
Chapter 5
Time-Varying Electromagnetic Field

5.1 Maxwell’s Equations in Differential Form

In general, the presence of a charge distributed with density ρ (C m−3) and of
an impressed current density J0 (A m−2) variable with time gives origin to the
electromagnetic field described by the following time-dependent vectors:

D electric displacement (C m−2)

E electric field intensity (V m−1)

B magnetic induction (T)
H magnetic field intensity (A m−1)

J current density (A m−2)

As far as the origin of current density is concerned, the following remark can be put
forward. In a solid or liquid medium the conduction current density is a function
of E

J = J(E) (5.1)

For a linear medium the above function becomes

J = σE (5.2)

Another kind of current is originated by the movement of free ions and electrons
(e.g. in gases or vacuum). This convection current density is expressed by the formula

J = ρ+u+ + ρ−u− (5.3)

where ρ+ and ρ− are positive and negative charge densities, respectively, while u+
and u− are the relevant velocities of positive and negative free charges.

Finally, the displacement current density is defined as

J = ∂D

∂t
(5.4)
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102 5 Time-Varying Electromagnetic Field

Considering the principle of charge conservation in any point of the domain, the
following equation always holds (charge continuity equation)

∇ · J + ∂ρ

∂t
= 0 (5.5)

The coupled electric and magnetic fields influence a charge q (C) by exerting a
mechanical force F (N) on it (Lorentz’s equation)

F = q
(
E + u × B

)
(5.6)

where u is the velocity of the charge with respect to the magnetic field. In particular,
the term qE modifies the value of velocity, while the term qu × B modifies also the
direction of velocity.

In a simply-connected domain Ω with boundary Γ filled in by a linear medium
characterized by permittivity ε, permeability μ and conductivity σ, the time-varying
electromagnetic field is described by the following equations:

∇ × E = −∂B

∂t
Faraday’s equation (5.7)

∇ · D = ρ Gauss’s electric equation (5.8)

∇ × H = J + ∂D

∂t
Ampère’s equation (5.9)

∇ · B = 0 Gauss’s magnetic equation (5.10)

In a three-dimensional domain, the above equations represent a set of eight scalar
equations to which constitutive relations (2.65), (2.187), (2.255) must be added.

In total, fifteen scalar unknowns (i.e. field components) have to be determined,
subject to suitable boundary conditions.

The system of eight plus nine equations can be solved since there are two rela-
tions among the unknowns which are automatically satisfied. In fact, taking the
divergence of (5.9) and the time derivative of (5.8), continuity equation (5.5) fol-
lows. Similarly, taking the divergence of (5.7) and the time derivative of (5.10), one
obtains an identity.

It should be remarked that in (5.9), in general,

J = J0 + σE + μσu × H (5.11)

where J0 is the term impressed by an external source, while the last term of the
right-hand side takes into account the current density due to motional effect, if any.

In steady conditions all vectors are independent of time. Therefore, the two equa-
tions governing the electric field, namely (5.7) and (5.8), are decoupled with respect
to the two equations governing the magnetic field, namely (5.9) and (5.10) (see
Section 2.2 and Section 2.3).
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5.2 Poynting’s Vector

Let Maxwell’s equations (5.7) and (5.9) be considered. By means of a vector identity
(see A.13) one obtains

∇ · (E × H
) = H · (∇ × E

)− E · (∇ × H
) = −H · ∂B

∂t
− E · ∂D

∂t
− E · J (5.12)

Referring to the specific energy in the electric and magnetic case and under the
assumption of linear constitutive relationships, one has

1

2

∂

∂t

(
H · B + E · D

) = 1

2

(
H·∂B

∂t
+ B·∂H

∂t

)
+ 1

2

(
E·∂D

∂t
+ D·∂E

∂t

)
=

= H · ∂B

∂t
+ E · ∂D

∂t
(5.13)

Integrating (5.12) over Ω and using Gauss’s theorem (see A.10), it results

∫
Γ

(
E × H

) · ndΓ = − ∂

∂t

∫
Ω

(
H · B

2
+ E · D

2

)
dΩ −

∫
Ω

E · JdΩ (5.14)

Vector

S = E × H (5.15)

is called Poynting’s vector (W m−2).
According to (5.14), its flux out of a closed surface Γ is equal to (minus) the

sum of the power of the electromagnetic field inside the domain Ω and the power
transferred to the current (Poynting’s theorem).

5.3 Maxwell’s Equations in the Frequency Domain

The most important case of time-varying electromagnetic fields occurs when field
sources, namely charge and current densities, vary with sinusoidal law.Agiven vector

V(x, y, z, t) = [V0x(x, y, z) cos(ωt − ϕ), V0y(x, y, z) cos(ωt − ϕ),

V0z(x, y, z) cos(ωt − ϕ)] =
= V0 cos(ωt − ϕ) (5.16)

can be expressed as

V(x, y, z, t) =
[
V0x(x, y, z)Re

{
ej(ωt−ϕ)

}
, V0y(x, y, z)Re

{
ej(ωt−ϕ)

}
,

V0z(x, y, z)Re
{

ej(ωt−ϕ)
}]

=
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= V0Re
{

ej(ωt−ϕ)
}

(5.17)

The algebraic quantity V = V0e−jϕ (phasor) represents the vector V(x, y, z, t) in a
unique way; moreover, in the frequency domain, since d

dt cos(ωt) = ω cos(ωt + π
2 ),

the differential operator ∂
∂t is transformed into the complex operator jω.

Consequently, Maxwell’s equation (5.7), (5.8), (5.9) and (5.10) are transformed
as follows:

∇ × E = −jωB (5.18)

∇ · B = 0 (5.19)

∇ × H = J + jωD (5.20)

∇ · D = ρ (5.21)

The latter equations are referred to as Helmholtz’s equations and are valid at
sinusoidal steady state for frequency f = ω

2π (field equations in the frequency domain).
It should be remarked that field quantities in the latter equations are the phasors

corresponding to the associated time functions; by definition, the amplitude of the
phasor is the maximum value of the corresponding time function.

Considering the constitutive equations, in a non-conducting region free of spatial
charges (ρ = 0) and impressed currents, from vector identity (A.12), taking into
account (5.21) one has

∇ × ∇ × E = ∇ (∇ · E
)− ∇2

E = −∇2
E (5.22)

From (5.18) and (5.20), if μ is a constant and σ = 0, J0 = 0, it follows

∇ × ∇ × E = ∇ × (−jωB
) = −jω∇ × B =

= −jωμ∇ × H = −jωμ(jωD) = ω2μεE (5.23)

Comparing (5.22) and (5.23), Helmholtz’s equation of electric field results

∇2
E = −ω2μεE = k2E (5.24)

with k = jω
√με.

