : p ∈ R
n}, Sτ = 0.

Then we obtain:

πΛtΛτ =
(

Id −S−1
t

0 0

)
.

If detSt has a finite order root at τ , then πΛtΛτ admits the Laurent expansion

πΛtΛτ =
m

∑
i=−k

(t− τ)iπ i
τ +o(t− τ)m+1.

The free term of the Laurent expansion π0
τ belongs to the described in the Lemma

affine space of the projectors (where Λ0 is substituted by Λτ ). In other words, π0
τ =

πΛ◦τ Λτ for some intrinsically defined Lagrangian subspace Λ ◦τ , and Λ ◦τ ∩Λτ = 0 by
the construction.

In particular, in the simplest case k = 1 the coordinate expression of Λ ◦τ has the
form:

Λ ◦τ =
{

(−1
2

Ṡ−1
τ S̈τ Ṡ−1

τ q,q) : q ∈ R
n
}

.

Now recall that we identify Λ̇t with a quadratic form on Λt , i. e.

Λ̇t : Λt →Λ ∗t ,

a self-adjoint linear mapping. Moreover, the symplectic form σ gives a non-
degenerate pairing of the Lagrangian subspaces Λt and Λ ◦t , so that Λ ∗t ∼= Λ ◦t and
(Λ ◦t )∗ ∼=Λt . In particular, Λ̇t and Λ̇ ◦t can be treated as the mappings

Λ̇t : Λt →Λ ◦t , Λ̇ ◦t : Λ ◦t →Λt .

Definition 4.2. The operator Rλ (t) : Λt →Λt defined by the formula

RΛ (t) = Λ̇ ◦t ◦ Λ̇t

is called the curvature operator of the curve Λ. at point t.
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The curvature is a kind of “relative velocity” of the curves Λt and Λ̇t . In the reg-
ular case of a non-degenerate Λ̇t , the coordinate form of the curvature is as follows:

RΛ (t) =
1
2

Ṡ−1
t

...
St −

3
4
(Ṡ−1

t S̈t)2.

This is nothing else but the matrix version of the Schwartzian derivative of St .

5 Fourth lecture

In this lecture, we consider the curves Λt in the Lagrange Grassmannian that is
defined for all t ∈ R.

Theorem 5.1. If Λ̇(t) � 0 (non-negative quadratic form) and Λ̇ ◦(t) � 0 (non-
positive quadratic form), then no conjugate points occur and

∃ lim
t→±∞

Λ(t) =Λ(±∞).

Remark. The same statement is true also in the case Λ̇(t) � 0, Λ̇ ◦(t) � 0. What is
important is that Λ̇(t) and Λ̇ ◦(t) have opposite signs.

Let us explain this result in the simplest case n = 1. Then Σ is the plane equipped
with the area form σ , and the Lagrange Grassmanninan is the oriented real pro-
jective line that is actually the oriented circle. A monotone curve Λ(t) is simply a
monotone curve on the circle. A conjugate point occurs when Λ(t) makes a com-
plete revolution. On the other hand, Λ(t) never coincides with Λ ◦(t), hence there
are no conjugate points and ∃ lim

t→±∞
Λ(t).

If n > 1, then the proof remains essentially the same. Indeed, all pairs of transver-
sal Lagrangian subspaces are equivalent by the action of the symplectic group. We
may take coordinates in such a way that

Λ(t) = {(p,St p) : p ∈ R
n}, Λ ◦(t) = {(p,S◦t p) : p ∈ R

n}

for t close to 0 and S0 < S◦0. The relation Λ(t)∩Λ ◦(t) = 0 is equivalent to the
inequality det(St −S◦t ) 	= 0. By the monotonicity assumption,

〈p, Ṡt p〉� 0, 〈p, Ṡ◦t p〉� 0, ∀p ∈ R
n.

Hence the inequality
〈p, Ṡt p〉< 〈p, Ṡ◦t p〉, ∀p ∈ R

n

remains true for all positive t and each of two sides of the last inequality monoton-
ically tends to a limit as t → +∞. The case of t → −∞ is handled by the same
argument, but reversing time.
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Let us come back to the Hamiltonian setting. We have H : T ∗M → R, z ∈ T ∗M,
and Λz(t)⊂ Tz(T ∗M) such that

Λz(t) = e−tH
∗

(
TetH(z)(T

∗
q(t)M)

)
,

where q(t) = π
(
etH(z)

)
. The limits Λz(±∞) are invariant for the flow etH. Indeed,

esH
∗ Λz(t) = esH

∗ Λz(t) lim
t→±∞

e−tH
∗

(
TetH(z)(T

∗
q(t)M

)

= lim
t→±∞

e(s−t)H
∗

(
Te(t−s)H(z)(T

∗
q(t−s)M

)

=Λz(±∞).

So we have a pair of invariant Lagrangian distributionsΛz(±∞), z∈ T ∗M. Recall
that the curvature RΛ (t) = Λ̇ ◦t ◦ Λ̇t is in a certain sense the relative velocity of Λ(t)
and Λ ◦(t). If we assume strong monotonicity, Λ̇(t) > 0 or Λ̇(t) < 0, then |Λ̇(t)|
defines a Euclidean structure on Λ(t) and RΛ (t) is a self-adjoint operator for this
Euclidean structure. In particular, the operator RΛ (t) is diagonalizable and all its
eigenvalues are real. We say that the curvature is positive or negative e. t. s. if all
eigenvalues are like that.

Set ν = sign(Λ̇(t)). The matrix of the operator RΛ (t) is equal to the matrix of
the quadratic form νΛ̇(t) in the coordinates where the Euclidean structure |Λ̇(t)| is
presented by the unit matrix. In particular, assumptions of Theorem 2 are satisfied
if the quadratic form Λ̇(t) is sign-definite and RΛ (t) � 0.

It is important that the construction of the curvature is intrinsic and thus survives
under symplectic transformations. In other words, if A is a linear symplectic trans-
formation of Σ and AΛ : t �→ A(Λ(t)), then the operator RAΛ (t) is similar to the
operator RΛ (t) and has the same eigenvalues.

Definition 5.1. Let ΛzΛ(·), z ∈ T ∗M, be the Jacobi curves of the Hamiltonian field

H; then Rλz(0)
de f
= RH

z is called the curvature operator of H at z.

Recall that Λ̇z(0) =− ∂ 2H
∂ p2 (z), z = (p,q). If H is strongly convex with respect to

p, then Λ̇z(0) < 0, ∀z. It was proved in Lecture 3 that the inequality Λ̇z(0) � 0, ∀z
implies Λ̇z(t) � 0, ∀t. We can repeat that proof and see that the result remains valid
if one substitute the non-strong inequality by the strong one. In fact, we can see
much more if we analyze the proof. Indeed, the germ at t of the curve Λz(·) is the
image of the germ at 0 of the curve ΛetH(z)(·) under the fixed symplectic transforma-
tion e−tH

∗ . Hence all invariant quantities of these germs are equal. In particular, the
operator RΛz(t) has the same eigenvalues as the curvature operator of H at the point
etH(z). This fact is very advantageous because the curvature of H is just a (rather
complicated but quite explicit) differential operator of H, in particular we do not
need to solve differential equations in order to compute this curvature.
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Combining all together, we obtain

Theorem 5.2. If the restrictions of H to the fibers T ∗q , q ∈ M, are strongly convex
functions and RH

z � 0, ∀z ∈ M, then the trajectories of the flow etH do not have
conjugate points and, moreover, this flow possesses two invariant Lagrangian dis-
tributions Λz(±∞), z ∈ T ∗M.

Let us discuss what happens when RΛ � 0. First of all, let us see how changes
the curvature if we re-parameterize the curve Λ(t).

Remark. Clearly, the presence of conjugate point does not depend on the paramete-
rization.

Let ϕ : R
n → R

n be a change of parameter; we assume that ϕ̇(t) 	= 0. Denote

Rϕ(t) =
1
2
ϕ̇−1(t)

...
ϕ (t)(t)− 3

4
(
ϕ̇−1ϕ̈(t)

)2
,

the Schwartzian derivative of ϕ(t). Let

Λϕ : t →Λ(ϕ(t))

be the re-parameterized curve.

Proposition 5 RΛϕ (t) = ϕ̇(t)2RΛ (ϕ(t))+Rϕ(t)Id.

This formula (the chain rule) can be checked by direct calculation, which we omit
here.

Example. Take ϕ(t) = 1√
c arctan(

√
ct). Then:

Rϕ(t) =
−c

(ct2 +1)2 , ϕ̇(t) =
1

ct2 +1
,

RΛϕ (t) =
1

(ct2 +1)2 (RΛ (ϕ(t))− cId) .

Theorem 5.3 (Comparison theorem). Let t �→Λ(t) be a smooth strongly monotone
curve in the Lagrange Grassmannian and c be a nonnegative constant.

1. If RΛ (t) � cId, ∀t, then any pair of conjugate points t1 and t2 satisfies the in-
equality |t1− t2|� π√

c .

2. If 1
n traceRΛ (t) � c, then any segment

[
t, t + π√

c

]
contains a point conjugate to

zero.

Remark. If c → 0 in statement 1, then |t1 − t2| → ∞ which correlates with our
previous result.

Proof. Statement 1. Re-parameterization and the chain rule reduces everything to
the case of non-positive curvature (see above Example).
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Statement 2. Assume that Λ(t) is transversal to some fixed Lagrangian subspace
(for instance, to Λ(0)) for any t ∈ [t1, t2]. Then the segment Λ(t), t ∈ [t1, t2] of the
curve is contained in the fixed coordinate chart of the Lagrange Grassmannian and
can be presented in the matrix form:

Λ(t) = {(p,St p) : p ∈ R
n}, t ∈ [t1, t2].

Hence
RΛ (t) =

1
2

Ṡ−1
t

...
St −

3
4
(Ṡ−1

t S̈t)2.

Now set Wt = 1
2 Ṡ−1

t S̈t ; we have, RΛ (t) = Ẇ (t)−W (t)2. What remain is to find
the lower bound for the blow-up time of the solutions to the differential inequality
traceẆ � trace(W 2) + nc. This is an easy task due to the fact that (traceW )2 �
n trace(W 2).

In order to conclude we recall that in the Riemannian case the Hamiltonian flow
is the geodesic flow. Actually, the Riemannian structure identifies T M and T ∗M.
So, in this case ∂ 2H

∂ p2 is the Riemannian metric. The curvature RH
z , where z ∈ T ∗q ,

is essentially the sectional curvature at q in the two-dimensional directions which
include z ∈ T ∗q M ∼= TqM.
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KAM theory with applications to Hamiltonian
partial differential equations

Xiaoping Yuan1

Abstract In these notes I present a KAM theorem on the existence of lower dimen-
sional invariant tori for a class of nearly integrable Hamiltonian systems of infinite
dimensions, where the second Melnikov’s conditions are completely eliminated and
the algebraic structure of the normal frequencies is not required. This theorem can
be used to construct invariant tori and quasi-periodic solutions for nonlinear wave
equations, Schrödinger equations and other equations of any spatial dimensions.

1 Brief history and basic ideas of KAM theory

These lecture notes present a KAM theorem with applications to some nonlinear
partial differential equations, such as nonlinear wave equations and Schrödinger
equations of higher spatial dimensions. Although it is a powerful tool in dynami-
cal systems, the KAM technique is usually thought to be very complicated, even
tedious. I will omit some unimportant details so that the basic idea of the KAM
theory can be clearly understood.

Before stating the KAM theorem, let us recall some of the background, taking
the nonlinear wave (NLW) equation as an example. One wants to find a periodic
solution of NLW equation

utt −uxx +V (x)u+g(x,u) = 0, (1)

subject to Dirichlet boundary condition u(t,0) = u(t,π) = 0, where g is a nonlinear
term. In the 1970s using variational methods, Rabinowitz [19] showed that there is
a non-constant T -periodic solution u(t,x) ∈ Lp(R× [0,π]) if T/π ∈Q, where p > 2
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depends on g. The condition T/π ∈Q guarantees some kind of compactness which
is usually required in variational methods. A natural question is

� What happens when T/π ∈ R\Q?

From a geometric viewpoint, a periodic solution can be regarded as an invariant
torus of 1 dimension, i.e., an invariant closed curve, in some phase space. Thus,
another natural question should be

� Are there invariant tori of N-dimension with N > 1?

If there are such tori, and any motion on the tori is quasi-periodic, it follows that
there are time quasi-periodic solutions of (1).

The previous questions can not be answered at the present time entirely by vari-
ational methods, since the compactness conditions can not be fulfilled. Fortunately,
KAM theory can answer these questions. In order to see how the KAM theory
adresses them, we write the equation (1) in a discrete form. To this end, we let
λ 2

j and φ j(x) be the eigenvalues and eigenfunctions, respectively, of the Sturm–
Liouville problem1

−d2y
dx2 +V (x)y = λy, y(0) = y(π) .

Note that {φ j(x) : j = 1,2, ...} is a complete orthogonal system of L2([0,π]). For
simplicity we assume the nonlinearity g(x,u) = u3 without loss of generality. Since
we will search for solutions of small amplitude, we can assume

g = εu3

where ε is a small parameter. This can be fulfilled by substituting
√
εu for u in (1).

Let v = ut . Then (1) reads

ut = v, vt = utt =−[−uxx +V (x)u+g(x,u)]

Substituting for u and v the expressions

u =
∞

∑
j=1

q j√
λ j

φ j(x), v =
∞

∑
j=1

√
λ j p jφ j(x)

we get a Hamiltonian system

ṗ j =
∂H
∂q j

, q̇ j =− ∂H
∂q j

, j = 1,2, ...

where the Hamiltonian is

H =
1
2

∞

∑
j=1

λ j(p2
j +q2

j)+ εG(q) (2)

1 We assume for simplicity that all eigenvalues are positive.
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and the nonlinear term is expressed in terms of the eigenfunction expansion by

G(q) = ε ∑
i, j,k,l

Gi jklqiq jqkql , Gi jkl =
1√

λiλ jλkλl

∫ π

0
φiφ jφkφl dx .

Given a positive integer N and a vector ξ = (ξ1, ...,ξN) ∈ R
N
+. Let

q j =
√

2(I j +ξ j)cosθ j, p j =
√

2(I j +ξN)sinθ j, j = 1, ...,N

ω = (λ1, ...,λN), q̂ = (q1, ...,qN), q̃ = (qN+1,qN+2, ...).

Then the Hamiltonian (2) reads

H = (ω, I)+
1
2

∞

∑
j=N+1

λ j
(

p2
j +q2

j
)
+ εR(I,θ , q̂) (3)

with R(I,θ , q̂) = G(q̃, q̂). Here R is independent of p̃ = (pN+1, pN+2, ...). More gen-
erally, we can assume that R depends on p̃, that is, R = R(θ , I, q̃, p̃). Let z j = (q j, p j)
and |z j|2 = |q j|2 + |p j|2. Then (3) reads

H = (ω, I)+
1
2

∞

∑
j=N+1

λ j|z j|2 + εR(I,θ ,z) (4)

Write Λ = diag(λ j+N : j = 1,2, ...), J = diag(Jj : j = 1,2, ...) with

Jj = J =
(

0 1
−1 0

)
.

The Hamiltonian vector field is
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

θ̇ = ∂H
∂ I = ω + ε ∂R

∂ I

İ =− ∂H
∂θ =−ε ∂R

∂θ

ż = J ∂H
∂ z = JΛz+ ε ∂R

∂ z .

(5)

We see that when ε = 0, the manifold

T0 := {θ = ωt}×{I = 0}×{z = 0}

is an invariant N-torus. KAM theory states that for “most” ω the invariant torus
can be preserved if ε is sufficiently small. The basic idea is to seek a symplectic
transformation (which is the composition of a series of transformations) with which
to kill or to eliminate the perturbation R. However, up to present one has not found
a symplectic transformation whish will kill the whole term R. A revised idea is to
kill all lower order (� 2) terms (l.o.t.) of R, that is, the linear part of vector field XR.
More precisely, expanding R in a Fourier–Taylor series
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R = Rθ (θ)+RI(θ) · I + 〈Rz(θ),z〉+ 〈Rzz(θ)z,z〉 (l.o.t.)

+O(|I|2 + |I||z|+ |z|3) (h.o.t.)

If we can find a symplectic transformΨ such that

H̃ = H ◦Ψ = (ω̃, I)+
1
2∑j

λ̃ j|z j|2 + R̃

where
R̃ = O(|I|2 + |I||z|+ |z|3),

then (5) reads
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

θ̇ = ∂H
∂ I = ω̃ + ε ∂R

∂ I = ω̃ + εO(|I|)

İ =− ∂H
∂θ =−ε ∂R

∂θ =−εO(|I|2 + |I||z|+ |z|3)

ż = J ∂H
∂ z = JΛz+ ε ∂R

∂ z = JΛz+ εO(|I|+ |z|2).

(6)

We see that T0 is still an invariant torus of (6). Thus, Ψ−1(T0) is an invariant torus
of the original hamiltonian H. In searching for the symplectic transformationΨ , one
will encounter the following small divisors problems:

� In order to eliminate the terms Rθ (θ) and (RI(θ), I), one needs conditions:

(k,ω) 	= 0, for all 0 	= k ∈ Z
N

� In order to eliminate the term (Rz(θ),z), the following Melnikov’s first conditions
are required:

(k,ω)+λ j 	= 0, for all k ∈ Z
N , j = 1,2, ...

� In order to eliminate the term (Rzz(θ)z,z), the following Melnikov’s second con-
ditions are required:

(k,ω)+λi±λ j 	= 0, for all k ∈ Z
N , j = 1,2, ...,

where k 	= 0 if i = j and “±” takes “−”

These conditions are usually not fulfilled for all ω . For example, if ω ∈Q
N , then

there exists k ∈ Z
N such that (k,ω) = 0. The method of addressing this problem is

to regard ω as a parameter vector (or, equivalently, assume ω = ω(ξ ) depends on
a parameter vector ξ and det(∂ω/∂ξ ) 	= 0). Eliminating those ω which violate the
previous conditions, one can prove that the set of remaining parameters has positive
measure (in a certain sense). Therefore, one has the following KAM theorem.

Theorem 1 Assume λi 	= λ j for i 	= j and R is analytic in some neighborhood of the
origin. Then for “most” parameters ω , there exists a symplectic transformation Ψ
such that H is changed into H̃, therefore, H possesses an invariant torusΨ−1(T0).
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The finite dimensional version of this theorem is due to Melnikov [13, 14],
Eliasson [8] and Pöschel [16]. The infinite dimensional version is due to Kuksin
[10, 11], Wayne [20] and Pöschel [17]. Applying Theorem 1 to the nonlinear wave
equation (1) we get

Theorem 2 (Kuksin [11]) Assume the potential V = V (x,ξ ) of (1) depends on a
parameter vector ξ ∈ O ⊂ R

N a compact set, with Lebesgue measure 1 such that
the Jacobian matrix ∂ω

∂ξ = ∂ (λ1,...,λN)
∂ξ is non-degenerate, then for “most” parameters

ξ (i.e., there is a subset O1 ⊂ O with Measure(O1) tending to zero as ε → 0 such
that for ξ ∈ O \O1) there is an invariant torus for (1). The motion on the torus is
quasi-periodic with frequency ω̃ with |ω− ω̃|< ε .

Wayne [20] also obtains the existence of the quasi-periodic solutions of (1) when
the potential V does not belong to some set of “bad” potentials. In [20], the set of
all potentials is given a Gaussian measure and the set of “bad” potentials is proved
to be of small measure.

Because parameters are needed in Theorem 1, the potential V is assumed to de-
pend on parameters ξ in [11] or the V itself is regarded as parameters in [20]. An
important question is what happens when V does not contains any parameters. In
this direction, early approaches are due to Bobenko–Kuksin [1] and Pöschel [18].
They assume V ≡ m where the constant m 	= 0. In [1], the term mu+u3 is regarded
as a perturbation of sinu. Thus, (1) is a perturbation of sine-Gordon equation. The
latter are known to be integrable, exhibiting many quasi-periodic solutions. They
serves as the starting point of KAM theory in (1). An alternative method is using
Birkhoff normal. Observe that for m > 0

|λi±λ j±λk±λl |�
cm

√
n2 +m

3 , n = min{|i|, | j|, |k|, |l|} (7)

where c is some absolute constant. This inequality allows Pöschel [18] to extract
some parameters from the nonlinear term u3 through Birkhoff normal form. Once
the parameters are obtained, one can apply Theorem 1 to (1).

Theorem 3 ([1,18]) For V ≡ m > 0, (1) possesses many invariant elliptic tori, and
thus quasi-periodic solutions.

According to Remark 7 of [18], when m∈ (0,1) the theorem still holds. In [21] it
is shown that (1) possesses many invariant hyperbolic-elliptic tori and quasi-periodic
solutions, when m ∈ (−∞,−1)\Z. In the case V ≡m = 0, the equation (1) is called
completely resonant in [18]. In this case, One can see that the inequality (7) is use-
less. Whether there exists invariant torus is a challenging question, which is pro-
posed or concerned by many authors. See references [7, 12, 15, 18]. Observe that
ordinary differential ÿ+ y3 = 0 is integrable and all non-zero solutions are periodic
and their periods depend on amplitudes or initial values. Those solutions are also
the solutions of (1), and they are uniform in the space x. Partial resonances can be
overcome if we restrict ourselves to look for invariant tori at the neighborhood of
those periodic solutions. Consequently, we have
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Theorem 4 ([23]) In the neighborhood of the small solutions of ÿ + y3 = 0, the
equation (1) subject to periodic boundary conditions has many invariant tori of any
dimension and thus quasi-periodic solutions.2

Another question is what happens when V is given but not constant, such as
V = sinx,cosx. Observe that for a given potential V sufficiently smooth,

λ j = j +
[V ]

j
+O(1/ j2)

where [V ] =
∫ π

0 V (x) dx. Whereas

λ j =
√

j2 +m = j +
m
j

+O(1/ j2)

when V ≡m 	= 0. By comparing these two asymptotic formulae and carefully check-
ing the inequality (7), we have

Theorem 5 ([24]) For any given potential V sufficiently smooth and [V ] 	= 0, the
equation (1) subject to Dirichlet boundary conditions has many invariant tori of
any dimension and thus quasi-periodic solutions.

So far, we have a clear comprehension of the invariant tori and quasi-periodic
solutions of (1). When Hamiltonian partial differential equations with spatial di-
mension greater than 1 are considered, a significant new problem arises due to the
presence of clusters of normal frequencies of the Hamiltonian systems defined by
these PDEs. For example, let us consider the higher dimensional nonlinear wave

utt −$u+mu+g(x,u) = 0, (8)

subject to Dirichlet b. c. or periodic b. c., where$ is the Laplacian in d-dimensions
with d > 1. In this case, the eigenvalues λ 2

j ( j ∈ Z
d) of the eigenvalues of the oper-

ator −$+m have formula

λ 2
j = | j|2 +m, j ∈ Z

d .

It follows that
lim

n→+∞
{ j ∈ Z

d : λ j = n2 +m}� = +∞ (9)

where � denotes the cardinality of the set. Recall the Melnikov’s second conditions

(k,ω)+λi−λ j 	= 0, i 	= j .

By letting k = 0, it follows that λ j is simple, i.e., λi 	= λ j if i 	= j. Therefore, the
formula (9) violates seriously Melnikov’s second conditions. In 2002, by observ-
ing some symmetries in (8), the present author [22] showed that there are many

2 There are many authors who investigate periodic solutions and 2-D quasi-periodic solutions of
travelling wave type. These excellent works are less related to KAM theory. I do not present them
here, because of limit of space in this talk.
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quasi-periodic solutions of traveling wave type for any spatial dimension d. Here
the difficulty of small divisors was avoided owing to the symmetries. However, one
can not avoid this difficulty in the search for more general solutions. In a series
of papers [2] through [6], Bourgain developed another profound approach which
was originally proposed by Craig–Wayne in [7], in order to overcome the difficulty
that the second Melnikov’s conditions can not be imposed. Now this approach is
called the C-W-B method. Instead of KAM theory, C-W-B method is based on a
generalization of Lyapunov–Schmidt procedure and a technique by Fröhlich and
Spencer [9]. The quasi-periodic solutions are constructed directly by Newton itera-
tion. In that direction, one will has to investigate the inverse of a “big” matrix where
the small divisors problem arises. The Fröhlich and Spencer technique is used to
analyze the inverse. Usually the C-W-B method is very complicated and hard to ac-
cess. Recently the present author [25] modified the classic KAM technique to avoid
the second Melnikov’s conditions and succeeded to derive a new KAM theorem
which can be applied to many kinds of PDEs including (8). Since the Fröhlich and
Spencer technique is not needed there, the new KAM theorem is relatively easy to
access. The whole of my lectures are devoted to the following KAM theorem, which
appears in [25]:

Theorem 6 Assume λi � c|i|κ1 and { j : λ j = λ| j|}� � κ2 where c,κ1,κ2 are absolute
positive constants. Assume R is analytic in some neighborhood of the origin. Then
for “most” parameters ω , there exists a symplectic transformationΨ such that H is
changed into H̃, therefore, H possesses an invariant torusΨ−1(T0).

2 Derivation of the linearized equations

As stated in §1, the key point of KAM theory is to eliminate the (lower order)
perturbation by a series of symplectic transformations which are generated by sys-
tems of linearized equations. In this section, we will derive the linearized equations.
Before doing so, we introduce some notation. Let Hp be the space of sequences
z = (z1,z2) = ((z1 j,z2 j) ∈ C

2 : j ∈ Z
d) satisfying

||z||2p = ∑
j∈Zd

(|z1 j|2 + |z2 j|2)| j|2p < ∞

where d is the dimension of the Laplacian and p > d/2 is given. It is easy to see
that H p is a Hilbert space with an inner product corresponding to the norm || · ||p.
(In fact, H p corresponds to the so-called Sobolev space H p by means of Fourier
transform.) Denote by L(Hp,Hp) all bounded linear operators from Hp to Hp.
Introduce the phase space:

P := (Cn/2πZ
n)×C

n×H p,

where n is a given positive integer. We endow P with a symplectic structure

dθ ∧dy+
√
−1dz1∧dz2 = dx∧dy+

√
−1 ∑

j∈Zd

dz1 j ∧dz2 j, (θ , I,z1,z2) ∈P.
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Given r,s > 0. Define a domain in P by

D(s,r) = {(θ , I,z) ∈P : | Imθ |� s, |I|� r2, ||z||p � r}

and
D(s) = {θ ∈ C

n/2πZ
n : | Imθ |� s} .

For z, z̃ ∈Hp, define

〈z, z̃〉 :=∑
j
(z1 j z̃1 j + z2 j z̃2 j).

For a sequence of real numbers {λ j : j ∈ Z
d}, let

Λ = diag
(
λ j

(
1 0
0 1

)
: j ∈ Z

d
)

.

Note 〈·, ·〉 is not an inner product. Consider a Hamiltonian H defined on D(s,r):

H = N +R

where
N = (ω, I)+

1
2
〈Λz,z〉+ 1

2
〈B(θ)z,z〉 (1)

and R = R(θ , I,z) : D(s,r)→C and B = B(θ) : D(s)→L(Hp,Hp) are analytic. As
in §1, write

R =Rθ (θ)+RI(θ) · I + 〈Rz(θ),z〉+ 1
2
〈Rzz(θ)z,z〉 (l.o.t.)

+O(|I|2 + |I|||z||p + ||z||3p) (h.o.t.)

(2)

The basic idea is to kill the lower terms (l.o.t.). As stated in §1, in order to eliminate
the term 〈Rzz(θ)z,z〉we need to assume the second Melnikov conditions, which pre-
vents the KAM theorem from being applied to higher dimensional PDEs. Hence we
should modify the basic idea. Following Bourgain [6], we put the term 〈Rzz(θ)z,z〉
into the “integrable” part N rather than to eliminate it. However, doing so will make
the problem too complicated. We just want to put a part of 〈Rzz(θ)z,z〉 into N. To
this end, we introduce a cut-off operator Γ as follows. Given a positive number K
large enough. For any an operator or (vector) function f defined on the domain D(s),
write

f = ∑
k∈Zn

f̂ (k)e
√
−1(k,θ) .

Define the cut-off operator:

(Γ f )(θ) = (ΓK)(θ) := ∑
|k|�K

f̂ (k)e
√
−1(k,θ) .
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The modified KAM procedure consists of the following steps.
Step 1. Averaging and cut-off. Recall (1) and (2).

H =N +R

=(ω, I)+
1
2
〈Λz,z〉+ 〈B(θ)z,z〉

+Rθ (θ)+RI(θ) · I + 〈Rz(θ),z〉+ 1
2
〈Rzz(θ)z,z〉 (l.o.t.)

+O(|I|2 + |I|||z||p + ||z||3p)

=(ω + R̂I(0), I)+
1
2
〈Λz,z〉+ 〈(B(θ)+ΓRzz(θ))z,z〉 (:= N)

+ΓRθ +(ΓRI− R̂I(0)) · I + 〈ΓRz,z〉 (:= R1)

+(1−Γ )Rθ +(1−Γ )RI · I + 〈(1−Γ )Rz,z〉+ 1
2
〈(1−Γ )Rzzz,z〉 (:= R2)

+O(|I|2 + |I|||z||p + ||z||3p) (:= R3)

=N +R1 +R2 +R3 (3)

Assume ΓB(θ) = B(θ). Let ω = ω + R̂I(0) and B(θ) = B(θ)+ΓRzz(θ). Then

N = (ω, I)+
1
2
〈Λz,z〉+ 1

2
〈B(θ)z,z〉.

Notice that ΓB = B,ΓR1 = R1. By the way, we can assume R̂θ (0) = 0, since any
constant added to the Hamiltonian function does not affect the dynamics.
Step 2. Seek a symplectic transformation to eliminate the term R1. Assume we have
a Hamiltonian function of the same form as R1:

F = Fθ (θ)+FI(θ) · I + 〈Fz(θ),z〉

where F̂θ (0) = 0, F̂ I(0) = 0 and ΓF = F . Denote by Xt
F the flow of the vector field

XF corresponding to the Hamiltonian function F . Let Ψ = X1
F , it is a symplectic

transformation. Let (θ(t), I(t),z(t)) be a solution of the vector field XF , that is,

θ̇ =
∂F
∂ I

, İ =−∂F
∂θ

, ż = J∂zF.

(Referring to (5).) Then we have

d
dt

H ◦Xt
F =

d
dt

H(θ(t), I(t),z(t))

=
∂H
∂θ

θ̇ +
∂H
∂ I

İ +
∂H
∂ z

ż

=
(
∂H
∂θ

∂F
∂ I
− ∂H

∂ I
∂F
∂θ

+
∂H
∂ z

J
∂F
∂ z

)
(θ(t), I(t),z(t))

:= {H,F}◦Xt
F

(4)
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By abuse of notation, we still denote by (θ , I,z) the new variables X1
F(θ , I,z). By

Taylor’s formula and (4), we get

H ◦Ψ = H ◦X1
F = H ◦X0

F +
d
dt

H ◦Xt
F |t=0 +

1
2

∫ 1

0
(1− t)

d2

dt2 H ◦Xt
F dt

= H +{H,F}+
1
2

∫ 1

0
(1− t){{H,F},F}◦Xt

F

= N +R1 +{N,F}+ R̃

= (ω, I)+
1
2
〈Λz,z〉+ 1

2
〈B(θ)z,z〉+ΓRθ +(ΓRI− R̂I(0)) · I + 〈ΓRz,z〉

+{ω ·∂θFθ +(ω ·∂θFI) · I + 〈ω ·∂θFz +ΛJFz +Γ (BJFz),z〉
+ 〈(1−Γ )(BJFz),z〉+ 〈(∂θB,FI)z,z〉}+ R̃

where

R̃ = R2 +R3 +{R1 +R2 +R3,F}+
1
2

∫ 1

0
(1− t){{H,F},F}◦Xt

F .

If we can find F solving the following linear equations:

ω ·∂θFθ = ΓRθ , (5)

ω ·∂θFI = ΓRI− R̂I(0), (6)

ω ·∂θFz +ΛJFz +Γ (BJFz) = ΓRz , (7)

and write

B+ = B+(∂θB,FI),

N+ = (ω, I)+
1
2
〈Λz,z〉+ 1

2
〈B+(θ)z,z〉,

R+ = R̃+ 〈(1−Γ )(BJFz),z〉 ,

then we get
H+ = H ◦Ψ = N+ +R+. (8)

In §3, we will show that if R = O(ε) in some domain, then F = O(ε1−) in a smaller
sub-domain which is the result of excision of some parameters ω of small total
measure. Therefore, R+ = O(ε4/3). Repeating the procedure above m-times, then
R+ = O(ε(4/3)m

). Let m→+∞. Then we get a Hamiltonian

H∞ = N∞ = (ω̃, I)+
1
2
〈(λ +B(θ))z,z〉 .

This completes the proof of Theorem 6.
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3 Solutions of the linearized equations

We are now in position to solve the homological equations (5, 6, 7). Solving (5, 6)
is easy. We focus our attention on the solution of (7). Observe that

(
0 1
−1 0

)
=
√
−1Q∗0

(
1 0
0 −1

)
Q0, Q0 =

1√
2

(
1
√
−1

1 −
√
−1

)

where ∗ is the conjugate transpose of the matrix. It is easy to see that Q∗0 = Q−1
0 . Let

Q = diag
(

Q0 : j ∈ Z
d
)

, E± = diag
((

1 0
0 −1

)
: j ∈ Z

d
)

.

Then J =
√
−1Q∗E±Q and QΛQ∗ = Λ . Notice that E2

0 is the identity operator of
�2(Zd)⊗ �2(Zd). Left-multiplying (7) by Q we get

ωE±∂θ (E±QFz)+
√
−1QΛQ∗(E±QFz)+

√
−1Γ (QBQ∗(E±QFz)) = ΓQRz.

Let Fz = E±QFz,Rz = QRz and B = QBQ∗. Note ΓQ = QΓ . Then

ωE±∂θFz +
√
−1ΛFz +

√
−1Γ (BFz) = ΓRz. (1)

Write
Fz = ∑

|k|�K
F̂(k)e

√
−1(k,θ), B = ∑

|k|�K
B̂(k)e

√
−1(k,θ),

Rz =
√
−1 ∑

|k|�K
R̂(k)e

√
−1(k,θ).

Let

T = diag(±(k,ω)+λ j : |k|� K, j ∈ Z
d ,k ∈ Z

n)

B̂ = (B̂(k− l) : |k|, |l|� K,k, l ∈ Z
n)

F̂ = (F̂(k) : |k|,� K,k ∈ Z
n), R̂ = (R̂(k) : |k|,� K,k ∈ Z

n).

Then (7) can be written as
(T + B̂)F̂ = R̂. (2)

Our goal is to prove that the operator T + B̂ is invertible and to find its inverse.
To this end, we need some assumptions.

A1. Assume ω = ω(ξ ), B = B(θ ,ξ ) depend smoothly (in the sense of Whitney3) on
a parameter vector ξ ∈ O a compact set with Meas(O) > 0, and

|det(∂ω/∂ξ )|� C > 0 , (3)

sup
θ∈D(s),ξ∈O

||B(θ ,ξ )||p � 1, sup
θ∈D(s),ξ∈O

∣∣∣∣∂ξB(θ ,ξ )
∣∣∣∣

p � 1. (4)

3 We will not mention this further.
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We denote by C a universal positive constant whose value may be different in differ-
ent places. Let K� = Cardinality of {k ∈ Z

n : |k| � K} and H p = H p⊗C
K�

with
norm

||u||2p =
K�

∑
j=1
||u j||2p, ∀ u = (u1, ...,uK�) ∈H p .

It follows from (8) that B̂ is bounded linear operator in H p, and

||B̂||p � 1, ||∂ξ B̂||p � 1, ∀ξ ∈ O (5)

where || · ||p is the operator norm of H p.

A2. Assume the original Hamiltonian H = N +R is real for real arguments.

It follows that for (θ ,ξ ) ∈ D(s)×O with s = 0, the operator B(θ ,ξ ) is self-adjoint
in the space �2(Zd)×�2(Zd) (note �2(Zd)×�2(Zd) = H p with p = 0). If we regard
B as a matrix of infinite dimension, then B(θ ,ξ )

T
= B(θ ,ξ ) where the bar means

conjugate and T means transpose. Recall that B = QBQ̄T . We have

B(θ ,ξ )
T

= B(θ ,ξ ), ∀ (θ ,ξ ) ∈ D(0)×O.

It follows from this that

B̂(k− l)
T

= B̂(l− k), ∀ k, l ∈ Z
n. (6)

Then it follows from (6) that B̂ is self-adjoint in the space �2 := �2(Zd)× �2(Zd)×
C

K�
. Note the matrix T + B̂ is of infinite dimension. We will reduce the inverse of

it to one of a matrix of finite dimension. To this end, we need a third assumption.

A3. Assume the normal frequencies λ j’s satisfy the following growth conditions:

λ j � C| j|κ , ∃ κ > 0, ∀ j ∈ Z
d .

Let

M = 1+
( supξ |ω(ξ )|

C
K
)1/κ

:= CK1/κ .

We see that when |k|� K, | j|� M,

|± (k,ω)+λ j|� 1 . (7)

Write
T1 = diag(±(k,ω)+λ j : |k|� K, | j|� M) ,

T2 = diag(±(k,ω)+λ j : |k|� K, | j|� M) .
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Then T = T1⊕T2. And by (7) we get

||T−1
2 ||p � 1.

While regarding B̂ as a matrix of infinite dimension, we denote by B̂i j(k− l) the
elements of matrix where i, j ∈ Z

d ,k, l ∈ Z
n, |k|, |l|� K. We decompose B̂ into four

blocks as follows:

B̂11 = (Bi j(k− l) : |k|, |l|� K, |i|, | j|� M)

B̂12 = (Bi j(k− l) : |k|, |l|� K, |i|� M, | j|> M)

B̂21 = (Bi j(k− l) : |k|, |l|� K, |i|> M, | j|� M)

B̂22 = (Bi j(k− l) : |k|, |l|� K, |i|> M, | j|> M).

Then

B̂ =

(
B̂11 B̂12

B̂21 B̂22

)
.

According to (5),

||B̂i j||p � 1, ||∂ξ B̂i j||p � 1, ∀ξ ∈ O, i, j ∈ {1,2}. (8)

By ||T−1
2 ||p � C and ||B̂22||p � 1, we get

||(T2 + B̂22)−1||p � ||
∞

∑
j=0
||(T−1

2 B̂22) j||p||T−1
2 |||p � C.

Set

B̂le f :=
(

E1 0
−(T2 + B̂22)−1B̂21 E2

)

Brig :=
(

E1 −B̂12(T2 + B̂22)−1

0 E2

)
,

where E1 (E2, respectively) is a unit matrix of the same order as that of T1 (T2,
respectively). From ||(T2 + B̂22)−1||p � C, it is easy to verify that

||B̂−1
le f ||p, |||B̂

−1
rig ||p � C

Let
B̂11 = B̂11− B̂12(T2 + B̂22)−1B̂21

Then the inverse of T + B̂ exists;

(T + B̂)−1 = B̂−1
rig

(
(T1 + B̂11)−1 0

0 (T2 + B̂22)−1

)
B̂−1

le f
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and
||(T + B̂)−1||p � C||(T1 + B̂11)−1||p ,

provided that the inverse of T1 + B̂11 exists.
We are now in position to investigate the inverse of T1 + B̂11. First of all, we

would like to point out that the matrix B̂11 is of finite order, and the order is bounded
by

K∗ := K2nMd
� K2n+dκ−1

.

Secondly, it follows from the self-adjointness of B̂ that the matrix B̂11 is also self-
adjoint. Thirdly, by (8) we have

||B̂11||p � 1, qquad||∂ξ B̂11||p � 1 .

Fourthly, since each element of B̂ is continuously differentiable in ξ ∈O, the matrix
B̂11 is also continuously differentiable in ξ ∈ O. In view of (3), we can regard ω
itself as a parameter vector instead of ξ , or we can assume ω = ξ . Without loss of
generality, we assume the first entry ω1 of ω is in the interval [1,2]. Then the matrix
T1 + B̂11 is non-singular if and only if

A1 := ω−1
1 T1 +ω−1

1 B̂11

is non-singular, and
||(T1 + B̂11)−1||p � C||A−1

1 ||p.
Let

Ξ : ς1 = 1/ω1, ς2 = ω2/ω1, ..., ςn = ωn/ω1 .

Then it is easy to get
∣∣∣∣det

∂ (ς1, ...,ςn)
∂ (ω1, ...,ωn)

∣∣∣∣ = ω−(n+1)
1 � C > 0 .

Therefore, we can regard ς as a parameter vector. It is easy to see that

Meas O � C Meas Ξ(O) � C Meas O

and
||B̂11(ξ (ς))|| � 1 , ||∂ςB̂11(ξ (ς))|| � 1 . (9)

After introducing the parameter ς , we can write

A1 =diag (±(k1 +
n

∑
l=2

klςl)+ ς1Ω 0
j : k = (k1, ...,kn) ∈ Z

n, |k|� K, | j|� M)

+ ς1B̂11(ξ (ς)).
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Since B̂11 is self-adjoint, so is A1 = A1(ς) for any ς ∈ Ξ(O). Therefore, there are
continuously differentiable functions µ1(ς), · · · ,µK∗(ς) representing the eigenval-
ues of A1 for ς ∈ Ξ(O).

Lemma 2 There exists a subset O+ ⊂ O with Meas(ΞO+) � (MeasΞ(O))(1−
CK−1 such that for any ς ∈ Ξ(O+),

µ j(ς) � (KK∗)−1 > 0.

We postpone the proof to the end of this section. Since A1 is self-adjoint, there
exists a matrix-valued function U(ς) of order K∗ which depends on ς , such that for
every ς ∈ Ξ(O+) the following equalities hold:

A1(ς) = U(ς)diag(µ1(ς), · · · ,µK∗(ς))U∗(ς),

and
U(ς)(U(ς))∗ = (U(ς))∗U(ς) = E

where E is the unit matrix of order K∗ and U∗ is the conjugate transpose of U . It
follows that for ς ∈ Ξ(O+),

||A1(ς)||� max{µ j : j = 1, ...,K∗}� KK∗

where || · || is the �2 norm of matrix. Since A1 is of order K∗,

||A1(ς)||p � KK∗(K∗)p := KC.

Thus,

||(T + B̂)−1||p � ||(T1 + B̂11)−1||p � ||A1(ς)||p � KC, ξ ∈ O+ .

Assume that
sup

D(s)×O

||∂ l
ξRz(θ ,ξ ))||p � ε, l = 0,1 .

It follows that

||F̂ ||p � KC||R̂||p � KC sup
D(s)×O

||Rz(θ ,ξ ))||p � KCε .

Note |||∂ξ (T1 + B̂11)|||p � K. We have that for any ξ ∈ O+,

||∂ξ (T1+B̂11)−1||p=||(T1+B̂11)−1(∂ξ (T1 +B̂11))(T1 +B̂11)−1||p � K1+2C := KC.

It follows that
||∂ξ (T + B̂)−1||p � KC, ξ ∈ O+.

Moreover,
||∂ξ F̂ ||p � KCε.
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Note
||F̂||2p = ∑

|k|�K
||F̂z(k)||2p + ∑

|k|�K
||F̂ z̄(k)||2p.

Then

sup
D(0)×O+

||Fu(x,ξ )||2p = sup
D(0)×O+

|| ∑
|k|�K

F̂u(k)e
√
−1(k,x)||2p

� ∑
|k|�K

||F̂u(k)||2p � (KCε)2

that is,
sup

D(0)×O+

||Fu(x,ξ )||p � KCε . (10)

Similarly,
sup

D(0)×O+

||∂ξFu(x,ξ )||p � KCε .

Lemma 3 We can extend the domain D(0) to D(s) such the above inequalities still
hold;

sup
D(s)×O+

||Fu(x,ξ )||p � KCε, sup
D(s)×O+

||∂ξFu(x,ξ )||p � KCε .

Proof. Rewrite Fu = (Fz,Fz̄)) and

B =
(

Bzz Bzz̄

Bz̄z Bz̄z̄

)
.

Then the homological equation (7) can be rewritten as

−
√
−1ω ·∂θFz +Ω 0Fz +Γ ((ΓBzz̄)Fz− (ΓBzz)Fz̄) =−

√
−1ΓRz(x,ξ ) ,

√
−1ω ·∂θFz̄ +Ω 0Fz̄ +Γ ((ΓBzz̄)Fz̄− (ΓBz̄z̄)Fz) =

√
−1ΓRz̄(x,ξ ) .

The following equalities can be fulfilled by the assumption that H is real for real
argument:

Rz = Rz̄, Bzz = Bz̄z̄, Bzz̄ = Būu = Bzz = Buū, θ ∈ D(0).

See [25] for the details. It follows that Fz(θ) = Fz̄(θ) for θ ∈ D(0). Note Fz is
analytic in D(s). Thus, Fz(θ) = Fz̄(θ) for θ ∈D(s). Let i2 =−1. In the proof of this
lemma, we can assume ω = (1, ...,1) without loss of generality. An important fact
is that λ j’s are positive. When the dimension n = 1 of the angle variable θ , the proof
shows more clearly our basic idea. Firstly, assume n = 1. Let θ = it + r. Arbitrarily
fix r ∈ R/2πZ. Write F(t) = Fz̄(it + r). By the second homological equation and
using the method of variation of constants,
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F(t) = Fz̄(r)−
∫ t

0
e−Λ(t−τ)(BF +Rz(it)))dτ, t ∈ [0,s] . (11)

Let || · ||p,s = supD(s) || · ||p where we write formally

BF = Γ [ΓBzz̄(iτ))F(iτ)+(ΓBzz̄)F(it)].

Note ||B||p,s � δ � 1, ||Rz||p,s � ε . And note ||Fz||p = ||Fz̄||p. By (10) we have
||Fz̄(r)||p = ||Fz(r)||p � KCε . Therefore, by (11) we get

||F(t)||p � KCε +δ ||Fz||p,s, t ∈ [0,s].

By the first homological equation, we get

||F(it)||p � KCε +δ ||Fz||p,s, t ∈ [−s,0].

Thus,
||F(it)||p � KCε +δ ||Fz||p,s, t ∈ [−s,s].

That means

||Fz̄(it + r)||p � KCε +δ ||Fz||p,s, t ∈ [−s,s],r ∈ R/2πZ.

This leads to
||Fz||p,s � 2KCε := KCε.

That is
sup

D(s)×O+

||Fz(x,ξ )||p � KCε .

Now let us consider the dimension n = 2. Fix an arbitrary r ∈R/2πZ. Let θ1 = it +r
with t ∈ [0,s], let F(t) := Fz̄(it +r,φ), and restrict φ ∈R. By the second homological
equation, we have

F(t) = Fz̄(r,φ)−
∫ t

0
e−Λ(t−τ)e−i(t−τ)∂φ (BF +Rz), t ∈ [0,s] (12)

For any analytic 2π-periodic function f : {x : | Imx| � s} → H p, using Cauchy’s
theorem, we have

sup
x∈R/2πZ

||e−i(t−τ)∂x f (x)||p � e|t−τ |/s|| f ||p,s.

By (12) we have

||Fz̄(it + r,φ)||p � ||Fz̄(r,φ)||p +
∫ t

0
e(t−τ)/s[δ ||Fz̄||p,s + ||Rz||p,s]dτ

� KCε +δ ||Fz̄||p,s, t ∈ [0,s],φ ∈ R.
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Again by the first homological equation and noting Fz = Fz̄, we have

||Fz̄(it + r,φ)||p � KCε +δ ||Fz̄||p,s, t ∈ [−s,s],φ ∈ R (13)

For any constant c, the line L = L(c) : x−y = c is a characteristic line of ∂x +∂y. Let

F(y) := F(i(y+ c)+ r1, iy+ r2), y ∈ [0,s],r1,r2 fixed.

By the second homological equation, we have

F(y) = Fz̄(ic+ r1,r2)−
∫ y

0
e−Λ(y−τ)(BF +Rz)dτ, y ∈ [0,s]. (14)

It follows that

||Fz̄(i(y+ c)+ r1, iy+ r2)||p � ||Fz̄(ic+ r1,r2)||p +δ ||Fz̄||p,s + ε, y ∈ [0,s].

Moreover, by the first homological equation, we have

||Fz̄(i(y+c)+ r1, iy+ r2)||p � ||Fz̄(ic+ r1,r2)||p +δ ||Fz̄||p,s +ε, y+c,y ∈ [−s,s].

By (13),

||Fz̄(i(y+ c)+ r1, iy+ r2)||p � KCε +2δ ||Fz̄||p,s + ε, y+ c,y ∈ [−s,s].

Let the line L(c) run over the square [−s,s]2, we have

||Fz̄||p,s � KCε +2δ ||Fz̄||p,s + ε.

It follows
||Fz̄||p,s � 4KCε := KCε.

We will omit the proof of ||∂ξFz̄||p,s � KCε . This proof is finished by mathematical
induction on n.

Proof of Lemma 2. Let

Ξ(Ol) = {ς ∈ Ξ(O) : |µl |< 1/(KK∗)}, l = 1, ...,K∗.

Take an arbitrary µ = µ(ς) ∈ {µ1(ς), ...,µK∗(ς)}. Let φ be the normalized eigen-
vector corresponding µ . It is easy to prove that ∂ς µ = ((∂ςA1)φ ,φ). By computing
∂ςA1 and using (9) and Lemma 4, we get

∂ς µ =((diag(λ j : |k|� K, | j|� M))φ ,φ)+o(1)

� min{λ j : j ∈ Z
d}+o(1) � C > 0.

It follows that Meas Ξ(Ol)� 1/(KK∗). Thus,

Meas
K∗⋃

l=1

Ξ(Ol) < 1/K.
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Let

Ξ(O) = Ξ(O)\
K∗⋃

l=1

Ξ(Ol).

Therefore,

Meas Ξ(O) � Meas Ξ(O)(1−O(
1
K

))

and for any ς ∈ Ξ(O),
|µl(ς)|� 1/KK∗.

This completes the proof of Lemma 2.

4 Applications to partial differential equations in higher
dimensions

We will just give the application of Theorem 6 to a nonlinear wave equation
in higher dimension. See [25] for other applications such as to the nonlinear
Schrödinger equation.

Consider the nonlinear wave equation

utt −$u+Mσu+ εu3 = 0, θ ∈ T
d , d � 1 (1)

where u = u(t,θ) and$= ∑d
j=1 ∂ 2

θ j
and Mσ is a real Fourier multiplier

Mσ cos( j,θ) = σ j cos( j,θ), Mσ sin( j,θ) = σ j sin( j,θ), σ j ∈ R, j ∈ Z
d .

Pick a set ϖ = {ϖ1, ...,ϖn} ⊂ Z
d . Let Z

d = Z
d \{ϖ1, ...,ϖn}. Following Bourgain

[4], we assume {
σϖl = σl , (l = 1, ...,n)
σ j = 0, j ∈ Z

d .

Theorem 7 ([25]) Let ω0
l =

√
λϖl =

√
|ϖl |2 +σl , (l = 1, ...,n) and σ =

(σ1, ...,σn) and ω0 = (ω0
1 , ...,ω0

n ). Then there is a subset O0 ⊂ [1,2]d with
Meas O0 � (1−Cε) such that for any σ ∈ O0, the nonlinear wave equation with
small ε has a rotational invariant torus of frequency vector ω with |ω−ω0|= O(ε).
The motion on the torus can be expressed by u(t,θ) which is quasi-periodic (in time)
with frequency ω and u(·,θ) : R→H p(Tn) is an analytic map, and thus the solution
u(t,θ) is, at least, a sufficiently smooth function of (t,θ) if p is taken large enough.

Acknowledgements The author is very grateful to Prof. W. Craig for his help.
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Appendix

Lemma 4 Assume the matrix A = A(ς) is self-adjoint and smooth in ς . Let µ =
µ(ς) be any eigenvalue of A and φ be the eigenfunction corresponding to µ . Then
we have

∂ς µ = ((∂ςA)φ ,φ).

Proof. Note φ is not necessarily smooth in ς . Consider the difference operator:

$ f =$ς1ς2 f =
f (ς1)− f (ς2)

ς1− ς2
.

Apply$ to Aφ = µφ ,

($A)φ +A($φ) = ($µ)φ +µ($φ).

Taking inner product with φ ,

〈($A)φ ,φ〉+ 〈A($φ),φ〉= 〈($µ)φ ,φ〉+µ〈$φ ,φ〉.

Since A is self-adjoint,

〈A($φ),φ〉= 〈($φ),Aφ〉= µ〈$φ ,φ〉.

Thus
〈($A)φ ,φ〉= 〈($µ)φ ,φ〉= ($µ)〈φ ,φ〉=$µ .

Letting ς1 → ς1 := ς , we have ∂ς µ = ((∂ςA)φ ,φ).
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Four lectures on KAM for the non-linear
Schrödinger equation

L.H. Eliasson1 and S.B. Kuksin2

Abstract We discuss the KAM-theory for lower-dimensional tori for the non-linear
Schrödinger equation with periodic boundary conditions and a convolution potential
in dimension d. Central in this theory is the homological equation and a condition
on the small divisors often known as the second Melnikov condition. The difficulties
related to this condition are substantial when d � 2.

We discuss this difficulty, and we show that a block decomposition and a Töplitz-
Lipschitz-property, present for non-linear Schrödinger equation, permit to overcome
this difficuly. A detailed proof is given in [EK06].

1 The non-linear Schrödinger equation

We formulate the equation as an ∞-dimensional Hamiltonian system and as a prob-
lem of persistency of lower-dimensional invariant tori.

1.1 The non-linear Schrödinger equation

We consider the ∆ -dimensional nonlinear Schrödinger equation

−iu̇ =−∆u+V (x)∗u+ ε
∂F
∂ ū

(x,u, ū) ,

for u = u(t,x) under the periodic boundary condition x ∈ T
d . The convolution

potential V : T
d → C have real Fourier coefficients V̂ (a), a ∈ Z

d , and we shall
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2 Heriot-Watt University, Department of Mathematics, Edinburgh
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suppose it is analytic. (This equation is a popular model for the ‘real’ NLS equation,
where instead of the convolution term V ∗ u we have the potential term Vu.) F is
an analytic function in Reu, Imu and x. When F(x,u, ū) = (uū)2 this is the cubic
Schrödinger equation.

For ε = 0 the equation is linear and has time–quasi-periodic solutions

u(t,x) = ∑
a∈A

û(a)ei(|a|2+V̂ (a))tei<a,x>,

where A is any finite subset of Z
d and |û(a)| > 0. We shall treat ωa = |a|2 +

V̂ (a), a ∈A as free parameters in some domain U ⊂ R
A .

For ε 	= 0 we have under general conditions:
If |ε| is sufficiently small, then there is a large subset U ′ of U such that for

all ω ∈U ′ the solution u persists as a time–quasi-periodic solution which has all
Lyapounov exponents equal to zero and whose linearized equation is reducible to
constant coefficients.

In these lectures we shall describe the basic difficulty related to this result –
often known as the second Melnikov condition – and the ideas behind its solution.
A detailed proof is given in [EK06].

1.2 An ∞∞∞-dimensional Hamiltonian system

We write {
u(x) = ∑a∈Zd uaei<a,x>

u(x) = ∑a∈Zd vaei<−a,x> (va = ūa).

In the symplectic space {(ua,va) : a ∈ Z
d}= C

Z
d ×C

Z
d
,

i ∑
a∈Zd

dua∧dva ,

the equation becomes a Hamiltonian system
{

u̇a = i ∂
∂va

(h+ ε f )

v̇a =−i ∂
∂ua

(h+ ε f )
a ∈ Z

d ,

with an integrable part

h(u,v) = ∑
a∈Zd

(|a|2 +V̂ (a))uava

plus a perturbation

ε f (u,v) = ε
1

(2π)d

∫

Td
F(x,u(x),u(x))dx.
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The second derivatives of f have a Töplitz invariance:

∂ 2 f
∂ua+c∂vb+c

=
∂ 2 f

∂ua∂vb

and
∂ 2 f

∂ua+c∂ub−c
=

∂ 2 f
∂ua∂ub

(and similar for the second derivatives with respect to va,vb), for any c ∈ Z
d . This is

easy to see for the cubic Schrödinger where

f (u,v) = ∑
a+b−c−d=0

uaubvcvd . (1)

For example
∂ 2 f

∂ua∂ub
= 2 ∑

c+d=a+b
vcvd

which clearly have this invariance.
The non-linear Schrödinger is a real Hamiltonian system. Indeed if we let

ζa =
(
ξa
ηa

)
= C

(
ua
va

)
,

with
C =

1√
2

(
1 1
−i i

)
, (2)

then, in the symplectic space {(ξa,ηa) =: a ∈ Z
d}= R

Z
d ×R

Z
d
,

∑
a∈Zd

dξa∧dηa ,

the equation becomes
{
ξ̇a =− ∂

∂ηa
(h+ ε f )

η̇a = ∂
∂ξa

(h+ ε f )
a ∈ Z

d ,

also written ζ̇a = J ∂
ζa

(h+ ε f ), with the integrable part

h(ξ ,η) =
1
2 ∑

a∈Zd

(|a|2 +V̂ (a))(ξ 2
a +η2

a )

plus the perturbation ε f (ξ ,η) which is real, because F is a real function of Reu and
Imu.

The Töplitz-invariance of the second derivatives can of course be formulated in
these coordinates but the description is more complicated (see Sect. 5.2).
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1.3 The topology

Let L be an infinite subset of Z
d . The space

l2
γ (L ,R), γ � 0,

is the set of sequences of real numbers ξ = {ξa : a ∈L }, such that

‖ξ‖γ =
√
∑

a∈L

|ξa|2〈a〉2m∗e2γ|a| < i 〈a〉= max(|a|,1).

There is a natural identification of l2
γ (L ,R)× l2

γ (L ,R), whose elements are (ξ ,η),
with l2

γ (L ,R2), whose elements are {ζa = (ξa,ηa) : a ∈L }, and we will not dis-
tinguish between them.

We shall assume that m∗ > d
2 . Then, in the phase space l2

0(Zd ,R2), our
Hamiltonian h + ε f is analytic (in some domain O in l2

0(Zd ,R)). To see that f
is analytic, consider for example the cubic Schrödinger in the complex variables
(1). Using the estimate

∑
a
|ua|�

√
∑
a
〈a〉−2m∗ ‖u‖0 ,

we have
| f (u,v)|� ‖u‖2

0 ‖v‖
2
0 ,

and it follows easily that f is analytic.
Let <,> denote the “pairing”

<ζ ,ζ ′>= ∑
a∈Zd

(
ξaξ ′a +ηaη ′a

)
.

Since the phase space is a Hilbert space, its first differential

l2
0(L ,R2) � ζ̂ �→<ζ̂ ,∂ζ f (ζ )>

defines a vector ∂ζ f (ζ ), its “gradient”, (with respect to the pairing), and its second
differential

l2
0(L ,R2) � ζ̂ �→ 1

2
<ζ̂ ,∂ 2

ζ f (ζ )ζ̂>

defines a matrix ∂ 2
ζ f (ζ ) : L ×L → gl(2,R), its “Hessian”, (with respect to the

pairing), which is symmetric, i.e.

t(
∂ 2 f

∂ζa∂ζb
(ζ )) =

∂ 2 f
∂ζb∂ζa

(ζ ).

For ζ ∈O∩ l2
γ (Z

d ,R2), γ > 0, the gradient and the Hessian verifies certain prop-
erties of exponential decay. These properties are most easily seen in the complex
variables u,v. For example for the cubic Schrödinger (1) the gradient of f verifies
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| ∂ f
∂ua

|� cte.‖u‖γ ‖v‖
2
γ e−γ|a|.

(and similar for the derivative with respect to va). The Hessian of f verifies

| ∂ 2 f
∂ua∂vc

|� cte.‖u‖γ ‖v‖γ e−γ |a−c|,

and

| ∂ 2 f
∂ua∂ub

|� cte.‖v‖2
γ e−γ |a+b|

(and similar for the second derivative with respect to vc,vd).
The exponential decay of the second derivatives can of course be formulated

in the real coordinates (ξ ,η) but the description is again more complicated (see
Sect. 5.2).

1.4 Action-angle variables

Let A be a finite subset of Z
d and fix

0 < pa, a ∈A .

The (#A )-dimensional torus

1
2 (ξ 2

a +η2
a ) = pa, a ∈A

ξa = ηa = 0, a ∈L = Z
d \A ,

is invariant for the Hamiltonian flow when ε = 0. In the symplectic subspace R
A ×

R
A we introduce, in a neighborhood of this torus, action-angle variables (ra,ϕa),

a ∈A ,
ξa =

√
2(pa + ra)cos(ϕa)

ηa =
√

2(pa + ra)sin(ϕa).

These coordinates are analytic near r = 0 because the pa’s are all positive.
In these coordinates the Hamiltonian equations becomes

⎧
⎪⎪⎨
⎪⎪⎩

ζa = J ∂
∂ζa

(h+ ε f ) a ∈L

ṙa =− ∂
∂ϕa

(h+ ε f )

ϕ̇a = ∂
∂ ra

(h+ ε f )
a ∈A

with the integrable part

h(ξ ,η ,r) = ∑
a∈A

ωara +
1
2 ∑a∈L

Ωa(ξ 2
a +η2

a )



184 L.H. Eliasson and S.B. Kuksin

(modulo a constant), where

ωa = |a|2 +V̂ (a), a ∈A ,

are the basic frequencies, and

Ωa = |a|2 +V̂ (a), a ∈L ,

are the normal frequencies (of the invariant torus). The perturbation ε f (ξ ,η ,r,ϕ)
will be a function of all variables (under the assumption, of course, that the torus
lies in the domain of F).

Since h+ ε f is analytic in (some domain in) the phase space l2
0(L ,R2)×R

A ×
T

A , it extends to a holomorphic function on a complex domain

O0(σ ,µ ,ρ) =

⎧
⎪⎨
⎪⎩
‖ζ‖0 =

√
‖ξ‖2

0 +‖η‖2
0 < σ

|r|< µ
| Imϕ|< ρ.

1.5 Statement of the result

The Hamiltonian h + ε f is a standard form for the perturbation theory of lower-
dimensional (isotropic) tori with one exception: it is strongly degenerate. We there-
fore need external parameters to control the basic frequencies and the simplest
choice is to let the basic frequencies (i.e. the potential itself) be our free parame-
ters. The parameters will belong to a set

U ⊂ {ω ∈ R
A : |ω|� C1} . (3)

The potential V will be analytic and

|V̂ (a)|� C2e−C3|a|, C3 > 0, ∀a ∈L . (4)

The normal frequencies will be assumed to verify
⎧
⎨
⎩
|Ωa|� C4 > 0
|Ωa +Ωb|� C4
|Ωa−Ωb|� C4 |a| 	= |b|

∀a,b ∈L . (5)

This is fulfilled, for example, if V is small and A � 0, or if V is arbitrary and A is
sufficiently large.

Theorem 1.1. Under the above assumptions, for ε sufficiently small there exist a
subset U ′ ⊂U, which is large in the sense that

Leb(U \U ′) � cte.εexp ,



Four lectures on KAM for the non-linear Schrödinger equation 185

and for each ω ∈U ′, a real analytic symplectic diffeomorphism Φ

O0(
σ
2

,
µ
2

,
ρ
2

)→ O0(σ ,µ ,ρ)

and a vector ω ′ = ω ′(ω) such that (hω ′ + ε f )◦Φ equals (modulo a constant)

<ω,r> +
1
2
<ζ ,A(ω)ζ> +εg ,

where
g ∈O(|r|2 , |r|‖ζ‖0 ,‖ζ‖3

0)

and the symmetric matrix A(ω) has the form
(
Ω1(ω) Ω2(ω)
tΩ2(ω) Ω1(ω)

)

with Ω1 + iΩ2 Hermitian and block-diagonal, with finite-dimensional blocks.
Moreover, Φ = (Φζ ,Φr,Φϕ) verifies, for all (ζ ,ϕ,r) ∈O0(σ2 , µ2 , ρ2 ),

∥∥Φζ −ζ
∥∥

0 + |Φr−ρ|+
∣∣Φϕ −ϕ

∣∣ � βε,

and the mapping ω �→ ω ′(ω) verifies
∣∣ω ′ − id

∣∣
Lip(U ′) � βε.

The exponent exp only depends on the dimensions d,#A ,m∗, the constant cte.
depends on the dimensions and on C1, . . . ,C4, and the constant β also depends on
V and F.

It follows from this theorem that Φ({0}× {0}×T
A ) is a KAM-torus for the

Hamiltonian system of h + ε f , and it implies the result mentioned in Sect. 1.1. We
discuss this notion and its consequences in the next section.

Theorem 1.1, as well as a more generalized version, is proven in [EK06].

1.6 KAM-tori

A KAM-torus of a Hamiltonian system in R
2L ×R

A ×T
A is a finite-dimensional

torus satisfying

(i) Invariance – it is invariant under the Hamiltonian flow
(ii) Linearity – the flow on the torus is conjugate to a linear flow ϕ �→ ϕ + tω

A torus with the two properties (i) + (ii) is nothing more and nothing less than
a quasi-periodic solution when translated into cartesian coordinates. Often, as
we shall do in this paper, one also requires
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(iii) Reducibility – the linearized equations (the “variational equations”) on the
torus are conjugate to a constant coefficient system of the form

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

dζ̂
dt = JAζ̂
dr̂
dt = 0
dϕ̂
dt = β r̂

and JA has a pure point spectrum

If the quasi-periodic solution has property (iii), then questions related to linear
stability and Lyapunov exponents “reduce” to a study of a linear system of constant
coefficients, which permits (at least for finite-dimensional systems) to answer such
questions and to construct higher order normal forms near the torus.

Reducibility is automatic in two cases: if the torus is one-dimensional (and phase-
space is finite-dimensional) it is just a periodic solution, and (iii) is a general fact
called Floquet theory; if the torus is Lagrangian (i.e. there is not ζ -part), then (iii)
follows from (i) + (ii) by a simple integration [dlL01]. In general, however, it is a
delicate property which is far from being completely understood.

KAM is a perturbation theory of KAM-tori. Not only is reducibility an important
outcome but also an essential ingredient in the proof. It simplifies the iteration since
it reduces all approximate linear equations to constant coefficients. But it does not
come for free. It requires a lower bound on small divisors of the form

(∗∗) |<k,ω> +Ωa(ω)±Ωb(ω)| , k ∈ Z
A , a,b ∈L ,

where Ωa(ω), a∈L are the imaginary parts of the eigenvalues of JA(ω) The basic
frequencies ω will be fixed during the iteration – that is what parameters are there
for – but the normal frequencies will vary. Indeed the Ωa(ω) are perturbations of
|a|2 + V̂ (a) which are not known a priori but are determined by the approximation
process.1

The difficulty associated with the small divisors (∗∗) may be very large. There is
a perturbation theory which avoids this difficulty, but to a high cost: the approximate
linear equations are no longer of constant coefficients. Moreover it gives persistence
of the invariant tori but no reducibility.

1.7 Consequences of Theorem 1

The consequences of the theorem is that Φ({0,0}×T
A ) is a KAM-torus for hω ′ +

ε f . In order to see this it suffices to show that {ζ = r = 0} is a KAM-torus for
k + εg,

1 A lower bound on (∗∗) is strictly speaking not necessary for reducibility. It is necessary, however,
in order to have reducibility with a reducing transformation close to the identity.
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k =<ω,r> +
1
2
<ζ ,A(ω)ζ> .

Since
∂g
∂ζ

=
∂g
∂ϕ

=
∂g
∂ r

= 0

for ζ = r = 0, it follows that {ζ = r = 0} is invariant with a flow ϕ �→ ϕ + tω . The
linearized equations on this torus become

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dζ̂
dt

= JA(ω)ζ̂ + εJa(ϕ + tω,ω)r̂

dr̂
dt

= 0

dϕ̂
dt

= ε <ta(ϕ + tω,ω), ζ̂> +εb(ϕ + tω,ω)r̂

where2 a(ϕ) = ∂ 2

∂ r∂ζ g(0,0,ϕ) and b(ϕ) = ∂ 2

∂ r2 g(0,0,ϕ).
These equations can be conjugated to constant coefficients if the imaginary part

of the the eigenvalues of JA(ω),

±iΩa(ω), a ∈L ,

are non-resonant with respect to ω . In order to see this we consider the equations

(i)
<∂ϕZ1(ϕ),ω>= JAZ1(ϕ)+ εJa(ϕ),

which has a unique smooth solution if ω and Ωa(ω), a ∈L , verify an appro-
priate Diophantine condition

(ii)
<∂ϕZ2(ϕ),ω>=−Z2(ϕ)JA+ ε ta(ϕ)

which has a unique smooth solution under the same condition on ω
(iii)

<∂ϕZ3(ϕ),ω>= ε ta(ϕ)Z1(ϕ)+ εb(ϕ)− εβ

which has a smooth solution if ω is Diophantine and if we chose β such that
the meanvalue of the right hand side is = 0.

If we now take

Z(ϕ) =

⎛
⎝

I Z1(ϕ) 0
0 I 0

Z2(ϕ) Z3(ϕ) I

⎞
⎠ ,

2 t is used both as the independent time-variable and to denote transposition, without confusion
we hope.
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then < ∂Z
∂ϕ (ϕ),ω>

=

⎛
⎝

JA εJa(ϕ) 0
0 0 0

ε ta(ϕ) εb(ϕ) 0

⎞
⎠Z(ϕ)−Z(ϕ)

⎛
⎝

JA 0 0
0 0 0
0 εβ 0

⎞
⎠ ,

so Z conjugates the linearized equations to
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dζ̂
dt

= JA(ω)ζ̂
dr̂
dt

= 0
dϕ̂
dt

= εβ r̂

which is constant coefficients.
The conditions on ω will hold if we restrict the set U ′ arbitrarily little.
If

C =
1√
2

(
I I
−iI iI

)
, (6)

then

C−1JA(ω)C = i
( tΩ(ω) 0

0 −Ω(ω)

)
,

since Ω(ω) = Ω1(ω)+ iΩ2(ω) is Hermitian. Moreover, there is a unitary matrix
D = D(ω) such that

t D̄ΩD = diag(Ωa)

is a real diagonal matrix, and therefore

(
D 0
0 D̄

)−1

i
( tΩ 0

0 −Ω

)(
D 0
0 D̄

)
= i

(
diag(Ωa) 0

0 −diag(Ωa)

)

So the linearized equations on the torus have only quasi-periodic solutions and,
hence, the torus is linearly stable.

1.8 References

For finite dimensional Hamiltonian systems the first proof of persistence of stable
(i.e. vanishing of all Lyapunov exponents) lower dimensional invariant tori was ob-
tained in [Eli85, Eli88] and there are now many works on this subjects. There are
also many works on reducibility (see for example [Kri99, Eli01]) and the situation
in finite dimension is now pretty well understood in the perturbative setting. Not so,
however, in infinite dimension.
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If d = 1 and the space-variable x belongs to a finite segment supplemented by
Dirichlet or Neumann boundary conditions, this result was obtained in [Kuk88]
(also see [Kuk93, Pös96]). The case of periodic boundary conditions was treated
in [Bou96], using another multi-scale scheme, suggested by Fröhlich–Spencer in
their work on the Anderson localization [FS83]. This approach, often referred to
as the Craig–Wayne scheme, is different from the KAM-scheme described here. It
avoids the cumbersome condition (∗∗) but to a high cost: the approximate linear
equations are not of constant coefficients. Moreover, it gives persistence of the in-
variant tori but no reducibility and no information on the linear stability. A KAM-
theorem for periodic boundary conditions has recently been proved in [GY05] (with
a perturbation F independent of x) and the perturbation theory for quasi-periodic
solutions of one-dimensional Hamiltonian PDE is now sufficiently well developed
(see for example [Kuk93, Cra00, Kuk00]).

The study of the corresponding problems for d � 2 is at its early stage. Devel-
oping further the scheme, suggested by Fröhlich–Spencer, Bourgain proved persis-
tence for the case d = 2 [Bou98]. More recently, the new techniques developped by
him and collaborators in their work on the linear problem has allowed him to prove
persistence in any dimension d [Bou04]. (In this work he also treats the non-linear
wave equation.) For another, and simplified, proof of this result see [Yua07].

1.9 Notation

<,> is the standard scalar product in R
d . ‖ ‖ is an operator-norm or l2-norm. | |will

in general denote a supremum norm, with a notable exception: for a lattice vector
a ∈ Z

d we use |a| for the l2-norm.
A is a finite subset of Z

d , and L is its complement. A matrix on L is just a
mapping A : L ×L → C or gl(2,C). Its components will be denoted Ab

a. If
A1,A2,A3,A4 are scalar-valued matrices on L , then we identify

A =
(

A1 A2
A3 A4

)

with a gl(2,C)-valued matrix through

Ab
a =

(
(A1)b

a (A2)b
a

(A3)b
a (A4)b

a

)
.

The dimension d will be fixed and m∗ will be a fixed constant > d
2 .

� means � modulo a multiplicative constant that only, unless otherwise speci-
fied, depends on d,m∗ and #A .

The points in the lattice Z
d will be denoted a,b,c, . . . . Also d will sometimes be

used, without confusion we hope.
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For two subsets X and Y of a metric space,

dist(X ,Y ) = inf
x∈X ,y∈Y

d(x,y).

(This is not a metric.) Xε is the ε-neighborhood of X , i.e.

{y : dist(y,X) < ε}.

Let Bε(x) be the ball {y : d(x,y) < ε}. Then Xε is the union, over x∈ X , of all Bε(x).
If X and Y are subsets of R

d or Z
d we let

X−Y = {x− y : x ∈ X , y ∈ Y}

– not to be confused with the set theoretical difference X \Y .

2 The homological equation

Here we shall describe shortly the quadratic iteration and derive the homological
equation which is central in KAM.

2.1 Normal form Hamiltonians

This is a real Hamiltonian of the form

h =<ω,r> +
1
2
<ζ ,A(ω)ζ>, (modulo a constant)

where

A =
(
Ω1 Ω2
tΩ2 Ω1

)

is block-diagonal matrix with finite-dimensional blocks (we shall say more about
these blocks in Sect. 3) and Ω(ω) = Ω1(ω)+ iΩ2(ω) is Hermitian. Since Ω(ω) is
Hermitian the eigenvalues of JA(ω) are

±iΩa(ω) a ∈L ,

where the Ωa(ω) are the (necessarly real) eigenvalues of Ω(ω). (See the discussion
in Sect. 2.2.)

We also suppose A(ω) to be close to
(

diag(|a|2 +V̂ (a) 0
0 diag(|a|2 +V̂ (a))

)
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and
‖∂ωΩ(ω)‖� 1

4
.

This implies that Ωa(ω) is
≈ |a|2 +V̂ (a)

and C1 (or Lipschitz) -small in ω .

2.2 The KAM-iteration

Given a normal form Hamiltonian

h =<ω,r> +
1
2
<ζ ,A(ω)ζ>

and a perturbation f . Let T f be the Taylor polynomial

f (0,0,ϕ)+ <
∂ f
∂ r

(0,0,ϕ),r> + <
∂ f
∂ζ

(0,0,ϕ),ζ> +
1
2

<ζ ,
∂ 2 f
∂ζ 2 (0,0,ϕ)ζ>

of f – it may also depend on ω .
If T f was = 0 then {ζ = r = 0} would be a KAM-torus for h+ f . But in general

we only have
T f ∈ O(ε).

