
Chapter 4
Numerical Methods for Solving
Boundary-Value Problems

4.1 Variational Formulation in Two-Dimensional Magnetostatics

Let the following magnetostatic boundary-value problem be considered

− ∇ ·
(

μ−1∇A
)

= J in Ω (4.1)

A = 0 along ΓD (4.2)

∂A

∂n
= 0 along ΓN (4.3)

where ΓD ∪ ΓN = Γ is the boundary of the two-dimensional simply-connected
domain Ω, while A and μ are vector potential and magnetic permeability, respec-
tively. Assuming rectangular coordinates, one has A = Aiz and J = Jiz, whereas in
cylindrical coordinates A = Aiϕ and J = Jiϕ.

It is assumed that J and the second derivative of A are continuous in Ω so that the
integral of both sides of (4.1) exists.

A way to approximate the solution to (4.1)–(4.3) is to relax the differential formu-
lation of the boundary-value problem (weak formulation); to this end, the average of
both sides of (4.1), weighted by a suitable test function, is considered. Accordingly,
if u is a test function which is continuous up to its second derivative, from (4.1)
one has

u
(
∇ ·
(

μ−1∇A
)

+ J
)

= 0 (4.4)

and, by integrating over the domain, one gets∫
Ω

u∇ ·
(

μ−1∇A
)

dΩ +
∫

Ω

Ju dΩ = 0 (4.5)

Due to vector identity (A.14), taking ϕ = u and V = μ−1∇A, it follows∫
Ω

∇ ·
(

uμ−1∇A
)

dΩ −
∫

Ω

∇u · μ−1∇A dΩ +
∫

Ω

Ju dΩ = 0 (4.6)
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By applying Gauss’s theorem one obtains∫
Γ

uμ−1∇A · n dΓ −
∫

Ω

∇u · μ−1∇A dΩ +
∫

Ω

Ju dΩ =

=
∫

ΓD

uμ−1∇A · n dΓ +
∫

ΓN

uμ−1 ∂A

∂n
dΓ +

−
∫

Ω

∇u · μ−1∇A dΩ +
∫

Ω

Ju dΩ = 0 (4.7)

Due to boundary conditions (4.2) and (4.3) the first two terms are zero; therefore,
it results

−
∫

Ω

∇u · μ−1∇A dΩ +
∫

Ω

Ju dΩ = 0 (4.8)

which is the variational equation associated to the differential equation (4.1).
Now, taking u = δA where δA is the elementary variation of A, (4.8) becomes

−
∫

Ω

δ∇A · μ−1∇A dΩ +
∫

Ω

JδA dΩ = 0 (4.9)

or, equivalently

δ
[∫

Ω

(
1

2μ
∇A · ∇A − JA

)
dΩ

]
= 0 (4.10)

which states the necessary condition for A to be a steady point of the functional

χ(A) =
∫

Ω

1

2μ
∇A · ∇A dΩ −

∫
Ω

JA dΩ (4.11)

In other words, if A is a solution of differential equation (4.1) subject to (4.2) and
(4.3), then A is a solution also of variational equation (4.10) and is such to give origin
to a steady point of functional (4.11).

Conversely, having defined the energy functional of the simply connected domain
Ω as

χ =
∫

Ω

1

2μ
∇A · ∇A dΩ −

∫
Ω

JA dΩ (4.12)

or, thanks to (2.15)

χ =
∫

Ω

1

2μ
B · B dΩ −

∫
Ω

JA dΩ (4.13)

where

B =
(

∂A

∂y
, −∂A

∂x
, 0

)
= (∇A

)⊥
(4.14)

(see Section 2.3.2), equation (4.1) follows.
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In fact, let the first-order variation δχ of functional χ, which represents minus
the co-energy of the domain Ω for given current density (see Section 2.3.5), be
considered. It results

δχ =
∫

Ω

1

2μ
δ(∇A · ∇A)dΩ −

∫
Ω

JδA dΩ =

=
∫

Ω

[
1

2μ
∇(δA) · ∇A + 1

2μ
∇A · ∇(δA)

]
dΩ −

∫
Ω

JδA dΩ = (4.15)

=
∫

Ω

μ−1∇A · ∇(δA)dΩ −
∫

Ω

JδA dΩ

Due to (A.14) with ϕ = δA and V = μ−1∇A one has

δχ =
∫

Ω

∇ ·
(

δAμ−1∇A
)

dΩ −
∫

Ω

δA∇ ·
(

μ−1∇A
)

dΩ −
∫

Ω

JδA dΩ (4.16)

Then, applying Gauss’s theorem, it follows

δχ =
∫

Γ

δAμ−1∇A · n dΓ −
∫

Ω

δA
(∇ · μ−1∇A + J

)
dΩ =

=
∫

ΓD

μ−1δA∇A · n dΓ +
∫

ΓN

μ−1δA
∂A

∂n
dΓ −

∫
Ω

δA
(∇ · μ−1∇A + J

)
dΩ

(4.17)

If A fulfils (4.2) and (4.3), one has

δχ = −
∫

Ω

δA
(∇ · μ−1∇A + J

)
dΩ (4.18)

Since the co-energy has a steady point when δχ = 0, the Poisson’s equation

∇ · μ−1∇A + J = 0 (4.19)

is verified; (4.19) is called the Euler’s equation associated to functional (4.12)
As a result, the equivalence between the search of a solution to Poisson’s equation

and the search of a steady point of an energy functional has been proven. The two
approaches are known as Ritz’s method and Galerkin’s method, respectively.

