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Summary

Most anoxygenic phototrophic bacteria can use inorganic sulfur compounds (e.g. sulfide, elemental sulfur, 
polysulfides, thiosulfate, or sulfide) as electron donors for reductive carbon dioxide fixation during 
photolithoautotrophic growth. In these organisms, light energy is used to transfer electrons from sulfur 
compounds to the level of the more highly reducing electron carriers NAD(P)+ and ferredoxin. In this chap-
ter the sulfur oxidizing capabilities of the different groups of anoxygenic phototrophic bacteria are briefly 
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I. Introduction

Anoxygenic phototrophic bacteria are generally 
not able to use water as an electron-donating 
substrate for photosynthetic CO

2
 reduction. The 

common property of these bacteria is the ability to 
carry out light-dependent, (bacterio)chlorophyll-
mediated processes, a property shared with cyano-
bacteria, prochlorophytes, algae and green plants. 
In contrast to the latter, reduced sulfur compounds, 
molecular hydrogen, reduced iron or simple 
organic molecules typically serve as photo-
synthetic electrons in anoxygenic phototrophic 
bacteria. Bacteriochlorophylls are present not 
only in facultatively and obligately anaerobic 
anoxygenic phototrophic bacteria but also in 
large numbers of bacterial species that are strictly 
dependent on energy generation by respiratory 
electron transport processes. These organisms 
are called aerobic phototrophic bacteria (Yurkov, 
2006) or “aerobic bacteriochlorophyll-contain-
ing (ABC) bacteria (Imhoff and Hiraishi, 2005).

The utilization of reduced sulfur compounds 
as photosynthetic electron donors is – though to 

a different extent – common to almost all groups 
of phototrophic prokaryotes. Classical in this 
respect are the purple (families Chromatiaceae 
and Ectothiorhodospiraceae) and green sulfur 
bacteria (family Chlorobiaceae) all of which 
utilize reduced sulfur compounds as electron 
donors. A number of classical purple “nonsul-
fur” bacteria, some members of the filamen-
tous  anoxygenic phototrophs (also termed green 
gliding bacteria or green non-sulfur bacteria) 
of the family Chloroflexaceae, and a few repre-
sentatives of the strictly anaerobic gram-positive 
Heliobacteria are also able to oxidize reduced 
sulfur compounds during photosynthesis. Even 
certain species of the cyanobacteria can per-
form anoxygenic photosynthesis at the expense 
of sulfide as electron donor (rf Chapter Hauska/
Shahak). Photoautotrophic growth with sulfur 
compounds has so far not been described for any 
of the ABC bacteria.

One purpose of this chapter is to briefly intro-
duce researchers not specializing in bacterial 
sulfur metabolism to the sulfur-oxidizing capa-
bilities of the various groups of anoxygenic 
phototrophic bacteria. Ecology and taxonomy of 
anoxygenic phototrophic bacteria are described 
in detail in the chapters by Imhoff and Overmann. 
It should be emphasized that some older reviews 
still serve as a valuable source of information 
especially regarding sulfur oxidation patterns by 
whole cells of anoxygenic phototrophic bacteria 
(Brune, 1989; Brune, 1995b).

summarized. This chapter then focuses on the pathways of sulfur compound oxidation in purple sulfur bacteria 
of the families Chromatiaceae and Ectothiorhodospiraceae. A variety of enzymes catalyzing sulfur oxi-
dation reactions have been isolated from members of this group and Allochromatium vinosum, a representa-
tive of the Chromatiaceae, has been especially well characterized also on a molecular genetic level. In 
this organism intracellular sulfur globules are an obligate intermediate during the oxidation of thiosulfate 
and sulfide to sulfate. Thiosulfate oxidation is strictly dependent on the presence of three periplasmic Sox 
proteins encoded by the soxBXA and soxYZ genes. Sulfide oxidation does not appear to require the pres-
ence of Sox proteins. Flavocytochrome c is also not essential leaving sulfide:quinone oxidoreductase 
as the probably most important sulfide-oxidizing enzyme. Polysulfides are intermediates en route of sulfide to 
stored sulfur. Sulfur is deposited in the periplasm and present as long chains probably terminated by organic 
residues at one or both ends. The oxidation of stored sulfur is completely dependent on the proteins encoded 
in the dsr operon. These include siroamide-containing sulfite reductase (DsrAB), a transmembrane electron-
transporting complex (DsrMKJOP) and a iron–sulfur flavoprotein with NADH:acceptor oxidoreductase 
activity (DsrL). The last step of reduced sulfur compound oxidation in purple sulfur bacteria is the oxidation 
of sulfite. This can occur either via the enzymes adenosine 5′-phosphosulfate (APS) reductase and ATP 
sulfurylase which are non-essential in Alc. vinsoum or via direct oxidation to sulfate. The nature of the 
enzyme catalyzing the latter step is still unresolved in purple sulfur bacteria.

Abbreviations: Acd. – Acidiphilium; Alc. – Allochromatium; 

APS – adenosine 5¢-phosphosulfate; Ect. – Ectothiorhodo-
spira; EC – extracellular; FAPs – filamentous anoxygenic 

phototrophs; HiPIP – high potential iron-sulfur protein; Hlr. 

– Halorhodospira; IC – intracellular; Mch. – Marichroma-
tium; nd – not determined; Pcs. – Paracoccus; SQR-sulfide:

quinone oxidoreductase Rba. – Rhodobacter; Tca. – Thio-
capsa; Tcs. – Thiocystis
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II. Sulfur Oxidation Capabilities 
of Anoxygenic Phototrophic Bacteria

In the following section the sulfur oxidation 
capabilities of the various groups of anoxygenic 
phototrophic bacteria will be briefly described. 
Sulfur oxidation capabilities in the aerobic bacte-
riochlorophyll-containing bacteria, the Heliobac-
teria and the anoxygenic filamentous phototrophs 
are rather limited. Information about the enzymes 
involved is in most cases not available. The sul-
fur oxidation pathways in the other groups are 
far more complex. Therefore, separate chap-
ters  concentrate on the biochemistry, molecular 
genetics, genomics and proteomics of sulfur oxi-
dation in the green sulfur bacteria (Hanson, Frig-
aard). The sulfur metabolism in purple nonsulfur 
bacteria is reviewed in a forthcoming volume of 
this series (Sander and Dahl, 2008) This chapter 
focuses on sulfur compound oxidation in the pur-
ple sulfur bacteria of the families Chromatiaceae 
and Ectothiorhodospiraceae.

A. Aerobic Anoxygenic Bacteriochlorophyll-
Containing Bacteria

ABC bacteria are probably very important as 
destructors of organic compounds in a broad range 
of habitats (Yurkov, 2006). Although this increas-
ingly large group of bacteria is very heterogeneous 
phylogenetically, morphologically and physiologi-
cally, all share the inability to use bacteriochloro-
phyll for anaerobic photosynthetic growth and the 
presence of photochemical reactions in cells only 
under aerobic conditions (Hiraishi and Shimada, 
2001). Furthermore they share aerobic chemoor-
ganotrophy as the preferred mode of growth, low 
levels of bacteriochlorophylls and strong inhibi-
tion by light of bacteriochlorophyll synthesis under 
normal growth conditions. While fully active reac-
tion center and LH1 complexes with bacteriochlo-
rophyll are present in all species studied so far, 
peripheral antenna (LH2) are absent in most spe-
cies (Hiraishi and Shimada, 2001).

All species of the ABC bacteria, except the 
β-Proteobacterium Roseotales depolymerans, 
belong to the α-Proteobacteria (class Alphaproteo-
bacteria) where they do not form a homogeneous 
cluster but are closely interspersed with pho-
totrophic and non-phototrophic species (Imhoff 
and Hiraishi, 2005). Differentiation and taxon-

omy of ABC bacteria is difficult to understand 
even for experts in the field as several species not 
containing bacteriochlorophyll have been placed 
in genera of the aerobic anoxygenic bacteria.

None of the ABC bacteria are able to grow 
photolithoautotrophically with sulfur compounds 
as electron donors. However, the ability to oxidize 
inorganic sulfur compounds has been described for 
several representatives of this group. Examples are 
Roseinatronobacter thiooxidans, a strictly aerobic 
obligately heterotrophic alkaliphile that can oxidize 
sulfide, thiosulfate, sulfite and elemental sulfur 
to sulfate in the presence of organic compounds 
(Sorokin et al., 2000). In another study, Yurkov 
et al. (1994) showed thiosulfate-oxidizing activity 
in Erythromicrobium hydrolyticum, strain E4(1) 
and Rosoecoccus thiosulfatophilus, strain RB-7. 
The most pronounced oxidative sulfur metabolism 
is present in species of the genus Acidiphilium. 
A number of studies have demonstrated sulfur-
dependent chemolithotrophy of and sulfur oxida-
tion by Acd. acidophilum (formerly Thiobacillus 
acidophilus) (Pronk et al., 1990; Meulenberg et al., 
1992b; Hiraishi et al., 1998). In Acd. acidophilum 
the utilization of thiosulfate is initiated by the oxi-
dative condensation of two molecules of thiosulfate 
yielding tetrathionate. This step is catalyzed by the 
periplasmic enzyme thiosulfate:cytochrome c oxi-
doreductase (Meulenberg et al., 1993). The details 
of the further oxidation of tetrathionate to sulfate are 
largely unclear. Meulenberg et al. (1993) obtained 
indications that tetrathionate oxidation takes place 
in the periplasm in Acd. acidophilum. Furthermore, 
a tetrathionate hydrolase (de Jong et al., 1997), a 
trithionate hydrolase (Meulenberg et al., 1992a) 
and a sulfite:cyctochrome c oxidoreductase (de 
Jong et al., 2000) have been characterized from 
the organism.

B. Heliobacteria

Heliobacteria are anoxygenic phototrophic bac-
teria that contain bacteriochlorophyll g as the sole 
chlorophyll pigment. This unique Bchl, found only 
in the heliobacteria, distinguishes them from all 
other anoxygenic phototrophic bacteria (Madigan, 
2001b). They lack differentiated photosynthetic 
internal membranes, such as the membrane vesicles 
or lamellae of purple bacteria or the chlorosomes of 
green bacteria. Representatives of the heliobacte-
ria mainly occur in soils and are phylogenetically 
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related with gram-positive bacteria, specifically the 
Bacillus/Clostridium lineage. As far as is  currently 
known, heliobacteria are obligate anaerobes. 
However, they can grow both photo- and chemo-
trophically. Photoheterotrophic growth occurs on a 
restricted number of organic compounds as carbon 
sources. Chemotrophic growth in the dark occurs 
by fermentation of pyruvate or lactate. Photoau-
totrophic growth has not been demonstrated with 
any species of heliobacteria. If sulfide is added to the 
culture media, it is frequently oxidized to elemen-
tal sulfur that appears in the medium (Bryantseva et 
al., 2000; Madigan, 2001a). Heliobacterium sulfido-
philum and Heliobacterium undosum are especially 
tolerant to sulfide (up to 2 mM at pH 7.5). Many 
but not all members of the Heliobacteriaceae can 
assimilate sulfate as the sole source of sulfur (Madi-
gan, 2001a).