Suppose now there exist a Taylor polynomial s of the same form, i.e. s = T s, and
a normal form Hamiltonian

k = c(ω)+ <χ(ω),r> +
1
2
<ζ ,B(ω)ζ>

verifying
{h,s}=−T f + k, (1)

where { , } is the Poisson bracket associated to the symplectic form ∑dξa∧dηa +
∑dra∧dϕa. This equation is known as the homological equation.

Let Φ t be the flow of ⎧
⎪⎪⎨
⎪⎪⎩

ζ̇ = J ∂ s
∂ζ (ζ ,ϕ,r)

ṙ =− ∂ s
∂ϕ (ζ ,ϕ,r)

ϕ̇ = ∂ s
∂ r (ζ ,ϕ,r).

If s,k ∈O(ε), then (Φ t − id) ∈O(ε) and

(h+ f )◦Φ1 = h+ k +
∫ 1

0
d
dt (h+ t f +(1− t)k)◦Φ tdt

= h+ k +
∫ 1

0 ({h+ t f +(1− t)k,s}+ f − k)◦Φ tdt

= h+ k +
∫ 1

0 ({t f +(1− t)k,s}+ f −T f )◦Φ tdt

= h+ k +[( f −T f )+ f1].
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So Φ1 transforms h+ f to a new normal form h = h+ k plus a new perturbation f ′.
Since

T ( f ′) ∈O(ε2),

also
f ′ ∈O(ε2)

when the domain is sufficiently restricted.
If we can solve the homological equation (1), not only for the normal form

Hamiltonian h but also for all normal form Hamiltonians h′, close to h, then we will
be able to make an iteration which will converge to a solution as in Theorem 1.1 if
the estimates a good enough. So the basic thing in KAM is to solve and estimate the
solution of the homological equation.

It is clear from the discussion above that it is enough to solve a slightly weaker
version of the homological equation, namely

{h,s}=−T f + k +O(ε2). (2)

2.3 The components of the homological equation

We write s as

S01(ϕ) + <S02(ϕ),r> + <S1(ϕ),ζ> +
1
2

<ζ ,S2(ϕ)ζ>

and k as
c+ <χ,r> +

1
2
<ζ ,Bζ> .

The homological equation (2) now decomposes into four linear equations. The
first two are {

<∂ϕS01(ϕ),ω> =− f (0,0,ϕ)+ c+O(ε2)

<∂ϕS02(ϕ),ω> =− ∂ f
∂ r (0,0,ϕ)+χ +O(ε2).

(3)

In these equations, we are forced to take

c =< f (0,0, ·)> and χ =<
∂ f
∂ r

(0,0, ·)>,

where <g> is the mean value
1

(2π)d

∫

Td
g(ϕ)dϕ.

The other two are

<∂ϕS1(ϕ),ω> +JAS1(ϕ) =−∂ f
∂ζ

(0,0,ϕ)+O(ε2) (4)
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and

<∂ϕS2(ϕ),ω> +AJS2(ϕ)−S2(ϕ)JA =− ∂ 2 f
∂ζ 2 (0,0,ϕ)+B+O(ε2). (5)

The most delicate of these equations is the last one which is related to reducibility.
Let

B =
(
Ω ′

1 Ω ′
2

tΩ ′
2 Ω ′

1

)
, Ω ′ = Ω ′

1 + iΩ ′
2,

and

F(ϕ) =
∂ 2 f
∂ζ 2 (0,0,ϕ).

If we write F̃(ϕ) = tCF(ϕ)C and S̃2(ϕ) = tCS2(ϕ)C, then (5) becomes

<∂ϕ S̃2(ϕ),ω>−i
(

0 Ω
tΩ 0

)
JS̃2(ϕ)+ iS̃2(ϕ)J

(
0 Ω

tΩ 0

)

=−F̃(ϕ)+
(

0 Ω ′
tΩ ′ 0

)
+O(ε2).

This equation decouples into four equations for scalar-valued matrices. These are of
the form

<∂ϕR(ϕ),ω> +i(ΩR(ϕ)+R(ϕ)tΩ) = G(ϕ)+O(ε2), (6)

for the diagonal terms, and of the form

<∂ϕR(ϕ),ω> +i(ΩR(ϕ)−R(ϕ)Ω) = G(ϕ)−Ω ′+O(ε2) (7)

for the off-diagonal terms.
The last equation is underdetermined and there are several possible choices of

Ω ′. One such choice would be <G> which would give an Hermitian matrix, but in
general not a block diagonal matrix. So the Hamiltonian h′ = h+k would not be on
normal form. Instead we shall make a “smaller” choice.

Due to the exponential decay of the second order derivatives of the Hamiltonian
(discussed in Sect. 1.3) the matrix G verifies

|G(ϕ)b
a|� εe−γ|a−b| a,b ∈L ,

and we can truncate the matrices away from the diagonal at distance

∆′ ≈ log(
1
ε
).

We then take

(Ω ′)b
a =

{
<Gb

a> if |a|= |b|, |a−b|� ∆′
0 if not

(8)

Since the left hand side of the equations (3–7) are linear operators with constant
coefficients, equations (3–7) + (8) can be solved in Fourier series, and to get a
solution we must prove the convergence of these Fourier series and estimate the
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solution. This requires good estimates on the small divisors, i.e. the eigenvalues of
the linear operators in the left hand side.

2.4 Small divisors and the second Melnikov condition

Since the equations are to be solved only modulo O(ε2) and since all functions are
analytic in ϕ , we can truncate all Fourier series at order

∆′ ≈ log
(

1
ε

)
.

We want to bound the eigenvalues (in absolute value) in the left hand side from
below by some quantity κ which should be small but much larger than ε , say

κ = εexp

for some small exponent.
For (3), the eigenvalues of the left hand side operator are

i <k,ω> k ∈ Z
A , 0 < |k|� ∆′.

These are all larger (in absolute value) than κ for ω ∈U except on a small set of
Lebesgue measure

�(∆′)#A κ.

The eigenvalues in (4) are

i < k,ω > +iΩa(ω) k ∈ Z
A , |k|� ∆′, a ∈L ,

where the iΩa(ω):s are the eigenvalues of A(ω). By the assumption on A(ω),

Ωa(ω)≈ |a|2 +V̂ (a)

and is C1-small in ω . Therefore there are only finitely many eigenvalues which are
not large, and these can be controlled by an appropriate choice of ω .

Equation (6) is treated in the same way.
It is (7) which gives rise to serious problems. If we define Ω ′ by (8) and take into

account the exponential decay of the matrices, then the eigenvalues of (7) are

i(Ωa(ω)−Ωb(ω)) k = 0, |a−b|� ∆′, |a| 	= |b|,

(which are all � 1 by assumption (5) of Section 1) and
{

i <k,ω> +Ωa(ω)−Ωb(ω))
0 < |k|� ∆′, |a−b|� ∆′. (9)

In one space dimension d = 1 we have
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|Ωa(ω)−Ωb(ω)| → ∞

when |a| → ∞, |a− b| � ∆′, except for a = b. Therefore there are only finitely
many eigenvalues which are not large, and these can be controlled by an appropriate
choice of ω .

But in dimension d � 2 there are infinitey many eigenvalues which are not large.
How to control (9) – known as the second Melnikov condition – is the main diffi-
culty in the proof. But before we turn to this question we shall discuss more closely
the normal form.

3 Normal form Hamiltonians

We shall discuss the block-diagonal property and the Töplitz–Lipschitz-property of
the normal form Hamiltonians.

3.1 Blocks

In this section d � 2. For a non-negative integer ∆ we define an equivalence relation
on L generated by the pre-equivalence relation

a∼ b ⇐⇒
{
|a|2 = |b|2
|a−b|� ∆.

Let [a]∆ denote the equivalence class (block) of a, and let E∆ be the set of equivalence
classes. It is trivial that each block [a] is finite with cardinality

� |a|d−1

that depends on a. But there is also a uniform ∆-dependent bound.

Lemma 1 Let
d∆ = sup

a
(diam[a]∆).

Then
d∆ � ∆

(d+1)!
2 .

Proof. We give the proof in dimension d = 2, the general case being treated
in Sect. 4 of [EK06].

It suffices to consider the case when there are a,b,c ∈ [a]∆ such that a− b and
a− c are linearly independent and

|a−b|, |a− c|� ∆.
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(If not, then [a]∆ = {a,b} and the result is obvious.)
Since |a|2 = |b|2 = |c|2 it follows that

{
<a,a−b>= 1

2 |a−b|2
<a,a− c>= 1

2 |a− c|2

Since a−b and a−c are integer-valued independent vectors it follow from this that

|a|� ∆3. 
�

The blocks [a]∆ have a rigid structure when |a| is large. For a vector c∈Z
d \0 let

ac ∈ (a+Rc)∩Z
d

be the lattice point b on the line a +Rc with smallest norm – if there are two such
b’s we choose the one with <b, c>� 0.

Lemma 2 Given a and c 	= 0 in Z
∆. For all t, such that

|a+ tc|� d2
∆(|ac|+ |c|) |c| ,

the set [a+ tc]∆− (a+ tc) is independent of t and ⊥ to c.

Proof. It suffices to prove this for a = ac.
Let b ∈ [a + tc]∆− (a + tc) for some fixed t as in the lemma. This implies that

|b|� d∆ and that |b+a+ tc|2 = |a+ tc|2. This last equality can be written

2t <b,c> +2 <b,a> +|b|2 = 0.

If <b,c>	= 0, then

|a+ tc| � |a|+ |t <b,c> ||c|
= |a|+ |<b,a> ||c|+ 1

2 |b|2||c|
� (1+d∆)|a||c|+ 1

2 d2
∆|c|2),

but this is impossible under the assumption on a+ tc.
Therefore <b,c>= 0 and hence [a+tc]∆−(a+tc)⊥ c. Moreover |b+a+sc|2 =

|a+ sc|2 for all s, so if |b|� ∆, then

[b+a+ sc]∆ = [a+ sc]∆ ∀s.

To conclude, let b0 = a,b1, . . . ,bn be the elements of [a]∆ ordered in such a way
that |b j+1−b j|� ∆ for all j. Then the preceding argument shows that

[b+a+ sc]∆ = [a+ sc]∆ ∀s, ∀ j. 
�

Description of blocks when d = 2,3. For d = 2, we have outside {|a| :� d∆ ≈ ∆3}
� Rank[a]∆ = 1 if, and only if, a ∈ b

2 + b⊥ for some 0 < |b| � ∆ – then [a]∆ =
{a,a−b}
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� Rank[a]∆ = 0 otherwise – then [a]∆ = {a}
For d = 3, we have outside {|a| :� d∆ ≈ ∆12}

� Rank[a]∆ = 2 if, and only if, a ∈ b
2 + b⊥ ∩ c

2 + c⊥ for some 0 < |b| , |c| � 2∆
linearly independent – then [a]∆ ⊃ {a,a−b,a− c}

� Rank[a]∆ = 1 if, and only if, a ∈ b
2 + b⊥ for some 0 < |b| � ∆ – then [a]∆ =

{a,a−b}
� Rank[a]∆ = 0 otherwise – then [a]∆ = {a}

3.2 Lipschitz domains

For a non-negative constant Λ and for any c ∈ Z
d \0, let the Lipschitz domain

DΛ(c)⊂L ×L

be the set of all (a,b) such that there exist a′, b′ ∈ Z
d and t � 0 such that

{
|a = a′+ tc| � Λ(|a′|+ |c|) |c|
|b = b′+ tc| � Λ(|b′|+ |c|) |c|

and
|a|
|c| ,

|b|
|c| � 2Λ2.

The Lipschitz domains are not so easy to grasp, but it is easy to verify

Lemma 3 Let Λ � 3.

(i) If |a = a′+ t0c|� Λ(|a′|+ |c|)|c|, t � 0, then

|a|
|c| ≈

<a,c>
|c|2 ≈ t � Λ|c|.

(ii) If |a = a′+ t0c|� Λ(|a′|+ |c|)|c|, t0 � 0, then

|a′+ tc|2 � |a′+ t0c|2 +(t− t0)2|c|2 ∀t � t0.

In particular, if (a,b) ∈ DΛ(c), then

(a+ tc,b+ tc) ∈ DΛ(c) ∀t � 0.

Proof. (i) The inequality |a′+ tc|� |a′|+ t|c|� (|a′|+ t)|c| gives immediately that
t � Λ|c|.

It also gives
Λ(|a′|+ |c|) � |a′|+ t,
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which implies that

|a′|� t
Λ−1

.

Since

| |a||c| − t|, |<a,c>
|c|2 − t|� |a′|

|c|
we are done.
(ii) Let s = t− t0. Then

|a+ sc|2 = |a|2 + s2|c|2 +2s <a,c>

and

2s <a,c>= 2st0|c|2 +2s <a′,c>� 2st0(|c|2−
|a′||c|

t0
)

which is � 0. 
�
A bit more complicated is

Lemma 4 For any |a|� Λ2d−1, there exist c ∈ Z
d,

0 < |c|� Λd−1,

such that
|a|� Λ(|ac|+ |c|) |c| , <a,c>� 0.

Proof. For all K � 1 there is a c ∈ Z
d ∩{|x|� K} such that

d = dist(c,Ra) � C1(
1
K

)
1

d−1

where C1 only depends on d.
To see this we consider the segment Γ = [0, K

|a|a] in R
d and a tubular neighbor-

hood Γε of radius ε:
vol(Γε)≈ Kεd−1.

The projection of R
d onto T

d is locally injective and locally volume-preserving. If
ε � ( 1

K )
1

d−1 , then the projection of Γε cannot be injective (for volume reasons), so
there are two different points x,x′ ∈ Γε such that

x− x′ = c ∈ Zd \0.

Then

|ac|�
|a|
|c|d.

Now
Λ(|ac|+ |c|) |c|� 2ΛK2 +C2

Λ

K
1

d−1
|a| .

If we choose K = (2C2Λ)d−1, then this is � |a|. 
�
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The most important property is that finitely many Lipschitz domains cover a
“neighborhood of ∞” in the following sense.

Corollary 3.1 For any Λ,N > 1, the subset

{|a|+ |b|� Λ2d−1}∩{|a−b|� N} ⊂ Z
d×Z

d

is contained in ⋃

0<|c|�Λd−1

Dω(c)

for any

Ω � Λ
N +1

−1.

Proof. Let |a| � Λ2d−1. Then there exists 0 < |c| � Λd−1 such that |a| � Λ(|ac|+
|c|) |c|. Clearly (because d � 2)

|a|
|c| � 2Λ2 � 2Ω 2.

If we write a = ac + tc then b = ac +b−a+ tc. Then

Ω(|ac +b−a|+ |c|)|c| � Ω(|ac|+ |c|)|c|+Ω(|b−a||c|
� Λ(|ac|+ |c|)|c|− |b−a||c|
� |a|− |b−a|� |b|,

if and only if
(Λ−Ω)(|ac|+ |c|) � (Ω +1)|b−a|,

which holds by the assumption on Ω . Moreover

|b|
|c| � |a|

|c| −N � 2Λ2−N � 2Ω 2. 
�

3.3 Töplitz at ∞∞∞(((ddd === 222)))

We say that a matrix
X : L ×L → C

has a Töplitz-limit at ∞ in the direction c if, for all a,b

lim
t→∞

Xb+tc
a+tc ∃ = Xb

a (c).

X(c) is a new matrix which is Töplitz in the direction c, i.e.

Xb+c
a+c (c) = Xb

a (c).
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We say that X is Töplitz at ∞ if it has a Töplitz-limit in any direction c.

Example 1 Consider the equation (7) of Section 2 for the unperturbed Hamilton-
ian, i.e.

Ω = diag(|a|2 +V̂ (a)).

Then
R̂(k)b

a =
Ĝ(k)b

a

∞(<k,ω> +|a|2−|b|2 +V̂ (a)−V̂ (b))

and if the small divisors are all 	= 0 then R̂(k) is a well-defined matrix L ×L →C.
Replacing a,b by a + tc,b + tc and letting t → ∞ we see two different cases. If
<a− b,c>	= 0 then the limit exist and is = 0 as long as |Ĝ(k)b+tc

a+tc| is bounded. If
<a−b,c>= 0 then the limit exist as long as Ĝ(k)b+tc

a+tc has a limit:

R̂(k)b
a(c) =

Ĝ(k)b
a(c)

i(<k,ω> +|a|2−|b|2) .

Hence the matrix R̂(k) is Töplitz at ∞ if Ĝ(k) is Töplitz at ∞.

If X : L ×L → C is a Töplitz matrix, let us consider the block decomposition
of X into finite-dimensional submatrices

X [b]∆
[a]∆

= {Xb
a : a ∈ [a]∆,b ∈ [b]∆}.

The dimension of X [b]∆
[a]∆

varies with a and b, but if (a,b) ∈ ∆Λ(c), Λ � d2
∆, then (by

Lemma 2)
X [b]∆

[a]∆
(tc) =: X [b+tc]∆

[a+tc]∆

is a well-defined matrix which depends on the parameter t� and has a limit as t→∞.

3.4 Töplitz–Lipschitz matrices (ddd === 222)

We define the supremum-norm

|X |γ = sup
a,b∈L

|X |baeγ |a−b|

and, if X is Töplitz at i, the Lipschitz-constant

LipΛ,γX = sup
c∈Zd\0

sup
(a,b)∈DΛ(c)

|Xb
a −Xb

a (c)|max(
|a|
|c| ,

|b|
|c| )e

γ |a−b|

and the Lipschitz-norm

<X >Λ,γ= LipΛ,γX + |X |γ .

We say that the matrix X is Töplitz–Lipschitz if

<X >Λ,γ< ∞
for some Λ,γ .
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Example 2 Consider R̂(k) from the example above. If

(a,b) ∈ DΛ(c), Λ � 3,

then

|a = a′+ tc|� Λ(|a′|+ ||c|)|c| and |b = b′+ tc|� Λ(|b′|+ ||c|)|c|.

By Lemma 3 we have
|a|
|c| ≈

|b|
|c| ≈ t � Λ.

If <a−b,c>	= 0 then

∣∣∣R̂(k)b
a−0

∣∣∣max(
|a|
|c| ,

|b|
|c| )e

γ |a−b|

≈
∣∣∣∣∣

Ĝ(k)b
a

<a−b,c> + 1
t (<k,ω> +|a′|2−|b′|2 +V̂ (a)−V̂ (b))

∣∣∣∣∣eγ |a−b|

which is

≈
∣∣∣∣

Ĝ(k)b
a

<a−b,c>

∣∣∣∣eγ |a−b| � |G|γ

if Λ, hence t, is sufficiently large.
If <a−b,c>= 0 then

∣∣∣R̂(k)b
a− R̂(k)(c)b

a

∣∣∣max(
|a|
|c| ,

|b|
|c| )e

γ |a−b|

�
∣∣∣∣

1
<k,ω> +|a′|2−|b′|2

∣∣∣∣LipΛ,γ(Ĝ(k))+
∣∣∣∣

1
<k,ω> +|a′|2−|b′|2

∣∣∣∣
2 ∣∣Ĝ(k)

∣∣
γ

if Λ, hence t, is sufficiently large. Here we have used the decay of V̂ to bound

|V̂ (a′+ tc)−V̂ (b′+ tc)|t � 1.

In particular, the matrix R̂(k) is Töplitz–Lipschitz if Ĝ(k) is Töplitz–Lipschitz.

3.5 Normal form Hamiltonians

Consider the class of Hamiltonians

h =<ω,r> +
1
2
<ζ ,A(ω)ζ>, (modulo a constant)
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from Sect. 2.1. We say that h is NF∆ if moreover Ω is block-diagonal over
E∆, i.e.

Ω b
a = 0 if [a]∆ 	= [b]∆

Clearly if h is NF∆ for some ∆ � ∆′, then, by the choice of Ω ′, in (8) of Section 2
h′ = h+ k is NF∆′ , where

k = c+ <χ,r> +
1
2
<ζ ,Bζ>

is determined in Sect. 3.2.
Let

H(ω) = Ω(ω)−diag(|a|2 +V̂ (a) : a ∈L ).

We shall also require that H(ω) and ∂ωH(ω) are Töplitz at i for all ω ∈ U and
uniformly Töplitz–Lipschitz, i.e. there is a Λ such that

<H >{
Λ
U

}= sup
U

(<H(ω>Λ,<∂ωH(ω>Λ) < ∞).

Then, clearly, the convergence to the Töplitz-limits is uniform in ω both for (H(ω)
and ∂ωH(ω).

4 Estimates of small divisors

Here we verify the second Melnikov condition for the normal form Hamiltonians
described in Sect. 3.5.

4.1 A basic estimate

Lemma 5 Let f : I =]−1,1[→ R be of class Cn and
∣∣∣ f (n)(t)

∣∣∣ � 1 ∀t ∈ I.

Then, ∀ε > 0, the Lebesgue measure of {t ∈ I : | f (t)|< ε} is

� cte.ε
1
n ,

where the constant only depends on n.

Proof. We have
∣∣∣ f (n)(t)

∣∣∣ � ε
0
n for all t ∈ I. Since

f (n−1)(t)− f (n−1)(t0) =
∫ t

t0
f (n)(s)ds,
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we get that
∣∣∣ f (n−1)(t)

∣∣∣ � ε
1
n for all t outside an interval of length � 2ε

1
n . By induc-

tion we get that
∣∣∣ f (n− j)(t)

∣∣∣ � ε
j
n for all t outside 2 j−1 intervals of length � 2ε

1
n .

j = n gives the result. 
�

Remark 1 The same is true if

max
0� j�n

∣∣∣ f ( j)(t)
∣∣∣ � 1 ∀t ∈ I

and f ∈ Cn+1. In this case the constant will depend on | f |Cn+1 .

Let A(t) be a real diagonal N×N-matrix with diagonal components a j which are
C1 on I =]−1,1[ and

a′j(t) � 1 j = 1, . . . ,N, ∀t ∈ I.

Let B(t) be a Hermitian N×N-matrix of class C1 on I =]−1,1[ with

∥∥B′(t)
∥∥ � 1

2
∀t ∈ I.

Lemma 6 The Lebesgue measure of the set

{t ∈ I : min
λ (t)∈σ(A(t)+B(t))

|λ (t)|< ε}

is
� cte.Nε,

where the constant is independent of N.

Proof. Assume first that A(t)+B(t) is analytic in t. Then each eigenvalue λ (t) and
its (normalized) eigenvector v(t) are analytic in t, and

λ ′(t) =< v(t),(A′(t)+B′(t))v(t)

(scalar product in C
N). Under the assumptions on A and B, this is � 1− 1

2 . Lemma 5
applied to each eigenvalue λ (t) gives the result.

If B is non-analytic we get the same result by analytic approximation. 
�

We now turn to the main problem.

4.2 The second Melnikov condition (d = 2)

Proposition 7 Let ∆′ > 1 and 0 < κ < 1. Assume that U verifies (3) of Section 1,
that

Ω = diag(|a|2 +V̂ (a) : a ∈L )
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verifies (4) of Section 1 and that H : L ×L → C verifies

‖∂ωH(ω)‖� 1
4

ω ∈U. (1)

(‖ ‖ is the operator norm.) Assume also that H(ω) and ∂ωH(ω) are Töplitz at ∞
and NF∆ for all ω ∈U.

Then there exists a subset U ′ ⊂U,

Leb(U \U ′) �
cte.max(∆′,d2

∆,Λ)exp+#A (C1+ <H >{
Λ
U

})2κ
1
3 C#A−1

1 ,

such that, for all ω ∈U ′, 0 < |k|� ∆′ and all

dist([a]∆, [b]∆) � ∆′ (2)

we have

|<k,ω> +α(ω)−β (ω)|� κ ∀
{
α(ω) ∈ σ((Ω +H)(ω)[a]∆)
β (ω) ∈ σ((Ω +H)(ω)[b]∆).

(3)

Moreover the κ-neighborhood of U \U ′ satisfies the same estimate.
The exponent exp is a numerical constant. The constant cte. depends on #A and

on C2,C3.

Proof. The proof goes in the following way: first we prove an estimate in a large
finite part of L (this requires parameter restriction); then we assume an estimate “at
∞” of L and we prove, using the Lipschitz-property, that this estimate propagate
from “∞” down to the finite part (this requires no parameter restriction); in a third
step we have to prove the assumption at ∞.

Let us notice that it is enough to prove the statement for ∆′ � max(Λ, d2
∆). We let

[ ] denote [ ]∆.

For each k, [a]∆, [b]∆ it follows by Lemma 6 the set of ω such that

|<k,ω> +α(ω)−β (ω)|< κ

has Lebesgue measure
� d4

∆
κ
|k|C

#A−1
1 .

1. Finite part. For the finite part, let us suppose a belongs to

{a ∈L : |a|�

⎛
⎜⎝C1 +

1
κ1

d2
∆ <H >{

Λ
U

}

⎞
⎟⎠(∆′)6}, (4)
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where3 κ1 = κ
1
3 . These are finitely many possibilities and (3)κ is fulfilled, for all [a]

satisfying (4), all [b] with |a−b|� ∆′ and all 0 < |k|� ∆′, outside a set of Lebesgue
measure

� (C1 +d2
∆ <H >{

Λ
U

})2(∆′)12(∆′)2+#A−1d4
∆
κ
κ2

1
C#A−1

1 . (5)

Let us now get rid of the diagonal terms V̂ (a,ω) = Ωa(ω)−|a|2 which, by (4), are

� C2e−|a|C3 .

We include them into H. Since they are diagonal, H will remain on normal form.
Due to the exponential decay of V̂ , H and ∂ωH will remain Töplitz at ∞. The Lip-
schitz norm gets worse but this is innocent in view of the estimates. Also the estimate
of ∂ωH(ω) gets worse, but if a is outside (4) then condition (1) remains true with a
slightly worse bound, say

‖∂ωH(ω)‖� 3
8
, ω ∈U.

So from now on, a is outside (4) and

Ωa = |a|2.

2. Condition at ∞. For each vector c ∈ Z
d such that 0 < |c|� (∆′)2, we suppose that

the Töplitz limit H(c,ω) verifies (3)κ1 for (2) and for

([a]− [b])⊥ c. (6)

It will become clear in the next part why we only need (3)κ1 and (2) under the
supplementary restriction (6).

3. Propagation of the condition at ∞. We must now prove that for |b−a| � ∆′ and
an a ∈L outside (4), (3)κ is fulfilled.

By the Corollary 3.1 we get

(a,b) ∈
⋃

0<|c|�(∆′)2

D2∆′(c).

Fix now 0 < |c|� (∆′)2 and (a,b) ∈ D2∆′(c). By Lemma 2 – notice that 2∆′ � d2
∆ –

[a+ tc] = [a]+ tc and [b+ tc] = [b]+ tc

for t � 0 and
[a]−a, [b]−b ⊥ c.

3 In this proof � depends on #A and on C2,C3.
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It follows that

lim
t→∞

H(ω)[a+tc] = H(c,ω)[a] and lim
t→∞

H(ω)[b+tc] = H(c,ω)[b].

The matrices Ω[a+tc] and Ω[b+tc] do not have limits as t → ∞. However, for any
(#[a]×#[b])-matrix X,

Ω[a+tc]X−XΩ[b+tc] = Ω[a]X −XΩ[b] +2t <a−b,c> X

for t � 0, and we must discuss two different cases according to if < c,b− a >= 0
or not.

Consider for t � 0 a pair of continuous eigenvalues
{
αt ∈ σ((Ω +H(ω))[a+tc])
βt ∈ σ((Ω +H(ω))[b+tc])

Case I: <c,b−a>= 0. Here

(Ω +H(ω))[a+tc]X−X(Ω +H(ω))[b+tc]

equals
(|a|2 +H(ω))[a+tc]X−X(|b|2 +H(ω))[b+tc]

– the linear and quadratic terms in t cancel!
By continuity of eigenvalues,

lim
t→∞

(αt −βt) = (α∞−β∞),

where {
α∞ ∈ σ((|a|2 +H(c,ω))[a])
β∞ ∈ σ((|b|2 +H(c,ω))[b])

Since [a] and [b] verify (6), our assumption on H(c,ω) implies that (α∞−β∞) veri-
fies (3)κ1 .

For any two a,a′ ∈ [a] we have

|a′|
|c| =

|a|
|c| .

Hence ∥∥H(ω)[a]−H(c,ω)[a]
∥∥ |a|
|c| � dd

∆ <H >{
Λ
U

},

because ∆′ ≥max(Λ,d∆), and the same for [b]. Recalling that a and, hence, b violate
(4) this implies ∥∥H(ω)[d]−H(c,ω)[d]

∥∥ � κ1

4
, d = a,b.
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By Lipschitz-dependence of eigenvalues (of Hermitian operators) on parameters,
this implies that

|(α0−β0)− (α∞−β∞)|� κ1

2

and we are done.
Case II: <c,b− a>	= 0. We write a = ac + τc, where ac is the lattice point on

the line a+Rc with smallest norm – if there are two such points we choose the one
with <ac,c>� 0.

Since
|a|� 2∆′(|ac|+ |c|) |c| ,

it follows that

|ac|�
1

2∆′
|a|
|c| .

Now, α0−β0 differs from |a|2−|b|2 by at most

2‖H(ω)‖� d2
∆ <H >{

Λ
U

},

and
|a|2−|b|2 =−2τ <c,b−a>−2 <ac,b−a>−|b−a|2 .

Since |<c,b−a> |� 1 it follows that

τ � |α0−β0|+ |ac|∆′+(∆′)2 +d2
∆ <H >{

Λ
U

} .

If now |α0−β0|� C1∆′ then |a|� |ac|+ |τ c| is

� |ac|(∆′+1) |c|+C1(∆′)2 |c|+d2
∆ <H >{

Λ
U

} |c|

� 1
2
|a|+C1(∆′)2 |c|+d2

∆ <H >{
Λ
U

} |c|.

Since a violates (4) this is impossible. Therefore |α0−β0|� C1∆′ and (3)κ holds.
Hence, we have proved that (3)κ holds for any

{
(a,b) ∈⋃

0<|c|�(∆′)2 D2∆′(c)
(a,b) ∈ (2)

under the condition at ∞. Therefore (3)κ holds for any (a,b) ∈ (2).

4. Proof of condition at ∞. Let c1 be a primitive vector in 0 < |c1| � (∆′)2, and let
G be the Töplitz limit H(c1). Then G verifies (1), G(ω) and ∂ωG(ω) are Töplitz at
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∞ and
<G>{

Λ
U

}�<H >{
Λ
U

} .

Clearly G(ω) is Hermitian and, by Lemma 2, G(ω) and ∂ωG(ω) are block diagonal
over E∆, i.e. G(ω) and ∂ωG(ω) areNF∆. Moreover G is Töplitz in the direction c1,

Gb+tc1
a+tc1

= Gb
a, ∀a,b, tc1.

We want to prove that G verifies (3)κ1 for all (a,b) ∈ (2)+(6)c1 , i.e. for all

|a−b|� ∆′ and ([a]− [b])⊥ c1.

Since G is Töplitz in the direction c1 it is enough to show this for
∣∣∣∣<a,

c1

|c1|
>

∣∣∣∣ . (7)

But then all divisors are large except finitely many which we can treat as above. 
�

5 Functions with the Töplitz–Lipshitz property (d = 2)

We discuss here shortly some other aspects related to the proof of Theorem 1.1.

5.1 Töplitz structure of the Hessian

The quadratic differential

<ζ ,
∂ 2

∂ζ 2 f (ζ ,ϕ,r)ζ>

has the form
<ζ ,Aζ>= ∑

a,b∈L

<ζa,Ab
aζb>,

where A : L ×L → gl(2,R) is a gl(2,R)-valued matrix. It is uniquely determined
by the symmetry condition

tAb
a = Aa

b.

Its properties are best seen in the complex variables

(tCAC)b
a =

(
Pb

a Qb
a

Qa
b P̄b

a

)
.

Consider for example the Schrödinger equation with a cubic potential. Then
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Pa2
a1

= ∑
b1,b2 ∈A

b1 +b2 = a1 +a2

2

√
(pb1 + rb1)

(
pb2 + rb2e−i(ϕb1 +ϕb2 )

)

and
Qb2

a2
= ∑

a1,b1 ∈A
a1−b1 = a2−b2

8
√

(pa1 + ra1)(pb1 + rb1)e
i(ϕa1−ϕb1 ).

In particular {
P is symmetric
Q is Hermitian.

Moreover Q is Töplitz,
Qb+c

a+c = Qb
a ∀a,b,c,

and (since A is finite) its elements are zero at finite distance from the diagonal.
In particular, this matrix is Töplitz–Lipschitz and has exponential decay off the di-
agonal a = b. P is also Töplitz–Lipschitz with exponential decay but in a different
sense:

Pb−c
a+c = Pb

a ∀a,b,c,

and has exponential decay off the “anti-diagonal” {a =−b}.

5.2 Töplitz–Lipschitz matrices L ×××L →→→ ggglll(((222,,,R)))

We consider the space gl(2,C) of all complex 2× 2-matrices provided with the
scalar product

Tr(t ĀB).

Let

J =
(

0 1
−1 0

)
.

and consider the orthogonal projection π of gl(2,C) onto the subspace

M = CI +CJ.

For a matrix
A : L ×L → gl(2,C)

we define πA through
(πA)b

a = πAb
a, ∀a,b.

We define the supremum-norms

|A|±γ = sup
(a,b)∈L×L

|Ab
a|eγ |a∓b|
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and
|A|γ = max(|πA|+γ , |A−πA|−γ ).

A is said to have a Töplitz-limit at ∞ in the direction c if, for all a,b the two limits

lim
t→+∞

Ab±tc
a+tc ∃ = Ab

a(±,c).

A(±,c) are new matrices which are Töplitz/“anti-Töplitz” in the direction c, i.e.

Ab+c
a+c(+,c) = Ab

a(+,c) and Ab−c
a+c(−,c) = Ab

a(−,c).

If |A|γ < ∞, γ > 0, then

πA(−,c) = (A−πA)(+,c) = 0.

We say that A is Töplitz at ∞ if all Töplitz-limits A(±,c) exist.
We define the Lipschitz-constants

Lip±Λ,γ A = sup
c	=0

sup
(a,b)∈DΛ(c)

|(A−A(±,c))±b
a |max(

|a|
|c| ,

|b|
|c| )e

γ |a∓b|

and the Lipschitz-norm

<A>Λ,γ= max(Lip+
Λ,γπA+ |πA|+γ ,Lip−Λ,γ(I−π)A+ |(I−π)A|−γ ).

We say that A Töplitz–Lipschitz if <A>Λ,γ< ∞ for some Λ,γ .
In Sect. 2 of [EK06] we prove the following multiplicative property.

Proposition 8 Let A1, . . . ,An : L ×L → C be Töplitz–Lipschitz matrices with ex-
ponential decay off-diagonal, i.e.

∣∣A j
∣∣
γ < ∞ j = 1, . . . ,n, γ > 0.

Then A1 · · ·An is Töplitz–Lipschitz and

<A1 · · ·An >Λ+6,γ ′�
(cte.)nΛ2( 1

γ−γ ′ )
(n−1)d+1[∑1�k�n∏1 � j � n

j 	= k

∣∣A j
∣∣
γ j

<Ak >Λ,γk ],

where all γ1, . . . ,γn are = γ except one which is = γ ′.

Notice that this estimate is not an iteration of the estimate for n = 2.
Linear differential equation. Consider the linear system

{ d
dt X = A(t)X
X(0) = I.
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where A(t) is Töplitz–Lipschitz with exponential decay. The solution verifies

X(t0) = I +
∞

∑
n=1

∫ t0

0

∫ t1

0
. . .

∫ tn−1

0
A(t1)A(t2) . . .A(tn)dtn . . .dt2dt1.

Using Proposition 8 we get for γ ′ < γ

<X(t)− I >Λ+6,γ ′�
Λ2( 1

γ−γ ′ )|t|exp(cte.( 1
γ−γ ′ )

d |t|α(t))sup|s|�|t| <A(s)>Λ,γ ,

where
α(t) = sup

0�|s|�|t|
|A(s)|γ .

Remark 2 A more general version of Töplitz–Lipschitz matrices is treated in
[EK07]

5.3 Functions with the Töplitz–Lipschitz property

Let Oγ(σ) be the set of vectors in the complex space l2
γ (L ,C) of norm less thanσ , i.e.

Oγ(σ) = {ζ ∈ C
L ×C

L : ‖ζ‖γ < σ}.
Our functions f : O0(σ)→ C will be defined and real analytic on the domain

O0(σ).4

We say that f is Töplitz at ∞ if the vector ∂ζ f (ζ ) lies in l2
0(L ,C2) and the matrix

∂ 2 f
∂ζ 2 (ζ ) is Töplitz at ∞ for all ζ ∈ O0(σ). We define the norm

[ f ]Λ,γ,σ

to be the smallest C such that
⎧
⎪⎨
⎪⎩

| f (ζ )|� C ∀ζ ∈O0(σ)∥∥∂ζ f (ζ )
∥∥
γ ′ �

1
σC ∀ζ ∈Oγ ′(σ), ∀γ ′ � γ,

<∂ 2
ζ f (ζ )>Λ,γ ′� 1

σ2 C ∀ζ ∈Oγ ′(σ), ∀γ ′ � γ.

5.4 A short remark on the proof of Theorem 1.1

Our Hamiltonians are functions of ζ = (ξ ,η),r,ϕ and ω . We measure these func-
tions in a norm given by

• The [ ]Λ,γ,σ -norm for ζ

4 The space l2
γ (L ,C) is the complexification of the space l2

γ (L ,R) of real sequences. “real
analytic” means that it is a holomorphic function which is real on O0(σ)∩ l2

γ (L ,R).
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• The sup-norm over a complex domain |r|< µ and | Imϕ|< ρ
• The C

1-norm in ω .

In this norm we estimate the solution s,k of the homological equation (2) (de-
scribed in Sect. 3.2) and the transformed Hamiltonian

h′+ f ′ = (h+ f )◦Φ1,

where Φ1 is the time-one-map of the Hamiltonian vector field of s.
In order to carry this out we study the behavior of this norm under truncations,

Poisson brackets, flows and compositions.

References

[Bou96] J. Bourgain, Construction of approximative and almost-periodic solutions of perturbed
linear Schrödinger and wave equations, Geo Function Analysis 6 (1996), 201–230.

[Bou98] , Quasi-periodic solutions of Hamiltonian perturbations of 2D linear
Schrödinger equation, Ann. Math. 148 (1998), 363–439.

[Bou04] , Green’s function estimates for lattice Schrödinger operators and applications,
Annals of Mathematical Studies, Princeton University Press, Princeton, NJ, 2004.

[Cra00] W. Craig, Problèmes de petits diviseurs dans les équations aux dérivées partielles,
Panoramas et Synthéses, no. 9, Société Mathématique de France (2000).

[dlL01] R. de la Llave, An introduction to kam, Proc. Sympos. Pure Math. 69 (2001).
[EK06] L. H. Eliasson and S. B. Kuksin, KAM for non-linear Schrödinger equation, Preprint

(2006).
[EK07] H. L. Eliasson and S. B. Kuksin, Infinite Töplitz–Lipschitz matrices and operators,

ZAMP, to appear (2007).
[Eli85] L. H. Eliasson, Perturbations of stable invariant tori, Report No 3, Inst. Mittag–Leffler

(1985).
[Eli88] , Perturbations of stable invariant tori, Ann. Scuola Norm. Sup. Pisa, Cl. Sci.,

IV Ser. 15 (1988), 115–147.
[Eli01] , Almost reducibility of linear quasi-periodic systems, Proc. Sympos. Pure Math.

69 (2001), 679–705.
[FS83] J. Fröhlich and T. Spencer, Absence of diffusion in Anderson tight binding model for

large disorder or low energy, Commun. Math. Phys. 88 (1983), 151–184.
[GY05] J. Geng and J. You, A KAM theorem for one dimensional Schrödinger equation with

periodic boundary conditions, J. Differential Equations 209 (2005), no. 259, 1–56.
[Kri99] R. Krikorian, Réductibilité des systèmes produits-croisés à valeurs dans des groupes

compacts, Astérisque (1999), no. 259.
[Kuk88] S. B. Kuksin, Perturbations of quasiperiodic solutions of infinite-dimensional Hamilton-

ian systems, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), 41–63, Engl. Transl. in Math.
USSR Izv. 32 (1989) no.1.

[Kuk93] , Nearly integrable infinite-dimensional Hamiltonian systems, Springer, Berlin
(1993).

[Kuk00] , Analysis of Hamiltonian PDEs, Oxford University Press, Oxford, 2000.
[Pös96] J. Pöschel, A KAM-theorem for some nonlinear PDEs, Ann. Scuola Norm. Sup. Pisa, Cl.

Sci., IV Ser. 15 (1996) no. 23, 119–148.
[Yua07] X. Yuan, A KAM theorem with applications to partial differential equations of higher

dimensions, Comm. Math. Physics 275 (2007), 97–137.



A Birkhoff normal form theorem
for some semilinear PDEs

D. Bambusi1

Abstract In these lectures we present an extension of Birkhoff normal form theorem
to some Hamiltonian PDEs. The theorem applies to semilinear equations with non-
linearity of a suitable class. We present an application to the nonlinear wave equation
on a segment or on a sphere. We also give a complete proof of all the results.

1 Introduction

These lectures concern some qualitative features of the dynamics of semilinear
Hamiltonian PDEs. More precisely we will present a normal form theorem for such
equations and deduce some dynamical consequences. In particular we will deduce
almost global existence of smooth solutions (in the sense of Klainerman [Kla83])
and a result bounding the exchange of energy among degrees of freedom with dif-
ferent frequency. In the case of nonresonant systems we will show that any so-
lution is close to an infinite dimensional torus for times longer than any inverse
power of the size of the initial datum. The theory presented here was developed
in [Bam03, BG06, DS06, BDGS07, Gré06].

In order to illustrate the theory we will use as a model problem the nonlinear
wave equation

utt −∆u+µ2u = f (u) , µ ∈ R , (1)

on a d dimensional sphere or on [0,π] with Neumann boundary conditions. In (1),
f is a smooth function having a zero of order 2 at the origin and ∆ is the Laplace
Beltrami operator.

The theory of Birkhoff normal form is a particular case of the theory of close to
integrable Hamiltonian systems. Concerning the extension to PDEs of Hamiltonian
perturbation theory, the most celebrated results are the KAM type theorems due

1 Dipartimento di Matematica dell’Università, Via Saldini 50, 20133 Milano, Italy
e-mail: dario.bambusi@unimi.it

W. Craig (ed.), Hamiltonian Dynamical Systems and Applications, 213–247. 213
c© 2008 Springer Science + Business Media B.V.
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to Kuksin [Kuk87], Wayne [Way90], Craig–Wayne [CW93], Bourgain [Bou98,
Bou05], Kuksin–Pöschel [KP96], Eliasson–Kuksin [EK06], Yuan [Yua06]. All
these results ensure the existence of families of quasiperiodic solutions, so they only
describe solutions lying on finite dimensional manifolds in an infinite dimensional
phase space. On the contrary the result on which we concentrate here allows one to
describe all small amplitude solutions of the considered systems. The price we pay
is that the description turns out to be valid only over long but finite times.

A related research stream is the one carried on by Bourgain [Bou96a, Bou96b,
Bou97,Bou00] who studied intensively the behavior of high Sobolev norms in close
to integrable Hamiltonian PDEs. In particular he gave some lower estimates show-
ing that in some cases high Sobolev norm can grow in an unbound way, and also
some upper estimate showing that the nonlinearity can stabilize resonant systems,
somehow in the spirit of Nekhoroshev’s theorem.

The paper is organized as follows. First we present the classical Birkhoff normal
form theorem for finite dimensional systems and we recall its proof (see Sect. 2).
Then we pass to PDEs. Precisely, in Sect. 3 we first show that the nonlinear wave
equation is an infinite dimensional Hamiltonian system (Sect. 3.1) and then we
present the problem met in trying to extend the normal form theorem to PDEs.
Subsequently we give a heuristic discussion on how to solve such difficulties (see
Sect. 3.2). Then we give a precise formulation of our Birkhoff normal form theorem
(Sect. 4). This part contains only the statements of the results and is split into three
subsection, in the first (Sect. 4.1) we introduce the class of functions to which the
theory applies and we study its properties. In the second subsection (Sect. 4.2) we
give the statement of the normal form theorem and deduce the main dynamical con-
sequences. In the third Sect. 4.3 we give the application to the considered model.
Then, in Sect. 5 we give a short discussion presenting the main open problems of
the domain.

Finally Sect. 6 contains the proofs of all the results. The subsections of this sec-
tion are independent each other. We made an effort to give a paper which is essen-
tially self contained. We also mention that the method introduced here in order to
prove the property of localization of coefficients (the property defining our class of
functions) is original.

2 Birkhoff’s theorem in finite dimensions

2.1 Statement

On the phase space R
2n consider a smooth Hamiltonian system H having an equi-

librium point at zero.

Definition 2.1. The equilibrium point is said to be elliptic if there exists a canonical
system of coordinates (p,q) (possibly defined only in a neighborhood of the origin)
in which the Hamiltonian takes the form
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H(p,q) := H0(p,q)+HP(p,q) , (1)

where

H0(p,q) =
n

∑
l=1

ωl
p2

l +q2
l

2
, ωl ∈ R (2)

and HP is a smooth function having a zero of order 3 at the origin.

Remark 2.1. The equations of motion of (1) have the form

ṗl =−ωlql−
∂HP

∂ql
(3)

q̇l = ωl pl +
∂HP

∂ pl
(4)

Since HP has a zero of order three, its gradient starts with quadratic terms. Thus, in
the linear approximation the equations (3), (4) take the form

ṗl =−ωlql
q̇l = ωl pl

=⇒ q̈l +ω2
l ql = 0 (5)

namely the system consists of n independent harmonic oscillators.

Definition 2.2. The vector field

XH(p,q) :=
(
−∂H

∂q
,
∂H
∂ p

)
(6)

is called the Hamiltonian vector field of H.

Theorem 2.1. (Birkhoff) For any positive integer r ≥ 0, there exist a neighborhood
U (r) of the origin and a canonical transformation Tr : R

2n ⊃ U (r) → R
2n which

puts the system (1) in Birkhoff Normal Form up to order r, namely

H(r) := H ◦Tr = H0 +Z(r) +R(r) (7)

where Z(r) is a polynomial of degree r+2 which Poisson commutes with H0, namely{
H0;Z(r)

}
≡ 0 and R(r) is small, i.e.

|R(r)(z)| ≤Cr ‖z‖r+3 , ∀z ∈U (r) ; (8)

moreover, one has

‖z−Tr(z)‖ ≤Cr ‖z‖2 , ∀z ∈U (r) . (9)

An inequality identical to (9) is fulfilled by the inverse transformation T −1
r .

If the frequencies are nonresonant at order r +2, namely if

ω · k 	= 0 , ∀k ∈ Z
n , 0 < |k| ≤ r +2 (10)
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the function Z(r) depends on the actions

Ij :=
p2

j +q2
j

2

only.

Remark 2.2. The remainder R(r) is very small in a small neighborhood of the origin.
In particular, it is of order εr+3 in a ball of radius ε . It will be shown in Sect. 4.2
that in typical cases R(r) might have a relevant effect only after a time of order ε−r.

2.2 Proof

The idea of the proof is to construct a canonical transformation putting the system
in a form which is as simple as possible. More precisely one constructs a canonical
transformation pushing the non normalized part of the Hamiltonian to order four
followed by a transformation pushing it to order five and so on. Each of the trans-
formations is constructed as the time one flow of a suitable auxiliary Hamiltonian
function (Lie transform method). We are now going to describe more precisely this
method.

Definition 2.3. We will denote by H j the set of the real valued homogeneous poly-
nomials of degree j +2.

Remark 2.3. Let g ∈H j be a homogeneous polynomial, then there exists a constant
C such that

|g(z)| ≤C‖z‖ j+2 . (11)

The Hamiltonian vector field Xg of g is a homogeneous polynomial of degree j +1
and therefore one has ∥∥Xg(z)

∥∥≤C′ ‖z‖ j+1 (12)

with a suitable constant C′. The best constant such that (12) holds is usually called
the norm of Xg and is denoted by

∥∥Xg
∥∥. Similarly one can define the norm of the

polynomial g.

Remark 2.4. If the phase space is infinite dimensional then (11) and (12) are not
automatic. They hold if and only if the considered polynomial are smooth.

Remark 2.5. Let f ∈Hi and g∈H j then, by the very definition of Poisson Brackets
one has { f ,g} ∈Hi+ j.

2.2.1 Lie transform

Let χ ∈H j be a polynomial function, consider the corresponding Hamilton equa-
tions, namely
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ż = Xχ(z) ,

and denote by φ t the corresponding flow.

Definition 2.4. The time one map φ := φ t |t=1 is called the Lie transform generated
by χ . It is well known that φ is a canonical transformation.

We are now going to study the way a polynomial transforms when the coordinates
are subjected to a Lie transformation.

Lemma 2.1. Let g ∈Hi be a polynomial and let φ be the Lie transform generated
by a polynomial χ ∈H j with j ≥ 1. Define

g0 := g , gl =
1
l
{χ;gl−1} , l ≥ 1 , (13)

then the Taylor expansion of g◦φ is given by

g(φ(z)) = ∑
l≥0

gl(z) , (14)

for all z small enough.

Proof. Compute the Taylor expansion of g ◦ φ t with respect to time. Iterating the
relation

d
dt

g◦φ t = {χ,g}◦φ t (15)

one has
dl

dtl g◦φ t = {χ, ...{χ,︸ ︷︷ ︸
l times

g}◦φ t (16)

which gives
g◦φ t = ∑

l≥0
tlgl . (17)

Evaluating at t = 1 one gets (14). Since Remark 2.5 implies gl ∈Hi+l j, (14) is
the Taylor expansion of g◦φ as a function of the phase space variables z. 
�

Remark 2.6. Corollary 6.1 below shows that the series (14) is convergent in a neigh-
borhood of the origin small enough.

2.2.2 The homological equation

We are now ready to construct a canonical transformation normalizing the system
up to terms of fourth order. Thus let χ1 ∈ H1 be the generating function of the
Lie transform φ1, and consider H ◦φ1, with H given by (1). Using (14) and (13) to
compute the first terms of the Taylor expansion of H ◦φ one gets

H ◦φ = H0 +{χ1,H0}+H1 +h.o.t
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where H1 is the Taylor polynomial of degree three of HP and h.o.t. denotes higher
order terms.

We want to construct χ1 in such a way that

Z1 := {χ1,H0}+H1 (18)

turns out to be as simple as possible. Obviously the simplest possible form would
be Z1 = 0. Thus we begin by studying the equation

{χ1,H0}+H1 = 0 (19)

for the unknown polynomial χ1. To study this equation define the homological
operator

£0 : H1 → H1 (20)
χ �→ £0χ := {H0,χ} (21)

and rewrite (19) as £0χ1 = H1, which is a linear equation in the finite dimensional
linear space of polynomials of degree 3. Thus, if one is able to diagonalize the
operator £0; it is immediate to understand whether the equation (19) is solvable
or not.

Remark 2.7. The operator £0 can be defined also on any one of the spaces H j,
j ≥ 1, it turns out that £0 maps polynomials of a given degree into polynomials
of the same degree. This is important for the iteration of the construction. For this
reason we will study £0 in H j with an arbitrary j.

It turns out that it is quite easy to diagonalize the homological operator in anyone
of the spaces H j. To this end consider the complex variables

ξl :=
1√
2
(pl + iql) ; ηl :=

1√
2
(pl− iql) l ≥ 1 . (22)

in which the symplectic form takes the form ∑l i dξl ∧dηl ,1

Remark 2.8. In these complex variables the actions are given by

Il = ξlηl .

1 This means that the transformation is not canonical, however, in these variables all the theory
remains unchanged except for the fact that the equations of motions have to be substituted by

ξ̇l = i
∂H
∂ηl

, η̇l =−i
∂H
∂ξl

,

and therefore the Poisson Brackets take the form

{ f ,g} := i∑
l

(
∂g
∂ξl

∂ f
∂ηl

− ∂g
∂ηl

∂ f
∂ξl

)
.
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and

H0(ξ ,η) =
n

∑
l=1

ωlξlηl

Remark 2.9. Consider a homogeneous polynomial f of the variables (p,q), then it
is a homogeneous polynomial of the same degree also when expressed in terms of
the variables (ξ ,η).

Remark 2.10. The monomials ξ JηL defined by

ξ JηL := ξ J1
1 ξ J2

2 . . .ξ Jn
n ηL1

1 . . .ηLn
n

form a basis of the space of the polynomials.

Lemma 2.2. Each element of the basis ξ JηL is an eigenvector of the operator £0,
the corresponding eigenvalue is i(ω · (L− J)).

Proof. Just remark that in terms of the variables ξ ,η , the action of £0 is given by

£0 f = {H0, f} := ∑
l

i
∂ f
∂ξl

∂H0

∂ηl
− i

∂ f
∂ηl

∂H0

∂ξl

=

(
i∑

l
ωl

(
ηl

∂
∂ηl

−ξl
∂
∂ξl

))
f .

Then

ηl
∂
∂ηl

ξ JηL = Llξ JηL

and thus
£0ξ JηL = iω · (L− J)ξ LηJ

which is the thesis. 
�

Thus we have that for each j the space H j decomposes into the direct sum of the
kernel K of £0 and its range R. In particular the Kernel is generated by the resonant
monomials, namely

K = Span(ξ JηL ∈Hi : (J,L) ∈ RS) (23)

and
RS := {(J,L) : ω · (L− J) = 0} (24)

is the set of the resonant indexes. Obviously the range is generated by the space
monomials ξ JηL with J,L varying in the complement of the resonant set.

Thus it is easy to obtain the following important lemma.

Lemma 2.3. Let f ∈H j be a polynomial, write

f (ξ ,η) =∑
J,L

fJLξ JηL (25)
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and define

Z(ξ ,η) := ∑
(J,L)∈RS

fJLξ JηL , χ(ξ ,η) := ∑
(J,L)	∈RS

fJL

iω · (L− J)
ξ JηL (26)

then one has
Z = {χ,H0}+ f . (27)

and
{Z,H0} ≡ 0 . (28)

Motivated by the above lemma we give the following definition.

Definition 2.5. A function Z will be said to be in normal form if, when written in
terms of the variables ξ ,η , it contains only resonant monomials, i.e. if writing

Z(ξ ,η) := ∑
(J,L)

ZJLξ JηL , (29)

one has
ZJL 	= 0 =⇒ ω · (L− J) = 0 . (30)

Remark 2.11. A property which is equivalent to (30) is {Z,H0} = 0, which has the
advantage of being coordinate independent.

Remark 2.12. If the frequencies are nonresonant, namely if eq. (10) holds, then the
set of the indexes (J,L) such that ω · (L− J) = 0 reduces to the set J = L. Thus the
resonant monomials are only the monomials of the form

ξ JηJ = (ξ1η1)J1 ...(ξnηn)Jn ≡ IJ1
1 ...IJn

n . (31)

It follows that in the nonresonant case a function Z is in normal form if and only if
it is a function of the actions only.

2.2.3 Proof of Birkhoff’s theorem

We proceed by induction. The theorem is trivially true for r = 0. Supposing it is
true for r we prove it for r +1. First consider the Taylor polynomial of degree r +3
of R(r) and denote it by H(r)

r+1 ∈ Hr+1. Let χr+1 ∈ Hr+1 be the solution of the
homological equation

{χr+1;H0}+H(r)
r+1 = Zr+1 (32)

with Zr+1 in normal form. By Lemma 2.3 such a χr+1 exists. By corollary 6.1 be-
low, χr+1 generates an analytic flow. Use it to generate the Lie transform φr+1 and
consider H(r+1) := H(r) ◦φr+1 and write it as follows
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H(r) ◦φr+1 = H0 +Z(r) (33)
+Zr+1 (34)
+(Z(r) ◦φr+1−Z(r)) (35)
+H0 ◦φr+1− (H0 +{χr+1;H0}) (36)

+(R(r)−H(r)
r+1)◦φr+1 (37)

+H(r)
r+1 ◦φr+1−H(r)

r+1 . (38)

define Z(r+1) := Z(r) + Zr+1. To prove that the terms (35–38) have a vector field
with a zero of order at least r +3 use Lemma 2.1 which ensures that each line is the
remainder of a Taylor expansion (in the space variables) truncated at order r +3.

It remains to show that the estimate (9) of the deformation holds. Denote by Rr+1

a positive number such that B2Rr+1 ⊂U
(r)

s , and remark that, by Lemma 6.2, possibly
reducing Rr+1, one has

φr+1 : Bρ → B2ρ , ∀ρ ≤ Rr+1

and
sup
Bρ
‖z−φr+1(z)‖ ≤Cρr+2 . (39)

Define Tr+1 := Tr ◦φr+1 then one has

Id−Tr+1 = Id−Tr ◦φr+1 = Id−Tr +Tr−Tr ◦φr+1

and thus, for any z ∈ Bρ with ρ small enough, we have

‖z−Tr+1(z)‖ ≤ ‖z−Tr(z)‖+‖Tr(z)−Tr(φr+1(z))‖
≤ Crρ2 + sup

z∈B2ρ

‖dTr(z)‖ sup
z∈Bρ

‖z−φr+1(z)‖

≤ Crρ2 +Cρr+2 ≤Cr+1ρ2

from which the thesis follows.

3 The case of PDEs

3.1 Hamiltonian formulation of the wave equation

Consider the nonlinear wave equation (1).
It is well known that the energy is a conserved quantity for (1). It is given by

H(u,v) :=
∫

D

(
v2

2
− u∆u

2
+

µ2u2

2

)
ddx+

∫

D
F(u)ddx (1)
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where v := ut and F is such that−F ′ = f , and D is either Sd (d-dimensional sphere)
or [0,π]. The function H is also the Hamiltonian of the system and the corresponding
Hamilton equations are given by

u̇ = ∇vH , v̇ =−∇uH (2)

where ∇uH is the L2 gradient of H with respect to u, defined by

〈∇uH;h〉L2 = duHh ∀h ∈C∞(D) (3)

where du is the differential with respect to the u variables. ∇v is defined similarly.
To write (1) in the form (1) we have to introduce the basis of the eigenfunctions

of the Laplacian.
In the case of [0,π] the eigenfunctions are given by

e1 :=
1√
π

, e j :=
1√
π/2

cos(( j−1)x) , j ≥ 2 (4)

and the corresponding eigenvalues of −∆ are λ j = ( j−1)2.
In the case of the d dimensional sphere the eigenvalues λ j of −∆ are given by

λ j = ( j−1)( j +d−2) ; (5)

moreover the jth eigenvalue has multiplicity

l∗( j) :=
(

j +d−1
d

)
.

We will denote by e jl a basis of eigenfunctions of the Laplacian, which is orthonor-
mal in L2 and such that

−∆e jl = λ je jl , j ≥ 1 , l = 1, ..., l∗( j) . (6)

For example they can be chosen to be the spherical harmonics.
In both cases define ω j, p jl and q jl by

ω j :=
√
λ j +µ2 (7)

u =∑
jl

q jl√ω j
e jl , v =∑

jl

√ω j p jle jl (8)

with the convention that l takes only the value 1 in the case of [0,π] (and that, in
such a case it will not be written).

Then the Hamiltonian (1) takes the form (1) with

H0 =∑
j
∑

l
ω j

p2
jl +q2

jl

2
(9)

and HP is given by the second integral in (1) considered as a function of q jl .
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3.2 Extension of Birkhoff’s theorem to PDEs: heuristic ideas

In this section we will concentrate on the case of the nonlinear wave equation on
[0,π].

The main difficulty one meets in order to extend the theory of Birkhoff normal
form to infinite dimensional systems rests in the denominators one meets in solving
the homological equation, namely in the second of equations (26). Indeed, while in
the finite dimensional case one has that the set of vectors with integer components
having modulus smaller than a given r is finite, this is no longer true in infinite
dimensions.

It turns out that typically the denominators in (26) accumulate to zero al-
ready at order 4. An example of such a behavior is the following one. Consider
ω j+1 :=

√
j2 +µ2. For l ≥ 1 consider the integer vector K(l) whose only compo-

nents different from zero are given by Kl = −2, Kl−1 = 1 Kl+1 = 1; such a vector
has modulus 4, and one has

K(l) ·ω = ωl+1 +ωl−1−2ωl

=
√

l2 +µ2 +
√

(l−2)2 +µ2−2
√

(l−1)2 +µ2 ∼ µ2

l3 → 0

Thus Birkhoff theorem does not trivially extend to infinite dimensional systems.
However it turns out that in the case of PDEs the nonlinearity has a particular

structure. As a consequence it turns out that most of the monomials appearing in the
nonlinearity are small and do not need to be eliminated through the normalization
procedure. To illustrate this behavior consider the map

Hs([0,π]) � u �→ u2 ∈ Hs([0,π]) , (10)

which is the first term of the nonlinearity of the nonlinear wave equation (1). The
use of Leibniz formula together with interpolation inequality allows one to prove
the so called Tame inequality, namely

∥∥u2∥∥
s ≤Cs ‖u‖s ‖u‖1 . (11)

The key point is that, if u has only high frequency modes then its H1 norm is much
smaller than the Hs norm. Indeed, assume that, for some large M one has

u = ∑
k≥M

ûkek (12)

then one has

‖u‖2
1 = ∑

k≥M
k2 |ûk|2 = ∑

k≥M

k2s

k2(s−1) |ûk|2 ≤
1

M2(s−1) ‖u‖
2
s . (13)
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Collecting (13) and (11) one gets

∥∥u2∥∥
s ≤Cs

1
Ms−1 ‖u‖

2
s , (14)

which is very small if M and s are large. In order to exploit such a condition one
can proceed as follows: given u ∈ Hs split it into high frequency and low frequency
terms, namely write

uS := ∑
|k|<M

ûkek , uL := ∑
|k|≥M

ûkek (15)

then one has
u2 = (uS)2 +2uSuL +(uL)2 , (16)

the norms of these terms are bounded respectively by

‖u‖2
s , ‖u‖2

s ,
1

Ms−1 ‖u‖
2
s

from which one sees that the last term can be considered small and is not relevant
to the dynamics. Thus one could avoid to eliminate such a term from the nonlin-
earity. Correspondingly one will not have to consider small denominators involving
frequencies with many small indexes.

To be able to exploit the tame property one has to ensure that it persists under the
operations involved in the construction of the normal form, namely the computation
of Poisson Brackets and the solution of the Homological equation. Now the stability
of the tame property under Poisson Brackets is easy to check, while the verification
of the stability under solution of the Homological equation is difficult and at present
not known. For this reason one has to perform a more careful analysis. It turns out
that it is convenient to understand the structure of the coefficients of the nonlinearity
that ensure the Tame property, and to show that such a structure is invariant under
the construction. The theory we develop is a variant of that developed by Delort and
Szeftel in [DS06].

4 A Birkhoff normal form theorem for semilinear PDEs

4.1 Maps with localized coefficients and their properties

Having in mind the case of the nonlinear wave equation in Sd , consider the space �2
s

of the sequences q≡ {q jl}1≤l≤l∗( j)
j≥0 , such that

‖q‖2
s := ∑

1≤ j
| j|2s

l∗( j)

∑
l=1
|q jl |2 < ∞ , (1)

with a suitable l∗( j).
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Then define the projectors Π j by

Π jq :=∑
l

q jle jl (2)

(sum only over l), and the spaces E j := Π j�
2
s , which are independent of s.

The spaces Ps := �2
s × �2

s � (p,q) will be used as phase spaces. We will also use
the spaces P∞ := ∩sPs and P−∞ := ∪s∈RPs. It is useful to treat the p’s and the
q’s exactly on an equal footing so we will use the notation

z jl = q jl , z− jl := p jl , j ≥ 1 ,

correspondingly we will denote by z the set of all the variables and we will use the
projector

Π− jz :=∑
l

p jle jl , j ≥ 1 . (3)

Given an element z ∈Ps, one can write it as

z = ∑
j 	=0

Π jz , (4)

so that one has
‖z‖2

s = ∑
j 	=0
| j|2s∥∥Π jz

∥∥2 (5)

where we defined
∥∥Π jz

∥∥2 :=
l∗( j)

∑
l=1

z2
jl . (6)

Let f : P∞ → R be a smooth polynomial functions homogeneous of degree r.
We can associate to f a symmetric multilinear map f̃ , defined by the property

f (z) = f̃ (z, ...,z︸ ︷︷ ︸
r−times

) (7)

then we can write
f (z) = ∑

j1,..., jr

f̃ (Π j1z, ...,Π jr z) . (8)

We will assume suitable localization properties of the norm of f̃ (Π j1z, ...,Π jr z)
as a function of the indexes j1, ..., jr.

Definition 4.1. Given a multi-index j ≡ ( j1, ..., jr), let ( ji1 , ji2 , ji3 ..., jir) be a re-
ordering of j such that

| ji1 | ≥ | ji2 | ≥ | ji3 | ≥ ...≥ | jir | .

We define µ( j) := | ji3 | and

S( j) := µ( j)+ || ji1 |− | ji2 || . (9)
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Definition 4.2. Let f : P∞ → R be a homogeneous polynomial of degree r. Let f̃
be the associated multilinear form. We will say that f has localized coefficients if
there exists ν ∈ [0,+∞) such that ∀N ≥ 1 there exists CN such that ∀z ∈P∞ and
any choice of the indexes j1, ..., jr the following inequality holds

∣∣∣ f̃ (Π j1z, ...,Π jr z)
∣∣∣≤CN

µ( j)ν+N

S( j)N

∥∥Π j1z
∥∥ ...

∥∥Π jr z
∥∥ . (10)

Definition 4.3. A function f ∈C∞(U ,R) with U ⊂P∞ will be said to have local-
ized coefficients if

(i) All the terms of its Taylor expansion have localized coefficients.
(ii) For any s large enough there exists a neighborhood U (s) of the origin in Ps

such that Xf ∈C∞(U (s),Ps).

Remark 4.1. In the case of [0,π] the property (4.2) turns out to really be a property
of the coefficients of the expansion of the nonlinearity on the basis in which the
quadratic part is diagonal. To understand this point consider the case of a homoge-
neous polynomial dependent on q only. Write q = ∑ j q je j, then one has

f (q) =∑
j

f̃ (e j1 , ...,e jr)q j1 ...q jr =:∑
j

f j1,..., jr q j1 ...q jr (11)

then (10) is equivalent to

∣∣ f j1,..., jr

∣∣≤CN
µ( j)ν+N

S( j)N , ∀N ≥ 1 (12)

It is useful to extend the definition to polynomial maps taking value in Ps.

Definition 4.4. Let F : P∞→P−∞ be a polynomial map of degree r and let F̃ be
the associated multilinear form. We will say that F has localized coefficients if there
exists ν ∈ [0,+∞) such that

‖ΠiF̃(Π j1z, ...,Π jr z)‖ ≤CN
µ(i, j)ν+N

S(i, j)N

∥∥Π j1z
∥∥ ...

∥∥Π jr z
∥∥ , (13)

∀z ∈P∞ , ∀N ≥ 1 (14)

Here we denoted by (i, j) the multi-index (i, j1, ..., jr).

Remark 4.2. It is easy to see that if a polynomial function has localized coefficients,
then its Hamiltonian vector field has localized coefficients.

Remark 4.3. By the very definition of the property of localization of coefficients
it is clear that any (finite) linear combination of functions or maps with localized
coefficients has localized coefficients.

Remark 4.4. As it will be clear from the theory of Sects. 4.3, and 6.3 it is quite easy
to verify the property of localization of the coefficients.
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The main properties of polynomials with localized coefficients are their smooth-
ness, their stability under composition, linear combination and solution of the ho-
mological equation. In this subsection we will just state the corresponding results
that will be proved in the appendix.

First one has that the vector field of a polynomial with localized coefficients has
the tame property.

Theorem 4.1. Let F : P∞→P−∞ be a polynomial of degree r with localized coef-
ficients, then there exists s0 such that for any s≥ s0 it extends to a smooth map from
Ps to itself, moreover the following estimate holds

‖F(z)‖s ≤C‖z‖s ‖z‖
r−1
s0

. (15)

Corollary 4.1. Let f be a function with localized coefficients, then the result of the-
orem 4.1 holds for its vector field.

The composition of maps with localized coefficients has localized coefficients.
Precisely

Theorem 4.2. Let f : P∞ → R be a polynomial of degree r1 with localized coeffi-
cients, and let G : P∞ →P−∞ be a polynomial of degree r2 with localized coeffi-
cients, then the polynomial

d f (z)G(z) (16)

has localized coefficients.

Thus the strategy in order to verify the property of localization of the coefficients
is to verify it for a few simple maps and then to use the composition (16) to show
that it holds for more general maps. The precise example we have in mind is that
where f (u) =

∫
u3 and G(u) = u2, in which d f (u)G(u) = 3

∫
u4. Hence by iteration

one gets that all polynomials in u have localized coefficients if
∫

u3 has.
Moreover the following corollary holds.

Corollary 4.2. The Poisson Bracket of two functions with localized coefficients has
localized coefficients.

In order to develop perturbation theory we need a suitable nonresonance condi-
tion. This is given by the following definition.

Definition 4.5. Fix a positive integer r. The frequency vector ω is said to fulfill the
property (r–NR) if there exist γ > 0, and α ∈ R such that for any N large enough
one has

∣∣∣∣∣∑j≥1
ω jKj

∣∣∣∣∣≥
γ

Nα , (17)

for any K ∈ Z
∞, fulfilling 0 	= |K| := ∑ j |Kj| ≤ r +2, ∑ j>N |Kj| ≤ 2.
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It is easy to see that under this condition one can solve the Homological equation.
The precise statement is given by the following lemma.
Lemma 4.1. Let f be a homogeneous polynomial of degree less or equal than r
having localized coefficients. Let H0 be given by (9) and assume that the frequency
vector fulfills the condition r-NR. Consider the Homological equation

{H0,χ}+ f = Z . (18)

Its solution χ,Z defined by (26) has localized coefficients. In particular χ has local-
ized coefficients.

4.2 Statement of the normal form theorem and its consequences

Using the above results it is very easy to prove a version of the Birkhoff normal
form theorem for PDEs.

Definition 4.6. With reference to a system of the form (1) with H0 given by (9), the
quantity

Jj :=∑
l

p2
jl +q2

jl

2
(19)

is called the total action of the modes with frequency ω j.

Theorem 4.3. Fix r ≥ 1, assume that the nonlinearity HP has localized coefficients
and that the frequencies fulfill the nonresonance condition (r-NR), then there exists
a finite sr a neighborhood U

(r)
sr of the origin in Psr and a canonical transformation

T : U
(r)

sr →Psr which puts the system in normal form up to order r +3, namely

H(r) := H ◦T = H0 +Z(r) +R(r) (20)

where Z(r) and R(r) have localized coefficients and

(i) Z(r) is a polynomial of degree r +2 which Poisson commutes with Jj for all j’s,

namely
{

Jj;Z(r)
}
≡ 0;

(ii) R(r) has a small vector field, i.e.

∥∥XR(r) (z)
∥∥

sr
≤C‖z‖r+2

sr
, ∀z ∈U

(r)
sr ; (21)

(iii) One has
‖z−Tr(z)‖sr

≤C‖z‖2
sr

, ∀z ∈U
(r)

sr . (22)

An inequality identical to (9) is fulfilled by the inverse transformation T −1
r .

(iv) For any s ≥ sr there exists a subset U
(r)

s ⊂ U
(r)

sr open in Ps such that the
restriction of the canonical transformation to U

(r)
s is analytic also as a map

from Ps →Ps and the inequalities (21) and (22) hold with s in place of sr.

The proof is deferred to Sect. 6.2.
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In order to deduce dynamical consequences we fix the number r of normalization
steps; moreover, it is useful to distinguish between the original variables and the
variables introduced by the normalizing transformation. So, we will denote by z =
(p,q) the original variables and by z′ = (p′,q′) the normalized variables, i.e. z =
Tr(z′). More generally we will denote with a prime the quantities expressed in the
normalized variables.

Proposition 4.1. Under the same assumptions of Theorem 4.3, ∀s ≥ sr there exists
ε∗s such that, if the initial datum fulfills

ε := ‖z0‖s < ε∗s

then one has

(i)

‖z(t)‖s ≤ 4ε for |t| ≤ 1
εr (23)

(ii)

∑
j

j2s ∣∣J′j(t)− J′j(0)
∣∣≤CεM+3 for |t| ≤ 1

εr−M , M < r (24)

and

∑
j

j2s ∣∣Jj(t)− Jj(0)
∣∣≤Cε3 for |t| ≤ 1

εr . (25)

(iii) If for each j the space E j is one dimensional, then there exists a smooth torus
T0 such that, ∀M ≤ r

ds(z(t),T0)≤Cε(M+3)/2 , for |t| ≤ 1
εr−M (26)

where ds(., .) is the distance in Ps.

4.3 Application to the nonlinear wave equation

The aim of this section is to verify the assumptions of Theorem 4.3 in the model
problems we are considering.

We start by the property of localization of the coefficients. The main step consists
in verifying the property for the Hamiltonian function

f (u) :=
∫

D
u3(x)dx ; (27)

the corresponding multilinear form is given by

f̃ (u1,u2,u3) :=
∫

D
u1(x)u2(x)u3(x)dx , (28)
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so we have to estimate such a quantity when u j ∈ En j , namely the eigenspace of−∆
corresponding to the eigenvalue λn j . We have the following theorem.

Proposition 4.2. Let En be the eigenspace of −∆ associated to the eigenvalue λn,
then for any N ≥ 1 there exists CN such that one has

∣∣∣∣
∫

D
un1(x)un2(x)un3(x)dx

∣∣∣∣≤CN
µ(n)N+ν

S(n)N ‖un1‖L2 ‖un2‖L2

∥∥un3

∥∥
L2 (29)

for all un j ∈ En j .

A simple strategy to obtain the proof consists in considering the quantity (28) as
the matrix elements of index n1,n2 (on the basis of the eigenvectors of the Laplacian)
of the operator of multiplication by un3 . The actual proof is deferred to Sect. 6.3.

Corollary 4.3. The nonlinearity given by the second integral in (1) has localized
coefficient.

Proof. This is a consequence of Proposition 4.2 and of Theorem 4.2. Indeed a term
in the Taylor expansion of

∫
D F(u)dx is a multiple of

tk(u) :=
∫

Sd
uk(x)dx (30)

and one has tk(u) = Cdt2(u)Tk−1(u), where Tk−1(u) = uk−1. Then such a quantity
has localized coefficients by Theorem 4.2. 
�

In order to apply Theorem 4.3 to the nonlinear wave equation (1) there remains
to verify the nonresonance condition (r−NR). To this end consider the frequencies

ω j+1 =
√

j( j +d−1)+µ2 (31)

then we have the following

Theorem 4.4. There exists a zero measure set S ⊂ R such that, if µ ∈ R− S, then
the frequencies (31) fulfill the condition (r−NR) for any r.

The proof was given in [Bam03] (see also [BG06]), and for the sake of complete-
ness it is repeated in Appendix 8.

Thus the main theorem and its corollaries apply to the nonlinear wave equation
both in the case of [0,π] and in the case of the d dimensional sphere.