If the same procedure is applied to field H, one obtains

∇2
H = −ω2μεH = k2H (5.25)

At sinusoidal steady state, the Poynting’s vector (phasor) resulting from the time
average of (5.15), considering the root-mean-square value of each vector, is

S = E × H
∗

2
(5.26)

where the star denotes the conjugate phasor.
Referring to a volume Ω with boundary Γ, (5.14) takes the form
∫

Γ

(
E × H

∗

2

)
· n dΓ = −2jω

∫
Ω

(
H · B

∗

4
+ E · D

∗

4

)
dΩ −

∫
Ω

E · J
∗

2
dΩ (5.27)
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Fig. 5.1 Travelling plane electromagnetic wave

5.4 Plane Waves in an Infinite Domain

Let a simply-connected unbounded domain, filled in by a perfectly insulating medium
(ρ = 0, σ = 0), be considered. For the sake of simplicity, let a time-harmonic electric
field E0 cos ωt have only a non-zero component in the y-direction and vary only in
the x direction (Fig. 5.1).

The Helmholtz’s equation (5.24) reduces to

∂2E

∂x2
= −ω2μεE (5.28)

It can be easily proven that the complex function

E = E0e
jω

√με
(

x− 1√με
t
)

(5.29)

with E0 phasor of the given electric field, is a solution of (5.28).
In the time domain it results

E(x, t) = E0 cos
[ω

u
(x − ut)

]
(5.30)

with u = 1√με
(ms−1). It can be verified that also

E(x, t) = E0 cos
[ω

u
(x + ut)

]
(5.31)

once transformed in its complex form E = E0e
jω

√με
(

x+ 1√με
t
)

is a solution of (5.28).
From the physical standpoint, (5.30) and (5.31) represent harmonic waves trav-

elling with velocity u in positive and negative x-direction, respectively.
Owing to (5.18) a time-harmonic field B is associated to E.
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In the frequency domain it results

B =
(

0, 0,
1

jω

∂E

∂x

)
= (0, 0,

√
με E

)
(5.32)

In the time domain one obtains:

B(x, t) = E0

u
cos
[ω

u
(x ± ut)

]
(5.33)

From (5.30), (5.31) and (5.32), it results that the couple of vectors
(
E, B

)
defined

above is a plane wave; E and B are orthogonal vectors; the ratio of electric field
intensity to induction field intensity is equal to the velocity u of propagation in the
dielectric medium.

Moreover, the Poynting’s vector S in the time domain results

S = E × H = E2
0

uμ

[
1 + cos

(
2ω

u
(x ± ut)

)]
ix (5.34)

Therefore, the direction of propagation of the plane wave is orthogonal to both electric
and magnetic field (transverse electromagnetic wave, TEM).

5.5 Wave and Diffusion Equations in Terms of Vectors E and H

Considering the constitutive relations (2.65), (2.187), (2.255), Maxwell’s equa-
tions (5.7)–(5.10) become, in terms of fields E and H,

∇ × E = −μ
∂H

∂t
(5.35)

∇ × H = J0 + σE + ε
∂E

∂t
(5.36)

∇ · E = ρ

ε
(5.37)

∇ · H = 0 (5.38)

where J0 is the impressed current density.
From (5.35) one has

∇ × ∇ × E = − ∂

∂t

(∇ × μH
)

(5.39)

Since (see A.12)

∇ × ∇ × E = ∇(∇ · E
)− ∇2

E (5.40)
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taking into account that, in the absence of free charges (i.e. ρ = 0), if ε is a constant

∇ · E = ∇ · D
ε

= 0, one obtains

−∇2
E = − ∂

∂t

(∇ × μH
)

(5.41)

Then, for a homogeneous medium from (5.41) and (5.36) it results

∇2
E = με

∂2E

∂t2
+ μσ

∂E

∂t
+ μ

∂J0

∂t
(5.42)

namely, the equation governing electric field E; if ∂J0
∂t = 0, the homogeneous wave

equation is obtained.
Similarly, it can be proven that for field H the following equation holds

∇2
H = με

∂2H

∂t2
+ μσ

∂H

∂t
− ∇ × J0 (5.43)

If in (5.36) the displacement current density ε ∂E
∂t can be neglected, then equa-

tions (5.42) and (5.43) become

∇2
E = μσ

∂E

∂t
+ μ

∂J0

∂t
(5.44)

and

∇2
H = μσ

∂H

∂t
− ∇ × J0 (5.45)

respectively; they are the differential equations governing the electromagnetic field
under quasi-static conditions (diffusion equations).

In turn, by taking the divergence of both sides of (5.36) and considering (A.8),
the equation of charge relaxation follows

∇ ·
(

σE + ε
∂E

∂t

)
= −∇ · J0 (5.46)

where the driving term is due to the impressed current density. It can be remarked
that (5.46) states the current density balance in a dissipative dielectric medium,
characterised by both conductivity σ and permittivity ε. In the frequency domain,
(5.46) transforms as

∇ · [(σ + jωε) E
] = −∇ · J0 (5.47)

where the complex conductivity σ + jωε appears; in (5.47) E and J0 are the phasors
corresponding to the associated time functions.
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5.6 Wave and Diffusion Equations in Terms of Scalar
and Vector Potentials

In a simply connected domain Ω filled in by a linear and homogeneous medium, the
magnetic vector potential A(Wb m−1) is defined by the equation (see 2.205)

B = ∇ × A (5.48)

associated to a suitable gauge condition to be specified later on.
By means of (5.7) one has

∇ ×
(

E + ∂A

∂t

)
= 0 (5.49)

This means that the vector in brackets can be expressed as the gradient of a scalar
potential ϕ(V)

E + ∂A

∂t
= −∇ϕ (5.50)

Hence

E = −∇ϕ − ∂A

∂t
(5.51)

Substituting (5.51) into (5.36) one obtains

∇ × H = J0 − σ∇ϕ − σ
∂A

∂t
− ε

∂

∂t
∇ϕ − ε

∂2A

∂t2
(5.52)

From (5.48) one has

∇ × H = ∇ × μ−1∇ × A (5.53)

and

∇ × ∇ × A + με∇ ∂ϕ

∂t
+ με

∂2A

∂t2
= μ

(
J0 − σ∇ϕ − σ

∂A

∂t

)
(5.54)

In the case of a current-free and charge-free ideal dielectric region (J0 = 0, ρ = 0
and σ = 0) it results

∇ × ∇ × A + με∇ ∂ϕ

∂t
+ με

∂2A

∂t2
= 0 (5.55)

On the other hand, substituting (5.50) into (5.37) gives

−∇2ϕ − ∂

∂t

(∇ · A
) = 0 (5.56)

Equations (5.54) and (5.56) represent the link between the two potentials.
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Taking into account that (see A.12)