C. Filamentous Anoxygenic Phototrophs 
(Chloroflexaceae)

Chloroflexus, Chloronema, Oscillochloris, Roseiflexus 
and Heliothrix are well described genera of the 
filamentous anoxygenic phototrophs (FAPs) 
(Hanada and Pierson, 2002). Filamentous mor-
phology and gliding motility are typical features 
of these anoxygenic phototrophic organisms. 
Three of the genera, Chloroflexus, Chloronema 
and Oscillochloris contain chlorosomes, struc-
tural elements that are attached to the cellular 
membranes and contain the light-harvesting bac-
teriochlorophylls c and d. All five genera contain 
bacteriochlorophyll a. The filamentous anoxy-
genic bacteria are not closely related to the green 
sulfur bacteria and belong into one of the deepest 
bacterial phyla (Chloroflexi) of the Bacteria. This 
phylum also harbours non-phototrophic filamen-
tous gliding bacteria. Most but not all anoxygenic 
filamentous bacteria are facultatively aerobic and 
preferentially utilize organic substrates in their 
phototrophic or chemotrophic metabolism.

The biochemically best characterized member 
of the Chloroflexaceae is Chloroflexus aurantia-
cus, a thermophilic organism that prefers photo-
heterotrophic growth. Slow photoautrophic with 
hydrogen or sulfide as electron donors has been 
observed for some strains of the species (Madigan 
and Brock, 1977). Photoautotrophic growth on 
sulfide has also been described for Oscillochloris 
trichoides and appears to be present also in marine 

and hypersaline filamentous anoxygenic bacteria 
(Keppen et al., 1993; Hanada and Pierson, 2002). 
Sulfur appearing in the medium (often affixed to 
the cells) is the end product of sulfide oxidation. 
Chloroflexus aurantiacus is able to cover its need 
for sulfur for biosynthetic purposes by the assimi-
lation of sulfate or thiosulfate, as evidenced by the 
presence in the genome of a gene cluster encoding 
proteins involved in assimilatory sulfate reduc-
tion (e.g. ATP sulfurylase CaurDraft_0193, APS 
kinase CaurDraft_0191, PAPS reductase Cau-
rDraft_0192, sulfite reductase CaurDraft_0197).

D. Green Sulfur Bacteria

All green sulfur bacteria fall into a coherent taxo-
nomic group that forms a separate bacterial phy-
lum, the Chlorobi (Garrity and Holt, 2001). Besides 
bacteriochlorophyll a in the reaction center bacte-
riochlorophyll c, d, or e and various carotenoids 
of the chlorobactene and isorenrieratene series are 
used as photosynthetic pigments. Intracytoplasmic 
membranes are not formed, the light harvesting 
complexes reside on chlorosomes. All green sulfur 
bacteria have similar metabolic properties. They 
are strictly anaerobic and obligately phototrophic 
and can grow with CO

2
 as only carbon source. In 

contrast to the purple bacteria CO
2
 is fixed via the 

reductive tricarbonic acid cycle. Sulfide is used as 
electron donor by almost all of these species (the 
iron-oxidizing Chlorobium ferrooxidans is the only 
known exception) and oxidized to sulfate with 
intermediary accumulation of extracellular sulfur. 
The chemical speciation of the deposited sulfur is 
discussed in section VI.E. Many species are able to 
grow with elemental sulfur and some species also 
use thiosulfate (Frigaard and Bryant, 2008). Chlo-
robaculum parvum (formerly Chlorobium vibrio-
forme subsp. thiosulfatophilum (Imhoff, 2003)) 
NCIB 8346 and a strain described by Helge Larsen 
as Chlorobium thiosulfatophilum can use tetrathion-
ate as electron donor (Larsen, 1952; Khanna and 
Nicholas, 1982). Sulfite utilization has not yet been 
described for any green sulfur bacterium.

E. Purple Nonsulfur Bacteria

The purple “nonsulfur” bacteria are an extremely 
heterogeneous group of bacteria. Representatives 
are found within the Alpha- and the Betaproteobac-
teria (Imhoff et al., 2005). The species in this group 
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vary not only with respect to their cell  morphology, 
the structure of intracytoplasmic membrane sys-
tems, the carotenoid composition and the carbon 
sources used but also with respect to the electron 
donors that can be used for photosynthesis. All 
species prefer photoheterotrophic growth under 
anaerobic conditions. In addition, many species 
can grow photoautotrophically with hydrogen or 
sulfide as electron donor, many of which do not 
oxidize sulfide completely to sulfate but form sul-
fur as the end product instead. However, in many 
other species, among them the species of the genus 
Rhodovulum, Rhodopseudomonas palustris or 
Blastochloris sulfoviridis, sulfate is the end prod-
uct of sulfide oxidation (reviewed in Brune, 1995b; 
Imhoff et al., 2005). Thiosulfate is also used by 
many species, and oxidized either to tetrathionate 
(Rhodopila globiformis (Then and Trüper, 1981) ) 
or completely to sulfate (e.g. Rhodovulum species 
(Brune, 1995b; Appia-Ayme et al., 2001; Imhoff et 
al., 2005) ). Under microoxic to oxic conditions in 
the dark most representatives of the purple “non-
sulfur” bacteria can grow chemoorganotrophically, 
some are also capable of chemolithoautotrophic 
growth. In addition, some species are able to metab-
olize sugars in the dark in the absence of oxygen 
by using nitrate, dimethyl sulfoxide or trimethyl-
amine-N-oxide as electron acceptors.

F. Purple Sulfur Bacteria

The purple sulfur bacteria belong to the Gamma-
proteobacteria and fall in two families, the Chro-
matiaceae and the Ectothiorhodospiraceae. Both 
form coherent groups on the basis of their 16S 
rRNA sequences. During phototrophic growth in 
batch cultures with sulfide as electron donor, the 
oxidation of sulfide and sulfur follow each other. 
The most important and easily recognized distin-
guishing feature between the members of these 
two families is the site of sulfur deposition during 
growth on sulfide. In Chromatiaceae sulfur glob-
ules appear inside the cells while they are formed 
outside the cells in Ectothiorhodospiraceae. 
A notable exception among the Ectothiorhodo-
spiraceae is Thiorhodospira sibirica. This organ-
ism deposits sulfur not only outside of the cell 
in the medium but also attached to the cells or in 
the periplasm (Bryantseva et al., 1999). The sul-
fur-metabolizing capabilities of the purple sulfur 
bacteria are summarized in Table 1.

1. Chromatiaceae

Generally, two physiological groups can be 
differentiated within the Chromatiaceae: The 
large-celled species (eg. Chromatium okenii, 
Allochromatium warmingii and Isochromatium 
buderi) are strictly anaerobic, obligately pho-
totrophic and require sulfide or elemental sul-
fur as photosynthetic electron donors and as 
sources of sulfur for biosynthesis. The other 
group includes most of the small-celled species 
(eg. Alc. vinosum, Allochromatium minutissi-
mum) which are metabolically much more ver-
satile. In addition to sulfide and elemental sulfur 
these organisms use thiosulfate and some also 
use sulfite as electron donors (Imhoff, 2005a). 
Some organic sulfur compounds can also serve 
as electron donors for photosynthetic growth 
of Chromatiaceae: Thiocapsa roseopersicina 
splits mercaptomalate and mercaptopropion-
ate to fumarate and H

2
S and acrylate and H

2
S, 

respectively and then uses the liberated H
2
S 

as electron donor (Visscher and Taylor, 1993). 
This organism furthermore oxidizes dimethyl 
sulfide to dimethyl sulfoxide (Visscher and 
van Gemerden, 1991). Most of the small-celled 
representatives of the Chromatiaceae are able 
to assimilate sulfate for biosynthetic purposes, 
can grow photoorganoheterotrophically in the 
absence of reduced sulfur compounds and are 
able to grow as chemolithotrophs on reduced 
sulfur compounds. Some species can even grow 
as chemoorganotrophs in which case the addi-
tion of sulfide or thiosulfate as a sulfur source 
is required because the assimilation of sulfate 
is repressed under aerobic conditions (Kondra-
tieva et al., 1981). During fermentative dark 
metabolism of Chromatiaceae sulfur com-
pounds (elemental sulfur) can serve as acceptors 
of electrons liberated by the oxidation of stored 
carbon compounds (polyhydroxyalcanoic acid).

2. Ectothiorhodospiraceae

Almost all members of the Ectothiorhodo-
spiraceae are halophilic and alkaliphilic bacteria. 
The family comprises four phototrophic genera 
(Ectothiorhodospira, Halorhodospira, Thiorho-
dospira, Ectothiorhodosinus). Formally, the 
genus Ectothiorhodosinus (Gorlenko et al., 2004) 
has no standing in nomenclature.
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Table 1. Sulfur metabolizing capabilities of purple sulfur bacterial genera.

Genus Sulfur substrates Intermediates End product Sulfate assimilation
Chemoautotrophic 

growth

Chromatiaceae
Allochromatium Sulfide, sulfur, 

thiosulfate, sulfite, 
(latter two not in Alc. 
warmingii)

Sulfur, IC Sulfate + (not in Alc. 
warmingii)

Some species

Chromatium Sulfide, sulfur Sulfur, IC Sulfate − −

Halochromatium Sulfide, thiosulfate, 
sulfur, sulfite

Sulfur, IC Sulfate − + (sulfide, thiosul-
fate)

Isochromatium Sulfide, sulfur Sulfur, IC Sulfate − −

Lamprobacter Sulfide, thiosulfate, 
sulfur

Sulfur, IC S0 and sulfate − +

Lamprocystis Sulfide, thiosulfate, 
sulfur

Sulfur, IC Sulfate −/nd +/−

Marichromatium Sulfide, thiosulfate, 
sulfur, sulfite (only 
Mch. gracile)

Sulfur, IC Sulfate +/− +/−

Lamprobacter Sulfide, thiosulfate, 
sulfur

Sulfur, IC S0 and sulfate − +

Lamprocystis Sulfide, thiosulfate, 
sulfur

Sulfur, IC Sulfate −/nd +/−

Rhabdochromatium Sulfide, thiosulfate, 
sulfur

Sulfur, IC Sulfate nd −

Thermochromatium Sulfide, sulfur Sulfur, IC Sulfate nd −

Thioalkalicoccus Sulfide, sulfur Sulfur, IC Sulfate nd −

Thiobaca Sulfide Sulfur, IC Sulfate nd nd

Thiocapsa Sulfide, thiosulfate, 
sulfur, sulfite (only 
Tca. litoralis and 
Tca. pendens)

Sulfur, IC Sulfate +/− +/−

Thiococcus Sulfide, sulfur Sulfur, IC Sulfate − −

Thiocystis Sulfide, thiosulfate 
(not in Tcs. gelati-
nosa), sulfur, sulfite 
in some strains

Sulfur, IC Sulfate +in some strains +

Thiodictyon Sulfide, sulfur Sulfur, IC Sulfate nd −

Thioflaviococcus Sulfide, sulfur Sulfur, IC Sulfate nd −

Thiohalocapsa Sulfide, thiosulfate, 
sulfur, sulfite

Sulfur, IC Sulfate − +

Thiolamprovum Sulfide, thiosulfate, 
sulfur

Sulfur, IC Sulfate − +

Thiopedia Sulfide, sulfur Sulfur, IC Sulfate − −

Thiorhodococcus Sulfide, thiosulfate, 
sulfur

Sulfur, IC Sulfate − +/−

Thiorhodovibrio Sulfide, sulfur Sulfur, IC Sulfate nd +

Thiospirillum Sulfide, sulfur Sulfur, IC Sulfate nd −

Ectothiorhodo-
spiraceae
Ectothiorhodospira Sulfide, thiosulfate 

(not in Ect. maris-
mortui), sulfur, 
sulfite (nd for some 
species)

Polysulfide, sulfur, 
EC

Sulfate +in some species +in some species

Halorhodospira Sulfide, thiosulfate 
only in Hlr. 
halophila

Sulfur, EC Sulfur or sulfate +in Hlr. halochloris −

(continued)
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All species of the genus Ectothiorhdodospira 
grow well under anoxic conditions in the light 
with reduced sulfur compounds as photosynthetic 
electron donors and in the presence of organic 
carbon sources and inorganic carbonate. Under 
the alkaline growth conditions which are opti-
mal for Ectothiorhodospira species, polysulfides 
are stable intermediates during sulfide oxidation. 
As a result, polysulfides have been described as 
the first measurable oxidation products almost 
25 years ago (Then and Trüper, 1983; Then and 
Trüper, 1984). When grown on elemental sulfur 
Ect. halochloris does not oxidize this compound 
to sulfate, but reduces it to sulfide and polysulfide 
(Then and Trüper, 1984). Several species of the 
genus Ectothiorhodospira are also able to grow 
chemolithotrophically on sulfur compounds 
(Table 1). Members of the genus Halorhodospira 
oxidize sulfide to sulfur which is further oxidized 
to sulfate by some species. Thiosulfate is only 
used by Hlr. halophila (Raymond and Sistrom, 
1969) and poorly by Halorhodospira neutriphila 
(Hirschler-Rea et al., 2003). Sulfur can also be 
used by some species (Imhoff, 2005b).