Remark 4.5. A particular consequence of this theory is that it allows one to ensure
existence of smooth solutions of the nonlinear wave equation on the sphere for times
of order ε−r. It has to be emphasized that when d > 1 local existence is ensured only
in Hs, with s > 1, so that the energy norm is useless in order to deduce estimate of
the existence times of solutions. At present the method of Birkhoff normal form is
the only one allowing one to improve the times given by the local existence theory.
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5 Discussion

First I would like to mention that, as shown in [BG06], Theorem 4.3 is a theorem that
allows one to deal with quite general semilinear equations in one space dimension.

The limitation to semilinear equation is evident in Theorem 4.3. Thus in partic-
ular all the equations with nonlinearity involving derivatives are excluded from the
present theory. It would be of major interest to have a theory valid also for some qua-
silinear equations, since most physical models have nonlinearities involving deriva-
tives. Very little is known on quasilinear problems. At present the only known result
is that of [DS04] (and a recent extension by Delort), where only one step of normal
form was performed for the quasilinear wave equation. It would be very interesting
to understand how to iterate the procedure developed in such papers.

The limitation to one-space dimension is more hidden. Actually it is hidden in
the nonresonance condition. Indeed its verification is based on the asymptotic be-
havior of the frequencies: the nonresonance condition is typically satisfied only if
the frequencies grow at infinity at least as ω j ∼ j. As it was shown in the example of
the nonlinear wave equation on the sphere, the possible multiplicity of the frequen-
cies is not a problem. The theory easily extends to the case where the differences
between couples of frequencies accumulate only at a discrete subset of R. The un-
derstanding of the structure of the frequencies in higher dimension is surely a key
point for the extension of the theory to higher dimensions.

Finally I would like to mention the fact that all known applications of the theory
we are considering pertain to equations on compact manifolds, however in princi-
ple the theory applies to smooth perturbations of linear system with discrete spec-
trum. A nice example of such a kind of systems is the Gross Pitaevskii equation. It
would be interesting to show that such an equation fulfills the assumption of Theo-
rem 4.3. This could be interesting also in connection with the study of the blow up
phenomenon.

6 Proofs

6.1 Proof of the properties of functions with localized coefficients

Lemma 6.1. Let z ∈Ps with s > ν +1/2 then there exists a constant Cs such that

∑
j 	=0
| j|ν

∥∥Π jz
∥∥≤Cs ‖z‖s (1)

Proof. One has

∑
j 	=0
| j|ν

∥∥Π jz
∥∥≤∑

j
| j|s

∥∥Π jz
∥∥

| j|s−ν ≤
√
∑

j

1
| j|2(s−ν)

√
∑

j
| j|2s

∥∥Π jz
∥∥2

which is the thesis. 
�
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Proof of Theorem 4.1. Write explicitly the norm of F(z). One has

‖F(z)‖2
s =∑

l
|l|2s

∥∥∥∥∥ ∑
j1,..., jr

Πl F̃(Π j1z, ...,Π jr z)

∥∥∥∥∥
2

. (2)

In what follows, to simplify the notation we will write

a j :=
∥∥Π jz

∥∥ .

One has
∥∥∥∥∥ ∑

j1,..., jr

|l|sΠl F̃(Π j1z, ...,Π jr z)

∥∥∥∥∥≤C ∑
j1,..., jr

|l|s µ( j, l)ν+N

S( j, l)N a j1 ...a jr (3)

Since this expression is symmetric in j1, ... jr the r.h.s. of (3) is estimated by a
constant times the sum restricted to ordered multi-indexes, namely indexes such that
| j1| ≤ | j2| ≤ ... ≤ | jr|. Moreover, in order to simplify the notations we will restrict
to the case of positive indexes. To estimate (3) remark that for ordered multi-indexes
one has

l
µ( j, l)
S( j, l)

≤ 2 jr . (4)

Indeed, if l ≤ 2 jr this is obvious (µ/S < 1 by the very definition), while, if l > 2 jr
one has S( j, l)≥ |l− jr|> l/2, and therefore

l
µ( j, l)
S( j, l)

≤ µ( j, l)≤ 2 jr .

Remark now that, by the definition of S one has

S( j, l)≥
{

1+ | jr− l| if l ≥ jr−1
µ( j, l)+ jr− jr−1 ≥ l + jr− jr−1 if l < jr−1

Thus define Ŝ( j, l) := min{1+ | jr− l|, l+ jr− jr−1} and remark that S( j, l)≥ Ŝ( j, l).
Remark also that µ( j, l) ≤ jr−1. So it follows that (3) is smaller than (a constant
times)

∑
j1,..., jr

js
r
µ( j, l)N′+ν

Ŝ( j, l)N′
a j1 ...a jr ≤ ∑

j1,..., jr

js
r

jN′+ν
r−1

Ŝ( j, l)N′
a j1 ...a jr (5)

≤ ‖z‖r−2
s1 ∑

jr−1, jr

js
r

jN′+ν
r−1

Ŝ( j, l)N′
a jr−1 a jr (6)

where we denoted N′ := N− s and we used Lemma 6.1; we denoted by s1 a number
such that s1 > 1/2. Inserting in (2) one gets
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‖F(z)‖2
s ≤ ‖z‖

2(r−2)
s1 ∑

l

(
∑

jr−1, jr

js
r

jN′+ν
r−1

Ŝ( j, l)N′
a jr−1 a jr

)2

= ‖z‖2(r−2)
s1 ∑

l

(
∑
jr−1

jN′+ν
r−1 a jr−1∑

jr

js
r

a jr

Ŝ( j, l)N′/2

1
Ŝ( j, l)N′/2

)2

≤ ‖z‖2(r−2)
s1 ∑

l

⎛
⎝∑

jr−1

jN′+ν
r−1 a jr−1

√√√√∑
jr

j2s
r

a2
jr

Ŝ( j, l)N′

√
∑
jr

1
Ŝ( j, l)N′

⎞
⎠

2

Now the last sum in jr is finite provided N′> 1. Remark now that Ŝ( j, l)≥ Š( jr, l) :=
min{1 + |l− jr|, l} (independent of jr−1), and therefore the above quantity is esti-
mated by a constant times

‖z‖2(r−2)
s1 ∑

l

⎛
⎝∑

jr−1

jN′+ν
r−1 a jr−1

√√√√∑
jr

j2s
r

a2
jr

Š( j, l)N′

⎞
⎠

2

(7)

= ‖z‖2(r−2)
s1 ∑

jr

j2s
r a2

jr∑
l

1
Š( j, l)N′

(
∑
jr−1

jN′+ν
r−1 a jr−1

)2

(8)

≤C‖z‖2
s ‖z‖

2(r−2)
s1

‖z‖2
s0

(9)

where s0 is such that s0 > N′+ν+1/2. Choosing s1 ≤ s0 and estimating ‖z‖s1
with

‖z‖s0
one gets the thesis. 
�

Proof of Theorem 4.2. First remark that the multilinear form associated to the poly-
nomial d f (z)G(z) is given by the symmetrization of

r1 f̃ (z(1), ...,z(r1−1), G̃(z(r1), ...,z(r1+r2−1))) . (10)

We will estimate the coefficients of this multilinear function. This will give the
result. Forgetting the irrelevant constant r1, the quantity to be estimated is

f̃ (Π j1z, ...,Π jr1−1z, G̃(Πi1z, ...,Πir2
z)) (11)

=∑
l

f̃ (Π j1z, ...,Π jr1−1z,Πl G̃(Πi1z, ...,Πir2
z)) (12)

≤CN,N′∑
l

µν1+N( j, l)
S( j, l)N

µν2+N′(i, l)
S(i, l)N′

∥∥Π j1 z
∥∥ ...

∥∥∥Πir2
z
∥∥∥ (13)

Thus it is enough to estimate

∑
l

µν1+N( j, l)
S( j, l)N

µν2+N′(i, l)
S(i, l)N′ (14)

This is the heart of the proof.
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In order to simplify the notation we will restrict to the case r1−1 = r2 = r. Due
to the symmetry of this estimate we will restrict the case of ordered indexes, that
can also be assumed to be positive, so that one has jr ≥ jr−1 ≥ ...≥ j1 and similarly
for i.

All along this proof we will use the notation

S̃( j) := jr− jr−1 ≡ S( j)−µ( j)

We have to distinguish two cases.

First case jr ≥ ir ≥ jr−1.
The proof of this first case is (up to minor changes) equal to that given in [Gré06].
Take N′ = N, then before estimating (14), we need to estimate the general term

of the sum. So we collect a few facts on it.
The main relation we need is

S̃(i, j)≤ S̃(i, l)+ S̃( j, l) . (15)

This will be established by writing explicitly all the involved quantities as l varies.
So, first remark that S̃(i, j) = jr− ir. Then one has

S̃(i, l) =
{

ir− ir−1 if l ≤ ir−1
|ir− l| if l > ir−1

, S̃( j, l) =
{

jr− jr−1 if l ≤ jr−1
| jr− l| if l > jr−1

which gives

S̃(i, l)+ S̃( j, l) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ir− ir−1 + jr− jr−1 ≥ jr− jr−1 ≥ jr− ir if l ≤ ir−1
l− ir + jr− jr−1 ≥ jr− jr−1 ≥ jr− ir if ir−1 < l ≤ jr−1
|ir− l|+ | jr− l| ≥ | jk− l| ≥ jk− ik if jk−1 < l ≤ ir
|ir− l|+ | jr− l|= jr− l + l− ir if ir < l ≤ jr
|ir− l|+ | jr− l| ≥ l− ir ≥ jr− ir if jr ≤ l

from this (15) follows.
One also has

µ( j, l)≤ µ(i, j) , µ(i, l)≤ µ(i, j) . (16)

Thus

S(i, j)
µ(i, j)

=1+
S̃(i, j)
µ(i, j)

≤ 1+
S̃(i, l)+S̃( j, l)

µ(i, j)
≤ 1+

S̃(i, l)
µ(i, l)

+
S̃(l, j)
µ(l, j)

<
S(i, l)
µ(i, l)

+
S(l, j)
µ(l, j)

From this one has
µ(i, j)
S(i, j)

≥ 1
2

min
{
µ(i, l)
S(i, l)

,
µ(l, j)
S(l, j)

}
. (17)

Separate the sum over those l such that µ(i,l)
S(i,l) > µ(l, j)

S(l, j) and that over its complement.
Let L1 be the first set. Then one has
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∑
l∈L1

µν1+N( j, l)
S( j, l)N

µν2+N(i, l)
S(i, l)N ≤ ∑

l≥1
2N−1−εµ( j, l)ν1

µ(i, j)N−1−ε

S(i, j)N−1−ε
µ(i, l)1+ε+ν2

S(i, l)1+ε

≤ C
µ(i, j)N+ν1+ν2

S(i, j)N−1−ε .

Acting in the same way for the case of Lc
1 one concludes the proof in the first case.

Second case jr ≥ jr−1 > ir. Here it is easy to see that (15) still holds. However, in
some cases it happens that the equation

µ( j, l)≤ µ(i, j) (18)

is violated. When (18) holds the proof of the first case extends also to the present
case. So let us consider only the case where (18) is violated. We claim that in this
case one has

µ( j, l)
S̃(i, l)

≤ 2µ(i, j) . (19)

To prove (19) we distinguish two cases

(i) jr−2 ≤ ir ≤ jr−1 ≤ jr.
Then (18) is violated when ir < l ≤ jr−1. In this case one has

S̃(i, l) = l− ir (20)

It follows that
µ( j, l)
S̃(i, l)

1
µ(i, j)

=
l

l− ir

1
ir

which is easily seen to be smaller than 2 (for example write l = ir +δ , then the
relation becomes evident).

(ii) ir < jr−2 ≤ jr−1 ≤ jr. Here (18) is violated when jr−2 < l ≤ jr−1. It is easy to
see that also in this case (20) holds. Then

µ( j, l)
S̃(i, l)

1
µ(i, j)

=
l

l− ir

1
jr
≤ l

l− ir

1
ir

from which (19) still follows.

It is now easy to conclude the proof. Take N′ = 2N +ν2, then, using (19) one has

µ(i, l)ν1+2N+ν2

S(i, l)2N+ν2

µ( j, l)N+ν2

S( j, l)N ≤ µ(i, l)ν1+2N+ν2

S(i, l)N

(
µ( j, l)
S(i, l)

)N+ν2 1
S( j, l)N

≤ µ(i, l)ν1+2N+ν2

S(i, l)N
µ(i, j)N+ν2

S( j, l)N
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From this, following the proof given in the first case it is easy to prove that

S(i, j)
µ(i, j)

≤ S(i, l)
µ(i, l)

+
S( j, l)
µ(i, j)

and to conclude the proof in the same way as in the first case. 
�

Proof of Lemma 4.1. Consider the polynomial f and expand it in Taylor series.
Introduce now the complex variables (22). Remark that this is a linear change of
variable so it does not change the degree of a polynomial. Remark that the change
of variables does not mix the different spaces Ej×E j. It follows that if a polynomial
has localized coefficients in terms of the real variables p,q it has also localized
coefficients when written in terms of the complex variables, i.e. it fulfills (10) with
z j which is either ξ j or η j. Remark that the converse is also true. Now, Z is the sum
of some of the coefficients of f so it is clear that its coefficients are still localized.
In order to estimate χ , remark first that, in the particular case where

f (z)≡ f̃ (Π j1ξ , ...,Π jr1
ξ ,Πl1η , ...,Πlr2

η)

(no summation over j, l) one has

{H0, f}= i(ω j1 + ...+ω jr1
−ωl1 − ...−ωlr2

) f (21)

It follows that in the case of general f the function χ solving the homological equa-
tion can be rewritten as

χ(ξ ,η) :=∑
jl

f̃ (Π j1ξ , ...,Π jr1
ξ ,Πl1η , ...,Πlr2

η)

i(ω j1 + ...+ω jr1
−ωl1 − ...−ωlr2

)
(22)

where the sum runs over the indexes such that the denominators do not vanish. Now,
it is easy to verify that by condition (r-NR) the denominators are bounded from
below by γ/µ( j, l)α . So χ fulfills the estimate (10) with ν substituted by ν +α , if
f does with ν . 
�

6.2 Proof of the Birkhoff normal form Theorem 4.3
and of its dynamical consequences

In this section we will fix s large enough and work in Ps. Here BR ⊂ Ps will
denote the open ball of radius R with center at the origin in Ps. Moreover all along
this section H j will denote the set of homogeneous polynomials of degree j + 2
having a Hamiltonian vector field which is smooth as map from Ps to itself.
Finally, along this section we will omit the index s from the norm, thus we will
simply denote ‖.‖ := ‖.‖s.
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First we estimate the domain where the Lie transform generated by a polynomial
χ ∈H j, ( j ≥ 1) is well defined.

Lemma 6.2. Let χ ∈ H j, ( j ≥ 1) be a polynomial. Denote by φ t the flow of the
corresponding vector field. Denote also

t̄ = t̄(R,δ ) := inf
z∈BR

sup
{

t > 0 : φ t(z) ∈ BR+δ and φ−t(z) ∈ BR+δ
}

(minimum escape time of φ t(z) from BR+δ ). Then one has

t̄ ≥ δ
2
∥∥Xχ

∥∥R j+1
(23)

where
∥∥Xχ

∥∥ is the norm defined in remark 2.3. Moreover for any t, such that |t| ≤ t̄
and any z ∈ BR one has

∥∥φ t(z)− z
∥∥≤ |t|R j+1∥∥Xχ

∥∥ (24)

Proof. First remark that, by the definition of t̄ one has that there exists z̄ ∈ BR such
that

∥∥φ±t̄(z̄)
∥∥ = R+δ . Assume by contradiction t̄ < δ

2‖Xχ‖R j+1 , then, since for any

t with |t|< t̄ one has φ t(z̄) ∈ BR+δ . It follows that

∥∥∥φ t̄(z̄)
∥∥∥≤ ‖z̄‖+

∥∥∥φ t̄(z̄)− z̄
∥∥∥ = ‖z̄‖+

∥∥∥∥
∫ t̄

0

d
ds

φ s(z̄)ds
∥∥∥∥

≤ R+
∫ t̄

0

∥∥Xχ(φ s(z̄))ds
∥∥≤ R+ |t̄|R j+1∥∥Xχ

∥∥ ,

from which R+δ ≤ R+δ/2 which is absurd. 
�

Since χ is analytic together with its vector field (it is a smooth polynomial), then
one has the following corollary.

Corollary 6.1. Fix arbitrary R and δ , then the map

φ : Bσ ×BR → BR+δ , σ :=
δ

2
∥∥XχR j+1

∥∥
(t,z) �→ φ t(z)

is analytic. Here, by abuse of notation, we denoted by Bσ also the ball of radius σ
contained in C.

Proof of Theorem 4.3. The proof proceeds as in the finite dimensional case. The
only fact that has to be ensured is that at any step the functions involved in the
construction have localized coefficients. By Lemma 4.1 the solution χr+1 of the ho-
mological equation (32) has localized coefficients. Thus, by Theorem 4.1 its vector
field is smooth on a space Psr+1 . This determines the index sr+1 of the space with
minimal smoothness in which the transformation Tr+1 is defined. By corollary 6.1
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χr+1 generates an analytic flow. As in the finite dimensional case we use it to gener-
ate the Lie transform. Then H(r+1) is still given by (35–38). Remark now that given
a Hamiltonian function f , the Hamiltonian vector field of f ◦φr+1 is given by

Xf◦φr+1(z) = dφ−1
r+1(φr+1(z))Xf (φr+1(z)) (25)

so that the Hamiltonian vector fields of the terms (34), (35), (37), (38) are smooth.
To ensure the smoothness of the vector field of (36) write

�(z) := H0 ◦φ −H0−{χr+1,H0}

and remark that

H0(φr+1(z))−H0(z) =
∫ 1

0

d
dt

H0(φ t
r+1(z))dt =

∫ 1

0
{χr+1,H0}(φ t

r+1(z))dt

=
∫ 1

0
(H(r)

r+1(φ
t
r+1(z))−Zr+1(φ t

r+1(z))dt ,

where we used the homological equation to calculate {χr+1,H0}. Denote again G :=
H(r)

r+1−Zr+1, then one has

�(z) =
∫ 1

0
(G(φ t

r+1(z))−G(z))dt ,

from which the smoothness of the vector field of (36) immediately follows. Since
the Taylor expansion of the terms (35–38) can be computed using (13), by corollary
14 one has that all these functions have localized coefficients. Then, as in the finite
dimensional case the terms (35–38) have a vector field with a zero of order at least
r +3 which ensures the estimate of the remainder.

We show now that the normal form Z(r) commutes with all the Jj. To this end
remark that, by construction, the normal form contains only resonant monomials,
i.e. monomials ξ LηJ with

0 =∑
jl
ω j(Jjl−L jl) =∑

j
ω j

(
∑

l
(Jjl−L jl)

)
. (26)

Now the nonresonance condition implies
(
∑

l
(Jjl−L jl)

)
= 0 ∀ j .

It follows {
Jj,ξ LηJ} = i

[
∑

l
(Jjl−L jl)

]
ξ LηJ = 0 (27)

which is the desired property.
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Finally the estimate (22) of the deformation can be obtained exactly as in the
finite dimensional case. 
�
Proof of Proposition 4.1. We start by (i). Assume that ε is so small that B3ε ⊂U

(r)
s ;

perform the normalizing transformation. Remark that, by (22), one has z′0 ∈ B2ε ⊂
U

(r)
s . Define F(z) := ∑ j | j|2sJj ≡ ‖z‖2

s , then, as far as ‖z′(t)‖s ≤ 3ε one has

∣∣F(z′(t))−F(z′0)
∣∣ =

∣∣∣∣
∫ t

0

{
H(r),F

}
(z′(s))ds

∣∣∣∣
≤

∫ t

0

∣∣∣
{

R(r),F
}

(z′(s))
∣∣∣ds≤ |t|Cεr+3 ≤Cε3 (28)

where the last inequality holds for the times (23). To conclude the proof of (23) it is
enough to show that, for the considered times one actually has z′(t) ∈ B3ε . To this
end we follow the scheme of the proof of Lyapunov’s theorem: define

t̄ := sup
{

t > 0 :
∥∥z′(t)

∥∥
s < 3ε and

∥∥z′(−t)
∥∥

s < 3ε
}

To fix ideas assume that the equality is realized for t = t̄ Assume by contradiction
that t̄ < ε−r, then one can use (28) which gives

∥∥z′(t̄)
∥∥2 = 9ε2 = F(t̄)≤ F(z′0)+

∣∣F(z′(t))−F(z′0)
∣∣≤ 4ε2 +Cε3 , (29)

which is impossible for ε small enough.
We come to (ii). First remark that

J̇′j =∑
l

(
−p′jl

∂R(r)

∂q′jl
+q′jl

∂R(r)

∂ p′jl

)
,

so that

∑
j

j2s ∣∣J̇′j
∣∣ =∑

jl
j2s

∣∣∣∣∣−p′jl
∂R(r)

∂q′jl
+q′jl

∂R(r)

∂ p′jl

∣∣∣∣∣ (30)

≤
(
∑
jl

j2s(p′jl
2 +q′jl

2)

)1/2
⎛
⎝∑

jl
j2s

⎛
⎝
∣∣∣∣∣
∂R(r)

∂q′jl

∣∣∣∣∣
2

+

∣∣∣∣∣
∂R(r)

∂ p′jl

∣∣∣∣∣
2
⎞
⎠
⎞
⎠

1/2

(31)

≤
∥∥z′

∥∥
s

∥∥XR(r) (z′)
∥∥

s ≤C
∥∥z′

∥∥r+3
s (32)

which implies (24).
To prove (25) write

∣∣Jj(t)− Jj(0)
∣∣≤ ∣∣Jj(z(t))− Jj(z′(t))

∣∣+ ∣∣J′(t)− J′(0)
∣∣+ ∣∣Jj(z0)− Jj(z′0)

∣∣ . (33)
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The contribution of the middle term is estimated by (24). To estimate the contribu-
tion of the first and the last term write

j2s ∣∣q2
jl−q′jl

2∣∣≤ j2s (2|q′jl | |q jl−q′jl |+ |q jl−q′jl |2
)

(34)

adding the corresponding estimate for the p variables and summing over jl one gets
the thesis.

We come to (iii). In the considered case Jj reduces to I j, so the actions are in-
dividually conserved. In this proof we omit the index l which would take only the

value 1. Denote Ī j
′ :=

p′j
2(0)+q′j

2(0)
2 and define the torus

T
′
0 :=

{
z′ ∈Ps : I j(z′) = Ī j

}

One has

d(z′(t),T′0)≤
[
∑

j
j2s

∣∣∣∣
√

I′j(t)−
√

Ī j

∣∣∣∣
2
]1/2

(35)

Notice that for a,b≥ 0 one has,
∣∣∣√a−

√
b
∣∣∣≤

√
|a−b| .

Thus, using (32), one has that

[
d(z′(t),T′0)

]2 ≤∑
j

j2s|I′j(t)− Ī j| ≤CεM+3

Define now T0 := Tr(T′0) then, since Tr is Lipschitz one has

d(z(t),T0) = d(Tr(z′(t)),Tr(T′0))≤Cd(z′(t),T′0)≤Cε
M+3

2 . 
�

6.3 Proof of Proposition 4.2 on the verification of the property
of localization of coefficients

In this subsection we will prove the property of localization of coefficients for the
function u �→

∫
u3 in the case where the basis used for the definition (10) is the

basis of the eigenfunction of general second order elliptic operator. Thus the present
theory directly applies also to the case of the equation

utt −uxx +Vu = f (x,u)

with Neumann boundary conditions on [0,π]. The case of Dirichlet boundary con-
ditions can also be covered by a minor variant (indeed in such a case the function
u �→

∫
u3 has to be substituted by the function u �→

∫
u4.
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Thus consider a second order elliptic operator P, which is L2 self adjoint. This
means that we assume that in any coordinate system there exist smooth functions
Vα(x), α ∈ N

d such that P = ∑|α|≤2 Vα∂α , where we used a vector notation for the
derivative. Moreover we will assume that

‖u‖s+2 ≤ ‖Pu‖s .

Then, by L2 symmetry, one gets

‖u‖s ≤
∥∥∥Ps/2u

∥∥∥
0

, (36)

(where Ps/2 is defined spectrally). We will denote by D(Pk) the domain of Pk.
Finally, denote by λn the sequence of the eigenvalues of P counted without mul-
tiplicity (i.e. in such a way that λn+1 > λn). We will assume that the eigenvalues of
P behave as λn ∼ n2. We will denote by En the eigenspace of P relative to λn.

Let A be a linear operator which maps D(Pk) into itself for all k ≥ 0, and define
the sequence of operators

AN := [P,AN−1] , A0 := A . (37)

Lemma 6.3. Let P be as above and let u j ∈ En j . Then, for any N ≥ 0 one has

|〈Au1;u2〉| ≤
1

|λn1 −λn2 |N
|〈ANu1;u2〉| (38)

Proof. One has

〈A1u1;u2〉= 〈[A,P]u1;u2〉= 〈APu1;u2〉−〈PAu1;u2〉
= λn1 〈Au1;u2〉−〈Au1;Pu2〉= (λn1 −λn2)〈Au1;u2〉

Equation (38) follows applying the above equality to the operator AN := [P,AN−1]
and using an induction argument. 
�

To conclude the proof we have to estimate the matrix elements of AN , i.e. the
r.h.s. of (38). To this end we need a few remarks and lemma.

Remark 6.1. Consider two d-dimensional multi-indexes α and β and define
(
α
β

)
:=

α!
β !(α−β )!

,

with the convention that it is 0 if β j > α j for some j. One has

∂α(uv) =∑
β

(
α
β

)
∂βu∂α−β v . (39)
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Remark 6.2. Let A := a(x)∂α and B := b(x)∂β with a and b smooth functions. Then
one has

[A,B] = ∑
γ j≤α j+β j

[
a
(
β
γ

)
∂ γb−b

(
α
γ

)
∂ γa

]
∂α+β−γ . (40)

Lemma 6.4. Choose a coordinate system, let A = a0(x) be a multiplication opera-
tor, then one has

AN = ∑
|α|≤N

c(N)
α ∂α (41)

with c(N)
α of the form

c(N)
α = ∑

|β |≤2N−|α|
V (N)
αβ (x)∂βa0 (42)

and V (N)
αβ which are C∞ functions depending only on the functions Vα defining the

operator P.

Proof. First remark that by (40), the operator AN is a differential operator of order N.
By induction, using (40) one easily sees that the coefficients of such an operator are
linear combinations of the derivatives of a0. To show (42) we proceed by induction.
The result is true for N = 0. Then use equation (40) to compute

[
Vα∂α ;c(N)

β ∂β
]

= ∑
γ j≤α j+β j

[
Vα

(
β
γ

)
∂ γc(N)

β − c(N)
β

(
α
γ

)
∂ γVα

]
∂α+β−γ (43)

Consider the first term in the square bracket which is the one involving more deriv-
atives of c(N)

β . Since c(N)
β depends on ∂δa0 with |δ | ≤ 2N−|β |, one has that ∂ γc(N)

β
depends only on the derivatives ∂δa0 with |δ | ≤ 2N−|β |+ |γ|; in order to conclude
the proof we have to show that this is smaller than 2(N + 1)− (|α|+ |β | − |γ|), a
fact which is true since |α| ≤ 2. 
�

Remark 6.3. Let un ∈ En then by (36) one has

‖un‖s ≤Cns ‖un‖0

Remark 6.4. Let un ∈ En with ‖un‖0 = 1, and bα be a smooth function (α ∈ N
d),

then one has for any ν0 > d/2 one has

‖bα∂αun‖0 ≤Cν0 ‖bα‖ν0
n|α| (44)

Remark 6.5. Let un ∈ En with ‖un‖0 = 1, and let

bα := V (N)
αβ (x)∂βun (45)
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(with some β ) then one has

‖bα‖ν0
≤Cnν0+|β | (46)

with a C that depends on V (N)
αβ .

End of the proof of Proposition 4.2. Assume that n3 ≤ n2 ≤ n1 so that µ(n) = n3
and S(n) = n3 +n1−n2. Write the l.h.s. of (29) as

|〈Aun2 ;un1〉| (47)

with A the multiplication operator by un3 . Using (38) this is smaller than

1
|n2

1−n2
2|N
‖ANun2‖L2 ‖un1‖L2 . (48)

To estimate ‖ANun2‖L2 we use (41) and estimate each term separately. By Sobolev
embedding theorem, one term is estimated by

∥∥∥c(N)
α ∂αun2

∥∥∥≤C
∥∥∥c(N)

α

∥∥∥
ν0
‖∂αun2‖

ν0 > d/2. Using (42), (44), (46) one gets
∥∥∥c(N)

α

∥∥∥
ν0
≤C

∥∥un3

∥∥
2N+ν0−|α| ≤Cn2N+ν0−|α|

3

∥∥un3

∥∥
L2 .

where we used the ellipticity of P. We thus get that the l.h.s. of (29) is estimated by

C ∑
|α|≤N

n2N+ν0−|α|
3 n|α|2

1
|n2

1−n2
2|N
‖un1‖L2 ‖un2‖L2

∥∥un3

∥∥
L2

A part from a constant, the sum of the coefficients in front of the norms is estimated
by

n2N+ν0
3

(
n2

n3

)N 1
|n2

1−n2
2|N

=
(

n2

n1 +n2

)N nν0+N
3

|n1−n2|N
≤ nν0+N

3

|n1−n2|N
(49)

To conclude the proof just remark that n3 = µ , S = µ +(n1− n2) and that if n3 >
n1− n2 then the inequality (29) is trivially true. On the contrary, if n3 ≤ (n1− n2)
the r.h.s. of (49) is smaller than

nν0+N
3

2
(n3 + |n1−n2|)N

which concludes the proof. 
�
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6.4 Proof of Theorem 4.4 on the nonresonance condition

The proof follows the proof of Theorem 6.5 of [Bam03] (see also [BG06]). We
repeat the main steps for completeness. Fix r once for all and denote by C any
constant depending only on r. The value of C can change from line to line. Finally
we will denote m := µ2.

Lemma 6.5. For any K ≤ N, consider K indexes j1 < ... < jK ≤ N; consider the
determinant

D :=

∣∣∣∣∣∣∣∣∣∣∣

ω j1 ω j2 . . . ω jK
dω j1
dm

dω j2
dm . . .

dω jK
dm

. . . . . .

. . . . . .
dK−1ω j1
dmK−1

dK−1ω j2
dmK−1 . . .

dK−1ω jK
dmK−1

∣∣∣∣∣∣∣∣∣∣∣

(50)

One has

D = C

(
∏

l
ω−2K+1

il

)(
∏

1≤l<k≤K
(λ jl −λ jk)

)
≥ C

N2K2 . (51)

Proof. One has
d jωi

dm j =
(2 j−1)!

2 j−1( j−1)!2 j
(−1) j

(λi +m) j− 1
2

. (52)

Substitute (52) in the r.h.s. of (6.5), factorize from the l− th column the term (λ jl +
m)1/2, and from the j− th row the term (2 j−3)!

2 j−2( j−2)!2 j . The determinant becomes

C

[
K

∏
l=1

ω jl

]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1
x j1 x j2 x j3 . . . x jK
x2

j1 x2
j2 x2

j3 . . . x2
jK

. . . . . . .

. . . . . . .

. . . . . . .

xK−1
j1

xK−1
j2

xK−1
j3

. . . xK−1
jK

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(53)

where we denoted by x j := (λ j + m)−1 ≡ ω−2
j . The last determinant is a Vander-

mond determinant given by

∏
1≤l<k≤K

(x jl − x jk) = ∏
1≤l<k≤K

λ jk −λ jl

ω2
jl
ω2

jk

=

(
∏

1≤l<k≤K
(λ jl −λ jk)

)
K

∏
l=1

ω−2K
jl

. (54)

Using the asymptotic of the frequencies one gets also the second of (51). 
�

Next we need the lemma from appendix B of [BGG85], namely
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Lemma 6.6. Let u(1), ...,u(K) be K independent vectors with
∥∥∥u(i)

∥∥∥
�1
≤ 1. Let w ∈

R
K be an arbitrary vector, then there exist i ∈ [1, ...,K], such that

|u(i) ·w| ≥ ‖w‖�1 det(u(1), . . . ,u(K))
K3/2 .

Combining Lemmas 6.5 and 6.6 we deduce

Corollary 6.2. Let w ∈ R
∞ be a vector with K components different from zero,

namely those with index i1, ..., iK; assume K ≤ N, and i1 < ... < iK ≤ N. Then, for
any m ∈ [m0,∆ ] there exists an index i ∈ [0, ...,K−1] such that

∣∣∣∣w ·
diω
dmi (m)

∣∣∣∣≥C
‖w‖�1

N2K2+2
(55)

where ω is the frequency vector.

From [XYQ97] we have.

Lemma 6.7. (Lemma 2.1 of [XYQ97]) Suppose that g(τ) is m times differentiable on

an interval J ⊂R. Let Jh := {τ ∈ J : |g(τ)|< h}, h > 0. If on J,
∣∣∣g(m)(τ)

∣∣∣≥ d > 0,

then |Jh| ≤Mh1/m, where

M := 2(2+3+ ...+m+d−1) .

For any k ∈ Z
N with |k| ≤ r and for any n ∈ Z, define

Rkn(γ,α) :=

{
m ∈ [m0,∆ ] :

∣∣∣∣∣
N

∑
j=1

k jω j +n

∣∣∣∣∣ <
γ

Nα

}
(56)

Applying Lemma 6.7 to the function ∑N
j=1 k jω j + n and using Corollary 6.2 we

get as in [Bam99] Lemma 8.4

Corollary 6.3. Assume |k|+ |n| 	= 0, then

|Rkn(γ,α)| ≤C(∆ −m0)
γ1/r

Nς (57)

with ς = α
r −2r2−2.

Lemma 6.8. Fix α > 2r3 + r2 + 5r. For any positive γ small enough there exists a
set Iγ ⊂ [m0,∆ ] such that ∀m ∈Iγ one has that for any N ≥ 1

∣∣∣∣∣
N

∑
j=1

k jω j +n

∣∣∣∣∣≥
γ

Nα (58)

for all k ∈ Z
N with 0 	= |k| ≤ r and for all n ∈ Z. Moreover,

∣∣[m0,∆ ]−Iγ
∣∣≤Cγ1/r . (59)
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Proof. Define Iγ :=
⋃

nk Rnk(γ,α). Remark that, from the asymptotic of the fre-
quencies, the argument of the modulus in (58) can be small only if |n| ≤CrN, By
(57) one has

∣∣∣∣∣
⋃

k

Rnk(γ,α)

∣∣∣∣∣≤∑k
|Rk(γ,α)|< C

Nr(∆ −m0)γ1/r

Nς ,

summing over n one gets an extra factor rN. Provided α is chosen according to the
statement, one has that the union over N is also bounded and therefore the thesis
holds. 
�

Lemma 6.9. For any γ positive and small enough, there exist a set Jγ satisfying,
|[m0,∆ ]−Jγ | → 0 when γ → 0, and a real number α ′ such that for any m ∈Jγ
one has for N ≥ 1 ∣∣∣∣∣

N

∑
j=0

ω jk j + ε1ω j + ε2ωl

∣∣∣∣∣≥
γ

Nα ′ (60)

for any k ∈ Z
N, εi = 0,±1, j ≥ l > N, and |k|+ |ε1|+ |ε2| 	= 0, |k| ≤ r +2.

Proof. We consider only the case now the case ε1ε2 = −1 which is the most com-
plicate. One has

ω j−ωl = j− l +a jl with
∣∣a jl

∣∣≤ C
l

(61)

So the quantity to be estimated reduces to

N

∑
j=0

ω jk j±n±a jl , n := j− l

If l > 2CNα/γ then the a jl term represents an irrelevant correction and therefore the
lemma follows from Lemma 6.8. In the case l ≤ 2CNα/γ one reapplies the same
lemma with N′ := 2CNα/γ in place of N and r′ := r +2 in place of r. 
�

To obtain theorem 4.4 just define J :=
⋂

r≥1
⋃
γ>0 Jγ and remark that its com-

plement is the union of a numerable infinity of sets of zero measure.
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Normal form of holomorphic dynamical systems

Laurent Stolovitch1

Abstract This article represents the expanded notes of my lectures at the ASI “Ham-
iltonian Dynamical Systems and applications”. We shall present various recent re-
sults about normal forms of germs of holomorphic vector fields at a fixed point in
C

n. We shall explain how relevant it is for geometric as well as for dynamical pur-
pose. We shall first give some examples and counter-examples about holomorphic
conjugacy. Then, we shall state and prove a main result concerning the holomor-
phic conjugacy of a commutative family of germs of holomorphic vector fields. For
this, we shall explain the role of diophantine condition and the notion of singular
complete integrability.

1 Definitions and examples

Let us consider the pendulum with normalized constants :

θ̈ + sinθ = 0 (1)

We would like to understand the behavior of the motion for the small oscillations
of the pendulum, that is to say when θ is small. We are tempted to say that sinθ
is well approximated by θ and then we would like to consider the much simpler
equation (∗) θ̈ +θ = 0 instead of (1). If we set θ1 = θ and θ2 = θ̇ , equation (∗) can
be written as {

θ̇1 = θ2

θ̇2 =−θ1
.
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The dynamic is completely understood. Its trajectories are circles θ 2
1 + θ 2

2 =
constant. Are these information relevant for the understanding of the dynamic
of the original problem (1)? Does the closeness of equation (∗) to equation (1)
imply that they have the same dynamical properties?

In general, both answer are ‘No!’. In these lectures, we shall explain these phe-
nomena and how to define a reasonable simplified problem to study : a normal form.

Let us start with a very elementary example of a similar problem. In order to
study the iterates of a square complex matrix A of C

n, that is the orbits {Akx}k∈N

for x ∈ C
n near the “fixed point” 0, it is very convenient to transform, with the help

of a linear change of coordinates P, the matrix A into a Jordan matrix J = S + N,
with S a diagonal matrix, N an upper triangular nilpotent matrix commuting with
S : PAP−1 = S+N. Using the (block diagonal) structure of S+N, it is easy to study
its iterates. Since Ak = P−1JkP, we have Anx = P−1(Jny) where x = P−1y. We thus
obtain all informations needed for the study of the iterates of A.

One of the great ideas of Poincaré was to try to proceed in the same way for
vector fields. Is it possible to transform a given vector field X , vanishing at the origin
of R

n (resp. C
n), into a “simpler” one with the help of a local diffeomorphism Φ

near the origin and which maps the origin to itself? The group of germs of Ck (resp.
holomorphic, formal) diffeomorphisms at 0 ∈ C

n and tangent to IdCn at the origin,
acts on the space of germs of holomorphic (resp. formal) vector fields at 0 ∈ C

n

by conjugacy : if X is any representative of a germ of vector field X , and φ is any
representative of a germ of diffeomorphism Φ , then Φ∗X is the germ of vector field
defined by

φ∗X(φ(x)) := Dφ(x)X(x)

where Dφ(x) denotes the derivative of φ at the point x. One may first attempt to
linearize formally X , that is to find a formal change of coordinates Φ̂ , such that
Φ̂∗X(y) = DX(0)y. Assume it is so then, one could expect to understand all about
the dynamics of X since the flow of the linear vector field DX(0)y is easy to study.
Nevertheless, this cannot be the case unless we are able to pull-back these informa-
tions by Φ̂ , and this requires some “regularity” conditions on Φ̂ . Is there a Ck (resp.
smooth) linearizing diffeomorphism? When we are working in the analytic category,
this regularity condition should be that Φ̂ is holomorphic in a neighborhood of the
origin. What happens in this situation?

These ideas have been widely developed by V.I. Arnol’d and his school. Our main
reference for this topic is the great book by V.I. Arnol’d [Arn88a]. We refer also
to [AA88] which contain a lot of references on this topic. Singularities of mappings
are also studied in the same spirit [AGZV85, AGZV88].

1.1 Vector fields and differential equations

Let us consider a germ of vector field X at a point p : in a coordinate chart at p,
it can be written X(z) = ∑n

i=1 Xi(z) ∂
∂ zi

. It is equivalent to consider the system of
autonomous differential equations :
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⎧
⎪⎪⎨
⎪⎪⎩

ż1 = X1(z)
...

żn = Xn(z)

.

The Lie derivative of a germ of function f along the vector field X is the germ of
function

LX f (z) :=
n

∑
i=1

Xi(z)
∂ f
∂ zi

(z).

It will also be denoted by X( f ).
We will denote by [X ,Y ] the Lie bracket of the vector fields X = ∑n

i=1 Xi
∂
∂ zi

and

Y = ∑n
i=1 Yi

∂
∂ zi

. It is defined to be

[X ,Y ] =
n

∑
i=1

(
n

∑
j=1

Xj
∂Yi

∂ z j
−Yj

∂Xi

∂ z j

)
∂
∂ zi

.

It is skew-symmetric and satisfies the Jacobi identity :

[X , [Y,Z]]+ [Y, [Z,X ]]+ [Z, [X ,Y ]] = 0.

Moreover, if X ,Y are vector fields and f a function

[X , fY ] = f [X ,Y ]+LX ( f )Y. (2)

Two vector fields X ,Y are said to be commuting pairwise whenever [X ,Y ] ≡ 0.
From the dynamical point of view, let us start at a point p, then let us follow the
flow of X during a time t then follow the flow of Y during a time s. Let q be this end
point. Let us start at p again but now follow the flow of Y during a time s first then
follow the flow of X during a time t. Let q′ be this end point. The fact that X and Y
commute pairwise means that q = q′.

1.1.1 Notations

Let us set some notations which will be used all along this article : let k ≥ 1 be an
integer,

• Pk
n denotes the C-space of homogeneous polynomial vector fields on C

n and
of degree k

• Pm,k
n denotes the C-space of polynomial vector fields on C

n, of order ≥ m and
of degree ≤ k (m≤ k)

• X̂ k
n denotes the C-space of formal vector fields on C

n and of order ≥ k at 0
• X k

n denotes the C-space of germs of holomorphic vector fields on (Cn,0) and
of order ≥ k at 0

• pk
n denotes the C-space of homogeneous polynomial on C

n and of degree k
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• M̂ k
n denotes the C-space of formal power series on C

n and of order ≥ k at 0
• M k

n denotes the C-space of germs of holomorphic functions on (Cn,0) and of
order ≥ k at 0

• Ôn denotes the ring of formal power series in C
n

• On denotes the ring of germs at 0 of holomorphic functions in C
n

1.1.2 Norms

Let f ∈ C[[x1, . . . ,xn]] be a formal power series : f = ∑Q∈Nn fQxQ. We define f̄ as
the formal power series f̄ = ∑Q∈Nn | fQ|xQ. We will say that a formal power series
g dominates a formal power series f , if ∀Q ∈ N

n, | fQ| ≤ |gQ|. In that case, we will
write f ≺ g. More generally, let q ≥ 1 be an integer and let F = ( f1, . . . , fq) and
G = (g1, . . . ,gq) be elements of (C[[x1, . . . ,xn]])

q; we shall say that G dominates F ,
and we shall write F ≺G, if fi ≺ gi for all 1≤ i≤ q. We shall write F̄ = ( f̄1, . . . , f̄q).
We shall say that F is of order ≥ m (resp. polynomial of degree ≤ m), if each of his
components is of order ≥ m (resp. polynomial of degree ≤ m).

Let r be an positive number and ( f ,F,G) ∈ Ôn× Ôq
n × Ôq

n , we define

| f |r := ∑
Q∈Nn

| fQ|r|Q| = f̄ (r, . . . ,r)

and |G|r = maxi |gi|r; these may not be finite. We have the following properties

f G ≺ f̄ Ḡ

if F ≺ G then |F|r ≤ |G|r
∂F
∂xk

=
∂ F̄
∂xk

Let us define H q
n (r) = {F ∈ Ôq

n | |F |r < +∞}; |.|r is norm on this space. Together
with the norm |.|r, this space is a Banach space (see [GR71]).

Lemma 1.1.1 Let F =∑Q∈Nn FQxQ an element of H q
n (r), then we have the follow-

ing inequalities :

‖F‖r ≤ |F |r (3)

|F |R ≤
(

R
r

)m

|F |r if ord(F)≥ m,R≤ r (4)

|DF|r ≤
d
r
|F |r if F is a polynomial of degree≤ d (5)

Here ‖F‖r denotes the supremum of |F(z)| on the polydisc |zi|< r, 1≤ i≤ l.

Proof. The first inequality comes from the fact that for all x in the polydisc of radius
r, we have
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∣∣∣∣∣ ∑Q∈Nn

FQxQ

∣∣∣∣∣≤ ∑
Q∈Nn

|FQ||xQ| ≤ |F |r.

For the second, we have

∑
Q∈Nn, |Q|≥m

|FQ|R|Q| ≤ ∑
Q∈Nn, |Q|≥m

R|Q|

r|Q|
|FQ|r|Q| ≤

Rm

rm ∑
Q∈Nn, |Q|≥m

|FQ|r|Q|.

For the last one, we have F = ∑Q∈Nn, |Q|≤d FQxQ. Hence, we have

| ∂F
∂x j

|r =

∣∣∣∣∣ ∑
Q∈Nn, |Q|≤d

FQq jxQ−E j

∣∣∣∣∣
r

= ∑
Q∈Nn, |Q|≤d

|FQ|q jr|Q|−1

≤ d
r
|F |r.

We shall often use the estimate |(DG).F|r ≤ n|DG|r|F |r whenever (F,G) ∈
H n

n (r).

Lemma 1.1.2 [Sto00][Prop. 3.1.1] Let r > 0, a ∈ C
∗ and g ∈H 1

n (r). We assume
that |g|r < |a|. Then ∣∣∣∣

1
a+g

∣∣∣∣
r
≤ 1
|a|− |g|r

1.2 Normal forms of vector fields

In the sequel, we will assume that the linear part of X at the origin is not nilpotent
(see [CS86] normal form with nilpotent linear part) and for the sake of simplicity
we even assume that is it semi-simple :

S := DX(0)x =
n

∑
i=1

λixi
∂
∂xi

is a nonzero diagonal vector field. If Q = (q1, . . . ,qn) ∈ N
n, we will write (Q,λ ) :=

∑n
i=1 qiλi, |Q| := q1 + · · ·+qn and xQ := xq1

1 · · ·x
qn
n .

Proposition 1.2.1 (Poincaré–Dulac normal form) Let X = S + R2 be a nonlinear
perturbation of the linear vector field S. Then there exits a formal change of coordi-
nates Φ̂ tangent to the identity such that

Φ̂∗X = S + N̂,

where the nonlinear formal vector field N̂ commutes with S : [S, N̂] = 0.
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By formal change of coordinates Φ̂ tangent to the identity, we mean that there
exists formal power series φ̂i(x) = ∑Q∈Nn,|Q|≥2 φi,QxQ ∈ C[[x1, . . .xn]] of order ≥ 2,
such that Φ̂i(x) = xi + φ̂i(x), the ith-component of Φ̂ .

Let us describe a normal form in local coordinates. First of all, we notice that
[

S,xQ ∂
∂xi

]
= ((Q,λ )−λi)xQ ∂

∂xi
.

Therefore, such an elementary vector field commute with S if and only if

(Q,λ ) = λi.

This is called a resonance relation and xQ ∂
∂xi

the associated resonant vector field.
Therefore, the formal normal form proposition can be rephrased as : there exists

a formal diffeomorphism Φ̂ (which is not unique in general) such that

Φ̂∗X =
n

∑
i=1

λixi
∂
∂xi

+
n

∑
i=1

(
∑

(Q,λ )=λi

ai,QxQ

)
∂
∂xi

where the sum is over the multiintegers Q∈N
n, |Q| ≥ 2 and the index i which satisfy

to (Q,λ ) = λi and where the ai,Q’s are complex numbers.

Example 1.2.2 Let ζ be a positive irrational number. Let us consider the vector
field X {

ẋ = x+ f (x,y)

ẏ =−ζy+g(x,y)

where f ,g are smooth functions vanishing at the origin as well as their first
derivatives. It is formally linearizable since the only integer solution (q1,q2) of
q1−ζq2 = 0 is (0,0). Hence, there are no resonance relation satisfied.

Example 1.2.3 Let us consider the vector field X
{

ẋ = 2x+ y2 + f (x,y)

ẏ = y+g(x,y)
(6)

where the smooth functions f ,g vanish at order 3 at the origin. There is one and
only one resonance relation satisfied : 0λ1 + 2λ2 = λ1. Therefore, X is formally
conjugate to the normal form

{
ẋ = 2x+ y2

ẏ = y
. (7)

Example 1.2.4 Let us consider the analytic vector field X
{

ẋ = x+ f (x,y)

ẏ =−y+g(x,y)
(8)
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for some holomorphic functions f ,g vanishing at first order at the origin. It is clear
that the only solutions of the resonance relation q1λ1 + q2λ2 = λ1 (resp. q1λ1 +
q2λ2 = λ2) are of the form q1 = q2 +1 (resp. q2 = q1 +1). Thus, the resonant vector
fields are generated by (xy)lx ∂

∂x and (xy)ly ∂
∂y where l is a positive integer. Applying

Poincaré-Dulac theorem to equation (8) leads to a formal normal form
{

ẋ = xF̂(xy)

ẏ =−yĜ(xy)
(9)

where F̂ , Ĝ are formal power series which values at 0 is 1.

Example 1.2.5 Let us extend example 1.2.4 by Example 1.2.3 in a four-dimensional
system :

ẇ = w+ e(w,x,y,z)
ẋ = −x+ f (w,x,y,z)
ẏ = 2iy+g(w,x,y,z)
ż = iz+h(w,x,y,z)

Its formal normal form is of the form

ẇ = wF̂(wx)
ẋ = −xĜ(wx)
ẏ = 2iĤ1(wz)y+ Ĥ2(wz)z2

ż = iĤ3(wz)z

Example 1.2.6 Let us consider the five-dimensional system
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = x1 + f1(x)
ẋ2 =−x2 + f2(x)
ẋ3 =−ζx3 + f3(x)
ẋ4 = ix4 + f4(x)
ẋ5 = ix5 + f5(x)

where ζ is a positive irrational number. Its normal form is of the form
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = x1 f̂1(x1x2)
ẋ2 =−x2 f̂2(x1x2)
ẋ3 =−ζ f̂3(x1x2)x3
ẋ4 = ix4 + x4ĝ1,1(x1x2)+ x5ĝ1,2(x1x2)
ẋ5 = ix5 + x4ĝ2,1(x1x2)+ x5ĝ2,2(x1x2)

(10)

where the f̂i’s (resp. ĝi, j’s) are formal power series of one variable (resp. vanishing
at the origin).
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1.2.1 Hamiltonian vector fields

We refer the Arnold book [Arn97] for this section.
To a germ of function H : (R2n,0)→ (R,0) vanishing at first order at 0, we can

associate a germ of vector field XH of (R2n,0) vanishing at the origin. If (x,y) are
local coordinates, it is defined to be

ẋ j =
∂H
∂y j

, j = 1, . . . ,n

ẏ j = −∂H
∂x j

, j = 1, . . . ,n.

It is called the Hamiltonian vector field associated to H. The function H is called
the Hamiltonian of XH .

Definition 1.2.7 A change of coordinate Xj = φ j(x,y), Yj = ψ j(x,y) is called
canonical if it preserve the symplectic form ω = ∑n

j=1 dx j ∧dy j. In other words,

n

∑
j=1

dx j ∧dy j =
n

∑
j=1

dXj ∧dYj.

If we conjugate an Hamiltonian vector field XH by a canonical diffeomorphism Φ ,
we obtain again an Hamiltonian vector field, namely XH◦Φ . We shall say that the
Hamiltonian H is a Birkhoff normal form whenever its associated Hamiltonian
vector field XH is a normal form.

Definition 1.2.8 In symplectic coordinates (x,y), we define the Poisson bracket of
the germ of functions to be

{ f ,g} :=
n

∑
j=1

(
∂ f
∂x j

∂g
∂y j

− ∂g
∂x j

∂ f
∂y j

)
.

It satisfies the following properties :

• {., .} is bilinear and skew-symmetric
• { f ,{g,h}}+{g,{h, f}}+{h,{ f ,g}}= 0 (Jacobi identity)
• { f ,gh}= { f ,g}h+{ f ,h}g (Leibniz identity)

It is easy to show that
[XH ,XG] = X{H,G}.

1.3 Examples about linearization

Example 1.3.1 The normal form (7) is topologically conjugate to the linear part
{

ẋ = 2x

ẏ = y
.
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By this, we mean there exists an homeomorphism H fixing the origin which maps
the trajectories of the normal form to the trajectories of its linearized : H(φt(x)) =
φ linearized

t (H(x)) where φt denotes the flow at time t starting at x. This is a con-
sequence of Hartman–Grobmann theorem. Nevertheless, it can be shown that the
normal form is not C2-conjugate to its linearized at the origin.

Theorem 1.3.2 [Ste58, Bru95] Assume the linear part S is non-resonant, i.e. there
is no resonance relation satisfied. Then any smooth nonlinear perturbation X =
S +R of S is smoothly conjugate to its linear part S.

What happens in the analytic context?

Example 1.3.3 We borrow this example to J.-P. Françoise [Fra95]. Let us consider
a special case of Example 1.2.2. Let us assume that the irrational number ζ is
Liouvillian. By this, we mean that there exists two sequences of positive integers
(pn),(qn) both tending to infinity with n such that

∣∣∣∣ζ −
pn

qn

∣∣∣∣ <
1

qn(qn!)
.

The number ζ is too well approximated by rational numbers. Given such a pair of
sequence, let us consider the function

f (x,y) =
1

1−∑xpn yqn
.

It is holomorphic in a neighborhood of the origin and f (0) = 1. Let us set S :=
x ∂
∂x − ζy ∂

∂y and let us consider the germ of holomorphic vector field defined to be
X = f (x,y)S. Its linear part at the origin is S. Let us find the formal change of
coordinate that linearizes it (in this case, it’s unique) : x̃ = xexp(−V (x,y)), ỹ =
yexp(−W (x,y)). Then,

xexp(−V (x,y)) = x̃ = LX (x̃) = xLX (−V (x,y))exp(−V (x,y))
+exp(−V (x,y))LX (x).

Here, the first equality comes from the definition, the second comes from that fact
that X is linearized in the new coordinates. Therefore, we have that LX (V ) = f −1
which is equivalent to

LS(V ) =
f −1

f
=∑xpn yqn .

This equation has the unique solution

V =∑ 1
pn−ζqn

xpn yqn

which is divergent at the origin since 1
pn−ζqn

≥ qn!.
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This example shows that one need an “arithmetical” condition on the small divisors
(Q,λ )−λi 	= 0. The major step in the understanding of the phenomenon is due to
C.L Siegel.

Definition 1.3.4 We shall say that λ = (λ1, . . . ,λn) is diophantine of type ν ≥ 0 if
there exists C > 0 such that, for all multiindexes Q ∈ N

n, |Q| ≥ 2,

|(Q,λ )−λi|>
C
|Q|µ .

We shall say that there no small divisor if there exists a constant c > such that

|(Q,λ )−λi|> c.

Theorem 1.3.5 [Sie42] If the linear vector field S = ∑n
i=1λixi

∂
∂xi

is diophantine,
then any holomorphic non-linear perturbation of S is holomorphically linearizable.

This arithmetical condition has been weakened by A.D. Brjuno as we shall see below.

1.4 Examples about nonlinearizable vector fields

Let’s go back to Example 1.2.3 where we saw that any holomorphic perturbation of
order≥ 3 of the normal form is formally conjugate to it. What about the holomorphy
of such a conjugacy?

Theorem 1.4.1 (Poincaré–Picard) If the linear part S has non-polynomial first in-
tegral but the constants and if there are no small divisors then any nonlinear per-
turbation X = S + R is holomorphically conjugate to a polynomial normal form in
a neighborhood of the origin.

Remark 1.4.2 Usually in the literature, the previous theorem is applied for linear
part which spectrum is said to lie in the “Poincaré domain”. By this, we mean that
there exists a line (D) in the complex plane which separate the eigenvalues of S from
the origin (i.e. the eigenvalues are on one and the same side of the line while 0 is in
the other side). Thus, if S belongs to the Poincaré domain, then it has only constant
polynomial first integral. In fact, if LX (xQ) = 0 then (Q,λ ) = 0. This means that the
origin is a linear combination of the λi’s with non negative coefficients. Since the
spectrum lies on the same and opposite side from the origin of a line, then Q = 0.
Furthermore, there are no small divisors since the projection of the eigenvalues onto
the orthogonal line to (D) passing through the origin is bounded from below. So do
the small divisors.

Example 1.4.3 Let us show that Example 1.2.3 falls into the application scope of
the theorem. In fact, a monomial (p,q are non-negative) xpyq is a first integral of S
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if and only if S(xpyq) = (2p + q)xpyq = 0. This implies that p = q = 0. Thus, poly-
nomial first integrals of S are just constants. Moreover, there are no small divisors.
In fact, both |2p+q−2| and |2p+q−1| are integers so they don’t accumulate the
origin. Therefore, any holomorphic system (6) is holomorphically conjugate to its
normal form (7).

2 Holomorphic normalization

The main progress are due to Brjuno who gave sufficient conditions that ensure that
there is a convergent normalizing transformation to a normal form. These conditions
are of two different type. The first one is a condition about the rate of accumulation
to zero of the small divisors of the linear part. It is weaker that Siegel condition
and is called condition (ω). The second one is linked to the nonlinearity of the
perturbation we are considering. It is a condition about a formal normal form of the
perturbation.

2.1 Theorem of A.D. Brjuno

Let X = S+R be an holomorphic vector field in a neighborhood of its singular point
0 ∈ C

n with S = ∑n
i=1λixi

∂
∂xi

and R a nonlinear vector field. We assume that the
following diophantine condition like is satisfied:

(ω) −∑
k≥0

lnωk

2k < +∞

where ωk = inf{|(Q,λ )−λi| 	= 0, 1≤ i≤ n, Q ∈ N
n,2≤ |Q| ≤ 2k}.

Theorem 2.1.1 [Bru72] Let X = S+R be an holomorphic vector field as above. We
assume that S satisfies the Bruno condition (ω). If X has formal normal form of the
type â.S for some formal power series â (with â(0) = 1), then X is holomorphically
normalizable.

In the case of Hamiltonian vector field and under Siegel diophantine condition, this
result is due to H. Rüssmann :

Theorem 2.1.2 [Rüs67] Let H = ∑n
i=1λixiyi + · · · be an analytic third order per-

turbation of the quadratic hamiltonian h = ∑n
i=1λixiyi. Assume that h satisfies the

Siegel condition: ∣∣∣∣∣
n

∑
j=1

q jλ j

∣∣∣∣∣ >
c(

∑n
j=1 |q j|

)µ
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for integer vectors (q1, . . . ,qn) ∈ Z
n such that ∑n

j=1 |q j| > 0. Assume that H has a
formal Birkhoff normal form of the form F̂(h) = F̂(∑n

i=1λixiyi) then H is analyti-
cally conjugate to a Birkhoff normal form F(h) for some analytic function F.

We refer to J. Martinet’s Bourbaki seminar for a survey on this topic [Mar80].

Example 2.1.3 Let us apply the previous result to example (8). If it has a formal
normal form (9) with Ĝ = F̂ then it is holomorphically normalizable.

Example 2.1.4 Let us consider the two-dimensional system
{

ẋ = x2

ẏ = x+ y
(1)

There is a unique formal diffeomorphism x = X, y = Y + ψ̂(X) that transforms the
previous systems into its normal form

{
ẋ = x2

ẏ = y
(2)

In fact, the conjugacy equation leads to

ẏ = x+ y = X +Y + ψ̂(X)
= Ẏ + ψ̂ ′(X)Ẋ = Y + ψ̂ ′(X)X2.

So ψ̂ has to solve the Euler equation

X2ψ̂ ′(X)− ψ̂(X) = X

which formal solution is

ψ̂(X) =−∑
k≥1

(k−1)!Xk.

This does not converge in a neighborhood of the origin ! The normal form (2) does
not satisfies Brjuno condition: it is not proportional to the linear part ẋ = 0, ẏ = y.
Nevertheless, we can show that there exists sectorial normalizations. This means
that there exists germs of holomorphic diffeomorphisms defined only in the prod-
uct of sector with an edge at the origin (in the x plane) and a disc around
0 (in y) which conjugate equation (1) into its normal form. This the starting
point of a long story that have been developed by J. Martinet and J.-P. Ramis
[MR82, MR83] for two-dimensional vector fields and by J. Ecalle, S. Voronin and
B. Malgrange for germs of local diffeomorphisms near a fixed point in the complex
plane [Eca, Vor81, Mal82, Il′93]. In higher dimension, the theory has been devel-
oped by J. Ecalle and L. Stolovitch [Eca92, Sto96]. Recently, the interplay beetwen
these “Stokes phenomena” and small divisors phenomena have been investigated
by B. Braaksma and L. Stolovitch [BS07]. We refer to [Bal00, Ram93, RS93] for
summability theory and Stokes phenomenon.
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2.2 Theorems of J. Vey

On the other hand, Vey proved two theorems about the normalization of family of
commuting vector fields satisfying some geometric properties.

Theorem 2.2.1 [Vey79] Let X1, . . . ,Xn−1 be n− 1 holomorphic vector fields in a
neighborhood of 0 ∈ C

n, vanishing at this point. We assume that :

• Each Xi is a volume preserving vector field (LXiω = 0 with ω an holomorphic
n-differential form)

• The 1-jet J1(X1), . . . ,J1(Xn−1) are diagonal and independent over C (this means
that if there are complex constants ci such that ∑n−1

i=1 ciJ1(Xi) = 0, then ci = 0
for all i.)

• [Xi,Xj] = 0 for all indices i, j

Then, X1, . . . ,Xn−1 are holomorphically and simultaneously normalizable.

Theorem 2.2.2 [Vey78] Let X1, . . . ,Xn be n holomorphic vector fields in a neigh-
borhood of 0 ∈ C

2n, vanishing at this point. We assume that :

• Each Xi is an Hamiltonian vector field
• The 1-jet J1(X1), . . . ,J1(Xn) are diagonal and independent
• [Xi,Xj] = 0 for all indices i, j

Then, X1, . . . ,Xn are holomorphically and simultaneously normalizable.

2.3 Singular complete integrability–Main result

We shall present a general result about normalization of commutative family of
holomorphic vector fields vanishing at the same point that unifies both Vey’s and
Brjuno’s theorems. At first glance, such unification could seem a little bit weird. In
fact, in Vey’s theorems, there no assumption about small divisors while in Brjuno’s
theorem there is one. In Vey’s theorem, vector fields satisfy a geometric assump-
tions (volume preserving or symplectic) whereas in Brjuno’s theorem there is an
assumption about the formal normal form.

Let us consider the family S = {S1, . . . ,Sl}, l ≤ n, of linearly independent linear
diagonal vector fields

Si =
n

∑
j=1

λi, jx j
∂
∂x j

.

This means that if ∑l
i=1 ciSi = 0 for some complex numbers ci, then all the ci’s are

zero. Let us define the sequence of positive numbers

ωk(S) = inf
{

max
1≤i≤l

|(Q,λ i)−λi, j| 	= 0, 1≤ j ≤ n, Q ∈ N
n,2≤ |Q| ≤ 2k,

}
,

where λ i = (λi,1, . . . ,λi,n).
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Definition 2.3.1 We shall say that S is diophantine if

(ω(S)) −∑
k≥0

lnωk(S)
2k < +∞

Remark 2.3.2 The family S can be diophantine while none of the Si’s satisfies
Brjuno condition (ω). For instance, consider in (C3,0) with complex coordinates
(x,y,z) the vector fields S1 = E1− ζE2 and S2 = −ζE1 + E2 where ζ is positive
irrational number, E1 = x ∂

∂x −y ∂
∂y and E2 = y ∂

∂y − z ∂
∂ z . Since 1−ζ 2 	= 0, S1 and S2

are linearly independent. The small divisors relative to S1 or S2 look like q1− ζq2
for some relative integers q1,q2. Thus, if ζ is a Liouvillian number then neither S1
nor S2 will satisfy Brjuno condition. On the other hand, let λi (resp. µi) be the vector
of eigenvalues of Si (resp. Ei). We have

A :=
(

(Q,λ1)−λ1, j

(Q,λ2)−λ2, j

)
=

(
1 −ζ
−ζ 1

)(
(Q,µ1)−µ1, j

(Q,µ2)−µ2, j

)
=: B.

Hence, if we denote the matrix by C, we have then ‖B‖ ≤ ‖C−1‖‖A‖. Therefore, the
sequence of the ‖A‖’s when Q and j vary do not accumulate the origin since the
sequence of the ‖B‖’s does not. So, the family S is diophantine.

Let
(
X̂ 1

n

)S
(

resp.
(
Ôn

)S
)

be the formal centralizer of S (resp. the ring of formal

first integrals), that is the set of formal vector fields X (resp. formal power series f )
such that [Si,X ] = 0 (resp. LSi( f ) = 0) for all 1≤ i≤ l.

Let X = {X1, . . . ,Xl} be a family of germs of commuting vector fields at the
origin such that the linear part of Xi is Si; that is [Xi,Xj] = 0 for all i, j. We shall call
X a nonlinear deformation of S.

Definition 2.3.3 We shall say that a nonlinear deformation X of S is a normal form
(with respect to S) if

[Si,Xj] = 0, 1≤ i, j ≤ l.

Definition 2.3.4 We shall say that X, a nonlinear deformation of S, is formally
completely integrable if there exists a formal diffeomorphism Φ̂ fixing the origin
and tangent to the identity at that point which conjugate the family X to normal form
of the type

Φ̂∗Xi =
l

∑
j=1

âi, jS j, i = 1, . . . , l (3)

where the âi, j’s belongs to ÔS
n .

Proposition 2.3.5 If X has a formally completely integrable normal form then all
its normal form are also formally completely integrable.

Theorem 2.3.6 Under the assumptions above, if S is diophantine, then any formally
completely integrable nonlinear deformation X = S+ε of S is holomorphically nor-
malizable.
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This means that there exists a genuine germ of biholomorphism Φ : (Cn,0)→
(Cn,0) tangent to the identity at 0 which conjugate the family X to normal form of
the type

Φ∗Xi =
l

∑
j=1

ai, jS j, i = 1, . . . , l (4)

where the ai, j’s are germ of holomorphic invariant functions, i.e. they belong to OS
n .

Remark 2.3.7 The theorem doesn’t says that neither Φ̂ nor the âi, j converge but
rather that there is another normalizing diffeomorphism that converges.

Remark 2.3.8 One way to use this theorem is to have “a magic word in hand”
(like Hamiltonian, volume preserving, reversible ....) that will implies that the formal
normal form is of the good type. This comes from the data of the problem that one
wants to solve.

Corollary 2.3.9 If S is diophantine and if the holomorphic nonlinear deformation
X is formally linearizable then it is holomorphically linearizable, i.e. there exists a
holomorphic change of coordinates in which all the Xi’s are linear.

Of course, if one of the Si’s satisfies Brjuno condition (ω) and if the family X is
formally linearizable, then it is also holomorphically linearizable. The point of the
previous corollary is that none of the Si’s is required to satisfies (ω) in order that S to
be diophantine. A result similar to our corollary was obtained by T. Gramchev and
M. Yoshino for germs of commuting diffeomorphisms near a fixed point [GY99] un-
der a slightly coarser diophantine condition. The article of J. Moser [Mos90] was the
starting point since he was dealing with germ of one-dimensional diffeomorphisms.

2.3.1 Fundamental structures

Proposition 2.3.10 [Sto00][prop. 5.3.2] With the notation above, ÔS
n is a formal

C-algebra of finite type; X̂ S
n is a ÔS

n -module of finite type.

This means the following : if the ring of invariants is nor reduced to the con-
stants, then there exists a finite number of monomials xR1 , . . . ,xRp such that ÔS

n =
C[[xR1 , . . . ,xRp ]]. Moreover, there exists a finite number of polynomial vector fields
Y1, . . . ,Ym such that if X belongs to X̂ S

n (i.e. [Si,X ] = 0, for all i) then there ex-
ists â1, . . . âm ∈ ÔS

n such that X = â1Y1 + · · ·+ âmYm. The proof is based on Hilbert
theorem : in a Noetherian ring, ideals are generated by a finite number of elements.

Let 2≤ k be an integer and let Pk
n be the space of homogeneous vector fields of

C
n of degree k. Let us consider the map ρ : C

l → HomC(Pk
n ,Pk

n) defined by

ρ(g)(X) =

[
l

∑
i=1

giSi,X

]
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π−1(0)

0

π

Cπ ⊂ C
p

NF1

π−1(c)

π−1(c′)

NF2

Fig. 1 Singular complete integrability: in the new holomorphic coordinate system, all the fibers
(intersected with a fixed polydisc) are left invariant by the vector fields and their motion on it is a
linear one

where g = (g1, . . . ,gl) and X ∈Pk
n ([., .] denotes the Lie bracket of vector fields of

C
n). It is a representation of the commutative Lie algebra C

l in Pk
n . To such a

representation ρ of the abelian Lie algebra C
l into a finite dimensional vector space

M, one can associate the Chevalley–Koszul complex



Normal form of holomorphic dynamical systems 265

0→M
d0→ HomC

(
C

l ,M
)

d1→ HomC

(
∧2

C
l ,M

)
d2→ ·· · dl−1→ HomC

(
∧l

C
l ,M

)
→ 0,

(5)
where the differentials di are defined in the following way : if ω ∈HomC

(
∧p

C
l ,M

)
and (g1, . . . ,gp+1) ∈ (Cl)p+1, then

dp(ω)(g1, . . . ,gp+1) =
p+1

∑
i=1

(−1)i+1ρ(gi)(ω(g1, . . . , ĝi, . . . ,gp+1)) (6)

Here (g1, . . . , ĝi, . . . ,gp+1) ∈ (Cl)p stands for (g1, . . . ,gi−1,gi+1, . . . ,gp+1). The dif-
ferentials d0 and d1 will be particuliary useful:

d0U(g) = ρ(g)U, d1F(g1,g2) = ρ(g1)F(g2)−ρ(g2)F(g1).

The cohomology spaces Hi(Cl ,M) are defined to be

Hi(Cl ,M) = Ker di/Im di−1, i = 0, . . . l−1.

Let α = (α1, . . . ,αl) ∈ C
l . It defines the complex linear form on C

l , α(z) =
∑l

i=1αizi. To such a linear form, we associate the “generalized eigenspace”

Pk
n,α =

{
X ∈Pk

n |∀g ∈ C
l , [S(g),X ] = α(g)X

}
.

In other words, X ∈Pk
n,α if and only if [Si,X ] = αiX for all 1≤ i≤ l. If Pk

n,α 	= 0
then α is called a weight of S and Pk

n,α is called the associated weightspace. There
is a decomposition of the space into “generalized eigenspaces”, namely the Fitting
decomposition:

Pk
n = Pk

n,∗ ⊕Pk
n,0

where Pk
n,∗ is the (finite) direct sum of the weightspaces associated to nonzero

weights of S.

2.3.2 Geometric interpretation

In order to illustrate our result, let us first recall the Liouville theorem [Arn97]. Let
H1, . . . ,Hn be smooth functions on a smooth symplectic manifold M2n; let π : M2n→
R

n denotes the map π(x) = (H1(x), . . . ,Hn(x)). We assume that, for all 1≤ i, j ≤ n,
the Poisson bracket {Hi,Hj} = 0 vanishes. Let c ∈ R

n be a regular value of π; we
assume that π−1(c) is compact and connected. Then there exists a neighborhood U
of π−1(c) and a symplectomorphism Φ from U to π(U)×T

n such that, in this new
coordinate system, each symplectic vector field XHi associated to Hi is tangent to
the fiber {d}×T

n. It is constant on it and the constant depends only on the fiber.
Let us turn back to our problem and let S be a diophantine family of linearly in-

dependent diagonal vector fields of C
n. Let ÔS

n be its ring of formal first integrals. It
is a C-algebra of finite type and there are homogeneous polynomials u1, . . . ,up such
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that ÔS
n = C[[u1, . . . ,up]]. Let π : C

n →C
p defined by π(x) = (u1(x), . . . ,up(x)). Let

s be the degree of transcendence of the field of fractions of C[u1, . . . ,up]; it is the
maximal number of algebraically independent polynomials among u1, . . . ,up. The
algebraic relations among u1, . . . ,up define an s-dimensional algebraic variety CS in
C

p. Hence, π defines a singular fibration over CS. The linear vector fields S1, . . . ,Sl
are tangent and independent on each fiber π−1(b) of π; the latter are called toric va-
riety because they admit an action of the algebraic torus C

∗. Note that we must have
l ≤ n− s. Now, we come to the nonlinear deformation. Let X = S+ε be a nonlinear
deformation of S. Let us assume that it is formally completely integrable. Then, ac-
cording to our result, there exists a neighborhood U of 0 in C

n and an holomorphic
diffeomorphism Φ on U such that, in the new coordinate system, the vector fields
Φ∗X1, . . . ,Φ∗Xl are commuting linear diagonal vector fields on each fiber restricted
to U and their eigenvalues depend only on the fiber. Indeed, in this new coordinates,
we have Φ∗Xi = ∑l

j=1 ai, jS j where ai, j ∈ OS
n . By definition, these vector fields are

all tangent to the fibers of π (therefore, we must have l ≤ n− s). As consequence
Φ∗Xi’s are all tangent to the fibers of π . On each fiber, the functions ai, j are constant
so that each Φ∗Xi reads as a linear diagonal vector field, that is a linear motion of
a toric variety.

2.3.3 Proper Poincaré extension

The next question that can be asked is the following : under what assumptions can a
formally completely integrable nonlinear deformation X = S+ε of S be extended in
an higher dimensional space into another formally completely integrable nonlinear
deformation Ŝ + ε̂ of Ŝ, with the same number of commuting vector fields?

First of all, we shall define a good extension of S in C
n+m to be Ŝi := Si⊕ S′′i ,

i = 1, . . . , l, where S′′i is a diagonal linear vector field of P1
m. Of course, we want the

properties of Ŝ to be derived from those of S; that is, we want Ŝ to be diophantine as
soon as S is and we want that O Ŝ

n+m = OS
n . One way to achieve this is to assume that

S′′ is Poincaré family relatively to S : we require that the weights of S all belong
to a real linear hyperplane of R

2l whereas the weights of S′′ all, but a finite number
of them, belong to one and the same side of the hyperplane. Such an extension will
be called proper if the only weight of S′′ which belong to the hyperplane is the zero
weight. If (x1, . . .xn+m) denotes coordinates of C

n+m and if X is a vector field of
(Cn+m,0), then X ′′ denotes its projection onto ∂

∂xn+1
, . . . , ∂

∂xn+m
.

Definition 2.3.11 We shall say that a proper Poincaré extension of S in C
n+m is

completely integrable if there exists a formal diffeomorphism Φ̂ fixing the origin
and tangent to the identity at that point which conjugate the family X to normal
form of the type

NFi := Φ̂∗Xi =
l

∑
j=1

âi, jS j +
l

∑
j=1

âi, jS′′j +D′′i +Nil′′i +Res′′i , i = 1, . . . , l (7)



Normal form of holomorphic dynamical systems 267

where the âi, j ∈ ÔS
n . Here, D′′i (resp. Nil′′i , Res′′i ) denotes a linear diagonal (resp.

nilpotent, nonlinear) vector field of C
m with coefficient in ÔS

n such that the family
D′′ has the same centralizer as S′′ (resp. commuting with the S′′i ’s).

