
Chapter 9
Peaches

J.F. Hancock, R. Scorza and G.A. Lobos

Abstract Common goals of peach breeders are: (1) extending the harvest season,
(2) improving flavor and aroma, (3) lengthening self life, (4) controlling tree size,
(5) broadening the adaptive range, and (6) developing resistance to sharka (PPV),
powdery mildew, brown rot, leaf curl, Xanthomonas spp. and the green aphid (the
vector of PPV). A number of single genes have been identified that reduce tree size
and modify plant shape, and regulate firmness, mealiness, melting flesh, browning,
flesh color and the freestone trait. Fruit maturity has been shown to be quantitatively
regulated with a very high heritability. A growing number of molecular linkage
maps have been developed of peach and its relatives; map coverage ranges from 396
to 1300 cM, with 8 to 23 linkage groups being identified. QTL have been identified
for numerous horticulturally important traits including bloom and ripening time,
fruit quality, storage life, freestone trait, internode length and pest resistance. Several
bacterial artificial chromosome (BAC) libraries have been developed for peach and
over 85,000 Prunus ESTs have been sequenced and deposited in the NCBI dbEST
database. Peaches have been regenerated utilizing several systems, but there are only
two reports of stable peach plant transformation.

9.1 Introduction

The peach, and its smooth skinned mutant, the nectarine, are primarily grown in
temperate zones, between latitudes 30 and 45 N and S. The peach flower bud is
hardy to about −23◦ C to −26 ◦ C which limits its cultivation at higher latitudes.
Most peach cultivars require from 100–1000 hours of chilling below 7◦ C and they
are highly susceptible to early spring frosts.

The fruits of peach cultivars vary widely across the world and even within re-
gions. Fruit shapes vary from beaked, round to flat, colors vary from yellow, white to
red, the flesh can be melting or non-melting and they can be clingstone or freestone.
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Peaches are eaten fresh, canned or dried and are excellent sources of fiber, vitamins
and antioxidants (http://riley.nal.usda.gov/NDL/cgi-bin/list nut edit.pl). The high-
est quality peaches are produced in regions with warm to hot summers.

Worldwide production of peaches is now in excess of 15,000,000 tonnes, with al-
most half of the production coming from Asia (mostly China) (Sansavini et al. 2006).
Among the deciduous fruits, peaches rank second to only apples in tonnage. Europe
accounts for about 30% of the peach crop, while North America contributes 11%,
South America 6% and Africa 5%. The major producers in Europe are Italy,
Greece and Spain; in North America the greatest concentration of production is
found on the western and eastern seaboards, and along the Great Lakes. The
peach industry in Asia has grown dramatically over the last decade, while peach
production in the rest of the world has shown only moderate to little change.
The peach industry in South America is still limited, but increasing in Chile
and Brazil.

9.2 Evolutionary Biology and Germplasm Resources

The peach [Prunus persica (L.) Batsch] is the most widely grown species in a
very important genus containing the European plum (P. domestica L.), Japanese
plum (P. salicina Lindl.), apricot [P. armeniaca (L.) Kostina], almond (P. amyg-
dalus Batsch), sweet cherry (P. avium L.), and sour cherry (P. cerasus L.). Peach
belongs to the family Rosaceae and the subgenus Amygdalus. Unusual in its sub-
genus, the peach is largely self fertile. There are at least 77 wild species of Prunus
and most of them are found in central Asia. While polyploidy is common in the
genus Prunus, the cultivated peach is diploid and has a chromosome number of
2n = 2x = 16.

Five species that can be termed ‘peach’ are generally recognized: P. persica,
P. davidiana (Carr.) Franch, P. mira Koehne, P. kansuensis Rehd. and P. ferganensis
(Kost. & Rjab) Kov. & Kost. All are found in China (Table 9.1). The domesticated

Table 9.1 Native peach species

Species Common name Chromosome
number (2n)

Distribution

P. davidiana
(Carr.) Franch

Mountain peach, Shan tao 16 N. China

P. ferganensis
(Kost. & Rjab)
Kov. & Kost.

Xinjiang tao 16 N.E. China

P. kansuensis
Rehd.

Wild peach, Kansu tao 16 N.W. China

P. mira Koehne Tibetan peach, Xizang-tao 16 W. China & Himalayas
P. persica (L.)

Batsch
Peach, Maotao 16 China

Adapted from Scorza and Okie 1990
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Table 9.2 Prunus species that have been hybridized with P. persica that form mostly sterile hybrids

Species Common name Origin

P. americana Marsh. American plum U.S.A.
P. armeniaca L. Apricot Asia
P. besseyi Bailey Western sand cherry N. U.S.A., Canada
P. brigantine Vill. Briancon apricot France
P. cerasifera Ehrh. Myrobolan plum W. Asia
P. cerasus L. Sour Cherry W. Asia, S.E. Europe
P. domestica L. European plum W. Asia, Europe
P. hortulana Bailey Wild plum Central U.S.A.
P. japonica Thunb Chinese or Korean bush cherry China
P. munsoniana Wight & Hedr. Wild goose plum Central U.S.A.
P. nigra Ait Canadian plum N. U.S.A., Canada
P. pumila L. Eastern sandcherry N. U.S.A.
P. salicina Lindl. Japanese plum China
P. simmonii Carr. Simon’s plum N. China
P. spinosa L. Sloe Europe, W. Asia, N. Africa
P. tenella (=nana) Batsch Siberian almond S.E. Europe, W. Asia
P. tomentosa Thumb. Chinese bush cherry N. & W. China, Japan
P. virginiana L. Choke cherry N. U.S.A., Canada
Adapted from Scorza and Okie 1991

peach can be readily hybridized with native populations of P. persica and all the
other wild species of peach. Successful hybrids have also been produced between
peach and almond, apricot, plum and sour cherry (Table 9.2). In most cases, these
wide hybrids are largely sterile, although F1s of almond and peach can be highly
fertile (Armstrong 1957) and can be employed as rootstocks for both peach and
almond.

9.3 History of Improvement

Peach cultivation probably originated in western China from wild populations of
P. persica (Hedrick 1917, Scorza and Okie 1991). The peach is mentioned in 4,000
year old Chinese writings, and most of the known variation in cultivated peaches is
found in Chinese land races. Peaches arrived in Greece through Persia about 2,500
B. P. and in Rome 500 years later. The Romans spread the peach throughout their
empire. The peach came to Florida, Mexico and South America in the mid 1500s
via Spanish and Portuguese explorers. It became feral in the southeastern United
States and Mexico, and was further spread throughout North America by the Native
Americans.

A rapid expansion in fruit culture arose in Europe during the Industrial Rev-
olution of the 16th century, as a growing class of people acquired substantial
wealth and began to garden. Numerous cultivars were released during this pe-
riod by active fruit tree breeders such as John Rivers. Many of these cultivars
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were released as clones, although many may also have been distributed from seed.
Peach breeding began about 100 years ago in the North American colonies, utiliz-
ing two major sources of germplasm – naturalized seedlings from the southeast-
ern U.S.A. and Mexico, and cultivars originated in England. Until the American
Revolution, peaches were mostly produced in seedling stands of very low quality.
The first budded trees were offered for sale by Robert Prince on Long Island just
before the Revolutionary War and by John Kenrick of Massachusetts in the 1790s
(Hedrick 1950).

A number of cultivars of unknown origin were released in the first half of the
1800s including ‘Early Crawford’, ‘Late Crawford’ and ‘Oldmixon Cling’. In 1850,
Charles Downing introduced ‘Chinese Cling’ from China to the United States via
England, and it was originally planted in South Carolina by Henry Lyons (Scorza
and Sherman 1996). After the Civil War, Samuel Rumph planted ‘Chinese Cling’
in Marshallville, Georgia and released two important cultivars from that field,
‘Belle of Georgia’ (‘Belle’) and ‘Elberta’, which likely had ‘Chinese Cling’ as a
parent. Other important, early cultivars were ‘Hiley’ (a seedling of ‘Belle’) and
‘J.H. Hale’ (a seedling of ‘Elberta’). This small group of cultivars formed the foun-
dation of most subsequent breeding activity (Scorza et al. 1985). Cullinan (1937)
has provided a list of the most significant cultivars that were released between
1850 and 1900.