III. Electron Transport in Purple Sulfur 
Bacteria

During photoautotrophic growth of purple sulfur 
bacteria reduced sulfur compounds yield elec-
trons for the reduction of CO

2
. The electrons 

from the sulfur compounds are transferred to CO
2
 

via the photosynthetic electron transport chain 
and NAD+. Photosynthetic electron transport and 
CO

2
 fixation are therefore intimately intertwined 

with the oxidation of reduced sulfur compounds 
and will be briefly presented.

Light-driven electron flow in purple sulfur 
bacteria is essentially cyclic and involves two 
membrane-embedded complexes, the reaction 
center and the cytochrome bc1 complex (Fig. 1). 
In most purple bacteria the reaction center is inti-
mately associated with a tetraheme cytochrome 
binding two heme c with a relatively low redox 
potential (10 mV) and two heme c with high 
redox potential (330 and 360 mV, respectively) 
(Nitschke et al., 1993). The reaction center uses 
light energy to transfer electrons from a mobile 
periplasmic or membrane-associated donor pro-
tein with a positive redox potential to quinone in 
the membrane. The reduction of the quinone 
occurs with incorporation of two protons from 
the cytoplasm close to the cytoplasmic mem-
brane surface. The cycle is complete when the 
electrons are transferred back to the mobile elec-
tron-carrying protein via the cytochrome bc

1
 

complex.
The periplasmic electron carrier protein is cyto-

chrome c
2
 in several of the well studied purple 

nonsulfur bacteria, e.g. Rhodobacter sphaeroides, 
Rhodobacter capsulatus, and Blastochloris viridis 
(see, for example Drepper and Mathis (1997)). 
Surveys of photosynthetic electron transfer among 
other proteobacterial species, however, showed 
that the participation of HiPIP (high potential 
iron–sulfur protein), a ferredoxin-like [4Fe–4S] 
protein with a redox potential of +350 mV, instead 
of soluble cytochrome c is the rule rather than the 
exception (Menin et al., 1998). The idea has been 
put forward, that HiPIP is the electron carrier of 
choice in the purple sulfur bacteria in the fami-
lies Chromatiaceae and Ectothiorhodospiraceae, 
but that the majority of purple nonsulfur bacteria 
are likely to utilize cytochrome c

2
 (van Driessche 

et al., 2003). Other soluble cytochromes, such 

Thiorhodospira Sulfide, sulfur Sulfur, EC & IC Sulfate nd −

Ectothiorhodosi-
nus*

Sulfide, thiosulfate Sulfur, EC Sulfate nd nd

The tabulated data were mostly taken from Imhoff (2005a; 2005b). Additional information was taken from Rees et al. (2002); Zaar et al. (2003); 

Gorlenko et al. (2004); Arunasri et al. (2005).

IC, intracellular; EC, extracellular; nd, not determined.

* The genus Ectothiorhodosinus has no standing in nomenclature.

Table 1. (continued)

Genus Sulfur substrates Intermediates End product Sulfate assimilation
Chemoautotrophic 

growth
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as cytochrome c
8
 or the membrane-associated 

 cytochrome c
y
 can also mediate electron flow 

from the reaction center to the cytochrome bc1 
complex in some species (Jenney et al., 1994; 
Samyn et al., 1996; Kerfeld et al., 1996). In Allo-
chromatium vinosum, our model organism for the 
investigation sulfur oxidation pathways, both, 
HiPIP and cytochrome c

8
 can serve as reductants 

of the high potential reaction center heme. In this 
purple sulfur bacterium the growth conditions 
influence the identity of the electron donor that 
is preferentially used. Cells grown autotrophically 
in the presence of sulfide and thiosulfate appear to 
use almost exclusively HiPIP while cytochrome 
c

8
 is used in cells grown with organic compounds 

(Vermeglio et al., 2002).
The oxidation of quinol at the bc

1
 complex 

results in the release of two protons into the peri-
plasm. The resulting proton gradient drives ATP 
synthesis and the reduction of NAD+ to NADH 
with quinol as the reductant. NADH and CO

2
 

are required for the reduction of CO
2
 to carbo-

hydrates via the Calvin cycle. Electrons drained 
from photosynthetic electron flow for the reduc-
tion of CO

2
, are replaced by electrons released 

from oxidizable substrates. Taking into consider-
ation the redox potential of the sulfur compounds 

used as photosynthetic electron donors by purple 
sulfur  bacteria, the respective electrons could 
in principle be transferred to periplasmic c-type 
cytochromes or directly into the quinone pool. 
Periplasmic  cytochromes, such as flavocyto-
chrome c and cytochrome c

551
 (SoxA), may feed 

electrons from sulfide or thiosulfate (see below) 
into the photosynthetic pathways via the same 
soluble carriers as are part of the cyclic system. 
Sulfide:quinone oxidoreductase would directly 
reduce quinone with electrons from sulfide. Elec-
trons resulting from cytoplasmic oxidation of 
sulfite via APS reductase may also be directly 
transferred to quinone. It should be noted that 
the dissimilatory APS reductase is an iron–sul-
fur flavoprotein that bares no resemblance to the 
APS/PAPS reductases of the assimilatory sulfate 
reduction pathway.

IV. Biochemistry of Sulfur Oxidation 
Pathways in Purple Sulfur Bacteria

The last comprehensive reviews about the bio-
chemistry of sulfur oxidation pathways in pur-
ple sulfur bacteria were published by Daniel C 
Brune (Brune, 1989; Brune, 1995b). In these 

Fig. 1. Schematic representation of photosynthetic electron flow in the purple sulfur bacterium Allochromatium vinosum. Oxida-
tion of sulfur compounds as the electron source for NAD+ reduction is shown for sulfide in a simplified fashion. It should be noted 
that only part of the several steps involved in sulfur compound oxidation take indeed place in the cytoplasm (see Section IV).
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excellent articles a wealth of information on sul-
fur  oxidation patterns by whole cells of anox-
ygenic phototrophic bacteria was presented. 
In addition, the available data on enzymes 
potentially involved in sulfur transformations 
in these organisms was summarized. At that 
time, it was very difficult to unify the available 
information into a valid scheme, mostly due to 
the facts that a whole array of different organ-
isms had been investigated and that molecular 
genetic  information was essentially not present. 
In order to obtain a better picture of sulfur oxi-
dation in purple sulfur bacteria we concentrated 
on one model bacterium, Allochromatium vino-
sum DSMZ 180T and developed reverse genet-
ics for this organism (Pattaragulwanit and Dahl, 
1995). The following discussion on the oxida-
tion of different reduced sulfur compounds, the 
properties of sulfur globules and their degrada-
tion therefore focuses on this organism. Results 
obtained with other purple sulfur bacteria are 
discussed but a complete survey of all available 
information is not attempted. Further relevant 
information is available through the genome 
sequence of Halorhodospira halophila SL1 
(NZ_AAOQO1000001.1), a member of the 
Ectothiorhodospiraceae. In this organism many 
genes encoding proteins potentially involved in 
sulfur oxidation are clustered (genes Hhal1932 
through Hhal1967). In Fig. 2 a comparison 
between the arrangement of these genes and 
those currently known for Alc. vinosum is pre-
sented. The genome sequence of Alc. vinosum 
has not yet been determined.

A. Oxidation of Thiosulfate

Thiosulfate (S
2
O

3

2−) is a rather stable and environ-
mentally abundant sulfur compound of interme-
diate oxidation state. It fulfils an important role 
in the natural sulfur cycle and is used by many 
phototrophic and chemotrophic sulfur oxidiz-
ers (Jørgensen, 1990; Sorokin et al., 1999). Two 
completely different pathways of thiosulfate oxi-
dation appear to exist in purple sulfur bacteria. In 
one form tetrathionate is produced by oxidation 
of two thiosulfate anions via thiosulfate dehydro-
genase (thiosulfate:acceptor oxidoreductase, EC 
1.8.2.2). In the second form thiosulfate is com-
pletely oxidized to sulfate via several different 
mechanisms.

1. Thiosulfate Dehydrogenase

The formation of tetrathionate from thiosulfate 
has been mainly studied in chemoorganotrophic 
bacteria that use thiosulfate as a supplemental but 
not as the sole energy source (Jørgensen, 1990; 
Sorokin et al., 1999; Podgorsek and Imhoff, 
1999). The pathway occurs only in a few purple 
sulfur bacteria including Alc. vinosum (Smith and 
Lascelles, 1966; Hensen et al., 2006).

In Alc. vinosum the ratio between tetrathionate 
and sulfate formed from thiosulfate is strongly 
pH-dependent with more tetrathionate as the 
product under slightly acidic conditions (Smith, 
1966). In Alc. vinosum thiosulfate dehydrogenase 
is a periplasmic 30-kDa monomer with an iso-
electric point of 4.2. The enzyme contains heme 
c and is reduced by thiosulfate at pH 5.0 but not 
at pH 7.0. In accordance, the pH optimum of the 
enzyme was determined to be 4.25 (Hensen et 
al., 2006). An examination of the kinetic prop-
erties of Alc. vinosum thiosulfate dehydrogenase 
with ferricyanide as artificial electron acceptor 
was initiated but interpretation of experimental 
results is complicated by the fact that enzymes 
that use two molecules of the same substrate 
do not follow regular Michaelis–Menten kinet-
ics. However, some important constants could be 
estimated: the limiting V

max
 is about 34,000 units 

(mg protein)−1 (corresponding to a k
cat

 of 1.7 × 
104 s−1) and the [S]

0.5
 for ferricyanide is about 0.5. 