In other words, the projection NF ′′ of the normal form is a polynomial Poincaré
normal form of C

m with coefficients in OS
n .

Then we have the

Theorem 2.3.12 [Sto00] Let S be a diophantine family of diagonal linear vector
field of C

n. We assume that Ŝ = S⊕S′′ is a proper Poincaré extension of S in C
n+m

by S′′. Then, any nonlinear deformation of Ŝ which is formally completely integrable
is holomorphically normalizable.

For one vector field, theses results are due to Brjuno. Let us illustrate this result on
Example 1.2.6. Let us define S = x1

∂
∂x1
− x2

∂
∂x2
− ζx3

∂
∂x3

. Assume that S satisfies

Brjuno condition (ω). Let us define S′′ = ix4
∂
∂x4

+ ix5
∂
∂x5

. It is proper Poincaré vec-
tor field with respect to S. In fact, all the weights of S are real while those of S′′

are purely imaginary. Then nonlinear centralizer of S′′ is reduced to zero. First of
all assume that in the normal form (10), we have f̂1 = f̂2 = f̂3. So that the projec-
tion on ∂

∂x1
, . . . , ∂

∂xn
is a formally completely integrable system which nonlinearities

are parametrized by C
m. Assume that the formal power series ĝ1,1 and ĝ2,2 can be

decomposed as ĝi,i = f̂i,i + ĥi,i such that

1.

q1(i+ f̂1,1(x1x2))+q2(i+ f̂2,2(x1x2)) 	≡ i+ f̂1,1(x1x2)
q1(i+ f̂1,1(x1x2))+q2(i+ f̂2,2(x1x2)) 	≡ i+ f̂2,2(x1x2)

for all (q1,q2) ∈N
2 such that q1 +q2 ≥ 2. This precisely means that the formal

vector field (i+ f̂1,1(x1x2)x4
∂
∂x4

+(i+ f̂2,2(x1x2)x5
∂
∂x5

, thought as a vector field
of C

2, has the same nonlinear centralizer as S′′, that is 0.
2. The vector field

(
ĥ1,1(x1x2)x4 + ĝ1,2(x1x2)x5

) ∂
∂x4

+
(
ĝ2,1(x1x2)x4 + ĥ2,2(x1x2)x5

) ∂
∂x5

is nilpotent and commutes with S′′.

Let us a give a geometric interpretation of this last result. Let us consider again
the map π̃ : C

n+m → C
p with π(x) = (xR1 , . . . ,xRp). Since, the invariants of Ŝ are

the same as those of S, we have π̃−1(b) = π−1(b)×C
m. Let us apply our result. In

a new holomorphic coordinate system at the origin, the projection X ′i on C
n of the

vector field Xi is a completely integrable in the previous sense : it is tangent to any
the toric variety π−1(b) and its restriction to it is a linear diagonal motion. On the
other hand, the projection X ′′i on C

m is a polynomial normal form (of C
m) which

coefficients depend only holomorphically on b.
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2.4 How to recover Brjuno’s and Vey’s theorems
from Theorem 2.3.6

Brjuno’s theorem correspond precisely to our result for l = 1.
Let us prove the volume preserving case of Vey’s theorem. Let E be the family of

the n−1 linear semi-simple vector fields of C
n defined to be Ei = xi

∂
∂xi
−xi+1

∂
∂xi+1

,
1≤ i≤ n−1. The weights associated to Q = (q1, . . . ,qn)∈N

n, |Q| ≥ 2, 1≤ j≤ n are
αi,Q, j = qi−qi+1 +δi, jδi+1, j(−1)δi, j (the last expression in the sum is 0 if j 	= i, i+1,
1 if j = i + 1 and −1 if j = i). First of all, the values of the nonzero weights of
E are integers; thus, they cannot accumulate the origin, so that E is diophantine.

Moreover, if we set u = x1 · · ·xn, then ÔE
n = C[[u]] and

(
X̂ 1

n

)E
is the C[[u]]-module

generated by xi
∂
∂xi

, 1≤ i≤ n. An easy computation shows that X ∈
(
X̂ 1

n

)E
satisfies

to LX (u) = 0 if and only if X belongs to the C[[u]]-module generated by the Ei’s.
Let us write J1(Xi) = ∑n

j=1 µi, jxi
∂
∂x j

. Let us set µ i := (µi,1, . . . ,µi,n). Since Xi is

volume preserving then, µi,1 + · · ·+µi,n = 0; it follows that J1(Xi) =∑n−1
j=1 ai, jE j. By

the independence of the 1-jets, the (n−1)× (n−1) matrix A0 = (ai, j) is invertible.
Let us compute the weights of the family of the J1(Xi)’s with respect of those of E.
We have ⎛

⎜⎝
(Q,µ1)−µ1, j

...
(Q,µ l)−µl, j

⎞
⎟⎠ = A0

⎛
⎜⎝
α1,Q, j

...
αl,Q, j

⎞
⎟⎠ .

Therefore, we have

‖A−1
0 ‖

∣∣∣∣∣∣∣

(Q,µ1)−µ1, j
...

(Q,µ l)−µl, j

∣∣∣∣∣∣∣
≥

∣∣∣∣∣∣∣

α1,Q, j
...

αl,Q, j

∣∣∣∣∣∣∣
.

This means that the family of the J1(Xi)’s is also diophantine.
Since the family can be transformed into a normal form, there exists a formal

diffeomorphism Φ̂ such that Φ̂∗Xi = ∑n
j=1 F̂i, j(u)xi

∂
∂xi

for some F̂i, j ∈ C[[u]]. We
can assume that Φ̂ is volume preserving; thus the normal forms are also volume
preserving. Hence div (Φ̂∗Xi) = 0, that is

n

∑
j=1

∂x jF̂i, j(u)
∂x j

= 0 =

(
n

∑
j=1

F̂i, j(u)

)
+u

d
(
∑n

j=1 F̂i, j

)

du
(u).

An easy computation shows that ∑n
j=1 F̂i, j = 0. Thus,

Φ̂∗Xi =
n−1

∑
j=1

f̂i, j(u)E j =
n−1

∑
j=1

ĝi, j(u)J1(Xj),
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that is X is formally completely integrable. According to our main result, there is an
holomorphic diffeomorphismΨ normalizing X in a neighborhood of the origin. By
a classical argument of Vey [Vey79], we can modify holomorphically Ψ so that it
becomes volume preserving and still normalizing X .

2.5 Sketch of the proof

Let us give a sketch of the proof of our results. In order to normalize the nonlinear
deformation X = S + ε of S, we shall proceed through a classical Newton method,
that is a Nash–Moser induction type.

Let us assume that the nonlinear deformation X = S+ε is normalized up to order
m; we will build a diffeomorphism Φm which normalize the deformation up to order
2m; it is tangent to Id up to order k. Let us show how this works. First of all, we can
write the deformation Xi = NFm

i +Bi +Ri, 1≤ i≤ l where NFm
i is a normal form of

degree m, Bi is polynomial of degree ≤ 2m and of order ≥ m+1 and Ri is of order
≥ 2m+1. Let us denote by Bi,∗ (resp. Bi,0) the projection of Bi onto the sum of the
weightspaces associated to a nonzero weight (resp. zero weight) of S in Pm+1,2m

n .
The compatibility condition (i.e [Xi,Xj] = 0 for all 1 ≤ i, j ≤ l) shows that, for all
1≤ i, j ≤ l

J2m (
[NFm

i ,B j,∗)]− [NFm
j ,Bi,∗]

)
= 0. (8)

On the other hand, if we conjugate Xi by a diffeomorphism of the form exp(U) for
some polynomial vector field U ∈Pm+1,2m

n and writing exp(U)∗Xi = NFm
i +B′i +R′i

as above, we find out that

J2m (
B′i−Bi +[NFm

i ,U ]
)

= 0

The algebraic properties of the weightspaces of S show that, in fact, we have

J2m (
B′i,∗ −Bi,∗+[NFm

i ,U∗]
)

= 0.

If we assume that the diffeomorphism exp(U) normalizes simultaneously the Xi’s
up to order 2m then we must have B′i,∗ = 0 for all i. Hence, we have

J2m (−Bi,∗+[NFm
i ,U∗]) = 0 i = 1, . . . , l. (9)

Let us denote by Pm+1,2m
n,∗ the direct sum of weightspaces associated to a nonzero

weight of ρ in Pm+1,2m
n . Let us define the linear map

ρm : C
l → HomC

(
Pm+1,2m

n,∗ ,Pm+1,2m
n,∗

)
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by ρm(g)(X) = J2m
([

∑l
i=1 g jNFm

j ,X
])

if g = (g1, . . .gl). It is well defined and it

is a representation of the abelian Lie algebra C
l into Pm+1,2m

n,∗ . To this representa-
tion is associated a complex of finite dimensional complex vector spaces; it is the
Chevalley-Kozsul complex of this representation. Let us write di

m its ith-differential.
Therefore, equation (8) reads d1

m(B∗) = 0, that is B∗ is a 1-cocycle for this complex.
Moreover, equation (9) reads d0

m(U) = B∗, that is B∗ is the 0-coboundary of U : it is
a cohomological equation.

Hence, the Chevalley–Koszul complex of the representation ρm plays an impor-
tant role in our problem. We shall call it the Newton complex of order m. According
to the discussion above, the first important problem to study is its cohomology. We
can show that its 0th-cohomology as well as the 1st-cohomology spaces are zero:

Proposition 2.5.1 [Sto00][Prop. 7.1.1] We have

Hi
m

(
C

l ,Pm+1,2m
n,∗

)
= 0, i = 0,1

where Hi
m denotes the ith-cohomology space of the Chevalley–Koszul complex as-

sociated to ρm.

It is not very difficult but rather technical. It leads to the important consequence
that, B∗ being given as above, there exists a unique U ∈Pm+1,2m

n,∗ such that, for all
1≤ i≤ l, J2m([NFm

i ,U ]) = Bi,∗; hence, conjugating Xi by exp(U) normalizes Xi up
to order 2m.

We find out that the formal diffeomorphism defined by Φ̂ := limk→+∞Φ2k ◦ · · · ◦
Φ2 normalizes simultaneously the Xi’s where the Φ2k ’s are built as above. In order to
prove that Φ̂ is holomorphic in a neighborhood of 0 ∈ C

n, one has to estimate Φ2k .
Here comes the analysis and the major difficulty. To get an estimate of Φm = exp(U)
with m = 2k, we have to estimate U . Hence, we are led naturally to give bounds for
the cohomology of the Newton complex : Let r > 1/2, the spaces of the Newton
complex are provided with norms (depending on a real positive number r) which
turn it into a topological complex of vector spaces. By the above algebraic proper-
ties, the 0-differential, d0

m, has a right inverse s on the space of 1-cocycle : if Z is
a 1-cocycle of the Newton complex, then s(Z) is the unique element of Pm+1,2m

n,∗
such that d0

m(s(Z)) = Z. Here comes the main assumptions : if the family X is com-
pletely integrable then there exists constants d,η1,c(η1), such that if m = 2k and if
the r-norms of NFm−S and D(NFm−S) are sufficiently small, say < η1 (for some
1/2≤ r < 1) then

|s(Z)|r ≤
c(η1)

ωd
k+1(S)

|Z|r; (10)

the constant d doesn’t depend on η1 (we recall that ωk(S) is the smallest norms of

the nonzero weights of S in P2,2k
n ).

Let us describe the way we obtain this estimate. In order to solve the cohomolog-
ical equation associated the 1-cocycle Z, it is necessary and sufficient to solve the
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system of l equations J2m([NFm
i ,U ]) = Zi, i = 1, . . . , l. We can decompose this equa-

tion along the weightspaces of S. In fact, let α be a weight of S and let V belongs to
the associated weightspace. Then, by Jacobi identity, we have

[S j, [NFm
i ,V ]] = [−NFm

i , [V,S j]]− [V, [S j,NFm
i ]].

By assumptions, NFm
i = ∑l

j=1 am−1
i, j S j where the am−1

i, j ’s are polynomials invariants
for S of degree≤m−1. Therefore, according to formula (2), [S j,NFm

i ] = 0. Hence,
we have [S j, [NFm

i ,V ]] = [−NFm
i , [V,S j]] = α j[NFm

i ,V ]. It is sufficient to consider
for any nonzero weight α of S, the equation with both Zi’s and U in the associated
weightspace.

This set of equations can be written in the following matrix form

A(x)

⎛
⎜⎝

α1U
...

αlU

⎞
⎟⎠+

⎛
⎜⎝

D1(U)
...

Dl(U)

⎞
⎟⎠ =

⎛
⎜⎝

Z1 +Z1
...

Zl +Zl

⎞
⎟⎠

where A = (am−1
i, j ) is a square l× l matrix with coefficients in the C-algebra OS

n of
holomorphic first integrals of the linear part S; A(0) = Id; the operators D1, . . . ,Dl
are OS

n -linear; Z1, . . . ,Zl have order ≥ 2m + 1. After inverting the matrix A, we
obtain l equations (αiId + D̃i)(U) = Z̃i + Z̃i, i = 1, . . . , l. The D̃i’s (resp. Z̃i,Z̃i) are
still OS

n -linear operators and they are linear combination of the Di’s (resp. Zi, Zi)
with coefficients in OS

n . Let us set ‖α‖= max1≤ j≤l |α j| and let i be such that |αi|=
‖α‖ 	= 0; it is the “worst small divisor” of the family.

Let us look through the ith equation; we find out that, at least formally, its solution
U is given by

U =
1
αi
∑
k≥0

(
−1
αi

)k

D̃k
i (Z̃i + Z̃i).

This expression does not fancy us since it involves a priori infinitely large powers
of αi which can be very small. Thus, instead of using this expression, we shall split
the ith equation in an appropriate way. First of all, we shall split the linear diagonal
family S in two parts S′ and S′′ corresponding to the splitting of C

n as C
n′ ×C

n−n′ ;
that is, for all 1≤ i≤ l,

Si =
n′

∑
k=1

λi,kxk
∂
∂xk︸ ︷︷ ︸

S′i

+
n

∑
k=n′+1

λi,kxk
∂
∂xk︸ ︷︷ ︸

S′′i

.

The integer n′ is such that the linear forms {∑l
i=1λi,kzi}1≤k≤n′ all belong to a real

hyperplane H of HomC(Cl ,C) whereas all the linear forms {∑l
i=1λi,kzi}n′+1≤k≤n

all belong (strictly) to one and the same side of H. The integer n′ is taken to be
the lowest as possible; it may be equal to 0 as well as equal to n. We shall call
this splitting, the analytic splitting of S. It has been chosen in such a way that the
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small divisors as well as the first integrals are only due to S′. We show that there
is a separating constant Sep(S) > 0 such that if α is a weight of S which norm
is < Sep(S) then it must belong to H (if n′ = n we shall set Sep(S) = +∞ in order
to have one proof for the theorems). Let X be a vector field of C

n, we shall denote
by X ′ (resp. X ′′) its projection onto ∂

∂x1
, . . . , ∂

∂xn′
(resp. ∂

∂xn′+1
, . . . , ∂

∂xn
). This being

said, let us go back to the study of our equation (αiId + D̃i)(U) = Z̃i + Z̃i. Using the
analytic splitting of S as well as the structure of the operator D̃i, we show that this
equation can be written under the following form :

U ′ − 1
αi

(Pi(U ′))′ =
1
αi

(Z̃′i + Z̃′i +(Qi(U ′))′) (11)

U ′′ − 1
αi

(Qi(U ′′))′′ =
1
αi

(Z̃′′i + Z̃′′i +(Pi(U ′))′′+(Qi(U ′))′′); (12)

both Pi and Qi are OS
n -linear operators. Let us assume that the weight α is of small

norm, that is < Sep(S). Then, we show that (Qi(U ′))′ = 0 and that, according to
the complete integrability assumption, P′i ◦P′i = 0. Therefore the solution of (11) is
given by

U ′ =
(

Id +
P′i
αi

)(
Z̃′i + Z̃′i
αi

)
.

Since U ′ is a polynomial of order ≤ 2m, then in fact, we have

|U ′|r ≤
∣∣∣∣
(

Id +
P′i
αi

)(
Z̃′i
αi

)∣∣∣∣
r
.

An estimate of the operator P′i will provide the desired estimate of U ′. Now, let us
study equation (12). Let us denote by 1

αi
wi the left handside of this equation. Then,

at least formally, we have

U ′′ = ∑
k≥0

(
1
αi

)k

Qk
i

(
wi

αi

)
.

By assumption, NFm is the m-jet of completely integrable normal form. There-
fore, its projection (NFm)′′ is the m-jet of a good deformation of S′′. The point
is that there exists an integer k0 which do not depend on m and such that
J2m(Qk

i (
wi
αi

)) = 0 for all k ≥ k0. The important consequence for the estimates is
that the sum above which give U ′′ is finite. Using the estimate of U ′ which were
found above, we can give estimate for wi; then using estimate of Qi, we conclude
with estimate of U ′′. The last case deals with weight α such that ‖α‖ ≥ Sep(S); it
it the easiest case.

Now let us give an idea of the induction argument. Let 1/2 ≤ r < 1 and let as-
sume the family of the Xi = NFm

i +Ri,m+1’s is normalized up to order m = 2k. Let us
assume that the norms |NFm−S|r and |D(NFm−S)|r are small enough, say < η1,
and that |Ri|r < 1. The solution of the cohomological equation allows us to normal-
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ize the family up to order 2m : (Φm)∗Xi = NF2m
i +Ri,2m+1. Using the estimate of this

solution, we show that |NF2m−S|R and |D(NF2m−S)|R are still less than η1 where

R =
(

c(η1)
ωd

k+1

)−1/m

m−2/mr < r and that |Ri,2m+1|R < 1. After a preliminary renor-

malization, we show that, at each stage, our new objects still satisfy the required
assumptions in order to have again the estimate for the solution of the new cohomo-
logical equation. Thus, we may proceed again ... Now, because of the diophantine
condition, these R are bounded from below by some positive constant Rad. There-
fore, at the limit, we have found an holomorphic diffeomorphism in the polydisc of
radius Rad centered at 0 ∈ C

n which normalizes our nonlinear deformation X .

3 Proof of main Theorem 2.3.6

3.1 Bounds for the cohomological equations

Let α be a nonzero weight of S in Pm+1,2m
n and let Pm+1,2m

n,α be the associated
weight space. As we have seen in proposition 2.5.1, for all Z ∈ Z1

N,m(Cl ,Pm+1,2m
n,α ),

there exists a unique U ∈ Pm+1,2m
n,α such that, for all integer 1 ≤ i ≤ l,

J2m([NFm
i ,U ]) = Zi .

The remaining of this subsection is devoted to the determination of a bound of
the norm of this solution under some assumptions. Moreover, we assume that NFm

is the m-jet of the normal form of a completely integrable deformation of S.
More precisely, we shall prove the

Theorem 3.1.1 Under the assumptions above, there exists constants η1 > 0 and
c1(η1) > 0 such that, if 1/2 < r≤ 1, m = 2k and max(|NFm−S|r, |D(NFm−S)|r) <

η1, then for any nonzero weight α of S in Pm+1,2m
n , for any Z ∈ Z1

m(Cl ,Pm+1,2m
n,α ),

the unique U ∈Pm+1,2m
n,α such that d0

N,mU = Z satisfies the following inequality:

|U |r ≤
c1(η1)

ωk+1(S)2 |Z|r; (1)

and d depends only on S.

Proof. The cohomological equation can be written:

[NFm
i ,U ] = Zi +Zi, i = 1, . . . , l.

where we have set, for all integers 1 ≤ i ≤ l, Zi := [NFm
i ,U ]− J2m([NFm

i ,U ]). By
assumptions, we have for all 1 ≤ i ≤ l, NFm

i = ∑l
j=1 am−1

i, j S j where ai, j ∈ OS
n are

polynomials of degree ≤ m−1 and am−1
i, j (0) = δi, j. Therefore, we have
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[NFm
i ,U ] =

l

∑
j=1

(
am−1

i, j [S j,U ]−U(am−1
i, j )S j

)
= Zi +Zi, i = 1, . . . l (2)

where U(am−1
i, j ) denotes the Lie derivative of am−1

i, j along U . Let us choose an index
1≤ i≤ l such that |α(gi)|= ‖α‖ 	= 0. We recall that U belongs to the α-weightspace
of S in Pm+1,2m

n ; that is, for all 1 ≤ i ≤ l, [Si,U ] = αiU . Therefore, equations (2)
can be written into the following matricial form

A(x)

⎛
⎜⎝

[S1,U ]
...

[Sl ,U ]

⎞
⎟⎠+

⎛
⎜⎝

D1(U)
...

Dl(U)

⎞
⎟⎠ =

⎛
⎜⎝

Z1 +Z1
...

Zl +Zl

⎞
⎟⎠

where A = (am−1
p,q )1≤p,q≤l and Di is the Ôn-linear map defined by Di : U ∈

X̂ 2
n �→ −∑l

j=1 U(am−1
i, j )S j ∈ X̂ 2

n. Since A(0) = Id, A(x) is formally invert-
ible : if Ãt := (ci, j)1≤i, j≤l denotes the transpose of the cofactors matrix of A,
then Â−1 := 1

det A Ãt := (bi, j)1≤i, j≤l is a matrix which coefficient belong to ÔS
n and

satisfy to Â−1A = AÂ−1 = Id. It follows that
⎛
⎜⎝

α1U
...

αl ,U

⎞
⎟⎠+

⎛
⎜⎝

D̃1(U)
...

D̃l(U)

⎞
⎟⎠ = Â−1

⎛
⎜⎝

Z1 +Z1
...

Zl +Zl

⎞
⎟⎠ where D̃ j(U) =

l

∑
k=1

b j,kDk(U).

Here is a key point : equation (2) is overdetermined. To estimate its solution,
we select the equation that give the smallest norm a priori. It is the one that
correspond to the “biggest” small divisor among the family, that is αi.

Thus, the ith equation of the cohomological equation can be written

U−Pi(U) = Z̃i + Z̃i (3)

Here, we have written

αiZ̃i =
l

∑
k=1

bi,kZk, αiZ̃i =
l

∑
k=1

bi,kZk,

Pi(U) =
1
αi

l

∑
k=1

bi,k

l

∑
j=1

U(am−1
k, j )S j.

We claim that the operator Pi satisfies to Pi ◦Pi = 0. This is due to the fact that
Sq(am−1

k,p ) = 0 since the am−1
k,p ’s are invariants of S. Hence, we have (Id−Pi)◦ (Id +

Pi) = Id.
As a consequence, we have

U = (Id +Pi)(Z̃i + Z̃i). (4)
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Let us give bounds for the operators Pi. To do so, we shall write A(x) = Id + R(x)
where R(0) = 0; we shall write R(x) = (ri, j(x))1≤i, j≤l . Recalling the expression of
the determinant, we have det(A(x)) = 1+P(R(x)) where P(Z) ∈ C[Z1, . . . ,Zl2 ] is a
polynomial functions of l2 variables without constant term and of degree l. Since,
it vanishes at the origin, there exists η > 0 such that |P(Z)|η < 1/2. It follows
that, if |R(x)|r = |A(x)−A(0)|r < η , then |P(R(x))|r < 1/2. By Lemma 1.1.2, if
|A(x)−A(0)|r < η , then we have

∣∣∣∣
1

detA(x)

∣∣∣∣
r
≤ 1

1−|P(ri, j(x))|r
≤ 2

|detA(x)|r ≤ 1+ |P(R(x))|r ≤
3
2
.

We recall that (ci, j)1≤i, j≤l = Ãt is the transpose of the cofactors matrix of A. Thus,
there are universal polynomials of degree ≤ l− 1, Qi, j(Z) = ∑

S∈N
l2

1≤|S|≤l−1

qi, j,SZS ∈

C[Z1, . . . ,Zl2 ] such that ci, j(x) = Qi, j(A(x)). It follows that, for all 1 ≤ i, j ≤ l,
|ci, j(x)|r ≤ Q(|A|r) where Q is the universal polynomial of one variable defined
by

Q(t) = ∑
S∈N

l2

1≤|S|≤l−1

max
i, j
|qi, j,S|t |S|.

As a consequence, if |A(x)−A(0)|r < η , we have

|bi, j|r =
∣∣∣ ci, j

detA

∣∣∣
r
≤

∣∣∣∣
1

detA

∣∣∣∣
r
|ci, j|r ≤ 2Q(|A|r). (5)

In our result, the assumption are about |NFm
i −Si|r and |D(NFm

i −Si)|r and not
on the matrix A. So we have to link both estimates. By definition, we have, for all
integers 1≤ i, j ≤ l

S j =
n

∑
k=1

λ j,kxk
∂
∂xk

NFm
i =

l

∑
j=1

ak−1
i, j S j :=

n

∑
k=1

xkgi,k
∂
∂xk

with gi,k =

(
l

∑
j=1

λ j,kak−1
i, j

)
,

that is ⎛
⎜⎜⎜⎜⎝

gi,1
...
...

gi,n

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

λ1,1 . . . λl,1
...

...
...

...
λ1,n . . . λl,n

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎝

ak−1
i,1
...

ak−1
i,l

⎞
⎟⎠ .
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By assumptions, the Si’s (1 ≤ i ≤ l) are linearly independents over C, the matrix
(λ j,i)1≤i≤n

1≤ j≤l
has rank l. Without lost of generality, we may assume that the matrix

L := (λ j,i)1≤i, j≤l is invertible with inverse L−1 := (λ̃i, j)1≤i, j≤r.

Let us set A = (am−1
i, j )1≤i, j≤l and |A|r = maxi, j |am−1

i, j |r, |D(A)|r = maxi, j,k |
∂am−1

i, j
∂xk

|r.
Let We have the following

Lemma 3.1.2

|A−A(0)|r ≤ 2l|L−1||NFm−S|r (6)
|D(A)|r ≤ 2l|L−1||D(NFm−S)|r (7)

We refer to [Sto00][p. 185–186] for a proof.
Let us set η1 = η/(2l|L−1|). If |NFm− S|r < η1, then by (6), we have |A(x)−

A(0)|r < η so that |bi, j|r ≤ 2Q(|A|r) by (5). Moreover, we have |A|r ≤ |A(0)|+ |A−
A(0)|r ≤ 1+η . It follows that Q(|A|r) < Q(1+2l|L−1|η1).

On the other hand, if |D(NFm − S)|r < η1 then |U(ak−1
k, j )|r ≤ n|U |r|D(A)|r ≤

nη |U |r.
We recall (see the section of notations) that, given two elements Y = (Y1, . . . ,Yq)

and W = (W1, . . . ,Wq) of Ôq
n , we say that Y is dominated by W , and we write Y ≺W ,

if Yi ≺Wi for all 1≤ i≤ q. Moreover, we shall write Ȳ := (Ȳ1, . . . ,Ȳq). Now, we are
able to give estimates for Pi. Since we have

Pi(U) =
1
αi

l

∑
k=1

bi,k

l

∑
j=1

U(ak−1
k, j )S j,

we obtain

Pi(U)≺ 1
‖α‖

l

∑
k=1

b̄i,k

l

∑
j=1

Ū(ãk−1
k, j )S̄ j.

Here, S̄ j stands for ∑n
k=1 |λ j,k|xk

∂
∂xk

. It follows that if 1/2 < r ≤ 1, max(|NFm−
S|r, |D(NFm−S)|r) < η1, then

|Pi(U)|r ≤
c2(η1)
‖α‖ |U |r (8)

with
c2(η1) = 4l3Q(|A(0)|+2l|L−1|η1)nλ |L−1|η1.

Here we have set λ = max1≤i≤l,1≤ j≤n |λi, j|, so that, since r ≤ 1, |S j|r ≤ λ for all
1≤ j ≤ l.

Let us give the estimate of the solution of the cohomological equation (4). Since
U is a polynomial vector field of degree ≤ 2m then U ≺ (Id + P̄i)(Z̃i). Hence,

|U |r ≤
∣∣∣(Id + P̄i)(Z̃i)

∣∣∣
r
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≤
(

1+
c2(η1)
‖α‖

)
|Z̃i|r

≤
(

1+
c2(η1)
‖α‖

)
2lQ(1+2l|L−1|η1)

‖α‖ |Z|r.

we are done. 
�

3.2 Iteration scheme

Let 1/2 < r ≤ 1 be a real number and η1 > 0 be the positive number defined in
Theorem 3.1.1. For any integer m≥ [8n/η1]+1, let us set

N F m(r) =
{

X ∈ (P1,m
n )l | max(|Xi−Si|r, |D(Xi−Si)|r) < η1−

8n
m

}

Bm+1(r) =
{

X ∈ (X m+1
n )l | |Xi|r < 1

}
.

If m = 2k, for some integer k ≥ 1, let us define

ρ = m−1/mr and R = γkm−2/mr where γk =

(
c1

ω2
k+1(S)

)−1/m

.

The core of this section is the following proposition :

Proposition 3.2.1 With the notations above, let us assume that
(NFm,Rm+1)∈N F m(r)×Bm+1(r). If m is sufficiently large (say m > m0 indepen-
dent of r), then there exists a unique U ∈Pm+1,2m

n,∗ , the sum of nonzero weightspaces
of S, such that

1. Φ := (Id +U)−1 ∈ Diff1(Cn,0) is a diffeomorphism such that DR ⊂Φ(Dρ)
2. Φ∗(φ + ε) = NF2m +R2m+1 is normalized up to order 2m
3. (NF2m,R2m+1) ∈N F 2m(R)×B2m+1(R)

We have seen that Φ normalizes simultaneously each Xi = NFm
i (y) + Bm+1,2m

i +
Ci(y) up to order 2m. Let us write Φ∗Xi(y) = NF2m

i (y) + C′i(y) where both Ci

and C′i is of order ≥ 2m + 1 whereas Bm+1,2m
i is of degree ≤ 2m and of order

≥m+1. Using the conjugacy equation and the fact that NFm(Φ−1(y))−NFm(y) =∫ 1
0 D(NFm)(y+ tU(y))U(y)dt, we have

C′i(y) =
∫ 1

0
D(NFm

i )(y+ tU(y))U(y)dt +(Bm+1,2m
i +Ci)(Φ−1(y)) (9)

−(NF2m
i (y)−NFm

i (y))−D(U)(y)(NF2m
i +C′i)(y).

This is expression that we will use in order to prove the third point of the proposition.
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3.2.1 Estimate for the diffeomorphism

By assumptions, NFm ∈N F m(r); thus, we can apply Proposition 3.1.1 so that

|U |r ≤
c1

ω2
k+1(S)

|Bm+1,2m
∗ |r.

Since Bm+1,2m
i,∗ ≺ B̄m+1,2m

i,∗ + B̄m+1,2m
i,0 ≺ R̄i,m+1, we have |Bm+1,2m

∗ |r < 1. It follows
that |U |r ≤ γ−m

k .

Lemma 3.2.2 Under the above hypothesis and if m is large enough (say m > m0),
then for all 0 < θ ≤ 1 and all integer 1 ≤ i ≤ n, we have |yi +θUi(y)|R < ρ . As a
consequence, Φ(Dρ)⊃ DR.

Proof. We borrow the proof of Bruno [Bru72][p. 203]. It is sufficient to show that
R+ |U |R < ρ . Since U is of order at least m+1 then, by (4) and the inequality above

|U |R ≤
(

R
r

)m+1

|U |r ≤
(
γkm−2/m

)m+1
γ−m

k

≤ γkm−2−2/m ≤ m−2−2/m. (10)

Since R = γkm−2/mr ≤ m−2/mr, it is sufficient to show that m−2/m(r +m−2) < ρ =
m−1/mr, that is m−2

m1/m−1
< r. But,

m−2

m1/m−1
=

m−2

exp1/m lnm−1
≤ m−2

1/m lnm
≤ 1

m lnm

since 1+x≤ expx for all x∈R
+. But, for 0 < x sufficiently large, we have 2 < x lnx.

Thus, since 1/2 < r, we obtain the result : m−2

m1/m−1
< 1

2 < r.

3.3 Proof of the theorem

In this section, we shall prove our main result. Let 1/2 < r≤ 1 be a positive number
and let us consider the sequence {Rk}k≥0 of positive numbers defined by induction
as follow:

R0 = r

Rk+1 = γkm−2/mRk where m = 2k

Lemma 3.3.1 The sequence {Rk}k≥0 converges and there exists an integer m1 such
that for all integer k > m1, Rk >

Rm1
2 .
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Proof. We recall that γk =
(

c1
ω2

k+1(S)

)−1/2k

. We have Rk+1 = r∏k
i=1 γi(2i)−21−i

, thus

lnRk+1 =−2
k

∑
i=1

lnωi+1(S)
2i − lnc1

k

∑
i=1

1
2i −2ln2

k

∑
i=1

i
2i

the last two sums are convergent and the first is also convergent by assumption. It
follows that there exists an integer m1, such that

+∞

∏
i=m1+1

γi(2i)−21−i
> 1/2.

Thus, if k > m1 then Rk = Rm1 ∏
k
i=m1+1 γi(2i)−21−i

>
Rm1

2 .

Let X = {Xi = Si + · · ·}i=1,...,l be a family of commuting holomorphic vector
fields in a neighborhood of the origin in C

n. We may assume that it is holomorphic
in a neighborhood of the closed polydisc D1. Let m2 = 2k0 ≥max(m0,2m1) where m0
is the integer defined in Proposition 3.2.1. By a polynomial change of coordinates,
we can normalize X up to order m2 : in these coordinates, Xi can be written NFm2

i +
Ri,m2+1. If necessary, we may apply a diffeomorphism aId with a ∈ C

∗ sufficiently
small so that (NFm2 ,Rm2+1)∈N F m2(1)×Bm2+1(1). We may define as above the
sequence {Rk}k≥k0 , with Rk0 = 1. Thus, for all integer k > k0, we have 1/2 < Rk ≤ 1.

Let us prove by induction on k ≥ k0, that there exists a diffeomorphism Ψk of
(Cn,0) such that Ψ ∗

k (NFm2
i + Ri,m2+1) := NF2k+1

i + Ri,2k+1+1 is normalized up to

order 2k+1, (NF2k+1
,R2k+1+1) ∈N F 2k+1(Rk+1)×B2k+1+1(Rk+1) and

|Id−Ψ−1
k |Rk+1 ≤

k

∑
p=k0

1
22p .

• For k = k0: According to Proposition 3.2.1, there exists a diffeomorphism Φk0

such that Φ∗
k0

(NF2k0 + R2k0 +1) = NF2k0+1
+ R2k0+1+1 is normalized up to or-

der 2k0+1, (NF2k0+1
,R2k0+1+1) ∈N F 2k0+1(Rk0+1)×B2k0+1+1(Rk0+1). The es-

timate |Id−Φ−1
k0
|Rk0+1 = |U |Rk0+1 < 1/22k0 comes from estimate (10)

• Let us assume that the result holds for all integers i ≤ k− 1 : by assump-
tions, Ψ ∗

k−1(NFm2 + Rm2+1) = NF2k
+ R2k+1 is normalized up to order 2k

and (NF2k
,R2k+1) ∈ N F 2k(Rk)×B2k+1(Rk). Since 1/2 < Rk ≤ 1, we may

apply proposition 3.2.1 : there exists a diffeomorphism Φk such that (Φk ◦
Ψk−1)∗(NF2k0 + R2k0 +1) = NF2k+1

+ R2k+1+1 is normalized up to order 2k+1

and (NF2k+1
,R2k+1+1) ∈ N F 2k+1(Rk+1)×B2k+1+1(Rk+1). Let us set Ψk =

Φk ◦Ψk−1. According to estimate (10), we have |Id−Φ−1
k |Rk+1 < 1/22k. It fol-

lows that
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|Id−Ψ−1
k |Rk+1 ≤

∣∣(Id−Ψ−1
k−1)◦Φ

−1
k +(Id−Φ−1

k )
∣∣
Rk+1

,

≤
∣∣(Id−Ψ−1

k−1)◦Φ
−1
k

∣∣
Rk+1

+
∣∣(Id−Φ−1

k )
∣∣
Rk+1

.

According to proposition (3.2.1), we have Φ−1
k (DRk+1)⊂ DRk . It follows that

|Id−Ψ−1
k |Rk+1 ≤

∣∣(Id−Ψ−1
k−1)

∣∣
Rk

+
∣∣(Id−Φ−1

k )
∣∣
Rk+1

≤
k−1

∑
p=k0

1
22p +

1
22k ;

this ends the proof of the induction.

Since D(1/2)⊂DRk for all integers k≥ k0, then the sequence {|Ψ−1
k |1/2}k≥k0 is uni-

formally bounded. Moreover, the sequence {Ψ−1
k }k≥k0 converges coefficientwise to

a formal diffeomorphism Ψ̂−1 (the inverse of the formal normalizing diffeomor-
phism). Therefore, this sequence converges in H n

n (r) (for all r < 1/2) to Ψ̂−1

(see [GR71]). This means that the normalizing transformation is holomorphic in
a neighborhood of 0 ∈ C

n.

4 Miscellaneous results

4.1 Normal forms again

The following theorem is due to Nguyen Tien Zung. It describes a situation of
“fully” completely integrable systems : there is “no room” left for small divisors
and there are the maximum number of holomorphic first integrals.

Theorem 4.1.1 [Zun02] Let X1 = S+R be an holomorphic nonlinear perturbation
of a semi-simple linear part S in a neighborhood of the origin in C

n. Assume it
belongs to a commutative family a holomorphic vector fields {X1, . . . ,Xm} which
are assumed to be linearly independent almost everywhere : X1∧·· ·∧Xl 	= 0 almost
everywhere. Assume that this family has n−m holomorphic common first integrals
{ f1, . . . , fn−m} which are almost everywhere independent : d f1 ∧ ·· · ∧ d fn−m 	= 0
almost everywhere. Then, there exists an holomorphic change of coordinates which
normalize X1.

For the Hamiltonian version of this result see [Zun05]. This result is very related
to the following one. As above, let us consider the family S of linear vector fields
Si =∑n

j=1λi, jx j
∂
∂x j

, 1≤ i≤ l. Let us set λi := (λi,1, . . . ,λi,n). Let r > 0. We shall say

that S satisfies condition (Ar) if inf{|(Q,λ i)| 	= 0, 1≤ i≤ l} ≥ r−|Q|.

Proposition 4.1.2 [Sto97] Let Xi = ∑l
j=1 ai, j(x)S j, 1≤ i≤ l be germs of holomor-

phic vector fields in a neighbourhood of 0 ∈ C
n, commuting pairwise. We assume
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that the matrix A = (ai j) of elements ai, j ∈ On is invertible in a neighbourhood of
0 ∈ C

n. If condition (Ar) is satisfied for some r > 0, then the vector fields Xi’s are
simultaneously and holomorphically normalizable.

It is very likely that Zung’s theorem (at least in some cases) could be obtained
in the following way: First of all, apply Artin’s theorem in order to transform, by
an holomorphic change of coordinates, the first integrals into different monomials
generating the first integrals of the Si’s. Then, we are in situation of applying the
proposition unless the matrix A is not invertible. In this last case, technics of next
result could be applied.

Definition 4.1.3 We shall say that s ∈ span(S1, . . . ,Sl) is regular relatively to S
whenever (

X̂ 1
n

)S
=

(
X̂ 1

n

)s
.

Theorem 4.1.4 [Sto05b] Let S be a diophantine family of linearly independent lin-
ear diagonal vector fields. Let X1 be a germ of holomorphic vector field with a reg-
ular linear part s at the origin. Let X2, . . .Xl be germs of holomorphic vector fields
in a neighborhood of 0 and commuting with X1. Assume that the family {X1, . . . ,Xl}
has a normal form (relatively to s) of the type

Φ̂∗Xi =
l

∑
i=1

âi, jS j

where the âi, j’s belong to ÔS
n . Moreover, we assume that the family of the parts of

lowest degree of this normal form is free over ÔS
n . Then, the family is holomorphi-

cally normalizable, i.e. there exists an holomorphic diffeomorphism in a neighbor-
hood of 0 ∈ C

n transforming the family into a normal form.

One of H. Ito results about normal forms of family of n Hamiltonian vector fields
[Ito89] is a particular case the previous results.

Remark 4.1.5 Contrary to Theorem 2.3.6, only X1 is required to have a nonvan-
ishing linear part s at the origin. The linear part of the Xi’s, i ≥ 2, could be zero.
Moreover, s is not supposed to satisfy any diophantine condition.

4.2 KAM theory

Let us go back to Theorem 2.3.6 and Figure 1 which refer to completely integrable
systems. A natural question one may ask is the following: starting from a holomor-
phic singular completely integrable system in a neighborhood of the origin of Cn

(a common fixed point), we consider a holomorphic perturbation (in some sense)
of one its vector fields. Does this perturbation still have invariant varieties in some
neighborhood of the origin? Are these varieties biholomorphic to resonant (toric)
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varieties? To which vector field on a resonant variety does the biholomorphism con-
jugate the restriction of the perturbation to an invariant variety? Is there a “big set”
of surviving invariant varieties?

The aim of article [Sto05a] is to answer these questions which are classical in the
Hamiltonian nonsingular setting [Arn63, Arn88b, Bos86, Kol57, Ste69].

4.3 Poisson structures

A Poisson structure is defined by a bracket {., .} which is applied to a couple of
germs of functions to a germ of function and which satisfies the following proper-
ties :

• {., .} est bilinear and skew-symmetric
• { f ,{g,h}}+{g,{h, f}}+{h,{ f ,g}}= 0 (Jacobi identity)
• { f ,gh}= { f ,g}h+{ f ,h}g (Leibniz identity)

It is equivalent to define a germ of two-vectors field which can be written, in a
local chart,

P =
1
2 ∑

1≤i, j≤N
Pi, j(x)

∂
∂xi

∧ ∂
∂x j

= ∑
1≤i< j≤N

Pi, j(x)
∂
∂xi

∧ ∂
∂x j

with Pi, j =−Pj,i and which satisfies Jacobi’s identity

∑
1≤l≤N

(
Pi,l

∂Pj,k

∂xl
+Pj,l

∂Pk,i

∂xl
+Pk,l

∂Pi, j

∂xl

)
= 0

for 1≤ i, j,k≤ N. We want to study the singularities of analytic Poisson structures,
that is points where all the Pi, j’s vanish. First of all, we are interested in singular
point where the linear part of the Poisson structure is not reduced to zero. This linear
part defines on the cotangent bundle to M at 0 a structure of Lie algebra. When it
is semi-simple, then J. Conn has proved that the Poisson structure is analytically
conjugate to its linear part in a neighborhood of the origin [Con84]. Most of the
work concerns the linearization problem (and mostly in the smooth case). We refer
the book [DZ05] for these aspects and [Arn97][Appendix 14] for dimension 2.

In article [Sto04] we study some analytic Poisson structures which are not even
formally linearizable. Our main result is about the holomorphic normalization of
some Poisson structures which associated Lie algebra is a skew-product C

p
� C

n.
The proof uses Theorem 2.3.6 in an essential and nontrivial manner.

Recently, P. Lohrmann studied analytic Poisson structures with a vanishing lin-
ear part but a nonvanishing quadratic part. J.-P. Dufour and A. Wade have defined
a formal normal form for such an object [DW98]. P. Lohrmann proved the coun-
terpart of Brjuno Theorem 2.1.1 for these Poisson structure: if the quadratic
part satisfies to some diophantine condition and if the formal normal form is “com-
pletely integrable” then the Poisson structure is analytically conjugate to a normal
form [Loh06, Loh05].
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Geometric approaches to the problem
of instability in Hamiltonian systems.
An informal presentation

Amadeu Delshams1, Marian Gidea2, Rafael de la Llave3, and Tere M. Seara4

Abstract We present (informally) some geometric structures that imply instability
in Hamiltonian systems. We also present some finite calculations which can estab-
lish the presence of these structures in a given near integrable systems or in systems
for which good numerical information is available. We also discuss some quanti-
tative features of the diffusion mechanisms such as time of diffusion, Hausdorff
dimension of diffusing orbits, etc.

1 Introduction

The goal of these lectures is to present an overview of some geometric programs to
understand instability in Hamiltonian dynamical systems.

Roughly speaking, the problem of instability is to decide whether the effect of
small time-dependent perturbations accumulates over time. Relatedly, to show that
many orbits of a time-independent Hamiltonian system explore a large fraction of
the energy surface.

Instability is a real problem arising in applications. For example, designers of
accelerators or plasma confinement devices want to invent devices which are as
devoid of instability as possible. Designers of space missions want to find orbits
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which can move freely over a wide region of space, but of course, they can only use
the intertwining gravitational fields of the nearby celestial bodies. Chemists want
to understand how reactions and reconfigurations of molecules take place. As is
common with real problems, there are many mathematical formulations depending
on the precise mathematical meaning attached to the vague words of the previous
paragraph1 and many techniques which have come to bear on these formulations.
For example, the lectures of Professors Cheng, Neishtadt, and Treschev in this vol-
ume present other points of view about the problem and will even present different
treatments of the same mathematical model.

These lectures can only aim to present informally the ideas behind some of the
methods that have been proposed. We do not aim to present all the hypothesis of the
results and much less complete proofs. Even when we restrict to geometric methods,
we cannot aim to present a complete survey. The subject is progressing very fast.
We only hope that these lectures can present an entry point to a portion the literature
and indicate what to look for while reading some papers. We just want to present
several milestones of the programs and to give some indication of the arguments.

There are two basic steps in all the results presented here. In a first step, we will
present several geometric facts that imply that there are orbits that move appreciable
lengths. In a second step, we will present some finite calculations which can verify
the existence of these objects in quasi-integrable systems or in systems of a special
form. Hence, for some systems, deciding that instability happens can be established
with a finite computation. This will have the conclusion that some types of diffusion
or instability are generic in some sense in some class of systems.

Remark 1.1. It should be emphasized that there are different geometric mechanisms
that lead to instability. These mechanisms involve different geometric objects, have
different hypothesis and lead to orbits with different characteristics. Several differ-
ent mechanisms can coexist in the same model. The existence of several mecha-
nisms was documented in some of the heuristic literature. An early paper, which is
still worth reading is [LT83].

Remark 1.2. Given the practical importance of the problem of instability, there is a
very large numerical and heuristic literature. Even if not easy to read, this literature
contains considerable insights and can suggest several theorems. As representative
papers of the numerical literature – which we cannot discuss in more detail – we
mention [Chi79, Ten82, LT83, ZZN+89, Zas02, GLF05, FGL05, FLG06].

Perhaps the main insight from the numerical literature, is that resonances or-
ganize the diffusion (the so called Arnold web). This, indeed was one important

1 The previous paragraph contains several imprecise words such as accumulate, many, explore,
large, etc. There are several rigorous formulations of these ideas. Some of the authors of this paper
remember a round table in [Sim99] which included Profs. Arnol’d, Gallavotti, Galgani, Herman,
Moser, Simó, Sinai. The panel was asked the question to give a canonical definition of diffusion
that was preferable to the other definitions then in use. The conclusion was that it was better that
each paper contains a precise definition.

The reader is encouraged to compare the precise definitions of diffusion or Arnol’d diffusion
used in each paper. See Remark1.3.
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motivation for several of the investigations reported here. On the other hand, we will
discuss some mechanisms which do not quite fit in this paradigm. See Sections 2, 7.

Remark 1.3. There are many precise mathematical formulations of what is meant
by diffusion or Arnol’d diffusion. For some authors, the fact that there are whiskered
tori as discussed in Section 2 is the key feature. We however take the presence large
effects as the key feature. Many papers, for example [HM82] (which we will discuss
more fully in Section 4) consider perturbations of size ε of an integrable system and
establish existence of whiskered tori with heteroclinic intersections. These chains
of whiskered tori, however are rather short and lead only to changes in the action
variable of order ε1/2. We, on the other hand, prefer to emphasize the existence
of changes of order 1 in the actions, even if they are not accomplished through
whiskered tori. A careful discussion of these issues appears in [Moe96].

1.1 Two types of geometric programs

With some simplification, there are two types of geometric programs that we will
discuss.

Programs based on invariant objects and their relations

1. Find invariant objects (whiskered tori, normally hyperbolic invariant manifolds,
periodic orbits, horseshoes, normally hyperbolic laminations, etc. as well as
their stable and unstable manifolds).

2. Prove that if these objects satisfy some appropriate relations (e.g. there is a se-
quence of whiskered tori such that the unstable manifold of one torus intersects
transversally the stable manifold of the next torus) then, there are orbits which
move along the chain of invariant objects.

Incipient versions of programs of this type were already present in [Poi99]. The
paper which has been more influential in the mathematical literature is [Arn64,
Arn63]. The main invariant objects considered in [Arn64] were whiskered tori
and their invariant manifolds. We will discuss this paper in some more detail in
Section 2. Other early examples of instability were [Sit53, Ale68a, Ale68b, Ale69,
Ale81], which were mainly based on hyperbolic and topological properties. The
study of instability properties of oscillators was pioneered in [Lit66a,Lit66b,Lev92].
Other papers establishing instability in oscillators are [AO98, Ort97, LY97, Ort04]
The papers [Pus77a, Pus77b, Dou89, KPT95, Pus95] study instability in systems
with collisions. The papers [Dou88, DLC83] construct examples of instability near
elliptic points. The paper [CG98] revived geometric approaches and contained many
useful techniques.
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To study invariant objects, typically, one finds some representation of them as
a function. The condition of invariance is then a functional equation, which is of-
ten studied by methods of functional analysis or just numerically or by asymptotic
methods. Two very basic methods to study invariance equations are normal hyper-
bolicity or KAM theory. One often has to supplement them with some preliminary
calculations based on averaging or on perturbative calculations.

Programs based on finite orbits “with hooks”

1. Find finite segments of pseudo-orbits such that one segment ends close to the
beginning of the following segment.

2. Verify some extra properties of each of the segments.
3. Use these properties to show that there is an orbit that remains close to the whole

segment of orbits.

We picturesquely describe the above situation as saying that the segments of
orbits have hooks so that they can be chained together. The fact that one needs some
extra properties of the segments is made clear by the existence of examples – e.g.
rigid rotations of the torus – where the conclusions are false.

There are quite a number of mathematical results of this kind. The best known
results of this type are, perhaps, the shadowing theorems for hyperbolic systems
[Shu78]. The hook in this case, is hyperbolicity. For many applications, hyperbol-
icity is a hard hypothesis to verify – it is often even false! – so that there are many
variants. See, for example [Pal00, Pil99] and references there.

For us, the method which so far has proved to be more useful is the method based
on correctly aligned windows. The basic idea is to use some kind of topological
index of the segments of orbits so that one can show that there is an orbit in a
neighborhood of the whole chain. One early example, is [Con68,Con78,Eas89]. We
will discuss it in Section 5.

One should also mention the variational program started in the 1930s using bro-
ken geodesics [Mor24, Hed32, Ban88]. The idea was that, if the segments are min-
imizers of a good variational principle, then, indeed, there are orbits that follow
them.2 Some early implementations of these ideas to the problem of diffusion appear
in [Bes96]. More recent applications appear in [BBB03, BCV01]. These methods
also have the advantage that they apply to PDE’s [RS02, Ang87]. Very deep varia-
tional methods that also involve global considerations appeared in [Mat93, Mañ97,
CI99].

Remark 1.4. Of course, there are relations between the methods. Even in [Arn64],
the invariant objects were used to produce segments of orbits as well as some ob-
struction property which shows that there are orbits that follow the segment. In our

2 The heuristic idea is that, in the space of segments, each of our minimizers is in the center of a
ball whose boundary has more action. If we take the whole orbit, the phase space is the product
of the phase space of the segments so that the approximate orbit is contained in a ball so that the
boundary of a ball has more action.
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discussion of applications of the method of correctly aligned windows, we will con-
sider orbits suggested by the invariant objects.3 Even the more global variational
methods of [CY04b, CY04a] start by reducing the problem using the presence of a
normally hyperbolic invariant manifold.

One can hope that in the near future there will be even more relations. In particu-
lar, the more local variational theories (broken geodesic methods) seem rather close
to the geometric methods. One can find relations between variational methods and
the windows method is [Moe05].

In these lectures, we will try to present different mechanisms as well as the verifi-
cation of their presence in some quasi-integrable systems. For the geometric mecha-
nisms we will present in these lectures, the verification of their presence in concrete
systems, will involve a rather standard toolkit (averaging theory, the theory of nor-
mally hyperbolic manifolds – perturbation theory, λ -lemma –, KAM theory) and
some less standard tools such as the scattering map (Section 3.2 ) and the correctly
aligned windows (Section 5). We will omit most of the details, but refer to the lit-
erature. The only goal of these lectures is to present a road map to the programs
and to indicate the significant mileposts to be reached. Some similar expositions
are [DDLLS00, DLS03, dlL06]. The present one incorporates some progress since
the previous exposition were written. Fortunately, the new developments have lead
to more streamlined proofs.

2 Exposition of the Arnold example

This very explicit example was constructed in [Arn64]. It is, possibly, the best
known example in the mathematical literature. Some more detailed expositions of
several of the aspects appear in [AA67]. A very complete explanation of the model
in [Arn64] and generalizations can be found in [FM01].

In the following paragraphs, we will present the result emphasizing some of the
geometric aspects that will play a role in the following. We refer [FM01] for the
technical details of many of the proofs. We will emphasize several geometric prop-
erties that will play in the future.

Theorem 2.1. Consider a time-dependent system defined in the action-angle vari-
ables (I,Φ) ∈ R

2×T
2 by:

H(I,Φ , t) =
1
2
(I2

1 + I2
2 )+ ε(cosΦ1−1)

+µε(cosΦ1−1)(sinΦ2 + cos t) ,
(1)

If 0 < µ � ε � 1.
Then, there exist orbits of the Hamilton’s equation corresponding to (1) with

|I(T )− I(0)|> 1 .

3 Strictly speaking, the windowing method only needs that they are approximately invariant.



290 A. Delshams et al.

Φ1, I1 plane × Φ2, I2 plane.

Fig. 1 Illustration of the dynamics of the time one map of the dynamics of (1) for ε > 0,µ = 0.

We point out that the Hamiltonian (1) satisfies the conditions of KAM and
Nekhoroshev theorems (in spite of being partially degenerate) [Lla01, Nie07] so
that the for ε,µ small, the orbits that satisfy the conclusion occupy a small measure
(these orbits cannot be in KAM tori) and T has to be very large (by Nekhoroshev’s
theorem). This gives an idea of the subtleness of the phenomenon.

The system (1) can be easily understood for ε > 0,µ = 0 since it is a product of
two simple systems (a pendulum and a rotator), see Figure 1. We note, in particular
that the manifold Λ , obtained by fixing the pendulum variables to the hyperbolic
fixed point, (i.e. (I1,Φ1) = (0,0)) and letting the (I2,Φ2) vary is a normally hyper-
bolic manifold. Clearly, Λ is topologically an annulus R×T

1.
It will be important (for other mechanisms) to remark that the manifold Λ is

normally hyperbolic.
The main remark in [Arn64] is that the manifold Λ is foliated by invariant tori

(corresponding to fixing I2). These tori are not normally hyperbolic (perturbations
along the I2 direction do not grow exponentially), but they are whiskered tori . That
is, tori, whose normal directions contain stable directions (i.e. directions which con-
tract exponentially fast in the future) and unstable directions (i.e. directions that
contract exponentially fast in the past). The rates of contraction in the future and
in the past are the contracting and expanding eigenvalues of the fixed point of the
pendulum. It is easy to see that they are equal to λ =∓ε1/2.

It is shown, in general, that to whiskered tori, one can attach invariant stable
(resp. unstable) manifolds consisting of the orbits which converge exponentially
fast – with a rate similar to the rate of convergence of the linearization – in the
future (resp. in the past). In the uncoupled case that we are considering now, the
stable and unstable manifolds can be computed explicitly. The (un)stable manifolds
are just the product of the tori and the separatrix of the pendulum. In particular, the
stable and unstable manifolds of a torus agree.

Now, we consider 0 < µ � ε and we will treat the term containing µ as a per-
turbation. In such a case, we can use the general theory of whiskered tori and their
manifolds. The application of the general theory to (1) is rather simple because the
example has been chosen carefully so that the perturbation and its gradient vanish
onΛ . Hence, the family of tori, remains the same. It is part of the general theory that
the tori keep being whiskered under the new dynamics and that they have (un)stable
manifolds. Furthermore, the manifolds depend smoothly on µ . The first order in the
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µ expansion can be computed easily by matching powers in formal expansions4 and
it is not difficult to show that the manifolds of nearby tori intersect transversally. In
some ways the result is to be expected since the µ term, even if leaving Λ invariant,
is significant in the region occupied by the whiskers. It would be very easy to make
perturbations with compact support intersecting the separatrices and which move
them.

The construction so far, for any δ > 0 allows to construct a δ pseudo-orbit that
moves I2 by 1. If we start in a torus τ with an irrational rotation, we wait for the
appropriate moment, then, jump in its unstable manifold, in such a way that the
orbit is also in the stable manifold of another torus τ ′. Once we are close enough to
τ ′, we jump into a torus with an irrational rotation – such tori are dense. Then, we
can restart again.

Unfortunately, this step does not allow to take the limit δ → 0 since the orbits
change widely. If we make δ smaller, the orbits we constructed have to give more
turns till the irrational rotation sets the phase exactly right for the jump.

2.1 The obstruction property

The program of [Arn64] contains an extra step, the obstruction property – that con-
structs a true orbit shadowing some of the pseudo-orbits. Figure 2 depicts schemat-
ically some of the pseudoorbits made by joining heteroclinic connections and the
orbits shadowing them.

There is a substantial literature on the obstruction argument. We just call atten-
tion to the reader that part of the literature includes – sometimes without making
it explicit – the assumption that one of the terms in the normal form of the torus
vanishes. Some papers rely on normal forms to high order – hence only apply com-

Fig. 2 Illustration of some orbits in the dynamics of (1) for 0 < µ� ε . The 2 refers to the fact that
Λ is two-dimensional.

4 Of course, matching powers in formal expansions does not justify that the expansions exist. In this
case, using the general theory of whiskered tori, we know that these expansions exist. Historically,
power matching in cases similar to this one was routinely used many years before it was justified.
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fortably to C∞ or Cω systems. Others assume that all the tori can be fit in a common
system of coordinates. In some papers, the construction depends on the number of
tori that the orbit has to explore. Therefore, increasing the number of tori changes
substantially the orbit (the time the orbit has to spend in the neighborhood of each
tori increases with the total number of tori to be visited). These constructions do not
allow to pass to the limit and construct orbits which visit infinitely many tori. Of
course, the diversity of arguments is just a reflection of the fact that there are many
types of diffusing orbits each with different quantitative and qualitative properties.
We cannot survey the rather extensive literature but just call attention on some points
to watch for. We certainly hope somebody will write such a survey.

We also note that the obstruction argument is not the only way of constructing
orbits which shadow the pseudo-orbits. In this lecture we will discuss the method
of correctly aligned windows in other context, which is a topological method –
applications to the shadowing of whiskered tori happen in [Rob02, GR04, CG03].
There are also variational methods [Bes96, BBB03, BCV01] for this step.

In practice, the step of constructing the shadowing orbits is what controls the
time T in the statement of the result. Many of the methods above lead to differ-
ent estimates for T and presumably to different orbits. This again reinforces the
belief that diffusion is really a superposition of several mechanisms. Here, we
will just present some simple argument – we follow closely [DLS00] – which
makes more precise some of the ideas in the original papers [AA67]. See also
[FM01, FM03, FM00, Cre97]. The main ingredient is a somewhat sharp version of
the λ -lemma – for example that in [FM00] – and a point set topology argument.
Since no normal forms to higher order are used the method has only modest dif-
ferentiability requirements. It can also accommodate infinitely long chains. A more
elaborate argument along similar lines, but also giving more control on the orbits
appears in [DLS06c].

If {Ti}∞i=1 is a sequence of whiskered tori with irrational rotations and {εi}∞i=1
a sequence of strictly positive numbers, we can find a point P and an increasing
sequence of numbers Ti such that

ΨTi(P) ∈ Nεi(Ti)

where Nεi(Ti) is a neighborhood of size εi of the torus Ti. Here Ψt represents the
flow associated to the system.

To establish this result, note that if x∈W s
T1

, we can find a closed ball B1, centered
at x, and such that

ΨT1(B1)⊂ Nε1(T1). (2)

By the λ -lemma,
W s

T2
∩B1 	= /0.

Hence, there is a closed ball B2 ⊂ B1, centered at a point in W s
T2

such that, besides
satisfying (2):

ΨT2(B2)⊂ Nε2(T2).
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Proceeding by induction, we can find a sequence of closed balls

Bi ⊂ Bi−1 ⊂ ·· · ⊂ B1

ΨTj(Bi)⊂ Nε j(T j), i � j.

Since the closed balls are compact, they have non-empty intersection and any
point in the intersection satisfies the desired property.

This argument as presented above does not give estimates on the time needed
to transfer. On the other hand, it gives several other information on the orbits. For
example, the orbits never leave an ε neighborhood of the segments of W s,u

Ti
so that

we can be sure that the energy, or the actions, are described, up to errors of size ε by
the values along the sequences visited. For future purposes, it is important to point
out that the argument only uses that the tori are whiskered and it does not use at all
the way that the tori fit together. Later, in Section 4, we will apply this argument
to sequences of tori which are not homotopic and that, therefore, cannot be fit in
common system of coordinates.

2.2 Some final remarks on the example in [Arn64]

The example (1) is remarkable for many reasons. Here, we just note that the diffu-
sion happens in places where there are no resonances. Indeed, detecting the diffu-
sion numerically in (1) is much harder than in other examples. It is somewhat ironic
that much mathematical effort was spent proving instability in models for which the
result is indeed very weak.

One feature of the example (1) which is important for the construction is that
the second perturbation vanishes identically on a manifold. This is very non-generic
and, indeed, it does not happen in many models of interest.5

We have done the first order expansion in µ , assuming ε > 0 and fixed. The
dependence on ε of this theory is rather complicated. The first order term in the
expansion in µ of the angle between the stable and the unstable manifoldso of a torus
is of the order exp (−Aε−1/2)µε . The remainder, on the other hand, is not easy to
bound better than Cµ2ε2. This is, of course, perfectly fine if µ� exp(−A/2ε−1/2),
but if µ = ε p, then, it could happen that the leading order of the perturbation in µ
does not give the whole story.

As a consequence, the treatment above – based on just first order perturbation
theory in µ can not establish the existence of instability in a whole ball in ε,µ or
for µ = ε p.

5 One should remark, however, that it does happen in some models of interest. For example
[dlLRR07] shows that perturbations which vanish on manifolds, happen naturally in some systems
of physical interest such as billiards with moving boundaries and in oscillators provided that they
have some symmetries and that an analysis very similar to that of [Arn64] leads to the existence of
orbits of unbounded energy in these systems
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3 Return to a normally hyperbolic manifold. The two dynamics
approach

In the exposition of [Arn64] in the previous section, we have emphasized the nor-
mally hyperbolic manifold Λ – which only appeared implicitly in [Arn64].

The reason is that the persistence of normally hyperbolic manifolds holds rather
generally as was recognized in the 1960s [Sac65, Fen72, Fen74, HP70, HPS77,
Pes04]. Of course, for examples other than the carefully chosen (1), one does not
expect that the dynamics in the invariant manifold remains integrable. Indeed, as it
is well known (we will present some ideas in Section 4.3) the resonant tori break up
under perturbation so that the foliation by invariant tori gets interrupted.

The general theory of normally hyperbolic invariant manifolds establishes not
only the persistence of the normally hyperbolic invariant manifolds but also the
existence of stable and unstable manifolds and the regularity of the dependence on
parameters of these objects. A short summary of the theory of normally hyperbolic
invariant manifolds can be found in Appendix A. Of course, this is no substitute for
the references above.

The theory of dependence with respect to parameters of normally hyperbolic
invariant manifolds, justifies the perturbation theory.

3.1 The basics of the mechanism of return to a normally
hyperbolic invariant manifold

The basic assumption is that the stable and unstable manifolds of Λ intersect
transversally. This means that there are orbits that leave the manifold but come back.
We will refer to these orbits as homoclinic excursions. Note that a simple dimension
counting – justified by the regularity given by the theory of normally hyperbolic
invariant manifolds – shows that the set of homoclinic excursions is, locally, a man-
ifold of the same dimension asΛ . Hence, we expect that there is an open set H− ⊂Λ
such that all the points in H− can make an arbitrarily small jump and, go into the un-
stable manifold of Λ , perform an homoclinic excursion and come back to Λ . Since
this homoclinic excursion moves the orbit far away from Λ it is quite possible that
it can be really affected by the perturbation and the action variables can change. In
Section 3.2, we will describe some concrete descriptions of these sets.

When the system is conservative, one expects that some of the homoclinic ex-
cursions are favorable – e.g. the excursion gains energy or action – and others are
unfavorable – the excursions looses energy or actions. Since there are rather explicit
formulas – which we will explain in Sections 3.2 and 4.1, one expects that the points
in H− which lead to favorable or unfavorable excursions are open sets separated by
a codimension 1 manifold, which can be calculated as the zero set of a function (in
the models discussed in Section 4 perturbative formulas for this function are rather
standard).
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Fig. 3 Illustration of orbits that gain energy by intertwining homoclinic excursions with staying
around an invariant manifold.

Note that H− and the separation between the favorable and unfavorable regions
depend very strongly on the perturbation far away from Λ . Hence, we can expect
that the dynamics on Λ – which is unaffected by the perturbations away from the
manifold – is completely unrelated to the separation between favorable and unfa-
vorable excursions. Hence, unless this separation is invariant under the dynamics in
Λ , one can stay around Λ for a carefully chosen time and move into the favorable
region. We emphasize that, explicit perturbative computations can give approxima-
tions to the manifold separating the favorable from the unfavorable excursions, so
that a finite computation can establish that there are orbits in Λ that move into the
favorable region.

In this way, for many systems, one can construct pseudo orbits by interleaving
orbits that follow a homoclinic excursion and orbits that remain in Λ so that we go
from the end of a homoclinic excursion to another favorable excursion. This can be
compared to primitive sailing: When the wind is favorable, the boat moves. When
the wind turns bad, it moves to the coast and anchors waiting till the wind becomes
favorable again.

Of course, if one is interested in true orbits rather than on δ pseudo-orbits with
δ arbitrarily small, one still needs an extra step – shadowing or obstruction. Some
versions of these arguments are discussed in Sections 2.1 and 5.

To make the above heuristic ideas rigorous, one uses: (a) a tool to describe the
homoclinic excursions, which allows explicit computations (b) some explicit de-
scription of the dynamics on Λ , (c) some tools to pass from the pseudo-orbits to the
orbits.

Of course, the analysis of the dynamics restricted toΛ is just the general problem
of dynamical systems. The description of homoclinic intersections will be under-
taken in Section 3.2.

We note that the scattering map is not the only way to discuss homoclinic ex-
cursions. The paper [Tre02a, Tre02b] introduce the separatrix map. We also call
attention to [BK05].
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3.2 The scattering map

The scattering map is a particularly convenient way of describing the behavior on
a homoclinic excursion. It was introduced explicitly in [DLS00] as a geometrically
natural alternative to Melnikov theory so that issues of domain and monodromy
could be discussed in detail. Related ideas for center manifolds were introduced
in [Gar00]. A much more systematic theory of the scattering map was developed
in [DLS06a].

An orbit is homoclinic if the future and the past converge exponentially fast to
Λ . We adopt the same notation as in Appendix A.

We recall that the stable and unstable manifolds can be decomposed into stable
manifolds of single points, namely: W s

Λ =
⋃

x∈Λ W s
x , W u

Λ =
⋃

x∈Λ W u
x . The above

decompositions are are foliations because if x,y ∈ Λ , x 	= y, then W s
x ∩W s

y = /0,
W u

x ∩W u
y = /0. We will refer to these foliations as Fs,u respectively.

Using the foliations Fs,u we can define the “wave operators” Ω+, Ω−

Ω± : W s,u
Λ −→Λ (1)

defined by
x ∈W s

Ω+(x) x ∈W u
Ω−(x) (2)

If there is a manifold Γ ⊂W s
Λ ∩W u

Λ such that Ω− is a diffeomorphism from Γ to
its range Ω−(Γ )≡ HΓ

− , then we can define (ΩΓ
−)−1 : HΓ

− → Γ and relatedly,

sΓ = Ω+ ◦ (ΩΓ
−)−1 (3)

See Figure 4.
This set H−Γ is the set of initial points of trajectories having the property that an

small push can make them go through Γ . This is a more precise version of the set
H− wich we discussed in Section 3.1. The set HΓ

− specifies that the connections go
through Γ .

The map sΓ : H− → H+, gives an encoding of the homoclinic excursions that
pass through Γ . If we consider one such excursion, the orbit is asymptotically close
to one orbit in Λ in the past and to another orbit in Λ in the future. The map sΓ

gives the future orbit as a function of the asymptotic orbit in the past.6 Of course,
the scattering map depends very strongly on the manifold Γ we have chosen. Escap-
ing from Λ along different routes will, clearly, have very different effects and the
scattering map will be very different. Some examples of celestial mechanics with
explicit computations appear in [CDMR06].

Now, we discuss some natural hypothesis that imply that ΩΓ
− is invertible from

its range to Γ and that this is maintained under perturbations and that there is good
dependence with respect to parameters. Basically, we will reduce the definitions to

6 This is remarkably similar to the definition of the scattering matrix in the time-dependent scat-
tering theory in quantum mechanics. Indeed, there are many more analogies and we have chosen
the notation to reflect them.

Other classical analogues of quantum scattering theory, somewhat different from those consid-
ered here, were considered in [Hun68, BT79, Thi83] and in a more general context in [Nel69].
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Fig. 4 Illustration of the definition of the scattering map.

transversality conditions so that the implicit function theorem gives the persistence
and smooth dependence on parameters.

A natural set of conditions to define scattering map is that for all x ∈ Γ ,

TxW s
Λ +TxW u

Λ = TxM

TxW s
Λ ∩TxW u

Λ = TxΓ
(4)

TxW s
Ω+x⊕TxΓ = TxW s

Λ

TxW u
Ω−x⊕TxΓ = TxW u

Λ
(5)

The conditions in (4) mean that W s
Λ , W u

Λ “intersect transversally” along Γ . The
first condition in (5) means that Γ is “transversal to the foliation” {W s

x }x∈Λ inside
W s
Λ . The second equation in (5) means thatΓ satisfies an analogous property relative

to the unstable foliations. See Figure 5.
If we have (4) for just one x0, the implicit function theorem tells us that we can

find a smooth manifold Γ containing x0 such that (4) holds for all x ∈ Γ . Since the
manifold Γ is obtained applying the implicit function theorem, if both W s

Λ , W u
Λ , are

Ck manifolds in a neighborhood of x, then Γ will also be a Ck manifold.
Similarly, applying the the implicit function theorem, the regularity theory for

the manifolds and their smooth dependence on parameters, discussed in Appendix
A, we conclude that if fε is a C1 family and f0 has a Λ0, Γ0 satisfying the normal
hyperbolicity and transversality conditions, that there is a C1 family of manifolds
Λε which are normally hyperbolic and another family of manifolds Γε satisfying the
properties. In the case that we can guarantee that W s,u

Λε
are C�−1 families, we obtain

that Γε is a C�−1 family and we can also obtain smooth dependence on parameters
for the ΩΓε

± and for the scattering map.7

7 The smooth dependence of a map in domains which are changing, should be understood in the
sense that there is smooth family of maps from a fixed domain to the domains so that the composed
map is smooth.
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Fig. 5 Illustration of the conditions in (5).

The properties in (5) are very different. Even if the formulation of (5) does not
require that the foliations Fs,u are smooth, they become more interesting when these
foliations are C1 foliations. In this case, the implicit function theorem tells that,
when we move along Γ , we have to move across the foliation.

The implicit function theorem shows that, if the foliations Fs,u are C1 – this is
implied by properties of the hyperbolicity constants, so that it holds true in some
C1 open sets of examples – and (5) hold, then, Ω± are locally invertible. Again,
because this is just an application of the implicit function theorem and there is a
good dependence on parameters, we obtain if (4), (5) are satisfied for a map, they
will be satisfied – with a similar Λ , Γ – for all the small C1 perturbations. Further-
more, if we consider smooth families of maps, there will be smooth dependence on
parameters.

Remark 3.1. One could argue heuritically that (5) could fail in a codimension 1
set of Γ – transversality is a codimension 1 phenomenon. Of course, this heuris-
tic argument, could be false. Notably, the heuristic argument is false for the models
considered in [DLS00, DLS06c]. It however, applies to some examples considered
in [DLS06b].

Nevertheless, as shown in [DLS06b], the existence of an open set is enough for
the construction of orbits that move appreciable amounts. One can also note that
one expects to have infinitely many Γ , each of which with a different scattering
map. The argument does not require that all the excursions go through the same Γ ,
so that the set of points which cannot be moved by this argument should be empty
in manu examples.

3.3 The scattering map and homoclinic intersections
of submanifolds

One important application of the scattering map is that it allows us to discuss
transversal intersections of W u

Σ1
, W s

Σ2
where Σ1,Σ2 ⊂ Λ are invariant manifolds
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under the map f . One example is, of course, the whiskered tori inside the mani-
fold Λ that were discussed in Section 2. In Section 4 we will see other examples
that are more challenging.

It was shown in [DLS00, DLS06b, DLS06c] that if, for some manifold Γ , satis-
fying (4) (5), we have8

sΓ (Σ1) �Λ Σ2. (6)

Then,
W u

Σ1
� W s

Σ2
. (7)

This result is useful because the hypothesis (6) can be verified by calculations on
the invariant manifold Λ . The conclusions is that the (un)stable manifolds of σ1,σ2
are transverse in the full manifold M.

In the case that Σ1, Σ2 are invariant circles which are close together, the transver-
sality of intersections is usually discussed using Melnikov theory. Notice, however
that Melnikov theory – since it is based on first order calculations often done in a
concrete coordinate system – requires that the manifolds Σ1,2 are expressed in the
same system of coordinates, in particular, they are homotopically equivalent. The
above result, however, is coordinate independent. This is crucial for the applications
in [DLS06b], discussed in Section 4, where Σ1,2 are not topologically equivalent.

As we will see in Section 3.7 there are rather explicit – rapidly convergent – for-
mulas for the perturbative computation of the scattering map. Therefore, the theory
outlined above can give rather efficient ways of establishing intersections.

3.4 Monodromy of the scattering map

Even if ΩΓ
± are locally invertible, they could fail to be invertible in a domain which

is large enough to include non-contractible closed loops. One interesting example
was discussed already in [DLS00] and, in more detail in [DLS06c, DLS06a]. For
example, when considering stable manifolds of a periodic orbit λ , the intersection
manifold Γ looks like a helix. That is, if we increase the phase of the intersection,
then, eventually we go into a different homoclinic intersection of the time-1 map.
This is a geometric counterpart of the fact that, in some calculation in first order
perturbation theory of intersections of invariant manifolds – often called Melnikov
theory – one has to add real variables to angle variables. See Figure 6.