Peach breeding began in earnest at a number of State Experiment Stations
in the late 1890s and early 1900s. Among the earliest large programs were in
California, New Jersey and the United States Department of Agriculture. Stanley
Johnston in Michigan began his landmark program in 1924 and developed the
‘Redhaven’ peach, which dominated peach cultivation in the eastern U.S.A. for
decades (Iezzoni 1987). Other early, large public programs in the U.S.A. were at
Arkansas, North Carolina, Louisiana, Texas, Florida and South Carolina (Childers
and Sherman 1988, Cullinan 1937, Okie et al. 1985). Vineland in Canada has had
a breeding program since 1914, along with Harrow since 1960. Significant peach
breeding efforts have also been undertaken in Argentina, Australia, Brazil, China,
France, Italy, Japan, Mexico and South Africa (Childers and Sherman 1988, Li 1984,
Okie et al. 1985, Wang and Lu 1992, Yoshida 1988). In the middle of the century,
several major private breeding efforts emerged in the US including Grant Merrill,
F. W. Anderson and Armstrong Nursery Company. More recent public companies
are Zaiger Genetics, Metzler and Sons, Bradford and Bradford, Paul Friday, and
Fruit Acres (A. and R. Bjorge).

9.4 Current Breeding Efforts

Worldwide breeding activity has been very high over the last decade, with likely
over a thousand new varieties being released. Sansavini et al. (2006) has called the
20th century, the ‘Golden Age of Peach Breeding’. The private sector is responsible
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for most of the new peach releases, although the new non-melting flesh clingstone
varieties for canning have come from the public sector. Over half of the releases
(55%) have come from the U.S.A. and 30% from Europe, with France and Italy
leading the way (Table 9.3). Most of the cultivar releases are yellow-fleshed peaches
and nectarines, although a number of white fleshed cultivars have been developed
in France, China, Japan and South Korea.

Among the most important advances are ‘a notable enhancement of such fruit
quality traits as increased fruit size, fuller and more extensive blush, better skin
ground color, increased flesh-to-pit ratio, etc.’ (Sansavini et al. 2006). The harvest
calendar has been dramatically increased from two-three months to four-six months,
and chilling requirements have been substantially lowered to allow expansion into
more subtropical climates.

There are a number of traits that are being targeted by breeders as high priorities.
Expanding the environmental ranges of peach is a common goal, in some cases
to reduce chilling requirements to further expand into the subtropical climates of
Spain, France, Italy, U.S.A. and China, but also to increase frost tolerance through

Table 9.3 Peach and nectarines released worldwide by country 1999–2001

Region Peach Nectarine Clingstone Total

Yellow White Yellow White Yellow White

Africa
Egypt 0 3 0 0 0 0 3
South Africa 7 1 8 0 5 0 21
Asia
China 4 29 11 10 2 1 57
Japan 7 30 0 0 3 0 40
South Korea 1 10 2 0 0 0 13
Taiwan 1 0 0 0 0 0 1
Europe
Czech Republic 8 0 1 0 0 0 9
France 35 42 24 33 6 0 140
Italy 51 32 37 14 3 4 141
Moldavia 7 0 0 0 0 0 7
Poland 2 0 0 0 0 0 2
Romania 4 0 6 0 0 0 10
Spain 6 3 7 2 3 1 22
Ukraine 10 0 1 0 5 0 16
Oceana
Australia 1 1 2 0 8 0 12
North Zealand 1 7 0 1 0 0 9
North America
Canada 2 0 1 0 4 0 7
Mexico 0 0 0 0 18 0 18
U.S.A. 219 107 160 77 21 0 584
South America
Brazil 0 3 3 1 5 0 12
Source: Sansavini et al. 2006
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bloom delay in the colder climates of Canada, Poland and Russia. Considerable
effort is also being undertaken to develop a broad range of very early and late ripen-
ing types to expand production windows. Strong efforts are being made to increase
fruit quality by enhancing appearance, along with improved flavor and aroma. Many
European programs are committed to recovering the sensory traits of old cultivars,
and Chinese programs are particularly interested in low-acid types (Sansavani et al.,
2006). Improving self life by developing firmer fruit is also an important goal of
most programs, with the added benefit of reduced damage during handling. The
reduction of postharvest disorders related to long-distance shipping of peaches, es-
pecially between the northern and southern hemispheres, is an important goal for
programs in countries such as Chile, South Africa, New Zealand, and the U.S.A.
Control of tree size and vigor is an important goal of most programs, to facilitate
mechanization and reduce the costs of pruning, thinning and harvesting (Scorza
et al. 2000).

The most widespread disease and pest problems that are being pursued are sharka
(PPV), powdery mildew, brown rot, leaf curl, Xanthomonas spp. and green aphid
(the vector of PPV). Other significant breeding efforts are focusing on nematode
(China and the U.S.A.) and phytoplasma resistance (Romania).

Rootstock breeding also remains a high priority at many locations, with most
of the research being targeted towards tree vigor management, ease of clonal prop-
agation, soil adaptability (drought and lime), nematode resistance and resistance
to bacterial and virus diseases (Xanthomonas, Pseudomonas, PPV and ACLR)
(Layne 1987).

Peach breeding world-wide is a productive endeavor that supplies a large number
of improved cultivars each year allowing growers an ample choice of material ripen-
ing over a long season, filling a wide range of ecological conditions and satisfying a
range of consumer demands. Nevertheless, there are serious needs that remain to be
addressed and these needs will become more critical with time. The critical issues
that can be at least partially if not fully addressed through breeding include climactic
change which may significantly alter biotic and abiotic stress factors, global mar-
keting of fruits increasing competition between peach growing regions and between
peach and a vast array of other fruits, and the changing eating habits of populations,
especially in developed countries, with emphasis on nutrition and convenience. To
meet these challenges will require an even greater commitment to peach breeding
that will include exploration of new germplasm, and the application of comple-
mentary genomic breeding technologies such as molecular marker assisted breeding
and genetic engineering. The development and application of these technologies for
the production of new cultivars with improved quality, nutrition, pest and abiotic
stress resistance, and market novelty will require additional resources supplied over
extended periods of time. Intra and inter institutional collaborations will be neces-
sary in order to utilize diverse genetic improvement technologies. Training the next
generation of breeders and the development of fruit improvement teams that span
laboratory and field will play critical roles in the continued success of peach as an
important crop that sustains grower investment and adds to the health and well being
of consumers.
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9.5 Genetics of Economically Important Traits

9.5.1 Pest and Disease Resistance

Some of the most widespread disease problems that concern peach breeders are
bacterial canker (Pseudomonas syringae), bacterial spot (Xanthmonas campestris),
brown rot (Monilinia fruticola), fungal gummosis (Botrysphaeria dothidea), leaf
curl (Taphrina deformans), Leucostoma (Cytospora), canker (Leucostoma persoonii),
powdery mildew (Sphaerotheca pannosa) and sharka (PPV) (Table 9.4). Among the
most important pests receiving breeder attention are peach tree borers (Synanthedon
exitiosa) and the green aphid (Myzus persicae) which is a vector of PPV.

Table 9.4 Genetics of disease resistance in peach

Disease Observations and source

Bacterial
Bacterial canker

Pseudomonas syringae
Most cultivars are susceptible; but sources of resistance exist

(Gardan et al. 1971, Weaver et al. 1979)

Bacterial spot
Xanthomonas campestris

Dominant genes may regulate resistance (Sherman and
Lyrene 1981); highly resistant cultivars identified (Keil and
Fogle 1974, Simeone 1985, Werner et al. 1986)

Fungi
Brown rot

Monilinia fructicola
Little resistance in most cultivars, but sources of resistance may

exist (Scorza and Okie 1991, Feliciano et al. 1987)

Cytospora canker
Leucotoma persoonii

Little resistance in most cultivars, but sources of resistance exist
(Gairola and Powell 1970, Hampson and Sinclair 1973, Scorza
and Pusey 1984)

Fungal gummosis
Botryosphaeria dothidea

Most cultivars are susceptible, but sources of resistance exist
(Daniell and Chandler 1982, Okie and Reilly 1983)

Leaf curl
Taphrina deformans

Resistance is moderately heritable and polygenic (Monet 1985,
Ritchie and Werner 1981); highly resistant cultivars identified
(Ackerman 1953, Simeone 1985)

Powdery mildew
Sphaerotheca pannosa
Podosphaera clandestina

Resistance controlled by two loci, with one locus for high
resistance (D’Bov 1983); resistance is dominant (Pukanova
et al. 1980), few cultivars are highly resistant (Scorza and
Okie 1989)

Virus
Plum pox (PPV) Little resistance in most cultivars, but sources of resistance exist

(Rankovic and Sutic 1980, Surgiannides and Mainou 1985)

Nematode
Root-knot

Meloidogyne ssp.
Two dominant resistance genes identified to M. javanica (Mj1 and

Mj2) (Sharp et al. 1970); a single, dominant resistance gene
identified to M. incognita (Mi) (Weinberger et al. 1943)

Root lesion
Pratylenchus sp.