∇ × ∇ × A = −∇2
A + ∇ (∇ · A

)
(5.57)

and by substituting this expression into (5.55) one has

−∇2
A + ∇ (∇ · A

)+ με∇ ∂ϕ

∂t
+ με

∂2A

∂t2
= 0 (5.58)

or

−∇2
A + ∇

(
∇ · A + με

∂ϕ

∂t

)
+ με

∂2A

∂t2
= 0 (5.59)

If the Lorentz’s gauge

∇ · A + με
∂ϕ

∂t
= 0 (5.60)

is imposed, then from (5.59) one obtains

−∇2
A + με

∂2Ā

∂t2
= 0 (5.61)

which is the wave equation for the magnetic vector potential A, subject to boundary
and intial conditions. After determining A, following (5.60), ϕ is given by

ϕ(t) = ϕ0 − 1

με

∫ t

0
∇ · A(t′)dt′ (5.62)

with ϕ0 to be determined.
Alternatively, imposing gauge (5.60) to equation (5.56), the wave equation for

the electric scalar potential is obtained

−∇2ϕ + με
∂2ϕ

∂t2
= 0 (5.63)

After determining ϕ, A can be recovered.
In the case current J0 and charge ρ are present, (5.61) and (5.63) become

−∇2
A + με

∂2A

∂t2
= μJ0 (5.64)

−∇2ϕ + με
∂2ϕ

∂t2
= ρ

ε
(5.65)

respectively.
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In a three-dimensional unbounded domain Ω, their particular solutions are (see
2.48 and 2.49)

A =
∫

Ω

μJ
′
0

4πr
dΩ (5.66)

ϕ =
∫

Ω

ρ′

4πεr
dΩ (5.67)

where the values J
′
0 and ρ′ are taken at an earlier time t′ = t − r

√με with respect
to the time t at which A and ϕ are observed. The latter two potentials are therefore
called retarded potentials. Additionally, it can be noted that A depends only on J0
and ϕ depends only on ρ. This dependence is, except for the correspondence of time,
the same as in magnetostatics and electrostatics, respectively.

In the case of a conductor (ρ = 0, σ �= 0), by imposing the following gauge

∇ · A + με
∂ϕ

∂t
+ μσϕ = 0 (5.68)

from (5.54) and (5.57) it follows

−∇2
A + ∇

(
∇ · Ā + με

∂ϕ

∂t
+ μσϕ

)
+ με

∂2A

∂t2
+ μσ

∂A

∂t
= μJ0 (5.69)

or

−∇2
A + με

∂2Ā

∂t2
+ μσ

∂A

∂t
= μJo (5.70)

After determining A and so ∇ · A, ϕ can be recovered from (5.68).

5.7 Electromagnetic Field Radiated by an Oscillating Dipole

Let a point charge q(t) = q sin(ωt) oscillate with angular frequency ω along an
element dλ of line λ in a three-dimensional domain, so that the resulting current is
i = ωq cos ωt. If line λ is coincident with the z axis, in the frequency domain the
phasor of the elementary vector potential (see 5.66) can be expressed as

dA = μ0I

4πr
e−j ωr

c dλiz (5.71)

where I is the phasor of current i, r is the distance between field point and source point,
c = 1√

ε0μ0
is the velocity of the electromagnetic wave in free space and the

operator e−j ωr
c accounts for the phase delay of dA with respect to I.
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Fig. 5.2 Field radiated at point P by an oscillating dipole

Assuming spherical coordinates with origin at the gravity centre of the dipole
(Fig. 5.2), the components of vector potential are

dAr = dA cos ϑ

dAϑ = −dA sin ϑ

dAϕ = 0 (5.72)

Since μ0H = ∇ × A, the components of the elementary magnetic field in the
frequency domain are (see A.21–A.23)

dHr = dHϑ = 0

dHϕ = I sin ϑdλ

4πr2

(
1 + j

ωr

c

)
e−j ωr

c (5.73)

Thanks to (5.73), it can be noted that lines of magnetic fields are circular and are
located on planes normal to the direction of z axis.

According to the Lorentz’s gauge (5.60), the phasor of the elementary scalar
potential associated to vector potential is

dϕ = j
c2

ω
∇ · (dA

)
(5.74)

Considering (5.51) and (5.74), the relationship between potentials and electric field

dE = −jωdA − ∇dϕ (5.75)

becomes

dE = −jωdA − j
c2

ω
∇ (∇ · dA

)
(5.76)
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After (5.72), (A.19) and (A.24), the components of the elementary electric field
follow in phasor form

dEr = −j
2I cos ϑdλ

4πε0r3ω

(
1 + j

ωr

c

)
e−j ωr

c

dEϑ = −j
I sin ϑdλ

4πε0r3ω

[
1 + j

ωr

c
−
(ωr

c

)2
]

e−j ωr
c

dEϕ = 0 (5.77)

The situation is represented in Fig. 5.2.
It is interesting to consider the approximated expressions of field components

near the oscillating dipole and far from it, respectively.
Under the approximation ωr

c << 1 of near field, the field components become in
phasor form

dHϕ = I sin ϑdλ

4πr2
(5.78)

dEr = −j
2I cos ϑdλ

4πε0r3ω
(5.79)

dEϑ = −j
I sin ϑdλ

4πε0r3ω
(5.80)

It can be noted that the magnetic field scales as 1
r2 following the Laplace’s law of

the elementary action valid for a steady current (see 3.79); in turn, the electric field
scales as 1

r3 according to the static field of a dipole (see Section 2.2.6).
Conversely, under the approximation ωr

c >> 1 of far field, the field components
become

dHϕ = j
I sin ϑdλ

4πc

(ω

r

)
e−j ωr

c (5.81)

dEϑ = j
I sin ϑdλ

4πε0c2

(ω

r

)
e−j ωr

c (5.82)

The component dEr can be neglected with respect to dEϑ, apart from points in which
| sin ϑ| << 1. It is important to note that electric and magnetic fields are orthogonal,
in phase and tangent to the sphere of radius r; consequently, the Poynting’s vector
has a radial direction only and the corresponding phasor results

dS = dEϑ × dH
∗
ϕ

2
= I2 sin2 ϑ (dλ)2

16π2ε0c3

(ω

r

)2
ir (5.83)

where I is the root-mean-square value of current.
It comes out that the power radiated by the dipole is maximum for ϑ = π

2 (equa-
torial plane) and zero for ϑ = 0 (z axis); furthermore, the average power flowing
through a spherical surface is independent of its radius. Finally, the amplitude of
fields depends on ω

r ; therefore, to make a long-distance transmission, it is necessary
to increase the source frequency.
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5.8 Diffusion Equation in Terms of Dual Potentials