[S]
0.5

 is the substrate concentration that yields 
half maximal velocity. It is important to note that 
it is not identical to K

m
 as a K

m
 cannot be given 

for reactions not following Michaelis–Menten 
kinetics (Segel, 1993). While thiosulfate did not 
display strong substrate inhibition at any of the 
experimental ferricyanide levels, ferricyanide 
did show substrate inhibition on Alc. vinosum 
thiosulfate dehydrogenase (Hensen et al., 2006). 
Furthermore, the enzyme was significantly inhib-
ited by sulfite (50% inhibition at 80 µM sulfite). 
Under optimized assay conditions cytochrome c 
from yeast is used as electron acceptor instead 
of ferricyanide by the enzyme, whereas horse 
heart cytochrome c is not accepted. The proper-
ties of Alc. vinosum thiosulfate dehydrogenase 
described by Hensen et al. (2006) are compatible 
with older data presented by Smith (1966) and 
Fukumori and Yamanka (1979). In both reports a 
tetrathionate-forming activity with a pH optimum 
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in the acidic range was described. Fukumori and 
Yamanaka (1979) found that Alc. vinosum thiosul-
fate dehydrogenase used HiPIP isolated from the 
same organism as an efficient electron acceptor. 
This is in complete agreement with the fact that 
both, thiosulfate dehydrogenase and HiPIP are 
located in the periplasm of Alc. vinosum (Brüser 
et al., 1997) where HiPIP is photooxidized by the 
reaction center (van Driessche et al., 2003).

With our current analysis we cannot confirm 
the presence of any tetrathionate-forming enzyme 
operating at pH 8.0 in Alc. vinosum as has been 
claimed earlier (Schmitt et al., 1981; Knobloch 
et al., 1981). Of the tetrathionate-forming enzymes 
characterized so far, thiosulfate dehydrogenase 
from Acidithiobacillus thiooxidans (Nakamura 
et al., 2001) most closely resembles the enzyme 
from Alc. vinosum. Both species belong to the Gam-
maproteobacteria. The protein from Acidithio-
bacillus has been described as a monomeric 
27.9-kDa c-type cytochrome with a pH optimum 
at 3.5. Thiosulfate dehydrogenases from other 
sources show remarkable heterogeneity with 
respect to structural properties and catalytic char-
acteristics (Kusai and Yamanaka, 1973; Then and 
Trüper, 1981; Visser et al., 1996) which has been 
interpreted as indicating convergent rather than 
divergent evolution (Visser et al., 1996). A gene 
sequence encoding a heme-containing thiosulfate 
dehydrogenase has not yet been reported. A Blast 
search with the amino-terminal sequence of the 
enzyme from Alc. vinosum yielded only one sig-
nificantly related sequence, a hypothetical c-type 
cytochrome from Cupriavidus (Ralstonia, Wautersia) 
metallidurans (Hensen et al., 2006).

2. Oxidation of Thiosulfate to Sulfate

Many purple sulfur bacteria can oxidize thio-
sulfate completely to sulfate (Table 1). In batch 
cultures of purple sulfur bacteria growing on 
thiosulfate the formation of sulfur globules 
is sometimes – but not always – observed. It is 
therefore very important to note, that the forma-
tion of sulfur globules is known to be an obliga-
tory step during the oxidation of thiosulfate to 
sulfate in Alc. vinosum and probably also in 
other purple sulfur bacteria. Two independent 
lines of evidence prove that sulfur formation is 
an essential step: (1) An Alc. vinosum mutant 
unable to form sulfur globules due to the lack of 

sulfur globule proteins cannot grow on thiosul-
fate (Prange et al., 2004) and (2) Alc. vinosum 
mutants blocked in sulfur oxidation form intrac-
ellular sulfur globules from thiosulfate as a dead 
end product (Pott and Dahl, 1998). In addition, 
studies with radioactively labelled thiosulfate 
demonstrated very clearly that the more reduced 
sulfane and the more oxidized sulfone sulfur 
atoms are processed differently in purple sul-
fur bacteria (Smith and Lascelles, 1966; Trüper 
and Pfennig, 1966). Only the sulfane sulfur 
accumulates as stored sulfur [S0] before further 
oxidation, whereas the sulfone sulfur is rapidly 
converted into sulfate and excreted. The forma-
tion of sulfur as an intermediate in purple sulfur 
bacteria is different from the thiosulfate-oxidiz-
ing pathway (Sox pathway) that occurs in a wide 
range of facultatively chemo- or photolitho-
trophic bacteria like Paracoccus pantotrophus 
or Rhodovulum sulfidophilum (Appia-Ayme et 
al., 2001; Friedrich et al., 2001). In the latter, 
both sulfur atoms of thiosulfate are oxidized to 
sulfate without the appearance of sulfur deposits 
as intermediates.

In spite of this fundamental difference similar 
proteins appear to be essential for thiosulfate oxi-
dation to sulfate in organisms forming sulfur as 
an intermediate and those not producing sulfur. 
Gene inactivation and complementation studies 
clearly showed that the soxBXA and soxYZ genes, 
located in two independent gene regions (Fig. 2), 
are essential for thiosulfate oxidation in Alc. 
vinosum (Hensen et al., 2006). Three periplasmic 
Sox proteins were purified from Alc. vinosum: the 
heterodimeric c-type cytochrome SoxXA (SoxX 
11 kDa, SoxA 29 kDa; one covalently bound heme 
is present in each subunit), the heterodimeric 
SoxYZ (SoxY 12.7 kDa, SoxZ 11.2 kDa) and the 
monomeric SoxB (62 kDa, predicted to bind two 
manganese atoms) (Hensen et al., 2006).

In Alc. vinosum the genes soxB and soxXA are 
transcribed divergently. Upstream of soxB a gene 
encoding a potential regulator protein is located 
and immediately downstream of soxA two further 
interesting genes are found: The first (ORF9) 
encodes a hypothetical 12.2-kDa (9.2 kDa after 
processing) protein with a signal peptide. A 
homologous gene (orf1020 or soxK) is present 
in all currently known sox gene clusters of thio-
sulfate-oxidizing green sulfur bacteria (Frigaard 
and Bryant, 2008), however, a homolog is not 
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present in the Hlr. halophila sulfur gene cluster 
(Fig. 2). The second (rhd) encodes a putative 
periplasmic protein (22.2 kDa after processing) 
containing a conserved domain typical for rhoda-
neses. A homologous gene is neither found close 
to sox genes of green sulfur bacteria nor in Hlr. 
halophila. In vitro, rhodaneses (thiosulfate:sulfur 
transferases) can catalyze the transfer of the sul-
fane sulfur atom of thiosulfate to cyanide yield-
ing thiocyanate (rhodanide, SCN−) and sulfite. 
This is, however, not the physiological role in 
most cases. In the past, the detection of rhodanese 
and thiosulfate reductase activity in phototrophic 
sulfur bacteria led to the assumption that thio-
sulfate would be cleaved into sulfite and sulfide 
in the presence of suitable reduced thiol accep-
tors like glutathione and dihydrolipoic acid, and 
that the H

2
S formed during the proposed reaction 

would be immediately oxidized to sulfur stored 
in sulfur globules (Brune, 1989; Brune, 1995b; 
Dahl, 1999). However, gene inactivation showed 
that the Alc. vinosum rhd product does not play 
such a vital role and is dispensable for thiosul-
fate oxidation (Hensen et al., 2006). The physi-
ological role of the rhd-encoded protein remains 
to be elucidated. The deduced properties of other 
genes encoded in immediate vicinity of the Alc. 
vinosum sox genes were described in detail by 
Hensen et al. (2006). A function in oxidative sul-
fur metabolism of these hypothetical proteins is 
not obvious.

In Hlr. halophila putative sox genes are clus-
tered but not organized in a single operon (Fig. 2). 
The gene soxH which is apparently not present 
close to the sequenced sox genes in Alc. vino-
sum is not required for lithotrophic growth on 
thiosulfate in Pcs. pantotrophus (Rother et al., 
2001). In Hlr. halophila soxBHYZ appear to be 
co-transcribed. They are separated from a gene 
encoding a fusion of SoxXA by a divergently 
oriented cluster of four genes, among them fccAB 
possibly encoding a flavocytochrome c (sulfide 
dehydrogenase). The derived FccB polypeptide 
also shows similarity to SoxF, an important though 
not essential component of the Pcs. pantotrophus 
Sox system (Bardischewsky et al., 2006). How-
ever, the similarity is significantly lower than that 
to the flavoprotein subunit FccB of Alc. vinosum 
flavocytochrome c (Dolata et al., 1993; Reinartz 
et al., 1998). The gene immediately upstream of 
fccB in Hlr. halophila is clearly related to fccA 

encoding the cytochrome c subunit of Alc. vino-
sum flavocytochrome c while similarity to soxE 
from Pcs. pantotrophus is below detection limits 
in searches using the BLAST algorithm (Altschul 
et al., 1990).

Occurrence and arrangement of sox genes 
in both purple sulfur bacteria is different from 
that in Pcs. pantotrophus in which the sox gene 
cluster comprises 15 genes organized into three 
transcriptional units, soxRS, soxVW and sox
XYZABCDEFGH. In this organism the periplas-
mic proteins SoxXA, SoxYZ, SoxB and Sox(CD)

2
 

are essential for thiosulfate oxidation in vivo and 
in vitro. Currently, a model has been proposed that 
SoxXA initiates oxidation and covalent attach-
ment of thiosulfate to a conserved cysteine (resi-
due 138) in SoxY of the SoxYZ complex. SoxB 
would then hydrolytically release sulfate leaving 
a cysteine-138-persulfide in SoxYZ, which is 
proposed to be oxidized by the hemomolybdoen-
zyme Sox(CD)

2
 yielding a cysteine-S-sulfonate. 

In the final step SoxB would again release sulfate 
and thereby recycle SoxYZ. In green sulfur bac-
teria, a orf1015(soxJ)-soxXYZA-orf1020(soxK)-
soxBW genomic arrangement is generally found 
(Frigaard and Bryant, 2008). We were not able 
to detect the genes soxCD in Alc. vinosum and 
they are also not present in the genome of Hlr. 
halophila. Furthermore, these genes are absent in 
the magnetotactic Magnetococcus sp. MC1 and 
Thiobacillus denitrificans. Alc. vinosum and the 
latter two organisms have in common that they 
form sulfur as intermediate during thiosulfate 
oxidation, either as globules or as finely dispersed 
membrane-associated sulfur (Schedel and Trüper, 
1980; Williams et al., 2006). The genomes of 
thiosulfate-oxidizing green sulfur bacteria (Frigaard 
and Bryant, 2008) also do not contain soxCD. 
Sulfur formation during thiosulfate oxidation has 
been described for one of these species, Chlo-
robaculum parvum DSM 263 (Steinmetz and 
Fischer, 1982). Sulfur may be an intermediate 
also in the other green sulfur bacteria, though 
may not be detectable due to a high turnover rate. 
Polysulfides have also been suggested as inter-
mediates occurring in the periplasm of green sul-
fur bacteria during thiosulfate oxidation (Frigaard 
and Bryant, 2008). Summarizing the observation 
that the lack of soxCD appears to correlate with 
the formation of sulfur or possibly polysulfides 
as metabolic intermediates we suggested the 



Chapter 15 Sulfur Metabolism in Purple Sulfur Bacteria 301

following model (Fig. 3) (Hensen et al., 2006): 
The initial oxidation and covalent binding of 
thiosulfate to SoxYZ would be brought about 
by SoxXA and sulfate would then be hydrolytically 
released by SoxB just as proposed for Pcs. pan-
totrophus (Friedrich et al., 2001). However, in 
organisms like Alc. vinosum that lack “sulfur 
dehydrogenase” the sulfane sulfur atom linked 
to SoxY cannot be directly further oxidized. We 
suggest that the sulfur is instead transferred to 
growing sulfur globules (or polysulfide). Such a 
suggestion is feasible because the sulfur globules 
in Alc. vinosum and in many if not all other organ-

isms forming intracellular sulfur deposits reside 
in the bacterial periplasm (Pattaragulwanit et al., 
1998; Dahl and Prange, 2006) (see also below) 
and therefore in the same cellular compartment 
as the Sox proteins (Hensen et al., 2006). Such a 
mechanism would require the transfer of SoxY-
bound sulfur to the sulfur globules, a process 
that is currently unclear. The sulfur transferase 
encoded by the rhd gene has the capacity to play 
such a role however its inactivation did not lead 
to a detectable phenotype. Possibly, other sulfur 
transferases present in the cells function as a back 
up system.