According to the latter, a numerical procedure approximating the minimization
of the energy functional is developed.

The following remarks are applicable:

(i) Dirichlet’s condition (4.2) is an essential boundary condition, because the value
of A must be forced at least in a point of the boundary.

(ii) Homogeneous Neumann’s condition (4.3) is a natural boundary condition,
because it is already taken into account both in (4.7) and (4.17).
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4.2 Finite Elements for Two-Dimensional Magnetostatics

4.2.1 Discretization of Energy Functional

Let the following continuous problem be considered: find the steady point of
χ(A), A = const. along ΓD, ∂A

∂n = 0 along ΓN, where

χ(A) =
∫

Ω

1

2μ

[(
∂A

∂x

)2

+
(

∂A

∂y

)2
]

dΩ −
∫

Ω

JA dΩ (4.20)

is the energy functional associated to a simply-connected domain Ω in which rect-
angular coordinates are assumed. In (4.20) it is supposed that A is continuous up to
its first derivative, while J is assumed to be a continuous function.

Let Ω be discretized by means of a grid of triangular elements subject to the
following constraints (Fig. 4.1):

– Two adjacent elements do not overlap
– No vertex of a triangle belongs to the edge of an adjacent triangle

The following discretization of problem (4.20) is introduced: find the steady point
of χ(A) for the net of triangles of the grid, upon the condition that the restriction of
potential A to an element of the given grid is represented by a linear polynomial and
A = const along ΓD, ∂A

∂n = 0 along ΓN. As a consequence, in the whole domain the
potential A is approximated by a piecewise-linear function.

Given a numbering of grid nodes (i = 1, 2, . . . , n), the piecewise-linear functions

ψi(x, y) = 1 at node i = 1, n

ψj(x, y) = 0 at all the other nodes j = 1, n, j �= i (4.21)

are called global shape functions (Fig. 4.2). A can be written as

A(x, y) =
n∑

i=1

ψi(x, y)Ai (4.22)

where Ai is the unknown value of A(x, y) at ith node and A(x, y) varies linearly.

2

1
1

2
2

1

a b c

Fig. 4.1 Examples of incorrectly (a, b) and correctly (c) shaped triangles
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i

Fig. 4.2 Detail of a grid: representation of the global shape function associated to ith node. Shaded
triangles show the linear variation of the function

After substituting (4.22) in (4.20) one obtains

χ(A1, A2, . . . , An) =
∫

Ω

1

2μ

⎡
⎣
(

n∑
i=1

Ai
∂ψi

∂x

)2

+
(

n∑
i=1

Ai
∂ψi

∂y

)2
⎤
⎦ dΩ +

−
∫

Ω

J
n∑

i=1

AiψidΩ (4.23)

that represents the discrete version of (4.20).
In (4.23) the terms dependent on just Ai can be separated from those independent

of Ai. Explicitly, one gets

χ(A1, A2, . . . , An) = A2
i

∫
Ω

1

2μ

[(
∂ψi

∂x

)2

+
(

∂ψi

∂y

)2
]

dΩ +

+ 2Ai

n∑
j=1
j�=i

Aj

∫
Ω

1

2μ

(
∂ψi

∂x

∂ψj

∂x
+ ∂ψi

∂y

∂ψj

∂y

)
dΩ +

− Ai

∫
Ω

JψidΩ −
n∑

k=1
k �=i

Ak

∫
Ω

JψkdΩ (4.24)

In order A = (A1, A2, . . . , An) to make functional (4.23) steady, it must be

∂χ
∂Ai

= 0, i = 1, 2, . . . , n (4.25)
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From (4.24) and (4.25) one obtains

Ai

∫
Ω

μ−1

[(
∂ψi

∂x

)2

+
(

∂ψi

∂y

)2
]

dΩ +

+
n∑

j=1
j�=i

Aj

∫
Ω

μ−1
(

∂ψi

∂x

∂ψj

∂x
+ ∂ψi

∂y

∂ψj

∂y

)
dΩ +

−
∫

Ω

JψidΩ = 0, i = 1, 2, . . . , n (4.26)

If should be noted that (4.26) represents a linear system of n equations in n unknowns
Ai. If the system is expressed in matrix form, the entries of the coefficient matrix
H(n, n) become

hij =
∫

Ω

1

μ

(
∂ψi

∂x

∂ψj

∂x
+ ∂ψi

∂y

∂ψj

∂y

)
dΩ, i, j = 1, 2, . . . , n (4.27)

while the entries of the source vector d(n, 1) are

di =
∫

Ω

Jψi dΩ, i = 1, 2, . . . , n (4.28)

Then, system (4.26) can be written in matrix form as

H A = d (4.29)

where H(n, n) is the reluctance (H−1 m) matrix, while A(n, 1) and d(n, 1) are nodal
potential (Wb m−1) and nodal current (A) vectors, respectively.