Let a linear homogeneous isotropic medium, characterized by conductivity σ, perme-
ability μ and permittivity ε be considered, where an impressed current J0 is present,
the time variations of which are small, i.e., if time harmonic variations occur, the
angular frequency is much lower than σ

ε
. Then, displacement current density ∂D

∂t
may be neglected with respect to impressed J0 and induced σE current densities
(quasi-static approximation). In this case, Maxwell’s equations reduce to

∇ × E = −∂B

∂t
(5.84)

∇ · D = 0 (5.85)

∇ × H = J = J0 + σE (5.86)

∇ · B = 0 (5.87)

along with the constitutive relations (5.2) and (2.187).
Given appropriate boundary and initial conditions, vectors H (or B) and E (or J

and D) are uniquely defined.
This is a special case of Section 5.1 and is particularly important in low-frequency

applications (eddy current problem).
The electromagnetic field can be also described in terms of potentials in two

different ways.
According to the A − φ method (see Section 5.6) a magnetic vector potential

A(Wb m−1) is introduced by (5.48); moreover, an electric scalar potential φ(V) is
defined according to (5.50).

In order to specify A uniquely, a further condition must be introduced: this may
be the Coulomb’s gauge (2.206) or the Lorentz’s gauge (5.60).

This way E and H can be expressed by means of two potentials (see Section 2.1.4),
namely A and φ.

From (5.86) taking into account (5.48) and (5.51) one has

∇ × μ−1∇ × A = J0 − σ
∂A

∂t
− σ∇φ (5.88)

From (5.5), taking into account (5.51), it follows

∇ ·
(

J0 − σ
∂A

∂t
− σ∇φ

)
= 0 (5.89)

Equations (5.88) and (5.89) with appropriate boundary and initial conditions solve the
electromagnetic problem in terms of A and φ. In a region where σ = 0 (eddy-current
free) the latter reduce to the classical equations of magnetostatics (see Section 2.3.1).
On the other hand, (5.88) is a special case of (5.54).
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Moreover, imposing the gauge ∇ · A + μσφ = 0, from (5.88) one obtains

−∇2
A + μσ

∂A

∂t
= μJ0 (5.90)

that represents the diffusion equation in terms of vector potential; it is an approxima-
tion of equation (5.70) in the quasi-static state. After determining A, scalar potential
ϕ = − (μσ)−1 ∇ · A can be recovered.

Alternatively, following the T − Ω method, in regions free of impressed current
(J0 = 0) an electric vector potential T (A m−1) can be defined as

∇ × T = J (5.91)

Comparing (5.91) and (5.86) it turns out that H and T, which have the same curl,
must differ by the gradient of a function Ω(A) (magnetic scalar potential)

H = T − ∇Ω (5.92)

The electric and magnetic vectors, J and H, have been so expressed in terms of two
potentials.

In order to define T uniquely, a gauge must be introduced.
The equation governing the electromagnetic field can be now expressed in terms

of T and Ω. In fact, from (5.86) taking the curl of both members and taking into
account (5.84) and (5.92), one has

∇ ×
(
σ−1∇ × T

)
= ∇ × σ−1J0 − ∂

∂t
μ
(
T − ∇Ω

)
(5.93)

and from (5.87)

∇ · μ
(
T − ∇Ω

) = 0 (5.94)

In regions where σ = 0 one has J = 0 and therefore, from (5.91), ∇ × T = 0.
Moreover, imposing the gauge ∇ · T = μσ ∂Ω

∂t , from (5.93) and (5.94) one obtains
two independent equations for T and Ω, namely

∇2
T − μσ

∂T

∂t
= −∇ × J0 (5.95)

and

∇2Ω − μσ
∂Ω

∂t
= 0 (5.96)

subject to appropriate boundary conditions. They are

n × T = 0, Ω = 0 (5.97)

or

n · T = 0,
∂Ω

∂n
= 0 (5.98)
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if the boundary is normal to a flux line (i.e. n × B = 0) or it is parallel to a flux line
(i.e. n · B = 0), respectively.

After determining T, Ω is given by

Ω(t) = Ω0 + (μσ)−1
∫ t

0
∇ · T(t′) dt′ (5.99)

with Ω0 to be determined.

5.9 Weak Eddy Current in a Conducting Plane
under AC Conditions

Let a conducting plane of thickness b and infinite extension, as shown in Fig. 5.3, be
considered.

A time-varying magnetic field H = (H, 0, 0), with H = H0 sin ωt, is impressed
to the conductor characterized by conductivity σ.

Thanks to symmetry, all variables depend merely on y coordinate. From (5.35),
∇ × E turns out to be directed along the x axis and to depend merely on the z
component of E. It follows that the electric field E induced within the conductor is
E = (0, 0, E); the same holds for induced current density J = (0, 0, J). Therefore

∇ × E =
(

∂E

∂y
, 0, 0

)
(5.100)

From (5.35), neglecting the magnetic field created by J = σE, one has

∂E

∂y
= −μ0

∂H

∂t
(5.101)

•

y

b/2

−b/2

_
E
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σ 0

σ =

=

0

/

/

Fig. 5.3 Conducting plane in a magnetic field



116 5 Time-Varying Electromagnetic Field

or

∂E

∂y
= −ωμ0H0 cos ωt (5.102)

Therefore:

E(y, t) = E(y) cos ωt (5.103)

E(y) = −ωμ0H0y + k (5.104)

with k to be determined.
Following (5.86) with J0 = 0 (solenoidality of the specific current σE), the

boundary condition is

E

(
−b

2

)
= −E

(
b

2

)
(5.105)

It follows

1

2
ωμ0H0b + k = 1

2
ωμ0H0b − k (5.106)

Therefore, it results that k = 0 and

E(y, t) = −ωμ0H0y cos ωt (5.107)

In terms of eddy current density one has

J(y, t) = −σωμ0H0y cos ωtiz, −b

2
< y <

b

2
(5.108)

and J(y, t) = 0 elsewhere.
By assuming b = 2 cm, H0 = 104 A m−1, σ = 5.93 107Ω−1m−1, f = 50 Hz,

the amplitude of induced electric field is shown in Fig. 5.4.