Fig. 3. Model of the sulfur oxidation pathway in Allochromatium vinosum. Direct oxidation of sulfite to sulfate is hypothesized 
to occur periplasmically by a classical sulfite dehydrogenase. However, as elaborated in the text, the possibility of direct cyto-
plasmic oxidation of sulfite cannot be excluded. APS, adenosine 5′-phosphosulfate.
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B. Oxidation of Sulfide to “Elemental” 
Sulfur

In purple sulfur bacteria, the main enzymes that 
have been discussed as catalyzing the oxidation 
of sulfide are the periplasmic FAD-containing 
flavocytochrome c and the membrane-bound 
sulfide: quinone oxidoreductase (SQR) (Brune, 
1995b; Reinartz et al., 1998) (Fig. 3).

The distribution of flavocytochrome c among 
the anoxygenic phototrophic bacteria and its 
chemical and catalytic properties have been dis-
cussed in detail elsewhere (Brune, 1989; Brune, 
1995b; Frigaard and Bryant, 2008). The protein 
is located in the periplasm, consists of a FAD-
binding (FccB, 46–47 kDa) and a smaller heme 
c-binding subunit (FccA, 21 kDa, two heme c in 
Alc. vinosum (van Beeumen et al., 1991) ). The 
genome of Hlr. halophila contains three copies 
of potential fccAB genes (Hhal1945 and 1946, 
Hhal1162 and 1163, Hhal1330 and 1331). In 
vitro, flavocytochromes can efficiently catalyze 
electron transfer from sulfide to a variety of small 
c-type cytochromes (e.g. cytochrome c

550
 from 

Alc. vinosum (Davidson et al., 1985) ) that may 
then donate electrons to the photosynthetic reaction 
center. However, the in vivo role of flavocyto-
chrome c is unclear. It occurs in many purple 
and green sulfur bacteria but there are also many 
species that lack this protein. Moreover, an Alc. 
vinosum mutant deficient in flavocytochrome c 
exhibits sulfide oxidation rates similar to those of 
the wild type (Reinartz et al., 1998).

As an alternative to sulfide oxidation via fla-
vocytochrome c, the transfer of electrons from 
sulfide primarily into the quinone pool was pro-
posed, based on energetic considerations as well 
as on the inhibitory effect of rotenone, CCCP, and 
antimycin A on NAD photoreduction by sulfide 
(Brune and Trüper, 1986; Brune, 1989). Sulfide: 
quinone oxidoreductase (SQR) activity has in the 
meantime been described for many phototrophic 
organisms including the cyanobacterium Oscil-
latoria limnetica (Arieli et al., 1994), the purple 
nonsulfur bacterium Rhodobacter capsulatus 
(Schütz et al., 1997), green sulfur bacteria (Shahak 
et al., 1992) and also Alc. vinosum (Reinartz 
et al., 1998). The properties of this enzyme from 
diverse sources are described in detail in the 
chapter by Hauska and Shahak. Although Alc. 
vinosum membranes exhibit SQR activity, my 

laboratory has so far neither been able to detect 
a sqr-related gene via Southern hybridization 
with heterologous probes or heterologous PCR 
nor could we detect the protein with antibod-
ies directed against the Rba. capsulatus pro-
tein (M. Reinartz and C. Dahl, unpublished). 
We therefore hypothesize that the enzyme from 
Alc. vinosum and possibly other purple sulfur 
bacteria has properties distinct from those of 
characterized SQRs. In accordance, the Hlr. 
halophila genome contains one only distantly 
related homolog (Hhal1665) of the biochemi-
cally well characterized SQR from Rhodobacter 
capsulatus (Schütz et al., 1999; Griesbeck 
et al., 2002).

In Rba. capsulatus, SQR is a peripherally 
membrane-bound flavoprotein with its active 
site located in the periplasm (Schütz et al., 
1999). The primary product of the SQR reaction 
is soluble polysulfide whereas elemental sulfur 
does not appear to be formed in vitro (Griesbeck 
et al., 2002). Very probably, disulfide (or pos-
sibly a longer chain polysulfide) is the initial 
product of sulfide oxidation, which is released 
from the enzyme. Polysulfide anions of different 
chain lengths are in equilibrium with each other 
and longer-chain polysulfides can be formed 
by disproportionation reactions from the initial 
disulfide (Steudel, 1996). When whole cells of 
Rba. capsulatus grow with sulfide, elemental 
sulfur is formed as the final product. In principle, 
elemental sulfur can form spontaneously from 
polysulfides (Steudel, 1996).) In experiments 
using isolated spheroplasts from Chlorobium 
vibrioforme and Allochromatium minutissimum, 
soluble polysulfides have been detected as the 
product of sulfide oxidation (Blöthe and Fischer, 
2000). Polysulfides were also detected as pri-
mary products of sulfide oxidation by whole cells 
of Alc. vinosum (Prange et al., 2004) and have 
been reported as intermediates of the oxida-
tion of sulfide to extracellular sulfur by species 
of the purple sulfur bacterial family Ectothio
rhodospiraceae (Trüper, 1978; Then and Trüper, 
1983). While transient formation of polysulfide 
by the latter organism species has originally been 
attributed to chemical reaction between H

2
S and 

elemental sulfur promoted by the alkaline cul-
ture medium (Trüper, 1978), it now appears more 
likely that they present biochemically generated 
intermediates.
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It remains difficult to assign any function to 
flavocytochrome c, a protein that is constitutive 
in Alc. vinosum (Bartsch, 1978). Based on the 
large difference of redox potential between fla-
vocytochrome c and the photosynthetic reaction 
center, Brune (1995b) suggested that flavocyto-
chrome c may represent a high affinity system 
for sulfide oxidation that might be of advantage 
for the cells especially at very low sulfide con-
centrations. At present such a function cannot be 
excluded and flavocytochrome c could indeed 
supplement the energetically more efficient sys-
tem involving electron transfer from sulfide to 
quinone via SQR.

In Alc.vinosum, sulfite reductase operating in 
reverse, i.e. in the direction of sulfite formation, 
has also been discussed to be involved in sulfide 
oxidation (Schedel et al., 1979). However, we 
have shown that this protein is not essential for 
sulfide oxidation but rather absolutely required 
for oxidation of intracellularly stored sulfur (Pott 
and Dahl, 1998). In the purple nonsulfur bacte-
rium Rhodovulum sulfidophilum the Sox enzyme 
system that catalyzes the oxidation of thiosulfate 
to sulfate (see above), is also indispensable for 
the oxidation of sulfide in vivo (Appia-Ayme 
et al., 2001). However, in Alc. vinosum mutants 
deficient of either flavocytochrome c (Reinartz 
et al., 1998), sox genes or both (D. Hensen, 
B. Franz and C. Dahl, unpublished) sulfide oxida-
tion proceeds with wild-type rates indicating that 
that SQR plays the main role in sulfide oxidation 
in this organism.

It should be noted that cytochromes without 
flavin groups have also been proposed to medi-
ate electron transfer from sulfide to the reaction 
center in some purple sulfur bacteria (Fischer, 
1984; Brune, 1989; Leguijt, 1993).

C. Oxidation of Polysulfides

As outlined above, polysulfides appear to be the 
primary product of the oxidation of sulfide in pur-
ple sulfur bacteria. It is therefore not astonishing 
that those members of the Chromatiaceae that 
have been studied with respect to the utilization 
of externally added polysulfides with an average 
chain length of 3–4 sulfur atoms (Alc. vinosum 
and Tca. roseopersicina) readily used these com-
pounds as photosynthetic electron donors (van 
Gemerden, 1987; Steudel et al., 1990; Visscher et al., 

1990). It is currently unknown how polysulfides 
are converted into sulfur globules. Theoretically 
this could be a purely chemical, spontaneous proc-
ess as longer polysulfides are in equilibrium with 
elemental sulfur (Steudel et al., 1990). However, 
we have shown that Alc. vinosum sulfur globules 
do not contain major amounts of sulfur rings but 
probably consist of long-chains of sulfur with 
organic residues at one or both ends (Prange 
et al., 1999; Prange et al., 2002a). Such organylsul-
fanes must eventually be formed by an unknown 
(enzymatic) mechanism.

D. Uptake of External Sulfur

Very many purple sulfur bacteria including Alc. 
vinosum are able to oxidize externally supplied 
solid, virtually insoluble elemental sulfur (Table 1). 
This step – although very important in the global 
sulfur cycle – is hardly understood.

The formal valence of elemental sulfur is zero. 
Elemental sulfur tends to catenate and to form 
chains with various lengths (polymeric sulfur) or 
ring sizes (Steudel and Eckert, 2003). All sulfur 
and allotropes are hydrophobic, not wetted by 
water and hardly dissolvable in water (Steudel, 
1989). The most stable form of elemental sulfur 
at ambient pressure and temperature is cyclic, 
orthorhombic α-sulfur (α-S

8
) (Steudel, 2000). 

Polymeric sulfur consists mainly of chain-like 
macromolecules but the presence of large Sn rings 
with n>50 is likely (Steudel and Eckert, 2003). 
Commercially available elemental sulfur sublimed 
at ambient temperature (“flowers of sulfur”) con-
sists of S

8
 rings, traces of S

7
 rings which are respon-

sible for the yellow colour and varying amounts 
of polymeric sulfur. The bonding energy between 
S–S bonds in polymeric sulfur is 2.4 kJ mol−1 
weaker than in cyclo-octasulfur (Steudel and Eckert, 
2003) and it might therefore be more accessible for 
sulfur-oxidizing bacteria (Franz et al., 2006).

Enzymes catalyzing the uptake and oxidation 
of externally added elemental sulfur have not yet 
been isolated from any species of phototrophic 
sulfur bacteria. The process must include binding 
and/or activation of the sulfur as well as trans-
port inside of the cells. In principle, two differ-
ent strategies would be possible: physical contact 
of the cells to their insoluble substrate and direct 
electron transfer from the cell envelope to the 
substrate via outer membrane proteins (Myers 
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and Myers, 2001) or excretion of reducing sub-
stances, e.g. low molecular weight thiols that 
can act on substrate distant from the cells. Both 
possibilities are discussed in detail in the chap-
ter by Hanson. Generally, little information is 
available about adhesion to and attack of extra-
cellular sulfur. Leaching sulfur-oxidizing bac-
teria like Acidithiobacillus ferrooxidans appear 
to follow the first pathway and attach to sulfur 
by extracellular polymeric substances, specifi-
cally, lipopolysaccharides (Gehrke et al., 1998). 
Structures, attached to the cell wall (the so-called 
“spinae”) have been postulated to mediate adhe-
sion of a green sulfur bacterium to extracellularly 
deposited sulfur (Pibernat and Abella, 1996). In 
all cases so far, a reaction activating elemental 
sulfur prior to its oxidation is postulated, due to 
the stability and low water solubility of the sub-
strate. In case of cyclo-octasulfur this activation 
reaction could be an opening of the S

8
 ring by 

nucleophilic reagents, resulting in the forma-
tion of linear inorganic or organic polysulfanes. 
In addition, the reduction of elemental sulfur to 
water-soluble sulfide is discussed. Both reactions 
could be carried out by thiol groups of cysteine 
residues. Along this line, it was proposed for 
Acidithibacillus and Acidiphilium that extracellu-
lar elemental sulfur is mobilized by thiol groups 
of special outer membrane proteins and trans-
ported into the periplasmic space as persulfide 
sulfur (Rohwerder and Sand, 2003). Experimetal 
evidence for the existence of an outer membrane 
protein involved in cell-sulfur adhesion in this 
organism was obtained by Ramírez et al. (2004). 
In this respect it might be interesting to note that a 
gene encoding a potential outer membrane porin 
is found in the sulfur gene cluster of Hlr. halo-
phila where it is situated immediately upstream 
of genes encoding a potential flavocytochrome c 
(Fig. 2). For Alc. vinosum we recently obtained 
first experimental evidence that an intimate phys-
ical cell-sulfur contact is indeed a prerequisite for 
uptake of elemental sulfur (Franz et al., 2006).