It is easy to realize that in (4.27) functions ψi, ψj can be interchanged, i.e. matrix
H is symmetric. The problem of finding a steady point of functional (4.23) is then
reduced to the solution of a linear system governed by matrix H and source term d.

It should be noted that system (4.29) is singular; in order its solution to be unique,
it is necessary to fix the value of potential A of all nD nodes where (4.2) holds; at
least one node located along boundary Γ must be constrained.

4.2.2 Local Shape Functions in Rectangular Coordinates

Referring to a triangle of the grid, the following local shape functions

ψk(x, y) = 1 at node k = 1, 2, 3 anticlockwise
ψk(x, y) = 0 at the other two nodes

(4.30)

with linear variation with respect to (x, y) can be introduced; they represent the
restriction of (4.21) to node k of the triangle.
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Referring to a triangle of vertices V1 = (x1, y1), V2 = (x2, y2), V3 = (x3, y3),
the following functions

ψ1(x, y) = 1

2S
[(x2y3 − x3y2) + x(y2 − y3) + y(x3 − x2)]

ψ2(x, y) = 1

2S
[(x3y1 − x1y3) + x(y3 − y1) + y(x1 − x3)] (4.31)

ψ3(x, y) = 1

2S
[(x1y2 − x2y1) + x(y1 − y2) + y(x2 − x1)]

where

S = 1

2

∣∣∣∣∣∣
1 x1 y1
1 x2 y2
1 x3 y3

∣∣∣∣∣∣ (4.32)

is the area of the triangle considered, are linear in both x and y. They fulfil conditions
(4.30) and are the local shape functions. A geometric interpretation of (4.31) is given
in Fig. 4.3.

Considering an inner point V(x, y), the ratio

s

h
= S1

S1 + S2 + S3
= S1

S
(4.33)

is called area coordinate ξ1 referred to vertex 1; in general, area coordinates are
defined as

ξk = Sk

S
, k = 1, 2, 3 (4.34)

The following properties hold

0 ≤ ξk ≤ 1,

3∑
k=1

ξk = 1, k = 1, 2, 3 (4.35)

h-s

s

S1

S2

S3

V3

V2

V1

V

Fig. 4.3 Geometric interpretation of local shape functions
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It can be proven that

ψk = ξk, k = 1, 2, 3 (4.36)

In fact, Sk is obtained by substituting vector [1 x, y] in the kth row of area matrix
determinant (4.32); considering (4.34) and (4.31), (4.36) immediately follows.

Consequently, the restriction of potential A(x, y) to the given triangle is

A(x, y) =
3∑

k=1

ψk(x, y)Ak = [ψ1(x, y) ψ2(x, y) ψ3(x, y)
]⎡⎣A1

A2
A3

⎤
⎦ (4.37)

where A1, A2, A3 are the nodal values of potential in the triangle itself.

4.2.3 Coefficient Matrix and Source Vector

If (4.27) is applied to all the triangular elements composing the grid, the entry hij is
the sum of the contributions of each element e

hij =
∑∫

e
μ−1

(
∂ψi

∂x

∂ψj

∂x
+ ∂ψi

∂y

∂ψj

∂y

)
dx dy, i, j = 1, 2, . . . , n (4.38)

where ψi, ψj are the global shape functions.
However, it is easily seen that the contribution of a triangle e to the integral in

(4.38) is zero if either the ith or the jth node does not belong to triangle e itself. As
a consequence, the majority of terms forming the integral is zero and the matrix is
sparse.

In this respect, it is convenient to define the local coefficient matrix He(3, 3)

associated to a single triangle e having area Se with entries

hkλ =
∫

e
μ−1

(
∂ψk

∂x

∂ψλ

∂x
+ ∂ψk

∂y

∂ψλ

∂y

)
dx dy, k, λ = 1, 2, 3 (4.39)

where ψk, ψλ are local shape functions.
From (4.31), by a cyclic permutation of indices, it results

∂ψk

∂x
= yk+1 − yk+2

2Se
≡ ak

2Se

∂ψk

∂y
= xk+2 − xk+1

2Se
≡ bk

2Se
(4.40)

with k = 1, 2, 3 and x4 = x1, x5 = x2, y4 = y1, y5 = y2. The entries of the local
coefficient matrix (4.39) are then given by

hkλ =
∫

e

(
akaλ + bkbλ

4μS2
e

)
dx dy = akaλ + bkbλ

4μSe
, k, λ = 1, 2, 3 (4.41)
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In practice, the entries of the global matrix are assembled starting from entries of
local matrices, for the correspondence between local and global numbering of nodes
is unique. The assembling rules will be clarified later on by means of an example.

In a similar way, it is possible to construct (4.28) by assembling local contributions;
in fact

di =
∫

Ω

JψidΩ =
∑∫

e
Jψk dx dy, i = 1, 2, . . . , n, k = 1, 2, 3 (4.42)

The local source vector de associated to a single triangle e has entry

dk =
∫

e
Jψk dx dy, k = 1, 2, 3 (4.43)

In particular, if current density J is assumed to be constant in the element considered,
each local source term is equal to JSe

3 .