Little resistance in most cultivars, but tolerance has been reported
(Potter et al. 1984)

Insect
Green aphid

Myzus persicae
A single dominant resistance gene identified (Rm1) (Monet and

Massonie 1994)

Peach tree borer
Synanthedon exitiosa

Little resistance in most cultivars, but modest resistance has been
reported (Chaplin and Schneider 1975, Weaver and Boyce 1965)
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Bacterial spot causes severe defoliation and blemishing of fruit, particularly in
areas with high rainfall, strong winds, high humidity and sandy soil. There is con-
siderable variation in disease incidence from year to year, and under favorable con-
ditions for infection all cultivars show at least some symptoms, although highly
resistant cultivars have been identified (Keil and Fogle 1974, Simeone 1985, Werner
et al. 1986). Cultivars in the eastern U.S.A. tend to be more resistant than those in
the west; the breeding program in North Carolina has been particularly successful
in developing resistant cultivars. Sherman and Lyrene (1981) suggest that resis-
tance is regulated by dominant genes. The PR defense genes, �-1,3-glucanases have
been shown to be induced by inoculation with Xanthomonas campestries pv. pruni
(Thimmapuram et al. 2001).

Peach leaf curl is a problem in many peach growing regions. Resistant cultivars
have been identified, but immunity has not been reported (Ritchie and Werner 1981,
Simeone 1985). Leaf curl resistance in peach is moderately heritable and likely
under polygenic control (Monet 1985, Ritchie and Werner 1981). Tolerance to
the disease is in a large part dependent upon whether the genotypes begin to
leaf-out when conditions are optimal for infection (Ackerman 1953), although
there are resistant genotypes that leaf-out under conditions favorable to infec-
tion (Ritchie and Werner 1981, Scorza 1992). Eglandular leaf genotypes appear
to be more resistant than glandular ones, and nectarines are less susceptible
than peaches.

Powdery mildew frequently attacks leaves, young shots and fruits. Mildew re-
sistance appears to be regulated by two loci with one providing strong resistance,
and another conditioning intermediate to low resistance (D’Bov 1983, Pukanova
et al. 1980). The high resistance found at the first locus is epistatic to moderate and
low resistance at the other locus. The allele for moderate resistance is dominant to
low resistance. While strong resistance exists in P. persica, high levels have only
been incorporated into a few cultivars (Scorza and Okie 1990).

Leucostoma or peach canker is a particularly serious disease in northern pro-
duction areas, where tissue death during the winter serves as an entry point for
the pathogen. This canker kills scaffold limbs and ultimately the whole tree. High
levels of resistance have not been found among North American cultivars, but re-
sistance does exist in Chinese and Russian germplasm (Gairola and Powell 1970,
Hampson and Sinclair 1973, Scorza and Pusey 1984). Resistance to canker appears
to be strongly correlated with cold tolerance (Chang et al. 1989) and how well water
transport is maintained through the canker zone (Chang et al. 1991).

Fungal gummosis causes severe problems in Australia, China, Japan and the
southeastern U.S.A. Most cultivars are highly susceptible, but a few have been iden-
tified that are highly resistant (Daniell and Chandler 1982, Okie and Reilly 1983).
The genetics of resistance is unknown.

Bacterial canker has been associated with the short life syndrome of peach in the
southern U.S.A. (Scorza and Okie 1989). Strong resistance to this disease has not
been identified, but moderately resistant cultivars have been found with unspecified
genetics (Gardan et al. 1971, Weaver et al. 1979).
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Brown rot is a serious disease wherever peaches are grown. Little resistance
has been described, although feral peaches in Central Mexico and perhaps the
Brazilian cultivar ‘Bolinha’ have some degree of resistance (Feliciano et al. 1987,
Scorza and Okie 1989). ‘Bolinha’ may not be a useful source, as its resistance
is limited to the epidermis and it carries several negative characteristics that are
readily transmitted such as a tendency for pre-harvest drop, yellow green epi-
dermis and a susceptibility to bruising (Gradziel 1994, Gradziel and Wang
1993).

A number of serious virus diseases and phytoplasm attack peach including plum
pox (PPV), prune dwarf, peach yellows, X-disease, Prunus necrotic ringspot, tomato
ringspot, peach stunt, willow twig, stubby twig, and peach rosette mosaic. No im-
munity has been reported to any of these diseases, although large differences in
resistance to PPV among genotypes have been found (Rankovic and Sutic 1980,
Surgiannides and Mainou 1985).

Peachtree borer is a widespread problem and a tree (particularly young trees)
can be girdled and killed in a single season. A few cultivars have been identified
that are less susceptible than others to infestation, but no strong resistance has been
identified (Chaplin and Schneider 1975, Weaver and Boyce 1965).

Myzus persicae is an aphid species that commonly attacks peach. They damage
new growth through their feeding, but more importantly, they are vectors of PPV
which causes substantial crop loss. Resistant cultivars and genotypes have been
identified (Massonie et al. 1982), and Monet (1985) showed that the resistance
is controlled by a single dominant gene. Seedlings carrying this gene are resis-
tant to Myzus persicae and M. varians, but not Hyalopterus amygdale (Massonie
et al. 1982). Since PPV is transmitted by aphid probing and not feeding, it is not
clear if aphid resistance would affect PPV infection and the spread of the disease.

Several nematodes are commonly associated with peaches across the world
and can cause replant problems including Pratylenchus ssp. (root lesion nema-
tode), Xiphinema spp. (dagger nematode), Meloidogyne incognita (root knot ne-
matode) and Criconemella spp (ring nematode). Tolerance has been reported to
Pratylenchus, but not immunity (Potter et al. 1984). Multiple resistance genes to
Meloidogyne incognita have been identified in peach (Gillen and Bliss 2005). Re-
sistance to M. javanica has also been described that may be regulated by duplicate,
independent dominant factors (Sharp et al. 1970).

Peach tree short life (PTSL) syndrome is a nematode-related disease syndrome
of peach caused by a complex of biotic, abiotic and climatic factors. It affects
more than 70% of the peach acreage in the southeastern US. It appears to be due
to the extreme physiological stress associated with very high densities of ring ne-
matodes, which results in wilting and a sudden collapse of new growth. Tolerance
to this disease was unknown until the recent release of the rootstock ‘Guardian’
(BY520-9). The genetics of tolerance appears to be complex, as 38 AFLP markers
have been associated with the PTSL syndrome, on five peach linkage groups (Blenda
et al. 2007).
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9.5.2 Morphological and Physiological Traits

Trees that have a thrifty growth habit which can be easily picked and pruned in high
density orchards are an important goal of most breeding programs. A number of sin-
gle, recessive genes have been identified that cause extreme size reduction – dwarf
(dw, dw2, dw3), semi-dwarf (n), compact (ct) and bushy (bu1 and bu2) (Table 9.5),
but few commercial cultivars have been developed from these to date, due to poor

Table 9.5 Genetics of adaptation, productivity, plant habit and fruit quality in peach

Attribute Observations and source

Adaptation
Chilling requirement Generally quantitatively inherited, although a few major genes

may exist (Lesley 1944, Sharp 1961); a single, recessive gene
for evergreen has been identified (evg) (Rodriguez et al. 1994);
chilling requirements of buds and seed germination are correlated
(Rodriquez and Sherman 1985)

Cold hardiness Quantitatively inherited, largely additive (Mowry 1964); tissues vary
in their hardiness (Cain and Anderson 1980); extremely cold hardy
germplasm has been identified (Layne 1992, Myers and Okie 1986,
Young 1987)