In our model organism Alc. vinosum the first 
step during oxidation of externally supplied sul-
fur is the accumulation of sulfur in intracellular 
sulfur globules which are then further oxidized to 
sulfate. XANES measurements provided evidence 
that Alc. vinosum uses only or at least strongly pre-
fers the polymeric sulfur (sulfur chains) fraction 
of commercially available elemental sulfur and is 

probably unable to take up and form sulfur glob-
ules from cyclo-octasulfur (Franz et al., 2006). 
We did not find evidence for the formation of 
intermediates like sulfide or polysulfides during 
uptake of elemental sulfur. One might speculate 
that “sulfur chains” rather than the more stable 
“sulfur rings” are the microbiologically preferred 
form of elemental sulfur also for other sulfur-oxi-
dizing bacteria.

E. Sulfur Globules and Their Properties

In anoxygenic phototrophic sulfur bacteria, sulfur 
appears to be generally deposited outside of the 
cytoplasm. Green sulfur bacteria and purple sulfur 
bacteria of the family Ectothiorhodospiraceae 
form extracellular sulfur globules while the globules 
are located in the periplasmic space in members 
of the family Chromatiaceae (Pattaragulwanit 
et al., 1998).

Despite the different site of deposition (out-
side or inside the confines of the cell) the sulfur 
appears to be of a similar speciation in the dif-
ferent groups of phototrophic sulfur bacteria: The 
exact chemical nature of the “elemental sulfur” 
in bacterial sulfur globules has been a matter of 
debate for many years (for a detailed historical 
account consult Dahl and Prange (2006). In most 
investigations, methods were used that required 
extraction of the sulfur globules from the cells 
prior to analysis (e.g. X-ray diffraction, (Hageage 
et al., 1970) ) which causes changes in the chemi-
cal structure of the sulfur (Prange et al., 2002a). 
Only recently, X-ray absorption near-edge 
structure (XANES) spectroscopy at the sulfur K-
edge using synchrotron radiation was introduced 
as an in situ approach to investigate the sulfur 
speciation in intact bacterial cells (Prange et al., 
1999; Pickering et al., 2001; Prange et al., 2002a). 
A detailed description of these methods is given 
in the chapter by Prange et al. XANES spec-
troscopy yielded the following results for pho-
totrophic sulfur bacteria: irrespective of whether 
the sulfur is accumulated in globules inside or 
outside the cells, it mainly consists of long sulfur 
chains very probably terminated by organic resi-
dues (mono-/bis-organyl polysulfanes) in purple 
and also in green sulfur bacteria. Most probably, 
the organic residue at the end of the sulfur chains 
present in the sulfur globules is glutathione or very 
similar to glutathione (Prange et al., 2002a). This 
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hydrophilic residue could be responsible for 
maintaining the sulfur in a “liquid” state at ambi-
ent pressure and temperature. Earlier speculations 
and proposals that reduced glutathione (probably 
in its amidated form) could act as a carrier mol-
ecule of sulfur to and from the globules (Bartsch 
et al., 1996; Pott and Dahl, 1998) are supported 
by the XANES spectroscopy results (Prange et al., 
2002a). Furthermore, XANES spectroscopy 
yielded evidence that the sulfur chains in glob-
ules of Alc.vinosum are gradually shortened dur-
ing oxidation of intracellularly stored sulfur to 
sulfate (Prange et al., 2002b). It should be men-
tioned that some controversy has arisen about the 
interpretation of data acquired by XANES spec-
troscopy: Investigations of phototrophic sulfur 
bacteria by two different groups (Pickering et al., 
2001; Prange et al., 2002a) yielded partly com-
parable experimental data but were interpreted in 
quite a different way. Pickering et al. (2001) con-
cluded on the basis of theoretical considerations 
that the sulfur is “simply solid S

8
”.The discrepan-

cies are mainly based on the measurement mode 
(George et al., 2002; Prange et al., 2002c). The 
model for the sulfur globules of Alc.vinosum that 
corresponds best with the available experimental 
data consists of long sulfur chains terminated by 
organic groups as was suggested by Prange et al. 
(Kleinjan et al., 2003). Sulfur of sulfur globules 
isolated in the presence of oxygen from anaerobi-
cally grown Alc.vinosum was found as S

8
 rings 

(Prange et al., 2002a), indicating the influence of 
oxygen and the necessity of in situ methods like 
XANES spectroscopy that can be applied to avoid 
destruction of the original sulfur environment.

While sulfur globules appear to be more or 
less evenly distributed in many species of the 
Chromatiaceae, they can have very special and 
conspicuous localizations in other species. In 
Allochromatium warmigii for example, glob-
ules are predominantly located at the two poles 
of the cell. Dividing cells form additional sulfur 
globules near the central division plane. In Lam-
probacter modestohalophilus the sulfur globules 
appear in the center of cells, while they are found 
in the peripheral part of the cells that is free of gas 
vesicles in species of the genera Lamprocystis 
and Thiodictyon. Sulfur globules are also found 
in the cell periphery in Thiopedia rosea (Imhoff, 
2005a). For Thiorhodovibrio winogradskyi a 
formation of up to ten small sulfur globules in 

a row along the long cell axis has been reported 
(Overmann et al., 1992). The specialized arrange-
ment of sulfur inclusions suggests an important 
structure function relationship.

The sulfur globules in the Chromatiaceae 
are enclosed by a protein envelope, a feature 
shared by most if not all of the chemotrophic 
sulfur-oxidizing bacteria that form intracellu-
lar sulfur globules (Brune, 1995a; Dahl, 1999; 
Dahl and Prange, 2006). In Alc. vinosum this 
envelope is a monolayer of 2–5 nm consisting 
of three different hydrophobic “sulfur globule 
proteins” (Sgps) of 10.5 kDa, 10.6 kDa (SgpA 
and SgpB) and 8.5 kDa (SgpC), while that of 
the related Thiocapsa roseopersicina contains 
only two proteins of 10.7 and 8.7 kDa (Brune, 
1995a; Pattaragulwanit et al., 1998). In Alc. 
vinosum the sulfur globule proteins are syn-
thesized with cleavable amino-terminal signal 
sequences implying Sec-dependent transport 
across the cytoplasmic membrane and finally 
a periplasmic localization of the proteins and 
therefore the whole sulfur globules. The tar-
geting process was experimentally verified 
with phoA fusions in E. coli (Pattaragulwanit 
et al., 1998) and also in Alc. vinosum (Prange 
et al., 2004). Electron micrographs of two other 
species of the family Chromatiaceae (Thiocystis 
violaceae and Tca. roseopersicina) provided 
further support for an extracytoplasmic localiza-
tion of the sulfur globules (Pattaragulwanit et 
al., 1998).

The two larger sulfur globule proteins (SgpA 
and SgpB) of Alc.vinosum are homologous to 
each other and to the larger protein of Tca. rose-
opersicina. The smaller sulfur globule proteins 
(SgpC) in Alc. vinosum and Tca. roseopersicina 
are also homologous, indicating that these pro-
teins are highly conserved between different spe-
cies of the family Chromatiaceae. Interestingly, 
all three sulfur globule proteins are rich in gly-
cine and aromatic amino acids, particularly tyro-
sine. The amino acid sequences contain tandem 
repeats typically found in cytoskeletal keratin or 
plant cell wall proteins suggesting that they are 
structural proteins rather than enzymes involved 
in sulfur metabolism (Brune, 1995a). A direct/
covalent attachment of chains of stored sulfur to 
the proteins enclosing the globules is unlikely as 
none of the Sgp proteins sequenced so far con-
tains cysteine residues.
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Little is known about the function of the sulfur 
globule proteins. Proteinaceous envelopes have 
never been reported for extracellular sulfur glob-
ules. Consistent with this observation, neither 
the complete genome sequences of several green 
sulfur bacteria (Frigaard and Bryant, 2008) nor 
the Hlr. halophila genome contain homologues of 
Alc. vinosum sgp genes. As outlined above, the 
sulfur speciation in sulfur globules of anoxygenic 
phototrophic bacteria is nearly identical irrespec-
tive whether it is accumulated in globules inside 
or outside the cells. It therefore appears that the 
Sgp proteins themselves are not responsible for 
keeping the sulfur in a certain chemical structure. 
Ideas have been promoted, that the protein enve-
lope serves as a barrier to separate the sulfur from 
other cellular constituents (Shively et al., 1989) 
and/or that it provides binding sites for sulfur-
metabolizing enzymes (Schmidt et al., 1971). In 
Alc. vinosum mutants SgpA and SgpB can replace 
each other in the presence of SgpC (Pattaragul-
wanit et al., 1998; Prange et al., 2004). A mutant 
possessing SgpA and SgpB but lacking SgpC 
can grow on sulfide and thiosulfate. This mutant 
forms significantly smaller sulfur globules. SgpC 
therefore probably plays an important role in sul-
fur globule expansion. SgpA and SgpB are not 
fully competent to replace each other as sulfur 
globule formation is not possible in mutants pos-
sessing solely SgpA or SgpB. Experiments with 
a sgpBC– double mutant clearly showed that an 
envelope is indispensable for the formation and 
deposition of intracellular sulfur. Neither sulfide 
nor thiosulfate is oxidized by this mutant (Prange 
et al., 2004). In Alc. vinosum cell survival is 
absolutely dependent on the presence of at least 
SgpA even under conditions that do not allow 
sulfur globule formation (Prange et al., 2004). 
All three sgp genes of Alc.vinosum form sepa-
rate transcriptional units (Pattaragulwanit et al., 
1998). All are constitutively expressed, however, 
the expression of sgpB and sgpC is significantly 
enhanced under photolithoautotrophic compared 
to photoorganoheterotrophic conditions. The 
sgpB gene is expressed ten times less than sgpA 
and sgpC implying that SgpA and SgpC are the 
“main proteins” of the sulfur globule envelope 
(Prange et al., 2004).

Sulfur globules can also serve as an electron 
acceptor reserve that allows a rudimentary anaerobic 
respiration with sulfur. Under anoxic conditions 

in the absence of light purple sulfur bacteria 
like Alc. vinosum can reduce stored sulfur back 
to sulfide (van Gemerden, 1968; Trüper, 1978). 
Nothing is known about the enzymatic mecha-
nisms underlying these processes.