4.2.4 From Potential to Field

Assuming that the magnetic potential A (x, y) is approximated by a linear polynomial
on each element of the grid, if A1, A2, A3 are the values of potential in vertices
V1 = (x1, y1), V2 = (x2, y2), V3 = (x3, y3) of triangle e, respectively, the
induction field B = (Bx, By, Bz

)
is approximated on each element by

B =
(

∂A

∂y
, −∂A

∂x
, 0

)
(4.44)

From (4.32) and (4.37) it results

[
Bx
By

]
= 1

2Se

[
x3 − x2 x1 − x3 x2 − x1
y3 − y2 y1 − y3 y2 − y1

]⎡
⎣A1

A2
A3

⎤
⎦ = (4.45)

= 1

2Se

[
b1 b2 b3

−a1 −a2 −a3

]⎡
⎣A1

A2
A3

⎤
⎦

Apparently, matrix

1

2Se

[
b1 b2 b3

−a1 −a2 −a3

]
(4.46)

approximates the curl operator.
The following remark can be put forward. At the interface between two triangles,

having an edge in common, both normal component Bn of induction field and tan-
gential component of magnetic field Ht = μ−1Bt are not continuous. In other words,
field components are approximated by means of piecewise constant functions all
over the domain.
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Fig. 4.4 Grid discretizing a half-slot

4.2.5 Magnetic Field in a Slot Solved by the Finite Element Method

Let the test problem shown in Fig. 2.13a be considered. The rectangular domain cor-
responding to half a slot is discretized by means of six triangular elements numbered,
for instance, as shown in Fig. 4.4. The n nodes are numbered from 1 to 8 arbitrarily
within the grid and from 1 to 3 (anticlockwise) inside each triangle.

According to (4.41), the coefficient matrix associated to a triangle e having vertices
V1 = (x1, y1), V2 = (x2, y2) and V3 = (x3, y3) results

He = 1

4μS

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(y2 − y3)
2+

+ (x3 − x2)
2

(y2 − y3) (y3 − y1) +
+ (x3 − x2) (x1 − x3)

(y2 − y3) (y1 − y2) +
+ (x3 − x2)(x2 − x1)

(y3 − y1)
2 +

+ (x1 − x3)
2

(y3 − y1) (y1 − y2) +
+ (x1 − x3) (x2 − x1)

symmetric
(y1 − y2)

2 +
+ (x2 − x1)

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.47)

where μ and S are magnetic permeability and area of the triangle, respectively.
For element 1, given height h and half-width λ of the slot, one has V1 =

(0, 0), V2 = (λ, 0), V3 = (0, h
3 ) and the local coefficient matrix is:

H1 = 1

4μS

⎡
⎢⎣

h2

9 + λ2 − h2

9 −λ2

h2

9 0

symm. λ2

⎤
⎥⎦ (4.48)
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Analogously, for element 2, one has V1 = (λ, 0), V2 = (λ, h
3 ), V3 = (0, h

3 ) and
the local coefficient matrix is:

H2 = 1

4μS

⎡
⎢⎣

λ2 −λ2 0
h2

9 + λ2 − h2

9

symm. h2

9

⎤
⎥⎦ (4.49)

From Fig. 4.4 it can be noted that elements 3 and 5 correspond to element 1 and
keep the same local numbering of nodes as in element 1. The same happens for
elements 4 and 6 with respect to element 2. Therefore, it results: H3 = H1 and
H5 = H1; H4 = H2 and H6 = H2.

Supposing current density J is uniform, local source terms are all equal to JS
3 in

each triangle and

de = JS

3

⎡
⎣1

1
1

⎤
⎦ (4.50)

In general, the global coefficient matrix H can be assembled node by node according
to the following rule:

– Diagonal terms hii are obtained as the sum of the corresponding terms of local
matrices of all triangles having ith node in common

– Off-diagonal terms hij are obtained by summing the corresponding terms of local
matrices of the two triangles sharing the edge between ith node and jth node

For instance, global node 1 belongs to element 1 only, corresponding to local node
1; therefore H(1, 1) = H1(1, 1). Moreover, global node 2 is in common between
elements 1 and 2 for which it corresponds to local nodes 2 and 1, respectively;
therefore H(2, 2) = H1(2, 2) + H2(1, 1). Going on, global node 3 is in common
among elements 1, 2, 3 where it corresponds to local nodes 3, 3, 1 respectively;
therefore H(3, 3) = H1(3, 3) + H2(3, 3) + H3(1, 1).

Passing to off-diagonal terms, for the sake of an example, the edge joining global
node 3 to global node 4 is in common between elements 2 and 3; moreover, global
node 4 corresponds to local node 2 in both elements 2 and 3; therefore one has
H(3, 4) = H2(2, 3) + H3(1, 2) = H(4, 3).