Season of flowering Considerable variability exists among genotypes, but genetics is
complex and quite subject to environmental interactions (Scorza
and Sherman 1996)

Harvest date Quantitatively inherited, with many major genes (Bailey and
Hough 1959, Hansche et al. 1972, Vileila-Morales et al. 1981);
a gene has been identified (sr), that greatly slows ripening
(Ramming 1991)

Flower traits
Flowers per bud Single genes have been identified for single/double (Sh/sh)

(Lammerts 1945)
Flower buds per node Germplasm with high flower density has been identified (Okie and

Werner 1990, Werner et al. 1988)
Petal color Single genes have been identified for colored/white (W/w),

anthocyanins/anthocyaninless (AN/an), dark pink/light pink (P/p)
and pink/red (R/r) (Lammerts 1945, Monet 1967)

Petal number Single genes have been identified for single/double (Di/di) and
fewer extra petals/more extra petals (Dm1/dm1 and independent
Dm2/dm2) (Lammerts 1945, Yamazaki et al. 1987)

Petal size Single genes have been identified for nonshowy/showy (Sh/sh) and
large showy flowers/small showy flowers (Sh/sh) (Lammerts 1945)

Pollen fertility Single genes located for pollen fertile/pollen sterile (Ps/ps and
Ps2/ps2) (Scott and Weinberger 1944, Werner and Creller 1997)

Leaf traits
Color Single gene identified for red leaf/green leaf (Gr/gr) (Blake 1937);

dominance is incomplete (Chaparro et al. 1995)
Foliar glands Single genes identified for glandular foliage/eglandular foliage (E/e)

(Conners 1922)
Shape Single genes identified for smooth leaf margin/wavy leaf margin

(Wa/wa) and normal/willow leaf (Wa2/wa2) (Chaparro et al. 1994,
Scott and Cullinan 1942,)
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Table 9.5 (continued)

Attribute Observations and source

Plant habit
Shape Several single, recessive genes have been identified that influence plant

shape – weeping, pl (Monet et al. 1988); compact, ct (Mehlenbacher
and Scorza 1986); pillar, br (Scorza et al. 2002); bushy, bu1 and bu2
(Lammerts 1945)

Tree Height Several single, recessive genes have been identified that influence plant
height – dwarf, dw (Monet et al. 1988), dw2 (Hansche 1988), dw3
(Chaparro et al. 1994); semi-dwarf, n (Monet and Salesses 1975)

Fruit quality
Acidity Quantitatively inherited (Hansche et al. 1972); a QTL has been found

for a single locus (D/d) that regulates low vs. high malic acid
(Dirlewanger et al. 2004)

Flesh texture Three single genes regulate melting flesh/ non-melting flesh (F/ f ), soft
melting flesh/firm melting flesh (M/m) (Bailey and French 1941 and
1949) and melting flesh/ stonyhard flesh (Hd/hd) (Yoshida 1970);
known dominance relationships are ST > M > m, F/ f and M/m
are on the same linkage group (Dirlewanger et al. 2004); candidate
gene (endopolygalacturonase) identified for melting vs. non-melting
trait (Peace et al. 2005b)

Pit adherence Single gene regulating the freestone/clingstone trait (F/ f ) (Bailey and
French 1941 and 1949); QTL identified located on same linkage
group as the flesh texture genes M/m and St/st (Dirlewanger
et al. 2004)

Internal
breakdown (IB)

High heritability exists for all the traits associated with IB including
mealiness; flesh browning and flesh bleeding; QTL have been found
for all of these characteristics (Peace et al. 2005, 2006); the pectic
enzyme polygalacturonase (PG) is strongly associated with the
melting flesh characteristic and IB (Lester et al. 1996, Peace
et al. 2006, Pressey and Avantes 1978)

Pubescence Single genes regulating pubescent skin/glabrous (G/g) (Blake 1932)
and normal pubescence/rough surface (Okie and Prince 1982);
level of pubescence is quantitatively inherited (Blake 1940,
Weinberger 1944)

Color A number of single genes regulating color have been identified
including Y which results in white fruit (Conners 1922), h which
suppresses red color (Beckman et al. 2005) and fr which regulates
full red color (Beckman and Sherman 2003); bf (blood flesh) is
regulated by a single gene (Werner et al. 1998); degree of red skin
color is likely regulated quantitatively; red color around the pit is
dominant (Blake 1932)

Overall fruit
quality

Browning, soluble solids, sweetness and overall flavor are
quantitatively inherited (Hansche et al. 1972, Hansche 1986,
Hansche and Boynton 1986)

Shape Mostly quantitatively inherited, but a single, dominant gene has been
identified for saucer vs. non-saucer shape (Lesley 1939) that is lethal
in the homozygous state (Guo et al. 2002)

Size/weight Quantitatively inherited with mostly additive genes (Hansche
et al. 1972, Weinberger 1955)
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fruit quality and issues associated with short internodes and large numbers of spurs
(Loreti and Massai 2002). Greater success in developing cultivars for high density
plantings has come from the use of genes that modify plant shape. The pillar gene
(br), which forms a columnar growth habit, has been successfully used in the U.S.A.
and Italy to produce a narrower tree that is easier to prune (Fig. 9.1). The weeping
gene (pl), is also being utilized by the French to develop more efficiently pruned
trees, although specific orchard systems will need to be developed to exploit this
habit. A potentially useful ‘arching’ phenotype with a distinctive curvature of the
one-year-old shoots has been described in Brbr/plpl genotypes (Werner and Cha-
parro 2005).

The environmental adaptations that have received the greatest amount of at-
tention from peach breeders are winter cold hardiness, spring frost hardiness and
chilling requirement. Cold hardiness is an issue in the cold temperate zones where
peaches have been traditionally grown, and reducing the chilling requirement has
become very important in expanding the range of peach cultivation into warmer
climates. Frost tolerance has been an issue in both warm and cold climates. Winter
cold tolerance is influenced by when cold tolerance is initiated, the rate of devel-
opment of cold tolerance, the maximum cold tolerance that can be achieved, when
cold tolerance is lost, the rate of loss of tolerance, and whether cold tolerance can be
regained (Stushnoff 1972). The avoidance of spring frost damage can be achieved
by developing cultivars with late blooming dates and multiple flowers per node.
Later blooming types are less likely to suffer spring frosts and those with higher

Fig. 9.1 Standard (ST), semidwarf (SD), spur-type (SP), upright (UP), pillar (PI) and weeping
(WE) peach tree growth habits from Bassi et al. 1994
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flower numbers are more likely to have sufficient numbers of flowers remaining
after frosts. Cultivars that receive inadequate chilling commonly display sporadic
foliation, irregular flower formation and floral abscission. Most peach cultivars have
chilling requirements (hours below 7◦ C) of 650–1000 hrs, but germplasm has been
utilized to produce cultivars with chilling requirements as low as 150 hours.

Most of the information available on cold tolerance has come from natural
freezes during test winters, although methods of conducting controlled freezes have
been developed (Layne 1989, Quamme 1991, Wisniewski and Arora 1991). Geno-
types with high chilling requirements tend to have the least bud death due to winter
cold. In general, a range in bud damage is apparent in segregating populations, sug-
gesting quantitative inheritance; however, some segregating populations are skewed
and have greater average resistance to cold injury than would be predicted by ex-
amining the parents (Mowry 1964). ‘Redskin’ stood out as a genotype with only
modest hardiness that produced many progeny with good bud tolerance to cold.
Few studies have sought to isolate the genes associated with cold tolerance in peach,
although transcripts of the stress-induced dehydrin gene (ppdhn1) have been found
to accumulate more in cold-tolerant peach tree cambium than the low cold tolerant
‘Evergreen’ cultivar (Artlip et al. 1997, Wisniewski et al. 1999).

Many of the genotypes most resistant to mid-winter cold originated from north-
ern China such as ‘Chui Lum Tao’, ‘Hui Han Tao’, ‘Tzim Pee Tao’ and ‘Siberian
C’. Most of these hardy types have early bloom dates and poor fruit quality which
take 3 or 4 generations of backcrossing to breed out, with the subsequent loss of
some winter hardiness (Scorza and Sherman 1996). Unusually cold tolerant natu-
ralized North American hybrids with late bloom have also been identified such as
‘Reliance’ (Cain and Anderson 1980, Layne 1984).