3.5 Smoothness and smooth dependence on parameters

Note that the sufficient conditions (4), (5) that ensure the existence of the scat-
tering map in a neighborhood are transversality conditions that are robust under

8 We use the notation �Λ to indicate that the manifolds intersect transversally as manifolds in Λ .
In particular, when we use this symbol, we assume that the intersection is not empty.
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Fig. 6 Illustration of the monodromy of the scattering map for the stable manifolds of periodic
orbits.

perturbations. Hence, given a concrete system, they can be established with a finite
precision calculation. Later, in Section 4.1 we will see how they can be verified
by perturbative calculations from an integrable system. See [DLS06b, GL06a]. The
conditions can also be verified numerically if one controls the precision of the cal-
culations [CDMR06].

It follows from the general theory of dependence on parameters that, under the
conditions (4), (5), and smoothness of the foliations Fs,u then, the scattering map is
smooth jointly on the manifold and on parameters.9

3.6 Geometric properties of the scattering map

So far, the discussion of the scattering map has only used normal hyperbolicity and
regularity of the maps considered.

If the maps fε have some geometric structure, the scattering map also inher-
its some geometric properties. Notably, if fε is symplectic (resp. exact symplectic)
and Λ0 is a symplectic manifold (hence, exact symplectic if fε is exact symplectic)
then sε is a symplectic (resp. exact symplectic) family of maps. This was proved
in [DLS06a]. In the context of center manifolds it was proved in [Gar00].

9 The discussion of smoothness with respect to parameters of the scattering map presents some
technical annoyances such as that the domain of sε is Λε , which changes as ε changes. An easy
solution is to consider smooth (jointly with respect to the coordinates and the parameters) parame-
terizations kε of the invariant manifold Λε . That is kε (Λ0) =Λε . See Appendix A.
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There are two important consequences of the symplectic character.

• There are many techniques to discuss intersections of Lagrangian manifolds
under symplectic mappings, see [Wei73, Wei79].

• There are very efficient perturbation theories for symplectic mappings. Histori-
cally this one of the reasons why Hamiltonian formalism was invented. We will
discuss several versions of Hamiltonian perturbation theory here.

Taking advantage of both features at the same time, one gets a very efficient
perturbative theory for the intersections of manifolds under the scattering map. In
view of the results mentioned in Section 3.3, this is very useful to obtain transition
tori.

In [DLS06a] it was proved that there is a natural smooth parameterization
kε(Λ0) = Λε such that k0 is the immersion and that k∗εω – the pull–back by kε of
the symplectic form ω – is independent of ε . This later condition is a natural nor-
malization and it is shown in [DLS06a] that this natural normalization determines
uniquely the deformation.

Then, denoting by sε the scattering maps generated by a smooth family of mani-
folds Γε satisfying (4), (5), and invertibility of ΩΓ

− , we have that

s̃ε ≡ k−1
ε ◦ sε ◦ kε (8)

is symplectic under k∗εω ≡ k∗0ω . Note that s̃ε : Λ0 → Λ0 can be thought of as the
expression of sε in the coordinates kε mentioned above.

Furthermore, in [DLS06a], one can find explicit perturbative formulas for the
canonical perturbation theory of s̃ε . We will summarize them in Section 3.7.

3.7 Calculation of the scattering map

Given families of exact symplectic mappings there are very efficient ways of com-
puting perturbation theories using the deformation method of singularity theory
[LMM86].

If gε is a family of exact symplectic mappings, it is natural to study instead the
vector field Gε generating the family.

d
dε

gε = Gε ◦gε . (9)

The fact that gε is exact symplectic for all ε is equivalent to g0 being exact sym-
plectic and ıGε ω = dGε (here ıGε ω is the contraction of vectors and forms). Under
enough regularity conditions, (9) admits a unique solution.

Hence, it is the same to work with Gε or Gε . The interesting thing is that the
family of functions Gε satisfies much simpler equations. The reason is that the Gε –
and hence Gε can be thought as infinitesimal deformations and the only equations
that one can form with infinitesimal quantities are linear.
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In the following, we will apply this idea to gε being several of the families ap-
pearing in the problem. We will keep the convention of keeping the same letter for
the objects corresponding to a family. We will use caligraphic for the vector field
and capitals for the Hamiltonian.

In [DLS06a], it is shown that there are remarkably simple formulas for S̃ε , the
generator of the the map s̃ε – the expression of sε in coordinates.

S̃ε = lim
N±→+∞

N−−1

∑
j=0

Fε ◦ f− j
ε ◦ (ΩΓε

ε−)−1 ◦ s−1
ε ◦ kε −Fε ◦ f− j

ε ◦ s−1
ε ◦ kε

+
N+

∑
j=1

Fε ◦ f j
ε ◦ (ΩΓε

ε+)−1 ◦ kε −Fε ◦ f j
ε ◦ kε

= lim
N±→+∞

N−−1

∑
j=0

Fε ◦ f− j
ε ◦ (ΩΓε

ε−)−1 ◦ kε ◦ s−1
ε −Fε ◦ kε ◦ r− j

ε ◦ s−1
ε

+
N+

∑
j=1

Fε ◦ f j
ε ◦ (ΩΓε

ε+)−1 ◦ kε −Fε ◦ kε ◦ r j
ε

(10)

Similarly, for Hamiltonian flows, we have

Sε = lim
T±→∞

∫ 0

−T−

dHε
dε

◦Φu,ε ◦ (ΩΓε
ε−)−1 ◦ (sε)−1 ◦ kε

− dHε
dε

◦Φu,ε ◦ (sε)−1 ◦ kε

+
∫ T+

0

dHε
dε

◦Φu,ε ◦ (ΩΓε
ε+)−1 ◦ kε −

dHε
dε

◦Φu,ε ◦ kε

(11)

It is not difficult to see that the sums or the integrals converge uniformly.
The formulas (10) and (11) give the hamiltonian of the deformation as the integral

of the generator of the perturbation over the homoclinic orbit minus the generator
of the perturbation evaluated on the asymptotic orbits.

Note that, because of the exponential convergence of the homoclinic orbits and
their asymptotic orbits, it is not difficult to see that the integrals in (10) and (11)
converge exponentially fast. In [DLS06a] one can also find that derivatives up to an
order (which is given by ratios of convergence exponents) also converge exponen-
tially fast.

The effect of the homoclinic excursions on slowly changing variables can be
computed using more conventional methods – we will present some of these com-
putations in Section 4.1.

One novelty of the geometric theory presented in this section is that it allows
computation of the effect of the homoclinic excursions not only on the slow vari-
ables, but also on the fast variables.

Notice also that, we can compute the intersection between objects of differ-
ent topologies very simply. This extends many calculations usually done using
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Melnikov theory. It suffices to apply (6). Note that the present theory only involves
convergent integrals. This was somewhat controversial in the so-called Melnikov
theory. See [Rob88].10

The Hamiltonian theory is particularly effective when the manifolds Σ are level
sets of a function. We will see some examples in Section 4.6.

4 The large gap model

The model is basically a rotor coupled to one or several penduli and subject to a
periodic perturbation.

This model was introduced in [HM82], but it appears naturally as a model of the
motion near a multiplicity 1 resonance. A fuller treatment of multiplicity 1 reso-
nances appears in [DLS07].

One could consider that it is a version of the example (1) when we set ε = 1
(hence rename as ε the parameter µ in (1)) but we allow the perturbing term to be
a general one. In the paper [GL06b] it was remarked that the fact that the pendulum
variables have only 1 degree of freedom can be easily removed and one could con-
sider many penduli. Hence, the geometric treatment can be easily generalized to the
case that the hyperbolic variables have several components.

Hence, we consider the model

Hε(p1, . . . , pn,q1, . . . ,qn, I,φ , t) =
n

∑
i=1
±
(

1
2

p2
i +Vi(qi)

)
+h0(I)

+ εh(p1, . . . , pn,q1, . . . ,qn, I,φ , t;ε),
(1)

where (pi,qi), (I,φ) are symplectically conjugate. We will assume that V ′i (0) = 0,
V ′′i (0) > 0. This means that Vi has a non-degenerate local minimum – that we set
at 0. We will also assume that the pendulum Pi has a homoclinic orbit to 0. This
is implied by the fact that there is no other critical point p with Vi(p) = 0. Both
conditions are implied by Vi being a Morse function.

The version of (1) considered in [HM82,DLS06b,GL06a] consider only the case
n = 1, but, as we will see, the complications introduced by several variables is not
too important. A full treatment of (1) for general n appears in [GL06b]. We will
explain it in Section 4.1.

One extra assumption in [DLS06b] – which we will maintain in the discussion
in this section – is that the perturbation term h was a trigonometric polynomial in
the angle variables. This assumption simplifies the calculations since there is only a

10 Unfortunately, many references in Melnikov theory still invoke the use of Melnikov functions
given by integrals of quasi-periodic functions. The textbook explanation is that these integrals
converge along subsequences. Unfortunately, the resulting limit – and hence the predictions of
these theories – depend on the sequence taken, so that the textbook explanation cannot be true. The
real explanation is that these references forgot to take into account some important effect. In many
cases, it is the change of the target manifold.
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finite number of resonances to be studied. It allows us to emphasize the geometric
objects appearing at each resonance. When h is not a polynomial, for each value of
ε > 0 it suffices to study a finite number of resonances, but the number of resonances
to be considered is ε−α . One needs to do some rather explicit quantitative estimates
on the resonances. The assumption that the perturbation is a polynomial has been
removed by very different methods. The paper [DH06] contains a very deep study of
resonances taking into account the effect of the size of the Fourier coefficients on the
size of the resonant region. The paper [GL06b] considers very large windows, much
larger than the resonance zones and uses the method of correctly aligned windows
to conclude existence of diffusion without having to analyze what happens in the
region of resonance. This leads to less conditions than the analysis in [DLS06b,
GL06a]. Also, the method in [GL06b] leads to optimal estimates on the time.

The analysis of (1) we will present starts by noting that Λ0 = {pi = 0,qi = 0} is a
normally hyperbolic invariant manifold for the time-1 map. Applying the theory of
normally hyperbolic manifolds, we conclude that, for ε small enough, it persists. In
contrast with the example (1), the motion on the invariant manifold will not remain
integrable. Indeed, the foliation of KAM tori will present gaps of size ≈ ε1/2. In the
rest of the section, we will describe how to construct orbits that indeed jump over
the resonance zone.11

4.1 Generation of intersections. Melnikov theory for normally
hyperbolic manifolds

In the model (1), even if the manifold Λ0 is normally hyperbolic, its stable and
unstable manifolds coincide.

In this section, we want to argue that, under some non-degeneracy conditions
on h which we will make explicit, for 0 < |ε|, there is a manifold Γε satisfying the
conditions (4), (5). Furthermore, one can define the scattering map in a patch which
is rather large and uniform with respect to ε .

The fact that there is a Γε which depends smoothly on parameters and, in partic-
ular, can be continued through ε = 0 is well known to experts and we present the
ideas of a simple proof later. See also [GL06b]. These are sometimes called primary
intersections of the stable and unstable manifolds, to distinguish them from other in-
tersections which do not have a limit as ε → 0. See [Mos73, p. 99 ff.]. Subsequent
steps of the construction of diffusing orbits could use any of these intersections for
which the next non-degeneracy assumptions can be verified. The calculations we
will develop here will work just as well for any of the primary intersections. The
use of the secondary intersections deserves more study.

11 The paper [HM82] showed only that there were heteroclinic intersections between some
whiskered tori. The length of the heteroclinic chains constructed in [HM82] goes to 0 as ε → 0.
This was the meaning of Arnol’d diffusion adopted in that paper. It is very interesting to compare
the Melnikov theory developed there with the based on the scattering map.



Geometric approaches to the problem of instability 305

Very elegant geometric theories of intersections of stable and unstable manifolds
can be found in [LMS03]. In these lectures, we will follow [GL06b] and present a
very simpleminded calculation for the model using coordinates. The paper [GL06b]
contains significantly more details than those presented here.

We call attention that the calculation here does not assume that the variables I,φ
in (1) are one-dimensional. This will play a role in Section 7.

A key observation is that, by the theory of normally hyperbolic manifolds, we al-
ready know that Λε , W s,u

Λε
depend smoothly on parameters. We just need to compute

explicitly what are the derivatives of these objects. The non-degeneracy conditions
alluded above are just that the first order in ε calculation predicts an intersection sat-
isfying (4), (5). If the first order perturbation predicts a transversal intersection, the
implicit function theorem allows us to conclude that indeed there is an intersection,
and that the formal calculation gives the leading order.

For this calculation, the fundamental theorem of calculus will play an important
role, hence it is better to consider flows rather than time-1 maps. To make it au-
tonomous, we will just add a variable t. We will use the notation Λ̃ to refer to the
invariant manifold in these coordinates.

For each of the penduli, we choose a homoclinic orbit xi and consider the un-
perturbed homoclinic manifold {(x1(τ1),x2(τ2), . . . ,xn(τn))}.12 The variables τi are
variables parameterizing the separatrix of the i pendulum.

We note that in a neighborhood of the homoclinic manifold – excluding a neigh-
borhood of the critical points – we can extend the variables τi. The variables τi and
Pi constitute a good system of coordinates in this neighborhood. See Figure 7 for an
illustration of this system of coordinates.

Again, appealing to the smoothness of the dependence of the stable manifolds on
parameters, we know that the perturbed manifolds can be written as the graph of a
function that gives the Pi as a function of τ, I,φ , t. Furthermore, this function will
depend smoothly on parameters. Our only goal, then, is to compute the first order
expansion of this function, knowing already that such an expansion exists.

We will denote the time evolution of a point byΨ s
ε . Remember that, to make the

system autonomous, we consider t as a variable, which takes values on a circle. We
will denote the invariant manifolds in the extended phase space as Λ̃ .

Let x be a point in W s
Λ̃ε

, by the fundamental theorem of calculus, we have, for
any T ,

Pi(x)−Pi(Ωε
+x) = Pi(ΨT

ε (x))−Pi(ΨT
ε (Ωε

+x)

−
∫ T

0

d
ds

[
Pi(Ψ s

ε (x))−Pi(Ψ s
ε (Ωε

+x))
]

ds

12 Note that, in general, each of the penduli will have two homoclinic orbits to the critical point
(one going in one direction and the other going in the opposite direction). So that, there will be 2n

homoclinic manifolds with parameterizations similar to the ones considered in the text. Since the
conditions we will considering be are sufficient conditions for existence of unstable orbits, having
many orbits at our disposal makes it more likely that we have instability.
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Fig. 7 Illustration of the system of coordinates in a neighborhood of the homoclinic manifold.

and, taking limits T → ∞, we obtain

Pi(x)−Pi(Ωε
+x) =−

∫ ∞

0

d
ds

[
Pi(Ψ s

ε (x))−Pi(Ψ s
ε (Ωε

+x))
]

ds (2)

Now, recalling that we are only computing up to order ε , we can simplify signifi-
cantly the formula.

We note that because Pi has a critical point at 0, we have Pi(Ωε
+x) = O(ε2), We

also note that

d
ds

[
Pi(Ψ s

ε (x))−Pi(Ψ s
ε (Ωε

+x)
]
= ε

(
{Pi,h}◦Ψ s

ε (x))−{Pi,h}◦Ψ s
ε (Ωε

+(x)))
)

= O(ε)

where {·, ·} is the Poisson bracket.
Notice also that the integrand in (2) is converging exponentially fast to zero.

Hence, we have:

Pi(x) =−ε
∫ c| log(ε)|

0
ds,

[
{Pi,h}(Ψ s

ε (x))−{Pi,h}(Ψ s
ε (Ωε

+x))
]
+O(ε2)

Since the integral is over a finite interval, we observe that, if |s|� c| ln(ε)|, then

|Ψ s
ε (x)−Ψ s

0 (x)|� c| ln(ε)|ε

Also, using the smooth dependence of the stable and unstable foliations, we obtain
that

|Ψ s
ε (Ω x

+)−Ψ s
0 (Ω 0

+x)|� c| ln(ε)|ε
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Hence, we can transform the integral into

Pi(x) =−ε
∫ c| log(ε)|

0
ds,

[
{Pi,h}(Ψ s

0 (x))−{Pi,h}(Ψ s
0 (Ω 0

+x))
]
+O(ε2| ln(ε)|)

Remark 4.1. The above calculation identifies the derivative of the manifold with
respect to ε when we consider the C0 topology of functions.

In the case that we know that the derivative in Cr sense exists, the previous ex-
pression has to be the derivative in the Cr sense too.

In [GL06b], one can find justification of the slightly stronger result that the in-
tegrals above converge uniformly in Cr – provided that the Hamiltonians are uni-
formly Cr+2.

A very similar formula – reversing the time – can be obtained for an expression
of the unstable manifold as a graph. Subtracting them, we obtain an expression for
the first order expansion of the separation ∆ of the Pi coordinates of the manifolds
as a function of the τi, I,φ , t

∆i(τ, I,φ , t;ε) = ε∆ 0
i (τ, I,φ , t)+O(ε2)

where the O(ε2) can be understood in the sense that the C1 norm is bounded by Cε2.
The implicit function theorem shows that if we find a zero of ∆ 0

i = 0 which
is non-degenerate (i.e., rank Dτ∆ 0 = n) then we can find τ∗(ε, I,φ , t) such that
∆(τ∗(ε, I,φ , t), I,φ , t;ε) = 0. Hence, substituting in the variables P we can onbtain
a parameterization of the intersection.

A more detailed analysis shows that the expressions of ∆i are derivaties of a po-
tential function with some periodicities [DR97]. Hence they have to have zeros. The
assumption that these zeros are non-degenerate is a mild non-degeneracy assump-
tion that can be verified in practical problems. It also holds generically. The case
n = 1 is studied in great detail in [DLS06b]. In [GL06b] one can find an study of
how to produce several of these solutions for n > 1.

4.2 Computation of the scattering map

The calculation of the scattering map in this case can be done as a particular case of
the general theory of Section 3.2.

Notice that the formulas (10) are given in terms of limit of the intersection
as ε → 0, which we computed in the previous section using the easy part of the
Melnikov theory.

The calculation in [DLS06b], was done by a different method since at the time
that [DLS06b] was written, the authors were not aware of the symplectic theory of
the scattering map.

The method of [DLS06b] was more elementary. Only the effect of the scattering
map in one of the coordinates was computed. This was done using the fact that one
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of the coordinates in the invariant manifold – namely the energy – has a slow varia-
tion, so that in the calculation of the change of energy along a homoclinic excursion,
one can use – up to the accuracy needed – just the fundamental theorem of calcu-
lus integrating over the unperturbed trajectory. The calculation can be done in very
similar way to the calculation done in Section 4.1.13 The fact that in [DLS06b] one
only got control on one of the variables made the calculation of subsequent prop-
erties more complicated than what is nowadays possible using geometric theory.
See [DLS07]. On the other hand, the calculation based on estimating the change of
energy is natural for the purposes of the study of the intersection with KAM tori –
which are given as level sets of the averaged energy.

For the purpose of this exposition, we will just mention that, for the model con-
sidered, once we settle on one primary homoclinic intersection, the scattering map
can be computed as an explicit perturbation series with well controlled remainders.
As in all the steps of this strategy, the calculations required can be done by very
different methods. The more modern methods, taking more advantage of geomet-
ric cancellations seem more efficient even if the older methods can compute some
features faster.

The conclusions is that – under conditions which can be checked explicitly and
which, in particular, hold generically – the domain of definition of the scattering
map contains a set which is independent of ε as ε → 0. We call attention to the
fact that the formulas for the scattering map depend heavily on the behavior of the
perturbation along the whole homoclinic excursion.

4.3 The averaging method. Resonant averaging

The averaging method for nearly integrable systems goes back at least to [LP66].
Modern expositions are [LM88, AKN88, DG96]. An introduction for practitioners
is [Car81]. See also [Mey91].

The basic idea is very simple. Given a quasi-integrable system, one tries to make
changes of variables that reduce the perturbed system to another integrable system
up to high powers in the perturbation parameter. This is accomplished by solving
recursively cohomology equations.

There are many contexts and variations which make the literature extensive, even
if there is only one guiding principle. For example one can consider autonomous
perturbations or periodic perturbations, maps, flows etc. There are different possible
meanings of “as simple as possible”. One difference that leads to several variants is
the fact that one can parameterize perturbations in different ways (generating func-
tions, several types of Lie Series, deformation method, etc.) A systematic compari-
son of differences between these perturbation theories was undertaken in [LMM86].

13 The actual calculation done in [DLS06b] uses not the energy – which is easily seen to be an slow
variable – but rather a linear approximation to the energy. This makes only higher order differences.
This linear approximation had been used customarily in the literature. At the time that [DLS06b]
was written, it was important to make contact with the previous literature.
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In the present problem, we consider periodic perturbations of integrable flows
with one degree of freedom. To make comparisons with the literature easier, it will
be convenient to make the system autonomous and symplectic by adding an extra
variable A symplectically conjugated to t

Hε(I,φ , t,A) = H0(I)+A+ εH1(I,φ , t)+ ε2H2(I,φ , t)+ · · · (3)

where, of course, H(I,φ , t + 1,A) = H(I,φ , t,A), so that t can be considered as an
angle variable. The A is added to keep the symplectic structure. Notice that it does
not enter into the evolution of the other variables.

Again, for the sake of expediency in this presentation, we will omit considera-
tions of issues of differentiability, estimates of reminders, etc. We refer to [DLS06b,
Section 8], but the averaging method is covered in many other references, including
some of the lectures in this volume.

For simplicity also, we will assume that all the terms in the expansion in ε are
trigonometric polynomials with the same set of indices. That is,

Hi(I,φ , t) = ∑
k,l∈Ni⊂Z2

Hi
k,l(I)exp(kφ + lt). (4)

Note that in the Appendix A, we show that this assumption for the case that we
are interested in, follows from the assumption that the h in (1) is a trigonometric
polynomial. The general theory of averaging does not require this assumption, but it
involves several analysis consideration, which we prefer to avoid in an exposition.

We try to find a time periodic family of symplectic changes of variables
kε(I,φ , t) = (I,φ) + O(ε) in such a way that Hε(kε(I,φ , t), t) is as simple as
possible.

One possible way to try to generate the kε ’s is to write them as the time-1 solu-
tions of a differential equation

d
ds

ks
ε = εJ∇Kε ◦ ks

ε , k0
ε = Id,

where J is the symplectic matrix. In this case, we consider the evolution in the
p,q,A, I,φ , t variables and the ε is just a parameter (this is not what we did in the
section on deformation method). The gradient ∇ refers to the p,q,A, I,φ , t variables.
The function Kε is called the Hamiltonian. This way of parameterizing changes of
variables is one of the variants of Lie transforms, [Car81, Mey91]. We will assume
that Kε = εK1 + ε2K2 + · · · ,

It is well known from Hamiltonian mechanics [Arn89,AM78,Car81,Mey91] that

Hε ◦ kε = H0 + ε(H1 +{H0 +A,K1})+O(ε2)

where {·, ·} denotes the Poisson bracket in the variables I,φ ,A, t.
Therefore, our goal is to find K1 in such a way that

R1 ≡ H1 +{H0 +A,K1} (5)
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is somewhat simple (we will make precise what “simple” means in our case). Since
R1 is the dominant term in Hε ◦ kε , one can hope that the dynamics expressed in the
new coordinates is simple.

In terms of Fourier coefficients, (5) is equivalent to

R1
k,l(I) = H1

k,l(I)+ i(kω(I)+ l)K1
k,l(I), (6)

where ω(I) = ∂
∂ I H0(I). The assumptions include that H0 is twist. That is that

ω(I) is monotonic, so that for each k, l there is one and only one pk,l such that
kω(Ik,l)+ l = 0. Of course, Ink,nl = In,k. The points Ik,l are called resonances.

Because of the assumption that the perturbation is a polynomial, we have to con-
sider k, l ranging only over the finite set N ⊂ Z

2.
We see that (6) has very different character depending on whether (kω(I)+ l) = 0

or not. If (kω(I)+ l) = 0, we have to set R1
j,k(I) = H1

j,k(I) but we can choose Ki
k,l(I)

arbitrary. Since we want that our solutions are differentiable, we have to make sure
that the choices are made in a differentiable way. A particularly simple way – used
in [DLS06b] to make these choices is to take a fixed C∞ cut-off function Ψ and a
fixed number L so that denotingΨL(t) =Ψ(t/L), we take the choice

R1(I,φ , t) = ∑
k,l∈N

ΨL(I− Ik,l)H1
k,l(Ik,l)exp(i(kφ + lt)),

K1(I,φ , t) = ∑
k,l∈N

(1−ΨL(I− Ik,l))/i(ω(I)k + l)H1
k,l(I)exp(i(kφ + lt).

(7)

If we choose conveniently L – we are considering only a finite number of reso-
nances – we can ensure that the intervals [−2L + Ik,l ,2L + Ik,l ] do not intersect for
different resonances.

So, we can divide the phase space into two regions:
• One “non-resonant region” where – in the appropriate coordinates – the system

is integrable up to an error of order ε2.
• A finite number of “resonant regions”. Each of the resonant regions can be

labeled by a frequency l/k expressed in an irreducible fraction. In one of these
resonant regions, in the appropriate coordinates, the Hamiltonian is14:

H0(I)+A+ ε ∑
n∈�

H1
nk,nl(Ik,l)exp(in(kφ + lt))+O(ε2)

= H0(I)+A+ εV (kφ + lt)+O(ε2).
(8)

The dynamics of the Hamiltonian (8) are easy to understand. If we introduce
the variables φ̃ = kφ + lt, Ĩ = I− Ik,l – this change of variables is not symplectic,
but it just multiplies the symplectic structure by a constant, so that the equations of
motion – up to a constant change in time are also given by a Hamiltonian. Note also

14 Again, we ignore regularity issues. It is not hard to show that if we assume that the function H1

is Cr , then, K1, R1 are Cr−2 so that the error term in (8) can be considered in the Cr−2 norm. Again,
we refer to [DLS06b].
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that in this change of variables, the period of the angle variables is changed. Hence,
in the new variables, the Hamiltonian is:

αHk,l(Ĩ)+A+ εVk,l(φ̃)+O(ε2) (9)

Since at the resonance the variable φ̃ has frequency 0, we have that

Hk,l(Ĩ) = αk,l I2 +O(Ĩ3)

Furthermore, α will not be zero since it will be close to the second derivative of the
unperturbed Hamiltonian, which we assumed is strictly positive (twist condition).

Note that the dynamics of (9) is very similar to the dynamics of a pendulum with
a potential of size ε . In this case, the variable A does not play any role at all. There
will be homoclinic orbits to the maximum of the potential. These orbits will be given
by the conservation of energy and the form of the kinetic energy as

Ĩ =±ε1/2
√
α−1(maxV −V (φ̃))+O(ε). (10)

Inside these curves, the system does a rotation.
If the maximum is non-degenerate – another hypothesis which is easy to verify

in practice and which holds for generic V – we see that the orbits described in (10)
are orbits that start and end in a critical point, which is hyperbolic. They are at the
same time the stable and the unstable manifolds of this hyperbolic fixed point.

Note that these orbits are very different from the KAM tori. This is the reason
why the KAM foliation gets interrupted by gaps of order ε1/2.

It is important to remark that the stable and unstable manifolds of these periodic
points have Lyapunov exponents O(ε1/2). This is much smaller than the Lyapunov
exponents in the transverse directions, which are independent of ε . Hence, when
we talk about the stable manifolds restricted to Λ this is not the same as the W s in
the sense of the theory of normally hyperbolic invariant manifolds , which requires
convergence at an exponential rate of order 1.

The dynamics of the averaged system – we will see that many of these fea-
tures are preserved in the full system – consists of the foliation of – more or less
horizontal – curves given by the orbits of the integrable system interrupted by a
group of eyes or islands. At a resonance of type k, l we obtain k eyes. The amplitude
of these eyes is O(ε1/2).

Remark 4.2. The above classification ignores some stripes of width O(ε) near the
separation of the regions. The conclusions remain valid if we realize that the sepa-
ration between the zones – the choice of L – was a choice we made. We can repeat
the same analysis with an slightly different L and see that the ambiguous zones are
different in the two procedures. So that by doing the analysis twice with slightly
different L one establishes the conclusions above for all the phase space.

Remark 4.3. The choice of separation between the resonances zones is rather waste-
ful (even if it makes the estimates and the concepts easier). We assign the same
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width to all the resonances even if it is clear that the real width will decrease with ε .
(In particular, we expect that the optimal size would be close to ε1/2). Furthermore,
if the original Hamiltonian is several times differentiable, then, its Fourier coeffi-
cients will decrease at least like a power of k, l. Hence the Vk,l will become smaller
with k, l. Hence, if for a fixed ε we decide to consider only resonant regions of size
εB, we only need to consider a finite number of resonances – which will grow as
ε → 0 if B > 1/2.

Considerations of these type were known heuristically since at least [Chi79].
A rigorous implementation appears in [DH06]. The paper [DH06] includes also
considerations of repeated averaging – discussed in the next section – and a very
detailed analysis of the motion in each resonance with error terms.

4.4 Repeated averaging

The method of averaging can be applied several times. Indeed, in celestial mechan-
ics it has been common for centuries to do at least two steps of averaging.

In the region that was marked as integrable in the first step, after we perform the
change of variables, we are left with a quasi-integrable system. The perturbation
parameter is ε2. We can restart the procedure and get again some regions where the
system can be made integrable up to O(ε2) and new resonant regions in which the
dynamics has eyes, which will now be of size ε rather than ε1/2.

In the resonant regions, nothing much happens except that the resonant potential
Vk,l gets deformed.

In the case that the perturbation is a trigonometric polynomial, the number of
resonances we get at each step is finite and given a number of steps, we can get an L
which works for all cases.

The result of applying averaging twice is depicted crudely in Figure 8.15 For
future analysis, the only important thing is that near resonances, we encounter sepa-
ratrices well approximated by other tori and that, outside the resonances the system
is very approximately integrable.

4.5 Invariant objects generated by resonances: secondary tori,
lower dimensional tori

The resonant averaging described above, gives very accurate predictions of the dy-
namics.

The difference between the perturbed system expressed in a system of coordi-
nates and the true system – in a smooth norm – is smaller than CNεN . The constants
CN grow very fast.

15 We have ignored, for example, the fact that inside the big islands of size ε1/2 there are other
baby islands of size ε going around.
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Fig. 8 Schematic description of the predictions for the dynamics by the averaging method.

This can be taken advantage off in two different ways:

A) If some perturbation theories apply, we can conclude that some of the invariant
objects for the integrable system, persist for the true system.

B) We have good control of some long orbits that, using some conditions can be
glued together or shadowed.

This can be applied to the two types of geometric programs mentioned in
Section 1.1.

In this section, we will be concerned mainly with point A) and will produce
invariant objects. We will come to point B) in Section 6.

If we consider the averaged system, we see that near resonances of order j,
we obtain hyperbolic orbits, whose Lyapunov exponents are Cε j/2 + O(ε( j+1)/2)
and such that the angle between the stable and unstable directions are Cε j/2 +
O(ε( j+1)/2). Then, applying the implicit function theorem if N > j, we get that
there are periodic orbits that persist.16 More importantly for our later applications
we obtain that the stable and unstable manifolds are very similar to those of the
integrable system. The results are depicted in Figure 9.

We also can show that some of the quasi-periodic orbits with sufficiently large
Diophantine constant persist. It is important to note that, one can get invariant tori
of two types. One is tori which “go across”. These are the “primary tori” which are
continuous deformations of the tori that were present in the unperturbed system. The
tori inside the eyes of the resonance are of a completely different type. These are the
“secondary tori” which were not present in the unperturbed system, but rather were
created by the resonances. Note that as ε → 0, the eyes become flatter and the limit

16 There are many versions of this argument on persistence of periodic orbits. The basic idea goes
back at least to Poincaré and Birkhoff.
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Fig. 9 Illustration of an scaffolding of invariant objects inΛ . These invariant objects are ε3/2 dense
in the manifold.

of the tori is just a segment of periodic points. The tori merge with the stable and
unstable manifolds. So that at the limit ε = 0 there is change of the topology.

One point which is important is that there are invariant tori very close to the
resonances both from the inside and from the outside. These problems had been
considered in [Neı84, Her83] under slightly different hypothesis. The method used
in [DLS06b] was, mainly, to study in detail the expansion of the action-angle
coordinates in a neighborhood of the separatrix. Using the – more or less explicit –
formulas one can find in textbooks, it is possible to show that the Cr norm of the
change to action angle variables can be bounded by d−rA where A is an explicit
number. As it turns out the twist constant does not degenerate – the frequency is
singular, but in the good direction that the twist becomes infinite. On the other hand,
remember that the error of the averaging method was less than CNεN . It follows that
one can apply the KAM theorem at a distance εN/B. So that, one can get KAM tori –
both rotating or librating – faster that a power of ε . The power is arbitrarily large
assuming that the system is differentiable enough.

The paper [DLS06b, Section 8] contained other considerations on properties of
the KAM tori as graphs and how the set of KAM tori close to the invariant circle
can be interpolated with the others where the averaging method is different. The
problem is somewhat difficult because depending on how does one relate the ε to
the distance to the separatrix, and to the fixed point, the expression of the KAM tori
has different leading expressions.

It seems possible that using more the geometric methods developed af-
ter [DLS06b] was written, many of these technical calculations can be eliminated
or improved in many ways. A significant extension of the results can be found
in [DH06]. Another line of argument that seems promising is the use of KAM the-
ory without action angle coordinates – the singularity of the action angle variables
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and the different expressions in different regions is one of the source of problems –
[dlLGJV05, FS07] so that one can prove directly the persistence of the orbits in the
level sets of the averaged energy. We hope to come back to this.

In summary, it is possible to show that one can get persistence of many of the
orbits predicted by the averaging method. For our purposes, it is enough to claim
that we get an scaffolding of orbits which are much closer that ε – the size of the
effect of the scattering map.

4.6 Heteroclinic intersections between the invariant objects
generated by resonances

Now we want to argue that the objects discussed in the previous sections possess
heteroclinic intersections. Since these objects have different topologies and very
different characteristics, it is useful to use the scattering map and the argument dis-
cussed in Section 3.3.

To establish this intersection, we just compute the image of these invariant ob-
jects under the scattering map and check whether one can verify (6).

Given that we have computed rather explicitly the leading expansions of the scat-
tering map and the leading expansions of the invariant objects, it is possible to com-
pute the angles of intersections of manifolds. If these angles are not zero in the
leading approximation, then, the implicit function theorem will establish that the
true invariant manifolds satisfy (6).

The effect of the scattering map on the invariant objects is depicted schematically
in Figure 10.
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Fig. 10 Effect of the scattering map on the invariant objects found in Figure 9.
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Therefore, the above calculation gives – rather explicit – expressions so that, if
they do not vanish, then indeed we can obtain heteroclinic excursions between a
primary torus below the resonance, to a secondary torus inside the resonance, and
then to another torus above the resonance.

The non-vanishing of these explicit expressions giving the angles is a non-
degeneracy assumption on the perturbation.

It is intuitively clear that the conditions hold rather generically. Basically, they
are a comparison of two effects: the deformation of the invariant objects in Λ and
the effect of the scattering map. We note that the first effect, is very much affected
by the behavior of the perturbation near Λ , but not by the behavior of the pertur-
bation near Γ . The scattering map has the opposite properties. Hence, if by some
miracle, the angles happened to be zero, some perturbation near Γ could destroy
this coincidence.

Remark 4.4. The calculation of the scattering map in [DLS06b] was based on tra-
ditional methods of perturbations of slow variables. This had the consequence that
only the energy component of the scattering map could be computed.

The use of the symplectic properties, which was developed in [DLS06a] and
explained in Section 3.7, simplifies and extends the calculation. Note also that we
mentioned that the invariant objects are very close to the level sets of a functionΨε .
Since the scattering map is a symplectic map close to the identity, the images of the
level sets ofΨε will be level sets of the functionΨε +ε{Ψε ,S0}+h.o.t. See [DH06].

5 The method of correctly aligned windows

The method of correctly aligned windows is a way of proving that given segments
of orbits – with some extra conditions – one can get an orbit that tracks them. Since
we never have to consider more than finite orbits, in principle, we do not need the
existence of invariant objects. On the other hand, considerations about times become
relevant. This is the reason why one gets explicit estimates on diffusion time.

The method has its origins in [Eas78,EM79,Eas89]. The version we will discuss
comes from [ZG04, GZ04].

One can think of a window, as a topological version of a rectangle with some
marked sides. Windows are correctly aligned when the image of one stretches across
the other.

A window in a n-dimensional manifold M is a compact subset W of M together
with a C0-coordinate system (x,y) : U → R

u×R
s defined in neighborhood U of W ,

where u + s = n, such that the homeomorphic image of W through this coordinate
system is the rectangle [0,1]u× [0,1]s. The subset W− of W that corresponds through
the coordinates (x,y) to ∂ [0,1]u× [0,1]s is called the ‘exit set’ and the subset W+ of
W that corresponds through the local coordinates (x,y) to [0,1]u×∂ [0,1]s is called
the ‘entry set’ of W . Here ∂ denotes the topological boundary of a set. If we want
to specify the dimension u of the unstable-like direction and the dimension s of the



Geometric approaches to the problem of instability 317

stable-like direction of a window W , we refer to W as an (u,s)-window. We will
assume that u > 0.

Let W1, W2 be two (u,s)-windows in M, and let (x1,y1) : U1 → R
n and (x2,y2) :

U2 → R
n be the corresponding coordinates systems. Let f be a continuous map on

M; we will denote its expression (x2,y2) = f (x1,y1) in local coordinates also by f .
Assume f (U1)⊆U2. We say that W1 is correctly aligned with W2 under f provided
that the following conditions are satisfied:

(i) f (∂ [0,1]u × [0,1]s) ∩ [0,1]u × [0,1]s = /0, f ([0,1]u × [0,1]s) ∩ ([0,1]u ×
∂ [0,1]s) = /0.

(ii) there exists a point y0 ∈ [0,1]s such that

(a)
f ([0,1]u×{y0})⊆ int([0,1]u× [0,1]s∪ (Ru \ (0,1)u)×R

s) ,

(b) The map Ay0 : R
u → R

u defined by Ay0(x) = π1 ( f (x,y0)) satisfies

Ay0 (∂ [0,1]u)⊆ R
u \ [0,1]u,

deg(Ay0 ,0) 	= 0.

The main result is that “One can see through correctly aligned windows”. See
[ZG04, GZ04].

Let Wi be a collection of (u,s)-windows in M, where i ∈ Z or i ∈ {0, . . . ,d−1},
with d > 0 (in the latter case, for convenience, we let Wi := W(imodd) for all i ∈ Z).
Let fi be a collection of continuous maps on M. If Wi is correctly aligned with Wi+1,
for all i, then there exists a point p ∈W0 such that

fi ◦ . . .◦ f0(p) ∈Wi+1,

Moreover, if Wi+k = Wi for some k > 0 and all i, then the point p can be chosen so
that

fk−1 ◦ . . .◦ f0(p) = p.
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If one takes very small windows, the behavior of the windows is determined by
the derivative of the orbit. If the orbit is hyperbolic, by choosing the rectangles as
products of balls along the stable direction and the unstable direction with the un-
stable being the exit direction, we can get the correct alignment. Then the result
that one can see through chains of correctly aligned windows becomes the stan-
dard shadowing result. On the other hand, the method is more flexible since we can
choose the sizes of the windows and the time we take to put them along the orbits.
This has some advantages for non-uniformly hyperbolic systems. See the proof of
the non-uniformly hyperbolic closing lemma in [Pol93].

On the other hand, the windows do not need to be small. As we will see in the
next section, one can take advantage of large scale effects to get the alignment of
windows. Notably, when one has some twist – shear – that causes some stretching,
this can be used in place of the stretching caused by the hyperbolicity. It is also
important to notice that, to check whether windows are well aligned or not, one can
just study what happens on the boundary.

In our applications the time of diffusion can be computed by the time that it takes
the windows to stretch.

An important technical tool [GL06a] is that, for systems that are close to product
of systems, one can construct product windows and verify the alignment checking
conditions on each of the factors.

6 The large gap model: the method of correctly aligned windows

The method of correctly aligned windows has been applied to the large gap model
in [GL06a, GL06b].

The construction of windows adapted to the problem of diffusion basically re-
quires to choose the parameters of a sequence of windows (the length of the sides,
the center in a good coordinate system) and choose the times taken to go from one to
the next. Then, one has to verify that all the steps match. In practice this amounts to
choosing two dozen of parameters and verifying about a dozen of trivial inequalities.

Even if verifying the validity of the choices is not very hard, coming up with the
good choices requires a good understanding of the behavior of the model. We now
discuss some of the reasons behind the choices.

We have already discussed the pseudo-orbits that appear. We go from the inter-
section to the manifold, rotate around and then escape back again.

It is important to note that even the unperturbed system is not hyperbolic. The
vector along the separatrices of the pendulum contracts both in the future and in
the past. So that, these vectors in the intersection of the stable and unstable sub-
space and the forward Lyapunov exponent is different from the backward Lyapunov
exponent.17

17 The equality of these two exponents was called regularity by Lyapunov and plays a very impor-
tant role. See [BP01].
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The construction of windows, however, can take advantage of the fact that there
are some direction with good hyperbolicity for a long stretch ( O(| ln(ε)|) ) of time
while the orbit moves fromΓ toΛ or back. The fact that one can control the behavior
in the hyperbolic directions is possible because of the transversal intersection. (On
the other hand, the windowing method, being a topological method could work with
much weaker assumptions [GR04].)

The treatment of the center directions is much more interesting. Of course, the
windows that start close to Λ , go to Γ and come back to Λ are very well described
by the scattering map. One does not have any hyperbolicity in these directions, but
on the other hand, the twist does distort the windows and one can use this distortion
to construct windows that are correctly aligned. This is very similar to the torsion-
hyperbolicity mechanism.

In the paper, [GL06a] the windows were taken very thin in the action variables,
but they were taken of order 1 in the angle. This allowed to avoid discussions of
ergodization times and produced rather concrete estimates on the time. In [GL06b]
the windows are chosen in a scale O(1/| ln(ε)|). This, of course, goes to zero, but it
is much larger than the scales of the resonance. The orbits also do not come too close
to the manifold. This has the effect that the method does not need to analyze what
happens in the resonances. This method also leads to times of order O(ε| ln(ε)|)
that – up to, perhaps, a constant – match the upper bounds obtained in [BBB03].
Similar results appear in [Tre04].

7 The large gap model in higher dimensions

Some of the analysis in Section 4 can be adapted to higher dimensional models.
See [DLS07].

We consider the same model as in (1), but now I, φ are higher dimensional vari-
ables. Again, for simplicity, for the moment, we assume that the perturbation h is a
trigonometric polynomial.

The averaging method described in Section 4.3 can be carried out pretty much
the same way. The only difference is that now, that the resonances ω(I) · k = n are
codimension 1 manifolds. If the number of degrees of freedom is more than 1, there
will be intersections of these resonant surfaces. The intersection of two independent
resonances are called multiple resonances. The multiplicity of the resonance – not to
be confused with the order – is the dimension of the module of vectors k,n for which
there is resonance relation. The order is the power of ε of the terms that cannot be
eliminated.

The mathematical analysis of multiple resonances and their role in diffusion
remains a very interesting problem. Very important progress has been done in
[Hal97, Hal99].

Nevertheless in [DLS07] it is argued that there exist diffusing orbits – under the
assumption that h is polynomial – plus some non-degeneracy assumptions.
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Fig. 11 Illustration of the paths of diffusion avoiding higher order resonances.

The key observation is that, under a twist condition, the multiple resonances can
be contoured. (Since they happen on sets of codimension 2 or higher, there are paths
that go around them.)

The analysis of resonances of order 1 in higher dimensional systems is very sim-
ilar to the analysis carried in Section 4.18

The upshot is that, under explicit non-degeneracy conditions, for any path in
the space of actions that crosses only multiplicity one resonances, for 0 < ε small
enough there orbits whose actions evolve along the path – up to errors that go to
zero with ε .

8 Instability caused by normally hyperbolic laminations

One of the standard heuristics in the numerical studies is that of modulational dif-
fusion [Chi79, TLL80]. It is often described as saying that A degree of freedom
becomes chaotic and drives another one.

Mathematically, one can formulate this as perturbing a system which is the prod-
uct of a system with some hyperbolic behavior, and another system which is in-
tegrable: Fε = Fh × Fi + O(ε), where Fh(Λ) = Λ and Λ is a hyperbolic set, and
Fi : M �→M is an integrable map.

In the mathematical literature, some rigorous results have been obtained. The
paper [MS02] constructed a specific system of this type. The paper [Moe02] used
topological methods in two dimensions. Closely related to this paper is [EMR01].

18 The scattering map does not require any change, but the persistence of tori of lower dimension
becomes more complicated (one has to use KAM theory rather than the implicit function theorem).
Also the secondary tori require some extra considerations.
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One systematic way to make sense of the above [Lla04, dlL06] is to observe that
the set ∪x∈Λ{x}×M is a normally hyperbolic lamination for F0. See Appendix A.3.
The laminae are {x}×M are permuted by the map and the normal directions are
hyperbolic.

It was shown in [HPS77, Ch. 15] that these structures persist under perturbations
in the sense that one can get slightly deformed collections of laminae which are
also permuted under the map Fε . Of course, the dynamics on these laminae is not
integrable anymore. The dynamics on the integrable parts is a random composition
of maps, which one can consider as uncoupled as in [MS02].

8.1 Models with two time scales: geodesic flows, billiards
with moving boundaries, Littlewood problems

The above mechanism is particularly effective in systems that have two time scales.
One important system is the model of a geodesic flow perturbed by a periodic

or quasi-periodic potential considered by other methods in [Mat96, BT99, DLS00,
DLS06c].

This dynamical system is defined on the cotangent bundle T ∗M of a compact
manifold M. It has the form:

ṗ =−∇V (q,ωt), q̇ = p, (1)

where the potential V : M×T
d and ω ∈ R

d is a non-resonant vector. When d = 1,
the potential depends periodically on time.

We note that the system satisfies some scaling properties. Setting p = ε p̃, q =
q̃, t = ε−1t̃ and denoting by ′ the derivative with respect to t̃, the system, above
becomes

p̃′ =−ε2∇V (q̃,εωt) q̃′ = q̃ (2)

So that, for high energy, the potential can be considered as a slow and weak pertur-
bation.

We will assume that the unperturbed geodesic flow has a horseshoe in the unit
energy surface. Using the above scaling, we obtain that, considering the system for
all the energies it possesses an invariant lamination. By the theory of persistence
of normally hyperbolic invariant laminations, we obtain that this structure just gets
deformed.

If γ1, . . . ,γN are periodic orbits in the horseshoe, we denote |γi| the period and
define:

Gi(t) =
1
|γi|

∫ |γi|

0

∂
∂ t

V (γi(s), t)ds

This has the meaning of the gain of energy per unit time for orbits that stay in a
close proximity to the periodic orbit. Note that

∫ 1
0 Gi(t)dt = 0.
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Fig. 12 Invariant normally hyperbolic laminations associated to the geodesic flow and the periodic
geodesic flow.

Recall that, in the horseshoe, we have a symbolic dynamics for the hyperbolic
orbits. That is, if we fix neighborhoods of these orbits, we can move from one to the
other in arbitrary order. Each of the steps can be accomplished in a fixed time.

By the persistence of the normally hyperbolic laminations, the same property
persists when we consider the perturbation by the potential. So, we can switch from
a neighborhood of an orbit to another one in a fixed time for the geodesic flow. For
the potential, this is a slow time.

In the periodic case, d = 1, we assume without loss of generality that V (q, t +
1) = V (q, t), ω = 1. If we assume that there exist 0 = a0 < a1 < · · · < aN = 1 in
such a way that

A≡
N

∑
i=1

∫ ai

ai−1

Gi(t)dt > 0 (3)

then, we can construct orbits whose energy as function of time is larger than At−B.
The idea is very simple. We stay close to γ1 during the macroscopic times [a0,a1].
Using the symbolic dynamics, we can move to γ2, etc. Hence, during a cycle, we
have gained roughly A.

In the quasi-periodic case, we just need to assume that it is possible to write
T

d = ∪N
i=1Oi where Oi are sets with smooth boundary transversal to the rotation,

which only overlap in the boundary, and such that A≡ ∑N
i=1

∫
Oi

Gi(τ)dτ > 0.
If we look at the symbolic dynamics, we see that the space of sequences that

lead to linear gain in energy has positive Hausdorff dimension. Then, using that the
conjugacy given by the stability, we obtain that, when the (3) are satisfied, the orbits
with energy growing linearly are of positive Hausdorff dimension.

It is shown in [Lla04] that if the metric is of negative curvature and, in case that
it has dimension � 3, that it satisfies some pinching conditions, then, the only C3
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Fig. 13 Illustration of the mechanisms of gain of energy based in locally hyperbolic manifolds.

potentials for which it is impossible to find orbits satisfying the hypothesis of the
above result are the potentials of the form V (q, t) = V1(q)+V2(t).

Very similar analysis applies to other systems which have two scales.
One example is what we call the Littlewood models in higher dimensions.

H(p,q, t) =
1
2

p2 +Vn(q)+Vm(q, t) (4)

where p,q ∈R
d , d � 2, Vn, Vm are homogeneous of degree n,m respectively, n > m,

n > 2,Vn > 0, Vm periodic or quasi-periodic in t. The fact that different terms have
different homogeneities makes the geometric analysis similar to that of the geodesic
flows.

In the case d = 1, [Lit66a, Lit66b] constructed examples of potentials – which
are not polynomials and with not very smooth dependence on time – with orbits
with unbounded energy. Unfortunately, the papers contain a serious error. The pa-
pers [LL91, LZ95] showed that for terms which are like polynomials, and with
smooth quasiperiodic perturbations the orbits stay bounded. An excellent survey
of the history of these models and simplification of the results is [Lev92].

When the number of degrees of freedom is greater or equal than 2, a very similar
analysis to the one carried out above for geodesic flows applies. We note that if we
scale, p = εm/2 p̃,q = ε q̃, t = ε−m we get that the system (4) can be rewritten as:

H(p̃, q̃, t̃) =
1
2
(p̃)2 +Vm(q̃)+ ε2m−nVn(q,εmt)

so that the low degree polynomial can be considered as a small and slow perturbation
and an analysis very similar to the one carried above for the geodesic flow applies.
The only difference is that one gets that the orbits grow like a power. This is optimal
due to a calculation in [LZ95].
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One interesting example, which does not fit in the above theory proposed as a
challenge by M. Levi is the system defined by a Hamiltonian

1
2

p2 +q6
1 +q4

1 +ηq2
1q2

2 +q1 f (t)

This is a challenging model because for large energy, the dominant term is the one
degree of freedom system for which the theorem of [LZ95] applies.

Another model which has scaling behavior is the billiard with moving bound-
aries. A higher dimensional model of the Fermi acceleration.

For all these systems, when they are sufficiently chaotic, it seems possible to
derive – heuristically – stochastic models for the growth of energy. These stochastic
models can be analyzed rigorously and the final results compared satisfactorily with
numerical simulations [DdlL06]. Even if parts of a stochastic theory of diffusion can
be made rigorous, deriving a fully rigorous stochastic theory of diffusion remains a
very challenging problem.
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[Pus77b] L. D. Pustyl’nikov. Stable and oscillating motions in nonautonomous dynamical
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Appendix

A: Normally hyperbolic manifolds

In this section, we recall some results in the literature on normally hyperbolic man-
ifolds. Good references are [Fen72, Fen74, Fen77, HPS77, Pes04].

For simplicity, we will discuss only the case of diffeomorphisms. The case of
flows is very similar. For many of the applications (persistence of invariant man-
ifolds, regularity) the case of flows follows from the case of diffeomorphism by
taking time-1 maps.



Geometric approaches to the problem of instability 331

Let M be a smooth d-dimensional manifold, f : M → M a Cr diffeomorphism,
r � 1.

Definition 9.1. Let Λ ⊂M be a C1 submanifold invariant under f , f (Λ) = Λ . We
say thatΛ is a normally hyperbolic invariant manifold if there exist a constant C > 0,
rates 0 < λ < µ−1 < 1 and a splitting for every x ∈Λ

TxM = Es
x⊕Eu

x ⊕TxΛ

in such a way that

v ∈ Es
x ⇔ |D f n(x)v|� Cλ n|v| n � 0

v ∈ Eu
x ⇔ |D f n(x)v|� Cλ |n||v| n � 0

v ∈ TxΛ ⇔ |D f n(x)v|� Cµ |n||v| n ∈ Z

(1)

In this exposition, we will assume that Λ is compact and, without loss of generality,
connected.

Remark 9.1. The set up can be weakened in several directions which appear in ap-
plications.

For example, as remarked in [HPS77], instead of assuming that Λ is compact, it
suffices to assume that f is Cr in a neighborhood of Λ with all the derivatives of or-
der up to r uniformly bounded. The non-compact case involves some complications
such as study of extension operators. These considerations become much more im-
portant in the extension of the theory to infinite dimensional Banach spaces, which
we will also not consider [BLZ98]. In these infinite dimensional cases, the standard
arguments often give one or two derivatives less in the conclusions than the finite
dimensional compact arguments.

We also note that some parts of the theory are also true for manifolds with
boundary such that f (Λ) ⊂ Λ , d( f (∂Λ),∂Λ) > 0 (inflowing) or f (Λ) ⊂ Λ ,
d( f (∂Λ),∂Λ) > 0 (outflowing). Note that the definition of stable (resp. unsta-
ble) directions in (1) requires serious changes in the outflowing (resp. inflowing)
cases. An adaptation of the theory to the inflowing and outflowing cases is done
in [Fen72]. Note that, even if these definitions become possible, the resulting objects
may lack some of the properties of the more standard definitions. For example, the
stable spaces are not unique in the inflowing case, so that issues of regularity are
more delicate, even if well understood in the literature.

In some applications to instability, one often gets systems with two time scales,
so that the hyperbolicity degenerates. Therefore it is useful to keep explicit track of
how C,λ ,µ , the parameters affecting the quality of the hyperbolicity in (1) enter in
the hypothesis of the theorems. See [Fen79].

A self-contained detailed treatment of a case that involves several of these com-
plications can be found in Appendix A of [DLS06c].

It follows from (1) that Es
x , Eu

x depend continuously on x. In particular, the di-
mension of Es

x , Eu
x are independent of x. In fact, using the invariant section theo-

rem [HP70] or some direct arguments [Fen74, Fen77] they are C�−1,
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� < min
(

r,
| logλ |
logµ

)
. (2)

Indeed, using some variants of these arguments, it is possible to show that the in-
variant manifold Λ is C� – even if the hypothesis of the definition only require it is
C1. In general, one cannot improve on these regularities. [Mos69] contains explicit
examples – even trigonometric polynomials – where the regularity claimed above is
sharp, and [HW99] shows that this regularity is indeed sharp for generic examples.
Hence, in general, one cannot expect that the normally hyperbolic invariant mani-
folds are C∞ even if f is a polynomial. One can however have uniform lower bounds
for all the Cr maps which are in a C1 neighborhood. The regularity of overflowing
(resp. inflowing) manifolds is even more problematic since the stable (resp. unsta-
ble) bundles are not uniquely defined, hence the hyperbolicity constants do not have
a unique value.

Given a normally hyperbolic invariant manifold Λ we define

W s
Λ = {y ∈M | d( f n(y),Λ) � Cyλ n, n � 0}

W u
Λ = {y ∈M | d( f n(y),Λ) � Cyλ |n|, n � 0}

Furthermore, for each x ∈Λ , we define

W s
x = {y ∈M | d( f n(x), f n(y)) � Cx,yλ n, n � 0}

W u
x = {y ∈M | d( f n(x), f n(y)) � Cx,yλ |n|, n � 0}

and we note that Es
x = TxW s

x and Eu
x = TxW u

x . It is a fact that

W s
Λ =

⋃

x∈Λ
W s

x

W u
Λ =

⋃

x∈Λ
W u

x

(3)

Moreover, x 	= x̃⇒W s
x ∩W s

x̃ = /0, W u
x ∩W u

x̃ = /0.
The decomposition (3) can expressed geometrically saying that {W s

x }x∈Λ ,
{W u

x }x∈Λ are a foliation of W s
Λ , W u

Λ , respectively. We will refer to these foliations
as Fs, Fu.

Dynamically, the above statement means that, when the orbit of a point is
approaching Λ , it approaches the orbit of a single point. This, as well as the
uniqueness can be established easily by noting that, for two points in Λ , we have
d( f n(x), f n(x)) � Cµ−n. Since λµ < 1, we can see that if we fix y there can only
be one x such that d( f n(x), f n(y)) � Cλ n.

We recall that in these circumstances we have that

1. Λ is a C� manifold with � given in (2).
2. W s

Λ , W u
Λ are C�−1 manifolds

3. W s
x , W u

x are Cr manifolds
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4. The maps x �→W s
x , W u

x are C�−1− j, when W s
x , W u

x are given the C j topologies
in compact sets.

5. When x ∈Λ , we have

TxW
s,u
Λ = Es,u

x TxW s,u
x = Es,u

x

6. As a consequence of the above, using the implicit function theorem, we have:
Denote by W s,δ

Λ a δ -neighborhood of Λ in W s
Λ and by W s,δ

x a δ neighborhood
of x in W s

x .
Then, for sufficiently small δ , there is a C�−1 diffeomorphism hs from W s,δ

Λ to
a neighborhood of the zero section in Es. Furthermore, hs(W s

x )⊂ Es
x .

Note, that, even if W s
x are as smooth as the map, the dependence of the point on

the base point has only some finite regularity that depends on the regularity expo-
nents entering in (1).

The manifold W s
Λ is invariant. That is f (W s

Λ ) = W s
Λ . Analogously, of course, the

unstable manifolds.
On the other hand, the manifolds W s

x are not invariant. They, however satisfy a
covariance property

f (W s
x ) = W s

f (x) (4)

The local behavior in a neighborhood of a normally hyperbolic invariant man-
ifold is described very precisely by the following theorem in [HPS77, PS70], who
show who show that if Λ is a normally hyperbolic invariant manifold , then there
is a homeomorphism h from a neighborhood of the zero section in TΛ to a neigh-
borhood in Λ in such a way that if x ∈Λ , η ∈ TxM and |η | is sufficiently small, we
have

f ◦h(x,η) = h( f (x),D f (x)η) (5)

The homeomorphism h is, of course, highly non-unique. Note that, in the case
that Λ is just a point, the theorem reduces to the celebrated Hartman–Grobman
theorem. Indeed the proof of the references above, after some clever reductions,
becomes the Hartman–Grobman theorem in infinite dimensions.

An important consequence of the linearization theorem is that if Λ is a normally
hyperbolic invariant manifold , then, for any sufficiently small open neighborhood
U of Λ we have

Λ =
⋃

n∈Z

f n(U)

Of course, if Λ ⊂V ⊂U , then Λ =
⋃

n∈Z f n(V ).
The homeomorphism h solving (5) is not unique and there are really terrible

choices.19 Nevertheless, there are choices which are continuous and indeed Hölder
in some of the variables. We also have that, W s,uloc

x = h(x,Es,u
x ∪Bδ ).

The linearization (5) is a generalization of Hartman–Grobman theorem. Under
appropriate non-resonance conditions on the possible rates of growth of the vectors

19 The lovers of pathologies can amuse themselves using the axiom of choice – Argh!! – to produce
h solving (5) which are not measurable.
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on TxM|x∈Λ it is possible to obtain more precise linearizations [Rob71,KP90,BK94].
In contrast with the Sternberg Linearization theorem, the non-resonance conditions
can fail in C1 open sets of diffeomorphisms. When the conditions for the lineariza-
tion apply, then one can obtain very good estimates for the orbits that “fly by” the
invariant manifold. In particular, one can get very detailed information about the
separatrix map. Note that the time that one can spend in a “fly by” is unbounded, so
that linearization gives information over trajectories that go over a long time.

A.1 Persistence and dependence on parameters

One of the most important results of the theory of normally hyperbolic invariant
manifolds is that they persist under perturbations and that they depend smoothly
under parameters.

Persistence means, roughly, that if a map f has an invariant manifold Λ f and g is
sufficiently C1 close to f , then g also has an invariant manifold Λg.

In these cases, the results on dependence on parameters and can be obtained very
economically from the results on persistence by considering an extended system.

Let f (x,ε) : M×Σ → M is a family of maps (ε is the parameter). <– We will
also use fε = f (·,ε). We consider f̃ = f × Id and f̃0 = f0× Id.

We note that ifΛ0 is a normally hyperbolic invariant manifold for f0, thenΛ0×Σ
is a normally hyperbolic invariant manifold for f̃0. Furthermore, the hyperbolicity
for f̃0 admits the same constants in (1) than f0. Hence, if f̃ is C1 close to f̃0, the
persistence result implies that we can find a manifold Λ̃ that is invariant for f̃ .
Because f̃ is the identity in the ε variable, we have that Λ̃ has to have the form⋃
ε Λε ×{ε}, where Λε is invariant under fε .
Another important result in the theory of persistence of invariant manifolds is that

the change in the hyperbolicity constants can be controlled by the C1 distance of the
maps. This is important since the regularity of the foliations Fs,u can be bounded
uniformly in sets which are the intersection of C1 open sets and Cr. For example in
Section 3.2 it was convenient to assume that the foliations Fs,u are C1. The previous
remark implies that this assumption holds in some open sets, characterized by ratios
in the contractions exponents.

A very efficient way of describing the results of persistence and smooth depen-
dence on parameters is to use a parameterization method.

We write Λε as kε(Λ0) where k : Λ0×Σ → M The fact that Λε is invariant is
equivalent to

fε ◦ kε = kε ◦ rε (6)

where rε : Λ0 → Λ0 is a representation of dynamics of fε restricted to the invariant
manifold.

The result that Λε is C�, means that kε can be chosen to be C� in Λ0×Σ . Hence,
∂ j

∂ε j kε(x) is C�− j. So that the map ε−Λε is C�− j when the manifolds are given the
C j topology.
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Even if in this presentations we have argued that the standard theory of normally
hyperbolic invariant manifolds implies the existence of solutions of (6), it is possi-
ble consider (6) as an equation for kε ,rε and show that there are solutions. This is
an alternative approach to the theory of existence of normally hyperbolic invariant
manifolds developed in [HdlL07]. This has several advantages from the point of
view of numerical computation. See [HdlL06c, HdlL06b, HdlL06a] for some sim-
pler cases.

Notice that (6) is a geometrically natural equation. We also note that – since
all geometrically natural equations are invariant under the choice of a system of
coordinates inΛ0 – if kε ,rε is a solution of (6) and hε :Λ0→Λ0 is a diffeomorphism
we have that k̃ε = kε ◦ hε , r̃ε = h−1

ε ◦ rε ◦ hε is also a solution of (6). This lack of
uniqueness can be chosen to impose some supplementary conditions. For example,
in [DLS06a] it is shown that if fε preserve a symplectic form ω , there is one and
only one kε such that k∗εω = k∗0ω ≡ ω|Λ0 . (This choice also has other geometric
properties, we refer to the [DLS06a].

Remark 9.2. There is a large literature on formal perturbation theories based on “ex-
panding to first order” and solving the resulting equations. This, in general, is not a
correct procedure, but in the case that we know that there is a derivative, it is easy to
show that this derivative satisfies a functional equation (which is the equation con-
sidered by the formal expansion). If the solution of this equation is unique, then, the
solution of this equation will be the derivative.

A.2 The λ -lemma and the exchange lemma

The simplest version of the λ lemma states that if there is manifold Σ which inter-
sects transversally W s

x , then, for large n, f n(Σ) will have a patch which is exponen-
tially close – in a smooth topology – to W u(Un) where Un ⊂Λ is an open set around
f n(x).

The sizes of the Un may decrease exponentially– but the rate is bounded by µ−n –

A.3 Normally hyperbolic laminations

This is a very interesting concept developed in [HPS77, Ch. 15]. See the results in
Section 8.

In the simplest formulation, a lamination is a closed set of manifolds which do
not intersect. {Λσ}σ∈Σ .

A lamination is invariant if f (Λσ )⊂ΛΦ(σ). A lamination is normally hyperbolic
if, for x ∈ Λσ we can find decompositions TxM = TxΛσ ⊕Es

x ⊕Eu
x satisfying esti-

mates similar to those in (1).
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The result of [HPS77, Ch. 15] is that this situation is stable under perturbations.
Some improvements were developed in [Lla02]. Namely, that we can find another
lamination Λ g

σ and a map hσ : Λ f
σ →Λ g

σ in such a way that g◦hσ = hσ ◦ f .
A heuristic point of view which is useful is that one can consider the laminae as

points, so that the above result is just the structural stability. As shown in [HPS77],
there are also shadowing theorems and many other results analogue to the results
for hyperbolic sets.

In a way similar to the stability of normally hyperbolic invariant manifolds , it is
convenient to describe the stability of invariant laminations using a parameterization
method.

If F0(Lσ ) = L f (σ), satisfying the hypothesis of normal hyperbolicity, we can try
to find hεσ : Lσ →M and rεσ : Lσ → L f (σ) that Fε ◦hεσ = hεσ ◦rεσ . Clearly Lε

σ = hε(Lσ )
satisfy the invariance properties of laminations, Fε(Lε

σ ) = Lε
f (σ).

The hεσ rεσ are parameterizations of the new laminae in terms of the old and the
rεσ are expressions of the dynamics.

It follows from the results in [HPS77] that, for fixed σ the hεσ (x), rεσ (x), are C�

on (ε,x), where � depends on the exponents.
One small improvement from the results of [HPS77] that is found in [Lla04] is

the observation that, the mappings σ �→ hεσ ,rεσ are Hölder when the h,r are given a
C� topology.



Variational methods for the problem of Arnold
diffusion

Chong-Qing Cheng1

Abstract The problem of Arnold diffusion is raised for nearly integrable Hamil-
tonian systems. It concerns whether there exists an orbit along which the action
undergoes substantial variation. Variational method has been shown a powerful tool
for the study of Arnold diffusion of Hamiltonian systems convex in actions. In vari-
ational language, it amounts to construct an orbit connecting two different Aubry
sets. This is the main content of the lecture notes.

1 Introduction to Mather theory

Let M be a closed and connected C∞-manifold. We denote by T M the tangent bundle
of the manifold M. Usually, M = T

n, for instance, when we study the problem of
Arnold diffusion. Let L ∈ Cr(T M×T,R) be a Lagrangian, we assume it satisfies
the Tonelli’s condition:
Positive definiteness. For each (x, t) ∈ M ×T, the Lagrangian function is
strictly convex in velocity: the Hessian Lẋẋ is positive definite.
Super-linear growth. We assume that L has fiber-wise superlinear growth: for
each (x, t) ∈M×T, we have L/‖ẋ‖→ ∞ as ‖ẋ‖→ ∞.
Completeness. All solutions of the Lagrangian equations are well defined for all
t ∈ R.

This lagrangian is uniquely related to a Hamiltonian H(x,y, t) via Legendre trans-
formation

L(x, ẋ, t) = max〈ẋ,y〉−H(x,y, t),

and the Hamiltonian equation

ẋ =
∂H
∂y

, ẏ =−∂H
∂x

(1)
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are equivalent to the Lagrangian equation

d
dt

(
∂L
∂ ẋ

)
− ∂L

∂x
= 0. (2)

This Lagrange equation corresponds to the critical point of the functional

A(γ) =
∫

L(γ, γ̇, t)dt.

We now introduce the concept of minimal measure. The method we use here basi-
cally follows Mañé. Let M̄ be a covering space of M, γ̄: [t0, t1]→ M̄ be an absolutely
continuous curve, we define its action as

A(γ̄) =
∫ t1

t0
L(πγ̇(t),πγ(t), t)dt =

∫ t1

t0
L(πdγ(t), t)dt.

Lemma 6 (Tonelli) Let t0 < t1 ∈ R, x0,x1 ∈ M̄. The conditions of positive def-
initeness and completeness guarantee that the action takes a finite minimum value
over the set of absolutely continuous curves γ̄: [t0, t1] → M̄ such that γ̄(t0) = x0,
γ̄(t1) = x1. Moreover, if the completeness condition is assumed, then the minimizer
is C1 and satisfies the Lagrangian equation.

With this lemma, it is easy to show the existence of k-periodic orbit for each k ∈Z
+.

Let

−αk(0) = min
x∈M

inf
γ(0)=γ(k)=x

1
k

∫ k

0
L(dγ(t), t)dt,

and denote the minimizer γk. Since M is compact, the minimum can be reached.
Clearly, γk ∈C1[0,k]. We claim that

lim
t↘0

γ̇k(0) = lim
t↗k

γ̇k(k).

Indeed, if this is not true, it would imply that the loop has a corner at γ(0). We join
the point γ(k− δ ) to the point γ(δ ) by a minimal curve ξ : [−δ ,δ ]→M such that
ξ (−δ ) = γ(k−δ ) and ξ (δ ) = γ(δ ). Since the minimizer is C1, it implies that the ac-
tion along ξ |[−δ ,δ ] is smaller than the action along γ|[k−δ ,k]∪[0,δ ]. But this contradicts
to the fact that the minimum is reached at γ|[0,k] for all k-closed curves. Therefore,
we obtain an k-periodic orbit (γ(t), γ̇(t)).

With this periodic orbit, we define a probability measure µk on T M×T such that

∫

T M×T

f dµk =
1
k

∫ k

0
f (dγk(s),s)ds

for all f ∈ C0(T M×T). This measure is clearly invariant to the Euler–Lagrange
flow φ t

L determined by L.
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∫

T M×T

f dφ t∗
Lµk =

1
k

∫ k

0
f (dγk(s+ t),s+ t)ds.

Let −α(0) = liminfk→∞
∫

Ldµk, let ki be the subsequence reaching the limit in-
fimum. Obviously, {µki} is compact in the weak-* topology, consequently, there
exists at least one accumulation point µ which is of course invariant to φ t

L. Let ML
be the set of those probability measures which is invariant to φ t

L, clearly, we have
∫

Ldµ = inf
ν∈ML

∫
Ldν .

We call µ the invariant minimal measure, call −α(0) = liminfk→∞−αk(0) the av-
erage action.

Let us now consider

Ac(γ) =
∫

(L−ηc)(dγ(t), t)dt,

where ηc = 〈η(x), ẋ〉, η(x) denotes a closed 1-form 〈η(x),dx〉 evaluated at x, and
its de-Rham cohomology [〈η(x),dx〉] = c ∈ H1(M,R). For convenience and with-
out danger of confusion, we call ηc closed 1-form also. As η is closed, it has no
contribution to the Euler–Lagrange equation, the variational derivative of the func-
tional Ac(γ) is the same as the derivative of A(γ). However, the minimal measure for
L may different from the minimal measure for L−ηc. The minimal measure only
depends on the cohomology class, it is independent of which closed form it takes.
We usually denote by µc the invariant minimal measure for the class c, by −α(c)
the minimal average action.

Theorem 6 [Ma1] For each c ∈ H1(M,R), there exists at least one probability
measure µc ∈ML which minimizes L−ηc:

∞ >−α(c) =
∫

(L−ηc)dµ = inf
ν∈ML

∫
(L−ηc)dν .

α(c) is convex in c.

We usually call α(c) the α-function. Since it is convex, we can consider its dual
through Legendre transformation

β (ρ) = max
c
{〈c,ρ〉−α(c)}

it is called β -function, which is convex in the first homology class, corresponding
to the rotation vector. It is worthwhile to point out that the rotation vector of some
minimal measure may different from the rotation vector of those orbits in the support
of the measure. A typical example is the Hedlund geodesic flow in T

3 equipped with
nontrivial Riemannian metric.
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According to Mather’s result, both α-function and β -function are convex and
conjugate by the Legendre transformation. By definition,

βL(ρ)+αL(c) � 〈ρ,c〉, ∀ρ ∈ H1(Tn,R), c ∈ H1(Tn,R). (3)

The map
Lβ : H1(Tn,R)⇒ H1(Tn,R)

defined by letting Lβ (ρ) be the set of c ∈H1(Tn,R) for which the inequality in (3)
becomes equality, is called Fenchel–Legendre transformation. Obviously, Lβ (ρ) is
a compact, convex, non-empty subset of H1(Tn,R).

With well defined minimal measure, we can define Mather set as follows:

M̃ (c) =
⋃

suppµc.

In the variational construction of diffusion orbits, two objects play important role,
they are so-called Aubry set as well as Mañé set. To introduce the definitions, we
introduce the idea of semi-static and static curves, due to Mañé. Let γ : R→M be
an absolutely continuous curve. We call it the minimizer of Lc if for any a < b and
any absolutely continuous curve ζ : [a,b]→M with ζ (a) = γ(a), ζ (b) = γ(b) we
have ∫ b

a
(L−ηc)(dγ(t), t)dt �

∫ b

a
(L−ηc)(dζ (t), t)dt,

where we use dγ to denote (γ, γ̇) for abbreviation. We define

hc((m, t),(m′, t ′)) = min
γ∈C1([t,t′],M)
γ(t)=m,γ(t′)=m′

∫ t ′

t
(L−ηc)(dγ(s),s)ds+(t ′ − t)α(c),

Fc((m,s),(m′,s′)) = inf
t=s mod 1

t′=s′ mod 1,
t′−t�1

hc((m, t),(m′, t ′))

h∞c (m,m′) = liminf
t,t′∈Z

t′−t→∞

hc((m, t),(m′, t ′)), (4)

h∞c ((m, t),(m′, t ′)) = liminf
t ′−t→∞

hc((m, t),(m′, t ′)), (5)

Given an absolutely continuous curve γ: [a,b]→M, we use the notation

[Ac(γ)] =
∫ b

a
(L−ηc)(dγ(s),s)ds+α(c))|b−a|.

A curve γ ∈C1(R,M) is called c-semi-static if

[Ac(γ|[a,b])] = Fc(γ(a),γ(b),amod1,bmod1)
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for each [a,b]⊂ R. A curve γ ∈C1(R,M) is called c-static if, in addition

[Ac(γ|[a,b])] =−Fc(γ(b),γ(a),bmod1,amod1)

for each [a,b] ⊂ R. An orbit X(t) = (dγ(t), t mod 1) is called c-static (semi-static)
if γ is c-static (semi-static). We call the Mañé set ˜N (c) the union of global c-semi-
static orbits, and call the Aubry set ˜A (c) the union of c-static orbits. It is proved
in [Be3] that these Mather sets, Aubry sets and Mañé sets are symplectic invariants.

We use M (c), A (c) and N (c) to denote the standard projection of M̃ (c), ˜A (c)
and ˜N (c) from T M×T to M×T respectively. The inverse of the projection is
Lipschitz when it is restricted to A (c) and M (c). We use the symbol ˜Ns(c) =

˜N (c)|t=s to denote the s-time section of a Mañé set, and so on. The following
inclusions are shown in [Be2]

M̃ (c)⊆ ˜A (c)⊆ ˜N (c).

Aubry set has Lipschitz property (see [Ma1], [Ma2]):

Theorem 7 π: ˜A (c)→M×T is injective. Its inverse from A (c) to ˜A (c) is Lip-
schitz, i.e. there exists a constant C such that for any (x, t),(x′, t ′) ∈A (c) we have

dist(π−1(x, t),π−1(x′, t ′)) � Cdist((x, t),(x′, t ′)).