By iterating the assembling algorithm on all global nodes, finally it results:

H = 1

4μS

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h2

9 + λ2 − h2

9 −λ2 0 0 0 0 0
h2

9 + λ2 0 −λ2 0 0 0 0

2 h2

9 + 2λ2 −2 h2

9 −λ2 0 0 0

2 h2

9 + 2λ2 0 −λ2 0 0

2 h2

9 + 2λ2 −2 h2

9 −λ2 0

2 h2

9 + 2λ2 0 −λ2

symmetric h2

9 + λ2 − h2

9
h2

9 + λ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.51)
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It can be noted that H is sparse and has a bandwidth that depends on the global
numbering of the grid nodes; moreover, it exhibits diagonal-dominance, in fact
H(i, i) ≥∑n

j=i+1 |H(i, j)|, i = 1, n − 1. By assembling local contributions node by
node, the source vector d(n, 1) is obtained:

d = JS

3
[1 2 3 3 3 3 2 1]T (4.52)

In this way, the solving system (4.29) results.
In order matrix H(n, n) to be non-singular, the boundary condition of Dirichlet’s

type should be imposed in at least one node. In the test problem: A1 = A2 = 0. In
order to fulfil A1 = 0, the first row and the first column of H are cancelled, while to
fulfil A2 = 0 the second row and the second column of H are cancelled, so obtaining
a matrix H′(n − 2, n − 2) that is non-singular. Correspondingly, the first and the
second terms of source vector are cancelled, obtaining a vector d′(n −2, 1). Finally,
the reduced algebraic system comes out

H′A′ = d′ (4.53)

with

H′ = 1

4μS

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 h2

9 + 2λ2 −2 h2

9 −λ2 0 0 0

2 h2

9 + 2λ2 0 −λ2 0 0

2 h2

9 + 2λ2 −2 h2

9 −λ2 0

2 h2

9 + 2λ2 0 −λ2

symmetric h2

9 + λ2 − h2

9
h2

9 + λ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.54)

and

d′ = JS

3
[3 3 3 3 2 1]T (4.55)

It should be noted that matrix H′ is better conditioned than matrix H owing to the
specification of boundary condition of the Dirichlet’s kind.

More generally, when the potential Ak to be imposed in the kth node is different
from zero, one should proceed as follows:

– Set H(k, j) = 0, j = 1, n, j �= k
– Set H(i, k) = 0, i = 1, n, i �= k
– Leave H(k,k) unaltered
– Replace dk with H(k, k)Ak
– Replace di with di − H(i, k)Ak, i = 1, n, i �= k.

The sizes of matrix H and vector d remain unchanged.
A few physical remarks are worth being considered. The elements of system

matrix, measured in [H−1m], depend on geometry and material property. In turn, the
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source term JS, measured in [A], can be regarded as the current attributed to element
e while JS

3 represents the nodal current.
From the numerical viewpoint, the following data are assumed: h = 6 cm, λ =

1 cm, μ = 1.25610−6 H m−1, J = 105 A m−2.
All triangles have surface area S = 1 cm2. Considering these data, the condition

number of H is 4.5594 1016, while that of H′ is 120. Matrix H′ is definite positive;
therefore, the solution of the linear system is unique. The solution of the reduced
system (4.54)–(4.55) is

⎡
⎢⎢⎢⎢⎢⎢⎣

A3
A4
A5
A6
A7
A8

⎤
⎥⎥⎥⎥⎥⎥⎦

= 10−3

⎡
⎢⎢⎢⎢⎢⎢⎣

0.1256
0.1256
0.2010
0.2009
0.2270
0.2251

⎤
⎥⎥⎥⎥⎥⎥⎦
(

Wb

m

)
(4.56)

Calculation of the induction field

Knowing node potentials, the components of induction field (Wb m−2) can be
obtained applying (4.45) element by element. To this end, the correspondence
between local and global numbering of nodes, shown in Table 4.1, should be taken
into account.

Element 1

[
Bx
By

]
= 1

2S

[−λ 0 λ
h
3 − h

3 0

]⎡
⎣A1

A2
A3

⎤
⎦ = 10−3

[−50 0 50
100 −100 0

]⎡⎣ 0
0

0.1256

⎤
⎦

= 10−3
[

6.2801
0

]

Element 2

[
Bx
By

]
= 1

2S

[−λ λ 0
0 − h

3
h
3

]⎡⎣A2
A4
A3

⎤
⎦ = 10−3

[−50 50 0
0 −100 100

]⎡⎣ 0
0.1256
0.1256

⎤
⎦

Table 4.1 Correspondence between local and global nodes

Element Local nodes Global nodes

1 1, 2, 3 1, 2, 3
2 1, 2, 3 2, 4, 3
3 1, 2, 3 3, 4, 5
4 1, 2, 3 4, 6, 5
5 1, 2, 3 5, 6, 7
6 1, 2, 3 6, 8, 7
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= 10−3
[

6.2799
0

]

Element 3

[
Bx
By

]
= 1

2S

[−λ 0 λ
h
3 − h

3 0

]⎡⎣A3
A4
A5

⎤
⎦ = 10−3

[−50 0 50
100 −100 0

]⎡
⎣0.1256

0.1256
0.2010

⎤
⎦

= 10−3
[

3.7705
0

]