5.10 Strong Eddy Current in a Conducting Plane
under AC Conditions

Unlike the previous example, if the magnetic field due to the induced current dom-
inates over the impressed field within the conductor, then the governing equations
become

∇ × E = −μ0
∂H

∂t
(5.109)

∇ × H = σE (5.110)
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Fig. 5.4 Induced electric field in the conductor cross-section (weak reaction)

Thanks to symmetry

∇ × E =
(

∂E

∂y
, 0, 0

)
; ∇ × H =

(
0, 0, −∂H

∂y

)
(5.111)

From (5.109) one has

∂E

∂y
= −μ0

∂H

∂t
(5.112)

and from (5.110)

−∂H

∂y
= σE (5.113)

so that differentiating the latter with respect to y and substituting into the former
yields

1

σ

∂2H

∂y2
= μ0

∂H

∂t
(5.114)

Likewise, after differentiating (5.112) with respect to y and (5.113) with respect to
t, one has

∂2E

∂y2
= −μ0

∂

∂y

∂H

∂t
and − ∂

∂t

∂H

∂y
= σ

∂E

∂t
(5.115)
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respectively. Therefore

μ−1
0

∂2E

∂y2
= σ

∂E

∂t
(5.116)

results.
It is assumed that both H and E are time-harmonic functions

H(y, t) = H(y) cos(ωt + ϕH)

E(y, t) = E(y) cos(ωt + ϕE) (5.117)

or

H(y, t) = �e
{

H(y)ejϕH ejωt
}

= �e
{

Hejωt
}

E(y, t) = �e
{

E(y)ejϕE ejωt
}

= �e
{

Eejωt
}

(5.118)

Combining (5.118) with (5.114) gives

1

σ

∂2H

∂y2
= μ0jωH and

∂2H

∂y2
− jωσμ0H = 0 (5.119)

where H now denotes the phasor corresponding to H(y, t).
Similarly

μ−1
0

∂2E

∂y2
= σjωE and

∂2E

∂y2
− jωσμ0E = 0 (5.120)

holds.
Let quantities

α2 = jωσμ0; k =
√

ωσμ0

2
(m−1); δ = 1

k
(m) (5.121)

be defined, where δ is called penetration depth or skin depth. It results (1 + j)2k2 =
α2 = (1 + j)2δ−2. The general solution to the equation

∂2H

∂y2
− α2H = 0 (5.122)

is

H = C1eαy + C2e−αy (5.123)

The application of the boundary conditions

y = ±b

2
; H = H0 (5.124)
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gives

H0 = C1e−α b
2 + C2e+α b

2

H0 = C1eα b
2 + C2e−α b

2 (5.125)

This implies

e−α b
2 (C1 − C2) = e+α b

2 (C1 − C2)

C1 = C2 (5.126)

and

H0 = C1

(
e−α b

2 + eα b
2

)
= C12ch

(
α

b

2

)

C1 = C2 = H0

2ch
(

α b
2

) (5.127)

Finally, from (5.123) it follows

H = H0
eαy + e−αy

2ch
(

α b
2

) = H0
ch(αy)

ch
(

α b
2

) (5.128)

Because of (5.113), one has

J = −∂H

∂y
= −αH0

sh(αy)

ch
(

α b
2

) (5.129)

Returning to the time domain, the amplitude of time-varying field H inside the
conductor is given by the norm of (5.128). Using the identity |ch(u + jv)| =√

cos2 u + sh2v with u and v real numbers, after (5.121) and (5.128) it follows

∣∣H(y)
∣∣ = ∣∣H0

∣∣
√

cos2 y
δ + sh2 y

δ√
cos2 b

2δ + sh2 b
2δ

; −b

2
< y <

b

2
(5.130)

while
∣∣H(y)

∣∣ = ∣∣H0
∣∣ elsewhere.

By assuming b = 2 cm, H0 = 104 A m−1, σ = 5.93 107Ω−1m−1, f = 103 Hz,
the distribution of magnetic field shown in Fig. 5.5 is obtained. When frequency f
decreases, the magnetic field tends to become constant and equal to H0.

In turn, after (5.129) the amplitude J of the eddy current density is given by:

∣∣J(y)
∣∣ = β

∣∣H0
∣∣

δ

√
cos2 y

δ
sh2 y

δ
+ sin2 y

δ
ch2 y

δ
= β

∣∣H0
∣∣

δ

√
sin2 y

δ
+ sh2 y

δ
(5.131)
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Fig. 5.5 Magnetic field in the conductor cross section

with β−1 = 1√
2

√
cos2 b

2δ + sh2 b
2δ , δ =

√
2

ωσμ0
, − b

2 < y < b
2 and J(y) = 0

elsewhere.
The maximum value Jm of the induced current density is

Jm = J

(
−b

2

)
= J

(
b

2

)
= √

2

∣∣H0
∣∣

δ

√√√√ sin2 b
2δ + sh2 b

2δ

cos2 b
2δ + sh2 b

2δ
(5.132)

By assuming the previous data, the distribution of electric field E(y) = σ−1J(y)

shown in Fig. 5.6 is obtained. When frequency f decreases, the maximum value of
electric field decreases and its distribution tends to become linear. In turn, when f
increases, the magnetic field decreases in the limits

∣∣H∣∣→ 0, −b

2
< y <

b

2
(5.133)

and

∣∣H∣∣→ ∣∣H0
∣∣ , y = ±b

2
(5.134)

when f tends to infinity.
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Fig. 5.6 Induced electric field in the conductor cross section (strong reaction)

Resorting to the definition of power loss given in Section 2.4.3, the surface power
density P(W m−2) dissipated in the conductor is

P = 1

2

∫ b
2

− b
2

1

σ
|J(y)|2dy = H2

0

σδ2
(

cos2 b
2δ + sh2 b

2δ

)
∫ b

2

− b
2

(
sin2 y

δ
+ sh2 y

δ

)
dy =

= H2
0

2σδ
sh b

δ − sin b
δ

cos2 b
2δ + sh2 b

2δ
= H2

0

2σδ
sh b

δ − sin b
δ

cos b
δ +1
2 +

(
e

b
2δ −e

− b
2δ
)2

4

=

= H2
0

σδ
sh b

δ − sin b
δ

cos b
δ + ch b

δ
= H2

0

√
ωμ0

2σ

sh kb − sin kb

ch kb + cos kb
(5.135)

where k = δ−1.
Alternatively, in the frequency domain, since E and H are orthogonal vectors, the

phasor of the Poynting’s vector (5.26) is

S = E H
∗

2
= −αH2

0

2σ

sh(αy)ch∗(αy)∣∣∣ch
(

αb
2

)∣∣∣2
(5.136)
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It results

sh(αy)ch∗(αy) = sh(2ky) + j sin(2ky)

2
(5.137)

where the star denotes the complex conjugate and

∣∣∣∣ch

(
αb

2

)∣∣∣∣
2

= sh2
(

kb

2

)
+ cos2

(
kb

2

)
(5.138)

respectively. After substitution, it comes out

S = −kH2
0

4σ

[sh (2ky) − sin (2ky)] + j [sh (2ky) + sin (2ky)]

sh2
(

kb
2

)
+ cos2

(
kb
2

) (5.139)

Therefore, the total power dissipated per unit section of the conductor is

P = Re

{
S

(
−b

2

)}
− Re

{
S

(
b

2

)}
= k

∣∣H0
∣∣2

2σ

sh kb − sin kb

sh2 kb
2 + cos2 kb

2

= ∣∣H0
∣∣2
√

ωμ0

2σ

sh kb − sin kb

ch kb + cos kb
(5.140)

coincident with (5.135).