F. Oxidation of Stored Sulfur to Sulfite

The oxidative degradation of these sulfur depos-
its is one of the most poorly understood areas 
of sulfur metabolism. In the case of extracellu-
larly deposited sulfur, this process does not only 
involve oxidation of the sulfur but must include 
binding, activation and transport into the cells 
(see above).

The only gene region known so far to be essen-
tial for oxidation of stored sulfur was localized 
by interposon mutagenesis in Alc. vinosum (Pott 
and Dahl, 1998; Dahl et al., 2005). Fifteen open 
reading frames, designated dsrABEFHCMKL-
JOPNRS, were identified (Figs. 2 and 3). A very 
similar gene cluster is found in Hlr. halophila 
(Fig. 2), which contains in addition, genes encod-
ing putative regulatory proteins and proteins pos-
sibly involved in sulfate transport downstream of 
dsrN. In Alc. vinosum, the dsrAB products form 
the cytoplasmic α

2
β

2
-structured sulfite reductase. 

This protein is closely related to the dissimilatory 
sulfite reductases from sulfate-reducing bacteria 
and archaea (Hipp et al., 1997). The prosthetic 
group of DsrAB is siroamide-[Fe

4
S

4
] with siroa-

mide being an amidated form of the classical 
siroheme (Lübbe et al., 2006). The dsrN-encoded 
protein resembles cobyrinic acid a, c diamide 
synthases and catalyzes the glutamine-dependent 
amidation of siroheme. A ∆dsrN mutant showed 
a reduced sulfur oxidation rate. Alc. vinosum is 
apparently able to incorporate siroheme instead 
of siroamide into sulfite reductase, thereby 
retaining some function of the enzyme (Lübbe 
et al., 2006). Adjacent to dsrAB the dsrEFH 
genes are located. The products of these three 
genes show significant similarity to each other. 
DsrEFH were purified from the soluble frac-
tion and constitute a soluble α

2
β

2
γ

2
-structured 

75-kDa holoprotein (Dahl et al., 2005). DsrC 
is a small soluble cytoplasmatic protein with a 
highly conserved C-terminus including two con-
served cysteine residues. Proteins closely related 
to DsrEFH and DsrC have recently been shown 
to act as parts of a sulfur relay system involved 
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in thiouridine biosynthesis at tRNA wobble posi-
tions in E. coli (Numata et al., 2006; Ikeuchi 
et al., 2006). The dsrM-encoded protein is pre-
dicted to be a membrane-bound b-type cytochrome 
and shows similarities to a subunit of heterodi-
sulfide reductases from methanogenic archaea. 
The cytoplasmic iron–sulfur protein DsrK exhib-
its relevant similarity to the catalytic subunit of 
heterodisulfide reductases. DsrK is predicted to 
reside in the cytoplasm. DsrP is another integral 
membrane protein. The periplasmic proteins 
DsrJ and DsrO are a triheme c-type cytochrome 
and an iron–sulfur protein, respectively. DsrKJO 
were co-purified from membranes pointing at the 
presence of a transmembrane electron-transport-
ing complex consisting of DsrMKJOP (Dahl 
et al., 2005). Individual in frame deletions of the 
dsrMKJOP genes lead to the complete inability 
of the mutants to oxidize stored sulfur (Sander 
et al., 2006). In accordance with the suggestion 
that related complexes from dissimilatory sulfate 
reducers transfer electrons to sulfite reductase 
(Pires et al., 2006), the Alc. vinosum Dsr complex 
is co-purified with sulfite reductase, DsrEFH and 
DsrC (Dahl et al., 2005). DsrL is a cytoplasmic 
iron–sulfur flavoprotein with NADH: acceptor 
oxidoreductase activity (Y. Lübbe and C. Dahl, 
unpublished). In frame deletion of dsrL com-
pletely inhibited the oxidation of stored sulfur 
(Lübbe et al., 2006). DsrR and DsrS are soluble 
cytoplasmic proteins of unknown function. The 
dsr genes, with the exception of the constitutively 
expressed dsrC, are expressed and the encoded 
proteins are formed at a low basic level even in 
the absence of sulfur compounds. An increased 
production of all Dsr proteins is induced by 
sulfide and/or stored sulfur (Dahl et al., 2005).

The mechanism by which the periplasmically 
stored sulfur is made available to the cytoplasmic 
sulfite reductase is unclear. In sulfate-reducing 
bacteria dissimilatory sulfite reductase catalyzes 
the six electron reduction of sulfite to sulfide. 
It has therefore been proposed that the sulfur is 
reductively activated, transported to and further 
oxidized in the cytoplasm by sulfite reductase 
operating in reverse. Different models have been 
suggested to explain the roles of the dsr-encoded 
proteins in such a scenario (Dahl et al., 2005; Pott 
and Dahl 1998). A modified model is shown in 
Fig. 4. Here, the NADH: acceptor oxidoreductase 
activity of DsrL is taken into account. Interestingly, 

the protein carries a thioredoxin motif CysXX-
Cys immediately preceding the carboxy-terminal 
iron–sulfur cluster binding sites. This indicates a 
potential disulfide reductase activity. Therefore, 
the possibility exists that DsrL uses NADH as 
electron donor for reduction of a di- or persulfidic 
compound. DsrL could be involved in the reductive 
release of sulfide from a carrier molecule – prob-
ably an organic perthiol – that may transport sul-
fur from the periplasmic sulfur globules to the 
cytoplasm where it is further metabolized by Dsr 
proteins (Dahl et al., 2005). Glutathione amide 
is a likely candidate for carrying sulfur from the 
periplasm to the cytoplasm. Glutathione amide 
bears an amide group at the glycyl moiety of glu-
tathione and is especially resistant to autoxida-
tion. The compound was found to be largely in 
the persulfidic state when Alc. vinosum was cul-
tured photoautotrophically on sulfide (Bartsch 
et al., 1996). Recently, transporters have been 
characterized in E. coli mediating export (Pittman 
et al., 2005) and import (Suzuki et al., 2005) 
of glutathione. Shuttling of glutathione amide 
between cytoplasm and periplasm in purple 
sulfur bacteria like Alc. vinosum, therefore also 
appears feasible. DsrL, being an essential pro-
tein for sulfur oxidation, is co-purified with the 
sulfite reductase (Y. Lübbe and C. Dahl, unpub-
lished). Sulfide released from the perthiol could 
therefore be directly passed to dsrAB-encoded 
sulfite reductase thereby reducing losses caused 
by evaporation of gaseous H

2
S. Obviously, Alc. 

vinosum sulfite reductase specifically interacts 
with the soluble protein DsrL on one hand and 
with membrane-bound Dsr proteins and DsrE-
FHC on the other hand. Electrons released from 
the oxidation of sulfide by sulfite reductase may 
be fed into photosynthetic electron transport via 
DsrC and DsrMKJOP, which would be analogous 
to the pathway postulated for sulfate reducers, 
operating in the reverse direction. DsrM could 
operate as a quinone reductase, DsrP as a quinol 
oxidase and finally the c-type cytochrome DsrJ 
would be reduced (Dahl et al., 2005). From here, 
electrons could be transferred to HiPIP, the pri-
mary electron donor to the photosynthetic reaction 
center (Vermeglio et al., 2002). The function of 
DsrEFH remains unclear, but as it occurs exclu-
sively in sulfur oxidizers and shows some interaction 
with DsrC, it may be important for the pathway to 
operate in the sulfide oxidizing direction. On the 
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other hand, sulfur transfer reactions as performed 
by the related TusBCD and TusE proteins in E. 
coli (Ikeuchi et al., 2006) could be important for 
the Dsr-catalyzed sulfite formation pathway. As 
there is no experimental evidence available in 
this direction so far, this possibility is not taken 
into account in the model presented in Fig. 4.

G. Oxidation of Sulfite to Sulfate

In the final step of sulfur compound oxidation 
in purple sulfur bacteria, sulfite is oxidized to 
sulfate. Some purple sulfur bacteria can also 
grow on externally supplied sulfite (Table 1). 
As evident from Fig. 4 sulfite arising from the 
oxidation of more reduced sulfur compounds 
is generated in the bacterial cytoplasm. Two 
fundamentally different pathways for sulfite 

oxidation have been rather well characterized 
in a number of chemotrophic and phototrophic 
sulfur oxidizers (Kappler and Dahl, 2001): (a) 
direct oxidation by a, probably molybdenum-
containing, sulfite dehydrogenase (EC 1.8.2.1); 
and (b) indirect, AMP-dependent oxidation via 
the intermediate adenylylsulfate (adenosine 5′-
phosphosulfate, APS).

The simultaneous presence of both enzymatic 
activities has been established for a number of 
chemo- and photolithotrophic sulfur oxidizers 
belonging to the β- and γ-Proteobacteria (e.g. 
Thiobacillus denitrificans, Thiobacillus thioparus, 
Allochromatium vinosum, strains of Thiocapsa 
roseopersicina) and green sulfur bacteria (Trüper 
and Fischer, 1982; Brune, 1995b; Kappler and 
Dahl, 2001). So far, there is no evidence for an 
occurrence of the sulfite-oxidizing form of the 
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group of sulfite reductase.
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APS reductase pathway in Alphaproteobacteria or 
in Ectothiorhodospiraceae. In accordance, poten-
tial APS reductase genes (aprBA, see below) are 
not found in the genome of Hlr. halophila. It has 
to be kept in mind that in some cases (Beggiatoa, 
Chromatiaceae, green sulfur bacteria) the occur-
rence of one or both sulfite oxidation pathways 
can vary between different strains of the same 
genus or between genera of the same family (Kap-
pler and Dahl, 2001; Frigaard and Bryant, 2008).

1. Indirect Pathway via Adenylylsulfate (APS)

During indirect sulfite oxidation, APS is formed 
from sulfite and AMP by APS reductase (EC 
1.8.99.2). In a second step the AMP moiety of 
APS is transferred either to pyrophosphate by 
ATP sulfurylase (ATP:sulfate adenylyltrans-
ferase, EC 2.7.7.4), or to phosphate by adeny-
lylsulfate:phosphate adenylyltransferase (APAT, 
formerly ADP sulfurylase (Brüser et al., 2000) ), 
resulting in the formation of ATP or ADP, respec-
tively. Since ADP can be converted to ATP and 
AMP by adenylate kinase, both sulfate-liberating 
enzymes catalyze substrate phosphorylations, 
which are of energetic importance, especially 
in chemolithoautotrophic bacteria (Peck, 1968). 
The APS pathway can also function in sulfate 
reduction, serving assimilatory and dissimilatory 
purposes. While the APS reductases from dis-
similatory sulfate reducers resemble the enzymes 
found in sulfur oxidizers (Hipp et al., 1997), 
the APS reductases functioning in assimilatory 
sulfate reduction studied so far are completely 
different enzymes related to 3′-phosphoadenos-
ine-5′-phosphosulfate (PAPS) reductases (Bick 
et al., 2000; Kopriva et al. 2001). Concerning 
this topic, consult also the chapter by Kopriva 
et al. in this book.

Indirect AMP-dependent oxidation of sulfite to 
sulfate via APS (Fig. 3) occurs in the bacterial 
cytoplasm with APS reductase being membrane-
bound (e.g. in many Chromatiaceae) or soluble, 
and ATP sulfurylase and APAT being soluble 
enzymes (Brune, 1995a; Brüser et al., 2000). In 
Alc. vinosum the genes for ATP sulfurylase (sat) 
and APS reductase (aprMBA, with aprM encod-
ing a putative membrane anchor) form an operon 
( (Hipp et al., 1997), A. Wynen, H. G. Trüper, 
C. Dahl, unpublished, GenBank No. U84759, Fig. 2). 