Element 4

[
Bx
By

]
= 1

2S

[−λ λ 0
0 − h

3
h
3

]⎡
⎣A4

A6
A5

⎤
⎦ = 10−3

[−50 50 0
0 −100 100

]⎡
⎣ 0.1256

0.2009
0.2010

⎤
⎦

= 10−3
[

3.7655
1.043410−2

]

Element 5

[
Bx
By

]
= 1

2S

[−λ 0 λ
h
3 − h

3 0

]⎡
⎣A5

A6
A7

⎤
⎦ = 10−3

[−50 0 50
100 −100 0

]⎡⎣0.2010
0.2009
0.2270

⎤
⎦

= 10−3
[

1.3002
1.043410−2

]

Element 6

[
Bx
By

]
= 1

2S

[−λ λ 0
0 − h

3
h
3

]⎡⎣A6
A8
A7

⎤
⎦ = 10−3

[−50 50 0
0 −100 100

]⎡⎣ 0.2009
0.2251
0.2270

⎤
⎦

= 10−3
[

1.2118
1.872310−1

]

Finally, it results⎡
⎢⎢⎢⎢⎢⎢⎣

B1x
B2x
B3x
B4x
B5x
B6x

⎤
⎥⎥⎥⎥⎥⎥⎦

= 10−3

⎡
⎢⎢⎢⎢⎢⎢⎣

6.2801
6.2799
3.7705
3.7655
1.3002
1.2118

⎤
⎥⎥⎥⎥⎥⎥⎦

;

⎡
⎢⎢⎢⎢⎢⎢⎣

B1y
B2y
B3y
B4y
B5y
B6y

⎤
⎥⎥⎥⎥⎥⎥⎦

= 10−6

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0

10.434
10.434
187.23

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.57)

It should be remarked that in odd elements the value of By depends on A1 − A2
and symmetry implies A1 = A2 (indexes 1 and 2 refer to the local numbering);
in an analogous way, in even elements the value of By depends on −A2 + A3 and
symmetry implies A2 = A3 (indexes 2 and 3 refer to the local numbering). Residuals
of By are due to approximation error in computing potentials.
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Table 4.2 Distribution of nodal error (Fig. 4.4)

Node 3 4 5 6 7 8

Y coordinate 0.02 0.04 0.06
Ei −2.3076 2.3076 −2.5961 2.5961 −4.1409 4.1409

10−5 10−5 10−4 10−4 10−3 10−3

Error analysis

The test problem has an exact analytical solution, namely

A = μJ

(
hy − 1

2
y2
)

(4.58)

(
Bx, By

) = (μJ (h − y) , 0) (4.59)

such that A = 0 at y = 0 and 0 < y < h.
As far as potential is concerned, the local error

Ei = 1 − A(i)

Ai
, i = 3, 8 (4.60)

can be defined, where A(i) and Ai are approximated and exact values of potential at
the ith node, respectively. The distribution of error is reported in Table 4.2.

It can be noted that the local error increases with the distance from constrained
nodes 1, 2; moreover, the potential is overestimated at the left-boundary nodes (x =
0) and underestimated at the right-boundary nodes (x = λ).

In order to test the effect of grid on accuracy, the following norms are introduced

‖f‖2 =
√√√√ np∑

i=3

[f (i)]2 (4.61)

and

‖f‖∞ = max
i=3,np

{f (i)} (4.62)

with np = 8 grid nodes.
In terms of the residual it results

f (i) =
∣∣∣∣1 − Ag(i)

Ai

∣∣∣∣ (4.63)

where Ag is the approximated value of potential computed using grid g while Ai is
the exact one.

Having fixed the size of the slot, the test problem can be solved using grids with
an increasing number of triangular elements.
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Table 4.3 Error norms

No. of elements 6 30 46 330 1210

‖f‖2 0.286 10−2 0.160 10−2 0.441 10−3 0.233 10−3 0.140 10−3

‖f‖∞ 0.414 10−2 0.200 10−2 0.504 10−3 0.252 10−3 0.168 10−3

Table 4.4 Error on elements (coarsest grid)

Element 1 2 3 4 5 6

Ee 0.0624784 −0.0714038 0.0994116 −0.1242645 0.2236068 −0.4472136

The results obtained using different grids give rise to the error norms reported
in Table 4.3; the latter decrease monotonically with the number of elements. In
particular, ‖f‖2 and ‖f‖∞ give a measurement of average and maximum error,
respectively.

In turn, the error in terms of x component of induction field can be defined, in
each element, as follows

Ee = 1 − Be

B
(4.64)

where Be and B are approximated and exact value of the x component of the induc-
tion field, respectively; the exact value is that referred to the gravity centre of the
element. In Table 4.4 the distribution of error is reported, referring to the coarsest
grid composed of six elements.

Again, it can be noted that the error increases as long as the distance from
constrained nodes increases.

Finally, Fig. 4.5 shows the plot of flux lines. The results have been obtained using
a grid composed of 736 triangles with linear variation of potential.

Remarks on the topology of the grid

From Table 4.2 it can be remarked that the approximated values of potential in the
left boundary nodes are greater than the values of corresponding right boundary
nodes. This discrepancy can be attributed to the grid asymmetry. In fact, let a new
grid be considered, as the mirror-image with respect to the previous one; it is shown
in Fig. 4.6.