5.11 Eddy Current in a Cylindrical Conductor under Step
Excitation Current

The problem is that of searching for the current density distribution J(r, t) in a con-
ductor of infinite length and circular cross-section of radius R carrying current i(t)
defined as a step function: i(t) = 0 when t < 0 and i(t) = I when t ≥ 0.

According to (5.2) and (5.44), assuming cylindrical coordinates, the following
equation holds

∂2J

∂r2
+ 1

r

∂J

∂r
− μσ

∂J

∂t
= 0, 0 ≤ r ≤ R (5.141)

subject to the boundary condition

∂J

∂r
= 0, r = 0 (5.142)

the integral condition

2π
∫ R

0
J(r, t)r dr = I (5.143)
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and the initial condition

J(r, 0+) = I

2πR
δ−

(r − R) (5.144)

where δ−
(r − R) = lim

r0→R− δ(r − r0). At t = 0+ a step of current is applied; in the

frequency domain, it corresponds to a vanishing penetration depth (see Section 5.10);
accordingly, current I is concentrated at r = R. The laminar current density JS =
J(r, 0+) determines the magnetic field H such that n × H = JS.

The solution to (5.141) can be obtained by means of the separation of variables

J(r, t) = Jm +
∞∑

k=1

Rk(r)Tk(t), 0 ≤ r ≤ R (5.145)

Substituting (5.145) into (5.141) gives

∞∑
k=1

d2Rk

dr2
Tk + 1

r

∞∑
k=1

dRk

dr
Tk − μ0σ

∞∑
k=1

Rk
dTk

dt
= 0 (5.146)

Let one assume that for any k ≥ 1

R
′′
kTk + 1

r
R′

kTk − μ0σRkT′
k = 0 (5.147)

where R′′
k ≡ d2Rk

dr2 , R′
k ≡ dRk

dr and T′
k ≡ dTk

dt respectively.
After dividing each term of (5.147) by RkTk, it results

R
′′
k

Rk
+ 1

r

R′
k

Rk
− μ0σ

T′
k

Tk
= 0 (5.148)

The latter transforms into the following pair of ordinary differential equations (see
Section 3.3)

μ0σ
T′

k

Tk
≡ −λ2

k (5.149)

R
′′
k

Rk
+ 1

r

R′
k

Rk
≡ −λ2

k (5.150)

namely

T′
k + λ2

k

μ0σ
Tk = 0 (5.151)

R
′′
k + 1

r
R′

k + λ2
kRk = 0 (5.152)

where λ2
k �= 0 is the separation constant.
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The solution to (5.151) is of the type

Tk(t) = αke
−

λ2
kt

μ0σ (5.153)

where αk is a coefficient to be determined.
In turn, from (5.152) it results

Rk(r) = βkJ0(λkr) + γkY0(λkr) (5.154)

where βk and γk are coefficients to be determined, while J0(λkr) and Y0(λkr) are
the zero-order Bessel’s functions of first and second kind, respectively. It is to be
noted that J0(λkr) and Y0(λkr) tend to 1 and to minus infinity, respectively, when
r approaches zero. Since at r = 0 current density should take a finite value at any
time, constant γk must be zero. Therefore, it results

J(r, t) = Jm +
∞∑

k=1

ck J0(λkr)e
−

λ2
kt

μ0σ , 0 ≤ r ≤ R (5.155)

where constants Jm, ck ≡ αkβk and λk are to be determined by imposing boundary
and initial conditions.

If R is very large and so the term 1
r

∂J
∂r in (5.141) is neglected, a closed form of

(5.155) can be determined in a straightforward way. In fact, under this assumption
(5.152) and (5.154) become

R
′′
k + λ2

kRk = 0 (5.156)

and

Rk(r) = ak cos(λkr) + bk sin(λkr) (5.157)

respectively, where ak and bk are coefficients to be determined. As a consequence,
(5.145) becomes

J(r, t) = Jm +
∞∑

k=1

e
−

λ2
kt

μ0σ [ak cos(λkr) + bk sin(λkr)] (5.158)

From (5.142) it follows that:

λkbke
−

λ2
kt

μσ = 0 (5.159)

Therefore, bk = 0. In turn, from (5.143) and (5.158) it results

JmπR2 +
∞∑

k=1

2π
λ2

k

dke
−

λ2
kt

μ0σ [λkR sin(λkR) + cos(λkR) − 1] = I (5.160)
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where dk ≡ ak; (5.160) is fulfilled if Jm = I
πR2 , which represents the impressed

current density when t → ∞, and if either dk = 0, k ≥ 1 or

[λkR sin(λkR) + cos(λkR) − 1] = 0, k ≥ 1 (5.161)

Two solutions to (5.161) exist, namely λk = 2kπ
R with k ≥ 1 integer number and{

γk

}
such that λk < γk < λk+1 with k ≥ 1 integer number.

Accordingly, a particular solution is

J(r, 0+) = I

2πR
δ−

(r − R) (5.162)

and

J(r, t) = I

πR2
+

∞∑
k=1

dke
−4k2π2t

μ0σR2
cos
(

2kπ
r

R

)
(5.163)

where coefficient dk is determined for r = 0 by means of (5.144); this implies
∞∑

k=1

dk = − I

πR2
, r ∈ [0, R) (5.164)

Considering the kth contribution to (5.163), it can be noted that the current carried
by the round conductor is distributed sinusoidally in space and diffuses exponen-

tially with a time constant τk = μ0σR2

4k2π2 . At time t the penetration depth can be defined

as δk = 2π
√

t
μ0σ

and the minimum value of current density is located on the axis

of the conductor; t = 0+ is the critical instant, when a laminar current density JS is
originated at r = R such that

∫
Γ

JSdΓ = ∫
Ω

JmdΩ fulfilling condition (5.143).
In the insulating medium surrounding the conductor, the current density is zero,

while the induced electric field E = Eiz fulfils the equation

∂E

∂r
= μ0I

2πr
δ (t) , r > R (5.165)

By integrating the latter with respect to r, the finite variation ΔE of the field between
any position r > R and the boundary r = R of the conductor results

ΔE = E(r) − E(R) = μ0I

2π
ln

r

R
δ (t) , r ≥ R (5.166)

The field is impulsive, i.e. E = 0, t �= 0.

5.12 Electromagnetic Field Equations in Different
Reference Frames

In free space, let us consider an inertial frame of reference O = (x, y, z) in which
the observer perceives an electric field of intensity E and a magnetic field of induction
B at time t.
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Let a second frame of reference O′ = (x′, y′, z′) move at a constant velocity
u = (u, 0, 0) with respect to O at time t′.