If the minimal measure is uniquely ergodic, then the Mañé set is same as the
Aubry set. We mention that the definition of Mañé set depends on what configura-
tion manifold we choose. If we choose some finite covering manifold, the Mañé set
could be larger.

The structure of Mather set can be very complicated, however, in several cases its
structure is well known. KAM torus, some lower dimensional torus with hyperbolic
type, Aubry–Mather set and minimal periodic orbit are those examples.

2 Existence of Homoclinic Orbits

Recall the example of Arnold in [Ar1], the diffusion orbits are in a small neigh-
borhood of a chain of heteroclinic orbits, these heteroclinic orbits appear when the
loop of homoclinic orbits break. So, as the first step, let us consider the existence of
homoclinic orbits to some Aubry sets. A sufficient condition is

H1(M,A0(c),Z) 	= 0.

Let d be the dimension of the group H1(M,A0,Z), we have (see [Be1])

Theorem 8 There are at least d +1 minimal homoclinic orbits to ˜A (c).

Proof. Consider an absolutely continuous curve ξk: [−k,k]→M such that ξk(−k) =
ξk(k)∈A0(c). In this case it makes sense to define [ξk]∈H1(M,A0(c),Z). Given ei,
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a given generator of the group, we choose those ξk (k = 1,2, · · ·) such that [γk] = ei
for each k. Consider the action along each of these curves

[A(ξk)] =
1
2k

∫ k

−k
(L−ηc)(dξk(t), t)dt +2kα(c).

As the Aubry set is compact, there exists a curve denoted by γk such that

[A(γ∗k )] = min[A(ξk)]

where the minimum is taken among all those closed curves ξk such that [ξk] = ei.
Obviously, we have

sup
k

[A(γk)] < ∞.

Consider a subsequence ki such that

lim
i→∞

[A(γki)] = liminf
k→∞

[A(γk)]

Given a δ -neighborhood of the Aubry set A (c)+ δ ⊂ M×T, there exists K ∈ Z

such that (γki(t), t) ∈A (c)+δ for each t ∈ [−ki, �i]∪ [�i +K,ki] if ki is sufficiently
large. If not, we would obtain the property that [A(γk)]→ ∞.

Let us consider the set of curves {γi(t − ji)}. Two facts are obvious: γi is the
solution of the Euler–Lagrange equation, and there exist some points γi(t − ji) /∈
A (c)+δ . As the matrix ∂ẋ2 L is positive definite, this set is compact in C1-topology
if t is restricted in [− j, j] for each finite j. By diagonal argument, we see that some
γ: R→M exists such that γkim

(t− jim)→ γ(t). Thus, we have that both the α- and
the ω-limit set of dγ are contained in the Aubry set and [γ] 	= 0. This completes
the proof of the existence of homoclinic orbit. To see the existence of the second
homoclinic orbit, we only need to consider some closed curve whose first relative
homology is different [γ], such procedure can be repeated for d-times.

M has several kinds of finite lift, we can choose d + 1 covering M̄ such that the
lift of each of these d + 1 homoclinic orbits is in the Mañé set with respect to one
lift of M.

The existence of homoclinic orbit does not implies the existence of some hete-
roclinic orbit immediately, it is not naturally granted. It depends on the condition
whether the homoclinic orbits are discrete or not. Before we show the existence of
heteroclinic orbit, we have the following section.

3 Pseudo-connecting orbit set C̃η ,µ ,ψ

The construction of connecting orbits are based on two properties, one is the up-
per semi-continuity of C̃η ,µ,ψ and ˜N (c), another one is some kind of topological
triviality of Mañé sets.
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Lemma 7 (see [Be2], [CY1]) We assume L ∈Cr(T M×R,R) (r � 2) satisfies the
positive definite, superlinear-growth and completeness conditions, where M is a
compact, connected Riemanian manifold. Considered as the function of t, L is as-
sumed periodic for t ∈ (−∞,0] and for t ∈ [1,∞). Let G̃L ⊂ T M×R be the set of
minimal orbits for L. Then the map L→ G̃L is upper semi-continuous.

To construct some connecting orbits between two different Mañé sets, we con-
sider a modified Lagrangian

Lη ,µ,ψ = L−η−µ−ψ

where η is a closed 1-form such that [η ] = c, µ is a 1-form depending on t in the
way that the restriction of µ on {t � 0} is 0, the restriction on {t � 1} is a closed
1-form µ̄ such that [µ̄] = c′ − c, we call this µ U-step 1-form. ψ is a function on
T M×R, ψ(·, t) = 0 for all t ∈ (−∞,0]∪ [1,∞) and the support of ψ is compact in
T M for all t. Let m,m′ ∈M, we define

hT0,T1
η ,µ,ψ(m,m′) = inf

γ(−T0)=m
γ(T1)=m′

∫ T1

−T0

Lη ,µ,ψ(dγ(t), t)dt +T0α(c)+T1α(c′).

We take the limit infimum which is clearly is bounded

h∞η ,µ,ψ(m,m′) = liminf
T0,T1→∞

hT0,T1
η ,µ,ψ(m,m′) � Cη ,µ,ψ .

Let {T i
0}i∈Z+ and {T i

1}i∈Z+ be the sequence of positive integers such that T i
j → ∞

( j = 0,1) as i→ ∞ and the following limit exists

lim
i→∞

h
T i

0 ,T i
1

η ,µ,ψ(m,m′) = h∞η ,µ,ψ(m,m′).

Let γi(t,m,m′): [−T i
0 ,T

i
1 ]→M be a minimizer connecting m and m′

h
T i

0 ,T i
1

η ,µ,ψ(m,m′) =
∫ T i

1

−T i
0

Lη ,µ,ψ(dγi(t), t)dt +T i
0α(c)+T i

1α(c′).

It is not difficult to see that for any compact interval [a,b], the set {γi} is pre-compact
in C1([a,b],M).

Lemma 8 Let γ: R→M be an accumulation point of {γi}. If s � 1 then

ALη ,µ ,ψ (γ|[s,τ]) = inf
τ1−τ∈Z,τ1>s
γ∗(s)=γ(s)
γ∗(τ1)=γ(τ)

∫ τ1

s
Lη ,µ,ψ(dγ∗(t), t)dt (1)

+(τ1− τ)α(c′);
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if τ � 0 then

ALη ,µ ,ψ (γ|[s,τ]) = inf
s1−s∈Z,s1<τ
γ∗(s1)=γ(s)
γ∗(τ)=γ(τ)

∫ τ

s1

Lη ,µ,ψ(dγ∗(t), t)dt (2)

− (s1− s)α(c);

if s � 0 and τ � 1 then

ALη ,µ ,ψ (γ|[s,τ]) = inf
s1−s∈Z,τ1−τ∈Z

s1�0,τ1�1
γ∗(s1)=γ(s)
γ∗(τ1)=γ(τ)

∫ τ1

s1

Lη ,µ,ψ(dγ∗(t), t)dt (3)

− (s1− s)α(c)+(τ1− τ)α(c′).

With this lemma it is natural to define

C̃η ,µ,ψ = {dγ ∈ G̃Lη ,µ ,ψ : (1),(2) and (3) hold}.

Although the elements in this set are not necessarily the orbits of the Lagrangian
flow determined by L, the α-limit set of each element is contained in ˜A (c), and
the ω-limit set of each element is contained in ˜A (c′). Due to this reason, we call it
pseudo connecting orbit set. Clearly, C̃η ,0,0 = ˜N (c). For convenience we may drop
the subscript ψ in the symbol when it is equal to zero, C̃η ,µ := C̃η ,µ,0.

Lemma 9 The map (η ,µ)→ C̃η ,µ,ψ is upper semi-continuous. Consequently, the
map c→ ˜N (c) is upper semi-continuous.

Proof. Let ηi → η , µi → µ and ψi → ψ , let γi ∈ C̃ηi,µi,ψi and let γ be an accumu-
lation point of the set {γi ∈ C̃ηi,µi,ψi}i∈Z+ . Clearly, γ ∈ C̃η ,µ,ψ . If γ /∈ C̃η ,µ,ψ there
would be two point γ(s),γ(τ) ∈ M such that one of the following three possible
cases takes place. Either γ(s) and γ(τ) ∈M can be connected by another curve γ∗:
[s+n,τ]→M with smaller action

Aη ,µ,ψ(γ|[s,τ]) < Aη ,µ,ψ(γ∗|[s+n,τ])−nα(c)

in the case τ < 0; or there would a curve γ∗: [s,τ +n]→M such that

Aη ,µ,ψ(γ|[s,τ]) < Aη ,µ,ψ(γ∗|[s,τ +n])−nα(c′)

in the case s � 1, or when s � 0 and τ � 1 there would be a curve γ∗: [s + n1,τ +
n2]→M such that

Aη ,µ,ψ(γ|[s,τ]) < Aη ,µ,ψ(γ∗|[s+n1,τ +n2])−n1α(c)−n2α(c′)
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where s + n1 � 0, τ + n2 � 1. Since γ is an accumulation point of γi, for any small
ε > 0, there would be sufficiently large i such that ‖γ− γi‖C1[s,t] < ε , it follows that
γi /∈ C̃ηi,µi,ψi but that is absurd.

Let us consider the case that µ = 0 and ψ = 0. In this case, L−η is periodic in t.
If some orbit γ ∈ C̃η ,0,0: R→M is not semi-static, then there exist s < τ ∈R, n∈Z,
∆ > 0 and a curve γ∗: [s,τ +n]→M such that γ∗(s) = γ(s), γ∗(τ +n) = γ(τ) and

Aη ,0,0(γ|[s,τ]) � Aη ,0,0(γ∗|[s,τ +n])−nα(c)+∆ .

We can extend γ∗ to [s1,τ1 +n]→M such that s1 � min{s,0}, min{τ1,τ1 +n}� 1,
τ1 � τ and

γ∗ =

⎧
⎪⎨
⎪⎩

γ(t), s1 � t � s,
γ∗(t), s � t � τ +n,

γ(t−n), τ +n � t � τ1 +n.

Since L−η is periodic in t, we would have

Aη ,0,0(γ|[s1,τ1]) � Aη ,0,0(τ∗γ|[s1,τ1 +n])−nα(c)+∆ .

but this contradicts to (3).

4 Existence of heteroclinic orbits

Let µc be such a minimal measure that its rotation vector satisfies some resonant
condition [ρ(µc)]i = 0. We assume its support is restricted in a neighborhood of a
lower dimensional torus {xi = 0}. It is generic that the α-function has a flat at ρ(µc).
Indeed, under small perturbation of potential, for instance, L(x, ẋ, t)→ L(x, ẋ, t)+
εP(x) where P = 1 when xi = 1

2 and suppP ⊂ {|xi− 1
2 | �

1
4} the Aubry set is also

restricted in a neighborhood of the lower dimensional torus. According to the study
in the second section (see Theorem 8), there exists a homoclinic orbit dγ such that
the ith component of its relative homology is not zero: [γ]i 	= 0. Such homoclinic
orbit is not in the Mañé set ˜N (c) if c is not at the boundary of the flat Lβ (ρ(µc)),
(the interior of a convex set with m-dimension is defined in the way we treat it as
a set in m-dimensional space) it is in the Mañé set ˜N (c,M̃) for a finite covering
space M̃.

Let M̃ = T
i−1 × (2T)×T

n−i be the covering space of M = T
n, let π1 be the

covering map M̃ →M: π1(x1, · · · ,xi · · · ,xn) = (x1, · · · , [xi] · · · ,xn) where [xi] = xi if
xi � 1, [xi] = xi−1 if 1 � xi � 2. We also use π1: T M̃→ T M to denote the standard
projection, π1(x, ẋ) = (π1x, ẋ).

Lemma 10 Let c ∈ İc, M̃ = T
i−1× (2T)×T

n−i. If dγ: R→ T M is a homoclinic
orbit such that
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liminf
T0→∞
T1→∞

{∫ T1

−T0

(L−ηc)(dγ(t), t)dt +(T0 +T1)α(c)
}

= liminf
T0→∞
T1→∞

min
ξ (−T0)∈Vc
ξ (T1)∈Vc

[ξ ]i 	=0

{∫ T1

−T0

(L−ηc)(dξ (t), t)dt +(T0 +T1)α(c)
}
,

then {dγ(t), t} ⊂ π1 ˜N (c,M̃).

Proof. If we think M̃ as the configuration manifold, Vc has two lifts denoted by V ′c
and V ∗c . In this case, the minimal measure has two ergodic components, the support
of one component is in V ′c , another one is in V ∗c . The lift of the homoclinic orbit is
just an orbit joining the lift of the support of the minimal measure in V ′c with another
lift in V ∗c . Recall the definition of the barrier function (cf. [Ma2])

B∗c(m) = min{h∞c (ξ ,m)+h∞c (m,ζ )−h∞c (ξ ,ζ ) : ∀ ξ ,ζ ∈M0(c)},

we obtain the result immediately.

We can also define the Mañé set ˜N (c,M̃) from another point of view.
Let c ∈ İc, the interior of Lβ (ρ(µc)), m0 ∈Vc, m1 ∈Vc, we define

hk
c,ei

(m0,m1) = inf
γ(0)=m0
γ(k)=m1
[γ]i 	=0

∫ k

0
(L−ηc)(dγ(t), t)dt + kα(c),

hk1,k2
c,ei

(m0,ξ ,m1) = inf
γ(−k1)=m0
γ(0)=ξ

γ(k2)=m1
[γ]i 	=0

∫ k2

−k1

(L−ηc)(dγ(t), t)dt +(k1 + k2)α(c),

h∞c,ei
(m0,m1) = liminf

k→∞
hk

c,ei
(ξ ,ζ ), (1)

h∞c,ei
(m0,ξ ,m1) = liminf

k1→∞
k2→∞

hk1,k2
c,ei

(m0,ξ ,m1), (2)

B∗c,e1
(ξ ) = inf{h∞c,e1

(m0,ξ ,m1)−h∞c,e1
(m0,m1) : m0,m1 ∈M0(c)}. (3)

Recall we have introduced a modified Lagrangian Lη ,µ,ψ = L− η − µ −ψ . Let
T0 ∈ Z+, T1 ∈ Z+, we define

hT0,T1
η ,µ,ψ,ei(m0,m1) = inf

ξ (−T0)=m0
ξ (T1)=m1

[ξ ]i 	=0

∫ T1

−T0

Lη ,µ,ψ(dγ(t), t)+T0α(c)+T1α(c′).
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hT0,T1
η ,µ,ψ,ei(m0,ξ ,m1) = inf

ξ (−T0)=m0
ξ (T1)=m1
ξ (0)=ξ
[ξ ]1 	=0

∫ T1

−T0

Lη ,µ,ψ(dγ(t), t)+T0α(c)+T1α(c′).

h∞η ,µ,ψ,ei
(m0,m1) = liminf

k1→∞
k2→∞

hT0,T1
η ,µ,ψ,ei(m0,m1), (4)

h∞η ,µ,ψ,ei
(m0,ξ ,m1) = liminf

k1→∞
k2→∞

hT0,T1
η ,µ,ψ,ei(m0,ξ ,m1). (5)

Clearly, we have

Lemma 11 Let M̃ = T
i−1× (2T)×T

n−i. For each c ∈ İc, we have

π1N0(c,M̃) = {B∗c,ei
= 0}∪{B∗c = 0},

π1N0(c,M̃)\N0(c,M) 	= ∅.

For C̃η ,µ,ψ(M̃), we have the similar result if we consider another minimal measure
µc′ with c′ being close to c. In this case, N (c′) ⊂ Vc′ , which is guaranteed by the
upper semi-continuity of Mañé set on cohomology.

Lemma 12 Let c ∈ İc, [η ] = c and µ is a U-step 1-form with [µ̄] = c′ − c. If ‖ψ‖C0

is suitably small and supp(ψ)∩Vc = ∅, then

π1Cη ,µ,ψ(M̃)\Cη ,µ,ψ(M) 	= ∅.

Proof. For m0,m1∈M0(c), positive integers T i
0, T i

1 ∈Z+, we choose γi(t,m0,m1,ei):
[−T i

0 ,T
i

1 ]→M be a minimal curve joining m0 and m1 such that [γi]1 	= 0 and

h
T i

0 ,T i
1

η ,µ,ψ,ei(m0,m1) =
∫ T i

1

−T i
0

Lη ,µ,ψ(dγi(t), t)dt +T i
0α(c)+T i

1α(c′).

Let {T i
0}i∈Z+ and {T i

1}i∈Z+ be the sequence of positive integers such that T i
j → ∞

( j = 0,1) as i→ ∞ and the following limit exists

lim
i→∞

h
T i

0 ,T i
1

η ,µ,ψ,ei(m0,m1) = liminf
T0,T1→∞

hT0,T1
η ,µ,ψ,ei(m0,m1) = h∞η ,µ,ψ,ei

(m0,m1).

Let γ̃i be the lift of γi in the covering space M̃, it is a M̃-minimal curve. Clearly, the
set of accumulation points of the set {γi} contains a curve γ: R→M with [γ]i 	= 0.

On the other hand, if ‖ψ‖C0 is suitably small and m0, m1 ∈ Vc′ , the fact that c is
in the interior guarantees that

h∞η ,µ,ψ(m0,m1) < h∞η ,µ,ψ,ei
(m0,m1).

In other words, these M̃-minimal curves {γi} are not M-minimal curve. Conse-
quently, γ is not a M-minimal curve. This completes the proof.
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We can now investigate the existence of heteroclinic orbits, local connecting orbits,
in other words. As heuristical example, let us consider Arnold’s work in [Ar1] from
variational point of view. There, each Mañé set under consideration properly con-
tains the corresponding Mather set if we study the problem in a covering manifold
M̃ = T× 2T. Under the small perturbation the stable manifold of each invariant
circle transversally intersects the unstable manifold of the same invariant circle. In
terms of variational language, the set π1N0(c,M̃)\(M0(c,M)+δ ) is non-empty but
its first homology is trivial for each c under consideration. In this case, there exist
local connecting orbits between ˜Ac′ and ˜Ac if c′ is close to c. Let us describe it in
general:

Definition 1 Let c ∈ İc, [η ] = c and µ is a U-step 1-form with [µ̄] = c′ − c. We
assume that ˜N (c) ⊂ Vc, ˜N (c′) ⊂ Vc. Let γ: R→ M be an absolutely continuous
curve such that γ(t) ∈ Vc′ when |t| � T , and [γ]i 	= 0. We say dγ is a local minimal
orbit of L of the first type that connects ˜A (c) to ˜A (c̄) if

1. dγ(t) is the solution of the Euler–Lagrange equation, the α- and ω-limit sets
of dγ are in ˜A (c) and ˜A (c̄) respectively;

2. There exist a closed 1-form η with [η ] = c, a U-step 1-form µ with [µ̄] = c′ −c
and a bump function ψ such that dγ(t) ∈ C̃η ,µ,ψ(t) is a local minimal curve of the
Lagrangian Lη ,µ,ψ in the following sense: there exist two open balls O0, O1 and two
positive integers T0,T1 such that Ō0 ⊂ Vc\M0(c), Ō1 ⊂ Vc\M0(c′), γ(−T0) ∈ O0,
γ(T1) ∈ O1 and

min
{

hT0,T1
η ,µ,ψ,ei(m0,m1)+h∞c (ξ ,m0)+h∞c′(m1,ζ ) : (6)

ξ ∈M0(c)∩π(α(dγ)|t=0),ζ ∈M0(c′)∩π(ω(dγ)|t=0)
}

− liminf
T ′0→∞
T ′1→∞

∫ T ′1

−T ′0
Lη ,µ,ψ(dγ(t), t)dt−T ′0α(c)−T ′1α(c′)

> 0

holds for any (m0,m1) ∈ ∂ (O0×O1).

Since π(ω(dγ)) ⊂ A (c′) ⊂ Vc and π(α(dγ)) ⊂ A (c) ⊂ Vc, [γ|T1�t<∞] and
[γ|−∞<t�−T0 ] are well defined. Indeed, [γ|T1�t<∞] = 0 and [γ|−∞<t�−T0 ] = 0. That is
why we can use h∞c (ξ ,m0) and h∞c′(m1,ζ ) in this definition.

Obviously, (6) is equivalent to

hT0,T1
η ,µ,ψ,ei(m0,m1)+h∞c (ξ ,m0)+h∞c′(m1,ζ ) (7)

−
∫ T1

−T0

Lη ,µ,ψ(dγ(t), t)dt−T ′0α(c)−T ′1α(c′)

−h∞c (ξ ,γ(−T0))−h∞c′(γ(T1),ζ )
> 0

for each ξ ∈M0(c)∩π(α(dγ)|t=0) and each ζ ∈M0(c′)∩π(ω(dγ)|t=0).
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Lemma 13 If N0(c,M)⊂Vc and π1N0(c,M̃)\Vc is totally disconnected, then there
exist ε1 > 0, a U-step form µ , a bump function ψ , a small number t0 > 0 and an
open disk O such that if [µ ] = c′, ‖c′ − c‖� ε1, then

∅ 	=
{
π1Cη ,µ,ψ(M̃)\Cη ,µ,ψ(M)

}
0�t�t0

⊂ O (8)

and each dγ(t) ∈ C̃η ,µ,ψ(M̃)\C̃η ,µ,ψ(M)|t determines a minimal orbit of L of first
type which connecting ˜Ac with ˜Ac′ .

Proof. Since π1N0(c,M̃)\Vc is totally disconnected, there exist an open, connected
set O which can shrink to one point by continuous deformation, and a small positive
number t0 > 0 such that

O∩π1N (c,M̃)|0�t�t0\Vc 	= ∅,

O∩Vc = ∅, ∂O∩π1N (c,M̃)|0�t�t0 = ∅.

Clearly, we can find a small δ1 > 0 and define a non-negative function f ∈Cr(M,R)
such that

f (x)

⎧
⎪⎪⎨
⎪⎪⎩

= 0 x ∈Vc∪
(
π1N (c,M̃)|0�t�t0\(O+δ1)

)
,

= 1 x ∈ O,

< 1 elsewhere.

We choose a Cr-function ρ : R → [0,1] such that ρ = 0 on t ∈ (−∞,0]∪ [t0,∞),
0 < ρ � 1 on t ∈ (0, t0). Let λ � 0 be a positive number,

ψ(x, t) = λρ(t) f (x),

By the upper semi-continuity of the set function (η ,µ ,ψ)→Cη ,µ,ψ(M̃) we see that
Cη ,0,ψ(M̃)|0�t�t0 ∩∂O = ∅ if λ > 0 is suitably small. By the choice of ψ , we have
C̃η ,0,ψ(M) = ˜N (c,M). Consequently, by using the similar argument to prove the
lemma 12 we find

∅ 	=
{
π1Cη ,0,ψ(M̃)\Cη ,0,0(M)

}
0�t�t0

⊂ O.

Since O is homotopically trivial, for any cohomology class c′, there exists a closed
1-form µ̄ such that [µ̄] = c′ − c and supp(µ̄)∩O = ∅. Let ρ1 ∈ Cr(R, [0,1]) such
that ρ1 = 0 on (−∞,0], 0 < ρ1 < 1 on (0, t0) and ρ1 = 1 on [t0,∞), let µ = ρ1(t)µ̄
and set Lη ,µ,ψ = L−η − µ −ψ. By using the upper semi-continuity and the sim-
ilar argument to prove the lemma 12 again we obtain (7) if ‖µ‖ is suitably small.
Let dγ ∈ π1C̃η ,µ,ψ(M̃)\C̃η ,µ,ψ(M). Note that f ≡ 1 in O, supp(µ̄)∩O = ∅, dγ:
T M → R is obviously a solution of the Euler–Lagrange equation, α(dγ) ⊂ ˜N (c)
and ω(dγ)⊂ ˜N (c′).
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Since π1C0(c,M̃)\Nδ is assumed totally disconnected in O, by the upper semi-
continuity, there obviously are two open and connected sets O0 and O1 such that
Ō0 ⊂Vc\M0(c), Ō1 ⊂Vc\M0(c′) and (6) holds.

Let us compare π1Cη ,0,ψ(M̃)\Cη ,0,ψ(M) with π1N (c,M̃)\N (c,M). If γ(t) is a
minimal curve in π1N (c,M̃)\N (c,M), then its time k translation γ(t +k) is also a
minimal curve for each k ∈ Z. By the choice of the open set O and the function ψ ,
we see that each orbit dγ in π1 ˜N (c,M̃)\ ˜N (c,M) might be an orbit of the Euler–
Lagrange equation determined by L−ψ still, but only those curves remain to be
minimal if they pass through O when t ∈ [0, t0].

Next, let us consider a resonant minimal measure µc which consists of more than
one ergodic component. We study the case that the minimal measure consists of
finitely many ergodic components which has been proved generic in [CP]. Let ˜A i

c
(i∈Λ = {1,2, · · ·m}) be the Aubry class such that ˜A (c) =∪ ˜A i

c . A reflexive partial
order 	 in the set of static classes { ˜A i

c }i∈Λ is defined:
(a) 	 is reflexive;
(b) 	 is transitive;
(c) If there is z ∈ ˜N0(c) such that the α-limit set α(dφ t

L(z,0)) ⊆ ˜A i
c , and the

ω-limit set ω(dφ t
L(z,0))⊆ ˜A j

c , then ˜A i
c 	 ˜A j

c .

Theorem 9 (see [CP]) Suppose that the number of static classes is finite. Then
given ˜A i

c and ˜A j
c in {A i

c }i∈Λ , we have that ˜A i
c 	 ˜A j

c .

This theorem can be also proved by variational method which is useful for the argu-
ments in the following.

Proof. Let xi ∈A i
c , x j ∈A j

c and consider the sequence {ki ∈ Z} with ki → ∞ such
that limki→∞ hki

c (x,x′) = h∞c (x,x′), let γki
c (t): [0,ki] → M be an absolutely contin-

uous curve with γki
c (0) = x, γki

c (ki) = x′ which realizes the quantity hki
c (x,x′). By

the C1-compactness of these curves we see that there exists at least one forward
c-semi static curve γ+

c (t): [0,∞)→M as well as at least one backward c-semi sta-

tic curve γ−c (t): (−∞,0]→M such that dγk′i
c (0)→ dγ+

c (0) and dγk′′i
c (k′′i )→ dγ−c (0),

where {k′i} and {k′′i } are two subsequences of {ki}. Indeed, the existence of such for-
ward (backward) c-semi static curve in this case is unique because of the following
lemma:

Lemma 14 (see [Me2] and [CDI]) For each (x, t) ∈A (c) there exists a unique v ∈
TxM such that (x,v, t) ∈ ˜N ±(c). In fact, (x,v, t) ∈ ˜A (c).

Therefore, {dγ+
c (t)}[0,+∞) ⊂ ˜A i

c , {dγ−c (t)}(−∞,0] ⊂ ˜A j
c , dγki

c (0) → dγ+
c (0) and

dγki
c (ki)→ dγ−c (0) as ki → ∞. Let δ > 0 be small number so that there is no other

static class in A i
c +δ and in A j

c +δ . Define

ti−
δ = min{t ∈ Z : γki

c (t) /∈A i
c +δ},

ti+
δ = max{t ∈ Z : γki

c (t) /∈A j
c +δ},
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we have ti−
δ � ti+

δ , ti−
δ →∞ and ki−ti+

δ →∞ as ki→∞. Let us consider the sequence
of minimizers {γki

c (t− ti−
δ )}. Because it has C1-compactness, there is a subsequence

{k(1−)
i } of {ki} and a curve γ(1−)

c : R→M such that γk(1−)
i

c (t−ti−
δ )→ γ(1−)

c (t)|[−N,N].

Clearly, the curve γ(1−)
c is c-semi static and its α-limit set α(dγ(1−)

c ) ⊆ ˜A i
c . In the

same way, there is a c-semi static curve γ(1+)
c : R→ M which is, restricted on any

closed interval [−N,N] ⊂ R, is a limit of a subsequence of curves {γk(1+)
i

c (t− ti+
δ )}

and of which the ω-limit set is contained in ˜A j
c : ω(dγ(1+)

c )⊆ ˜A j
c .

There are three possibilities for the relations between these two curves γ(1−)
c and

γ(1+)
c :

1. ω(dγ(1−)
c ) ⊆ ˜A j

c , or α(dγ(1+)
c ) ⊆ ˜A i

c , or γ(1−)
c (t) = γ(1+)

c (t + t0) for some
t0 ∈ Z

2. there is another Aubry class ˜A m
c such that ω(dγ(1−)

c )⊆ ˜A m
c and α(dγ(1+)

c )⊆
˜A m
c

3. there are two different Aubry classes ˜A m
c and ˜A m′

c such that ω(dγ(1−)
c )⊆ ˜A m

c

and α(dγ(1+)
c )⊆ ˜A m′

c
The first two cases imply that theorem has been proved. In the third case, by the

same argument we can find two c-semi static curves γ(2±)
c which are the limit of

the subsequence of {γk(1±)
i

c (t− tm±
δ )} respectively. The α-limit set α(dγ(2−)

c )⊆ ˜A m
c

and the ω-limit set ω(dγ(2+)
c )⊆ ˜A m′

c . As dc(A i
c ,A m

c ) > 0, the ω-limit set of dγ(2−)
c

can not be contained in ˜A i
c because both γ(1−)

c and γ(2−)
c can be approximated by a

sequence of minimal curves which would induce the property that dc(A i
c ,A m

c ) = 0.
By the same argument, the α-limit set of dγ(2+)

c can not be contained in ˜A j
c as

dc(A
j

c ,A m′
c ) > 0. Since there are only finitely many Aubry classes, we can see

that there are some c-semi static curves γk
c : R → M (k = 1,2, · · · ,k0) such that

dc(A i
c ,π(α(dγ1

c ))) = 0, dc(π(ω(dγk
c )),π(α(dγk+1

c ))) = 0 for k = 1,2, · · · ,k0− 1,
and dc(π(ω(dγk0

c )),A j
c ) = 0.

When a minimal measure has more than one ergodic component, the rotation
vector of an ergodic component is not necessarily the same as of the whole measure.
When there are finite ergodic components, we may assume that the Aubry set ˜A (c)
contains more than one class, it is obviously generic. Denote the ergodic component
of c-minimal measure and of c′-minimal measure by µ i

c and µ i
c′ respectively. As

c′ → c, each ergoic component of µc′ converges to some ergodic component of µc.
If µ1

c′ ⇀ µ1
c as c′ → c.

Lemma 15 Assume µc has m ergodic components, N0(c)\(A0(c) + δ ) is totally
disconnected. Then,

(I) There exists small ε > 0 such that if |c′ − c| < ε there is a closed 1-forms η
with [η ] = c, a U-step 1-form ν with [ν ] = c′ − c, a bump function ψ and an open
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disk O such that each orbits dγ(t) ∈ C̃η ,ν ,ψ(t) is an orbit of the Lagrange flow φ t
L,

the support of ν̄ is not contained in O and

∅ 	= Cη ,ν ,ψ(M)|0�t�t0 ⊂ O. (9)

(II) If µ i
c′ ⇀ µ i

c, and if there exists an orbit dξ : R→ T M such that ∪t∈Rdξ (t) ∈
˜N (c), α(dξ ) ⊆ ˜A i

c and ω(dξ ) ⊆ ˜A j
c , then we can choose the open disc O such

that C̃η ,ν ,ψ(t) contains an orbit dγ: R→ T M with α(dγ)⊆ ˜A i
c′ and ω(dγ)⊆ ˜A j

c .

Proof. According to the Theorem 9, N (c)\(A (c)+ δ ) is not empty. In this case
we do not need to lift M to its finite covering. Since N0(c)\(A0(c)+ δ ) is totally
disconnected, there is a shrinkable open set O ⊂ M and a small positive number
t0 > 0 such that

O∩ (N (c)\(A (c)+δ ))|0�t�t0 	= ∅,

∂O∩N (c)|0�t�t0 = ∅, O∩ (A0(c)+δ ) = ∅.

Remaining argument for the proof of the first part is similar to the proof of the
lemma 13.

To prove the second part, let us observe a fact. Let ˜N i, j
c ⊂ ˜N (c) be the set

consisting of those orbits whose α-limit set is contained in ˜A i
c and the ω-limit set

is contained in ˜A j
c . It is easy to see that this set is a Lipschitz graph of the map

π−1, let N i, j
c denote its projection. Thus, we can find an open neighborhood Oi, j of

∪k 	=i, jsuppµk
c and some c-semi static curve γ: R→ M with ∪t∈Rγ(t) ⊂N i, j

c such
that γ(t) /∈ Oi, j. We introduce non-negative function φ : M → R with suppφ = Ōi, j.
Thus, the minimal measure of the perturbed Lagrangian L− εφ contains only two
ergodic components µ i

c and µ j
c , and the Mañé set contains some c-semi static orbits

for L which connects µ i
c with µ j

c . To construct the pseudo-connecting orbit set we
choose a small open disc O such that γ(t)|k�t�k+t0 ∈O. Thus dγ(t−k)∈ C̃η ,ν ,ψ . Let
ε → 0, we obtain the conclusion in the second part from the upper semi-continuity
on Lagrangian.

The orbits in C̃η ,ν ,ψ has some local minimal property as the orbits of the first
type have. To describe it, let us observe a fact first. When the minimal measure has
finite ergodic components, as a set-valued function, the Aubry set is upper semi-
continuous on the cohomology. It is a consequence of fact that the Mañé is same as
the Aubry set when the minimal measure is uniquely ergodic.

For each Aubry class A i
c we choose a small neighborhood Ui. When |c′ − c| is

sufficiently small, each Aubry class A i
c′ is contained in some Ui. For each dγ ∈

C̃η ,ν ,ψ , if α(dγ)⊂ ˜A i
c and ω(dγ)⊂ ˜A j

c′ , there exist two open balls O0 and O1 such
that Ō0 ⊂Ui, Ō1 ⊂Uj, γ(−T0) ∈ O0, γ(T1) ∈ O1 and

hT0,T1
η ,ν ,ψ(m0,m1)+h∞c (ξ ,m0)+h∞c′(m1,ζ ) (10)

−
∫ T1

−T0

Lη ,ν ,ψ(dγ(t), t)dt−T ′0α(c)−T ′1α(c′)

> 0.
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holds for any (m0,m1) ∈ ∂ (O0×O1) and for each ξ ∈M0(c)∩π(α(dγ)|t=0) and
each ζ ∈M0(c′)∩π(ω(dγ)|t=0). In this case, we call the element of C̃η ,ν ,ψ local
minimal orbits of the second type.

We consider another type of local minimal orbits which connects ˜N (c) with
˜N (c′).

Lemma 16 We assume that there is an open neighborhood V of N0(c) such that
H1(V,R) = 0, then there exists small ε > 0, for each c′ with ‖c′ − c‖� ε there exist
a closed 1-form η and a U-step 1-form µ such that [η ] = c, µ̄ = c′ − c and each
orbit in C̃η ,µ is an orbit of the Lagrange flow φ t

L.

We call dγ in such C̃η ,µ local minimal orbit of the third type. Earlier version of this
lemma was formulated by Mather in [Ma2].

Proof. Since V is topologically trivial, for any c′ ∈ H1(M,R) there exists a closed
1-form µ̄ such that suppµ̄ ∩V = ∅. We take the U-step 1-form in the way such that
µ = 0 when t � 0 and µ = µ̄ when t � t0 where t0 > 0 is suitably small. By the
upper-semi continuity of the map (η ,µ)→ C̃η ,µ , we find that dγ(t) (0 � t � t0) is
in V if dγ ∈ C̃η ,µ and if ‖c′ − c‖ is sufficiently small. Therefore, dγ is a solution of
the Euler–Lagrangian equation determined by L.

5 Construction of global connecting orbits

We call dγ: R→ R is a global connecting orbit if its ω-limit set ω(dγ) ⊂ ˜A (c0),
its α-limit set α(dγ) ⊂ ˜A (c1) and the variation from c0 to c1 is large. A sufficient
condition for the existence of orbit connecting ˜A (c0) to ˜A (c1) is the existence of a
generalized transition chain in H1(M,R) that connects c0 to c1.

Definition 2 Let M̃ be a finite covering of a compact manifold M and let c0, c1 be
two cohomolgy classes in H1(M,R). We say that c0 is joined with c1 by a general-
ized transition chain if there is a continuous curve Γ : [0,1]→ H1(M,R) such that
Γ (0) = c0, Γ (1) = c1, for each τ ∈ [0,1] at least one of the following cases takes
place:

(I) There is small δτ > 0 such that π1N0(Γ (τ),M̃)\(A0(Γ (τ),M)+δτ) is non-
empty and totally disconnected

(II) The Aubry set consists of m classes (m > 1), A (Γ (τ)) = ∪m
i=1A

i
Γ (τ)

(III) N0(Γ (τ),M) is homologically trivial, i.e. it has a neighborhood Uτ such
that the inclusion map H1(Uτ ,R)→ H1(M,R) is a zero map

Theorem 10 Let M = T
n, M̃ = T

i−1× (2T)×T
n−i. Let Γ : [0,1]→ H1(M,R) be

a generalized transition chain connects c0 to c1. Then there exists an orbit of the
Euler–Lagrange flow φ t

L dγ: R → T M that connects ˜A (c0) to ˜A (c1): α(dγ) ⊂
˜A (c0) and ω(dγ)⊂ ˜A (c1).
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Proof. Since the map c → ˜N (c,M) is upper semi-continuous, once the Mañé set
˜N (Γ (τ)) is in the case I (or III), then for those τ ′ closed to τ , the ˜N (Γ (τ)) is also

in the case I (or III). The case II does not have such property.
For each τ ∈ [0,1], according to the study in the last section, each Aubry set

˜A (cτ) can be connected to some ˜A (cτ ′) by either the first type, or the second, or
the third type of local minimal orbits, if τ ′ is close to τ . Thus, there is a sequence
0 = τ0 < τ1 < · · · < τk = 1 such that for each 0 � j < k ˜A (Γ (τ j)) is connected to

˜A (Γ (τ j+1)) by some local minimal orbits.
For the convenience of notation, we divide the subindex set into m groups

{0,1, · · ·k} = {0,1, · · · , i1, i1 + 1, · · · , i2, · · · , im− 1, im = k}. The rule to make such
division is that for all i = i j, i j + 1, · · · , i j+1 − 1, ˜A (τi) is connected to ˜A (τi+1)
by a local minimal orbit of the same type. Let Λ1, Λ2 and Λ3 be the subset of
{i1, i2, · · · , im}, Λ1∪Λ2∪Λ3 = {i1, i2, · · · im}, Λi∩Λ j = ∅ for i 	= j. If i j ∈Λı, then
for all i = iı, iı + 1, · · · , iı+1− 1, ˜A (τi) is connected to ˜A (τi+1) by a local mini-
mal orbit of the ı-th type (ı-th = first, second, or third). In the following we write
ci = Γ (τi).

More precisely, for each integer i ∈⋃
i j∈Λ1

{i j, i j +1, · · · , i j+1−1}:
1. There exists a local minimal orbit of the first type dγi: R → T M such that

it solves the the Euler–Lagrange equation determined by L, α(dγi) ⊂ ˜A (ci) and
ω(dγi)⊂ ˜A (ci+1).

When ˜A (ci) is connected to ˜A (ci−1) by dγi−1, and connected to ˜A (ci+1) by
dγi, we write ˜A −(ci) the ci-static class which contains the α-limit set α(dγi), write

˜A +(ci) the ci-static class which contains the ω-limit set ω(dγi). A −(ci) is not
necessarily the same as A +(ci). According to Theorem 9, there exist some Aubry
classes ˜A −(ci) = ˜A 1(ci), ˜A 2(ci), · · · , ˜A ik(ci) = ˜A +(ci) and semi-static curves γ j

i
( j = 1,2, · · · , ik−1) such that α(dγ j

i )⊆ ˜A j(ci) and ω(dγ j
i )⊆ ˜A j+1(ci);

2. Given a small number λi there is a non-negative function ψi(x, t) � λi such
that ψi = 0 when t ∈ (−∞,0]∪ [1,∞). For each fixed t, the support of ψi is contained
in a small neighborhood of the open disk Oi and ψi = constant when it is restricted
in Oi.

Oi∩ (N (ci,M̃)|0�t�t0\(A (ci)+δ )) 	= ∅,

∂Oi∩N (ci,M̃)|0�t�t0 = ∅,

Oi∩ (A (ci)+δ ) = ∅;

3. There exist a closed 1-forms ηi with [ηi] = ci and a U step 1-form µi such
that the restriction on {t � t0} is a closed 1-form µ̄i on M with [µ̄i] = ci+1− ci. The
support of µi is disjoint with Oi. According to the lemma 4.2, we can see that the
set C̃ηi,µi,ψi(M̃) has the property:

∅ 	= π1Cηi,µi,ψi(M̃)\Cηi,µi,ψi(M)|0�t�t0 ⊂ Oi, (1)

each orbit dγ(t) ∈ C̃ηi,µi,ψi(M̃)\C̃ηi,µi,ψi(M)|t determines a local minimal orbit of L
of the first type, which connects ˜A (ci) to ˜A (ci+1). Consequently, there exist two
open disks V−i and V +

i+1 with V̄−i ⊂ (A −
0 (ci) + δ )\A0(ci), V̄ +

i+1 ⊂ (A +
0 (ci+1) +

δ )\A0(ci+1), two positive integers T̃ 0
i , T̃ 1

i and a positive small number ε∗i > 0 such
that
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min
{

h∞ci
(ξ ,m0)+h

T̃ 0
i ,T̃ 1

i
ηi,µi,ψi,e1(m0,m1)+h∞ci+1

(m1,ζ ) :

(m0,m1) ∈ ∂ (V−i ×V +
i+1)

}

� min
{

h∞ci
(ξ ,m0)+h

T̃ 0
i ,T̃ 1

i
ηi,µi,ψi,e1(m0,m1)+h∞ci+1

(m1,ζ ) :

(m0,m1) ∈V−i ×V +
i+1

}
+5ε∗i (2)

where ξ ∈M0(ci),ζ ∈M0(ci+1).
For each integer i ∈ ⋃

i j∈Λ2
{i j, i j + 1, · · · , i j+1− 1}, the situation is similar, the

difference is that we do not need to lift M to its covering M̃.
1. There exists a local minimal orbit of the second type dγi: R→ T M such that

it solves the the Euler–Lagrange equation determined by L, α(dγi) ⊂ ˜A (ci) and
ω(dγi)⊂ ˜A (ci+1):

2. Given a small number λi there is a non-negative function ψi(x, t) � λi such
that ψi = 0 when t ∈ (−∞,0]∪ [1,∞). For each fixed t, the support of ψi is contained
in a small neighborhood of the open disk Oi and ψi = constant when it is restricted
in Oi.

Oi∩ (N (ci)|0�t�t0\(A (ci)+δ )) 	= ∅,

∂Oi∩N (ci)|0�t�t0 = ∅, Oi∩ (A (ci)+δ ) = ∅;

3. There exist a closed 1-forms ηi with [ηi] = ci and a U step 1-form µi such
that the restriction on {t � t0} is a closed 1-form µ̄i on M with [µ̄i] = ci+1− ci. The
support of µi is disjoint with Oi. According to lemma 15, we can see that the set
C̃ηi,µi,ψi(M) has the property:

∅ 	= Cηi,µi,ψi(M)⊂ Oi, (3)

each orbit dγ(t) ∈ C̃ηi,µi,ψi(M) determines a local minimal orbit of L of the second
type, which connects ˜A (ci) to ˜A (ci+1). There are ˜A j

ci ⊂ ˜A (ci), ˜A k
ci+1

⊂ ˜A (ci+1)
and an orbit dγ ∈ C̃ηi,µi,ψi(M) such that α(dγ) ⊂ ˜A j

ci and ω(dγ) ⊂ ˜A k
ci+1

. Conse-

quently, there exist two open disks V−i and V +
i+1 with V̄−i ⊂ (A j

ci |t=0 + δ )\A0(ci),
V̄ +

i+1 ⊂ (A k
ci+1
|t=0 +δ )\A0(ci+1), two positive integers T̃ 0

i , T̃ 1
i and a positive small

number ε∗i > 0 such that

min
{

h∞ci
(ξ ,m0)+h

T̃ 0
i ,T̃ 1

i
ηi,µi,ψi(m0,m1)+h∞ci+1

(m1,ζ ) :

(m0,m1) ∈ ∂ (V−i ×V +
i+1)

}

� min
{

h∞ci
(ξ ,m0)+h

T̃ 0
i ,T̃ 1

i
ηi,µi,ψi(m0,m1)+h∞ci+1

(m1,ζ ) :

(m0,m1) ∈V−i ×V +
i+1

}
+5ε∗i (4)

where ξ ∈A j
ci |t=0,ζ ∈A k

ci+1
|t=0.
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For each integer i∈⋃
i j∈Λ3

{i j, i j +1, · · · , i j+1−1}, there exist two closed 1-forms
ηi, µ̄i defined on M, a U-step 1-form µi defined on (u, t) ∈M×R and an open set
Ui ⊂ M such that [ηi] = ci, µi is closed on Ui× [0, t0], µi = 0 when t � 0, µi = µ̄i
when t � t0 > 0, [µ̄i] = ci+1− ci and there is a small number δi > 0 such that

Cηi,µi(t)+δi ⊂Ui, when t ∈ [0, t0]. (5)

All orbits in C̃ηi,µi are the local minimal orbits of the second type of L, they connect
˜N (ci) to ˜N (ci+1).
By the compactness of the manifold M, for a small ε∗i > 0 there exists (T̆ 0

i , T̆ 1
i ) =

(T̆ 0
i , T̆ 1

i )(ε∗i ) ∈ (Z+,Z+) such that

hT0,T1
ηi,µi (m0,m1) � h∞ηi,µi

(m0,m1)− ε∗i (6)

holds for all T0 � T 0
i , T1 � T 1

i and for all (m0,m1) ∈ M×M. Obviously, given
(m0,m1) there are infinitely many T0 � T 0

i and T1 � T 1
i such that

|hT0,T1
ηi,µi (m0,m1)−h∞ηi,µi

(m0,m1)|� ε∗i . (7)

Let γi(t,m0,m1,T0,T1) : [−T0,T1]→M be the minimizer of hT0,T1
ηi,µi (m0,m1), it follows

from lemma 8 that if ε∗i > 0 is sufficiently small, T0 > T̆ 0
i and T1 > T̆ 1

i are chosen
sufficiently large so that (7) holds, then

dγi(t,m0,m1,T0,T1) ∈ C̃ηi,µi(t)+δi, ∀ 0 � t � 1. (8)

By the Lipschitz property of hT0,T1
ηi,µi (m0,m1) in (m0,m1) there exist T̂ 0

i (ε∗i ) > T̆ 0
i (ε∗i )

and T̂ 1
i (ε∗i ) > T̆ 1

i (ε∗i ) so that for each (m0,m1) there are Tj = Tj(m0,m1) with
T̆ j

i (ε∗i ) � Tj � T̂ j
i (ε∗i ) ( j = 0,1) such that both (7) and (8) hold. Note that for dif-

ferent (m0,m1) we may need different Tj � T̆ j
i ( j = 0,1).

Before we formulate the variational principle, let us observe some fact.
Let us consider these two orbits of the Lagrangian flow: one orbit of φ t

L, dγ:
R→ T M, has the property that the α-limit set α(dγ) ⊆ ˜A (c) and the ω-limit set
ω(dγ)⊆ ˜A (c′), another orbit of φ t

L, dγ ′: R→ T M, has the property that the α-limit
set α(dγ ′) ⊆ ˜A (c′) and the ω-limit set ω(dγ ′) ⊆ ˜A (c′′). It is not necessary that
dc′(ω(dγ),α(dγ ′)) = 0. However, under the condition II, we can use some c′-semi
static orbits to connect them in the sense of pseudo-metric dc′ (cf Theorem 9).

Proposition 17 Assume the Aubry distance from an Aubry class A i
0(c) to other

Aubry classes has a positive lower bound, dc(A i
0(c),A j

0 (c)) � d > 0 for all j 	= i,
then there is an open neighborhood Ni

c ⊃ A i
0(c), for all m0,m1 ∈ Ni

c and for all
x ∈A i

0(c), we have

h∞c (m0,x)+h∞c (x,m1) = h∞c (m0,m1); (9)
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for all m0,m1 ∈ Ni
c and any x ∈A0(c)\A i

0(c) we have

h∞c (m0,x)+h∞c (x,m1) � h∞c (m0,m1)+
d
2
. (10)

Proof. For each pair of points (m0,m1) ∈ M×M, we claim that there exists some
Aubry class A j

0 (c) such that

h∞c (m0,m1) = h∞c (m0,ξ )+h∞c (ξ ,m1)

holds for each ξ ∈A j
0 (c). Indeed, let ki →∞ be a subsequence of integers such that

lim
i→∞

hki
c (m0,m1) = h∞c (m0,m1)

let γki
c : [0,ki]→M be the minimizer for hki

c (m0,m1). For any large but finite number
N > 0, the set {γki

c |[0,N]} is compact in C1-topology, thus we obtain forward semi
static curve γs

c : [0,∞)→M. The ω-limit set of dγs
c must be some Aubry class, let’s

say ω(dγs
c)⊆A i(c). Obviously, for any ξ ∈A i(c) the equality (9) holds.

Choose a neighborhood Ni
c of A i

0(c) such that

Ni
c = {m ∈M : dc(m,x) � d

6max{1,CL}
, ∀x ∈A i

0(c)}

where CL is the Lipschitz constant of the barrier function. Given m ∈ Ni
c, we claim

that (9) and (10) hold if we let m0 = m1 = m. In fact, let ki → ∞ be a sequence such
that limki→∞ hki

c (m,m) = h∞c (m,m) and let γki
m (t): [0,ki] → M be the minimizer of

hki
c (m,m), the ordinary distance d(γki

m (t),A j
0 (c)) � d′ > 0 for all integer t ∈ [0,ki]

and j 	= i. Otherwise we would obtain from the property that dc(A i
0(c),A j

0 (c)) �
d > 0 for all j 	= i and the Lipschitz property of hc(x,y) on x and y that

h∞c (m,m) � d−2CL
d

6max{1,CL}
� 3

5
d.

On the other hand, the Lipschitz property of the Barrier function Bc(x) in x induces
that

h∞c (m,m) � 2
5

d.

This contradiction verifies our claim.
Now we consider any two points m0,m1 ∈ Ni

c. For any x ∈ A j
0 (c) with j 	= i,

we let ζ i
u(t,m0,x): [0,ki]→M be the curve which minimizes the quantity hki

c (m0,x)
and limki→∞ hki

c (m0,x) = h∞c (m0,x), let ζ i
s(t,x,m1): [0,k′i]→M be the curve which

minimizes the quantity hk′i
c (x,m1) and limk′i→∞ hk′i

c (x,m1) = h∞c (x,m1). Let � = 0,1,

γ i
m�

: [0,ki
�] → M be the minimizer of h

ki
�

c (m�,m�) with limki
�→∞ h

ki
�

c (m�,m�) =

h∞c (m�,m�), clearly ∃x� ∈ A i
0(c) and integer ti

m�
∈ [0,ki

�] such that γ i
m�

(ti
�) → x�
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and ti
� → ∞ as ki

� → ∞. Let ξ i
01: [0,ki

01] → M be the minimizer of h
ki

01
c (x0,x1)

with limki
01→∞ h

ki
01

c (x0,x1) = h∞c (x0,x1), let ξ i
10: [0,ki

10] → M be the minimizer of

h
ki

10
c (x1,x0) with limki

10→∞ h
ki

10
c (x1,x0) = h∞c (x1,x0). Given arbitrarily small δ > 0,

we have sufficiently large ki, k′i, ki
0, ki

1, ki
01 and ki

10 such that

|h∞c (m0,x)−hki
c (m0,x)|< δ ,

|h∞c (x,m1)−hk′i
c (x,m1)|< δ ,

|h∞c (m�,m�)−h
ki
�

c (m�,m�)|< δ , � = 0,1

|h∞c (x0,x1)−h
ki

01
c (x0,x1)|< δ ,

|h∞c (x1,x0)−h
ki

10
c (x1,x0)|< δ ,

Since x0,x1 ∈A i
0(c), we have dc(x1,x0) = 0. Consequently,

h
ti
0

c (m0,x0)+h
ki

01
c (x0,x1)+h

ki
1−ti

1
c (x1,m1) (11)

+h
ti
1

c (m1,x1)+h
ki

10
c (x1,x0)+h

ki
0−ti

0
c (x0,m0)

� 2
6

d +6δ .

Since x is in another Aubry class, we have

hki

c (m0,x)+hk′i
c (x,m1) (12)

+h
ti
1

c (m1,x1)+h
ki

10
c (x1,x0)+h

ki
0−ti

0
c (x0,m0)

�d− 1
6

d−5δ .

Because δ is arbitrarily small, we obtain from (11) and (12) that

h∞c (m0,x)+h∞c (x,m1)−
1
2

d

�h∞c (m0,x0)+h∞c (x0,x1)+h∞c (x1,m1)
�h∞c (m0,m1)

it verifies (10). Since (10) holds for any point in any other Aubry class, (9) must
hold for some, thus for all x ∈A i

0(c).

Consider each integer i∈⋃
i j∈Λ1∪Λ2

{i j, i j +1, · · · , i j+1−1}. In view of the propo-

sition (17), we see that for any two points m0,m1 ∈ N j
ci there exists T̆i(ε∗i ) > 0, in-

dependent of m0 and m1, such that for all T � T̆i(ε∗i )

hT
ci
(m0,m1) � h∞ci

(m0,ζ )+h∞ci
(ζ ,m1)− ε∗i , ∀ ζ ∈A j

0 (ci), (13)



Variational methods for the problem of Arnold diffusion 359

and there exists T̂i(ε∗i ) > T̆i(ε∗i ) such that for each (m0,m1) ∈ N j
ci ×N j

ci we have
some integers T between T̆i(ε∗i ) and T̂i(ε∗i ) so that

|hT
ci
(m0,m1)−h∞ci

(m0,ζ )−h∞ci
(ζ ,m1)|� ε∗i , ∀ ζ ∈A j

0 (ci). (14)

Since there are finitely many Aubry class for each c, we can choose those T̆i(ε∗i ) and
T̂i(ε∗i ) which apply to each Aubry class.

Let dγi be a local minimal orbit of the first or second type, connecting µci to µci+1 .
The subindex for each Aubry class A j

ci is chosen so that ˜A 1
ci
⊇ ω(dγi−1), ˜A ki

ci ⊇
α(dγi) and there is a ci-semi static orbit connecting ˜A j

ci to ˜A j+1
ci ( j = 1,2, · · · ,ki−

1). The condition II guarantees these orbits possess the property of local minimality:
there exist two open disks V−i, j and V +

i, j+1 with V̄−i, j ⊂ (A j
ci |t=0 +δ )\A0(ci), V̄ +

i, j+1 ⊂
(A j+1

ci |t=0 +δ )\A0(ci), a positive integer Ti, j and a small number ε∗i > 0 such that

min
{

h∞ci
(ξ ,m0)+h

Ti, j
ci (m0,m1)+h∞ci

(m1,ζ ) :

(m0,m1) ∈ ∂ (V−i, j×V +
i, j+1)

}

� min
{

h∞ci
(ξ ,m0)+h

Ti, j
ci (m0,m1)+h∞ci

(m1,ζ ) :

(m0,m1) ∈V−i, j×V +
i, j+1

}
+5ε∗i (15)

where ξ ∈A j
ci |t=0, ζ ∈A j+1

ci |t=0.
We define τi inductively for 0 � i � im. Let τ0 = 0. For each i∈⋃

i j∈Λ1∪Λ2
{i j, i j +

1, · · · , i j+1 − 1} with i− 1 ∈ ⋃
i j∈Λ1∪Λ2

{i j, i j + 1, · · · , i j+1 − 1} also, we define
τi,0,τi,1, · · · ,τi,ik and let τi = τi,0, τi+1 = τi,ik such that

T̃ 1
i−1 + T̆i � τi,1− τi � T̃ 1

i−1 + T̂i, (16)

Ti, j + T̆i � τi, j− τi, j−1 � Ti, j + T̂i, ∀ j = 2,3, · · · , ik−1, (17)

T̃ 0
i + T̆i +Ti,ik−1 � τi+1− τi,ik−1 � T̃ 0

i + T̂i +Ti,ik−1, (18)

see (2) for the definition of T̃ 1
i−1, T̃

0
i , see (13), (14) for the definition of T̆i, T̂i and

see (15) for the definition of Ti, j. For i ∈⋃
i j∈Λ3

{i j, i j +1, · · · , i j+1−1} with i−1 ∈⋃
i j∈Λ3

{i j, i j +1, · · · , i j+1} also, we choose those τi such that

max{T̆ 0
i , T̆ 1

i−1 +1}� τi− τi−1 � max{T̂ 0
i , T̂ 1

i−1 +1}. (19)

If there is a local minimal orbit of the first or the second type dγi such that
α(dγi) ⊆ ˜A (ci) and ω(dγi) ⊆ ˜A (ci), there is a local minimal orbit of the third
type dγi+1 such that α(dγi+1)⊆ ˜A (ci+1) and ω(dγi+1)⊆ ˜A (ci+2). In this case we
note that both T̂i+1 and T̂ 0

i+1 can be taken large enough such that for any m0,m1 ∈M
there exist T (m0,m1), T0(m0,m1) with max{T̆i+1, T̆ 0

i+1}� T (m0,m1),T0(m0,m1) �
max{T̂i+1, T̂ 0

i+1} such that (7) holds if we set T0 = T0(m0,m1) there; (14) holds if we
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set T = T (m0,m1) there; (6) and (13) hold for each T0,T � max{T̆i+1, T̆ 0
i+1}. Thus,

we choose τi,0,τi,1, · · · ,τi,ik−1 in the way given by (16) and (17) and choose τi+1 so
that

Ti,ik−1 +max{T̆i, T̆ 0
i+1}� τi+1− τi,ik−1 � Ti,ik−1 +max{T̂i, T̂ 0

i+1}. (20)

If both N0(ci−1) and N0(ci) are homologically trivial and µi can be connected to
µi+1 by local connecting orbits of the first or second type, we can choose suitably
large T̂i and T̂ 1

i and set the range for τi,1,τi,2, · · · ,τi,ik in the way given by (17)
and (18)

T̃ 0
i +max{T̆ 1

i−1, T̆i}� τi,1− τi−1 � T̃ 0
i +max{T̂ 1

i−1, T̂i}. (21)

Consider τ as the time translation τ∗φ(x, t) = φ(x, t +τ) on M×R, let ψi ≡ 0 for
i ∈⋃

i j∈Λ3
{i j, i j +1, · · · , i j+1−1}, we define a modified Lagrangian

L̃ = L−η0−
im−1

∑
i=0

(−τi)∗(µi +ψi). (22)

For i ∈ ⋃
i j∈Λ1∪Λ2

{i j, i j + 1, · · · , i j+1− 1}, we let τ i = (τi,0,τi,1, · · · ,τi,ik−1), for
i ∈⋃

i j∈Λ3
{i j, i j +1, · · · , i j+1−1}, we let τ i = τi. Define

τ = (τ0,τ1, · · · ,τ im−1). (23)

We define an index set for τ:

Λ =
{
τ ∈ Z

im−1 : (16∼ 21) hold
}

. (24)

For i ∈ ⋃
i j∈Λ1∪Λ2

{i j, i j + 1, · · · , i j+1}, we let z±i = (z±i,1,z
±
i,2, · · · ,z±i,ik) and V±i =

(V±i,1,V
±
i,2, · · · ,V±i,ik), and define

z =
(

z−0 ,z+
i ,z−i ,z+

im , i ∈
⋃

i j∈Λ1∪Λ2

{i j, i j +1, · · · , i j+1}
)
, (25)

its domain is restricted in

V =
(

V−0 ,V+
i ,V−i ,V +

im , i ∈
⋃

i j∈Λ1∪Λ2

{i j, i j +1, · · · , i j+1}
)
. (26)

For (m,m′) ∈M×M and z ∈ V, we define

hK,K′

L̃ (m0,m1,z,τ) = inf
∫ K′+T̃ 1

im−1+T̂im +τim−1

−K
L̃(dγ(t), t)dt

+
im−1

∑
i=1

(τi− τi−1)α(ci)+Kα(c0)+K′α(cim)
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where the infimum is taken under the conditions: γ(−K) = m0, γ(K̄′ + τim−1) =
m1; for i ∈ ⋃

i j∈Λ1
{i j, i j + 1, · · · , i j+1 − 1}, [γ|t∈[τi−T̃ 0

i ,τi+T̃ 1
i ]]i 	= 0; for i ∈

⋃
i j∈Λ1∪Λ2

{i j, i j +1, · · · , i j+1−1}, γ(τi− T̃ 0
i ) = z−i,ik , γ(τi + T̃ 1

i ) = z+
i+1,1; γ(τi, j) = z−i, j

and γ(τi, j +Ti, j) = z+
i, j+1 for each j = 1,2, · · · , ik−1.

Let hK,K′

L̃ (m0,m1) be the minimizer of hK,K′

L̃ (m0,m1,z,τ) over V in z and over Λ
in τ respectively:

hK,K′

L̃ (m0,m1) = min
τ∈Λ ,z∈V

hK,K′

L̃ (m0,m1,z,τ),

let Kj,K′j → ∞ be the subsequence such that

lim
Kj ,K′j→∞

h
Kj ,K′j
L̃ (m0,m1) = liminf

K→∞K′→∞
hK,K′

L̃ (m0,m1),

and denote the corresponding minimal curve by γ(t;Kj,K′j,m0,m1), we claim that
dγ(t;Kj,K′j,m0,m1) is a solution of the Euler–Lagrange equation determined by L
if Kj and K′j are sufficiently large. Indeed,

1. For each i ∈⋃
i j∈Λ3

{i j, i j +1, · · · , i j+1−1}, we have

(−τi)∗γ(t;Kj,K′j,m0,m1) ∈ Cηi,µi(t)+δi ⊂Ui, (27)

when τi � t � τi + 1. To see it, let us choose mi = γ(τi−1 + 1), m′i = γ(τi+1). Since
the curve γ(t;Kj,K′j,m0,m1) is the minimizer of hK,K′

L̃ (m0,m1,Z,τ) over Λ , thus

AL̃((−τi)∗γ|τi+1
τi−1+1)+(τi− τi−1 +1)α(ci)+(τi+1− τiα(ci+1)

= inf
ξ (−T0)=mi
ξ (T1)=m′i

T̆ 0
i �T0�T̂ 0

i
T̆ 1
i �T1�T̂ 1

i

∫ T1

−T0

(L−ηi−µi)(dξ (t), t)dt +T0α(ci)+T1α(ci+1).

Thus we obtain (27) from this formula, (5), (8) and (19). Consequently,
γ(t;Kj,K′j)|τi�t�τi+1 falls into the region where (−τi)∗µi is closed. So, dγ(t;Kj,K′j,
m0,m1) is the solution of the Euler–Lagrange equation determined by L when
τi � t � τi +1;

2. For i ∈⋃
i j∈Λ1

{i j, i j +1, · · · , i j+1−1}, we claim that

(−τi)∗γ(t)|0�t�t0 ∈ int(Oi). (28)

It is the consequence of (1). In fact, if dγ ∈ π1C̃ηi,µi,ψi(M̃)\C̃ηi,µi,ψi(M) then γ must
pass through Oi during the time interval [0, t0]. Note, the function Lηi,µi,ψi is no
longer time-periodic, if dγi ∈ π1C̃ηi,µi,ψi(M̃)\C̃ηi,µi,ψi(M), k∗dγi is not a minimizer
of this kind, dγi(k) /∈ π1C̃ηi,µi,ψi(M̃)|t=0 for each k ∈ Z\{0}.
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Given a smooth curve dγ ∈ C̃ηi,µi,ψi(M̃)\C̃ηi,µi,ψi(M), we assume that α(dγ) ⊂
˜A ik
ci and ω(dγ) ⊂ ˜A 1

ci+1
. For any mi ∈ M ik

ci |t=0, mi+1 ∈ M 1
ci+1
|t=0 and , if Z

+ �
T k

0 → ∞ and Z
+ � T k

1 → ∞ (as k → ∞) are two sequences such that γ(−T k
0 )→ mi

and γ(T k
1 )→ mi+1, then

lim
k→∞

∫ T k
1

−T k
0

Lηi,µi,ψi(dγ(t), t)dt +T k
0 α(ci)+T k

1 α(ci+1) = h∞ηi,µi,ψi,e1
(mi,mi+1).

Let ζ : R → M be an absolutely continuous curve such that [ζ ]i 	= 0,
ζ (t ′) /∈ int(Oi) for some t ′ ∈ [0, t0], ζ (−T k

0 ) → mi, ζ (T k
1 ) → mi+1 as k → ∞.

Since C̃ηi,µi,ψi |t=constant is closed, there exists a positive number d > 0 such that

liminf
T k
0→∞

T k
1→∞

∫ T k
1

−T k
0

Lηi,µi,ψi(dζ (t), t)dt +T k
0 α(ci)+T k

1 α(ci+1)

� h∞ηi,µi,ψi,e1
(mi,mi+1)+d.

Recall the construction of the modified Lagrangian L̃ (see (22)) and γ is the mini-
mizer of hK,K′

L̃ (m0,m1,z,τ) over V in z and overΛ in τ respectively. Given any small
number ε > 0, by choosing sufficiently large T̂i− T̆i, we can see that there are suffi-
ciently large K−i ,K+

i ∈ Z with the properties that τi−1 + T̃ 1
i−1 +K−i +K+

i = τi− T̃ 0
i ,

T̆i � K−i +K+
i � T̂i and

‖γ(τi− T̃ 0
i −K+

i )−mi‖< ε, ‖γi(τi + T̃ 1
i +K−i+1)−mi+1‖� ε.

If there was t ′ ∈ [0, t0] such that

(−τi)∗γ(t ′) /∈ int(Oi),

from the Lipschitz continuity of h∞ηi,µi,ψi,ei
(m,m′) in (m,m′) we would obtain

∫ τi+T̃ 1
i +K−i+1

τi−T̃ 0
i −K+

i

Lηi,µi,ψi(dγ(t), t)dt +(T̃ 0
i +K+

i−1)α(ci)+(T̃ 1
i +K−i+1)α(ci+1)

� h∞ηi,µi,ψi,e1
(mi,mi+1)+

3
4

d.

On the other hand, there is suitably large K̄−i , K̄+
i ∈ Z with the properties that T̆i �

K̄−i + K̄+
i � T̂i and

‖γi(τi− T̃ 0
i − K̄+

i )−mi‖� ε, ‖γi(τi + T̃ 1
i + K̄−i+1)−mi+1‖� ε.

Because dγi(t ′) ∈ C̃ηi,µi,ψi |t=t ′ , we have
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∫ τi+T̃ 1
i +K̄−i+1

τi−T̃ 0
i −K̄+

i

Lηi,µi,ψi(dγi(t), t)dt +(T̃ 0
i + K̄+

i−1)α(ci)+(T̃ 1
i + K̄−i+1)α(ci+1)

� h∞ηi,µi,ψi,ei
(mi,mi+1)+

1
4

d

if ε is sufficiently small. It implies that γ is not a minimizer. This contradiction
verifies our claim.

The formula (28) implies that dγ(t;Kj,K′j) is the solution of the Euler–Lagrange
equation determined by L for i ∈⋃

i j∈Λ1
{i j, i j +1, · · · , i j+1−1}.

3. For i ∈ ⋃
i j∈Λ2

{i j, i j + 1, · · · , i j+1− 1}, we claim that (28) also holds. In this
case, we have (3) instead of (1). The argument is the same if we replace the quantity
h∞ηi,µi,ψi,ei

(m0,m1) by h∞ηi,µi,ψi
(m0,m1).

4. We claim that the curve γ does not touch the boundary of V−i,ik at the time
t = τi− T̃ 0

i and does not touch the boundary of V +
i+1,1 at the time t = τi + T̃ 1

i for each
integer i∈⋃

i j∈Λ1
{i j, i j +1, · · · , i j+1−1}. If (γ(τi− T̃ 0

i ),γ(τi + T̃ 1
i ))= (z−i,ik ,z

+
i+1,1)∈

∂ (V−i,ik ×V +
i+1,1), let z+

i,ik
= γ(τi−1,(i−1)k−1 + Ti−1,(i−1)k−1) and z−i+1,1 = γ(τi,1), from

(2) we can see that there exist (z̄−i,ik , z̄
+
i+1,1) ∈V−i,ik×V +

i+1,1 such that for ξ ∈M ik
ci |t=0,

ζ ∈M 1
ci+1
|t=0:

hTi
ci
(z+

i,ik
,z−i,ik)+h

T̃ 0
i ,T̃ 1

i
ηi,µi,ψi,ei(z

−
i,ik

,z+
i+1,1)+hTi+1

ci+1 (z
+
i+1,1,z

−
i+1,1)

�h∞ci
(ξ ,z−i,ik)+h

T̃ 0
i ,T̃ 1

i
ηi,µi,ψi,ei(z

−
i,ik

,z+
i+1,1)+h∞ci+1

(z+
i+1,1,ζ )

+h∞ci
(z+

i,ik
,ξ )+h∞ci+1

(ζ ,z−i+1,1)−2ε∗i

�h∞ci
(ξ , z̄−i,ik)+h

T̃ 0
i ,T̃ 1

i
ηi,µi,ψi,ei(z̄

−
i,ik

, z̄+
i+1,1)+h∞ci+1

(z̄+
i+1,1,ζ )

+h∞ci
(z+

i,ik
,ξ )+h∞ci+1

(ζ ,z−i+1,1)+3ε∗i

�hTi
ci
(z+

i,ik
, z̄−i,ik)+h

T̃ 0
i ,T̃ 1

i
ηi,µi,ψi,ei(z̄

−
i,ik

, z̄+
i+1,1)+hTi+1

ci+1 (z̄
+
i+1,1,z

−
i+1,1)+ ε∗i

where Ti,Ti+1,T ′i ,T
′

i+1 satisfy the condition T̆j � Tj,T ′j � T̂j ( j = i− 1, i). In above
arguments, (13) and (14) are used to obtain the first and the third inequality, (2)
is used to obtain the second inequality. But this contradicts to the fact that γ is a
minimal curve of L̃ on V and Λ . The case for i ∈⋃

i j∈Λ2
{i j, i j +1, · · · , i j+1−1} can

be treated in the same way. Therefore, the minimizer γ is differentiable at the time
t = τi− T̃ 0

i and t = τi + T̃ 1
i for each i.

5. We claim that the curve γ does not touch the boundary of V−i, j at the time t = τi, j

and does not touch the boundary of V +
i, j+1 at the time t = τi, j + Ti, j for each integer

i ∈ ⋃
i j∈Λ1∪Λ2

{i j, i j + 1, · · · , i j+1−1} and j ∈ {1,2, · · · , ik−1}. The demonstration
is similar to the case 4, based on (13), (14) and (15).

Let Kj,K′j → ∞ and let γ∞: R → M be an accumulation point of the curves
{γ(t,Kj,K′j)}. Obviously, α(dγ∞) ⊂ ˜A (c) and ω(dγ∞) ⊂ ˜A (c′). This completes
the proof.
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The Theorem 10 provides us a possible way to prove Arnold diffusion is a generic
phenomenon for positive definite systems. However, the verification of the condi-
tion I is difficult, when the conditions II and III do not hold. It contains two two
key points: for each c in the chain the Aubry set does not generate the first ho-
mology group H1(M,A0(c),Z) 	= 0 and the barrier function is not constant when
it is restricted outside of the Aubry set. In general case, we are unable to show the
genericity of these conditions, however, it can be down in some interesting cases.

6 Application to a priori unstable systems

Here we study a typical example of a priori unstable system:

H(I,φ ,x,y, t) = h0(I)+h1(x,y)+ εP(I,φ ,x,y, t),

where (I,φ) ∈ R×T, (x,y, t) ∈ T
n×R

n×T. Let

L(φ̇ ,φ , ẋ,x, t) = �0(φ̇)+ �1(ẋ,x)+ εL1(φ̇ ,φ , ẋ,x, t)

be the Legendre transformation of the Hamiltonian. We call it priori unstable when
(ẋ,x) = (0,0) is a hyperbolic fixed point which corresponds to the minimum of the
action of �1.

Under the a priori unstable condition, the time-1-map Φ of the Hamiltonian flow
has an invariant cylinder which is a small deformation of the standard cylinder
Σ = {(I,φ) ∈ R×T}. The restriction of Φ on Σ is area-preserving and twist. In
virtue of many works before, we have very well understanding on the dynamics on
the cylinder. Under Legendre transformation, this cylinder and the dynamics have
their correspondence in the space of tangent bundle. Without danger of confusion,
we use the same name for the object and its correspondence under the Legendre
transformation.

Let Γ : [0,1]→ H1(Tn+1,R) be a path such that Γ (s) = (c1(s),0, · · · ,0) where
the first component represents for φ̇ . As the hyperbolic property is assumed, for each
s ∈ [0,1], the Aubry set is in on the cylinder and the support of the minimal measure
is either invariant curve, or the Aubry–Mather set, or the minimal periodic orbit.
Therefore, the condition H1(M,A0(c),Z) 	= 0 is satisfied. To verify the condition:

(I) There is small δτ > 0 such that π1N0(Γ (τ),M̃)\(A0(Γ (τ),M)+δτ) is non-
empty and totally disconnected
We need to study some regularity of the barrier function on c. We find that it is
Hölder continuous with exponent 1

2 at the points where there is an invariant curve.
Consequently, we are able to show this condition is also generic (cf. [CY2]). There-
fore, Arnold diffusion is a generic phenomenon in a priori unstable systems.
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The calculus of variations and the forced
pendulum

Paul H. Rabinowitz1

Abstract Consider the equation of forced pendulum type:

u′′+Vu(t,u) = 0 (∗)

where ′ = d/dt and V is smooth and 1-periodic in its arguments. We will show how
to use elementary minimization arguments to find a variety of solutions of (∗). We
begin with periodic solutions of (∗) and then find heteroclinic solutions making one
transition between a pair of periodics. Then we construct heteroclinics and homo-
clinics making multiple (even infinitely many) transitions between periodics. If time
permits, we may also discuss the construction of related mountain pass orbits of (∗).

1 Introduction

The goal of these lectures is to show how elementary variational techniques, in
particular minimization arguments, can be used to extract a considerable amount
of information about dynamical behavior. We do this for the setting of a forced
pendulum model problem. This is a favorite proving ground for many techniques.
Among works that are related to ours, we mention in particular [Mor], [A], [Ma82],
[Ma93], [B88], [B89], and [Mos86].

The approach taken here uses essentially nothing from the theory of dynam-
ical systems other than the uniqueness of solutions of the initial value problem.
Therefore, these techniques can also be used for certain classes of problems for par-
tial differential equations. In part our arguments are simplifications of ones used
in [RS]. A disadvantage of our approach is that it does not capture finer dynamical
structure that can be obtained using stable and unstable manifolds or notions like
hyperbolicity.

1 University of Wisconsin-Madison, Mathematics Department, 480 Lincon Dr, Madison WI
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Fig. 1 Schematic of the physical pendulum.

Fig. 2 Schematic of an orbit asymptotic from v to w.

Fig. 3 Schematic of an orbit asymptotic from w to v.