Considerable variability has been observed in numbers of flower buds per node
that is stable across years and locations (Okie and Werner 1990) and is highly her-
itable (Hansche et al. 1972) (Fig. 9.2). Those cultivars developed for the colder
climates tend to have higher numbers of buds per node than those developed in
warmer climates (Werner et al. 1988). The number of flowers and fruits on 2-year
old seedlings has also been shown to be heritable at the h2 = 0.16 and h2 = 0.33
level, respectively (Hansche 1986). While large numbers of flowers are of value in
years of frost damage, in the absence of such damage, excessive flowering requires
increased thinning and can negatively affect fruit size.

Little work has been conducted to determine the genetics of chilling hour require-
ments, although segregation patterns suggest that it is a quantitative trait, with a few
major genes having important effects (Lammerts 1945, Lesley 1944, Sharp 1961).
The inheritance appears to be largely additive, with little dominance effects. The
genes regulating a low chilling requirement have come predominately from peaches
from south China (Sharp 1974). Lammerts (1945) identified a recessive gene for
‘evergreen’ that held most of its foliage during mild, frostless winters. More recent
work has shown that the wild type gene is incompletely dominant with heterozy-
gotes being intermediate (Rodriquez et al. 1994). This gene now referred to as
Evergrowing has been mapped (Wang et al. 2002a) and shown to be a result of a
deletion in a MADS-box transcription factor sequence(s) (Bielenberg et al. 2004).
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Fig. 9.2 High (top) and low (bottom) flower bud density in peach seedlings

The genetics of bloom date is largely unknown, although Hansche et al. (1972)
did show that this trait was moderately heritable at h2 = 0.39. While consider-
able variability has been described, it has proven difficult to partition the relative
effects of chilling requirement, rate of bloom development and environment. There
is likely an interaction between cold and heat requirements and the conditioning of
other genes appears important. Regardless, cultivars do maintain ‘a rather ordered
progression of bloom at any given locality’ (Scorza and Sherman 1996), making
local selection possible.

Much more is known about time of fruit maturity. Considerable variability is
found in this trait and it is quantitatively regulated with a very high heritability
(Hansche 1986, Hansche et al. 1972). Bailey and Hough (1959) presented a model
that involved 9 major or dominant genes and 10 modifying genes. Vileila-Morales
et al. (1981) found that early fruiting is regulated by three major genes.

A number of simply inherited foliar and flower traits have been described.
Among the foliar traits are red leaf/green leaf (Gr/gr), smooth leaf margin/wavy leaf
margin (Wa/wa), Willow-leaf (Wa2/wa2) and glandular foliage/eglandular foliage
(E/e). E has been located on Linkage group 7 (Dirlewanger et al. 2004). Among the
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flower traits are pollen fertile/pollen sterile (Ps/ps and Ps2/ps2), nonshowy/showy
(Sh/sh), large showy flowers/small showy flowers (L/ l), colored/white (W/w), with
anthocyanins/anthocyaninless (AN/an), dark pink/light pink (p/p), pink/red (R/r ),
single/double (Di/di) and fewer extra petals/more extra petals (Dm1/dm1and inde-
pendent Dm2/dm2) (Fig. 9.3). Two pairs of these loci have been shown to segregate
independently, E/e – Ps/ps and Sh/sh – An/an (Monet and Bastard 1983, Monet et al.
1985).

9.5.3 Fruit Quality

Numerous traits related to fruit quality are of importance to peach breeders. In the
fresh market, consumers desire a large, well shaped fruit that is flavorful with a
high sugar content and low to moderate acidity. For the processed market, several
characteristics are appreciated including firm flesh, absence of a tip on the pit, no
pit cracking, attractive color and non-browning of the flesh.

A number of single genes have been described that regulate important fruit
characteristics (Table 9.5). Bailey and French (1941 and 1949) identified genes
for freestone/clingstone (F/ f ), melting flesh/non-melting flesh (M/m) and soft
melting flesh/firm melting (St/st) which are all found on the same chromosome.
The dominance relationships between the genes regulating flesh texture are ST
> M > m. F appears to be epistatic to mm allowing for only St or M expression,
although F mm could be lethal (Scorza and Sherman 1996). Only a single free-
stone, non-melting individual has been reported and it has been lost (Blake 1937).
Yoshida (1970) described genes for melting flesh/‘stonyhard’ flesh (Hd/hd); these
plants produce little ethylene and remain firm throughout storage (Goffreda 1992,
Haji et al. 2001).

A significant recent effort has been undertaken at the University of California,
Davis to describe the genetics of a number of traits associated with internal break-
down (IB) of fruit or chilling injury (Peace et al. 2005, 2006). Using a combi-
nation of conventional and QTL mapping approaches, they have found high her-
itability for all the traits associated with IB including mealiness, flesh browning
and flesh bleeding and found major QTL for all of these characteristics. The ob-
served segregation patterns suggested that only a few major genes control each of
the IB symptoms. Mealiness and browning were positively correlated, and both
were negatively associated with bleeding (red coloration). Mealiness and bleed-
ing were positively correlated with flowering date, while browning was positively
associated with harvest date. The flesh color locus Y did not have a significant
effect on IB.

The expression of a number of genes has been associated with the ripening and
softening of peach fruits. Several cell hydrolases that cause cell wall-loosening have
been implicated in fruit softening including glucanases, cellulases and pectic en-
zymes (Bonghi et al. 1998, Callahan et al. 1991, Scorza 2001). Three forms of the
pectic enzyme polygalacturonase (PG) have been found in peach fruits, two being
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Fig. 9.3 A sample of peach flower types: showy single (upper left), non-showy (upper right),
double showy (middle right), double showy extra petals (middle left), ‘chrysanthemum’ petals
(lower left), variegated petals (lower right). Photos by D. Hu and R. Scorza
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exo-PG and one being endo-PG. The exo-PG activity is ripening regulated (Downs
et al. 1992) and high activity in this enzyme is strongly associated with the melting
flesh characteristic (Pressey and Avantes 1978). Lester et al. (1996) found an RFLP
for an endo-PG that co-segregated with the melting flesh trait, and they discovered
that there was a deletion of endo-PG-related sequences in the nonmelting flesh va-
riety, Fla. 9-26C. Peace et al. (2005) concluded that a single locus with at least
one gene for endopolygalacturanase controls the freestone and melting traits with at
least three alleles.

When Peace et al. (2006) used a candidate gene approach to identifying specific
genes associated with IB, they discovered that a gene encoding endopolygalactur-
onase co-segregates with the freestone and melting flesh traits and they found a large
QTL for mealiness. Endo-�-1,4-glucanases (ppEG1) have been shown to accumu-
late during fruit abscission and share 76% homology with ripening-related avocado
glucanase (Trainotti et al. 1997).

The expression of several genes has been associated with the ethylene cli-
macteric in peach. 1-Aminocyclopropane-1-carboxylic acid (ACC) synthase and
ACC oxidase activity have been shown to increase during fruit ripening (Callahan
et al. 1993a,b). Two ethylene receptor genes, Pp-ETR1 and Pp-ERS1, have been
isolated from peach that are homologous to ETR1 and ESR1 in Arabidopisis (Bonghi
et al. 2002). The level of expression of Pp-ETR1 was unchanged during ripening,
while Pp-ERS1 expression increased in conjunction with the ethylene climacteric.
Application of the ethylene inhibitor 1-methyl-cyclopropane reduced expression of
both genes, along with ethylene biosynthesis. Ruperti et al. 2001 found two ACC
oxidases to be differentially expressed in flowers, fruits and leaves; one of the genes
(PP-ACO2) was expressed only in fruit and was not affected by propylene, while
the other gene (PP-ACO1), was highly expressed in senescing leaves, abscising fruit
and ripe mesocarp and was positively regulated by propylene. The transcripts from
three genes, PpAz8, PpAz44 and PpAz152 have been isolated from cells of fruit and
leaf abscission zones that show homology to PR thaumatin-like proteins and plant
and fungal �-D-oxylosidases (Ruperti et al. 2002).