Lorentz’s transformation of coordinates, in which any observer measures the
same velocity c of light in the free space, i.e. defines the same wave equation, can be
obtained in the following way. Let time t and time t′ be initialised so that at t = t′ = 0
the axes of the two frames are coincident, namely x′ = x, y′ = y, z′ = z. Owing
to symmetry, it can be stated that O′ moves at a velocity u with respect to O and,
conversely, O moves at a speed −u with respect to O′. This implies

x′ = γ(x − ut) (5.167)

x = γ(x′ + ut′) (5.168)

where γ is a dimensionless coefficient to be determined. To this end, let a light flash,
originated at the origin of both systems at t = t′ = 0, be considered. The light travels
as a spherical wave in both frames with the same speed c; therefore, the equation of
the wavefront is

x2 + y2 + z2 = c2t2 (5.169)

in frame O and

x′2 + y′2 + z′2 = c2t′2 (5.170)

in frame O′. Since y′ = y and z′ = z, it follows

x2 − c2t2 = x′2 − c2t′2 (5.171)

and then

t′2 = x′2

c2
− x2

c2
+ t2 (5.172)

Replacing x′ by means of (5.167) one obtains

t′2 = γ 2 − 1

c2
x2 − 2

γ 2u

c2
xt +

(
γ 2u2

c2
+ 1

)
t2 (5.173)

Independently, taking t′ from (5.168) and using (5.167) one has

t′2 =
(

1 − γ 2

γu

)2

x2 − 2
γ 2 − 1

u
xt + γ 2t2 (5.174)

By equating the corresponding coefficients of (5.173) and (5.174), it results

γ = 1√
1 − u2

c2

(5.175)
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and then

t′ = t − u
c2 x√

1 − u2

c2

(5.176)

Finally, the Lorentz’s transformation from O to O′ results

x′ = γ (x − ut); y′ = y; z′ = z; t′ = γ
(

t − u

c2
x
)

(5.177)

The inverse transformation can be obtained by changing the sign of velocity u, namely

x = γ (x′ + ut′); y = y′; z = z; t = γ
(

t′ + u

c2
x′) (5.178)

Galilean transformation, on the contrary, is:

x′ = x − ut; y′ = y; z′ = z; t′ = t (5.179)

and

x = x′ + ut′; y = y′; z = z′; t = t′ (5.180)

Using Lorentz’s transformation, Maxwell’s equations remain the same, if electric
field intensity E transforms as follows:

E′
x = Ex; E′

y = γ
(
Ey − uBz

) ; E′
z = γ

(
Ez + uBy

)
(5.181)

If u << c, then γ ∼= 1 and

E′
x = Ex; E′

y = Ey − uBz; E′
z = Ez + uBy (5.182)

For vector B, the transformation is

B′
x = Bx; B′

y = γ
(
By + uμ0ε0Ez

) ; B′
z = γ

(
Bz + uμ0ε0Ey

)
(5.183)

If u << c, then

B′
x = Bx; B′

y = By + uμ0ε0Ez; B′
z = Bz + uμ0ε0Ey (5.184)

For the sake of some examples, let us first focus on a point charge q moving at a
constant velocity u with u << c in free space with respect to a fixed frame (Fig. 5.7).

If the observer moves together with the charge, he/she just observes

E
′ = q

4πε0r2
ir

B
′ = 0 (5.185)
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Fig. 5.7 Fields of a moving charge in different frames: (a) moving observer; (b) fixed observer

where r is the radial coordinate. An observer in the fixed frame sees

E = E
′

B = μ0ε0u × E (5.186)

Therefore, it is reasonable to state that magnetism is a relativistic aspect of electricity;
in other words, a magnetic field is given, if a relative motion between charge and
observer is established.

In particular, (5.186) gives the field of a single travelling charge; the induction
field can be expressed as

B = μ0

4π
qu × ir

r2
(5.187)

If ndΩ travelling charges of value q are available in the elementary volume dΩ,
the elementary field is

dB = μ0

4π
nqu × ir

r2
dΩ = μ0

4π
J × ir

r2
dΩ (5.188)

where J = nqu is the current density. If the direction of u, and so J, is coincident
with the z axis, then (5.188) corresponds to (3.79) and by integration the Biot-Savart
law follows (see 3.81).

As a second example, let a rectangular coil placed in a uniform induction field B
orthogonal to it be considered (Fig. 5.8). It is assumed that one of the four sides of
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the coil is movable with a constant velocity u with u << c. While an observer at
rest with respect to a fixed frame measures the magnetic field of induction B and no
electric field, a second observer, located on the movable side, observes an electric
field E parallel to the movable side, the magnitude of which is E = uB.

5.12.1 A Relativistic Example: Steady Motion and Magnetic
Diffusion

Let a pair of plane and parallel electrodes be considered; they are supposed to have
infinite extension in the x direction, along which a finite portion of width w is taken
into account. The length of the electrodes in the z direction is finite and equal to λ

while the distance between them is equal to d (Fig. 5.9). An external circuit forces
a constant current I through a conductive strip, filling the region between the two
electrodes, such that current lines are normal to the electrodes; assuming d << λ,
end effects in the current distribution are neglected.

Current lines when the strip speed is zero are also shown.

Fig. 5.8 Rectangular coil with a movable side in an induction field

Fig. 5.9 Parallel electrodes with a conducting strip: (a) x − y cross-section, (b) z − y cross-section
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The strip of infinite extension, which exhibits conductivity σ and permeability μ0,
is free to slide at a constant speed u = uiz. After (5.45) and (5.11) the induction field
in the strip is governed by the following equation

μ0σ
∂B

∂t
− ∇2

B = μ0σ∇ × (u × B
)

(5.189)

subject to appropriate boundary and initial conditions; thanks to the assumptions
made on the geometry of the electrodes, J = (0, J, 0) and B = (B, 0, 0). The problem
can be tackled in either of two ways.

Steady State in the Fixed Frame

This viewpoint implies that

– the observer is at rest with respect to the electrodes
– the strip slides at a speed u with respect to the observer
– the field is steady, i.e. ∂B

∂t = 0

The governing equation (5.189) reduces to

∂2B

∂z2
= μ0σu

∂B

∂z
(5.190)

As far as the boundary conditions are concerned, the following remark can be put
forward. At z = λ, the Ampère’s law gives −H(0)w + H(λ)w = I. Assuming that
the field is zero at z = 0, it turns out to be

B(0) = 0, B(λ) = μ0I

w
(5.191)

Consequently, the solution to (5.190) is

B(z) =
2∑

i=1

kie
λiz (5.192)

with λi such that λ2
i − μ0σuλi = 0, giving λ1 = 0 and λ2 = μ0σu, respectively.