The simple pendulum is modeled by u′′+sinu = 0, u representing the angle made
with the vertical direction. More generally we will consider a forced model

(DE) −u′′+Vu(t,u) = 0,

where V satisfies

(V1) V ∈C2(R2,R) and is 1-periodic in t and in u.
Equivalently V ∈C2(T2,R), where T

2 is the 2-torus.

A caveat is in order here: V is the negative of the usual potential energy.

The simplest solutions of (DE) are periodic ones, e.g. if Vu(t,z) = 0 for all t ∈ R

and z ∈ Z, each such z is an equilibrium, and therefore periodic solution of (DE).
By (V1), if v is a solution of (DE), so is v + k for all k ∈ Z. Therefore we can seek
solutions of (DE) that are asymptotic to a pair of periodics v and w.

We say such a solution is heteroclinic from v to w (Fig. 4). Such solutions un-
dergo one ‘transition’. Likewise we can try to find 2, k or infinite transition solutions.
Thus a 2-transition solution is homoclinic to v or w (see Figs. 2–4). It turns out there
are infinitely many solutions of each type, distinguished by the amount of time they
spend near v or w.
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Fig. 4 Graphs of 1-transition orbits between v and w.

w

v

u

Fig. 5 Graphs of 2-transition orbits between v and w.

v+2

v

v+1
u

Fig. 6 A monotonic orbit asymptotic to v in the past and to v+2 in the future.

v+3

v

v+1

v+2u

Fig. 7 An orbit which makes several transitions.

There is another kind of 2-transition solution which is monotone: u(t + 1) >
u(t) (Fig. 1). In the simplest case, such a solution is heteroclinic from v to v + 2.
Likewise, there are k and infinite-translation such solutions, and we can concatenate
these two types of solutions (Fig. 7).

Within each type of solution as well as for the mixed type, one can seek a so-
called symbolic dynamics of solutions that will be described later.

We will show how elementary minimization arguments can be used to find some
of these solutions. Unfortunately we will not have enough time to treat the monotone
and mixed cases. We begin with the simplest case of periodic solutions and then treat
progressively more complex cases.

2 Periodic solutions

Periodic solutions are the easiest to find. We assume V satisfies (V1). Set E =
W 1,2(T1), the class of 1-periodic functions having square integrable derivatives, i.e.

||u||2E = ||u||2W 1,2 =
∫ 1

0

(
(u′)2 +u2)dt.
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Note that u ∈ E implies u ∈C(T1), in fact u ∈C1/2(T1), i.e. u is Hölder continuous
of order 1/2. Let

L(u) =
1
2
|u′|2 +V (t,u),

be the Lagrangian associated with (DE) with the corresponding functional

I(u) =
∫ 1

0
L(u)dt.

Then I ∈ C(E,R) (even C2) and for u,φ ∈ E, the Frechet derivative, I′(u)φ is
given by

I′(u)φ = lim
h→0

1
h
(I(u+hφ)− I(u))

=
∫ 1

0

(
u′φ ′+Vu(t,u)φ

)
dt.

If I′(u) = 0, we say u is a critical point of I and c = I(u) is called a critical value
of I. Note also, if ∫ 1

0

(
u′φ ′+Vu(t,u)φ

)
dt = 0 (1)

for all φ ∈ E, u is called a weak solution of (DE). Then we have a “regularity”
theorem:

Theorem 2.1. u is a classical solution of (DE) if and only if u ∈ E and u is a weak
solution of (DE).

Theorem 2.1 reduces the existence of periodic solutions of (DE) to finding crit-
ical points of I in E. In the study of partial differential equations, such regularity
theorems are often rather delicate. For the above special case, the proof is quite di-
rect. Since the regularity question will also come up in more complicated settings
later, we treat it here for the simplest case.

Proof of Theorem 2.1. If u is a classical solution of (DE), multiplying (DE) by φ ∈ E
and integrating over [0,1] yields (1). Conversely suppose u is a weak solution of (1).
Taking φ = 1 shows ∫ 1

0
V (t,u)dt ≡ [V (t,u)] = 0,

i.e. the constant term in the Fourier expansion of V (t,u) vanishes. It is a calculus
exercise to show there is a unique q ∈C2(T1,R) solving

−q̈+Vu(t,u) = 0 , [q] = 0. (2)

Multiplying (2) by φ ∈ E and integrating over [0,1] shows

∫ 1

0

(
q′φ ′+Vq(t,u)φ

)
dt = 0. (3)
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Subtracting (3) from (1) gives

∫ 1

0

(
u′ −q′

)
φ ′dt = 0 (4)

for all φ ∈ E. Choosing φ = u− q, (4) implies u′ − q′ = 0 and therefore u = q +
const ∈C2(T1,R). 
�

How do we find critical points of I? The simplest possibilities are minima. Thus
set

c = inf
u∈E

I(u). (5)

Note that I is bounded from below by V0 = min
R2 V . Let (un) be a minimizing

sequence for (5), i.e. I(un)→ c as n→ ∞. Therefore there is an M > 0 such that

I(un) =
∫ 1

0

(
1
2
(u′n)

2 +V (t,un)
)

dt ≤M.

Hence
||u′n||2L2 ≤ 2(M−V0). (6)

Observe that un + jn is also a minimizing sequence for (5) for any choice of jn ∈
Z. Therefore un may not be bounded. But we can choose jn so that [un + jn] ∈ [0,1].
Thus without loss of generality, [un] ∈ [0,1). Since

un(t)−un(x) =
∫ t

x
u′n(s)ds,

one has

un(t) = [un]+
∫ 1

0

(∫ t

x
u′n(s)ds

)
dx,

and therefore

|un(t)| ≤ 1+
∫ 1

0
||u′n||L2 dx = 1+ ||u′n||L2 . (7)

Now (6) and (7) show un is bounded in the Hilbert space E. Therefore there is a
v ∈ E such that along a subsequence, un ⇀ v (i.e. weakly in E). The functional I is
weakly lower semicontinuous. Hence

c≤ I(v)≤ lim
n→∞

I(un) = inf
E

I = c. (8)

Thus (8) shows I(v) = c and v minimizes I over E. Moreover v is a critical point of
I on E. Indeed take φ ∈ E. Then ψ(h)≡ I(v+hφ) ∈C1(R,R) and has a minimum
at h = 0. Hence

ψ ′(0) = 0 = I′(v)φ (9)

for all φ ∈ E. Thus v is a weak and therefore by Theorem 2.1, a classical solution of
(DE).
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As was noted above, the minimizing sequence {un} is bounded in E and there-
fore in C1/2(T1). Hence the subsequence {un} can be assumed to converge to v in
L∞(T1). Although it is not important here, for future reference, we have a stronger
form of convergence:

Proposition 2.1. un → v in E (i.e. in W 1,2(T1)).

Proof. If not there is a δ > 0 such that ||u′n− v′||L2 ≥ δ . Set φn = un− v. Then

I(un) = I(v+φn)

=
∫ 1

0

[
1
2
|v′|2 + v′φ ′n +

1
2
|φ ′n|2 +V (t,v+φn)−V (t,v)+V (t,v)

]
dt

≥ I(v)+
1
2
δ 2 +

∫ 1

0

[
v′φ ′n +V (t,v+φn)−V (t,v)

]
dt. (10)

As n→ ∞, I(un)→ I(v) while the term on the right in (10) approaches zero. Thus
0≥ 1/2δ 2, a contradiction. 
�

Set M0 = {u ∈ E : I(u) = c}. We have shown M0 	= /0.

Example 1: If V ≡ 0, then M0 = R.

Example 2: If V = a(t)(cos(2πu−1)), then M0 = Z.

Theorem 2.2. M0 is an ordered set, i.e. v,w ∈M0 implies v≡ w, v < w, or v > w.

Proof. If not, there are points ξ ,η ∈ [0,1] such that v(ξ ) = w(ξ ) and, e.g. v(η) <
w(η). Set φ = max(v,w) and ψ = min(v,w). Then φ ,ψ ∈ E and

2c≤ I(φ)+ I(ψ) = I(v)+ I(w) = 2c. (11)

Hence by (11), I(φ) = c = I(ψ) and φ ,ψ ∈M0. Consequently by Theorem 2.1, φ
and ψ are classical 1-periodic solutions of (DE). Set χ = φ −ψ so χ ≥ 0, χ(ξ ) = 0
and therefore χ ′(ξ ) = 0, and χ(η) > 0. (DE) implies

χ ′′+Vu(t,φ)−Vu(t,ψ) = 0 = χ ′′+ f (t)χ , (12)

where

f (t) =

{
Vu(t,φ(t))−Vu(t,ψ(t)

ψ(t)−φ(t) if φ(t) > ψ(t)
Vuu(t,φ(t)) if φ(t) = ψ(t)

and f ∈C(T1,R). Thus χ is a C2 solution of the linear equation (12) with χ(ξ ) =
0 = χ ′(ξ ). Therefore the uniqueness of solutions to the initial value problem for
(12) implies χ ≡ 0, contrary to χ(η) > 0. Hence M0 is ordered. 
�

Next let k ∈ Z. Note that V is k-periodic in t so we can seek k-periodic solutions
of (DE). Let u ∈W 1,2(kT

1)≡ Ek. Set

Ik(u) =
∫ k

0
L(u)dt,
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and
αk = inf

u∈Ek
Ik(u).

By our above arguments,

Mk ≡ {u ∈ Ek : Ik(u) = αk} 	= /0,

any u ∈Mk is a classical k-periodic solution of (DE), and Mk is an ordered set.
Surprisingly we gain nothing new by varying k as the next result shows:

Proposition 2.2. M0 = Mk and αk = kc.

Proof. Let v ∈ Mk. Then v(·+ 1) ∈ Mk. If v(t) = v(t + 1) for all v ∈ Mk, then
Mk = M0 and αk = kc. Otherwise for some v ∈Mk,

(a) v(t +1) < v(t),

or

(b) v(t +1) > v(t).

If (a) occurs, v(t) = v(t + k) < · · · < v(t + 1) < v(t), a contradiction, and similarly
for (b). 
�

Proposition 2.2 can be used to show that the members of M0 possess another mini-
mality property.

Proposition 2.3. Let v ∈M0 and a,b ∈ R with a < b. Set

A = {w ∈W 1,2[a,b] : w(a) = v(a),w(b) = v(b)}

and for w ∈ A, let I (w) =
∫ b

a L(w)dt. Then

I (v) = inf
w∈A

I (w)≡ cA. (13)

Proof. I is weakly lower semi-continuous so as earlier, there is a u ∈ A such that
I (u) = cA. Choose α < a, and β > b with α,β ∈ Z. Extend u to [α,β ] via u = v in
[α,a]

⋃
[b,β ] and further extend u to R as a β−α periodic function. Hence u∈Eβ−α

so by Proposition 2.2,
Iβ−α(v)≤ Iβ−α(u). (14)

But

Iβ−α(v) =
∫ a

α
L(v)dt +I (v)+

∫ β

b
L(v)dt

≥
∫ a

α
L(u)dt +I (u)+

∫ β

b
L(u)dt

= Iβ−α(u). (15)

Thus by (14)–(15), I (v) = I (u) = cA. 
�
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Remark: The minimization problem (13) is a special case of

inf
w∈B

I (w) (16)

where
B = {w ∈W 1,2[a,b] : w(a) = r,w(b) = s}.

By the argument of (5)–(9), problem (16) has a minimum which is a classical solu-
tion of (DE). In several future arguments we will use this observation to establish
that the minimizers of certain variational problems are in fact classical solutions of
(DE).

Returning to M0, since it is ordered, either {(t,u(t)) | t ∈ R,u ∈M0} = R
2, i.e.

M0 foliates R
2, or there are points (x,z) ∈ R

2 such that z 	= u(x) for any u ∈M0,
i.e. M0 merely laminates R

2. In this latter case there is a smallest w ∈ M0 and
largest v ∈M0 such that v(x) < z < w(x). Hence by Theorem 2.2, v(t) < w(t) for
all t ∈R. We then call v and w a gap pair. It is known that this latter case is generic;
indeed given any v∈M0, there is a W ∈C2(T1,R) such that the M0 associated with
V + εW is {v+ k |k ∈ Z} for all small ε > 0 [RS].

3 Heteroclinic solutions

Suppose v,w ∈M0 are a gap pair. We seek solutions of (DE) that are heteroclinic
from v to w (or from w to v). A natural approach is to try to find them as minimiz-
ers of

∫
R

L(u)dt over a class of functions having the desired asymptotic behavior.
However if

∫ 1
0 L(v)dt = c =

∫ 1
0 L(w)dt 	= 0, then for each admissible function u,∫

R
L(u)dt will be infinite. Thus this approach must be modified. The above func-

tional must be “renormalized” so that it is finite on the above class of functions.
This can be done merely assuming (V1), but it is technically simpler to assume V

is also time reversible. Hence suppose

(V2) V (−t,z) = V (t,z) for all t,z ∈ R

A key consequence of (V2) is:

Proposition 3.1. If V satisfies (V1) and (V2),

ĉ≡ inf
u∈W 1,2[0,1]

I(u) = c (1)

and if u ∈M0, then u(t) = u(−t).

Proof. Set M̂ = {u ∈W 1,2[0,1] : I(u) = ĉ}. The existence argument of the previous
section implies M̂ 	= /0. Clearly ĉ≤ c. To get equality, let u ∈W 1,2[0,1]. Then

I(u) =
∫ 1/2

0
L(u)dt +

∫ 1

1/2
L(u)dt ≡ α +β .
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Say α ≤ β . Define φ(t) = u(t) for 0≤ t ≤ 1/2, and φ(t) = u(1− t) for 1/2≤ t ≤ 1.
Then φ(0) = φ(1) so φ extends naturally to an element of E and by (V2), I(φ) =
2α ≤ I(u). Therefore

c = inf
E

I ≤ inf
W 1,2[0,1]

= ĉ

so c = ĉ and M0 ⊂ M̂. But if u ∈ M̂, then I(φ) = c so φ ∈ M0. Since φ ≡ u
on [0,1/2], uniqueness of solutions of the initial value problem for (DE) implies
u≡ φ on [0,1], i.e. u ∈M0. Moreover u(t) = u(1− t) = u(−t) via the 1-periodicity
of u. 
�

With the aid of Proposition 3.1, a renormalized functional can be introduced. For
p ∈ Z and u ∈W 1,2

loc (R,R), define

ap(u)≡
∫ p+1

p
L(u)dt− c.

By Proposition 3.1, ap(u)≥ 0 for all such p and u. Now we define the renormalized
functional:

J(u) = ∑
p∈Z

ap(u).

Thus J(u)≥ 0.
With v, w a gap pair, we define,

Γ−∞ ≡ Γ−∞(v,w)

≡ {u ∈W 1,2
loc (R,R) : ||u− v||L2[i,i+1] → 0, i→−∞}

Γ∞ ≡ Γ∞(v,w)

≡ {u ∈W 1,2
loc (R,R) : ||u−w||L2[i,i+1] → 0, i→ ∞}

and take as the associated class of admissible functions

Γ1 ≡ Γ1(v,w)≡ {u ∈W 1,2
loc (R,R) : v≤ u≤ w}∩Γ−∞∩Γ∞

Clearly Γ1 	= /0 and there are u’s in Γ1 such that J(u) < ∞. Define

c1 ≡ c1(v,w)≡ inf
u∈Γ1

J(u). (2)

Then we have
Theorem 3.1. If V satisfies (V1) - (V2), and v, w are a gap pair, then

1. M1 ≡M1(v,w)≡ {u ∈ Γ1 : J(u) = c1} 	= /0.
2. Any U ∈M1 is also a classical solution of (DE).
3. u < U < U(·+1) < w.
4. M1 is an ordered set.
5. Any U ∈M1 is minimal in the sense of Proposition 2.3.
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Proof. Let {uk} be a minimizing sequence for (2). Since we are dealing with an
unbounded domain, some extra care must be taken here to ensure that {uk} has a
nontrivial limit. E.g. if M1 	= /0 and U ∈M1, uk = U(·− k) ∈ Γ1 and uk converges
in C2

loc to v /∈ Γ1. To avoid such complications, {uk} will be normalized as follows.
If u ∈Γ1 so is u(·− l) for any l ∈ Z and J(u(·− l)) = J(u). As l→−∞, u|l+1

l → v in
L2 and as l →∞, u|l+1

l → w in L2. Therefore there is a unique l = l(u) ∈ Z such that

{∫ i+1
i (u(t− l)− v(t))dt < 1

2
∫ 1

0 (w− v)dt, i < 0, i ∈ Z∫ 1
0 (u(t− l)− v(t))dt ≥ 1

2
∫ 1

0 (w− v)dt.
(3)

Thus without loss of generality, {uk} can be chosen so that l(uk) = 0.
Since {uk} is a minimizing sequence, there is an M > 0 such that for all k ∈ N,

J(uk)≤M. (4)

Hence for all p ∈ N,

p

∑
−p

ai(uk) =
∫ p+1

−p
L(uk)dt− (2p+1)c≤M (5)

and (5) implies ∫ p+1

−p
|u′k|2 dt ≤M1, (6)

where M1 depends on p but not k. Since v≤ uk ≤w, {uk} is bounded in W 1,2
loc (R,R).

Consequently there is a U ∈W 1,2
loc such that along a subsequence uk →U weakly in

W 1,2
loc and in L∞

loc. (In fact in the spirit of Proposition 2.1, uk →U in W 1,2
loc along a

subsequence, but we do not need this additional information). Since
∫ p+1
−p L(u)dt is

weakly lower semi-continuous,

p

∑
i=−p

ai(U)≤M

for all p ∈ N and hence J(U)≤M. Moreover by (3),

{∫ i+1
i (U− v)dt ≤ 1

2
∫ 1

0 (w− v)dt, i < 0, i ∈ Z∫ 1
0 (U− v)dt ≥ 1

2
∫ 1

0 (w− v)dt.
(7)

We claim U ∈ Γ1. The L∞
loc convergence of {uk} implies v ≤ U ≤ w. Thus we

need only show U satisfies the asymptotic requirements of Γ1. To do so, note first
that since J(U) < ∞, ap(U)→ 0 as |p| → ∞, i.e.

∫ p+1
p L(U)dt → c as |p| → ∞. Set

Up(t) = U(t + p) for t ∈ [0,1]. Then Up ∈W 1,2[0,1] and I(Up)→ c as |p| → ∞.
Hence as |p| → ∞, {Up} is a minimizing sequence for (1). Consequently along a
subsequence {Up} converges weakly in W 1,2 and strongly in L∞ to u± ∈M0. But
v≤Up ≤ w implies either u± = v or u± = w. By (7), as p→−∞,
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1
2

∫ 1

0
(w− v)dt ≥

∫ p+1

p
(U− v)dt =

∫ 1

0
(Up− v)dt →

∫ 1

0
(u−− v)dt.

Therefore u− = v and since v is the only possible limit of a subsequence of {Up} as
p→−∞, the full sequence Up → v as p→−∞.

It remains to prove that Up → w as p → ∞. For this, we no longer have (7)
to help as for p → −∞, so more work is required. Following the argument of
Proposition 2.1, we can assume Up → u+ in W 1,2[0,1] along our subsequence. In
fact, Up → u+ along the full sequence as p → ∞ for otherwise there are a pair of
subsequences such that Up → v in W 1,2 along the first, and Up → w in W 1,2 along
the second as p → ∞. But Up cannot only be close (in W 1,2[0,1] and therefore in
L∞[0,1]) to both v and w. Therefore there is an ε > 0 and a third subsequence such
that along it, ||Up−φ ||W 1,2[0,1] ≥ ε as p→ ∞ for φ = v and φ = w.

Now we have

Lemma 3.1. For any ε > 0, there is a γ(ε) > 0 such that ||Up − φ ||W 1,2[0,1] ≥ ε
implies I(Up)≥ c+ γ(ε)

Proof. Otherwise, there is a sequence of p’s going to infinity such that I(Up)→ c
while ||Up − φ ||W 1,2[0,1] ≥ ε . As above along a subsequence, Up → v or w in
W 1,2[0,1], a contradiction. 
�

Completion of the Proof of Theorem 3.1. Let S = {p∈N : ||Up−u+||W 1,2 [0,1]≥ ε}.
Then by Lemma 3.1,

J(U)≥ ∑
p∈S

ap(U)≥ ∑
p∈S

γ(ε) = ∞,

contrary to J(U)≤M. Thus Up → u+ in W 1,2[0,1] as p→ ∞.
Now finally to show that u+ = w, suppose u+ = v. By the reasoning just used and

(7), there is an i ∈ Z, i≤ 0, and ε > 0 such that ||Ui−φ ||W 1,2[0,1] ≥ ε with φ = v and
φ = w. Hence by Lemma 3.1

ai(U)≥ γ(ε).

Therefore for large k,

ai(uk)≥
1
2
γ(ε). (8)

Choose δ > 0 and free for the moment. Since u+ = v, there is a q > 0 such
that ||Uq − v||L∞[0,1] ≤ δ/2. Hence along our subsequence for all large k, ||uk −
U ||L∞[q,q+1] ≤ δ/2. Thus ||v− uk||L∞[q,q+1] ≤ δ for large k. Define u∗k to be equal
to v for t ≤ q, equal to φk for q≤ t ≤ q+1, and equal to uk for q+1≤ t, where φk
is a minimizer of the variational problem

inf
∫ q+1

q
L(u)dt
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over
K = {u ∈W 1,2[q,q+1] : u(q) = v(q),u(q+1) = uk(q+1)}.

The minimality properties of v and w imply v ≤ φk ≤ w and therefore u∗k ∈ Γ1. Set
u(t) = v(t)+(t−q)(uk(q+1)− v(q+1)) so u ∈ K.

Moreover
aq(φk)≤ aq(u)≤ β (δ ) (9)

where β (δ )→ 0 as δ → 0. Now by (8)–(9)

J(u∗k)− J(uk) =
∞

∑
−∞

[ap(u∗k)−ap(uk)]

= aq(u∗k)−
q

∑
−∞

ap(uk)

≤ β (δ )− γ(ε)
2

. (10)

Choosing δ so small that β (δ )≤ 1
4γ(ε), (10) contradicts that {uk} is a minimizing

sequence for (2). Thus U ∈ Γ1, and J(U)≥ c1. On the other hand,

p

∑
−p

ai(U)≤ liminf
k→∞

p

∑
−p

ai(uk)≤ liminf
k→∞

J(uk) = c1

so letting p→ ∞, we conclude J(U) = c1. This establishes statement 1 of Theorem
3.1.

To prove statement 2 of Theorem 3.1, first we will obtain the minimality property
5. If it is not true, there are numbers r < s and a function

φ ∈ {u ∈W 1,2[r,s] : u(r) = U(r) and u(s) = U(s)}

such that ∫ s

r
L(φ)dt <

∫ s

r
L(U)dt.

Since v and w satisfy the minimality property, we can assume v ≤ φ ≤ w. But then
replacing U |sr by φ |sr gives U∗ ∈ Γ1 with J(U∗) < J(U), contrary to Theorem 3.1,
part 1. Therefore U satisfies the minimality property and by the remark following
Proposition 2.3, U is a solution or (DE).

Next, statement 4 of Theorem 3.1 follows by a mild variant of the proof of The-
orem 2.2; Suppose U,W ∈M1. Thus φ = max(U,W ) and ψ = min(U,W ) ∈ Γ1 so
for all p ∈ N,

p

∑
−p

[ai(φ)+ai(ψ)] =
p

∑
−p

[ai(U)+ai(W )].

Letting p→ ∞, this shows

2c1 ≤ J(φ)+ J(ψ) = J(U)+ J(W ) = 2c1
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Therefore φ ,ψ ∈M1, so by what has already been shown, φ and ψ are solutions of
(DE) with φ ≥ ψ . The proof then concludes as for Theorem 2.2.

Lastly to verify statement 3 of Theorem 3.1, note that v ≤U,U(·+ 1) ≤ w with
equality impossible by the argument of Theorem 2.2 again. Moreover since U,U(·+
1) ∈ M1, which is ordered, either; (i) U(t) ≡ U(t + 1), (ii) U(t) > U(t + 1), or
(iii) U(t) < U(t + 1). If alternative (i) holds, U is 1-periodic and therefore U /∈ Γ1
while (ii) implies U(t) > U(t +k)→ w(t) as k→∞. Thus U > w and again U /∈Γ1.
Thus (iii) holds. 
�

We conclude this section with a result that shows the gap condition is not only
sufficient for there to exist minimizing heteroclinics from v to w, but also is neces-
sary.

Theorem 3.2. Let V satisfy (V1) - (V2), and further let v,w∈M0 with v < w. Suppose
there is a U ∈ Γ1(v,w) such that

J(U) = inf
u∈Γ1(v,w)

J(u).

Then v and w are a gap pair.

Proof. Otherwise there is a φ ∈M0 such that v < φ < w. There is a smallest α ∈R

such φ(α) =U(α). Define W (t) =U(t), for t ≤α , W (t) = φ(t) when α ≤ t ≤α+1,
and W (t) = U(t−1) when α +1≤ t. Then W ∈ Γ1(v,w) and J(W ) = J(U). Set

S = {u ∈W 1,2[α−1/2,α +1/2] : u(α±1/2) = W (α±1/2)}.

The remark following Proposition 2.3 shows there is a ψ ∈ S such that ψ is a solution
of (DE) and ∫ α+1/2

α−1/2
L(ψ)dt = inf

u∈S

∫ α+1/2

α−1/2
L(u)dt.

We claim

A≡
∫ α+1/2

α−1/2
L(ψ)dt <

∫ α+1/2

α−1/2
L(W )dt ≡ B.

Indeed if A = B, W is a solution of (DE) in (α−1/2,α+1/2). But W = φ in [α,α+
1/2]. Since φ is a solution of (DE) for all t, uniqueness for solutions of the initial
value problem for (DE) imply W = φ in (α − 1/2,α + 1/2). Since U minimizes
J in Γ1(v,w), as in Theorem 3.1, U is a solution of (DE) on R. But U = W = φ
in (α − 1/2,α). Therefore U ≡ φ , contrary to ||U − v||L2[i,i+1] → 0 as i → −∞.

Thus A < B. But then gluing W |α−1/2
−∞ to ψ to W |∞α+1/2 produces Φ ∈ Γ1(v,w) with

J(Φ) < J(W ) contrary to the minimality of W . 
�

Remark: Theorem 3.2 does not exclude the possibility of there being a heteroclinic
solution of (DE) in Γ1(v,w). If there is one, it cannot be a minimizer. In fact if v, f ,
and g, w are gap pairs with f ≤ g, there is a monotone heteroclinic U from v to w.
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Fig. 8 An admissible u.

4 Multitransition solutions: the simplest case

Suppose v, w are a gap pair for (DE). In Section 3 we showed there are heteroclinic
solutions of (DE) in M1(v,w). The same argument gives heteroclinic solutions in
M1(w,v). The goal of this section is to find solutions of (DE) which lie between v
and w, undergo two transitions, and are homoclinic to v or to w.

We will show there are infinitely many such solutions provided that M1(v,w) and
M1(w,v)have gaps. The solutions are obtained as local minima of J on appropriate
classes of functions. To introduce a suitable class of admissible functions, let m =
(m1, . . . ,m4) ∈ Z

4 and ρ = (ρ1, . . . ,ρ4) ∈ R
4 with mi < mi+1 and 0 < ρi << 1.

Define

Y1,2 ≡ Y1,2,m,ρ ≡ {u : u(m1)− v(m1)≤ ρ1, w(m2)−u(m2)≤ ρ2}

Y3,4 ≡ Y3,4,m,ρ ≡ {u : w(m3)−u(m3)≤ ρ3, u(m4)− v(m4)≤ ρ4}

Y ≡ Ym,ρ ≡ {u ∈W 1,2
loc (R,R) : v≤ u≤ w}∩Y1,2∩Y3,4.

The numbers ρi have to be chosen in a special way which we postpone until needed.
Set

b≡ bm,ρ ≡ inf
u∈Y

J(u) (1)

Proposition 4.1. For all (m,ρ), there is a U = Um,ρ ∈ Y such that J(U) = b.

Proof. It is straightforward to show there is a ū ∈ Y such that J(ū) < ∞. Let {un}
be a minimizing sequence for (1). We can assume J(un) ≤ J(ū). As for Theorem
3.1, this implies {un} is bounded in W 1,2

loc and there is a U ∈W 1,2
loc such that along a

subsequence, un →U weakly in both W 1,2
loc and L∞

loc. This latter convergence implies
U satisfies the pointwise constraints of Y , so U ∈ Y . As in Section 3, J(U) = b. 
�

Proposition 4.2. U satisfies (DE) except possibly at t = mi, 1≤ i≤ 4 (independently
of ρ and m).

Proof. This follows since U possesses a minimality property for each interval in the
complement of the mi. Eg. For r ≤ s≤ m1, U minimizes

∫ s
r L(u)dt over
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{u ∈W 1,2[r,s] : u(r) = U(r), u(s) = U(s)}

Hence by the remark following Proposition 2.3, U satisfies (DE) in (r,s). 
�
Next we will show that U is asymptotic to v as |t| → ∞. For this we require that

ρ1 and ρ4 be small.

Proposition 4.3. For ρ1 (resp. ρ4) sufficently small, ||U − v||W 1,2[i,i+1] → 0 as i →
−∞ (resp. i→ ∞).

Proof. We treat the ρ1 case. Since J(U) = b <∞, ||U−φ ||W 1,2[i,i+1]→ 0 as i→−∞,
where φ ∈ [v,w] via the proof of Theorem 3.1. If φ = w, for any δ > 0, there is an
l ∈ Z,l < m1 such that ||U−w||W 1,2[l,l+1] ≤ δ .

Let ψl be a minimizer of the problem:

inf
∫ l

l−1
L(u)dt

over
{u ∈W 1,2[l−1, l] : u(l−1) = w(l−1), u(l) = U(l)}.

As in (9)
al−1(ψl)≤ β (δ ) (2)

with β (δ )→ 0 as δ → 0. Similarly let f be a minimizer of the problem

inf
∫ m1+1

m1

L(u)dt

over

{u ∈W 1,2[m1,m1 +1] : u(m1) = U(m1),u(m1 +1) = v(m1 +1)}

and again as in (9),
am1( f )≤ β (ρ1). (3)

Set Ū be equal to w for t ≤ l− 1, equal to ψl for l− 1 ≤ t ≤ l, equal to U for
l ≤ t ≤ m1, equal to f for m1 ≤ t ≤ m1 +1, and equal to v for m1 +1≤ t.
Then Ū ∈ Γ1(w,v) and

m1−1

∑
i=l

ai(U) =
m1

∑
i=l−1

ai(Ū)−al−1(Ū)−am1(Ū)

= J(Ū)−al−1(ψl)−am1( f )
≥ c1(w,v)−β (δ )−β (ρ1) (4)

via (2)–(3).
On the other hand, let g be a minimizer of

inf
∫ m1

m1−1
L(u)dt



382 P.H. Rabinowitz

over

{u ∈W 1,2[m1−1,m1] : u(m1−1) = v(m1−1), u(m1) = U(m1)}

Then as for (2)–(3),
am1−1(g)≤ β (ρ1). (5)

Set U∗ equal to v for t ≤ m1− 1, and equal to g for m1− 1 ≤ t ≤ m1. By the
minimality property of U in (−∞,m1], and (5)

m1−1

∑
−∞

ai(U)≤
m1−1

∑
−∞

ai(U∗)≤ β (ρ1). (6)

Since
m1−1

∑
l

ai(U)≤
m1−1

∑
−∞

ai(U),

(4)–(6) imply
c1(w,v)≤ β (δ )+2β (ρ1) (7)

which is impossible for δ and ρ1 small. Thus U is asymptotic to v as t →−∞ and
similarly as t → ∞. 
�

Next we will obtain an upper bound for b = bm,ρ .

Proposition 4.4. Let ε > 0. Then there is an m0(ε) such that if m2−m1,m4−m3 ≥
m0(ε),

bm,ρ ≤ c1(v,w)+ c1(w,v)+ ε

Proof. Let Ū ∈M1(v,w). Then there are α,β ∈ Z with α ≤ β such that if f̄ , ḡ are
respectively minimizers of

∫ α

α−1
L(u)dt,

∫ β+1

β
L(u)dt

over
{u ∈W 1,2[α−1,α] : u(α−1) = v(α−1), u(α) = Ū(α)},
{u ∈W 1,2[β ,β +1] : u(β ) = Ū(β ), u(β +1) = w(β +1)}.

Then
aα−1( f̄ ), aβ (ḡ)≤ ε

4
. (8)

Gluing v|α−1
−∞ to f̄ to Ū |βα to ḡ to w|∞β+1 defines U∗ ∈ Γ1(v,w) (Fig. 9). Since J(Ū) =

c1(v,w) by (8),

J(U∗) = aα−1( f̄ )+
β−1

∑
α

ai(Ū)+aβ (ḡ) (9)

≤ c1(v,w)+
ε
2
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Fig. 9 The construction of U∗ in Proposition 8.

Similarly let U ∈M1(w,v). As above there are r,s ∈ Z with r < s such that if f ,
respectively g are the minimizers of

∫ r

r−1
L(u)dt,

∫ s+1

s
L(u)dt

over
{u ∈W 1,2[r−1,r] : u(r−1) = w(r−1), u(r) = U(r)},

{u ∈W 1,2[s,s+1] : u(s) = U(s), u(s+1) = v(s+1)}.
then

ar−1( f ), as(g)≤ ε
4
. (10)

and gluing w|r−1
−∞ to f to U |sr to g to v|∞s+1 produces U∗ ∈ Γ1(w,v) with

J(U∗)≤ c1(w,v)+
ε
2
. (11)

Finally set U∗∗(t) equal to U∗(t−m2 +β + 1) for t ≤ m2, and equal to U∗(t−
m3 +r−1) for m2 ≤ t. By construction U∗∗ satisfies the constraints of Ym,ρ at t = m2
and m3. For m2−m1 ≥ β −α + 2, U∗∗(m1) = U∗(m1−m2 + β + 1) = v(α − 1)
= v(m1) so U∗∗ satisfies the constraint at t = m1. Similarly the constraint at t = m4
holds if m4−m3 ≥ s− r +2. Therefore U∗∗ ∈ Ym,ρ and by (9) and (11),

bm,ρ ≤ J(U∗∗)≤ c1(v,w)+ c1(w,v)+ ε 
�

Next we will refine our choice of ρ . Recall M1(v,w) and M1(w,v) have gaps.
Define ρ− : M1(v,w)→ (0,w(0)−v(0)) via ρ−(u) = u(0)−v(0). Therefore ρ− is a
monotone function of u and ρ−(M1(v,w)) has gaps. Choose ρ1 to lie in such a gap,
i.e.

ρ1 ∈ (0,w(0)− v(0))\ρ−(M1(v,w)).

Note that ρ1 can be chosen as small as desired since f ∈ M1 implies f (· − l) ∈
M1(v,w) for any l ∈ Z so for large l, ρ−( f (·− l)) is near 0.

Similarly define ρ+ : M1(v,w)→ (0,w(0)− v(0)) via ρ+(u) = w(0)− u(0) so
ρ+ is also monotone and ρ+(M1(v,w)) has gaps. Choose ρ2 in such a gap. Likewise
ρ−,ρ+ : M1(w,v)→ (0,w(0)−v(0)) as above. Choose ρ3 and ρ4 in associated gaps.
An important consequence of this choice of the ρi is:
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Proposition 4.5. Let

Λ1(v,w) = {u ∈ Γ1 : u(0)− v(0) = ρ1 or w(0)−u(0) = ρ2}.

Set
d1(v,w) = inf

u∈Λ1(v,w)
J(u) (12)

Then for |ρ| small, d1(v,w) > c1(v,w).

Remark Defining Λ1(w,v) and d1(w,v) in the obvious way, we also have d1(w,v) >
c1(w,v).

Proof of Proposition 4.5. Let {un} be a minimizing sequence for (12). As in the
proof of Theorem 3.1, there is a P ∈W 1,2

loc such that along a subsequence un → P
weakly in W 1,2

loc and also in L∞
loc. This latter convergence implies v ≤ P ≤ w and P

satisfies one of the constraints at t = 0.
Also, as earlier J(P) < ∞ and therefore P asymptotes to v or w as t →−∞ and

as t →∞. If (a) P(0) = v(0)+ρ1, since ρ1 is small, the argument of Proposition 4.3
shows ||P− v||W 1,2[i,i+1] → 0 as i →−∞, while if (b) w(0) = P(0)+ρ2, similarly
||P−w||W 1,2[i,i+1] → 0 as i→ ∞.

Suppose (a) holds. Then either (c) ||P− v||W 1,2[ j, j+1] → 0 as j → ∞ or (d) ||P−
w||W 1,2[ j, j+1]→ 0 as j→∞. If (c) occurs, un(0) is near v(0)+ρ1 along a subsequence
as n→∞. Hence as in the proof of Lemma 3.1, there is a γ(ρ1) > 0 (independent of
n) such that

a0(un)≥ γ(ρ1) (13)

for large n. Moreover for any δ > 0, there is an l = l(δ ) ∈ N such that ||un −
v||L∞[l,l+1] ≤ δ for large n along the subsequence.

Now in the spirit of the proof of Proposition 4.3, set u∗n equal to v, on t ≤ l, equal
to gn on l ≤ t ≤ l +1, and equal to un on t ≥ l +1 where gn minimizes

∫ l+1

l
L(u)dt

over
{u ∈W 1,2[l, l +1] : u(l) = v(l), u(l +1) = un(l +1)}.

Thus as in (9) again,
al(un)≤ β (δ ). (14)

Now by (13)–(14),

J(un) ≥ a0(un)+
∞

∑
l+1

ai(un) (15)

≥ γ(ρ1)+
∞

∑
l

ai(u∗n)−al(gn)

≥ γ(ρ1)+ J(u∗n)−β (δ ).
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Choosing δ so that β (δ )≤ 1/2γ(ρ1) and noting that u∗n ∈ Γ1(v,w), (15) yields

J(un)≥ c1(v,w)+
1
2
γ(ρ1). (16)

Thus d1(v,w)≥ c1(v,w)+ 1
2γ(ρ1) for this case.

On the other hand, if (a) and (d) occur, P ∈ Λ1(v,w) and by earlier argu-
ments J(P) = d1(v,w). Since Λ1(v,w) ⊂ Γ1(v,w), d1(v,w) ≥ c1(v,w). If d1 = c1,
then P ∈ M1(v,w) and by Theorem 3.1, P is a solution of (DE). Consequently
P(0)− v(0) = ρ1 = ρ−(P) ∈ ρ−(M1(v,w)) contrary to the choice of ρ1. Thus
d1 > c1. The remaining cases are treated in the same fashion as above. 
�

With the aid of Proposition 4.5, we have:

Proposition 4.6. Set

µ =
1
2

min(d1(v,w)− c1(v,w),d1(w,v)− c1(w,v)).

If |ρ| is small and U satisfies an mi constraint with equality, then for m3−m2 >> 1,

bm,ρ ≥ c1(v,w)+ c1(w,v)+µ . (17)

Assuming Proposition 4.6 for the moment, combining Proposition 4.5 and Propo-
sition 4.6 we have

µ ≤ bm,ρ − c1(v,w)− c1(w,v)≤ ε (18)

provided that an mi constraint holds with equality. Here µ depends only on ρ and
m3 −m2 while m2 −m1, m4 −m3 ≥ m0(ε). Thus choosing ε < µ , (18) yields a
contradiction. Therefore U satisfies (DE) for all t and we have

Theorem 4.1. If (V1)–(V2) hold, v and w are a gap pair, and in addition M1(v,w)
and M1(w,v) have gaps, then for |ρ| small and mi+1−mi large, there is a U =
Um,ρ ∈ Ym,ρ which is a solution of (DE) with J(U) = bm,ρ .

Remark: That U satisfies the constraints with strict inequality implies U has a local
minimization property.

Corollary 4.1. There are infinitely many distinct 2-transition solutions of (DE).

Proof. Simply take different sets of (mi)’s with mi+1−mi larger and larger. 
�

To complete the proof of Theorem 4.1, we give the

Proof of Proposition 4.6. By the minimality property of U |m3
m2 ,

∫ m3

m2

L(U)dt = inf
u∈A

∫ m3

m2

L(u)dt (19)

where
A = {u ∈W 1,2[m2,m3] : u(m2) = U(m2), u(m3) = U(m3)}.
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Since ρ2,ρ3 are small and w(m2)−U(m2) ≤ ρ2, w(m3)−U(m3) ≤ ρ3, as in (9),
(19) implies

m3−1

∑
i=m2

ai(U)≤ β (ρ2)+β (ρ3). (20)

We claim that given any σ > 0, there is an α(σ) > 0 such that for m3−m2 ≥
α(σ), ||U−w||W 1,2[i,i+1] ≤ σ for some q ∈ [m2,m3−1]. Otherwise by Lemma 3.1,

m3−1

∑
j=m2

a j(U)≥ (m3−m2−1)γ(σ) (21)

which goes to infinity as m3−m2 →∞. But this is contrary to (20) which shows that
the left hand side of (21) is small.

Now suppose for convenience that we have equality at an m1 or m2 constraint
point. Set Φ(t) equal to U(t) for t ≤ q, equal to f (t) for q≤ t ≤ q+1, equal to w(t)
for t ≥ q+1, where f minimizes

∫ q+1

q
L(u)dt

over
{u ∈W 1,2[q,q+1] : u(q) = U(q), u(q+1) = w(q+1)}.

Therefore Φ ∈ Γ1(v,w).
Similarly set Ψ(t) equal to w(t) for t ≤ q, equal to g(t) for q ≤ t ≤ q + 1, and

equal to U(t) for t ≥ q+1, where g minimizes

∫ q+1

q
L(u)dt

over
{u ∈W 1,2[q,q+1] : u(q) = w(q), u(q+1) = U(q+1)}.

Therefore Φ ∈ Γ1(w,v) and

d1(v,w)+ c1(w,v)≤ J(Φ)+ J(Ψ)≤ J(U)−aq(U)+aq( f )+aq(g) (22)

Since ||U − w||W 1,2[q,q+1] ≤ σ it follows as in (9) again that aq( f ) + aq(g) ≤
2β (σ)→ 0 as σ → 0. Then for σ so small that

2β (σ)≤ µ , (23)

J(U) = b and (22)–(23) imply (17). 
�
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5 Multitransition solutions: general case

The ideas used in proving Theorem 4.1 work equally well to get k transition solu-
tions of (DE) and then even infinite transition solutions via a limit argument, pro-
vided that the construction does not depend on k. However, given Theorem 4.1, there
is a simpler geometrical argument giving the k and infinite transition cases, as well
as an associated symbolic dynamics of solutions. We will illustrate with the case of
k = 3 and then discuss the general case.

Choose ρ,r ∈ R
4 and m,n ∈ Z

4 such that there are associated solutions U and
W of (DE) with U ∈ Ym,ρ(v,w), and W ∈ Yn,r(w,v). We seek a 3-transition solution
heteroclinic from v to w. For j ∈Z, set τ ju(t) = u(t− j). Because of their asymptotic
properties for j1 >> 1, τ j1U(t) < W (t) for all t ∈ R.

Take j2 >> j1. Then τ j1U < τ j2W . Finally take j3 >> j2. Then τ j3U < τ j2W .
For simplicity, we will take j1 = j, j2 = 2 j, j3 = 3 j for sufficiently large j. Consider
{τ−l jW : l ∈ N} and {τ(3+i) jU : i ∈ N}.

Delete from the region between the graphs of v and w the set of points above
all of the shifted W ’s we have mentioned and below the shifted U’s. Denote the
remaining region by R and set

Y (R)≡ {u ∈W 1,2
loc : (t,u(t)) ∈ R̄}.

(See Fig. 10). Define
c(R) = inf

u∈Y (R)
J(u).

Then we have:

Theorem 5.1. Under the hypothesis of Theorem 4.1

1. M(R) = {u ∈ Y (R) : J(u) = c(R)} 	= /0.
2. Any U ∈M(R) is a classical solution of (DE) and is interior to R.
3. ||U− v||L2[i,i+1] → 0, i→−∞, and ||U−w||L2[i,i+1] → 0, i→ ∞.
4. U has a local minimization property: for any r < s, U minimizes

∫ s
r L(u)dt over

the class of W 1,2[r,s] functions with u(r) = U(r), and u(s) = U(s) provided that
s− r sufficiently small.

Proof. We will sketch the proof. A minimizing sequence converges as earlier to
U lying in R̄ with J(U) = c(R). Since J(Ū) < ∞, (3) of the theorem holds due

w

vU

Fig. 10 A U in Y (R).
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to the form of R. The boundary of R consists of curves possessing local or global
minimization properties and this readily implies (4), which in turn gives the first part
of (2). Lastly the basic existence and uniqueness theorem for ordinary differential
equations implies U cannot touch ∂R as in the proof of Theorem 2.2. 
�

Next we will show how to generalize Theorem 5.1 and at the same time get
a symbolic dynamics of solutions (Fig. 10). Choose U , W , and j as above so in
particular the graphs of τ± jU and W do not intersect. This implies the same is true
of the graphs of τi jU and τl jW for all i, l ∈ Z. Define

Σ ≡ {σ = {σi}i∈Z : σi ∈ {+,−}}.

For each σ ∈ Σ , we define a region R(σ) lying between the graphs of v and w as
follows. Set

S = {(t,z) : t ∈ R,v(t)≤ z≤ w(t)}.
If σi = +, remove the region below τ jiU from S; if σi =−, remove the region above
τ jiW from S. R(σ) is what remains after carrying out this excision process for all
i ∈ Z. Then we have;

Theorem 5.2. For each σ ∈ Σ , there is a solution UR(σ) of (DE) with the graph of
UR(σ) lying in R(σ). Moreover UR(σ) has the local minimization property of Theo-
rem 5.2.

Remark: If σi =−, UR(σ) will be L∞ close to v on a large interval while if σi = +,
UR(σ) will be L∞ close to w on a large interval. In particular if σi = − for all i
near −∞, UR(σ) asymptotes to v as t →−∞, while if σi = + for all i near ∞, UR(σ)
asymptotes to w as t → ∞. The dynamics of the symbol σ reflect the dynamics of
the solution UR(σ).

Proof of Theorem 5.2. We will sketch the proof. First we introduce four subsets of
Σ :

Σ++ ≡ {σ ∈ Σ : σi = + for all large |i|}
Σ−− ≡ {σ ∈ Σ : σi =− for all large |i|}

Σ+− ≡ {σ ∈ Σ : σi = + for all large negative i, and σi =− for all large positive i}

Σ−+ ≡{σ ∈ Σ : σi =− for all large negative i, and σi = + for all large positive i}

Let Σ ∗ be the union of these four sets. Any σ ∈ Σ ∗ has a finite number of changes
of σi as i increases. For σ ∈ Σ ∗, set

Y (σ) = {u ∈W 1,2
loc : (t,u(t)) ∈ R̄(σ) for all t ∈ R},

and define
c(σ) = inf

u∈Y (σ)
J(u).
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Then c(σ) < ∞ and the proof of Theorem 5.1 shows there is a UR(σ) ∈ Y (σ) such
that UR(σ) satisfies (2) and (4) of Theorem 5.1 and also possess the asymptotics
associated with σ .

Next suppose σ = {σi}∈Z ∈ Σ\Σ ∗. For each n ∈N, define fn(σ) ∈ Σ ∗ via fn(σ)
equal to σi, |i| ≤ n, equal to σn, i > n, and equal to σ−n when i <−n. Therefore by
what was previously shown, there is a Un ∈ Y ( fn(σ)) such that J(Un) = c( fn(σ)).

Since v≤Un≤w, the functions Un are uniformly bounded. By (DE), they are also
bounded in C2. Therefore using (DE), as n→ ∞, Un converges along a subsequence
in C2 to U(σ), a solution of (DE). Moreover for any l ∈ N, if n ≥ l, for |t| ≤ l, the
graph of Un lies in

R( fn(σ))∩{(t,z) : |t| ≤ l,v(t) < z < w(t)}

= R(σ)∩{(t,z) : |t| ≤ l,v(t) < z < w(t)}
from which it follows that the graph of U lies in R(σ). Finally the local minimality
property is preserved by the L∞

loc convergence of the Un. 
�
We conclude this section with some open questions. First, is it possible to give

a variational characterization of U(σ) for σ ∈ Σ\Σ ∗? The difficulty is that for
such σ , J(U(σ)) = ∞. We suspect that a second renormalization of J can be made
which allows for a direct variational characterization of U(σ). A second question is
whether it is possible to classify these multi-transition solutions. How many para-
meters do they really depend on?

6 The tip of the iceberg

In a sense the class of solutions of (DE) we have studied in these lectures merely
represent the tip of the iceberg. All of these solutions lie between a gap pair. Even
if we had had time to study the monotone solutions of (DE) mentioned in the intro-
duction that cross a finite number of gaps, we are still only dealing with bounded
solutions which therefore have rotation number 0.

For p ∈ Z and q ∈ N it is straightforward to find minimal solutions of (DE)
satisfying u(t + q) = u(t) + p. In terms of the pendulum, they make p rotations
in time q and have rotation number p/q. Thus replacing M0 by such a class of
minimizers, there are analogues of the results of the previous sections. There are
also minimal solutions with an irrational rotation number which can be obtained as
limits of the rational ones.

In addition to these minimal solutions there are nonminimal solutions that can be
obtained variationally. E.g. there are mountain pass solutions lying between a gap
pair v,w. In fact there is a sequence {un} of such solutions with periods which go
to infinity as n→ ∞. Likewise there are mountain pass heteroclinics between a gap
pair in M1(v,w). These facts can be proven using versions of the mountain pass
theorem.
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Massimiliano Berti1

Abstract We present recent existence results of periodic solutions for completely
resonant nonlinear wave equations in which both “small divisor” difficulties and
infinite dimensional bifurcation phenomena occur. These results can be seen as
generalizations of the classical finite-dimensional resonant center theorems of
Weinstein–Moser and Fadell–Rabinowitz. The proofs are based on variational bi-
furcation theory: after a Lyapunov–Schmidt reduction, the small divisor problem in
the range equation is overcome with a Nash–Moser implicit function theorem for
a Cantor set of non-resonant parameters. Next, the infinite dimensional bifurcation
equation, variational in nature, possesses minimax mountain-pass critical points.
The big difficulty is to ensure that they are not in the “Cantor gaps”. This is proved
under weak non-degeneracy conditions. Finally, we also discuss the existence of
forced vibrations with rational frequency. This problem requires variational meth-
ods of a completely different nature, such as constrained minimization and a priori
estimates derivable from variational inequalities.

1 Finite dimensions: resonant center theorems

Consider a finite dimensional Hamiltonian system

ẋ = J∇H(x) , x ∈ R2n (1)

where J =
(

0 I
−I 0

)
is the symplectic matrix, I is the identity in Rn, and ∇H(0) = 0.

• QUESTION: Do there exist periodic solutions of (1) close to the equilibrium
x = 0?
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Clearly, a necessary condition is the presence of purely imaginary eigenvalues of
J(D2H)(0) so that the linearized equation

ẋ = J(D2H)(0)x (2)

possesses periodic solutions. In the sequel we suppose that x = 0 is an elliptic equi-
librium with J(D2H)(0) having all eigenvalues

±iω1 , . . . ,±iωn (3)

purely imaginary.
The first continuation result of periodic solutions close to an elliptic equilibrium

is the celebrated Lyapunov center theorem. Assuming the non resonance condition
ω j− lω1 	= 0, ∀l ∈ Z, j = 2, . . . ,n, the theorem ensures the existence of a smooth
two-dimensional manifold foliated by small amplitude periodic solutions of (1) with
frequencies close to ω1, see e.g. [32].

If the above non-resonance condition is violated, no periodic solutions except
the equilibrium x = 0 need exist. An example due to Moser [31] is provided by the
Hamiltonian in (R4, ∑2

i=1 dqi∧d pi)

H =
q2

1 + p2
1

2
− q2

2 + p2
2

2
+(q2

1 + p2
1 +q2

2 + p2
2)(p1 p2−q1q2)

where (q, p) = 0 is an elliptic equilibrium with non-simple eigenvalues ±i. But

d
dt

(q1 p2 + p1q2) = 4(p1 p2−q1q2)2 +(q2
1 + p2

1 +q2
2 + p2

2)
2

so that the unique periodic solution is q = p = 0.
In contrast, two remarkable theorems by Weinstein [42], Moser [31] and Fadell–

Rabinowitz [24] prove the existence of periodic solutions under the assumptions
respectively

(WM) (D2H)(0) > 0 , (FR) signature(D2H)(0) 	= 0 .

Theorem 1.1. (Weinstein 1973–Moser 1976) Let H ∈ C2(R2n,R) such that
(∇H)(0) = 0 and (D2H)(0) > 0. For all ε small enough there exist, on each
energy surface {H(x) = H(0) + ε2}, at least n geometrically distinct periodic
solutions of (1).

Note that (D2H)(0) > 0 implies that the level sets of the energy 1
2 (D2H)(0)x · x

of (2) are ellipsoids, whence all the solutions of (2) are bounded and (3) holds.

Theorem 1.2. (Fadell–Rabinowitz 1978) Let H ∈C2(R2n,R) such that (∇H)(0) =
0 and the signature(D2H)(0) = 2ν 	= 0. Assume also that any non-zero solution of
(2) is T -periodic (and not constant). Then, either

(i) x = 0 is a non-isolated T -periodic solution of (1),
or
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(ii) there exist integers k,m ≥ 0 with k + m ≥ |ν | and a left neighborhood, Ul ,
resp. a right neighborhood, Ur, of T in R such that ∀λ ∈Ul \{T}, resp. Ur \{T},
there exist at least k, resp. m, distinct, non-trivial, λ -periodic solutions of (1). The
L∞-norm of the solutions tends to 0 as λ → T .

Unlike the Lyapunov Center Theorem the periodic solutions of Theorems 1.1 and
1.2 do not, in general, vary smoothly with respect to the parameters ε (energy) and
λ (period). This will cause a serious difficulty for PDEs, see Sections 5 and 6.

Both the Weinstein–Moser and the Fadell–Rabinowitz resonant center theorems
follow by arguments of variational bifurcation theory. The Weinstein–Moser the-
orem, thanks to the energy constraint, reduces to find critical points of a smooth
function defined on a (2n−1)-dimensional sphere. The Fadell–Rabinowitz theorem
is more subtle because there is no energy constraint, and one has to look for critical
points of a reduced action functional defined in an open neighborhood of the origin,
see e.g. [4].

For brevity, we present only a simplified version of the Fadell–Rabinowitz theo-
rem without obtaining the optimal multiplicity results. We shall also assume that

(D2H)(0) := I (4)

so that ±i are the multiple eigenvalues of J(D2H)(0), and (2) possesses a 2n-
dimensional linear space of periodic solutions with the same minimal period 2π .

Theorem 1.3. (Fadell–Rabinowitz) Under the assumptions above, either

(i) x = 0 is a non-isolated 2π-periodic solution of (1),
(ii) There is a one sided neighborhood U of 1 such that, ∀λ ∈U \{1}, equation
(1) possesses at least two distinct non-trivial 2πλ -periodic solutions,
(iii) There is a neighborhood U of 1 such that, ∀λ ∈ U \ {1}, equation (1)
possesses at least one non-trivial 2πλ -periodic solution.

For the extension of these results to PDEs, due to the necessity of imposing non-
resonance conditions on the frequency, it will be more convenient to give existence
results with fixed frequency like in the Fadell–Rabinowitz theorem (see Theorems
3.2, 5.1, 6.1), and not with fixed energy as in the Weinstein–Moser theorem.

1.1 The variational Lyapunov–Schmidt reduction

With no loss of generality we suppose that H(0) = 0. Normalizing the period we
look for 2π-periodic solutions of

Jẋ+λ (∇H)(x) = 0 . (5)
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Equation (5) is the Euler–Lagrange equation of the action functional

Ψ(λ ,x) :=
∫

T

(1
2

Jẋ(t) · x(t)+λH(x(t))
)

dt , T := (R/2πZ)

defined and C1, e.g. on the Sobolev space H1(T). To find critical points of Ψ we
perform a Lyapunov–Schmidt reduction, decomposing

H1(T) := V ⊕V⊥ where V :=
{

v ∈ H1(T) | v̇ = J(D2H)(0)v
}

is 2n-dimensional (by (4)) and V⊥ := {w ∈ H1(T) |
∫

T w · vdt = 0 , ∀v ∈V}.
Projecting (5), for x = v+w, v ∈V , w ∈V⊥, yields

{
ΠV (J(v̇+ ẇ)+λ (∇H)(v+w)) = 0 bifurcation equation
ΠV⊥(J(v̇+ ẇ)+λ (∇H)(v+w)) = 0 range equation

where ΠV , ΠV⊥ denote the projectors on V , resp. V⊥.

The range equation. We solve first the range equation with the standard implicit
function theorem, finding a solution w(λ ,v) ∈ V⊥ for v ∈ Br(0) (≡ ball in V of
radius r centered at zero), r > 0 small enough, and λ sufficiently close to 1. Indeed

F (λ ,v,w) := ΠV⊥(J(v̇+ ẇ)+λ∇H(v+w))

vanishes F (λ ,0,0) = 0, ∀λ , and its partial derivative

(DwF )(1,0,0)[W ] = JẆ +(D2H)(0)W , ∀W ∈V⊥

is an isomorphism. By the implicit function theorem the solution w(λ ,v) ∈ V⊥ of
the range equation is a C1 function, w(λ ,0) = 0 and

w(λ ,v) = o(‖v‖) as v→ 0 (6)

uniformly for λ near 1.

The bifurcation equation. It remains to solve the bifurcation equation

ΠV (J(v̇+ ẇ(λ ,v))+λ (∇H)(v+w(λ ,v))) = 0

which is the Euler–Lagrange equation of the “reduced action functional”

Φ(λ , ·) : Br(0)⊂V → R , Φ(λ ,v) :=Ψ(λ ,v+w(λ ,v)) .

Indeed ∀h ∈V ,

(DvΦ)(λ ,v)[h] = (DxΨ)(λ ,v+w(λ ,v))[h+(Dvw)(λ ,v)[h] ]
= (DxΨ)(λ ,v+w(λ ,v))[h]

=
∫

T
ΠV (J(v̇+ ẇ)+λ∇H(v+w)) ·hdt (7)
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using that
(DxΨ)(λ ,v+w(λ ,v))[W ] = 0 , ∀W ∈V⊥

since w(λ ,v) solves the range equation, and (Dvw)(λ ,v)[h] ∈V⊥.
Remark also that, by (7) and since w(λ ,v) ∈C1, then DvΦ ∈C1 and so Φ ∈C2.
To prove Theorem 1.3 we have to find non-trivial critical points of the reduced

action functional Φ(λ , ·) near v = 0 for fixed λ near 1.
The functional Φ(λ , ·) possesses a strict local minimum or maximum at v = 0,

according λ > 1 or λ < 1, because, by (6), and H(0) = (∇H)(0) = 0, (D2H)(0) = I,

Φ(λ ,v) =
∫

T

1
2

Jv̇(t) · v(t)+
λ
2

(D2H)(0)v(t) · v(t)+o(‖v‖2)

=
(λ −1)

2

∫

T
|v(t)|2 dt +o(‖v‖2) = (λ −1)π|v(0)|2 +o(‖v‖2) . (8)

If v = 0 is not an isolated critical point of Φ(1, ·) then alternative (i) of Theorem 1.3
holds. If v = 0 is an isolated critical point of Φ(1, ·) then, either

(a) Φ(1, ·) has a strict local maximum or minimum in v = 0
(b) Φ(1, ·) takes on both positive and negative values near v = 0.

Case (a) leads to alternative (ii) and Case (b) leads to alternative (iii) of Theorem
1.3. Figure 1 gives the idea of the existence proof.

In both cases (a) and (b), the functional Φ(λ , ·) possesses saddle critical points
which can be found by a (finite dimensional) mountain pass argument [1] (see
Theorem 3.1). However, the main difficulty of the minimax proof is that Φ(λ , ·)
is defined only in a neighborhood of zero, see [4], [37] for details.

In the following we shall develop an analogous variational argument in infinite
dimension.

Fig. 1 In case (a), Φ(1, ·) has a strict local maximum at v = 0 and for λ > 1, Φ(λ , ·) possesses at
least two non-trivial critical points. In case (b) Φ(1, ·) takes on both positive and negative values
near v = 0 and for λ 	= 1, Φ(λ , ·) possesses at least one mountain pass critical point.
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2 Infinite dimensions

We want to extend the local bifurcation theory of periodic solutions described in the
previous section to infinite dimensional Hamiltonian PDEs, like the “completely
resonant” nonlinear wave equation

utt −uxx = f (x,u),,, u(t,0) = u(t,π) = 0 (1)

where f (x,0) = (∂u f )(x,0) = 0. All the solutions of the linearized equation at u = 0

utt −uxx = 0,,, u(t,0) = u(t,π) = 0 (2)

are 2π-periodic. They can be represented like (Fourier method)

v(t,x) = ∑
j≥1

a j cos( jt +θ j)sin( jx) , a j ∈ R

or like superposition of waves traveling in opposite directions (D’Alembert method)

v(t,x) = η(t + x)−η(t− x)

where η is any 2π-periodic function. This is the infinite dimensional analogous sit-
uation considered by the Weinstein–Moser and Fadell–Rabinowitz resonant Center
theorems.

In trying to extend the Lyapunov–Schmidt reduction scheme of the previous sec-
tion, we encounter two new problems:

• A “small divisor” problem in the range equation
• The presence of an infinite dimensional bifurcation equation

The “small divisor” problem is that the eigenvalues of ∂tt − ∂xx in a space of
functions 2π/ω-periodic in time and satisfying Dirichlet boundary conditions, are

−ω2l2 + j2, l ∈ Z , j ≥ 1 . (3)

Therefore, for almost every ω ∈R, such eigenvalues accumulate to zero, the inverse
(∂tt −∂xx)−1 is unbounded and the standard implicit function theorem fails.

Remark 2.1. When ω ∈ Q the spectrum is not dense in R. We shall discuss this
case in Section 7. Existence of periodic solutions of wave equations with a rational
frequency ω ∈ Q has been proved via global minimax methods in [36] and [15].
When ω /∈ Q these proofs fail for a lack of compactness introduced by the small
divisors. For some results in the irrational case, see [22].

The small divisors problem for Hamiltonian PDEs was first solved by Kuksin
[28] and Wayne [41] using KAM theory and by Craig–Wayne [20] – who were the
first to introduce the Lyapunov–Schmidt reduction method for PDEs – via a Nash–
Moser implicit function technique. Other existence results of quasi-periodic solu-
tions have been obtained by Bourgain [11, 12, 14] extending the Craig–Wayne [20]
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approach, and, via KAM theory, e.g. in Kuksin–Pöeschel [18], Eliasson–Kuksin
[23] and Yuan [45]. See also the books [18], [29] and references therein.

The first existence result for completely resonant wave equations with Dirich-
let boundary conditions was obtained in [3] for f (u) = u3 (under periodic boundary
conditions we quote [27]). The small divisors problem is bypassed for the zero mea-
sure set Wγ of the frequencies defined in (5) of section 3. The choice of f (u) = u3

is required by a non-degeneracy condition to solve the bifurcation equation.
In [6], existence of periodic solutions, for the same zero measure set of fre-

quencies Wγ , but for a general nonlinearity, was proved. The key to remove the
non-degeneracy condition is to solve the infinite dimensional bifurcation equation
via variational methods. We now present these results for f (x,u) := up. This sit-
uation (where no small divisors appear) is a preparation to understand the more
difficult case considered in Section 6 where we shall find solutions of the bifurca-
tion equation on a Cantor set using variational methods, for positive measure sets of
frequencies.

3 The variational Lyapunov–Schmidt reduction

Normalizing the period, and rescaling the amplitude u → δu, we look for 2π-
periodic solutions of

ω2utt −uxx = εup,,, u(t,0) = u(t,π) = 0,,, (1)

where ε := δ p−1, p≥ 2, in the Banach algebra

X :=
{

u ∈ H1(Ω ,R)∩L∞(Ω ,R) | u(t,0) = u(t,π) = 0, u(−t,x) = u(t,x)
}

where Ω := T× [0,π], endowed with norm ‖u‖ := ‖u‖∞+‖u‖H1 . We consider here
the easier case when p is odd.

Equation (1) is the Euler–Lagrange equation of the Lagrangian action functional
Ψ ∈C1(X ,R) defined by

Ψ(u) :=
∫ 2π

0
dt

∫ π

0

[ω2

2
u2

t −
1
2

u2
x + εF(u)

]
dx

where F(u) := up+1/p + 1, sometimes called the “Percival variational principle”.
When ω /∈Q this functional is highly non compact (see Remark 2.1). Therefore, to
find its critical points we perform a Lyapunov–Schmidt reduction, decomposing

X = V ⊕W

where
V :=

{
v = η(t + x)−η(t− x)

∣∣∣ η(·) ∈ H1(T), η odd
}

(2)
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are the solutions in X of the linear equation (2) of section 2 and

W :=
{

w ∈ X |(w,v)L2 = 0, ∀v ∈V
}

=
{

∑
l≥0, j≥1,l 	= j

wl, j cos(lt)sin jx ∈ X
}

.

Remark 3.1. Recalling (2) and the compact embedding H1(T) ↪→ L∞(T), also the
embedding (V,‖ · ‖H1) ↪→ (V,‖ · ‖∞) is compact.

Projecting (1), for u := v+w with v ∈V , w ∈W , yields

ω2vtt − vxx = εΠV f (v+w) bifurcation equation (3)
ω2wtt −wxx = εΠW f (v+w) range equation (4)

where ΠV : X →V , ΠW : X →W are the projectors respectively on V , W .

The range equation. We first solve the range equation assuming that

ω ∈Wγ :=
{
ω ∈ R

∣∣∣ |ωl− j| ≥ γ
l
, ∀(l, j) ∈ N×N , j 	= l

}
. (5)

Lemma 3.1. [3], [22] For 0 < γ ≤ 1/4 the set Wγ is uncountable, has zero measure
and accumulates to ω = 1 both from the left and from the right.

Remark 3.2. By the Dirichlet Theorem, there are no real numbers ω such that |ωl−
j| ≥ (γ/lτ), ∀l 	= j, if τ < 1.

For ω ∈Wγ the eigenvalues of Lω := ω2∂tt −∂xx restricted to W , satisfy

|−ω2l2 + j2|= |ωl− j||ωl + j| ≥ γ
l
|ωl + j| ≥ γω , ∀l 	= j

whence the inverse

L−1
ω w := ∑

j≥1,l≥0,l 	= j

wl, j

−ω2l2 + j2 cos(lt)sin( jx) , ∀w ∈W

is a bounded operator, ‖L−1
ω w‖ ≤Cγ−1‖w‖. Fixed points of the nonlinear operator

G : W →W , G (ε,ω;w) := εL−1
ω ΠW f (v+w)

are solutions of the range equation. By the contraction mapping theorem we get

Lemma 3.2. (Solution of the range equation) Assume ω ∈Wγ ∩ (1/2,3/2). ∀R >
0, ∃ ε0(R) > 0, C0(R) > 0 such that ∀v∈ B2R := {v∈V | ‖v‖H1 ≤ 2R}, ∀0≤ εγ−1 ≤
ε0(R) there exists a unique solution w(ε,v) ∈W of the range equation satisfying
‖w(ε,v)‖ ≤C0(R)εγ−1. Moreover the map v �→ w(ε,v) is in C1(B2R,W ).
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3.1 The bifurcation equation

It remains to solve the infinite dimensional bifurcation equation

ω2vtt − vxx = εΠV f (v+w(ε,v))

which, arguing as in (7) of section 1.1 (see also Figure 2), is the Euler–Lagrange
equation of the reduced Lagrangian action functional Φε ∈C2(B2R,R) defined by

Φε(v) :=Ψ(v+w(ε,v)) .

To find critical points of Φε we expand

Φε(v) =
∫

Ω

ω2

2
(vt +(w(ε,v))t)2− 1

2
(vx +(w(ε,v))x)2 + εF(v+w(ε,v))

=
∫

Ω

ω2

2
v2

t −
v2

x

2
+ εF(v+w(ε,v))− ε

2
f (v+w(ε,v))w(ε,v)

because
∫
Ω vtwt =

∫
Ω vxwx = 0 and, since w(ε,v) solves the range equation,
∫

Ω
ω2w2

t −w2
x + ε f (v+w(ε,v))w(ε,v) = 0 .

Hence, using that ‖vt‖2
L2 = ‖vx‖2

L2 = ‖v‖2
H1/2,

Φε(v) =
ω2−1

4
‖v‖2

H1 + ε
∫

Ω

[
F(v+w(ε,v))− 1

2
f (v+w(ε,v))w(ε,v)

]
. (6)

Imposing the “frequency-amplitude” relation ω2−1 =−2ε , we get

Φε(v) =−ε
[1

2
‖v‖2

H1 −
∫

Ω

vp+1

p+1
+Rε(v)

]

ε

Fig. 2 Since w(ε,v) solves the range equation then v + w(ε,v) is a critical point of the functional
W � w→Ψ(v+w), i.e. the gradient (∇Ψ)(v+w(ε,v)) is parallel to V .
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ε

1
R

Fig. 3 The mountain Pass geometry of Φε .

where, for some constant C1(R) > 0,

|Rε(v)| , |(∇Rε(v),v)| ≤C1(R)
ε
γ

. (7)

The functional (that we still denote by Φε )

Φε(v) :=
1
2
‖v‖2

H1 −
∫

Ω

vp+1

p+1
+Rε(v) (8)

possesses a local minimum at the origin and one could think to prove existence of
non-trivial critical points via the Mountain Pass Theorem 3.1 below, see Figure 3.
Note that, since p is odd,

∫
Ω vp+1 > 0, ∀v 	= 0.

Theorem 3.1. (Mountain Pass [1]) Let (X ,‖ · ‖) be a Banach space. Suppose Φ ∈
C1(X ,R) and

(i) Φ(0) = 0
(ii) ∃ ρ , α > 0 such that Φ(x)≥ α if ‖x‖= ρ
(iii) ∃ v ∈ X with ‖v‖> ρ such that Φ(v) < 0

Define the “Mountain Pass” value c := infγ∈Γ maxt∈[0,1]Φ(γ(t)) ≥ α where Γ is
the minimax class Γ := {γ ∈C([0,1],X) | γ(0) = 0 ,γ(1) = v}.

Then there exists a Palais–Smale sequence xn of Φ at the level c, i.e. Φ(xn)→ c,
DΦ(xn)→ 0. If, up to subsequence, xn → x̄ then DΦ(x̄) = 0 and Φ(x̄) = c.

Theorem 3.1 cannot be directly applied because Φε is defined only close to 0.
Step 1: Extension of Φε . We define the extended functional Φ̃ε ∈C2(V,R) as

Φ̃ε(v) :=
‖v‖2

H1

2
−

∫

Ω

vp+1

p+1
+ R̃ε(v)

where R̃ε(v) := λ (‖v‖2
H1 R−2)Rε(v) and λ : [0,+∞)→ [0,1] is a smooth cut-off

function with λ (x) = 1 if |x| ≤ 1, λ (x) = 0 if |x| ≥ 4, and |λ ′(x)|< 1. By definition

Φ̃ε(v) =

⎧
⎪⎨
⎪⎩

Φε(v) for ‖v‖H1 ≤ R
‖v‖2

H1

2
−

∫

Ω

vp+1

p+1
for ‖v‖H1 ≥ 2R .

(9)
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Furthermore by (7) and the definition of λ

|R̃ε(v)| , |(∇R̃ε(v),v)| ≤C1(R)
ε
γ

. (10)

Step 2: Φ̃ε has the Mountain Pass geometry. Let 0 < ρ < R. For all ‖v‖H1 = ρ

Φ̃ε(v)
(9)
= Φε(v)

(8)
=
‖v‖2

H1

2
−

∫

Ω

vp+1

p+1
+Rε(v)

(7)
≥ 1

2
ρ2−κ1ρ p+1− ε

γ
C1(R) .

Fix ρ > 0 such that (ρ2/2)−κ1ρ p+1 ≥ ρ2/4. For 0 < εγ−1C1(R)≤ ρ2/8

Φ̃ε(v)≥
1
8
ρ2 > 0 if ‖v‖H1 = ρ

verifying the assumption (ii) of Theorem 3.1. Let us verify assumption (iii). By (9)
for every ‖v0‖H1 = 1, there exists t̃ large enough such that

Φ̃ε (̃tv0) =
t̃2

2
− t̃ p+1

p+1

∫

Ω
v0

p+1 < 0

because p≥ 3 is an odd integer. Define ṽ := t̃v0 and the Mountain Pass level

cε := inf
γ∈Γ

max
s∈[0,1]

Φ̃ε(γ(s)) > 0 (11)

where Γ := {γ ∈C([0,1],V ) | γ(0) = 0 ,γ(1) = ṽ} . By the Mountain Pass Theorem
3.1 there is a Palais–Smale sequence vn ∈V for Φ̃ε at the level cε > 0,

Φ̃ε(vn)→ cε , ∇Φ̃ε(vn)→ 0 . (12)

Step 3: Confinement of the Palais–Smale sequence. By (11) and (10)

cε ≤ max
s∈[0,1]

Φ̃ε(sṽ)≤ max
s∈[0,1]

[ s2

2
‖ṽ‖2

H1 −
sp+1

p+1

∫

Ω
ṽp+1

]
+1 =: κ (13)

for 0 < C1(R)γ−1ε < 1. Then

Φ̃ε(vn)−
(∇Φ̃ε(vn),vn)

p+1
=

(1
2
− 1

p+1

)
‖vn‖2

H1 + R̃ε(vn)−
(∇R̃ε(vn),vn)

p+1
(10)
≥

(1
2
− 1

p+1

)
‖vn‖2

H1 −1 (14)

for 0 < 2C1(R)εγ−1 ≤ 1. By (12), for n large,

Φ̃ε(vn)−
(∇Φ̃ε(vn),vn)

p+1
≤ (cε +1)+‖vn‖H1

(13)
≤ κ +1+‖vn‖H1
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and, by (14), we derive κ + 1 +‖vn‖H1 ≥ ( 1
2 −

1
p+1 )‖vn‖2

H1 −1. Hence, there exist
R∗ > 0 independent of ε and C∗(R) > 0 such that

‖vn‖H1 ≤ R∗ for 0 < εγ−1 < C∗(R) . (15)

Step 4: Existence of a nontrivial critical point. Fix R̄ := R∗+1 and take 0 < εγ−1 ≤
C∗(R̄). By (15), definitively for n large, vn ∈ BR̄, and so Φ̃ε(vn) = Φε(vn). Hence

∇Φ̃ε(vn) = ∇Φε(vn) = vn−∇G(vn)+∇Rε(vn)→ 0

where we have set G(v) := 1
p+1

∫
Ω vp+1.

By the compact embedding (V,‖ · ‖H1) ↪→ (V,‖ · ‖∞) (see Remark 3.1) we easily
deduce that ∇G : V →V and ∇Rε : BR̄ →V are compact operators. Therefore, since
the Palais–Smale sequence vn is bounded in H1, vn is precompact and converges to
a nontrivial critical point vε of Φε . We have finally proved

Theorem 3.2. [6] Let f (u) = up for an odd integer p≥ 3. ∀ω ∈Wγ with |ω−1|γ−1

small enough, and ω < 1, equation (1) of section 2 possesses at least one, non
trivial, 2π/ω-periodic, small amplitude periodic solution uω .