In other genetic work on the biochemical components associated with fruit ripen-
ing and taste, Monet (1979) described a gene pair (D/d) that determines low malic
acid vs. normal. Initial studies suggested that low fruit acidity was dominant to high
acidity, but subsequent work has shown a continuous range of variability. Hansche
et al. (1972) found a modest level of heritability for fruit acidity (h2 = 0.19), while
heritability for fruit soluble solids was only 0.01. Fruit browning was shown to have
a heritability of 0.35 in another study of peach (Hansche and Boynton 1986). Ram-
ming (1991) identified a gene, sr, that slows down fruit ripening. Genotypes that
are homozygous for this gene ripen very slowly or not at all, have reduced CO2

and C2H4 production and fail to abscise. Hansche (1986) found low to medium
heritability for soluble solids, sweetness, firmness and flavor in peach and nec-
tarine populations dwarfed by the dw gene. Etienne et al. (2002) cloned six peach
genes associated with organic acid metabolism and storage during fruit develop-
ment (Mitochondrial citrate synthase, cytosolic NAD-dependent malate dehyroge-
nase, vacuolar proton translocating pumps, vacuolar H+-ATPase, and two vacuolar
H+-pyrophophatases).



282 J.F. Hancock et al.

Several compounds have been found in peach that can cause food allergies, in-
cluding a family of 9 kDa lipid transfer proteins (LTPs) (Malet et al. 1988, Pastorello
et al. 1999). These compounds cause type I allergic reactions in humans by binding
to immunoglobin E. Transcripts of two LTP genes, pp-LTP1 and pp-LTP2, are found
in peach with pp-LTP1 being expressed in the skin of ripe fruit, while pp-LTP2
expresses in the ovary (Botton et al. 2002).

Blake (1932) described a gene pair regulating pubescent skin/glabrous (G/g).
Heavy pubescence was initially reported as being dominant to light pubescence
(Blake and Connors 1936), although the amount of pubescence appeared to be
quantitatively inherited in later studies (Blake 1940, Weinberger 1944). Most
recently, Okie and Prince (1988) have reported on a gene regulating normal
pubescence vs. a rough surface (Rs/ss) that also causes glabrous flower buds. In-
terestingly, it is not expressed in gg genotypes.

Conners (1922) and Blake (1934 and 1940) originally suggested that small fruit
size was dominant to large fruit size, but later work has indicated that fruit size is
controlled by predominantly additive genes with little dominance involved (Hansche
et al. 1972, Weinberger 1955). Scorza and Sherman (1996) suggested that ‘unim-
proved genotypes could express a few genes that have major effects on fruit size’.
Hansche (1986) found moderate to high heritability for fruit weight in peach and
nectarine populations dwarfed by the dw gene.

A single, dominant gene regulating saucer vs. non-saucer shape (S/s) has been
identified (Lesley 1939) that is lethal in the homozygous state (Guo et al. 2002),
although shape in general appears to be quantitatively regulated (Scorza and Sher-
man 1996). Oval has been described as dominant to round, but other studies sug-
gested a much more complex inheritance (Blake 1940). The S locus is found on
Linkage group 6, along with Dwarf (Dw), Redleaf (Gr) and male sterility (ps)
(Fig. 9.2). The D/d locus regulating acid level may also be in this linkage group
as Monet et al. (1985) found them to be linked by 30 cM to S/s; however, the D
locus was found on Linkage groups 2 and 5 in the composite map (Dirlewanger
et al. 2004).

A few single genes have been associated with fruit color. An allele (Y ) has been
described that produces white fleshed fruit (Connors 1920) and another, highlighter
(h), suppresses red color (Beckman et al. 2005). The relationship between these two
alleles has not been explored, although highlighter is known to be independent from
the petal coloration alleles anthocyaninless (An) and white flower (W ). The full red
color phenotype is regulated by a recessive gene fr (Beckman and Sherman 2003),
with the degree of red skin color likely regulated by multiple genes with complex
environmental interactions. The blood-flesh trait (red-violet mesocarp) is regulated
by a single gene, bf (Werner et al. 1998). A red surface blush had a heritability of
0.19 + / − 0.04 in a segregating population of dwarf peaches (Hansche 1986). The
degree of red color around the pit varies greatly and is likely polygenic; however,
the presence of red color has been reported to be dominant (Blake 1932). Pillar (Br),
double flowering and the flesh color locus are linked (Rajapakse et al. 1995).

French (1951) studied the segregation of several traits in hybrid peach popula-
tions including pubescence, flesh stringiness, coarseness, stone size, juiciness, skin
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thickness and toughness. French’s populations varied greatly between years mak-
ing conclusions difficult, but he did suggest that stringiness of the flesh and flesh
coarseness were mostly recessive to their counterparts. Expression of the juiciness
trait and stone size was very dependent on which parents were crossed; some par-
ents appeared to pass the trait in a dominant fashion, although inheritance generally
appeared to be quantitative. The thickness of the skin of progeny populations was
dependent on the parents. A statistical analysis that estimates both environmental
and genetic components of variability needs to be made to better elucidate the ge-
netics of these traits.

9.6 Crossing and Evaluation Techniques

9.6.1 Pollination and Seedling Culture

Pollen is generally collected from well advanced flowers that are not quite open
(‘balloon stage’). The flowers are usually collected in paper bags, and the anthers
are extracted within a few hours of collection by rubbing them over a wire mesh
screen with a 4–6 mm mesh. When the flowers must be stored for longer periods of
time, they can be held in the collection bags at 2◦ C–4◦ C for a couple of days. The
anthers are most often sifted onto absorbent paper for drying and allowed to dehisce
for 12–24 hours at ambient room temperature. After drying, the pollen is commonly
placed into glass shell vials and can be held at ambient temperature for a season. For
longer storage times, the pollen is generally frozen at −18◦C (Griggs et al. 1953) or
held at 0◦C–2◦C at 25% relative humidity (King and Hesse 1938). Pollen frozen in
liquid nitrogen will retain its viability for many years.

Stamens of peach flowers are attached distally in a ring at the base of the corolla
and can be easily removed by pulling the flowers apart using the finger nails. Emas-
culation is done when the flowers approach anthesis but are not yet open or shedding
pollen. Branches are emasculated from the top down, to avoid accidental wind pol-
lination and checked every few days for 7–10 days after pollination to remove any
new flowers.

Pollination is accomplished using a camel’s hair brush, the rubber tip of a pencil,
a finger or a glass rod. A simple touch of the stigmatic surface is all that is necessary.
After pollination, 70% alcohol is used to kill any pollen left on the applicator. Polli-
nators are generally not attracted to petaless flowers, so branches are not generally
covered for cultivar development crosses. For genetic crosses, chance pollination is
prevented by covering the branches with paper bags or cheese cloth. If wet weather
is expected, the paper bags can be protected with polyethylene bags, but they need
to be well ventilated by punching holes in them. To protect against frost damage
during and after pollination, plastic houses or parachute covers with heat sources
have proven effective (Werner and Cain 1985).
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Seed are collected from ripe fruit soon after harvest, but before they begin to rot
or ferment. Seed are commonly allowed to dry after removal, but the percentage
of germination can sometimes be increased by stratifying them before they dry.
Stratification is often accomplished by placing a single row of seeds (removed from
the endocarp) on the bottom of 250 ml Erlenmeyer flasks and covering them with
water containing a fungicide. The next day enough water is removed to uncover
the seeds and the flask is stoppered with cotton, film or foil and held at 2◦ C–4◦ C
(with occasional watering). Seeds are also sometimes stratified in moist perlite in
plastic bags with a fungicide. Germination normally begins after 90–120 days, when
the rest requirement of the seeds has been met (Hartmann and Kester 1959). Non-
germinated seeds can be placed back in cold stratification. When the radicals are
0.5–1 cm long, the seeds are ready for planting. They can be set directly in the field
by placing the radical at 5 cm depth, or they can be grown in a greenhouse to get
better emergence and early growth. When this is done, the seedlings are generally
moved to the field when convenient.

Peach breeders commonly use embryo culture to germinate seed from early-
maturing genotypes, particularly in subtropical areas where short development peri-
ods are a major goal. Commonly, the flesh of the early ripening types matures before
the embryo is fully developed.