The coefficient matrices of elements 1 and 2 are

H1 = 1

4μS

⎡
⎢⎣

h2

9 − h2

9 0
h2

9 + λ2 −λ2

symm. λ2

⎤
⎥⎦ (4.65)

H2 = 1

4μS

⎡
⎢⎣

λ2 0 −λ2

h2

9 − h2

9

symm. h2

9 + λ2

⎤
⎥⎦ (4.66)
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Fig. 4.5 Open slot: plot of flux lines

Fig. 4.6 Right-oriented grid discretizing half a slot

respectively. Keeping the same local numbering of nodes, one has H3 = H1 and
H5 = H1; H4 = H2 and H6 = H2. In turn, local source terms are equal in all the
elements

d1 = d2 = d3 = d4 = d5 = d6 = 1

3
JS (4.67)
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By assembling local coefficient matrices and source vectors the system

H∗A∗ = d∗ (4.68)

with

d∗ = JS

3
(2, 1, 3, 3, 3, 3, 1, 2)T (4.69)

results. It can be remarked that H∗ is the same as H in the previous case (4.51); in
turn, d∗ has first and second elements exchanged with respect to d, next-to-the-last
and last elements exchanged as well, the other four components being unmodified.

After imposing boundary conditions in nodes 1 and 2 and introducing numerical
data, the non-singular system

3105

⎡
⎢⎢⎢⎢⎢⎢⎣

1.9904 −1.5924 −0.1990 0 0 0
1.9904 0 −0.1990 0 0

1.9904 −1.5924 −0.1990 0
1.9904 0 −0.1990

symmetric 0.9952 −0.7962
0.9952

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

A3
A4
A5
A6
A7
A8

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

3
3
3
3
1
2

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.70)

is obtained, the solution of which is
⎡
⎢⎢⎢⎢⎢⎢⎣

A3
A4
A5
A6
A7
A8

⎤
⎥⎥⎥⎥⎥⎥⎦

= 10−3

⎡
⎢⎢⎢⎢⎢⎢⎣

0.1255
0.1256
0.2009
0.2010
0.2251
0.2270

⎤
⎥⎥⎥⎥⎥⎥⎦
(

Wb

m

)
(4.71)

The mirror-like aspect of the grid gives rise to the exchange of two pairs of
components of the source vector.

As shown in Table 4.5, this exchange has the final effect of making the potentials
at right-boundary nodes overestimated with respect to the corresponding potentials
at left-boundary nodes.

Table 4.5 Distribution of nodal error (Fig. 4.6)

Node 3 4 5 6 7 8

Y coordinate 0.02 0.04 0.06
Ei 3076 10−5 −2.3076 10−5 2.5961 10−4 −2.5961 10−4 4.1409 10−3 −4.1409 10−3
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4.3 Finite Elements for Three-Dimensional Magnetostatics

4.3.1 Surface and Solid Modelling

Generally, the three-dimensional model of an object can be built by means of either
of two techniques: surface modelling and solid modelling, respectively.

According to the former, given a rectangular reference system, the orthogonal
projection of the given object onto one of the three coordinate planes (Oxy, Oyz,
Oxz) defines the base plane, which is then extruded to form volumes. Subsequently,
the finite-element mesh is generated in two steps: first, a surface mesh is created in the
base plane, using triangles or quadrilateral elements; next, the volume mesh follows,
based on tetrahedrons or prisms, if the surface mesh is composed of triangles, or on
hexahedral elements, otherwise.

In turn, solid modelling uses three-dimensional elementary volumes and Boolean
operations to build the model of the object. This technique allows generating an
object through operations such as transformations and combinations. Basic elements
are parallelepipeds, cylinders, discs, spheres, cones, pyramids and thoroids; they
can be generated at any point and then combined. Using Boolean operators, basic
elements can also be merged, intersected or subtracted to model complex geometries.
Finally, the finite-element mesh is generated, based on either tetrahedra or hexahedra
or prismatic elements.

4.3.2 Local Shape Functions in Rectangular Coordinates

The extension of the results of Section 4.2 to the three-dimensional case can be easily
obtained.

Let the domain Ω be discretised by means of a grid of tetrahedral elements,
such that:

– Two adjacent elements do not overlap
– No vertex of a tetrahedron belongs to either the face or the edge of an adjacent

tetrahedron

Moreover, let the magnetic potential be approximated by means of a linear polyno-
mial within the element.

For the sake of simplicity, only the case of a source-free simply-connected field
region is considered; consequently, the scalar magnetic potential φ(x, y, z) can be
used (see 2.212).