Multiplicity of solutions can also be proved. To deal with nonlinearities f (u) =
up with p even integer is more difficult because

∫

Ω
vp+1 ≡ 0 , ∀v ∈V (16)

(see Lemma 7.3) and so the development (8) no longer implies the Mountain Pass
geometry of Φε . To find critical points of Φε we have to develop at higher orders in
ε the non-quadratic term, see [6].

This greater difficulty for finding periodic solutions when the nonlinearity f
is non-monotonic (under Dirichlet boundary conditions) is a common feature for
nonlinear wave equations, see e.g. [34, 36], [15, 16], and Section 7. In physical
terms there is no “confinement effect” due to the potential. Actually, in [10] a non-
existence result is proved for even power nonlinearities in the case of spatial peri-
odic boundary conditions, highlighting that the existence result in case of Dirichlet
conditions, is due to a “boundary effect”.

We also remark that, since V is infinite dimensional, a Fadell–Rabinowitz type
argument, working for any nonlinearity, does not apply.

4 The small divisor problem

To prove existence of periodic solutions of
{
ω2utt −uxx = εa(x)up

u(t,0) = u(t,π) = 0
(1)
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for positive measure set of frequencies, we have to relax the non-resonance
condition in (5) of section 3 requiring

|ωl− j| ≥ γ
lτ

, ∀(l, j) ∈ N×N , j 	= l

for some τ > 1. However, for such ω we get just the bound

|ω2l2− j2|= |ωl− j|(ωl + j)≥ γ
lτ

(ωl + j)≥ γω
lτ−1 .

As a consequence, (Lω)−1
|W “loses (τ − 1)-derivatives” and the standard implicit

function theorem fails.
This small divisor problem is overcome by a Nash–Moser iteration scheme. We

look for 2π-periodic solutions of (1) in the Banach algebra (for s > 1/2)

Xσ ,s :=
{

u(t,x) = ∑
l∈Z

eilt ul(x) | ul ∈ H1
0 ((0,π),R) ,ul(x) = u−l(x)

and ‖u‖2
σ ,s := ∑

l∈Z
e2σ |l|(l2s +1)‖ul‖2

H1 < +∞
}

.

For σ > 0,s ≥ 0, Xσ ,s is the space of all even, 2π-periodic in time functions with
values in H1

0 ((0,π),R), which have a bounded analytic extension in the complex
strip |Im t|< σ with trace function on |Im t|= σ belonging to Hs(T,H1

0 ((0,π),C)),
see [33] (recently in [9] we proved, when the nonlinearity is just Ck w.r.t. u, also
existence of solutions for σ = 0, i.e. just Sobolev in time).

Projecting (1) according to the orthogonal decomposition

Xσ ,s = (V ∩Xσ ,s)⊕ (W ∩Xσ ,s)

and imposing the “frequency-amplitude” relation ω2−1 = 2s∗ε with s∗ =±1 to be
chosen later, yields

{
∆v = s∗ΠV f (v+w) bifurcation equation
Lωw = εΠW f (v+w) range equation

(2)

where ∆v := vxx + vtt , f (u) := a(x)up and Lω := ω2∂tt −∂xx.
When ε = 0 we get the “0th-order bifurcation equation”

∆v = s∗ΠV (a(x)vp) (3)

which is the Euler–Lagrange equation of the functional Φ0 : V → R

Φ0(v) :=
‖v‖2

H1

2
+ s∗

∫

Ω
a(x)

vp+1

p+1
, Ω := T× [0,π] .
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For definiteness we suppose there exists ṽ ∈ V such that
∫

Ω
a(x)ṽp+1 < 0 and so

we choose s∗ = 1 (otherwise we take s∗ =−1). Let t̃ > 0 be large enough such that
Φ0(̃tṽ) < 0. The mountain pass value

c := inf
{

max
s∈[0,1]

Φ0(γ(s)) | γ ∈C([0,1],V ) ,γ(0) = 0 ,γ(1) = t̃ ṽ
}

is a critical level with a non-trivial mountain pass critical set

Kc :=
{

v ∈V | Φ0(v) = c ,∇Φ0(v) = 0
}

(4)

which is compact for the H1-topology (because, with the same arguments used in
Section 3.1, any Palais–Smale sequence of Φ0 is precompact). In particular Kc is
bounded: there exists Rc > 0 such that

‖v‖H1 ≤ Rc , ∀v ∈Kc .

Remark 4.1. Actually Φ0 has an unbounded sequence of critical levels tending to
plus infinity [1], giving rise to multiplicity of periodic solutions of (1) close to the
corresponding critical sets of Φ0.

Since V is infinite dimensional a serious difficulty arises. If v ∈ V ∩Xσ ,s then
the solution w(ε,v) of the range equation, obtained with any Nash–Moser iteration
scheme will have a lower regularity, e.g. w(ε,v) ∈ Xσ/2,s. Therefore, in solving next
the bifurcation equation substituting w = w(ε,v), the best estimate we can obtain is
v ∈V ∩Xσ/2,s+2 which makes the scheme incoherent.

We overcome this difficulty thanks to a reduction onto a finite dimensional bifur-
cation equation on a subspace of V of dimension N independent of ω decomposing

V = V1⊕V2

where
⎧
⎨
⎩

V1 :=
{

v ∈V | v(t,x) = ∑N
l=1 cos(lt)ul sin(lx)

}
“low Fourier modes”

V2 :=
{

v ∈V | v(t,x) = ∑l>N cos(lt)ul sin(lx)
}

“high Fourier modes” .

(5)
Setting v := v1 + v2, v1 ∈V1,v2 ∈V2, system (2) (with s∗ = 1) is equivalent to

⎧
⎪⎪⎨
⎪⎪⎩

∆v1 = ΠV1 f (v1 + v2 +w) (Q1)

∆v2 = ΠV2 f (v1 + v2 +w) (Q2)

Lωw = εΠW f (v1 + v2 +w) range equation

(6)

where ΠVi : Xσ ,s →Vi (i = 1,2) denote the projectors on Vi.
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The (Q2)-equation. We find first the solution v2(v1,w) of the (Q2)-equation as a
fixed point of

v2 = ∆−1ΠV2 f (v1 + v2 +w)

by a contraction mapping argument, thanks to the compactness of the operator ∆−1.

Lemma 4.1. (Solution of the (Q2)-equation) There exist N̄, σ̄ > 0, such that
∀σ ∈ [0, σ̄ ], ∀‖v1‖H1 ≤ 2Rc, ∀‖w‖σ ,s≤Rc, there exists a unique solution v2(v1,w)∈
Xσ ,s+2 of the (Q2)-equation with ‖v2(v1,w)‖σ ,s ≤ Rc/2. The function v2(·, ·) is C∞

and ∀v ∈Kc, ΠV2 v = v2(ΠV1 v,0).

Intuitively, to find solutions of the complete bifurcation equation close to the
solutions Kc of the 0th order bifurcation equation (3), N̄ must be taken large enough
so that the majority of the “H1-mass” of the functions in Kc is “concentrated” on
the first N̄ Fourier modes. In the sequel we consider as fixed the constants N̄ and σ̄
which depend only on a(x)up and Kc.

The range equation. We solve next the range equation

Lωw = εΠWΓ (v1,w) (7)

where Γ (v1,w) := f (v1 + w + v2(v1,w)) via a Nash–Moser implicit function theo-
rem. We set B(2Rc;V1) := {v1 ∈V1 | ‖v1‖H1 ≤ 2Rc}.

Theorem 4.1. (Solution of the range-equation) For ε0 > 0 small enough, there
exists

w̃(·, ·) ∈C∞([0,ε0]×B(2Rc;V1),W ∩Xσ̄/2,s)

such that ‖w̃(ε,v1)‖σ̄/2,s ≤ Cεγ−1 and the “large” Cantor set B∞ ⊂ [0,ε0]×
B(2Rc;V1) defined below, such that ∀(ε,v1)∈B∞, w̃(ε,v1) solves the range equation
(7). The Cantor set B∞ is written explicitly as

B∞ :=
{

(ε,v1) ∈ [0,ε0]×B(2Rc;V1) :
∣∣∣ωl− j

∣∣∣≥ 2γ
(l + j)τ

, (8)

∣∣∣ωl− j + ε
M(v1, w̃(ε,v1))

2 j

∣∣∣≥ 2γ
(l + j)τ

,∀ j ≥ 1 , ∀l ≥ 1
3ε

, l 	= j
}

where ω =
√

1+2ε and

M(v1,w) :=
1

2π2

∫

Ω
(∂u f )(x,v1 +w+ v2(v1,w))dxdt .

To understand how the Cantor set B∞ arises, we recall that the core of any Nash–
Moser convergence method (based on a Newton’s iteration scheme) is the proof of
the invertibility of the linearized operators

h �→L (ε,v1,w)[h] := Lωh− εΠW DwΓ (v1,w)[h]
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where w is the approximate solution obtained at a given stage of the Nash–Moser
iteration. The operators L (ε,v1,w) are self-adjoint. Their eigenvalues can be esti-
mated by

λl j(ε,v1) =−ω2l2 + j2− εM(v1,w)+O
(ε

j

)
.

The linear operator L (ε,v1,w) shall be invertible only for the (ε,v1) where all
the λl j(ε,v1) 	= 0. This is the phenomenon giving rise to the Cantor set of “non-
resonant” parameters B∞. Some further work has to be done to get estimates for the
inverse operators in ‖‖σ ,s norms. Our approach [7, 9] is different than in [20] and
works also for not odd nonlinearities f with low regularity, unlike [20] works for
nonlinearities which are odd and analytic in (x,u).

We underline that w̃(ε,v1) is defined for all the (ε,v1) ∈ [0,ε0]×B(2Rc,V1) and
not only on the Cantor set B∞. The function w̃(·, ·) is a Whitney smooth interpola-
tion.

The “Cantor gaps” in B∞ are the main new problem to solve the bifurcation
equation.

5 The (Q1)-equation

The last step is to find solutions of the finite dimensional (Q1)-equation

∆v1 = ΠV1G (ε,v1) (1)

where G (ε,v1) := f (v1 + w̃(ε,v1)+ v2(v1, w̃(ε,v1))) such that (ε,v1) belong to the
Cantor set B∞.

Critical points of the C∞ “reduced Lagrangian action functional”

Φ̃ : B(2Rc;V1)→ R , Φ̃(ε,v1) :=Ψ
(

v1 + v2(v1, w̃(ε,v1))+ w̃(ε,v1)
)

such that (ε,v1) ∈ B∞ are solutions of (1) (“Percival” reduced variational principle).
As in Section 3.1, Φ̃(ε, ·) possesses, for any ε small enough, a mountain pass

critical point v1(ε) close to ΠV1Kc, where Kc is defined in (4) of section 4, as the
mountain pass critical set of Φ0. However, if Kc does not reduce to a non-degenerate
solution of (3), then v1(ε) could vary in a highly irregular way as ε → 0, the only
information available in general is that v1(ε) → ΠV1Kc as ε → 0. Therefore for
each ε the mountain pass critical point v1(ε) could belong to the complement of the
Cantor set B∞ in which the range equation (7) has been solved.

The section Eε := {v1 | (ε,v1) ∈ B∞} ≡ B(2Rc,V1) has “no gaps”, if and only if
the frequency ω(ε) =

√
1+2ε belongs to the zero-measure set Wγ defined in (5)

of section 3. This is why in section 3 we have proved the existence result for any
nonlinearity f (u) = up.

It can be shown that in between two sections Eε1 , Eε2 such that ω(ε1), ω(ε2) ∈
Wγ , the complement of B∞ is arcwise connected. Therefore it would be not sufficient
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to find just a continuous path of solutions ε �→ v1(ε) of equation (1), to conclude the
existence of solutions for a positive measure set of frequencies.

This is the common principal difficulty in applying variational methods in a
problem with small divisors.

The Arnold non-degeneracy condition. The simplest situation occurs when
at least one solution v̄ ∈V of (3) of section 4 is non degenerate, i.e.

kerΦ ′′
0|V (v̄) = {0} . (2)

This condition is somehow analogous to the “Arnold non-degeneracy condition” in
KAM theory, see e.g. [39] (in [20, 21] it is called “twist condition” or condition of
“genuine nonlinearity”).

For ε = 0 the (Q1)-equation (1) reduces to the projection of equation (3) of sec-
tion 4 on V1, namely

∆v1 = ΠV1

(
a(x)(v1 + v2(v1,0))p

)
. (3)

By the Arnold condition (and Lemma 4.1), v̄1 := ΠV1 v̄ is a non-degenerate solution
of (3) and, applying the implicit function theorem, there exists a C∞ path ε �→ v1(ε)
of solutions of (1) with v1(0) = v̄1. For all ε belonging to the Cantor-like set

C :=
{
ε ∈ [0,ε0) | (ε,v1(ε)) ∈ B∞

}
(4)

they give rise to solutions of equation (1) of section 4 like

u(ε) = v1(ε)+ v2(v1(ε), w̃(ε,v1(ε)))+ w̃(ε,v1(ε)) ∈ Xσ̄/2,s .

By the smoothness of v1(·), the set C has asymptotically full measure, namely

lim
η→0+

|C ∩ [0,η)|
η

= 1 . (5)

Geometrically this estimate exploits the structure of the Cantor set B∞ and that the
curve of solutions ε �→ v1(ε) crosses transversally B∞ (it is a graph), see Figure 4.
This is the classical argument used in [20].

The non-degeneracy condition (2) can be verified on examples.

Theorem 5.1. [7] Let

f (x,u) =

⎧
⎪⎨
⎪⎩

a2u2 a2 	= 0
a3(x)u3 〈a3〉 := (1/π)

∫ π
0 a3(x) 	= 0

a4u4 a4 	= 0 .

(6)

There exist ε0 > 0, σ̄ > 0, a C∞-curve [0,ε0) � ε �→ u(ε) ∈ Xσ̄/2,s, a Cantor set
C ⊂ [0,ε0) of asymptotically full measure, such that, ∀ ε ∈ C , u(ε) is a solution of
equation (1) of section 4 with frequency respectively
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ε

ν1(ε)

ε0

Fig. 4 The Cantor set B∞ in which the range equation is solved and the solutions v1(ε) of the
bifurcation equation (1).

ω =

⎧
⎪⎨
⎪⎩

√
1−2ε2√
1−2εsign〈a3〉√
1−2ε2 .

(7)

Existence of periodic solutions for completely resonant wave equations like (1)
of section 2 has been proved also in [25] if f (u) = u3 + O(u5) (to have the non-
degeneracy condition) and solving the small divisors problem with the Lindsted
series method.

Remark 5.1. Under periodic boundary conditions Bourgain [13] proved, when f =
u3 + O(u4), existence of periodic solutions, bifurcating from exact traveling waves
u = δ p0(ωt + x) of utt −uxx +u3 = 0. More recently Yuan [44] has proved, still for
periodic boundary conditions, existence of certain types of quasi-periodic solutions.

We remark that the Arnold non-degeneracy condition is generically satisfied in
[20] when the bifurcation equation is two dimensional (case of the Lyapunov center
theorem), but it is a difficult task yet for partially resonant PDEs like utt − uxx +
a1(x)u = f (x,u) where the bifurcation equation is 2m-dimensional. In this case,
considered in [21], the non-degeneracy condition is verified on examples.

6 A variational principle on a Cantor set

To relax the Arnold non-degeneracy condition, it is natural to make use of the “Per-
cival reduced variational principle” for solving the bifurcation equation (1) of sec-
tion 5. The major difficulty, explained at the beginning of Section 5, is to prove the
intersection between the solutions of the bifurcation and the range equations for pos-
itive measure sets of frequencies. We present below the results and the ideas in [8]
where we refer for complete proofs and details.
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Remark 6.1. New ideas in variational perturbation theory of critical points can shed
some light on challenging problems like the generalization of the Weinstein–Moser
and Fadell–Rabinowitz theorems for quasi-periodic solutions, see e.g. [19], where
the main difficulty arises exactly by a variational principle on a Cantor set. This
problem is also related to degenerate KAM theory, see e.g. [38, 39] and references
therein.

The weak BV-dependence on the frequency. We prove that, if there is a path of
solutions ε �→ v1(ε) of (Q1) equation (1) of section 5 which depends just in a BV
way, i.e.

∃d > 0 such that εd
0 Var[0,ε0]v1(ε)≤C < +∞ (1)

then the Cantor set C defined in (4) of section 5 has asymptotically full measure,
i.e. satisfies (5) of section 5. It’s the explicit expression of the Cantor set B∞ in (8)
of section 4 to suggest a condition like this (in [8] it is stated in a slightly different
way). Note that the variation of ε �→ v1(ε) could be very big. The idea is roughly
the following. We have to bound the measure of the complementary set

C c =
⋃

(l, j)∈R

Sl, j where Sl, j :=
{
ε ∈ [0,ε0] |

∣∣∣ω(ε)l− j + ε
M(ε)

2 j

∣∣∣ <
2γ

(l + j)τ

}
,

R := {(l, j) | l 	= j , l ≥ 1/3ε0 ,(1− 4ε0)l ≤ j ≤ (1 + 4ε0)l} (otherwise Sl, j = /0)
and M(ε) := M(v1(ε), w̃(ε,v1(ε))) satisfies a condition like (1) because M(·, ·) and
w̃(·, ·) are smooth. Calling al, j := infSl, j, bl, j := supSl, j, the measure of each Sl, j
can be bounded like

|Sl, j| ≤C
(

γ
lτ+1 + ε0

|M(al, j)−M(bl, j)|
jl

)
.

If all the (al, j,bl, j) were disjoint, we have to excise all the Sl, j. The measure can be
bounded like

∣∣∣
⋃

(l, j)∈R

Sl, j

∣∣∣≤C ∑
(l, j)∈R

γ
lτ+1 + ε0 ∑

1
ε0
≤l≤ 1

εb
0

C
jl

+Cε0 ∑
l≥ 1

εb
0

|M(al, j)−M(bl, j)|
jl

where also in the second and in the third sum (l, j) ∈R. The first and the second
term are easily shown to satisfy o(ε0). The third term can be bounded as

Cε0ε2b
0 ∑

l≥1/3εb
0

|M(al, j)−M(bl, j)| ≤Cε1+2b
0 Var[0,ε0]M ≤ ε1+2b

0 ε−d
0 C = o(ε0)

taking 2b > d. The detailed argument in Section 5.2 of [8] takes into account
possible overlapping of the sets (al, j,bl, j) to show that always | ∪(l, j)∈R Sl, j| ≤
o(ε0)+ ε1+2b

0 Var[0,ε0]M.
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The weak non-degeneracy condition. We are not able to ensure the BV-property
(1) for any f (x,u) = a(x)up. Therefore we introduce parameter-dependent nonlin-
earities

f (λ ,x,u) = a(x)up +
M

∑
i=1

λibi(x)uqi , qi ≥ q̄ > p≥ 2 (2)

where q can be arbitrarily large and λi ∈ R are the parameters. We remark that,
since qi > p, the nonlinearities λibi(x)uqi do not change the 0th-order bifurcation
equation (3) of section 4, which in particular might have only degenerate solutions.
Actually, since the exponents qi can be arbitrarily large, we are adding arbitrarily
small corrections bi(x)uqi = o(up) for u→ 0.

The main idea for proving the BV-property (1) for nonlinearities like in (2)
is somehow related to the Struwe “monotonicity method” [40] for parameters
dependent functionals possessing the mountain pass geometry. We can infer the
BV-property for the mountain pass solutions of the bifurcation equation by a BV-
information on the derivatives (w.r.t λ ) of the mountain pass critical levels, choosing
properly the exponents qi and the coefficients bi.

Normalizing the period and rescaling the amplitude u → δu, we look for solu-
tions of {

ω2utt −uxx = εg(δ ,λ ,u)
u(t,0) = u(t,π) = 0

(3)

where ε := δ p−1 and g(δ ,λ ,u) := a(x)up +∑M
i=1λiδ qi−pbi(x)uqi . Critical points of

the action functional

Ψ(δ ,λ ,u) :=
∫

Ω

ω2

2
u2

t −
u2

x

2
+ εa(x)

up+1

p+1
+

M

∑
i=1

λiδ qi−1
∫

Ω
bi(x)

uqi+1

qi +1

are solutions of (3). We perform the same Lyapunov–Schmidt reduction as above.
Once the (Q2)-equation and the range equation are solved, the latter on a Cantor set
B∞, we need to find solutions v1(δ ,λ ) of the (Q1)-equation. As above, we need to
find a critical point v1 of

Φ̃(δ ,λ ,v1) =Ψ(δ ,λ ,v1 + v2(δ ,λ ,v1, w̃(δ ,λ ,v1))+ w̃(δ ,λ ,v1))

such that (δ ,λ ,v1) ∈ B∞. The reduced functional Φ̃ can be written Φ̃(δ ,λ ,v1) =
εΦ(δ ,λ ,v1) and Φ(δ ,λ , ·) has, ∀δ small, ∀|λ | ≤ 1, a not empty Mountain-Pass
critical set

K (δ ,λ )⊂ B(2Rc;V1)\{0}
at the mountain pass critical value

c(λ ,δ ) = Φ(δ ,λ ,K (δ ,λ )) . (4)

Furthermore K (δ ,λ )→ΠV1Kc as δ → 0.
The key observation is that the mountain pass value c(δ ,λ ) is a semiconcave

function, namely c(δ ,λ )−K(δ 2 + |λ |2) is concave for some K large enough, see
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section 2 in [8]. Therefore c(δ ,λ ) is differentiable almost everywhere and the deriv-
atives ∂λi c(δ ,λ ) are BV functions. Furthermore, at the points where c(λ ,δ ) is dif-
ferentiable,

∂λi c(δ ,λ ) = (∂λiΦ)(δ ,λ ,K (δ ,λ )) , ∀i = 1, . . . ,M . (5)

Formally (5) follows differentiating in (4) since (∂uΦ)(δ ,λ ,K (δ ,λ )) = 0.
For each |λ | ≤ 1 we define a path

V1(·,λ ) : [0,δ0] �→K (δ ,λ )

of critical points of Φ(δ ,λ , ·). By (5) the functions (∂λiΦ)(δ ,λ ,V1(δ ,λ )) are BV
in the variables (δ ,λ ). Hence, for a.e. |λ | ≤ 1, the functions (of one variable)

δ �→ (∂λiΦ)(δ ,λ ,V1(δ ,λ )) are BV . (6)

QUESTION: How to infer the BV-property (1) for δ → V1(δ ,λ ) from (6)?

Differentiating the reduced action functional

(∂λiΦ)(δ ,λ ,v1) = δ qi−p
[
Φi(v1)+Ri(δ ,λ ,v1)

]
(7)

where Φi : B(2Rc;V1)→ R are

Φi(v1) :=
1

qi +1

∫

Ω
bi(x)

(
v1 + v2(v1)

)qi+1

with v2(v1) := v2(0,0,v1,0), and |Ri(δ ,λ ,v1)|= O(δ ), |∇v1Ri(δ ,λ ,v1)|= O(δ ).
Here the choice of the nonlinearities bi(x)uqi enters into play. The required weak

non-degeneracy condition is that the ∇Φi(v1) generate V1, i.e.

∀v1 ∈ΠV1Kc , span{∇Φi(v1) , i = 1, . . . ,M} ≡V1 . (8)

In this case, in any neighborhood of ΠV1Kc a finite set of Φi(v1) can be seen as a
local chart of coordinates. Hence, by the BV dependence (6), and (7) we infer the
(BV) property for the path of critical points δ �→ V1(δ ,λ ). In [8], the weak non-
degeneracy condition (8) is verified, proving the following theorem:

Theorem 6.1. [8] For any q̄ > p there exist M ∈ N, integer exponents q̄ ≤ q1 ≤
. . . ≤ qM and coefficients b1, . . . ,bM ∈ H1(0,π) depending only on a(x), such that
for almost every parameter λ = (λ1, . . . ,λM), |λ | ≤ 1, equation (1) of section 2 with
nonlinearity f (λ ,x,u) like in (2) possesses periodic solutions for an asymptotically
full measure Cantor set of frequencies ω close to 1.

Furthermore, given a(x)up, bi(x)uqi , Theorem 6.1 is valid also adding any non-
linear term r(x,u) = ∑k>p rk(x)uk, with ∑k>p ‖rk‖H1ρk < +∞ for some ρ > 0. The
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term r has an influence only on the full measure set of parameters λ for which the
existence result holds (in the previous argument we use just the derivatives w.r.t.
λ ). Theorem 6.1 can be interpreted as a genericity result in the sense of Lebesgue
measure, see for details [8].

7 Forced vibrations

In this section we look for T -periodic solutions of
{

utt −uxx = ε f (t,x,u)
u(t,0) = u(t,π) = 0

(1)

when the nonlinearity is T -periodic, namely f (t + T,x,u) = f (t,x,u), ∀t. We sup-
pose that the forcing frequency ω := 2π/T is a rational number, for simplicity

ω = 1 , i.e. T = 2π

(if ω /∈ Q a small divisor problem similar to the one discussed in the previous sec-
tions appears, see e.g. [2] and references therein).

The spectrum of the D’Alembert operator in a space of 2π-periodic functions is
(see (3) of section 2)

σ(∂tt −∂xx) =
{
− l2 + j2 | l ∈ Z , j ∈ N

}
⊂ Z .

Therefore zero is an eigenvalue of infinite multiplicity (when |l| = j) but the other
eigenvalues are well separated from zero if |l| 	= j. For this reason the difficulty is
not solving the range equation, but the bifurcation equation which has an intrinsic
lack of compactness.

The first breakthrough regarding this problem was achieved by Rabinowitz [34]
under the strong monotonicity assumption (∂u f )(t,x,u) ≥ β > 0 and in [35]
for weakly monotone nonlinearities like f (t,x,u) = u2k+1 + G(t,x,u) where
G(t,x,u2) ≥ G(t,x,u1) if u2 ≥ u1. For several other results in the monotone case
see e.g. [16] and references therein. The monotonicity of f is deeply exploited
to compensate the for lack of compactness in the infinite dimensional bifurcation
equation.

Little is known without the monotonicity. Willem [43], Hofer [26] and Coron
[17] have proved some existence result for nonlinearities like f (t,x,u) = g(u) +
h(t,x), where g(u) satisfies suitable linear growth conditions, ε = 1, and under ad-
ditional symmetries or non-resonance assumptions.

We now present the recent existence results of [5] for non-monotone nonlineari-
ties. This will highlight a completely different use of variational methods.
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7.1 The variational Lyapunov–Schmidt reduction

In view of the variational argument that we shall use to solve the bifurcation equa-
tion we look for solutions u of (1) in the Banach space E := H1(Ω)∩C1/2

0 (Ω̄) where
H1(Ω) is the usual Sobolev space, Ω := T× [0,π], and C1/2

0 (Ω̄) is the space of all
the 1/2-Hölder continuous functions satisfying u(t,0) = u(t,π) = 0 endowed with
norm ‖u‖E := ‖u‖H1(Ω) +‖u‖C1/2(Ω̄).

Critical points of the Lagrangian action functionalΨ ∈C1(E,R)

Ψ(u) :=
∫

Ω

[
u2

t

2
− u2

x

2
+ εF(t,x,u)

]
dtdx

where (∂uF)(t,x,u) = f (t,x,u) are weak solutions of (1).
For ε = 0, the critical points ofΨ in E reduce to the space

V := N∩H1(Ω)⊂ E (2)

where

N :=
{

v = v̂(t + x)− v̂(t− x) =: v+− v− : v̂ ∈ L2(T) and
∫

T
v̂ = 0

}

is the L2-closure of the classical solutions of equation (2) of section 2. We have
V ⊂ E because any v̂ ∈ H1(T) is 1/2-Hölder continuous. The only difference with
respect to the space V introduced in (2) of section 3 is that the functions v in (2) are
not necessarily even in time.

Theorem 7.1. [5] Let f (t,x,u) = u2k + h(t,x) where h ∈ N⊥ satisfies h(t,x) > 0
a.e. in Ω . Then ∀ε small enough, there exists at least one weak solution u ∈ E of (1)
with ‖u‖E ≤C|ε|.

Theorem 7.1 is a particular case of a more general result which holds without
any growth condition for f , see Theorems 1, 2 in [5]. Moreover, the solution u is
proved to be more regular, when h is more regular. This is somewhat surprising:
Brezis–Nirenberg [16] and Rabinowitz [36] have proved regularity of solutions if f
is strictly monotone in u. For example, yet the solutions in [35] are only continuous
functions. The less regular part of the solution is the component in V because of the
lack of compactness.

Remark 7.1. The assumption h ∈ N⊥ is not of technical nature: if h /∈ N⊥, periodic
solutions of (1) do not exist in any fixed ball {‖u‖L∞ ≤ R} for ε small.

To prove Theorem 7.1 we perform a Lyapunov–Schmidt reduction, decomposing

E = V ⊕W where W := N⊥ ∩E

and N⊥ := {h ∈ L2(Ω) |
∫
Ω hv = 0, ∀v ∈ N}.
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Projecting (1), for u = v+w with v ∈V , w ∈W , yields
{

0 = ΠN f (v+w) bifurcation equation
wtt −wxx = εΠN⊥ f (v+w) range equation

(3)

where ΠN and ΠN⊥ are the projectors from L2(Ω) onto N and N⊥.

The range equation. The inverse of the D’Alembert operator �−1 : N⊥ →W de-
fined by

�−1 f := ∑
j≥1, j 	=|l|

fl j

−l2 + j2 eilt sin jx , ∀ f ∈ N⊥

is a bounded operator, i.e. ‖�−1 f‖E ≤C‖ f‖L2 , see [16]. Fixed points w ∈W of

w = ε�−1ΠN⊥ f (v+w)

are solutions of the range equation. By the contraction mapping theorem we have:

Lemma 7.1. (Solution of the range equation) ∀R > 0, ∃ ε0(R) > 0, C0(R) > 0,
such that ∀|ε| ≤ ε0(R) and ∀v ∈ N with ‖v‖L∞ ≤ 2R there exists a unique solution
w(ε,v) ∈W of the range equation satisfying

‖w(ε,v)‖E ≤C0(R)|ε| . (4)

Moreover the map (ε,v) �→ w(ε,v) is C1({‖v‖L∞ ≤ 2R},W ).

7.2 The bifurcation equation

There remains the infinite dimensional bifurcation equation

ΠN f (v+w(ε,v)) = 0

which is the Euler-Lagrange equation of the reduced action functional

Φε : {‖v‖H1 < 2R}→ R , Φε(v) :=Ψ(v+w(ε,v)) .

Φε can be written (like in (6) of section 3 with w = 1) as

Φε(v) = ε
∫

Ω

[
F(v+w(ε,v))− 1

2
f (v+w(ε,v))w(ε,v)

]
dt dx .

To find critical points of Φε , we make a constrained minimization like in [34] (we
don’t have compactness to try any critical point theory). By the compact embedding
(V,‖ · ‖H1) ↪→ (V,‖ · ‖∞) (see Remark 3.1) it easy to deduce that

Lemma 7.2. ∀R > 0, Φε attains a minimum v̄ in B̄R := {v ∈V,‖v‖H1 ≤ R} .
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Fig. 5 The variational inequality.

If v̄ ∈ ∂ B̄R then we deduce only the variational inequality

DvΦε(v̄)[φ ] =
∫

Ω
f (v̄+w(ε, v̄))φ ≤ 0 (5)

for any admissible variation φ ∈V such that 〈v̄,φ〉H1 > 0, see Figure 5.
The heart of the existence proof is to obtain, choosing suitable admissible varia-

tions, the a-priori estimate ‖v̄‖H1 < R∗ for some R∗ > 0 independent of ε .
It is here where the monotonicity of f plays its role to prove Rabinowitz’s the-

orem [34]. On the other hand, the difficulty for dealing with non-monotone nonlin-
earities is well highlighted by the nonlinearities f = u2k + h(t,x). In this case the
variational inequality (5) vanishes identically for ε = 0, because

∫

Ω
(v̄2k +h(t,x))φ 	≡ 0, ∀φ ∈V

since h ∈ N⊥ and the following lemma.

Lemma 7.3. [5] If v1, . . . ,v2k+1 ∈V then
∫
Ω v1 · . . . ·v2k+1 = 0. In particular, if v∈V

then v2k ∈W.

Therefore, for deriving, if possible, the required a priori estimates, we have to de-
velop the variational inequality (5) at higher orders in ε . It is convenient to perform
in (1) with f = u2k + h the change of variables u → ε(H + u) where H is a weak
solution of ⎧

⎪⎨
⎪⎩

Htt −Hxx = h
H(t,0) = H(t,π) = 0
H(t +2π,x) = H(t,x)

(6)

and, since h > 0 in Ω , we can always choose H(t,x) > 0, ∀(t,x)∈Ω (see the “max-
imum principle” theorem proved in [5]). Therefore (renaming ε2k → ε) we look for
2π periodic solutions of

{
utt −uxx = ε f (t,x,u)
u(t,0) = u(t,π) = 0

where f (t,x,u) := (H +u)2k . (7)

Implementing a variational Lyapunov–Schmidt reduction as above, we find the ex-
istence of a constrained minimum v̄ ∈ B̄R and the variational inequality
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∫

Ω
(H + v̄+w(ε, v̄))2kφ ≤ 0 . (8)

The required a priori estimate for the H1-norm of v̄ is proved in several steps insert-
ing into the variational inequality (8) suitable admissible variations. We consider
only the more difficult case k ≥ 2.

The following key “coercivity” estimate is heavily exploited.

Lemma 7.4. (Coercivity estimate) [5] Let H ∈C(Ω̄) with H > 0 in Ω . Then
∫

Ω
Hv2k ≥ ck(H)

∫

Ω
v2k , ∀ v ∈ N∩L2k(Ω) (9)

where ck(H) := 4−k minΩ̄αk
H > 0, αk := 1

4(1+2k) , and Ωα := T× (απ,π−απ).

The inequality (9) is not trivial because H vanishes at the boundary ∂Ω (i.e.
H(t,0) = H(t,π) = 0). It holds true because v = v̂(t + x)− v̂(t− x) is the superpo-
sition of waves which “spend a lot of time” far from x = 0 and x = π .

In the sequel κi will denote positive constants independent of ε .
Step 1: the L2k-estimate. Insert φ := v̄ in (8). φ is an admissible variation since
〈v̄,φ〉H1 = ‖v̄‖2

H1 > 0. Setting w̄ := w(ε, v̄)
∫

Ω
(v̄+H)2kv̄ =

∫

Ω
(v̄+H + w̄)2kv̄+

∫

Ω
[(v̄+H)2k− (v̄+ w̄+H)2k]v̄

(8)
≤

∫

Ω
[(v̄+H)2k− (v̄+ w̄+H)2k]v̄

(4)
≤ |ε|C1(R)‖v̄‖L1 ≤ 1 (10)

for |ε| ≤ ε1(R) where 0 < ε1(·)≤ ε0(·). Since
∫
Ω v̄2k+1 = 0 by Lemma 7.3,

1
(10)
≥

∫

Ω
(v̄+H)2kv̄ =

∫

Ω

[
(v̄+H)2k− v̄2k

]
v̄ (11)

=
∫

Ω
2kHv̄2k +

2k−2

∑
j=0

(
2k
j

)
v̄ j+1H2k− j

(9)
≥ 2kck(H)‖v̄‖2k

L2k −κ1‖v̄‖2k−1
L2k −κ2‖v̄‖L2k

using Hölder inequality to estimate ‖v̄‖Li ≤Ci,k‖v̄‖L2k (i≤ 2k−1). By (11)

‖v̄‖L2k ≤ κ3 for |ε| ≤ ε1(R) . (12)

Step 2: the L∞∞∞-estimate. We now choose φ = q( ˆ̄v(t + x))−q( ˆ̄v(t− x)) ∈V where

q(λ ) :=

⎧
⎨
⎩

0 if |λ | ≤M
λ −M if λ ≥M
λ +M if λ ≤M
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and
M :=

1
2
‖ ˆ̄v‖L∞(T) . (13)

We can assume M > 0, i.e. v̄ is not identically zero.

Lemma 7.5. ([34]) φ ∈ V is an admissible variation and v̄(t,x)φ(t,x) ≥ 0,
∀(t,x) ∈Ω .

Using (8), setting w̄ := w(ε, v̄),
∫

Ω
(v̄+H)2kφ =

∫

Ω
(v̄+H + w̄)2kφ +

∫

Ω
[(v̄+H)2k− (v̄+ w̄+H)2k]φ

(8)
≤

∫

Ω
[(v̄+H)2k− (v̄+ w̄+H)2k]φ

(4)
≤ |ε|C2(R)‖φ‖L1 ≤ ‖φ‖L1 (14)

for |ε| ≤ ε2(R) where 0 < ε2(·)≤ ε1(·). Now, using that
∫
Ω v̄2kφ = 0 by Lemma 7.3,

‖φ‖L1

(14)
≥

∫

Ω
(v̄+H)2kφ =

∫

Ω

[
(v̄+H)2k− v̄2k

]
φ

≥
∫

Ω
2kHv̄2k−1φ −κ4(‖v̄‖2k−2

L∞ +1)‖φ‖L1

which implies, since
∫
Ω Hv̄2k−1φ ≥ κ5

∫
Ω1/4

φ v̄2k−1 (because v̄φ ≥ 0), that

∫

Ω1/4

v̄2k−1φ ≤ κ6(‖v̄‖2k−2
L∞(Ω) +1)‖φ‖L1(Ω) ≤ κ7(‖v̄‖2k−2

L∞(Ω) +1)‖q( ˆ̄v)‖L1(T)

since ‖φ‖L1(Ω) ≤ ‖q( ˆ̄v)‖L1(T). We have to give a lower bound of

∫

Ω1/4

v̄2k−1φ =
∫

Ω1/4

(v̄φ)v̄2k−2 =
∫

Ω1/4

(v̄φ)(v̄+− v̄−)2k−2 .

By the elementary inequality (a−b)2k ≥ a2k +b2k−2k(a2k−1b+ab2k−1), ∀a,b∈R,
∫

Ω1/4

v̄2k−1φ ≥
∫

Ω1/4

v̄φ
[
v̄2k−2
+ + v̄2k−2

− − (2k−2)(v̄2k−3
+ v̄−+ v̄+v̄2k−3

− )
]

= 2
∫

Ω1/4

v̄2k−1
+ q+− v̄2k−1

+ q−+ v̄2k−2
+ v̄−q−− v̄2k−2

+ v̄−q+

+ (2k−2)[−v̄2k−2
+ v̄−q+ + v̄2k−2

+ v̄−q−− v̄2k−3
+ v̄2

−q−+ v̄2k−3
+ v̄2

−q+]

≥ 2
∫

Ω1/4

v̄2k−1
+ q+ (15)

− 2
∫

Ω1/4

v̄2k−1
+ q−+(2k−1)v̄2k−2

+ v̄−q+ +(2k−2)v̄2k−3
+ v̄2

−q− (16)
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where in the last inequality we used that v̄+q+, v̄−q− ≥ 0 (since λq(λ )≥ 0) and so
v̄2k−2
+ v̄−q−, v̄2k−3

+ v̄2
−q+ ≥ 0. The dominant term (15) is estimated using the identity∫

Ωα
p(t + x)dt dx =

∫
Ωα

p(t− x)dt dx = π(1−2α)
∫

T p(s)ds, ∀p ∈ L1(T),

2
∫

Ω1/4

v̄2k−1
+ q+ = 2π(1− 2

4
)
∫

T
ˆ̄v2k−1(s)q( ˆ̄v(s))ds≥ πM2k−1‖q( ˆ̄v)‖L1(T) (17)

because λ 2k−1q(λ )≥M2k−1|q(λ )|. The terms in (16) are estimated by
∣∣∣∣∣2

∫

Ω1/4

v̄2k−1
+ q−

∣∣∣∣∣ ≤ 2
∫

Ω

∣∣∣v̄2k−1
+

∣∣∣ |q−| ≤ ‖ ˆ̄v‖2k−1
L2k−1(T)‖q( ˆ̄v)‖L1(T)

∣∣∣∣∣2
∫

Ω1/4

(
v̄2k−2
+ q+

)
v̄−

∣∣∣∣∣ ≤ ‖ ˆ̄v2k−2q( ˆ̄v)‖L1(T)‖ ˆ̄v‖L1(T) ≤ (2M)2k−2‖q( ˆ̄v)‖L1(T)‖ ˆ̄v‖L1(T)

∣∣∣∣∣2
∫

Ω1/4

v̄2k−3
+

(
v̄2
−q−

)∣∣∣∣∣ ≤ ‖ ˆ̄v2k−3‖L1(T)‖ ˆ̄v2q( ˆ̄v)‖L1(T) ≤ (2M)2‖ ˆ̄v‖2k−3
L2k−3(T)‖q( ˆ̄v)‖L1(T)

By the previous inequalities, (17), Hölder inequality and (12)
∫

Ω1/4

v̄2k−1φ ≥ πM2k−1‖q( ˆ̄v)‖L1(T)−κ7(M2k−2 +1)‖q( ˆ̄v)‖L1(T) . (18)

By (15) and (18)

M2k−1‖q( ˆ̄v)‖L1(T) ≤ κ8

(
‖v̄‖2k−2

L∞(Ω) +M2k−2 +1
)
‖q( ˆ̄v)‖L1(T)

≤ κ9

(
M2k−2 +1

)
‖q( ˆ̄v)‖L1(T)

and finally M2k−1 ≤ κ9(M2k−2 +1). Since M := 1
2‖ ˆ̄v‖L∞(T) (see (13))

‖v̄‖L∞ ≤ κ10 for |ε| ≤ ε2(R) .

Step 3: The H111-estimate. The H1-estimate is carried out inserting in (8) the varia-
tion φ :=−D−hDhv̄ where

(Dh f )(t,x) :=
f (t +h,x)− f (t,x)

h

is the difference quotient with respect to t. Note that φ is admissible because
〈−D−hDhv̄, v̄〉H1 = 〈Dhv̄,Dhv̄〉H1 > 0. With arguments similar to the previous ones,
we can deduce that, for some 0 < ε3(R)≤ ε2(R),

‖v̄‖H1 < κ11 , ∀|ε| ≤ ε3(R) .

PROOF OF THEOREM 7.1 COMPLETED. Take R∗ := κ11 and ε∗ := ε3(R∗). There-
fore, ∀|ε| ≤ ε∗, ‖v̄(ε)‖H1 < R∗ is an interior minimum of Φε in BR∗ .
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Spectral gaps of potentials in weighted
Sobolev spaces

Jürgen Pöschel1

Abstract We consider the Schrödinger operator L = −d2/dx2 + q on the interval
[0,1] depending on an L2-potential q and endowed with periodic or anti-periodic
boundary conditions. We prove results about correspondencies between the asymp-
totic behaviour of the spectral gaps of L and the regularity of q in the Gevrey
case, among others. The proofs are based on a Fourier block decomposition due
to Kappeler & Mityagin, and a novel application of the implicit function theorem.

1 Results

We consider the Schrödinger operator

L =− d2

dx2 +q

on the interval [0,1] depending on an L2-potential q and endowed with periodic or
anti-periodic boundary conditions. In this case, L is also known as Hill’s operator.
Its spectrum is pure point, and for real q consists of an unbounded sequence of real
periodic eigenvalues

λ+
0 (q) < λ−1 (q) � λ+

1 (q) < · · ·< λ−n (q) � λ+
n (q) < · · · .

Their asymptotic behaviour is

λ±n = n2π2 +[q]+ �2(n),
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where [q] denotes the mean value of q and �2(n) a generic square sumable term.
Equality may occur in every place with a ‘�’-sign, and one speaks of the gap lengths

γn(q) = λ+
n (q)−λ−n (q), n � 1,

of the potential q.
For complex q, the periodic eigenvalues are still well defined, but in general

not real, since L is no longer self-adjoint. Their asymptotic behaviour is the same,
however, and we may order them lexicographically – first by their real part, then by
their imaginary part – so that

λ0(q)≺ λ−1 (q) 	 λ+
1 (q)≺ ·· · ≺ λ−n (q) 	 λ+

n (q)≺ ·· · .

The gap lengths are then defined as before, but are now complex valued in general.

Classical Results

We are interested in the relationship between the regularity of a potential and the
sequence of its gap lengths. Hochstadt [5] observed that

q ∈C∞(S1,R) ⇔ γn(q) = O(n−k) for all k � 0,

and Marčenko & Ostrowskı̆ [27] subsequently showed that

q ∈ Hm(S1,R) ⇔ ∑
n�1

n2mγ2
n (q) < ∞

for all nonnegative integers m. Trubowitz [32] then proved that

q ∈Cω(S1,R) ⇔ γn(q) = O(ε−an) for some a > 0.

Later, due to the realization of the periodic KdV flow as an isospectral deformation
of Hill’s operator, other regularity classes such as Gevrey functions and non-real
potentials came into focus. Recent results in this direction appear example in [2,11,
12, 16, 17]. Within certain limits, one may think of the gap lengths as another kind
of Fourier coefficients of the potential.

It is the purpose of this note to describe some of these recent developments. For
more detailed statements and proofs we refer to [10] and later [3].

Weighted Sobolev Spaces

As in [16, 17] a weight is a normalized, symmetric and submultiplicative function
w : Z → R. That is, for all integers n and m, we have

wn � 1, w−n = wn, wn+m � wnwm.
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Within the standard Sobolev space

H0 = L2(S1,C)

of square-integrable functions u = ∑n∈Z unε2πinx we then define the weighted
Sobolev spaces

Hw = {u ∈H0 : ‖u‖2
w := ∑n∈Z w2

n|un|2 < ∞}.

To give some examples, let 〈n〉 = 1 + |n|. The Sobolev weights 〈n〉r, r � 0, give
rise to the usual Sobolev spaces Hr of 1-periodic, complex-valued functions. The
Abel weights1 〈n〉rεa|n| with a > 0 define spaces Hr,a of functions in Hr, which are
analytic on the complex strip |Imz|< a/2π and have traces in Hr on the boundary
lines. The Gevrey weights

wn = 〈n〉rεa|n|σ , r � 0, a > 0, 0 < σ < 1,

lie in between and give rise to the so called Gevrey spaces Hr,a,σ of smooth func-
tions. Obviously,

Hr,a = Hr,a,1
� Hr,a,σ

� Hr,a,0 = Hr.

Yet another weight is for example

wn = 〈n〉r exp
( a|n|

1+ logα〈n〉
)
, α > 0.

Since logwn is subadditive and nonnegative, the limit

χ(w) := lim
n→∞

logwn

n

exists and is nonnegative [29, no. 98]. Naturally, we call a weight w exponential, if
χ(w) > 0. We call w subexponential, if χ(w) = 0 with n−1 logwn converging to zero
in an eventually monotone manner. This is not an exact dichotomy, but we are not
aware of any interesting weight that does not belong to either class. Clearly, Abel
weights are exponential, while Sobolev and Gevrey weights are subexponential.

The Theorems

Let
hw = {u = (un)n�1 ∈ �2 : ∑n�1 w2

n|un|2 < ∞},
and γ(q) = (γn(q))n�1.

1 The term Abel weights is chosen to go along with Sobolev and Gevrey weights and has no deeper
meaning.
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Theorem 1 If q ∈Hw, then γ(q) ∈ hw. In particular,

∑
n�N

w2
n|γn(q)|2 � 9‖TNq‖2

w +
288
N
‖q‖4

w

for all N � 4‖q‖w, where TNq = ∑|n|�N qnε2nπix.

There is no one-to-one converse to Theorem 1 for exponential weights, as there
exist real analytic finite gap potentials such as the Weierstrass ℘-function, which
are not entire functions. In this case, fixing any r > 0, we have (γn(u)) ∈ hr,a for all
a > 0, but only u ∈Hr,a for a < a0. There is, however, a true converse for subexpo-
nential weights. We first consider the real case.

Theorem 2 Suppose q ∈ H0 is real and γ(q) ∈ hw. If w is subexponential, then
q ∈Hw. If w is exponential, then q is real analytic.

Corollary 3 If q is real and w is subexponential, then

q ∈Hw ⇔ γ(q) ∈ hw.

For complex potentials, the spectral gap lengths alone do not suffice to determine
the regularity of a potential. For instance, Gasymov [13] showed that all gap lengths
vanish for complex potentials of the form

q = ∑
n�1

qnε2nπix = ∑
n�1

qnzn ∣∣
z=ε2πix .

But Sansuc & Tkachenko [11] noted that the situation can be remedied by taking
into account additional spectral data. In particular, they considered the quantities

δn = µn− τn = µn− (λ+
n −λ−n )/2,

where µn denotes the n-th Dirichlet eigenvalue. The quantities

Γn = |γn|+ |δn|,

may be considered as a measure of the size of the spectral triangle formed by the
points λ−n , δn and λ+

n . Note that γn � Γn � 2γn for real potentials.
We then have the following converse theorem.

Theorem 4 Suppose q ∈H0 is real or complex and Γ (q) ∈ hw. If w is subexponen-
tial, then q ∈Hw. If w is exponential, then q is real analytic.

Corollary 5 If w is subexponential, then

q ∈Hw ⇔ Γ (q) ∈ hw.

For the sake of brevity and simplicity, we will describe the line of reasoning
for the real case. For more details, complete proofs and the complex case we refer
to [10] and also [3].
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2 Reduction

The idea of the proof of Theorem 1 is due to Kappeler & Mityagin [17]. They
employ a Lyapunov–Schmidt reduction scheme called Fourier block decomposition.

The aim is to determine those λ near n2π2 with n sufficiently large, for which
the equation −y′′+ qy = λy admits a nontrivial 2-periodic solution f . As q can be
considered small for large n, one expects its dominant modes to be ε±nπix. So it
makes sense to separate these modes from the other ones by a Lyapunov–Schmidt
reduction.

To this end we consider a similarly defined space Hw
� of 2-periodic functions,

and write

Hw
� = Pn⊕Qn

= span{en,e−n}⊕ span{ek : |k| 	= n},

where ek = εkπix. The projections onto Pn and Qn are denoted by Pn and Qn, respec-
tively. With

f = u+ v = Pn f +Qn f ,

Hill’s equation decomposes into the so called P- and Q-equations

Aλu = PnV (u+ v),
Aλ v = QnV (u+ v),

where Aλ f = f ′′+λ f and V f = q f .
The operator Aλ has a compact inverse on Qn, when λ is near n2π2. Indeed, this

holds on the complex strips Un = {λ : |Reλ −n2π2|� 12n} for n � 1.

Lemma 1 For q∈Hw and λ ∈Un, the operator Tn =VA−1
λ Qn exists and is bounded

on Hw
� with norm

‖Tn‖w � 2
n
‖q‖w.

Left-multiplying the Q-equation with VA−1
λ we obtain V v = TnVu + TnV v. For n

large enough, Tn is a contraction on Hw
� , and there is a unique solution

V v = T̂nTnVu, T̂n = (I−Tn)−1.

Inserted into the P-equation we get Aλu = PnVu + PnT̂nTnVu = PnT̂nVu. So the P-
and Q-equation reduce to the S-equation

Snu = 0, Sn = Aλ −PnT̂nV.

Since Pn is two-dimensional with basis en,e−n, we have the matrix representation

Sn =
(
λ −n2π2−an −cn

−c−n λ −n2π2−an

)
,
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with
an = 〈T̂nVen ,en〉, cn = 〈T̂nVe−n ,en〉.

Any nontrivial solution u gives rise to a 2-periodic solution of Aλ f = V f , and vice
versa. Hence the following holds.

Lemma 2 A complex number λ near n2π2 is a periodic eigenvalue of q if and only
if the determinant of Sn vanishes.

Moreover, from the representations of an and cn one easily obtains the following
facts, which we need later.

Lemma 3 For n � 4‖q‖w and λ ∈Un,

|an−q0|Un
,wn|cn−qn|Un

,wn|c−n−q−n|Un
� 4

n
‖q‖2

w.

Moreover, these coefficients are analytic functions of λ and q.

3 Gap Estimates

With the preceding results the forward problem of estimating the gap lengths of a
potential is fairly straightforward. The determinant of Sn is the quadratic polynomial

detSn = (λ −n2π2−an)2−|cn|2,

and the distance of its two roots has to be of the order of |cn|.

Lemma 4 For n � 4‖q‖w the determinant of Sn has exactly two roots ξ±n in Un,
which are contained in the disc |λ −n2π2|� 6‖q‖w and satisfy

∣∣ξ+
n −ξ−n

∣∣2 � 9|cnc−n|Un
.

A counting argument then shows that these two roots have to be the two eigen-
values λ±n . Consequently, we obtain

|γn|2 =
∣∣ξ+

n −ξ−n
∣∣2 � 9|cnc−n|Un

� 9|qn|2 +9|q−n|2 +
144

n2w2
n
‖q‖4

w

by Lemma 3. Multiplying by w2
n and summing over n � N we obtain Theorem 1.

4 Coefficient Estimates

We now turn to the more subtle problem of estimating the asymptotic behaviour
of the Fourier coefficients of a potential in terms of its gap lengths. The geometric
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aspect is rather straightforward, at least in the real case. The off diagonal elements
of Sn have to be bounded in terms of the gap lengths, that is

|cn|� |γn|, n, 1,

where the dot stands for some implicit constant. The identity cn = 〈T̂nVe−n ,en〉 then
leads to an infinite dimensional system of nonlinear equations

cn = qn +O2(. . . ,qk, . . .), n 	= 0,

which allows us to bound the qn in terms of the cn and hence in terms of the γn.
See [12] for the lengthy details of this argument.

Here we present a functional analytic approach based on the fact that the co-
efficients of Sn – which contain all the necessary data – are analytic functions
of q. Indeed, it even suffices to consider Sn at that value of λ where its diagonal
vanishes.

For m � 1 and any weight w we introduce the centered balls

Bw
m = {q ∈Hw : ‖q‖w � m/4} ⊂H0.

We also assume from now on that q has zero mean, that is,
∫ 1

0 qdx = q0 = 0, since
adding a constant to q shifts its entire spectrum, but does not affect its gap lengths.

Using a contraction argument it is easy to show that the diagonal of Sn vanishes
at a unique point αn near n2π2.

Lemma 5 For m � 1 and n � m there exists a unique real analytic function

αn : B0
m → C,

∣∣αn−n2π2∣∣
B0

m
� m2

4n
,

such that λ −n2π2−an(λ , ·)
∣∣
λ=αn

≡ 0 on B0
m.

Given q ∈H0 we replace its Fourier coefficients qn for |n| large enough by

pn = cn(αn(q),q) = qn + . . . .

The point is that

Sn(αn,q) =
(

0 −pn
−p−n 0

)
,

so these Fourier coefficients are well adapted to the lengths of the correponding
gaps. More precisely, we define a map Pm : B0

m →H0 by

Pm(q) = ∑
|n|<Mm

qne2n + ∑
|n|�Mm

cn(αn(q),q)e2n,

where, say, Mm = 210m2. This is a near identity map with the following properties.
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Proposition 6 For each m � 1 and every weight w, the restriction of Pm to Bw
m is a

real analytic diffeomorphism

Φm : Bw
m →Φm(Bw

m)⊂Hw,

such that ‖DΦm− I‖Bw
m

� 1/8 and

2−1‖q‖w � ‖Φm(q)‖w � 2‖q‖w, q ∈ Bw
m.

By the last token, the image of Bw
m under Pm covers the ball Bw

m/2. Hence we
have the following “abstract regularity result”.

Proposition 7 If q∈ B0
m for some m � 1 and Φm(q)∈ Bw

m/2 for some weight w, then
q ∈ Bw

m ⊂Hw.

Thus we would like to argue as follows. Given q ∈H0 with a certain asymptotic
behaviour of its gap lengths γn, we know that

γn - c|n| - p|n|, n, 1.

Choosing m- ‖q‖0 so that q ∈ B0
m, we thus have p = Pm(q) ∈Hw. If we also had

‖p‖w � m/2, (∗)

then Pm(q) ∈ Bw
m/2 and thus

q = P−1
m (p) ∈Hw,

by the preceding proposition. Of course, given some p ∈Hw there is no reason to
have ‖p‖w � m/2. Simply increasing m does not help, since p depends on m.

5 Modified Weights

The idea is to modify the weight w in such a way that its asymptotics are preserved,
while the norm ‖p‖w is brought close to the norm ‖p‖0. For this to work flawlessly,
however, we have to assume that w is subexponential.

So let p ∈Hw. Choosing m appropriately, we may assume that

0 < ‖p‖0 < m/6, ‖p‖w < ∞.

For ε > 0 we define a new function wε by

(wε)n = min(wn,εε |n|).
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This is indeed a normalized, symmetric and submultiplicative function on Z , hence
a weight. Moreover, if w is subexponential, then clearly

(wε)n = wn, n, 1,

for any ε > 0.
If we now choose first N sufficiently large, and then ε sufficiently small, we can

arrange that

‖TNp‖wε � ‖TNp‖w � ‖p‖0,

‖p−TNp‖wε � 2‖p‖0,

for TNp = ∑|n|�N pne2n. Altogether, we have

‖p‖wε � 3‖p‖0 � m/2.

According to Proposition 7 we thus have q = P−1
m (p) ∈Hwε . But since wε has the

same asymptotics as w we indeed have

q = P−1
m (p) ∈Hwε = Hw,

as we wanted to show.
Essentially the same reasoning applies in the exponential case, with one impor-

tant difference. If w is exponential, then

(wε)n = εε |n|, n, 1.

We thus may only conclude that

q = P−1
m (p) ∈Hwε = H0,ε

� Hw.

So we conclude that q is real analytic, but its width of analyticity may be smaller
than what the weight w may suggest.
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On the well-posedness of the periodic KdV
equation in high regularity classes

Thomas Kappeler1 and Jürgen Pöschel2

Abstract We prove well-posedness results for the initial value problem of the peri-
odic KdV equation in classes of high regularity solutions. More precisely, we con-
sider the problem in weighted Sobolev spaces, which comprise classical Sobolev
spaces, Gevrey spaces, and analytic spaces. We show that the initial value problem
is well posed in all spaces with subexponential growth of Fourier coefficients, and
‘almost well posed’ in spaces with exponential growth of Fourier coefficients.

1 Results

We consider the inital value problem for the periodic KdV equation,

ut =−uxxx +6uux, u
∣∣
t=0 = u0, (1)

where all functions are considered to be defined on T = R/Z .
According to one of the first results in this direction due to Bona & Smith [5]

this problem has a unique, global solution for any initial value in one of the standard
Sobolev space Hm = Hm(T,R) with m � 2. That is, for each u0 ∈Hm there exists a
unique continuous curve

ϕ : R→Hm, t �→ ϕ(t,u0)

solving the initial value in the sense defined below. Moreover, taken together they
define a continous flow

R×Hm →Hm, (t,u0) �→ ϕ(t,u0).
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Thus, the initial value problem is globally well-posed on Hm with m � 2 in the sense
of Hadamard: solutions exist for all time, are unique, and depend continuously on
their initial values.

Well-Posedness

Before we proceed we fix some notions. Let Hr = Hr(T,R) be the usual Sobolev
space of 1-periodic, real valued functions for real r � 0. A continuous curve ϕ : I→
Hr is called a solution of the initial value problem (1), if it solves (1) is the usual
sense of distributions with ϕ(0) = u0. It is called global, if I = R.

We then say that the initial value problem (1) is globally well-posed in Hr, if it
has a global solution for each initial value in Hr, and the resulting flow

R×Hr →Hr, (t,u) �→ ϕ(t,u)

is continuous. Moreover, we call (1) globally uniformly well-posed in Hr, if it is
globally well-posed, and for every compact interval I the map

Hr →C0(I,Hr), u �→ ϕ(·,u)

is uniformly continuous on bounded subsets of Hr with respect to the usual sup-
norm on the second space. Well-posedness in the spaces Hw introduced later is
defined analogously.

Known Results

Since the first results of Temam [31], Sjöberg [30] and Bona & Smith [5], the inital
value problem for KdV and its well-posedness have been studied intensively. An
excellent overview with a detailed bibliography is provided by the web site created
by Colliander, Keel, Staffilani, Takaoka & Tao [11].

One focus has been on low regularity solutions in Sobolev spaces Hr with r � 0.
We mention the works [6–10,20–22]. As a result, KdV is now known to be globally
well-posed in Hr for every r � −1, and globally uniformly well-posed in Hr for
every r �−1/2. Incidentally, it is an interesting phenomenon, that an equation can
be globally well-posed, but not in a uniform way.

In this paper we focus on high regularity solutions. These are solutions in a
general class of weighted Sobolev spaces within H0, that encompass analytic and
Gevrey spaces, among others. Some results in this direction on the real line can be
found in [4, 14]. But in general, the question of existence and well-posedness of
solutions of nonlinear pdes of high regularity have not been widely considered. We
this that this topic deserves to be studied in more depth, revealing important features
of the nonlinear equation considered.
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Weighted Sobolev Spaces

To state our results we first introduce weighted Sobolev spaces within the standard
space

H0 = L2(T)

of square-integrable functions u = ∑n∈Z unε2πinx. As in [16, 17] a weight is a
normalized, symmetric and submultiplicative function w : Z → R. That is, for all
integers n and m, we have

wn � 1, w−n = wn, wn+m � wnwm.

We then define the weighted Sobolev spaces

Hw := {u ∈H0 : ‖u‖2
w := ∑n∈Z w2

n|un|2 < ∞}.

To give some examples, let 〈n〉 = 1 + |n|. The Sobolev weights 〈n〉r, r � 0, give
rise to the usual Sobolev spaces Hr of 1-periodic, complex-valued functions. In
particular, for nonnegative integers m we obtain the standard spaces Hm. The Abel
weights1 〈n〉rεa|n| with a > 0 define spaces Hr,a of functions in Hr, which are an-
alytic on the complex strip |Imz| < a/2π and have traces in Hr on the boundary
lines. The Gevrey weights

wn = 〈n〉rεa|n|σ , r � 0, a > 0, 0 < σ < 1,

lie in between and give rise to the so called Gevrey spaces Hr,a,σ of smooth
1-periodic functions. Obviously,

Hr,a = Hr,a,1
� Hr,a,σ

� Hr,a,0 = Hr.

Since logwn is subadditive and nonnegative, the limit

χ(w) := lim
n→∞

logwn

n

exists and is nonnegative [29, no. 98]. Naturally, we call a weight w exponential, if
χ(w) > 0. We call w subexponential, if χ(w) = 0 with logwn/n converging to zero
in an eventually monotone manner. This is not an exact dichotomy, but we are not
aware of any interesting weight that does not belong to either class.

Theorems

Theorem 1 The periodic KdV equation is globally uniformly well-posed in every
space Hw with a subexponential weight w. That is, for each initial value u in one of

1 The term Abel weights is chosen to go along with Sobolev and Gevrey weights and has no deeper
meaning.



434 T. Kappeler and J. Pöschel

these spaces Hw the associated Cauchy problem has a global solution t �→ ϕ t(u) in
Hw, giving rise to a continuous flow

R×Hw →Hw, (t,u) �→ ϕ t(u),

which is even uniformly continuous on bounded subsets of Hw.

Indeed, the flow map is even analytic, see also [3]. For exponential weights the
result is not as clear cut.

Theorem 2 The periodic KdV equation is “almost” globally well-posed in every
space Hw with an exponential weight w. That is, for each bounded subset B of Hw

there exists 0 < ρ � 1 such that the Cauchy problem for each initial value u∈B has
a global solution t �→ ϕ t(u) in Hwρ

, giving rise to a continuous flow

R×B→Hwρ
, (t,u) �→ ϕ t(u).

Here, wρ is the weight with (wρ)n = wρ
n , which is again normalized, symmetric

and submultiplicative. Thus, for initial values u in a bounded subset B of H0,a, say,
(1) has a global solution in H0,ρa with a fixed 0 < ρ � 1. It is an open question,
whether ρ can be chosen to be 1. For related results, see for example [1].

These results are not restricted to the standard KdV equation, but apply simulta-
neously to all equations in the KdV hierarchy, as defined for instance in [18]. The
second KdV equation, for example, reads

ut = uxxxxx−10uuxxx−20uxuxx +30u2ux.

Such a hierarchy may be defined in a variety of ways, but this is immaterial here and
does not affect the statement of the following theorem.

Theorem 3 Theorems 1 and 2 also hold for every KdV equation in the KdV hierar-
chy, provided that in the case of Sobolev spaces Hr, r is sufficiently large.

Our results naturally extend the KAM theory of Hamiltonian perturbations of
KdV equations developed by Kuksin [23–25] and expounded in [18, 26]. Consider
the perturbed KdV equation

∂u
∂ t

=
d
dx

(
∂H
∂u

+ ε
∂K
∂u

)
.

If K is real analytic in u with a gradient ∂K/∂u in some standard Sobolev space
Hm, m � 1, then KAM for KdV asserts the persistence of quasi-periodic solutions
for sufficiently small ε 	= 0. Theorems 1 and 2 may now be extended as follows –
for a more precise statement we refer to [19].

Theorem 4 Under sufficiently small Hamiltonian perturbations, the majority of the
quasi-periodic solutions of the KdV equation persists, their regularity being only
slightly less than the regularity of the perturbing term.
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These theorems are based on two observations. First, the periodic KdV equa-
tion is well known to be an infinite dimensional, integrable Hamiltonian system. As
such, it even admits global Birkhoff coordinates (xn,yn)n�1 defined as the cartesian
counterpart to global action angle coordinates (In,θn)n�1. Second, there is a pre-
cise correspondence between the decay properties of the coordinates (xn,yn)n�1 and
the regularity properties of u. The link is provided by the spectral properties of the
associated Hill operator

Lu =− d2

dx2 +u

on the interval [0,2] with periodic boundary conditions.
In the rest of this note we describe this approach in more detail, but without

lengthy proofs. These are given in [19].

2 Birkhoff Coordinates

As is well known, the KdV equation can be written as an infinite dimensional
Hamiltonian system

∂u
∂ t

=
d
dx

∂H
∂u

with Hamiltonian
H(u) =

∫

T

(
1
2

u2
x +u3)dx.

As a phase space one may take

Hm
0 = {u ∈Hw : [u] :=

∫
T

udx = 0}

with m � 1, as the KdV flow preserves mean values. The Poisson bracket proposed
by Gardner,

{F ,G}=
∫

T

∂F
∂u

d
dx

∂G
∂u

dx,

then makes Hm
0 into a nondegenerate Poisson manifold, such that ut = {u,H}.

Next, we introduce the weighted sequence spaces

hw = �w× �w

with elements (x,y), where

�w = {x = (xn)n�1 : ‖x‖2
w = ∑n�1 w2

n|xn|2 < ∞}.

We endow hw with the standard Poisson structure, for which {xn ,ym} = δnm, while
all other brackets vanish. To simplify notations, we further introduce

hw
� = �w

� × �w
� , �w

� = {x ∈ �w : (
√

nxn)n�1 ∈ �w}.
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The extra weight
√

n reflects the effect of the derivative d/dx in the Gardner bracket.
The following theorem was first proven in [2, 3]. A quite different approach was

first presented in [15], and a comprehensive exposition is given in [18]. Note that
H0

0 =
{

u ∈ L2(T) : [u] = 0
}

.

Theorem 5 There exists a diffeomorphism

Ω : H0
0 → h0

�

with the following properties.

(i) Ω is onto, bi-analytic, and takes the standard Poisson bracket into the Gardner
bracket.

(ii) The restriction of Ω to Hm
0 , m � 1, gives rise to a map Ω : Hm

0 → hm
� , which

is again onto and bi-analytic.
(iii) Ω introduces global Birkhoff coordinates for the KdV Hamiltonian on H1

0.
That is, on h1

� the transformed KdV Hamiltonian H ◦Ω−1 is a real analytic
function of

In =
1
2
(x2

n + y2
n), n � 1.

(iv) The last statement also applies to every other Hamiltonian in the KdV hierar-
chy, if ‘1’ is replaced by ‘m’ with m sufficiently large.

Denoting the transformed KdV Hamiltonian by the same symbol we thus obtain
a real analytic Hamiltonian

H = H(I1, I2, . . .)

on h1
�. Its equations of motion are the classical ones,

ẋn = Hyn , ẏn =−Hxn , n � 1,

since the Poisson structure on h1
� is the standard one. It is therefore evident that every

solution of the KdV equation exists for all time, and is indeed almost periodic. More
precisely, every solution winds around some underlying invariant torus

TI = ∏
n�1

SIn , SIn = {x2
n + y2

n = 2In},

which is fixed by the actions of the initial position. The speed on the n-th circle SIn
is determined by the n-th frequency

ωn = HIn(I1, I2, . . .),

and the entire flow is given by

ψ t(x,y) = (xn cosωnt,yn sinωnt)n�1.

Obviously, ψ t preserves all weighted norms and thus all weighted spaces hw
� .
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To obtains our results about the well-posedness of the KdV equation, we now
formulate two extensions of Theorem 5. First we consider subexponential weights.

Theorem 6 For each subexponential weight w, the restriction of Ω to Hw
0 gives rise

to an onto, bi-analytic diffeomorphism Ω : Hw
0 → hw

� .

Proof (Proof of Theorem 1). Due to its symplectic nature, Ω maps solution curves
t �→ ϕ t(u) in function space into solution curves t �→ ψ t(x,y) in sequence space
with (x,y) = Ω(u). Since Ω is also a diffeomorphism between Hw

0 and hw
� and ψ t

preserves hw
� , the diagram

u ∈Hw
0

Ω−−−−→ (x,y) ∈ hw
�

ϕt
⏐⏐<

⏐⏐<ψt

ϕ t(u) ∈Hw
0

Ω−1
←−−−− ψ t(x,y) ∈ hw

�

is correct and proves the theorem.

Now we consider exponential weights. Here, the result is not as elegant.

Theorem 7 Let w be an exponential weight. Then for every bounded subset B of hw
�

there exists 0 < ρ � 1 such that Ω−1(B)⊂Hwρ
0 .

Proof (Proof of Theorem 2). Let w be an exponential weight and B a bounded subset
of Hw

0 . Then B = Ω(B) is a bounded subset of hw
� by Proposition 8 below. As the

flow ψ t preserves the hw
� -norm, the set

B− =
⋃

t∈R

ψ t(B)

is contained in the same centered ball as B. Hence, by the previous theorem there
exists a 0 < ρ � 1 such that B− = Ω−1(B−) is contained in Hwρ

0 . We obtain the
commutative diagramm

B⊂Hw
0

Ω−−−−→ B⊂ hw
�

ϕt
⏐⏐<

⏐⏐<ψt

B− ⊂Hwρ
0

Ω−1
←−−−− B− ⊂ hw

�

which proves the theorem.

Proof (Proof of Theorem 3). The proofs of Theorem 1 and 2 are based on the fact
that the map Ω triviales the KdV flow in the Birkhoff coordinates. By item (iv) of
Theorem 5, however, Ω simultaneously trivializes any other KdV flow in the KdV
hierarchy. The only difference is in the frequencies ωn associated with the circles
SIn , and in the minimal regularity required for the KdV hamiltonians to make sense.
Hence the preceding proofs apply to higher KdV equations as well.
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3 Regularity

Theorems 6 and 7 are based on two observations. First, the asymptotics of the Birk-
hoff coordinates of a function u in H0

0 are closely related to the asymptotics of its
spectral gaps. Second, these asymptotics are very closely related to the regularity of
u. To keep the discussion simple, we restrict ourselves to the real case.

Spectral Gaps and Actions

For a potential u ∈ L2
0 = H0

0 consider Hill’s operator

Lu =− d2

dx2 +u

on the interval [0,2] with periodic boundary conditions. As is well known, its spec-
trum is pure point and consists of an unbounded sequence of real eigenvalues

λ0(u) < λ−1 (u) � λ+
1 (u) < λ−2 (u) � . . . .

Its so called spectral gaps are the – possibly empty – intervals (λ−n (u),λ+
n (u)), and

one speaks of the gap lengths γn(u) = λ2n(u)−λ2n−1(u) of u.

Proposition 8 ([18, p. 67]) There exists a complex neighbourhood W of L2
0 such

that each quotient In/γ2
n extends analytically to W and satisfies

8πn
In

γ2
n

= 1+O
(

logn
n

)
, n � 1,

locally uniformly on W, as well as uniformly on bounded subsets of L2
0.

So we have
n(x2

n + y2
n)∼ nIn ∼ γ2

n

locally uniformly on W . This gives us control of x2
n + y2

n in terms of γ2
n on the real

space L2
0, where all quantities are real. This is not the case on the complex neigh-

bourhood W , where a gap γn and thus an action In may vanish, while the Birkhoff
coordinates xn,yn do not. See [19] for the details of this case.

Spectral Gaps and Regularity

The decay properties of spectral gaps are also closely tied to the regularity of the
potential. For example, a classical result due to Marčenko & Ostrowskiı̆ [27] states
that

u ∈Hm ⇔ ∑
n�1

n2mγ2m
n (u) < ∞

for any integer m � 0. The forward part of this result generalizes as follows.
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Theorem 9 For any subexponential or exponential weight w,

u ∈Hw ⇒ (γn(u)) ∈ hw.

Consequently, for any subexponential or exponential weight w, the Birkhoff map
Ω maps Hw

0 into hw
� . Indeed,

u ∈Hw ⇒ (γn) ∈ hw ⇒ (nIn) ∈ hw ⇒ (xn,yn) ∈ hw
� .

by Theorem 9 and Proposition 8.
A one-to-one converse to this theorem is only true in the subexponential case.

Theorem 10 ([12, 28]) For a subexponential weight w,

(γn(u)) ∈ hw ⇒ u ∈Hw.

Consequently, in the subexponential case, the Birkhoff map Ω also maps Hw
0

onto hw
� . Indeed,

(x,y) ∈ hw
� ⊂ h0

�

⇒ u = Ω−1(x,y) ∈H0
0 with γ2

n ∼ n(x2
n + y2

n)
⇒ (γn(u)) ∈ hw

⇒ u ∈Hw.

Altogether, Ω is a diffeomorphism between Hw
0 and hw

� whenever w is a subexpo-
nential weight. Thus, Theorem 6 is proven.

The last theorem does not extend to exponential weights, however. This is ex-
emplified by finite gap potentials such as the Weierstrass℘-function, which are not
entire functions. Gasymov [13] even observed that any complex potential of the
form

u = ∑
n�1

unε2πinx = ∑
n�1

unzn ∣∣
z=ε2πix

is a 0-gap-potential. So in the complex case, the gap sequence need not contain any
information about the regularity of the potential.

In the real case, however, we have the following classical result by Trubowitz.
The very last statement is proven in [28].

Theorem 11 ([32]) For an exponential weight w,

(γn(u)) ∈ hw ⇒ u ∈Hwρ
,

where 0 < ρ � 1 depends on ‖u‖L2 and ∑n w2
nγ2

n .

Consequently, for any bounded subset B of hw
� there exists 0 < ρ � 1 so that

Ω−1(B)⊂Hwρ
0 .
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Indeed, A = Ω−1(B) is bounded in L2
0, and by Proposition 8,

∑
n�1

w2
n|γ2

n (u)|� c ∑
n�1

nw2
n(|x2

n(u)|+ |y2
n(u)|)

uniformly on A. The latter sum is uniformly bounded by assumption, so by
Theorem 11 we have A⊂Hwρ

0 for some 0 < ρ � 1. This establishes Theorem 7.
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