Almost all cultivars ripening 70–75 days from full bloom can be successfully
cultured, but the culture of younger embryos is dependent on genotype and growth
conditions. An index called PF1 (embryo length/seed length) was proposed by Hesse
and Kester (1955) to measure comparative embryo development. In their work, em-
bryos with a PF1 lower than 70 were difficult to culture, although Ramming (1990)
was able to culture embryos at PF1 as low as 25.

For embryo culture, the fruit are generally surface sterilized with 0.25–1%
sodium hypochlorite and the seed is removed from the endocarp. The embryo is
then excised from the seed and cultured on 0.6–0.7% agar containing 2–4% sucrose
and nutrients (Ramming 1985, Tukey 1934).

9.6.2 Evaluation Techniques

Most commonly, seedlings are planted at 1–2 m within rows and 3.0–4.5 m between
rows in the spring following hybridization. Seedlings begin to fruit 1–2 years af-
ter planting. High density plantings have also been developed in Florida where
seedlings are set at 13 cm apart in rows 1 m apart in August or September in the
same year as hybridization (Sherman et al. 1973). This system allows for many
more seedlings to be evaluated in small areas of field space, but only the most easily
scored traits such as chilling requirement, fruit development period and fruit quality
can be successfully evaluated (Rodriquez et al. 1986). The less dense plantings are
typically evaluated for four or five years with little yearly rouging of undesirable
genotypes, while the high density plantings are evaluated for three years with thin-
ning in the second year.
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Selections that appear to have potential are then second tested under commercial
field conditions against standard cultivars. The most promising ones are distributed
after 2–4 crops to a number of test locations within the expected adaptation zone, in-
cluding grower cooperators and Agriculture Experiment Stations. When a selection
survives these tests by showing high commercial potential, it is released. A mini-
mum of 10 years, and often many more, are required between the initial cross and a
genotypes release to the industry.

9.7 Biotechnological Approaches to Genetic Improvement

9.7.1 Regeneration and Transformation

Peaches have been regenerated utilizing several systems including in vitro leaves
(Gentile et al. 2002), mature cotyledons (Pooler and Scorza 1995), embryo-derived
callus (Scorza et al. 1990) and immature zygotic embryos (Hammerschlag et al.
1985). However, there are only two reports of stable peach plant transformation.
Smigocki and Hammerschlag (1991) generated transgenic peach plants from em-
bryogenic cultures of ‘Redhaven’ using the sooty mutant strain of A. tumefaciens,
tms:328::Tn5. This strain carries an octopine type Ti plasmid with a functional cy-
tokinin gene and a mutated auxin gene. The transgenic plants with the cytokinin
gene were dwarf, produced unusually high numbers of branches and had delayed
leaf senescence (Hammerschlag et al. 1997, Hammerschlag and Smigocki 1998).
Perez-Clemente et al. (2004) produced transformants using embryo explants from
stored seeds, utilizing two strains of A. tumefaciens containing the binary plasmid
pBIN19 with the CaMV35spor-sGFP-CaMV35ster cassette as a reporter gene. Their
highest efficiency rate of transgenic plant production was 3.6%, utilizing A. tume-
faciens strain C58 and embryo sections. Between these two reports of preach trans-
formation it appears that a total of four transgenic peach plants have been produced.
To date there have been no reports replicating these results. An efficient, repeatable
peach transformation methodology awaits development.

Efforts are underway to improve peach transformation protocols. For example,
Padilla et al. (2006) conducted a large multivariate experiment to determine the
optimal conditions for Agrobacterium-mediated transformation of peach explants.
The GUS (uidA) marker gene was tested using two A. tumifaciens strains, three
plasmids and four promoters, while GFP was evaluated in six A. tumefaciens strains,
one plasmid and the doubleCaMV35s (dCAMV35s) promoter. The highest rates
of transformation were produced with the combination of A. tumifaciens EHA105,
plasmid pBIN19 and the CaMV35s promoter utilizing peach epicotyl internodes
(56.8%), cotyledons (52.7%) and embryotic axes (46.7%). While these studies have
enhanced transformation protocols in peach, transformation rates remain rather low
and when combined with low regeneration rates the development of transgenic
peaches remains problematic.
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9.7.2 Genetic Mapping and QTL Analysis

A growing number of molecular linkage maps have emerged of peach and its rel-
atives (Table 9.6); five maps are available of pure Prunus persica, two of almond
× P. persica, two of P. persica × P. davidiana, and one each of P. persica × nec-
tarine, P. persica × P. ferganensis and myrobalan plum × an almond – P. persica
hybrid. Map coverage ranges from 396–1300 cM, with 8–23 linkage groups being
identified. Molecular markers have also been used to distinguish between peach

Table 9.6 Published genetic linkage maps of peach

Parents No. Loci Linkage
groups

Size
(cM)

Reference

Peaches ‘NC174RL’ ×
‘Pillar’

83 15 396 Chaparro et al. 1994

Peaches ‘New Jersey Pillar’
× ‘KV77119’

79 13 540 Abbott et al. 1998,
Rajapakse et al. 1995,
Sosinski et al. 2000

Peaches ‘Suncrest’ ×
‘Bailey’

145 23 926 Abbott et al. 1998,
Sosinski et al. 2000

Peaches ‘Lovell’ ×
‘Nemared’

153 15 1300 Abbott et al. 1998,
Lu et al. 1998,
Sosinski et al. 2000

Peaches ‘Harrow Blood’ ×
‘Okinawa’

76 10 Gillen and Bliss 2005

Peaches ‘Akame’ ×
‘Jueitou’

178 8 571 Shimada et al. 2000
Yamamoto et al. 2002

Peach ‘Ferjalou Jalousia’ ×
Nectarine ‘Fantasia’

249 11 712 Dirlewanger et al. 2004,
2006

Peach ‘Guardian’ ×
‘Nemaguard’ (P . persica
×P . davidiana) F2

171 8 737 Blenda et al. 2007

Almond ‘Texas’ × peach
‘Earlygold’ F2

562 8 519 Aranzana et al. 2002,
Dirlewanger et al. 2004,
Joobeur et al. 1998

Almond ‘Padre’ × peach
54P455 F2

161 8 1144 Bliss et al. 2002,
Foolad et al. 1995

Peach ‘Summergrand’ ×
P. davidiana clone 1908

23, 971 3, 9 159 471 Dirlewanger et al. 1996,
Viruel et al. 1998

Peach IF7310828
(‘J.H. Hale’ ×
‘Bonanza’) × selection
of P. ferganensis BC1

216 8 665 Dettori et al. 2001,
Quarta et al. 2000,
Verde et al. 2005

Myrobalan plum P.2175 ×
almond – peach hybrid
GN22

93, 1661 8, 7 525, 716 Dirlewanger et al. 2004

1 Separate maps were generated for each of the parents
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cultivars, measure their relatedness and determine their origins (Aranzana et al. 2004,
Dirlewanger et al. 2002, Testolin et al. 2000, Xu et al. 2006).

Linkage relationships with molecular markers have been described for 23 mono-
genic morphological traits associated with adaptation, flower color, fertility, leaf
shape and color, plant habit, fruit quality and pest resistance (Table 9.7). QTL
have also been identified for 23 horticulturally important traits including bloom and

Table 9.7 Monogenic traits associated with molecular markers in peach

Trait Linkage
group

References

Adaptation
Evergrowing (evg) 1 Dirlewanger et al. 2004, Wang et al. 2002
Flower traits
Double flower (Dl) 2 Dirlewanger et al. 2004, Sosinski et al. 2000
Flower color (Fc) 3 Dirlewanger et al. 2004, Yamamoto et al. 2001
Male sterility (Ps) 6 Dirlewanger et al. 1999, 2004, 2006
Leaf traits
Leaf color (Gr) 5 Chaparro et al. 1994, Dirlewanger et al. 2004,

Yamamoto et al. 2001
Leaf glands (E) 7 Dettori et al. 2001, Quarta et al. 2000
Leaf shape (Nl) 6 Dirlewanger et al. 2004
Plant habit
Dwarf plant (Dw) 6 Dirlewanger et al. 2004
Pillar growth habit (Br) 2 Dirlewanger et al. 2004
Fruit quality
Blood flesh (bf ) 4 Gillen and Bliss 2005
Flat fruit (S) 6 Dirlewanger et al. 1999, 2004, 2006
Flesh adhesion (F) 4 Abbott et al. 1998, Dettori et al. 2001,