Applying boundary conditions (5.191), it follows

k1 + k2 = 0, k1 + k2eμ0σuλ = μ0I

w
(5.193)

namely

k1 = μ0I

w

1

1 − eμ0σuλ
, k2 = −k1 (5.194)
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Therefore, it results

B(z) = μ0I

w

1 − eμ0σuz

1 − eμ0σuλ
, u �= 0, 0 < z < λ (5.195)

The distribution of flux lines is non-linear with z.
The associated current density J = μ−1

0 ∇ × B is

J(z) = μ−1
0

∂B

∂z
= μ0I

w

σueμ0σuz

eμ0σuλ − 1
, u �= 0, 0 ≤ z ≤ λ (5.196)

which is non-uniform with z.
In the case u = 0 (strip at rest), after (5.195) and (5.196) it follows

B(z) = μ0I

w
lim
u→0

μ0σzeμ0σuz

μ0σλeμ0σuλ
= μ0I

w

z

λ
(5.197)

and

J(z) = μ0I

w
lim
u→0

σeμ0σuz + μ0σ
2uzeμ0σuz

μ0σλeμ0σuλ
= I

wλ
(5.198)

The distribution of flux lines is linear with z, while the current density is uniform.

Transient State in the Moving Frame

This viewpoint implies that the observer travels at the same speed as the field; there-
fore, in (5.189) u = 0. In order to have a non-uniform field in the strip equal to
(5.195), an appropriate value of the time derivative of B should be prescribed; this
way, a problem of transient magnetic diffusion is set up. In particular, comparing
(5.189) with u = 0 and (5.190), it turns out to be

μ0σ
∂B

∂t
− u

∂2B

∂z2
= 0 (5.199)

with

∂B

∂t
= u

∂B

∂z
= μ2

0I

w

σu2zeμ0σuz

eμ0σuλ − 1
(5.200)

It can be noted that the time derivative varies with coordinates and is constant in
time. Accordingly, the initial condition is

B(z) = μ0I

w

z

λ
, t = 0 (5.201)

Boundary conditions are the same as in the previous case.
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5.12.2 Galileian and Lorentzian Transformations
in Electromagnetism

It can be shown that equations of electromagnetism are invariant with respect to the
Lorentzian transformation, not to the Galilean transformation. In particular, referring
to the one-dimensional wave equation (see Section 5.6), it can be proven that if
φ(x, t) fulfils the equation

∂2φ

∂x2
− 1

c2

∂2φ

∂t2
= 0 (5.202)

then φ(x′, t′) fulfils the equation

∂2φ

∂x′2 − 1

c2

∂2φ

∂t′2
= 0 (5.203)

where (x,t) is related to (x′, t′) through (5.177), in which u is now called v.
In fact, using the chain derivation rule with respect to x′, one has

∂φ

∂x′ = ∂φ

∂x

∂x

∂x′ + ∂φ

∂t

∂t

∂x′ = ∂φ

∂x

(
1 − v2

c2

)− 1
2

+

+ ∂φ

∂t

v

c2

(
1 − v2

c2

)− 1
2

(5.204)

at the first order, and

∂2φ

∂x′2 = ∂2φ

∂x2

(
1 − v2

c2

)−1

+ ∂2φ

∂x∂t

v

c2

(
1 − v2

c2

)− 1
2 ∂x

∂x′ +

+ ∂2φ

∂t∂x

(
1 − v2

c2

)− 1
2 ∂t

∂x′ + ∂2φ

∂t2

v2

c4

(
1 − v2

c2

)−1

(5.205)

at the second order. Since ∂2

∂x∂t = ∂2

∂t∂x , it follows that

∂2φ

∂x′2 = ∂2φ

∂x2

(
1 − v2

c2

)−1

+ 2
∂2φ

∂x∂t

v

c2

(
1 − v2

c2

)−1
∂x

∂x′ +

+ ∂2φ

∂t2

v2

c4

(
1 − v2

c2

)−1

(5.206)

In turn, by deriving with respect to t′, one obtains

∂φ

∂t′
= ∂φ

∂x

∂x

∂t′
+ ∂φ

∂t

∂t

∂t′
= ∂φ

∂x
v

(
1 − v2

c2

)− 1
2

+

+ ∂φ

∂t

(
1 − v2

c2

)− 1
2

(5.207)
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at the first order, and

∂2φ

∂t′2
= ∂2φ

∂x2
v

(
1 − v2

c2

)− 1
2 ∂x

∂t′
+ ∂2φ

∂x∂t

(
1 − v2

c2

)− 1
2 ∂x

∂t′
+

+ ∂2φ

∂t∂x
v

(
1 − v2

c2

)− 1
2 ∂t

∂t′
+ ∂2φ

∂t2

(
1 − v2

c2

)− 1
2 ∂t

∂t′
(5.208)

at the second order. It follows that

∂2φ

∂t′2
= ∂2φ

∂x2
v2
(

1 − v2

c2

)−1

+ 2
∂2φ

∂x∂t
v

(
1 − v2

c2

)−1

+

+ ∂2φ

∂t2

(
1 − v2

c2

)−1

(5.209)

As a result, it turns out to be

∂2φ

∂x′2 − 1

c2

∂2φ

∂t′2
= ∂2φ

∂x2
− 1

c2

∂2φ

∂t2
(5.210)

Conversely, using Galileian transformations (5.179) one has

∂2φ

∂x′2 − 1

c2

∂2φ

∂t′2
= ∂2φ

∂x2

1 − v2

c2

1 − v2

c2

+ 2
∂2φ

∂x∂t

v
c2 − v

c2

1 − v2

c2

+

+ ∂2φ

∂t2

v2

c4 − 1
c2

1 − v2

c2

− 1

c2

∂2φ

∂t2

1 − v2

c2

1 − v2

c2

(5.211)

It follows that

∂2φ

∂x′2 = ∂2φ

∂x2
(5.212)

and

∂2φ

∂t′2
= v2 ∂2φ

∂x2
+ 2v

∂2φ

∂x∂t
+ ∂2φ

∂t2
(5.213)

One obtains

∂2φ

∂x′2 − 1

c2

∂2φ

∂t′2
= ∂2φ

∂x2
− v2

c2

∂2φ

∂x2
− 2

v

c2

∂2φ

∂x∂t
− 1

c2

∂2φ

∂t2
=

=
(

1 − v2

c2

)
∂2φ

∂x2
− 2

v

c2

∂2φ

∂x∂t
− 1

c2

∂2φ

∂t2
(5.214)

Finally, it results

∂2φ

∂x′2 − 1

c2

∂2φ

∂t′2
�= ∂2φ

∂x2
− 1

c2

∂2φ

∂t2
(5.215)