Referring to a tetrahedron of vertices vi = (xi, yi, zi) i = 1, 4, the following
functions

ψi(x, y, z) = det(Ci)

det(C)
, i = 1, 4 (4.72)
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can be defined, where

det(C) =

∣∣∣∣∣∣∣∣

1 x1 y1 z1
1 x2 y2 z2
1 x3 y3 z3
1 x4 y4 z4

∣∣∣∣∣∣∣∣
= 6V (4.73)

In (4.73) V is the volume of the given tetrahedron, det(C) is constant while

det(C1) =

∣∣∣∣∣∣∣∣

1 x y z
1 x2 y2 z2
1 x3 y3 z3
1 x4 y4 z4

∣∣∣∣∣∣∣∣
, det(C2) =

∣∣∣∣∣∣∣∣

1 x1 y1 z1
1 x y z
1 x3 y3 z3
1 x4 y4 z4

∣∣∣∣∣∣∣∣

det(C3) =

∣∣∣∣∣∣∣∣

1 x1 y1 z1
1 x2 y2 z2
1 x y z
1 x4 y4 z4

∣∣∣∣∣∣∣∣
, det(C4) =

∣∣∣∣∣∣∣∣

1 x1 y1 z1
1 x2 y2 z2
1 x3 y3 z3
1 x y z

∣∣∣∣∣∣∣∣
(4.74)

are linear functions of the coordinates (x, y, z) of a point P inside the tetrahedron.
A straightforward geometric interpretation in terms of volume coordinates is pos-

sible (Fig. 4.7); in fact, the denominator of (4.72) is proportional to the volume of
the given tetrahedron, while the numerator is proportional to the volume of another
tetrahedron, included into the given one and having the ith vertex coincident with
point P(x, y, z).

It is easy to prove that 0 ≤ ψk ≤ 1, k = 1, 4 and
∑4

k=1 ψk(x, y, z) = 1.
Consequently, (4.72) can be assumed as the local shape functions.

In turn, the restriction of potential φ(x, y, z) to the tetrahedron is

φ(x, y, z) =
4∑

k=1

ψk(x, y, z)φk

= [ψ1(x, y, z) ψ2(x, y, z) ψ3(x, y, z) ψ4(x, y, z)]

⎡
⎢⎢⎣

φ1
φ2
φ3
φ4

⎤
⎥⎥⎦ (4.75)

1 

2 

3 

4 

P(x,y,z) 

Fig. 4.7 Geometric interpretation of 3D local shape functions
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where (φ1, φ2, φ2, φ4) are the nodal values of the potential at the vertices Vi =
(xi, yi, zi), i = 1, 4 of tetrahedron.

The coefficient matrix and source vector are formed and assembled like in
Sections 4.2.3 and 4.2.5, respectively.

A similar procedure applies when passing from the potential to the induction field
B = (Bx, By, Bz

)
which is approximated on each element by

B = −μ
(

∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z

)
(4.76)

From (4.72) and (4.75) it follows

⎡
⎣Bx

By
Bz

⎤
⎦ = −μ

⎡
⎢⎢⎣

∂ψ1
∂x

∂ψ2
∂x

∂ψ3
∂x

∂ψ4
∂x

∂ψ1
∂y

∂ψ2
∂y

∂ψ3
∂y

∂ψ4
∂y

∂ψ1
∂z

∂ψ2
∂z

∂ψ3
∂z

∂ψ4
∂z

⎤
⎥⎥⎦
⎡
⎢⎢⎣

φ1
φ2
φ3
φ4

⎤
⎥⎥⎦ (4.77)

where μ is the element permeability.
Since (4.72) are linear in (x, y, z), each entry in the gradient matrix above is

constant; therefore, the induction field in the domain Ω is approximated by means
of a piecewise-constant function.

4.3.3 Comparison of 2D and 3D Simulations of an Electromagnet

Let the electromagnet discussed in Section 2.3.6 be considered again. The magnetic
field is here computed by means of the finite-element method, based on both two-
dimensional and three-dimensional models.

In Fig. 4.8 the two-dimensional mesh of the electromagnet is represented, for an
air-gap t = 1 mm wide; the mesh is composed of 4,500 triangles, approximately.
The resulting vector plot of the induction field is represented in Fig. 4.9; the air-gap

Fig. 4.8 2D finite-element mesh of the electromagnet (t = 1 mm)
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Fig. 4.9 Vector plot of magnetic induction (t = 1 mm)

Fig. 4.10 3D finite-element mesh of the electromagnet (t = 10 mm)

width is comparable with the linear size of the central limb and a consequent leakage
field can be noted.

Using the solid modelling technique, the model shown in Fig. 4.10 is obtained.
From this model a three-dimensional mesh composed of about 250,000 tetrahedra
has been generated. The depth of the magnetic core, in particular, has been taken
equal to the square root of the cross-section of the central limb (30 mm).

The corresponding plot of computed vectors is shown in Fig. 4.11.
The force acting on the movable part of the electromagnet is computed too, by

means of the Maxwell’s stress tensor. A surface embedding the movable core is taken
as the integration surface. The two models can be compared: in Fig. 4.12 the forces
vs air-gap curves are shown for both two- and three-dimensional models.
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Fig. 4.11 Vector plot of magnetic induction (t = 10 mm, winding not shown)

Fig. 4.12 Force vs air-gap curve (+2D, ∗3D)

The discrepancy between the two curves can be attributed to the leakage field in
the z direction, that is neglected in the two-dimensional analysis. In principle, the
three-dimensional analysis gives a more accurate prediction of the force. On the other
hand, the remarkable increase of the number of elements, and so the computational
cost, when passing from two to three dimensions, must be noted as well.