In the genomes of four green sulfur bacteria the 
genes for ATP sulfurylase and APS reductase are 
located directly adjacent to each other (Frigaard 
and Bryant, 2008). Genes related with aprM are 
not present. Instead, the green sulfur bacterial 
APS reductase and ATP sulfurylase genes are 
always clustered with genes encoding a Qmo 
complex (qmoABC). A closely related complex 
was biochemically characterized from the sulfate 
reducer Desulfovibrio vulgaris, shown to have 
quinol-oxidizing activity and proposed to deliver 
electrons form membrane-bound quinols to APS 
reductase (Pires et al., 2003). In phototrophic 
sulfur oxidizers containing qmo genes, the situa-
tion could just be opposite and the Qmo complex 
could accept electrons from APS reductase oper-
ating in the sulfite-oxidizing direction. We pro-
pose that the membrane protein AprM serves an 
analogous function in Alc. vinosum.

APS reductase activity is usually measured as 
AMP-dependent sulfite oxidation with ferricya-
nide or c-type cytochromes. Substrate inhibition 
by AMP is characteristic for APS reductases (Taylor, 
1994; Hagen and Nelson, 1997). All investigated 
dissimilatory APS reductases irrespective of met-
abolic type have been characterized as heterodimers 
with one α-subunit of 70–75-kDa (1 FAD) and 
one β-subunit of 18–23 kDa (2 [4Fe-4S] centers) 
(Fritz et al., 2000). Additional subunits mediat-
ing membrane association may be present (Hipp 
et al., 1997). The heme groups originally reported 
for the enzyme from the purple sulfur bacterium 
Thiocapsa roseopersicina were due to a con-
taminating protein (Brune, 1995b). A catalytic 
mechanism has been proposed in which sulfite 
initially forms a complex with the flavin  (Brune 
(1995b) and references therein). This then reacts 
with AMP to yield APS, releasing two electrons 
that are transferred via the flavin to the iron–sul-
fur centers.

The best characterized ATP sulfurylase (Sat) 
from a sulfur-oxidizing bacterium is the enzyme from 
the endosymbiont of the hydrothermal vent worm 
Riftia pachyptila (Renosto et al., 1991; Beynon 
et al., 2001). Like all other ATP sulfurylases the 
enzyme is strictly Mg2+-dependent. The V

max
 of 

ATP synthesis is seven times higher than that 
of molybdolysis, the assay used for measuring 
the APS-producing reaction. The Riftia sym-
biont enzyme also has a higher k

cat
 for the ATP 

synthesis direction (257 s−1 compared to 64 s−1 
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for the assimilatory enzyme from Penicillium 
chrysogenum that works in the sulfate activat-
ing direction (Renosto et al., 1991) ). The native 
enzyme appears to be a dimer (MW 90 kDa) com-
posed of identical size subunits (396 residues). 
The ATP sulfurylase from Alc. vinosum is isolated 
as a monomer with an apparent molecular mass 
of 45 kDa (A. Wynen, C., Dahl, H. G. Trüper, 
unpublished). More information is available for 
ATP sulfurylases from sulfate-assimilating or sul-
fate-reducing organisms in which the activation of 
the chemically extremely inert sulfate by adeny-
lylation is the relevant reaction. Two completely 
different, unrelated types of ATP sulfurylase 
can be distinguished: The heterodimeric CysDN 
type occurs exclusively in sulfate-assimilating 
prokaryotes, e.g., E. coli (Leyh, 1993). The other 
ATP sulfurylases characterized in sufficient detail 
are monomers or homo-oligomers of 41–69 kDa 
(Sperling et al., 1998; Gavel et al., 1998; Yu et al., 
2007). Size variations are due to APS kinase or 
PAPS-binding allosteric domains residing on the 
same polypeptide in some cases. Five highly con-
served regions are present, two of which are rich 
in basic amino acids, suggesting that they may 
participate in binding of MgATP2− and SO

4

2−.
The existence of APAT as an independent entity 

has been questioned for a long time. In 2000 the 
enzyme was finally purified from Thiobacillus 
denitrificans (Brüser et al., 2000): The enzyme 
is a homodimer of 41.4-kDa subunits. The K

M
 

values for APS and phosphate are 300 µM and 
12 mM, respectively. The pH optimum is 8.5–9.0. 
Catalysis is strictly unidirectional and occurs by 
a Ping-Pong mechanism with a covalently bound 
AMP as intermediate. Histidine modification 
suggested a histidine as the nucleotide binding 
residue. APAT is related to galactose-1-phosphate 
uridylyltransferase and diadenosine 5′, 5²′-P1, 
P4-tetraphosphate (Ap

4
A) phosphorylase. Ap

4
′A 

phosphorylase from yeast also has APAT activity 
while APAT from Thiobacillus denitrificans does 
not exhibit Ap

4
A phosphorylase activity. The in 

vivo function of the latter enzyme may therefore 
indeed be the formation of ADP and sulfate from 
phosphate and APS. However, genetic evidence 
for this assumption is currently missing. The in 
vivo role of APAT is especially difficult to assign 
because all organisms with significant APAT 
activity (> 100 mU mg−1 in crude extracts) also 
contain ATP sulfurylase. It has been hypothesized 

that APAT may serve to ensure a high turnover 
of APS under pyrophosphate limiting conditions 
as this enzyme is independent of the energy-rich 
pyrophosphate molecule (Brüser et al., 2000). In 
Alc. vinosum APAT does not appear to be present 
while significant activity was found in strains of 
Tca. roseopersicina (Dahl and Trüper, 1989).

2. Direct Pathway

Two types of enzymes catalyzing direct oxidation of 
sulfite to sulfate are well characterized, the sulfite 
oxidases that can transfer electrons to oxygen, 
ferricyanide and sometime cytochrome c and the 
sulfite dehydrogenases that can use one or both 
of the latter electron acceptors but not oxygen 
(Kappler and Dahl, 2001; Kappler, 2007). The 
oxygen-dependent enzymes are not relevant in 
anoxygenic phototrophic bacteria.

All sulfite dehydrogenases characterized to date 
belong to the sulfite oxidase family of molybdoen-
zymes comprising established sulfite-oxidizing 
enzymes and proteins related to these as well as 
assimilatory nitrate reductases from plants (Hille, 
1996). The active site is formed by a single moly-
dopterin cofactor. Additional redox active centers 
may be present. The best characterized sulfite-
oxidizing enzymes from the sulfite oxidase 
family are those from avian and mammalian 
sources (Kisker et al., 1997) that are homodimers 
containing heme b and molybdenum coordinated 
via an MPT-type molybdenum pterin cofactor, a 
conserved cysteine residue from the enzyme and 
two oxo groups. The SorAB protein from Star-
keya novella (formerly Thiobacillus novellus) was 
the first true bacterial sulfite-oxidizing enzyme to 
be characterized in detail (Kappler et al., 2000; 
Feng et al., 2003; Kappler and Bailey, 2005; 
Raitsimring et al., 2005; Doonan et al., 2006). It is 
a periplasmic heterodimer of a large MoCo-dimer 
domain (40.2 kDa) and a small cytochrome c sub-
unit (8.8 kDa). Its molybdenum pterin cofactor is 
of the MPT-type with a 1:1 ratio between Mo and 
MPT. During catalysis, electrons are sequentially 
transferred to a single heme c

552
 (Em8.0

 = +280 mV) 
located on the smaller subunit and passed on from 
there to a cytochrome c

550
 from the same organ-

ism, thought to be the enzyme’s natural electron 
acceptor. The enzyme exhibits the Ping–Pong 
mechanism that is also found in eukaryotic sulfite 
oxidases and is non-competitively inhibited by 
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sulfate. It is encoded by the sorAB genes, which 
appear to form an operon by themselves. Charac-
terized related proteins also appear to be localized 
in the periplasm and to contain a heme c-binding 
subunit (Myers and Kelly, 2005).

Biochemical studies and most importantly the 
sequencing of a large number of bacterial genomes 
in the past few years revealed that many bacterial 
genes exist that encode proteins belonging into 
the sulfite oxidase family (Kappler, 2007). While 
the well-characterized bacterial sulfite dehydro-
genases are soluble proteins, membrane-bound 
bacterial sulfite-oxidizing enzymes have also 
been reported in the literature (reviewed in Kap-
pler and Dahl, 2001; Kappler, 2007). Most of the 
established or predicted soluble members of the 
sulfite oxidase family are periplasmic enzymes, 
however, some of the proteins belonging to this 
group (however without a biochemically char-
acterized function) are predicted to reside in the 
bacterial cytoplasm (Kappler, 2007). Direct oxi-
dation of sulfite to sulfate in the bacterial cyto-
plasm can, therefore, not generally be excluded.

3. Sulfite Oxidation in Purple Sulfur Bacteria: 
an Unresolved Question

Although enzymes participating in the indirect 
sulfite oxidation pathway in purple sulfur bacteria 
have been studied for more than 30 years (Trüper 
and Rogers, 1971) their in vivo role is still ques-
tionable. In Alc. vinosum APS reductase is clearly 
dispensable (Dahl, 1996): The growth rates of the 
wild type and an APS-reductase-deficient mutant 
show little differences under light-limiting con-
ditions. A difference is observed only at saturat-
ing irradiances. Under these conditions, the wild 
type grows considerably faster, indicating that the 
presence of a second pathway of sulfite oxidation 
allows a higher rate of supply of reducing power 
(Sanchez et al., 2001).

Experiments with cultures grown in the pres-
ence of the molybdate antagonist tungstate indi-
cated that APS reductase-independent sulfite 
oxidation in Alc. vinosum is catalyzed by a molyb-
denum-containing enzyme. Sulfite oxidation was 
severely inhibited by tungstate in an APS-reduct-
ase deficient mutant, suggesting the involvement 
of a classical molydopterin-containing enzyme of 
the sulfite oxidase family (Dahl, 1996). However, 
it should be noted that genes related to sorAB 

cannot be detected in Alc. vinosum nor have the 
proteins been detected using antibodies (e.g. 
against SorAB from Starkeya novella, U. Kappler 
and C. Dahl, unpublished). This finding appears 
even more interesting when we realize that a 
gene homologous to those encoding proteins of 
the sulfite oxidase family is neither present in 
the genome of Hlr. halophila nor in any of the 
green sulfur bacterial genome sequences. As Hlr. 
halophila and some of the green sulfur bacteria 
do not possess genes encoding for the APS path-
way, they must have a different means for sulfite 
oxidation. Frigaard and Bryant (2008) present 
the very attractive speculation that a potential 
protein encoded by three genes resembling those 
for polysulfide reductase from Wolinella succino-
genes (Krafft et al., 1992) could play this role. 
In this regard, it appears rather conspicuous that 
three related genes (Hhal1934, 1935 and 1936) 
are also found in the sulfur gene cluster of Hlr. 
halophila (Fig. 2). Similar to the situation in 
green sulfur bacteria, the molydopterin-binding 
putative active site-bearing subunit (PsrA) would 
be localized in the cytoplasm. On the other hand, 
we have some indications that a soxY-deficient 
mutant of Alc. vinosum is severely impaired in 
the oxidation of sulfite (D. Hensen, B. Franz and 
C. Dahl, unpublished). Clearly, the question of 
sulfite oxidation in phototrophic sulfur bacteria 
will require special attention in the future.
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