Dirlewanger et al. 2004, Quarta et al. 2000,
Yamamoto et al. 2001

Flesh color (Y ) 1 Abbott et al. 1998, Bliss et al. 2002, Dirlewanger
et al. 2004, Warburton et al. 1996

Flesh color around stone
(Cs)

3 Dirlewanger et al. 2004, Yamamoto et al. 2005

Non acid fruit (D) 2,5 Bliss et al. 2002, Dirlewanger et al. 1999,
Dirlewanger et al. 2004

Polycarpel (Pcp) 3 Bliss et al. 2002, 2004, 2006
Skin color (Sc) 6 Dirlewanger et al. 2004, Yamamoto et al. 2001
Skin hairiness (G) 5 Bliss et al. 2002, Dirlewanger et al. 1999, 2004, 2006
Pest resistance
Leaf curl resistance 3,6 Viruel et al. 1998
Nematode resistance (Mij) 2 Abbott et al. 1998, Dirlewanger et al. 2004, Gillen

and Bliss 2005, Lu et al. 1998, Lu et al. 1999,
Lu et al. 2004, Wang et al. 2002, Yamamoto
et al. 2001

Nematode resistance (Mja) 7 Blenda et al. 2002, Dirlewanger et al. 2004,
Yamamoto et al. 2001

Powdery mildew resistance 7,8 Quarta et al. 2000, Verde et al. 2002
Resistance gene analogs Many Gillen and Bliss 2005, Lalli et al. 2005
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Table 9.8 QTL1 associated with major traits of peach

Trait Linkage group References

Adaptation
Flowering time 4 Dirlewanger et al. 1999, Quarta et al. 2000,

Verde et al. 2002
Fruit development period 4 Abbott et al. 1998, Etienne et al. 2002,

Verde et al. 2002
Internode length 1 Verde et al. 2002
Maturity date 3, 4 Dirlewanger et al. 1999, Etienne et al. 2002
Productivity 6,9 Dirlewanger et al. 1999
Ripening time 2, 6 Dirlewanger et al. 1999, Quarta et al. 2000,

Verde et al. 2002
Short life syndrome 1, 2, 4, 5, 6 Blenda et al. 2007

Fruit quality
Bleeding 1,4 Peace et al. 2006
Browning 5 Peace et al. 2006
Fruit diameter 2 Abbott et al. 1998
Fruit skin color 2,6 Quarta et al. 2000, Verde et al. 2002
Fruit weight 5, 6 Abbott et al. 1998, Dirlewanger et al. 1999,

Etienne et al. 2002
Mealiness 4 Peace et al. 2006
pH 5 Abbott et al. 1998, Etienne et al. 2002
Titratable acidity 5, 6 Bliss et al. 2002, Dirlewanger et al. 1999,

Etienne et al. 2002
Malic acid content 5, 6 Dirlewanger et al. 1999, Etienne et al. 2002
Citric acid content 5, 6 Dirlewanger et al. 1999, Etienne et al. 2002
Quinic acid 8 Etienne et al. 2002
Soluble solids 2, 4,6 Abbott et al. 1998, Dirlewanger et al. 1999,

Etienne et al. 2002, Quarta et al. 2000,
Verde et al. 2002

Fructose content 4 Abbott et al. 1998, Etienne et al. 2002
Glucose content 4 Abbott et al. 1998, Dirlewanger et al. 1999,

Etienne et al. 2002
Sorbitol 6 Dirlewanger et al. 1999
Sucrose content 5 Dirlewanger et al. 1999, Etienne et al. 2002

1QTL that were identified in more than one year

ripening time, fruit quality, storage life, freestone trait, internode length and pest
resistance (Table 9.8).

Considerable synteny has been observed among the maps of the various Prunus
species, allowing for the development of a Prunus consensus map [Cmap in the
Genome Database for Rosaceae (GDR) at http://www.rosaceae.org]. When the
positions of RFLP, SSR and isozyme anchor markers are compared among the
individual genetic maps, the genomes of the diploid species of almond, apri-
cot, cherry, P. davidiana, P. cerasifera and P. ferganensis are mostly collinear
(Dirlewanger et al. 2004). Only one large chromosomal rearrangement has been
found, a reciprocal translocation in the almond (‘Garfi’) × peach (‘Nemared’)
cross (Jauregui et al. 2001) and the peach F2 ‘Akame’ × ‘Juseitou’ (Yamamoto
et al. 2001). A high level of synteny also appears to exist between Prunus and Malus,
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Fig. 9.4 Approximate position of 28 major Prunus genes mapped in populations of apricot (blue
background), peach (orange background), almond or almond × peach (yellow background), and
Myrobalan plum (green background) (Dirlewanger et al. 2004). The gene abbreviations are: Y ,
peach flesh color; B, almond/peach petal color; sharka, plum pox virus resistance; B, flower color
in almond × peach; Mi, nematode resistance from peach; D, almond shell hardness; Br, broomy
plant habit; Dl, double flower; Cs, flesh color around the stone; Ag, anther color; Pcp, polycarpel;
Fc, flower color; Lb, blooming date; F , flesh adherence to stone; D, non-acid fruit in peach, Sk,
bitter kernel; G, fruit skin pubescence; Nl, leaf shape; Dw, dwarf plant; Ps, male sterility; Sc,
fruit skin color; Gr, leaf color; S∗, fruit shape; S, self-incompatibility (almond and apricot); Ma,
nematode resistance from Myrobalan plum; E , leaf gland shape; Sf, resistance to powdery mildew.
Genes Dl and Br are located on an unknown position of G2

although only limited numbers of loci have been compared. Dirlewanger et al. 2004
was able to generate a map for all of Prunus on which 28 major genes were mapped
in populations of apricot, peach, almond and Myrobalan plum (Fig. 9.4).

9.7.3 Genomic Resources

Several bacterial artificial chromosome (BAC) libraries have been developed for
peach (Genome Database for Rosaceae (GDR) at http://www.rosaceae.org). Two of
the largest are those of Georgi et al. (2002) which was generated from fruit mesocarp
of the peach rootstock ‘Nemared’ and Wang et al. (2001) which was produced from
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leaves of the traditional cultivar Jingyu. The libraries of Georgi et al. (2002) and
Wang et al. (2001) contain 44,160 and 20,736 clones, respectively.

Over 85,000 Prunus ESTs have been sequenced and deposited in the NCBI
dbEST database (http://www.genome.clemson.edu/gdr/). A high proportion of the
ESTs have been found to contain SSRs in transcribed regions, allowing for the
placement of known genes on linkage maps (Georgi et al. 2002, Jung et al. 2005,
Wang et al. 2002). The EST-derived SSRs are less polymorphic than those from
intergenic regions, but are more easily transferred among species, as the tran-
scribed sequences are often more highly conserved. Most recently,18 EST-SSR
markers have been developed from a mesocarp cDNA library of the peach culti-
var ‘Yumyeong’, whose primers gave successful amplification in six other Prunus
species (almond, apricot, sweet cherry, Japanese plum, European plum and Prunus
ferganensis) (Vendramin et al. 2007).

Horn et al. 2005 used probes of core markers (141) from the ‘Texas’ × ‘Early-
gold’ peach map to screen the BAC library to provide the framework for a physical
and transcript map. When they hybridized 1,236 ESTs from the unigene set and an
additional 68 peach cDNA colonies to genetically anchored BACs, they were able
to place 11.2% of the ESTs and cDNAs on the peach genetic map. One cluster of
32 ESTs were of special note as most of them were not homologous to sequences in
the NCBI data base. It was suggested by Horn et al. (2005) that these ‘ESTs might
be unique to fruit trees or rapidly evolved from a common ancestor to fulfill new
functions in fruit trees’.

Resistance gene analogs (RGAs) representing NBS-LRR, kinase, transmem-
brane domain classes, pathogen response (PR) proteins and resistance-associated
transcription factors have also been hybridized to the peach BAC library to de-
velop a resistance map for Prunus (Lalli et al. 2005). Using the peach physical
map data base of the Genome Database for Rosaceae (GDR), 42 map locations
were identified with possible resistance regions across 7 of the 8 linkage groups of
peach.
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